& RedHat

Red Hat Service Interconnect 1.8

Examples

Service network tutorials with the CLI and YAML

Last Updated: 2024-10-04

Red Hat Service Interconnect 1.8 Examples

Service network tutorials with the CLI and YAML

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Red Hat Service Interconnect is a Red Hat build of the open source Skupper project. This Skupper
documentation is reproduced for reference.

Table of Contents

Table of Contents
CHAPTER 1.INTRODUCTION TO EXAMPLES ututtt ittt e e 3
CHAPTER 2. SKUPPERHELLO WORLD ...\ttt ettt et e e e et et e e e e, 4
CHAPTER 3. ACCESSING ACTIVEMQ USING SKUPPER \tuuttitine it 9
CHAPTER 4. SKUPPER CAMEL INTEGRATION EXAMPLE ...\ttt i, 15
CHAPTER 5. ACCESSING AN FTP SERVER USING SKUPPER ouiitintintiniee i, 21
CHAPTER 6. IPERF ..\ttt ettt ettt et e e e e e e e e e 26
CHAPTER 7. ACCESSING KAFKA USING SKUPPER uttitintint ettt e e, 31
CHAPTER 8. PATIENT PORTAL ..ttt ettt ettt et e e e e e e e 37
CHAPTER Q. TRADE ZOO ..ottt ettt et et e et e e e e e e 42

Red Hat Service Interconnect 1.8 Examples

CHAPTER 1. INTRODUCTION TO EXAMPLES

CHAPTER 1. INTRODUCTION TO EXAMPLES

Featured

Chapter 2, Skupper Hello World

A minimal multi-service HTTP application deployed across sites.
Chapter 8, Patient Portal

A database-backed web application deployed across sites.
Chapter 9, Trade Zoo

A Kafka-based trading application deployed across sites.

Messaging

Chapter 3, Accessing ActiveMQ using Skupper
Access an ActiveMQ message broker.
Chapter 7, Accessing Kafka using Skupper

Access a Kafka cluster.

Protocols

Chapter 5, Accessing an FTP server using Skupper
Access an FTP server.
Chapter 6, iPerf

Perform real-time network throughput measurements using iPerf3.

Other

Chapter 4, Skupper Camel Integration Example

Accessing private on-prem data from Camel

Red Hat Service Interconnect 1.8 Examples

CHAPTER 2. SKUPPER HELLO WORLD

A minimal HTTP application deployed across Kubernetes clusters using Skupper

This example is part of a suite of examples showing the different ways you can use Skupper to connect
services across cloud providers, data centers, and edge sites.

Overview

This example is a very simple multi-service HTTP application deployed across Kubernetes clusters using
Skupper.

It contains two services:

® A backend service that exposes an /api/hello endpoint. It returns greetings of the form Hi,
<your-name>. | am <my-name> (<pod-names).

e A frontend service that sends greetings to the backend and fetches new greetings in response.

With Skupper, you can place the backend in one cluster and the frontend in another and maintain
connectivity between the two services without exposing the backend to the public internet.

Prerequisites

® The kubectl command-line tool, version 1.15 or later (installation guide)

® Access to at least one Kubernetes cluster, from any provider you choose

Procedure

® Clone the repo for this example.

® |[nstall the Skupper command-line tool
® Set up your clusters

® Deploy the frontend and backend

® Create your sites

® Link your sites

® Expose the backend

® Access the frontend

1. Clone the repo for this example. Navigate to the appropriate GitHub repository from
https://skupper.io/examples/index.html and clone the repository.

2. Install the Skupper command-line tool

This example uses the Skupper command-line tool to deploy Skupper. You need to install
the skupper command only once for each development environment.

See the Installation for details about installing the CLI. For configured systems, use the
following command:

I sudo dnf install skupper-cli

.
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://skupper.io/start/kubernetes.html
https://skupper.io/examples/index.html
https://docs.redhat.com/en/documentation/red_hat_service_interconnect/1.8/html-single/installation/

CHAPTER 2. SKUPPER HELLO WORLD

3. Set up your clusters
Skupper is designed for use with multiple Kubernetes clusters. The skupper and kubectl
commands use your kubeconfig and current context to select the cluster and namespace
where they operate.

Your kubeconfig is stored in a file in your home directory. The skupper and kubectl
commands use the KUBECONFIG environment variable to locate it.

A single kubeconfig supports only one active context per user. Since you will be using
multiple contexts at once in this exercise, you need to create distinct kubeconfigs.

For each namespace, open a new terminal window. In each terminal, set the KUBECONFIG

environment variable to a different path and log in to your cluster. Then create the
namespace you wish to use and set the namespace on your current context.

NOTE

The login procedure varies by provider. See the documentation for yours:

o Amazon Elastic Kubernetes Service (EKS)
o Azure Kubernetes Service (AKS)

o Google Kubernetes Engine (GKE)

o |IBM Kubernetes Service

o OpenShift

West:

export KUBECONFIG=~/.kube/config-west

Enter your provider-specific login command

kubectl create namespace west

kubectl config set-context --current --namespace west

East:

export KUBECONFIG=~/.kube/config-east

Enter your provider-specific login command

kubectl create namespace east

kubectl config set-context --current --namespace east

4. Deploy the frontend and backend

This example runs the frontend and the backend in separate Kubernetes namespaces, on
different clusters.

Use kubectl create deployment to deploy the frontend in West and the backend in East.

West:

I kubectl create deployment frontend --image quay.io/skupper/hello-world-frontend

https://kubernetes.io/docs/concepts/configuration/organize-cluster-access-kubeconfig/
https://skupper.io/start/eks.html#cluster-access
https://skupper.io/start/aks.html#cluster-access
https://skupper.io/start/gke.html#cluster-access
https://skupper.io/start/ibmks.html#cluster-access
https://skupper.io/start/openshift.html#cluster-access

Red Hat Service Interconnect 1.8 Examples

East:

I kubectl create deployment backend --image quay.io/skupper/hello-world-backend --
replicas 3

5. Create your sites
A Skupper site is a location where components of your application are running. Sites are
linked together to form a network for your application. In Kubernetes, a site is associated
with a namespace.

For each namespace, use skupper init to create a site. This deploys the Skupper router and
controller. Then use skupper status to see the outcome.

West:

skupper init
skupper status

Sample output:

$ skupper init

Waiting for LoadBalancer IP or hostname...

Waiting for status...

Skupper is now installed in namespace 'west'. Use 'skupper status' to get more
information.

$ skupper status
Skupper is enabled for namespace "west". It is not connected to any other sites. It has no
exposed services.

East:

skupper init
skupper status

Sample output:

$ skupper init

Waiting for LoadBalancer IP or hostname...

Waiting for status...

Skupper is now installed in namespace 'east’. Use 'skupper status' to get more
information.

$ skupper status
Skupper is enabled for namespace "east". It is not connected to any other sites. It has no
exposed services.

As you move through the steps below, you can use skupper status at any time to check
your progress.

6. Link your sites
A Skupper link is a channel for communication between two sites. Links serve as a transport
for application connections and requests.

CHAPTER 2. SKUPPER HELLO WORLD

Creating a link requires use of two skupper commands in conjunction, skupper token
create and skupper link create.

The skupper token create command generates a secret token that signifies permission to

create alink. The token also carries the link details. Then, in a remote site, The skupper link
create command uses the token to create a link to the site that generated it.

NOTE

The link token is truly a secret. Anyone who has the token can link to your
site. Make sure that only those you trust have access to it.

First, use skupper token create in West to generate the token. Then, use skupper link
create in East to link the sites.

West:

I skupper token create ~/secret.token

Sample output:

$ skupper token create ~/secret.token
Token written to ~/secret.token

East:

I skupper link create ~/secret.token

Sample output:

$ skupper link create ~/secret.token

Site configured to link to https://10.105.193.154:8081/ed9c37f6-d78a-11ec-a8c7-
04421a4c5042 (name=link1)

Check the status of the link using 'skupper link status'.

If your terminal sessions are on different machines, you may need to use scp or a similar tool
to transfer the token securely. By default, tokens expire after a single use or 15 minutes
after creation.

. Expose the backend

We now have our sites linked to form a Skupper network, but no services are exposed on it.
Skupper uses the skupper expose command to select a service from one site for exposure
in all the linked sites.

Use skupper expose to expose the backend service in East to the frontend in West.

