
Red Hat Service Interconnect 1.5

Using Service Interconnect

Creating a service network with the CLI and YAML

Last Updated: 2024-06-24

Red Hat Service Interconnect 1.5 Using Service Interconnect

Creating a service network with the CLI and YAML

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Red Hat Service Interconnect is a Red Hat build of the open source Skupper project. This Skupper
documentation is reproduced for reference.

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. USING THE SKUPPER CLI
1.1. CHECKING THE SKUPPER CLI
1.2. CREATING A SITE USING THE CLI
1.3. CUSTOM SITES
1.4. LINKING SITES

CHAPTER 2. SPECIFYING LINK COST
2.1. EXPOSING SERVICES ON THE SERVICE NETWORK FROM A NAMESPACE

2.1.1. Exposing simple services on the service network
2.1.2. Exposing complex services on the service network
2.1.3. Exposing services from a different namespace to the service network

CHAPTER 3. EXPOSING SERVICES ON THE SERVICE NETWORK FROM A LOCAL MACHINE
3.1. EXPOSING SIMPLE LOCAL SERVICES TO THE SERVICE NETWORK
3.2. WORKING WITH COMPLEX LOCAL SERVICES ON THE SERVICE NETWORK
3.3. CREATING A GATEWAY AND APPLYING IT ON A DIFFERENT MACHINE
3.4. GATEWAY YAML REFERENCE

CHAPTER 4. EXPLORING A SERVICE NETWORK

CHAPTER 5. SECURING A SERVICE NETWORK
5.1. RESTRICTING ACCESS TO SERVICES USING A KUBERNETES NETWORK POLICY
5.2. APPLYING TLS TO TCP OR HTTP2 TRAFFIC ON THE SERVICE NETWORK

CHAPTER 6. SUPPORTED STANDARDS AND PROTOCOLS
6.1. CLI OPTIONS

CHAPTER 7. USING SKUPPER PODMAN
7.1. ABOUT SKUPPER PODMAN
7.2. CREATING A SITE USING SKUPPER PODMAN
7.3. LINKING SITES USING SKUPPER PODMAN

CHAPTER 8. SPECIFYING LINK COST
8.1. EXPOSING SERVICES ON THE SERVICE NETWORK FROM A LINUX HOST

8.1.1. Exposing simple services on the service network
8.1.2. Exposing complex services on the service network
8.1.3. Consuming simple services from the service network

8.2. DELETING A PODMAN SITE

CHAPTER 9. USING THE SERVICE INTERCONNECT CONSOLE
9.1. ENABLING THE SERVICE INTERCONNECT CONSOLE
9.2. ACCESSING THE SERVICE INTERCONNECT CONSOLE
9.3. EXPLORING THE SERVICE INTERCONNECT CONSOLE

CHAPTER 10. CONFIGURING SKUPPER SITES USING YAML
10.1. CREATING A SKUPPER SITE USING YAML
10.2. CONFIGURING SERVICES USING ANNOTATIONS

10.2.1. Exposing simple services on a service network using annotations
10.2.2. Understanding Skupper annotations

10.3. SITE CONFIGMAP YAML REFERENCE

CHAPTER 11. USING THE SKUPPER OPERATOR ON KUBERNETES
11.1. CREATING A SITE USING THE SKUPPER OPERATOR

4
4
4
5
6

8
9
9
11

12

14
14
15
16
19

21

23
23
23

25
25

27
27
27
29

31
32
32
33
34
34

36
36
36
37

39
39
39
40
41

42

44
44

Table of Contents

1

. .

. .

CHAPTER 12. SECURING A SERVICE NETWORK USING SKUPPER POLICIES
12.1. ABOUT SKUPPER POLICIES
12.2. INSTALLING THE SKUPPER POLICY CRD
12.3. INSTALLING A SKUPPER POLICY CRD ON A CLUSTER WITH EXISTING SITES
12.4. CREATING SKUPPER POLICY CRS

12.4.1. Implement a policy to allow incoming links
12.4.2. Implement a policy to allow outgoing links to specific hosts
12.4.3. Implement a policy to allow specific services
12.4.4. Implement a policy to allow specific resources

CHAPTER 13. TROUBLESHOOTING A SERVICE NETWORK
13.1. CHECKING SITES
13.2. CHECKING LINKS
13.3. CHECKING GATEWAYS
13.4. CHECKING POLICIES
13.5. CREATING A SKUPPER DEBUG TAR FILE
13.6. UNDERSTANDING SKUPPER SIZING
13.7. IMPROVING SKUPPER ROUTER PERFORMANCE
13.8. RESOLVING COMMON PROBLEMS

45
45
47
48
48
49
49
50
50

52
52
54
55
56
57
58
59
59

Red Hat Service Interconnect 1.5 Using Service Interconnect

2

Table of Contents

3

CHAPTER 1. USING THE SKUPPER CLI
Using the skupper command-line interface (CLI) allows you to create and manage Skupper sites from
the context of the current namespace.

A typical workflow is to create a site, link sites together, and expose services to the service network.

1.1. CHECKING THE SKUPPER CLI

Installing the skupper command-line interface (CLI) provides a simple method to get started with
Skupper.

Procedure

1. Verify the installation.

1.2. CREATING A SITE USING THE CLI

A service network consists of Skupper sites. This section describes how to create a site in a Kubernetes
cluster using the default settings. See Using Skupper Podman for information about using the Skupper
CLI to create Podman sites.

Prerequisites

The skupper CLI is installed.

You are logged into the cluster.

The services you want to expose on the service network are in the active namespace.

Procedure

1. Create a default site:

Starting with Skupper release 1.3, the console is not enabled by default. To use the new console,
see Using the console.

2. Check the site:

The output should look similar to the following:

NOTE

$ skupper version
client version 1.5.3-rh-5

$ skupper init

$ skupper status

Skupper is enabled for namespace "west" in interior mode. It is not connected to any other
sites.

Red Hat Service Interconnect 1.5 Using Service Interconnect

4

link:{SkupperCliBookUrl}#using-skupper-podman

NOTE

The default message above is displayed when you initialize a site on a cluster that
does not have a Skupper policy installed. If you install a Skupper policy as
described in Securing a service network using policies, the message becomes
Skupper is enabled for namespace "west" in interior mode (with policies).

By default, the site name defaults to the namespace name, for example, west.

1.3. CUSTOM SITES

The default skupper init creates sites that satisfy typical requirements.

Starting with Skupper release 1.3, the console is not enabled by default. To use the new console, see
Using the console.

If you require a custom configuration, note the following options:

Configuring console authentication. There are several skupper options regarding
authentication for the console:

--console-auth <authentication-mode>

Set the authentication mode for the console:

openshift - Use OpenShift authentication, so that users who have permission to log into
OpenShift and view the Project (namespace) can view the console.

internal - Use Skupper authentication, see the console-user and console-password
options.

unsecured - No authentication, anyone with the URL can view the console.

--console-user <username>

Username for the console user when authentication mode is set to internal. Defaults to
admin.

--console-password <password>

Password for the console user when authentication mode is set to internal. If not specified, a
random passwords is generated.

Configuring service access

NOTE

All sites are associated with a namespace, called the active namespace in this
procedure.

Services in the active namespace may be accessible to pods in other namespaces on that
cluster by default, depending on your cluster network policies. As a result, you can expose
services to pods in namespaces not directly connected to the service network. This setting
applies a Kubernetes network policy to restrict access to services to those pods in the active
namespace.

$ skupper init --create-network-policy

CHAPTER 1. USING THE SKUPPER CLI

5

For example, if you create a site in the namespace projectA of clusterA and link that site to a
service network where the database service is exposed, the database service is available to
pods in projectB of clusterA.

You can use the --create-network-policy option to restrict the database service access to
projectA of clusterA.

1.4. LINKING SITES

A service network consists of Skupper sites. This section describes how to link sites to form a service
network.

Linking two sites requires a single initial directional connection. However:

Communication between the two sites is bidirectional, only the initial linking is directional.

The choice of direction for linking is typically determined by accessibility. For example, if you are
linking an OpenShift Dedicated cluster with a CodeReady Containers cluster, you must link from
the CodeReady Containers cluster to the OpenShift Dedicated cluster because that route is
accessible.

Procedure

1. Determine the direction of the link. If both clusters are publicly addressable, then the direction is
not significant. If one of the clusters is addressable from the other cluster, perform step 2 below
on the addressable cluster.

2. Generate a token on the cluster that you want to link to:

where <filename> is the name of a YAML file that is saved on your local filesystem.

This file contains a key and the location of the site that created it.

NOTE

Access to this file provides access to the service network. Protect it
appropriately.

For more information about protecting access to the service network, see Using
Skupper tokens.

3. Use a token on the cluster that you want to connect from:
To create a link to the service network:

where <filename> is the name of a YAML file generated from the skupper token create
command and <link-name> is the name of the link.

To check the link:

$ skupper token create <filename>

$ skupper link create <filename> [-name <link-name>]

Red Hat Service Interconnect 1.5 Using Service Interconnect

6

In this example no <link-name> was specified, the name defaulted to link1.

To delete a link:

where <link-name> is the name of the link specified during creation.

$ skupper link status
Link link1 not connected

$ skupper link delete <link-name>

CHAPTER 1. USING THE SKUPPER CLI

7

CHAPTER 2. SPECIFYING LINK COST
When linking sites, you can assign a cost to each link to influence the traffic flow. By default, link cost is
set to 1 for a new link. In a service network, the routing algorithm attempts to use the path with the
lowest total cost from client to target server.

If you have services distributed across different sites, you might want a client to favor a
particular target or link. In this case, you can specify a cost of greater than 1 on the alternative
links to reduce the usage of those links.

NOTE

The distribution of open connections is statistical, that is, not a round robin
system.

If a connection only traverses one link, then the path cost is equal to the link cost. If the
connection traverses more than one link, the path cost is the sum of all the links involved in the
path.

Cost acts as a threshold for using a path from client to server in the network. When there is only
one path, traffic flows on that path regardless of cost.

NOTE

If you start with two targets for a service, and one of the targets is no longer
available, traffic flows on the remaining path regardless of cost.

When there are a number of paths from a client to server instances or a service, traffic flows on
the lowest cost path until the number of connections exceeds the cost of an alternative path.
After this threshold of open connections is reached, new connections are spread across the
alternative path and the lowest cost path.

Prerequisite

You have set your Kubernetes context to a site that you want to link from.

A token for the site that you want to link to.

Procedure

1. Create a link to the service network:

where <integer-cost> is an integer greater than 1 and traffic favors lower cost links.

