
Red Hat Quay 3.8

Deploy Red Hat Quay - High Availability

Deploy Red Hat Quay HA

Last Updated: 2024-01-15

Red Hat Quay 3.8 Deploy Red Hat Quay - High Availability

Deploy Red Hat Quay HA

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Deploy Red Hat Quay in a HA environment

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

PREFACE

CHAPTER 1. OVERVIEW
1.1. ARCHITECTURE

1.1.1. Internal components
1.1.2. External components

CHAPTER 2. PREPARING FOR RED HAT QUAY (HIGH AVAILABILITY)
2.1. PREREQUISITES
2.2. USING PODMAN
2.3. SETTING UP THE HAPROXY LOAD BALANCER AND THE POSTGRESQL DATABASE
2.4. SET UP CEPH

2.4.1. Install each Ceph node
2.4.2. Configure the Ceph Ansible node (ceph05)
2.4.3. Install the Ceph Object Gateway

2.5. SET UP REDIS

CHAPTER 3. CONFIGURING RED HAT QUAY

CHAPTER 4. DEPLOYING RED HAT QUAY
4.1. ADD CLAIR IMAGE SCANNING TO RED HAT QUAY
4.2. ADD REPOSITORY MIRRORING RED HAT QUAY

CHAPTER 5. STARTING TO USE RED HAT QUAY

CHAPTER 6. UPGRADING A GEO-REPLICATION DEPLOYMENT OF RED HAT QUAY

CHAPTER 7. PERFORMING HEALTH CHECKS ON RED HAT QUAY DEPLOYMENTS
7.1. RED HAT QUAY HEALTH CHECK ENDPOINTS
7.2. NAVIGATING TO A RED HAT QUAY HEALTH CHECK ENDPOINT
ADDITIONAL RESOURCES

3

4
4
4
4

6
6
7
7
11
11

12
14
14

16

20
21
21

23

24

27
27
28
28

Table of Contents

1

Red Hat Quay 3.8 Deploy Red Hat Quay - High Availability

2

PREFACE
Red Hat Quay is an enterprise-quality container registry. Use Quay to build and store containers, then
deploy them to the servers across your enterprise.

This procedure describes how to deploy a high availability, enterprise-quality Red Hat Quay setup.

PREFACE

3

CHAPTER 1. OVERVIEW
Red Hat Quay includes the following features:

High availability

Geo-replication

Repository mirroring

Docker v2, schema 2 (multi-arch) support

Continuous integration

Security scanning with Clair

Custom log rotation

Zero downtime garbage collection

24/7 support

Red Hat Quay provides support for the following:

Multiple authentication and access methods

Multiple storage backends

Custom certificates for Quay, Clair, and storage backends

Application registries

Different container image types

1.1. ARCHITECTURE

Red Hat Quay includes several core components, both internal and external.

1.1.1. Internal components

Red Hat Quay includes the following internal components:

Quay (container registry). Runs the Quay container as a service, consisting of several
components in the pod.

Clair. Scans container images for vulnerabilities and suggests fixes.

1.1.2. External components

Red Hat Quay includes the following external components:

Database. Used by Red Hat Quay as its primary metadata storage. Note that this is not for
image storage.

Redis (key-value store). Stores live builder logs and the Red Hat Quay tutorial. Also includes
the locking mechanism that is required for garbage collection.

Red Hat Quay 3.8 Deploy Red Hat Quay - High Availability

4

Cloud storage. For supported deployments, one of the following storage types must be used:

Public cloud storage. In public cloud environments, you should use the cloud provider’s
object storage, such as Amazon Web Services’s Amazon S3 or Google Cloud’s Google
Cloud Storage.

Private cloud storage. In private clouds, an S3 or Swift compliant Object Store is needed,
such as Ceph RADOS, or OpenStack Swift.

WARNING

Do not use "Locally mounted directory" Storage Engine for any production
configurations. Mounted NFS volumes are not supported. Local storage is meant for
Red Hat Quay test-only installations.

CHAPTER 1. OVERVIEW

5

CHAPTER 2. PREPARING FOR RED HAT QUAY (HIGH
AVAILABILITY)

NOTE

This procedure presents guidance on how to set up a highly available, production-quality
deployment of Red Hat Quay.

2.1. PREREQUISITES

Here are a few things you need to know before you begin the Red Hat Quay high availability
deployment:

Either Postgres or MySQL can be used to provide the database service. Postgres was chosen
here as the database because it includes the features needed to support Clair security scanning.
Other options include:

Crunchy Data PostgreSQL Operator: Although not supported directly by Red Hat, the
CrunchDB Operator is available from Crunchy Data for use with Red Hat Quay. If you take
this route, you should have a support contract with Crunchy Data and work directly with
them for usage guidance or issues relating to the operator and their database.

If your organization already has a high-availability (HA) database, you can use that database
with Red Hat Quay. See the Red Hat Quay Support Policy for details on support for third-
party databases and other components.

Ceph Object Gateway (also called RADOS Gateway) is one example of a product that can
provide the object storage needed by Red Hat Quay. If you want your Red Hat Quay setup to do
geo-replication, Ceph Object Gateway or other supported object storage is required. For cloud
installations, you can use any of the following cloud object storage:

Amazon S3 (see S3 IAM Bucket Policy for details on configuring an S3 bucket policy for
Quay)

Azure Blob Storage

Google Cloud Storage

Ceph Object Gateway

OpenStack Swift

CloudFront + S3

NooBaa S3 Storage

The haproxy server is used in this example, although you can use any proxy service that works
for your environment.

Number of systems: This procedure uses seven systems (physical or virtual) that are assigned
with the following tasks:

A: db01: Load balancer and database: Runs the haproxy load balancer and a Postgres
database. Note that these components are not themselves highly available, but are used to
indicate how you might set up your own load balancer or production database.

Red Hat Quay 3.8 Deploy Red Hat Quay - High Availability

6

https://access.crunchydata.com/documentation/postgres-operator/latest/
https://www.crunchydata.com/
https://access.redhat.com/support/policy/updates/rhquay/policies
https://access.redhat.com/solutions/3680151

B: quay01, quay02, quay03: Quay and Redis: Three (or more) systems are assigned to run
the Quay and Redis services.

