
Red Hat Quay 3.11

Vulnerability reporting with Clair on Red Hat
Quay

Vulnerability reporting with Clair on Red Hat Quay

Last Updated: 2024-06-18

Red Hat Quay 3.11 Vulnerability reporting with Clair on Red Hat Quay

Vulnerability reporting with Clair on Red Hat Quay

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Getting started with Clair

. .

. .

. .

. .

Table of Contents

PREFACE

PART I. VULNERABILITY REPORTING WITH CLAIR ON RED HAT QUAY OVERVIEW

CHAPTER 1. CLAIR SECURITY SCANNER
1.1. ABOUT CLAIR

1.1.1. Clair releases
Clair 4.7.1
Clair 4.7

1.1.2. Clair vulnerability databases
1.1.3. Clair supported dependencies
1.1.4. Clair containers

1.2. CLAIR SEVERITY MAPPING
1.2.1. Clair severity strings

Alpine mapping
AWS mapping
Debian mapping
Oracle mapping
RHEL mapping
SUSE mapping
Ubuntu mapping
OSV mapping

CHAPTER 2. CLAIR CONCEPTS
2.1. CLAIR IN PRACTICE

2.1.1. Indexing
2.1.2. Matching
2.1.3. Notifier service

2.2. CLAIR AUTHENTICATION
2.3. CLAIR UPDATERS
2.4. INFORMATION ABOUT CLAIR UPDATERS
2.5. CONFIGURING UPDATERS

2.5.1. Selecting specific updater sets
Configuring Clair for multiple updaters
Configuring Clair for Alpine
Configuring Clair for AWS
Configuring Clair for Debian
Configuring Clair for Clair CVSS
Configuring Clair for Oracle
Configuring Clair for Photon
Configuring Clair for SUSE
Configuring Clair for Ubuntu
Configuring Clair for OSV

2.5.2. Selecting updater sets for full Red Hat Enterprise Linux (RHEL) coverage
2.5.3. Advanced updater configuration

Configuring the alpine updater
Configuring the debian updater
Configuring the clair.cvss updater
Configuring the oracle updater
Configuring the photon updater
Configuring the rhel updater
Configuring the rhcc updater

5

6

7
7
7
8
8
8
8
9
9
9

10
10
10
10
11
11
11

12

13
13
13
13
13
14
14
14
17
17
17
17
17
18
18
18
18
18
19
19
19
19

20
20
20
20
21
21
21

Table of Contents

1

. .

. .

. .

. .

. .

. .

. .

. .

. .

Configuring the suse updater
Configuring the ubuntu updater
Configuring the osv updater

2.5.4. Disabling the Clair Updater component
2.6. CVE RATINGS FROM THE NATIONAL VULNERABILITY DATABASE
2.7. FEDERAL INFORMATION PROCESSING STANDARD (FIPS) READINESS AND COMPLIANCE

2.7.1. Enabling FIPS compliance

PART II. CLAIR ON RED HAT QUAY

CHAPTER 3. SETTING UP CLAIR ON STANDALONE RED HAT QUAY DEPLOYMENTS
3.1. USING CLAIR WITH AN UPSTREAM IMAGE FOR RED HAT QUAY

CHAPTER 4. CLAIR ON OPENSHIFT CONTAINER PLATFORM

CHAPTER 5. TESTING CLAIR

PART III. ADVANCED CLAIR CONFIGURATION

CHAPTER 6. UNMANAGED CLAIR CONFIGURATION
6.1. RUNNING A CUSTOM CLAIR CONFIGURATION WITH AN UNMANAGED CLAIR DATABASE
6.2. CONFIGURING A CUSTOM CLAIR DATABASE WITH AN UNMANAGED CLAIR DATABASE

CHAPTER 7. RUNNING A CUSTOM CLAIR CONFIGURATION WITH A MANAGED CLAIR DATABASE
7.1. SETTING A CLAIR DATABASE TO MANAGED
7.2. CONFIGURING A CUSTOM CLAIR DATABASE WITH A MANAGED CLAIR CONFIGURATION

CHAPTER 8. CLAIR IN DISCONNECTED ENVIRONMENTS
8.1. SETTING UP CLAIR IN A DISCONNECTED OPENSHIFT CONTAINER PLATFORM CLUSTER

8.1.1. Installing the clairctl command line utility tool for OpenShift Container Platform deployments
8.1.2. Retrieving and decoding the Clair configuration secret for Clair deployments on OpenShift Container
Platform
8.1.3. Exporting the updaters bundle from a connected Clair instance
8.1.4. Configuring access to the Clair database in the disconnected OpenShift Container Platform cluster
8.1.5. Importing the updaters bundle into the disconnected OpenShift Container Platform cluster

8.2. SETTING UP A SELF-MANAGED DEPLOYMENT OF CLAIR FOR A DISCONNECTED OPENSHIFT
CONTAINER PLATFORM CLUSTER

8.2.1. Installing the clairctl command line utility tool for a self-managed Clair deployment on OpenShift
Container Platform
8.2.2. Deploying a self-managed Clair container for disconnected OpenShift Container Platform clusters
8.2.3. Exporting the updaters bundle from a connected Clair instance
8.2.4. Configuring access to the Clair database in the disconnected OpenShift Container Platform cluster
8.2.5. Importing the updaters bundle into the disconnected OpenShift Container Platform cluster

8.3. MAPPING REPOSITORIES TO COMMON PRODUCT ENUMERATION INFORMATION
8.3.1. Mapping repositories to Common Product Enumeration example configuration

CHAPTER 9. CLAIR CONFIGURATION OVERVIEW
9.1. INFORMATION ABOUT USING CLAIR IN A PROXY ENVIRONMENT
9.2. CLAIR CONFIGURATION REFERENCE
9.3. CLAIR GENERAL FIELDS

Example configuration for general Clair fields
9.4. CLAIR INDEXER CONFIGURATION FIELDS

Example indexer configuration
9.5. CLAIR MATCHER CONFIGURATION FIELDS

Example matcher configuration
9.6. CLAIR MATCHERS CONFIGURATION FIELDS

21
22
22
22
22
23
23

25

26
28

30

31

33

34
34
34

37
37
37

40
40
41

41
42
42
43

44

44
44
45
45
46
47
47

49
49
50
51
51
52
53
53
55
55

Red Hat Quay 3.11 Vulnerability reporting with Clair on Red Hat Quay

2

Example matchers configuration
9.7. CLAIR UPDATERS CONFIGURATION FIELDS

Example updaters configuration
9.8. CLAIR NOTIFIER CONFIGURATION FIELDS

Example notifier configuration
9.8.1. Clair webhook configuration fields

Example webhook configuration
9.8.2. Clair amqp configuration fields

Example AMQP configuration
9.8.3. Clair STOMP configuration fields

Example STOMP configuration
9.9. CLAIR AUTHORIZATION CONFIGURATION FIELDS

Example authorization configuration
9.10. CLAIR TRACE CONFIGURATION FIELDS

Example trace configuration
9.11. CLAIR METRICS CONFIGURATION FIELDS

Example metrics configuration

56
56
57
57
58
59
59
59
61
61

63
63
63
64
65
65
65

Table of Contents

3

Red Hat Quay 3.11 Vulnerability reporting with Clair on Red Hat Quay

4

PREFACE
The contents within this guide provide an overview of Clair for Red Hat Quay, running Clair on
standalone Red Hat Quay and Operator deployments, and advanced Clair configuration.

PREFACE

5

PART I. VULNERABILITY REPORTING WITH CLAIR ON RED
HAT QUAY OVERVIEW

The content in this guide explains the key purposes and concepts of Clair on Red Hat Quay. It also
contains information about Clair releases and the location of official Clair containers.

Red Hat Quay 3.11 Vulnerability reporting with Clair on Red Hat Quay

6

CHAPTER 1. CLAIR SECURITY SCANNER
Clair v4 (Clair) is an open source application that leverages static code analyses for parsing image
content and reporting vulnerabilities affecting the content. Clair is packaged with Red Hat Quay and can
be used in both standalone and Operator deployments. It can be run in highly scalable configurations,
where components can be scaled separately as appropriate for enterprise environments.

1.1. ABOUT CLAIR

Clair uses Common Vulnerability Scoring System (CVSS) data from the National Vulnerability Database
(NVD) to enrich vulnerability data, which is a United States government repository of security-related
information, including known vulnerabilities and security issues in various software components and
systems. Using scores from the NVD provides Clair the following benefits:

Data synchronization. Clair can periodically synchronize its vulnerability database with the NVD.
This ensures that it has the latest vulnerability data.

Matching and enrichment. Clair compares the metadata and identifiers of vulnerabilities it
discovers in container images with the data from the NVD. This process involves matching the
unique identifiers, such as Common Vulnerabilities and Exposures (CVE) IDs, to the entries in
the NVD. When a match is found, Clair can enrich its vulnerability information with additional
details from NVD, such as severity scores, descriptions, and references.

Severity Scores. The NVD assigns severity scores to vulnerabilities, such as the Common
Vulnerability Scoring System (CVSS) score, to indicate the potential impact and risk associated
with each vulnerability. By incorporating NVD’s severity scores, Clair can provide more context
on the seriousness of the vulnerabilities it detects.

If Clair finds vulnerabilities from NVD, a detailed and standardized assessment of the severity and
potential impact of vulnerabilities detected within container images is reported to users on the UI. CVSS
enrichment data provides Clair the following benefits:

Vulnerability prioritization. By utilizing CVSS scores, users can prioritize vulnerabilities based
on their severity, helping them address the most critical issues first.

Assess Risk. CVSS scores can help Clair users understand the potential risk a vulnerability poses
to their containerized applications.

Communicate Severity. CVSS scores provide Clair users a standardized way to communicate
the severity of vulnerabilities across teams and organizations.

Inform Remediation Strategies. CVSS enrichment data can guide Quay.io users in developing
appropriate remediation strategies.

Compliance and Reporting. Integrating CVSS data into reports generated by Clair can help
organizations demonstrate their commitment to addressing security vulnerabilities and
complying with industry standards and regulations.

1.1.1. Clair releases

New versions of Clair are regularly released. The source code needed to build Clair is packaged as an
archive and attached to each release. Clair releases can be found at Clair releases.

Release artifacts also include the clairctl command line interface tool, which obtains updater data from
the internet by using an open host.

CHAPTER 1. CLAIR SECURITY SCANNER

7

https://github.com/quay/clair/releases

Clair 4.7.1
Clair 4.7.1 was released as part of Red Hat Quay 3.9.1. The following changes have been made:

With this release, you can view unpatched vulnerabilities from Red Hat Enterprise Linux (RHEL)
sources. If you want to view unpatched vulnerabilities, you can the set ignore_unpatched
parameter to false. For example:

To disable this feature, you can set ignore_unpatched to true.

Clair 4.7
Clair 4.7 was released as part of Red Hat Quay 3.9, and includes support for the following features:

Native support for indexing Golang modules and RubeGems in container images.

Change to OSV.dev as the vulnerability database source for any programming language
package managers.

This includes popular sources like GitHub Security Advisories or PyPA.

This allows offline capability.

Use of pyup.io for Python and CRDA for Java is suspended.

Clair now supports Java, Golang, Python, and Ruby dependencies.