NOTE

If a service can be called without traversing a link, that service is considered local,
with an implicit cost of 0.

For example, create a link with cost set to 2 using a token file named token.yaml:

$ skupper link create <filename> --cost <integer-cost>

Red Hat Service Interconnect 1.5 Using Service Interconnect

8

2. Check the link cost:

The output is similar to the following:

3. Observe traffic using the console.
If you have a console on a site, log in and navigate to the processes for each server. You can
view the traffic levels corresponding to each client.

NOTE

If there are multiple clients on different sites, filter the view to each client to
determine the effect of cost on traffic. For example, in a two site network linked
with a high cost with servers and clients on both sites, you can see that a client is
served by the local servers while a local server is available.

2.1. EXPOSING SERVICES ON THE SERVICE NETWORK FROM A
NAMESPACE

After creating a service network, exposed services can communicate across that network.

The skupper CLI has two options for exposing services that already exist in a namespace:

expose supports simple use cases, for example, a deployment with a single service. See
Section 2.1.1, “Exposing simple services on the service network” for instructions.

service create and service bind is a more flexible method of exposing services, for example, if
you have multiple services for a deployment. See Section 2.1.2, “Exposing complex services on
the service network” for instructions.

2.1.1. Exposing simple services on the service network

This section describes how services can be enabled for a service network for simple use cases.

Procedure

1. Create a deployment, some pods, or a service in one of your sites, for example:

This step is not Skupper-specific, that is, this process is unchanged from standard processes for
your cluster.

$ skupper link create token.yaml --cost 2

$ skupper link status link1 --verbose

 Cost: 2
 Created: 2022-11-17 15:02:01 +0000 GMT
 Name: link1
 Namespace: default
 Site: default-0d99d031-cee2-4cc6-a761-697fe0f76275
 Status: Connected

$ kubectl create deployment hello-world-backend --image quay.io/skupper/hello-world-
backend

CHAPTER 2. SPECIFYING LINK COST

9

2. Create a service that can communicate on the service network:

Deployments and pods

where

<name> is the name of a deployment

<selector> is a pod selector

Kubernetes services

Specify a resulting service name using the --address option.

where

<name> is the name of a service

<skupper-service-name> is the name of the resulting service shared on the service
network.

StatefulSets

You can expose a statefulset using:

A StatefulSet in Kubernetes is often associated with a headless service to provide stable, unique
network identifiers for each pod. If you require stable network identifiers for each pod on the
service network, use the --headless option.

NOTE

When you use the '--headless" option, only one statefulset in the service network
can be exposed through the address (routing key).

For the example deployment in step 1, you can create a service using the following command:

$ skupper expose deployment/hello-world-backend --port 8080

Options for the expose command include:

--port <port-number>:: Specify the port number that this service is available on the service
network. NOTE: You can specify more than one port by repeating this option.

--target-port <port-number>:: Specify the port number of pods that you want to expose.

--protocol <protocol> allows you specify the protocol you want to use, tcp, http or http2

$ skupper expose [deployment <name>|pods <selector>]

$ skupper expose service <name> --address <skupper-service-name>

$ skupper expose statefulset <statefulsetname>

$ skupper expose statefulset --headless

Red Hat Service Interconnect 1.5 Using Service Interconnect

10

NOTE

If you do not specify ports, skupper uses the containerPort value of the
deployment.

3. Check the status of services exposed on the service network (-v is only available on
Kubernetes):

2.1.2. Exposing complex services on the service network

This section describes how services can be enabled for a service network for more complex use cases.

Procedure

1. Create a deployment, some pods, or a service in one of your sites, for example:

This step is not Skupper-specific, that is, this process is unchanged from standard processes for
your cluster.

2. Create a service that can communicate on the service network:

where

<name> is the name of the service you want to create

<port> is the port the service uses

For the example deployment in step 1, you create a service using the following command:

3. Bind the service to a cluster service:

where

<service-name> is the name of the service on the service network

$ skupper service status -v
Services exposed through Skupper:
╰─ backend:8080 (tcp)
 ╰─ Sites:
 ├─ 4d80f485-52fb-4d84-b10b-326b96e723b2(west)
 │ policy: disabled
 ╰─ 316fbe31-299b-490b-9391-7b46507d76f1(east)
 │ policy: disabled
 ╰─ Targets:
 ╰─ backend:8080 name=backend-9d84544df-rbzjx

$ kubectl create deployment hello-world-backend --image quay.io/skupper/hello-world-
backend

$ skupper service create <name> <port>

$ skupper service create hello-world-backend 8080

$ skupper service bind <service-name> <target-type> <target-name>

CHAPTER 2. SPECIFYING LINK COST

11

<target-type> is the object you want to expose, deployment, statefulset, pods, or service.

<target-name> is the name of the cluster service

For the example deployment in step 1, you bind the service using the following command:

2.1.3. Exposing services from a different namespace to the service network

This section shows how to expose a service from a namespace where Skupper is not deployed.

Skupper allows you expose Kubernetes services from other namespaces for any site. However, if you
want to expose workloads, for example deployments, you must create a site as described in this section.

Prerequisites

A namespace where Skupper is deployed.

A network policy that allows communication between the namespaces

cluster-admin permissions if you want to expose resources other than services

Procedure

1. Create a site with cluster permissions if you want to expose a workload from a namespace other
than the site namespace:

NOTE

The site does not require the extra permissions granted with the --enable-
cluster-permissions to expose a Kubernetes service resource.

2. To expose a Kubernetes service from a namespace other than the site namespace:

<service> - the name of the service on the service network.

<namespace> - the name of the namespace where the service you want to expose runs.

For example, if you deployed Skupper in the east namespace and you created a backend
Kubernetes service in the east-backend namespace, you set the context to the east
namespace and expose the service as backend on the service network using:

3. To expose a workload from a site created with --enable-cluster-permissions:

$ skupper service bind hello-world-backend deployment hello-world-backend

$ skupper init --enable-cluster-permissions

$ skupper expose service <service>.<namespace> --address <service>

$ skupper expose service backend.east-backend --port 8080 --address backend

$ skupper expose <resource> --port <port-number> --target-namespace <namespace>

Red Hat Service Interconnect 1.5 Using Service Interconnect

12

<resource> - the name of the resource.

<namespace> - the name of the namespace where the resource you want to expose runs.

For example, if you deployed Skupper in the east namespace and you created a backend
deployment in the east-backend namespace, you set the context to the east namespace and
expose the service as backend on the service network using:

$ skupper expose deployment/backend --port 8080 --target-namespace east-backend

CHAPTER 2. SPECIFYING LINK COST

13

CHAPTER 3. EXPOSING SERVICES ON THE SERVICE
NETWORK FROM A LOCAL MACHINE

After creating a service network, you can expose services from a local machine on the service network.

For example, if you run a database on a server in your data center, you can deploy a front end in a cluster
that can access the data as if the database was running in the cluster.

NOTE

This documentation describes creating a gateway from a local host to a cluster site. An
alternative approach is to create a site on the local host and link to the cluster site. See
Using Skupper Podman for information about using the Skupper CLI to create Podman
sites.

3.1. EXPOSING SIMPLE LOCAL SERVICES TO THE SERVICE NETWORK

This section shows how to expose a single service running locally on a service network.

Prerequisites

A service network. Only one site is required.

Access to the service network.

Procedure

1. Run your service locally.

2. Log into your cluster and change to the namespace for your site.

3. Expose the service on the service network:

<service> - the name of the service on the service network.

<port> - the port that runs the service locally.

NOTE

You can also expose services from other machines on your local network, for
example if MySQL is running on a dedicated server (with an IP address of
192.168.1.200), but you are accessing the cluster from a machine in the same
network:

4. Check the status of Skupper gateways:

$ skupper gateway expose <service> localhost <port>

$ skupper gateway expose mysql 192.168.1.200 3306

$ skupper gateway status

Red Hat Service Interconnect 1.5 Using Service Interconnect

14

link:{SkupperCliBookUrl}#using-skupper-podman

This shows that there is only one exposed service and that service is only exposing a single port
(BIND). There are no ports forwarded to the local host.

The URL field shows the underlying communication and can be ignored.

3.2. WORKING WITH COMPLEX LOCAL SERVICES ON THE SERVICE
NETWORK

This section shows more advanced usage of skupper gateway.

1. If you want to create a service type gateway on Linux, you need the skrouterd binary in your
path.
Use the yum or dnf command to install the skupper-router package:

$ sudo dnf install skupper-router

For podman or docker type gateways, you can skip this step.

2. Create a Skupper gateway:

By default a service type gateway is created, however you can also specify:

podman

docker

3. Create a service that can communicate on the service network:

where

<name> is the name of the service you want to create

<port> is the port the service uses

For example:

4. Bind the service on the service network:

<service> - the name of the service on the service network, mydb in the example above.

<host> - the host that runs the service.

Gateway Definition:
╰─ machine-user type:service version:1.5
 ╰─ Bindings:
 ╰─ mydb:3306 tcp mydb:3306 localhost 3306

$ skupper gateway init --type <gateway-type>

$ skupper service create <name> <port>

$ skupper service create mydb 3306

$ skupper gateway bind <service> <host> <port>

CHAPTER 3. EXPOSING SERVICES ON THE SERVICE NETWORK FROM A LOCAL MACHINE

15

<port> - the port the service is running on, 3306 from the example above.

5. Check the status of Skupper gateways:

The output looks similar to the following:

This shows that there is only one exposed service and that service is only exposing a single port
(BIND). There are no ports forwarded to the local host.

The URL field shows the underlying communication and can be ignored.

You can create more services in the service network and bind more local services to expose
those services on the service network.

6. Forward a service from the service network to the local machine.

where

<service> is the name of an existing service on the service network.

<port> is the port on the local machine that you want to use.

3.3. CREATING A GATEWAY AND APPLYING IT ON A DIFFERENT
MACHINE

If you have access to a cluster from one machine but want to create a gateway to the service network
from a different machine, you can create the gateway definition bundle on the first machine and later
apply that definition bundle on a second machine as described in this procedure. For example, if you
want to expose a local database service to the service network, but you never want to access the cluster
from the database server, you can use this procedure to create the definition bundle and apply it on the
database server.

Procedure

1. Log into your cluster from the first machine and change to the namespace for your site.

2. Create a service that can communicate on the service network:

where

<name> is the name of the service you want to create

$ skupper gateway status

Gateway Definitions Summary

Gateway Definition:
╰─ machine-user type:service version:1.5
 ╰─ Bindings:
 ╰─ mydb:3306 tcp mydb:3306 localhost 3306

$ skupper gateway forward <service> <port>

$ skupper service create <name> <port>

Red Hat Service Interconnect 1.5 Using Service Interconnect

16

1

2

3

4

5

6

7

<port> is the port the service uses

For example:

3. Create a YAML file to represent the service you want to expose, for example:

Gateway name, useful for reference only.

