
Red Hat Quay 3.11

Red Hat Quay Operator features

Advanced Red Hat Quay Operator features

Last Updated: 2024-06-04

Red Hat Quay 3.11 Red Hat Quay Operator features

Advanced Red Hat Quay Operator features

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Advanced Red Hat Quay Operator features

. .

. .

. .

. .

Table of Contents

CHAPTER 1. FEDERAL INFORMATION PROCESSING STANDARD (FIPS) READINESS AND COMPLIANCE
1.1. ENABLING FIPS COMPLIANCE

CHAPTER 2. CONSOLE MONITORING AND ALERTING
2.1. DASHBOARD
2.2. METRICS
2.3. ALERTING

CHAPTER 3. CLAIR SECURITY SCANNER
3.1. CLAIR VULNERABILITY DATABASES

3.1.1. Information about Open Source Vulnerability (OSV) database for Clair
3.2. CLAIR ON OPENSHIFT CONTAINER PLATFORM
3.3. TESTING CLAIR
3.4. ADVANCED CLAIR CONFIGURATION

3.4.1. Unmanaged Clair configuration
3.4.1.1. Running a custom Clair configuration with an unmanaged Clair database
3.4.1.2. Configuring a custom Clair database with an unmanaged Clair database

3.4.2. Running a custom Clair configuration with a managed Clair database
3.4.2.1. Setting a Clair database to managed
3.4.2.2. Configuring a custom Clair database with a managed Clair configuration

3.4.3. Clair in disconnected environments
3.4.3.1. Setting up Clair in a disconnected OpenShift Container Platform cluster

3.4.3.1.1. Installing the clairctl command line utility tool for OpenShift Container Platform deployments
3.4.3.1.2. Retrieving and decoding the Clair configuration secret for Clair deployments on OpenShift
Container Platform
3.4.3.1.3. Exporting the updaters bundle from a connected Clair instance
3.4.3.1.4. Configuring access to the Clair database in the disconnected OpenShift Container Platform
cluster
3.4.3.1.5. Importing the updaters bundle into the disconnected OpenShift Container Platform cluster

3.4.3.2. Setting up a self-managed deployment of Clair for a disconnected OpenShift Container Platform
cluster

3.4.3.2.1. Installing the clairctl command line utility tool for a self-managed Clair deployment on OpenShift
Container Platform
3.4.3.2.2. Deploying a self-managed Clair container for disconnected OpenShift Container Platform
clusters
3.4.3.2.3. Exporting the updaters bundle from a connected Clair instance
3.4.3.2.4. Configuring access to the Clair database in the disconnected OpenShift Container Platform
cluster
3.4.3.2.5. Importing the updaters bundle into the disconnected OpenShift Container Platform cluster

3.4.4. Mapping repositories to Common Product Enumeration information
3.4.4.1. Mapping repositories to Common Product Enumeration example configuration

CHAPTER 4. DEPLOYING RED HAT QUAY ON INFRASTRUCTURE NODES
4.1. LABELING AND TAINTING NODES FOR INFRASTRUCTURE USE
4.2. CREATING A PROJECT WITH NODE SELECTOR AND TOLERATIONS
4.3. INSTALLING RED HAT QUAY ON OPENSHIFT CONTAINER PLATFORM ON A SPECIFIC NAMESPACE

4.4. CREATING THE RED HAT QUAY REGISTRY
4.5. ENABLING MONITORING WHEN THE RED HAT QUAY OPERATOR IS INSTALLED IN A SINGLE
NAMESPACE

4.5.1. Creating a cluster monitoring config map
4.5.2. Creating a user-defined workload monitoring ConfigMap object
4.5.3. Enable monitoring for user-defined projects

5
5

6
6
7
9

10
10
10
10
10
12
12
12
13
14
15
15
16
17
17

18
18

19
20

20

21

21
22

22
23
24
24

26
26
27

29
29

30
30
31
31

Table of Contents

1

. .

. .

. .

4.5.4. Creating a Service object to expose Red Hat Quay metrics
4.5.5. Creating a ServiceMonitor object
4.5.6. Viewing metrics in OpenShift Container Platform

4.6. RESIZING MANAGED STORAGE
4.6.1. Resizing PostgreSQL 13 PVCs on Red Hat Quay

4.7. CUSTOMIZING DEFAULT OPERATOR IMAGES
4.7.1. Environment Variables
4.7.2. Applying overrides to a running Operator

4.8. AWS S3 CLOUDFRONT

CHAPTER 5. RED HAT QUAY BUILD ENHANCEMENTS
5.1. RED HAT QUAY BUILD LIMITATIONS
5.2. CREATING A RED HAT QUAY BUILDERS ENVIRONMENT WITH OPENSHIFT CONTAINER PLATFORM

5.2.1. OpenShift Container Platform TLS component
5.2.2. Using OpenShift Container Platform for Red Hat Quay builders

5.2.2.1. Preparing OpenShift Container Platform for virtual builders
5.2.2.2. Manually adding SSL/TLS certificates

5.2.2.2.1. Creating and signing certificates
5.2.2.2.2. Setting TLS to unmanaged
5.2.2.2.3. Creating temporary secrets
5.2.2.2.4. Copying secret data to the configuration YAML

5.2.2.3. Using the UI to create a build trigger
5.2.2.4. Modifying your AWS S3 storage bucket
5.2.2.5. Modifying your Google Cloud Platform object bucket

CHAPTER 6. GEO-REPLICATION
ADDITIONAL RESOURCES
6.1. GEO-REPLICATION FEATURES
6.2. GEO-REPLICATION REQUIREMENTS AND CONSTRAINTS

6.2.1. Setting up geo-replication on OpenShift Container Platform
6.2.1.1. Configuring geo-replication for the Red Hat Quay on OpenShift Container Platform

6.2.2. Mixed storage for geo-replication
6.3. UPGRADING A GEO-REPLICATION DEPLOYMENT OF RED HAT QUAY ON OPENSHIFT CONTAINER
PLATFORM

6.3.1. Removing a geo-replicated site from your Red Hat Quay on OpenShift Container Platform deployment

CHAPTER 7. BACKING UP AND RESTORING RED HAT QUAY MANAGED BY THE RED HAT QUAY OPERATOR

7.1. OPTIONAL: ENABLING READ-ONLY MODE FOR RED HAT QUAY ON OPENSHIFT CONTAINER
PLATFORM

7.1.1. Creating service keys for Red Hat Quay on OpenShift Container Platform
7.1.2. Adding keys to the PostgreSQL database
7.1.3. Configuring read-only mode Red Hat Quay on OpenShift Container Platform

7.1.3.1. Scaling up the Red Hat Quay on OpenShift Container Platform from a read-only deployment
7.2. BACKING UP RED HAT QUAY

7.2.1. Red Hat Quay configuration backup
7.2.2. Scaling down your Red Hat Quay deployment
7.2.3. Backing up the Red Hat Quay managed database

7.2.3.1. Backing up the Red Hat Quay managed object storage
7.2.4. Scale the Red Hat Quay deployment back up

7.3. RESTORING RED HAT QUAY
7.3.1. Restoring Red Hat Quay and its configuration from a backup
7.3.2. Scaling down your Red Hat Quay deployment

32
33
34
34
35
35
36
36
37

38
38
38
38
38
38
42
42
43
44
44
46
47
48

51
51
51
51
52
53
56

56

59

62

62
62
63
64
66
66
67
68
70
70
71
72
73
74

Red Hat Quay 3.11 Red Hat Quay Operator features

2

. .

. .

. .

. .

. .

. .

. .

7.3.3. Restoring your Red Hat Quay database
7.3.4. Restore your Red Hat Quay object storage data
7.3.5. Scaling up your Red Hat Quay deployment

CHAPTER 8. VOLUME SIZE OVERRIDES

CHAPTER 9. SCANNING POD IMAGES WITH THE CONTAINER SECURITY OPERATOR
9.1. DOWNLOADING AND RUNNING THE CONTAINER SECURITY OPERATOR IN OPENSHIFT CONTAINER
PLATFORM
9.2. QUERY IMAGE VULNERABILITIES FROM THE CLI

CHAPTER 10. CONFIGURING AWS STS FOR RED HAT QUAY
10.1. CREATING AN IAM USER
10.2. CREATING AN S3 ROLE
10.3. CONFIGURING RED HAT QUAY ON OPENSHIFT CONTAINER PLATFORM TO USE AWS STS

CHAPTER 11. INTEGRATING RED HAT QUAY INTO OPENSHIFT CONTAINER PLATFORM WITH THE QUAY
BRIDGE OPERATOR

11.1. SETTING UP RED HAT QUAY FOR THE QUAY BRIDGE OPERATOR
11.2. INSTALLING THE QUAY BRIDGE OPERATOR ON OPENSHIFT CONTAINER PLATFORM
11.3. CREATING AN OPENSHIFT CONTAINER PLATFORM SECRET FOR THE OAUTH TOKEN
11.4. CREATING THE QUAYINTEGRATION CUSTOM RESOURCE

11.4.1. Optional: Creating the QuayIntegration custom resource using the CLI
11.4.2. Optional: Creating the QuayIntegration custom resource using the web console

11.5. USING QUAY BRIDGE OPERATOR

CHAPTER 12. DEPLOYING IPV6 ON RED HAT QUAY ON OPENSHIFT CONTAINER PLATFORM
12.1. ENABLING THE IPV6 PROTOCOL FAMILY
12.2. IPV6 LIMITATIONS

CHAPTER 13. ADDING CUSTOM SSL/TLS CERTIFICATES WHEN RED HAT QUAY IS DEPLOYED ON
KUBERNETES

CHAPTER 14. UPGRADING THE RED HAT QUAY OPERATOR OVERVIEW
14.1. OPERATOR LIFECYCLE MANAGER
14.2. UPGRADING THE RED HAT QUAY OPERATOR

14.2.1. Upgrading Red Hat Quay
14.2.2. Changing the update channel for the Red Hat Quay Operator
14.2.3. Manually approving a pending Operator upgrade

14.3. UPGRADING A QUAYREGISTRY RESOURCE
14.4. UPGRADING A QUAYECOSYSTEM

14.4.1. Reverting QuayEcosystem Upgrade
14.4.2. Supported QuayEcosystem Configurations for Upgrades

ADDITIONAL RESOURCES

75
76
77

79

80

80
82

84
84
85
86

88
88
89
89
90
90
91

92

96
96
97

98

99
99
99

100
100
100
101
101
102
102
103

Table of Contents

3

Red Hat Quay 3.11 Red Hat Quay Operator features

4

CHAPTER 1. FEDERAL INFORMATION PROCESSING
STANDARD (FIPS) READINESS AND COMPLIANCE

The Federal Information Processing Standard (FIPS) developed by the National Institute of Standards
and Technology (NIST) is regarded as the highly regarded for securing and encrypting sensitive data,
notably in highly regulated areas such as banking, healthcare, and the public sector. Red Hat Enterprise
Linux (RHEL) and OpenShift Container Platform support FIPS by providing a FIPS mode , in which the
system only allows usage of specific FIPS-validated cryptographic modules like openssl. This ensures
FIPS compliance.

1.1. ENABLING FIPS COMPLIANCE

Use the following procedure to enable FIPS compliance on your Red Hat Quay deployment.

Prerequisite

If you are running a standalone deployment of Red Hat Quay, your Red Hat Enterprise Linux
(RHEL) deployment is version 8 or later and FIPS-enabled.

If you are deploying Red Hat Quay on OpenShift Container Platform, OpenShift Container
Platform is version 4.10 or later.

Your Red Hat Quay version is 3.5.0 or later.

If you are using the Red Hat Quay on OpenShift Container Platform on an IBM Power or IBM Z
cluster:

OpenShift Container Platform version 4.14 or later is required

Red Hat Quay version 3.10 or later is required

You have administrative privileges for your Red Hat Quay deployment.

Procedure

In your Red Hat Quay config.yaml file, set the FEATURE_FIPS configuration field to true. For
example:

With FEATURE_FIPS set to true, Red Hat Quay runs using FIPS-compliant hash functions.

FEATURE_FIPS = true

CHAPTER 1. FEDERAL INFORMATION PROCESSING STANDARD (FIPS) READINESS AND COMPLIANCE

5

CHAPTER 2. CONSOLE MONITORING AND ALERTING
Red Hat Quay provides support for monitoring instances that were deployed by using the Red Hat Quay
Operator, from inside the OpenShift Container Platform console. The new monitoring features include a
Grafana dashboard, access to individual metrics, and alerting to notify for frequently restarting Quay
pods.

NOTE

To enable the monitoring features, the Red Hat Quay Operator must be installed in All
Namespaces mode.

2.1. DASHBOARD

On the OpenShift Container Platform console, click Monitoring → Dashboards and search for the
dashboard of your desired Red Hat Quay registry instance:

The dashboard shows various statistics including the following:

Red Hat Quay 3.11 Red Hat Quay Operator features

6

The number of Organizations, Repositories, Users, and Robot accounts

CPU Usage

Max memory usage

Rates of pulls and pushes, and authentication requests

API request rate

Latencies

2.2. METRICS

You can see the underlying metrics behind the Red Hat Quay dashboard by accessing Monitoring →
Metrics in the UI. In the Expression field, enter the text quay_ to see the list of metrics available:

CHAPTER 2. CONSOLE MONITORING AND ALERTING

7

Select a sample metric, for example, quay_org_rows:

Red Hat Quay 3.11 Red Hat Quay Operator features

8

This metric shows the number of organizations in the registry. It is also directly surfaced in the
dashboard.

2.3. ALERTING

An alert is raised if the Quay pods restart too often. The alert can be configured by accessing the
Alerting rules tab from Monitoring → Alerting in the console UI and searching for the Quay-specific
alert:

Select the QuayPodFrequentlyRestarting rule detail to configure the alert:

CHAPTER 2. CONSOLE MONITORING AND ALERTING

9

CHAPTER 3. CLAIR SECURITY SCANNER

3.1. CLAIR VULNERABILITY DATABASES

Clair uses the following vulnerability databases to report for issues in your images:

Ubuntu Oval database

Debian Security Tracker

Red Hat Enterprise Linux (RHEL) Oval database

SUSE Oval database

Oracle Oval database

Alpine SecDB database

VMware Photon OS database

Amazon Web Services (AWS) UpdateInfo

Open Source Vulnerability (OSV) Database

For information about how Clair does security mapping with the different databases, see Claircore
Severity Mapping.

3.1.1. Information about Open Source Vulnerability (OSV) database for Clair

Open Source Vulnerability (OSV) is a vulnerability database and monitoring service that focuses on
tracking and managing security vulnerabilities in open source software.

OSV provides a comprehensive and up-to-date database of known security vulnerabilities in open
source projects. It covers a wide range of open source software, including libraries, frameworks, and
other components that are used in software development. For a full list of included ecosystems, see
defined ecosystems.

Clair also reports vulnerability and security information for golang, java, and ruby ecosystems through
the Open Source Vulnerability (OSV) database.

By leveraging OSV, developers and organizations can proactively monitor and address security
vulnerabilities in open source components that they use, which helps to reduce the risk of security
breaches and data compromises in projects.

For more information about OSV, see the OSV website.

3.2. CLAIR ON OPENSHIFT CONTAINER PLATFORM

To set up Clair v4 (Clair) on a Red Hat Quay deployment on OpenShift Container Platform, it is
recommended to use the Red Hat Quay Operator. By default, the Red Hat Quay Operator installs or
upgrades a Clair deployment along with your Red Hat Quay deployment and configure Clair
automatically.

3.3. TESTING CLAIR

Red Hat Quay 3.11 Red Hat Quay Operator features

10

https://osv.dev/
https://quay.github.io/claircore/concepts/severity_mapping.html
https://ossf.github.io/osv-schema/#affectedpackage-field
https://osv.dev/

Use the following procedure to test Clair on either a standalone Red Hat Quay deployment, or on an
OpenShift Container Platform Operator-based deployment.

Prerequisites

You have deployed the Clair container image.

Procedure

1. Pull a sample image by entering the following command:

2. Tag the image to your registry by entering the following command:

3. Push the image to your Red Hat Quay registry by entering the following command:

4. Log in to your Red Hat Quay deployment through the UI.

5. Click the repository name, for example, quayadmin/ubuntu.

6. In the navigation pane, click Tags.

Report summary

7. Click the image report, for example, 45 medium, to show a more detailed report:

Report details

$ podman pull ubuntu:20.04

$ sudo podman tag docker.io/library/ubuntu:20.04 <quay-server.example.com>/<user-
name>/ubuntu:20.04

$ sudo podman push --tls-verify=false quay-server.example.com/quayadmin/ubuntu:20.04

CHAPTER 3. CLAIR SECURITY SCANNER

11

NOTE

In some cases, Clair shows duplicate reports on images, for example,
ubi8/nodejs-12 or ubi8/nodejs-16. This occurs because vulnerabilities with same
name are for different packages. This behavior is expected with Clair vulnerability
reporting and will not be addressed as a bug.

3.4. ADVANCED CLAIR CONFIGURATION

Use the procedures in the following sections to configure advanced Clair settings.

3.4.1. Unmanaged Clair configuration

Red Hat Quay users can run an unmanaged Clair configuration with the Red Hat Quay OpenShift
Container Platform Operator. This feature allows users to create an unmanaged Clair database, or run
their custom Clair configuration without an unmanaged database.

An unmanaged Clair database allows the Red Hat Quay Operator to work in a geo-replicated
environment, where multiple instances of the Operator must communicate with the same database. An
unmanaged Clair database can also be used when a user requires a highly-available (HA) Clair database
that exists outside of a cluster.

3.4.1.1. Running a custom Clair configuration with an unmanaged Clair database

Use the following procedure to set your Clair database to unmanaged.

Procedure

In the Quay Operator, set the clairpostgres component of the QuayRegistry custom resource
to managed: false:

apiVersion: quay.redhat.com/v1
kind: QuayRegistry
metadata:
 name: quay370
spec:
 configBundleSecret: config-bundle-secret
 components:

Red Hat Quay 3.11 Red Hat Quay Operator features

12

3.4.1.2. Configuring a custom Clair database with an unmanaged Clair database

Red Hat Quay on OpenShift Container Platform allows users to provide their own Clair database.

Use the following procedure to create a custom Clair database.

NOTE

The following procedure sets up Clair with SSL/TLS certifications. To view a similar
procedure that does not set up Clair with SSL/TSL certifications, see "Configuring a
custom Clair database with a managed Clair configuration".

Procedure

1. Create a Quay configuration bundle secret that includes the clair-config.yaml by entering the
following command:

Example Clair config.yaml file

NOTE

 - kind: objectstorage
 managed: false
 - kind: route
 managed: true
 - kind: tls
 managed: false
 - kind: clairpostgres
 managed: false

$ oc create secret generic --from-file config.yaml=./config.yaml --from-file extra_ca_cert_rds-
ca-2019-root.pem=./rds-ca-2019-root.pem --from-file clair-config.yaml=./clair-config.yaml --
from-file ssl.cert=./ssl.cert --from-file ssl.key=./ssl.key config-bundle-secret

indexer:
 connstring: host=quay-server.example.com port=5432 dbname=quay user=quayrdsdb
password=quayrdsdb sslrootcert=/run/certs/rds-ca-2019-root.pem sslmode=verify-ca
 layer_scan_concurrency: 6
 migrations: true
 scanlock_retry: 11
log_level: debug
matcher:
 connstring: host=quay-server.example.com port=5432 dbname=quay user=quayrdsdb
password=quayrdsdb sslrootcert=/run/certs/rds-ca-2019-root.pem sslmode=verify-ca
 migrations: true
metrics:
 name: prometheus
notifier:
 connstring: host=quay-server.example.com port=5432 dbname=quay user=quayrdsdb
password=quayrdsdb sslrootcert=/run/certs/rds-ca-2019-root.pem sslmode=verify-ca
 migrations: true

CHAPTER 3. CLAIR SECURITY SCANNER

13

NOTE

The database certificate is mounted under /run/certs/rds-ca-2019-root.pem
on the Clair application pod in the clair-config.yaml. It must be specified
when configuring your clair-config.yaml.

An example clair-config.yaml can be found at Clair on OpenShift config .

2. Add the clair-config.yaml file to your bundle secret, for example:

NOTE

When updated, the provided clair-config.yaml file is mounted into the Clair pod.
Any fields not provided are automatically populated with defaults using the Clair
configuration module.

3. You can check the status of your Clair pod by clicking the commit in the Build History page, or
by running oc get pods -n <namespace>. For example:

$ oc get pods -n <namespace>

Example output

NAME READY STATUS RESTARTS AGE
f192fe4a-c802-4275-bcce-d2031e635126-9l2b5-25lg2 1/1 Running 0 7s

3.4.2. Running a custom Clair configuration with a managed Clair database

In some cases, users might want to run a custom Clair configuration with a managed Clair database. This
is useful in the following scenarios:

When a user wants to disable specific updater resources.

When a user is running Red Hat Quay in an disconnected environment. For more information
about running Clair in a disconnected environment, see Clair in disconnected environments .

NOTE

apiVersion: v1
kind: Secret
metadata:
 name: config-bundle-secret
 namespace: quay-enterprise
data:
 config.yaml: <base64 encoded Quay config>
 clair-config.yaml: <base64 encoded Clair config>
 extra_ca_cert_<name>: <base64 encoded ca cert>
 ssl.crt: <base64 encoded SSL certificate>
 ssl.key: <base64 encoded SSL private key>

Red Hat Quay 3.11 Red Hat Quay Operator features

14

https://access.redhat.com/documentation/en-us/red_hat_quay/3/html/deploy_red_hat_quay_on_openshift_with_the_quay_operator/quay_operator_features#clair-openshift-config
https://access.redhat.com/documentation/en-us/red_hat_quay/3/html-single/vulnerability_reporting_with_clair_on_red_hat_quay/index#clair-disconnected-environments

NOTE

If you are running Red Hat Quay in an disconnected environment, the airgap
parameter of your clair-config.yaml must be set to true.

If you are running Red Hat Quay in an disconnected environment, you should
disable all updater components.

3.4.2.1. Setting a Clair database to managed

Use the following procedure to set your Clair database to managed.

Procedure

In the Quay Operator, set the clairpostgres component of the QuayRegistry custom resource
to managed: true:

3.4.2.2. Configuring a custom Clair database with a managed Clair configuration

Red Hat Quay on OpenShift Container Platform allows users to provide their own Clair database.

Use the following procedure to create a custom Clair database.

