
Red Hat Quay 3

Use Red Hat Quay

Use Red Hat Quay

Last Updated: 2024-07-23

Red Hat Quay 3 Use Red Hat Quay

Use Red Hat Quay

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Learn to use Red Hat Quay

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

PREFACE

CHAPTER 1. RED HAT QUAY TENANCY MODEL
1.1. TENANCY MODEL

CHAPTER 2. RED HAT QUAY USER ACCOUNTS OVERVIEW
2.1. CREATING A USER ACCOUNT BY USING THE UI
2.2. CREATING A USER ACCOUNT BY USING THE RED HAT QUAY API
2.3. DELETING A USER BY USING THE UI
2.4. DELETING A USER BY USING THE RED HAT QUAY API

CHAPTER 3. RED HAT QUAY ORGANIZATIONS OVERVIEW
3.1. CREATING AN ORGANIZATION BY USING THE UI
3.2. CREATING AN ORGANIZATION BY USING THE RED HAT QUAY API
3.3. ORGANIZATION SETTINGS
3.4. DELETING AN ORGANIZATION BY USING THE UI
3.5. DELETING AN ORGANIZATION BY USING THE RED HAT QUAY API

CHAPTER 4. RED HAT QUAY REPOSITORY OVERVIEW
4.1. CREATING A REPOSITORY BY USING THE UI
4.2. CREATING A REPOSITORY BY USING PODMAN
4.3. CREATING A REPOSITORY BY USING THE API
4.4. DELETING A REPOSITORY BY USING THE UI
4.5. DELETING A REPOSITORY BY USING THE RED HAT QUAY API

CHAPTER 5. RED HAT QUAY ROBOT ACCOUNT OVERVIEW
5.1. CREATING A ROBOT ACCOUNT BY USING THE UI
5.2. CREATING A ROBOT ACCOUNT BY USING THE RED HAT QUAY API
5.3. BULK MANAGING ROBOT ACCOUNT REPOSITORY ACCESS
5.4. DISABLING ROBOT ACCOUNTS BY USING THE UI
5.5. REGENERATING A ROBOT ACCOUNT TOKEN BY USING THE RED HAT QUAY API
5.6. DELETING A ROBOT ACCOUNT BY USING THE UI
5.7. DELETING A ROBOT ACCOUNT BY USING THE RED HAT QUAY API

CHAPTER 6. ACCESS MANAGEMENT FOR RED HAT QUAY
6.1. RED HAT QUAY TEAMS OVERVIEW

6.1.1. Creating a team by using the UI
6.1.2. Creating a team by using the API
6.1.3. Managing a team by using the UI

6.1.3.1. Adding users to a team by using the UI
6.1.3.2. Setting a team role by using the UI

6.1.3.2.1. Managing team members and repository permissions
6.1.3.2.2. Viewing additional information about a team

6.1.4. Managing a team by using the Red Hat Quay API
6.1.4.1. Managing team members and repository permissions by using the API
6.1.4.2. Setting the role of a team within an organization by using the API
6.1.4.3. Deleting a team within an organization by using the API

6.2. CREATING AND MANAGING DEFAULT PERMISSIONS BY USING THE UI
6.3. CREATING AND MANAGING DEFAULT PERMISSIONS BY USING THE API
6.4. ADJUSTING ACCESS SETTINGS FOR A REPOSITORY BY USING THE UI
6.5. ADJUSTING ACCESS SETTINGS FOR A REPOSITORY BY USING THE API

CHAPTER 7. IMAGE TAGS OVERVIEW

6

7
7

8
8
9

10
10

12
12
12
13
13
14

16
16
16
17
18
18

20
20
21
22
23
24
25
26

28
28
28
29
29
29
30
31
31
32
32
33
34
35
35
37
37

39

Table of Contents

1

. .

. .

. .

. .

7.1. VIEWING IMAGE TAG INFORMATION BY USING THE UI
7.2. VIEWING IMAGE TAG INFORMATION BY USING THE API
7.3. ADDING A NEW IMAGE TAG TO AN IMAGE BY USING THE UI
7.4. ADDING A NEW TAG TO AN IMAGE TAG TO AN IMAGE BY USING THE API
7.5. ADDING AND MANAGING LABELS BY USING THE UI
7.6. ADDING AND MANAGING LABELS BY USING THE API
7.7. SETTING TAG EXPIRATIONS

7.7.1. Setting tag expiration from a repository
7.7.2. Setting tag expiration from a Dockerfile
7.7.3. Setting tag expirations by using the API

7.8. FETCHING AN IMAGE BY TAG OR DIGEST
7.9. VIEWING RED HAT QUAY TAG HISTORY BY USING THE UI
7.10. VIEWING RED HAT QUAY TAG HISTORY BY USING THE API
7.11. DELETING AN IMAGE TAG
7.12. DELETING AN IMAGE BY USING THE API
7.13. REVERTING TAG CHANGES BY USING THE UI
7.14. REVERTING TAG CHANGES BY USING THE API

CHAPTER 8. VIEWING AND EXPORTING LOGS
8.1. VIEWING USAGE LOGS
8.2. VIEWING USAGE LOGS BY USING THE API

8.2.1. Viewing aggregated logs
8.2.2. Viewing detailed logs

8.3. EXPORTING REPOSITORY LOGS BY USING THE UI
8.4. EXPORTING LOGS BY USING THE API

CHAPTER 9. CLAIR SECURITY SCANS
9.1. VIEWING CLAIR SECURITY SCANS BY USING THE UI
9.2. VIEW CLAIR SECURITY SCANS BY USING THE UI

CHAPTER 10. NOTIFICATIONS OVERVIEW
10.1. NOTIFICATION ACTIONS

E-mail notifications
Webhook POST notifications

Flowdock notifications
Hipchat notifications
Slack notifications

10.2. CREATING NOTIFICATIONS BY USING THE UI
10.2.1. Creating an image expiration notification

10.3. CREATING NOTIFICATIONS BY USING THE API
10.4. REPOSITORY EVENTS DESCRIPTION

Repository Push
Dockerfile Build Queued
Dockerfile Build started
Dockerfile Build successfully completed
Dockerfile Build failed
Dockerfile Build cancelled
Vulnerability detected

CHAPTER 11. AUTOMATICALLY BUILDING DOCKERFILES WITH BUILD WORKERS
11.1. SETTING UP RED HAT QUAY BUILDERS WITH OPENSHIFT CONTAINER PLATFORM

11.1.1. Configuring the OpenShift Container Platform TLS component
11.1.2. Preparing OpenShift Container Platform for Red Hat Quay Builders
11.1.3. Configuring Red Hat Quay Builders

39
40
41

42
43
44
45
46
47
47
48
48
49
50
50
51
51

54
54
55
55
56
57
58

60
60
60

62
62
62
62
62
62
62
62
63
65
66
66
67
67
68
69
70
71

72
72
72
72
74

Red Hat Quay 3 Use Red Hat Quay

2

. .

. .

. .

. .

. .

11.2. OPENSHIFT CONTAINER PLATFORM ROUTES LIMITATIONS
11.3. TROUBLESHOOTING BUILDS

11.3.1. DEBUG config flag
11.3.2. Troubleshooting OpenShift Container Platform and Kubernetes Builds

11.4. SETTING UP GITHUB BUILDS

CHAPTER 12. BUILDING CONTAINER IMAGES
12.1. BUILD CONTEXTS
12.2. TAG NAMING FOR BUILD TRIGGERS
12.3. SKIPPING A SOURCE CONTROL-TRIGGERED BUILD
12.4. VIEWING AND MANAGING BUILDS
12.5. CREATING A NEW BUILD
12.6. BUILD TRIGGERS

12.6.1. Creating a Build trigger
12.6.2. Manually triggering a Build

12.7. SETTING UP A CUSTOM GIT TRIGGER
12.7.1. Creating a trigger
12.7.2. Custom trigger creation setup

12.7.2.1. SSH public key access
12.7.2.2. Webhook

CHAPTER 13. CREATING AN OAUTH APPLICATION IN GITHUB
13.1. CREATE NEW GITHUB APPLICATION

CHAPTER 14. RED HAT QUAY QUOTA MANAGEMENT AND ENFORCEMENT OVERVIEW
14.1. QUOTA MANAGEMENT ARCHITECTURE
14.2. QUOTA MANAGEMENT LIMITATIONS
14.3. QUOTA MANAGEMENT CONFIGURATION FIELDS

14.3.1. Example quota management configuration
14.4. ESTABLISHING QUOTA WITH THE RED HAT QUAY API

14.4.1. Setting the quota
14.4.2. Viewing the quota
14.4.3. Modifying the quota
14.4.4. Pushing images

14.4.4.1. Pushing ubuntu:18.04
14.4.4.2. Using the API to view quota usage
14.4.4.3. Pushing another image

14.4.5. Rejecting pushes using quota limits
14.4.5.1. Setting reject and warning limits
14.4.5.2. Viewing reject and warning limits
14.4.5.3. Pushing an image when the reject limit is exceeded
14.4.5.4. Notifications for limits exceeded

CHAPTER 15. RED HAT QUAY AS A PROXY CACHE FOR UPSTREAM REGISTRIES
15.1. PROXY CACHE ARCHITECTURE
15.2. PROXY CACHE LIMITATIONS
15.3. USING RED HAT QUAY TO PROXY A REMOTE REGISTRY

15.3.1. Leveraging storage quota limits in proxy organizations
15.3.1.1. Testing the storage quota limits feature in proxy organizations

CHAPTER 16. RED HAT QUAY BUILD ENHANCEMENTS
16.1. RED HAT QUAY ENHANCED BUILD ARCHITECTURE
16.2. RED HAT QUAY BUILD LIMITATIONS
16.3. CREATING A RED HAT QUAY BUILDERS ENVIRONMENT WITH OPENSHIFT CONTAINER PLATFORM

75
76
76
77
77

78
78
78
79
79
80
80
80
82
82
82
82
83
83

85
85

87
87
88
88
89
89
90
90
90
91
91
91

92
93
93
94
94
95

97
97

100
101
102
102

104
104
104

Table of Contents

3

. .

. .

16.3.1. OpenShift Container Platform TLS component
16.3.2. Using OpenShift Container Platform for Red Hat Quay builders

16.3.2.1. Preparing OpenShift Container Platform for virtual builders
16.3.2.2. Manually adding SSL/TLS certificates

16.3.2.2.1. Creating and signing certificates
16.3.2.2.2. Setting TLS to unmanaged
16.3.2.2.3. Creating temporary secrets
16.3.2.2.4. Copying secret data to the configuration YAML

16.3.2.3. Using the UI to create a build trigger
16.3.2.4. Modifying your AWS S3 storage bucket
16.3.2.5. Modifying your Google Cloud Platform object bucket

CHAPTER 17. USING THE RED HAT QUAY API
17.1. ACCESSING THE QUAY API FROM QUAY.IO
17.2. CREATING A V1 OAUTH ACCESS TOKEN
17.3. CREATING AN OCI REFERRERS OAUTH ACCESS TOKEN
17.4. REASSIGNING AN OAUTH ACCESS TOKEN
17.5. ACCESSING YOUR QUAY API FROM A WEB BROWSER
17.6. ACCESSING THE RED HAT QUAY API FROM THE COMMAND LINE

CHAPTER 18. OPEN CONTAINER INITIATIVE SUPPORT
18.1. HELM AND OCI PREREQUISITES

18.1.1. Enabling your system to trust SSL/TLS certificates used by Red Hat Quay
18.2. USING HELM CHARTS
18.3. ANNOTATION PARSING
18.4. ATTACHING REFERRERS TO AN IMAGE TAG

104
104
105
105
109
109
110
110
110
112
114
115

117
117
117
119

120
121
122

123
123
123
124
125
126

Red Hat Quay 3 Use Red Hat Quay

4

Table of Contents

5

PREFACE
Red Hat Quay container image registries serve as centralized hubs for storing container images. Users
of Red Hat Quay can create repositories to effectively manage images and grant specific read (pull)
and write (push) permissions to the repositories as deemed necessary. Administrative privileges expand
these capabilities, allowing users to perform a broader set of tasks, like the ability to add users and
control default settings.

This guide offers an overview of Red Hat Quay’s users and organizations, its tenancy model, and basic
operations like creating and deleting users, organizations, and repositories, handling access, and
interacting with tags. It includes both UI and API operations.

NOTE

The following API endpoints are linked to their associated entry in the Red Hat Quay API
guide. The Red Hat Quay API guide provides more information about each endpoint, such
as response codes and optional query parameters.

Red Hat Quay 3 Use Red Hat Quay

6

https://docs.redhat.com/en/documentation/red_hat_quay/3/html-single/red_hat_quay_api_guide/index

CHAPTER 1. RED HAT QUAY TENANCY MODEL
Before creating repositories to contain your container images in Red Hat Quay, you should consider how
these repositories will be structured. With Red Hat Quay, each repository requires a connection with
either an Organization or a User. This affiliation defines ownership and access control for the
repositories.

1.1. TENANCY MODEL

Organizations provide a way of sharing repositories under a common namespace that does not
belong to a single user. Instead, these repositories belong to several users in a shared setting,
such as a company.

Teams provide a way for an Organization to delegate permissions. Permissions can be set at the
global level (for example, across all repositories), or on specific repositories. They can also be
set for specific sets, or groups, of users.

Users can log in to a registry through the web UI or a by using a client like Podman and using
their respective login commands, for example, $ podman login. Each user automatically gets a
user namespace, for example, <quay-server.example.com>/<user>/<username>, or
quay.io/<username> if you are using Quay.io.

Superusers have enhanced access and privileges through the Super User Admin Panel in the
user interface. Superuser API calls are also available, which are not visible or accessible to
normal users.

Robot accounts provide automated access to repositories for non-human users like pipeline
tools. Robot accounts are similar to OpenShift Container Platform Service Accounts.
Permissions can be granted to a robot account in a repository by adding that account like you
would another user or team.

CHAPTER 1. RED HAT QUAY TENANCY MODEL

7

CHAPTER 2. RED HAT QUAY USER ACCOUNTS OVERVIEW
A user account represents an individual with authenticated access to the platform’s features and
functionalities. User accounts provide the capability to create and manage repositories, upload and
retrieve container images, and control access permissions for these resources. This account is pivotal for
organizing and overseeing container image management within Red Hat Quay.

You can create and delete new users on the zRed Hat Quay UI or by using the Red Hat Quay API.

2.1. CREATING A USER ACCOUNT BY USING THE UI

Use the following procedure to create a new user for your Red Hat Quay repository using the UI.

Prerequisites

You are logged into your Red Hat Quay deployment as a superuser.

Procedure

1. Log in to your Red Hat Quay repository as the superuser.

2. In the navigation pane, select your account name, and then click Super User Admin Panel.

3. Click the Users icon in the column.

4. Click the Create User button.

5. Enter the new user’s Username and Email address, and then click the Create User button.

6. You are redirected to the Users page, where there is now another Red Hat Quay user.

NOTE

You might need to refresh the Users page to show the additional user.

7. On the Users page, click the Options cogwheel associated with the new user. A drop-down
menu appears, as shown in the following figure:

8. Click Change Password.

9. Add the new password, and then click Change User Password.

The new user can now use that username and password to log in using the web UI or through

Red Hat Quay 3 Use Red Hat Quay

8

The new user can now use that username and password to log in using the web UI or through
their preferred container client, like Podman.

2.2. CREATING A USER ACCOUNT BY USING THE RED HAT QUAY API

Use the following procedure to create a new user for your Red Hat Quay repository by using the API.

Prerequisites

You are logged into your Red Hat Quay deployment as a superuser.

You have Created an OAuth access token.

You have set BROWSER_API_CALLS_XHR_ONLY: false in your config.yaml file.

Procedure

1. Enter the following command to create a new user using the POST /api/v1/superuser/users/
endpoint:

Example output

2. Navigate to your Red Hat Quay registry endpoint, for example, quay-server.example.com and
login with the username and password generated from the API call. In this scenario, the
username is newuser and the password is IJWZ8TIY301KPFOW3WEUJEVZ3JR11CY1.
Alternatively, you can log in to the registry with the CLI. For example:

Example output

3. Optional. You can obtain a list of all users, including superusers, by using the GET
/api/v1/superuser/users/ endpoint:

Example output

$ curl -X POST -H "Authorization: Bearer <bearer_token>" -H "Content-Type:
application/json" -d '{
 "username": "newuser",
 "email": "newuser@example.com"
}' "https://<quay-server.example.com>/api/v1/superuser/users/"

{"username": "newuser", "email": "newuser@example.com", "password":
"IJWZ8TIY301KPFOW3WEUJEVZ3JR11CY1", "encrypted_password":
"9Q36xF54YEOLjetayC0NBaIKgcFFmIHsS3xTZDLzZSrhTBkxUc9FDwUKfnxLWhco6oBJV1N
DBjoBcDGmsZMYPt1dSA4yWpPe/JKY9pnDcsw="}

$ podman login <quay-server.example.com>

username: newuser
password: IJWZ8TIY301KPFOW3WEUJEVZ3JR11CY1

$ curl -X GET -H "Authorization: Bearer <bearer_token>" "https://<quay-
server.example.com>/api/v1/superuser/users/"

CHAPTER 2. RED HAT QUAY USER ACCOUNTS OVERVIEW

9

https://access.redhat.com/documentation/en-us/red_hat_quay/3/html-single/red_hat_quay_api_guide/index#creating-oauth-access-token
https://docs.redhat.com/en/documentation/red_hat_quay/3/html-single/red_hat_quay_api_guide/index#createinstalluser
https://docs.redhat.com/en/documentation/red_hat_quay/3/html-single/red_hat_quay_api_guide/index#listallusers

2.3. DELETING A USER BY USING THE UI

Use the following procedure to delete a user from your Red Hat Quay repository using the UI. Note that
after deleting the user, any repositories that the user had in their private account become unavailable.

NOTE

In some cases, when accessing the Users tab in the Superuser Admin Panel of the Red
Hat Quay UI, you might encounter a situation where no users are listed. Instead, a
message appears, indicating that Red Hat Quay is configured to use external
authentication, and users can only be created in that system.

This error occurs for one of two reasons:

The web UI times out when loading users. When this happens, users are not
accessible to perform any operations on.

On LDAP authentication. When a userID is changed but the associated email is
not. Currently, Red Hat Quay does not allow the creation of a new user with an
old email address.

When this happens, you must delete the user using the Red Hat Quay API.

Prerequisites

You are logged into your Red Hat Quay deployment as a superuser.

Procedure

1. Log in to your Red Hat Quay repository as the superuser.

2. In the navigation pane, select your account name, and then click Super User Admin Panel.

3. Click the Users icon in the navigation pane.

4. Click the Options cogwheel beside the user to be deleted.

5. Click Delete User, and then confirm deletion by clicking Delete User.

2.4. DELETING A USER BY USING THE RED HAT QUAY API

Use the following procedure to delete a user from Red Hat Quay using the API.

IMPORTANT

{"users": [{"kind": "user", "name": "quayadmin", "username": "quayadmin", "email":
"quay@quay.com", "verified": true, "avatar": {"name": "quayadmin", "hash":
"b28d563a6dc76b4431fc7b0524bbff6b810387dac86d9303874871839859c7cc", "color":
"#17becf", "kind": "user"}, "super_user": true, "enabled": true}, {"kind": "user", "name":
"newuser", "username": "newuser", "email": "newuser@example.com", "verified": true,
"avatar": {"name": "newuser", "hash":
"f338a2c83bfdde84abe2d3348994d70c34185a234cfbf32f9e323e3578e7e771", "color":
"#9edae5", "kind": "user"}, "super_user": false, "enabled": true}]}

Red Hat Quay 3 Use Red Hat Quay

10

IMPORTANT

After deleting the user, any repositories that this user had in his private account become
unavailable.

Prerequisites

You are logged into your Red Hat Quay deployment as a superuser.

You have Created an OAuth access token.

You have set BROWSER_API_CALLS_XHR_ONLY: false in your config.yaml file.

Procedure

1. Enter the following DELETE /api/v1/superuser/users/{username} command to delete a user
from the command line:

2. The CLI does not return information when deleting a user from the CLI. To confirm deletion, you
can check the Red Hat Quay UI by navigating to Superuser Admin Panel → Users, or by
entering the following GET /api/v1/superuser/users/ command. You can then check to see if
they are present.

$ curl -X DELETE -H "Authorization: Bearer <insert token here>" https://<quay-
server.example.com>/api/v1/superuser/users/<username>

$ curl -X GET -H "Authorization: Bearer <bearer_token>" "https://<quay-
server.example.com>/api/v1/superuser/users/"

CHAPTER 2. RED HAT QUAY USER ACCOUNTS OVERVIEW

11

https://access.redhat.com/documentation/en-us/red_hat_quay/3/html-single/red_hat_quay_api_guide/index#creating-oauth-access-token
https://docs.redhat.com/en/documentation/red_hat_quay/3/html-single/red_hat_quay_api_guide/index#listallusers

CHAPTER 3. RED HAT QUAY ORGANIZATIONS OVERVIEW
In = Red Hat Quay an organization is a grouping of users, repositories, and teams. It provides a means to
organize and manage access control and permissions within the registry. With organizations,
administrators can assign roles and permissions to users and teams. Other useful information about
organizations includes the following:

You cannot have an organization embedded within another organization. To subdivide an
organization, you use teams.

Organizations cannot contain users directly. You must first add a team, and then add one or
more users to each team.

NOTE

Individual users can be added to specific repositories inside of an organization.
Consequently, those users are not members of any team on the Repository
Settings page. The Collaborators View on the Teams and Memberships page
shows users who have direct access to specific repositories within the
organization without needing to be part of that organization specifically.

Teams can be set up in organizations as just members who use the repositories and associated
images, or as administrators with special privileges for managing the Organization.

Users can create their own organization to share repositories of container images. This can be done
through the Red Hat Quay UI, or by the Red Hat Quay API if you have an OAuth token.

3.1. CREATING AN ORGANIZATION BY USING THE UI

Use the following procedure to create a new organization by using the UI.

Procedure

1. Log in to your Red Hat Quay registry.

2. Click Organization in the navigation pane.

3. Click Create Organization.

4. Enter an Organization Name, for example, testorg.

5. Enter an Organization Email.

6. Click Create.

Now, your example organization should populate under the Organizations page.

3.2. CREATING AN ORGANIZATION BY USING THE RED HAT QUAY API

Use the following procedure to create a new organization using the Red Hat Quay API.

Prerequisites

You have Created an OAuth access token.

Red Hat Quay 3 Use Red Hat Quay

12

https://access.redhat.com/documentation/en-us/red_hat_quay/3/html-single/red_hat_quay_api_guide/index#creating-oauth-access-token

You have set BROWSER_API_CALLS_XHR_ONLY: false in your config.yaml file.

Procedure

1. Enter the following command to create a new organization using the POST
/api/v1/organization/ endpoint:

Example output

3.3. ORGANIZATION SETTINGS

With = Red Hat Quay, some basic organization settings can be adjusted by using the UI. This includes
adjusting general settings, such as the e-mail address associated with the organization, and time
machine settings, which allows administrators to adjust when a tag is garbage collected after it is
permanently deleted.

Use the following procedure to alter your organization settings by using the v2 UI.

Procedure

1. On the v2 UI, click Organizations.

2. Click the name of the organization that you will create the robot account for, for example, test-
org.

3. Click the Settings tab.

4. Optional. Enter the email address associated with the organization.

5. Optional. Set the allotted time for the Time Machine feature to one of the following:

A few seconds

A day

7 days

14 days

A month

6. Click Save.

3.4. DELETING AN ORGANIZATION BY USING THE UI

Use the following procedure to delete an organization using the v2 UI.

$ curl -X POST -H "Authorization: Bearer <bearer_token>" -H "Content-Type:
application/json" -d '{
 "name": "<new_organization_name>"
 }' "https://<quay-server.example.com>/api/v1/organization/"

"Created"

CHAPTER 3. RED HAT QUAY ORGANIZATIONS OVERVIEW

13

https://docs.redhat.com/en/documentation/red_hat_quay/3/html-single/red_hat_quay_api_guide/index#createorganization

Procedure

1. On the Organizations page, select the name of the organization you want to delete, for
example, testorg.

2. Click the More Actions drop down menu.

3. Click Delete.

NOTE

On the Delete page, there is a Search input box. With this box, users can search
for specific organizations to ensure that they are properly scheduled for deletion.
For example, if a user is deleting 10 organizations and they want to ensure that a
specific organization was deleted, they can use the Search input box to confirm
said organization is marked for deletion.

4. Confirm that you want to permanently delete the organization by typing confirm in the box.

5. Click Delete.
After deletion, you are returned to the Organizations page.

NOTE

You can delete more than one organization at a time by selecting multiple
organizations, and then clicking More Actions → Delete.

3.5. DELETING AN ORGANIZATION BY USING THE RED HAT QUAY API

Use the following procedure to delete an organization using the Red Hat Quay API.

Prerequisites

You have Created an OAuth access token.

You have set BROWSER_API_CALLS_XHR_ONLY: false in your config.yaml file.

Procedure

1. Enter the following command to delete an organization using the DELETE
/api/v1/organization/{orgname} endpoint:

2. The CLI does not return information when deleting an organization from the CLI. To confirm
deletion, you can check the Red Hat Quay UI, or you can enter the GET
/api/v1/organization/{orgname} command to see if details are returned for the deleted
organization:

$ curl -X DELETE \
 -H "Authorization: Bearer lfV4lVf9qRsyoFnrgEno1umIOrsdp8lPyMnfUDYY" \
 "https://<quay-server.example.com>/api/v1/organization/<organization_name>"

$ curl -X GET \
 -H "Authorization: Bearer lfV4lVf9qRsyoFnrgEno1umIOrsdp8lPyMnfUDYY" \
 "<quay-server.example.com>/api/v1/organization/<organization_name>"

Red Hat Quay 3 Use Red Hat Quay

14

https://access.redhat.com/documentation/en-us/red_hat_quay/3/html-single/red_hat_quay_api_guide/index#creating-oauth-access-token
https://docs.redhat.com/en/documentation/red_hat_quay/3/html-single/red_hat_quay_api_guide/index#deleteadminedorganization
https://docs.redhat.com/en/documentation/red_hat_quay/3/html-single/red_hat_quay_api_guide/index#getorganization

Example output

{"detail": "Not Found", "error_message": "Not Found", "error_type": "not_found", "title":
"not_found", "type": "http://<quay-server.example.com>/api/v1/error/not_found", "status":
404}

CHAPTER 3. RED HAT QUAY ORGANIZATIONS OVERVIEW

15

CHAPTER 4. RED HAT QUAY REPOSITORY OVERVIEW
A repository provides a central location for storing a related set of container images. These images can
be used to build applications along with their dependencies in a standardized format.

Repositories are organized by namespaces. Each namespace can have multiple repositories. For
example, you might have a namespace for your personal projects, one for your company, or one for a
specific team within your organization.

Red Hat Quay provides users with access controls for their repositories. Users can make a repository
public, meaning that anyone can pull, or download, the images from it, or users can make it private,
restricting access to authorized users or teams.

There are three ways to create a repository in Red Hat Quay: by pushing an image with the relevant
podman command, by using the Red Hat Quay UI, or by using the Red Hat Quay API. Similarly,
repositories can be deleted by using the UI or the proper API endpoint.

4.1. CREATING A REPOSITORY BY USING THE UI

Use the following procedure to create a repository using the Red Hat Quay UI.

Procedure

Use the following procedure to create a repository using the v2 UI.

Procedure

1. Click Repositories on the navigation pane.

2. Click Create Repository.

3. Select a namespace, for example, quayadmin, and then enter a Repository name, for example,
testrepo.

IMPORTANT

Do not use the following words in your repository name: * build * trigger * tag

When these words are used for repository names, users are unable access the
repository, and are unable to permanently delete the repository. Attempting to
delete these repositories returns the following error: Failed to delete repository
<repository_name>, HTTP404 - Not Found.

4. Click Create.
Now, your example repository should populate under the Repositories page.

5. Optional. Click Settings → Repository visibility → Make private to set the repository to
private.

4.2. CREATING A REPOSITORY BY USING PODMAN

With the proper credentials, you can push an image to a repository using Podman that does not yet exist
in your Red Hat Quay instance. Pushing an image refers to the process of uploading a container image
from your local system or development environment to a container registry like Red Hat Quay. After

Red Hat Quay 3 Use Red Hat Quay

16

pushing an image to your registry, a repository is created.

Use the following procedure to create an image repository by pushing an image.

Prerequisites

You have download and installed the podman CLI.

You have logged into your registry.

You have pulled an image, for example, busybox.

Procedure

1. Pull a sample page from an example registry. For example:

Example output

2. Tag the image on your local system with the new repository and image name. For example:

3. Push the image to the registry. Following this step, you can use your browser to see the tagged
image in your repository.

Example output

4.3. CREATING A REPOSITORY BY USING THE API

Use the following procedure to create an image repository using the Red Hat Quay API.

Prerequisites

$ sudo podman pull busybox

Trying to pull docker.io/library/busybox...
Getting image source signatures
Copying blob 4c892f00285e done
Copying config 22667f5368 done
Writing manifest to image destination
Storing signatures
22667f53682a2920948d19c7133ab1c9c3f745805c14125859d20cede07f11f9

$ sudo podman tag docker.io/library/busybox quay-
server.example.com/quayadmin/busybox:test

$ sudo podman push --tls-verify=false quay-server.example.com/quayadmin/busybox:test

Getting image source signatures
Copying blob 6b245f040973 done
Copying config 22667f5368 done
Writing manifest to image destination
Storing signatures

CHAPTER 4. RED HAT QUAY REPOSITORY OVERVIEW

17

You have Created an OAuth access token.

You have set BROWSER_API_CALLS_XHR_ONLY: false in your config.yaml file.

Procedure

1. Enter the following command to create a repository using the POST /api/v1/repository
endpoint:

Example output

4.4. DELETING A REPOSITORY BY USING THE UI

You can delete a repository directly on the UI.

Prerequisites

You have created a repository.

Procedure

1. On the Repositories page of the v2 UI, check the box of the repository that you want to delete,
for example, quayadmin/busybox.

2. Click the Actions drop-down menu.

3. Click Delete.

4. Type confirm in the box, and then click Delete.
After deletion, you are returned to the Repositories page.

4.5. DELETING A REPOSITORY BY USING THE RED HAT QUAY API

Use the following procedure to delete a repository using the Red Hat Quay API.

Prerequisites

You have Created an OAuth access token.