East:

I skupper expose deployment/backend --port 8080

Sample output:

Red Hat Service Interconnect 1.8 Examples

$ skupper expose deployment/backend --port 8080
deployment backend exposed as backend

8. Access the frontend
In order to use and test the application, we need external access to the frontend.

Use kubectl port-forward to make the frontend available at localhost:8080.

West:

I kubectl port-forward deployment/frontend 8080:8080

You can now access the web interface by navigating to http://localhost:8080 in your
browser.

http://localhost:8080

CHAPTER 3. ACCESSING ACTIVEMQ USING SKUPPER

CHAPTER 3. ACCESSING ACTIVEMQ USING SKUPPER

Use public cloud resources to process data from a private message broker

This example is part of a suite of examples showing the different ways you can use Skupper to connect
services across cloud providers, data centers, and edge sites.

Overview

This example is a simple messaging application that shows how you can use Skupper to access an
ActiveMQ broker at a remote site without exposing it to the public internet.

It contains two services:

® An ActiveMQ broker running in a private data center. The broker has a queue named
"notifications".

® An AMQP client running in the public cloud. It sends 10 messages to "notifications" and then
receives them back.

For the broker, this example uses the Apache ActiveMQ Artemis image from ArtemisCloud.io. The client
is a simple Quarkus application.

The example uses two Kubernetes namespaces, "private” and "public”, to represent the private data
center and public cloud.

Prerequisites

® The kubectl command-line tool, version 1.15 or later (installation guide)

® Access to at least one Kubernetes cluster, from any provider you choose

Procedure

® Clone the repo for this example.

® |[nstall the Skupper command-line tool
® Set up your namespaces

® Deploy the message broker

® Create your sites

® Link your sites

® Expose the message broker

® Run the client

1. Clone the repo for this example. Navigate to the appropriate GitHub repository from
https://skupper.io/examples/index.html and clone the repository.

2. Install the Skupper command-line tool
This example uses the Skupper command-line tool to deploy Skupper. You need to install
the skupper command only once for each development environment.

.
https://activemq.apache.org/components/artemis/
https://artemiscloud.io/
https://quarkus.io/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://skupper.io/start/kubernetes.html
https://skupper.io/examples/index.html

Red Hat Service Interconnect 1.8 Examples

10

See the Installation for details about installing the CLI. For configured systems, use the
following command:

I sudo dnf install skupper-cli

. Set up your namespaces

Skupper is designed for use with multiple Kubernetes namespaces, usually on different
clusters. The skupper and kubectl commands use your kubeconfig and current context to
select the namespace where they operate.

Your kubeconfig is stored in a file in your home directory. The skupper and kubectl
commands use the KUBECONFIG environment variable to locate it.

A single kubeconfig supports only one active context per user. Since you will be using
multiple contexts at once in this exercise, you need to create distinct kubeconfigs.

For each namespace, open a new terminal window. In each terminal, set the KUBECONFIG

environment variable to a different path and log in to your cluster. Then create the
namespace you wish to use and set the namespace on your current context.

NOTE

The login procedure varies by provider. See the documentation for yours:

o Amazon Elastic Kubernetes Service (EKS)
o Azure Kubernetes Service (AKS)

o Google Kubernetes Engine (GKE)

o |IBM Kubernetes Service

o OpenShift

Public:

export KUBECONFIG=~/.kube/config-public

Enter your provider-specific login command

kubectl create namespace public

kubectl config set-context --current --namespace public

Private:

export KUBECONFIG=~/.kube/config-private

Enter your provider-specific login command

kubectl create namespace private

kubectl config set-context --current --namespace private

. Deploy the message broker

In Private, use the kubectl apply command to install the broker.

Private:

I kubectl apply -f server

https://docs.redhat.com/en/documentation/red_hat_service_interconnect/1.8/html-single/installation/
https://kubernetes.io/docs/concepts/configuration/organize-cluster-access-kubeconfig/
https://skupper.io/start/eks.html#cluster-access
https://skupper.io/start/aks.html#cluster-access
https://skupper.io/start/gke.html#cluster-access
https://skupper.io/start/ibmks.html#cluster-access
https://skupper.io/start/openshift.html#cluster-access

CHAPTER 3. ACCESSING ACTIVEMQ USING SKUPPER

Sample output:

$ kubectl apply -f server
deployment.apps/broker created

. Create your sites

A Skupper site is a location where components of your application are running. Sites are
linked together to form a network for your application. In Kubernetes, a site is associated
with a namespace.

For each namespace, use skupper init to create a site. This deploys the Skupper router and
controller. Then use skupper status to see the outcome.

Public:

skupper init
skupper status

Sample output:

$ skupper init

Waiting for LoadBalancer IP or hostname...

Waiting for status...

Skupper is now installed in namespace 'public’. Use 'skupper status' to get more
information.

$ skupper status
Skupper is enabled for namespace "public”. It is not connected to any other sites. It has
no exposed services.

Private:

skupper init
skupper status

Sample output:

$ skupper init

Waiting for LoadBalancer IP or hostname...

Waiting for status...

Skupper is now installed in namespace 'private’. Use 'skupper status' to get more
information.

$ skupper status
Skupper is enabled for namespace "private”. It is not connected to any other sites. It has
no exposed services.

As you move through the steps below, you can use skupper status at any time to check
your progress.

. Link your sites
A Skupper link is a channel for communication between two sites. Links serve as a transport
for application connections and requests.

1

Red Hat Service Interconnect 1.8 Examples

12

Creating a link requires use of two skupper commands in conjunction, skupper token
create and skupper link create.

The skupper token create command generates a secret token that signifies permission to

create alink. The token also carries the link details. Then, in a remote site, The skupper link
create command uses the token to create a link to the site that generated it.

NOTE

The link token is truly a secret. Anyone who has the token can link to your
site. Make sure that only those you trust have access to it.

First, use skupper token create in site Public to generate the token. Then, use skupper
link create in site Private to link the sites.

Public:

I skupper token create ~/secret.token

Sample output:

$ skupper token create ~/secret.token
Token written to ~/secret.token

Private:

I skupper link create ~/secret.token

Sample output:

$ skupper link create ~/secret.token

Site configured to link to https://10.105.193.154:8081/ed9c37f6-d78a-11ec-a8c7-
04421a4c5042 (name=link1)

Check the status of the link using 'skupper link status'.

If your terminal sessions are on different machines, you may need to use scp or a similar tool
to transfer the token securely. By default, tokens expire after a single use or 15 minutes
after creation.

. Expose the message broker

In Private, use skupper expose to expose the broker on the Skupper network.

Then, in Public, use kubectl get service/broker to check that the service appears after a
moment.

Private:

I skupper expose deployment/broker --port 5672

Sample output:

$ skupper expose deployment/broker --port 5672
deployment broker exposed as broker

CHAPTER 3. ACCESSING ACTIVEMQ USING SKUPPER

Public:
I kubectl get service/broker
Sample output:

$ kubectl get service/broker
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
broker ClusterlP 10.100.58.95 <none> 5672/TCP 2s

8. Run the client
In Public, use kubectl run to run the client.

Public:

kubectl run client --attach --rm --restart Never --image quay.io/skupper/activemqg-
example-client --env SERVER=broker

Sample output:

$ kubectl run client --attach --rm --restart Never --image quay.io/skupper/activemg-
example-client --env SERVER=broker

=/ NN

ST < AN

SN NN

2022-05-27 11:19:07,149 INFO [io.sma.rea.mes.amqgp] (main) SRMSG16201: AMQP
broker configured to broker:5672 for channel incoming-messages

2022-05-27 11:19:07,170 INFO [io.sma.rea.mes.amgp] (main) SRMSG16201: AMQP
broker configured to broker:5672 for channel outgoing-messages

2022-05-27 11:19:07,198 INFO [io.sma.rea.mes.amqp] (main) SRMSG16212:
Establishing connection with AMQP broker

2022-05-27 11:19:07,212 INFO [io.sma.rea.mes.amqp] (main) SRMSG16212:
Establishing connection with AMQP broker

2022-05-27 11:19:07,215 INFO [io.quarkus] (main) client 1.0.0-SNAPSHOT on JVM
(powered by Quarkus 2.9.2.Final) started in 0.397s.