Procedure

1. Create a Quay configuration bundle secret that includes the clair-config.yaml by entering the
following command:

Example Clair config.yaml file

apiVersion: quay.redhat.com/v1
kind: QuayRegistry
metadata:
 name: quay370
spec:
 configBundleSecret: config-bundle-secret
 components:
 - kind: objectstorage
 managed: false
 - kind: route
 managed: true
 - kind: tls
 managed: false
 - kind: clairpostgres
 managed: true

$ oc create secret generic --from-file config.yaml=./config.yaml --from-file extra_ca_cert_rds-
ca-2019-root.pem=./rds-ca-2019-root.pem --from-file clair-config.yaml=./clair-config.yaml
config-bundle-secret

indexer:
 connstring: host=quay-server.example.com port=5432 dbname=quay user=quayrdsdb
password=quayrdsdb sslmode=disable
 layer_scan_concurrency: 6

CHAPTER 3. CLAIR SECURITY SCANNER

15

NOTE

The database certificate is mounted under /run/certs/rds-ca-2019-root.pem
on the Clair application pod in the clair-config.yaml. It must be specified
when configuring your clair-config.yaml.

An example clair-config.yaml can be found at Clair on OpenShift config .

2. Add the clair-config.yaml file to your bundle secret, for example:

NOTE

When updated, the provided clair-config.yaml file is mounted into the Clair
pod. Any fields not provided are automatically populated with defaults using
the Clair configuration module.

3. You can check the status of your Clair pod by clicking the commit in the Build History page, or
by running oc get pods -n <namespace>. For example:

$ oc get pods -n <namespace>

Example output

NAME READY STATUS RESTARTS AGE
f192fe4a-c802-4275-bcce-d2031e635126-9l2b5-25lg2 1/1 Running 0 7s

3.4.3. Clair in disconnected environments

NOTE

 migrations: true
 scanlock_retry: 11
log_level: debug
matcher:
 connstring: host=quay-server.example.com port=5432 dbname=quay user=quayrdsdb
password=quayrdsdb sslmode=disable
 migrations: true
metrics:
 name: prometheus
notifier:
 connstring: host=quay-server.example.com port=5432 dbname=quay user=quayrdsdb
password=quayrdsdb sslmode=disable
 migrations: true

apiVersion: v1
kind: Secret
metadata:
 name: config-bundle-secret
 namespace: quay-enterprise
data:
 config.yaml: <base64 encoded Quay config>
 clair-config.yaml: <base64 encoded Clair config>

Red Hat Quay 3.11 Red Hat Quay Operator features

16

https://access.redhat.com/documentation/en-us/red_hat_quay/3/html/deploy_red_hat_quay_on_openshift_with_the_quay_operator/quay_operator_features#clair-openshift-config

NOTE

Currently, deploying Clair in disconnected environments is not supported on IBM Power
and IBM Z.

Clair uses a set of components called updaters to handle the fetching and parsing of data from various
vulnerability databases. Updaters are set up by default to pull vulnerability data directly from the
internet and work for immediate use. However, some users might require Red Hat Quay to run in a
disconnected environment, or an environment without direct access to the internet. Clair supports
disconnected environments by working with different types of update workflows that take network
isolation into consideration. This works by using the clairctl command line interface tool, which obtains
updater data from the internet by using an open host, securely transferring the data to an isolated host,
and then important the updater data on the isolated host into Clair.

Use this guide to deploy Clair in a disconnected environment.

IMPORTANT

Due to known issue PROJQUAY-6577, the Red Hat Quay Operator does not properly
render customized Clair config.yaml files. As a result, the following procedure does not
currently work.

Users must create the entire Clair configuration themselves, from the beginning, instead
of relying on the Operator to populate the fields. To do this, following the instructions at
Procedure to enable Clair scanning of images in disconnected environments .

NOTE

Currently, Clair enrichment data is CVSS data. Enrichment data is currently unsupported
in disconnected environments.

For more information about Clair updaters, see "Clair updaters".

3.4.3.1. Setting up Clair in a disconnected OpenShift Container Platform cluster

Use the following procedures to set up an OpenShift Container Platform provisioned Clair pod in a
disconnected OpenShift Container Platform cluster.

IMPORTANT

Due to known issue PROJQUAY-6577, the Red Hat Quay Operator does not properly
render customized Clair config.yaml files. As a result, the following procedure does not
currently work.

Users must create the entire Clair configuration themselves, from the beginning, instead
of relying on the Operator to populate the fields. To do this, following the instructions at
Procedure to enable Clair scanning of images in disconnected environments .

3.4.3.1.1. Installing the clairctl command line utility tool for OpenShift Container Platform
deployments

Use the following procedure to install the clairctl CLI tool for OpenShift Container Platform
deployments.

Procedure

CHAPTER 3. CLAIR SECURITY SCANNER

17

https://issues.redhat.com/browse/PROJQUAY-6577
https://access.redhat.com/solutions/7051718
https://issues.redhat.com/browse/PROJQUAY-6577
https://access.redhat.com/solutions/7051718

Procedure

1. Install the clairctl program for a Clair deployment in an OpenShift Container Platform cluster by
entering the following command:

NOTE

Unofficially, the clairctl tool can be downloaded

2. Set the permissions of the clairctl file so that it can be executed and run by the user, for
example:

3.4.3.1.2. Retrieving and decoding the Clair configuration secret for Clair deployments on
OpenShift Container Platform

Use the following procedure to retrieve and decode the configuration secret for an OpenShift Container
Platform provisioned Clair instance on OpenShift Container Platform.

Prerequisites

You have installed the clairctl command line utility tool.

Procedure

1. Enter the following command to retrieve and decode the configuration secret, and then save it
to a Clair configuration YAML:

2. Update the clair-config.yaml file so that the disable_updaters and airgap parameters are set
to true, for example:

3.4.3.1.3. Exporting the updaters bundle from a connected Clair instance

Use the following procedure to export the updaters bundle from a Clair instance that has access to the
internet.

Prerequisites

$ oc -n quay-enterprise exec example-registry-clair-app-64dd48f866-6ptgw -- cat
/usr/bin/clairctl > clairctl

$ chmod u+x ./clairctl

$ oc get secret -n quay-enterprise example-registry-clair-config-secret -o "jsonpath=
{$.data['config\.yaml']}" | base64 -d > clair-config.yaml

indexer:
 airgap: true

matcher:
 disable_updaters: true

Red Hat Quay 3.11 Red Hat Quay Operator features

18

You have installed the clairctl command line utility tool.

You have retrieved and decoded the Clair configuration secret, and saved it to a Clair
config.yaml file.

The disable_updaters and airgap parameters are set to true in your Clair config.yaml file.

Procedure

From a Clair instance that has access to the internet, use the clairctl CLI tool with your
configuration file to export the updaters bundle. For example:

3.4.3.1.4. Configuring access to the Clair database in the disconnected OpenShift Container
Platform cluster

Use the following procedure to configure access to the Clair database in your disconnected OpenShift
Container Platform cluster.

Prerequisites

You have installed the clairctl command line utility tool.

You have retrieved and decoded the Clair configuration secret, and saved it to a Clair
config.yaml file.

The disable_updaters and airgap parameters are set to true in your Clair config.yaml file.

You have exported the updaters bundle from a Clair instance that has access to the internet.

Procedure

1. Determine your Clair database service by using the oc CLI tool, for example:

Example output

2. Forward the Clair database port so that it is accessible from the local machine. For example:

3. Update your Clair config.yaml file, for example:

$./clairctl --config ./config.yaml export-updaters updates.gz

$ oc get svc -n quay-enterprise

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
AGE
example-registry-clair-app ClusterIP 172.30.224.93 <none>
80/TCP,8089/TCP 4d21h
example-registry-clair-postgres ClusterIP 172.30.246.88 <none> 5432/TCP
4d21h
...

$ oc port-forward -n quay-enterprise service/example-registry-clair-postgres 5432:5432

CHAPTER 3. CLAIR SECURITY SCANNER

19

1

2

3

Replace the value of the host in the multiple connstring fields with localhost.

For more information about the rhel-repository-scanner parameter, see "Mapping
repositories to Common Product Enumeration information".

For more information about the rhel_containerscanner parameter, see "Mapping
repositories to Common Product Enumeration information".

3.4.3.1.5. Importing the updaters bundle into the disconnected OpenShift Container Platform
cluster

Use the following procedure to import the updaters bundle into your disconnected OpenShift Container
Platform cluster.

Prerequisites

You have installed the clairctl command line utility tool.

You have retrieved and decoded the Clair configuration secret, and saved it to a Clair
config.yaml file.

The disable_updaters and airgap parameters are set to true in your Clair config.yaml file.

You have exported the updaters bundle from a Clair instance that has access to the internet.

You have transferred the updaters bundle into your disconnected environment.

Procedure

Use the clairctl CLI tool to import the updaters bundle into the Clair database that is deployed
by OpenShift Container Platform. For example:

3.4.3.2. Setting up a self-managed deployment of Clair for a disconnected OpenShift
Container Platform cluster

Use the following procedures to set up a self-managed deployment of Clair for a disconnected
OpenShift Container Platform cluster.

indexer:
 connstring: host=localhost port=5432 dbname=postgres user=postgres
password=postgres sslmode=disable 1
 scanlock_retry: 10
 layer_scan_concurrency: 5
 migrations: true
 scanner:
 repo:
 rhel-repository-scanner: 2
 repo2cpe_mapping_file: /data/cpe-map.json
 package:
 rhel_containerscanner: 3
 name2repos_mapping_file: /data/repo-map.json

$./clairctl --config ./clair-config.yaml import-updaters updates.gz

Red Hat Quay 3.11 Red Hat Quay Operator features

20

IMPORTANT

Due to known issue PROJQUAY-6577, the Red Hat Quay Operator does not properly
render customized Clair config.yaml files. As a result, the following procedure does not
currently work.

Users must create the entire Clair configuration themselves, from the beginning, instead
of relying on the Operator to populate the fields. To do this, following the instructions at
Procedure to enable Clair scanning of images in disconnected environments .

3.4.3.2.1. Installing the clairctl command line utility tool for a self-managed Clair deployment on
OpenShift Container Platform

Use the following procedure to install the clairctl CLI tool for self-managed Clair deployments on
OpenShift Container Platform.

Procedure

1. Install the clairctl program for a self-managed Clair deployment by using the podman cp
command, for example:

2. Set the permissions of the clairctl file so that it can be executed and run by the user, for
example:

3.4.3.2.2. Deploying a self-managed Clair container for disconnected OpenShift Container
Platform clusters

Use the following procedure to deploy a self-managed Clair container for disconnected OpenShift
Container Platform clusters.

Prerequisites

You have installed the clairctl command line utility tool.

Procedure

1. Create a folder for your Clair configuration file, for example:

2. Create a Clair configuration file with the disable_updaters parameter set to true, for example:

$ sudo podman cp clairv4:/usr/bin/clairctl ./clairctl

$ chmod u+x ./clairctl

$ mkdir /etc/clairv4/config/

indexer:
 airgap: true

matcher:
 disable_updaters: true

CHAPTER 3. CLAIR SECURITY SCANNER

21

https://issues.redhat.com/browse/PROJQUAY-6577
https://access.redhat.com/solutions/7051718

3. Start Clair by using the container image, mounting in the configuration from the file you created:

$ sudo podman run -it --rm --name clairv4 \
-p 8081:8081 -p 8088:8088 \
-e CLAIR_CONF=/clair/config.yaml \
-e CLAIR_MODE=combo \
-v /etc/clairv4/config:/clair:Z \
registry.redhat.io/quay/clair-rhel8:v3.11.1

3.4.3.2.3. Exporting the updaters bundle from a connected Clair instance

Use the following procedure to export the updaters bundle from a Clair instance that has access to the
internet.

Prerequisites

You have installed the clairctl command line utility tool.

You have deployed Clair.

The disable_updaters and airgap parameters are set to true in your Clair config.yaml file.

Procedure

From a Clair instance that has access to the internet, use the clairctl CLI tool with your
configuration file to export the updaters bundle. For example:

3.4.3.2.4. Configuring access to the Clair database in the disconnected OpenShift Container
Platform cluster

Use the following procedure to configure access to the Clair database in your disconnected OpenShift
Container Platform cluster.

Prerequisites

You have installed the clairctl command line utility tool.

You have deployed Clair.

The disable_updaters and airgap parameters are set to true in your Clair config.yaml file.

You have exported the updaters bundle from a Clair instance that has access to the internet.

Procedure

1. Determine your Clair database service by using the oc CLI tool, for example:

Example output

$./clairctl --config ./config.yaml export-updaters updates.gz

$ oc get svc -n quay-enterprise

Red Hat Quay 3.11 Red Hat Quay Operator features

22

1

2

3

2. Forward the Clair database port so that it is accessible from the local machine. For example:

3. Update your Clair config.yaml file, for example:

Replace the value of the host in the multiple connstring fields with localhost.

For more information about the rhel-repository-scanner parameter, see "Mapping
repositories to Common Product Enumeration information".

For more information about the rhel_containerscanner parameter, see "Mapping
repositories to Common Product Enumeration information".

3.4.3.2.5. Importing the updaters bundle into the disconnected OpenShift Container Platform
cluster

Use the following procedure to import the updaters bundle into your disconnected OpenShift Container
Platform cluster.

Prerequisites

You have installed the clairctl command line utility tool.

You have deployed Clair.

The disable_updaters and airgap parameters are set to true in your Clair config.yaml file.

You have exported the updaters bundle from a Clair instance that has access to the internet.

You have transferred the updaters bundle into your disconnected environment.

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
AGE
example-registry-clair-app ClusterIP 172.30.224.93 <none>
80/TCP,8089/TCP 4d21h
example-registry-clair-postgres ClusterIP 172.30.246.88 <none> 5432/TCP
4d21h
...

$ oc port-forward -n quay-enterprise service/example-registry-clair-postgres 5432:5432

indexer:
 connstring: host=localhost port=5432 dbname=postgres user=postgres
password=postgres sslmode=disable 1
 scanlock_retry: 10
 layer_scan_concurrency: 5
 migrations: true
 scanner:
 repo:
 rhel-repository-scanner: 2
 repo2cpe_mapping_file: /data/cpe-map.json
 package:
 rhel_containerscanner: 3
 name2repos_mapping_file: /data/repo-map.json

CHAPTER 3. CLAIR SECURITY SCANNER

23

Procedure

Use the clairctl CLI tool to import the updaters bundle into the Clair database that is deployed
by OpenShift Container Platform:

3.4.4. Mapping repositories to Common Product Enumeration information

NOTE

Currently, mapping repositories to Common Product Enumeration information is not
supported on IBM Power and IBM Z.

Clair’s Red Hat Enterprise Linux (RHEL) scanner relies on a Common Product Enumeration (CPE) file to
map RPM packages to the corresponding security data to produce matching results. These files are
owned by product security and updated daily.

The CPE file must be present, or access to the file must be allowed, for the scanner to properly process
RPM packages. If the file is not present, RPM packages installed in the container image will not be
scanned.

Table 3.1. Clair CPE mapping files

CPE Link to JSON mapping file

repos2cpe Red Hat Repository-to-CPE JSON

names2repos Red Hat Name-to-Repos JSON.

In addition to uploading CVE information to the database for disconnected Clair installations, you must
also make the mapping file available locally:

For standalone Red Hat Quay and Clair deployments, the mapping file must be loaded into the
Clair pod.

For Red Hat Quay on OpenShift Container Platform deployments, you must set the Clair
component to unmanaged. Then, Clair must be deployed manually, setting the configuration to
load a local copy of the mapping file.

3.4.4.1. Mapping repositories to Common Product Enumeration example configuration

Use the repo2cpe_mapping_file and name2repos_mapping_file fields in your Clair configuration to
include the CPE JSON mapping files. For example:

$./clairctl --config ./clair-config.yaml import-updaters updates.gz

indexer:
 scanner:
 repo:
 rhel-repository-scanner:
 repo2cpe_mapping_file: /data/cpe-map.json

Red Hat Quay 3.11 Red Hat Quay Operator features

24

https://www.redhat.com/security/data/metrics/repository-to-cpe.json
https://access.redhat.com/security/data/metrics/container-name-repos-map.json

For more information, see How to accurately match OVAL security data to installed RPMs .

 package:
 rhel_containerscanner:
 name2repos_mapping_file: /data/repo-map.json

CHAPTER 3. CLAIR SECURITY SCANNER

25

https://www.redhat.com/en/blog/how-accurately-match-oval-security-data-installed-rpms

CHAPTER 4. DEPLOYING RED HAT QUAY ON
INFRASTRUCTURE NODES

By default, Quay related pods are placed on arbitrary worker nodes when using the Red Hat Quay
Operator to deploy the registry. For more information about how to use machine sets to configure
nodes to only host infrastructure components, see Creating infrastructure machine sets.

If you are not using OpenShift Container Platform machine set resources to deploy infra nodes, the
section in this document shows you how to manually label and taint nodes for infrastructure purposes.
After you have configured your infrastructure nodes either manually or use machines sets, you can
control the placement of Quay pods on these nodes using node selectors and tolerations.

4.1. LABELING AND TAINTING NODES FOR INFRASTRUCTURE USE

Use the following procedure to label and tain nodes for infrastructure use.

1. Enter the following command to reveal the master and worker nodes. In this example, there are
three master nodes and six worker nodes.

Example output

2. Enter the following commands to label the three worker nodes for infrastructure use:

3. Now, when listing the nodes in the cluster, the last three worker nodes have the infra role. For

$ oc get nodes

NAME STATUS ROLES AGE VERSION
user1-jcnp6-master-0.c.quay-devel.internal Ready master 3h30m v1.20.0+ba45583
user1-jcnp6-master-1.c.quay-devel.internal Ready master 3h30m v1.20.0+ba45583
user1-jcnp6-master-2.c.quay-devel.internal Ready master 3h30m v1.20.0+ba45583
user1-jcnp6-worker-b-65plj.c.quay-devel.internal Ready worker 3h21m
v1.20.0+ba45583
user1-jcnp6-worker-b-jr7hc.c.quay-devel.internal Ready worker 3h21m
v1.20.0+ba45583
user1-jcnp6-worker-c-jrq4v.c.quay-devel.internal Ready worker 3h21m
v1.20.0+ba45583
user1-jcnp6-worker-c-pwxfp.c.quay-devel.internal Ready worker 3h21m
v1.20.0+ba45583
user1-jcnp6-worker-d-h5tv2.c.quay-devel.internal Ready worker 3h22m
v1.20.0+ba45583
user1-jcnp6-worker-d-m9gg4.c.quay-devel.internal Ready worker 3h21m
v1.20.0+ba45583

$ oc label node --overwrite user1-jcnp6-worker-c-pwxfp.c.quay-devel.internal node-
role.kubernetes.io/infra=

$ oc label node --overwrite user1-jcnp6-worker-d-h5tv2.c.quay-devel.internal node-
role.kubernetes.io/infra=

$ oc label node --overwrite user1-jcnp6-worker-d-m9gg4.c.quay-devel.internal node-
role.kubernetes.io/infra=

Red Hat Quay 3.11 Red Hat Quay Operator features

26

https://docs.openshift.com/container-platform/4.14/machine_management/creating-infrastructure-machinesets.html

3. Now, when listing the nodes in the cluster, the last three worker nodes have the infra role. For
example:

Example

4. When a worker node is assigned the infra role, there is a chance that user workloads could get
inadvertently assigned to an infra node. To avoid this, you can apply a taint to the infra node,
and then add tolerations for the pods that you want to control. For example:

4.2. CREATING A PROJECT WITH NODE SELECTOR AND
TOLERATIONS

Use the following procedure to create a project with node selector and tolerations.

NOTE

The following procedure can also be completed by removing the installed Red Hat Quay
Operator and the namespace, or namespaces, used when creating the deployment. Users
can then create a new resource with the following annotation.

Procedure

$ oc get nodes

NAME STATUS ROLES AGE VERSION
user1-jcnp6-master-0.c.quay-devel.internal Ready master 4h14m
v1.20.0+ba45583
user1-jcnp6-master-1.c.quay-devel.internal Ready master 4h15m
v1.20.0+ba45583
user1-jcnp6-master-2.c.quay-devel.internal Ready master 4h14m
v1.20.0+ba45583
user1-jcnp6-worker-b-65plj.c.quay-devel.internal Ready worker 4h6m
 v1.20.0+ba45583
user1-jcnp6-worker-b-jr7hc.c.quay-devel.internal Ready worker 4h5m
 v1.20.0+ba45583
user1-jcnp6-worker-c-jrq4v.c.quay-devel.internal Ready worker 4h5m
 v1.20.0+ba45583
user1-jcnp6-worker-c-pwxfp.c.quay-devel.internal Ready infra,worker 4h6m
 v1.20.0+ba45583
user1-jcnp6-worker-d-h5tv2.c.quay-devel.internal Ready infra,worker 4h6m
 v1.20.0+ba45583
user1-jcnp6-worker-d-m9gg4.c.quay-devel.internal Ready infra,worker 4h6m
 v1.20.0+ba4558

$ oc adm taint nodes user1-jcnp6-worker-c-pwxfp.c.quay-devel.internal node-
role.kubernetes.io/infra:NoSchedule

$ oc adm taint nodes user1-jcnp6-worker-d-h5tv2.c.quay-devel.internal node-
role.kubernetes.io/infra:NoSchedule

$ oc adm taint nodes user1-jcnp6-worker-d-m9gg4.c.quay-devel.internal node-
role.kubernetes.io/infra:NoSchedule

CHAPTER 4. DEPLOYING RED HAT QUAY ON INFRASTRUCTURE NODES

27

1. Enter the following command to edit the namespace where Red Hat Quay is deployed, and the
following annotation:

Example output

2. Obtain a list of available pods by entering the following command:

Example output

3. Enter the following command to delete the available pods:

Example output

$ oc annotate namespace <namespace> openshift.io/node-selector='node-
role.kubernetes.io/infra='

namespace/<namespace> annotated

$ oc get pods -o wide

NAME READY STATUS RESTARTS AGE IP
NODE NOMINATED NODE READINESS GATES
example-registry-clair-app-5744dd64c9-9d5jt 1/1 Running 0 173m
10.130.4.13 stevsmit-quay-ocp-tes-5gwws-worker-c-6xkn7 <none> <none>
example-registry-clair-app-5744dd64c9-fg86n 1/1 Running 6 (3h21m ago) 3h24m
10.131.0.91 stevsmit-quay-ocp-tes-5gwws-worker-c-dnhdp <none> <none>
example-registry-clair-postgres-845b47cd88-vdchz 1/1 Running 0 3h21m
10.130.4.10 stevsmit-quay-ocp-tes-5gwws-worker-c-6xkn7 <none> <none>
example-registry-quay-app-64cbc5bcf-8zvgc 1/1 Running 1 (3h24m ago) 3h24m
10.130.2.12 stevsmit-quay-ocp-tes-5gwws-worker-a-tk8dx <none> <none>
example-registry-quay-app-64cbc5bcf-pvlz6 1/1 Running 0 3h24m
10.129.4.10 stevsmit-quay-ocp-tes-5gwws-worker-b-fjhz4 <none> <none>
example-registry-quay-app-upgrade-8gspn 0/1 Completed 0 3h24m
10.130.2.10 stevsmit-quay-ocp-tes-5gwws-worker-a-tk8dx <none> <none>
example-registry-quay-database-784d78b6f8-2vkml 1/1 Running 0 3h24m
10.131.4.10 stevsmit-quay-ocp-tes-5gwws-worker-c-2frtg <none> <none>
example-registry-quay-mirror-d5874d8dc-fmknp 1/1 Running 0 3h24m
10.129.4.9 stevsmit-quay-ocp-tes-5gwws-worker-b-fjhz4 <none> <none>
example-registry-quay-mirror-d5874d8dc-t4mff 1/1 Running 0 3h24m
10.129.2.19 stevsmit-quay-ocp-tes-5gwws-worker-a-k7w86 <none> <none>
example-registry-quay-redis-79848898cb-6qf5x 1/1 Running 0 3h24m
10.130.2.11 stevsmit-quay-ocp-tes-5gwws-worker-a-tk8dx <none> <none>

$ oc delete pods --selector quay-operator/quayregistry=example-registry -n quay-enterprise

pod "example-registry-clair-app-5744dd64c9-9d5jt" deleted
pod "example-registry-clair-app-5744dd64c9-fg86n" deleted
pod "example-registry-clair-postgres-845b47cd88-vdchz" deleted
pod "example-registry-quay-app-64cbc5bcf-8zvgc" deleted
pod "example-registry-quay-app-64cbc5bcf-pvlz6" deleted
pod "example-registry-quay-app-upgrade-8gspn" deleted
pod "example-registry-quay-database-784d78b6f8-2vkml" deleted

Red Hat Quay 3.11 Red Hat Quay Operator features

28

After the pods have been deleted, they automatically cycle back up and should be scheduled on
the dedicated infrastructure nodes.