1.1.2. Clair vulnerability databases

Clair uses the following vulnerability databases to report for issues in your images:

Ubuntu Oval database

Debian Security Tracker

Red Hat Enterprise Linux (RHEL) Oval database

SUSE Oval database

Oracle Oval database

Alpine SecDB database

VMware Photon OS database

Amazon Web Services (AWS) UpdateInfo

Open Source Vulnerability (OSV) Database

1.1.3. Clair supported dependencies

Clair supports identifying and managing the following dependencies:

Java

updaters:
 config:
 rhel:
 ignore_unpatched: false

Red Hat Quay 3.11 Vulnerability reporting with Clair on Red Hat Quay

8

OSV.dev
https://osv.dev/

Golang

Python

Ruby

This means that it can analyze and report on the third-party libraries and packages that a project in
these languages relies on to work correctly.

When an image that contains packages from a language unsupported by Clair is pushed to your
repository, a vulnerability scan cannot be performed on those packages. Users do not receive an analysis
or security report for unsupported dependencies or packages. As a result, the following consequences
should be considered:

Security risks. Dependencies or packages that are not scanned for vulnerability might pose
security risks to your organization.

Compliance issues. If your organization has specific security or compliance requirements,
unscanned, or partially scanned, container images might result in non-compliance with certain
regulations.

NOTE

Scanned images are indexed, and a vulnerability report is created, but it might
omit data from certain unsupported languages. For example, if your container
image contains a Lua application, feedback from Clair is not provided because
Clair does not detect it. It can detect other languages used in the container
image, and shows detected CVEs for those languages. As a result, Clair images
are fully scanned based on what it supported by Clair.

1.1.4. Clair containers

Official downstream Clair containers bundled with Red Hat Quay can be found on the Red Hat
Ecosystem Catalog.

Official upstream containers are packaged and released as a container at Quay.io/projectquay/clair. The
latest tag tracks the Git development branch. Version tags are built from the corresponding release.

1.2. CLAIR SEVERITY MAPPING

Clair offers a comprehensive approach to vulnerability assessment and management. One of its
essential features is the normalization of security databases' severity strings. This process streamlines
the assessment of vulnerability severities by mapping them to a predefined set of values. Through this
mapping, clients can efficiently react to vulnerability severities without the need to decipher the
intricacies of each security database’s unique severity strings. These mapped severity strings align with
those found within the respective security databases, ensuring consistency and accuracy in vulnerability
assessment.

1.2.1. Clair severity strings

Clair alerts users with the following severity strings:

Unknown

Negligible

CHAPTER 1. CLAIR SECURITY SCANNER

9

registry.redhat.io
quay.io/projectquay/clair

Low

Medium

High

Critical

These severity strings are similar to the strings found within the relevant security database.

Alpine mapping
Alpine SecDB database does not provide severity information. All vulnerability severities will be
Unknown.

Alpine Severity Clair Severity

* Unknown

AWS mapping
AWS UpdateInfo database provides severity information.

AWS Severity Clair Severity

low Low

medium Medium

important High

critical Critical

Debian mapping
Debian Oval database provides severity information.

Debian Severity Clair Severity

* Unknown

Unimportant Low

Low Medium

Medium High

High Critical

Oracle mapping
Oracle Oval database provides severity information.

Red Hat Quay 3.11 Vulnerability reporting with Clair on Red Hat Quay

10

Oracle Severity Clair Severity

N/A Unknown

LOW Low

MODERATE Medium

IMPORTANT High

CRITICAL Critical

RHEL mapping
RHEL Oval database provides severity information.

RHEL Severity Clair Severity

None Unknown

Low Low

Moderate Medium

Important High

Critical Critical

SUSE mapping
SUSE Oval database provides severity information.

Severity Clair Severity

None Unknown

Low Low

Moderate Medium

Important High

Critical Critical

Ubuntu mapping
Ubuntu Oval database provides severity information.

CHAPTER 1. CLAIR SECURITY SCANNER

11

Severity Clair Severity

Untriaged Unknown

Negligible Negligible

Low Low

Medium Medium

High High

Critical Critical

OSV mapping

Table 1.1. CVSSv3

Base Score Clair Severity

0.0 Negligible

0.1-3.9 Low

4.0-6.9 Medium

7.0-8.9 High

9.0-10.0 Critical

Table 1.2. CVSSv2

Base Score Clair Severity

0.0-3.9 Low

4.0-6.9 Medium

7.0-10 High

Red Hat Quay 3.11 Vulnerability reporting with Clair on Red Hat Quay

12

CHAPTER 2. CLAIR CONCEPTS
The following sections provide a conceptual overview of how Clair works.

2.1. CLAIR IN PRACTICE

A Clair analysis is broken down into three distinct parts: indexing, matching, and notification.

2.1.1. Indexing

Clair’s indexer service plays a crucial role in understanding the makeup of a container image. In Clair,
container image representations called "manifests." Manifests are used to comprehend the contents of
the image’s layers. To streamline this process, Clair takes advantage of the fact that Open Container
Initiative (OCI) manifests and layers are designed for content addressing, reducing repetitive tasks.

During indexing, a manifest that represents a container image is taken and broken down into its essential
components. The indexer’s job is to uncover the image’s contained packages, its origin distribution, and
the package repositories it relies on. This valuable information is then recorded and stored within Clair’s
database. The insights gathered during indexing serve as the basis for generating a comprehensive
vulnerability report. This report can be seamlessly transferred to a matcher node for further analysis and
action, helping users make informed decisions about their container images' security.

The IndexReport is stored in Clair’s database. It can be fed to a matcher node to compute the
vulnerability report.

2.1.2. Matching

With Clair, a matcher node is responsible for matching vulnerabilities to a provided index report.

Matchers are responsible for keeping the database of vulnerabilities up to date. Matchers run a set of
updaters, which periodically probe their data sources for new content. New vulnerabilities are stored in
the database when they are discovered.

The matcher API is designed to always provide the most recent vulnerability report when queried. The
vulnerability report summarizes both a manifest’s content and any vulnerabilities affecting the content.

New vulnerabilities are stored in the database when they are discovered.

The matcher API is designed to be used often. It is designed to always provide the most recent
VulnerabilityReport when queried. The VulnerabilityReport summarizes both a manifest’s content and
any vulnerabilities affecting the content.

2.1.3. Notifier service

Clair uses a notifier service that keeps track of new security database updates and informs users if new
or removed vulnerabilities affect an indexed manifest.

When the notifier becomes aware of new vulnerabilities affecting a previously indexed manifest, it uses
the configured methods in your config.yaml file to issue notifications about the new changes. Returned
notifications express the most severe vulnerability discovered because of the change. This avoids
creating excessive notifications for the same security database update.

When a user receives a notification, it issues a new request against the matcher to receive an up to date
vulnerability report.

CHAPTER 2. CLAIR CONCEPTS

13

You can subscribe to notifications through the following mechanics:

Webhook delivery

AMQP delivery

STOMP delivery

Configuring the notifier is done through the Clair YAML configuration file.

2.2. CLAIR AUTHENTICATION

In its current iteration, Clair v4 (Clair) handles authentication internally.

NOTE

Previous versions of Clair used JWT Proxy to gate authentication.

Authentication is configured by specifying configuration objects underneath the auth key of the
configuration. Multiple authentication configurations might be present, but they are used preferentially
in the following order:

1. PSK. With this authentication configuration, Clair implements JWT-based authentication using a
pre-shared key.

2. Configuration. For example:

In this configuration the auth field requires two parameters: iss, which is the issuer to validate all
incoming requests, and key, which is a base64 coded symmetric key for validating the requests.

2.3. CLAIR UPDATERS

Clair uses Go packages called updaters that contain the logic of fetching and parsing different
vulnerability databases.

Updaters are usually paired with a matcher to interpret if, and how, any vulnerability is related to a
package. Administrators might want to update the vulnerability database less frequently, or not import
vulnerabilities from databases that they know will not be used.

2.4. INFORMATION ABOUT CLAIR UPDATERS

The following table provides details about each Clair updater, including the configuration parameter, a
brief description, relevant URLs, and the associated components that they interact with. This list is not
exhaustive, and some servers might issue redirects, while certain request URLs are dynamically
constructed to ensure accurate vulnerability data retrieval.

For Clair, each updater is responsible for fetching and parsing vulnerability data related to a specific
package type or distribution. For example, the Debian updater focuses on Debian-based Linux

auth:
 psk:
 key: >-
 MDQ4ODBlNDAtNDc0ZC00MWUxLThhMzAtOTk0MzEwMGQwYTMxCg==
 iss: 'issuer'

Red Hat Quay 3.11 Vulnerability reporting with Clair on Red Hat Quay

14

distributions, while the AWS updater focuses on vulnerabilities specific to Amazon Web Services' Linux
distributions. Understanding the package type is important for vulnerability management because
different package types might have unique security concerns and require specific updates and patches.

NOTE

If you are using a proxy server in your environment with Clair’s updater URLs, you must
identify which URL needs to be added to the proxy allowlist to ensure that Clair can
access them unimpeded. Use the following table to add updater URLs to your proxy
allowlist.

Table 2.1. Clair updater information

Updater Description URLs Component

alpine The Alpine updater is responsible
for fetching and parsing
vulnerability data related to
packages in Alpine Linux
distributions.

https://secdb.alpineli
nux.org/

Alpine Linux SecDB
database

aws The AWS updater is focused on
AWS Linux-based packages,
ensuring that vulnerability
information specific to Amazon
Web Services' custom Linux
distributions is kept up-to-date.

http://repo.us-west-
2.amazonaws.com/20
18.03/updates/x86_64
/mirror.list

https://cdn.amazonli
nux.com/2/core/latest
/x86_64/mirror.list

https://cdn.amazonli
nux.com/al2023/core/
mirrors/latest/x86_64/
mirror.list

Amazon Web
Services (AWS)
UpdateInfo

debian The Debian updater is essential
for tracking vulnerabilities in
packages associated with Debian-
based Linux distributions.

https://deb.debian.or
g/

https://security-
tracker.debian.org/tr
acker/data/json

Debian Security
Tracker

clair.cv
ss

The Clair Common Vulnerability
Scoring System (CVSS) updater
focuses on maintaining data about
vulnerabilities and their associated
CVSS scores. This is not tied to a
specific package type but rather
to the severity and risk
assessment of vulnerabilities in
general.

https://nvd.nist.gov/f
eeds/json/cve/1.1/

National Vulnerability
Database (NVD)
feed for Common
Vulnerabilities and
Exposures (CVE)
data in JSON format

CHAPTER 2. CLAIR CONCEPTS

15

oracle The Oracle updater is dedicated
to Oracle Linux packages,
maintaining data on vulnerabilities
that affect Oracle Linux systems.

https://linux.oracle.c
om/security/oval/com
.oracle.elsa-*.xml.bz2

Oracle Oval
database

photon The Photon updater deals with
packages in VMware Photon OS. https://packages.vm

ware.com/photon/ph
oton_oval_definition
s/

VMware Photon OS
oval definitions

rhel The Red Hat Enterprise Linux
(RHEL) updater is responsible for
maintaining vulnerability data for
packages in Red Hat’s Enterprise
Linux distribution.

https://access.redhat
.com/security/cve/

https://access.redhat
.com/security/data/ov
al/v2/PULP_MANIFES
T

Red Hat Enterprise
Linux (RHEL) Oval
database

rhcc The Red Hat Container Catalog
(RHCC) updater is connected to
Red Hat’s container images. This
updater ensures that vulnerability
information related to Red Hat’s
containerized software is kept
current.

https://access.redhat
.com/security/data/m
etrics/cvemap.xml

Resource Handler
Configuration
Controller (RHCC)
database

suse The SUSE updater manages
vulnerability information for
packages in the SUSE Linux
distribution family, including
openSUSE, SUSE Enterprise
Linux, and others.

https://support.novell
.com/security/oval/

SUSE Oval database

ubuntu The Ubuntu updater is dedicated
to tracking vulnerabilities in
packages associated with Ubuntu-
based Linux distributions. Ubuntu
is a popular distribution in the
Linux ecosystem.

https://security-
metadata.canonical.c
om/oval/com.ubuntu.
*.cve.oval.xml

https://api.launchpad
.net/1.0/

Ubuntu Oval
Database

Updater Description URLs Component

Red Hat Quay 3.11 Vulnerability reporting with Clair on Red Hat Quay

16

osv The Open Source Vulnerability
(OSV) updater specializes in
tracking vulnerabilities within open
source software components.
OSV is a critical resource that
provides detailed information
about security issues found in
various open source projects.

https://osv-
vulnerabilities.storag
e.googleapis.com/

Open Source
Vulnerabilities
database

Updater Description URLs Component

2.5. CONFIGURING UPDATERS

Updaters can be configured by the updaters.sets key in your clair-config.yaml file.