2022-05-27 11:19:07,215 INFO [io.quarkus] (main) Profile prod activated.
2022-05-27 11:19:07,215 INFO [io.quarkus] (main) Installed features: [cdi, smallrye-
context-propagation, smallrye-reactive-messaging, smallrye-reactive-messaging-amqp,
vertx]

Sent message 1

Sent message 2

Sent message 3

Sent message 4

Sent message 5

Sent message 6

Sent message 7

Sent message 8

Sent message 9

Sent message 10

2022-05-27 11:19:07,434 INFO [io.sma.rea.mes.amqp] (vert.x-eventloop-thread-0)
SRMSG16213: Connection with AMQP broker established

2022-05-27 11:19:07,442 INFO [io.sma.rea.mes.amqp] (vert.x-eventloop-thread-0)
SRMSG16213: Connection with AMQP broker established

13

Red Hat Service Interconnect 1.8 Examples

14

2022-05-27 11:19:07,468 INFO [io.sma.rea.mes.amqp] (vert.x-eventloop-thread-0)
SRMSG16203: AMQP Receiver listening address notifications
Received message 1

Received message 2

Received message 3

Received message 4

Received message 5

Received message 6

Received message 7

Received message 8

Received message 9

Received message 10

Result: OK

CHAPTER 4. SKUPPER CAMEL INTEGRATION EXAMPLE

CHAPTER 4. SKUPPER CAMEL INTEGRATION EXAMPLE

Twitter, Telegram and PostgreSQL integration routes deployed across Kubernetes clusters using
Skupper

This example is part of a suite of examples showing the different ways you can use Skupper to connect
services across cloud providers, data centers, and edge sites.

Overview

In this example we can see how to integrate different Camel integration routers that can be deployed
across multiple Kubernetes clusters using Skupper.

The main idea of this project is to show a Camel integration deployed in a public cluster which searches
tweets that contain the word 'skupper'. Those results are sent to a private cluster that has a database

deployed. A third public cluster will ping the database and send new results to a Telegram channel.

In order to run this example you will need to create a Telegram channel and a Twitter Account to use its
credentials.

It contains the following components:

® A Twitter Camel integration that searches in the Twitter feed for results containing the word
skupper (public).

® A PostgreSQL Camel sink that receives the data from the Twitter Camel router and sends it to
the database (public).

® A PostgreSQL database that contains the results (private).

® A Telegram Camel integration that polls the database and sends the results to a Telegram
channel (public).

Prerequisites

® The kubectl command-line tool, version 1.15 or later
® The skupper command-line tool, the latest version
® Access to at least one Kubernetes cluster, from any provider you choose

o Kamel installation to deploy the Camel integrations per namespace.

I kamel install

o A Twitter Developer Account in order to use the Twiter API (you need to add the credentials in

config.properties file)

® Create a Telegram Bot and Channel to publish messages (you need to add the credentials in
config.properties file)

Procedure

® Configure separate console sessions

® Access your clusters

15

.

Red Hat Service Interconnect 1.8 Examples

Set up your namespaces

® |nstall Skupper in your namespaces

® Check the status of your namespaces

® Link your namespaces

® Deploy and expose the database in the private cluster

® Create the table to store the tweets

® Deploy Twitter Camel Integration in the public cluster

® Deploy Telegram Camel integration in the public cluster

® Test the application

1. Configure separate console sessions
Skupper is designed for use with multiple namespaces, typically on different clusters. The
skupper command uses your kubeconfig and current context to select the namespace
where it operates.

Your kubeconfig is stored in a file in your home directory. The skupper and kubectl
commands use the KUBECONFIG environment variable to locate it.

A single kubeconfig supports only one active context per user. Since you will be using
multiple contexts at once in this exercise, you need to create distinct kubeconfigs.

Start a console session for each of your namespaces. Set the KUBECONFIG environment
variable to a different path in each session.

Console for privatel:

I export KUBECONFIG=~/.kube/config-private1

Console for publicl:

I export KUBECONFIG=~/.kube/config-publici

Console for public2:
I export KUBECONFIG=~/.kube/config-public2

2. Access your clusters
The methods for accessing your clusters vary by Kubernetes provider. Find the instructions
for your chosen providers and use them to authenticate and configure access for each
console session. See the following links for more information:
o Amazon Elastic Kubernetes Service (EKS)
o Azure Kubernetes Service (AKS)

o Google Kubernetes Engine (GKE)

o |IBM Kubernetes Service

16

https://kubernetes.io/docs/concepts/configuration/organize-cluster-access-kubeconfig/
https://skupper.io/start/eks.html
https://skupper.io/start/aks.html
https://skupper.io/start/gke.html
https://skupper.io/start/ibmks.html

CHAPTER 4. SKUPPER CAMEL INTEGRATION EXAMPLE

o OpenShift

o More providers

3. Set up your namespaces

Use kubectl create namespace to create the namespaces you wish to use (or use existing
namespaces). Use kubectl config set-context to set the current namespace for each
session.

Console for privatel:

kubectl create namespace private1
kubectl config set-context --current --namespace private1

Console for publicl:

kubectl create namespace publici
kubectl config set-context --current --namespace public1

Console for public2:

kubectl create namespace public2
kubectl config set-context --current --namespace public2

. Install Skupper in your namespaces
The skupper init command installs the Skupper router and service controller in the current
namespace. Run the skupper init command in each namespace.

Console for privatel:
I skupper init
Console for publicl:
I skupper init
Console for public2:
I skupper init

. Check the status of your namespaces
Use skupper status in each console to check that Skupper is installed.

Console for privatel:
I skupper status
Console for publicl:

I skupper status

Console for public2:

17

https://skupper.io/start/openshift.html
https://kubernetes.io/partners/#kcsp

Red Hat Service Interconnect 1.8 Examples

18

I skupper status

You should see output like this for each namespace:

Skupper is enabled for namespace "<namespace>" in interior mode. It is not connected
to any other sites. It has no exposed services.

The site console url is: http:/<address>:8080

The credentials for internal console-auth mode are held in secret: 'skupper-console-
users'

As you move through the steps below, you can use skupper status at any time to check
your progress.

. Link your namespaces

Creating a link requires use of two skupper commands in conjunction, skupper token
create and skupper link create.

The skupper token create command generates a secret token that signifies permission to
create a link. The token also carries the link details. Then, in a remote namespace, The

skupper link create command uses the token to create a link to the namespace that
generated it.

NOTE

The link token is truly a secret. Anyone who has the token can link to your
namespace. Make sure that only those you trust have access to it.

First, use skupper token create in one namespace to generate the token. Then, use
skupper link create in the other to create a link.

Console for publicl:
I skupper token create ~/publici.token --uses 2

Console for public2:

skupper link create ~/publici.token
skupper link status --wait 30
skupper token create ~/public2.token

Console for privatel:

skupper link create ~/publici.token
skupper link create ~/public2.token
skupper link status --wait 30

If your console sessions are on different machines, you may need to use scp or a similar tool
to transfer the token.

. Deploy and expose the database in the private cluster

Use kubectl apply to deploy the database in privatel. Then expose the deployment.

Console for privatel:

8.

10.

CHAPTER 4. SKUPPER CAMEL INTEGRATION EXAMPLE

kubectl create -f src/main/resources/database/postgres-svc.yaml
skupper expose deployment postgres --address postgres --port 5432 -n privatei

Create the table to store the tweets
Console for privatel:

kubectl run pg-shell -i --tty --image quay.io/skupper/simple-pg --
env="PGUSER=postgresadmin” --env="PGPASSWORD=admin123" --
env="PGHOST=$(kubectl get service postgres -o=jsonpath="{.spec.clusterlP})" -- bash
psql --dbname=postgresdb

CREATE EXTENSION IF NOT EXISTS "uuid-ossp";

CREATE TABLE tw_feedback (id uuid DEFAULT uuid_generatev4 (),sigthning
VARCHAR(255),created TIMESTAMP default CURRENTTIMESTAMP,PRIMARY
KEY(id));

Deploy Twitter Camel Integration in the public cluster

First, we need to deploy the TwitterRoute component in Kubernetes by using kamel. This
component will poll Twitter every 5000 ms for tweets that include the word skupper.
Subsequently, it will send the results to the postgresql-sink, that should be installed in the
same cluster as well. The kamelet sink will insert the results in the postgreSQL database.

Console for publicl:
I src/main/resources/scripts/setUpPublic1Cluster.sh

Deploy Telegram Camel integration in the public cluster

In this step we will install the secret in Kubernetes that contains the database credentials, in
order to be used by the TelegramRoute component. After that we will deploy
TelegramRoute using kamel in the Kubernetes cluster. This component will poll the
database every 3 seconds and gather the results inserted during the last 3 seconds.