4.3. INSTALLING RED HAT QUAY ON OPENSHIFT CONTAINER
PLATFORM ON A SPECIFIC NAMESPACE

Use the following procedure to install Red Hat Quay on OpenShift Container Platform in a specific
namespace.

To install the Red Hat Quay Operator in a specific namespace, you must explicitly specify the
appropriate project namespace, as in the following command.
In the following example, the quay-registry namespace is used. This results in the quay-
operator pod landing on one of the three infrastructure nodes. For example:

Example output

4.4. CREATING THE RED HAT QUAY REGISTRY

Use the following procedure to create the Red Hat Quay registry.

Enter the following command to create the Red Hat Quay registry. Then, wait for the
deployment to be marked as ready. In the following example, you should see that they have only
been scheduled on the three nodes that you have labelled for infrastructure purposes.

Example output

pod "example-registry-quay-mirror-d5874d8dc-fmknp" deleted
pod "example-registry-quay-mirror-d5874d8dc-t4mff" deleted
pod "example-registry-quay-redis-79848898cb-6qf5x" deleted

$ oc get pods -n quay-registry -o wide

NAME READY STATUS RESTARTS AGE IP NODE

quay-operator.v3.4.1-6f6597d8d8-bd4dp 1/1 Running 0 30s 10.131.0.16 user1-
jcnp6-worker-d-h5tv2.c.quay-devel.internal

$ oc get pods -n quay-registry -o wide

NAME READY STATUS RESTARTS AGE IP
 NODE
example-registry-clair-app-789d6d984d-gpbwd 1/1 Running 1 5m57s
10.130.2.80 user1-jcnp6-worker-d-m9gg4.c.quay-devel.internal
example-registry-clair-postgres-7c8697f5-zkzht 1/1 Running 0 4m53s
10.129.2.19 user1-jcnp6-worker-c-pwxfp.c.quay-devel.internal
example-registry-quay-app-56dd755b6d-glbf7 1/1 Running 1 5m57s
10.129.2.17 user1-jcnp6-worker-c-pwxfp.c.quay-devel.internal
example-registry-quay-database-8dc7cfd69-dr2cc 1/1 Running 0 5m43s
10.129.2.18 user1-jcnp6-worker-c-pwxfp.c.quay-devel.internal
example-registry-quay-mirror-78df886bcc-v75p9 1/1 Running 0 5m16s
10.131.0.24 user1-jcnp6-worker-d-h5tv2.c.quay-devel.internal
example-registry-quay-postgres-init-8s8g9 0/1 Completed 0 5m54s
10.130.2.79 user1-jcnp6-worker-d-m9gg4.c.quay-devel.internal

CHAPTER 4. DEPLOYING RED HAT QUAY ON INFRASTRUCTURE NODES

29

4.5. ENABLING MONITORING WHEN THE RED HAT QUAY OPERATOR
IS INSTALLED IN A SINGLE NAMESPACE

NOTE

Currently, enabling monitoring when the Red Hat Quay Operator is installed in a single
namespace is not supported on IBM Power and IBM Z.

When the Red Hat Quay Operator is installed in a single namespace, the monitoring component is set to
unmanaged. To configure monitoring, you must enable it for user-defined namespaces in OpenShift
Container Platform.

For more information, see the OpenShift Container Platform documentation for Configuring the
monitoring stack and Enabling monitoring for user-defined projects.

The following sections shows you how to enable monitoring for Red Hat Quay based on the OpenShift
Container Platform documentation.

4.5.1. Creating a cluster monitoring config map

Use the following procedure check if the cluster-monitoring-config ConfigMap object exists.

Procedure

1. Enter the following command to check whether the cluster-monitoring-config ConfigMap
object exists:

Example output

2. Optional: If the ConfigMap object does not exist, create a YAML manifest. In the following
example, the file is called cluster-monitoring-config.yaml.

3. Optional: If the ConfigMap object does not exist, create the ConfigMap object:

example-registry-quay-redis-5688ddcdb6-ndp4t 1/1 Running 0 5m56s
10.130.2.78 user1-jcnp6-worker-d-m9gg4.c.quay-devel.internal
quay-operator.v3.4.1-6f6597d8d8-bd4dp 1/1 Running 0 22m
10.131.0.16 user1-jcnp6-worker-d-h5tv2.c.quay-devel.internal

$ oc -n openshift-monitoring get configmap cluster-monitoring-config

Error from server (NotFound): configmaps "cluster-monitoring-config" not found

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |

$ oc apply -f cluster-monitoring-config.yaml

Red Hat Quay 3.11 Red Hat Quay Operator features

30

https://docs.openshift.com/container-platform/4.14/monitoring/configuring-the-monitoring-stack.html
https://docs.openshift.com/container-platform/4.14/monitoring/enabling-monitoring-for-user-defined-projects.html

Example output

4. Ensure that the ConfigMap object exists by running the following command:

Example output

4.5.2. Creating a user-defined workload monitoring ConfigMap object

Use the following procedure check if the user-workload-monitoring-config ConfigMap object exists.

Procedure

1. Enter the following command to check whether the user-workload-monitoring-config
ConfigMap object exists:

$ oc -n openshift-user-workload-monitoring get configmap user-workload-monitoring-config

Example output

2. If the ConfigMap object does not exist, create a YAML manifest. In the following example, the
file is called user-workload-monitoring-config.yaml.

3. Optional: Create the ConfigMap object by entering the following command:

Example output

4.5.3. Enable monitoring for user-defined projects

Use the following procedure to enable monitoring for user-defined projects.

configmap/cluster-monitoring-config created

$ oc -n openshift-monitoring get configmap cluster-monitoring-config

NAME DATA AGE
cluster-monitoring-config 1 12s

Error from server (NotFound): configmaps "user-workload-monitoring-config" not found

apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |

$ oc apply -f user-workload-monitoring-config.yaml

configmap/user-workload-monitoring-config created

CHAPTER 4. DEPLOYING RED HAT QUAY ON INFRASTRUCTURE NODES

31

Procedure

1. Enter the following command to check if monitoring for user-defined projects is running:

Example output

2. Edit the cluster-monitoring-config ConfigMap by entering the following command:

$ oc -n openshift-monitoring edit configmap cluster-monitoring-config

3. Set enableUserWorkload: true in your config.yaml file to enable monitoring for user-defined
projects on the cluster:

4. Enter the following command to save the file, apply the changes, and ensure that the
appropriate pods are running:

$ oc get pods -n openshift-user-workload-monitoring

Example output

4.5.4. Creating a Service object to expose Red Hat Quay metrics

Use the following procedure to create a Service object to expose Red Hat Quay metrics.

Procedure

1. Create a YAML file for the Service object:

$ cat <<EOF > quay-service.yaml

apiVersion: v1
kind: Service
metadata:
 annotations:

$ oc get pods -n openshift-user-workload-monitoring

No resources found in openshift-user-workload-monitoring namespace.

apiVersion: v1
data:
 config.yaml: |
 enableUserWorkload: true
kind: ConfigMap
metadata:
 annotations:

NAME READY STATUS RESTARTS AGE
prometheus-operator-6f96b4b8f8-gq6rl 2/2 Running 0 15s
prometheus-user-workload-0 5/5 Running 1 12s
prometheus-user-workload-1 5/5 Running 1 12s
thanos-ruler-user-workload-0 3/3 Running 0 8s
thanos-ruler-user-workload-1 3/3 Running 0 8s

Red Hat Quay 3.11 Red Hat Quay Operator features

32

 labels:
 quay-component: monitoring
 quay-operator/quayregistry: example-registry
 name: example-registry-quay-metrics
 namespace: quay-enterprise
spec:
 ports:
 - name: quay-metrics
 port: 9091
 protocol: TCP
 targetPort: 9091
 selector:
 quay-component: quay-app
 quay-operator/quayregistry: example-registry
 type: ClusterIP
EOF

2. Create the Service object by entering the following command:

Example output

4.5.5. Creating a ServiceMonitor object

Use the following procedure to configure OpenShift Monitoring to scrape the metrics by creating a
ServiceMonitor resource.

Procedure

1. Create a YAML file for the ServiceMonitor resource:

$ cat <<EOF > quay-service-monitor.yaml

apiVersion: monitoring.coreos.com/v1
kind: ServiceMonitor
metadata:
 labels:
 quay-operator/quayregistry: example-registry
 name: example-registry-quay-metrics-monitor
 namespace: quay-enterprise
spec:
 endpoints:
 - port: quay-metrics
 namespaceSelector:
 any: true
 selector:
 matchLabels:
 quay-component: monitoring
EOF

2. Create the ServiceMonitor resource by entering the following command:

$ oc apply -f quay-service.yaml

service/example-registry-quay-metrics created

CHAPTER 4. DEPLOYING RED HAT QUAY ON INFRASTRUCTURE NODES

33

$ oc apply -f quay-service-monitor.yaml

Example output

4.5.6. Viewing metrics in OpenShift Container Platform

You can access the metrics in the OpenShift Container Platform console under Monitoring → Metrics.
In the Expression field, enter quay_ to see the list of metrics available:

For example, if you have added users to your registry, select the quay-users_rows metric:

4.6. RESIZING MANAGED STORAGE

When deploying Red Hat Quay on OpenShift Container Platform, three distinct persistent volume
claims (PVCs) are deployed:

servicemonitor.monitoring.coreos.com/example-registry-quay-metrics-monitor created

Red Hat Quay 3.11 Red Hat Quay Operator features

34

One for the PostgreSQL 13 registry.

One for the Clair PostgreSQL 13 registry.

One that uses NooBaa as a backend storage.

NOTE

The connection between Red Hat Quay and NooBaa is done through the S3 API and
ObjectBucketClaim API in OpenShift Container Platform. Red Hat Quay leverages that
API group to create a bucket in NooBaa, obtain access keys, and automatically set
everything up. On the backend, or NooBaa, side, that bucket is creating inside of the
backing store. As a result, NooBaa PVCs are not mounted or connected to Red Hat Quay
pods.

The default size for the PostgreSQL 13 and Clair PostgreSQL 13 PVCs is set to 50 GiB. You can expand
storage for these PVCs on the OpenShift Container Platform console by using the following procedure.

NOTE

The following procedure shares commonality with Expanding Persistent Volume Claims
on Red Hat OpenShift Data Foundation.

4.6.1. Resizing PostgreSQL 13 PVCs on Red Hat Quay

Use the following procedure to resize the PostgreSQL 13 and Clair PostgreSQL 13 PVCs.

Prerequisites

You have cluster admin privileges on OpenShift Container Platform.

Procedure

1. Log into the OpenShift Container Platform console and select Storage → Persistent Volume
Claims.

2. Select the desired PersistentVolumeClaim for either PostgreSQL 13 or Clair PostgreSQL 13,
for example, example-registry-quay-postgres-13.

3. From the Action menu, select Expand PVC.

4. Enter the new size of the Persistent Volume Claim and select Expand.
After a few minutes, the expanded size should reflect in the PVC’s Capacity field.

4.7. CUSTOMIZING DEFAULT OPERATOR IMAGES

NOTE

Currently, customizing default Operator images is not supported on IBM Power and IBM
Z.

In certain circumstances, it might be useful to override the default images used by the Red Hat Quay

CHAPTER 4. DEPLOYING RED HAT QUAY ON INFRASTRUCTURE NODES

35

https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/4.5/html/managing_openshift_container_storage/managing-persistent-volume-claims_rhocs#expanding-persistent-volume-claims_rhocs

In certain circumstances, it might be useful to override the default images used by the Red Hat Quay
Operator. This can be done by setting one or more environment variables in the Red Hat Quay Operator
ClusterServiceVersion.

IMPORTANT

Using this mechanism is not supported for production Red Hat Quay environments and is
strongly encouraged only for development or testing purposes. There is no guarantee
your deployment will work correctly when using non-default images with the Red Hat
Quay Operator.

4.7.1. Environment Variables

The following environment variables are used in the Red Hat Quay Operator to override component
images:

Environment Variable Component

RELATED_IMAGE_COMPONENT_QUAY base

RELATED_IMAGE_COMPONENT_CLAIR clair

RELATED_IMAGE_COMPONENT_POSTGRE
S

postgres and clair databases

RELATED_IMAGE_COMPONENT_REDIS redis

NOTE

Overridden images must be referenced by manifest (@sha256:) and not by tag (:latest).

4.7.2. Applying overrides to a running Operator

When the Red Hat Quay Operator is installed in a cluster through the Operator Lifecycle Manager
(OLM), the managed component container images can be easily overridden by modifying the
ClusterServiceVersion object.

Use the following procedure to apply overrides to a running Red Hat Quay Operator.

Procedure

1. The ClusterServiceVersion object is Operator Lifecycle Manager’s representation of a running
Operator in the cluster. Find the Red Hat Quay Operator’s ClusterServiceVersion by using a
Kubernetes UI or the kubectl/oc CLI tool. For example:

2. Using the UI, oc edit, or another method, modify the Red Hat Quay ClusterServiceVersion to
include the environment variables outlined above to point to the override images:
JSONPath: spec.install.spec.deployments[0].spec.template.spec.containers[0].env

$ oc get clusterserviceversions -n <your-namespace>

Red Hat Quay 3.11 Red Hat Quay Operator features

36

https://docs.openshift.com/container-platform/4.14/operators/understanding/olm/olm-understanding-olm.html

NOTE

This is done at the Operator level, so every QuayRegistry will be deployed using these
same overrides.

4.8. AWS S3 CLOUDFRONT

NOTE

Currently, using AWS S3 CloudFront is not supported on IBM Power and IBM Z.

Use the following procedure if you are using AWS S3 Cloudfront for your backend registry storage.

Procedure

1. Enter the following command to specify the registry key:

- name: RELATED_IMAGE_COMPONENT_QUAY
 value:
quay.io/projectquay/quay@sha256:c35f5af964431673f4ff5c9e90bdf45f19e38b8742b5903d41c
10cc7f6339a6d
- name: RELATED_IMAGE_COMPONENT_CLAIR
 value:
quay.io/projectquay/clair@sha256:70c99feceb4c0973540d22e740659cd8d616775d3ad1c169
8ddf71d0221f3ce6
- name: RELATED_IMAGE_COMPONENT_POSTGRES
 value: centos/postgresql-10-
centos7@sha256:de1560cb35e5ec643e7b3a772ebaac8e3a7a2a8e8271d9e91ff023539b4dfb3
3
- name: RELATED_IMAGE_COMPONENT_REDIS
 value: centos/redis-32-
centos7@sha256:06dbb609484330ec6be6090109f1fa16e936afcf975d1cbc5fff3e6c7cae7542

$ oc create secret generic --from-file config.yaml=./config_awss3cloudfront.yaml --from-file
default-cloudfront-signing-key.pem=./default-cloudfront-signing-key.pem test-config-bundle

CHAPTER 4. DEPLOYING RED HAT QUAY ON INFRASTRUCTURE NODES

37

CHAPTER 5. RED HAT QUAY BUILD ENHANCEMENTS
Red Hat Quay builds can be run on virtualized platforms. Backwards compatibility to run previous build
configurations are also available.

5.1. RED HAT QUAY BUILD LIMITATIONS

Running builds in Red Hat Quay in an unprivileged context might cause some commands that were
working under the previous build strategy to fail. Attempts to change the build strategy could potentially
cause performance issues and reliability with the build.

Running builds directly in a container does not have the same isolation as using virtual machines.
Changing the build environment might also caused builds that were previously working to fail.

5.2. CREATING A RED HAT QUAY BUILDERS ENVIRONMENT WITH
OPENSHIFT CONTAINER PLATFORM

The procedures in this section explain how to create a Red Hat Quay virtual builders environment with
OpenShift Container Platform.

5.2.1. OpenShift Container Platform TLS component

The tls component allows you to control TLS configuration.

NOTE

Red Hat Quay 3.11 does not support builders when the TLS component is managed by the
Operator.

If you set tls to unmanaged, you supply your own ssl.cert and ssl.key files. In this instance, if you want
your cluster to support builders, you must add both the Quay route and the builder route name to the
SAN list in the cert, or use a wildcard.

To add the builder route, use the following format:

5.2.2. Using OpenShift Container Platform for Red Hat Quay builders

Builders require SSL/TLS certificates. For more information about SSL/TLS certificates, see Adding
TLS certificates to the Red Hat Quay container.

If you are using Amazon Web Service (AWS) S3 storage, you must modify your storage bucket in the
AWS console, prior to running builders. See "Modifying your AWS S3 storage bucket" in the following
section for the required parameters.

5.2.2.1. Preparing OpenShift Container Platform for virtual builders

Use the following procedure to prepare OpenShift Container Platform for Red Hat Quay virtual builders.

NOTE

[quayregistry-cr-name]-quay-builder-[ocp-namespace].[ocp-domain-name]:443

Red Hat Quay 3.11 Red Hat Quay Operator features

38

https://access.redhat.com/documentation/en-us/red_hat_quay/3/html/deploy_red_hat_quay_for_proof-of-concept_non-production_purposes/advanced_red_hat_quay_deployment#using_ssl_to_protect_connections_to_red_hat_quay

NOTE

This procedure assumes you already have a cluster provisioned and a Quay
Operator running.

This procedure is for setting up a virtual namespace on OpenShift Container
Platform.

Procedure

1. Log in to your Red Hat Quay cluster using a cluster administrator account.

2. Create a new project where your virtual builders will be run, for example, virtual-builders, by
running the following command:

3. Create a ServiceAccount in the project that will be used to run builds by entering the following
command:

4. Provide the created service account with editing permissions so that it can run the build:

5. Grant the Quay builder anyuid scc permissions by entering the following command:

NOTE

This action requires cluster admin privileges. This is required because builders
must run as the Podman user for unprivileged or rootless builds to work.

6. Obtain the token for the Quay builder service account.

a. If using OpenShift Container Platform 4.10 or an earlier version, enter the following
command:

b. If using OpenShift Container Platform 4.11 or later, enter the following command:

NOTE

When the token expires you will need to request a new token. Optionally, you
can also add a custom expiration. For example, specify --duration 20160m to
retain the token for two weeks.

$ oc new-project virtual-builders

$ oc create sa -n virtual-builders quay-builder

$ oc adm policy -n virtual-builders add-role-to-user edit system:serviceaccount:virtual-
builders:quay-builder

$ oc adm policy -n virtual-builders add-scc-to-user anyuid -z quay-builder

oc sa get-token -n virtual-builders quay-builder

$ oc create token quay-builder -n virtual-builders

CHAPTER 5. RED HAT QUAY BUILD ENHANCEMENTS

39

Example output

7. Determine the builder route by entering the following command:

Example output

8. Generate a self-signed SSL/TlS certificate with the .crt extension by entering the following
command:

Example output

9. Rename the ca.crt file to extra_ca_cert_build_cluster.crt by entering the following command:

10. Locate the secret for you configuration bundle in the Console, and select Actions → Edit
Secret and add the appropriate builder configuration:

eyJhbGciOiJSUzI1NiIsImtpZCI6IldfQUJkaDVmb3ltTHZ0dGZMYjhIWnYxZTQzN2dJVEJxc
DJscldSdEUtYWsifQ...

$ oc get route -n quay-enterprise

NAME HOST/PORT PATH
SERVICES PORT TERMINATION WILDCARD
...
example-registry-quay-builder example-registry-quay-builder-quay-
enterprise.apps.docs.quayteam.org example-registry-quay-app grpc
edge/Redirect None
...

$ oc extract cm/kube-root-ca.crt -n openshift-apiserver

ca.crt

$ mv ca.crt extra_ca_cert_build_cluster.crt

FEATURE_USER_INITIALIZE: true
BROWSER_API_CALLS_XHR_ONLY: false
SUPER_USERS:
- <superusername>
FEATURE_USER_CREATION: false
FEATURE_QUOTA_MANAGEMENT: true
FEATURE_BUILD_SUPPORT: True
BUILDMAN_HOSTNAME: <sample_build_route> 1
BUILD_MANAGER:
 - ephemeral
 - ALLOWED_WORKER_COUNT: 1
 ORCHESTRATOR_PREFIX: buildman/production/
 JOB_REGISTRATION_TIMEOUT: 3600 2
 ORCHESTRATOR:
 REDIS_HOST: <sample_redis_hostname> 3
 REDIS_PASSWORD: ""
 REDIS_SSL: false

Red Hat Quay 3.11 Red Hat Quay Operator features

40

1

2

3

4

5

6

7

8

9

10

11

12

The build route is obtained by running oc get route -n with the name of your OpenShift
Operator’s namespace. A port must be provided at the end of the route, and it should use
the following format: [quayregistry-cr-name]-quay-builder-[ocp-namespace].[ocp-
domain-name]:443.

If the JOB_REGISTRATION_TIMEOUT parameter is set too low, you might receive the
following error: failed to register job to build manager: rpc error: code =
Unauthenticated desc = Invalid build token: Signature has expired. It is suggested that
this parameter be set to at least 240.

If your Redis host has a password or SSL/TLS certificates, you must update accordingly.

Set to match the name of your virtual builders namespace, for example, virtual-builders.

For early access, the BUILDER_CONTAINER_IMAGE is currently
quay.io/projectquay/quay-builder:3.7.0-rc.2. Note that this might change during the
early access window. If this happens, customers are alerted.