You have set BROWSER_API_CALLS_XHR_ONLY: false in your config.yaml file.

$ curl -X POST \
 -H "Authorization: Bearer <bearer_token>" \
 -H "Content-Type: application/json" \
 -d '{
 "repository": "<new_repository_name>",
 "visibility": "<public>",
 "description": "<This is a description of the new repository>."
 }' \
 "https://quay-server.example.com/api/v1/repository"

{"namespace": "quayadmin", "name": "<new_repository_name>", "kind": "image"}

Red Hat Quay 3 Use Red Hat Quay

18

https://access.redhat.com/documentation/en-us/red_hat_quay/3/html-single/red_hat_quay_api_guide/index#creating-oauth-access-token
https://docs.redhat.com/en/documentation/red_hat_quay/3/html-single/red_hat_quay_api_guide/index#createrepo
https://access.redhat.com/documentation/en-us/red_hat_quay/3/html-single/red_hat_quay_api_guide/index#creating-oauth-access-token

Procedure

1. Enter the following command to delete a repository using the DELETE
/api/v1/repository/{repository} endpoint:

2. The CLI does not return information when deleting a repository from the CLI. To confirm
deletion, you can check the Red Hat Quay UI, or you can enter the following GET
/api/v1/repository/{repository} command to see if details are returned for the deleted
repository:

Example output

$ curl -X DELETE -H "Authorization: Bearer <bearer_token>" "quay-
server.example.com/api/v1/repository/<namespace>/<repository_name>"

$ curl -X GET -H "Authorization: Bearer <bearer_token>" "quay-
server.example.com/api/v1/repository/<namespace>/<repository_name>"

{"detail": "Not Found", "error_message": "Not Found", "error_type": "not_found", "title":
"not_found", "type": "http://quay-server.example.com/api/v1/error/not_found", "status": 404}

CHAPTER 4. RED HAT QUAY REPOSITORY OVERVIEW

19

https://docs.redhat.com/en/documentation/red_hat_quay/3/html-single/red_hat_quay_api_guide/index#deleterepository
https://docs.redhat.com/en/documentation/red_hat_quay/3/html-single/red_hat_quay_api_guide/index#getrepo

CHAPTER 5. RED HAT QUAY ROBOT ACCOUNT OVERVIEW
Robot Accounts are used to set up automated access to the repositories in your Red Hat Quay registry.
They are similar to OpenShift Container Platform service accounts.

Setting up a Robot Account results in the following:

Credentials are generated that are associated with the Robot Account.

Repositories and images that the Robot Account can push and pull images from are identified.

Generated credentials can be copied and pasted to use with different container clients, such as
Docker, Podman, Kubernetes, Mesos, and so on, to access each defined repository.

Each Robot Account is limited to a single user namespace or Organization. For example, the Robot
Account could provide access to all repositories for the user quayadmin. However, it cannot provide
access to repositories that are not in the user’s list of repositories.

Robot Accounts can be created using the Red Hat Quay UI, or through the CLI using the Red Hat Quay
API.

5.1. CREATING A ROBOT ACCOUNT BY USING THE UI

Use the following procedure to create a robot account using the v2 UI.

Procedure

1. On the v2 UI, click Organizations.

2. Click the name of the organization that you will create the robot account for, for example, test-
org.

3. Click the Robot accounts tab → Create robot account.

4. In the Provide a name for your robot account box, enter a name, for example, robot1. The
name of your Robot Account becomes a combination of your username plus the name of the
robot, for example, quayadmin+robot1

5. Optional. The following options are available if desired:

a. Add the robot account to a team.

b. Add the robot account to a repository.

c. Adjust the robot account’s permissions.

6. On the Review and finish page, review the information you have provided, then click Review
and finish. The following alert appears: Successfully created robot account with robot name:
<organization_name> + <robot_name>.
Alternatively, if you tried to create a robot account with the same name as another robot
account, you might receive the following error message: Error creating robot account.

7. Optional. You can click Expand or Collapse to reveal descriptive information about the robot
account.

8. Optional. You can change permissions of the robot account by clicking the kebab menu → Set

Red Hat Quay 3 Use Red Hat Quay

20

8. Optional. You can change permissions of the robot account by clicking the kebab menu → Set
repository permissions. The following message appears: Successfully updated repository
permission.

9. Optional. You can click the name of your robot account to obtain the following information:

Robot Account: Select this obtain the robot account token. You can regenerate the token
by clicking Regenerate token now.

Kubernetes Secret: Select this to download credentials in the form of a Kubernetes pull
secret YAML file.

Podman: Select this to copy a full podman login command line that includes the
credentials.

Docker Configuration: Select this to copy a full docker login command line that includes
the credentials.

5.2. CREATING A ROBOT ACCOUNT BY USING THE RED HAT QUAY
API

Use the following procedure to create a robot account using the Red Hat Quay API.

Prerequisites

You have Created an OAuth access token.

You have set BROWSER_API_CALLS_XHR_ONLY: false in your config.yaml file.

Procedure

Enter the following command to create a new robot account for an organization using the PUT
/api/v1/organization/{orgname}/robots/{robot_shortname} endpoint:

Example output

Enter the following command to create a new robot account for the current user with the PUT
/api/v1/user/robots/{robot_shortname} endpoint:

Example output

$ curl -X PUT -H "Authorization: Bearer <bearer_token>" "https://<quay-
server.example.com>/api/v1/organization/<organization_name>/robots/<robot_name>"

{"name": "orgname+robot-name", "created": "Fri, 10 May 2024 15:11:00 -0000",
"last_accessed": null, "description": "", "token":
"WB4FUG4PP2278KK579EN4NDP150CPYOG6DN42MP6JF8IAJ4PON4RC7DIOH5UEFBP",
"unstructured_metadata": null}

$ curl -X PUT -H "Authorization: Bearer <bearer_token>" "https://<quay-
server.example.com>/api/v1/user/robots/<robot_name>"

{"name": "quayadmin+robot-name", "created": "Fri, 10 May 2024 15:24:57 -0000",
"last_accessed": null, "description": "", "token":

CHAPTER 5. RED HAT QUAY ROBOT ACCOUNT OVERVIEW

21

https://access.redhat.com/documentation/en-us/red_hat_quay/3/html-single/red_hat_quay_api_guide/index#creating-oauth-access-token
https://docs.redhat.com/en/documentation/red_hat_quay/3/html-single/red_hat_quay_api_guide/index#createorgrobot
https://docs.redhat.com/en/documentation/red_hat_quay/3/html-single/red_hat_quay_api_guide/index#createuserrobot

5.3. BULK MANAGING ROBOT ACCOUNT REPOSITORY ACCESS

Use the following procedure to manage, in bulk, robot account repository access by using the Red Hat
Quay v2 UI.

Prerequisites

You have created a robot account.

You have created multiple repositories under a single organization.

Procedure

1. On the Red Hat Quay v2 UI landing page, click Organizations in the navigation pane.

2. On the Organizations page, select the name of the organization that has multiple repositories.
The number of repositories under a single organization can be found under the Repo Count
column.

3. On your organization’s page, click Robot accounts.

4. For the robot account that will be added to multiple repositories, click the kebab icon → Set
repository permissions.

5. On the Set repository permissions page, check the boxes of the repositories that the robot
account will be added to. For example:

"MXFE7NSOWPN33O7UC3THY0BN03DW940CMWTLRBE2EPTI8JPX0B0CWIIDGTI4YTJ6"
, "unstructured_metadata": null}

Red Hat Quay 3 Use Red Hat Quay

22

6. Set the permissions for the robot account, for example, None, Read, Write, Admin.

7. Click save. An alert that says Success alert: Successfully updated repository permission
appears on the Set repository permissions page, confirming the changes.

8. Return to the Organizations → Robot accounts page. Now, the Repositories column of your
robot account shows the number of repositories that the robot account has been added to.

5.4. DISABLING ROBOT ACCOUNTS BY USING THE UI

Red Hat Quay administrators can manage robot accounts by disallowing users to create new robot
accounts.

IMPORTANT

Robot accounts are mandatory for repository mirroring. Setting the
ROBOTS_DISALLOW configuration field to true breaks mirroring configurations. Users
mirroring repositories should not set ROBOTS_DISALLOW to true in their config.yaml
file. This is a known issue and will be fixed in a future release of Red Hat Quay.

Use the following procedure to disable robot account creation.

Prerequisites

You have created multiple robot accounts.

Procedure

CHAPTER 5. RED HAT QUAY ROBOT ACCOUNT OVERVIEW

23

1. Update your config.yaml field to add the ROBOTS_DISALLOW variable, for example:

2. Restart your Red Hat Quay deployment.

Verification: Creating a new robot account

1. Navigate to your Red Hat Quay repository.

2. Click the name of a repository.

3. In the navigation pane, click Robot Accounts.

4. Click Create Robot Account.

5. Enter a name for the robot account, for example, <organization-name/username>+<robot-
name>.

6. Click Create robot account to confirm creation. The following message appears: Cannot
create robot account. Robot accounts have been disabled. Please contact your
administrator.

Verification: Logging into a robot account

1. On the command-line interface (CLI), attempt to log in as one of the robot accounts by
entering the following command:

The following error message is returned:

2. You can pass in the log-level=debug flag to confirm that robot accounts have been
deactivated:

5.5. REGENERATING A ROBOT ACCOUNT TOKEN BY USING THE RED
HAT QUAY API

Use the following procedure to regenerate a robot account token using the Red Hat Quay API.

ROBOTS_DISALLOW: true

$ podman login -u="<organization-name/username>+<robot-name>" -
p="KETJ6VN0WT8YLLNXUJJ4454ZI6TZJ98NV41OE02PC2IQXVXRFQ1EJ36V12345678"
<quay-server.example.com>

Error: logging into "<quay-server.example.com>": invalid username/password

$ podman login -u="<organization-name/username>+<robot-name>" -
p="KETJ6VN0WT8YLLNXUJJ4454ZI6TZJ98NV41OE02PC2IQXVXRFQ1EJ36V12345678" -
-log-level=debug <quay-server.example.com>

...
DEBU[0000] error logging into "quay-server.example.com": unable to retrieve auth token:
invalid username/password: unauthorized: Robot accounts have been disabled. Please
contact your administrator.

Red Hat Quay 3 Use Red Hat Quay

24

Prerequisites

You have Created an OAuth access token.

You have set BROWSER_API_CALLS_XHR_ONLY: false in your config.yaml file.

Procedure

Enter the following command to regenerate a robot account token for an organization using the
POST /api/v1/organization/{orgname}/robots/{robot_shortname}/regenerate endpoint:

Example output

Enter the following command to regenerate a robot account token for the current user with the
POST /api/v1/user/robots/{robot_shortname}/regenerate endpoint:

Example output

5.6. DELETING A ROBOT ACCOUNT BY USING THE UI

Use the following procedure to delete a robot account using the Red Hat Quay UI.

Procedure

1. Log into your Red Hat Quay registry:

2. Click the name of the Organization that has the robot account.

3. Click Robot accounts.

4. Check the box of the robot account to be deleted.

5. Click the kebab menu.

6. Click Delete.

$ curl -X POST \
 -H "Authorization: Bearer <bearer_token>" \
 "quay-
server.example.com/api/v1/organization/<orgname>/robots/<robot_shortname>/regenerate"

{"name": "test-org+test", "created": "Fri, 10 May 2024 17:46:02 -0000", "last_accessed": null,
"description": "", "token":
"MXZ9DATUWRD8WCMT8AZIPYE0IEZHJJ1B8P8ZEIXC0W552DUMMTNJJH02HFGXTOV
G"}

$ curl -X POST \
 -H "Authorization: Bearer <bearer_token>" \
 "quay-server.example.com/api/v1/user/robots/<robot_shortname>/regenerate"

{"name": "quayadmin+test", "created": "Fri, 10 May 2024 14:12:11 -0000", "last_accessed":
null, "description": "", "token":
"CWLBVAODE61IXNDJ40GERFOZPB3ARZDRCP4X70ID1NB28AI0OOJBTR9S4M0ACYMD
"}

CHAPTER 5. RED HAT QUAY ROBOT ACCOUNT OVERVIEW

25

https://access.redhat.com/documentation/en-us/red_hat_quay/3/html-single/red_hat_quay_api_guide/index#creating-oauth-access-token
https://docs.redhat.com/en/documentation/red_hat_quay/3/html-single/red_hat_quay_api_guide/index#regenerateorgrobottoken
https://docs.redhat.com/en/documentation/red_hat_quay/3/html-single/red_hat_quay_api_guide/index#regenerateuserrobottoken

7. Type confirm into the textbox, then click Delete.

5.7. DELETING A ROBOT ACCOUNT BY USING THE RED HAT QUAY
API

Use the following procedure to delete a robot account using the Red Hat Quay API.

Prerequisites

You have Created an OAuth access token.

You have set BROWSER_API_CALLS_XHR_ONLY: false in your config.yaml file.

Procedure

1. Enter the following command to delete a robot account for an organization using the DELETE
/api/v1/organization/{orgname}/robots/{robot_shortname} endpoint:

2. The CLI does not return information when deleting a robot account with the API. To confirm
deletion, you can check the Red Hat Quay UI, or you can enter the following GET
/api/v1/organization/{orgname}/robots command to see if details are returned for the robot
account:

Example output

Enter the following command to delete a robot account for the current user with the
DELETE /api/v1/user/robots/{robot_shortname} endpoint:

3. The CLI does not return information when deleting a robot account for the current user with the
API. To confirm deletion, you can check the Red Hat Quay UI, or you can enter the following
GET /api/v1/user/robots/{robot_shortname} command to see if details are returned for the
robot account:

Example output

curl -X DELETE \
 -H "Authorization: Bearer lfV4lVf9qRsyoFnrgEno1umIOrsdp8lPyMnfUDYY" \
 "quay-
server.example.com/api/v1/organization/<organization_name>/robots/<robot_shortname>"

$ curl -X GET -H "Authorization: Bearer <bearer_token>" "https://<quay-
server.example.com>/api/v1/organization/<organization_name>/robots"

{"robots": []}

curl -X DELETE \
 -H "Authorization: Bearer lfV4lVf9qRsyoFnrgEno1umIOrsdp8lPyMnfUDYY" \
 "quay-server.example.com/api/v1/user/robots/<robot_shortname>"

$ curl -X GET \
 -H "Authorization: Bearer lfV4lVf9qRsyoFnrgEno1umIOrsdp8lPyMnfUDYY" \
 "quay-server.example.com/api/v1/user/robots/<robot_shortname>"

Red Hat Quay 3 Use Red Hat Quay

26

https://access.redhat.com/documentation/en-us/red_hat_quay/3/html-single/red_hat_quay_api_guide/index#creating-oauth-access-token
https://docs.redhat.com/en/documentation/red_hat_quay/3/html-single/red_hat_quay_api_guide/index#deleteorgrobot
https://docs.redhat.com/en/documentation/red_hat_quay/3/html-single/red_hat_quay_api_guide/index#getorgrobots
https://docs.redhat.com/en/documentation/red_hat_quay/3/html-single/red_hat_quay_api_guide/index#deleteuserrobot
https://docs.redhat.com/en/documentation/red_hat_quay/3/html-single/red_hat_quay_api_guide/index#getuserrobot

{"message":"Could not find robot with specified username"}

CHAPTER 5. RED HAT QUAY ROBOT ACCOUNT OVERVIEW

27

CHAPTER 6. ACCESS MANAGEMENT FOR RED HAT QUAY
As a Red Hat Quay user, you can create your own repositories and make them accessible to other users
that are part of your instance. Alternatively, you can create an organization and associate a set of
repositories directly to that organization, referred to as an organization repository .

Organization repositories differ from basic repositories in that the organization is intended to set up
shared repositories through groups of users. In Red Hat Quay, groups of users can be either Teams, or
sets of users with the same permissions, or individual users. You can also allow access to user
repositories and organization repositories by creating credentials associated with Robot Accounts.
Robot Accounts make it easy for a variety of container clients, such as Docker or Podman, to access
your repositories without requiring that the client have a Red Hat Quay user account.

6.1. RED HAT QUAY TEAMS OVERVIEW

In Red Hat Quay a team is a group of users with shared permissions, allowing for efficient management
and collaboration on projects. Teams can help streamline access control and project management
within organizations and repositories. They can be assigned designated permissions and help ensure
that members have the appropriate level of access to their repositories based on their roles and
responsibilities.

6.1.1. Creating a team by using the UI

When you create a team for your organization you can select the team name, choose which repositories
to make available to the team, and decide the level of access to the team.

Use the following procedure to create a team for your organization repository.

Prerequisites

You have created an organization.

Procedure

1. On the Red Hat Quay v2 UI, click the name of an organization.

2. On your organization’s page, click Teams and membership.

3. Click the Create new team box.

4. In the Create team popup window, provide a name for your new team.

5. Optional. Provide a description for your new team.

6. Click Proceed. A new popup window appears.

7. Optional. Add this team to a repository, and set the permissions to one of the following:

None. Team members have no permission to the repository.

Read. Team members can view and pull from the repository.

Write. Team members can read (pull) from and write (push) to the repository.

Admin. Full access to pull from, and push to, the repository, plus the ability to do

Red Hat Quay 3 Use Red Hat Quay

28

Admin. Full access to pull from, and push to, the repository, plus the ability to do
administrative tasks associated with the repository.

8. Optional. Add a team member or robot account. To add a team member, enter the name of
their Red Hat Quay account.

9. Review and finish the information, then click Review and Finish. The new team appears under
the Teams and membership page.

6.1.2. Creating a team by using the API

When you create a team for your organization with the API you can select the team name, choose which
repositories to make available to the team, and decide the level of access to the team.

Use the following procedure to create a team for your organization repository.

Prerequisites

You have created an organization.

You have Created an OAuth access token.

You have set BROWSER_API_CALLS_XHR_ONLY: false in your config.yaml file.

Procedure

1. Enter the following command to create a team for your organization:

Example output

6.1.3. Managing a team by using the UI

After you have created a team, you can use the UI to manage team members, set repository
permissions, delete the team, or view more general information about the team.

6.1.3.1. Adding users to a team by using the UI

With administrative privileges to an Organization, you can add users and robot accounts to a team. When
you add a user, Red Hat Quay sends an email to that user. The user remains pending until they accept
the invitation.

Use the following procedure to add users or robot accounts to a team.

Procedure

$ ------------------------------
$ curl -k -X PUT -H 'Accept: application/json' -H 'Content-Type: application/json' -H
"Authorization: Bearer <bearer_token>" --data '{"role": "creator"}' https://<quay-
server.example.com>/api/v1/organization/<organization_name>/team/<team_name>

{"name": "example_team", "description": "", "can_view": true, "role": "creator", "avatar":
{"name": "example_team", "hash":
"dec209fd7312a2284b689d4db3135e2846f27e0f40fa126776a0ce17366bc989", "color":
"#e7ba52", "kind": "team"}, "new_team": true}

CHAPTER 6. ACCESS MANAGEMENT FOR RED HAT QUAY

29

https://access.redhat.com/documentation/en-us/red_hat_quay/3/html-single/red_hat_quay_api_guide/index#creating-oauth-access-token

1. On the Red Hat Quay landing page, click the name of your Organization.

2. In the navigation pane, click Teams and Membership.

3. Select the menu kebab of the team that you want to add users or robot accounts to. Then, click
Manage team members.

4. Click Add new member.

5. In the textbox, enter information for one of the following:

A username from an account on the registry.

The email address for a user account on the registry.

The name of a robot account. The name must be in the form of <organization_name>+
<robot_name>.

NOTE

Robot Accounts are immediately added to the team. For user accounts, an
invitation to join is mailed to the user. Until the user accepts that invitation,
the user remains in the INVITED TO JOIN state. After the user accepts the
email invitation to join the team, they move from the INVITED TO JOIN list
to the MEMBERS list for the Organization.

6. Click Add member.

6.1.3.2. Setting a team role by using the UI

After you have created a team, you can set the role of that team within the Organization.

Prerequisites

You have created a team.

Procedure

1. On the Red Hat Quay landing page, click the name of your Organization.

2. In the navigation pane, click Teams and Membership.

3. Select the TEAM ROLE drop-down menu, as shown in the following figure:

Red Hat Quay 3 Use Red Hat Quay

30

4. For the selected team, choose one of the following roles:

Admin. Full administrative access to the organization, including the ability to create teams,
add members, and set permissions.

Member. Inherits all permissions set for the team.

Creator. All member permissions, plus the ability to create new repositories.

6.1.3.2.1. Managing team members and repository permissions

Use the following procedure to manage team members and set repository permissions.

On the Teams and membership page of your organization, you can also manage team
members and set repository permissions.

Click the kebab menu, and select one of the following options:

Manage Team Members. On this page, you can view all members, team members, robot
accounts, or users who have been invited. You can also add a new team member by clicking
Add new member.

Set repository permissions. On this page, you can set the repository permissions to one of
the following:

None. Team members have no permission to the repository.

Read. Team members can view and pull from the repository.

Write. Team members can read (pull) from and write (push) to the repository.

Admin. Full access to pull from, and push to, the repository, plus the ability to do
administrative tasks associated with the repository.

Delete. This popup windows allows you to delete the team by clicking Delete.

6.1.3.2.2. Viewing additional information about a team

Use the following procedure to view general information about the team.

Procedure

CHAPTER 6. ACCESS MANAGEMENT FOR RED HAT QUAY

31

On the Teams and membership page of your organization, you can click the one of the
following options to reveal more information about teams, members, and collaborators:

Team View. This menu shows all team names, the number of members, the number of
repositories, and the role for each team.

Members View. This menu shows all usernames of team members, the teams that they are
part of, the repository permissions of the user.

Collaborators View. This menu shows repository collaborators. Collaborators are users that
do not belong to any team in the organization, but who have direct permissions on one or
more repositories belonging to the organization.

6.1.4. Managing a team by using the Red Hat Quay API

After you have created a team, you can use the API to obtain information about team permissions or
team members, add, update, or delete team members (including by email), or delete an organization
team.

The following procedures show you how to how to manage a team using the Red Hat Quay API.

6.1.4.1. Managing team members and repository permissions by using the API

Use the following procedures to add a member to a team (by direct invite or by email), or to remove a
member from a team.

Prerequisites

You have Created an OAuth access token.

You have set BROWSER_API_CALLS_XHR_ONLY: false in your config.yaml file.

Procedure

Enter the PUT /api/v1/organization/{orgname}/team/{teamname}/members/{membername}
command to add or invite a member to an existing team:

Example output

Enter the DELETE
/api/v1/organization/{orgname}/team/{teamname}/members/{membername} command to
remove a member of a team:

$ curl -X PUT \
 -H "Authorization: Bearer <your_access_token>" \
 "quay-
server.example.com/api/v1/organization/<organization_name>/team/<team_name>/members/<
member_name>"

{"name": "testuser", "kind": "user", "is_robot": false, "avatar": {"name": "testuser", "hash":
"d51d17303dc3271ac3266fb332d7df919bab882bbfc7199d2017a4daac8979f0", "color":
"#5254a3", "kind": "user"}, "invited": false}

$ curl -X DELETE \

Red Hat Quay 3 Use Red Hat Quay

32

https://access.redhat.com/documentation/en-us/red_hat_quay/3/html-single/red_hat_quay_api_guide/index#creating-oauth-access-token
https://docs.redhat.com/en/documentation/red_hat_quay/3/html-single/red_hat_quay_api_guide/index#updateorganizationteammember
https://docs.redhat.com/en/documentation/red_hat_quay/3/html-single/red_hat_quay_api_guide/index#deleteorganizationteammember

This command does not an output in the CLI. To ensure that a member has been deleted, you
can enter the GET /api/v1/organization/{orgname}/team/{teamname}/members command
and ensure that the member is not returned in the output.

Example output

You can enter the PUT /api/v1/organization/{orgname}/team/{teamname}/invite/{email}
command to invite a user, by email address, to an existing team:

You can enter the DELETE /api/v1/organization/{orgname}/team/{teamname}/invite/{email}
command to delete the invite of an email address to join a team. For example:

6.1.4.2. Setting the role of a team within an organization by using the API

Use the following procedure to view and set the role a team within an organization using the API.

Prerequisites

You have Created an OAuth access token.

You have set BROWSER_API_CALLS_XHR_ONLY: false in your config.yaml file.

Procedure

 -H "Authorization: Bearer <your_access_token>" \
 "quay-
server.example.com/api/v1/organization/<organization_name>/team/<team_name>/members/<
member_name>"

$ curl -X GET \
 -H "Authorization: Bearer <your_access_token>" \
 "quay-
server.example.com/api/v1/organization/<organization_name>/team/<team_name>/members"

{"name": "owners", "members": [{"name": "quayadmin", "kind": "user", "is_robot": false,
"avatar": {"name": "quayadmin", "hash":
"b28d563a6dc76b4431fc7b0524bbff6b810387dac86d9303874871839859c7cc", "color":
"#17becf", "kind": "user"}, "invited": false}, {"name": "test-org+test", "kind": "user", "is_robot":
true, "avatar": {"name": "test-org+test", "hash":
"aa85264436fe9839e7160bf349100a9b71403a5e9ec684d5b5e9571f6c821370", "color":
"#8c564b", "kind": "robot"}, "invited": false}], "can_edit": true}

$ curl -X PUT \
 -H "Authorization: Bearer <your_access_token>" \
 "quay-
server.example.com/api/v1/organization/<organization_name>/team/<team_name>/invite/<emai
l>"

$ curl -X DELETE \
 -H "Authorization: Bearer <your_access_token>" \
 "quay-
server.example.com/api/v1/organization/<organization_name>/team/<team_name>/invite/<emai
l>"

CHAPTER 6. ACCESS MANAGEMENT FOR RED HAT QUAY

33

https://docs.redhat.com/en/documentation/red_hat_quay/3/html-single/red_hat_quay_api_guide/index#getorganizationteammembers
https://docs.redhat.com/en/documentation/red_hat_quay/3/html-single/red_hat_quay_api_guide/index#inviteteammemberemail
https://docs.redhat.com/en/documentation/red_hat_quay/3/html-single/red_hat_quay_api_guide/index#deleteteammemberemailinvite
https://access.redhat.com/documentation/en-us/red_hat_quay/3/html-single/red_hat_quay_api_guide/index#creating-oauth-access-token

1. Enter the following command to return a list of repository permissions for the organization’s
team. Note that your team must have been added to a repository for this command to return
information.

Example output

2. You can create or update a team within an organization to have a specified role of admin,
member, or creator. For example:

Example output

6.1.4.3. Deleting a team within an organization by using the API

Use the following procedure to delete a team within an organization by using the API.

Prerequisites

You have Created an OAuth access token.

You have set BROWSER_API_CALLS_XHR_ONLY: false in your config.yaml file.

Procedure

You can delete a team within an organization by entering the DELETE
/api/v1/organization/{orgname}/team/{teamname} command:

This command does not return output in the CLI.

$ curl -X GET \
 -H "Authorization: Bearer <your_access_token>" \
 "quay-
server.example.com/api/v1/organization/<organization_name>/team/<team_name>/permissions
"

{"permissions": [{"repository": {"name": "api-repo", "is_public": true}, "role": "admin"}]}

$ curl -X PUT \
 -H "Authorization: Bearer <your_access_token>" \
 -H "Content-Type: application/json" \
 -d '{
 "role": "<role>"
 }' \
 "quay-server.example.com/api/v1/organization/<organization_name>/team/<team_name>"

{"name": "testteam", "description": "", "can_view": true, "role": "creator", "avatar": {"name":
"testteam", "hash":
"827f8c5762148d7e85402495b126e0a18b9b168170416ed04b49aae551099dc8", "color":
"#ff7f0e", "kind": "team"}, "new_team": false}

$ curl -X DELETE \
 -H "Authorization: Bearer <your_access_token>" \
 "quay-server.example.com/api/v1/organization/<organization_name>/team/<team_name>"

Red Hat Quay 3 Use Red Hat Quay

34

https://access.redhat.com/documentation/en-us/red_hat_quay/3/html-single/red_hat_quay_api_guide/index#creating-oauth-access-token
https://docs.redhat.com/en/documentation/red_hat_quay/3/html-single/red_hat_quay_api_guide/index#deleteorganizationteam

6.2. CREATING AND MANAGING DEFAULT PERMISSIONS BY USING
THE UI

Default permissions define permissions that should be granted automatically to a repository when it is
created, in addition to the default of the repository’s creator. Permissions are assigned based on the
user who created the repository.

Use the following procedure to create default permissions using the Red Hat Quay v2 UI.

Procedure

1. Click the name of an organization.

2. Click Default permissions.

3. Click Create default permissions. A toggle drawer appears.

4. Select either Anyone or Specific user to create a default permission when a repository is
created.

a. If selecting Anyone, the following information must be provided:

Applied to. Search, invite, or add a user/robot/team.

Permission. Set the permission to one of Read, Write, or Admin.

b. If selecting Specific user, the following information must be provided:

Repository creator. Provide either a user or robot account.

Applied to. Provide a username, robot account, or team name.

Permission. Set the permission to one of Read, Write, or Admin.

5. Click Create default permission. A confirmation box appears, returning the following alert:
Successfully created default permission for creator.

6.3. CREATING AND MANAGING DEFAULT PERMISSIONS BY USING
THE API

Use the following procedures to manage default permissions using the Red Hat Quay API.

Prerequisites

You have Created an OAuth access token.

You have set BROWSER_API_CALLS_XHR_ONLY: false in your config.yaml file.

Procedure

1. Enter the following command to create a default permission with the POST
/api/v1/organization/{orgname}/prototypes endpoint:

$ curl -X POST -H "Authorization: Bearer <bearer_token>" -H "Content-Type:
application/json" --data '{

CHAPTER 6. ACCESS MANAGEMENT FOR RED HAT QUAY

35

https://access.redhat.com/documentation/en-us/red_hat_quay/3/html-single/red_hat_quay_api_guide/index#creating-oauth-access-token
https://docs.redhat.com/en/documentation/red_hat_quay/3/html-single/red_hat_quay_api_guide/index#createorganizationprototypepermission

Example output

2. Enter the following command to update a default permission using the PUT
/api/v1/organization/{orgname}/prototypes/{prototypeid} endpoint, for example, if you want
to change the permission type. You must include the ID that was returned when you created the
policy.