IMPORTANT

If the sets field is not populated, it defaults to using all sets. In using all sets, Clair
tries to reach the URL or URLs of each updater. If you are using a proxy
environment, you must add these URLs to your proxy allowlist.

If updaters are being run automatically within the matcher process, which is the
default setting, the period for running updaters is configured under the matcher’s
configuration field.

2.5.1. Selecting specific updater sets

Use the following references to select one, or multiple, updaters for your Red Hat Quay deployment.

Configuring Clair for multiple updaters

Multiple specific updaters

Configuring Clair for Alpine

Alpine config.yaml example

Configuring Clair for AWS

#...
updaters:
 sets:
 - alpine
 - aws
 - osv
#...

#...
updaters:
 sets:
 - alpine
#...

CHAPTER 2. CLAIR CONCEPTS

17

AWS config.yaml example

Configuring Clair for Debian

Debian config.yaml example

Configuring Clair for Clair CVSS

Clair CVSS config.yaml example

Configuring Clair for Oracle

Oracle config.yaml example

Configuring Clair for Photon

Photon config.yaml example

Configuring Clair for SUSE

SUSE config.yaml example

#...
updaters:
 sets:
 - aws
#...

#...
updaters:
 sets:
 - debian
#...

#...
updaters:
 sets:
 - clair.cvss
#...

#...
updaters:
 sets:
 - oracle
#...

#...
updaters:
 sets:
 - photon
#...

#...

Red Hat Quay 3.11 Vulnerability reporting with Clair on Red Hat Quay

18

Configuring Clair for Ubuntu

Ubuntu config.yaml example

Configuring Clair for OSV

OSV config.yaml example

2.5.2. Selecting updater sets for full Red Hat Enterprise Linux (RHEL) coverage

For full coverage of vulnerabilities in Red Hat Enterprise Linux (RHEL), you must use the following
updater sets:

rhel. This updater ensures that you have the latest information on the vulnerabilities that affect
RHEL.

rhcc. This updater keeps track of vulnerabilities related to Red hat’s container images.

clair.cvss. This updater offers a comprehensive view of the severity and risk assessment of
vulnerabilities by providing Common Vulnerabilities and Exposures (CVE) scores.

osv. This updater focuses on tracking vulnerabilities in open-source software components. This
updater is recommended due to how common the use of Java and Go are in RHEL products.

RHEL updaters example

2.5.3. Advanced updater configuration

updaters:
 sets:
 - suse
#...

#...
updaters:
 sets:
 - ubuntu
#...

#...
updaters:
 sets:
 - osv
#...

#...
updaters:
 sets:
 - rhel
 - rhcc
 - clair.cvss
 - osv
#...

CHAPTER 2. CLAIR CONCEPTS

19

In some cases, users might want to configure updaters for specific behavior, for example, if you want to
allowlist specific ecosystems for the Open Source Vulnerabilities (OSV) updaters.

Advanced updater configuration might be useful for proxy deployments or air gapped deployments.
Configuration for specific updaters in these scenarios can be passed by putting a key underneath the
config environment variable of the updaters object. Users should examine their Clair logs to double-
check names.

The following YAML snippets detail the various settings available to some Clair updater

IMPORTANT

For more users, advanced updater configuration is unnecessary.

Configuring the alpine updater

Configuring the debian updater

Configuring the clair.cvss updater

Configuring the oracle updater

#...
updaters:
 sets:
 - apline
 config:
 alpine:
 url: https://secdb.alpinelinux.org/
#...

#...
updaters:
 sets:
 - debian
 config:
 debian:
 mirror_url: https://deb.debian.org/
 json_url: https://security-tracker.debian.org/tracker/data/json
#...

#...
updaters:
 config:
 clair.cvss:
 url: https://nvd.nist.gov/feeds/json/cve/1.1/
#...

#...
updaters:
 sets:
 - oracle
 config:
 oracle-2023-updater:

Red Hat Quay 3.11 Vulnerability reporting with Clair on Red Hat Quay

20

1

Configuring the photon updater

Configuring the rhel updater

Boolean. Whether to include information about vulnerabilities that do not have corresponding
patches or updates available.

Configuring the rhcc updater

Configuring the suse updater

 url:
 - https://linux.oracle.com/security/oval/com.oracle.elsa-2023.xml.bz2
 oracle-2022-updater:
 url:
 - https://linux.oracle.com/security/oval/com.oracle.elsa-2022.xml.bz2
#...

#...
updaters:
 sets:
 - photon
 config:
 photon:
 url: https://packages.vmware.com/photon/photon_oval_definitions/
#...

#...
updaters:
 sets:
 - rhel
 config:
 rhel:
 url: https://access.redhat.com/security/data/oval/v2/PULP_MANIFEST
 ignore_unpatched: true 1
#...

#...
updaters:
 sets:
 - rhcc
 config:
 rhcc:
 url: https://access.redhat.com/security/data/metrics/cvemap.xml
#...

#...
updaters:
 sets:
 - suse
 config:
 suse:
 url: https://support.novell.com/security/oval/
#...

CHAPTER 2. CLAIR CONCEPTS

21

1

2

3

1

Configuring the ubuntu updater

Used to force the inclusion of specific distribution and version details in the resulting UpdaterSet,
regardless of their status in the API response. Useful when you want to ensure that particular
distributions and versions are consistently included in your updater configuration.

Specifies the distribution name that you want to force to be included in the UpdaterSet.

Specifies the version of the distribution you want to force into the UpdaterSet.

Configuring the osv updater

The list of ecosystems to allow. When left unset, all ecosystems are allowed. Must be lowercase.
For a list of supported ecosystems, see the documentation for defined ecosystems.

2.5.4. Disabling the Clair Updater component

In some scenarios, users might want to disable the Clair updater component. Disabling updaters is
required when running Red Hat Quay in a disconnected environment.

In the following example, Clair updaters are disabled:

2.6. CVE RATINGS FROM THE NATIONAL VULNERABILITY DATABASE

As of Clair v4.2, Common Vulnerability Scoring System (CVSS) enrichment data is now viewable in the

#...
updaters:
 config:
 ubuntu:
 url: https://api.launchpad.net/1.0/
 name: ubuntu
 force: 1
 - name: focal 2
 version: 20.04 3
#...

#...
updaters:
 sets:
 - osv
 config:
 osv:
 url: https://osv-vulnerabilities.storage.googleapis.com/
 allowlist: 1
 - npm
 - pypi
#...

#...
matcher:
 disable_updaters: true
#...

Red Hat Quay 3.11 Vulnerability reporting with Clair on Red Hat Quay

22

https://ossf.github.io/osv-schema/#affectedpackage-field

As of Clair v4.2, Common Vulnerability Scoring System (CVSS) enrichment data is now viewable in the
Red Hat Quay UI. Additionally, Clair v4.2 adds CVSS scores from the National Vulnerability Database for
detected vulnerabilities.

With this change, if the vulnerability has a CVSS score that is within 2 levels of the distribution score, the
Red Hat Quay UI present’s the distribution’s score by default. For example:

This differs from the previous interface, which would only display the following information:

2.7. FEDERAL INFORMATION PROCESSING STANDARD (FIPS)
READINESS AND COMPLIANCE

The Federal Information Processing Standard (FIPS) developed by the National Institute of Standards
and Technology (NIST) is regarded as the highly regarded for securing and encrypting sensitive data,
notably in highly regulated areas such as banking, healthcare, and the public sector. Red Hat Enterprise
Linux (RHEL) and OpenShift Container Platform support FIPS by providing a FIPS mode , in which the
system only allows usage of specific FIPS-validated cryptographic modules like openssl. This ensures
FIPS compliance.

2.7.1. Enabling FIPS compliance

Use the following procedure to enable FIPS compliance on your Red Hat Quay deployment.

Prerequisite

If you are running a standalone deployment of Red Hat Quay, your Red Hat Enterprise Linux
(RHEL) deployment is version 8 or later and FIPS-enabled.

If you are deploying Red Hat Quay on OpenShift Container Platform, OpenShift Container
Platform is version 4.10 or later.

Your Red Hat Quay version is 3.5.0 or later.

If you are using the Red Hat Quay on OpenShift Container Platform on an IBM Power or IBM Z
cluster:

OpenShift Container Platform version 4.14 or later is required

Red Hat Quay version 3.10 or later is required

CHAPTER 2. CLAIR CONCEPTS

23

You have administrative privileges for your Red Hat Quay deployment.

Procedure

In your Red Hat Quay config.yaml file, set the FEATURE_FIPS configuration field to true. For
example:

With FEATURE_FIPS set to true, Red Hat Quay runs using FIPS-compliant hash functions.

FEATURE_FIPS = true

Red Hat Quay 3.11 Vulnerability reporting with Clair on Red Hat Quay

24

PART II. CLAIR ON RED HAT QUAY
This guide contains procedures for running Clair on Red Hat Quay in both standalone and OpenShift
Container Platform Operator deployments.

PART II. CLAIR ON RED HAT QUAY

25

CHAPTER 3. SETTING UP CLAIR ON STANDALONE RED HAT
QUAY DEPLOYMENTS

For standalone Red Hat Quay deployments, you can set up Clair manually.

Procedure

1. In your Red Hat Quay installation directory, create a new directory for the Clair database data:

2. Set the appropriate permissions for the postgres-clairv4 file by entering the following
command:

3. Deploy a Clair PostgreSQL database by entering the following command:

4. Install the PostgreSQL uuid-ossp module for your Clair deployment:

Example output

NOTE

Clair requires the uuid-ossp extension to be added to its PostgreSQL database.
For users with proper privileges, creating the extension will automatically be
added by Clair. If users do not have the proper privileges, the extension must be
added before start Clair.

If the extension is not present, the following error will be displayed when Clair
attempts to start: ERROR: Please load the "uuid-ossp" extension.
(SQLSTATE 42501).