Console for public2:

I src/main/resources/scripts/setUpPublic2Cluster.sh

. Test the application

To be able to see the whole flow at work, you need to post a tweet containing the word
skupper and after that you will see a new message in the Telegram channel with the title
New feedback about Skupper

Console for privatel:

kubectl attach pg-shell -c pg-shell -i -t
psql --dbname=postgresdb
SELECT * FROM twfeedback;

Sample output:

id | sigthning | created

+--- +
95655229-747a-4787-8133-923ef0a1b2ca | Testing skupper | 2022-03-10
19:35:08.412542

19

Red Hat Service Interconnect 1.8 Examples

Console for publicl:

I kamel logs twitter-route

Sample output:

"[1]1 2022-03-10 19:35:08,397 INFO [postgresql-sink-1] (Camel (camel-1) thread #0 -
twitter-search://skupper) Testing skupper"

20

CHAPTER 5. ACCESSING AN FTP SERVER USING SKUPPER

CHAPTER 5. ACCESSING AN FTP SERVER USING SKUPPER

Securely connect to an FTP server on a remote Kubernetes cluster

This example is part of a suite of examples showing the different ways you can use Skupper to connect
services across cloud providers, data centers, and edge sites.

Overview

This example shows you how you can use Skupper to connect an FTP client on one Kubernetes cluster
to an FTP server on another.

It demonstrates use of Skupper with multi-port services such as FTP. It uses FTP in passive mode
(which is more typical these days) and a restricted port range that simplifies Skupper configuration.

Prerequisites

® The kubectl command-line tool, version 1.15 or later (installation guide)

® Access to at least one Kubernetes cluster, from any provider you choose

Procedure

® Clone the repo for this example.

® |[nstall the Skupper command-line tool
® Set up your namespaces

® Deploy the FTP server

® Create your sites

® Link your sites

® Expose the FTP server

® Runthe FTP client

1. Clone the repo for this example. Navigate to the appropriate GitHub repository from
https://skupper.io/examples/index.html and clone the repository.

2. Install the Skupper command-line tool
This example uses the Skupper command-line tool to deploy Skupper. You need to install
the skupper command only once for each development environment.

See the Installation for details about installing the CLI. For configured systems, use the
following command:

I sudo dnf install skupper-cli

3. Set up your namespaces
Skupper is designed for use with multiple Kubernetes namespaces, usually on different
clusters. The skupper and kubectl commands use your kubeconfig and current context to
select the namespace where they operate.

21

.
https://github.com/skupperproject/skupper-example-ftp/blob/main/server/kubernetes.yaml#L25-L28
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://skupper.io/start/kubernetes.html
https://skupper.io/examples/index.html
https://docs.redhat.com/en/documentation/red_hat_service_interconnect/1.8/html-single/installation/
https://kubernetes.io/docs/concepts/configuration/organize-cluster-access-kubeconfig/

Red Hat Service Interconnect 1.8 Examples

22

Your kubeconfig is stored in a file in your home directory. The skupper and kubectl
commands use the KUBECONFIG environment variable to locate it.

A single kubeconfig supports only one active context per user. Since you will be using
multiple contexts at once in this exercise, you need to create distinct kubeconfigs.

For each namespace, open a new terminal window. In each terminal, set the KUBECONFIG

environment variable to a different path and log in to your cluster. Then create the
namespace you wish to use and set the namespace on your current context.

NOTE

The login procedure varies by provider. See the documentation for yours:

o Amazon Elastic Kubernetes Service (EKS)
o Azure Kubernetes Service (AKS)

o Google Kubernetes Engine (GKE)

o |IBM Kubernetes Service

o OpenShift

Public:

export KUBECONFIG=~/.kube/config-public

Enter your provider-specific login command

kubectl create namespace public

kubectl config set-context --current --namespace public

Private:

export KUBECONFIG=~/.kube/config-private

Enter your provider-specific login command

kubectl create namespace private

kubectl config set-context --current --namespace private

. Deploy the FTP server

In Private, use kubectl apply to deploy the FTP server.

Private:

I kubectl apply -f server

Sample output:

$ kubectl apply -f server
deployment.apps/ftp-server created

. Create your sites

A Skupper site is a location where components of your application are running. Sites are
linked together to form a network for your application. In Kubernetes, a site is associated
with a namespace.

https://skupper.io/start/eks.html#cluster-access
https://skupper.io/start/aks.html#cluster-access
https://skupper.io/start/gke.html#cluster-access
https://skupper.io/start/ibmks.html#cluster-access
https://skupper.io/start/openshift.html#cluster-access

CHAPTER 5. ACCESSING AN FTP SERVER USING SKUPPER

For each namespace, use skupper init to create a site. This deploys the Skupper router and
controller. Then use skupper status to see the outcome.

Public:

skupper init
skupper status

Sample output:

$ skupper init

Waiting for LoadBalancer IP or hostname...

Waiting for status...

Skupper is now installed in namespace 'public’. Use 'skupper status' to get more
information.

$ skupper status
Skupper is enabled for namespace "public”. It is not connected to any other sites. It has
no exposed services.

Private:

skupper init
skupper status

Sample output:

$ skupper init

Waiting for LoadBalancer IP or hostname...

Waiting for status...

Skupper is now installed in namespace 'private’. Use 'skupper status' to get more
information.

$ skupper status
Skupper is enabled for namespace "private”. It is not connected to any other sites. It has
no exposed services.

As you move through the steps below, you can use skupper status at any time to check
your progress.

. Link your sites
A Skupper link is a channel for communication between two sites. Links serve as a transport
for application connections and requests.

Creating a link requires use of two skupper commands in conjunction, skupper token
create and skupper link create.

The skupper token create command generates a secret token that signifies permission to

create alink. The token also carries the link details. Then, in a remote site, The skupper link
create command uses the token to create a link to the site that generated it.

23

Red Hat Service Interconnect 1.8 Examples

24

NOTE

The link token is truly a secret. Anyone who has the token can link to your
site. Make sure that only those you trust have access to it.

First, use skupper token create in site Public to generate the token. Then, use skupper
link create in site Private to link the sites.

Public:
I skupper token create ~/secret.token

Sample output:

$ skupper token create ~/secret.token
Token written to ~/secret.token

Private:

I skupper link create ~/secret.token

Sample output:

$ skupper link create ~/secret.token

Site configured to link to https://10.105.193.154:8081/ed9c37f6-d78a-11ec-a8c7-
04421a4c5042 (name=link1)

Check the status of the link using 'skupper link status'.

If your terminal sessions are on different machines, you may need to use scp or a similar tool
to transfer the token securely. By default, tokens expire after a single use or 15 minutes
after creation.

. Expose the FTP server

In Private, use skupper expose to expose the FTP server on all linked sites.

Private:

I skupper expose deployment/ftp-server --port 21100 --port 21

Sample output:

$ skupper expose deployment/ftp-server --port 21100 --port 21
deployment ftp-server exposed as ftp-server

. Run the FTP client

In Public, use kubectl run and the curl image to perform FTP put and get operations.

Public:

echo "Hello!" | kubectl run ftp-client --stdin --rm --image=docker.io/curlimages/curl --
restart=Never -- -s -T - ftp://example:example@ftp-server/greeting

kubectl run ftp-client --attach --rm --image=docker.io/curlimages/curl --restart=Never -- -
s ftp://example:example@ftp-server/greeting

CHAPTER 5. ACCESSING AN FTP SERVER USING SKUPPER

Sample output:

$ echo "Hello!" | kubectl run ftp-client --stdin --rm --image=docker.io/curlimages/curl --
restart=Never -- -s -T - ftp://example:example@ftp-server/greeting
pod "ftp-client" deleted

$ kubectl run ftp-client --attach --rm --image=docker.io/curlimages/curl --restart=Never --
-s ftp://example:example@ftp-server/greeting

Hello!

pod "ftp-client" deleted

25

Red Hat Service Interconnect 1.8 Examples

CHAPTER 6. IPERF

Perform real-time network throughput measurements while using iPerf3

This example is part of a suite of examples showing the different ways you can use Skupper to connect
services across cloud providers, data centers, and edge sites.

Overview

This tutorial demonstrates how to perform real-time network throughput measurements across
Kubernetes using the iperf3 tool. In this tutorial you:

® deploy iperf3in three separate clusters

® runiperf3 client test instances

Prerequisites

® The kubectl command-line tool, version 1.15 or later

® Access to three clusters to observe performance. As an example, the three clusters might
consist of:

® A private cloud cluster running on your local machine (privatel)

® Two public cloud clusters running in public cloud providers (publicl and public2)

Procedure

® Clone the repo for this example.