Example output

3. You can delete the permission by entering the DELETE
/api/v1/organization/{orgname}/prototypes/{prototypeid} command:

This command does not return an output. Instead, you can obtain a list of all permissions by

 "role": "<admin_read_or_write>",
 "delegate": {
 "name": "<username>",
 "kind": "user"
 },
 "activating_user": {
 "name": "<robot_name>"
 }
 }' https://<quay-server.example.com>/api/v1/organization/<organization_name>/prototypes

{"activating_user": {"name": "test-org+test", "is_robot": true, "kind": "user", "is_org_member":
true, "avatar": {"name": "test-org+test", "hash":
"aa85264436fe9839e7160bf349100a9b71403a5e9ec684d5b5e9571f6c821370", "color":
"#8c564b", "kind": "robot"}}, "delegate": {"name": "testuser", "is_robot": false, "kind": "user",
"is_org_member": false, "avatar": {"name": "testuser", "hash":
"f660ab912ec121d1b1e928a0bb4bc61b15f5ad44d5efdc4e1c92a25e99b8e44a", "color":
"#6b6ecf", "kind": "user"}}, "role": "admin", "id": "977dc2bc-bc75-411d-82b3-604e5b79a493"}

$ curl -X PUT \
 -H "Authorization: Bearer <bearer_token>" \
 -H "Content-Type: application/json" \
 --data '{
 "role": "write"
 }' \
 https://<quay-
server.example.com>/api/v1/organization/<organization_name>/prototypes/<prototypeid>

{"activating_user": {"name": "test-org+test", "is_robot": true, "kind": "user", "is_org_member":
true, "avatar": {"name": "test-org+test", "hash":
"aa85264436fe9839e7160bf349100a9b71403a5e9ec684d5b5e9571f6c821370", "color":
"#8c564b", "kind": "robot"}}, "delegate": {"name": "testuser", "is_robot": false, "kind": "user",
"is_org_member": false, "avatar": {"name": "testuser", "hash":
"f660ab912ec121d1b1e928a0bb4bc61b15f5ad44d5efdc4e1c92a25e99b8e44a", "color":
"#6b6ecf", "kind": "user"}}, "role": "write", "id": "977dc2bc-bc75-411d-82b3-604e5b79a493"}

curl -X DELETE \
 -H "Authorization: Bearer <bearer_token>" \
 -H "Accept: application/json" \
 https://<quay-
server.example.com>/api/v1/organization/<organization_name>/prototypes/<prototype_id>

Red Hat Quay 3 Use Red Hat Quay

36

https://docs.redhat.com/en/documentation/red_hat_quay/3/html-single/red_hat_quay_api_guide/index#updateorganizationprototypepermission
https://docs.redhat.com/en/documentation/red_hat_quay/3/html-single/red_hat_quay_api_guide/index#deleteorganizationprototypepermission

This command does not return an output. Instead, you can obtain a list of all permissions by
entering the GET /api/v1/organization/{orgname}/prototypes command:

Example output

6.4. ADJUSTING ACCESS SETTINGS FOR A REPOSITORY BY USING
THE UI

Use the following procedure to adjust access settings for a user or robot account for a repository using
the v2 UI.

Prerequisites

You have created a user account or robot account.

Procedure

1. Log into Red Hat Quay.

2. On the v2 UI, click Repositories.

3. Click the name of a repository, for example, quayadmin/busybox.

4. Click the Settings tab.

5. Optional. Click User and robot permissions. You can adjust the settings for a user or robot
account by clicking the dropdown menu option under Permissions. You can change the settings
to Read, Write, or Admin.

Read. The User or Robot Account can view and pull from the repository.

Write. The User or Robot Account can read (pull) from and write (push) to the repository.

Admin. The User or Robot account has access to pull from, and push to, the repository, plus
the ability to do administrative tasks associated with the repository.

6.5. ADJUSTING ACCESS SETTINGS FOR A REPOSITORY BY USING
THE API

Use the following procedure to adjust access settings for a user or robot account for a repository by
using the API.

Prerequisites

You have created a user account or robot account.

$ curl -X GET \
 -H "Authorization: Bearer <bearer_token>" \
 -H "Accept: application/json" \
 https://<quay-server.example.com>/api/v1/organization/<organization_name>/prototypes

{"prototypes": []}

CHAPTER 6. ACCESS MANAGEMENT FOR RED HAT QUAY

37

https://docs.redhat.com/en/documentation/red_hat_quay/3/html-single/red_hat_quay_api_guide/index#getorganizationprototypepermissions

You have Created an OAuth access token.

You have set BROWSER_API_CALLS_XHR_ONLY: false in your config.yaml file.

Procedure

1. Enter the following PUT /api/v1/repository/{repository}/permissions/user/{username}
command to change the permissions of a user:

Example output

2. To delete the current permission, you can enter the DELETE
/api/v1/repository/{repository}/permissions/user/{username} command:

This command does not return any output in the CLI. Instead, you can check that the
permissions were deleted by entering the GET
/api/v1/repository/{repository}/permissions/user/ command:

Example output

$ curl -X PUT \
 -H "Authorization: Bearer <bearer_token>" \
 -H "Content-Type: application/json" \
 -d '{"role": "admin"}' \
 https://<quay-
server.example.com>/api/v1/repository/<namespace>/<repository>/permissions/user/<usernam
e>

{"role": "admin", "name": "quayadmin+test", "is_robot": true, "avatar": {"name":
"quayadmin+test", "hash":
"ca9afae0a9d3ca322fc8a7a866e8476dd6c98de543decd186ae090e420a88feb", "color":
"#8c564b", "kind": "robot"}}

$ curl -X DELETE \
 -H "Authorization: Bearer <bearer_token>" \
 -H "Accept: application/json" \
 https://<quay-
server.example.com>/api/v1/repository/<namespace>/<repository>/permissions/user/<usernam
e>

$ curl -X GET \
 -H "Authorization: Bearer <bearer_token>" \
 -H "Accept: application/json" \
 https://<quay-
server.example.com>/api/v1/repository/<namespace>/<repository>/permissions/user/<usernam
e>/

{"message":"User does not have permission for repo."}

Red Hat Quay 3 Use Red Hat Quay

38

https://access.redhat.com/documentation/en-us/red_hat_quay/3/html-single/red_hat_quay_api_guide/index#creating-oauth-access-token
https://docs.redhat.com/en/documentation/red_hat_quay/3/html-single/red_hat_quay_api_guide/index#changeuserpermissions
https://docs.redhat.com/en/documentation/red_hat_quay/3/html-single/red_hat_quay_api_guide/index#deleteuserpermissions
https://docs.redhat.com/en/documentation/red_hat_quay/3/html-single/red_hat_quay_api_guide/index#listrepouserpermissions

CHAPTER 7. IMAGE TAGS OVERVIEW
An image tag refers to a label or identifier assigned to a specific version or variant of a container image.
Container images are typically composed of multiple layers that represent different parts of the image.
Image tags are used to differentiate between different versions of an image or to provide additional
information about the image.

Image tags have the following benefits:

Versioning and Releases: Image tags allow you to denote different versions or releases of an
application or software. For example, you might have an image tagged as v1.0 to represent the
initial release and v1.1 for an updated version. This helps in maintaining a clear record of image
versions.

Rollbacks and Testing: If you encounter issues with a new image version, you can easily revert to
a previous version by specifying its tag. This is helpful during debugging and testing phases.

Development Environments: Image tags are beneficial when working with different
environments. You might use a dev tag for a development version, qa for quality assurance
testing, and prod for production, each with their respective features and configurations.

Continuous Integration/Continuous Deployment (CI/CD): CI/CD pipelines often utilize image
tags to automate the deployment process. New code changes can trigger the creation of a new
image with a specific tag, enabling seamless updates.

Feature Branches: When multiple developers are working on different features or bug fixes,
they can create distinct image tags for their changes. This helps in isolating and testing
individual features.

Customization: You can use image tags to customize images with different configurations,
dependencies, or optimizations, while keeping track of each variant.

Security and Patching: When security vulnerabilities are discovered, you can create patched
versions of images with updated tags, ensuring that your systems are using the latest secure
versions.

Dockerfile Changes: If you modify the Dockerfile or build process, you can use image tags to
differentiate between images built from the previous and updated Dockerfiles.

Overall, image tags provide a structured way to manage and organize container images, enabling
efficient development, deployment, and maintenance workflows.

7.1. VIEWING IMAGE TAG INFORMATION BY USING THE UI

Use the following procedure to view image tag information using the v2 UI.

Prerequisites

You have pushed an image tag to a repository.

Procedure

1. On the v2 UI, click Repositories.

2. Click the name of a repository.

3. Click the name of a tag. You are taken to the Details page of that tag. The page reveals the

CHAPTER 7. IMAGE TAGS OVERVIEW

39

3. Click the name of a tag. You are taken to the Details page of that tag. The page reveals the
following information:

Name

Repository

Digest

Vulnerabilities

Creation

Modified

Size

Labels

How to fetch the image tag

4. Click Security Report to view the tag’s vulnerabilities. You can expand an advisory column to
open up CVE data.

5. Click Packages to view the tag’s packages.

6. Click the name of the repository to return to the Tags page.

7.2. VIEWING IMAGE TAG INFORMATION BY USING THE API

Use the following procedure to view image tag information by using the API

Prerequisites

You have pushed an image tag to a Red Hat Quay repository.

You have Created an OAuth access token.

You have set BROWSER_API_CALLS_XHR_ONLY: false in your config.yaml file.

Procedure

1. To obtain tag information, you must use the GET /api/v1/repository/{repository} API endpoint
and pass in the includeTags parameter. For example:

Example output

$ curl -X GET \
 -H "Authorization: Bearer <bearer_token>" \
 -H "Accept: application/json" \
 https://<quay-server.example.com>/api/v1/repository/<namespace>/<repository_name>?
includeTags=true

{"namespace": "quayadmin", "name": "busybox", "kind": "image", "description": null,
"is_public": false, "is_organization": false, "is_starred": false, "status_token": "d8f5e074-690a-
46d7-83c8-8d4e3d3d0715", "trust_enabled": false, "tag_expiration_s": 1209600,

Red Hat Quay 3 Use Red Hat Quay

40

https://access.redhat.com/documentation/en-us/red_hat_quay/3/html-single/red_hat_quay_api_guide/index#creating-oauth-access-token
https://docs.redhat.com/en/documentation/red_hat_quay/3/html-single/red_hat_quay_api_guide/index#getrepo

2. Alternatively, you can use the GET /api/v1/repository/{repository}/tag/ endpoint. For example:

Example output

7.3. ADDING A NEW IMAGE TAG TO AN IMAGE BY USING THE UI

You can add a new tag to an image in Red Hat Quay.

Procedure

1. On the Red Hat Quay v2 UI dashboard, click Repositories in the navigation pane.

"is_free_account": true, "state": "NORMAL", "tags": {"example": {"name": "example", "size":
2275314, "last_modified": "Tue, 14 May 2024 14:48:51 -0000", "manifest_digest":
"sha256:57583a1b9c0a7509d3417387b4f43acf80d08cdcf5266ac87987be3f8f919d5d"},
"test": {"name": "test", "size": 2275314, "last_modified": "Tue, 14 May 2024 14:04:48 -0000",
"manifest_digest":
"sha256:57583a1b9c0a7509d3417387b4f43acf80d08cdcf5266ac87987be3f8f919d5d"}},
"can_write": true, "can_admin": true}

$ curl -X GET \
 -H "Authorization: Bearer <bearer_token>" \
 -H "Accept: application/json" \
 https://<quay-
server.example.com>/api/v1/repository/<namespace>/<repository_name>/tag/

{"tags": [{"name": "test-two", "reversion": true, "start_ts": 1718737153, "manifest_digest":
"sha256:57583a1b9c0a7509d3417387b4f43acf80d08cdcf5266ac87987be3f8f919d5d",
"is_manifest_list": false, "size": 2275314, "last_modified": "Tue, 18 Jun 2024 18:59:13 -
0000"}, {"name": "test-two", "reversion": false, "start_ts": 1718737029, "end_ts": 1718737153,
"manifest_digest":
"sha256:0cd3dd6236e246b349e63f76ce5f150e7cd5dbf2f2f1f88dbd734430418dbaea",
"is_manifest_list": false, "size": 2275317, "last_modified": "Tue, 18 Jun 2024 18:57:09 -0000",
"expiration": "Tue, 18 Jun 2024 18:59:13 -0000"}, {"name": "test-two", "reversion": false,
"start_ts": 1718737018, "end_ts": 1718737029, "manifest_digest":
"sha256:0cd3dd6236e246b349e63f76ce5f150e7cd5dbf2f2f1f88dbd734430418dbaea",
"is_manifest_list": false, "size": 2275317, "last_modified": "Tue, 18 Jun 2024 18:56:58 -0000",
"expiration": "Tue, 18 Jun 2024 18:57:09 -0000"}, {"name": "sample_tag", "reversion": false,
"start_ts": 1718736147, "manifest_digest":
"sha256:57583a1b9c0a7509d3417387b4f43acf80d08cdcf5266ac87987be3f8f919d5d",
"is_manifest_list": false, "size": 2275314, "last_modified": "Tue, 18 Jun 2024 18:42:27 -
0000"}, {"name": "test-two", "reversion": false, "start_ts": 1717680780, "end_ts": 1718737018,
"manifest_digest":
"sha256:57583a1b9c0a7509d3417387b4f43acf80d08cdcf5266ac87987be3f8f919d5d",
"is_manifest_list": false, "size": 2275314, "last_modified": "Thu, 06 Jun 2024 13:33:00 -0000",
"expiration": "Tue, 18 Jun 2024 18:56:58 -0000"}, {"name": "tag-test", "reversion": false,
"start_ts": 1717680378, "manifest_digest":
"sha256:57583a1b9c0a7509d3417387b4f43acf80d08cdcf5266ac87987be3f8f919d5d",
"is_manifest_list": false, "size": 2275314, "last_modified": "Thu, 06 Jun 2024 13:26:18 -
0000"}, {"name": "example", "reversion": false, "start_ts": 1715698131, "manifest_digest":
"sha256:57583a1b9c0a7509d3417387b4f43acf80d08cdcf5266ac87987be3f8f919d5d",
"is_manifest_list": false, "size": 2275314, "last_modified": "Tue, 14 May 2024 14:48:51 -
0000"}], "page": 1, "has_additional": false}

CHAPTER 7. IMAGE TAGS OVERVIEW

41

https://docs.redhat.com/en/documentation/red_hat_quay/3/html-single/red_hat_quay_api_guide/index#listrepotags

2. Click the name of a repository that has image tags.

3. Click the menu kebab, then click Add new tag.

4. Enter a name for the tag, then, click Create tag.
The new tag is now listed on the Repository Tags page.

7.4. ADDING A NEW TAG TO AN IMAGE TAG TO AN IMAGE BY USING
THE API

You can add a new tag, or restore an old one, to an image by using the API.

Prerequisites

You have Created an OAuth access token.

You have set BROWSER_API_CALLS_XHR_ONLY: false in your config.yaml file.

Procedure

1. You can change which image a tag points to or create a new tag by using the PUT
/api/v1/repository/{repository}/tag/{tag} command:

Example output

2. You can restore a repository tag to its previous image by using the POST
/api/v1/repository/{repository}/tag/{tag}/restore command. For example:

Example output

3. To see a list of tags after creating a new tag you can use the GET
/api/v1/repository/{repository}/tag/ command. For example:

$ curl -X PUT \
 -H "Authorization: Bearer <bearer_token>" \
 -H "Content-Type: application/json" \
 --data '{
 "manifest_digest": "<manifest_digest>"
 }' \
 https://<quay-
server.example.com>/api/v1/repository/<namespace>/<repository_name>/tag/<tag>

"Updated"

$ curl -X POST \
 -H "Authorization: Bearer <bearer_token>" \
 -H "Content-Type: application/json" \
 --data '{
 "manifest_digest": <manifest_digest>
 }' \
 quay-server.example.com/api/v1/repository/quayadmin/busybox/tag/test/restore

{}

Red Hat Quay 3 Use Red Hat Quay

42

https://access.redhat.com/documentation/en-us/red_hat_quay/3/html-single/red_hat_quay_api_guide/index#creating-oauth-access-token
https://docs.redhat.com/en/documentation/red_hat_quay/3/html-single/red_hat_quay_api_guide/index#changetag
https://docs.redhat.com/en/documentation/red_hat_quay/3/html-single/red_hat_quay_api_guide/index#restoretag
https://docs.redhat.com/en/documentation/red_hat_quay/3/html-single/red_hat_quay_api_guide/index#listrepotags

Example output

7.5. ADDING AND MANAGING LABELS BY USING THE UI

Administrators can add and manage labels for tags by using the following procedure.

Procedure

1. On the v2 UI dashboard, click Repositories in the navigation pane.

2. Click the name of a repository that has image tags.

3. Click the menu kebab for an image and select Edit labels.

4. In the Edit labels window, click Add new label.

5. Enter a label for the image tag using the key=value format, for example,
com.example.release-date=2023-11-14.

NOTE

The following error is returned when failing to use the key=value format: Invalid
label format, must be key value separated by =.

6. Click the whitespace of the box to add the label.

7. Optional. Add a second label.

8. Click Save labels to save the label to the image tag. The following notification is returned:

$ curl -X GET \
 -H "Authorization: Bearer <bearer_token>" \
 -H "Accept: application/json" \
 https://<quay-
server.example.com>/api/v1/repository/<namespace>/<repository_name>/tag

{"tags": [{"name": "test", "reversion": false, "start_ts": 1716324069, "manifest_digest":
"sha256:57583a1b9c0a7509d3417387b4f43acf80d08cdcf5266ac87987be3f8f919d5d",
"is_manifest_list": false, "size": 2275314, "last_modified": "Tue, 21 May 2024 20:41:09 -
0000"}, {"name": "example", "reversion": false, "start_ts": 1715698131, "manifest_digest":
"sha256:57583a1b9c0a7509d3417387b4f43acf80d08cdcf5266ac87987be3f8f919d5d",
"is_manifest_list": false, "size": 2275314, "last_modified": "Tue, 14 May 2024 14:48:51 -
0000"}, {"name": "example", "reversion": false, "start_ts": 1715697708, "end_ts":
1715698131, "manifest_digest":
"sha256:57583a1b9c0a7509d3417387b4f43acf80d08cdcf5266ac87987be3f8f919d5d",
"is_manifest_list": false, "size": 2275314, "last_modified": "Tue, 14 May 2024 14:41:48 -
0000", "expiration": "Tue, 14 May 2024 14:48:51 -0000"}, {"name": "test", "reversion": false,
"start_ts": 1715695488, "end_ts": 1716324069, "manifest_digest":
"sha256:57583a1b9c0a7509d3417387b4f43acf80d08cdcf5266ac87987be3f8f919d5d",
"is_manifest_list": false, "size": 2275314, "last_modified": "Tue, 14 May 2024 14:04:48 -
0000", "expiration": "Tue, 21 May 2024 20:41:09 -0000"}, {"name": "test", "reversion": false,
"start_ts": 1715631517, "end_ts": 1715695488, "manifest_digest":
"sha256:57583a1b9c0a7509d3417387b4f43acf80d08cdcf5266ac87987be3f8f919d5d",
"is_manifest_list": false, "size": 2275314, "last_modified": "Mon, 13 May 2024 20:18:37 -
0000", "expiration": "Tue, 14 May 2024 14:04:48 -0000"}], "page": 1, "has_additional": false}

CHAPTER 7. IMAGE TAGS OVERVIEW

43

8. Click Save labels to save the label to the image tag. The following notification is returned:
Created labels successfully.

9. Optional. Click the same image tag’s menu kebab → Edit labels → X on the label to remove it;
alternatively, you can edit the text. Click Save labels. The label is now removed or edited.

7.6. ADDING AND MANAGING LABELS BY USING THE API

Red Hat Quay administrators can add and manage labels for tags with the API by using the following
procedure.

Prerequisites

You have Created an OAuth access token.

You have set BROWSER_API_CALLS_XHR_ONLY: false in your config.yaml file.

Procedure

1. Use the GET /api/v1/repository/{repository}/manifest/{manifestref} command to retrieve the
details of a specific manifest in a repository:

2. Use the GET /api/v1/repository/{repository}/manifest/{manifestref}/labels command to
retrieve a list of labels for a specific manifest:

Example output

3. Use the GET /api/v1/repository/{repository}/manifest/{manifestref}/labels/{labelid}
command to obtain information about a specific manifest:

$ curl -X GET \
 -H "Authorization: Bearer <bearer_token>" \
 -H "Accept: application/json" \
 https://<quay-server.example.com>/api/v1/repository/<repository>/manifest/<manifestref>

$ curl -X GET \
 -H "Authorization: Bearer <bearer_token>" \
 -H "Accept: application/json" \
 https://<quay-
server.example.com>/api/v1/repository/<repository>/manifest/<manifestref>/labels

{"labels": [{"id": "e9f717d2-c1dd-4626-802d-733a029d17ad", "key":
"org.opencontainers.image.url", "value": "https://github.com/docker-library/busybox",
"source_type": "manifest", "media_type": "text/plain"}, {"id": "2d34ec64-4051-43ad-ae06-
d5f81003576a", "key": "org.opencontainers.image.version", "value": "1.36.1-glibc",
"source_type": "manifest", "media_type": "text/plain"}]}

$ curl -X GET \
 -H "Authorization: Bearer <bearer_token>" \
 -H "Accept: application/json" \
 https://<quay-
server.example.com>/api/v1/repository/<repository>/manifest/<manifestref>/labels/<label_id>

Red Hat Quay 3 Use Red Hat Quay

44

https://access.redhat.com/documentation/en-us/red_hat_quay/3/html-single/red_hat_quay_api_guide/index#creating-oauth-access-token
https://docs.redhat.com/en/documentation/red_hat_quay/3/html-single/red_hat_quay_api_guide/index#getrepomanifest
https://docs.redhat.com/en/documentation/red_hat_quay/3/html-single/red_hat_quay_api_guide/index#listmanifestlabels
https://docs.redhat.com/en/documentation/red_hat_quay/3/html-single/red_hat_quay_api_guide/index#getmanifestlabel

Example output

4. You can add an additional label to a manifest in a given repository with the POST
/api/v1/repository/{repository}/manifest/{manifestref}/labels command. For example:

Example output

5. You can delete a label using the
https://docs.redhat.com/en/documentation/red_hat_quay/3/html-
single/red_hat_quay_api_guide/index#deletemanifestlabelDELETE
/api/v1/repository/{repository}/manifest/{manifestref}/labels/{labelid}] command:

This command does not return output in the CLI. You can use one of the commands above to
ensure that it was successfully removed.

7.7. SETTING TAG EXPIRATIONS

Image tags can be set to expire from a Red Hat Quay repository at a chosen date and time using the tag
expiration feature. This feature includes the following characteristics:

When an image tag expires, it is deleted from the repository. If it is the last tag for a specific
image, the image is also set to be deleted.

Expiration is set on a per-tag basis. It is not set for a repository as a whole.

After a tag is expired or deleted, it is not immediately removed from the registry. This is
contingent upon the allotted time designed in the time machine feature, which defines when the
tag is permanently deleted, or garbage collected. By default, this value is set at 14 days, however
the administrator can adjust this time to one of multiple options. Up until the point that garbage
collection occurs, tags changes can be reverted.

{"id": "e9f717d2-c1dd-4626-802d-733a029d17ad", "key": "org.opencontainers.image.url",
"value": "https://github.com/docker-library/busybox", "source_type": "manifest", "media_type":
"text/plain"}

$ curl -X POST \
 -H "Authorization: Bearer <bearer_token>" \
 -H "Content-Type: application/json" \
 --data '{
 "key": "<key>",
 "value": "<value>",
 "media_type": "<media_type>"
 }' \
 https://<quay-
server.example.com>/api/v1/repository/<repository>/manifest/<manifestref>/labels

{"label": {"id": "346593fd-18c8-49db-854f-4cb1fb76ff9c", "key": "example-key", "value":
"example-value", "source_type": "api", "media_type": "text/plain"}}

$ curl -X DELETE \
 -H "Authorization: Bearer <bearer_token>" \
 https://<quay-
server.example.com>/api/v1/repository/<repository>/manifest/<manifestref>/labels/<labelid>

CHAPTER 7. IMAGE TAGS OVERVIEW

45

https://docs.redhat.com/en/documentation/red_hat_quay/3/html-single/red_hat_quay_api_guide/index#addmanifestlabel
https://docs.redhat.com/en/documentation/red_hat_quay/3/html-single/red_hat_quay_api_guide/index#deletemanifestlabel

The Red Hat Quay superuser has no special privilege related to deleting expired images from user
repositories. There is no central mechanism for the superuser to gather information and act on user
repositories. It is up to the owners of each repository to manage expiration and the deletion of their
images.

Tag expiration can be set up in one of two ways:

By setting the quay.expires-after= label in the Dockerfile when the image is created. This sets a
time to expire from when the image is built.

By selecting an expiration date on the Red Hat Quay UI. For example:

Setting tag expirations can help automate the cleanup of older or unused tags, helping to reduce
storage space.

7.7.1. Setting tag expiration from a repository

Procedure

1. On the Red Hat Quay v2 UI dashboard, click Repositories in the navigation pane.

2. Click the name of a repository that has image tags.

3. Click the menu kebab for an image and select Change expiration.

4. Optional. Alternatively, you can bulk add expiration dates by clicking the box of multiple tags,
and then select Actions → Set expiration.

5. In the Change Tags Expiration window, set an expiration date, specifying the day of the week,
month, day of the month, and year. For example, Wednesday, November 15, 2023.
Alternatively, you can click the calendar button and manually select the date.

6. Set the time, for example, 2:30 PM.

7. Click Change Expiration to confirm the date and time. The following notification is returned:
Successfully set expiration for tag test to Nov 15, 2023, 2:26 PM.

8. On the Red Hat Quay v2 UI Tags page, you can see when the tag is set to expire. For example:

Red Hat Quay 3 Use Red Hat Quay

46

7.7.2. Setting tag expiration from a Dockerfile

You can add a label, for example, quay.expires-after=20h to an image tag by using the docker label
command to cause the tag to automatically expire after the time that is indicated. The following values
for hours, days, or weeks are accepted:

1h

2d

3w

Expiration begins from the time that the image is pushed to the registry.

Procedure

Enter the following docker label command to add a label to the desired image tag. The label
should be in the format quay.expires-after=20h to indicate that the tag should expire after 20
hours. Replace 20h with the desired expiration time. For example:

7.7.3. Setting tag expirations by using the API

Image tags can be set to expire by using the API.

Prerequisites

You have Created an OAuth access token.

You have set BROWSER_API_CALLS_XHR_ONLY: false in your config.yaml file.

Procedure

You can set when an image a tag expires by using the PUT
/api/v1/repository/{repository}/tag/{tag} command and passing in the expiration field:

$ docker label quay.expires-after=20h quay-server.example.com/quayadmin/<image>:<tag>

$ curl -X PUT \
 -H "Authorization: Bearer <bearer_token>" \
 -H "Content-Type: application/json" \
 --data '{

CHAPTER 7. IMAGE TAGS OVERVIEW

47

https://access.redhat.com/documentation/en-us/red_hat_quay/3/html-single/red_hat_quay_api_guide/index#creating-oauth-access-token
https://docs.redhat.com/en/documentation/red_hat_quay/3/html-single/red_hat_quay_api_guide/index#changetag

Example output

7.8. FETCHING AN IMAGE BY TAG OR DIGEST

Red Hat Quay offers multiple ways of pulling images using Docker and Podman clients.

Procedure

1. Navigate to the Tags page of a repository.

2. Under Manifest, click the Fetch Tag icon.

3. When the popup box appears, users are presented with the following options:

Podman Pull (by tag)

Docker Pull (by tag)

Podman Pull (by digest)

Docker Pull (by digest)
Selecting any one of the four options returns a command for the respective client that
allows users to pull the image.

4. Click Copy Command to copy the command, which can be used on the command-line interface
(CLI). For example:

7.9. VIEWING RED HAT QUAY TAG HISTORY BY USING THE UI

Red Hat Quay offers a comprehensive history of images and their respective image tags.

Procedure

1. On the Red Hat Quay v2 UI dashboard, click Repositories in the navigation pane.

2. Click the name of a repository that has image tags.

3. Click Tag History. On this page, you can perform the following actions:

Search by tag name

Select a date range

View tag changes

 "manifest_digest": "<manifest_digest>"
 }' \
 https://<quay-
server.example.com>/api/v1/repository/<namespace>/<repository_name>/tag/<tag>

"Updated"

$ podman pull quay-server.example.com/quayadmin/busybox:test2

Red Hat Quay 3 Use Red Hat Quay

48

View tag modification dates and the time at which they were changed

7.10. VIEWING RED HAT QUAY TAG HISTORY BY USING THE API

Red Hat Quay offers a comprehensive history of images and their respective image tags.

Prerequisites

You have Created an OAuth access token.

You have set BROWSER_API_CALLS_XHR_ONLY: false in your config.yaml file.

Procedure

1. Enter the following command to view tag history by using the GET
/api/v1/repository/{repository}/tag/ command and passing in one of the following queries:

onlyActiveTags=<true/false>: Filters to only include active tags.

page=<number>: Specifies the page number of results to retrieve.

limit=<number>: Limits the number of results per page.

specificTag=<tag_name> : Filters the tags to include only the tag with the specified name.

Example output

2. By using the specificTag=<tag_name> query, you can filter results for a specific tag. For
example:

Example output

$ curl -X GET \
 -H "Authorization: Bearer <bearer_token>" \
 -H "Accept: application/json" \
 "https://<quay-server.example.com>/api/v1/repository/<namespace>/<repository>/tag/?
onlyActiveTags=true&page=1&limit=10"

{"tags": [{"name": "test-two", "reversion": false, "start_ts": 1717680780, "manifest_digest":
"sha256:57583a1b9c0a7509d3417387b4f43acf80d08cdcf5266ac87987be3f8f919d5d",
"is_manifest_list": false, "size": 2275314, "last_modified": "Thu, 06 Jun 2024 13:33:00 -
0000"}, {"name": "tag-test", "reversion": false, "start_ts": 1717680378, "manifest_digest":
"sha256:57583a1b9c0a7509d3417387b4f43acf80d08cdcf5266ac87987be3f8f919d5d",
"is_manifest_list": false, "size": 2275314, "last_modified": "Thu, 06 Jun 2024 13:26:18 -
0000"}, {"name": "example", "reversion": false, "start_ts": 1715698131, "manifest_digest":
"sha256:57583a1b9c0a7509d3417387b4f43acf80d08cdcf5266ac87987be3f8f919d5d",
"is_manifest_list": false, "size": 2275314, "last_modified": "Tue, 14 May 2024 14:48:51 -
0000"}], "page": 1, "has_additional": false}

$ curl -X GET -H "Authorization: Bearer lfV4lVf9qRsyoFnrgEno1umIOrsdp8lPyMnfUDYY"
-H "Accept: application/json" "quay-
server.example.com/api/v1/repository/quayadmin/busybox/tag/?
onlyActiveTags=true&page=1&limit=20&specificTag=test-two"

CHAPTER 7. IMAGE TAGS OVERVIEW

49

https://access.redhat.com/documentation/en-us/red_hat_quay/3/html-single/red_hat_quay_api_guide/index#creating-oauth-access-token
https://docs.redhat.com/en/documentation/red_hat_quay/3/html-single/red_hat_quay_api_guide/index#listrepotags

7.11. DELETING AN IMAGE TAG

Deleting an image tag removes that specific version of the image from the registry.