Binding name, useful to track multiple bindings.

Name of host providing the service you want to expose.

Service name and port on service network. You created the service in a previous step.

The protocol you want to use to expose the service, tcp, http or http2.

The port on the service network that you want this service to be available on.

The port of the service running on the host specified in point 3.

4. Save the YAML file using the name of the gateway, for example, gateway.yaml.

5. Generate a bundle that can be applied to the machine that hosts the service you want to expose
on the service network:

where:

<config-filename> - the name of the YAML file, including suffix, that you generated in the
previous step.

<destination-directory> - the location where you want to save the resulting gateway bundle,
for example ~/gateways.

For example:

$ skupper service create database 5432

name: database 1
bindings:
 - name: database 2
 host: localhost 3
 service:
 address: database:5432 4
 protocol: tcp 5
 ports:
 - 5432 6
 target_ports:
 - 5432 7
qdr-listeners:
 - name: amqp
 host: localhost
 port: 5672

$ skupper gateway generate-bundle <config-filename> <destination-directory>

CHAPTER 3. EXPOSING SERVICES ON THE SERVICE NETWORK FROM A LOCAL MACHINE

17

This bundle contains the gateway definition YAML and a certificate that allow access to the
service network.

6. Copy the gateway definition file, for example, mylaptop-jdoe.tar.gz to the machine that hosts
the service you want to expose on the service network.

7. From the machine that hosts the service you want to expose:

NOTE

Use ./launch.py -t podman or ./launch.py -t docker to run the Skupper router
in a container.

Running the gateway bundle uses the gateway definition YAML and a certificate to access and
expose the service on the service network.

8. Check the status of the gateway service:
To check a service type gateway:

To check a podman type gateway:

To check a docker type gateway:

NOTE

You can later remove the gateway using ./remove.py.

9. From the machine with cluster access, check the status of Skupper gateways:

This shows that there is only one exposed service and that service is only exposing a single port
(BIND). There are no ports forwarded to the local host.

NOTE

$ skupper gateway generate-bundle database.yaml ./

$ mkdir gateway

$ tar -xvf <gateway-definition-file> --directory gateway
$ cd gateway
$ sh ./launch.py

$ systemctl --user status <gateway-definition-name>

$ podman inspect

$ docker inspect

$ skupper gateway status
Gateway Definition:
╰─ machine-user type:service version:1.5
 ╰─ Bindings:
 ╰─ mydb:3306 tcp mydb:3306 localhost 3306

Red Hat Service Interconnect 1.5 Using Service Interconnect

18

NOTE

If you need to change the gateway definition, for example to change port, you need to
remove the existing gateway and repeat this procedure from the start to redefine the
gateway.

3.4. GATEWAY YAML REFERENCE

The Section 3.3, “Creating a gateway and applying it on a different machine” describes how to create a
gateway to apply on a separate machine using a gateway definition YAML file.

The following are valid entries in a gateway definition YAML file.

name

Name of gateway

bindings.name

Name of binding for a single host.

bindings.host

Hostname of local service.

bindings.service

Definition of service you want to be available on service network.

bindings.service.address

Address on the service network, name and port.

bindings.service.protocol

Skupper protocol, tcp, http or http2.

bindings.service.ports

A single port that becomes available on the service network.

bindings.service.exposeIngress

(optional) The traffic direction, ingress or egress.

bindings.service.tlscredentials

(optional) The TLS certificate and key for the service.

bindings.service.tlscertauthority

(optional) The TLS public certificate.

bindings.target_ports

A single port that you want to expose on the service network.

NOTE

If the local service requires more than one port, create separate bindings for each port.

forwards.name

Name of forward for a single host.

forwards.host

Hostname of local service.

forwards.service

Definition of service you want to be available locally.

CHAPTER 3. EXPOSING SERVICES ON THE SERVICE NETWORK FROM A LOCAL MACHINE

19

forwards.service.address

Address on the service network that you want to use locally, name and port.

forwards.service.protocol

Skupper protocol, tcp, http or http2.

forwards.service.ports

A single port that is available on the service network.

forwards.target_ports

A single port that you want to use locally.

NOTE

If the network service requires more than one port, create separate forwards for each
port.

qdr-listeners

Definition of skupper router listeners

qdr-listeners.name

Name of skupper router, typically amqp.

qdr-listeners.host

Hostname for skupper router, typically localhost.

qdr-listeners.port

Port for skupper router, typically 5672.

Red Hat Service Interconnect 1.5 Using Service Interconnect

20

1

2

3

4

CHAPTER 4. EXPLORING A SERVICE NETWORK
Skupper includes a command to allow you report all the sites and the services available on a service
network.

Prerequisites

A service network with more than one site

Procedure

1. Set your Kubernetes context to a namespace on the service network.

2. Use the following command to report the status of the service network:

For example:

Sites:
├─ [local] a960b766-20bd-42c8-886d-741f3a9f6aa2(west) 1
│ │ namespace: west
│ │ site name: west 2
│ │ version: 1.5.1 3
│ ╰─ Linked sites:
│ ├─ 496ca1de-0c80-4e70-bbb4-d0d6ec2a09c0(east)
│ │ direction: outgoing
│ ╰─ 484cccc3-401c-4c30-a6ed-73382701b18a()
│ direction: incoming
├─ [remote] 496ca1de-0c80-4e70-bbb4-d0d6ec2a09c0(east) 4
│ │ namespace: east
│ │ site name: east
│ │ version: 1.5.1
│ ╰─ Linked sites:
│ ╰─ a960b766-20bd-42c8-886d-741f3a9f6aa2(west) 5
│ direction: incoming
╰─ [remote] 484cccc3-401c-4c30-a6ed-73382701b18a() 6
 │ site name: vm-user-c3d98
 │ version: 1.5.1
 ╰─ Linked sites:
 ╰─ a960b766-20bd-42c8-886d-741f3a9f6aa2(west)
 direction: outgoing

The unique identifier of the site associated with the current context, that is, the west
namespace

The site name. By default, skupper uses the name of the current namespace. If you want to
specify a site name, use skupper init --site-name <site-name>.

The version of Skupper running the site. The site version can be different from the current
skupper CLI version. To update a site to the version of the CLI, use skupper update.

The unique identifier of a remote site on the service network.

$ skupper network status

CHAPTER 4. EXPLORING A SERVICE NETWORK

21

5

6

The sites that the remote site is linked to.

The unique identifier of a remote podman site. Podman sites do not have an associated
context.

Red Hat Service Interconnect 1.5 Using Service Interconnect

22

CHAPTER 5. SECURING A SERVICE NETWORK
Skupper provides default, built-in security that scales across clusters and clouds. This section describes
additional security you can configure.

See Securing a service network using policies for information about creating granular policies for each
cluster.

5.1. RESTRICTING ACCESS TO SERVICES USING A KUBERNETES
NETWORK POLICY

By default, if you expose a service on the service network, that service is also accessible from other
namespaces in the cluster. You can avoid this situation when creating a site using the --create-network-
policy option.

Procedure

1. Create the service network router with a Kubernetes network policy:

2. Check the site status:

The output should be similar to the following:

Skupper enabled for namespace 'west'. It is not connected to any other sites.

You can now expose services on the service network and those services are not accessible from other
namespaces in the cluster.

5.2. APPLYING TLS TO TCP OR HTTP2 TRAFFIC ON THE SERVICE
NETWORK

By default, the traffic between sites is encrypted, however the traffic between the service pod and the
router pod is not encrypted. For services exposed as TCP or HTTP2, the traffic between the pod and
the router pod can be encrypted using TLS.

Prerequisites

Two or more linked sites

A TCP or HTTP2 frontend and backend service

Procedure

1. Deploy your backend service.

2. Expose your backend deployment on the service network, enabling TLS.
For example, if you want to expose a TCP service:

$ skupper init --create-network-policy

$ skupper status

CHAPTER 5. SECURING A SERVICE NETWORK

23

Enabling TLS creates the necessary certificates required for TLS backends and stores them in a
secret named skupper-tls-<deployment-name>.

3. Modify the backend deployment to include the generated certificates, for example:

Each site creates the necessary certificates required for TLS clients and stores them in a secret
named skupper-service-client.

4. Modify the frontend deployment to include the generated certificates, for example:

5. Test calling the service from a TLS enabled frontend.

$ skupper expose deployment <deployment-name> --port 443 --enable-tls

...
 spec:
 containers:
 ...
 command:
 ...
 - "/certs/tls.key"
 - "/certs/tls.crt"
 ...
 volumeMounts:
 ...
 - mountPath: /certs
 name: certs
 readOnly: true
 volumes:
 - name: index-html
 configMap:
 name: index-html
 - name: certs
 secret:
 secretName: skupper-tls-<deployment-name>

spec:
 template:
 spec:
 containers:
 ...
 volumeMounts:
 - name: certs
 mountPath: /tmp/certs/skupper-service-client
 ...
 volumes:
 - name: certs
 secret:
 secretName: skupper-service-client

Red Hat Service Interconnect 1.5 Using Service Interconnect

24

CHAPTER 6. SUPPORTED STANDARDS AND PROTOCOLS
Skupper supports the following protocols for your service network:

TCP - default

HTTP1

HTTP2

When exposing or creating a service, you can specify the protocol, for example:

where <protocol> can be:

tcp

http

http2

When choosing which protocol to specify, note the following:

tcp supports any protocol overlayed on TCP, for example, HTTP1 and HTTP2 work when you
specify tcp.

If you specify http or http2, the IP address reported by a client may not be accessible.

All service network traffic is converted to AMQP messages in order to traverse the service
network.
TCP is implemented as a single streamed message, whereas HTTP1 and HTTP2 are
implemented as request/response message routing.

6.1. CLI OPTIONS

For a full list of options, see the Skupper Kubernetes CLI reference and Skupper Podman CLI reference
documentation.

WARNING

When you create a site and set logging level to trace, you can inadvertently log
sensitive information from HTTP headers.

By default, all skupper commands apply to the cluster you are logged into and the current namespace.
The following skupper options allow you to override that behavior and apply to all commands:

--namespace <namespace-name>

$ skupper expose deployment hello-world-backend --port 8080 --protocol <protocol>


$ skupper init --router-logging trace

CHAPTER 6. SUPPORTED STANDARDS AND PROTOCOLS

25

https://skupper.io/kubernetes-reference/skupper.html
https://skupper.io/podman-reference/skupper.html

Apply command to <namespace-name>. For example, if you are currently working on frontend
namespace and want to initialize a site in the backend namespace:

--kubeconfig <kubeconfig-path>

Path to the kubeconfig file - This allows you run multiple sessions to a cluster from the same client.
An alternative is to set the KUBECONFIG environment variable.