The K8S_API_SERVER is obtained by running oc cluster-info.

You must manually create and add your custom CA cert, for example, K8S_API_TLS_CA:
/conf/stack/extra_ca_certs/build_cluster.crt.

Defaults to 5120Mi if left unspecified.

For virtual builds, you must ensure that there are enough resources in your cluster.
Defaults to 1000m if left unspecified.

Defaults to 3968Mi if left unspecified.

Defaults to 500m if left unspecified.

Obtained when running oc create sa.

 REDIS_SKIP_KEYSPACE_EVENT_SETUP: false
 EXECUTORS:
 - EXECUTOR: kubernetesPodman
 NAME: openshift
 BUILDER_NAMESPACE: <sample_builder_namespace> 4
 SETUP_TIME: 180
 MINIMUM_RETRY_THRESHOLD: 0
 BUILDER_CONTAINER_IMAGE: <sample_builder_container_image> 5
 # Kubernetes resource options
 K8S_API_SERVER: <sample_k8s_api_server> 6
 K8S_API_TLS_CA: <sample_crt_file> 7
 VOLUME_SIZE: 8G
 KUBERNETES_DISTRIBUTION: openshift
 CONTAINER_MEMORY_LIMITS: 300m 8
 CONTAINER_CPU_LIMITS: 1G 9
 CONTAINER_MEMORY_REQUEST: 300m 10
 CONTAINER_CPU_REQUEST: 1G 11
 NODE_SELECTOR_LABEL_KEY: ""
 NODE_SELECTOR_LABEL_VALUE: ""
 SERVICE_ACCOUNT_NAME: <sample_service_account_name>
 SERVICE_ACCOUNT_TOKEN: <sample_account_token> 12

CHAPTER 5. RED HAT QUAY BUILD ENHANCEMENTS

41

Sample configuration

5.2.2.2. Manually adding SSL/TLS certificates

Due to a known issue with the configuration tool, you must manually add your custom SSL/TLS
certificates to properly run builders. Use the following procedure to manually add custom SSL/TLS
certificates.

For more information creating SSL/TLS certificates, see Adding TLS certificates to the Red Hat Quay
container.

5.2.2.2.1. Creating and signing certificates

FEATURE_USER_INITIALIZE: true
BROWSER_API_CALLS_XHR_ONLY: false
SUPER_USERS:
- quayadmin
FEATURE_USER_CREATION: false
FEATURE_QUOTA_MANAGEMENT: true
FEATURE_BUILD_SUPPORT: True
BUILDMAN_HOSTNAME: example-registry-quay-builder-quay-
enterprise.apps.docs.quayteam.org:443
BUILD_MANAGER:
 - ephemeral
 - ALLOWED_WORKER_COUNT: 1
 ORCHESTRATOR_PREFIX: buildman/production/
 JOB_REGISTRATION_TIMEOUT: 3600
 ORCHESTRATOR:
 REDIS_HOST: example-registry-quay-redis
 REDIS_PASSWORD: ""
 REDIS_SSL: false
 REDIS_SKIP_KEYSPACE_EVENT_SETUP: false
 EXECUTORS:
 - EXECUTOR: kubernetesPodman
 NAME: openshift
 BUILDER_NAMESPACE: virtual-builders
 SETUP_TIME: 180
 MINIMUM_RETRY_THRESHOLD: 0
 BUILDER_CONTAINER_IMAGE: quay.io/projectquay/quay-builder:3.7.0-rc.2
 # Kubernetes resource options
 K8S_API_SERVER: api.docs.quayteam.org:6443
 K8S_API_TLS_CA: /conf/stack/extra_ca_certs/build_cluster.crt
 VOLUME_SIZE: 8G
 KUBERNETES_DISTRIBUTION: openshift
 CONTAINER_MEMORY_LIMITS: 1G
 CONTAINER_CPU_LIMITS: 1080m
 CONTAINER_MEMORY_REQUEST: 1G
 CONTAINER_CPU_REQUEST: 580m
 NODE_SELECTOR_LABEL_KEY: ""
 NODE_SELECTOR_LABEL_VALUE: ""
 SERVICE_ACCOUNT_NAME: quay-builder
 SERVICE_ACCOUNT_TOKEN:
"eyJhbGciOiJSUzI1NiIsImtpZCI6IldfQUJkaDVmb3ltTHZ0dGZMYjhIWnYxZTQzN2dJVEJxcDJs
cldSdEUtYWsifQ"

Red Hat Quay 3.11 Red Hat Quay Operator features

42

https://access.redhat.com/documentation/en-us/red_hat_quay/3/html/deploy_red_hat_quay_for_proof-of-concept_non-production_purposes/advanced_red_hat_quay_deployment#using_ssl_to_protect_connections_to_red_hat_quay

1

2

Use the following procedure to create and sign an SSL/TLS certificate.

Procedure

Create a certificate authority and sign a certificate. For more information, see Create a
Certificate Authority and sign a certificate.

openssl.cnf

An alt_name for the URL of your Red Hat Quay registry must be included.

An alt_name for the BUILDMAN_HOSTNAME

Sample commands

5.2.2.2.2. Setting TLS to unmanaged

Use the following procedure to set king:tls to unmanaged.

Procedure

1. In your Red Hat Quay Registry YAML, set kind: tls to managed: false:

2. On the Events page, the change is blocked until you set up the appropriate config.yaml file.
For example:

[req]
req_extensions = v3_req
distinguished_name = req_distinguished_name
[req_distinguished_name]
[v3_req]
basicConstraints = CA:FALSE
keyUsage = nonRepudiation, digitalSignature, keyEncipherment
subjectAltName = @alt_names
[alt_names]
DNS.1 = example-registry-quay-quay-enterprise.apps.docs.quayteam.org 1
DNS.2 = example-registry-quay-builder-quay-enterprise.apps.docs.quayteam.org 2

$ openssl genrsa -out rootCA.key 2048
$ openssl req -x509 -new -nodes -key rootCA.key -sha256 -days 1024 -out rootCA.pem
$ openssl genrsa -out ssl.key 2048
$ openssl req -new -key ssl.key -out ssl.csr
$ openssl x509 -req -in ssl.csr -CA rootCA.pem -CAkey rootCA.key -CAcreateserial -out
ssl.cert -days 356 -extensions v3_req -extfile openssl.cnf

 - kind: tls
 managed: false

 - lastTransitionTime: '2022-03-28T12:56:49Z'
 lastUpdateTime: '2022-03-28T12:56:49Z'
 message: >-
 required component `tls` marked as unmanaged, but `configBundleSecret`

CHAPTER 5. RED HAT QUAY BUILD ENHANCEMENTS

43

https://access.redhat.com/documentation/en-us/red_hat_quay/3/html/deploy_red_hat_quay_for_proof-of-concept_non-production_purposes/advanced_red_hat_quay_deployment#create-a-ca-and-sign-a-certificate

5.2.2.2.3. Creating temporary secrets

Use the following procedure to create temporary secrets for the CA certificate.

Procedure

1. Create a secret in your default namespace for the CA certificate:

$ oc create secret generic -n quay-enterprise temp-crt --from-file
extra_ca_cert_build_cluster.crt

2. Create a secret in your default namespace for the ssl.key and ssl.cert files:

$ oc create secret generic -n quay-enterprise quay-config-ssl --from-file ssl.cert --from-file
ssl.key

5.2.2.2.4. Copying secret data to the configuration YAML

Use the following procedure to copy secret data to your config.yaml file.

Procedure

1. Locate the new secrets in the console UI at Workloads → Secrets.

2. For each secret, locate the YAML view:

 is missing necessary fields
 reason: ConfigInvalid
 status: 'True'

kind: Secret
apiVersion: v1
metadata:
 name: temp-crt
 namespace: quay-enterprise
 uid: a4818adb-8e21-443a-a8db-f334ace9f6d0
 resourceVersion: '9087855'
 creationTimestamp: '2022-03-28T13:05:30Z'
...
data:
 extra_ca_cert_build_cluster.crt: >-
 LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSURNakNDQWhxZ0F3SUJBZ0l....
type: Opaque

kind: Secret
apiVersion: v1
metadata:
 name: quay-config-ssl
 namespace: quay-enterprise
 uid: 4f5ae352-17d8-4e2d-89a2-143a3280783c
 resourceVersion: '9090567'
 creationTimestamp: '2022-03-28T13:10:34Z'
...

Red Hat Quay 3.11 Red Hat Quay Operator features

44

3. Locate the secret for your Red Hat Quay registry configuration bundle in the UI, or through the
command line by running a command like the following:

4. In the OpenShift Container Platform console, select the YAML tab for your configuration
bundle secret, and add the data from the two secrets you created:

5. Click Save.

6. Enter the following command to see if your pods are restarting:

Example output

data:
 ssl.cert: >-
 LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSUVaakNDQTA2Z0F3SUJBZ0lVT...
 ssl.key: >-
 LS0tLS1CRUdJTiBSU0EgUFJJVkFURSBLRVktLS0tLQpNSUlFcFFJQkFBS0NBUUVBc...
type: Opaque

$ oc get quayregistries.quay.redhat.com -o jsonpath="{.items[0].spec.configBundleSecret}
{'\n'}" -n quay-enterprise

kind: Secret
apiVersion: v1
metadata:
 name: init-config-bundle-secret
 namespace: quay-enterprise
 uid: 4724aca5-bff0-406a-9162-ccb1972a27c1
 resourceVersion: '4383160'
 creationTimestamp: '2022-03-22T12:35:59Z'
...
data:
 config.yaml: >-
 RkVBVFVSRV9VU0VSX0lOSVRJQUxJWkU6IHRydWUKQlJ...
 extra_ca_cert_build_cluster.crt: >-

LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSURNakNDQWhxZ0F3SUJBZ0ldw....
 ssl.cert: >-
 LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSUVaakNDQTA2Z0F3SUJBZ0lVT...
 ssl.key: >-
 LS0tLS1CRUdJTiBSU0EgUFJJVkFURSBLRVktLS0tLQpNSUlFcFFJQkFBS0NBUUVBc...
type: Opaque

$ oc get pods -n quay-enterprise

NAME READY STATUS RESTARTS AGE
...
example-registry-quay-app-6786987b99-vgg2v 0/1 ContainerCreating 0 2s
example-registry-quay-app-7975d4889f-q7tvl 1/1 Running 0 5d21h
example-registry-quay-app-7975d4889f-zn8bb 1/1 Running 0 5d21h
example-registry-quay-app-upgrade-lswsn 0/1 Completed 0 6d1h
example-registry-quay-config-editor-77847fc4f5-nsbbv 0/1 ContainerCreating 0 2s
example-registry-quay-config-editor-c6c4d9ccd-2mwg2 1/1 Running 0
5d21h

CHAPTER 5. RED HAT QUAY BUILD ENHANCEMENTS

45

7. After your Red Hat Quay registry has reconfigured, enter the following command to check if the
Red Hat Quay app pods are running:

Example output

8. In your browser, access the registry endpoint and validate that the certificate has been updated
appropriately. For example:

5.2.2.3. Using the UI to create a build trigger

Use the following procedure to use the UI to create a build trigger.

Procedure

1. Log in to your Red Hat Quay repository.

2. Click Create New Repository and create a new registry, for example, testrepo.

3. On the Repositories page, click the Builds tab on the navigation pane. Alternatively, use the
corresponding URL directly:

https://example-registry-quay-quay-
enterprise.apps.docs.quayteam.org/repository/quayadmin/testrepo?tab=builds

IMPORTANT

In some cases, the builder might have issues resolving hostnames. This issue
might be related to the dnsPolicy being set to default on the job object.
Currently, there is no workaround for this issue. It will be resolved in a future
version of Red Hat Quay.

4. Click Create Build Trigger → Custom Git Repository Push.

5. Enter the HTTPS or SSH style URL used to clone your Git repository, then click Continue. For

example-registry-quay-database-66969cd859-n2ssm 1/1 Running 0 6d1h
example-registry-quay-mirror-764d7b68d9-jmlkk 1/1 Terminating 0 5d21h
example-registry-quay-mirror-764d7b68d9-jqzwg 1/1 Terminating 0 5d21h
example-registry-quay-redis-7cc5f6c977-956g8 1/1 Running 0 5d21h

$ oc get pods -n quay-enterprise

example-registry-quay-app-6786987b99-sz6kb 1/1 Running 0 7m45s
example-registry-quay-app-6786987b99-vgg2v 1/1 Running 0 9m1s
example-registry-quay-app-upgrade-lswsn 0/1 Completed 0 6d1h
example-registry-quay-config-editor-77847fc4f5-nsbbv 1/1 Running 0 9m1s
example-registry-quay-database-66969cd859-n2ssm 1/1 Running 0 6d1h
example-registry-quay-mirror-758fc68ff7-5wxlp 1/1 Running 0 8m29s
example-registry-quay-mirror-758fc68ff7-lbl82 1/1 Running 0 8m29s
example-registry-quay-redis-7cc5f6c977-956g8 1/1 Running 0 5d21h

Common Name (CN) example-registry-quay-quay-enterprise.apps.docs.quayteam.org
Organisation (O) DOCS
Organisational Unit (OU) QUAY

Red Hat Quay 3.11 Red Hat Quay Operator features

46

5. Enter the HTTPS or SSH style URL used to clone your Git repository, then click Continue. For
example:

https://github.com/gabriel-rh/actions_test.git

6. Check Tag manifest with the branch or tag name and then click Continue.

7. Enter the location of the Dockerfile to build when the trigger is invoked, for example,
/Dockerfile and click Continue.

8. Enter the location of the context for the Docker build, for example, /, and click Continue.

9. If warranted, create a Robot Account. Otherwise, click Continue.

10. Click Continue to verify the parameters.

11. On the Builds page, click Options icon of your Trigger Name, and then click Run Trigger Now.

12. Enter a commit SHA from the Git repository and click Start Build.

13. You can check the status of your build by clicking the commit in the Build History page, or by
running oc get pods -n virtual-builders. For example:

$ oc get pods -n virtual-builders

Example output

NAME READY STATUS RESTARTS AGE
f192fe4a-c802-4275-bcce-d2031e635126-9l2b5-25lg2 1/1 Running 0 7s

Example output

NAME READY STATUS RESTARTS AGE
f192fe4a-c802-4275-bcce-d2031e635126-9l2b5-25lg2 1/1 Terminating 0 9s

$ oc get pods -n virtual-builders

Example output

No resources found in virtual-builders namespace.

14. When the build is finished, you can check the status of the tag under Tags on the navigation
pane.

NOTE

With early access, full build logs and timestamps of builds are currently
unavailable.

5.2.2.4. Modifying your AWS S3 storage bucket

$ oc get pods -n virtual-builders

CHAPTER 5. RED HAT QUAY BUILD ENHANCEMENTS

47

If you are using AWS S3 storage, you must change your storage bucket in the AWS console, prior to
running builders.

Procedure

1. Log in to your AWS console at s3.console.aws.com.

2. In the search bar, search for S3 and then click S3.

3. Click the name of your bucket, for example, myawsbucket.

4. Click the Permissions tab.

5. Under Cross-origin resource sharing (CORS), include the following parameters:

5.2.2.5. Modifying your Google Cloud Platform object bucket

NOTE

Currently, modifying your Google Cloud Platform object bucket is not supported on IBM
Power and IBM Z.

Use the following procedure to configure cross-origin resource sharing (CORS) for virtual builders.

 [
 {
 "AllowedHeaders": [
 "Authorization"
],
 "AllowedMethods": [
 "GET"
],
 "AllowedOrigins": [
 "*"
],
 "ExposeHeaders": [],
 "MaxAgeSeconds": 3000
 },
 {
 "AllowedHeaders": [
 "Content-Type",
 "x-amz-acl",
 "origin"
],
 "AllowedMethods": [
 "PUT"
],
 "AllowedOrigins": [
 "*"
],
 "ExposeHeaders": [],
 "MaxAgeSeconds": 3000
 }
]

Red Hat Quay 3.11 Red Hat Quay Operator features

48

https://s3.console.aws.amazon.com

NOTE

Without CORS configuration, uploading a build Dockerfile fails.

Procedure

1. Use the following reference to create a JSON file for your specific CORS needs. For example:

Example output

2. Enter the following command to update your GCP storage bucket:

Example output

3. You can display the updated CORS configuration of your GCP bucket by running the following
command:

Example output

$ cat gcp_cors.json

[
 {
 "origin": ["*"],
 "method": ["GET"],
 "responseHeader": ["Authorization"],
 "maxAgeSeconds": 3600
 },
 {
 "origin": ["*"],
 "method": ["PUT"],
 "responseHeader": [
 "Content-Type",
 "x-goog-acl",
 "origin"],
 "maxAgeSeconds": 3600
 }
]

$ gcloud storage buckets update gs://<bucket_name> --cors-file=./gcp_cors.json

Updating
 Completed 1

$ gcloud storage buckets describe gs://<bucket_name> --format="default(cors)"

cors:
- maxAgeSeconds: 3600
 method:
 - GET
 origin:
 - '*'
 responseHeader:

CHAPTER 5. RED HAT QUAY BUILD ENHANCEMENTS

49

 - Authorization
- maxAgeSeconds: 3600
 method:
 - PUT
 origin:
 - '*'
 responseHeader:
 - Content-Type
 - x-goog-acl
 - origin

Red Hat Quay 3.11 Red Hat Quay Operator features

50

CHAPTER 6. GEO-REPLICATION

NOTE

Currently, the geo-replication feature is not supported on IBM Power.

Geo-replication allows multiple, geographically distributed Red Hat Quay deployments to work as a
single registry from the perspective of a client or user. It significantly improves push and pull
performance in a globally-distributed Red Hat Quay setup. Image data is asynchronously replicated in
the background with transparent failover and redirect for clients.

Deployments of Red Hat Quay with geo-replication is supported on standalone and Operator
deployments.

ADDITIONAL RESOURCES

For more information about the geo-replication feature’s architecture, see the architecture
guide, which includes technical diagrams and a high-level overview.

6.1. GEO-REPLICATION FEATURES

When geo-replication is configured, container image pushes will be written to the preferred
storage engine for that Red Hat Quay instance. This is typically the nearest storage backend
within the region.

After the initial push, image data will be replicated in the background to other storage engines.

The list of replication locations is configurable and those can be different storage backends.

An image pull will always use the closest available storage engine, to maximize pull performance.

If replication has not been completed yet, the pull will use the source storage backend instead.

6.2. GEO-REPLICATION REQUIREMENTS AND CONSTRAINTS

In geo-replicated setups, Red Hat Quay requires that all regions are able to read and write to all
other region’s object storage. Object storage must be geographically accessible by all other
regions.

In case of an object storage system failure of one geo-replicating site, that site’s Red Hat Quay
deployment must be shut down so that clients are redirected to the remaining site with intact
storage systems by a global load balancer. Otherwise, clients will experience pull and push
failures.

Red Hat Quay has no internal awareness of the health or availability of the connected object
storage system. Users must configure a global load balancer (LB) to monitor the health of your
distributed system and to route traffic to different sites based on their storage status.

To check the status of your geo-replication deployment, you must use the /health/endtoend
checkpoint, which is used for global health monitoring. You must configure the redirect manually
using the /health/endtoend endpoint. The /health/instance end point only checks local
instance health.

If the object storage system of one site becomes unavailable, there will be no automatic redirect

CHAPTER 6. GEO-REPLICATION

51

https://access.redhat.com/documentation/en-us/red_hat_quay/3.11/html-single/red_hat_quay_architecture/index#georepl-intro

If the object storage system of one site becomes unavailable, there will be no automatic redirect
to the remaining storage system, or systems, of the remaining site, or sites.

Geo-replication is asynchronous. The permanent loss of a site incurs the loss of the data that
has been saved in that sites' object storage system but has not yet been replicated to the
remaining sites at the time of failure.

A single database, and therefore all metadata and Red Hat Quay configuration, is shared across
all regions.
Geo-replication does not replicate the database. In the event of an outage, Red Hat Quay with
geo-replication enabled will not failover to another database.

A single Redis cache is shared across the entire Red Hat Quay setup and needs to accessible by
all Red Hat Quay pods.

The exact same configuration should be used across all regions, with exception of the storage
backend, which can be configured explicitly using the
QUAY_DISTRIBUTED_STORAGE_PREFERENCE environment variable.

Geo-replication requires object storage in each region. It does not work with local storage.

Each region must be able to access every storage engine in each region, which requires a
network path.

Alternatively, the storage proxy option can be used.

The entire storage backend, for example, all blobs, is replicated. Repository mirroring, by
contrast, can be limited to a repository, or an image.

All Red Hat Quay instances must share the same entrypoint, typically through a load balancer.

All Red Hat Quay instances must have the same set of superusers, as they are defined inside the
common configuration file.

Geo-replication requires your Clair configuration to be set to unmanaged. An unmanaged Clair
database allows the Red Hat Quay Operator to work in a geo-replicated environment, where
multiple instances of the Red Hat Quay Operator must communicate with the same database.
For more information, see Advanced Clair configuration .

Geo-Replication requires SSL/TLS certificates and keys. For more information, see Using
SSL/TLS to protect connections to Red Hat Quay.

If the above requirements cannot be met, you should instead use two or more distinct Red Hat Quay
deployments and take advantage of repository mirroring functions.

6.2.1. Setting up geo-replication on OpenShift Container Platform

Use the following procedure to set up geo-replication on OpenShift Container Platform.

Procedure

1. Deploy a postgres instance for Red Hat Quay.

2. Login to the database by entering the following command:

psql -U <username> -h <hostname> -p <port> -d <database_name>

Red Hat Quay 3.11 Red Hat Quay Operator features

52

https://access.redhat.com/documentation/en-us/red_hat_quay/3.7/html-single/deploy_red_hat_quay_on_openshift_with_the_quay_operator/index#clair-unmanaged
https://access.redhat.com/documentation/en-us/red_hat_quay/3.7/html-single/deploy_red_hat_quay_for_proof-of-concept_non-production_purposes/index#using_ssl_to_protect_connections_to_red_hat_quay

3. Create a database for Red Hat Quay named quay. For example:

4. Enable pg_trm extension inside the database

5. Deploy a Redis instance:

NOTE

Deploying a Redis instance might be unnecessary if your cloud provider has
its own service.

Deploying a Redis instance is required if you are leveraging Builders.

a. Deploy a VM for Redis

b. Verify that it is accessible from the clusters where Red Hat Quay is running

c. Port 6379/TCP must be open

d. Run Redis inside the instance

6. Create two object storage backends, one for each cluster. Ideally, one object storage bucket will
be close to the first, or primary, cluster, and the other will run closer to the second, or
secondary, cluster.

7. Deploy the clusters with the same config bundle, using environment variable overrides to select
the appropriate storage backend for an individual cluster.