To delete an image tag, use the following procedure.

Procedure

1. On the Repositories page of the v2 UI, click the name of the image you want to delete, for
example, quay/admin/busybox.

2. Click the More Actions drop-down menu.

3. Click Delete.

NOTE

If desired, you could click Make Public or Make Private.

4. Type confirm in the box, and then click Delete.

5. After deletion, you are returned to the Repositories page.

NOTE

Deleting an image tag can be reverted based on the amount of time allotted
assigned to the time machine feature. For more information, see "Reverting tag
changes".

7.12. DELETING AN IMAGE BY USING THE API

You can delete an old image tag by using the API.

Prerequisites

You have Created an OAuth access token.

You have set BROWSER_API_CALLS_XHR_ONLY: false in your config.yaml file.

Procedure

1. You can delete an image tag by using the DELETE /api/v1/repository/{repository}/tag/{tag}
command:

{"tags": [{"name": "test-two", "reversion": true, "start_ts": 1718737153, "manifest_digest":
"sha256:57583a1b9c0a7509d3417387b4f43acf80d08cdcf5266ac87987be3f8f919d5d",
"is_manifest_list": false, "size": 2275314, "last_modified": "Tue, 18 Jun 2024 18:59:13 -
0000"}], "page": 1, "has_additional": false}

$ curl -X DELETE \
 -H "Authorization: Bearer <bearer_token>" \
 https://<quay-
server.example.com>/api/v1/repository/<namespace>/<repository_name>/tag/<tag>

Red Hat Quay 3 Use Red Hat Quay

50

https://access.redhat.com/documentation/en-us/red_hat_quay/3/html-single/red_hat_quay_api_guide/index#creating-oauth-access-token
https://docs.redhat.com/en/documentation/red_hat_quay/3/html-single/red_hat_quay_api_guide/index#deletefulltag

This command does not return output in the CLI. Continue on to the next step to return a list of
tags.

2. To see a list of tags after deleting a tag, you can use the GET
/api/v1/repository/{repository}/tag/ command. For example:

Example output

7.13. REVERTING TAG CHANGES BY USING THE UI

Red Hat Quay offers a comprehensive time machine feature that allows older images tags to remain in
the repository for set periods of time so that they can revert changes made to tags. This feature allows
users to revert tag changes, like tag deletions.

Procedure

1. On the Repositories page of the v2 UI, click the name of the image you want to revert.

2. Click the Tag History tab.

3. Find the point in the timeline at which image tags were changed or removed. Next, click the
option under Revert to restore a tag to its image.

7.14. REVERTING TAG CHANGES BY USING THE API

Red Hat Quay offers a comprehensive time machine feature that allows older images tags to remain in

$ curl -X GET \
 -H "Authorization: Bearer <bearer_token>" \
 -H "Accept: application/json" \
 https://<quay-
server.example.com>/api/v1/repository/<namespace>/<repository_name>/tag

{"tags": [{"name": "test", "reversion": false, "start_ts": 1716324069, "manifest_digest":
"sha256:57583a1b9c0a7509d3417387b4f43acf80d08cdcf5266ac87987be3f8f919d5d",
"is_manifest_list": false, "size": 2275314, "last_modified": "Tue, 21 May 2024 20:41:09 -
0000"}, {"name": "example", "reversion": false, "start_ts": 1715698131, "manifest_digest":
"sha256:57583a1b9c0a7509d3417387b4f43acf80d08cdcf5266ac87987be3f8f919d5d",
"is_manifest_list": false, "size": 2275314, "last_modified": "Tue, 14 May 2024 14:48:51 -
0000"}, {"name": "example", "reversion": false, "start_ts": 1715697708, "end_ts":
1715698131, "manifest_digest":
"sha256:57583a1b9c0a7509d3417387b4f43acf80d08cdcf5266ac87987be3f8f919d5d",
"is_manifest_list": false, "size": 2275314, "last_modified": "Tue, 14 May 2024 14:41:48 -
0000", "expiration": "Tue, 14 May 2024 14:48:51 -0000"}, {"name": "test", "reversion": false,
"start_ts": 1715695488, "end_ts": 1716324069, "manifest_digest":
"sha256:57583a1b9c0a7509d3417387b4f43acf80d08cdcf5266ac87987be3f8f919d5d",
"is_manifest_list": false, "size": 2275314, "last_modified": "Tue, 14 May 2024 14:04:48 -
0000", "expiration": "Tue, 21 May 2024 20:41:09 -0000"}, {"name": "test", "reversion": false,
"start_ts": 1715631517, "end_ts": 1715695488, "manifest_digest":
"sha256:57583a1b9c0a7509d3417387b4f43acf80d08cdcf5266ac87987be3f8f919d5d",
"is_manifest_list": false, "size": 2275314, "last_modified": "Mon, 13 May 2024 20:18:37 -
0000", "expiration": "Tue, 14 May 2024 14:04:48 -0000"}], "page": 1, "has_additional": false}

CHAPTER 7. IMAGE TAGS OVERVIEW

51

https://docs.redhat.com/en/documentation/red_hat_quay/3/html-single/red_hat_quay_api_guide/index#listrepotags

Red Hat Quay offers a comprehensive time machine feature that allows older images tags to remain in
the repository for set periods of time so that they can revert changes made to tags. This feature allows
users to revert tag changes, like tag deletions.

Prerequisites

You have Created an OAuth access token.

You have set BROWSER_API_CALLS_XHR_ONLY: false in your config.yaml file.

Procedure

1. You can restore a repository tag to its previous image by using the POST
/api/v1/repository/{repository}/tag/{tag}/restore command. For example:

Example output

2. To see a list of tags after restoring an old tag you can use the GET
/api/v1/repository/{repository}/tag/ command. For example:

Example output

$ curl -X POST \
 -H "Authorization: Bearer <bearer_token>" \
 -H "Content-Type: application/json" \
 --data '{
 "manifest_digest": <manifest_digest>
 }' \
 quay-server.example.com/api/v1/repository/quayadmin/busybox/tag/test/restore

{}

$ curl -X GET \
 -H "Authorization: Bearer <bearer_token>" \
 -H "Accept: application/json" \
 https://<quay-
server.example.com>/api/v1/repository/<namespace>/<repository_name>/tag

{"tags": [{"name": "test", "reversion": false, "start_ts": 1716324069, "manifest_digest":
"sha256:57583a1b9c0a7509d3417387b4f43acf80d08cdcf5266ac87987be3f8f919d5d",
"is_manifest_list": false, "size": 2275314, "last_modified": "Tue, 21 May 2024 20:41:09 -
0000"}, {"name": "example", "reversion": false, "start_ts": 1715698131, "manifest_digest":
"sha256:57583a1b9c0a7509d3417387b4f43acf80d08cdcf5266ac87987be3f8f919d5d",
"is_manifest_list": false, "size": 2275314, "last_modified": "Tue, 14 May 2024 14:48:51 -
0000"}, {"name": "example", "reversion": false, "start_ts": 1715697708, "end_ts":
1715698131, "manifest_digest":
"sha256:57583a1b9c0a7509d3417387b4f43acf80d08cdcf5266ac87987be3f8f919d5d",
"is_manifest_list": false, "size": 2275314, "last_modified": "Tue, 14 May 2024 14:41:48 -
0000", "expiration": "Tue, 14 May 2024 14:48:51 -0000"}, {"name": "test", "reversion": false,
"start_ts": 1715695488, "end_ts": 1716324069, "manifest_digest":
"sha256:57583a1b9c0a7509d3417387b4f43acf80d08cdcf5266ac87987be3f8f919d5d",
"is_manifest_list": false, "size": 2275314, "last_modified": "Tue, 14 May 2024 14:04:48 -
0000", "expiration": "Tue, 21 May 2024 20:41:09 -0000"}, {"name": "test", "reversion": false,
"start_ts": 1715631517, "end_ts": 1715695488, "manifest_digest":

Red Hat Quay 3 Use Red Hat Quay

52

https://access.redhat.com/documentation/en-us/red_hat_quay/3/html-single/red_hat_quay_api_guide/index#creating-oauth-access-token
https://docs.redhat.com/en/documentation/red_hat_quay/3/html-single/red_hat_quay_api_guide/index#restoreta
https://docs.redhat.com/en/documentation/red_hat_quay/3/html-single/red_hat_quay_api_guide/index#listrepotags

"sha256:57583a1b9c0a7509d3417387b4f43acf80d08cdcf5266ac87987be3f8f919d5d",
"is_manifest_list": false, "size": 2275314, "last_modified": "Mon, 13 May 2024 20:18:37 -
0000", "expiration": "Tue, 14 May 2024 14:04:48 -0000"}], "page": 1, "has_additional": false}

CHAPTER 7. IMAGE TAGS OVERVIEW

53

CHAPTER 8. VIEWING AND EXPORTING LOGS
Activity logs are gathered for all repositories and namespace in Red Hat Quay.

Viewing usage logs of Red Hat Quay. can provide valuable insights and benefits for both operational and
security purposes. Usage logs might reveal the following information:

Resource Planning: Usage logs can provide data on the number of image pulls, pushes, and
overall traffic to your registry.

User Activity: Logs can help you track user activity, showing which users are accessing and
interacting with images in the registry. This can be useful for auditing, understanding user
behavior, and managing access controls.

Usage Patterns: By studying usage patterns, you can gain insights into which images are
popular, which versions are frequently used, and which images are rarely accessed. This
information can help prioritize image maintenance and cleanup efforts.

Security Auditing: Usage logs enable you to track who is accessing images and when. This is
crucial for security auditing, compliance, and investigating any unauthorized or suspicious
activity.

Image Lifecycle Management: Logs can reveal which images are being pulled, pushed, and
deleted. This information is essential for managing image lifecycles, including deprecating old
images and ensuring that only authorized images are used.

Compliance and Regulatory Requirements: Many industries have compliance requirements
that mandate tracking and auditing of access to sensitive resources. Usage logs can help you
demonstrate compliance with such regulations.

Identifying Abnormal Behavior: Unusual or abnormal patterns in usage logs can indicate
potential security breaches or malicious activity. Monitoring these logs can help you detect and
respond to security incidents more effectively.

Trend Analysis: Over time, usage logs can provide trends and insights into how your registry is
being used. This can help you make informed decisions about resource allocation, access
controls, and image management strategies.

There are multiple ways of accessing log files:

Viewing logs through the web UI.

Exporting logs so that they can be saved externally.

Accessing log entries using the API.

To access logs, you must have administrative privileges for the selected repository or namespace.

NOTE

A maximum of 100 log results are available at a time via the API. To gather more results
that that, you must use the log exporter feature described in this chapter.

8.1. VIEWING USAGE LOGS

Logs can provide valuable information about the way that your registry is being used. Logs can be

Red Hat Quay 3 Use Red Hat Quay

54

Logs can provide valuable information about the way that your registry is being used. Logs can be
viewed by Organization, repository, or namespace on the v2 UI by using the following procedure.

Procedure

1. Log in to your Red Hat Quay registry.

2. Navigate to an Organization, repository, or namespace for which you are an administrator of.

3. Click Logs.

4. Optional. Set the date range for viewing log entries by adding dates to the From and To boxes.

5. Optional. Export the logs by clicking Export. You must enter an email address or a valid callback
URL that starts with http:// or https://. This process can take an hour depending on how many
logs there are.

8.2. VIEWING USAGE LOGS BY USING THE API

Logs can be viewed by Organization or repository by using the API. They can also be aggregated
(grouped), or listed with more detailed. Logs can also be viewed by user, a specific date range, or by
page.

8.2.1. Viewing aggregated logs

Aggregated logs can be viewed by Organization, repository, a specific user, or the current user. You can
also pass in optional commands like performer, starttime/endtime, and next_page to filter results.

Prerequisites

You have Created an OAuth access token.

You have set BROWSER_API_CALLS_XHR_ONLY: false in your config.yaml file.

Procedure

1. Use the GET /api/v1/user/aggregatelogs API endpoint to return the aggregated (or grouped)
logs for the current user:

$ curl -X GET \

CHAPTER 8. VIEWING AND EXPORTING LOGS

55

https://access.redhat.com/documentation/en-us/red_hat_quay/3/html-single/red_hat_quay_api_guide/index#creating-oauth-access-token
https://docs.redhat.com/en/documentation/red_hat_quay/3/html-single/red_hat_quay_api_guide/index#getaggregateuserlogs

Example output

You can also pass in the performer and starttime/endtime queries to obtain aggregated logs
for a specific user between a specific time period. For example:

2. Aggregated logs can also be viewed by Organization by using the GET
/api/v1/organization/{orgname}/aggregatelogs. For example:

3. Aggregated logs can also be viewed by repository by using the GET
/api/v1/repository/{repository}/aggregatelogs command. The following example includes the
starttime/endtime fields:

8.2.2. Viewing detailed logs

Detailed logs can be viewed by Organization, repository, a specific user, or the current user. You can also
pass in optional fields like performer, starttime/endtime, and next_page to filter results.

Procedure

1. Use the GET /api/v1/user/logs API endpoint to return a list of log entries for a user. For
example:

You can also pass in the performer and startime/endtime queries to obtain logs for a specific

 -H "Authorization: Bearer <bearer_token>" \
 -H "Accept: application/json" \
 "https://<quay-server.example.com>/api/v1/user/aggregatelogs"

{"aggregated": [{"kind": "create_tag", "count": 1, "datetime": "Tue, 18 Jun 2024 00:00:00 -
0000"}, {"kind": "manifest_label_add", "count": 1, "datetime": "Tue, 18 Jun 2024 00:00:00 -
0000"}, {"kind": "push_repo", "count": 2, "datetime": "Tue, 18 Jun 2024 00:00:00 -0000"},
{"kind": "revert_tag", "count": 1, "datetime": "Tue, 18 Jun 2024 00:00:00 -0000"}]}

$ curl -X GET \
 -H "Authorization: Bearer <bearer_token>" \
 -H "Accept: application/json" \
 "<quay-server.example.com>/api/v1/user/aggregatelogs?performer=
<username>&starttime=<MM/DD/YYYY>&endtime=<MM/DD/YYYY>"

$ curl -X GET \
 -H "Authorization: Bearer <bearer_token>" \
 -H "Accept: application/json" \
 "<quay-server.example.com>/api/v1/organization/{orgname}/aggregatelogs"

$ curl -X GET \
 -H "Authorization: Bearer <bearer_token>" \
 -H "Accept: application/json" \
 "<quay-
server.example.com>/api/v1/repository/<repository_name>/<namespace>/aggregatelogs?
starttime=2024-01-01&endtime=2024-06-18""

$ curl -X GET -H "Authorization: Bearer lfV4lVf9qRsyoFnrgEno1umIOrsdp8lPyMnfUDYY"
-H "Accept: application/json" "quay-server.example.com/api/v1/user/logs"

Red Hat Quay 3 Use Red Hat Quay

56

https://docs.redhat.com/en/documentation/red_hat_quay/3/html-single/red_hat_quay_api_guide/index#getaggregateorglogs
https://docs.redhat.com/en/documentation/red_hat_quay/3/html-single/red_hat_quay_api_guide/index#getaggregaterepologs
https://docs.redhat.com/en/documentation/red_hat_quay/3/html-single/red_hat_quay_api_guide/index#listuserlogs

You can also pass in the performer and startime/endtime queries to obtain logs for a specific
user between a specific time period. For example:

Example output

2. Use the GET /api/v1/organization/{orgname}/logs endpoint to return logs for a specified
organization:

3. Use the GET /api/v1/repository/{repository}/logs endpoint to return logs for a specified
repository:

8.3. EXPORTING REPOSITORY LOGS BY USING THE UI

You can obtain a larger number of log files and save them outside of the Red Hat Quay database by
using the Export Logs feature. This feature has the following benefits and constraints:

You can choose a range of dates for the logs you want to gather from a repository.

You can request that the logs be sent to you by an email attachment or directed to a callback
URL.

To export logs, you must be an administrator of the repository or namespace.

30 days worth of logs are retained for all users.

Export logs only gathers log data that was previously produced. It does not stream logging data.

$ curl -X GET -H "Authorization: Bearer lfV4lVf9qRsyoFnrgEno1umIOrsdp8lPyMnfUDYY"
-H "Accept: application/json" "http://quay-server.example.com/api/v1/user/logs?
performer=quayuser&starttime=01/01/2024&endtime=06/18/2024"

{"start_time": "Mon, 01 Jan 2024 00:00:00 -0000", "end_time": "Wed, 19 Jun 2024 00:00:00 -
0000", "logs": [{"kind": "revert_tag", "metadata": {"username": "quayuser", "repo": "busybox",
"tag": "test-two", "manifest_digest":
"sha256:57583a1b9c0a7509d3417387b4f43acf80d08cdcf5266ac87987be3f8f919d5d"}, "ip":
"192.168.1.131", "datetime": "Tue, 18 Jun 2024 18:59:13 -0000", "performer": {"kind": "user",
"name": "quayuser", "is_robot": false, "avatar": {"name": "quayuser", "hash":
"b28d563a6dc76b4431fc7b0524bbff6b810387dac86d9303874871839859c7cc", "color":
"#17becf", "kind": "user"}}}, {"kind": "push_repo", "metadata": {"repo": "busybox",
"namespace": "quayuser", "user-agent": "containers/5.30.1 (github.com/containers/image)",
"tag": "test-two", "username": "quayuser", }

$ curl -X GET \
 -H "Authorization: Bearer <bearer_token>" \
 -H "Accept: application/json" \
 "http://<quay-server.example.com>/api/v1/organization/{orgname}/logs"

$ curl -X GET \
 -H "Authorization: Bearer <bearer_token>" \
 -H "Accept: application/json" \
 "http://<quay-server.example.com>/api/v1/repository/{repository}/logs"

CHAPTER 8. VIEWING AND EXPORTING LOGS

57

https://docs.redhat.com/en/documentation/red_hat_quay/3/html-single/red_hat_quay_api_guide/index#listorglogs
https://docs.redhat.com/en/documentation/red_hat_quay/3/html-single/red_hat_quay_api_guide/index#listrepologs

Your Red Hat Quay instance must be configured for external storage for this feature. Local
storage does not work for exporting logs.

When logs are gathered and made available to you, you should immediately copy that data if you
want to save it. By default, the data expires after one hour.

Use the following procedure to export logs.

Procedure

1. Select a repository for which you have administrator privileges.

2. Click the Logs tab.

3. Optional. If you want to specify specific dates, enter the range in the From and to boxes.

4. Click the Export Logs button. An Export Usage Logs pop-up appears, as shown

5. Enter an email address or callback URL to receive the exported log. For the callback URL, you
can use a URL to a specified domain, for example, <webhook.site>.

6. Select Confirm to start the process for gather the selected log entries. Depending on the
amount of logging data being gathered, this can take anywhere from a few minutes to several
hours to complete.

7. When the log export is completed, the one of following two events happens:

An email is received, alerting you to the available of your requested exported log entries.

A successful status of your log export request from the webhook URL is returned.
Additionally, a link to the exported data is made available for you to delete to download the
logs.

NOTE

The URL points to a location in your Red Hat Quay external storage and is set to expire
within one hour. Make sure that you copy the exported logs before the expiration time if
you intend to keep your logs.

8.4. EXPORTING LOGS BY USING THE API

Detailed logs can be exported to a callback URL or to an email address.

Prerequisites

Red Hat Quay 3 Use Red Hat Quay

58

You have Created an OAuth access token.

You have set BROWSER_API_CALLS_XHR_ONLY: false in your config.yaml file.

Procedure

1. Use the POST /api/v1/user/exportlogs endpoint to export logs for the current user:

Example output

2. Use the POST /api/v1/organization/{orgname}/exportlogs endpoint to export logs for an
Organization:

3. Use the POST /api/v1/repository/{repository}/exportlogs endpoint to export logs for a
repository:

$ curl -X POST \
 -H "Authorization: Bearer <bearer_token>" \
 -H "Content-Type: application/json" \
 -H "Accept: application/json" \
 -d '{
 "starttime": "<MM/DD/YYYY>",
 "endtime": "<MM/DD/YYYY>",
 "callback_email": "your.email@example.com"
 }' \
 "http://<quay-server.example.com>/api/v1/user/exportlogs"

{"export_id": "6a0b9ea9-444c-4a19-9db8-113201c38cd4"}

$ curl -X POST \
 -H "Authorization: Bearer <bearer_token>" \
 -H "Content-Type: application/json" \
 -H "Accept: application/json" \
 -d '{
 "starttime": "<MM/DD/YYYY>",
 "endtime": "<MM/DD/YYYY>",
 "callback_email": "org.logs@example.com"
 }' \
 "http://<quay-server.example.com>/api/v1/organization/{orgname}/exportlogs"

$ curl -X POST \
 -H "Authorization: Bearer <bearer_token>" \
 -H "Content-Type: application/json" \
 -H "Accept: application/json" \
 -d '{
 "starttime": "2024-01-01",
 "endtime": "2024-06-18",
 "callback_url": "http://your-callback-url.example.com"
 }' \
 "http://<quay-server.example.com>/api/v1/repository/{repository}/exportlogs"

CHAPTER 8. VIEWING AND EXPORTING LOGS

59

https://access.redhat.com/documentation/en-us/red_hat_quay/3/html-single/red_hat_quay_api_guide/index#creating-oauth-access-token
https://docs.redhat.com/en/documentation/red_hat_quay/3/html-single/red_hat_quay_api_guide/index#exportuserlogs
https://docs.redhat.com/en/documentation/red_hat_quay/3/html-single/red_hat_quay_api_guide/index#exportorglogs
https://docs.redhat.com/en/documentation/red_hat_quay/3/html-single/red_hat_quay_api_guide/index#exportrepologs

CHAPTER 9. CLAIR SECURITY SCANS
Clair security scanner is not enabled for Red Hat Quay by default. To enable Clair, see Clair on Red Hat
Quay.

Clair security scans can be viewed on the UI, or by the API.

Procedure

1. Navigate to a repository and click Tags in the navigation pane. This page shows the results of
the security scan.

2. To reveal more information about multi-architecture images, click See Child Manifests to see
the list of manifests in extended view.

3. Click a relevant link under See Child Manifests, for example, 1 Unknown to be redirected to the
Security Scanner page.

4. The Security Scanner page provides information for the tag, such as which CVEs the image is
susceptible to, and what remediation options you might have available.

NOTE

Image scanning only lists vulnerabilities found by Clair security scanner. What users do
about the vulnerabilities are uncovered is up to said user. Red Hat Quay superusers do
not act on found vulnerabilities.

9.1. VIEWING CLAIR SECURITY SCANS BY USING THE UI

You can view Clair security scans on the UI.

Procedure

1. Navigate to a repository and click Tags in the navigation pane. This page shows the results of
the security scan.

2. To reveal more information about multi-architecture images, click See Child Manifests to see
the list of manifests in extended view.

3. Click a relevant link under See Child Manifests, for example, 1 Unknown to be redirected to the
Security Scanner page.

4. The Security Scanner page provides information for the tag, such as which CVEs the image is
susceptible to, and what remediation options you might have available.

NOTE

Image scanning only lists vulnerabilities found by Clair security scanner. What users do
about the vulnerabilities are uncovered is up to said user. Red Hat Quay superusers do
not act on found vulnerabilities.

9.2. VIEW CLAIR SECURITY SCANS BY USING THE UI

You can view Clair security scans by using the API.

Red Hat Quay 3 Use Red Hat Quay

60

https://access.redhat.com/documentation/en-us/red_hat_quay/3/html/vulnerability_reporting_with_clair_on_red_hat_quay/testing-clair-with-quay

Procedure

Use the GET /api/v1/repository/{repository}/manifest/{manifestref}/security endpoint to
retrieve security information about a specific manifest in a repository. For example:

Example output

$ curl -X GET \
 -H "Authorization: Bearer <bearer_token>" \
 -H "Accept: application/json" \
 "https://quay-
server.example.com/api/v1/repository/<namespace>/<repository>/manifest/<manifest_digest>/s
ecurity?vulnerabilities=<true_or_false>"

{"status": "queued", "data": null}

CHAPTER 9. CLAIR SECURITY SCANS

61

https://docs.redhat.com/en/documentation/red_hat_quay/3/html-single/red_hat_quay_api_guide/index#getrepomanifestsecurity

CHAPTER 10. NOTIFICATIONS OVERVIEW
Red Hat Quay supports adding notifications to a repository for various events that occur in the
repository’s lifecycle.

10.1. NOTIFICATION ACTIONS

Notifications are added to the Events and Notifications section of the Repository Settings page. They
are also added to the Notifications window, which can be found by clicking the bell icon in the
navigation pane of Red Hat Quay.

Red Hat Quay notifications can be setup to be sent to a User, Team, or the organization as a whole.

E-mail notifications
E-mails are sent to specified addresses that describe the specified event. E-mail addresses must be
verified on a per-repository basis.

Webhook POST notifications
An HTTP POST call is made to the specified URL with the event’s data. For more information about
event data, see "Repository events description".

When the URL is HTTPS, the call has an SSL client certificate set from Red Hat Quay. Verification of this
certificate proves that the call originated from Red Hat Quay. Responses with the status code in the 2xx
range are considered successful. Responses with any other status code are considered failures and
result in a retry of the webhook notification.

Flowdock notifications
Posts a message to Flowdock.

Hipchat notifications
Posts a message to HipChat.

Slack notifications
Posts a message to Slack.

10.2. CREATING NOTIFICATIONS BY USING THE UI

Use the following procedure to add notifications.

Prerequisites

You have created a repository.

You have administrative privileges for the repository.

Procedure

1. Navigate to a repository on Red Hat Quay.

2. In the navigation pane, click Settings.

3. In the Events and Notifications category, click Create Notification to add a new notification
for a repository event. The Create notification popup box appears.

4. On the Create repository popup box, click the When this event occurs box to select an event.

Red Hat Quay 3 Use Red Hat Quay

62

4. On the Create repository popup box, click the When this event occurs box to select an event.
You can select a notification for the following types of events:

Push to Repository

Image build failed

Image build queued

Image build started

Image build success

Image build cancelled

Image expiry trigger

5. After you have selected the event type, select the notification method. The following methods
are supported:

Quay Notification

E-mail Notification

Webhook POST

Flowdock Team Notification

HipChat Room Notification

Slack Notification
Depending on the method that you choose, you must include additional information. For
example, if you select E-mail, you are required to include an e-mail address and an optional
notification title.

6. After selecting an event and notification method, click Create Notification.

10.2.1. Creating an image expiration notification

Image expiration event triggers can be configured to notify users through email, Slack, webhooks, and
so on, and can be configured at the repository level. Triggers can be set for images expiring in any
amount of days, and can work in conjunction with the auto-pruning feature.

Image expiration notifications can be set by using the Red Hat Quay v2 UI or by using the
createRepoNotification API endpoint.

Prerequisites

FEATURE_GARBAGE_COLLECTION: true is set in your config.yaml file.

Optional. FEATURE_AUTO_PRUNE: true is set in your config.yaml file.

Procedure

1. On the Red Hat Quay v2 UI, click Repositories.

2. Select the name of a repository.

CHAPTER 10. NOTIFICATIONS OVERVIEW

63

1

3. Click Settings → Events and notifications.

4. Click Create notification. The Create notification popup box appears.

5. Click the Select event…​ box, then click Image expiry trigger.

6. In the When the image is due to expiry in days box, enter the number of days before the
image’s expiration when you want to receive an alert. For example, use 1 for 1 day.

7. In the Select method…​ box, click one of the following:

E-mail

Webhook POST

Flowdock Team Notification

HipChat Room Notification

Slack Notification

8. Depending on which method you chose, include the necessary data. For example, if you chose
Webhook POST, include the Webhook URL.

9. Optional. Provide a POST JSON body template.

10. Optional. Provide a Title for your notification.

11. Click Submit. You are returned to the Events and notifications page, and the notification now
appears.

12. Optional. You can set the NOTIFICATION_TASK_RUN_MINIMUM_INTERVAL_MINUTES
variable in your config.yaml file. with this field set, if there are any expiring images notifications
will be sent automatically. By default, this is set to 300, or 5 hours, however it can be adjusted as
warranted.

By default, this field is set to 300, or 5 hours.

Verification

1. Click the menu kebab → Test Notification. The following message is returned:

2. Depending on which method you chose, check your e-mail, webhook address, Slack channel, and
so on. The information sent should look similar to the following example:

NOTIFICATION_TASK_RUN_MINIMUM_INTERVAL_MINUTES: 300 1

Test Notification Queued
A test version of this notification has been queued and should appear shortly

{
 "repository": "sample_org/busybox",
 "namespace": "sample_org",
 "name": "busybox",
 "docker_url": "quay-server.example.com/sample_org/busybox",

Red Hat Quay 3 Use Red Hat Quay

64

10.3. CREATING NOTIFICATIONS BY USING THE API

Use the following procedure to add notifications.

Prerequisites

You have created a repository.

You have administrative privileges for the repository.

You have Created an OAuth access token.

You have set BROWSER_API_CALLS_XHR_ONLY: false in your config.yaml file.