C: ceph01, ceph02, ceph03, ceph04, ceph05: Ceph: Three (or more) systems provide the
Ceph service, for storage. If you are deploying to a cloud, you can use the cloud storage
features described earlier. This procedure employs an additional system for Ansible
(ceph05) and one for a Ceph Object Gateway (ceph04).

Each system should have the following attributes:

Red Hat Enterprise Linux (RHEL) 8: Obtain the latest Red Hat Enterprise Linux 8 server media
from the Downloads page and follow the installation instructions available in the Product
Documentation for Red Hat Enterprise Linux 8.

Valid Red Hat Subscription: Configure a valid Red Hat Enterprise Linux 8 server
subscription.

CPUs: Two or more virtual CPUs

RAM: 4GB for each A and B system; 8GB for each C system

Disk space: About 20GB of disk space for each A and B system (10GB for the operating
system and 10GB for docker storage). At least 30GB of disk space for C systems (or more
depending on required container storage).

NOTE

Red Hat Enterprise Linux (RHEL) 8 is strongly recommended for highly available,
production quality deployments of Red Hat Quay 3.7. RHEL 7 has not been tested with
Red Hat Quay 3.7, and will be deprecated in a future release.

2.2. USING PODMAN

This document uses podman for creating and deploying containers. If you do not have podman available
on your system, you should be able to use the equivalent docker commands. For more information on
podman and related technologies, see Building, running, and managing Linux containers on Red Hat
Enterprise Linux 8.

NOTE

Podman is strongly recommended for highly available, production quality deployments of
Red Hat Quay 3.7. Docker has not been tested with Red Hat Quay 3.7, and will be
deprecated in a future release.

2.3. SETTING UP THE HAPROXY LOAD BALANCER AND THE
POSTGRESQL DATABASE

Use the following procedure to set up the HAProxy load balancer and the PostgreSQL database.

Prerequisites

You have installed the Podman or Docker CLI.

Procedure

CHAPTER 2. PREPARING FOR RED HAT QUAY (HIGH AVAILABILITY)

7

https://access.redhat.com/downloads/content/479/ver=/rhel---8/8.3/x86_64/product-software
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/building_running_and_managing_containers/index

1. On the first two systems, q01 and q02, install the HAProxy load balancer and the PostgreSQL
database. This configures HAProxy as the access point and load balancer for the following
services running on other systems:

Red Hat Quay (ports 80 and 443 on B systems)

Redis (port 6379 on B systems)

RADOS (port 7480 on C systems)

1. Open all HAProxy ports in SELinux and selected HAProxy ports in the firewall:

1. Configure the /etc/haproxy/haproxy.cfg to point to the systems and ports providing the Red
Hat Quay, Redis and Ceph RADOS services. The following are examples of defaults and added
frontend and backend settings:

#---
common defaults that all the 'listen' and 'backend' sections will
use if not designated in their block
#---
defaults
 mode tcp
 log global
 option httplog
 option dontlognull
 option http-server-close
 option forwardfor except 127.0.0.0/8
 option redispatch
 retries 3
 timeout http-request 10s
 timeout queue 1m
 timeout connect 10s
 timeout client 1m
 timeout server 1m
 timeout http-keep-alive 10s
 timeout check 10s
 maxconn 3000

#---
main frontend which proxys to the backends
#---

frontend fe_http *:80
 default_backend be_http
frontend fe_https *:443
 default_backend be_https
frontend fe_redis *:6379
 default_backend be_redis
frontend fe_rdgw *:7480
 default_backend be_rdgw

setsebool -P haproxy_connect_any=on
firewall-cmd --permanent --zone=public --add-port=6379/tcp --add-port=7480/tcp
success
firewall-cmd --reload
success

Red Hat Quay 3.8 Deploy Red Hat Quay - High Availability

8

backend be_http
 balance roundrobin
 server quay01 quay01:80 check
 server quay02 quay02:80 check
 server quay03 quay03:80 check
backend be_https
 balance roundrobin
 server quay01 quay01:443 check
 server quay02 quay02:443 check
 server quay03 quay03:443 check
backend be_rdgw
 balance roundrobin
 server ceph01 ceph01:7480 check
 server ceph02 ceph02:7480 check
 server ceph03 ceph03:7480 check
backend be_redis
server quay01 quay01:6379 check inter 1s
server quay02 quay02:6379 check inter 1s
server quay03 quay03:6379 check inter 1s

After the new haproxy.cfg file is in place, restart the HAProxy service by entering the following
command:

2. Create a folder for the PostgreSQL database by entering the following command:

3. Set the following permissions for the /var/lib/pgsql/data folder:

4. Enter the following command to start the PostgreSQL database:

NOTE

Data from the container will be stored on the host system in the
/var/lib/pgsql/data directory.

5. List the available extensions by entering the following command:

Example output

systemctl restart haproxy

$ mkdir -p /var/lib/pgsql/data

$ chmod 777 /var/lib/pgsql/data

$ sudo podman run -d --name postgresql_database \
 -v /var/lib/pgsql/data:/var/lib/pgsql/data:Z \
 -e POSTGRESQL_USER=quayuser -e POSTGRESQL_PASSWORD=quaypass \
 -e POSTGRESQL_DATABASE=quaydb -p 5432:5432 \
 {postgresimage}

$ sudo podman exec -it postgresql_database /bin/bash -c 'echo "SELECT * FROM
pg_available_extensions" | /opt/rh/rh-postgresql96/root/usr/bin/psql'

CHAPTER 2. PREPARING FOR RED HAT QUAY (HIGH AVAILABILITY)

9

6. Create the pg_trgm extension by entering the following command:

7. Confirm that the pg_trgm has been created by entering the following command:

Example output

8. Alter the privileges of the Postgres user quayuser and grant them the superuser role to give
the user unrestricted access to the database:

Example output

9. If you have a firewalld service active on your system, run the following commands to make the
PostgreSQL port available through the firewall:

10. Optional. If you do not have the postgres CLI package installed, install it by entering the
following command:

11. Use the psql command to test connectivity to the PostgreSQL database.

NOTE

To verify that you can access the service remotely, run the following command
on a remote system.

 name | default_version | installed_version | comment
-----------+-----------------+-------------------+--
 adminpack | 1.0 | | administrative functions for PostgreSQL
...