--context <context-name>

The kubeconfig file can contain defined contexts, and this option allows you to use those contexts.

$ skupper init --namespace backend

Red Hat Service Interconnect 1.5 Using Service Interconnect

26

CHAPTER 7. USING SKUPPER PODMAN
Using the skupper command-line interface (CLI) allows you to create and manage Skupper sites from
the context of the current Linux user. Skupper Podman allows you to create a site using containers,
without requiring Kubernetes.

A typical workflow is to create a site, link sites together, and expose services to the service network.

7.1. ABOUT SKUPPER PODMAN

Skupper Podman is available with the following precedence:

skupper --platform podman <command>

Use this option to avoid changing mode, for example, if you are working on Kubernetes and Podman
simultaneously.

export SKUPPER_PLATFORM=podman

Use this command to use Skupper Podman for the current session, for example, if you have two
terminals set to different contexts. To set the environment to target Kubernetes sites:

skupper switch podman

If you enter this command, all subsequent command target Podman rather than Kubernetes for all
terminal sessions.

To determine which mode is currently active:

To switch back to target Kubernetes sites: skupper switch kubernetes

NOTE

Services exposed on remote sites are not automatically available to Podman sites. This is
the equivalent to Kubernetes sites created using skupper init --enable-service-sync
false.

To consume an exposed service on a Podman site, check that it exists using skupper
service status on the original site and use that information to create the service on the
Podman site:

7.2. CREATING A SITE USING SKUPPER PODMAN

A service network consists of Skupper sites. This section describes how to create a site in on a Linux host
using the default settings. See Using the Skupper CLI for information about using the Skupper CLI to
create Podman sites.

$ export SKUPPER_PLATFORM=kubernetes

$ skupper switch

podman

$ skupper service create <name> <port>

CHAPTER 7. USING SKUPPER PODMAN

27

Prerequisites

The latest skupper CLI is installed.

Podman is installed, see https://podman.io/

netavark is configured as the podman network backend.
By default, Podman v4 uses Netavark which works with Skupper.

If you are using CNI, for example, if you upgrade from Podman v3, you must also install the
podman-plugins package. For example, dnf install podman-plugins for RPM based
distributions.

NOTE

CNI will be deprecated in the future in preference of Netavark.

To check if netavark is configured as the podman network backend:

$ podman info | grep networkBackend

To install netavark on rpm based Linux, eg RHEL8:

$ sudo dnf install netavark

Configure podman to use netavark by making sure the following lines exist in the
/etc/containers/containers.conf file:

[network]
network_backend = "netavark"

Podman service endpoint.
Use systemctl status podman.socket to make sure the Podman API Socket is running.

Use systemctl --user enable --now podman.socket to start the Podman API Socket.

See Podman socket activation for information about enabling this endpoint.

Procedure

1. Set your session to use Skupper Podman:

To verify the skupper mode:

2. Create a Skupper site:
Use the following command to create a site where tokens are created to link on any network
interface:

$ export SKUPPER_PLATFORM=podman

$ skupper switch

podman

Red Hat Service Interconnect 1.5 Using Service Interconnect

28

https://podman.io/
https://github.com/containers/podman/blob/main/docs/tutorials/socket_activation.md

NOTE

By default, this command times out after 2 minutes for podman sites. You can
increase the time with the --timeout option.

The following output is displayed:

Use the following command to start the site service at system start and persist over logouts:

By default, skupper init tries to include all IP addresses associated with local network interfaces
as valid ingress hosts. You can use --ingress-host <IP/Hostname> to restrict token ingress to a
specific network context:

If you do not require that other sites can link to the site you are creating:

In this guide we assume you have enabled ingress using the first command. This allows you
create tokens that allow links from every network interface on the host.

NOTE

When creating a token you can specify the ingress host.

You can also restrict ingress to an IP address or hostname when initializing as described in the
Skupper Podman CLI reference documentation.

3. Check the status of your site:

NOTE

You can only create one site per user. If you require a host to support many sites,
create a user for each site.

7.3. LINKING SITES USING SKUPPER PODMAN

A service network consists of Skupper sites. This section describes how to link sites to form a service

$ skupper init

It is recommended to enable lingering for <username>, otherwise Skupper may not start on
boot.
Skupper is now installed for user '<username>'. Use 'skupper status' to get more information.

loginctl enable-linger <username>

$ skupper init --ingress-host my-cloud-vm.example.com

$ skupper init --ingress none

$ skupper status
Skupper is enabled for "<username>" with site name "<machine-name>-<username>" in
interior mode. It is not connected to any other sites. It has no exposed services.

CHAPTER 7. USING SKUPPER PODMAN

29

https://skupper.io/podman-reference/skupper.html

A service network consists of Skupper sites. This section describes how to link sites to form a service
network.

Linking two sites requires a single initial directional connection. However:

Communication between the two sites is bidirectional, only the initial linking is directional.

The choice of direction for linking is typically determined by accessibility. For example, if you are
linking a virtual machine running in the cloud with a Linux host running behind a firewall, you
must link from the Linux host to the cloud virtual machine because that route is accessible.

Procedure

1. Generate a token on one site:

If you created the site without specifying an ingress-host, the token is valid for all network
contexts. You can use --ingress-host <IP/Hostname> to restrict token ingress to a specific
network context:

2. Create a link from the other site:

After you have linked to a network, you can check the link status:

$ skupper token create <filename>

$ skupper token create <filename> --ingress-host <IP/Hostname>

$ skupper link create <filename>

$ skupper link status

Red Hat Service Interconnect 1.5 Using Service Interconnect

30

CHAPTER 8. SPECIFYING LINK COST
When linking sites, you can assign a cost to each link to influence the traffic flow. By default, link cost is
set to 1 for a new link. In a service network, the routing algorithm attempts to use the path with the
lowest total cost from client to target server.

If you have services distributed across different sites, you might want a client to favor a
particular target or link. In this case, you can specify a cost of greater than 1 on the alternative
links to reduce the usage of those links.

NOTE

The distribution of open connections is statistical, that is, not a round robin
system.

If a connection only traverses one link, then the path cost is equal to the link cost. If the
connection traverses more than one link, the path cost is the sum of all the links involved in the
path.

Cost acts as a threshold for using a path from client to server in the network. When there is only
one path, traffic flows on that path regardless of cost.

NOTE

If you start with two targets for a service, and one of the targets is no longer
available, traffic flows on the remaining path regardless of cost.

When there are a number of paths from a client to server instances or a service, traffic flows on
the lowest cost path until the number of connections exceeds the cost of an alternative path.
After this threshold of open connections is reached, new connections are spread across the
alternative path and the lowest cost path.

Prerequisite

You have set your Kubernetes context to a site that you want to link from.

A token for the site that you want to link to.

Procedure

1. Create a link to the service network:

where <integer-cost> is an integer greater than 1 and traffic favors lower cost links.

NOTE

If a service can be called without traversing a link, that service is considered local,
with an implicit cost of 0.

For example, create a link with cost set to 2 using a token file named token.yaml:

$ skupper link create <filename> --cost <integer-cost>

CHAPTER 8. SPECIFYING LINK COST

31

2. Check the link cost:

The output is similar to the following:

3. Observe traffic using the console.
If you have a console on a site, log in and navigate to the processes for each server. You can
view the traffic levels corresponding to each client.

NOTE

If there are multiple clients on different sites, filter the view to each client to
determine the effect of cost on traffic. For example, in a two site network linked
with a high cost with servers and clients on both sites, you can see that a client is
served by the local servers while a local server is available.

8.1. EXPOSING SERVICES ON THE SERVICE NETWORK FROM A LINUX
HOST

After creating a service network, exposed services can communicate across that network.

The general flow for working with services is the same for Kubernetes and Podman sites.

The skupper CLI has two options for exposing services that already exist on a host:

expose supports simple use cases, for example, a host with a single service. See Section 8.1.1,
“Exposing simple services on the service network” for instructions.

service create and service bind is a more flexible method of exposing services, for example, if
you have multiple services for a host. See Section 8.1.2, “Exposing complex services on the
service network” for instructions.

8.1.1. Exposing simple services on the service network

This section describes how services can be enabled for a service network for simple use cases.

Prerequisites

A Skupper Podman site

Procedure

1. Run a server, for example:

$ skupper link create token.yaml --cost 2

$ skupper link status link1 --verbose

 Cost: 2
 Created: 2022-11-17 15:02:01 +0000 GMT
 Name: link1
 Namespace: default
 Site: default-0d99d031-cee2-4cc6-a761-697fe0f76275
 Status: Connected

Red Hat Service Interconnect 1.5 Using Service Interconnect

32

This step is not Skupper-specific, that is, this process is unchanged from standard processes for
your host.

2. Create a service that can communicate on the service network:

where

<host> is the name of the host where the server is running. For example, the name of the
container if you run the server as a container.

<ip> is the IP address where the server is running

For the example deployment in step 1, you create a service using the following command:

$ skupper expose host backend-target --address backend --port 8080

Options for this command include:

--port <port-number>:: Specify the port number that this service is available on the service
network. NOTE: You can specify more than one port by repeating this option.

--target-port <port-number>:: Specify the port number of pods that you want to expose.

--protocol <protocol> allows you specify the protocol you want to use, tcp, http or http2

3. Create the service on another site in the service network:

8.1.2. Exposing complex services on the service network

This section describes how services can be enabled for a service network for more complex use cases.

Prerequisites

A Skupper Podman site

Procedure

1. Run a server, for example:

This step is not Skupper-specific, that is, this process is unchanged from standard processes for
your host.

2. Create a service that can communicate on the service network:

$ podman run --name backend-target --network skupper --detach --rm -p 8080:8080
quay.io/skupper/hello-world-backend

$ skupper expose [host <hostname|ip>]

$ skupper service create backend 8080

$ podman run --name backend-target --network skupper --detach --rm -p 8080:8080
quay.io/skupper/hello-world-backend

CHAPTER 8. SPECIFYING LINK COST

33

where

<name> is the name of the service you want to create

<port> is the port the service uses

For the example deployment in step 1, you create a service using the following command:

3. Bind the service to a cluster service:

where

<service-name> is the name of the service on the service network

<target-type> is the object you want to expose, host is the only current valid value.