5. Stop the Quay container if it is running and restart it in configuration mode, loading the existing
configuration as a volume:

$ mkdir /home/<user-name>/quay-poc/postgres-clairv4

$ setfacl -m u:26:-wx /home/<user-name>/quay-poc/postgres-clairv4

$ sudo podman run -d --name postgresql-clairv4 \
 -e POSTGRESQL_USER=clairuser \
 -e POSTGRESQL_PASSWORD=clairpass \
 -e POSTGRESQL_DATABASE=clair \
 -e POSTGRESQL_ADMIN_PASSWORD=adminpass \
 -p 5433:5432 \
 -v /home/<user-name>/quay-poc/postgres-clairv4:/var/lib/pgsql/data:Z \
 registry.redhat.io/rhel8/postgresql-13:1-109

$ podman exec -it postgresql-clairv4 /bin/bash -c 'echo "CREATE EXTENSION IF NOT
EXISTS \"uuid-ossp\"" | psql -d clair -U postgres'

CREATE EXTENSION

$ sudo podman run --rm -it --name quay_config \
 -p 80:8080 -p 443:8443 \

Red Hat Quay 3.11 Vulnerability reporting with Clair on Red Hat Quay

26

6. Log in to the configuration tool and click Enable Security Scanning in the Security Scanner
section of the UI.

7. Set the HTTP endpoint for Clair using a port that is not already in use on the quay-server
system, for example, 8081.

8. Create a pre-shared key (PSK) using the Generate PSK button.

Security Scanner UI

9. Validate and download the config.yaml file for Red Hat Quay, and then stop the Quay
container that is running the configuration editor.

10. Extract the new configuration bundle into your Red Hat Quay installation directory, for example:

11. Create a folder for your Clair configuration file, for example:

12. Change into the Clair configuration folder:

13. Create a Clair configuration file, for example:

 -v $QUAY/config:/conf/stack:Z \
 {productrepo}/{quayimage}:{productminv} config secret

$ tar xvf quay-config.tar.gz -d /home/<user-name>/quay-poc/

$ mkdir /etc/opt/clairv4/config/

$ cd /etc/opt/clairv4/config/

http_listen_addr: :8081
introspection_addr: :8088
log_level: debug
indexer:
 connstring: host=quay-server.example.com port=5433 dbname=clair user=clairuser
password=clairpass sslmode=disable
 scanlock_retry: 10
 layer_scan_concurrency: 5
 migrations: true
matcher:
 connstring: host=quay-server.example.com port=5433 dbname=clair user=clairuser
password=clairpass sslmode=disable
 max_conn_pool: 100
 migrations: true

CHAPTER 3. SETTING UP CLAIR ON STANDALONE RED HAT QUAY DEPLOYMENTS

27

For more information about Clair’s configuration format, see Clair configuration reference .

14. Start Clair by using the container image, mounting in the configuration from the file you created:

$ sudo podman run -d --name clairv4 \
-p 8081:8081 -p 8088:8088 \
-e CLAIR_CONF=/clair/config.yaml \
-e CLAIR_MODE=combo \
-v /etc/opt/clairv4/config:/clair:Z \
registry.redhat.io/quay/clair-rhel8:v3.11.1

NOTE

Running multiple Clair containers is also possible, but for deployment scenarios
beyond a single container the use of a container orchestrator like Kubernetes or
OpenShift Container Platform is strongly recommended.

3.1. USING CLAIR WITH AN UPSTREAM IMAGE FOR RED HAT QUAY

For most users, independent upgrades of Clair from the current version (4.7.2) are unnecessary. In some
cases, however, customers might want to pull an image of Clair from the upstream repository for various
reasons, such as for specific bug fixes or to try new features that have not yet been released
downstream. You can use the following procedure to run an upstream version of Clair with Red Hat
Quay.

IMPORTANT

Upstream versions of Clair have not been fully tested for compatibility with Red Hat
Quay. As a result, this combination might cause issues with your deployment.

Procedure

 indexer_addr: clair-indexer
notifier:
 connstring: host=quay-server.example.com port=5433 dbname=clair user=clairuser
password=clairpass sslmode=disable
 delivery_interval: 1m
 poll_interval: 5m
 migrations: true
auth:
 psk:
 key: "MTU5YzA4Y2ZkNzJoMQ=="
 iss: ["quay"]
tracing and metrics
trace:
 name: "jaeger"
 probability: 1
 jaeger:
 agent:
 endpoint: "localhost:6831"
 service_name: "clair"
metrics:
 name: "prometheus"

Red Hat Quay 3.11 Vulnerability reporting with Clair on Red Hat Quay

28

https://quay.github.io/clair/reference/config.html
https://quay.io/repository/projectquay/clair

1. Enter the following command to stop Clair if it is running:

2. Navigate to the upstream repository, find the version of Clair that you want to use, and pull it to
your local machine. For example:

3. Start Clair by using the container image, mounting in the configuration from the file you created:

$ podman stop <clairv4_container_name>

$ podman pull quay.io/projectquay/clair:nightly-2024-02-03

$ podman run -d --name clairv4 \
-p 8081:8081 -p 8088:8088 \
-e CLAIR_CONF=/clair/config.yaml \
-e CLAIR_MODE=combo \
-v /etc/opt/clairv4/config:/clair:Z \
quay.io/projectquay/clair:nightly-2024-02-03

CHAPTER 3. SETTING UP CLAIR ON STANDALONE RED HAT QUAY DEPLOYMENTS

29

https://quay.io/repository/projectquay/clair

CHAPTER 4. CLAIR ON OPENSHIFT CONTAINER PLATFORM
To set up Clair v4 (Clair) on a Red Hat Quay deployment on OpenShift Container Platform, it is
recommended to use the Red Hat Quay Operator. By default, the Red Hat Quay Operator installs or
upgrades a Clair deployment along with your Red Hat Quay deployment and configure Clair
automatically.

Red Hat Quay 3.11 Vulnerability reporting with Clair on Red Hat Quay

30

CHAPTER 5. TESTING CLAIR
Use the following procedure to test Clair on either a standalone Red Hat Quay deployment, or on an
OpenShift Container Platform Operator-based deployment.

Prerequisites

You have deployed the Clair container image.

Procedure

1. Pull a sample image by entering the following command:

2. Tag the image to your registry by entering the following command:

3. Push the image to your Red Hat Quay registry by entering the following command:

4. Log in to your Red Hat Quay deployment through the UI.

5. Click the repository name, for example, quayadmin/ubuntu.

6. In the navigation pane, click Tags.

Report summary

7. Click the image report, for example, 45 medium, to show a more detailed report:

Report details

$ podman pull ubuntu:20.04

$ sudo podman tag docker.io/library/ubuntu:20.04 <quay-server.example.com>/<user-
name>/ubuntu:20.04

$ sudo podman push --tls-verify=false quay-server.example.com/quayadmin/ubuntu:20.04

CHAPTER 5. TESTING CLAIR

31

NOTE

In some cases, Clair shows duplicate reports on images, for example,
ubi8/nodejs-12 or ubi8/nodejs-16. This occurs because vulnerabilities with same
name are for different packages. This behavior is expected with Clair vulnerability
reporting and will not be addressed as a bug.

Red Hat Quay 3.11 Vulnerability reporting with Clair on Red Hat Quay

32

PART III. ADVANCED CLAIR CONFIGURATION
Use this section to configure advanced Clair features.

PART III. ADVANCED CLAIR CONFIGURATION

33

CHAPTER 6. UNMANAGED CLAIR CONFIGURATION
Red Hat Quay users can run an unmanaged Clair configuration with the Red Hat Quay OpenShift
Container Platform Operator. This feature allows users to create an unmanaged Clair database, or run
their custom Clair configuration without an unmanaged database.

An unmanaged Clair database allows the Red Hat Quay Operator to work in a geo-replicated
environment, where multiple instances of the Operator must communicate with the same database. An
unmanaged Clair database can also be used when a user requires a highly-available (HA) Clair database
that exists outside of a cluster.

6.1. RUNNING A CUSTOM CLAIR CONFIGURATION WITH AN
UNMANAGED CLAIR DATABASE

Use the following procedure to set your Clair database to unmanaged.

Procedure

In the Quay Operator, set the clairpostgres component of the QuayRegistry custom resource
to managed: false:

6.2. CONFIGURING A CUSTOM CLAIR DATABASE WITH AN
UNMANAGED CLAIR DATABASE

Red Hat Quay on OpenShift Container Platform allows users to provide their own Clair database.

Use the following procedure to create a custom Clair database.

NOTE

The following procedure sets up Clair with SSL/TLS certifications. To view a similar
procedure that does not set up Clair with SSL/TSL certifications, see "Configuring a
custom Clair database with a managed Clair configuration".

Procedure

1. Create a Quay configuration bundle secret that includes the clair-config.yaml by entering the

apiVersion: quay.redhat.com/v1
kind: QuayRegistry
metadata:
 name: quay370
spec:
 configBundleSecret: config-bundle-secret
 components:
 - kind: objectstorage
 managed: false
 - kind: route
 managed: true
 - kind: tls
 managed: false
 - kind: clairpostgres
 managed: false

Red Hat Quay 3.11 Vulnerability reporting with Clair on Red Hat Quay

34

1. Create a Quay configuration bundle secret that includes the clair-config.yaml by entering the
following command:

Example Clair config.yaml file

NOTE

The database certificate is mounted under /run/certs/rds-ca-2019-root.pem
on the Clair application pod in the clair-config.yaml. It must be specified
when configuring your clair-config.yaml.

An example clair-config.yaml can be found at Clair on OpenShift config .

2. Add the clair-config.yaml file to your bundle secret, for example:

NOTE

When updated, the provided clair-config.yaml file is mounted into the Clair pod.
Any fields not provided are automatically populated with defaults using the Clair
configuration module.

$ oc create secret generic --from-file config.yaml=./config.yaml --from-file extra_ca_cert_rds-
ca-2019-root.pem=./rds-ca-2019-root.pem --from-file clair-config.yaml=./clair-config.yaml --
from-file ssl.cert=./ssl.cert --from-file ssl.key=./ssl.key config-bundle-secret

indexer:
 connstring: host=quay-server.example.com port=5432 dbname=quay user=quayrdsdb
password=quayrdsdb sslrootcert=/run/certs/rds-ca-2019-root.pem sslmode=verify-ca
 layer_scan_concurrency: 6
 migrations: true
 scanlock_retry: 11
log_level: debug
matcher:
 connstring: host=quay-server.example.com port=5432 dbname=quay user=quayrdsdb
password=quayrdsdb sslrootcert=/run/certs/rds-ca-2019-root.pem sslmode=verify-ca
 migrations: true
metrics:
 name: prometheus
notifier:
 connstring: host=quay-server.example.com port=5432 dbname=quay user=quayrdsdb
password=quayrdsdb sslrootcert=/run/certs/rds-ca-2019-root.pem sslmode=verify-ca
 migrations: true

apiVersion: v1
kind: Secret
metadata:
 name: config-bundle-secret
 namespace: quay-enterprise
data:
 config.yaml: <base64 encoded Quay config>
 clair-config.yaml: <base64 encoded Clair config>
 extra_ca_cert_<name>: <base64 encoded ca cert>
 ssl.crt: <base64 encoded SSL certificate>
 ssl.key: <base64 encoded SSL private key>

CHAPTER 6. UNMANAGED CLAIR CONFIGURATION

35

https://access.redhat.com/documentation/en-us/red_hat_quay/3/html/deploy_red_hat_quay_on_openshift_with_the_quay_operator/quay_operator_features#clair-openshift-config

3. You can check the status of your Clair pod by clicking the commit in the Build History page, or
by running oc get pods -n <namespace>. For example:

$ oc get pods -n <namespace>

Example output

NAME READY STATUS RESTARTS AGE
f192fe4a-c802-4275-bcce-d2031e635126-9l2b5-25lg2 1/1 Running 0 7s

Red Hat Quay 3.11 Vulnerability reporting with Clair on Red Hat Quay

36

CHAPTER 7. RUNNING A CUSTOM CLAIR CONFIGURATION
WITH A MANAGED CLAIR DATABASE

In some cases, users might want to run a custom Clair configuration with a managed Clair database. This
is useful in the following scenarios:

When a user wants to disable specific updater resources.