$ sudo podman exec -it postgresql_database /bin/bash -c 'echo "CREATE EXTENSION IF
NOT EXISTS pg_trgm;" | /opt/rh/rh-postgresql96/root/usr/bin/psql -d quaydb'

$ sudo podman exec -it postgresql_database /bin/bash -c 'echo "SELECT * FROM
pg_extension" | /opt/rh/rh-postgresql96/root/usr/bin/psql'

 extname | extowner | extnamespace | extrelocatable | extversion | extconfig | extcondition
---------+----------+--------------+----------------+------------+-----------+--------------
 plpgsql | 10 | 11 | f | 1.0 | |
 pg_trgm | 10 | 2200 | t | 1.3 | |
(2 rows)

$ sudo podman exec -it postgresql_database /bin/bash -c 'echo "ALTER USER quayuser
WITH SUPERUSER;" | /opt/rh/rh-postgresql96/root/usr/bin/psql'

ALTER ROLE

firewall-cmd --permanent --zone=trusted --add-port=5432/tcp

firewall-cmd --reload

yum install postgresql -y

Red Hat Quay 3.8 Deploy Red Hat Quay - High Availability

10

psql -h localhost quaydb quayuser

Example output

2.4. SET UP CEPH

For this Red Hat Quay configuration, we create a three-node Ceph cluster, with several other supporting
nodes, as follows:

ceph01, ceph02, and ceph03 - Ceph Monitor, Ceph Manager and Ceph OSD nodes

ceph04 - Ceph RGW node

ceph05 - Ceph Ansible administration node

For details on installing Ceph nodes, see Installing Red Hat Ceph Storage on Red Hat Enterprise Linux .

Once you have set up the Ceph storage cluster, create a Ceph Object Gateway (also referred to as a
RADOS gateway). See Installing the Ceph Object Gateway for details.

2.4.1. Install each Ceph node

On ceph01, ceph02, ceph03, ceph04, and ceph05, do the following:

1. Review prerequisites for setting up Ceph nodes in Requirements for Installing Red Hat Ceph
Storage. In particular:

Decide if you want to use RAID controllers on OSD nodes .

Decide if you want a separate cluster network for your Ceph Network Configuration .

2. Prepare OSD storage (ceph01, ceph02, and ceph03 only). Set up the OSD storage on the three
OSD nodes (ceph01, ceph02, and ceph03). See OSD Ansible Settings in Table 3.2 for details on
supported storage types that you will enter into your Ansible configuration later. For this
example, a single, unformatted block device (/dev/sdb), that is separate from the operating
system, is configured on each of the OSD nodes. If you are installing on metal, you might want to
add an extra hard drive to the machine for this purpose.

3. Install Red Hat Enterprise Linux Server edition, as described in the RHEL 7 Installation Guide .

4. Register and subscribe each Ceph node as described in the Registering Red Hat Ceph Storage
Nodes. Here is how to subscribe to the necessary repos:

subscription-manager repos --disable=*
subscription-manager repos --enable=rhel-7-server-rpms
subscription-manager repos --enable=rhel-7-server-extras-rpms

Password for user test:
psql (9.2.23, server 9.6.5)
WARNING: psql version 9.2, server version 9.6.
 Some psql features might not work.
Type "help" for help.

test=> \q

CHAPTER 2. PREPARING FOR RED HAT QUAY (HIGH AVAILABILITY)

11

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/3/html-single/installation_guide_for_red_hat_enterprise_linux
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/3/html/installation_guide_for_red_hat_enterprise_linux/deploying-red-hat-ceph-storage#installing-the-ceph-object-gateway
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/3/html-single/installation_guide_for_red_hat_enterprise_linux/index#requirements-for-installing-rhcs
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/3/html-single/installation_guide_for_red_hat_enterprise_linux/index#considerations-for-using-a-raid-controller-with-osd-nodes
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/3/html-single/installation_guide_for_red_hat_enterprise_linux/index#verifying-the-network-configuration-for-red-hat-ceph-storage
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/3/html-single/installation_guide_for_red_hat_enterprise_linux/index#installing-a-red-hat-ceph-storage-cluster
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html-single/installation_guide/
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/3/html-single/installation_guide_for_red_hat_enterprise_linux/#registering-red-hat-ceph-storage-nodes-to-cdn-and-attaching-subscriptions

subscription-manager repos --enable=rhel-7-server-rhceph-3-mon-rpms
subscription-manager repos --enable=rhel-7-server-rhceph-3-osd-rpms
subscription-manager repos --enable=rhel-7-server-rhceph-3-tools-rpms

5. Create an ansible user with root privilege on each node. Choose any name you like. For example:

USER_NAME=ansibleadmin
useradd $USER_NAME -c "Ansible administrator"
passwd $USER_NAME
New password: *********
Retype new password: *********
cat << EOF >/etc/sudoers.d/admin
admin ALL = (root) NOPASSWD:ALL
EOF
chmod 0440 /etc/sudoers.d/$USER_NAME

2.4.2. Configure the Ceph Ansible node (ceph05)

Log into the Ceph Ansible node (ceph05) and configure it as follows. You will need the ceph01, ceph02,
and ceph03 nodes to be running to complete these steps.