<target-name> is the name of the cluster service

For the example deployment in step 1, you bind the service using the following command:

8.1.3. Consuming simple services from the service network

Services exposed on Podman sites are not automatically available to other sites. This is the equivalent to
Kubernetes sites created using skupper init --enable-service-sync false.

Prerequisites

A remote site where a service is exposed on the service network

A Podman site

Procedure

1. Log into the host as the user associated with the Skupper site.

2. Create the local service:

8.2. DELETING A PODMAN SITE

When you no longer want the Linux host to be part of the service network, you can delete the site.

NOTE

$ skupper service create <name> <port>

$ skupper service create hello-world-backend 8080

$ skupper service bind <service-name> <target-type> <target-name>

$ skupper service bind hello-world-backend host hello-world-backend

$ skupper service create <service-name> <port number>

Red Hat Service Interconnect 1.5 Using Service Interconnect

34

NOTE

This procedure removes all containers, volumes and networks labeled
application=skupper.

To check the labels associated with running containers:

Procedure

1. Make sure you are logged in as the user that created the site:

2. Delete the site and all podman resources (containers, volumes and networks) labeled with
"application=skupper":

$ podman ps -a --format "{{.ID}} {{.Image}} {{.Labels}}"

$ skupper status
Skupper is enabled for "<username>" with site name "<machine-name>-<username>".

$ skupper delete
Skupper is now removed for user "<username>".

CHAPTER 8. SPECIFYING LINK COST

35

CHAPTER 9. USING THE SERVICE INTERCONNECT CONSOLE
The Service Interconnect Console provides data and visualizations of the traffic flow between Skupper
sites.

9.1. ENABLING THE SERVICE INTERCONNECT CONSOLE

By default, when you create a Skupper site, a Service Interconnect Console is not available.

When enabled, the Service Interconnect Console URL is displayed whenever you check site status using
skupper status.

Prerequisites

A Kubernetes namespace where you plan to create a site

Procedure

1. Determine which site in your service network is best to enable the console.
Enabling the console also requires that you enable the flow-collector component, which requires
resources to process traffic data from all sites. You might locate the console using the following
criteria:

Does the service network cross a firewall? For example, if you want the console to be
available only inside the firewall, you need to locate the flow-collector and console on a site
inside the firewall.

Is there a site that processes more traffic than other sites? For example, if you have a
frontend component that calls a set of services from other sites, it might make sense to
locate the flow collector and console on that site to minimize data traffic.

Is there a site with more or cheaper resources that you want to use? For example, if you
have two sites, A and B, and resources are more expensive on site A, you might want to
locate the flow collector and console on site B.

2. Create a site with the flow collector and console enabled:

9.2. ACCESSING THE SERVICE INTERCONNECT CONSOLE

By default, the Service Interconnect Console is protected by credentials available in the skupper-
console-users secret.

Procedure

1. Determine the Service Interconnect Console URL using the skupper CLI, for example:

$ skupper init --enable-console --enable-flow-collector

$ skupper status

Skupper is enabled for namespace "west" in interior mode. It is not connected to any other
sites. It has no exposed services.
The site console url is: https://skupper-west.apps-crc.testing

Red Hat Service Interconnect 1.5 Using Service Interconnect

36

2. Browse to the Service Interconnect Console URL. The credential prompt depends on how the
site was created using skupper init:

Using the --console-auth unsecured option, you are not prompted for credentials.

Using the --console-auth openshift option, you are prompted to enter OpenShift cluster
credentials.

Using the default or --console-user <user> --console-password <password> options,
you are prompted to enter those credentials.

3. If you created the site using default settings, that is skupper init, a random password is
generated for the admin user.
To retrieve the password the admin user for a Kubernetes site:

+

$ kubectl get secret skupper-console-users -o jsonpath={.data.admin} | base64 -d

JNZWzMHtyg

To retrieve the password the admin user for a Podman site:

+

$ cat ~/.local/share/containers/storage/volumes/skupper-console-users/_data/admin

JNZWzMHtyg

9.3. EXPLORING THE SERVICE INTERCONNECT CONSOLE

After exposing a service on the service network, you create an address, that is, a service name and port
number associated with a site. There might be many replicas associated with an address. These replicas
are shown in the Service Interconnect Console as processes. Not all participants on a service network are
services. For example, a frontend deployment might call an exposed service named backend, but that
frontend is not part of the service network. In the console, both are shown so that you can view the
traffic and these are called components.

The Service Interconnect Console provides an overview of the following:

Topology

Addresses

Sites

Components

Processes

The Service Interconnect Console also provides useful networking information about the service
network, for example, traffic levels.

CHAPTER 9. USING THE SERVICE INTERCONNECT CONSOLE

37

1. Check the Sites tab. All your sites should be listed. See the Topology tab to view how the sites
are linked.

2. Check that all the services you exposed are visible in the Components tab.

3. Click a component to show the component details and associated processes.

4. Click on a process to display the process traffic.

NOTE

The process detail displays the associated image, host, and addresses. You can
also view the clients that are calling the process.

5. Click Addresses and choose an address to show the details for that address. This shows the set
of servers that are exposed across the service network.

TIP

To view information about each window, click the ? icon.

Red Hat Service Interconnect 1.5 Using Service Interconnect

38

CHAPTER 10. CONFIGURING SKUPPER SITES USING YAML
Using YAML files to configure Skupper allows you to use source control to track and manage Skupper
network changes.

10.1. CREATING A SKUPPER SITE USING YAML

Using YAML files to create Skupper sites allows you to use source control to track and manage Skupper
network changes.

Prerequisites

Skupper is installed in the cluster or namespace you want to target.

You are logged into the cluster.

Procedure

1. Create a YAML file to define the site, for example, my-site.yaml:

The YAML creates a site with a console and you can create tokens from this site.

To create a site that has no ingress:

apiVersion: v1
kind: ConfigMap
metadata:
 name: skupper-site
data:
 name: my-site
 ingress: "none"

2. Apply the YAML file to your cluster:

Additional resources

See the Section 10.3, “Site ConfigMap YAML reference” section for more reference.

10.2. CONFIGURING SERVICES USING ANNOTATIONS

After creating and linking sites, you can use Kubernetes annotations to control which services are

apiVersion: v1
kind: ConfigMap
metadata:
 name: skupper-site
data:
 name: my-site
 console: "true"
 console-user: "admin"
 console-password: "changeme"
 flow-collector: "true"

kubectl apply -f ~/my-site.yml

CHAPTER 10. CONFIGURING SKUPPER SITES USING YAML

39

After creating and linking sites, you can use Kubernetes annotations to control which services are
available on the service network.

10.2.1. Exposing simple services on a service network using annotations

This section provides an alternative to the skupper expose command, allowing you to annotate existing
resources to expose simple services on the service network.

Prerequisites

A site with a service you want to expose

Procedure

1. Log into the namespace in your cluster that is configured as a site.

2. Create a deployment, some pods, or a service in one of your sites, for example:

This step is not Skupper-specific, that is, this process is unchanged from standard processes for
your cluster.

3. Annotate the kubernetes resource to create a service that can communicate on the service
network, for example:

The annotations include:

skupper.io/proxy - the protocol you want to use, tcp, http or http2. This is the only
annotation that is required. For example, if you annotate a simple deployment named
backend with skupper.io/proxy=tcp, the service is exposed as backend and the
containerPort value of the deployment is used as the port number.

skupper.io/address - the name of the service on the service network.

skupper.io/port - one or more ports for the service on the service network.

NOTE

When exposing services, rather than other resources like deployments, you can
use the skupper.io/target annotation to avoid modifying the original service. For
example, if you want to expose the backend service:

This allows you to delete and recreate the backend service without having to
apply the annotation again.

$ kubectl create deployment hello-world-backend --image quay.io/skupper/hello-world-
backend

$ kubectl annotate deployment backend "skupper.io/address=backend"
"skupper.io/port=8080" "skupper.io/proxy=tcp"

$ kubectl annotate service backend "skupper.io/address=van-backend"
"skupper.io/port=8080" \
"skupper.io/proxy=tcp" "skupper.io/target=backend"

Red Hat Service Interconnect 1.5 Using Service Interconnect

40

4. Check that you have exposed the service:

NOTE

The related targets for services are only displayed when the target is available on
the current cluster.

10.2.2. Understanding Skupper annotations

Annotations allow you to expose services on the service network. This section provides details on the
scope of those annotations

skupper.io/address

The name of the service on the service network. Applies to:

Deployments

StatefulSets

DaemonSets

Services

skupper.io/port

The port for the service on the service network. Applies to:

Deployments

StatefulSets

DaemonSets

skupper.io/proxy

The protocol you want to use, tcp, http or http2. Applies to:

Deployments

StatefulSets

DaemonSets

Services

$ skupper service status -v
Services exposed through Skupper:
╰─ backend:8080 (tcp)
 ╰─ Sites:
 ├─ 4d80f485-52fb-4d84-b10b-326b96e723b2(west)
 │ policy: disabled
 ╰─ 316fbe31-299b-490b-9391-7b46507d76f1(east)
 │ policy: disabled
 ╰─ Targets:
 ╰─ backend:8080 name=backend-9d84544df-rbzjx

CHAPTER 10. CONFIGURING SKUPPER SITES USING YAML

41

skupper.io/target

The name of the target service you want to expose. Applies to:

Services

skupper.io/service-labels

A comma separated list of label keys and values for the exposed service. You can use this annotation
to set up labels for monitoring exposed services. Applies to:

Deployments

DaemonSets

Services

10.3. SITE CONFIGMAP YAML REFERENCE

Using YAML files to configure Skupper requires that you understand all the fields so that you provision
the site you require.

The following YAML defines a Skupper site:

name

Specifies the site name.

console

Enables the skupper console, defaults to false.

NOTE

You must enable console and flow-collector for the console to function.

flow-collector

Enables the flow collector, defaults to false.

console-authentication

Specifies the skupper console authentication method. The options are openshift, internal,

apiVersion: v1
data:
 name: my-site
 console: "true"
 flow-collector: "true"
 console-authentication: internal
 console-user: "username"
 console-password: "password"
 cluster-local: "false"
 edge: "false"
 service-sync: "true"
 ingress: "none"
kind: ConfigMap
metadata:
 name: skupper-site

Red Hat Service Interconnect 1.5 Using Service Interconnect

42

Specifies the skupper console authentication method. The options are openshift, internal,
unsecured.

console-user

Username for the internal authentication option.

console-password

Password for the internal authentication option.

cluster-local

Only accept connections from within the local cluster, defaults to false.

edge

Specifies whether an edge site is created, defaults to false.

service-sync

Specifies whether the services are synchronized across the service network, defaults to true.

ingress

Specifies whether the site supports ingress. If you do not specify a value, the default ingress
('loadbalancer' on Kubernetes, 'route' on OpenShift) is enabled. This allows you to create tokens
usable from remote sites.