8. Configure a load balancer to provide a single entry point to the clusters.

6.2.1.1. Configuring geo-replication for the Red Hat Quay on OpenShift Container Platform

Use the following procedure to configure geo-replication for the Red Hat Quay on OpenShift Container
Platform.

Procedure

1. Create a config.yaml file that is shared between clusters. This config.yaml file contains the
details for the common PostgreSQL, Redis and storage backends:

Geo-replication config.yaml file

CREATE DATABASE quay;

\c quay;
CREATE EXTENSION IF NOT EXISTS pg_trgm;

sudo dnf install -y podman
podman run -d --name redis -p 6379:6379 redis

SERVER_HOSTNAME: <georep.quayteam.org or any other name> 1
DB_CONNECTION_ARGS:
 autorollback: true

CHAPTER 6. GEO-REPLICATION

53

1

2

A proper SERVER_HOSTNAME must be used for the route and must match the hostname
of the global load balancer.

To retrieve the configuration file for a Clair instance deployed using the OpenShift
Container Platform Operator, see Retrieving the Clair config .

2. Create the configBundleSecret by entering the following command:

3. In each of the clusters, set the configBundleSecret and use the
QUAY_DISTRIBUTED_STORAGE_PREFERENCE environmental variable override to
configure the appropriate storage for that cluster. For example:

NOTE

The config.yaml file between both deployments must match. If making a change
to one cluster, it must also be changed in the other.

US cluster QuayRegistry example

 threadlocals: true
DB_URI: postgresql://postgres:password@10.19.0.1:5432/quay 2
BUILDLOGS_REDIS:
 host: 10.19.0.2
 port: 6379
USER_EVENTS_REDIS:
 host: 10.19.0.2
 port: 6379
DATABASE_SECRET_KEY: 0ce4f796-c295-415b-bf9d-b315114704b8
DISTRIBUTED_STORAGE_CONFIG:
 usstorage:
 - GoogleCloudStorage
 - access_key: GOOGQGPGVMASAAMQABCDEFG
 bucket_name: georep-test-bucket-0
 secret_key: AYWfEaxX/u84XRA2vUX5C987654321
 storage_path: /quaygcp
 eustorage:
 - GoogleCloudStorage
 - access_key: GOOGQGPGVMASAAMQWERTYUIOP
 bucket_name: georep-test-bucket-1
 secret_key: AYWfEaxX/u84XRA2vUX5Cuj12345678
 storage_path: /quaygcp
DISTRIBUTED_STORAGE_DEFAULT_LOCATIONS:
 - usstorage
 - eustorage
DISTRIBUTED_STORAGE_PREFERENCE:
 - usstorage
 - eustorage
FEATURE_STORAGE_REPLICATION: true

$ oc create secret generic --from-file config.yaml=./config.yaml georep-config-bundle

apiVersion: quay.redhat.com/v1
kind: QuayRegistry

Red Hat Quay 3.11 Red Hat Quay Operator features

54

https://access.redhat.com/documentation/en-us/red_hat_quay/3/html/deploy_red_hat_quay_on_openshift_with_the_quay_operator/quay_operator_features#clair-openshift-config

NOTE

Because SSL/TLS is unmanaged, and the route is managed, you must supply the
certificates directly in the config bundle. For more information, see Configuring
TLS and routes.

European cluster

metadata:
 name: example-registry
 namespace: quay-enterprise
spec:
 configBundleSecret: georep-config-bundle
 components:
 - kind: objectstorage
 managed: false
 - kind: route
 managed: true
 - kind: tls
 managed: false
 - kind: postgres
 managed: false
 - kind: clairpostgres
 managed: false
 - kind: redis
 managed: false
 - kind: quay
 managed: true
 overrides:
 env:
 - name: QUAY_DISTRIBUTED_STORAGE_PREFERENCE
 value: usstorage
 - kind: mirror
 managed: true
 overrides:
 env:
 - name: QUAY_DISTRIBUTED_STORAGE_PREFERENCE
 value: usstorage

apiVersion: quay.redhat.com/v1
kind: QuayRegistry
metadata:
 name: example-registry
 namespace: quay-enterprise
spec:
 configBundleSecret: georep-config-bundle
 components:
 - kind: objectstorage
 managed: false
 - kind: route
 managed: true
 - kind: tls
 managed: false
 - kind: postgres
 managed: false

CHAPTER 6. GEO-REPLICATION

55

https://access.redhat.com/documentation/en-us/red_hat_quay/3/html/deploy_red_hat_quay_on_openshift_with_the_quay_operator/operator-preconfigure#operator-preconfig-tls-routes

NOTE

Because SSL/TLS is unmanaged, and the route is managed, you must supply the
certificates directly in the config bundle. For more information, see Configuring
TLS and routes.

6.2.2. Mixed storage for geo-replication

Red Hat Quay geo-replication supports the use of different and multiple replication targets, for
example, using AWS S3 storage on public cloud and using Ceph storage on premise. This complicates
the key requirement of granting access to all storage backends from all Red Hat Quay pods and cluster
nodes. As a result, it is recommended that you use the following:

A VPN to prevent visibility of the internal storage, or

A token pair that only allows access to the specified bucket used by Red Hat Quay

This results in the public cloud instance of Red Hat Quay having access to on-premise storage, but the
network will be encrypted, protected, and will use ACLs, thereby meeting security requirements.

If you cannot implement these security measures, it might be preferable to deploy two distinct Red Hat
Quay registries and to use repository mirroring as an alternative to geo-replication.

6.3. UPGRADING A GEO-REPLICATION DEPLOYMENT OF RED HAT
QUAY ON OPENSHIFT CONTAINER PLATFORM

Use the following procedure to upgrade your geo-replicated Red Hat Quay on OpenShift Container
Platform deployment.

IMPORTANT

 - kind: clairpostgres
 managed: false
 - kind: redis
 managed: false
 - kind: quay
 managed: true
 overrides:
 env:
 - name: QUAY_DISTRIBUTED_STORAGE_PREFERENCE
 value: eustorage
 - kind: mirror
 managed: true
 overrides:
 env:
 - name: QUAY_DISTRIBUTED_STORAGE_PREFERENCE
 value: eustorage

Red Hat Quay 3.11 Red Hat Quay Operator features

56

https://access.redhat.com/documentation/en-us/red_hat_quay/3/html/deploy_red_hat_quay_on_openshift_with_the_quay_operator/operator-preconfigure#operator-preconfig-tls-routes

1

2

IMPORTANT

When upgrading geo-replicated Red Hat Quay on OpenShift Container Platform
deployment to the next y-stream release (for example, Red Hat Quay 3.7 → Red
Hat Quay 3.8), you must stop operations before upgrading.

There is intermittent downtime down upgrading from one y-stream release to the
next.

It is highly recommended to back up your Red Hat Quay on OpenShift Container
Platform deployment before upgrading.

PROCEDURE

This procedure assumes that you are running the Red Hat Quay registry on three or more
systems. For this procedure, we will assume three systems named System A, System B,
and System C. System A will serve as the primary system in which the Red Hat Quay
Operator is deployed.

1. On System B and System C, scale down your Red Hat Quay registry. This is done by disabling
auto scaling and overriding the replica county for Red Hat Quay, mirror workers, and Clair if it is
managed. Use the following quayregistry.yaml file as a reference:

Disable auto scaling of Quay, Clair and Mirroring workers

Set the replica count to 0 for components accessing the database and objectstorage

NOTE

apiVersion: quay.redhat.com/v1
kind: QuayRegistry
metadata:
 name: registry
 namespace: ns
spec:
 components:
 …
 - kind: horizontalpodautoscaler
 managed: false 1
 - kind: quay
 managed: true
 overrides: 2
 replicas: 0
 - kind: clair
 managed: true
 overrides:
 replicas: 0
 - kind: mirror
 managed: true
 overrides:
 replicas: 0
 …

CHAPTER 6. GEO-REPLICATION

57

NOTE

You must keep the Red Hat Quay registry running on System A. Do not update
the quayregistry.yaml file on System A.

2. Wait for the registry-quay-app, registry-quay-mirror, and registry-clair-app pods to
disappear. Enter the following command to check their status:

Example output

3. On System A, initiate a Red Hat Quay upgrade to the latest y-stream version. This is a manual
process. For more information about upgrading installed Operators, see Upgrading installed
Operators. For more information about Red Hat Quay upgrade paths, see Upgrading the Red
Hat Quay Operator.

4. After the new Red Hat Quay registry is installed, the necessary upgrades on the cluster are
automatically completed. Afterwards, new Red Hat Quay pods are started with the latest y-
stream version. Additionally, new Quay pods are scheduled and started.

5. Confirm that the update has properly worked by navigating to the Red Hat Quay UI:

a. In the OpenShift console, navigate to Operators → Installed Operators, and click the
Registry Endpoint link.

IMPORTANT

Do not execute the following step until the Red Hat Quay UI is available. Do
not upgrade the Red Hat Quay registry on System B and on System C until
the UI is available on System A.

6. Confirm that the update has properly worked on System A, initiate the Red Hat Quay upgrade
on System B and on System C. The Operator upgrade results in an upgraded Red Hat Quay
installation, and the pods are restarted.

NOTE

Because the database schema is correct for the new y-stream installation, the
new pods on System B and on System C should quickly start.

7. After updating, revert the changes made in step 1 of this procedure by removing overrides for
the components. For example:

oc get pods -n <quay-namespace>

quay-operator.v3.7.1-6f9d859bd-p5ftc 1/1 Running 0 12m
quayregistry-clair-postgres-7487f5bd86-xnxpr 1/1 Running 1 (12m ago) 12m
quayregistry-quay-app-upgrade-xq2v6 0/1 Completed 0 12m
quayregistry-quay-redis-84f888776f-hhgms 1/1 Running 0 12m

apiVersion: quay.redhat.com/v1
kind: QuayRegistry
metadata:
 name: registry

Red Hat Quay 3.11 Red Hat Quay Operator features

58

https://docs.openshift.com/container-platform/4.14/operators/admin/olm-upgrading-operators.html
https://access.redhat.com/documentation/en-us/red_hat_quay/3.11/html/deploy_red_hat_quay_on_openshift_with_the_quay_operator/operator-upgrade#upgrading_the_quay_operator

1 If the horizontalpodautoscaler resource was set to true before the upgrade procedure,
or if you want Red Hat Quay to scale in case of a resource shortage, set it to true.

6.3.1. Removing a geo-replicated site from your Red Hat Quay on OpenShift
Container Platform deployment

By using the following procedure, Red Hat Quay administrators can remove sites in a geo-replicated
setup.

Prerequisites

You are logged into OpenShift Container Platform.

You have configured Red Hat Quay geo-replication with at least two sites, for example,
usstorage and eustorage.

Each site has its own Organization, Repository, and image tags.

Procedure

1. Sync the blobs between all of your defined sites by running the following command:

 namespace: ns
spec:
 components:
 …
 - kind: horizontalpodautoscaler
 managed: true 1
 - kind: quay
 managed: true
 - kind: clair
 managed: true
 - kind: mirror
 managed: true
 …

$ python -m util.backfillreplication

CHAPTER 6. GEO-REPLICATION

59

WARNING

Prior to removing storage engines from your Red Hat Quay config.yaml
file, you must ensure that all blobs are synced between all defined sites.

When running this command, replication jobs are created which are picked
up by the replication worker. If there are blobs that need replicated, the
script returns UUIDs of blobs that will be replicated. If you run this command
multiple times, and the output from the return script is empty, it does not
mean that the replication process is done; it means that there are no more
blobs to be queued for replication. Customers should use appropriate
judgement before proceeding, as the allotted time replication takes
depends on the number of blobs detected.

Alternatively, you could use a third party cloud tool, such as Microsoft Azure,
to check the synchronization status.

This step must be completed before proceeding.

2. In your Red Hat Quay config.yaml file for site usstorage, remove the
DISTRIBUTED_STORAGE_CONFIG entry for the eustorage site.

3. Enter the following command to identify your Quay application pods:

Example output

4. Enter the following command to open an interactive shell session in the usstorage pod:

5. Enter the following command to permanently remove the eustorage site:

IMPORTANT

The following action cannot be undone. Use with caution.

Example output



$ oc get pod -n <quay_namespace>

quay390usstorage-quay-app-5779ddc886-2drh2
quay390eustorage-quay-app-66969cd859-n2ssm

$ oc rsh quay390usstorage-quay-app-5779ddc886-2drh2

sh-4.4$ python -m util.removelocation eustorage

WARNING: This is a destructive operation. Are you sure you want to remove eustorage from
your storage locations? [y/n] y
Deleted placement 30

Red Hat Quay 3.11 Red Hat Quay Operator features

60

Deleted placement 31
Deleted placement 32
Deleted placement 33
Deleted location eustorage

CHAPTER 6. GEO-REPLICATION

61

CHAPTER 7. BACKING UP AND RESTORING RED HAT QUAY
MANAGED BY THE RED HAT QUAY OPERATOR

Use the content within this section to back up and restore Red Hat Quay when managed by the Red Hat
Quay Operator on OpenShift Container Platform

7.1. OPTIONAL: ENABLING READ-ONLY MODE FOR RED HAT QUAY
ON OPENSHIFT CONTAINER PLATFORM

Enabling read-only mode for your Red Hat Quay on OpenShift Container Platform deployment allows
you to manage the registry’s operations. Administrators can enable read-only mode to restrict write
access to the registry, which helps ensure data integrity, mitigate risks during maintenance windows, and
provide a safeguard against unintended modifications to registry data. It also helps to ensure that your
Red Hat Quay registry remains online and available to serve images to users.

When backing up and restoring, you are required to scale down your Red Hat Quay on OpenShift
Container Platform deployment. This results in service unavailability during the backup period which, in
some cases, might be unacceptable. Enabling read-only mode ensures service availability during the
backup and restore procedure for Red Hat Quay on OpenShift Container Platform deployments.

Prerequisites

If you are using Red Hat Enterprise Linux (RHEL) 7.x:

You have enabled the Red Hat Software Collections List (RHSCL).

You have installed Python 3.6.

You have downloaded the virtualenv package.

You have installed the git CLI.

If you are using Red Hat Enterprise Linux (RHEL) 8:

You have installed Python 3 on your machine.

You have downloaded the python3-virtualenv package.

You have installed the git CLI.

You have cloned the https://github.com/quay/quay.git repository.

You have installed the oc CLI.

You have access to the cluster with cluster-admin privileges.

7.1.1. Creating service keys for Red Hat Quay on OpenShift Container Platform

Red Hat Quay uses service keys to communicate with various components. These keys are used to sign
completed requests, such as requesting to scan images, login, storage access, and so on.

Procedure

1. Enter the following command to obtain a list of Red Hat Quay pods:

Red Hat Quay 3.11 Red Hat Quay Operator features

62

https://github.com/quay/quay.git

Example output

2. Open a remote shell session to the Quay container by entering the following command:

3. Enter the following command to create the necessary service keys:

Example output

7.1.2. Adding keys to the PostgreSQL database

Use the following procedure to add your service keys to the PostgreSQL database.

Prerequistes

You have created the service keys.

Procedure

1. Enter the following command to enter your Red Hat Quay database environment:

2. Display the approval types and associated notes of the servicekeyapproval by entering the
following command:

$ oc get pods -n <namespace>

example-registry-clair-app-7dc7ff5844-4skw5 0/1 Error 0 70d
example-registry-clair-app-7dc7ff5844-nvn4f 1/1 Running 0 31d
example-registry-clair-app-7dc7ff5844-x4smw 0/1 ContainerStatusUnknown 6 (70d
ago) 70d
example-registry-clair-app-7dc7ff5844-xjnvt 1/1 Running 0 60d
example-registry-clair-postgres-547d75759-75c49 1/1 Running 0 70d
example-registry-quay-app-76c8f55467-52wjz 1/1 Running 0 70d
example-registry-quay-app-76c8f55467-hwz4c 1/1 Running 0 70d
example-registry-quay-app-upgrade-57ghs 0/1 Completed 1 70d
example-registry-quay-database-7c55899f89-hmnm6 1/1 Running 0
70d
example-registry-quay-mirror-6cccbd76d-btsnb 1/1 Running 0 70d
example-registry-quay-mirror-6cccbd76d-x8g42 1/1 Running 0 70d
example-registry-quay-redis-85cbdf96bf-4vk5m 1/1 Running 0 70d

$ oc rsh example-registry-quay-app-76c8f55467-52wjz

sh-4.4$ python3 tools/generatekeypair.py quay-readonly

Writing public key to quay-readonly.jwk
Writing key ID to quay-readonly.kid
Writing private key to quay-readonly.pem

$ oc rsh example-registry-quay-app-76c8f55467-52wjz psql -U <database_username> -d
<database_name>

quay=# select * from servicekeyapproval;

CHAPTER 7. BACKING UP AND RESTORING RED HAT QUAY MANAGED BY THE RED HAT QUAY OPERATOR

63

Example output

3. Add the service key to your Red Hat Quay database by entering the following query:

Example output

4. Next, add the key approval with the following query:

Example output

5. Set the approval_id field on the created service key row to the id field from the created service
key approval. You can use the following SELECT statements to get the necessary IDs:

7.1.3. Configuring read-only mode Red Hat Quay on OpenShift Container Platform

After the service keys have been created and added to your PostgreSQL database, you must restart the
Quay container on your OpenShift Container Platform deployment.

IMPORTANT

 id | approver_id | approval_type | approved_date | notes
----+-------------+----------------------------------+----------------------------+-------
 1 | | ServiceKeyApprovalType.AUTOMATIC | 2024-05-07 03:47:48.181347 |
 2 | | ServiceKeyApprovalType.AUTOMATIC | 2024-05-07 03:47:55.808087 |
 3 | | ServiceKeyApprovalType.AUTOMATIC | 2024-05-07 03:49:04.27095 |
 4 | | ServiceKeyApprovalType.AUTOMATIC | 2024-05-07 03:49:05.46235 |
 5 | 1 | ServiceKeyApprovalType.SUPERUSER | 2024-05-07 04:05:10.296796 |
...

quay=# INSERT INTO servicekey
 (name, service, metadata, kid, jwk, created_date, expiration_date)
 VALUES ('quay-readonly',
 'quay',
 '{}',
 '{<contents_of_.kid_file>}',
 '{<contents_of_.jwk_file>}',
 '{<created_date_of_read-only>}',
 '{<expiration_date_of_read-only>}');

INSERT 0 1

quay=# INSERT INTO servicekeyapproval ('approval_type', 'approved_date', 'notes')
 VALUES ("ServiceKeyApprovalType.SUPERUSER", "CURRENT_DATE",
 {include_notes_here_on_why_this_is_being_added});

INSERT 0 1

UPDATE servicekey
SET approval_id = (SELECT id FROM servicekeyapproval WHERE approval_type =
'ServiceKeyApprovalType.SUPERUSER')
WHERE name = 'quay-readonly';

UPDATE 1

Red Hat Quay 3.11 Red Hat Quay Operator features

64

IMPORTANT

Deploying Red Hat Quay on OpenShift Container Platform in read-only mode requires
you to modify the secrets stored inside of your OpenShift Container Platform cluster. It is
highly recommended that you create a backup of the secret prior to making changes to it.

Prerequisites

You have created the service keys and added them to your PostgreSQL database.

Procedure

1. Enter the following command to read the secret name of your Red Hat Quay on OpenShift
Container Platform deployment:

2. Use the base64 command to encode the quay-readonly.kid and quay-readonly.pem files:

Example output

Example output

3. Obtain the current configuration bundle and secret by entering the following command:

4. Edit the config.yaml file and add the following information:

5. Save the file and base64 encode it by running the following command:

6. Scale down the Red Hat Quay Operator pods to 0. This ensures that the Operator does not
reconcile the secret after editing it.

$ oc get deployment -o yaml <quay_main_app_deployment_name>

$ base64 -w0 quay-readonly.kid

ZjUyNDFm...

$ base64 -w0 quay-readonly.pem

LS0tLS1CRUdJTiBSU0E...

$ oc get secret quay-config-secret-name -o json | jq '.data."config.yaml"' | cut -d '"' -f2 |
base64 -d -w0 > config.yaml

...
REGISTRY_STATE: readonly
INSTANCE_SERVICE_KEY_KID_LOCATION: 'conf/stack/quay-readonly.kid'
INSTANCE_SERVICE_KEY_LOCATION: 'conf/stack/quay-readonly.pem'
...

$ base64 -w0 quay-config.yaml

$ oc scale --replicas=0 deployment quay-operator -n openshift-operators

CHAPTER 7. BACKING UP AND RESTORING RED HAT QUAY MANAGED BY THE RED HAT QUAY OPERATOR

65

7. Edit the secret to include the new content:

With your Red Hat Quay on OpenShift Container Platform deployment on read-only mode, you
can safely manage your registry’s operations and perform such actions as backup and restore.

7.1.3.1. Scaling up the Red Hat Quay on OpenShift Container Platform from a read-only
deployment

When you no longer want Red Hat Quay on OpenShift Container Platform to be in read-only mode, you
can scale the deployment back up and remove the content added from the secret.

Procedure

1. Edit the config.yaml file and remove the following information:

2. Scale the Red Hat Quay Operator back up by entering the following command:

7.2. BACKING UP RED HAT QUAY

Database backups should be performed regularly using either the supplied tools on the PostgreSQL
image or your own backup infrastructure. The Red Hat Quay Operator does not ensure that the
PostgreSQL database is backed up.

NOTE

This procedure covers backing up your Red Hat Quay PostgreSQL database. It does not
cover backing up the Clair PostgreSQL database. Strictly speaking, backing up the Clair
PostgreSQL database is not needed because it can be recreated. If you opt to recreate it
from scratch, you will wait for the information to be repopulated after all images inside of
your Red Hat Quay deployment are scanned. During this downtime, security reports are
unavailable.

If you are considering backing up the Clair PostgreSQL database, you must consider that
its size is dependent upon the number of images stored inside of Red Hat Quay. As a
result, the database can be extremely large.

$ oc edit secret quay-config-secret-name -n quay-namespace

...
data:
 "quay-readonly.kid": "ZjUyNDFm..."
 "quay-readonly.pem": "LS0tLS1CRUdJTiBSU0E..."
 "config.yaml": "QUNUSU9OX0xPR19..."
...

...
REGISTRY_STATE: readonly
INSTANCE_SERVICE_KEY_KID_LOCATION: 'conf/stack/quay-readonly.kid'
INSTANCE_SERVICE_KEY_LOCATION: 'conf/stack/quay-readonly.pem'
...

oc scale --replicas=1 deployment quay-operator -n openshift-operators

Red Hat Quay 3.11 Red Hat Quay Operator features

66

This procedure describes how to create a backup of Red Hat Quay on OpenShift Container Platform
using the Operator.

Prerequisites

A healthy Red Hat Quay deployment on OpenShift Container Platform using the Red Hat Quay
Operator. The status condition Available is set to true.