When a user is running Red Hat Quay in an disconnected environment. For more information
about running Clair in a disconnected environment, see Clair in disconnected environments .

NOTE

If you are running Red Hat Quay in an disconnected environment, the airgap
parameter of your clair-config.yaml must be set to true.

If you are running Red Hat Quay in an disconnected environment, you should
disable all updater components.

7.1. SETTING A CLAIR DATABASE TO MANAGED

Use the following procedure to set your Clair database to managed.

Procedure

In the Quay Operator, set the clairpostgres component of the QuayRegistry custom resource
to managed: true:

7.2. CONFIGURING A CUSTOM CLAIR DATABASE WITH A MANAGED
CLAIR CONFIGURATION

Red Hat Quay on OpenShift Container Platform allows users to provide their own Clair database.

Use the following procedure to create a custom Clair database.

Procedure

1. Create a Quay configuration bundle secret that includes the clair-config.yaml by entering the

apiVersion: quay.redhat.com/v1
kind: QuayRegistry
metadata:
 name: quay370
spec:
 configBundleSecret: config-bundle-secret
 components:
 - kind: objectstorage
 managed: false
 - kind: route
 managed: true
 - kind: tls
 managed: false
 - kind: clairpostgres
 managed: true

CHAPTER 7. RUNNING A CUSTOM CLAIR CONFIGURATION WITH A MANAGED CLAIR DATABASE

37

https://access.redhat.com/documentation/en-us/red_hat_quay/3/html-single/vulnerability_reporting_with_clair_on_red_hat_quay/index#clair-disconnected-environments

1. Create a Quay configuration bundle secret that includes the clair-config.yaml by entering the
following command:

Example Clair config.yaml file

NOTE

The database certificate is mounted under /run/certs/rds-ca-2019-root.pem
on the Clair application pod in the clair-config.yaml. It must be specified
when configuring your clair-config.yaml.

An example clair-config.yaml can be found at Clair on OpenShift config .

2. Add the clair-config.yaml file to your bundle secret, for example:

NOTE

When updated, the provided clair-config.yaml file is mounted into the Clair
pod. Any fields not provided are automatically populated with defaults using
the Clair configuration module.

3. You can check the status of your Clair pod by clicking the commit in the Build History page, or

$ oc create secret generic --from-file config.yaml=./config.yaml --from-file extra_ca_cert_rds-
ca-2019-root.pem=./rds-ca-2019-root.pem --from-file clair-config.yaml=./clair-config.yaml
config-bundle-secret

indexer:
 connstring: host=quay-server.example.com port=5432 dbname=quay user=quayrdsdb
password=quayrdsdb sslmode=disable
 layer_scan_concurrency: 6
 migrations: true
 scanlock_retry: 11
log_level: debug
matcher:
 connstring: host=quay-server.example.com port=5432 dbname=quay user=quayrdsdb
password=quayrdsdb sslmode=disable
 migrations: true
metrics:
 name: prometheus
notifier:
 connstring: host=quay-server.example.com port=5432 dbname=quay user=quayrdsdb
password=quayrdsdb sslmode=disable
 migrations: true

apiVersion: v1
kind: Secret
metadata:
 name: config-bundle-secret
 namespace: quay-enterprise
data:
 config.yaml: <base64 encoded Quay config>
 clair-config.yaml: <base64 encoded Clair config>

Red Hat Quay 3.11 Vulnerability reporting with Clair on Red Hat Quay

38

https://access.redhat.com/documentation/en-us/red_hat_quay/3/html/deploy_red_hat_quay_on_openshift_with_the_quay_operator/quay_operator_features#clair-openshift-config

3. You can check the status of your Clair pod by clicking the commit in the Build History page, or
by running oc get pods -n <namespace>. For example:

$ oc get pods -n <namespace>

Example output

NAME READY STATUS RESTARTS AGE
f192fe4a-c802-4275-bcce-d2031e635126-9l2b5-25lg2 1/1 Running 0 7s

CHAPTER 7. RUNNING A CUSTOM CLAIR CONFIGURATION WITH A MANAGED CLAIR DATABASE

39

CHAPTER 8. CLAIR IN DISCONNECTED ENVIRONMENTS

NOTE

Currently, deploying Clair in disconnected environments is not supported on IBM Power
and IBM Z.

Clair uses a set of components called updaters to handle the fetching and parsing of data from various
vulnerability databases. Updaters are set up by default to pull vulnerability data directly from the
internet and work for immediate use. However, some users might require Red Hat Quay to run in a
disconnected environment, or an environment without direct access to the internet. Clair supports
disconnected environments by working with different types of update workflows that take network
isolation into consideration. This works by using the clairctl command line interface tool, which obtains
updater data from the internet by using an open host, securely transferring the data to an isolated host,
and then important the updater data on the isolated host into Clair.

Use this guide to deploy Clair in a disconnected environment.

IMPORTANT

Due to known issue PROJQUAY-6577, the Red Hat Quay Operator does not properly
render customized Clair config.yaml files. As a result, the following procedure does not
currently work.

Users must create the entire Clair configuration themselves, from the beginning, instead
of relying on the Operator to populate the fields. To do this, following the instructions at
Procedure to enable Clair scanning of images in disconnected environments .

NOTE

Currently, Clair enrichment data is CVSS data. Enrichment data is currently unsupported
in disconnected environments.

For more information about Clair updaters, see "Clair updaters".

8.1. SETTING UP CLAIR IN A DISCONNECTED OPENSHIFT CONTAINER
PLATFORM CLUSTER

Use the following procedures to set up an OpenShift Container Platform provisioned Clair pod in a
disconnected OpenShift Container Platform cluster.

IMPORTANT

Due to known issue PROJQUAY-6577, the Red Hat Quay Operator does not properly
render customized Clair config.yaml files. As a result, the following procedure does not
currently work.

Users must create the entire Clair configuration themselves, from the beginning, instead
of relying on the Operator to populate the fields. To do this, following the instructions at
Procedure to enable Clair scanning of images in disconnected environments .

8.1.1. Installing the clairctl command line utility tool for OpenShift Container

Red Hat Quay 3.11 Vulnerability reporting with Clair on Red Hat Quay

40

https://issues.redhat.com/browse/PROJQUAY-6577
https://access.redhat.com/solutions/7051718
https://issues.redhat.com/browse/PROJQUAY-6577
https://access.redhat.com/solutions/7051718

8.1.1. Installing the clairctl command line utility tool for OpenShift Container
Platform deployments

Use the following procedure to install the clairctl CLI tool for OpenShift Container Platform
deployments.

Procedure

1. Install the clairctl program for a Clair deployment in an OpenShift Container Platform cluster by
entering the following command:

NOTE

Unofficially, the clairctl tool can be downloaded

2. Set the permissions of the clairctl file so that it can be executed and run by the user, for
example:

8.1.2. Retrieving and decoding the Clair configuration secret for Clair deployments
on OpenShift Container Platform

Use the following procedure to retrieve and decode the configuration secret for an OpenShift Container
Platform provisioned Clair instance on OpenShift Container Platform.

Prerequisites

You have installed the clairctl command line utility tool.

Procedure

1. Enter the following command to retrieve and decode the configuration secret, and then save it
to a Clair configuration YAML:

2. Update the clair-config.yaml file so that the disable_updaters and airgap parameters are set
to true, for example:

$ oc -n quay-enterprise exec example-registry-clair-app-64dd48f866-6ptgw -- cat
/usr/bin/clairctl > clairctl

$ chmod u+x ./clairctl

$ oc get secret -n quay-enterprise example-registry-clair-config-secret -o "jsonpath=
{$.data['config\.yaml']}" | base64 -d > clair-config.yaml

indexer:
 airgap: true

matcher:
 disable_updaters: true

CHAPTER 8. CLAIR IN DISCONNECTED ENVIRONMENTS

41

8.1.3. Exporting the updaters bundle from a connected Clair instance

Use the following procedure to export the updaters bundle from a Clair instance that has access to the
internet.

Prerequisites

You have installed the clairctl command line utility tool.

You have retrieved and decoded the Clair configuration secret, and saved it to a Clair
config.yaml file.

The disable_updaters and airgap parameters are set to true in your Clair config.yaml file.

Procedure

From a Clair instance that has access to the internet, use the clairctl CLI tool with your
configuration file to export the updaters bundle. For example:

8.1.4. Configuring access to the Clair database in the disconnected OpenShift
Container Platform cluster

Use the following procedure to configure access to the Clair database in your disconnected OpenShift
Container Platform cluster.

Prerequisites

You have installed the clairctl command line utility tool.

You have retrieved and decoded the Clair configuration secret, and saved it to a Clair
config.yaml file.

The disable_updaters and airgap parameters are set to true in your Clair config.yaml file.

You have exported the updaters bundle from a Clair instance that has access to the internet.

Procedure

1. Determine your Clair database service by using the oc CLI tool, for example:

Example output

$./clairctl --config ./config.yaml export-updaters updates.gz

$ oc get svc -n quay-enterprise

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
AGE
example-registry-clair-app ClusterIP 172.30.224.93 <none>
80/TCP,8089/TCP 4d21h
example-registry-clair-postgres ClusterIP 172.30.246.88 <none> 5432/TCP
4d21h
...

Red Hat Quay 3.11 Vulnerability reporting with Clair on Red Hat Quay

42

1

2

3

2. Forward the Clair database port so that it is accessible from the local machine. For example:

3. Update your Clair config.yaml file, for example:

Replace the value of the host in the multiple connstring fields with localhost.

For more information about the rhel-repository-scanner parameter, see "Mapping
repositories to Common Product Enumeration information".

For more information about the rhel_containerscanner parameter, see "Mapping
repositories to Common Product Enumeration information".

8.1.5. Importing the updaters bundle into the disconnected OpenShift Container
Platform cluster

Use the following procedure to import the updaters bundle into your disconnected OpenShift Container
Platform cluster.

Prerequisites

You have installed the clairctl command line utility tool.

You have retrieved and decoded the Clair configuration secret, and saved it to a Clair
config.yaml file.

The disable_updaters and airgap parameters are set to true in your Clair config.yaml file.

You have exported the updaters bundle from a Clair instance that has access to the internet.

You have transferred the updaters bundle into your disconnected environment.

Procedure

Use the clairctl CLI tool to import the updaters bundle into the Clair database that is deployed
by OpenShift Container Platform. For example:

$ oc port-forward -n quay-enterprise service/example-registry-clair-postgres 5432:5432

indexer:
 connstring: host=localhost port=5432 dbname=postgres user=postgres
password=postgres sslmode=disable 1
 scanlock_retry: 10
 layer_scan_concurrency: 5
 migrations: true
 scanner:
 repo:
 rhel-repository-scanner: 2
 repo2cpe_mapping_file: /data/cpe-map.json
 package:
 rhel_containerscanner: 3
 name2repos_mapping_file: /data/repo-map.json

$./clairctl --config ./clair-config.yaml import-updaters updates.gz

CHAPTER 8. CLAIR IN DISCONNECTED ENVIRONMENTS

43

8.2. SETTING UP A SELF-MANAGED DEPLOYMENT OF CLAIR FOR A
DISCONNECTED OPENSHIFT CONTAINER PLATFORM CLUSTER

Use the following procedures to set up a self-managed deployment of Clair for a disconnected
OpenShift Container Platform cluster.