NOTE

All ingress types are supported using the same parameters as the skupper CLI.

CHAPTER 10. CONFIGURING SKUPPER SITES USING YAML

43

CHAPTER 11. USING THE SKUPPER OPERATOR ON
KUBERNETES

The Red Hat Service Interconnect Operator creates and manages Skupper sites in Kubernetes.

11.1. CREATING A SITE USING THE SKUPPER OPERATOR

1. Create a YAML file defining the ConfigMap of the site you want to create.
For example, create skupper-site.yaml that provisions a site with a console:

NOTE

Currently, you must enable the console on the same site as you enable the flow
collector.

You can also create a site without a console:

2. Apply the YAML to create a ConfigMap named skupper-site in the namespace you want to use:

3. Verify that the site is created by checking that the Skupper router and service controller pods
are running:

NOTE

If you deployed the Operator to a single namespace, an additional site controller
pod is also running.

apiVersion: v1
kind: ConfigMap
metadata:
 name: skupper-site
 namespace: my-namespace
data:
 console: "true"
 flow-collector: "true"
 console-user: "admin"
 console-password: "changeme"

apiVersion: v1
kind: ConfigMap
metadata:
 name: skupper-site
 namespace: my-namespace

$ kubectl apply -f skupper-site.yaml

$ kubectl get pods

NAME READY STATUS RESTARTS AGE
skupper-router-8c6cc6d76-27562 1/1 Running 0 40s
skupper-service-controller-57cdbb56c5-vc7s2 1/1 Running 0 34s

Red Hat Service Interconnect 1.5 Using Service Interconnect

44

CHAPTER 12. SECURING A SERVICE NETWORK USING
SKUPPER POLICIES

By default, Skupper includes many security features, including using mutual TLS for all service network
communication between sites. You can add extra security features by installing the Skupper policy CRD.
By default, applying a Skupper policy CRD to a cluster prevents all service network communication to
and from that cluster. You specify granular Skupper policies CRs to permit only the service network
communication you require.

NOTE

A Skupper policy is distinct from the Kubernetes network policy, that is the network-
policy option, which restricts access to Skupper services to the current namespace as
described in Using the Skupper CLI.

Each site in a service network runs a Skupper router and has a private, dedicated certificate authority
(CA). Communication between sites is secured with mutual TLS, so the service network is isolated from
external access, preventing security risks such as lateral attacks, malware infestations, and data
exfiltration. A set of Skupper policies adds another layer at a cluster level to help a cluster administrator
control access to a service network.

This guide assumes that you understand the following Skupper concepts:

site

A namespace in which Skupper is installed.

token

A token is required to establish a link between two sites.

service network

After exposing services using Skupper, you have created a service network.

12.1. ABOUT SKUPPER POLICIES

After a cluster administrator installs a Skupper policy Custom Resource Definition (CRD), the cluster
administrator needs to configure one or more policies to allow developers create and use services on the
service network.

NOTE

In this guide, developers refers to users of a cluster who have access to a namespace, but
do not have administrator privileges.

A cluster administrator configures one or more of following items using custom resources (CRs) to
enable communication:

Allow incoming links

Use allowIncomingLinks to enable developers create tokens and configure incoming links.

Allow outgoing links to specific hosts

Use allowedOutgoingLinksHostnames to specify hosts that developers can create links to.

Allow services

Use allowedServices to specify which services developers can create or use on the service network.

CHAPTER 12. SECURING A SERVICE NETWORK USING SKUPPER POLICIES

45

Allow resources to be exposed

Use allowedExposedResources to specify which resources a developer can expose on the service
network.

NOTE

A cluster administrator can apply each policy CR setting to one or more namespaces.

For example, the following policy CR fully allows all Skupper capabilities on all namespaces, except for:

only allows outgoing links to any domain ending in .example.com.

only allows 'deployment/nginx' resources to be exposed on the service network.

NOTE

You can apply many policy CRs, and if there are conflicts in the items allowed, the most
permissive policy is applied. For example, if you apply an additional policy CR with the line
allowedOutgoingLinksHostnames: [], which does not list any hostnames, outgoing links
to *.example.com are still permitted because that is permitted in the original CR.

namespaces

One or more patterns to specify the namespaces that this policy applies to. Note that you can use
Label selectors to match the namespaces.

allowIncomingLinks

Specify true to allow other sites create links to the specified namespaces.

allowedOutgoingLinksHostnames

Specify one or more patterns to determine which hosts you can create links to from the specified
namespaces.

allowedServices

Specify one or more patterns to determine the permitted names of services allowed on the service
network from the specified namespaces.

allowedExposedResources

Specify one or more permitted names of resources allowed on the service network from the
specified namespaces. Note that patterns are not supported.

TIP

apiVersion: skupper.io/v1alpha1
kind: SkupperClusterPolicy
metadata:
 name: cluster-policy-sample-01
spec:
 namespaces:
 - "*"
 allowIncomingLinks: true
 allowedExposedResources:
 - "deployment/nginx"
 allowedOutgoingLinksHostnames: [".*\.example.com$"]
 allowedServices:
 - "*"

Red Hat Service Interconnect 1.5 Using Service Interconnect

46

https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/

TIP

Use regular expressions to create pattern matches, for example:

.*\.com$ matches any string ending in .com. A double backslash is required to avoid issues in
YAML.

^abc$ matches the string abc.

If you create another Skupper policy CR that allows outgoing links for a specific namespace, a user can
create a link from that namespace to join a service network. That is, the logic for multiple policy CRs is
OR. An operation is permitted if any single policy CR permits the operation.

12.2. INSTALLING THE SKUPPER POLICY CRD

Installing the Skupper policy CRD enables a cluster administrator to enforce policies for service
networks.

NOTE

If there are existing sites on the cluster, see Section 12.3, “Installing a Skupper policy CRD
on a cluster with existing sites” to avoid service network disruption.

Prerequisites

Access to a cluster using a cluster-admin account

The Skupper operator is installed

Procedure

1. Log in to the cluster using a cluster-admin account.

2. Download the CRD:

3. Apply the CRD:

4. To verify that a Skupper policy is active, use the skupper status command and check that the
output includes the following line:

12.3. INSTALLING A SKUPPER POLICY CRD ON A CLUSTER WITH

$ wget
https://raw.githubusercontent.com/skupperproject/skupper/1.5/api/types/crds/skupper_cluster_p
olicy_crd.yaml

$ kubectl apply -f skupper_cluster_policy_crd.yaml

customresourcedefinition.apiextensions.k8s.io/skupperclusterpolicies.skupper.io created
clusterrole.rbac.authorization.k8s.io/skupper-service-controller created

Skupper is enabled for namespace "<namespace>" in interior mode (with policies).

CHAPTER 12. SECURING A SERVICE NETWORK USING SKUPPER POLICIES

47

12.3. INSTALLING A SKUPPER POLICY CRD ON A CLUSTER WITH
EXISTING SITES

If the cluster already hosts Skupper sites, note the following before installing the CRD:

All existing connections are closed. You must apply a policy CR to reopen connections.

All existing service network services and exposed resources are removed. You must create those
resources again.

Procedure

To avoid disruption:

1. Plan the CRD deployment for an appropriate time.

2. Search your cluster for sites:

3. Document each service and resource exposed on the service network.

4. Install the CRD as described in Section 12.2, “Installing the Skupper policy CRD” . This step closes
connections and removes all service network services and exposed resources.

5. If Skupper sites that were not created by cluster-admin exist in the cluster, you must grant
permissions to read Skupper policies to avoid that site being blocked from the service network.
For each site namespace:

where <namespace> is the site namespace.

6. Create Skupper policy CRs as described in Section 12.4, “Creating Skupper policy CRs”

7. Recreate any services and exposed resources as required.

12.4. CREATING SKUPPER POLICY CRS

Skupper Policy CRs allow a cluster administrator to control communication across the service network
from a cluster.

Prerequisites

Access to a cluster using a cluster-admin account.

The Skupper policy CRD is installed on the cluster.

PROCEDURE

Typically, you create a Skupper policy CR that combines many elements from the steps
below. See Section 12.1, “About Skupper policies” for an example CR.

$ kubectl get pods --all-namespaces --selector=app=skupper

$ kubectl create clusterrolebinding skupper-service-controller-<namespace> --
clusterrole=skupper-service-controller --serviceaccount=<namespace>:skupper-service-
controller

Red Hat Service Interconnect 1.5 Using Service Interconnect

48

1. Section 12.4.1, “Implement a policy to allow incoming links”

2. Section 12.4.2, “Implement a policy to allow outgoing links to specific hosts”

3. Section 12.4.3, “Implement a policy to allow specific services”

4. Section 12.4.4, “Implement a policy to allow specific resources”

12.4.1. Implement a policy to allow incoming links

Use allowIncomingLinks to enable developers create tokens and configure incoming links.

Procedure

1. Determine which namespaces you want to apply this policy to.

2. Create a CR with allowIncomingLinks set to true or false.

3. Create and apply the CR.

For example, the following CR allows incoming links for all namespaces:

12.4.2. Implement a policy to allow outgoing links to specific hosts

Use allowedOutgoingLinksHostnames to specify hosts that developers can create links to. You
cannot create a allowedOutgoingLinksHostnames policy to disallow a specific host that was previously
allowed.

1. Determine which namespaces you want to apply this policy to.

2. Create a CR with allowedOutgoingLinksHostnames set to a pattern of allowed hosts.

3. Create and apply the CR.

For example, the following CR allows links to all subdomains of example.com for all namespaces:

apiVersion: skupper.io/v1alpha1
kind: SkupperClusterPolicy
metadata:
 name: allowincominglinks
spec:
 namespaces:
 - "*"
 allowIncomingLinks: true

apiVersion: skupper.io/v1alpha1
kind: SkupperClusterPolicy
metadata:
 name: allowedoutgoinglinkshostnames
spec:
 namespaces:
 - "*"
 allowedOutgoingLinksHostnames: ['.*\.example\.com']

CHAPTER 12. SECURING A SERVICE NETWORK USING SKUPPER POLICIES

49

12.4.3. Implement a policy to allow specific services

Use allowedServices to specify which services a developer can create or use on the service network.
You cannot create a allowedServices policy to disallow a specific service that was previously allowed.