The components quay, postgres and objectstorage are set to managed: true

If the component clair is set to managed: true the component clairpostgres is also set to
managed: true (starting with Red Hat Quay v3.7 or later)

NOTE

If your deployment contains partially unmanaged database or storage components and
you are using external services for PostgreSQL or S3-compatible object storage to run
your Red Hat Quay deployment, you must refer to the service provider or vendor
documentation to create a backup of the data. You can refer to the tools described in this
guide as a starting point on how to backup your external PostgreSQL database or object
storage.

7.2.1. Red Hat Quay configuration backup

Use the following procedure to back up your Red Hat Quay configuration.

Procedure

1. To back the QuayRegistry custom resource by exporting it, enter the following command:

2. Edit the resulting quayregistry.yaml and remove the status section and the following metadata
fields:

3. Backup the managed keys secret by entering the following command:

NOTE

If you are running a version older than Red Hat Quay 3.7.0, this step can be
skipped. Some secrets are automatically generated while deploying Red Hat
Quay for the first time. These are stored in a secret called
<quay_registry_name>-quay_registry_managed_secret_keys in the
namespace of the QuayRegistry resource.

$ oc get quayregistry <quay_registry_name> -n <quay_namespace> -o yaml > quay-
registry.yaml

 metadata.creationTimestamp
 metadata.finalizers
 metadata.generation
 metadata.resourceVersion
 metadata.uid

CHAPTER 7. BACKING UP AND RESTORING RED HAT QUAY MANAGED BY THE RED HAT QUAY OPERATOR

67

4. Edit the resulting managed_secret_keys.yaml file and remove the entry
metadata.ownerReferences. Your managed_secret_keys.yaml file should look similar to the
following:

All information under the data property should remain the same.

5. Redirect the current Quay configuration file by entering the following command:

6. Backup the /conf/stack/config.yaml file mounted inside of the Quay pods:

7.2.2. Scaling down your Red Hat Quay deployment

Use the following procedure to scale down your Red Hat Quay deployment.

IMPORTANT

This step is needed to create a consistent backup of the state of your Red Hat Quay
deployment. Do not omit this step, including in setups where PostgreSQL databases
and/or S3-compatible object storage are provided by external services (unmanaged by
the Red Hat Quay Operator).

Procedure

1. Depending on the version of your Red Hat Quay deployment, scale down your deployment using
one of the following options.

a. For Operator version 3.7 and newer: Scale down the Red Hat Quay deployment by
disabling auto scaling and overriding the replica count for Red Hat Quay, mirror workers, and
Clair (if managed). Your QuayRegistry resource should look similar to the following:

$ oc get secret -n <quay_namespace>
<quay_registry_name>_quay_registry_managed_secret_keys -o yaml >
managed_secret_keys.yaml

apiVersion: v1
kind: Secret
type: Opaque
metadata:
 name: <quayname>_quay_registry_managed_secret_keys>
 namespace: <quay_namespace>
data:
 CONFIG_EDITOR_PW: <redacted>
 DATABASE_SECRET_KEY: <redacted>
 DB_ROOT_PW: <redacted>
 DB_URI: <redacted>
 SECRET_KEY: <redacted>
 SECURITY_SCANNER_V4_PSK: <redacted>

$ oc get secret -n <quay-namespace> $(oc get quayregistry <quay_registry_name> -n
<quay_namespace> -o jsonpath='{.spec.configBundleSecret}') -o yaml > config-bundle.yaml

$ oc exec -it quay_pod_name -- cat /conf/stack/config.yaml > quay_config.yaml

apiVersion: quay.redhat.com/v1

Red Hat Quay 3.11 Red Hat Quay Operator features

68

1

2

Disable auto scaling of Quay, Clair and Mirroring workers

Set the replica count to 0 for components accessing the database and objectstorage

b. For Operator version 3.6 and earlier: Scale down the Red Hat Quay deployment by scaling
down the Red Hat Quay registry first and then the managed Red Hat Quay resources:

2. Wait for the registry-quay-app, registry-quay-mirror and registry-clair-app pods (depending
on which components you set to be managed by the Red Hat Quay Operator) to disappear. You
can check their status by running the following command:

Example output:

kind: QuayRegistry
metadata:
 name: registry
 namespace: ns
spec:
 components:
 …
 - kind: horizontalpodautoscaler
 managed: false 1
 - kind: quay
 managed: true
 overrides: 2
 replicas: 0
 - kind: clair
 managed: true
 overrides:
 replicas: 0
 - kind: mirror
 managed: true
 overrides:
 replicas: 0
 …

$ oc scale --replicas=0 deployment $(oc get deployment -n <quay-operator-
namespace>|awk '/^quay-operator/ {print $1}') -n <quay-operator-namespace>

$ oc scale --replicas=0 deployment $(oc get deployment -n <quay-namespace>|awk
'/quay-app/ {print $1}') -n <quay-namespace>

$ oc scale --replicas=0 deployment $(oc get deployment -n <quay-namespace>|awk
'/quay-mirror/ {print $1}') -n <quay-namespace>

$ oc scale --replicas=0 deployment $(oc get deployment -n <quay-namespace>|awk
'/clair-app/ {print $1}') -n <quay-namespace>

$ oc get pods -n <quay_namespace>

$ oc get pod

CHAPTER 7. BACKING UP AND RESTORING RED HAT QUAY MANAGED BY THE RED HAT QUAY OPERATOR

69

Example output

7.2.3. Backing up the Red Hat Quay managed database

Use the following procedure to back up the Red Hat Quay managed database.

NOTE

If your Red Hat Quay deployment is configured with external, or unmanged, PostgreSQL
database(s), refer to your vendor’s documentation on how to create a consistent backup
of these databases.

Procedure

1. Identify the Quay PostgreSQL pod name:

Example output:

2. Obtain the Quay database name:

3. Download a backup database:

7.2.3.1. Backing up the Red Hat Quay managed object storage

Use the following procedure to back up the Red Hat Quay managed object storage. The instructions in
this section apply to the following configurations:

Standalone, multi-cloud object gateway configurations

OpenShift Data Foundations storage requires that the Red Hat Quay Operator provisioned an
S3 object storage bucket from, through the ObjectStorageBucketClaim API

NOTE

quay-operator.v3.7.1-6f9d859bd-p5ftc 1/1 Running 0 12m
quayregistry-clair-postgres-7487f5bd86-xnxpr 1/1 Running 1 (12m ago) 12m
quayregistry-quay-app-upgrade-xq2v6 0/1 Completed 0 12m
quayregistry-quay-database-859d5445ff-cqthr 1/1 Running 0 12m
quayregistry-quay-redis-84f888776f-hhgms 1/1 Running 0 12m

$ oc get pod -l quay-component=postgres -n <quay_namespace> -o
jsonpath='{.items[0].metadata.name}'

quayregistry-quay-database-59f54bb7-58xs7

$ oc -n <quay_namespace> rsh $(oc get pod -l app=quay -o NAME -n <quay_namespace>
|head -n 1) cat /conf/stack/config.yaml|awk -F"/" '/^DB_URI/ {print $4}'
quayregistry-quay-database

$ oc exec quayregistry-quay-database-59f54bb7-58xs7 -- /usr/bin/pg_dump -C quayregistry-
quay-database > backup.sql

Red Hat Quay 3.11 Red Hat Quay Operator features

70

NOTE

If your Red Hat Quay deployment is configured with external (unmanged) object storage,
refer to your vendor’s documentation on how to create a copy of the content of Quay’s
storage bucket.

Procedure

1. Decode and export the AWS_ACCESS_KEY_ID by entering the following command:

2. Decode and export the AWS_SECRET_ACCESS_KEY_ID by entering the following command:

3. Create a new directory:

NOTE

You can also use rclone or sc3md instead of the AWS command line utility.

1. Copy all blobs to the directory by entering the following command:

7.2.4. Scale the Red Hat Quay deployment back up

1. Depending on the version of your Red Hat Quay deployment, scale up your deployment using
one of the following options.

a. For Operator version 3.7 and newer: Scale up the Red Hat Quay deployment by re-
enabling auto scaling, if desired, and removing the replica overrides for Quay, mirror workers
and Clair as applicable. Your QuayRegistry resource should look similar to the following:

$ export AWS_ACCESS_KEY_ID=$(oc get secret -l app=noobaa -n <quay-namespace> -o
jsonpath='{.items[0].data.AWS_ACCESS_KEY_ID}' |base64 -d)

$ export AWS_SECRET_ACCESS_KEY=$(oc get secret -l app=noobaa -n <quay-
namespace> -o jsonpath='{.items[0].data.AWS_SECRET_ACCESS_KEY}' |base64 -d)

$ mkdir blobs

$ aws s3 sync --no-verify-ssl --endpoint https://$(oc get route s3 -n openshift-storage -o
jsonpath='{.spec.host}') s3://$(oc get cm -l app=noobaa -n <quay-namespace> -o
jsonpath='{.items[0].data.BUCKET_NAME}') ./blobs

apiVersion: quay.redhat.com/v1
kind: QuayRegistry
metadata:
 name: registry
 namespace: ns
spec:
 components:
 …
 - kind: horizontalpodautoscaler
 managed: true 1
 - kind: quay 2
 managed: true

CHAPTER 7. BACKING UP AND RESTORING RED HAT QUAY MANAGED BY THE RED HAT QUAY OPERATOR

71

https://rclone.org/
https://s3tools.org/s3cmd

1

2

Re-enables auto scaling of Quay, Clair and Mirroring workers again (if desired)

Replica overrides are removed again to scale the Quay components back up

b. For Operator version 3.6 and earlier: Scale up the Red Hat Quay deployment by scaling up
the Red Hat Quay registry:

2. Check the status of the Red Hat Quay deployment by entering the following command:

Example output:

7.3. RESTORING RED HAT QUAY

Use the following procedures to restore Red Hat Quay when the Red Hat Quay Operator manages the
database. It should be performed after a backup of your Red Hat Quay registry has been performed. See
Backing up Red Hat Quay for more information.

Prerequisites

Red Hat Quay is deployed on OpenShift Container Platform using the Red Hat Quay Operator.

A backup of the Red Hat Quay configuration managed by the Red Hat Quay Operator has been
created following the instructions in the Backing up Red Hat Quay section

 - kind: clair
 managed: true
 - kind: mirror
 managed: true
 …

$ oc scale --replicas=1 deployment $(oc get deployment -n
<quay_operator_namespace> | awk '/^quay-operator/ {print $1}') -n
<quay_operator_namespace>

$ oc wait quayregistry registry --for=condition=Available=true -n <quay_namespace>

apiVersion: quay.redhat.com/v1
kind: QuayRegistry
metadata:
 ...
 name: registry
 namespace: <quay-namespace>
 ...
spec:
 ...
status:
 - lastTransitionTime: '2022-06-20T05:31:17Z'
 lastUpdateTime: '2022-06-20T17:31:13Z'
 message: All components reporting as healthy
 reason: HealthChecksPassing
 status: 'True'
 type: Available

Red Hat Quay 3.11 Red Hat Quay Operator features

72

Your Red Hat Quay database has been backed up.

The object storage bucket used by Red Hat Quay has been backed up.

The components quay, postgres and objectstorage are set to managed: true

If the component clair is set to managed: true, the component clairpostgres is also set to
managed: true (starting with Red Hat Quay v3.7 or later)

There is no running Red Hat Quay deployment managed by the Red Hat Quay Operator in the
target namespace on your OpenShift Container Platform cluster

NOTE

If your deployment contains partially unmanaged database or storage components and
you are using external services for PostgreSQL or S3-compatible object storage to run
your Red Hat Quay deployment, you must refer to the service provider or vendor
documentation to restore their data from a backup prior to restore Red Hat Quay

7.3.1. Restoring Red Hat Quay and its configuration from a backup

Use the following procedure to restore Red Hat Quay and its configuration files from a backup.

NOTE

These instructions assume you have followed the process in the Backing up Red Hat
Quay guide and create the backup files with the same names.

Procedure

1. Restore the backed up Red Hat Quay configuration by entering the following command:

IMPORTANT

If you receive the error Error from server (AlreadyExists): error when creating
"./config-bundle.yaml": secrets "config-bundle-secret" already exists, you
must delete your existing resource with $ oc delete Secret config-bundle-
secret -n <quay-namespace> and recreate it with $ oc create -f ./config-
bundle.yaml.

2. Restore the generated keys from the backup by entering the following command:

3. Restore the QuayRegistry custom resource:

4. Check the status of the Red Hat Quay deployment and wait for it to be available:

$ oc create -f ./config-bundle.yaml

$ oc create -f ./managed-secret-keys.yaml

$ oc create -f ./quay-registry.yaml

$ oc wait quayregistry registry --for=condition=Available=true -n <quay-namespace>

CHAPTER 7. BACKING UP AND RESTORING RED HAT QUAY MANAGED BY THE RED HAT QUAY OPERATOR

73

1

2

7.3.2. Scaling down your Red Hat Quay deployment

Use the following procedure to scale down your Red Hat Quay deployment.

Procedure

1. Depending on the version of your Red Hat Quay deployment, scale down your deployment using
one of the following options.

a. For Operator version 3.7 and newer: Scale down the Red Hat Quay deployment by
disabling auto scaling and overriding the replica count for Quay, mirror workers and Clair (if
managed). Your QuayRegistry resource should look similar to the following:

Disable auto scaling of Quay, Clair and Mirroring workers

Set the replica count to 0 for components accessing the database and objectstorage

b. For Operator version 3.6 and earlier: Scale down the Red Hat Quay deployment by scaling
down the Red Hat Quay registry first and then the managed Red Hat Quay resources:

apiVersion: quay.redhat.com/v1
kind: QuayRegistry
metadata:
 name: registry
 namespace: ns
spec:
 components:
 …
 - kind: horizontalpodautoscaler
 managed: false 1
 - kind: quay
 managed: true
 overrides: 2
 replicas: 0
 - kind: clair
 managed: true
 overrides:
 replicas: 0
 - kind: mirror
 managed: true
 overrides:
 replicas: 0
 …

$ oc scale --replicas=0 deployment $(oc get deployment -n <quay-operator-
namespace>|awk '/^quay-operator/ {print $1}') -n <quay-operator-namespace>

$ oc scale --replicas=0 deployment $(oc get deployment -n <quay-namespace>|awk
'/quay-app/ {print $1}') -n <quay-namespace>

$ oc scale --replicas=0 deployment $(oc get deployment -n <quay-namespace>|awk
'/quay-mirror/ {print $1}') -n <quay-namespace>

Red Hat Quay 3.11 Red Hat Quay Operator features

74

2. Wait for the registry-quay-app, registry-quay-mirror and registry-clair-app pods (depending
on which components you set to be managed by Red Hat Quay Operator) to disappear. You can
check their status by running the following command:

Example output:

7.3.3. Restoring your Red Hat Quay database

Use the following procedure to restore your Red Hat Quay database.

Procedure

1. Identify your Quay database pod by entering the following command:

Example output:

quayregistry-quay-database-59f54bb7-58xs7

2. Upload the backup by copying it from the local environment and into the pod:

$ oc cp ./backup.sql -n <quay-namespace> registry-quay-database-66969cd859-
n2ssm:/tmp/backup.sql

3. Open a remote terminal to the database by entering the following command:

4. Enter psql by running the following command:

5. You can list the database by running the following command:

postgres=# \l

Example output

$ oc scale --replicas=0 deployment $(oc get deployment -n <quay-namespace>|awk
'/clair-app/ {print $1}') -n <quay-namespace>

$ oc get pods -n <quay-namespace>

registry-quay-config-editor-77847fc4f5-nsbbv 1/1 Running 0 9m1s
registry-quay-database-66969cd859-n2ssm 1/1 Running 0 6d1h
registry-quay-redis-7cc5f6c977-956g8 1/1 Running 0 5d21h

$ oc get pod -l quay-component=postgres -n <quay-namespace> -o
jsonpath='{.items[0].metadata.name}'

$ oc rsh -n <quay-namespace> registry-quay-database-66969cd859-n2ssm

bash-4.4$ psql

 List of databases
 Name | Owner | Encoding | Collate | Ctype | Access

CHAPTER 7. BACKING UP AND RESTORING RED HAT QUAY MANAGED BY THE RED HAT QUAY OPERATOR

75

6. Drop the database by entering the following command:

Example output

7. Exit the postgres CLI to re-enter bash-4.4:

8. Redirect your PostgreSQL database to your backup database:

9. Exit bash by entering the following command:

7.3.4. Restore your Red Hat Quay object storage data

Use the following procedure to restore your Red Hat Quay object storage data.

Procedure

1. Export the AWS_ACCESS_KEY_ID by entering the following command:

2. Export the AWS_SECRET_ACCESS_KEY by entering the following command:

3. Upload all blobs to the bucket by running the following command:

NOTE

privileges
----------------------------+----------------------------+----------+------------+------------+---------------

postgres | postgres | UTF8 | en_US.utf8 | en_US.utf8 |
quayregistry-quay-database | quayregistry-quay-database | UTF8 | en_US.utf8 |
en_US.utf8 |

postgres=# DROP DATABASE "quayregistry-quay-database";

DROP DATABASE

\q

sh-4.4$ psql < /tmp/backup.sql

sh-4.4$ exit

$ export AWS_ACCESS_KEY_ID=$(oc get secret -l app=noobaa -n <quay-namespace> -o
jsonpath='{.items[0].data.AWS_ACCESS_KEY_ID}' |base64 -d)

$ export AWS_SECRET_ACCESS_KEY=$(oc get secret -l app=noobaa -n <quay-
namespace> -o jsonpath='{.items[0].data.AWS_SECRET_ACCESS_KEY}' |base64 -d)

$ aws s3 sync --no-verify-ssl --endpoint https://$(oc get route s3 -n openshift-storage -o
jsonpath='{.spec.host}') ./blobs s3://$(oc get cm -l app=noobaa -n <quay-namespace> -o
jsonpath='{.items[0].data.BUCKET_NAME}')

Red Hat Quay 3.11 Red Hat Quay Operator features

76

1

2

NOTE

You can also use rclone or sc3md instead of the AWS command line utility.

7.3.5. Scaling up your Red Hat Quay deployment

1. Depending on the version of your Red Hat Quay deployment, scale up your deployment using
one of the following options.

a. For Operator version 3.7 and newer: Scale up the Red Hat Quay deployment by re-
enabling auto scaling, if desired, and removing the replica overrides for Quay, mirror workers
and Clair as applicable. Your QuayRegistry resource should look similar to the following:

Re-enables auto scaling of Red Hat Quay, Clair and mirroring workers again (if desired)

Replica overrides are removed again to scale the Red Hat Quay components back up

b. For Operator version 3.6 and earlier: Scale up the Red Hat Quay deployment by scaling up
the Red Hat Quay registry again:

2. Check the status of the Red Hat Quay deployment:

Example output:

apiVersion: quay.redhat.com/v1
kind: QuayRegistry
metadata:
 name: registry
 namespace: ns
spec:
 components:
 …
 - kind: horizontalpodautoscaler
 managed: true 1
 - kind: quay 2
 managed: true
 - kind: clair
 managed: true
 - kind: mirror
 managed: true
 …

$ oc scale --replicas=1 deployment $(oc get deployment -n <quay-operator-namespace>
| awk '/^quay-operator/ {print $1}') -n <quay-operator-namespace>

$ oc wait quayregistry registry --for=condition=Available=true -n <quay-namespace>

apiVersion: quay.redhat.com/v1
kind: QuayRegistry
metadata:
 ...
 name: registry
 namespace: <quay-namespace>
 ...

CHAPTER 7. BACKING UP AND RESTORING RED HAT QUAY MANAGED BY THE RED HAT QUAY OPERATOR

77

https://rclone.org/
https://s3tools.org/s3cmd

spec:
 ...
status:
 - lastTransitionTime: '2022-06-20T05:31:17Z'
 lastUpdateTime: '2022-06-20T17:31:13Z'
 message: All components reporting as healthy
 reason: HealthChecksPassing
 status: 'True'
 type: Available

Red Hat Quay 3.11 Red Hat Quay Operator features

78

CHAPTER 8. VOLUME SIZE OVERRIDES
You can specify the desired size of storage resources provisioned for managed components. The
default size for Clair and the PostgreSQL databases is 50Gi. You can now choose a large enough
capacity upfront, either for performance reasons or in the case where your storage backend does not
have resize capability.

In the following example, the volume size for the Clair and the Quay PostgreSQL databases has been
set to 70Gi:

NOTE

The volume size of the clairpostgres component cannot be overridden. To override the
clairpostgres component, you must override the clair component. This is a known issue
and will be fixed in a future version of Red Hat Quay. (PROJQUAY-4301)

apiVersion: quay.redhat.com/v1
kind: QuayRegistry
metadata:
 name: quay-example
 namespace: quay-enterprise
spec:
 configBundleSecret: config-bundle-secret
 components:
 - kind: objectstorage
 managed: false
 - kind: route
 managed: true
 - kind: tls
 managed: false
 - kind: clair
 managed: true
 overrides:
 volumeSize: 70Gi
 - kind: postgres
 managed: true
 overrides:
 volumeSize: 70Gi
 - kind: clairpostgres
 managed: true

CHAPTER 8. VOLUME SIZE OVERRIDES

79

https://issues.redhat.com/browse/PROJQUAY-4301

CHAPTER 9. SCANNING POD IMAGES WITH THE CONTAINER
SECURITY OPERATOR

The Container Security Operator (CSO) is an addon for the Clair security scanner available on
OpenShift Container Platform and other Kubernetes platforms. With the CSO, users can scan container
images associated with active pods for known vulnerabilities.

NOTE

The CSO does not work without Red Hat Quay and Clair.

The Container Security Operator (CSO) includes the following features:

Watches containers associated with pods on either specified or all namespaces.

Queries the container registry where the containers came from for vulnerability information,
provided that an image’s registry supports image scanning, such a a Red Hat Quay registry with
Clair scanning.

Exposes vulnerabilities through the ImageManifestVuln object in the Kubernetes API.

NOTE

To see instructions on installing the CSO on Kubernetes, select the Install button from
the Container Security OperatorHub.io page.

9.1. DOWNLOADING AND RUNNING THE CONTAINER SECURITY
OPERATOR IN OPENSHIFT CONTAINER PLATFORM

Use the following procedure to download the Container Security Operator (CSO).

NOTE

In the following procedure, the CSO is installed in the marketplace-operators
namespace. This allows the CSO to be used in all namespaces of your OpenShift
Container Platform cluster.

Procedure

1. On the OpenShift Container Platform console page, select Operators → OperatorHub and
search for Container Security Operator.

2. Select the Container Security Operator, then select Install to go to the Create Operator
Subscription page.

3. Check the settings (all namespaces and automatic approval strategy, by default), and select
Subscribe. The Container Security appears after a few moments on the Installed Operators
screen.