Procedure

1. Enter the following POST /api/v1/repository/{repository}/notification command to create a
notification on your repository:

This command does not return output in the CLI. Instead, you can enter the following GET
/api/v1/repository/{repository}/notification/{uuid} command to obtain information about the
repository notification:

2. You can test your repository notification by entering the following POST

 "homepage": "http://quay-server.example.com/repository/sample_org/busybox",
 "tags": [
 "latest",
 "v1"
],
 "expiring_in": "1 days"
}

$ curl -X POST \
 -H "Authorization: Bearer <bearer_token>" \
 -H "Content-Type: application/json" \
 --data '{
 "event": "<event>",
 "method": "<method>",
 "config": {
 "<config_key>": "<config_value>"
 },
 "eventConfig": {
 "<eventConfig_key>": "<eventConfig_value>"
 }
 }' \
 https://<quay-
server.example.com>/api/v1/repository/<namespace>/<repository_name>/notification/

{"uuid": "240662ea-597b-499d-98bb-2b57e73408d6", "title": null, "event": "repo_push",
"method": "quay_notification", "config": {"target": {"name": "quayadmin", "kind": "user",
"is_robot": false, "avatar": {"name": "quayadmin", "hash":
"b28d563a6dc76b4431fc7b0524bbff6b810387dac86d9303874871839859c7cc", "color":
"#17becf", "kind": "user"}}}, "event_config": {}, "number_of_failures": 0}

CHAPTER 10. NOTIFICATIONS OVERVIEW

65

https://access.redhat.com/documentation/en-us/red_hat_quay/3/html-single/red_hat_quay_api_guide/index#creating-oauth-access-token
https://docs.redhat.com/en/documentation/red_hat_quay/3/html-single/red_hat_quay_api_guide/index#createreponotification

2. You can test your repository notification by entering the following POST
/api/v1/repository/{repository}/notification/{uuid}/test command:

Example output

3. You can reset repository notification failures to 0 by entering the following POST
/api/v1/repository/{repository}/notification/{uuid} command:

4. Enter the following DELETE /api/v1/repository/{repository}/notification/{uuid} command to
delete a repository notification:

This command does not return output in the CLI. Instead, you can enter the following GET
/api/v1/repository/{repository}/notification/{uuid} command to retrieve a list of all
notifications:

Example output

10.4. REPOSITORY EVENTS DESCRIPTION

The following sections detail repository events.

Repository Push
A successful push of one or more images was made to the repository:

{
 "name": "repository",
 "repository": "dgangaia/test",
 "namespace": "dgangaia",
 "docker_url": "quay.io/dgangaia/test",
 "homepage": "https://quay.io/repository/dgangaia/repository",
 "updated_tags": [

$ curl -X POST \
 -H "Authorization: Bearer <bearer_token>" \
 https://<quay-server.example.com>/api/v1/repository/<repository>/notification/<uuid>/test

{}

$ curl -X POST \
 -H "Authorization: Bearer <bearer_token>" \
 https://<quay-server.example.com>/api/v1/repository/<repository>/notification/<uuid>

$ curl -X DELETE \
 -H "Authorization: Bearer <bearer_token>" \
 https://<quay-
server.example.com>/api/v1/repository/<namespace>/<repository_name>/notification/<uuid>

$ curl -X GET -H "Authorization: Bearer <bearer_token>" -H "Accept: application/json"
https://<quay-
server.example.com>/api/v1/repository/<namespace>/<repository_name>/notification/

{"notifications": []}

Red Hat Quay 3 Use Red Hat Quay

66

https://docs.redhat.com/en/documentation/red_hat_quay/3/html-single/red_hat_quay_api_guide/index#testreponotification
https://docs.redhat.com/en/documentation/red_hat_quay/3/html-single/red_hat_quay_api_guide/index#resetrepositorynotificationfailures
https://docs.redhat.com/en/documentation/red_hat_quay/3/html-single/red_hat_quay_api_guide/index#deletereponotification
https://docs.redhat.com/en/documentation/red_hat_quay/3/html-single/red_hat_quay_api_guide/index#getreponotification

 "latest"
]
}

Dockerfile Build Queued
The following example is a response from a Dockerfile Build that has been queued into the Build system.

NOTE

Responses can differ based on the use of optional attributes.

{
 "build_id": "296ec063-5f86-4706-a469-f0a400bf9df2",
 "trigger_kind": "github", //Optional
 "name": "test",
 "repository": "dgangaia/test",
 "namespace": "dgangaia",
 "docker_url": "quay.io/dgangaia/test",
 "trigger_id": "38b6e180-9521-4ff7-9844-acf371340b9e", //Optional
 "docker_tags": [
 "master",
 "latest"
],
 "repo": "test",
 "trigger_metadata": {
 "default_branch": "master",
 "commit": "b7f7d2b948aacbe844ee465122a85a9368b2b735",
 "ref": "refs/heads/master",
 "git_url": "git@github.com:dgangaia/test.git",
 "commit_info": { //Optional
 "url": "https://github.com/dgangaia/test/commit/b7f7d2b948aacbe844ee465122a85a9368b2b735",
 "date": "2019-03-06T12:48:24+11:00",
 "message": "adding 5",
 "author": { //Optional
 "username": "dgangaia",
 "url": "https://github.com/dgangaia", //Optional
 "avatar_url": "https://avatars1.githubusercontent.com/u/43594254?v=4" //Optional
 },
 "committer": {
 "username": "web-flow",
 "url": "https://github.com/web-flow",
 "avatar_url": "https://avatars3.githubusercontent.com/u/19864447?v=4"
 }
 }
 },
 "is_manual": false,
 "manual_user": null,
 "homepage": "https://quay.io/repository/dgangaia/test/build/296ec063-5f86-4706-a469-
f0a400bf9df2"
}

Dockerfile Build started
The following example is a response from a Dockerfile Build that has been queued into the Build system.

NOTE

CHAPTER 10. NOTIFICATIONS OVERVIEW

67

NOTE

Responses can differ based on the use of optional attributes.

{
 "build_id": "a8cc247a-a662-4fee-8dcb-7d7e822b71ba",
 "trigger_kind": "github", //Optional
 "name": "test",
 "repository": "dgangaia/test",
 "namespace": "dgangaia",
 "docker_url": "quay.io/dgangaia/test",
 "trigger_id": "38b6e180-9521-4ff7-9844-acf371340b9e", //Optional
 "docker_tags": [
 "master",
 "latest"
],
 "build_name": "50bc599",
 "trigger_metadata": { //Optional
 "commit": "50bc5996d4587fd4b2d8edc4af652d4cec293c42",
 "ref": "refs/heads/master",
 "default_branch": "master",
 "git_url": "git@github.com:dgangaia/test.git",
 "commit_info": { //Optional
 "url": "https://github.com/dgangaia/test/commit/50bc5996d4587fd4b2d8edc4af652d4cec293c42",
 "date": "2019-03-06T14:10:14+11:00",
 "message": "test build",
 "committer": { //Optional
 "username": "web-flow",
 "url": "https://github.com/web-flow", //Optional
 "avatar_url": "https://avatars3.githubusercontent.com/u/19864447?v=4" //Optional
 },
 "author": { //Optional
 "username": "dgangaia",
 "url": "https://github.com/dgangaia", //Optional
 "avatar_url": "https://avatars1.githubusercontent.com/u/43594254?v=4" //Optional
 }
 }
 },
 "homepage": "https://quay.io/repository/dgangaia/test/build/a8cc247a-a662-4fee-8dcb-
7d7e822b71ba"
}

Dockerfile Build successfully completed
The following example is a response from a Dockerfile Build that has been successfully completed by the
Build system.

NOTE

This event occurs simultaneously with a Repository Push event for the built image or
images.

{
 "build_id": "296ec063-5f86-4706-a469-f0a400bf9df2",
 "trigger_kind": "github", //Optional

Red Hat Quay 3 Use Red Hat Quay

68

 "name": "test",
 "repository": "dgangaia/test",
 "namespace": "dgangaia",
 "docker_url": "quay.io/dgangaia/test",
 "trigger_id": "38b6e180-9521-4ff7-9844-acf371340b9e", //Optional
 "docker_tags": [
 "master",
 "latest"
],
 "build_name": "b7f7d2b",
 "image_id": "sha256:0339f178f26ae24930e9ad32751d6839015109eabdf1c25b3b0f2abf8934f6cb",
 "trigger_metadata": {
 "commit": "b7f7d2b948aacbe844ee465122a85a9368b2b735",
 "ref": "refs/heads/master",
 "default_branch": "master",
 "git_url": "git@github.com:dgangaia/test.git",
 "commit_info": { //Optional
 "url": "https://github.com/dgangaia/test/commit/b7f7d2b948aacbe844ee465122a85a9368b2b735",
 "date": "2019-03-06T12:48:24+11:00",
 "message": "adding 5",
 "committer": { //Optional
 "username": "web-flow",
 "url": "https://github.com/web-flow", //Optional
 "avatar_url": "https://avatars3.githubusercontent.com/u/19864447?v=4"
//Optional
 },
 "author": { //Optional
 "username": "dgangaia",
 "url": "https://github.com/dgangaia", //Optional
 "avatar_url": "https://avatars1.githubusercontent.com/u/43594254?v=4" //Optional
 }
 }
 },
 "homepage": "https://quay.io/repository/dgangaia/test/build/296ec063-5f86-4706-a469-
f0a400bf9df2",
 "manifest_digests": [

"quay.io/dgangaia/test@sha256:2a7af5265344cc3704d5d47c4604b1efcbd227a7a6a6ff73d6e4e08a27f
d7d99",

"quay.io/dgangaia/test@sha256:569e7db1a867069835e8e97d50c96eccafde65f08ea3e0d5debaf16e25
45d9d1"
]
}

Dockerfile Build failed
The following example is a response from a Dockerfile Build that has failed.

{
 "build_id": "5346a21d-3434-4764-85be-5be1296f293c",
 "trigger_kind": "github", //Optional
 "name": "test",
 "repository": "dgangaia/test",
 "docker_url": "quay.io/dgangaia/test",
 "error_message": "Could not find or parse Dockerfile: unknown instruction: GIT",
 "namespace": "dgangaia",

CHAPTER 10. NOTIFICATIONS OVERVIEW

69

 "trigger_id": "38b6e180-9521-4ff7-9844-acf371340b9e", //Optional
 "docker_tags": [
 "master",
 "latest"
],
 "build_name": "6ae9a86",
 "trigger_metadata": { //Optional
 "commit": "6ae9a86930fc73dd07b02e4c5bf63ee60be180ad",
 "ref": "refs/heads/master",
 "default_branch": "master",
 "git_url": "git@github.com:dgangaia/test.git",
 "commit_info": { //Optional
 "url": "https://github.com/dgangaia/test/commit/6ae9a86930fc73dd07b02e4c5bf63ee60be180ad",
 "date": "2019-03-06T14:18:16+11:00",
 "message": "failed build test",
 "committer": { //Optional
 "username": "web-flow",
 "url": "https://github.com/web-flow", //Optional
 "avatar_url": "https://avatars3.githubusercontent.com/u/19864447?v=4" //Optional
 },
 "author": { //Optional
 "username": "dgangaia",
 "url": "https://github.com/dgangaia", //Optional
 "avatar_url": "https://avatars1.githubusercontent.com/u/43594254?v=4" //Optional
 }
 }
 },
 "homepage": "https://quay.io/repository/dgangaia/test/build/5346a21d-3434-4764-85be-
5be1296f293c"
}

Dockerfile Build cancelled
The following example is a response from a Dockerfile Build that has been cancelled.

{
 "build_id": "cbd534c5-f1c0-4816-b4e3-55446b851e70",
 "trigger_kind": "github",
 "name": "test",
 "repository": "dgangaia/test",
 "namespace": "dgangaia",
 "docker_url": "quay.io/dgangaia/test",
 "trigger_id": "38b6e180-9521-4ff7-9844-acf371340b9e",
 "docker_tags": [
 "master",
 "latest"
],
 "build_name": "cbce83c",
 "trigger_metadata": {
 "commit": "cbce83c04bfb59734fc42a83aab738704ba7ec41",
 "ref": "refs/heads/master",
 "default_branch": "master",
 "git_url": "git@github.com:dgangaia/test.git",
 "commit_info": {
 "url": "https://github.com/dgangaia/test/commit/cbce83c04bfb59734fc42a83aab738704ba7ec41",
 "date": "2019-03-06T14:27:53+11:00",
 "message": "testing cancel build",

Red Hat Quay 3 Use Red Hat Quay

70

 "committer": {
 "username": "web-flow",
 "url": "https://github.com/web-flow",
 "avatar_url": "https://avatars3.githubusercontent.com/u/19864447?v=4"
 },
 "author": {
 "username": "dgangaia",
 "url": "https://github.com/dgangaia",
 "avatar_url": "https://avatars1.githubusercontent.com/u/43594254?v=4"
 }
 }
 },
 "homepage": "https://quay.io/repository/dgangaia/test/build/cbd534c5-f1c0-4816-b4e3-
55446b851e70"
}

Vulnerability detected
The following example is a response from a Dockerfile Build has detected a vulnerability in the
repository.

{
 "repository": "dgangaia/repository",
 "namespace": "dgangaia",
 "name": "repository",
 "docker_url": "quay.io/dgangaia/repository",
 "homepage": "https://quay.io/repository/dgangaia/repository",

 "tags": ["latest", "othertag"],

 "vulnerability": {
 "id": "CVE-1234-5678",
 "description": "This is a bad vulnerability",
 "link": "http://url/to/vuln/info",
 "priority": "Critical",
 "has_fix": true
 }
}

CHAPTER 10. NOTIFICATIONS OVERVIEW

71

CHAPTER 11. AUTOMATICALLY BUILDING DOCKERFILES
WITH BUILD WORKERS

Red Hat Quay supports building Dockerfiles using a set of worker nodes on OpenShift Container
Platform or Kubernetes. Build triggers, such as GitHub webhooks, can be configured to automatically
build new versions of your repositories when new code is committed.

This document shows you how to enable Builds with your Red Hat Quay installation, and set up one
more more OpenShift Container Platform or Kubernetes clusters to accept Builds from Red Hat Quay.

11.1. SETTING UP RED HAT QUAY BUILDERS WITH OPENSHIFT
CONTAINER PLATFORM

You must pre-configure Red Hat Quay Builders prior to using it with OpenShift Container Platform.

11.1.1. Configuring the OpenShift Container Platform TLS component

The tls component allows you to control TLS configuration.

NOTE

Red Hat Quay does not support Builders when the TLS component is managed by the
Red Hat Quay Operator.

If you set tls to unmanaged, you supply your own ssl.cert and ssl.key files. In this instance, if you want
your cluster to support Builders, you must add both the Quay route and the Builder route name to the
SAN list in the certificate; alternatively you can use a wildcard.

To add the builder route, use the following format:

11.1.2. Preparing OpenShift Container Platform for Red Hat Quay Builders

Prepare Red Hat Quay Builders for OpenShift Container Platform by using the following procedure.

Prerequisites

You have configured the OpenShift Container Platform TLS component.

Procedure

1. Enter the following command to create a project where Builds will be run, for example, builder:

2. Create a new ServiceAccount in the the builder namespace by entering the following
command:

[quayregistry-cr-name]-quay-builder-[ocp-namespace].[ocp-domain-name]

$ oc new-project builder

$ oc create sa -n builder quay-builder

Red Hat Quay 3 Use Red Hat Quay

72

3. Enter the following command to grant a user the edit role within the builder namespace:

4. Enter the following command to retrieve a token associated with the quay-builder service
account in the builder namespace. This token is used to authenticate and interact with the
OpenShift Container Platform cluster’s API server.

5. Identify the URL for the OpenShift Container Platform cluster’s API server. This can be found in
the OpenShift Container Platform Web Console.

6. Identify a worker node label to be used when schedule Build jobs. Because Build pods need to
run on bare metal worker nodes, typically these are identified with specific labels.
Check with your cluster administrator to determine exactly which node label should be used.

7. Optional. If the cluster is using a self-signed certificate, you must get the Kube API Server’s
certificate authority (CA) to add to Red Hat Quay’s extra certificates.

a. Enter the following command to obtain the name of the secret containing the CA:

b. Obtain the ca.crt key value from the secret in the OpenShift Container Platform Web
Console. The value begins with "-----BEGIN CERTIFICATE-----" .̀

c. Import the CA to Red Hat Quay. Ensure that the name of this file matches
K8S_API_TLS_CA.

8. Create the following SecurityContextConstraints resource for the ServiceAccount:

$ oc policy add-role-to-user -n builder edit system:serviceaccount:builder:quay-builder

$ oc sa get-token -n builder quay-builder

$ oc get sa openshift-apiserver-sa --namespace=openshift-apiserver -o json | jq
'.secrets[] | select(.name | contains("openshift-apiserver-sa-token"))'.name

apiVersion: security.openshift.io/v1
kind: SecurityContextConstraints
metadata:
 name: quay-builder
priority: null
readOnlyRootFilesystem: false
requiredDropCapabilities: null
runAsUser:
 type: RunAsAny
seLinuxContext:
 type: RunAsAny
seccompProfiles:
- '*'
supplementalGroups:
 type: RunAsAny
volumes:
- '*'
allowHostDirVolumePlugin: true
allowHostIPC: true
allowHostNetwork: true
allowHostPID: true
allowHostPorts: true

CHAPTER 11. AUTOMATICALLY BUILDING DOCKERFILES WITH BUILD WORKERS

73

11.1.3. Configuring Red Hat Quay Builders

Use the following procedure to enable Red Hat Quay Builders.

Procedure

1. Ensure that your Red Hat Quay config.yaml file has Builds enabled, for example:

2. Add the following information to your Red Hat Quay config.yaml file, replacing each value with
information that is relevant to your specific installation:

allowPrivilegeEscalation: true
allowPrivilegedContainer: true
allowedCapabilities:
- '*'
allowedUnsafeSysctls:
- '*'
defaultAddCapabilities: null
fsGroup:
 type: RunAsAny

apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
 name: quay-builder-scc
 namespace: builder
rules:
- apiGroups:
 - security.openshift.io
 resourceNames:
 - quay-builder
 resources:
 - securitycontextconstraints
 verbs:
 - use

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
 name: quay-builder-scc
 namespace: builder
subjects:
- kind: ServiceAccount
 name: quay-builder
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: Role
 name: quay-builder-scc

FEATURE_BUILD_SUPPORT: True

BUILD_MANAGER:
- ephemeral
- ALLOWED_WORKER_COUNT: 1
 ORCHESTRATOR_PREFIX: buildman/production/

Red Hat Quay 3 Use Red Hat Quay

74

For more information about each configuration field, see

11.2. OPENSHIFT CONTAINER PLATFORM ROUTES LIMITATIONS

The following limitations apply when you are using the Red Hat Quay Operator on OpenShift Container
Platform with a managed route component:

Currently, OpenShift Container Platform Routes are only able to serve traffic to a single port.
Additional steps are required to set up Red Hat Quay Builds.

Ensure that your kubectl or oc CLI tool is configured to work with the cluster where the Red
Hat Quay Operator is installed and that your QuayRegistry exists; the QuayRegistry does not
have to be on the same bare metal cluster where Builders run.

Ensure that HTTP/2 ingress is enabled on the OpenShift cluster by following these steps.

The Red Hat Quay Operator creates a Route resource that directs gRPC traffic to the Build
manager server running inside of the existing Quay pod, or pods. If you want to use a custom
hostname, or a subdomain like <builder-registry.example.com>, ensure that you create a
CNAME record with your DNS provider that points to the status.ingress[0].host of the create
Route resource. For example:

$ kubectl get -n <namespace> route <quayregistry-name>-quay-builder -o jsonpath=
{.status.ingress[0].host}

 ORCHESTRATOR:
 REDIS_HOST: quay-redis-host
 REDIS_PASSWORD: quay-redis-password
 REDIS_SSL: true
 REDIS_SKIP_KEYSPACE_EVENT_SETUP: false
 EXECUTORS:
 - EXECUTOR: kubernetes
 BUILDER_NAMESPACE: builder
 K8S_API_SERVER: api.openshift.somehost.org:6443
 K8S_API_TLS_CA: /conf/stack/extra_ca_certs/build_cluster.crt
 VOLUME_SIZE: 8G
 KUBERNETES_DISTRIBUTION: openshift
 CONTAINER_MEMORY_LIMITS: 5120Mi
 CONTAINER_CPU_LIMITS: 1000m
 CONTAINER_MEMORY_REQUEST: 3968Mi
 CONTAINER_CPU_REQUEST: 500m
 NODE_SELECTOR_LABEL_KEY: beta.kubernetes.io/instance-type
 NODE_SELECTOR_LABEL_VALUE: n1-standard-4
 CONTAINER_RUNTIME: podman
 SERVICE_ACCOUNT_NAME: *****
 SERVICE_ACCOUNT_TOKEN: *****
 QUAY_USERNAME: quay-username
 QUAY_PASSWORD: quay-password
 WORKER_IMAGE: <registry>/quay-quay-builder
 WORKER_TAG: some_tag
 BUILDER_VM_CONTAINER_IMAGE: <registry>/quay-quay-builder-qemu-rhcos:v3.4.0
 SETUP_TIME: 180
 MINIMUM_RETRY_THRESHOLD: 0
 SSH_AUTHORIZED_KEYS:
 - ssh-rsa 12345 someuser@email.com
 - ssh-rsa 67890 someuser2@email.com

CHAPTER 11. AUTOMATICALLY BUILDING DOCKERFILES WITH BUILD WORKERS

75

https://docs.openshift.com/container-platform/4.14/networking/ingress-operator.html#nw-http2-haproxy_configuring-ingress

1

Using the OpenShift Container Platform UI or CLI, update the Secret referenced by
spec.configBundleSecret of the QuayRegistry with the Build cluster CA certificate. Name the
key extra_ca_cert_build_cluster.cert. Update the config.yaml file entry with the correct
values referenced in the Builder configuration that you created when you configured Red Hat
Quay Builders, and add the BUILDMAN_HOSTNAME CONFIGURATION FIELD:

The externally accessible server hostname which the build jobs use to communicate back
to the Build manager. Default is the same as SERVER_HOSTNAME. For OpenShift Route,
it is either status.ingress[0].host or the CNAME entry if using a custom hostname.
BUILDMAN_HOSTNAME must include the port number, for example, somehost:443 for
an OpenShift Container Platform Route, as the gRPC client used to communicate with the
build manager does not infer any port if omitted.

11.3. TROUBLESHOOTING BUILDS

The Builder instances started by the Build manager are ephemeral. This means that they will either get
shut down by Red Hat Quay on timeouts or failure, or garbage collected by the control plane (EC2/K8s).
In order to obtain the Build logs, you must do so while the Builds are running.

11.3.1. DEBUG config flag

The DEBUG flag can be set to true in order to prevent the Builder instances from getting cleaned up
after completion or failure. For example:

When set to true, the debug feature prevents the Build nodes from shutting down after the quay-
builder service is done or fails. It also prevents the Build manager from cleaning up the instances by
terminating EC2 instances or deleting Kubernetes jobs. This allows debugging Builder node issues.

Debugging should not be set in a production cycle. The lifetime service still exists; for example, the

BUILDMAN_HOSTNAME: <build-manager-hostname> 1
BUILD_MANAGER:
- ephemeral
- ALLOWED_WORKER_COUNT: 1
 ORCHESTRATOR_PREFIX: buildman/production/
 JOB_REGISTRATION_TIMEOUT: 600
 ORCHESTRATOR:
 REDIS_HOST: <quay_redis_host
 REDIS_PASSWORD: <quay_redis_password>
 REDIS_SSL: true
 REDIS_SKIP_KEYSPACE_EVENT_SETUP: false
 EXECUTORS:
 - EXECUTOR: kubernetes
 BUILDER_NAMESPACE: builder
 ...

 EXECUTORS:
 - EXECUTOR: ec2
 DEBUG: true
 ...
 - EXECUTOR: kubernetes
 DEBUG: true
 ...

Red Hat Quay 3 Use Red Hat Quay

76

Debugging should not be set in a production cycle. The lifetime service still exists; for example, the
instance still shuts down after approximately two hours. When this happens, EC2 instances are
terminated, and Kubernetes jobs are completed.

Enabling debug also affects the ALLOWED_WORKER_COUNT, because the unterminated instances
and jobs still count toward the total number of running workers. As a result, the existing Builder workers
must be manually deleted if ALLOWED_WORKER_COUNT is reached to be able to schedule new
Builds.

Setting DEBUG will also affect ALLOWED_WORKER_COUNT, as the unterminated instances/jobs will
still count towards the total number of running workers. This means the existing builder workers will need
to manually be deleted if ALLOWED_WORKER_COUNT is reached to be able to schedule new Builds.

11.3.2. Troubleshooting OpenShift Container Platform and Kubernetes Builds

Use the following procedure to troubleshooting OpenShift Container Platform Kubernetes Builds.

Procedure

1. Create a port forwarding tunnel between your local machine and a pod running with either an
OpenShift Container Platform cluster or a Kubernetes cluster by entering the following
command:

2. Establish an SSH connection to the remote host using a specified SSH key and port, for
example:

3. Obtain the quay-builder service logs by entering the following commands:

11.4. SETTING UP GITHUB BUILDS

If your organization plans to have Builds be conducted by pushes to Github, or Github Enterprise,
continue with Creating an OAuth application in GitHub .

$ oc port-forward <builder_pod> 9999:2222

$ ssh -i /path/to/ssh/key/set/in/ssh_authorized_keys -p 9999 core@localhost

$ systemctl status quay-builder

$ journalctl -f -u quay-builder

CHAPTER 11. AUTOMATICALLY BUILDING DOCKERFILES WITH BUILD WORKERS

77

CHAPTER 12. BUILDING CONTAINER IMAGES
Building container images involves creating a blueprint for a containerized application. Blueprints rely on
base images from other public repositories that define how the application should be installed and
configured.

Red Hat Quay supports the ability to build Docker and Podman container images. This functionality is
valuable for developers and organizations who rely on container and container orchestration.

12.1. BUILD CONTEXTS

When building an image with Docker or Podman, a directory is specified to become the build context.
This is true for both manual Builds and Build triggers, because the Build that is created by Red Hat Quay
is not different than running docker build or podman build on your local machine.

Red Hat Quay Build contexts are always specified in the subdirectory from the Build setup, and fallback
to the root of the Build source if a directory is not specified.

When a build is triggered, Red Hat Quay Build workers clone the Git repository to the worker machine,
and then enter the Build context before conducting a Build.

For Builds based on .tar archives, Build workers extract the archive and enter the Build context. For
example:

Extracted Build archive

Imagine that the Extracted Build archive is the directory structure got a Github repository called
example. If no subdirectory is specified in the Build trigger setup, or when manually starting the Build,
the Build operates in the example directory.

If a subdirectory is specified in the Build trigger setup, for example, subdir, only the Dockerfile within it is
visible to the Build. This means that you cannot use the ADD command in the Dockerfile to add file,
because it is outside of the Build context.

Unlike Docker Hub, the Dockerfile is part of the Build context on Red Hat Quay. As a result, it must not
appear in the .dockerignore file.

12.2. TAG NAMING FOR BUILD TRIGGERS

Custom tags are available for use in Red Hat Quay.

One option is to include any string of characters assigned as a tag for each built image. Alternatively, you
can use the following tag templates on the Configure Tagging section of the build trigger to tag
images with information from each commit:

example
├── .git
├── Dockerfile
├── file
└── subdir
 └── Dockerfile

Red Hat Quay 3 Use Red Hat Quay

78

${commit}: Full SHA of the issued commit

${parsed_ref.branch}: Branch information (if available)

${parsed_ref.tag}: Tag information (if available)

${parsed_ref.remote}: The remote name

${commit_info.date}: Date when the commit was issued

${commit_info.author.username}: Username of the author of the commit

${commit_info.short_sha}: First 7 characters of the commit SHA

${committer.properties.username}: Username of the committer

This list is not complete, but does contain the most useful options for tagging purposes. You can find the
complete tag template schema on this page.

For more information, see Set up custom tag templates in build triggers for Red Hat Quay and Quay.io

12.3. SKIPPING A SOURCE CONTROL-TRIGGERED BUILD

To specify that a commit should be ignored by the Red Hat Quay build system, add the text [skip build]
or [build skip] anywhere in your commit message.

12.4. VIEWING AND MANAGING BUILDS

Repository Builds can be viewed and managed on the Red Hat Quay UI.

Procedure

1. Navigate to a Red Hat Quay repository using the UI.

2. In the navigation pane, select Builds.

CHAPTER 12. BUILDING CONTAINER IMAGES

79

https://github.com/quay/quay/blob/abfde5b9d2cf7d7145e68a00c9274011b4fe0661/buildtrigger/basehandler.py#L96-L195
https://access.redhat.com/solutions/7033393

12.5. CREATING A NEW BUILD

Red Hat Quay can create new Builds so long as FEATURE_BUILD_SUPPORT is set to to true in their
config.yaml file.

Prerequisites

You have navigated to the Builds page of your repository.

FEATURE_BUILD_SUPPORT is set to to true in your config.yaml file.

Procedure

1. On the Builds page, click Start New Build.

2. When prompted, click Upload Dockerfile to upload a Dockerfile or an archive that contains a
Dockerfile at the root directory.

3. Click Start Build.

NOTE

Currently, users cannot specify the Docker build context when manually
starting a build.

Currently, BitBucket is unsupported on the Red Hat Quay v2 UI.

4. You are redirected to the Build, which can be viewed in real-time. Wait for the Dockerfile Build
to be completed and pushed.

5. Optional. you can click Download Logs to download the logs, or Copy Logs to copy the logs.

6. Click the back button to return to the Repository Builds page, where you can view the Build
History.

12.6. BUILD TRIGGERS

Build triggers invoke builds whenever the triggered condition is met, for example, a source control push,
creating a webhook call, and so on.

12.6.1. Creating a Build trigger

Use the following procedure to create a Build trigger using a custom Git repository.

NOTE

The following procedure assumes that you have not included Github credentials in your
config.yaml file.

Red Hat Quay 3 Use Red Hat Quay

80

https://access.redhat.com/documentation/en-us/red_hat_quay/3/html-single/use_red_hat_quay/#webhook

Prerequisites

You have navigated to the Builds page of your repository.

Procedure

1. On the Builds page, click Create Build Trigger.

2. Select the desired platform, for example, Github, BitBucket, Gitlab, or use a custom Git
repository. For this example, we are using a custom Git repository from Github.

3. Enter a custom Git repository name, for example, git@github.com:<username>/<repo>.git.
Then, click Next.

4. When prompted, configure the tagging options by selecting one of, or both of, the following
options:

Tag manifest with the branch or tag name. When selecting this option, the built manifest
the name of the branch or tag for the git commit are tagged.

Add latest tag if on default branch. When selecting this option, the built manifest with
latest if the build occurred on the default branch for the repository are tagged.
Optionally, you can add a custom tagging template. There are multiple tag templates that
you can enter here, including using short SHA IDs, timestamps, author names, committer,
and branch names from the commit as tags. For more information, see "Tag naming for
Build triggers".