® |nstall the Skupper command-line tool
® Configure separate console sessions
® Access your clusters

® Set up your namespaces

® [nstall Skupper in your namespaces

® Check the status of your namespaces
® Link your namespaces

® Deploy the iperf3 servers

® Expose iperf3 from each namespace

® Run benchmark tests across the clusters

1. Clone the repo for this example. Navigate to the appropriate GitHub repository from
https://skupper.io/examples/index.html and clone the repository.

2. Install the Skupper command-line tool
The skupper command-line tool is the entrypoint for installing and configuring Skupper.
You need to install the skupper command only once for each development environment.

26

.
https://skupper.io/examples/index.html

CHAPTER 6. IPERF

See the Installation for details about installing the CLI. For configured systems, use the
following command:

I sudo dnf install skupper-cli

For Windows and other installation options, see Installing Skupper.

. Configure separate console sessions

Skupper is designed for use with multiple namespaces, usually on different clusters. The
skupper and kubectl commands use your kubeconfig and current context to select the
namespace where they operate.

Your kubeconfig is stored in a file in your home directory. The skupper and kubectl
commands use the KUBECONFIG environment variable to locate it.

A single kubeconfig supports only one active context per user. Since you will be using
multiple contexts at once in this exercise, you need to create distinct kubeconfigs.

Start a console session for each of your namespaces. Set the KUBECONFIG environment
variable to a different path in each session.

Console for publicl:

I export KUBECONFIG=~/.kube/config-public1

Console for public2:

I export KUBECONFIG=~/.kube/config-public2

Console for privatel:
I export KUBECONFIG=~/.kube/config-private1

. Access your clusters

The procedure for accessing a Kubernetes cluster varies by provider. Find the instructions
for your chosen provider and use them to authenticate and configure access for each
console session.

. Set up your namespaces

Use kubectl create namespace to create the namespaces you wish to use (or use existing
namespaces). Use kubectl config set-context to set the current namespace for each
session.

Console for publicl:

kubectl create namespace publici
kubectl config set-context --current --namespace public1

Console for public2:

kubectl create namespace public2
kubectl config set-context --current --namespace public2

Console for privatel:

27

https://docs.redhat.com/en/documentation/red_hat_service_interconnect/1.8/html-single/installation/
https://skupper.io/install/index.html
https://kubernetes.io/docs/concepts/configuration/organize-cluster-access-kubeconfig/
https://skupper.io/start/kubernetes.html

Red Hat Service Interconnect 1.8 Examples

28

6.

kubectl create namespace private1
kubectl config set-context --current --namespace private1

Install Skupper in your namespaces
The skupper init command installs the Skupper router and controller in the current
namespace. Run the skupper init command in each namespace.

Console for publicl:

I skupper init --enable-console --enable-flow-collector
Console for public2:

I skupper init

Console for privatel:

I skupper init

Sample output:

$ skupper init

Waiting for LoadBalancer IP or hostname...

Waiting for status...

Skupper is now installed in namespace '<namespace>". Use 'skupper status' to get more
information.

Check the status of your namespaces
Use skupper status in each console to check that Skupper is installed.

Console for publicl:
I skupper status
Console for public2:
I skupper status
Console for privatel:
I skupper status

Sample output:

Skupper is enabled for namespace "<namespace>" in interior mode. It is connected to 1
other site. It has 1 exposed service.

The site console url is: <console-url>

The credentials for internal console-auth mode are held in secret: 'skupper-console-
users'

As you move through the steps below, you can use skupper status at any time to check
your progress.

CHAPTER 6. IPERF

8. Link your namespaces
Creating a link requires use of two skupper commands in conjunction, skupper token
create and skupper link create.
The skupper token create command generates a secret token that signifies permission to
create a link. The token also carries the link details. Then, in a remote namespace, The

skupper link create command uses the token to create a link to the namespace that
generated it.

NOTE

The link token is truly a secret. Anyone who has the token can link to your
namespace. Make sure that only those you trust have access to it.

First, use skupper token create in one namespace to generate the token. Then, use
skupper link create in the other to create a link.

Console for publicl:

skupper token create ~/private-to-public1-token.yaml
skupper token create ~/public2-to-public1-token.yaml

Console for public2:

skupper token create ~/private-to-public2-token.yaml
skupper link create ~/public2-to-public1-token.yaml
skupper link status --wait 60

Console for privatel:

skupper link create ~/private1-to-public1-token.yaml
skupper link create ~/private1-to-public2-token.yaml
skupper link status --wait 60

If your console sessions are on different machines, you may need to use scp or a similar tool
to transfer the token securely. By default, tokens expire after a single use or 15 minutes
after creation.

9. Deploy the iperf3 servers
After creating the application router network, deploy iperf3 in each namespace.

Console for privatel:

I kubectl apply -f deployment-iperf3-a.yaml
Console for publict:

I kubectl apply -f deployment-iperf3-b.yaml
Console for public2:

I kubectl apply -f deployment-iperf3-c.yaml

29

Red Hat Service Interconnect 1.8 Examples

30

10.

Expose iperf3 from each namespace
We have established connectivity between the namespaces and deployed iperf3. Before we
can test performance, we need access to the iperf3 from each namespace.

Console for privatel:

I skupper expose deployment/iperf3-server-a --port 5201
Console for publicl:

I skupper expose deployment/iperf3-server-b --port 5201
Console for public2:

I skupper expose deployment/iperf3-server-c --port 5201

. Run benchmark tests across the clusters

After deploying the iperf3 servers into the private and public cloud clusters, the virtual
application network enables communications even though they are running in separate
clusters.

Console for privatel:

kubectl exec $(kubectl get pod -I application=iperf3-server-a -
o=jsonpath="{.items[0].metadata.name}’) -- iperf3 -c iperf3-server-a
kubectl exec $(kubectl get pod -I application=iperf3-server-a -
o=jsonpath="{.items[0].metadata.name}’) -- iperf3 -c iperf3-server-b
kubectl exec $(kubectl get pod -I application=iperf3-server-a -
o=jsonpath="{.items[0].metadata.name}’) -- iperf3 -c iperf3-server-c

Console for publict:

kubectl exec $(kubectl get pod -I application=iperf3-server-b -
o=jsonpath="{.items[0].metadata.name}’) -- iperf3 -c iperf3-server-a
kubectl exec $(kubectl get pod -I application=iperf3-server-b -
o=jsonpath="{.items[0].metadata.name}’) -- iperf3 -c iperf3-server-b
kubectl exec $(kubectl get pod -I application=iperf3-server-b -
o=jsonpath="{.items[0].metadata.name}’) -- iperf3 -c iperf3-server-c

Console for public2:

kubectl exec $(kubectl get pod -I application=iperf3-server-c -
o=jsonpath="{.items[0].metadata.name}’) -- iperf3 -c iperf3-server-a
kubectl exec $(kubectl get pod -I application=iperf3-server-c -
o=jsonpath="{.items[0].metadata.name}’) -- iperf3 -c iperf3-server-b
kubectl exec $(kubectl get pod -I application=iperf3-server-c -
o=jsonpath="{.items[0].metadata.name}’) -- iperf3 -c iperf3-server-c

CHAPTER 7. ACCESSING KAFKA USING SKUPPER

CHAPTER 7. ACCESSING KAFKA USING SKUPPER

Use public cloud resources to process data from a private Kafka cluster

This example is part of a suite of examples showing the different ways you can use Skupper to connect
services across cloud providers, data centers, and edge sites.

Overview

This example is a simple Kafka application that shows how you can use Skupper to access a Kafka cluster
at a remote site without exposing it to the public internet.

It contains two services:

e A Kafka cluster named "cluster!” running in a private data center. The cluster has a topic named
"topicl".

e AKafka client running in the public cloud. It sends 10 messages to "topicl” and then receives
them back.

To set up the Kafka cluster, this example uses the Kubernetes operator from the Strimzi project. The
Kafka client is a Java application built using Quarkus.

The example uses two Kubernetes namespaces, "private” and "public”, to represent the private data
center and public cloud.

Prerequisites

® The kubectl command-line tool, version 1.15 or later (installation guide)

® Access to at least one Kubernetes cluster, from any provider you choose

Procedure

® Clone the repo for this example.

® |nstall the Skupper command-line tool
® Set up your namespaces

® Deploy the Kafka cluster

® Create your sites

® Link your sites

® Expose the Kafka cluster

® Run the client

1. Clone the repo for this example. Navigate to the appropriate GitHub repository from
https://skupper.io/examples/index.html and clone the repository.