1. In the Ansible user’s home directory create a directory to store temporary values created from
the ceph-ansible playbook

USER_NAME=ansibleadmin
sudo su - $USER_NAME
[ansibleadmin@ceph05 ~]$ mkdir ~/ceph-ansible-keys

2. Enable password-less ssh for the ansible user. Run ssh-keygen on ceph05 (leave passphrase
empty), then run and repeat ssh-copy-id to copy the public key to the Ansible user on ceph01,
ceph02, and ceph03 systems:

USER_NAME=ansibleadmin
sudo su - $USER_NAME
[ansibleadmin@ceph05 ~]$ ssh-keygen
[ansibleadmin@ceph05 ~]$ ssh-copy-id $USER_NAME@ceph01
[ansibleadmin@ceph05 ~]$ ssh-copy-id $USER_NAME@ceph02
[ansibleadmin@ceph05 ~]$ ssh-copy-id $USER_NAME@ceph03
[ansibleadmin@ceph05 ~]$ exit
#

3. Install the ceph-ansible package:

yum install ceph-ansible

4. Create a symbolic between these two directories:

ln -s /usr/share/ceph-ansible/group_vars \
 /etc/ansible/group_vars

5. Create copies of Ceph sample yml files to modify:

cd /usr/share/ceph-ansible

Red Hat Quay 3.8 Deploy Red Hat Quay - High Availability

12

cp group_vars/all.yml.sample group_vars/all.yml
cp group_vars/osds.yml.sample group_vars/osds.yml
cp site.yml.sample site.yml

6. Edit the copied group_vars/all.yml file. See General Ansible Settings in Table 3.1 for details. For
example:

ceph_origin: repository
ceph_repository: rhcs
ceph_repository_type: cdn
ceph_rhcs_version: 3
monitor_interface: eth0
public_network: 192.168.122.0/24

Note that your network device and address range may differ.

7. Edit the copied group_vars/osds.yml file. See the OSD Ansible Settings in Table 3.2 for
details. In this example, the second disk device (/dev/sdb) on each OSD node is used for both
data and journal storage:

osd_scenario: collocated
devices:
 - /dev/sdb
dmcrypt: true
osd_auto_discovery: false

8. Edit the /etc/ansible/hosts inventory file to identify the Ceph nodes as Ceph monitor, OSD and
manager nodes. In this example, the storage devices are identified on each node as well:

[mons]
ceph01
ceph02
ceph03

[osds]
ceph01 devices="['/dev/sdb']"
ceph02 devices="['/dev/sdb']"
ceph03 devices="['/dev/sdb']"

[mgrs]
ceph01 devices="['/dev/sdb']"
ceph02 devices="['/dev/sdb']"
ceph03 devices="['/dev/sdb']"

9. Add this line to the /etc/ansible/ansible.cfg file, to save the output from each Ansible playbook
run into your Ansible user’s home directory:

retry_files_save_path = ~/

10. Check that Ansible can reach all the Ceph nodes you configured as your Ansible user:

USER_NAME=ansibleadmin
sudo su - $USER_NAME
[ansibleadmin@ceph05 ~]$ ansible all -m ping

CHAPTER 2. PREPARING FOR RED HAT QUAY (HIGH AVAILABILITY)

13

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/3/html-single/installation_guide_for_red_hat_enterprise_linux/index#installing-a-red-hat-ceph-storage-cluster
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/3/html-single/installation_guide_for_red_hat_enterprise_linux/index#installing-a-red-hat-ceph-storage-cluster

ceph01 | SUCCESS => {
 "changed": false,
 "ping": "pong"
}
ceph02 | SUCCESS => {
 "changed": false,
 "ping": "pong"
}
ceph03 | SUCCESS => {
 "changed": false,
 "ping": "pong"
}
[ansibleadmin@ceph05 ~]$

11. Run the ceph-ansible playbook (as your Ansible user):

[ansibleadmin@ceph05 ~]$ cd /usr/share/ceph-ansible/
[ansibleadmin@ceph05 ~]$ ansible-playbook site.yml

At this point, the Ansible playbook will check your Ceph nodes and configure them for the
services you requested. If anything fails, make needed corrections and rerun the command.

12. Log into one of the three Ceph nodes (ceph01, ceph02, or ceph03) and check the health of the
Ceph cluster:

ceph health
HEALTH_OK

13. On the same node, verify that monitoring is working using rados:

ceph osd pool create test 8
echo 'Hello World!' > hello-world.txt
rados --pool test put hello-world hello-world.txt
rados --pool test get hello-world fetch.txt
cat fetch.txt
Hello World!

2.4.3. Install the Ceph Object Gateway

On the Ansible system (ceph05), configure a Ceph Object Gateway to your Ceph Storage cluster (which
will ultimately run on ceph04). See Installing the Ceph Object Gateway for details.

2.5. SET UP REDIS

With Red Hat Enterprise Linux 8 server installed on each of the three Red Hat Quay systems (quay01,
quay02, and quay03), install and start the Redis service as follows:

1. Install / Deploy Redis: Run Redis as a container on each of the three quay0* systems:

mkdir -p /var/lib/redis
chmod 777 /var/lib/redis
sudo podman run -d -p 6379:6379 \
 -v /var/lib/redis:/var/lib/redis/data:Z \
 registry.redhat.io/rhel8/redis-5

Red Hat Quay 3.8 Deploy Red Hat Quay - High Availability

14

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/3/html/installation_guide_for_red_hat_enterprise_linux/deploying-red-hat-ceph-storage#installing-the-ceph-object-gateway
https://access.redhat.com/containers/?tab=overview#/registry.access.redhat.com/rhel8/redis-5)

2. Check redis connectivity: You can use the telnet command to test connectivity to the redis
service. Type MONITOR (to begin monitoring the service) and QUIT to exit:

yum install telnet -y
telnet 192.168.122.99 6379
Trying 192.168.122.99...
Connected to 192.168.122.99.
Escape character is '^]'.
MONITOR
+OK
+1525703165.754099 [0 172.17.0.1:43848] "PING"
QUIT
+OK
Connection closed by foreign host.

NOTE

For more information on using podman and restarting containers, see the section "Using
podman" earlier in this document.