Procedure

1. Determine which namespaces you want to apply this policy to.

2. Create a CR with allowedServices set to specify the services allowed on the service network.

3. Create and apply the CR.

For example, the following CR allows users to expose and consume services with the prefix backend-
for all namespaces:

NOTE

When exposing services, you can use the --address <name> parameter of the skupper
CLI to name services to match your policy.

12.4.4. Implement a policy to allow specific resources

Use allowedExposedResources to specify which resources a developer can expose on the service
network. You cannot create a allowedExposedResources policy to disallow a specific resource that
was previously allowed.

Procedure

1. Determine which namespaces you want to apply this policy to.

2. Create a CR with allowedExposedResources set to specify resources that a developer can
expose on the service network.

3. Create and apply the CR.

For example, the following CR allows you to expose an nginx deployment for all namespaces:

apiVersion: skupper.io/v1alpha1
kind: SkupperClusterPolicy
metadata:
 name: allowedservices
spec:
 namespaces:
 - "*"
 allowedServices: ['^backend-']

apiVersion: skupper.io/v1alpha1
kind: SkupperClusterPolicy
metadata:
 name: allowedexposedresources
spec:
 namespaces:
 - "*"
 allowedExposedResources: ['deployment/nginx']

Red Hat Service Interconnect 1.5 Using Service Interconnect

50

NOTE

For allowedExposedResources, each entry must conform to the type/name syntax.

CHAPTER 12. SECURING A SERVICE NETWORK USING SKUPPER POLICIES

51

CHAPTER 13. TROUBLESHOOTING A SERVICE NETWORK
Typically, you can create a service network without referencing this troubleshooting guide. However, this
guide provides some tips for situations when the service network does not perform as expected.

See Section 13.8, “Resolving common problems” if you have encountered a specific issue using the
skupper CLI.

A typical troubleshooting workflow is to check all the sites and create debug tar files.

13.1. CHECKING SITES

Using the skupper command-line interface (CLI) provides a simple method to get started with
troubleshooting Skupper.

Procedure

1. Check the site status:

The output shows:

A site exists in the specified namespace.

A link exists to two other sites.

A service is exposed on the service network and is accessible from this namespace.

2. Check the service network:

$ skupper status --namespace west

Skupper is enabled for namespace "west" in interior mode. It is connected to 2 other sites. It
has 1 exposed services.

$ skupper network status
Sites:
├─ [local] a960b766-20bd-42c8-886d-741f3a9f6aa2(west)
│ │ namespace: west
│ │ site name: west
│ │ version: 1.5.1
│ ╰─ Linked sites:
│ ├─ 496ca1de-0c80-4e70-bbb4-d0d6ec2a09c0(east)
│ │ direction: outgoing
│ ╰─ 484cccc3-401c-4c30-a6ed-73382701b18a()
│ direction: incoming
├─ [remote] 496ca1de-0c80-4e70-bbb4-d0d6ec2a09c0(east)
│ │ namespace: east
│ │ site name: east
│ │ version: 1.5.1
│ ╰─ Linked sites:
│ ╰─ a960b766-20bd-42c8-886d-741f3a9f6aa2(west)
│ direction: incoming
╰─ [remote] 484cccc3-401c-4c30-a6ed-73382701b18a()
 │ site name: vm-user-c3d98
 │ version: 1.5.1

Red Hat Service Interconnect 1.5 Using Service Interconnect

52

NOTE

If the output is not what you expected, you might want to check links before
proceeding.

The output shows:

There are 3 sites on the service network, vm-user-c3d98, east and west.

Details for each site, for example the namespace names.

3. Check the status of services exposed on the service network (-v is only available on
Kubernetes):

The output shows the backend service and the related target of that service.

NOTE

As part of output each site reports the status of the policy system on that cluster.

4. List the Skupper events for a site:

 ╰─ Linked sites:
 ╰─ a960b766-20bd-42c8-886d-741f3a9f6aa2(west)
 direction: outgoing

$ skupper service status -v
Services exposed through Skupper:
╰─ backend:8080 (tcp)
 ╰─ Sites:
 ├─ 4d80f485-52fb-4d84-b10b-326b96e723b2(west)
 │ policy: disabled
 ╰─ 316fbe31-299b-490b-9391-7b46507d76f1(east)
 │ policy: disabled
 ╰─ Targets:
 ╰─ backend:8080 name=backend-9d84544df-rbzjx

$ skupper debug events
NAME COUNT AGE
GatewayQueryRequest 3 9m12s
 3 gateway request 9m12s
SiteQueryRequest 3 9m12s
 3 site data request 9m12s
ServiceControllerEvent 9 10m24s
 2 service event for west/frontend 10m24s
 1 service event for west/backend 10m26s
 1 Checking service for: backend 10m26s
 2 Service definitions have changed 10m26s
 1 service event for west/skupper-router 11m4s
DefinitionMonitorEvent 15 10m24s
 2 service event for west/frontend 10m24s
 1 service event for west/backend 10m26s
 1 Service definitions have changed 10m26s
 5 deployment event for west/frontend 10m34s

CHAPTER 13. TROUBLESHOOTING A SERVICE NETWORK

53

The output shows sites being linked and a service being exposed on a service network. However,
this output is most useful when reporting an issue and is included in the Skupper debug tar file.

5. List the Kubernetes events for a site:

The output shows events relating to Kubernetes resources.

Additional information

Section 13.2, “Checking links”

13.2. CHECKING LINKS

You must link sites before you can expose services on the service network.

NOTE

By default, tokens expire after 5 minutes and you can only use a token once. Generate a
new token if the link is not connected. You can also generate tokens using the -token-
type cert option for permanent reusable tokens.

 1 deployment event for west/skupper-service-controller 11m4s
ServiceControllerUpdateEvent 1 10m26s
 1 Updating skupper-internal 10m26s
ServiceSyncEvent 3 10m26s
 1 Service interface(s) added backend 10m26s
 1 Service sync sender connection to 11m4s
 amqps://skupper-router-local.west.svc.cluster.local:5671
 established
 1 Service sync receiver connection to 11m4s
 amqps://skupper-router-local.west.svc.cluster.local:5671
 established
IpMappingEvent 5 10m34s
 1 172.17.0.7 mapped to frontend-6b4688bf56-rp9hc 10m34s
 2 mapped to frontend-6b4688bf56-rp9hc 10m54s
 1 172.17.0.4 mapped to 11m4s
 skupper-service-controller-6c97c5cf5d-6nzph
 1 172.17.0.3 mapped to skupper-router-547dffdcbf-l8pdc 11m4s
TokenClaimVerification 1 10m59s
 1 Claim for efe3a241-3e4f-11ed-95d0-482ae336eb38 succeeded
10m59s

kubectl get events | grep "deployment/skupper-service-controller"
10m Normal ServiceSyncEvent deployment/skupper-service-controller
Service sync receiver connection to amqps://skupper-router-
local.private1.svc.cluster.local:5671 established
10m Normal ServiceSyncEvent deployment/skupper-service-controller
Service sync sender connection to amqps://skupper-router-
local.private1.svc.cluster.local:5671 established
10m Normal ServiceControllerCreateEvent deployment/skupper-service-controller
Creating service productcatalogservice
7m59s Normal TokenHandler deployment/skupper-service-controller
Connecting using token link1
7m54s Normal TokenHandler deployment/skupper-service-controller
Connecting using token link2

Red Hat Service Interconnect 1.5 Using Service Interconnect

54

This section outlines some advanced options for checking links.

1. Check the link status:

A link exists from the specified site to another site, meaning a token from another site was
applied to the specified site.

NOTE

Running skupper link status on a connected site produces output only if a token
was used to create a link.

If you use this command on a site where you did not create the link, but there is an incoming link
to the site:

$ skupper link status --namespace west

Links created from this site:

There are no links configured or connected

Currently connected links from other sites:
--
A link from the namespace east on site east(536695a9-26dc-4448-b207-519f56e99b71) is
connected

2. Check the verbose link status:

The output shows detail about the link, including a timestamp of when the link was created and
the associated relative cost of using the link.

The status of the link must be Connected to allow service traffic.

Additional information

Section 13.1, “Checking sites”

13.3. CHECKING GATEWAYS

$ skupper link status --namespace east

Links created from this site:

Link link1 is connected

$ skupper link status link1 --verbose --namespace east

 Cost: 1
 Created: 2022-10-24 12:50:33 +0100 IST
 Name: link1
 Namespace: east
 Site: east-536695a9-26dc-4448-b207-519f56e99b71
 Status: Connected

CHAPTER 13. TROUBLESHOOTING A SERVICE NETWORK

55

By default, skupper gateway creates a service type gateway and these gateways run properly after a
machine restart.

However, if you create a docker or podman type gateway, check that the container is running after a
machine restart. For example:

1. Check the status of Skupper gateways:

$ skupper gateway status

Gateway Definition:
╰─ machine-user type:podman version:1.5
 ╰─ Bindings:
 ╰─ mydb:3306 tcp mydb:3306 localhost 3306

This shows a podman type gateway.

2. Check that the container is running:

$ podman ps
CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES
4e308ef8ee58 quay.io/skupper/skupper-router:1.5 /home/skrouterd/b... 26 seconds
ago Up 27 seconds ago machine-user

This shows the container running.

NOTE

To view stopped containers, use podman ps -a or docker ps -a.

3. Start the container if necessary:

$ podman start machine-user

13.4. CHECKING POLICIES

As a developer you might not be aware of the Skupper policy applied to your site. Follow this procedure
to explore the policies applied to the site.

Procedure

1. Log into a namespace where a Skupper site has been initialized.

2. Check whether incoming links are permitted:

In this example incoming links are not allowed by policy.

3. Check other policies:

$ kubectl exec deploy/skupper-service-controller -- get policies incominglink

ALLOWED POLICY ENABLED ERROR ALLOWED BY
false true Policy validation error: incoming links are not allowed

Red Hat Service Interconnect 1.5 Using Service Interconnect

56

As shown, there are commands to check each policy type by specifying what you want to do, for
example, to check if you can expose an nginx deployment:

If you allowed an nginx deployment, the same command shows that the resource is allowed and
displays the name of the policy CR that enabled it:

13.5. CREATING A SKUPPER DEBUG TAR FILE

The debug tar file contains all the logs from the Skupper components for a site and provides detailed
information to help debug issues.