4. Optional: you can add custom certificates to the CSO. In this example, create a certificate
named quay.crt in the current directory. Then, run the following command to add the certificate
to the CSO:

Red Hat Quay 3.11 Red Hat Quay Operator features

80

https://operatorhub.io/operator/container-security-operator
https://operatorhub.io/operator/container-security-operator

NOTE

You must restart the Operator pod for the new certificates to take effect.

5. Navigate to Home → Dashboards. A link to Image Security appears under the status section,
with a listing of the number of vulnerabilities found so far. Select the link to see a security
breakdown, as shown in the following image:

IMPORTANT

The Container Security Operator currently provides broken links for Red Hat
Security advisories. For example, the following link might be provided:
https://access.redhat.com/errata/RHSA-
2023:1842%20https://access.redhat.com/security/cve/CVE-2023-23916. The
%20 in the URL represents a space character, however it currently results in the
combination of the two URLs into one incomplete URL, for example,
https://access.redhat.com/errata/RHSA-2023:1842 and
https://access.redhat.com/security/cve/CVE-2023-23916. As a temporary
workaround, you can copy each URL into your browser to navigate to the proper
page. This is a known issue and will be fixed in a future version of Red Hat Quay.

6. You can do one of two things at this point to follow up on any detected vulnerabilities:

a. Select the link to the vulnerability. You are taken to the container registry, Red Hat Quay or
other registry where the container came from, where you can see information about the
vulnerability. The following figure shows an example of detected vulnerabilities from a
Quay.io registry:

$ oc create secret generic container-security-operator-extra-certs --from-file=quay.crt -n
openshift-operators

CHAPTER 9. SCANNING POD IMAGES WITH THE CONTAINER SECURITY OPERATOR

81

https://access.redhat.com/errata/RHSA-2023:1842 https://access.redhat.com/security/cve/CVE-2023-23916
https://access.redhat.com/errata/RHSA-2023:1842
https://access.redhat.com/security/cve/CVE-2023-23916

b. Select the namespaces link to go to the ImageManifestVuln screen, where you can see the
name of the selected image and all namespaces where that image is running. The following
figure indicates that a particular vulnerable image is running in two namespaces:

After executing this procedure, you are made aware of what images are vulnerable, what you must do to
fix those vulnerabilities, and every namespace that the image was run in. Knowing this, you can perform
the following actions:

Alert users who are running the image that they need to correct the vulnerability.

Stop the images from running by deleting the deployment or the object that started the pod
that the image is in.

NOTE

If you delete the pod, it might take a few minutes for the vulnerability to reset on
the dashboard.

9.2. QUERY IMAGE VULNERABILITIES FROM THE CLI

Use the following procedure to query image vulnerabilities from the command line interface (CLI).

Procedure

1. Enter the following command to query for detected vulnerabilities:

Red Hat Quay 3.11 Red Hat Quay Operator features

82

Example output

2. Optional. To display details for a particular vulnerability, identify a specific vulnerability and its
namespace, and use the oc describe command. The following example shows an active
container whose image includes an RPM package with a vulnerability:

Example output

$ oc get vuln --all-namespaces

NAMESPACE NAME AGE
default sha256.ca90... 6m56s
skynet sha256.ca90... 9m37s

$ oc describe vuln --namespace mynamespace sha256.ac50e3752...

Name: sha256.ac50e3752...
Namespace: quay-enterprise
...
Spec:
 Features:
 Name: nss-util
 Namespace Name: centos:7
 Version: 3.44.0-3.el7
 Versionformat: rpm
 Vulnerabilities:
 Description: Network Security Services (NSS) is a set of libraries...

CHAPTER 9. SCANNING POD IMAGES WITH THE CONTAINER SECURITY OPERATOR

83

CHAPTER 10. CONFIGURING AWS STS FOR RED HAT QUAY
Support for Amazon Web Services (AWS) Security Token Service (STS) is available for standalone Red
Hat Quay deployments and Red Hat Quay on OpenShift Container Platform. AWS STS is a web service
for requesting temporary, limited-privilege credentials for AWS Identity and Access Management (IAM)
users and for users that you authenticate, or federated users. This feature is useful for clusters using
Amazon S3 as an object storage, allowing Red Hat Quay to use STS protocols to authenticate with
Amazon S3, which can enhance the overall security of the cluster and help to ensure that access to
sensitive data is properly authenticated and authorized.

Configuring AWS STS is a multi-step process that requires creating an AWS IAM user, creating an S3
role, and configuring your Red Hat Quay config.yaml file to include the proper resources.

Use the following procedures to configure AWS STS for Red Hat Quay.

10.1. CREATING AN IAM USER

Use the following procedure to create an IAM user.

Procedure

1. Log in to the Amazon Web Services (AWS) console and navigate to the Identity and Access
Management (IAM) console.

2. In the navigation pane, under Access management click Users.

3. Click Create User and enter the following information:

a. Enter a valid username, for example, quay-user.

b. For Permissions options, click Add user to group.

4. On the review and create page, click Create user. You are redirected to the Users page.

5. Click the username, for example, quay-user.

6. Copy the ARN of the user, for example, arn:aws:iam::123492922789:user/quay-user.

7. On the same page, click the Security credentials tab.

8. Navigate to Access keys.

9. Click Create access key.

10. On the Access key best practices & alternatives page, click Command Line Interface (CLI),
then, check the confirmation box. Then click Next.

11. Optional. On the Set description tag - optional page, enter a description.

12. Click Create access key.

13. Copy and store the access key and the secret access key.

IMPORTANT

Red Hat Quay 3.11 Red Hat Quay Operator features

84

IMPORTANT

This is the only time that the secret access key can be viewed or downloaded.
You cannot recover it later. However, you can create a new access key any time.

14. Click Done.

10.2. CREATING AN S3 ROLE

Use the following procedure to create an S3 role for AWS STS.

Prerequisites

You have created an IAM user and stored the access key and the secret access key.

Procedure

1. If you are not already, navigate to the IAM dashboard by clicking Dashboard.

2. In the navigation pane, click Roles under Access management.

3. Click Create role.

Click Custom Trust Policy, which shows an editable JSON policy. By default, it shows the
following information:

4. Under the Principal configuration field, add your AWS ARN information. For example:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Statement1",
 "Effect": "Allow",
 "Principal": {},
 "Action": "sts:AssumeRole"
 }
]
}

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Statement1",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::123492922789:user/quay-user"
 },
 "Action": "sts:AssumeRole"
 }
]
}

CHAPTER 10. CONFIGURING AWS STS FOR RED HAT QUAY

85

5. Click Next.

6. On the Add permissions page, type AmazonS3FullAccess in the search box. Check the box to
add that policy to the S3 role, then click Next.

7. On the Name, review, and create page, enter the following information:

a. Enter a role name, for example, example-role.

b. Optional. Add a description.

8. Click the Create role button. You are navigated to the Roles page. Under Role name, the newly
created S3 should be available.

10.3. CONFIGURING RED HAT QUAY ON OPENSHIFT CONTAINER
PLATFORM TO USE AWS STS

Use the following procedure to edit your Red Hat Quay on OpenShift Container Platform config.yaml
file to use AWS STS.

NOTE

You can also edit and re-deploy your Red Hat Quay on OpenShift Container Platform
config.yaml file directly instead of using the OpenShift Container Platform UI.

Prerequisites

You have configured a Role ARN.

You have generated a User Access Key.

You have generated a User Secret Key.

Procedure

1. On the Home page of your OpenShift Container Platform deployment, click Operators →
Installed Operators.

2. Click Red Hat Quay.

3. Click Quay Registry and then the name of your Red Hat Quay registry.

4. Under Config Bundle Secret, click the name of your registry configuration bundle, for example,
quay-registry-config-bundle-qet56.

5. On the configuration bundle page, click Actions to reveal a drop-down menu. Then click Edit
Secret.

6. Update your the DISTRIBUTED_STORAGE_CONFIG fields of your config.yaml file with the
following information:

...
DISTRIBUTED_STORAGE_CONFIG:
 default:
 - STSS3Storage

Red Hat Quay 3.11 Red Hat Quay Operator features

86

1

2

3

4

5

The unique Amazon Resource Name (ARN) required when configuring AWS STS

The name of your s3 bucket.

The storage path for data. Usually /datastorage.

The generated AWS S3 user access key required when configuring AWS STS.

The generated AWS S3 user secret key required when configuring AWS STS.

7. Click Save.

Verification

1. Tag a sample image, for example, busybox, that will be pushed to the repository. For example:

2. Push the sample image by running the following command:

3. Verify that the push was successful by navigating to the Organization that you pushed the
image to in your Red Hat Quay registry → Tags.

4. Navigate to the Amazon Web Services (AWS) console and locate your s3 bucket.

5. Click the name of your s3 bucket.

6. On the Objects page, click datastorage/.

7. On the datastorage/ page, the following resources should seen:

sha256/

uploads/
These resources indicate that the push was successful, and that AWS STS is properly
configured.

 - sts_role_arn: <role_arn> 1
 s3_bucket: <s3_bucket_name> 2
 storage_path: <storage_path> 3
 sts_user_access_key: <s3_user_access_key> 4
 sts_user_secret_key: <s3_user_secret_key> 5
...

$ podman tag docker.io/library/busybox <quay-
server.example.com>/<organization_name>/busybox:test

$ podman push <quay-server.example.com>/<organization_name>/busybox:test

CHAPTER 10. CONFIGURING AWS STS FOR RED HAT QUAY

87

CHAPTER 11. INTEGRATING RED HAT QUAY INTO OPENSHIFT
CONTAINER PLATFORM WITH THE QUAY BRIDGE

OPERATOR
The Quay Bridge Operator duplicates the features of the integrated OpenShift Container Platform
registry into the new Red Hat Quay registry. Using the Quay Bridge Operator, you can replace the
integrated container registry in OpenShift Container Platform with a Red Hat Quay registry.

The features enabled with the Quay Bridge Operator include:

Synchronizing OpenShift Container Platform namespaces as Red Hat Quay organizations.

Creating robot accounts for each default namespace service account.

Creating secrets for each created robot account, and associating each robot secret to a service
account as Mountable and Image Pull Secret.

Synchronizing OpenShift Container Platform image streams as Red Hat Quay repositories.

Automatically rewriting new builds making use of image streams to output to Red Hat Quay.

Automatically importing an image stream tag after a build completes.

By using the following procedures, you can enable bi-directional communication between your Red Hat
Quay and OpenShift Container Platform clusters.

11.1. SETTING UP RED HAT QUAY FOR THE QUAY BRIDGE OPERATOR

In this procedure, you will create a dedicated Red Hat Quay organization, and from a new application
created within that organization you will generate an OAuth token to be used with the Quay Bridge
Operator in OpenShift Container Platform.

Procedure

1. Log in to Red Hat Quay through the web UI.

2. Select the organization for which the external application will be configured.

3. On the navigation pane, select Applications.

4. Select Create New Application and enter a name for the new application, for example,
openshift.

5. On the OAuth Applications page, select your application, for example, openshift.

6. On the navigation pane, select Generate Token.

7. Select the following fields:

Administer Organization

Administer Repositories

Create Repositories

Red Hat Quay 3.11 Red Hat Quay Operator features

88

View all visible repositories

Read/Write to any accessible repositories

Administer User

Read User Information

8. Review the assigned permissions.

9. Select Authorize Application and then confirm confirm the authorization by selecting
Authorize Application.

10. Save the generated access token.

IMPORTANT

Red Hat Quay does not offer token management. You cannot list tokens, delete
tokens, or modify tokens. The generated access token is only shown once and
cannot be re-obtained after closing the page.

11.2. INSTALLING THE QUAY BRIDGE OPERATOR ON OPENSHIFT
CONTAINER PLATFORM

In this procedure, you will install the Quay Bridge Operator on OpenShift Container Platform.

Prerequiites

You have set up Red Hat Quay and obtained an Access Token.

An OpenShift Container Platform 4.6 or greater environment for which you have cluster
administrator permissions.

Procedure

1. Open the Administrator perspective of the web console and navigate to Operators →
OperatorHub on the navigation pane.

2. Search for Quay Bridge Operator, click the Quay Bridge Operator title, and then click Install.

3. Select the version to install, for example, stable-3.7, and then click Install.

4. Click View Operator when the installation finishes to go to the Quay Bridge Operator’s Details
page. Alternatively, you can click Installed Operators → Red Hat Quay Bridge Operator to go
to the Details page.

11.3. CREATING AN OPENSHIFT CONTAINER PLATFORM SECRET FOR
THE OAUTH TOKEN

In this procedure, you will add the previously obtained access token to communicate with your Red Hat
Quay deployment. The access token will be stored within OpenShift Container Platform as a secret.

Prerequisites

CHAPTER 11. INTEGRATING RED HAT QUAY INTO OPENSHIFT CONTAINER PLATFORM WITH THE QUAY BRIDGE OPERATOR

89

You have set up Red Hat Quay and obtained an access token.

You have deployed the Quay Bridge Operator on OpenShift Container Platform.

An OpenShift Container Platform 4.6 or greater environment for which you have cluster
administrator permissions.

You have installed the OpenShift CLI (oc).

Procedure

Create a secret that contains the access token in the openshift-operators namespace:

11.4. CREATING THE QUAYINTEGRATION CUSTOM RESOURCE

In this procedure, you will create a QuayIntegration custom resource, which can be completed from
either the web console or from the command line.

Prerequisites

You have set up Red Hat Quay and obtained an access token.

You have deployed the Quay Bridge Operator on OpenShift Container Platform.

An OpenShift Container Platform 4.6 or greater environment for which you have cluster
administrator permissions.

Optional: You have installed the OpenShift CLI (oc).

11.4.1. Optional: Creating the QuayIntegration custom resource using the CLI

Follow this procedure to create the QuayIntegration custom resource using the command line.

Procedure

1. Create a quay-integration.yaml:

$ touch quay-integration.yaml

2. Use the following configuration for a minimal deployment of the QuayIntegration custom
resource:

$ oc create secret -n openshift-operators generic <secret-name> --from-literal=token=
<access_token>

 apiVersion: quay.redhat.com/v1
 kind: QuayIntegration
 metadata:
 name: example-quayintegration
 spec:
 clusterID: openshift 1
 credentialsSecret:
 namespace: openshift-operators

Red Hat Quay 3.11 Red Hat Quay Operator features

90

1

2

3

4

The clusterID value should be unique across the entire ecosystem. This value is required
and defaults to openshift.

The credentialsSecret property refers to the namespace and name of the secret
containing the token that was previously created.

Replace the QUAY_URL with the hostname of your Red Hat Quay instance.

If Red Hat Quay is using self signed certificates, set the property to insecureRegistry:
true.

For a list of all configuration fields, see "QuayIntegration configuration fields".

1. Create the QuayIntegration custom resource:

$ oc create -f quay-integration.yaml

11.4.2. Optional: Creating the QuayIntegration custom resource using the web
console

Follow this procedure to create the QuayIntegration custom resource using the web console.

Procedure

1. Open the Administrator perspective of the web console and navigate to Operators →
Installed Operators.

2. Click Red Hat Quay Bridge Operator.

3. On the Details page of the Quay Bridge Operator, click Create Instance on the Quay
Integration API card.

4. On the Create QuayIntegration page, enter the following required information in either Form
view or YAML view:

Name: The name that will refer to the QuayIntegration custom resource object.

Cluster ID: The ID associated with this cluster. This value should be unique across the entire
ecosystem. Defaults to openshift if left unspecified.

Credentials secret: Refers to the namespace and name of the secret containing the token
that was previously created.

Quay hostname: The hostname of the Quay registry.

For a list of all configuration fields, see "QuayIntegration configuration fields".

After the QuayIntegration custom resource is created, your OpenShift Container Platform cluster will
be linked to your Red Hat Quay instance. Organizations within your Red Hat Quay registry should be
created for the related namespace for the OpenShift Container Platform environment.

 name: quay-integration 2
 quayHostname: https://<QUAY_URL> 3
 insecureRegistry: false 4

CHAPTER 11. INTEGRATING RED HAT QUAY INTO OPENSHIFT CONTAINER PLATFORM WITH THE QUAY BRIDGE OPERATOR

91

https://access.redhat.com/documentation/en-us/red_hat_quay/3.11/html-single/configure_red_hat_quay/index#quay-integration-config-fields

11.5. USING QUAY BRIDGE OPERATOR

Use the following procedure to use the Quay Bridge Operator.

Prerequisites

You have installed the Red Hat Quay Operator.

You have logged into OpenShift Container Platform as a cluster administrator.

You have logged into your Red Hat Quay registry.

You have installed the Quay Bridge Operator.

You have configured the QuayIntegration custom resource.

Procedure

1. Enter the following command to create a new OpenShift Container Platform project called e2e-
demo:

2. After you have created a new project, a new Organization is created in Red Hat Quay. Navigate
to the Red Hat Quay registry and confirm that you have created a new Organization named
openshift_e2e-demo.

NOTE

The openshift value of the Organization might different if the clusterID in your
QuayIntegration resource used a different value.

3. On the Red Hat Quay UI, click the name of the new Organization, for example, openshift_e2e-
demo.

4. Click Robot Accounts in the navigation pane. As part of new project, the following Robot
Accounts should have been created:

openshift_e2e-demo+deployer

openshift_e2e-demo+default

openshift_e2e-demo+builder

5. Enter the following command to confirm three secrets containing Docker configuration
associated with the applicable Robot Accounts were created:

Example output

$ oc new-project e2e-demo

$ oc get secrets builder-quay-openshift deployer-quay-openshift default-quay-openshift

stevsmit@stevsmit ocp-quay $ oc get secrets builder-quay-openshift deployer-quay-openshift
default-quay-openshift
NAME TYPE DATA AGE

Red Hat Quay 3.11 Red Hat Quay Operator features

92

6. Enter the following command to display detailed information about builder ServiceAccount
(SA), including its secrets, token expiration, and associated roles and role bindings. This ensures
that the project is integrated via the Quay Bridge Operator.

Example output

7. Enter the following command to create and deploy a new application called httpd-template:

Example output

After running this command, BuildConfig, ImageStream, Service, Route, and
DeploymentConfig resources are created. When the ImageStream resource is created, an
associated repository is created in Red Hat Quay. For example:

builder-quay-openshift kubernetes.io/dockerconfigjson 1 77m
deployer-quay-openshift kubernetes.io/dockerconfigjson 1 77m
default-quay-openshift kubernetes.io/dockerconfigjson 1 77m

$ oc describe sa builder default deployer

...
Name: builder
Namespace: e2e-demo
Labels: <none>
Annotations: <none>
Image pull secrets: builder-dockercfg-12345
 builder-quay-openshift
Mountable secrets: builder-dockercfg-12345
 builder-quay-openshift
Tokens: builder-token-12345
Events: <none>
...

$ oc new-app --template=httpd-example

--> Deploying template "e2e-demo/httpd-example" to project e2e-demo
...
--> Creating resources ...
 service "httpd-example" created
 route.route.openshift.io "httpd-example" created
 imagestream.image.openshift.io "httpd-example" created
 buildconfig.build.openshift.io "httpd-example" created
 deploymentconfig.apps.openshift.io "httpd-example" created
--> Success
 Access your application via route 'httpd-example-e2e-demo.apps.quay-
ocp.gcp.quaydev.org'
 Build scheduled, use 'oc logs -f buildconfig/httpd-example' to track its progress.
 Run 'oc status' to view your app.

CHAPTER 11. INTEGRATING RED HAT QUAY INTO OPENSHIFT CONTAINER PLATFORM WITH THE QUAY BRIDGE OPERATOR

93

8. The ImageChangeTrigger for the BuildConfig triggers a new Build when the Apache HTTPD
image, located in the openshift namespace, is resolved. As the new Build is created, the
MutatingWebhookConfiguration automatically rewriters the output to point at Red Hat Quay.
You can confirm that the build is complete by querying the output field of the build by running
the following command:

Example output

9. On the Red Hat Quay UI, navigate to the openshift_e2e-demo Organization and select the
httpd-example repository.

10. Click Tags in the navigation pane and confirm that the latest tag has been successfully pushed.

11. Enter the following command to ensure that the latest tag has been resolved:

Example output

$ oc get build httpd-example-1 --template='{{ .spec.output.to.name }}'

example-registry-quay-quay-enterprise.apps.quay-ocp.gcp.quaydev.org/openshift_e2e-
demo/httpd-example:latest

$ oc describe is httpd-example

Name: httpd-example
Namespace: e2e-demo
Created: 55 minutes ago
Labels: app=httpd-example
 template=httpd-example
Description: Keeps track of changes in the application image
Annotations: openshift.io/generated-by=OpenShiftNewApp
 openshift.io/image.dockerRepositoryCheck=2023-10-02T17:56:45Z
Image Repository: image-registry.openshift-image-registry.svc:5000/e2e-demo/httpd-
example
Image Lookup: local=false
Unique Images: 0
Tags: 1

latest
 tagged from example-registry-quay-quay-enterprise.apps.quay-
ocp.gcp.quaydev.org/openshift_e2e-demo/httpd-example:latest

Red Hat Quay 3.11 Red Hat Quay Operator features

94

12. After the ImageStream is resolwillved, a new deployment should have been triggered. Enter the
following command to generate a URL output:

Example output

13. Navigate to the URL. If a sample webpage appears, the deployment was successful.

14. Enter the following command to delete the resources and clean up your Red Hat Quay
repository:

NOTE

The command waits until the project resources have been removed. This can be
bypassed by adding the --wait=false to the above command

15. After the command completes, navigate to your Red Hat Quay repository and confirm that the
openshift_e2e-demo Organization is no longer available.

Additional resources

Best practices dictate that all communication between a client and an image registry be
facilitated through secure means. Communication should leverage HTTPS/TLS with a
certificate trust between the parties. While Red Hat Quay can be configured to serve an
insecure configuration, proper certificates should be utilized on the server and configured on
the client. Follow the OpenShift Container Platform documentation for adding and managing
certificates at the container runtime level.

$ oc get route httpd-example --template='{{ .spec.host }}'

httpd-example-e2e-demo.apps.quay-ocp.gcp.quaydev.org

$ oc delete project e2e-demo

CHAPTER 11. INTEGRATING RED HAT QUAY INTO OPENSHIFT CONTAINER PLATFORM WITH THE QUAY BRIDGE OPERATOR

95

https://docs.openshift.com/container-platform/4.14/security/certificate_types_descriptions/proxy-certificates.html

CHAPTER 12. DEPLOYING IPV6 ON RED HAT QUAY ON
OPENSHIFT CONTAINER PLATFORM

NOTE

Currently, deploying IPv6 on the Red Hat Quay on OpenShift Container Platform is not
supported on IBM Power and IBM Z.

Your Red Hat Quay on OpenShift Container Platform deployment can now be served in locations that
only support IPv6, such as Telco and Edge environments.

For a list of known limitations, see IPv6 limitations

12.1. ENABLING THE IPV6 PROTOCOL FAMILY

Use the following procedure to enable IPv6 support on your Red Hat Quay deployment.