2. Install the Skupper command-line tool
This example uses the Skupper command-line tool to deploy Skupper. You need to install
the skupper command only once for each development environment.

31

.
https://strimzi.io/
https://quarkus.io/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://skupper.io/start/kubernetes.html
https://skupper.io/examples/index.html

Red Hat Service Interconnect 1.8 Examples

32

See the Installation for details about installing the CLI. For configured systems, use the
following command:

I sudo dnf install skupper-cli

. Set up your namespaces

Skupper is designed for use with multiple Kubernetes namespaces, usually on different
clusters. The skupper and kubectl commands use your kubeconfig and current context to
select the namespace where they operate.

Your kubeconfig is stored in a file in your home directory. The skupper and kubectl
commands use the KUBECONFIG environment variable to locate it.

A single kubeconfig supports only one active context per user. Since you will be using
multiple contexts at once in this exercise, you need to create distinct kubeconfigs.

For each namespace, open a new terminal window. In each terminal, set the KUBECONFIG

environment variable to a different path and log in to your cluster. Then create the
namespace you wish to use and set the namespace on your current context.

NOTE

The login procedure varies by provider. See the documentation for yours:

-

o Amazon Elastic Kubernetes Service (EKS)
o Azure Kubernetes Service (AKS)

o Google Kubernetes Engine (GKE)

o |IBM Kubernetes Service

o OpenShift

Public:

export KUBECONFIG=~/.kube/config-public

Enter your provider-specific login command

kubectl create namespace public

kubectl config set-context --current --namespace public

Private:

export KUBECONFIG=~/.kube/config-private

Enter your provider-specific login command

kubectl create namespace private

kubectl config set-context --current --namespace private

. Deploy the Kafka cluster

In Private, use the kubectl create and kubectl apply commands with the listed YAML files
to install the operator and deploy the cluster and topic.

Private:

https://docs.redhat.com/en/documentation/red_hat_service_interconnect/1.8/html-single/installation/
https://kubernetes.io/docs/concepts/configuration/organize-cluster-access-kubeconfig/
https://skupper.io/start/eks.html#cluster-access
https://skupper.io/start/aks.html#cluster-access
https://skupper.io/start/gke.html#cluster-access
https://skupper.io/start/ibmks.html#cluster-access
https://skupper.io/start/openshift.html#cluster-access

CHAPTER 7. ACCESSING KAFKA USING SKUPPER

kubectl create -f server/strimzi.yaml|
kubectl apply -f server/cluster1.yaml
kubectl wait --for condition=ready --timeout 900s kafka/clusteri

Sample output:

$ kubectl create -f server/strimzi.yaml
customresourcedefinition.apiextensions.k8s.io/kafkas.kafka.strimzi.io created
rolebinding.rbac.authorization.k8s.io/strimzi-cluster-operator-entity-operator-delegation
created

clusterrolebinding.rbac.authorization.k8s.io/strimzi-cluster-operator created
rolebinding.rbac.authorization.k8s.io/strimzi-cluster-operator-topic-operator-delegation
created

customresourcedefinition.apiextensions.k8s.io/kafkausers.kaftka.strimzi.io created
customresourcedefinition.apiextensions.k8s.io/kafkarebalances.kafka.strimzi.io created
deployment.apps/strimzi-cluster-operator created
customresourcedefinition.apiextensions.k8s.io/kafkamirrormaker2s.kafka.strimzi.io
created

clusterrole.rbac.authorization.k8s.io/strimzi-entity-operator created
clusterrole.rbac.authorization.k8s.io/strimzi-cluster-operator-global created
clusterrolebinding.rbac.authorization.k8s.io/strimzi-cluster-operator-kafka-broker-
delegation created

rolebinding.rbac.authorization.k8s.io/strimzi-cluster-operator created
clusterrole.rbac.authorization.k8s.io/strimzi-cluster-operator-namespaced created
clusterrole.rbac.authorization.k8s.io/strimzi-topic-operator created
clusterrolebinding.rbac.authorization.k8s.io/strimzi-cluster-operator-kafka-client-
delegation created

clusterrole.rbac.authorization.k8s.io/strimzi-kafka-client created
serviceaccount/strimzi-cluster-operator created
clusterrole.rbac.authorization.k8s.io/strimzi-kafka-broker created
customresourcedefinition.apiextensions.k8s.io/kafkatopics.kafka.strimzi.io created
customresourcedefinition.apiextensions.k8s.io/kafkabridges.kafka.strimzi.io created
customresourcedefinition.apiextensions.k8s.io/kafkaconnectors.kafka.strimzi.io created
customresourcedefinition.apiextensions.k8s.io/kafkaconnects2is.kafka.strimzi.io created
customresourcedefinition.apiextensions.k8s.io/kafkaconnects.kafka.strimzi.io created
customresourcedefinition.apiextensions.k8s.io/kafkamirrormakers.kafka.strimzi.io
created

configmap/strimzi-cluster-operator created

$ kubectl apply -f server/clusteri.yami
kafka.kafka.strimzi.io/cluster1 created
kafkatopic.kafka.strimzi.io/topic1 created

$ kubectl wait --for condition=ready --timeout 900s kafka/cluster1
kafka.kafka.strimzi.io/cluster1 condition met

NOTE:

By default, the Kafka bootstrap server returns broker addresses that include the
Kubernetes namespace in their domain name. When, as in this example, the Kafka client is
running in a namespace with a different name from that of the Kafka cluster, this prevents
the client from resolving the Kafka brokers.

33

Red Hat Service Interconnect 1.8 Examples

34

To make the Kafka brokers reachable, set the advertisedHost property of each broker to a
domain name that the Kafka client can resolve at the remote site. In this example, this is
achieved with the following listener configuration:

spec:
kafka:
listeners:
- name: plain
port: 9092
type: internal
tls: false
configuration:
brokers:
- broker: 0
advertisedHost: cluster1-kafka-0.cluster1-kafka-brokers

See Advertised addresses for brokers for more information.

. Create your sites

A Skupper site is a location where components of your application are running. Sites are
linked together to form a network for your application. In Kubernetes, a site is associated
with a namespace.

For each namespace, use skupper init to create a site. This deploys the Skupper router and
controller. Then use skupper status to see the outcome.

Public:

skupper init
skupper status

Sample output:

$ skupper init

Waiting for LoadBalancer IP or hostname...

Waiting for status...

Skupper is now installed in namespace 'public’. Use 'skupper status' to get more
information.

$ skupper status
Skupper is enabled for namespace "public”. It is not connected to any other sites. It has
no exposed services.

Private:

skupper init
skupper status

Sample output:

$ skupper init

Waiting for LoadBalancer IP or hostname...

Waiting for status...

Skupper is now installed in namespace 'private’. Use 'skupper status' to get more
information.

https://strimzi.io/docs/operators/in-development/configuring.html#property-listener-config-broker-reference

CHAPTER 7. ACCESSING KAFKA USING SKUPPER

$ skupper status
Skupper is enabled for namespace "private”. It is not connected to any other sites. It has
no exposed services.

As you move through the steps below, you can use skupper status at any time to check
your progress.

. Link your sites
A Skupper link is a channel for communication between two sites. Links serve as a transport
for application connections and requests.

Creating a link requires use of two skupper commands in conjunction, skupper token
create and skupper link create.

The skupper token create command generates a secret token that signifies permission to

create alink. The token also carries the link details. Then, in a remote site, The skupper link
create command uses the token to create a link to the site that generated it.

NOTE

The link token is truly a secret. Anyone who has the token can link to your
site. Make sure that only those you trust have access to it.

First, use skupper token create in site Public to generate the token. Then, use skupper
link create in site Private to link the sites.

Public:

I skupper token create ~/secret.token

Sample output:

$ skupper token create ~/secret.token
Token written to ~/secret.token

Private:

I skupper link create ~/secret.token

Sample output:

$ skupper link create ~/secret.token

Site configured to link to https://10.105.193.154:8081/ed9c37f6-d78a-11ec-a8c7-
04421a4c5042 (name=link1)

Check the status of the link using 'skupper link status'.

If your terminal sessions are on different machines, you may need to use scp or a similar tool
to transfer the token securely. By default, tokens expire after a single use or 15 minutes
after creation.

. Expose the Kafka cluster

In Private, use skupper expose with the --headless option to expose the Kafka cluster as a
headless service on the Skupper network.

35

Red Hat Service Interconnect 1.8 Examples

36

Then, in Public, use the kubectl get service command to check that the cluster1-kafka-
brokers service appears after a moment.