CHAPTER 2. PREPARING FOR RED HAT QUAY (HIGH AVAILABILITY)

15

CHAPTER 3. CONFIGURING RED HAT QUAY
Before running the Red Hat Quay service as a container, you need to use that same Quay container to
create the configuration file (config.yaml) needed to deploy Red Hat Quay. To do that, you pass a
config argument and a password (replace my-secret-password here) to the Quay container. Later, you
use that password to log into the configuration tool as the user quayconfig.

Here’s an example of how to do that:

1. Start quay in setup mode: On the first quay node, run the following:

sudo podman run --rm -it --name quay_config -p 8080:8080 registry.redhat.io/quay/quay-
rhel8:v3.8.15 config my-secret-password

2. Open browser: When the quay configuration tool starts up, open a browser to the URL and port
8080 of the system you are running the configuration tool on (for example
http://myquay.example.com:8080). You are prompted for a username and password.

3. Log in as quayconfig: When prompted, enter the quayconfig username and password (the one
from the podman run command line).

4. Fill in the required fields: When you start the config tool without mounting an existing
configuration bundle, you will be booted into an initial setup session. In a setup session, default
values will be filled automatically. The following steps will walk through how to fill out the
remaining required fields.

5. Identify the database: For the initial setup, you must include the following information about
the type and location of the database to be used by Red Hat Quay:

Database Type: Choose MySQL or PostgreSQL. MySQL will be used in the basic example;
PostgreSQL is used with the high availability Red Hat Quay on OpenShift examples.

Database Server: Identify the IP address or hostname of the database, along with the port
number if it is different from 3306.

Username: Identify a user with full access to the database.

Password: Enter the password you assigned to the selected user.

Database Name: Enter the database name you assigned when you started the database
server.

SSL Certificate: For production environments, you should provide an SSL certificate to
connect to the database.
The following figure shows an example of the screen for identifying the database used by
Red Hat Quay:

Red Hat Quay 3.8 Deploy Red Hat Quay - High Availability

16

http://myquay.example.com:8080

6. Identify the Redis hostname, Server Configuration and add other desired settings: Other
setting you can add to complete the setup are as follows. More settings for high availability Red
Hat Quay deployment that for the basic deployment:

For the basic, test configuration, identifying the Redis Hostname should be all you need to
do. However, you can add other features, such as Clair Scanning and Repository Mirroring,
as described at the end of this procedure.

For the high availability and OpenShift configurations, more settings are needed (as noted
below) to allow for shared storage, secure communications between systems, and other
features.
Here are the settings you need to consider:

Custom SSL Certificates: Upload custom or self-signed SSL certificates for use by Red
Hat Quay. See Using SSL to protect connections to Red Hat Quay for details.
Recommended for high availability.

IMPORTANT

Using SSL certificates is recommended for both basic and high availability
deployments. If you decide to not use SSL, you must configure your
container clients to use your new Red Hat Quay setup as an insecure registry
as described in Test an Insecure Registry .

Basic Configuration: Upload a company logo to rebrand your Red Hat Quay registry.

Server Configuration: Hostname or IP address to reach the Red Hat Quay service, along
with TLS indication (recommended for production installations). The Server Hostname is
required for all Red Hat Quay deployments. TLS termination can be done in two different
ways:

On the instance itself, with all TLS traffic governed by the nginx server in the Quay

CHAPTER 3. CONFIGURING RED HAT QUAY

17

https://access.redhat.com/documentation/en-us/red_hat_quay/3.8/html-single/manage_red_hat_quay/index#using-ssl-to-protect-quay
https://docs.docker.com/registry/insecure/

On the instance itself, with all TLS traffic governed by the nginx server in the Quay
container (recommended).

On the load balancer. This is not recommended. Access to Red Hat Quay could be lost
if the TLS setup is not done correctly on the load balancer.

Data Consistency Settings: Select to relax logging consistency guarantees to improve
performance and availability.

Time Machine: Allow older image tags to remain in the repository for set periods of time
and allow users to select their own tag expiration times.

redis: Identify the hostname or IP address (and optional password) to connect to the redis
service used by Red Hat Quay.

Repository Mirroring: Choose the checkbox to Enable Repository Mirroring. With this
enabled, you can create repositories in your Red Hat Quay cluster that mirror selected
repositories from remote registries. Before you can enable repository mirroring, start the
repository mirroring worker as described later in this procedure.

Registry Storage: Identify the location of storage. A variety of cloud and local storage
options are available. Remote storage is required for high availability. Identify the Ceph
storage location if you are following the example for Red Hat Quay high availability storage.
On OpenShift, the example uses Amazon S3 storage.

Action Log Storage Configuration: Action logs are stored in the Red Hat Quay database
by default. If you have a large amount of action logs, you can have those logs directed to
Elasticsearch for later search and analysis. To do this, change the value of Action Logs
Storage to Elasticsearch and configure related settings as described in Configure action log
storage.

Action Log Rotation and Archiving: Select to enable log rotation, which moves logs older
than 30 days into storage, then indicate storage area.

Security Scanner: Enable security scanning by selecting a security scanner endpoint and
authentication key. To setup Clair to do image scanning, refer to Clair Setup and
Configuring Clair. Recommended for high availability.

Application Registry: Enable an additional application registry that includes things like
Kubernetes manifests or Helm charts (see the App Registry specification).

rkt Conversion: Allow rkt fetch to be used to fetch images from Red Hat Quay registry.
Public and private GPG2 keys are needed. This field is deprecated.

E-mail: Enable e-mail to use for notifications and user password resets.

Internal Authentication: Change default authentication for the registry from Local
Database to LDAP, Keystone (OpenStack), JWT Custom Authentication, or External
Application Token.

External Authorization (OAuth): Enable to allow GitHub or GitHub Enterprise to
authenticate to the registry.

Google Authentication: Enable to allow Google to authenticate to the registry.