After you have configured tagging, click Next.

5. When prompted, select the location of the Dockerfile to be built when the trigger is invoked. If
the Dockerfile is located at the root of the git repository and named Dockerfile, enter
/Dockerfile as the Dockerfile path. Then, click Next.

6. When prompted, select the context for the Docker build. If the Dockerfile is located at the root
of the Git repository, enter / as the build context directory. Then, click Next.

7. Optional. Choose an optional robot account. This allows you to pull a private base image during
the build process. If you know that a private base image is not used, you can skip this step.

8. Click Next. Check for any verification warnings. If necessary, fix the issues before clicking Finish.

9. You are alerted that the trigger has been successfully activated. Note that using this trigger
requires the following actions:

You must give the following public key read access to the git repository.

You must set your repository to POST to the following URL to trigger a build.
Save the SSH Public Key, then click Return to <organization_name>/<repository_name>.
You are redirected to the Builds page of your repository.

10. On the Builds page, you now have a Build trigger. For example:

CHAPTER 12. BUILDING CONTAINER IMAGES

81

12.6.2. Manually triggering a Build

Builds can be triggered manually by using the following procedure.

Procedure

1. On the Builds page, Start new build.

2. When prompted, select Invoke Build Trigger.

3. Click Run Trigger Now to manually start the process.
After the build starts, you can see the Build ID on the Repository Builds page.

12.7. SETTING UP A CUSTOM GIT TRIGGER

A custom Git trigger is a generic way for any Git server to act as a Build trigger. It relies solely on SSH
keys and webhook endpoints. Everything else is left for the user to implement.

12.7.1. Creating a trigger

Creating a custom Git trigger is similar to the creation of any other trigger, with the exception of the
following:

Red Hat Quay cannot automatically detect the proper Robot Account to use with the trigger.
This must be done manually during the creation process.

There are extra steps after the creation of the trigger that must be done. These steps are
detailed in the following sections.

12.7.2. Custom trigger creation setup

When creating a custom Git trigger, two additional steps are required:

1. You must provide read access to the SSH public key that is generated when creating the
trigger.

2. You must setup a webhook that POSTs to the Red Hat Quay endpoint to trigger the build.

The key and the URL are available by selecting View Credentials from the Settings, or gear icon.

View and modify tags from your repository

Red Hat Quay 3 Use Red Hat Quay

82

12.7.2.1. SSH public key access

Depending on the Git server configuration, there are multiple ways to install the SSH public key that Red
Hat Quay generates for a custom Git trigger.

For example, Git documentation describes a small server setup in which adding the key to
$HOME/.ssh/authorize_keys would provide access for Builders to clone the repository. For any git
repository management software that is not officially supported, there is usually a location to input the
key often labeled as Deploy Keys.

12.7.2.2. Webhook

To automatically trigger a build, one must POST a .json payload to the webhook URL using the
following format.

This can be accomplished in various ways depending on the server setup, but for most cases can be
done with a post-receive Git Hook.

NOTE

This request requires a Content-Type header containing application/json in order to be
valid.

Example webhook

{
 "commit": "1c002dd", // required
 "ref": "refs/heads/master", // required
 "default_branch": "master", // required
 "commit_info": { // optional
 "url": "gitsoftware.com/repository/commits/1234567", // required
 "message": "initial commit", // required

CHAPTER 12. BUILDING CONTAINER IMAGES

83

https://git-scm.herokuapp.com/book/en/v2/Git-on-the-Server-Getting-Git-on-a-Server
https://git-scm.herokuapp.com/book/en/v2/Customizing-Git-Git-Hooks#idp26374144

 "date": "timestamp", // required
 "author": { // optional
 "username": "user", // required
 "avatar_url": "gravatar.com/user.png", // required
 "url": "gitsoftware.com/users/user" // required
 },
 "committer": { // optional
 "username": "user", // required
 "avatar_url": "gravatar.com/user.png", // required
 "url": "gitsoftware.com/users/user" // required
 }
 }
}

Red Hat Quay 3 Use Red Hat Quay

84

CHAPTER 13. CREATING AN OAUTH APPLICATION IN GITHUB
You can authorize your Red Hat Quay registry to access a GitHub account and its repositories by
registering it as a GitHub OAuth application.

13.1. CREATE NEW GITHUB APPLICATION

Use the following procedure to create an OAuth application in Github.

Procedure

1. Log into Github Enterprise.

2. In the navigation pane, select your username → Your organizations.

3. In the navigation pane, select Applications.

4. Click Register New Application. The Register a new OAuth application configuration screen is
displayed, for example:

5. Enter a name for the application in the Application name textbox.

6. In the Homepage URL textbox, enter your Red Hat Quay URL.

NOTE

If you are using public GitHub, the Homepage URL entered must be accessible by
your users. It can still be an internal URL.

7. In the Authorization callback URL, enter

CHAPTER 13. CREATING AN OAUTH APPLICATION IN GITHUB

85

https://github.com/settings/applications/new

7. In the Authorization callback URL, enter
https://<RED_HAT_QUAY_URL>/oauth2/github/callback.

8. Click Register application to save your settings.

9. When the new application’s summary is shown, record the Client ID and the Client Secret shown
for the new application.

Red Hat Quay 3 Use Red Hat Quay

86

https:/oauth2/github/callback

CHAPTER 14. RED HAT QUAY QUOTA MANAGEMENT AND
ENFORCEMENT OVERVIEW

With Red Hat Quay, users have the ability to report storage consumption and to contain registry growth
by establishing configured storage quota limits. On-premise Red Hat Quay users are now equipped with
the following capabilities to manage the capacity limits of their environment:

Quota reporting: With this feature, a superuser can track the storage consumption of all their
organizations. Additionally, users can track the storage consumption of their assigned
organization.

Quota management: With this feature, a superuser can define soft and hard checks for Red Hat
Quay users. Soft checks tell users if the storage consumption of an organization reaches their
configured threshold. Hard checks prevent users from pushing to the registry when storage
consumption reaches the configured limit.

Together, these features allow service owners of a Red Hat Quay registry to define service level
agreements and support a healthy resource budget.

14.1. QUOTA MANAGEMENT ARCHITECTURE

With the quota management feature enabled, individual blob sizes are summed at the repository and
namespace level. For example, if two tags in the same repository reference the same blob, the size of
that blob is only counted once towards the repository total. Additionally, manifest list totals are counted
toward the repository total.

IMPORTANT

Because manifest list totals are counted toward the repository total, the total quota
consumed when upgrading from a previous version of Red Hat Quay might be reportedly
differently in Red Hat Quay 3.9. In some cases, the new total might go over a repository’s
previously-set limit. Red Hat Quay administrators might have to adjust the allotted quota
of a repository to account for these changes.

The quota management feature works by calculating the size of existing repositories and namespace
with a backfill worker, and then adding or subtracting from the total for every image that is pushed or
garbage collected afterwords. Additionally, the subtraction from the total happens when the manifest is
garbage collected.

NOTE

Because subtraction occurs from the total when the manifest is garbage collected, there
is a delay in the size calculation until it is able to be garbage collected. For more
information about garbage collection, see Red Hat Quay garbage collection .

The following database tables hold the quota repository size, quota namespace size, and quota registry
size, in bytes, of a Red Hat Quay repository within an organization:

QuotaRepositorySize

QuotaNameSpaceSize

QuotaRegistrySize

CHAPTER 14. RED HAT QUAY QUOTA MANAGEMENT AND ENFORCEMENT OVERVIEW

87

https://access.redhat.com/documentation/en-us/red_hat_quay/3/html-single/manage_red_hat_quay/index#red_hat_quay_garbage_collection

The organization size is calculated by the backfill worker to ensure that it is not duplicated. When an
image push is initialized, the user’s organization storage is validated to check if it is beyond the
configured quota limits. If an image push exceeds defined quota limitations, a soft or hard check occurs:

For a soft check, users are notified.

For a hard check, the push is stopped.

If storage consumption is within configured quota limits, the push is allowed to proceed.

Image manifest deletion follows a similar flow, whereby the links between associated image tags and the
manifest are deleted. Additionally, after the image manifest is deleted, the repository size is
recalculated and updated in the QuotaRepositorySize, QuotaNameSpaceSize, and
QuotaRegistrySize tables.

14.2. QUOTA MANAGEMENT LIMITATIONS

Quota management helps organizations to maintain resource consumption. One limitation of quota
management is that calculating resource consumption on push results in the calculation becoming part
of the push’s critical path. Without this, usage data might drift.

The maximum storage quota size is dependent on the selected database:

Table 14.1. Worker count environment variables

Variable Description

Postgres 8388608 TB

MySQL 8388608 TB

SQL Server 16777216 TB

14.3. QUOTA MANAGEMENT CONFIGURATION FIELDS

Table 14.2. Quota management configuration

Field Type Description

FEATURE_QUOTA_MANAGEMENT Boolean Enables configuration, caching,
and validation for quota
management feature.

Default: `False`

DEFAULT_SYSTEM_REJECT_QUOTA_BYTES String Enables system default quota
reject byte allowance for all
organizations.

By default, no limit is set.

Red Hat Quay 3 Use Red Hat Quay

88

QUOTA_BACKFILL Boolean Enables the quota backfill worker
to calculate the size of pre-
existing blobs.

Default: True

QUOTA_TOTAL_DELAY_SECONDS String The time delay for starting the
quota backfill. Rolling
deployments can cause incorrect
totals. This field must be set to a
time longer than it takes for the
rolling deployment to complete.

Default: 1800

PERMANENTLY_DELETE_TAGS Boolean Enables functionality related to
the removal of tags from the time
machine window.

Default: False

RESET_CHILD_MANIFEST_EXPIRATION Boolean Resets the expirations of
temporary tags targeting the
child manifests. With this feature
set to True, child manifests are
immediately garbage collected.

Default: False

Field Type Description

14.3.1. Example quota management configuration

The following YAML is the suggested configuration when enabling quota management.

Quota management YAML configuration

14.4. ESTABLISHING QUOTA WITH THE RED HAT QUAY API

When an organization is first created, it does not have a quota applied. Use the
/api/v1/organization/{organization}/quota endpoint:

Sample command

FEATURE_QUOTA_MANAGEMENT: true
FEATURE_GARBAGE_COLLECTION: true
PERMANENTLY_DELETE_TAGS: true
QUOTA_TOTAL_DELAY_SECONDS: 1800
RESET_CHILD_MANIFEST_EXPIRATION: true

CHAPTER 14. RED HAT QUAY QUOTA MANAGEMENT AND ENFORCEMENT OVERVIEW

89

Sample output

14.4.1. Setting the quota

To set a quota for an organization, POST data to the /api/v1/organization/{orgname}/quota
endpoint: .Sample command

Sample output

14.4.2. Viewing the quota

To see the applied quota, GET data from the /api/v1/organization/{orgname}/quota endpoint:

Sample command

Sample output

14.4.3. Modifying the quota

To change the existing quota, in this instance from 10 MB to 100 MB, PUT data to the
/api/v1/organization/{orgname}/quota/{quota_id} endpoint:

Sample command

$ curl -k -X GET -H "Authorization: Bearer <token>" -H 'Content-Type: application/json'
https://example-registry-quay-quay-
enterprise.apps.docs.gcp.quaydev.org/api/v1/organization/testorg/quota | jq

[]

$ curl -k -X POST -H "Authorization: Bearer <token>" -H 'Content-Type: application/json' -d
'{"limit_bytes": 10485760}' https://example-registry-quay-quay-
enterprise.apps.docs.quayteam.org/api/v1/organization/testorg/quota | jq

"Created"

$ curl -k -X GET -H "Authorization: Bearer <token>" -H 'Content-Type: application/json'
https://example-registry-quay-quay-
enterprise.apps.docs.gcp.quaydev.org/api/v1/organization/testorg/quota | jq

[
 {
 "id": 1,
 "limit_bytes": 10485760,
 "default_config": false,
 "limits": [],
 "default_config_exists": false
 }
]

Red Hat Quay 3 Use Red Hat Quay

90

Sample output

14.4.4. Pushing images

To see the storage consumed, push various images to the organization.

14.4.4.1. Pushing ubuntu:18.04

Push ubuntu:18.04 to the organization from the command line:

Sample commands

14.4.4.2. Using the API to view quota usage

To view the storage consumed, GET data from the /api/v1/repository endpoint:

Sample command

Sample output

$ curl -k -X PUT -H "Authorization: Bearer <token>" -H 'Content-Type: application/json' -d
'{"limit_bytes": 104857600}' https://example-registry-quay-quay-
enterprise.apps.docs.gcp.quaydev.org/api/v1/organization/testorg/quota/1 | jq

{
 "id": 1,
 "limit_bytes": 104857600,
 "default_config": false,
 "limits": [],
 "default_config_exists": false
}

$ podman pull ubuntu:18.04

$ podman tag docker.io/library/ubuntu:18.04 example-registry-quay-quay-
enterprise.apps.docs.gcp.quaydev.org/testorg/ubuntu:18.04

$ podman push --tls-verify=false example-registry-quay-quay-
enterprise.apps.docs.gcp.quaydev.org/testorg/ubuntu:18.04

$ curl -k -X GET -H "Authorization: Bearer <token>" -H 'Content-Type: application/json'
'https://example-registry-quay-quay-enterprise.apps.docs.gcp.quaydev.org/api/v1/repository?
last_modified=true&namespace=testorg&popularity=true&public=true' | jq

{
 "repositories": [
 {
 "namespace": "testorg",
 "name": "ubuntu",
 "description": null,
 "is_public": false,
 "kind": "image",

CHAPTER 14. RED HAT QUAY QUOTA MANAGEMENT AND ENFORCEMENT OVERVIEW

91

14.4.4.3. Pushing another image

1. Pull, tag, and push a second image, for example, nginx:

Sample commands

2. To view the quota report for the repositories in the organization, use the /api/v1/repository
endpoint:

Sample command

Sample output

 "state": "NORMAL",
 "quota_report": {
 "quota_bytes": 27959066,
 "configured_quota": 104857600
 },
 "last_modified": 1651225630,
 "popularity": 0,
 "is_starred": false
 }
]
}

$ podman pull nginx

$ podman tag docker.io/library/nginx example-registry-quay-quay-
enterprise.apps.docs.gcp.quaydev.org/testorg/nginx

$ podman push --tls-verify=false example-registry-quay-quay-
enterprise.apps.docs.gcp.quaydev.org/testorg/nginx

$ curl -k -X GET -H "Authorization: Bearer <token>" -H 'Content-Type: application/json'
'https://example-registry-quay-quay-enterprise.apps.docs.gcp.quaydev.org/api/v1/repository?
last_modified=true&namespace=testorg&popularity=true&public=true'

{
 "repositories": [
 {
 "namespace": "testorg",
 "name": "ubuntu",
 "description": null,
 "is_public": false,
 "kind": "image",
 "state": "NORMAL",
 "quota_report": {
 "quota_bytes": 27959066,
 "configured_quota": 104857600
 },
 "last_modified": 1651225630,
 "popularity": 0,
 "is_starred": false
 },

Red Hat Quay 3 Use Red Hat Quay

92

3. To view the quota information in the organization details, use the
/api/v1/organization/{orgname} endpoint:

Sample command

Sample output

14.4.5. Rejecting pushes using quota limits

If an image push exceeds defined quota limitations, a soft or hard check occurs:

For a soft check, or warning, users are notified.

For a hard check, or reject, the push is terminated.

14.4.5.1. Setting reject and warning limits

 {
 "namespace": "testorg",
 "name": "nginx",
 "description": null,
 "is_public": false,
 "kind": "image",
 "state": "NORMAL",
 "quota_report": {
 "quota_bytes": 59231659,
 "configured_quota": 104857600
 },
 "last_modified": 1651229507,
 "popularity": 0,
 "is_starred": false
 }
]
}

$ curl -k -X GET -H "Authorization: Bearer <token>" -H 'Content-Type: application/json'
'https://example-registry-quay-quay-
enterprise.apps.docs.gcp.quaydev.org/api/v1/organization/testorg' | jq

{
 "name": "testorg",
 ...
 "quotas": [
 {
 "id": 1,
 "limit_bytes": 104857600,
 "limits": []
 }
],
 "quota_report": {
 "quota_bytes": 87190725,
 "configured_quota": 104857600
 }
}

CHAPTER 14. RED HAT QUAY QUOTA MANAGEMENT AND ENFORCEMENT OVERVIEW

93

To set reject and warning limits, POST data to the
/api/v1/organization/{orgname}/quota/{quota_id}/limit endpoint:

Sample reject limit command

Sample warning limit command

14.4.5.2. Viewing reject and warning limits

To view the reject and warning limits, use the /api/v1/organization/{orgname}/quota endpoint:

View quota limits

Sample output for quota limits

14.4.5.3. Pushing an image when the reject limit is exceeded

In this example, the reject limit (80%) has been set to below the current repository size (~83%), so the
next push should automatically be rejected.

$ curl -k -X POST -H "Authorization: Bearer <token>" -H 'Content-Type: application/json' -d
'{"type":"Reject","threshold_percent":80}' https://example-registry-quay-quay-
enterprise.apps.docs.gcp.quaydev.org/api/v1/organization/testorg/quota/1/limit

$ curl -k -X POST -H "Authorization: Bearer <token>" -H 'Content-Type: application/json' -d
'{"type":"Warning","threshold_percent":50}' https://example-registry-quay-quay-
enterprise.apps.docs.gcp.quaydev.org/api/v1/organization/testorg/quota/1/limit

$ curl -k -X GET -H "Authorization: Bearer <token>" -H 'Content-Type: application/json'
https://example-registry-quay-quay-
enterprise.apps.docs.gcp.quaydev.org/api/v1/organization/testorg/quota | jq

[
 {
 "id": 1,
 "limit_bytes": 104857600,
 "default_config": false,
 "limits": [
 {
 "id": 2,
 "type": "Warning",
 "limit_percent": 50
 },
 {
 "id": 1,
 "type": "Reject",
 "limit_percent": 80
 }
],
 "default_config_exists": false
 }
]

Red Hat Quay 3 Use Red Hat Quay

94

Push a sample image to the organization from the command line:

Sample image push

Sample output when quota exceeded

14.4.5.4. Notifications for limits exceeded

When limits are exceeded, a notification appears:

Quota notifications

$ podman pull ubuntu:20.04

$ podman tag docker.io/library/ubuntu:20.04 example-registry-quay-quay-
enterprise.apps.docs.gcp.quaydev.org/testorg/ubuntu:20.04

$ podman push --tls-verify=false example-registry-quay-quay-
enterprise.apps.docs.gcp.quaydev.org/testorg/ubuntu:20.04

Getting image source signatures
Copying blob d4dfaa212623 [--------------------------------------] 8.0b / 3.5KiB
Copying blob cba97cc5811c [--------------------------------------] 8.0b / 15.0KiB
Copying blob 0c78fac124da [--------------------------------------] 8.0b / 71.8MiB
WARN[0002] failed, retrying in 1s ... (1/3). Error: Error writing blob: Error initiating layer upload to
/v2/testorg/ubuntu/blobs/uploads/ in example-registry-quay-quay-
enterprise.apps.docs.gcp.quaydev.org: denied: Quota has been exceeded on namespace
Getting image source signatures
Copying blob d4dfaa212623 [--------------------------------------] 8.0b / 3.5KiB
Copying blob cba97cc5811c [--------------------------------------] 8.0b / 15.0KiB
Copying blob 0c78fac124da [--------------------------------------] 8.0b / 71.8MiB
WARN[0005] failed, retrying in 1s ... (2/3). Error: Error writing blob: Error initiating layer upload to
/v2/testorg/ubuntu/blobs/uploads/ in example-registry-quay-quay-
enterprise.apps.docs.gcp.quaydev.org: denied: Quota has been exceeded on namespace
Getting image source signatures
Copying blob d4dfaa212623 [--------------------------------------] 8.0b / 3.5KiB
Copying blob cba97cc5811c [--------------------------------------] 8.0b / 15.0KiB
Copying blob 0c78fac124da [--------------------------------------] 8.0b / 71.8MiB
WARN[0009] failed, retrying in 1s ... (3/3). Error: Error writing blob: Error initiating layer upload to
/v2/testorg/ubuntu/blobs/uploads/ in example-registry-quay-quay-
enterprise.apps.docs.gcp.quaydev.org: denied: Quota has been exceeded on namespace
Getting image source signatures
Copying blob d4dfaa212623 [--------------------------------------] 8.0b / 3.5KiB
Copying blob cba97cc5811c [--------------------------------------] 8.0b / 15.0KiB
Copying blob 0c78fac124da [--------------------------------------] 8.0b / 71.8MiB
Error: Error writing blob: Error initiating layer upload to /v2/testorg/ubuntu/blobs/uploads/ in example-
registry-quay-quay-enterprise.apps.docs.gcp.quaydev.org: denied: Quota has been exceeded on
namespace

CHAPTER 14. RED HAT QUAY QUOTA MANAGEMENT AND ENFORCEMENT OVERVIEW

95

Red Hat Quay 3 Use Red Hat Quay

96

CHAPTER 15. RED HAT QUAY AS A PROXY CACHE FOR
UPSTREAM REGISTRIES

With the growing popularity of container development, customers increasingly rely on container images
from upstream registries like Docker or Google Cloud Platform to get services up and running. Today,
registries have rate limitations and throttling on the number of times users can pull from these registries.

With this feature, Red Hat Quay will act as a proxy cache to circumvent pull-rate limitations from
upstream registries. Adding a cache feature also accelerates pull performance, because images are
pulled from the cache rather than upstream dependencies. Cached images are only updated when the
upstream image digest differs from the cached image, reducing rate limitations and potential throttling.

With Red Hat Quay cache proxy, the following features are available:

Specific organizations can be defined as a cache for upstream registries.

Configuration of a Quay organization that acts as a cache for a specific upstream registry. This
repository can be defined by using the Quay UI, and offers the following configurations:

Upstream registry credentials for private repositories or increased rate limiting.

Expiration timer to avoid surpassing cache organization size.

Global on/off configurable via the configuration application.

Caching of entire upstream registries or just a single namespace, for example, all of docker.io or
just docker.io/library.

Logging of all cache pulls.

Cached images scannability by Clair.

15.1. PROXY CACHE ARCHITECTURE

The following image shows the expected design flow and architecture of the proxy cache feature.

CHAPTER 15. RED HAT QUAY AS A PROXY CACHE FOR UPSTREAM REGISTRIES

97

When a user pulls an image, for example, postgres:14, from an upstream repository on Red Hat Quay,
the repository checks to see if an image is present. If the image does not exist, a fresh pull is initiated.
After being pulled, the image layers are saved to cache and server to the user in parallel. The following
image depicts an architectural overview of this scenario:

If the image in the cache exists, users can rely on Quay’s cache to stay up-to-date with the upstream
source so that newer images from the cache are automatically pulled. This happens when tags of the
original image have been overwritten in the upstream registry. The following image depicts an
architectural overview of what happens when the upstream image and cached version of the image are
different:

Red Hat Quay 3 Use Red Hat Quay

98

If the upstream image and cached version are the same, no layers are pulled and the cached image is
delivered to the user.

In some cases, users initiate pulls when the upstream registry is down. If this happens with the configured
staleness period, the image stored in cache is delivered. If the pull happens after the configured
staleness period, the error is propagated to the user. The following image depicts an architectural
overview when a pull happens after the configured staleness period:

CHAPTER 15. RED HAT QUAY AS A PROXY CACHE FOR UPSTREAM REGISTRIES

99

Quay administrators can leverage the configurable size limit of an organization to limit cache size so that
backend storage consumption remains predictable. This is achieved by discarding images from the
cache according to the frequency in which an image is used. The following image depicts an
architectural overview of this scenario:

15.2. PROXY CACHE LIMITATIONS

Proxy caching with Red Hat Quay has the following limitations:

Your proxy cache must have a size limit of greater than, or equal to, the image you want to
cache. For example, if your proxy cache organization has a maximum size of 500 MB, and the
image a user wants to pull is 700 MB, the image will be cached and will overflow beyond the
configured limit.

Cached images must have the same properties that images on a Quay repository must have.

Red Hat Quay 3 Use Red Hat Quay

100

15.3. USING RED HAT QUAY TO PROXY A REMOTE REGISTRY

The following procedure describes how you can use Red Hat Quay to proxy a remote registry. This
procedure is set up to proxy quay.io, which allows users to use podman to pull any public image from
any namespace on quay.io.

Prerequisites

FEATURE_PROXY_CACHE in your config.yaml is set to true.

Assigned the Member team role. For more information about team roles, see Users and
organizations in Red Hat Quay.

Procedure

1. In your Quay organization on the UI, for example, cache-quayio, click Organization Settings on
the left hand pane.

2. Optional: Click Add Storage Quota to configure quota management for your organization. For
more information about quota management, see Quota Management.

NOTE

In some cases, pulling images with Podman might return the following error when
quota limit is reached during a pull: unable to pull image: Error parsing image
configuration: Error fetching blob: invalid status code from registry 403
(Forbidden). Error 403 is inaccurate, and occurs because Podman hides the
correct API error: Quota has been exceeded on namespace. This known issue
will be fixed in a future Podman update.

3. In Remote Registry enter the name of the remote registry to be cached, for example, quay.io,
and click Save.

NOTE

By adding a namespace to the Remote Registry, for example,
quay.io/<namespace>, users in your organization will only be able to proxy from
that namespace.

4. Optional: Add a Remote Registry Username and Remote Registry Password.

NOTE

If you do not set a Remote Registry Username and Remote Registry Password,
you cannot add one without removing the proxy cache and creating a new
registry.

5. Optional: Set a time in the Expiration field.

NOTE

CHAPTER 15. RED HAT QUAY AS A PROXY CACHE FOR UPSTREAM REGISTRIES

101

https://access.redhat.com/documentation/en-us/red_hat_quay/3/html/use_red_hat_quay/user-org-intro
https://access.redhat.com//documentation/en-us/red_hat_quay/3.7/html-single/use_red_hat_quay#red-hat-quay-quota-management-and-enforcement

NOTE

The default tag Expiration field for cached images in a proxy organization is
set to 86400 seconds. In the proxy organization, the tag expiration is
refreshed to the value set in the UI’s Expiration field every time the tag is
pulled. This feature is different than Quay’s default individual tag expiration
feature. In a proxy organization, it is possible to override the individual tag
feature. When this happens, the individual tag’s expiration is reset according
to the Expiration field of the proxy organization.

Expired images will disappear after the allotted time, but are still stored in
Quay. The time in which an image is completely deleted, or collected,
depends on the Time Machine setting of your organization. The default time
for garbage collection is 14 days unless otherwise specified.

6. Click Save.

7. On the CLI, pull a public image from the registry, for example, quay.io, acting as a proxy cache:

$ podman pull <registry_url>/<organization_name>/<quayio_namespace>/<image_name>

IMPORTANT

If your organization is set up to pull from a single namespace in the remote
registry, the remote registry namespace must be omitted from the URL. For
example, podman pull <registry_url>/<organization_name>/<image_name>.

15.3.1. Leveraging storage quota limits in proxy organizations

With Red Hat Quay 3.8, the proxy cache feature has been enhanced with an auto-pruning feature for
tagged images. The auto-pruning of image tags is only available when a proxied namespace has quota
limitations configured. Currently, if an image size is greater than quota for an organization, the image is
skipped from being uploaded until an administrator creates the necessary space. Now, when an image is
pushed that exceeds the allotted space, the auto-pruning enhancement marks the least recently used
tags for deletion. As a result, the new image tag is stored, while the least used image tag is marked for
deletion.

IMPORTANT

As part of the auto-pruning feature, the tags that are marked for deletion are
eventually garbage collected by the garbage collector (gc) worker process. As a
result, the quota size restriction is not fully enforced during this period.

Currently, the namespace quota size computation does not take into account the
size for manifest child. This is a known issue and will be fixed in a future version of
Red Hat Quay.

15.3.1.1. Testing the storage quota limits feature in proxy organizations

Use the following procedure to test the auto-pruning feature of an organization with proxy cache and
storage quota limitations enabled.

Prerequisites

Your organization is configured to serve as a proxy organization. The following example proxies

Red Hat Quay 3 Use Red Hat Quay

102

https://access.redhat.com/documentation/en-us/red_hat_quay/3/html-single/use_red_hat_quay/index#tag-expiration

Your organization is configured to serve as a proxy organization. The following example proxies
from quay.io.

FEATURE_PROXY_CACHE is set to true in your config.yaml file.

FEATURE_QUOTA_MANAGEMENT is set to true in your config.yaml file.

Your organization is configured with a quota limit, for example, 150 MB.

Procedure

1. Pull an image to your repository from your proxy organization, for example:

$ podman pull quay-server.example.com/proxytest/projectquay/quay:3.7.9

2. Depending on the space left in your repository, you might need to pull additional images from
your proxy organization, for example:

$ podman pull quay-server.example.com/proxytest/projectquay/quay:3.6.2

3. In the Red Hat Quay registry UI, click the name of your repository.

Click Tags in the navigation pane and ensure that quay:3.7.9 and quay:3.6.2 are tagged.

4. Pull the last image that will result in your repository exceeding the allotted quota, for example:

$ podman pull quay-server.example.com/proxytest/projectquay/quay:3.5.1

5. Refresh the Tags page of your Red Hat Quay registry. The first image that you pushed, for
example, quay:3.7.9 should have been auto-pruned. The Tags page should now show
quay:3.6.2 and quay:3.5.1.

CHAPTER 15. RED HAT QUAY AS A PROXY CACHE FOR UPSTREAM REGISTRIES

103

CHAPTER 16. RED HAT QUAY BUILD ENHANCEMENTS
Red Hat Quay builds can be run on virtualized platforms. Backwards compatibility to run previous build
configurations are also available.

16.1. RED HAT QUAY ENHANCED BUILD ARCHITECTURE

The following image shows the expected design flow and architecture of the enhanced build features:

With this enhancement, the build manager first creates the Job Object. Then, the Job Object then
creates a pod using the quay-builder-image. The quay-builder-image will contain the quay-builder
binary and the Podman service. The created pod runs as unprivileged. The quay-builder binary then
builds the image while communicating status and retrieving build information from the Build Manager.

16.2. RED HAT QUAY BUILD LIMITATIONS

Running builds in Red Hat Quay in an unprivileged context might cause some commands that were
working under the previous build strategy to fail. Attempts to change the build strategy could potentially
cause performance issues and reliability with the build.