IMPORTANT

Due to known issue PROJQUAY-6577, the Red Hat Quay Operator does not properly
render customized Clair config.yaml files. As a result, the following procedure does not
currently work.

Users must create the entire Clair configuration themselves, from the beginning, instead
of relying on the Operator to populate the fields. To do this, following the instructions at
Procedure to enable Clair scanning of images in disconnected environments .

8.2.1. Installing the clairctl command line utility tool for a self-managed Clair
deployment on OpenShift Container Platform

Use the following procedure to install the clairctl CLI tool for self-managed Clair deployments on
OpenShift Container Platform.

Procedure

1. Install the clairctl program for a self-managed Clair deployment by using the podman cp
command, for example:

2. Set the permissions of the clairctl file so that it can be executed and run by the user, for
example:

8.2.2. Deploying a self-managed Clair container for disconnected OpenShift
Container Platform clusters

Use the following procedure to deploy a self-managed Clair container for disconnected OpenShift
Container Platform clusters.

Prerequisites

You have installed the clairctl command line utility tool.

Procedure

1. Create a folder for your Clair configuration file, for example:

2. Create a Clair configuration file with the disable_updaters parameter set to true, for example:

$ sudo podman cp clairv4:/usr/bin/clairctl ./clairctl

$ chmod u+x ./clairctl

$ mkdir /etc/clairv4/config/

Red Hat Quay 3.11 Vulnerability reporting with Clair on Red Hat Quay

44

https://issues.redhat.com/browse/PROJQUAY-6577
https://access.redhat.com/solutions/7051718

3. Start Clair by using the container image, mounting in the configuration from the file you created:

$ sudo podman run -it --rm --name clairv4 \
-p 8081:8081 -p 8088:8088 \
-e CLAIR_CONF=/clair/config.yaml \
-e CLAIR_MODE=combo \
-v /etc/clairv4/config:/clair:Z \
registry.redhat.io/quay/clair-rhel8:v3.11.1

8.2.3. Exporting the updaters bundle from a connected Clair instance

Use the following procedure to export the updaters bundle from a Clair instance that has access to the
internet.

Prerequisites

You have installed the clairctl command line utility tool.

You have deployed Clair.

The disable_updaters and airgap parameters are set to true in your Clair config.yaml file.

Procedure

From a Clair instance that has access to the internet, use the clairctl CLI tool with your
configuration file to export the updaters bundle. For example:

8.2.4. Configuring access to the Clair database in the disconnected OpenShift
Container Platform cluster

Use the following procedure to configure access to the Clair database in your disconnected OpenShift
Container Platform cluster.

Prerequisites

You have installed the clairctl command line utility tool.

You have deployed Clair.

The disable_updaters and airgap parameters are set to true in your Clair config.yaml file.

You have exported the updaters bundle from a Clair instance that has access to the internet.

Procedure

indexer:
 airgap: true

matcher:
 disable_updaters: true

$./clairctl --config ./config.yaml export-updaters updates.gz

CHAPTER 8. CLAIR IN DISCONNECTED ENVIRONMENTS

45

1

2

3

Procedure

1. Determine your Clair database service by using the oc CLI tool, for example:

Example output

2. Forward the Clair database port so that it is accessible from the local machine. For example:

3. Update your Clair config.yaml file, for example:

Replace the value of the host in the multiple connstring fields with localhost.

For more information about the rhel-repository-scanner parameter, see "Mapping
repositories to Common Product Enumeration information".

For more information about the rhel_containerscanner parameter, see "Mapping
repositories to Common Product Enumeration information".

8.2.5. Importing the updaters bundle into the disconnected OpenShift Container
Platform cluster

Use the following procedure to import the updaters bundle into your disconnected OpenShift Container
Platform cluster.

Prerequisites

You have installed the clairctl command line utility tool.

$ oc get svc -n quay-enterprise

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
AGE
example-registry-clair-app ClusterIP 172.30.224.93 <none>
80/TCP,8089/TCP 4d21h
example-registry-clair-postgres ClusterIP 172.30.246.88 <none> 5432/TCP
4d21h
...

$ oc port-forward -n quay-enterprise service/example-registry-clair-postgres 5432:5432

indexer:
 connstring: host=localhost port=5432 dbname=postgres user=postgres
password=postgres sslmode=disable 1
 scanlock_retry: 10
 layer_scan_concurrency: 5
 migrations: true
 scanner:
 repo:
 rhel-repository-scanner: 2
 repo2cpe_mapping_file: /data/cpe-map.json
 package:
 rhel_containerscanner: 3
 name2repos_mapping_file: /data/repo-map.json

Red Hat Quay 3.11 Vulnerability reporting with Clair on Red Hat Quay

46

You have deployed Clair.

The disable_updaters and airgap parameters are set to true in your Clair config.yaml file.

You have exported the updaters bundle from a Clair instance that has access to the internet.

You have transferred the updaters bundle into your disconnected environment.

Procedure

Use the clairctl CLI tool to import the updaters bundle into the Clair database that is deployed
by OpenShift Container Platform:

8.3. MAPPING REPOSITORIES TO COMMON PRODUCT
ENUMERATION INFORMATION

NOTE

Currently, mapping repositories to Common Product Enumeration information is not
supported on IBM Power and IBM Z.

Clair’s Red Hat Enterprise Linux (RHEL) scanner relies on a Common Product Enumeration (CPE) file to
map RPM packages to the corresponding security data to produce matching results. These files are
owned by product security and updated daily.

The CPE file must be present, or access to the file must be allowed, for the scanner to properly process
RPM packages. If the file is not present, RPM packages installed in the container image will not be
scanned.

Table 8.1. Clair CPE mapping files

CPE Link to JSON mapping file

repos2cpe Red Hat Repository-to-CPE JSON

names2repos Red Hat Name-to-Repos JSON.

In addition to uploading CVE information to the database for disconnected Clair installations, you must
also make the mapping file available locally:

For standalone Red Hat Quay and Clair deployments, the mapping file must be loaded into the
Clair pod.

For Red Hat Quay on OpenShift Container Platform deployments, you must set the Clair
component to unmanaged. Then, Clair must be deployed manually, setting the configuration to
load a local copy of the mapping file.

8.3.1. Mapping repositories to Common Product Enumeration example configuration

Use the repo2cpe_mapping_file and name2repos_mapping_file fields in your Clair configuration to

$./clairctl --config ./clair-config.yaml import-updaters updates.gz

CHAPTER 8. CLAIR IN DISCONNECTED ENVIRONMENTS

47

https://www.redhat.com/security/data/metrics/repository-to-cpe.json
https://access.redhat.com/security/data/metrics/container-name-repos-map.json

Use the repo2cpe_mapping_file and name2repos_mapping_file fields in your Clair configuration to
include the CPE JSON mapping files. For example:

For more information, see How to accurately match OVAL security data to installed RPMs .

indexer:
 scanner:
 repo:
 rhel-repository-scanner:
 repo2cpe_mapping_file: /data/cpe-map.json
 package:
 rhel_containerscanner:
 name2repos_mapping_file: /data/repo-map.json

Red Hat Quay 3.11 Vulnerability reporting with Clair on Red Hat Quay

48

https://www.redhat.com/en/blog/how-accurately-match-oval-security-data-installed-rpms

CHAPTER 9. CLAIR CONFIGURATION OVERVIEW
Clair is configured by a structured YAML file. Each Clair node needs to specify what mode it will run in
and a path to a configuration file through CLI flags or environment variables. For example:

or

The aforementioned commands each start two Clair nodes using the same configuration file. One runs
the indexing facilities, while other runs the matching facilities.

If you are running Clair in combo mode, you must supply the indexer, matcher, and notifier configuration
blocks in the configuration.

9.1. INFORMATION ABOUT USING CLAIR IN A PROXY ENVIRONMENT

Environment variables respected by the Go standard library can be specified if needed, for example:

HTTP_PROXY

HTTPS_PROXY.

SSL_CERT_DIR

NO_PROXY

If you are using a proxy server in your environment with Clair’s updater URLs, you must identify which
URL needs to be added to the proxy allowlist to ensure that Clair can access them unimpeded. For
example, the osv updater requires access to https://osv-vulnerabilities.storage.googleapis.com to
fetch ecosystem data dumps. In this scenario, the URL must be added to the proxy allowlist. For a full
list of updater URLs, see "Clair updater URLs".

You must also ensure that the standard Clair URLs are added to the proxy allowlist:

https://search.maven.org/solrsearch/select

https://catalog.redhat.com/api/containers/

https://access.redhat.com/security/data/metrics/repository-to-cpe.json

https://access.redhat.com/security/data/metrics/container-name-repos-map.json

When configuring the proxy server, take into account any authentication requirements or specific proxy

$ clair -conf ./path/to/config.yaml -mode indexer

$ clair -conf ./path/to/config.yaml -mode matcher

$ export HTTP_PROXY=http://<user_name>:<password>@<proxy_host>:<proxy_port>

$ export HTTPS_PROXY=https://<user_name>:<password>@<proxy_host>:<proxy_port>

$ export SSL_CERT_DIR=/<path>/<to>/<ssl>/<certificates>

$ export NO_PROXY=<comma_separated_list_of_hosts_and_domains>

CHAPTER 9. CLAIR CONFIGURATION OVERVIEW

49

When configuring the proxy server, take into account any authentication requirements or specific proxy
settings needed to enable seamless communication between Clair and these URLs. By thoroughly
documenting and addressing these considerations, you can ensure that Clair functions effectively while
routing its updater traffic through the proxy.

9.2. CLAIR CONFIGURATION REFERENCE

The following YAML shows an example Clair configuration:

http_listen_addr: ""
introspection_addr: ""
log_level: ""
tls: {}
indexer:
 connstring: ""
 scanlock_retry: 0
 layer_scan_concurrency: 5
 migrations: false
 scanner: {}
 airgap: false
matcher:
 connstring: ""
 indexer_addr: ""
 migrations: false
 period: ""
 disable_updaters: false
 update_retention: 2
matchers:
 names: nil
 config: nil
updaters:
 sets: nil
 config: nil
notifier:
 connstring: ""
 migrations: false
 indexer_addr: ""
 matcher_addr: ""
 poll_interval: ""
 delivery_interval: ""
 disable_summary: false
 webhook: null
 amqp: null
 stomp: null
auth:
 psk: nil
trace:
 name: ""
 probability: null
 jaeger:
 agent:
 endpoint: ""
 collector:
 endpoint: ""
 username: null

Red Hat Quay 3.11 Vulnerability reporting with Clair on Red Hat Quay

50

NOTE

The above YAML file lists every key for completeness. Using this configuration file as-is
will result in some options not having their defaults set normally.

9.3. CLAIR GENERAL FIELDS

The following table describes the general configuration fields available for a Clair deployment.

Field Typhttp_listen
_ae

Description

http_listen_addr String Configures where the HTTP API is
exposed.

Default: :6060

introspection_addr String Configures where Clair’s metrics
and health endpoints are
exposed.

log_level String Sets the logging level. Requires
one of the following strings:
debug-color, debug, info, warn,
error, fatal, panic

tls String A map containing the
configuration for serving the
HTTP API of TLS/SSL and
HTTP/2.

.cert String The TLS certificate to be used.
Must be a full-chain certificate.

Example configuration for general Clair fields
The following example shows a Clair configuration.

Example configuration for general Clair fields

 password: null
 service_name: ""
 tags: nil
 buffer_max: 0
metrics:
 name: ""
 prometheus:
 endpoint: null
 dogstatsd:
 url: ""

...