Access Settings: Basic username/password authentication is enabled by default. Other
authentication types that can be enabled include: external application tokens (user-

Red Hat Quay 3.8 Deploy Red Hat Quay - High Availability

18

https://access.redhat.com/documentation/en-us/red_hat_quay/3.8/html-single/manage_red_hat_quay/index#configure-action-log-storage
https://access.redhat.com/documentation/en-us/red_hat_quay/3.8/html-single/manage_red_hat_quay/#clair-initial-setup
https://access.redhat.com/documentation/en-us/red_hat_quay/3.8/html-single/manage_red_hat_quay/#configuring-clair-for-tls
https://github.com/app-registry

generated tokens used with docker or rkt commands), anonymous access (enable for public
access to anyone who can get to the registry), user creation (let users create their own
accounts), encrypted client password (require command-line user access to include
encrypted passwords), and prefix username autocompletion (disable to require exact
username matches on autocompletion).

Registry Protocol Settings: Leave the Restrict V1 Push Support checkbox enabled to
restrict access to Docker V1 protocol pushes. Although Red Hat recommends against
enabling Docker V1 push protocol, if you do allow it, you must explicitly whitelist the
namespaces for which it is enabled.

Dockerfile Build Support: Enable to allow users to submit Dockerfiles to be built and
pushed to Red Hat Quay. This is not recommended for multitenant environments.

7. Validate the changes: Select Validate Configuration Changes. If validation is successful, you
will be presented with the following Download Configuration modal:

8. Download configuration: Select the Download Configuration button and save the tarball
(quay-config.tar.gz) to a local directory to use later to start Red Hat Quay.

At this point, you can shutdown the Red Hat Quay configuration tool and close your browser. Next, copy
the tarball file to the system on which you want to install your first Red Hat Quay node. For a basic install,
you might just be running Red Hat Quay on the same system.

CHAPTER 3. CONFIGURING RED HAT QUAY

19

CHAPTER 4. DEPLOYING RED HAT QUAY
To deploy the Red Hat Quay service on the nodes in your cluster, you use the same Quay container you
used to create the configuration file. The differences here are that you:

Identify directories where the configuration files and data are stored

Run the command with --sysctl net.core.somaxconn=4096

Don’t use the config option or password

For a basic setup, you can deploy on a single node; for high availability you probably want three or more
nodes (for example, quay01, quay02, and quay03).

NOTE

The resulting Red Hat Quay service will listen on regular port 8080 and SSL port 8443.
This is different from previous releases of Red Hat Quay, which listened on standard ports
80 and 443, respectively. In this document, we map 8080 and 8443 to standard ports 80
and 443 on the host, respectively. Througout the rest of this document, we assume you
have mapped the ports in this way.

Here is what you do:

1. Create directories: Create two directories to store configuration information and data on the
host. For example:

mkdir -p /mnt/quay/config
#optional: if you don't choose to install an Object Store
mkdir -p /mnt/quay/storage

2. Copy config files: Copy the tarball (quay-config.tar.gz) to the configuration directory and
unpack it. For example:

cp quay-config.tar.gz /mnt/quay/config/
tar xvf quay-config.tar.gz
config.yaml ssl.cert ssl.key

3. Deploy Red Hat Quay: Having already authenticated to Quay.io (see Accessing Red Hat Quay)
run Red Hat Quay as a container, as follows:

NOTE

Add -e DEBUGLOG=true to the podman run command line for the Quay
container to enable debug level logging. Add -e IGNORE_VALIDATION=true to
bypass validation during the startup process.

sudo podman run --restart=always -p 443:8443 -p 80:8080 \
 --sysctl net.core.somaxconn=4096 \
 --privileged=true \
 -v /mnt/quay/config:/conf/stack:Z \
 -v /mnt/quay/storage:/datastorage:Z \
 -d registry.redhat.io/quay/quay-rhel8:v3.8.15

Red Hat Quay 3.8 Deploy Red Hat Quay - High Availability

20

https://access.redhat.com/solutions/3533201

4. Open browser to UI: Once the Quay container has started, go to your web browser and open
the URL, to the node running the Quay container.

5. Log into Red Hat Quay: Using the superuser account you created during configuration, log in
and make sure Red Hat Quay is working properly.

6. Add more Red Hat Quay nodes: At this point, you have the option of adding more nodes to this
Red Hat Quay cluster by simply going to each node, then adding the tarball and starting the
Quay container as just shown.

7. Add optional features: To add more features to your Red Hat Quay cluster, such as Clair
images scanning and Repository Mirroring, continue on to the next section.

4.1. ADD CLAIR IMAGE SCANNING TO RED HAT QUAY

Setting up and deploying Clair image scanning for your Red Hat Quay deployment is described in Clair
Security Scanning

4.2. ADD REPOSITORY MIRRORING RED HAT QUAY

Enabling repository mirroring allows you to create container image repositories on your Red Hat Quay
cluster that exactly match the content of a selected external registry, then sync the contents of those
repositories on a regular schedule and on demand.

To add the repository mirroring feature to your Red Hat Quay cluster:

Run the repository mirroring worker. To do this, you start a quay pod with the repomirror option.

Select "Enable Repository Mirroring in the Red Hat Quay Setup tool.

Log into your Red Hat Quay Web UI and begin creating mirrored repositories as described in
Repository Mirroring in Red Hat Quay .

The following procedure assumes you already have a running Red Hat Quay cluster on an OpenShift
platform, with the Red Hat Quay Setup container running in your browser:

1. Start the repo mirroring worker: Start the Quay container in repomirror mode. This example
assumes you have configured TLS communications using a certificate that is currently stored in
/root/ca.crt. If not, then remove the line that adds /root/ca.crt to the container:

$ sudo podman run -d --name mirroring-worker \
 -v /mnt/quay/config:/conf/stack:Z \
 -v /root/ca.crt:/etc/pki/ca-trust/source/anchors/ca.crt \
 registry.redhat.io/quay/quay-rhel8:v3.8.15 repomirror

2. Log into config tool: Log into the Red Hat Quay Setup Web UI (config tool).

3. Enable repository mirroring: Scroll down the Repository Mirroring section and select the
Enable Repository Mirroring check box, as shown here:

4. Select HTTPS and cert verification: If you want to require HTTPS communications and verify

CHAPTER 4. DEPLOYING RED HAT QUAY

21

https://access.redhat.com/documentation/en-us/red_hat_quay/3.8/html-single/manage_red_hat_quay/index#clair-v4
https://access.redhat.com/documentation/en-us/red_hat_quay/3.8/html-single/manage_red_hat_quay/index

4. Select HTTPS and cert verification: If you want to require HTTPS communications and verify
certificates during mirroring, select this check box.