Prerequisites

You have updated Red Hat Quay to 3.8.

Your host and container software platform (Docker, Podman) must be configured to support
IPv6.

Procedure

1. In your deployment’s config.yaml file, add the FEATURE_LISTEN_IP_VERSION parameter
and set it to IPv6, for example:

2. Start, or restart, your Red Hat Quay deployment.

3. Check that your deployment is listening to IPv6 by entering the following command:

After enabling IPv6 in your deployment’s config.yaml, all Red Hat Quay features can be used as normal,
so long as your environment is configured to use IPv6 and is not hindered by the IPv6 and dual-stack
limitations.

FEATURE_GOOGLE_LOGIN: false
FEATURE_INVITE_ONLY_USER_CREATION: false
FEATURE_LISTEN_IP_VERSION: IPv6
FEATURE_MAILING: false
FEATURE_NONSUPERUSER_TEAM_SYNCING_SETUP: false

$ curl <quay_endpoint>/health/instance
{"data":{"services":
{"auth":true,"database":true,"disk_space":true,"registry_gunicorn":true,"service_key":true,"web_
gunicorn":true}},"status_code":200}

Red Hat Quay 3.11 Red Hat Quay Operator features

96

WARNING

If your environment is configured to IPv4, but the
FEATURE_LISTEN_IP_VERSION configuration field is set to IPv6, Red Hat Quay
will fail to deploy.

12.2. IPV6 LIMITATIONS

Currently, attempting to configure your Red Hat Quay deployment with the common Microsoft
Azure Blob Storage configuration will not work on IPv6 single stack environments. Because the
endpoint of Microsoft Azure Blob Storage does not support IPv6, there is no workaround in
place for this issue.
For more information, see PROJQUAY-4433.

Currently, attempting to configure your Red Hat Quay deployment with Amazon S3 CloudFront
will not work on IPv6 single stack environments. Because the endpoint of Amazon S3
CloudFront does not support IPv6, there is no workaround in place for this issue.
For more information, see PROJQUAY-4470.

Currently, Red Hat OpenShift Data Foundation is unsupported when Red Hat Quay is deployed
on IPv6 single stack environments. As a result, Red Hat OpenShift Data Foundation cannot be
used in IPv6 environments. This limitation is scheduled to be fixed in a future version of
OpenShift Data Foundations.

Currently, dual-stack (IPv4 and IPv6) support does not work on Red Hat Quay OpenShift
Container Platform deployments. When Red Hat Quay 3.8 is deployed on OpenShift Container
Platform with dual-stack support enabled, the Quay Route generated by the Red Hat Quay
Operator only generates an IPv4 address, and not an IPv6 address. As a result, clients with an
IPv6 address cannot access the Red Hat Quay application on OpenShift Container Platform.
This limitation is scheduled to be fixed in a future version of OpenShift Container Platform.



CHAPTER 12. DEPLOYING IPV6 ON RED HAT QUAY ON OPENSHIFT CONTAINER PLATFORM

97

https://issues.redhat.com/browse/PROJQUAY-4433
https://issues.redhat.com/browse/PROJQUAY-4470

CHAPTER 13. ADDING CUSTOM SSL/TLS CERTIFICATES
WHEN RED HAT QUAY IS DEPLOYED ON KUBERNETES

When deployed on Kubernetes, Red Hat Quay mounts in a secret as a volume to store config assets.
Currently, this breaks the upload certificate function of the superuser panel.

As a temporary workaround, base64 encoded certificates can be added to the secret after Red Hat
Quay has been deployed.

Use the following procedure to add custom SSL/TLS certificates when Red Hat Quay is deployed on
Kubernetes.

Prerequisites

Red Hat Quay has been deployed.

You have a custom ca.crt file.

Procedure

1. Base64 encode the contents of an SSL/TLS certificate by entering the following command:

Example output

2. Enter the following kubectl command to edit the quay-enterprise-config-secret file:

3. Add an entry for the certificate and paste the full base64 encoded stringer under the entry. For
example:

4. Use the kubectl delete command to remove all Red Hat Quay pods. For example:

Afterwards, the Red Hat Quay deployment automatically schedules replace pods with the new
certificate data.

$ cat ca.crt | base64 -w 0

...c1psWGpqeGlPQmNEWkJPMjJ5d0pDemVnR2QNCnRsbW9JdEF4YnFSdVd3PT0KLS0tLS1
FTkQgQ0VSVElGSUNBVEUtLS0tLQo=

$ kubectl --namespace quay-enterprise edit secret/quay-enterprise-config-secret

 custom-cert.crt:
c1psWGpqeGlPQmNEWkJPMjJ5d0pDemVnR2QNCnRsbW9JdEF4YnFSdVd3PT0KLS0tLS1F
TkQgQ0VSVElGSUNBVEUtLS0tLQo=

$ kubectl delete pod quay-operator.v3.7.1-6f9d859bd-p5ftc quayregistry-clair-postgres-
7487f5bd86-xnxpr quayregistry-quay-app-upgrade-xq2v6 quayregistry-quay-database-
859d5445ff-cqthr quayregistry-quay-redis-84f888776f-hhgms

Red Hat Quay 3.11 Red Hat Quay Operator features

98

CHAPTER 14. UPGRADING THE RED HAT QUAY OPERATOR
OVERVIEW

The Red Hat Quay Operator follows a synchronized versioning scheme, which means that each version
of the Operator is tied to the version of Red Hat Quay and the components that it manages. There is no
field on the QuayRegistry custom resource which sets the version of Red Hat Quay to deploy; the
Operator can only deploy a single version of all components. This scheme was chosen to ensure that all
components work well together and to reduce the complexity of the Operator needing to know how to
manage the lifecycles of many different versions of Red Hat Quay on Kubernetes.

14.1. OPERATOR LIFECYCLE MANAGER

The Red Hat Quay Operator should be installed and upgraded using the Operator Lifecycle Manager
(OLM). When creating a Subscription with the default approvalStrategy: Automatic, OLM will
automatically upgrade the Red Hat Quay Operator whenever a new version becomes available.

WARNING

When the Red Hat Quay Operator is installed by Operator Lifecycle Manager, it
might be configured to support automatic or manual upgrades. This option is shown
on the OperatorHub page for the Red Hat Quay Operator during installation. It can
also be found in the Red Hat Quay Operator Subscription object by the
approvalStrategy field. Choosing Automatic means that your Red Hat Quay
Operator will automatically be upgraded whenever a new Operator version is
released. If this is not desirable, then the Manual approval strategy should be
selected.

14.2. UPGRADING THE RED HAT QUAY OPERATOR

The standard approach for upgrading installed Operators on OpenShift Container Platform is
documented at Upgrading installed Operators .

In general, Red Hat Quay supports upgrades from a prior (N-1) minor version only. For example,
upgrading directly from Red Hat Quay 3.0.5 to the latest version of 3.5 is not supported. Instead, users
would have to upgrade as follows:

1. 3.0.5 → 3.1.3

2. 3.1.3 → 3.2.2

3. 3.2.2 → 3.3.4

4. 3.3.4 → 3.4.z

5. 3.4.z → 3.5.z

This is required to ensure that any necessary database migrations are done correctly and in the right
order during the upgrade.

In some cases, Red Hat Quay supports direct, single-step upgrades from prior (N-2, N-3) minor



CHAPTER 14. UPGRADING THE RED HAT QUAY OPERATOR OVERVIEW

99

https://docs.openshift.com/container-platform/4.14/operators/understanding/olm/olm-understanding-olm.html
https://docs.openshift.com/container-platform/4.14/operators/admin/olm-upgrading-operators.html

In some cases, Red Hat Quay supports direct, single-step upgrades from prior (N-2, N-3) minor
versions. This simplifies the upgrade procedure for customers on older releases. The following upgrade
paths are supported for Red Hat Quay 3.11:

3.9.z → 3.11.z

3.10.z → 3.11.z

NOTE

Upgrading from 3.8.z to 3.11 is unsupported. Users must first upgrade to 3.9 or 3.10, and
then upgrade to 3.11.

NOTE

The Red Hat Quay Operator can be upgraded from 3.10.X for IBM Power and IBM Z.

For users on standalone deployments of Red Hat Quay wanting to upgrade to 3.11, see the Standalone
upgrade guide.

14.2.1. Upgrading Red Hat Quay

To update Red Hat Quay from one minor version to the next, for example, 3.10 → 3.11, you must change
the update channel for the Red Hat Quay Operator.

For z stream upgrades, for example, 3.10.1 → 3.10.2, updates are released in the major-minor channel
that the user initially selected during install. The procedure to perform a z stream upgrade depends on
the approvalStrategy as outlined above. If the approval strategy is set to Automatic, the Red Hat Quay
Operator upgrades automatically to the newest z stream. This results in automatic, rolling Red Hat Quay
updates to newer z streams with little to no downtime. Otherwise, the update must be manually
approved before installation can begin.

14.2.2. Changing the update channel for the Red Hat Quay Operator

The subscription of an installed Operator specifies an update channel, which is used to track and receive
updates for the Operator. To upgrade the Red Hat Quay Operator to start tracking and receiving
updates from a newer channel, change the update channel in the Subscription tab for the installed Red
Hat Quay Operator. For subscriptions with an Automatic approval strategy, the upgrade begins
automatically and can be monitored on the page that lists the Installed Operators.

14.2.3. Manually approving a pending Operator upgrade

If an installed Operator has the approval strategy in its subscription set to Manual, when new updates are
released in its current update channel, the update must be manually approved before installation can
begin. If the Red Hat Quay Operator has a pending upgrade, this status will be displayed in the list of
Installed Operators. In the Subscription tab for the Red Hat Quay Operator, you can preview the install
plan and review the resources that are listed as available for upgrade. If satisfied, click Approve and
return to the page that lists Installed Operators to monitor the progress of the upgrade.

The following image shows the Subscription tab in the UI, including the update Channel, the Approval
strategy, the Upgrade status and the InstallPlan:

Red Hat Quay 3.11 Red Hat Quay Operator features

100

https://access.redhat.com/documentation/en-us/red_hat_quay/3.11/html-single/upgrade_red_hat_quay/index#standalone_upgrade

The list of Installed Operators provides a high-level summary of the current Quay installation:

14.3. UPGRADING A QUAYREGISTRY RESOURCE

When the Red Hat Quay Operator starts, it immediately looks for any QuayRegistries it can find in the
namespace(s) it is configured to watch. When it finds one, the following logic is used:

If status.currentVersion is unset, reconcile as normal.

If status.currentVersion equals the Operator version, reconcile as normal.

If status.currentVersion does not equal the Operator version, check if it can be upgraded. If it
can, perform upgrade tasks and set the status.currentVersion to the Operator’s version once
complete. If it cannot be upgraded, return an error and leave the QuayRegistry and its
deployed Kubernetes objects alone.

14.4. UPGRADING A QUAYECOSYSTEM

Upgrades are supported from previous versions of the Operator which used the QuayEcosystem API
for a limited set of configurations. To ensure that migrations do not happen unexpectedly, a special label
needs to be applied to the QuayEcosystem for it to be migrated. A new QuayRegistry will be created
for the Operator to manage, but the old QuayEcosystem will remain until manually deleted to ensure
that you can roll back and still access Quay in case anything goes wrong. To migrate an existing
QuayEcosystem to a new QuayRegistry, use the following procedure.

Procedure

CHAPTER 14. UPGRADING THE RED HAT QUAY OPERATOR OVERVIEW

101

1. Add "quay-operator/migrate": "true" to the metadata.labels of the QuayEcosystem.

2. Wait for a QuayRegistry to be created with the same metadata.name as your
QuayEcosystem. The QuayEcosystem will be marked with the label "quay-
operator/migration-complete": "true".

3. After the status.registryEndpoint of the new QuayRegistry is set, access Red Hat Quay and
confirm that all data and settings were migrated successfully.

4. If everything works correctly, you can delete the QuayEcosystem and Kubernetes garbage
collection will clean up all old resources.

14.4.1. Reverting QuayEcosystem Upgrade

If something goes wrong during the automatic upgrade from QuayEcosystem to QuayRegistry, follow
these steps to revert back to using the QuayEcosystem:

Procedure

1. Delete the QuayRegistry using either the UI or kubectl:

2. If external access was provided using a Route, change the Route to point back to the original
Service using the UI or kubectl.

NOTE

If your QuayEcosystem was managing the PostgreSQL database, the upgrade process
will migrate your data to a new PostgreSQL database managed by the upgraded
Operator. Your old database will not be changed or removed but Red Hat Quay will no
longer use it once the migration is complete. If there are issues during the data migration,
the upgrade process will exit and it is recommended that you continue with your database
as an unmanaged component.

14.4.2. Supported QuayEcosystem Configurations for Upgrades

The Red Hat Quay Operator reports errors in its logs and in status.conditions if migrating a
QuayEcosystem component fails or is unsupported. All unmanaged components should migrate
successfully because no Kubernetes resources need to be adopted and all the necessary values are
already provided in Red Hat Quay’s config.yaml file.

Database

Ephemeral database not supported (volumeSize field must be set).

Redis

$ oc edit quayecosystem <quayecosystemname>

metadata:
 labels:
 quay-operator/migrate: "true"

$ kubectl delete -n <namespace> quayregistry <quayecosystem-name>

Red Hat Quay 3.11 Red Hat Quay Operator features

102

Nothing special needed.

External Access

Only passthrough Route access is supported for automatic migration. Manual migration required for
other methods.

LoadBalancer without custom hostname: After the QuayEcosystem is marked with label
"quay-operator/migration-complete": "true", delete the metadata.ownerReferences field
from existing Service before deleting the QuayEcosystem to prevent Kubernetes from
garbage collecting the Service and removing the load balancer. A new Service will be created
with metadata.name format <QuayEcosystem-name>-quay-app. Edit the spec.selector of
the existing Service to match the spec.selector of the new Service so traffic to the old load
balancer endpoint will now be directed to the new pods. You are now responsible for the old
Service; the Quay Operator will not manage it.

LoadBalancer/NodePort/Ingress with custom hostname: A new Service of type
LoadBalancer will be created with metadata.name format <QuayEcosystem-name>-quay-
app. Change your DNS settings to point to the status.loadBalancer endpoint provided by the
new Service.

Clair

Nothing special needed.

Object Storage

QuayEcosystem did not have a managed object storage component, so object storage will always be
marked as unmanaged. Local storage is not supported.

Repository Mirroring

Nothing special needed.

ADDITIONAL RESOURCES

For more details on the Red Hat Quay Operator, see the upstream quay-operator project.

CHAPTER 14. UPGRADING THE RED HAT QUAY OPERATOR OVERVIEW

103

https://github.com/quay/quay-operator/

	Table of Contents
	CHAPTER 1. FEDERAL INFORMATION PROCESSING STANDARD (FIPS) READINESS AND COMPLIANCE
	1.1. ENABLING FIPS COMPLIANCE

	CHAPTER 2. CONSOLE MONITORING AND ALERTING
	2.1. DASHBOARD
	2.2. METRICS
	2.3. ALERTING

	CHAPTER 3. CLAIR SECURITY SCANNER
	3.1. CLAIR VULNERABILITY DATABASES
	3.1.1. Information about Open Source Vulnerability (OSV) database for Clair

	3.2. CLAIR ON OPENSHIFT CONTAINER PLATFORM
	3.3. TESTING CLAIR
	3.4. ADVANCED CLAIR CONFIGURATION
	3.4.1. Unmanaged Clair configuration
	3.4.1.1. Running a custom Clair configuration with an unmanaged Clair database
	3.4.1.2. Configuring a custom Clair database with an unmanaged Clair database

	3.4.2. Running a custom Clair configuration with a managed Clair database
	3.4.2.1. Setting a Clair database to managed
	3.4.2.2. Configuring a custom Clair database with a managed Clair configuration

	3.4.3. Clair in disconnected environments
	3.4.3.1. Setting up Clair in a disconnected OpenShift Container Platform cluster
	3.4.3.2. Setting up a self-managed deployment of Clair for a disconnected OpenShift Container Platform cluster

	3.4.4. Mapping repositories to Common Product Enumeration information
	3.4.4.1. Mapping repositories to Common Product Enumeration example configuration

	CHAPTER 4. DEPLOYING RED HAT QUAY ON INFRASTRUCTURE NODES
	4.1. LABELING AND TAINTING NODES FOR INFRASTRUCTURE USE
	4.2. CREATING A PROJECT WITH NODE SELECTOR AND TOLERATIONS
	4.3. INSTALLING RED HAT QUAY ON OPENSHIFT CONTAINER PLATFORM ON A SPECIFIC NAMESPACE
	4.4. CREATING THE RED HAT QUAY REGISTRY
	4.5. ENABLING MONITORING WHEN THE RED HAT QUAY OPERATOR IS INSTALLED IN A SINGLE NAMESPACE
	4.5.1. Creating a cluster monitoring config map
	4.5.2. Creating a user-defined workload monitoring ConfigMap object
	4.5.3. Enable monitoring for user-defined projects
	4.5.4. Creating a Service object to expose Red Hat Quay metrics
	4.5.5. Creating a ServiceMonitor object
	4.5.6. Viewing metrics in OpenShift Container Platform

	4.6. RESIZING MANAGED STORAGE
	4.6.1. Resizing PostgreSQL 13 PVCs on Red Hat Quay

	4.7. CUSTOMIZING DEFAULT OPERATOR IMAGES
	4.7.1. Environment Variables
	4.7.2. Applying overrides to a running Operator

	4.8. AWS S3 CLOUDFRONT

	CHAPTER 5. RED HAT QUAY BUILD ENHANCEMENTS
	5.1. RED HAT QUAY BUILD LIMITATIONS
	5.2. CREATING A RED HAT QUAY BUILDERS ENVIRONMENT WITH OPENSHIFT CONTAINER PLATFORM
	5.2.1. OpenShift Container Platform TLS component
	5.2.2. Using OpenShift Container Platform for Red Hat Quay builders
	5.2.2.1. Preparing OpenShift Container Platform for virtual builders
	5.2.2.2. Manually adding SSL/TLS certificates
	5.2.2.3. Using the UI to create a build trigger
	5.2.2.4. Modifying your AWS S3 storage bucket
	5.2.2.5. Modifying your Google Cloud Platform object bucket

	CHAPTER 6. GEO-REPLICATION
	ADDITIONAL RESOURCES
	6.1. GEO-REPLICATION FEATURES
	6.2. GEO-REPLICATION REQUIREMENTS AND CONSTRAINTS
	6.2.1. Setting up geo-replication on OpenShift Container Platform
	6.2.1.1. Configuring geo-replication for the Red Hat Quay on OpenShift Container Platform

	6.2.2. Mixed storage for geo-replication

	6.3. UPGRADING A GEO-REPLICATION DEPLOYMENT OF RED HAT QUAY ON OPENSHIFT CONTAINER PLATFORM
	6.3.1. Removing a geo-replicated site from your Red Hat Quay on OpenShift Container Platform deployment

	CHAPTER 7. BACKING UP AND RESTORING RED HAT QUAY MANAGED BY THE RED HAT QUAY OPERATOR
	7.1. OPTIONAL: ENABLING READ-ONLY MODE FOR RED HAT QUAY ON OPENSHIFT CONTAINER PLATFORM
	7.1.1. Creating service keys for Red Hat Quay on OpenShift Container Platform
	7.1.2. Adding keys to the PostgreSQL database
	7.1.3. Configuring read-only mode Red Hat Quay on OpenShift Container Platform
	7.1.3.1. Scaling up the Red Hat Quay on OpenShift Container Platform from a read-only deployment

	7.2. BACKING UP RED HAT QUAY
	7.2.1. Red Hat Quay configuration backup
	7.2.2. Scaling down your Red Hat Quay deployment
	7.2.3. Backing up the Red Hat Quay managed database
	7.2.3.1. Backing up the Red Hat Quay managed object storage

	7.2.4. Scale the Red Hat Quay deployment back up

	7.3. RESTORING RED HAT QUAY
	7.3.1. Restoring Red Hat Quay and its configuration from a backup
	7.3.2. Scaling down your Red Hat Quay deployment
	7.3.3. Restoring your Red Hat Quay database
	7.3.4. Restore your Red Hat Quay object storage data
	7.3.5. Scaling up your Red Hat Quay deployment

	CHAPTER 8. VOLUME SIZE OVERRIDES
	CHAPTER 9. SCANNING POD IMAGES WITH THE CONTAINER SECURITY OPERATOR
	9.1. DOWNLOADING AND RUNNING THE CONTAINER SECURITY OPERATOR IN OPENSHIFT CONTAINER PLATFORM
	9.2. QUERY IMAGE VULNERABILITIES FROM THE CLI

	CHAPTER 10. CONFIGURING AWS STS FOR RED HAT QUAY
	10.1. CREATING AN IAM USER
	10.2. CREATING AN S3 ROLE
	10.3. CONFIGURING RED HAT QUAY ON OPENSHIFT CONTAINER PLATFORM TO USE AWS STS

	CHAPTER 11. INTEGRATING RED HAT QUAY INTO OPENSHIFT CONTAINER PLATFORM WITH THE QUAY BRIDGE OPERATOR
	11.1. SETTING UP RED HAT QUAY FOR THE QUAY BRIDGE OPERATOR
	11.2. INSTALLING THE QUAY BRIDGE OPERATOR ON OPENSHIFT CONTAINER PLATFORM
	11.3. CREATING AN OPENSHIFT CONTAINER PLATFORM SECRET FOR THE OAUTH TOKEN
	11.4. CREATING THE QUAYINTEGRATION CUSTOM RESOURCE
	11.4.1. Optional: Creating the QuayIntegration custom resource using the CLI
	11.4.2. Optional: Creating the QuayIntegration custom resource using the web console

	11.5. USING QUAY BRIDGE OPERATOR

	CHAPTER 12. DEPLOYING IPV6 ON RED HAT QUAY ON OPENSHIFT CONTAINER PLATFORM
	12.1. ENABLING THE IPV6 PROTOCOL FAMILY
	12.2. IPV6 LIMITATIONS

	CHAPTER 13. ADDING CUSTOM SSL/TLS CERTIFICATES WHEN RED HAT QUAY IS DEPLOYED ON KUBERNETES
	CHAPTER 14. UPGRADING THE RED HAT QUAY OPERATOR OVERVIEW
	14.1. OPERATOR LIFECYCLE MANAGER
	14.2. UPGRADING THE RED HAT QUAY OPERATOR
	14.2.1. Upgrading Red Hat Quay
	14.2.2. Changing the update channel for the Red Hat Quay Operator
	14.2.3. Manually approving a pending Operator upgrade

	14.3. UPGRADING A QUAYREGISTRY RESOURCE
	14.4. UPGRADING A QUAYECOSYSTEM
	14.4.1. Reverting QuayEcosystem Upgrade
	14.4.2. Supported QuayEcosystem Configurations for Upgrades

	ADDITIONAL RESOURCES