CHAPTER 9. CLAIR CONFIGURATION OVERVIEW

51

9.4. CLAIR INDEXER CONFIGURATION FIELDS

The following table describes the configuration fields for Clair’s indexer component.

Field Type Description

indexer Object Provides Clair indexer node
configuration.

.airgap Boolean Disables HTTP access to the
internet for indexers and
fetchers. Private IPv4 and IPv6
addresses are allowed. Database
connections are unaffected.

.connstring String A Postgres connection string.
Accepts format as a URL or libpq
connection string.

.index_report_request_concurrency Integer Rate limits the number of index
report creation requests. Setting
this to 0 attemps to auto-size this
value. Setting a negative value
means unlimited. The auto-sizing
is a multiple of the number of
available cores.

The API returns a 429 status
code if concurrency is exceeded.

.scanlock_retry Integer A positive integer representing
seconds. Concurrent indexers
lock on manifest scans to avoid
clobbering. This value tunes how
often a waiting indexer polls for
the lock.

.layer_scan_concurrency Integer Positive integer limiting the
number of concurrent layer scans.
Indexers will match a manifest’s
layer concurrently. This value
tunes the number of layers an
indexer scans in parallel.

.migrations Boolean Whether indexer nodes handle
migrations to their database.

http_listen_addr: 0.0.0.0:6060
introspection_addr: 0.0.0.0:8089
log_level: info
...

Red Hat Quay 3.11 Vulnerability reporting with Clair on Red Hat Quay

52

.scanner String Indexer configuration.

Scanner allows for passing
configuration options to layer
scanners. The scanner will have
this configuration pass to it on
construction if designed to do so.

.scanner.dist String A map with the name of a
particular scanner and arbitrary
YAML as a value.

.scanner.package String A map with the name of a
particular scanner and arbitrary
YAML as a value.

.scanner.repo String A map with the name of a
particular scanner and arbitrary
YAML as a value.

Field Type Description

Example indexer configuration
The following example shows a hypothetical indexer configuration for Clair.

Example indexer configuration

9.5. CLAIR MATCHER CONFIGURATION FIELDS

The following table describes the configuration fields for Clair’s matcher component.

NOTE

Differs from matchers configuration fields.

Field Type Description

matcher Object Provides Clair matcher node
configuration.

...
indexer:
 connstring: host=quay-server.example.com port=5433 dbname=clair user=clairuser
password=clairpass sslmode=disable
 scanlock_retry: 10
 layer_scan_concurrency: 5
 migrations: true
...

CHAPTER 9. CLAIR CONFIGURATION OVERVIEW

53

.cache_age String Controls how long users should
be hinted to cache responses for.

.connstring String A Postgres connection string.
Accepts format as a URL or libpq
connection string.

.max_conn_pool Integer Limits the database connection
pool size.

Clair allows for a custom
connection pool size. This
number directly sets how many
active database connections are
allowed concurrently.

This parameter will be ignored in
a future version. Users should
configure this through the
connection string.

.indexer_addr String A matcher contacts an indexer to
create a vulnerability report. The
location of this indexer is
required.

Defaults to 30m.

.migrations Boolean Whether matcher nodes handle
migrations to their databases.

.period String Determines how often updates
for new security advisories take
place.

Defaults to 30m.

.disable_updaters Boolean Whether to run background
updates or not.

Default: False

Field Type Description

Red Hat Quay 3.11 Vulnerability reporting with Clair on Red Hat Quay

54

.update_retention Integer Sets the number of update
operations to retain between
garbage collection cycles. This
should be set to a safe MAX value
based on database size
constraints.

Defaults to 10m.

If a value of less than 0 is
provided, garbage collection is
disabled. 2 is the minimum value
to ensure updates can be
compared to notifications.

Field Type Description

Example matcher configuration

Example matcher configuration

9.6. CLAIR MATCHERS CONFIGURATION FIELDS

The following table describes the configuration fields for Clair’s matchers component.

NOTE

Differs from matcher configuration fields.

Table 9.1. Matchers configuration fields

Field Type Description

matchers Array of strings Provides configuration for the in-
tree matchers.

...
matcher:
 connstring: >-
 host=<DB_HOST> port=5432 dbname=<matcher> user=<DB_USER> password=D<B_PASS>
 sslmode=verify-ca sslcert=/etc/clair/ssl/cert.pem sslkey=/etc/clair/ssl/key.pem
 sslrootcert=/etc/clair/ssl/ca.pem
 indexer_addr: http://clair-v4/
 disable_updaters: false
 migrations: true
 period: 6h
 update_retention: 2
...

CHAPTER 9. CLAIR CONFIGURATION OVERVIEW

55

.names String A list of string values informing
the matcher factory about
enabled matchers. If value is set
to null, the default list of
matchers run. The following
strings are accepted: alpine-
matcher, aws-matcher, debian-
matcher, gobin, java-maven,
oracle, photon, python, rhel,
rhel-container-matcher, ruby,
suse, ubuntu-matcher

.config String Provides configuration to a
specific matcher.

A map keyed by the name of the
matcher containing a sub-object
which will be provided to the
matchers factory constructor. For
example:

Field Type Description

Example matchers configuration
The following example shows a hypothetical Clair deployment that only requires only the alpine, aws,
debian, oracle matchers.

Example matchers configuration

9.7. CLAIR UPDATERS CONFIGURATION FIELDS

The following table describes the configuration fields for Clair’s updaters component.

Table 9.2. Updaters configuration fields

Field Type Description

updaters Object Provides configuration for the
matcher’s update manager.

...
matchers:
 names:
 - "alpine-matcher"
 - "aws"
 - "debian"
 - "oracle"
...

Red Hat Quay 3.11 Vulnerability reporting with Clair on Red Hat Quay

56

.sets String A list of values informing the
update manager which updaters
to run.

If value is set to null, the default
set of updaters runs the
following: alpine, aws, clair.cvss,
debian, oracle, photon, osv, rhel,
rhcc suse, ubuntu

If left blank, zero updaters run.

.config String Provides configuration to specific
updater sets.

A map keyed by the name of the
updater set containing a sub-
object which will be provided to
the updater set’s constructor. For
a list of the sub-objects for each
updater, see "Advanced updater
configuration".

Field Type Description

Example updaters configuration
In the following configuration, only the rhel set is configured. The ignore_unpatched variable, which is
specific to the rhel updater, is also defined.

Example updaters configuration

9.8. CLAIR NOTIFIER CONFIGURATION FIELDS

The general notifier configuration fields for Clair are listed below.

Field Type Description

notifier Object Provides Clair notifier node
configuration.

.connstring String Postgres connection string.
Accepts format as URL, or libpq
connection string.

...
updaters:
 sets:
 - rhel
 config:
 rhel:
 ignore_unpatched: false
...

CHAPTER 9. CLAIR CONFIGURATION OVERVIEW

57

.migrations Boolean Whether notifier nodes handle
migrations to their database.

.indexer_addr String A notifier contacts an indexer to
create or obtain manifests
affected by vulnerabilities. The
location of this indexer is
required.

.matcher_addr String A notifier contacts a matcher to
list update operations and
acquire diffs. The location of this
matcher is required.

.poll_interval String The frequency at which the
notifier will query a matcher for
update operations.

.delivery_interval String The frequency at which the
notifier attempts delivery of
created, or previously failed,
notifications.

.disable_summary Boolean Controls whether notifications
should be summarized to one per
manifest.

Field Type Description

Example notifier configuration
The following notifier snippet is for a minimal configuration.

Example notifier configuration

...
notifier:
 connstring: >-
 host=DB_HOST port=5432 dbname=notifier user=DB_USER password=DB_PASS
 sslmode=verify-ca sslcert=/etc/clair/ssl/cert.pem sslkey=/etc/clair/ssl/key.pem
 sslrootcert=/etc/clair/ssl/ca.pem
 indexer_addr: http://clair-v4/
 matcher_addr: http://clair-v4/
 delivery_interval: 5s
 migrations: true
 poll_interval: 15s
 webhook:
 target: "http://webhook/"
 callback: "http://clair-notifier/notifier/api/v1/notifications"
 headers: ""
 amqp: null
 stomp: null
...

Red Hat Quay 3.11 Vulnerability reporting with Clair on Red Hat Quay

58

9.8.1. Clair webhook configuration fields

The following webhook fields are available for the Clair notifier environment.

Table 9.3. Clair webhook fields

.webhook Object Configures the notifier for
webhook delivery.

.webhook.target String URL where the webhook will be
delivered.

.webhook.callback String The callback URL where
notifications can be retrieved. The
notification ID will be appended
to this URL.

This will typically be where the
Clair notifier is hosted.

.webhook.headers String A map associating a header name
to a list of values.

Example webhook configuration

Example webhook configuration

9.8.2. Clair amqp configuration fields

The following Advanced Message Queuing Protocol (AMQP) fields are available for the Clair notifier
environment.

.amqp Object Configures the notifier for AMQP
delivery.

[NOTE] ==== Clair does not
declare any AMQP components
on its own. All attempts to use an
exchange or queue are passive
only and will fail. Broker
administrators should setup
exchanges and queues ahead of
time. ====

...
notifier:
...
 webhook:
 target: "http://webhook/"
 callback: "http://clair-notifier/notifier/api/v1/notifications"
...

CHAPTER 9. CLAIR CONFIGURATION OVERVIEW

59

.amqp.direct Boolean If true, the notifier will deliver
individual notifications (not a
callback) to the configured AMQP
broker.

.amqp.rollup Integer When amqp.direct is set to true,
this value informs the notifier of
how many notifications to send in
a direct delivery. For example, if
direct is set to true, and
amqp.rollup is set to 5, the
notifier delivers no more than 5
notifications in a single JSON
payload to the broker. Setting the
value to 0 effectively sets it to 1.

.amqp.exchange Object The AMQP exchange to connect
to.

.amqp.exchange.name String The name of the exchange to
connect to.

.amqp.exchange.type String The type of the exchange.
Typically one of the following:
direct, fanout, topic, headers.

.amqp.exchange.durability Boolean Whether the configured queue is
durable.

.amqp.exchange.auto_delete Boolean Whether the configured queue
uses an auto_delete_policy.

.amqp.routing_key String The name of the routing key each
notification is sent with.

.amqp.callback String If amqp.direct is set to false,
this URL is provided in the
notification callback sent to the
broker. This URL should point to
Clair’s notification API endpoint.

.amqp.uris String A list of one or more AMQP
brokers to connect to, in priority
order.

.amqp.tls Object Configures TLS/SSL connection
to an AMQP broker.

.amqp.tls.root_ca String The filesystem path where a root
CA can be read.

Red Hat Quay 3.11 Vulnerability reporting with Clair on Red Hat Quay

60

.amqp.tls.cert String The filesystem path where a
TLS/SSL certificate can be read.

[NOTE] ==== Clair also allows
SSL_CERT_DIR, as
documented for the Go
crypto/x509 package. ====

.amqp.tls.key String The filesystem path where a
TLS/SSL private key can be read.

Example AMQP configuration
The following example shows a hypothetical AMQP configuration for Clair.

Example AMQP configuration

9.8.3. Clair STOMP configuration fields

The following Simple Text Oriented Message Protocol (STOMP) fields are available for the Clair notifier
environment.

.stomp Object Configures the notifier for
STOMP delivery.

.stomp.direct Boolean If true, the notifier delivers
individual notifications (not a
callback) to the configured
STOMP broker.