1. Create the debug tar file:

$ skupper debug dump my-site

Skupper dump details written to compressed archive: `my-site.tar.gz`

2. You can expand the file using the following command:

$ kubectl exec deploy/skupper-service-controller -- get policies
Validates existing policies

Usage:
 get policies [command]

Available Commands:
 expose Validates if the given resource can be exposed
 incominglink Validates if incoming links can be created
 outgoinglink Validates if an outgoing link to the given hostname is allowed
 service Validates if service can be created or imported

$ kubectl exec deploy/skupper-service-controller -- get policies expose deployment nginx
ALLOWED POLICY ENABLED ERROR ALLOWED BY
false true Policy validation error: deployment/nginx cannot be exposed

$ kubectl exec deploy/skupper-service-controller -- get policies expose deployment nginx
ALLOWED POLICY ENABLED ERROR ALLOWED BY
true true allowedexposedresources

$ tar -xvf kind-site.tar.gz

k8s-versions.txt
skupper-versions.txt
skupper-router-deployment.yaml
skupper-router-867f5ddcd8-plrcg-skstat-g.txt
skupper-router-867f5ddcd8-plrcg-skstat-c.txt
skupper-router-867f5ddcd8-plrcg-skstat-l.txt
skupper-router-867f5ddcd8-plrcg-skstat-n.txt
skupper-router-867f5ddcd8-plrcg-skstat-e.txt
skupper-router-867f5ddcd8-plrcg-skstat-a.txt
skupper-router-867f5ddcd8-plrcg-skstat-m.txt
skupper-router-867f5ddcd8-plrcg-skstat-p.txt
skupper-router-867f5ddcd8-plrcg-router-logs.txt
skupper-router-867f5ddcd8-plrcg-config-sync-logs.txt

CHAPTER 13. TROUBLESHOOTING A SERVICE NETWORK

57

These files can be used to provide support for Skupper, however some items you can check:

versions

See *versions.txt for the versions of various components.

ingress

See skupper-site-configmap.yaml to determine the ingress type for the site.

linking and services

See the skupper-service-controller-*-events.txt file to view details of token usage and
service exposure.

13.6. UNDERSTANDING SKUPPER SIZING

In September 2023, a number of tests were performed to explore Skupper performance at varying
allocations of router CPU. You can view the results in the sizing guide.

The conclusions for router CPU and memory are shown below.

Router CPU

The primary factor to consider when scaling Skupper for your workload is router CPU. (Note that due to
the nature of cluster ingress and connection routing, it is important to focus on scaling the router
vertically, not horizontally.)

Two CPU cores (2,000 millicores) per router is a good starting point. It includes some headroom and
provides low latencies for a large set of workloads.

If the peak throughput required by your workload is low, it is possible to achieve satisfactory latencies
with less router CPU.

Some workloads are sensitive to network latency. In these cases, the overhead introduced by the router
can limit the achievable throughput. This is when CPU amounts higher than two cores per router may be
required.

On the flip side, some workloads are tolerant of network latency. In these cases, one core or less may be
sufficient.

These benchmark results are not the last word. They depend on the specifics of our test environment.
To get a better idea of how Skupper performs in your environment, you can run these benchmarks
yourself.

Router memory

Router memory use scales with the number of open connections. In general, a good starting point is 4G.

Memory Concurrent open connections

skupper-service-controller-deployment.yaml
skupper-service-controller-7485756984-gvrf6-events.txt
skupper-service-controller-7485756984-gvrf6-service-controller-logs.txt
skupper-site-configmap.yaml
skupper-services-configmap.yaml
skupper-internal-configmap.yaml
skupper-sasl-config-configmap.yaml

Red Hat Service Interconnect 1.5 Using Service Interconnect

58

https://access.redhat.com/solutions/7074294

512M 8,192

1G 16,384

2G 32,768

4G 65,536

8G 131,072

16G 262,144

32G 524,288

64G 104,8576

13.7. IMPROVING SKUPPER ROUTER PERFORMANCE

If you encounter Skupper router performance issues, you can scale the Skupper router to address those
concerns.

NOTE

Currently, you must delete and recreate a site to reconfigure the Skupper router.

For example, use this procedure to increase throughput, and if you have many clients, latency.

1. Delete your site or create a new site in a different namespace.
Note all configuration and delete your existing site:

As an alternative, you can create a new namespace and configure a new site with optimized
Skupper router performance. After validating the performance improvement, you can delete
and recreate your original site.

2. Create a site with optimal performance CPU settings:

3. Recreate your configuration from step 1, recreating links and services.

NOTE

While you can address availability concerns by scaling the number of routers, typically this
is not necessary.

13.8. RESOLVING COMMON PROBLEMS

$ skupper delete

$ skupper init --router-cpu 5

CHAPTER 13. TROUBLESHOOTING A SERVICE NETWORK

59

The following issues and workarounds might help you debug simple scenarios when evaluating Skupper.

Cannot initialize skupper

If the skupper init command fails, consider the following options:

Check the load balancer.
If you are evaluating Skupper on minikube, use the following command to create a load balancer:

For other Kubernetes flavors, see the documentation from your provider.

Initialize without ingress.
This option prevents other sites from linking to this site, but linking outwards is supported. Once
a link is established, traffic can flow in either direction. Enter the following command:

NOTE

See the Skupper Podman CLI reference documentation for skupper init.

Cannot link sites

To link two sites, one site must be accessible from the other site. For example, if one site is behind a
firewall and the other site is on an AWS cluster, you must:

1. Create a token on the AWS cluster site.

2. Create the link on the site inside the firewall.

NOTE

By default, a token is valid for only 15 minutes and can only be used once. See Using
Skupper tokens for more information on creating different types of tokens.

Cannot access Skupper console

Starting with Skupper release 1.3, the console is not enabled by default. To use the new console, see
Using the console.

Use skupper status to find the console URL.

Use the following command to display the password for the admin user:doctype: article

$ kubectl get secret/skupper-console-users -o jsonpath={.data.admin} | base64 -d

Cannot create a token for linking clusters

There are several reasons why you might have difficulty creating tokens:

Site not ready

$ minikube tunnel

$ skupper init --ingress none

Red Hat Service Interconnect 1.5 Using Service Interconnect

60

https://skupper.io/podman-reference/skupper.html

After creating a site, you might see the following message when creating a token:

Use skupper status to verify the site is working and try to create the token again.

No ingress

You might see the following note after using the skupper token create command:

This output indicates that the site was deployed without an ingress option. For example skupper init
--ingress none. You must specify an ingress to allow sites on other clusters to link to your site.

You can also use the skupper token create command to check if an ingress was specified when the
site was created.

Error: Failed to create token: Policy validation error: Skupper is not enabled in namespace

Token written to <path> (Note: token will only be valid for local cluster)

CHAPTER 13. TROUBLESHOOTING A SERVICE NETWORK

61

	Table of Contents
	CHAPTER 1. USING THE SKUPPER CLI
	1.1. CHECKING THE SKUPPER CLI
	1.2. CREATING A SITE USING THE CLI
	1.3. CUSTOM SITES
	1.4. LINKING SITES

	CHAPTER 2. SPECIFYING LINK COST
	2.1. EXPOSING SERVICES ON THE SERVICE NETWORK FROM A NAMESPACE
	2.1.1. Exposing simple services on the service network
	2.1.2. Exposing complex services on the service network
	2.1.3. Exposing services from a different namespace to the service network

	CHAPTER 3. EXPOSING SERVICES ON THE SERVICE NETWORK FROM A LOCAL MACHINE
	3.1. EXPOSING SIMPLE LOCAL SERVICES TO THE SERVICE NETWORK
	3.2. WORKING WITH COMPLEX LOCAL SERVICES ON THE SERVICE NETWORK
	3.3. CREATING A GATEWAY AND APPLYING IT ON A DIFFERENT MACHINE
	3.4. GATEWAY YAML REFERENCE

	CHAPTER 4. EXPLORING A SERVICE NETWORK
	CHAPTER 5. SECURING A SERVICE NETWORK
	5.1. RESTRICTING ACCESS TO SERVICES USING A KUBERNETES NETWORK POLICY
	5.2. APPLYING TLS TO TCP OR HTTP2 TRAFFIC ON THE SERVICE NETWORK

	CHAPTER 6. SUPPORTED STANDARDS AND PROTOCOLS
	6.1. CLI OPTIONS

	CHAPTER 7. USING SKUPPER PODMAN
	7.1. ABOUT SKUPPER PODMAN
	7.2. CREATING A SITE USING SKUPPER PODMAN
	7.3. LINKING SITES USING SKUPPER PODMAN

	CHAPTER 8. SPECIFYING LINK COST
	8.1. EXPOSING SERVICES ON THE SERVICE NETWORK FROM A LINUX HOST
	8.1.1. Exposing simple services on the service network
	8.1.2. Exposing complex services on the service network
	8.1.3. Consuming simple services from the service network

	8.2. DELETING A PODMAN SITE

	CHAPTER 9. USING THE SERVICE INTERCONNECT CONSOLE
	9.1. ENABLING THE SERVICE INTERCONNECT CONSOLE
	9.2. ACCESSING THE SERVICE INTERCONNECT CONSOLE
	9.3. EXPLORING THE SERVICE INTERCONNECT CONSOLE

	CHAPTER 10. CONFIGURING SKUPPER SITES USING YAML
	10.1. CREATING A SKUPPER SITE USING YAML
	10.2. CONFIGURING SERVICES USING ANNOTATIONS
	10.2.1. Exposing simple services on a service network using annotations
	10.2.2. Understanding Skupper annotations

	10.3. SITE CONFIGMAP YAML REFERENCE

	CHAPTER 11. USING THE SKUPPER OPERATOR ON KUBERNETES
	11.1. CREATING A SITE USING THE SKUPPER OPERATOR

	CHAPTER 12. SECURING A SERVICE NETWORK USING SKUPPER POLICIES
	12.1. ABOUT SKUPPER POLICIES
	12.2. INSTALLING THE SKUPPER POLICY CRD
	12.3. INSTALLING A SKUPPER POLICY CRD ON A CLUSTER WITH EXISTING SITES
	12.4. CREATING SKUPPER POLICY CRS
	12.4.1. Implement a policy to allow incoming links
	12.4.2. Implement a policy to allow outgoing links to specific hosts
	12.4.3. Implement a policy to allow specific services
	12.4.4. Implement a policy to allow specific resources

	CHAPTER 13. TROUBLESHOOTING A SERVICE NETWORK
	13.1. CHECKING SITES
	13.2. CHECKING LINKS
	13.3. CHECKING GATEWAYS
	13.4. CHECKING POLICIES
	13.5. CREATING A SKUPPER DEBUG TAR FILE
	13.6. UNDERSTANDING SKUPPER SIZING
	13.7. IMPROVING SKUPPER ROUTER PERFORMANCE
	13.8. RESOLVING COMMON PROBLEMS