Running builds directly in a container does not have the same isolation as using virtual machines.
Changing the build environment might also caused builds that were previously working to fail.

16.3. CREATING A RED HAT QUAY BUILDERS ENVIRONMENT WITH
OPENSHIFT CONTAINER PLATFORM

The procedures in this section explain how to create a Red Hat Quay virtual builders environment with
OpenShift Container Platform.

16.3.1. OpenShift Container Platform TLS component

The tls component allows you to control TLS configuration.

NOTE

Red Hat Quay 3 Use Red Hat Quay

104

NOTE

Red Hat Quay 3 does not support builders when the TLS component is managed by the
Operator.

If you set tls to unmanaged, you supply your own ssl.cert and ssl.key files. In this instance, if you want
your cluster to support builders, you must add both the Quay route and the builder route name to the
SAN list in the cert, or use a wildcard.

To add the builder route, use the following format:

16.3.2. Using OpenShift Container Platform for Red Hat Quay builders

Builders require SSL/TLS certificates. For more information about SSL/TLS certificates, see Using
SSL/TLS certificates.

If you are using Amazon Web Service (AWS) S3 storage, you must modify your storage bucket in the
AWS console, prior to running builders. See "Modifying your AWS S3 storage bucket" in the following
section for the required parameters.

16.3.2.1. Preparing OpenShift Container Platform for virtual builders

Use the following procedure to prepare OpenShift Container Platform for Red Hat Quay virtual builders.

NOTE

This procedure assumes you already have a cluster provisioned and a Quay
Operator running.

This procedure is for setting up a virtual namespace on OpenShift Container
Platform.

Procedure

1. Log in to your Red Hat Quay cluster using a cluster administrator account.

2. Create a new project where your virtual builders will be run, for example, virtual-builders, by
running the following command:

3. Create a ServiceAccount in the project that will be used to run builds by entering the following
command:

4. Provide the created service account with editing permissions so that it can run the build:

[quayregistry-cr-name]-quay-builder-[ocp-namespace].[ocp-domain-name]:443

$ oc new-project virtual-builders

$ oc create sa -n virtual-builders quay-builder

$ oc adm policy -n virtual-builders add-role-to-user edit system:serviceaccount:virtual-
builders:quay-builder

CHAPTER 16. RED HAT QUAY BUILD ENHANCEMENTS

105

https://docs.redhat.com/en/documentation/red_hat_quay/3/html-single/proof_of_concept_-_deploying_red_hat_quay/index#advanced-quay-poc-deployment

5. Grant the Quay builder anyuid scc permissions by entering the following command:

NOTE

This action requires cluster admin privileges. This is required because builders
must run as the Podman user for unprivileged or rootless builds to work.

6. Obtain the token for the Quay builder service account.

a. If using OpenShift Container Platform 4.10 or an earlier version, enter the following
command:

b. If using OpenShift Container Platform 4.11 or later, enter the following command:

NOTE

When the token expires you will need to request a new token. Optionally, you
can also add a custom expiration. For example, specify --duration 20160m to
retain the token for two weeks.

Example output

7. Determine the builder route by entering the following command:

Example output

8. Generate a self-signed SSL/TlS certificate with the .crt extension by entering the following
command:

Example output

$ oc adm policy -n virtual-builders add-scc-to-user anyuid -z quay-builder

oc sa get-token -n virtual-builders quay-builder

$ oc create token quay-builder -n virtual-builders

eyJhbGciOiJSUzI1NiIsImtpZCI6IldfQUJkaDVmb3ltTHZ0dGZMYjhIWnYxZTQzN2dJVEJxc
DJscldSdEUtYWsifQ...

$ oc get route -n quay-enterprise

NAME HOST/PORT PATH
SERVICES PORT TERMINATION WILDCARD
...
example-registry-quay-builder example-registry-quay-builder-quay-
enterprise.apps.docs.quayteam.org example-registry-quay-app grpc
edge/Redirect None
...

$ oc extract cm/kube-root-ca.crt -n openshift-apiserver

Red Hat Quay 3 Use Red Hat Quay

106

1

9. Rename the ca.crt file to extra_ca_cert_build_cluster.crt by entering the following command:

10. Locate the secret for you configuration bundle in the Console, and select Actions → Edit
Secret and add the appropriate builder configuration:

The build route is obtained by running oc get route -n with the name of your OpenShift
Operator’s namespace. A port must be provided at the end of the route, and it should use
the following format: [quayregistry-cr-name]-quay-builder-[ocp-namespace].[ocp-
domain-name]:443.

If the JOB_REGISTRATION_TIMEOUT parameter is set too low, you might receive the

ca.crt

$ mv ca.crt extra_ca_cert_build_cluster.crt

FEATURE_USER_INITIALIZE: true
BROWSER_API_CALLS_XHR_ONLY: false
SUPER_USERS:
- <superusername>
FEATURE_USER_CREATION: false
FEATURE_QUOTA_MANAGEMENT: true
FEATURE_BUILD_SUPPORT: True
BUILDMAN_HOSTNAME: <sample_build_route> 1
BUILD_MANAGER:
 - ephemeral
 - ALLOWED_WORKER_COUNT: 1
 ORCHESTRATOR_PREFIX: buildman/production/
 JOB_REGISTRATION_TIMEOUT: 3600 2
 ORCHESTRATOR:
 REDIS_HOST: <sample_redis_hostname> 3
 REDIS_PASSWORD: ""
 REDIS_SSL: false
 REDIS_SKIP_KEYSPACE_EVENT_SETUP: false
 EXECUTORS:
 - EXECUTOR: kubernetesPodman
 NAME: openshift
 BUILDER_NAMESPACE: <sample_builder_namespace> 4
 SETUP_TIME: 180
 MINIMUM_RETRY_THRESHOLD: 0
 BUILDER_CONTAINER_IMAGE: <sample_builder_container_image> 5
 # Kubernetes resource options
 K8S_API_SERVER: <sample_k8s_api_server> 6
 K8S_API_TLS_CA: <sample_crt_file> 7
 VOLUME_SIZE: 8G
 KUBERNETES_DISTRIBUTION: openshift
 CONTAINER_MEMORY_LIMITS: 300m 8
 CONTAINER_CPU_LIMITS: 1G 9
 CONTAINER_MEMORY_REQUEST: 300m 10
 CONTAINER_CPU_REQUEST: 1G 11
 NODE_SELECTOR_LABEL_KEY: ""
 NODE_SELECTOR_LABEL_VALUE: ""
 SERVICE_ACCOUNT_NAME: <sample_service_account_name>
 SERVICE_ACCOUNT_TOKEN: <sample_account_token> 12

CHAPTER 16. RED HAT QUAY BUILD ENHANCEMENTS

107

2

3

4

5

6

7

8

9

10

11

12

If the JOB_REGISTRATION_TIMEOUT parameter is set too low, you might receive the
following error: failed to register job to build manager: rpc error: code =
Unauthenticated desc = Invalid build token: Signature has expired. It is suggested that
this parameter be set to at least 240.

If your Redis host has a password or SSL/TLS certificates, you must update accordingly.

Set to match the name of your virtual builders namespace, for example, virtual-builders.

For early access, the BUILDER_CONTAINER_IMAGE is currently
quay.io/projectquay/quay-builder:3.7.0-rc.2. Note that this might change during the
early access window. If this happens, customers are alerted.

The K8S_API_SERVER is obtained by running oc cluster-info.

You must manually create and add your custom CA cert, for example, K8S_API_TLS_CA:
/conf/stack/extra_ca_certs/build_cluster.crt.

Defaults to 5120Mi if left unspecified.

For virtual builds, you must ensure that there are enough resources in your cluster.
Defaults to 1000m if left unspecified.

Defaults to 3968Mi if left unspecified.

Defaults to 500m if left unspecified.

Obtained when running oc create sa.

Sample configuration

FEATURE_USER_INITIALIZE: true
BROWSER_API_CALLS_XHR_ONLY: false
SUPER_USERS:
- quayadmin
FEATURE_USER_CREATION: false
FEATURE_QUOTA_MANAGEMENT: true
FEATURE_BUILD_SUPPORT: True
BUILDMAN_HOSTNAME: example-registry-quay-builder-quay-
enterprise.apps.docs.quayteam.org:443
BUILD_MANAGER:
 - ephemeral
 - ALLOWED_WORKER_COUNT: 1
 ORCHESTRATOR_PREFIX: buildman/production/
 JOB_REGISTRATION_TIMEOUT: 3600
 ORCHESTRATOR:
 REDIS_HOST: example-registry-quay-redis
 REDIS_PASSWORD: ""
 REDIS_SSL: false
 REDIS_SKIP_KEYSPACE_EVENT_SETUP: false
 EXECUTORS:
 - EXECUTOR: kubernetesPodman
 NAME: openshift
 BUILDER_NAMESPACE: virtual-builders
 SETUP_TIME: 180
 MINIMUM_RETRY_THRESHOLD: 0

Red Hat Quay 3 Use Red Hat Quay

108

1

2

16.3.2.2. Manually adding SSL/TLS certificates

Due to a known issue with the configuration tool, you must manually add your custom SSL/TLS
certificates to properly run builders. Use the following procedure to manually add custom SSL/TLS
certificates.

For more information about SSL/TLS certificates, see Using SSL/TLS certificates .

16.3.2.2.1. Creating and signing certificates

Use the following procedure to create and sign an SSL/TLS certificate.

Procedure

Create a certificate authority and sign a certificate. For more information, see Using SSL/TLS
certificates.

openssl.cnf

An alt_name for the URL of your Red Hat Quay registry must be included.

An alt_name for the BUILDMAN_HOSTNAME

Sample commands

 BUILDER_CONTAINER_IMAGE: quay.io/projectquay/quay-builder:3.7.0-rc.2
 # Kubernetes resource options
 K8S_API_SERVER: api.docs.quayteam.org:6443
 K8S_API_TLS_CA: /conf/stack/extra_ca_certs/build_cluster.crt
 VOLUME_SIZE: 8G
 KUBERNETES_DISTRIBUTION: openshift
 CONTAINER_MEMORY_LIMITS: 1G
 CONTAINER_CPU_LIMITS: 1080m
 CONTAINER_MEMORY_REQUEST: 1G
 CONTAINER_CPU_REQUEST: 580m
 NODE_SELECTOR_LABEL_KEY: ""
 NODE_SELECTOR_LABEL_VALUE: ""
 SERVICE_ACCOUNT_NAME: quay-builder
 SERVICE_ACCOUNT_TOKEN:
"eyJhbGciOiJSUzI1NiIsImtpZCI6IldfQUJkaDVmb3ltTHZ0dGZMYjhIWnYxZTQzN2dJVEJxcDJs
cldSdEUtYWsifQ"

[req]
req_extensions = v3_req
distinguished_name = req_distinguished_name
[req_distinguished_name]
[v3_req]
basicConstraints = CA:FALSE
keyUsage = nonRepudiation, digitalSignature, keyEncipherment
subjectAltName = @alt_names
[alt_names]
DNS.1 = example-registry-quay-quay-enterprise.apps.docs.quayteam.org 1
DNS.2 = example-registry-quay-builder-quay-enterprise.apps.docs.quayteam.org 2

CHAPTER 16. RED HAT QUAY BUILD ENHANCEMENTS

109

https://docs.redhat.com/en/documentation/red_hat_quay/3/html-single/proof_of_concept_-_deploying_red_hat_quay/index#advanced-quay-poc-deployment
https://docs.redhat.com/en/documentation/red_hat_quay/3/html-single/proof_of_concept_-_deploying_red_hat_quay/index#advanced-quay-poc-deployment

16.3.2.2.2. Setting TLS to unmanaged

Use the following procedure to set king:tls to unmanaged.

Procedure

1. In your Red Hat Quay Registry YAML, set kind: tls to managed: false:

2. On the Events page, the change is blocked until you set up the appropriate config.yaml file.
For example:

16.3.2.2.3. Creating temporary secrets

Use the following procedure to create temporary secrets for the CA certificate.

Procedure

1. Create a secret in your default namespace for the CA certificate:

$ oc create secret generic -n quay-enterprise temp-crt --from-file
extra_ca_cert_build_cluster.crt

2. Create a secret in your default namespace for the ssl.key and ssl.cert files:

$ oc create secret generic -n quay-enterprise quay-config-ssl --from-file ssl.cert --from-file
ssl.key

16.3.2.2.4. Copying secret data to the configuration YAML

Use the following procedure to copy secret data to your config.yaml file.

Procedure

1. Locate the new secrets in the console UI at Workloads → Secrets.

$ openssl genrsa -out rootCA.key 2048
$ openssl req -x509 -new -nodes -key rootCA.key -sha256 -days 1024 -out rootCA.pem
$ openssl genrsa -out ssl.key 2048
$ openssl req -new -key ssl.key -out ssl.csr
$ openssl x509 -req -in ssl.csr -CA rootCA.pem -CAkey rootCA.key -CAcreateserial -out
ssl.cert -days 356 -extensions v3_req -extfile openssl.cnf

 - kind: tls
 managed: false

 - lastTransitionTime: '2022-03-28T12:56:49Z'
 lastUpdateTime: '2022-03-28T12:56:49Z'
 message: >-
 required component `tls` marked as unmanaged, but `configBundleSecret`
 is missing necessary fields
 reason: ConfigInvalid
 status: 'True'

Red Hat Quay 3 Use Red Hat Quay

110

2. For each secret, locate the YAML view:

3. Locate the secret for your Red Hat Quay registry configuration bundle in the UI, or through the
command line by running a command like the following:

4. In the OpenShift Container Platform console, select the YAML tab for your configuration
bundle secret, and add the data from the two secrets you created:

kind: Secret
apiVersion: v1
metadata:
 name: temp-crt
 namespace: quay-enterprise
 uid: a4818adb-8e21-443a-a8db-f334ace9f6d0
 resourceVersion: '9087855'
 creationTimestamp: '2022-03-28T13:05:30Z'
...
data:
 extra_ca_cert_build_cluster.crt: >-
 LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSURNakNDQWhxZ0F3SUJBZ0l....
type: Opaque

kind: Secret
apiVersion: v1
metadata:
 name: quay-config-ssl
 namespace: quay-enterprise
 uid: 4f5ae352-17d8-4e2d-89a2-143a3280783c
 resourceVersion: '9090567'
 creationTimestamp: '2022-03-28T13:10:34Z'
...
data:
 ssl.cert: >-
 LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSUVaakNDQTA2Z0F3SUJBZ0lVT...
 ssl.key: >-
 LS0tLS1CRUdJTiBSU0EgUFJJVkFURSBLRVktLS0tLQpNSUlFcFFJQkFBS0NBUUVBc...
type: Opaque

$ oc get quayregistries.quay.redhat.com -o jsonpath="{.items[0].spec.configBundleSecret}
{'\n'}" -n quay-enterprise

kind: Secret
apiVersion: v1
metadata:
 name: init-config-bundle-secret
 namespace: quay-enterprise
 uid: 4724aca5-bff0-406a-9162-ccb1972a27c1
 resourceVersion: '4383160'
 creationTimestamp: '2022-03-22T12:35:59Z'
...
data:
 config.yaml: >-
 RkVBVFVSRV9VU0VSX0lOSVRJQUxJWkU6IHRydWUKQlJ...
 extra_ca_cert_build_cluster.crt: >-

CHAPTER 16. RED HAT QUAY BUILD ENHANCEMENTS

111

5. Click Save.

6. Enter the following command to see if your pods are restarting:

Example output

7. After your Red Hat Quay registry has reconfigured, enter the following command to check if the
Red Hat Quay app pods are running:

Example output

8. In your browser, access the registry endpoint and validate that the certificate has been updated
appropriately. For example:

16.3.2.3. Using the UI to create a build trigger

LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSURNakNDQWhxZ0F3SUJBZ0ldw....
 ssl.cert: >-
 LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSUVaakNDQTA2Z0F3SUJBZ0lVT...
 ssl.key: >-
 LS0tLS1CRUdJTiBSU0EgUFJJVkFURSBLRVktLS0tLQpNSUlFcFFJQkFBS0NBUUVBc...
type: Opaque

$ oc get pods -n quay-enterprise

NAME READY STATUS RESTARTS AGE
...
example-registry-quay-app-6786987b99-vgg2v 0/1 ContainerCreating 0 2s
example-registry-quay-app-7975d4889f-q7tvl 1/1 Running 0 5d21h
example-registry-quay-app-7975d4889f-zn8bb 1/1 Running 0 5d21h
example-registry-quay-app-upgrade-lswsn 0/1 Completed 0 6d1h
example-registry-quay-config-editor-77847fc4f5-nsbbv 0/1 ContainerCreating 0 2s
example-registry-quay-config-editor-c6c4d9ccd-2mwg2 1/1 Running 0
5d21h
example-registry-quay-database-66969cd859-n2ssm 1/1 Running 0 6d1h
example-registry-quay-mirror-764d7b68d9-jmlkk 1/1 Terminating 0 5d21h
example-registry-quay-mirror-764d7b68d9-jqzwg 1/1 Terminating 0 5d21h
example-registry-quay-redis-7cc5f6c977-956g8 1/1 Running 0 5d21h

$ oc get pods -n quay-enterprise

example-registry-quay-app-6786987b99-sz6kb 1/1 Running 0 7m45s
example-registry-quay-app-6786987b99-vgg2v 1/1 Running 0 9m1s
example-registry-quay-app-upgrade-lswsn 0/1 Completed 0 6d1h
example-registry-quay-config-editor-77847fc4f5-nsbbv 1/1 Running 0 9m1s
example-registry-quay-database-66969cd859-n2ssm 1/1 Running 0 6d1h
example-registry-quay-mirror-758fc68ff7-5wxlp 1/1 Running 0 8m29s
example-registry-quay-mirror-758fc68ff7-lbl82 1/1 Running 0 8m29s
example-registry-quay-redis-7cc5f6c977-956g8 1/1 Running 0 5d21h

Common Name (CN) example-registry-quay-quay-enterprise.apps.docs.quayteam.org
Organisation (O) DOCS
Organisational Unit (OU) QUAY

Red Hat Quay 3 Use Red Hat Quay

112

Use the following procedure to use the UI to create a build trigger.

Procedure

1. Log in to your Red Hat Quay repository.

2. Click Create New Repository and create a new registry, for example, testrepo.

3. On the Repositories page, click the Builds tab on the navigation pane. Alternatively, use the
corresponding URL directly:

https://example-registry-quay-quay-
enterprise.apps.docs.quayteam.org/repository/quayadmin/testrepo?tab=builds

IMPORTANT

In some cases, the builder might have issues resolving hostnames. This issue
might be related to the dnsPolicy being set to default on the job object.
Currently, there is no workaround for this issue. It will be resolved in a future
version of Red Hat Quay.

4. Click Create Build Trigger → Custom Git Repository Push.

5. Enter the HTTPS or SSH style URL used to clone your Git repository, then click Continue. For
example:

https://github.com/gabriel-rh/actions_test.git

6. Check Tag manifest with the branch or tag name and then click Continue.

7. Enter the location of the Dockerfile to build when the trigger is invoked, for example,
/Dockerfile and click Continue.

8. Enter the location of the context for the Docker build, for example, /, and click Continue.

9. If warranted, create a Robot Account. Otherwise, click Continue.

10. Click Continue to verify the parameters.

11. On the Builds page, click Options icon of your Trigger Name, and then click Run Trigger Now.

12. Enter a commit SHA from the Git repository and click Start Build.

13. You can check the status of your build by clicking the commit in the Build History page, or by
running oc get pods -n virtual-builders. For example:

$ oc get pods -n virtual-builders

Example output

NAME READY STATUS RESTARTS AGE
f192fe4a-c802-4275-bcce-d2031e635126-9l2b5-25lg2 1/1 Running 0 7s

CHAPTER 16. RED HAT QUAY BUILD ENHANCEMENTS

113

Example output

NAME READY STATUS RESTARTS AGE
f192fe4a-c802-4275-bcce-d2031e635126-9l2b5-25lg2 1/1 Terminating 0 9s

$ oc get pods -n virtual-builders

Example output

No resources found in virtual-builders namespace.

14. When the build is finished, you can check the status of the tag under Tags on the navigation
pane.

NOTE

With early access, full build logs and timestamps of builds are currently
unavailable.

16.3.2.4. Modifying your AWS S3 storage bucket

If you are using AWS S3 storage, you must change your storage bucket in the AWS console, prior to
running builders.

Procedure

1. Log in to your AWS console at s3.console.aws.com.

2. In the search bar, search for S3 and then click S3.

3. Click the name of your bucket, for example, myawsbucket.

4. Click the Permissions tab.

5. Under Cross-origin resource sharing (CORS), include the following parameters:

$ oc get pods -n virtual-builders

 [
 {
 "AllowedHeaders": [
 "Authorization"
],
 "AllowedMethods": [
 "GET"
],
 "AllowedOrigins": [
 "*"
],
 "ExposeHeaders": [],
 "MaxAgeSeconds": 3000
 },
 {

Red Hat Quay 3 Use Red Hat Quay

114

https://s3.console.aws.amazon.com

16.3.2.5. Modifying your Google Cloud Platform object bucket

NOTE

Currently, modifying your Google Cloud Platform object bucket is not supported on IBM
Power and IBM Z.

Use the following procedure to configure cross-origin resource sharing (CORS) for virtual builders.

NOTE

Without CORS configuration, uploading a build Dockerfile fails.

Procedure

1. Use the following reference to create a JSON file for your specific CORS needs. For example:

Example output

 "AllowedHeaders": [
 "Content-Type",
 "x-amz-acl",
 "origin"
],
 "AllowedMethods": [
 "PUT"
],
 "AllowedOrigins": [
 "*"
],
 "ExposeHeaders": [],
 "MaxAgeSeconds": 3000
 }
]

$ cat gcp_cors.json

[
 {
 "origin": ["*"],
 "method": ["GET"],
 "responseHeader": ["Authorization"],
 "maxAgeSeconds": 3600
 },
 {
 "origin": ["*"],
 "method": ["PUT"],
 "responseHeader": [
 "Content-Type",
 "x-goog-acl",
 "origin"],

CHAPTER 16. RED HAT QUAY BUILD ENHANCEMENTS

115

2. Enter the following command to update your GCP storage bucket:

Example output

3. You can display the updated CORS configuration of your GCP bucket by running the following
command:

Example output

 "maxAgeSeconds": 3600
 }
]

$ gcloud storage buckets update gs://<bucket_name> --cors-file=./gcp_cors.json

Updating
 Completed 1

$ gcloud storage buckets describe gs://<bucket_name> --format="default(cors)"

cors:
- maxAgeSeconds: 3600
 method:
 - GET
 origin:
 - '*'
 responseHeader:
 - Authorization
- maxAgeSeconds: 3600
 method:
 - PUT
 origin:
 - '*'
 responseHeader:
 - Content-Type
 - x-goog-acl
 - origin

Red Hat Quay 3 Use Red Hat Quay

116

CHAPTER 17. USING THE RED HAT QUAY API
Red Hat Quay provides a full OAuth 2, RESTful API. [OAuth 2] RESTful API provides the following
benefits:

It is available from endpoint /api/v1 endpoint of your Red Hat Quay host. For example,
https://<quay-server.example.com>/api/v1.

It allows users to connect to endpoints through their browser to GET, POST, DELETE, and PUT
Red Hat Quay settings by enabling the Swagger UI.

It can be accessed by applications that make API calls and use OAuth tokens.

It sends and receives data as JSON.

The following section describes how to access the Red Hat Quay API so that it can be used with your
deployment.

17.1. ACCESSING THE QUAY API FROM QUAY.IO

If you don’t have your own Red Hat Quay cluster running yet, you can explore the Red Hat Quay API
available from Quay.io from your web browser:

https://docs.quay.io/api/swagger/

The API Explorer that appears shows Quay.io API endpoints. You will not see superuser API endpoints
or endpoints for Red Hat Quay features that are not enabled on Quay.io (such as Repository Mirroring).

From API Explorer, you can get, and sometimes change, information on:

Billing, subscriptions, and plans

Repository builds and build triggers

Error messages and global messages

Repository images, manifests, permissions, notifications, vulnerabilities, and image signing

Usage logs

Organizations, members and OAuth applications

User and robot accounts

and more…​

Select to open an endpoint to view the Model Schema for each part of the endpoint. Open an endpoint,
enter any required parameters (such as a repository name or image), then select the Try it out! button
to query or change settings associated with a Quay.io endpoint.

17.2. CREATING A V1 OAUTH ACCESS TOKEN

OAuth access tokens are credentials that allow you to access protected resources in a secure manner.
With Red Hat Quay, you must create an OAuth access token before you can access the API endpoints
of your organization.

CHAPTER 17. USING THE RED HAT QUAY API

117

https://oauth.net/2/

Use the following procedure to create an OAuth access token.

Prerequisites

You have logged in to Red Hat Quay as an administrator.

Procedure

1. On the main page, select an Organization.

2. In the navigation pane, select Applications.

3. Click Create New Application and provide a new application name, then press Enter.

4. On the OAuth Applications page, select the name of your application.

5. Optional. Enter the following information:

a. Application Name

b. Homepage URL

c. Description

d. Avatar E-mail

e. Redirect/Callback URL prefix

6. In the navigation pane, select Generate Token.

7. Check the boxes for the following options:

a. Administer Organization

b. Administer Repositories

c. Create Repositories

d. View all visible repositories

e. Read/Write to any accessible repositories

f. Super User Access

g. Administer User

h. Read User Information

8. Click Generate Access Token. You are redirected to a new page.

9. Review the permissions that you are allowing, then click Authorize Application. Confirm your
decision by clicking Authorize Application.

10. You are redirected to the Access Token page. Copy and save the access token.

IMPORTANT

Red Hat Quay 3 Use Red Hat Quay

118

IMPORTANT

This is the only opportunity to copy and save the access token. It cannot be
reobtained after leaving this page.

17.3. CREATING AN OCI REFERRERS OAUTH ACCESS TOKEN

In some cases, you might want to create an OCI referrers OAuth access token. This token is used to list
OCI referrers of a manifest under a repository.

Procedure

1. Update your config.yaml file to include the FEATURE_REFERRERS_API: true field. For
example:

2. Enter the following command to Base64 encode your credentials:

Example output

3. Enter the following command to use the base64 encoded string and modify the URL endpoint
to your Red Hat Quay server:

Example output

...
FEATURE_REFERRERS_API: true
...

$ echo -n '<username>:<password>' | base64

abcdeWFkbWluOjE5ODlraWROZXQxIQ==

$ curl --location '<quay-server.example.com>/v2/auth?service=<quay-
server.example.com>&scope=repository:quay/listocireferrs:pull,push' --header 'Authorization:
Basic <base64_username:password_encode_token>' -k | jq

{
 "token":
"eyJhbGciOiJSUzI1NiIsImtpZCI6Ijl5RWNtWmdiZ0l6czBBZW16emhTMHM1R0g2RDJnV2JGU
TdUNGZYand4MlUiLCJ0eXAiOiJKV1QifQ.eyJpc3MiOiJxdWF5IiwiYXVkIjoicXVheS1zZXJ2ZXIu
ZXhhbXBsZS5jb20iLCJuYmYiOjE3MjEzMzAzNDYsImlhdCI6MTcyMTMzMDM0NiwiZXhwIjoxNz
IxMzMzOTQ2LCJzdWIiOiJxdWF5YWRtaW4iLCJhY2Nlc3MiOlt7InR5cGUiOiJyZXBvc2l0b3J5Iiw
ibmFtZSI6InF1YXkvbGlzdG9jaXJlZmVycnMiLCJhY3Rpb25zIjpbXX1dLCJjb250ZXh0Ijp7InZlcn
Npb24iOjIsImVudGl0eV9raW5kIjoidXNlciIsImVudGl0eV9yZWZlcmVuY2UiOiJkZjI1M2QyNC0zZ
WUwLTRkODItOTcxYi1hZGYxMWYyNzBlM2IiLCJraW5kIjoidXNlciIsInVzZXIiOiJxdWF5YWRta
W4iLCJjb20uYXBvc3RpbGxlLnJvb3RzIjp7InF1YXkvbGlzdG9jaXJlZmVycnMiOiIkZGlzYWJsZW
QifSwiY29tLmFwb3N0aWxsZS5yb290IjoiJGRpc2FibGVkIn19.sBR765ea-
E41b2SfiIS36qoOmIZ6DEn9hvsCq3cszn6umlnKiBkc1jq6O1KlxtIhPdf8m8-
xtLMJakxkKST4mJg5CHR5WG2AVExuT6nCHg9KuzOZTkafMJeUzC4lxRsrdgKXyGUaYONO
ALf6bW_IebSIOOVt55m83-KVz5NMHSov9VmQlPCfGnWS3pq3bG-
nUaLhGRuSKc1EoGgnKlULNr9gAgzwBmB7-
MGioP7NL5_IQtrbjFyBdckQuJcpcwNK78gb8MQIwI-

CHAPTER 17. USING THE RED HAT QUAY API

119

17.4. REASSIGNING AN OAUTH ACCESS TOKEN

Organization administrators can assign OAuth API tokens to be created by other user’s with specific
permissions. This allows the audit logs to be reflected accurately when the token is used by a user that
has no organization administrative permissions to create an OAuth API token.

NOTE

The following procedure only works on the current Red Hat Quay UI. It is not currently
implemented in the Red Hat Quay v2 UI.

Prerequisites

You are logged in as a user with organization administrative privileges, which allows you to assign
an OAuth API token.

NOTE

OAuth API tokens are used for authentication and not authorization. For
example, the user that you are assigning the OAuth token to must have the
Admin team role to use administrative API endpoints. For more information, see
Managing access to repositories .

Procedure

1. Optional. If not already, update your Red Hat Quay config.yaml file to include the
FEATURE_ASSIGN_OAUTH_TOKEN: true field:

2. Optional. Restart your Red Hat Quay registry.

3. Log in to your Red Hat Quay registry as an organization administrator.

4. Click the name of the organization in which you created the OAuth token for.

5. In the navigation pane, click Applications.

6. Click the proper application name.

7. In the navigation pane, click Generate Token.

8. Click Assign another user and enter the name of the user that will take over the OAuth token.

9. Check the boxes for the desired permissions that you want the new user to have. For example, if
you only want the new user to be able to create repositories, click Create Repositories.

IMPORTANT

e6WMvBT94pQkdD6bibo6zpFayFKSc6PsoO4Z4PjiON6vnD4kqEpX6rw5Yj7unv4RKjA_iHG-
BoQ"
}

...
FEATURE_ASSIGN_OAUTH_TOKEN: true
...