5. Save configuration: Select the Save Configuration Changes button. Repository mirroring
should now be enabled on your Red Hat Quay cluster. Refer to Repository Mirroring in Red Hat
Quay for details on setting up your own mirrored container image repositories.

Red Hat Quay 3.8 Deploy Red Hat Quay - High Availability

22

https://access.redhat.com/documentation/en-us/red_hat_quay/3.8/html-single/manage_red_hat_quay/index

CHAPTER 5. STARTING TO USE RED HAT QUAY
With Red Hat Quay now running, you can:

Select Tutorial from the Quay home page to try the 15-minute tutorial. In the tutorial, you learn
to log into Quay, start a container, create images, push repositories, view repositories, and
change repository permissions with Quay.

Refer to the Use Red Hat Quay for information on working with Red Hat Quay repositories.

CHAPTER 5. STARTING TO USE RED HAT QUAY

23

https://access.redhat.com/documentation/en-us/red_hat_quay/3.8/html-single/use_red_hat_quay/

CHAPTER 6. UPGRADING A GEO-REPLICATION
DEPLOYMENT OF RED HAT QUAY

Use the following procedure to upgrade your geo-replication Red Hat Quay deployment.

IMPORTANT

When upgrading geo-replication Red Hat Quay deployments to the next y-
stream release (for example, Red Hat Quay 3.7 → Red Hat Quay 3.8), or geo-
replication deployments, you must stop operations before upgrading.

There is intermittent downtime down upgrading from one y-stream release to the
next.

It is highly recommended to back up your Red Hat Quay deployment before
upgrading.

Prerequisites

You have logged into registry.redhat.io

PROCEDURE

This procedure assumes that you are running Red Hat Quay services on three (or more)
systems. For more information, see Preparing for Red Hat Quay high availability .

1. Obtain a list of all Red Hat Quay instances on each system running a Red Hat Quay instance.

a. Enter the following command on System A to reveal the Red Hat Quay instances:

Example output

b. Enter the following command on System B to reveal the Red Hat Quay instances:

Example output

c. Enter the following command on System C to reveal the Red Hat Quay instances:

$ sudo podman ps

CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES
ec16ece208c0 registry.redhat.io/quay/quay-rhel8:v3.7.0 registry 6 minutes ago Up
6 minutes ago 0.0.0.0:80->8080/tcp, 0.0.0.0:443->8443/tcp quay01

$ sudo podman ps

CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES
7ae0c9a8b37d registry.redhat.io/quay/quay-rhel8:v3.7.0 registry 5 minutes ago Up
2 seconds ago 0.0.0.0:82->8080/tcp, 0.0.0.0:445->8443/tcp quay02

Red Hat Quay 3.8 Deploy Red Hat Quay - High Availability

24

https://access.redhat.com/documentation/en-us/red_hat_quay/3/html-single/deploy_red_hat_quay_-_high_availability/index#preparing_for_red_hat_quay_high_availability

Example output

2. Temporarily shut down all Red Hat Quay instances on each system.

a. Enter the following command on System A to shut down the Red Hat Quay instance:

b. Enter the following command on System B to shut down the Red Hat Quay instance:

c. Enter the following command on System C to shut down the Red Hat Quay instance:

3. Obtain the latest Red Hat Quay version, for example, Red Hat Quay 3.8, on each system.

a. Enter the following command on System A to obtain the latest Red Hat Quay version:

b. Enter the following command on System B to obtain the latest Red Hat Quay version:

c. Enter the following command on System C to obtain the latest Red Hat Quay version:

4. On System A of your highly available Red Hat Quay deployment, run the new image version, for
example, Red Hat Quay 3.8:

5. Wait for the new Red Hat Quay container to become fully operational on System A. You can
check the status of the container by entering the following command:

$ sudo podman ps

CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES
e75c4aebfee9 registry.redhat.io/quay/quay-rhel8:v3.7.0 registry 4 seconds ago Up
4 seconds ago 0.0.0.0:84->8080/tcp, 0.0.0.0:447->8443/tcp quay03

$ sudo podman stop ec16ece208c0

$ sudo podman stop 7ae0c9a8b37d

$ sudo podman stop e75c4aebfee9

$ sudo podman pull registry.redhat.io/quay/quay-rhel8:v3.8.0

$ sudo podman pull registry.redhat.io/quay/quay-rhel8:v3.8.0

$ sudo podman pull registry.redhat.io/quay/quay-rhel8:v3.8.0

sudo podman run --restart=always -p 443:8443 -p 80:8080 \
 --sysctl net.core.somaxconn=4096 \
 --name=quay01 \
 -v /mnt/quay/config:/conf/stack:Z \
 -v /mnt/quay/storage:/datastorage:Z \
 -d registry.redhat.io/quay/quay-rhel8:v3.8.0

$ sudo podman ps

CHAPTER 6. UPGRADING A GEO-REPLICATION DEPLOYMENT OF RED HAT QUAY

25

Example output

6. Optional: Ensure that Red Hat Quay is fully operation by navigating to the Red Hat Quay UI.

7. After ensuring that Red Hat Quay on System A is fully operational, run the new image versions
on System B and on System C.

a. On System B of your highly available Red Hat Quay deployment, run the new image version,
for example, Red Hat Quay 3.8:

b. On System C of your highly available Red Hat Quay deployment, run the new image version,
for example, Red Hat Quay 3.8:

8. You can check the status of the containers on System B and on System C by entering the
following command:

CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS NAMES
70b9f38c3fb4 registry.redhat.io/quay/quay-rhel8:v3.8.0 registry 2 seconds ago Up 2
seconds ago 0.0.0.0:82->8080/tcp, 0.0.0.0:445->8443/tcp quay01

sudo podman run --restart=always -p 443:8443 -p 80:8080 \
 --sysctl net.core.somaxconn=4096 \
 --name=quay02 \
 -v /mnt/quay/config:/conf/stack:Z \
 -v /mnt/quay/storage:/datastorage:Z \
 -d registry.redhat.io/quay/quay-rhel8:v3.8.0

sudo podman run --restart=always -p 443:8443 -p 80:8080 \
 --sysctl net.core.somaxconn=4096 \
 --name=quay03 \
 -v /mnt/quay/config:/conf/stack:Z \
 -v /mnt/quay/storage:/datastorage:Z \
 -d registry.redhat.io/quay/quay-rhel8:v3.8.0

$ sudo podman ps

Red Hat Quay 3.8 Deploy Red Hat Quay - High Availability

26

CHAPTER 7. PERFORMING HEALTH CHECKS ON RED HAT
QUAY DEPLOYMENTS

Health check mechanisms are designed to assess the health and functionality of a system, service, or
component. Health checks help ensure that everything is working correctly, and can be used to identify
potential issues before they become critical problems. By monitoring the health of a system, Red Hat
Quay administrators can address abnormalities or potential failures, helping to reduce the likelihood of
encountering troubleshooting scenarios.

Health check mechanisms can play a role in diagnosing issues by providing valuable information about
the system’s current state. By comparing health check results with expected benchmarks or predefined
thresholds, deviations or anomalies can be identified quicker.

7.1. RED HAT QUAY HEALTH CHECK ENDPOINTS

IMPORTANT

Links contained herein to any external website(s) are provided for convenience only. Red
Hat has not reviewed the links and is not responsible for the content or its availability. The
inclusion of any link to an external website does not imply endorsement by Red Hat of the
website or its entities, products, or services. You agree that Red Hat is not responsible or
liable for any loss or expenses that may result due to your use of (or reliance on) the
external site or content.

Red Hat Quay has several health check endpoints. The following table shows you the health check, a
description, an endpoint, and an example output.

Table 7.1. Health check endpoints

Health
check

Description Endpoint Example output

instance The instance endpoint acquires the
whole status of the specific Red Hat
Quay instance, and covers the
endtoend endpoint with extra
gunicorn components related to
Python. It returns a dict representing
the health check output and a number
indicating the health check response of
either 200, which indicates that the
instance is healthy, or 503, which
indicates an issue with your
deployment.

https://{quay-ip-
endpoint}/health/ins
tance

{"data":{"services":
{"auth":true,"databa
se":true,"disk_spac
e":true,"registry_gu
nicorn":true,"servic
e_key":true,"web_g
unicorn":true}},"stat
us_code":200}

CHAPTER 7. PERFORMING HEALTH CHECKS ON RED HAT QUAY DEPLOYMENTS

27

https:/health/instance

endtoend The endtoend endpoint conducts
checks on all services. It returns a dict
representing the health check output
and a number indicating the health
check response of either 200, which
indicates that the instance is healthy,
or 503, which indicates an issue with
your deployment.

https://{quay-ip-
endpoint}/health/en
dtoend

{"data":{"services":
{"auth":true,"databa
se":true,"redis":true
,"storage":true}},"st
atus_code":200}

warning The warning endpoint conducts a
check on the warnings. It returns a dict
representing the health check output
and a number indicating the health
check response of either 200, which
indicates that the instance is healthy,
or 503, which indicates an issue with
your deployment.

https://{quay-ip-
endpoint}/health/war
ning

{"data":{"services":
{"disk_space_warni
ng":true}},"status_c
ode":503}

Health
check

Description Endpoint Example output

7.2. NAVIGATING TO A RED HAT QUAY HEALTH CHECK ENDPOINT

Use the following procedure to navigate to the instance endpoint. This procedure can be repeated for
endtoend and warning endpoints.

Procedure

1. On your web browser, navigate to https://{quay-ip-endpoint}/health/instance.

2. You are taken to the health instance page, which returns information like the following:

For Red Hat Quay, "status_code": 200 means that the instance is health. Conversely, if you
receive "status_code": 503, there is an issue with your deployment.

ADDITIONAL RESOURCES

{"data":{"services":
{"auth":true,"database":true,"disk_space":true,"registry_gunicorn":true,"service_key":true,"we
b_gunicorn":true}},"status_code":200}

Red Hat Quay 3.8 Deploy Red Hat Quay - High Availability

28

https:/health/endtoend
https:/health/warning
https:/health/instance

	Table of Contents
	PREFACE
	CHAPTER 1. OVERVIEW
	1.1. ARCHITECTURE
	1.1.1. Internal components
	1.1.2. External components

	CHAPTER 2. PREPARING FOR RED HAT QUAY (HIGH AVAILABILITY)
	2.1. PREREQUISITES
	2.2. USING PODMAN
	2.3. SETTING UP THE HAPROXY LOAD BALANCER AND THE POSTGRESQL DATABASE
	2.4. SET UP CEPH
	2.4.1. Install each Ceph node
	2.4.2. Configure the Ceph Ansible node (ceph05)
	2.4.3. Install the Ceph Object Gateway

	2.5. SET UP REDIS

	CHAPTER 3. CONFIGURING RED HAT QUAY
	CHAPTER 4. DEPLOYING RED HAT QUAY
	4.1. ADD CLAIR IMAGE SCANNING TO RED HAT QUAY
	4.2. ADD REPOSITORY MIRRORING RED HAT QUAY

	CHAPTER 5. STARTING TO USE RED HAT QUAY
	CHAPTER 6. UPGRADING A GEO-REPLICATION DEPLOYMENT OF RED HAT QUAY
	CHAPTER 7. PERFORMING HEALTH CHECKS ON RED HAT QUAY DEPLOYMENTS
	7.1. RED HAT QUAY HEALTH CHECK ENDPOINTS
	7.2. NAVIGATING TO A RED HAT QUAY HEALTH CHECK ENDPOINT
	ADDITIONAL RESOURCES