...
notifier:
...
 amqp:
 exchange:
 name: ""
 type: "direct"
 durable: true
 auto_delete: false
 uris: ["amqp://user:pass@host:10000/vhost"]
 direct: false
 routing_key: "notifications"
 callback: "http://clair-notifier/notifier/api/v1/notifications"
 tls:
 root_ca: "optional/path/to/rootca"
 cert: "madatory/path/to/cert"
 key: "madatory/path/to/key"
...

CHAPTER 9. CLAIR CONFIGURATION OVERVIEW

61

.stomp.rollup Integer If stomp.direct is set to true,
this value limits the number of
notifications sent in a single direct
delivery. For example, if direct is
set to true, and rollup is set to 5,
the notifier delivers no more than
5 notifications in a single JSON
payload to the broker. Setting the
value to 0 effectively sets it to 1.

.stomp.callback String If stomp.callback is set to
false, the provided URL in the
notification callback is sent to the
broker. This URL should point to
Clair’s notification API endpoint.

.stomp.destination String The STOMP destination to deliver
notifications to.

.stomp.uris String A list of one or more STOMP
brokers to connect to in priority
order.

.stomp.tls Object Configured TLS/SSL connection
to STOMP broker.

.stomp.tls.root_ca String The filesystem path where a root
CA can be read.

[NOTE] ==== Clair also respects
SSL_CERT_DIR, as
documented for the Go
crypto/x509 package. ====

.stomp.tls.cert String The filesystem path where a
TLS/SSL certificate can be read.

.stomp.tls.key String The filesystem path where a
TLS/SSL private key can be read.

.stomp.user String Configures login details for the
STOMP broker.

.stomp.user.login String The STOMP login to connect
with.

.stomp.user.passcode String The STOMP passcode to connect
with.

.stomp Object Configures the notifier for
STOMP delivery.

Red Hat Quay 3.11 Vulnerability reporting with Clair on Red Hat Quay

62

Example STOMP configuration
The following example shows a hypothetical STOMP configuration for Clair.

Example STOMP configuration

9.9. CLAIR AUTHORIZATION CONFIGURATION FIELDS

The following authorization configuration fields are available for Clair.

Field Type Description

auth Object Defines Clair’s external and intra-
service JWT based
authentication. If multiple auth
mechanisms are defined, Clair
picks one. Currently, multiple
mechanisms are unsupported.

.psk String Defines pre-shared key
authentication.

.psk.key String A shared base64 encoded key
distributed between all parties
signing and verifying JWTs.

.psk.iss String A list of JWT issuers to verify. An
empty list accepts any issuer in a
JWT claim.

Example authorization configuration
The following authorization snippet is for a minimal configuration.

Example authorization configuration

...
notifier:
...
 stomp:
 desitnation: "notifications"
 direct: false
 callback: "http://clair-notifier/notifier/api/v1/notifications"
 login:
 login: "username"
 passcode: "passcode"
 tls:
 root_ca: "optional/path/to/rootca"
 cert: "madatory/path/to/cert"
 key: "madatory/path/to/key"
...

...

CHAPTER 9. CLAIR CONFIGURATION OVERVIEW

63

9.10. CLAIR TRACE CONFIGURATION FIELDS

The following trace configuration fields are available for Clair.

Field Type Description

trace Object Defines distributed tracing
configuration based on
OpenTelemetry.

.name String The name of the application
traces will belong to.

.probability Integer The probability a trace will occur.

.jaeger Object Defines values for Jaeger tracing.

.jaeger.agent Object Defines values for configuring
delivery to a Jaeger agent.

.jaeger.agent.endpoint String An address in the <host>:
<post> syntax where traces can
be submitted.

.jaeger.collector Object Defines values for configuring
delivery to a Jaeger collector.

.jaeger.collector.endpoint String An address in the <host>:
<post> syntax where traces can
be submitted.

.jaeger.collector.username String A Jaeger username.

.jaeger.collector.password String A Jaeger password.

.jaeger.service_name String The service name registered in
Jaeger.

.jaeger.tags String Key-value pairs to provide
additional metadata.

auth:
 psk:
 key: MTU5YzA4Y2ZkNzJoMQ== 1
 iss: ["quay"]
...

Red Hat Quay 3.11 Vulnerability reporting with Clair on Red Hat Quay

64

.jaeger.buffer_max Integer The maximum number of spans
that can be buffered in memory
before they are sent to the
Jaeger backend for storage and
analysis.

Field Type Description

Example trace configuration
The following example shows a hypothetical trace configuration for Clair.

Example trace configuration

9.11. CLAIR METRICS CONFIGURATION FIELDS

The following metrics configuration fields are available for Clair.

Field Type Description

metrics Object Defines distributed tracing
configuration based on
OpenTelemetry.

.name String The name of the metrics in use.

.prometheus String Configuration for a Prometheus
metrics exporter.

.prometheus.endpoint String Defines the path where metrics
are served.

Example metrics configuration
The following example shows a hypothetical metrics configuration for Clair.

Example metrics configuration

...
trace:
 name: "jaeger"
 probability: 1
 jaeger:
 agent:
 endpoint: "localhost:6831"
 service_name: "clair"
...

...
metrics:
 name: "prometheus"

CHAPTER 9. CLAIR CONFIGURATION OVERVIEW

65

 prometheus:
 endpoint: "/metricsz"
...

Red Hat Quay 3.11 Vulnerability reporting with Clair on Red Hat Quay

66

	Table of Contents
	PREFACE
	PART I. VULNERABILITY REPORTING WITH CLAIR ON RED HAT QUAY OVERVIEW
	CHAPTER 1. CLAIR SECURITY SCANNER
	1.1. ABOUT CLAIR
	1.1.1. Clair releases
	Clair 4.7.1
	Clair 4.7

	1.1.2. Clair vulnerability databases
	1.1.3. Clair supported dependencies
	1.1.4. Clair containers

	1.2. CLAIR SEVERITY MAPPING
	1.2.1. Clair severity strings
	Alpine mapping
	AWS mapping
	Debian mapping
	Oracle mapping
	RHEL mapping
	SUSE mapping
	Ubuntu mapping
	OSV mapping

	CHAPTER 2. CLAIR CONCEPTS
	2.1. CLAIR IN PRACTICE
	2.1.1. Indexing
	2.1.2. Matching
	2.1.3. Notifier service

	2.2. CLAIR AUTHENTICATION
	2.3. CLAIR UPDATERS
	2.4. INFORMATION ABOUT CLAIR UPDATERS
	2.5. CONFIGURING UPDATERS
	2.5.1. Selecting specific updater sets
	Configuring Clair for multiple updaters
	Configuring Clair for Alpine
	Configuring Clair for AWS
	Configuring Clair for Debian
	Configuring Clair for Clair CVSS
	Configuring Clair for Oracle
	Configuring Clair for Photon
	Configuring Clair for SUSE
	Configuring Clair for Ubuntu
	Configuring Clair for OSV

	2.5.2. Selecting updater sets for full Red Hat Enterprise Linux (RHEL) coverage
	2.5.3. Advanced updater configuration
	Configuring the alpine updater
	Configuring the debian updater
	Configuring the clair.cvss updater
	Configuring the oracle updater
	Configuring the photon updater
	Configuring the rhel updater
	Configuring the rhcc updater
	Configuring the suse updater
	Configuring the ubuntu updater
	Configuring the osv updater

	2.5.4. Disabling the Clair Updater component

	2.6. CVE RATINGS FROM THE NATIONAL VULNERABILITY DATABASE
	2.7. FEDERAL INFORMATION PROCESSING STANDARD (FIPS) READINESS AND COMPLIANCE
	2.7.1. Enabling FIPS compliance

	PART II. CLAIR ON RED HAT QUAY
	CHAPTER 3. SETTING UP CLAIR ON STANDALONE RED HAT QUAY DEPLOYMENTS
	3.1. USING CLAIR WITH AN UPSTREAM IMAGE FOR RED HAT QUAY

	CHAPTER 4. CLAIR ON OPENSHIFT CONTAINER PLATFORM
	CHAPTER 5. TESTING CLAIR
	PART III. ADVANCED CLAIR CONFIGURATION
	CHAPTER 6. UNMANAGED CLAIR CONFIGURATION
	6.1. RUNNING A CUSTOM CLAIR CONFIGURATION WITH AN UNMANAGED CLAIR DATABASE
	6.2. CONFIGURING A CUSTOM CLAIR DATABASE WITH AN UNMANAGED CLAIR DATABASE

	CHAPTER 7. RUNNING A CUSTOM CLAIR CONFIGURATION WITH A MANAGED CLAIR DATABASE
	7.1. SETTING A CLAIR DATABASE TO MANAGED
	7.2. CONFIGURING A CUSTOM CLAIR DATABASE WITH A MANAGED CLAIR CONFIGURATION

	CHAPTER 8. CLAIR IN DISCONNECTED ENVIRONMENTS
	8.1. SETTING UP CLAIR IN A DISCONNECTED OPENSHIFT CONTAINER PLATFORM CLUSTER
	8.1.1. Installing the clairctl command line utility tool for OpenShift Container Platform deployments
	8.1.2. Retrieving and decoding the Clair configuration secret for Clair deployments on OpenShift Container Platform
	8.1.3. Exporting the updaters bundle from a connected Clair instance
	8.1.4. Configuring access to the Clair database in the disconnected OpenShift Container Platform cluster
	8.1.5. Importing the updaters bundle into the disconnected OpenShift Container Platform cluster

	8.2. SETTING UP A SELF-MANAGED DEPLOYMENT OF CLAIR FOR A DISCONNECTED OPENSHIFT CONTAINER PLATFORM CLUSTER
	8.2.1. Installing the clairctl command line utility tool for a self-managed Clair deployment on OpenShift Container Platform
	8.2.2. Deploying a self-managed Clair container for disconnected OpenShift Container Platform clusters
	8.2.3. Exporting the updaters bundle from a connected Clair instance
	8.2.4. Configuring access to the Clair database in the disconnected OpenShift Container Platform cluster
	8.2.5. Importing the updaters bundle into the disconnected OpenShift Container Platform cluster

	8.3. MAPPING REPOSITORIES TO COMMON PRODUCT ENUMERATION INFORMATION
	8.3.1. Mapping repositories to Common Product Enumeration example configuration

	CHAPTER 9. CLAIR CONFIGURATION OVERVIEW
	9.1. INFORMATION ABOUT USING CLAIR IN A PROXY ENVIRONMENT
	9.2. CLAIR CONFIGURATION REFERENCE
	9.3. CLAIR GENERAL FIELDS
	Example configuration for general Clair fields

	9.4. CLAIR INDEXER CONFIGURATION FIELDS
	Example indexer configuration

	9.5. CLAIR MATCHER CONFIGURATION FIELDS
	Example matcher configuration

	9.6. CLAIR MATCHERS CONFIGURATION FIELDS
	Example matchers configuration

	9.7. CLAIR UPDATERS CONFIGURATION FIELDS
	Example updaters configuration

	9.8. CLAIR NOTIFIER CONFIGURATION FIELDS
	Example notifier configuration
	9.8.1. Clair webhook configuration fields
	Example webhook configuration

	9.8.2. Clair amqp configuration fields
	Example AMQP configuration

	9.8.3. Clair STOMP configuration fields
	Example STOMP configuration

	9.9. CLAIR AUTHORIZATION CONFIGURATION FIELDS
	Example authorization configuration

	9.10. CLAIR TRACE CONFIGURATION FIELDS
	Example trace configuration

	9.11. CLAIR METRICS CONFIGURATION FIELDS
	Example metrics configuration