Red Hat Quay 3 Use Red Hat Quay

120

https://docs.redhat.com/en/documentation/red_hat_quay/3/html-single/use_red_hat_quay/index#creating-an-image-repository-via-docker

IMPORTANT

Permission control is defined by the team role within an organization and must be
configured regardless of the options selected here. For example, the user that
you are assigning the OAuth token to must have the Admin team role to use
administrative API endpoints.

Solely checking the Super User Access box does not actually grant the user this
permission. Superusers must be configured via the config.yaml file and the box
must be checked here.

10. Click Assign token. A popup box appears that confirms authorization with the following
message and shows you the approved permissions:

11. Click Assign token in the popup box. You are redirected to a new page that displays the
following message:

Verification

1. After reassigning an OAuth token, the assigned user must accept the token to receive the
bearer token, which is required to use API endpoints. Request that the assigned user logs into
the Red Hat Quay registry.

2. After they have logged in, they must click their username under Users and Organizations.

3. In the navigation pane, they must click External Logins And Applications.

4. Under Authorized Applications, they must confirm the application by clicking Authorize
Application. They are directed to a new page where they must reconfirm by clicking Authorize
Application.

5. They are redirected to a new page that reveals their bearer token. They must save this bearer
token, as it cannot be viewed again.

17.5. ACCESSING YOUR QUAY API FROM A WEB BROWSER

By enabling Swagger, you can access the API for your own Red Hat Quay instance through a web
browser. This URL exposes the Red Hat Quay API explorer via the Swagger UI and this URL:

https://<yourquayhost>/api/v1/discovery.

That way of accessing the API does not include superuser endpoints that are available on Red Hat Quay
installations. Here is an example of accessing a Red Hat Quay API interface running on the local system
by running the swagger-ui container image:

export SERVER_HOSTNAME=<yourhostname>
sudo podman run -p 8888:8080 -e API_URL=https://$SERVER_HOSTNAME:8443/api/v1/discovery
docker.io/swaggerapi/swagger-ui

This will prompt user <username> to generate a token with the following permissions:
repo:create

Token assigned successfully

CHAPTER 17. USING THE RED HAT QUAY API

121

With the swagger-ui container running, open your web browser to localhost port 8888 to view API
endpoints via the swagger-ui container.

To avoid errors in the log such as "API calls must be invoked with an X-Requested-With header if called
from a browser," add the following line to the config.yaml on all nodes in the cluster and restart Red Hat
Quay:

BROWSER_API_CALLS_XHR_ONLY: false

17.6. ACCESSING THE RED HAT QUAY API FROM THE COMMAND LINE

You can use the curl command to GET, PUT, POST, or DELETE settings via the API for your Red Hat
Quay cluster. Replace <token> with the OAuth access token you created earlier to get or change
settings in the following examples.

Red Hat Quay 3 Use Red Hat Quay

122

CHAPTER 18. OPEN CONTAINER INITIATIVE SUPPORT
Container registries were originally designed to support container images in the Docker image format.
To promote the use of additional runtimes apart from Docker, the Open Container Initiative (OCI) was
created to provide a standardization surrounding container runtimes and image formats. Most container
registries support the OCI standardization as it is based on the Docker image manifest V2, Schema 2
format.

In addition to container images, a variety of artifacts have emerged that support not just individual
applications, but also the Kubernetes platform as a whole. These range from Open Policy Agent (OPA)
policies for security and governance to Helm charts and Operators that aid in application deployment.

Red Hat Quay is a private container registry that not only stores container images, but also supports an
entire ecosystem of tooling to aid in the management of containers. Red Hat Quay strives to be as
compatible as possible with the OCI 1.1 Image and Distribution specifications , and supports common
media types like Helm charts (as long as they pushed with a version of Helm that supports OCI) and a
variety of arbitrary media types within the manifest or layer components of container images. Support
for OCI media types differs from previous iterations of Red Hat Quay, when the registry was more strict
about accepted media types. Because Red Hat Quay now works with a wider array of media types,
including those that were previously outside the scope of its support, it is now more versatile
accommodating not only standard container image formats but also emerging or unconventional types.

In addition to its expanded support for novel media types, Red Hat Quay ensures compatibility with
Docker images, including V2_2 and V2_1 formats. This compatibility with Docker V2_2 and V2_1 images
demonstrates Red Hat Quay’s' commitment to providing a seamless experience for Docker users.
Moreover, Red Hat Quay continues to extend its support for Docker V1 pulls, catering to users who
might still rely on this earlier version of Docker images.

Support for OCI artifacts are enabled by default. The following examples show you how to use some
some media types, which can be used as examples for using other OCI media types.

18.1. HELM AND OCI PREREQUISITES

Helm simplifies how applications are packaged and deployed. Helm uses a packaging format called
Charts which contain the Kubernetes resources representing an application. Red Hat Quay supports
Helm charts so long as they are a version supported by OCI.

Use the following procedures to pre-configure your system to use Helm and other OCI media types.

The most recent version of Helm can be downloaded from the Helm releases page. After you have
downloaded Helm, you must enable your system to trust SSL/TLS certificates used by Red Hat Quay.

18.1.1. Enabling your system to trust SSL/TLS certificates used by Red Hat Quay

Communication between the Helm client and Red Hat Quay is facilitated over HTTPS. As of Helm 3.5,
support is only available for registries communicating over HTTPS with trusted certificates. In addition,
the operating system must trust the certificates exposed by the registry. You must ensure that your
operating system has been configured to trust the certificates used by Red Hat Quay. Use the following
procedure to enable your system to trust the custom certificates.

Procedure

1. Enter the following command to copy the rootCA.pem file to the /etc/pki/ca-
trust/source/anchors/ folder:

CHAPTER 18. OPEN CONTAINER INITIATIVE SUPPORT

123

https://docs.docker.com/registry/spec/manifest-v2-2/
https://opencontainers.org/posts/blog/2024-03-13-image-and-distribution-1-1/
https://github.com/helm/helm/releases

2. Enter the following command to update the CA trust store:

18.2. USING HELM CHARTS

Use the following example to download and push an etherpad chart from the Red Hat Community of
Practice (CoP) repository.

Prerequisites

You have logged into Red Hat Quay.

Procedure

1. Add a chart repository by entering the following command:

2. Enter the following command to update the information of available charts locally from the chart
repository:

3. Enter the following command to pull a chart from a repository:

4. Enter the following command to package the chart into a chart archive:

Example output

5. Log in to Red Hat Quay using helm registry login:

6. Push the chart to your repository using the helm push command:

Example output:

$ sudo cp rootCA.pem /etc/pki/ca-trust/source/anchors/

$ sudo update-ca-trust extract

$ helm repo add redhat-cop https://redhat-cop.github.io/helm-charts

$ helm repo update

$ helm pull redhat-cop/etherpad --version=0.0.4 --untar

$ helm package ./etherpad

Successfully packaged chart and saved it to: /home/user/linux-amd64/etherpad-0.0.4.tgz

$ helm registry login quay370.apps.quayperf370.perfscale.devcluster.openshift.com

$ helm push etherpad-0.0.4.tgz
oci://quay370.apps.quayperf370.perfscale.devcluster.openshift.com

Pushed: quay370.apps.quayperf370.perfscale.devcluster.openshift.com/etherpad:0.0.4
Digest: sha256:a6667ff2a0e2bd7aa4813db9ac854b5124ff1c458d170b70c2d2375325f2451b

Red Hat Quay 3 Use Red Hat Quay

124

1

2

7. Ensure that the push worked by deleting the local copy, and then pulling the chart from the
repository:

Example output:

18.3. ANNOTATION PARSING

Some OCI media types do not utilize labels and, as such, critical information such as expiration
timestamps are not included. Red Hat Quay supports metadata passed through annotations to
accommodate OCI media types that do not include these labels for metadata transmission. Tools such
as ORAS (OCI Registry as Storage) can now be used to embed information with artifact types to help
ensure that images operate properly, for example, to expire.

The following procedure uses ORAS to add an expiration date to an OCI media artifact.

IMPORTANT

If you pushed an image with podman push, and then add an annotation with oras, the
MIME type is changed. Consequently, you will not be able to pull the same image with
podman pull because Podman does not recognize that MIME type.

Prerequisites

You have downloaded the oras CLI. For more information, see Installation.

You have pushed an OCI media artifact to your Red Hat Quay repository.

Procedure

By default, some OCI media types, like application/vnd.oci.image.manifest.v1+json, do not
use certain labels, like expiration timestamps. You can use a CLI tool like ORAS (oras) to add
annotations to OCI media types. For example:

Set the expiration time for 2 days, indicated by 2d.

Adds the expiration label.

Example output

$ rm -rf etherpad-0.0.4.tgz

$ helm pull oci://quay370.apps.quayperf370.perfscale.devcluster.openshift.com/etherpad --
version 0.0.4

Pulled: quay370.apps.quayperf370.perfscale.devcluster.openshift.com/etherpad:0.0.4
Digest: sha256:4f627399685880daf30cf77b6026dc129034d68c7676c7e07020b70cf7130902

$ oras push --annotation "quay.expires-after=2d" \ 1
--annotation "expiration = 2d" \ 2
quay.io/<organization_name>/<repository>/<image_name>:<tag>

✓ Exists application/vnd.oci.empty.v1+json

CHAPTER 18. OPEN CONTAINER INITIATIVE SUPPORT

125

https://oras.land/docs/installation

Verification

1. Pull the image with oras. For example:

2. Inspect the changes using oras. For example:

Example output

18.4. ATTACHING REFERRERS TO AN IMAGE TAG

The following procedure shows you how to attach referrers to an image tag using different schemas
supported by the OCI distribution spec 1.1 using the oras CLI. This is useful for attaching and managing
additional metadata like referrers to container images.

Prerequisites

You have downloaded the oras CLI. For more information, see Installation.

You have access to an OCI media artifact.

Procedure

1. Tag an OCI media artifact by entering the following command:

2. Push the artifact to your Red Hat Quay registry. For example:

2/2 B 100.00% 0s
 └─ sha256:44136fa355b3678a1146ad16f7e8649e94fb4fc21fe77e8310c060f61caaff8a
✓ Uploaded application/vnd.oci.image.manifest.v1+json
561/561 B 100.00% 511ms
 └─ sha256:9b4f2d43b62534423894d077f0ff0e9e496540ec8b52b568ea8b757fc9e7996b
Pushed [registry] quay.io/stevsmit/testorg3/oci-image:v1
ArtifactType: application/vnd.unknown.artifact.v1
Digest: sha256:9b4f2d43b62534423894d077f0ff0e9e496540ec8b52b568ea8b757fc9e7996b

$ oras pull quay.io/<organization_name>/<repository>/<image_name>:<tag>

$ oras manifest fetch quay.io/<organization_name>/<repository>/<image_name>:<tag>

{"schemaVersion":2,"mediaType":"application/vnd.oci.image.manifest.v1+json","artifactType":"a
pplication/vnd.unknown.artifact.v1","config":
{"mediaType":"application/vnd.oci.empty.v1+json","digest":"sha256:44136fa355b3678a1146ad1
6f7e8649e94fb4fc21fe77e8310c060f61caaff8a","size":2,"data":"e30="},"layers":
[{"mediaType":"application/vnd.oci.empty.v1+json","digest":"sha256:44136fa355b3678a1146ad
16f7e8649e94fb4fc21fe77e8310c060f61caaff8a","size":2,"data":"e30="}],"annotations":
{"org.opencontainers.image.created":"2024-07-11T15:22:42Z","version ":" 8.11"}}

$ podman tag <myartifact_image> <quay-
server.example.com>/<organization_name>/<repository>/<image_name>:<tag>

$ podman push <myartifact_image> <quay-
server.example.com>/<organization_name>/<repository>/<image_name>:<tag>

Red Hat Quay 3 Use Red Hat Quay

126

https://oras.land/docs/installation

3. Enter the following command to attach a manifest using the OCI 1.1 referrers API schema with
oras:

Example output

4. Enter the following command to attach a manifest using the OCI 1.1 referrers tag schema:

Example output

5. Enter the following command to discoverer referrers of the artifact using the tag schema:

Example output

$ oras attach --artifact-type <MIME_type> --distribution-spec v1.1-referrers-api
<myartifact_image> \
<quay-server.example.com>/<organization_name>/<repository>/<image_name>:<tag> \
<example_file>.txt

-spec v1.1-referrers-api quay.io/testorg3/myartifact-image:v1.0 hi.txt
✓ Exists hi.txt 3/3 B 100.00% 0s
 └─ sha256:98ea6e4f216f2fb4b69fff9b3a44842c38686ca685f3f55dc48c5d3fb1107be4
✓ Exists application/vnd.oci.empty.v1+json 2/2 B 100.00% 0s
 └─ sha256:44136fa355b3678a1146ad16f7e8649e94fb4fc21fe77e8310c060f61caaff8a
✓ Uploaded application/vnd.oci.image.manifest.v1+json 723/723 B 100.00%
677ms
 └─ sha256:31c38e6adcc59a3cfbd2ef971792aaf124cbde8118e25133e9f9c9c4cd1d00c6
Attached to [registry] quay.io/testorg3/myartifact-
image@sha256:db440c57edfad40c682f9186ab1c1075707ce7a6fdda24a89cb8c10eaad424da

Digest: sha256:31c38e6adcc59a3cfbd2ef971792aaf124cbde8118e25133e9f9c9c4cd1d00c6

$ oras attach --artifact-type <MIME_type> --distribution-spec v1.1-referrers-tag \
<myartifact_image> <quay-
server.example.com>/<organization_name>/<repository>/<image_name>:<tag> \
<example_file>.txt

✓ Exists hi.txt 3/3 B 100.00% 0s
 └─ sha256:98ea6e4f216f2fb4b69fff9b3a44842c38686ca685f3f55dc48c5d3fb1107be4
✓ Exists application/vnd.oci.empty.v1+json 2/2 B 100.00% 0s
 └─ sha256:44136fa355b3678a1146ad16f7e8649e94fb4fc21fe77e8310c060f61caaff8a
✓ Uploaded application/vnd.oci.image.manifest.v1+json 723/723 B 100.00%
465ms
 └─ sha256:2d4b54201c8b134711ab051389f5ba24c75c2e6b0f0ff157fce8ffdfe104f383
Attached to [registry] quay.io/testorg3/myartifact-
image@sha256:db440c57edfad40c682f9186ab1c1075707ce7a6fdda24a89cb8c10eaad424da

Digest: sha256:2d4b54201c8b134711ab051389f5ba24c75c2e6b0f0ff157fce8ffdfe104f383

$ oras discover --insecure --distribution-spec v1.1-referrers-tag \
<quay-server.example.com>/<organization_name>/<repository>/<image_name>:<tag>

quay.io/testorg3/myartifact-
image@sha256:db440c57edfad40c682f9186ab1c1075707ce7a6fdda24a89cb8c10eaad424da

CHAPTER 18. OPEN CONTAINER INITIATIVE SUPPORT

127

6. Enter the following command to discoverer referrers of the artifact using the API schema:

Example output

7. Optional. You can also discover referrers by using the
/v2/<organization_name>/<repository_name>/referrers/<sha256_digest> endpoint. For this
to work, you must generate a v2 API token and set FEATURE_REFERRERS_API: true in your
config.yaml file.

a. Update your config.yaml file to include the FEATURE_REFERRERS_API field. For
example:

b. Enter the following command to Base64 encode your credentials:

Example output

c. Enter the following command to use the base64 encoded token and modify the URL
endpoint to your Red Hat Quay server:

Example output

└── doc/example
 └── sha256:2d4b54201c8b134711ab051389f5ba24c75c2e6b0f0ff157fce8ffdfe104f383

$ oras discover --distribution-spec v1.1-referrers-api \
<quay-server.example.com>/<organization_name>/<repository>/<image_name>:<tag>

Discovered 3 artifacts referencing v1.0
Digest:
sha256:db440c57edfad40c682f9186ab1c1075707ce7a6fdda24a89cb8c10eaad424da

Artifact Type Digest
 sha256:2d4b54201c8b134711ab051389f5ba24c75c2e6b0f0ff157fce8ffdfe104f383

sha256:22b7e167793808f83db66f7d35fbe0088b34560f34f8ead36019a4cc48fd346b

sha256:bb2b7e7c3a58fd9ba60349473b3a746f9fe78995a88cb329fc2fd1fd892ea4e4

...
FEATURE_REFERRERS_API: true
...

$ echo -n '<username>:<password>' | base64

abcdeWFkbWluOjE5ODlraWROZXQxIQ==

$ curl --location '<quay-server.example.com>/v2/auth?service=<quay-
server.example.com>&scope=repository:quay/listocireferrs:pull,push' --header
'Authorization: Basic <base64_username:password_encode_token>' -k | jq

{
 "token":

Red Hat Quay 3 Use Red Hat Quay

128

8. Enter the following command, using the v2 API token, to list OCI referrers of a manifest under a
repository:

Example output

"eyJhbGciOiJSUzI1NiIsImtpZCI6Ijl5RWNtWmdiZ0l6czBBZW16emhTMHM1R0g2RDJnV2J
GUTdUNGZYand4MlUiLCJ0eXAiOiJKV1QifQ.eyJpc3MiOiJxdWF5IiwiYXVkIjoicXVheS1zZ
XJ2ZXIuZXhhbXBsZS5jb20iLCJuYmYiOjE3MjEzMzAzNDYsImlhdCI6MTcyMTMzMDM0Ni
wiZXhwIjoxNzIxMzMzOTQ2LCJzdWIiOiJxdWF5YWRtaW4iLCJhY2Nlc3MiOlt7InR5cGUiOi
JyZXBvc2l0b3J5IiwibmFtZSI6InF1YXkvbGlzdG9jaXJlZmVycnMiLCJhY3Rpb25zIjpbXX1dL
CJjb250ZXh0Ijp7InZlcnNpb24iOjIsImVudGl0eV9raW5kIjoidXNlciIsImVudGl0eV9yZWZlcmV
uY2UiOiJkZjI1M2QyNC0zZWUwLTRkODItOTcxYi1hZGYxMWYyNzBlM2IiLCJraW5kIjoidX
NlciIsInVzZXIiOiJxdWF5YWRtaW4iLCJjb20uYXBvc3RpbGxlLnJvb3RzIjp7InF1YXkvbGlzdG
9jaXJlZmVycnMiOiIkZGlzYWJsZWQifSwiY29tLmFwb3N0aWxsZS5yb290IjoiJGRpc2FibGV
kIn19.sBR765ea-
E41b2SfiIS36qoOmIZ6DEn9hvsCq3cszn6umlnKiBkc1jq6O1KlxtIhPdf8m8-
xtLMJakxkKST4mJg5CHR5WG2AVExuT6nCHg9KuzOZTkafMJeUzC4lxRsrdgKXyGUaYO
NOALf6bW_IebSIOOVt55m83-KVz5NMHSov9VmQlPCfGnWS3pq3bG-
nUaLhGRuSKc1EoGgnKlULNr9gAgzwBmB7-
MGioP7NL5_IQtrbjFyBdckQuJcpcwNK78gb8MQIwI-
e6WMvBT94pQkdD6bibo6zpFayFKSc6PsoO4Z4PjiON6vnD4kqEpX6rw5Yj7unv4RKjA_iH
G-BoQ"
}

$ GET https://<quay-
server.example.com>/v2/<organization_name>/<repository_name>/referrers/sha256:0de63ba2
d98ab328218a1b6373def69ec0d0e7535866f50589111285f2bf3fb8
--header 'Authorization: Bearer <v2_bearer_token> -k | jq

{
 "schemaVersion": 2,
 "mediaType": "application/vnd.oci.image.index.v1+json",
 "manifests": [
 {
 "mediaType": "application/vnd.oci.image.manifest.v1+json",
 "digest":
"sha256:2d4b54201c8b134711ab051389f5ba24c75c2e6b0f0ff157fce8ffdfe104f383",
 "size": 793
 },
]
}

CHAPTER 18. OPEN CONTAINER INITIATIVE SUPPORT

129

	Table of Contents
	PREFACE
	CHAPTER 1. RED HAT QUAY TENANCY MODEL
	1.1. TENANCY MODEL

	CHAPTER 2. RED HAT QUAY USER ACCOUNTS OVERVIEW
	2.1. CREATING A USER ACCOUNT BY USING THE UI
	2.2. CREATING A USER ACCOUNT BY USING THE RED HAT QUAY API
	2.3. DELETING A USER BY USING THE UI
	2.4. DELETING A USER BY USING THE RED HAT QUAY API

	CHAPTER 3. RED HAT QUAY ORGANIZATIONS OVERVIEW
	3.1. CREATING AN ORGANIZATION BY USING THE UI
	3.2. CREATING AN ORGANIZATION BY USING THE RED HAT QUAY API
	3.3. ORGANIZATION SETTINGS
	3.4. DELETING AN ORGANIZATION BY USING THE UI
	3.5. DELETING AN ORGANIZATION BY USING THE RED HAT QUAY API

	CHAPTER 4. RED HAT QUAY REPOSITORY OVERVIEW
	4.1. CREATING A REPOSITORY BY USING THE UI
	4.2. CREATING A REPOSITORY BY USING PODMAN
	4.3. CREATING A REPOSITORY BY USING THE API
	4.4. DELETING A REPOSITORY BY USING THE UI
	4.5. DELETING A REPOSITORY BY USING THE RED HAT QUAY API

	CHAPTER 5. RED HAT QUAY ROBOT ACCOUNT OVERVIEW
	5.1. CREATING A ROBOT ACCOUNT BY USING THE UI
	5.2. CREATING A ROBOT ACCOUNT BY USING THE RED HAT QUAY API
	5.3. BULK MANAGING ROBOT ACCOUNT REPOSITORY ACCESS
	5.4. DISABLING ROBOT ACCOUNTS BY USING THE UI
	5.5. REGENERATING A ROBOT ACCOUNT TOKEN BY USING THE RED HAT QUAY API
	5.6. DELETING A ROBOT ACCOUNT BY USING THE UI
	5.7. DELETING A ROBOT ACCOUNT BY USING THE RED HAT QUAY API

	CHAPTER 6. ACCESS MANAGEMENT FOR RED HAT QUAY
	6.1. RED HAT QUAY TEAMS OVERVIEW
	6.1.1. Creating a team by using the UI
	6.1.2. Creating a team by using the API
	6.1.3. Managing a team by using the UI
	6.1.3.1. Adding users to a team by using the UI
	6.1.3.2. Setting a team role by using the UI

	6.1.4. Managing a team by using the Red Hat Quay API
	6.1.4.1. Managing team members and repository permissions by using the API
	6.1.4.2. Setting the role of a team within an organization by using the API
	6.1.4.3. Deleting a team within an organization by using the API

	6.2. CREATING AND MANAGING DEFAULT PERMISSIONS BY USING THE UI
	6.3. CREATING AND MANAGING DEFAULT PERMISSIONS BY USING THE API
	6.4. ADJUSTING ACCESS SETTINGS FOR A REPOSITORY BY USING THE UI
	6.5. ADJUSTING ACCESS SETTINGS FOR A REPOSITORY BY USING THE API

	CHAPTER 7. IMAGE TAGS OVERVIEW
	7.1. VIEWING IMAGE TAG INFORMATION BY USING THE UI
	7.2. VIEWING IMAGE TAG INFORMATION BY USING THE API
	7.3. ADDING A NEW IMAGE TAG TO AN IMAGE BY USING THE UI
	7.4. ADDING A NEW TAG TO AN IMAGE TAG TO AN IMAGE BY USING THE API
	7.5. ADDING AND MANAGING LABELS BY USING THE UI
	7.6. ADDING AND MANAGING LABELS BY USING THE API
	7.7. SETTING TAG EXPIRATIONS
	7.7.1. Setting tag expiration from a repository
	7.7.2. Setting tag expiration from a Dockerfile
	7.7.3. Setting tag expirations by using the API

	7.8. FETCHING AN IMAGE BY TAG OR DIGEST
	7.9. VIEWING RED HAT QUAY TAG HISTORY BY USING THE UI
	7.10. VIEWING RED HAT QUAY TAG HISTORY BY USING THE API
	7.11. DELETING AN IMAGE TAG
	7.12. DELETING AN IMAGE BY USING THE API
	7.13. REVERTING TAG CHANGES BY USING THE UI
	7.14. REVERTING TAG CHANGES BY USING THE API

	CHAPTER 8. VIEWING AND EXPORTING LOGS
	8.1. VIEWING USAGE LOGS
	8.2. VIEWING USAGE LOGS BY USING THE API
	8.2.1. Viewing aggregated logs
	8.2.2. Viewing detailed logs

	8.3. EXPORTING REPOSITORY LOGS BY USING THE UI
	8.4. EXPORTING LOGS BY USING THE API

	CHAPTER 9. CLAIR SECURITY SCANS
	9.1. VIEWING CLAIR SECURITY SCANS BY USING THE UI
	9.2. VIEW CLAIR SECURITY SCANS BY USING THE UI

	CHAPTER 10. NOTIFICATIONS OVERVIEW
	10.1. NOTIFICATION ACTIONS
	E-mail notifications
	Webhook POST notifications
	Flowdock notifications
	Hipchat notifications
	Slack notifications

	10.2. CREATING NOTIFICATIONS BY USING THE UI
	10.2.1. Creating an image expiration notification

	10.3. CREATING NOTIFICATIONS BY USING THE API
	10.4. REPOSITORY EVENTS DESCRIPTION
	Repository Push
	Dockerfile Build Queued
	Dockerfile Build started
	Dockerfile Build successfully completed
	Dockerfile Build failed
	Dockerfile Build cancelled
	Vulnerability detected

	CHAPTER 11. AUTOMATICALLY BUILDING DOCKERFILES WITH BUILD WORKERS
	11.1. SETTING UP RED HAT QUAY BUILDERS WITH OPENSHIFT CONTAINER PLATFORM
	11.1.1. Configuring the OpenShift Container Platform TLS component
	11.1.2. Preparing OpenShift Container Platform for Red Hat Quay Builders
	11.1.3. Configuring Red Hat Quay Builders

	11.2. OPENSHIFT CONTAINER PLATFORM ROUTES LIMITATIONS
	11.3. TROUBLESHOOTING BUILDS
	11.3.1. DEBUG config flag
	11.3.2. Troubleshooting OpenShift Container Platform and Kubernetes Builds

	11.4. SETTING UP GITHUB BUILDS

	CHAPTER 12. BUILDING CONTAINER IMAGES
	12.1. BUILD CONTEXTS
	12.2. TAG NAMING FOR BUILD TRIGGERS
	12.3. SKIPPING A SOURCE CONTROL-TRIGGERED BUILD
	12.4. VIEWING AND MANAGING BUILDS
	12.5. CREATING A NEW BUILD
	12.6. BUILD TRIGGERS
	12.6.1. Creating a Build trigger
	12.6.2. Manually triggering a Build

	12.7. SETTING UP A CUSTOM GIT TRIGGER
	12.7.1. Creating a trigger
	12.7.2. Custom trigger creation setup
	12.7.2.1. SSH public key access
	12.7.2.2. Webhook

	CHAPTER 13. CREATING AN OAUTH APPLICATION IN GITHUB
	13.1. CREATE NEW GITHUB APPLICATION

	CHAPTER 14. RED HAT QUAY QUOTA MANAGEMENT AND ENFORCEMENT OVERVIEW
	14.1. QUOTA MANAGEMENT ARCHITECTURE
	14.2. QUOTA MANAGEMENT LIMITATIONS
	14.3. QUOTA MANAGEMENT CONFIGURATION FIELDS
	14.3.1. Example quota management configuration

	14.4. ESTABLISHING QUOTA WITH THE RED HAT QUAY API
	14.4.1. Setting the quota
	14.4.2. Viewing the quota
	14.4.3. Modifying the quota
	14.4.4. Pushing images
	14.4.4.1. Pushing ubuntu:18.04
	14.4.4.2. Using the API to view quota usage
	14.4.4.3. Pushing another image

	14.4.5. Rejecting pushes using quota limits
	14.4.5.1. Setting reject and warning limits
	14.4.5.2. Viewing reject and warning limits
	14.4.5.3. Pushing an image when the reject limit is exceeded
	14.4.5.4. Notifications for limits exceeded

	CHAPTER 15. RED HAT QUAY AS A PROXY CACHE FOR UPSTREAM REGISTRIES
	15.1. PROXY CACHE ARCHITECTURE
	15.2. PROXY CACHE LIMITATIONS
	15.3. USING RED HAT QUAY TO PROXY A REMOTE REGISTRY
	15.3.1. Leveraging storage quota limits in proxy organizations
	15.3.1.1. Testing the storage quota limits feature in proxy organizations

	CHAPTER 16. RED HAT QUAY BUILD ENHANCEMENTS
	16.1. RED HAT QUAY ENHANCED BUILD ARCHITECTURE
	16.2. RED HAT QUAY BUILD LIMITATIONS
	16.3. CREATING A RED HAT QUAY BUILDERS ENVIRONMENT WITH OPENSHIFT CONTAINER PLATFORM
	16.3.1. OpenShift Container Platform TLS component
	16.3.2. Using OpenShift Container Platform for Red Hat Quay builders
	16.3.2.1. Preparing OpenShift Container Platform for virtual builders
	16.3.2.2. Manually adding SSL/TLS certificates
	16.3.2.3. Using the UI to create a build trigger
	16.3.2.4. Modifying your AWS S3 storage bucket
	16.3.2.5. Modifying your Google Cloud Platform object bucket

	CHAPTER 17. USING THE RED HAT QUAY API
	17.1. ACCESSING THE QUAY API FROM QUAY.IO
	17.2. CREATING A V1 OAUTH ACCESS TOKEN
	17.3. CREATING AN OCI REFERRERS OAUTH ACCESS TOKEN
	17.4. REASSIGNING AN OAUTH ACCESS TOKEN
	17.5. ACCESSING YOUR QUAY API FROM A WEB BROWSER
	17.6. ACCESSING THE RED HAT QUAY API FROM THE COMMAND LINE

	CHAPTER 18. OPEN CONTAINER INITIATIVE SUPPORT
	18.1. HELM AND OCI PREREQUISITES
	18.1.1. Enabling your system to trust SSL/TLS certificates used by Red Hat Quay

	18.2. USING HELM CHARTS
	18.3. ANNOTATION PARSING
	18.4. ATTACHING REFERRERS TO AN IMAGE TAG