Private:

I skupper expose statefulset/clusteri-katka --headless --port 9092

Sample output:

I $ skupper expose statefulset/cluster1-kafka --headless --port 9092
statefulset clusteri-kafka exposed as clusteri-kafka-brokers

Public:

I kubectl get service/cluster1-kafka-brokers

Sample output:

$ kubectl get service/cluster1-kafka-brokers
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
clusteri-kafka-brokers ClusterlP None <none> 9092/TCP 2s

. Run the client

Use the kubectl run command to execute the client program in Public.

Public:

kubectl run client --attach --rm --restart Never --image quay.io/skupper/kafka-example-
client --env BOOTSTRAPSERVERS=clusteri-kafka-brokers:9092

Sample output:

$ kubectl run client --attach --rm --restart Never --image quay.io/skupper/kafka-example-
client --env BOOTSTRAPSERVERS=clusteri-kafka-brokers:9092
[...]

Received message 1

Received message 2

Received message 3

Received message 4

Received message 5

Received message 6

Received message 7

Received message 8

Received message 9

Received message 10

Result: OK

[..]

To see the client code, look in the client directory of this project.

client

CHAPTER 8. PATIENT PORTAL

CHAPTER 8. PATIENT PORTAL

A simple database-backed web application that runs in the public cloud but keeps its data in a private
database

This example is part of a suite of examples showing the different ways you can use Skupper to connect
services across cloud providers, data centers, and edge sites.

Overview

This example is a simple database-backed web application that shows how you can use Skupper to
access a database at a remote site without exposing it to the public internet.

It contains three services:
® A PostgreSQL database running on a bare-metal or virtual machine in a private data center.
® A payment-processing service running on Kubernetes in a private data center.

e A web frontend service running on Kubernetes in the public cloud. It uses the PostgreSQL
database and the payment-processing service.

The example uses two Kubernetes namespaces, private and public, to represent the Kubernetes cluster
in the private data center and the cluster in the public cloud. It uses Podman to run the database.

Prerequisites

® The kubectl command-line tool, version 1.15 or later (installation guide)

® Access to at least one Kubernetes cluster, from any provider you choose

Procedure

® Clone the repo for this example.

® |nstall the Skupper command-line tool
® Set up your Kubernetes namespaces
® Set up your Podman network

® Deploy the application

® Create your sites

® Link your sites

® [Expose application services

® Access the frontend

1. Clone the repo for this example. Navigate to the appropriate GitHub repository from
https://skupper.io/examples/index.html and clone the repository.

2. Install the Skupper command-line tool
This example uses the Skupper command-line tool to deploy Skupper. You need to install
the skupper command only once for each development environment.

37

.
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://skupper.io/start/kubernetes.html
https://skupper.io/examples/index.html

Red Hat Service Interconnect 1.8 Examples

38

See the Installation for details about installing the CLI. For configured systems, use the
following command:

I sudo dnf install skupper-cli

. Set up your Kubernetes namespaces

Skupper is designed for use with multiple Kubernetes namespaces, usually on different
clusters. The skupper and kubectl commands use your kubeconfig and current context to
select the namespace where they operate.

Your kubeconfig is stored in a file in your home directory. The skupper and kubectl
commands use the KUBECONFIG environment variable to locate it.

A single kubeconfig supports only one active context per user. Since you will be using
multiple contexts at once in this exercise, you need to create distinct kubeconfigs.

For each namespace, open a new terminal window. In each terminal, set the KUBECONFIG

environment variable to a different path and log in to your cluster. Then create the
namespace you wish to use and set the namespace on your current context.

NOTE

The login procedure varies by provider. See the documentation for yours:

o Amazon Elastic Kubernetes Service (EKS)
o Azure Kubernetes Service (AKS)

o Google Kubernetes Engine (GKE)

o |IBM Kubernetes Service

o OpenShift

Public:

export KUBECONFIG=~/.kube/config-public

Enter your provider-specific login command

kubectl create namespace public

kubectl config set-context --current --namespace public

Private:

export KUBECONFIG=~/.kube/config-private

Enter your provider-specific login command

kubectl create namespace private

kubectl config set-context --current --namespace private

4. Set up your Podman network

Open a new terminal window and set the SKUPPERPLATFORM environment variable to
podman. This sets the Skupper platform to Podman for this terminal session.

Use podman network create to create the Podman network that Skupper will use.

https://docs.redhat.com/en/documentation/red_hat_service_interconnect/1.8/html-single/installation/
https://kubernetes.io/docs/concepts/configuration/organize-cluster-access-kubeconfig/
https://skupper.io/start/eks.html#cluster-access
https://skupper.io/start/aks.html#cluster-access
https://skupper.io/start/gke.html#cluster-access
https://skupper.io/start/ibmks.html#cluster-access
https://skupper.io/start/openshift.html#cluster-access

CHAPTER 8. PATIENT PORTAL

Use systemctl to enable the Podman APl service.

Podman:

export SKUPPERPLATFORM=podman
podman network create skupper
systemctl --user enable --now podman.socket

If the systemctl command doesn’t work, you can try the podman system service
command instead:

I podman system service --time=0 unix://$XDGRUNTIMEDIR/podman/podman.sock &

. Deploy the application
Use kubectl apply to deploy the frontend and payment processor on Kubernetes. Use
podman run to start the database on your local machine.

NOTE

It is important to name your running container using -=-name to avoid a

-

NOTE

You must use --network skupper with the podman run command.

Public:
I kubectl apply -f frontend/kubernetes.yaml
Private:

I kubectl apply -f payment-processor/kubernetes.yaml

Podman:

podman run --name database-target --network skupper --detach --rm -p 5432:5432
quay.io/skupper/patient-portal-database

. Create your sites
Public:

I skupper init
Private:

I skupper init --ingress none

Podman:

I skupper init --ingress none

collision with the container that Skupper creates for accessing the service.

39

Red Hat Service Interconnect 1.8 Examples

40

7. Link your sites

Creating a link requires use of two skupper commands in conjunction, skupper token
create and skupper link create.

The skupper token create command generates a secret token that signifies permission to
create a link. The token also carries the link details. Then, in a remote site, The skupper link
create command uses the token to create a link to the site that generated it.

NOTE

The link token is truly a secret. Anyone who has the token can link to your
site. Make sure that only those you trust have access to it.

First, use skupper token create in site Public to generate the token. Then, use skupper
link create in site Private to link the sites.

Public:

I skupper token create --uses 2 ~/secret.token
Private:

I skupper link create ~/secret.token

Podman:

I skupper link create ~/secret.token

If your terminal sessions are on different machines, you may need to use scp or a similar tool
to transfer the token securely. By default, tokens expire after a single use or 15 minutes
after creation.

. Expose application services

In Private, use skupper expose to expose the payment processor service.

In Podman, use skupper service create and skupper service bind to expose the database
on the Skupper network.

Then, in Public, use skupper service create to make it available.

NOTE

Podman sites do not automatically replicate services to remote sites. You
need to use skupper service create on each site where you wish to make a
service available.

Private:

I skupper expose deployment/payment-processor --port 8080

Podman:

CHAPTER 8. PATIENT PORTAL

skupper service create database 5432
skupper service bind database host database-target --target-port 5432

Public:
I skupper service create database 5432

. Access the frontend
In order to use and test the application, we need external access to the frontend.

Use kubectl expose with --type LoadBalancer to open network access to the frontend
service.

Once the frontend is exposed, use kubectl get service/frontend to look up the external IP
of the frontend service. If the external IP is <pending>, try again after a moment.

Once you have the external IP, use curl or a similar tool to request the /api/health endpoint
at that address.

NOTE

The <external-ip> field in the following commands is a placeholder. The
actual value is an IP address.

Public:

kubectl expose deployment/frontend --port 8080 --type LoadBalancer
kubectl get service/frontend
curl http://<external-ip>:8080/api/health

Sample output:

$ kubectl expose deployment/frontend --port 8080 --type LoadBalancer
service/frontend exposed

$ kubectl get service/frontend
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
frontend LoadBalancer 10.103.232.28 <external-ip> 8080:30407/TCP 15s

$ curl http://<external-ip>:8080/api/health
OK

If everything is in order, you can now access the web interface by navigating to
http://<external-ip>:8080/ in your browser.

41

http://:8080/

Red Hat Service Interconnect 1.8 Examples

CHAPTER 9. TRADE Z0OO

A simple trading application that runs in the public cloud but keeps its data in a private Kafka cluster

This example is part of a suite of examples showing the different ways you can use Skupper to connect
services across cloud providers, data centers, and edge sites.

Overview

This example is a simple Kafka application that shows how you can use Skupper to access a Kafka cluster
at a remote site without exposing it to the public internet.

It contains four services:

e A Kafka cluster running in a private data center. The cluster has two topics, "orders” and
"updates”.

® An order processor running in the public cloud. It consumes from "orders", matching buy and sell
offers to make trades. It publishes new and updated orders and trades to "updates".

® A market data service running in the public cloud. It looks at the completed trades and
computes the latest and average prices, which it then publishes to "updates”.

® A web frontend service running in the public cloud. It submits buy and sell orders to "orders" and
consumes from "updates” in order to show what's happening.

To set up the Kafka cluster, this example uses the Kubernetes operator from the Strimzi project. The
other services are small Python programs.

The example uses two Kubernetes namespaces, "private” and "public”, to represent the private data
center and public cloud.

Prerequisites

® The kubectl command-line tool, version 1.15 or later (installation guide)

® Access to at least one Kubernetes cluster, from any provider you choose

Procedure

® Clone the repo for this example.

® |[nstall the Skupper command-line tool
® Set up your namespaces

® Deploy the Kafka cluster

® Deploy the application services

® Create your sites

® Link your sites

® Expose the Kafka cluster

® Access the frontend

42

.
https://strimzi.io/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://skupper.io/start/kubernetes.html

CHAPTER 9. TRADE ZOO

1. Clone the repo for this example. Navigate to the appropriate GitHub repository from
https://skupper.io/examples/index.html and clone the repository.

2. Install the Skupper command-line tool
This example uses the Skupper command-line tool to deploy Skupper. You need to install
the skupper command only once for each development environment.

See the Installation for details about installing the CLI. For configured systems, use the
following command:

I sudo dnf install skupper-cli

3. Set up your namespaces
Skupper is designed for use with multiple Kubernetes namespaces, usually on different
clusters. The skupper and kubectl commands use your kubeconfig and current context to
select the namespace where they operate.

Your kubeconfig is stored in a file in your home directory. The skupper and kubectl
commands use the KUBECONFIG environment variable to locate it.

A single kubeconfig supports only one active context per user. Since you will be using
multiple contexts at once in this exercise, you need to create distinct kubeconfigs.

For each namespace, open a new terminal window. In each terminal, set the KUBECONFIG

environment variable to a different path and log in to your cluster. Then create the
namespace you wish to use and set the namespace on your current context.

NOTE

The login procedure varies by provider. See the documentation for yours:

o Amazon Elastic Kubernetes Service (EKS)
o Azure Kubernetes Service (AKS)

o Google Kubernetes Engine (GKE)

o |IBM Kubernetes Service

o OpenShift

Public:

export KUBECONFIG=~/.kube/config-public

Enter your provider-specific login command

kubectl create namespace public

kubectl config set-context --current --namespace public

Private:

export KUBECONFIG=~/.kube/config-private

Enter your provider-specific login command

kubectl create namespace private

kubectl config set-context --current --namespace private

43

https://skupper.io/examples/index.html
https://docs.redhat.com/en/documentation/red_hat_service_interconnect/1.8/html-single/installation/
https://kubernetes.io/docs/concepts/configuration/organize-cluster-access-kubeconfig/
https://skupper.io/start/eks.html#cluster-access
https://skupper.io/start/aks.html#cluster-access
https://skupper.io/start/gke.html#cluster-access
https://skupper.io/start/ibmks.html#cluster-access
https://skupper.io/start/openshift.html#cluster-access

Red Hat Service Interconnect 1.8 Examples

44

4. Deploy the Kafka cluster

In Private, use the kubectl create and kubectl apply commands with the listed YAML files
to install the operator and deploy the cluster and topic.

Private:

kubectl create -f kafka-cluster/strimzi.yaml
kubectl apply -f kafka-cluster/clusteri.yaml
kubectl wait --for condition=ready --timeout 900s kafka/clusteri

NOTE:

By default, the Kafka bootstrap server returns broker addresses that include the
Kubernetes namespace in their domain name. When, as in this example, the Kafka client is
running in a namespace with a different name from that of the Kafka cluster, this prevents
the client from resolving the Kafka brokers.

To make the Kafka brokers reachable, set the advertisedHost property of each broker to a
domain name that the Kafka client can resolve at the remote site. In this example, this is
achieved with the following listener configuration:

spec:
kafka:
listeners:
- name: plain
port: 9092
type: internal
tls: false
configuration:
brokers:
- broker: 0
advertisedHost: cluster1-kafka-0.cluster1-kafka-brokers

See Advertised addresses for brokers for more information.

. Deploy the application services

In Public, use the kubectl apply command with the listed YAML files to install the
application services.

Public:

kubectl apply -f order-processor/kubernetes.yaml
kubectl apply -f market-data/kubernetes.yami
kubectl apply -f frontend/kubernetes.yaml

. Create your sites

A Skupper site is a location where components of your application are running. Sites are
linked together to form a network for your application. In Kubernetes, a site is associated
with a namespace.

For each namespace, use skupper init to create a site. This deploys the Skupper router and
controller. Then use skupper status to see the outcome.

Public:

https://strimzi.io/docs/operators/in-development/configuring.html#property-listener-config-broker-reference

CHAPTER 9. TRADE ZOO

skupper init
skupper status

Sample output:

$ skupper init

Waiting for LoadBalancer IP or hostname...

Waiting for status...

Skupper is now installed in namespace 'public’. Use 'skupper status' to get more
information.

$ skupper status
Skupper is enabled for namespace "public”. It is not connected to any other sites. It has
no exposed services.

Private:

skupper init
skupper status

Sample output:

$ skupper init

Waiting for LoadBalancer IP or hostname...

Waiting for status...

Skupper is now installed in namespace 'private’. Use 'skupper status' to get more
information.

$ skupper status
Skupper is enabled for namespace "private”. It is not connected to any other sites. It has
no exposed services.

As you move through the steps below, you can use skupper status at any time to check
your progress.

. Link your sites
A Skupper link is a channel for communication between two sites. Links serve as a transport
for application connections and requests.

Creating a link requires use of two skupper commands in conjunction, skupper token
create and skupper link create.

The skupper token create command generates a secret token that signifies permission to

create alink. The token also carries the link details. Then, in a remote site, The skupper link
create command uses the token to create a link to the site that generated it.

NOTE

The link token is truly a secret. Anyone who has the token can link to your
site. Make sure that only those you trust have access to it.

First, use skupper token create in site Public to generate the token. Then, use skupper
link create in site Private to link the sites.

45

Red Hat Service Interconnect 1.8 Examples

46

Public:

I skupper token create ~/secret.token

Sample output:

$ skupper token create ~/secret.token
Token written to ~/secret.token

Private:

I skupper link create ~/secret.token

Sample output:

$ skupper link create ~/secret.token

Site configured to link to https://10.105.193.154:8081/ed9c37f6-d78a-11ec-a8c7-
04421a4c5042 (name=link1)

Check the status of the link using 'skupper link status'.

If your terminal sessions are on different machines, you may need to use scp or a similar tool
to transfer the token securely. By default, tokens expire after a single use or 15 minutes
after creation.

. Expose the Kafka cluster

In Private, use skupper expose with the --headless option to expose the Kafka cluster as a
headless service on the Skupper network.

Then, in Public, use kubectl get service to check that the clusteri-kafka-brokers service
appears after a moment.

Private:

I skupper expose statefulset/clusteri-katka --headless --port 9092

Public:

I kubectl get service/clusteri-kafka-brokers

. Access the frontend

In order to use and test the application, we need external access to the frontend.

Use kubectl expose with --type LoadBalancer to open network access to the frontend
service.

Once the frontend is exposed, use kubectl get service/frontend to look up the external IP
of the frontend service. If the external IP is <pending>, try again after a moment.

Once you have the external IP, use curl or a similar tool to request the /api/health endpoint
at that address.

CHAPTER 9. TRADE ZOO

NOTE

The <external-ip> field in the following commands is a placeholder. The
actual value is an IP address.

Public:

kubectl expose deployment/frontend --port 8080 --type LoadBalancer
kubectl get service/frontend
curl http://<external-ip>:8080/api/health

Sample output:

$ kubectl expose deployment/frontend --port 8080 --type LoadBalancer
service/frontend exposed

$ kubectl get service/frontend
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
frontend LoadBalancer 10.103.232.28 <external-ip> 8080:30407/TCP 15s

$ curl http://<external-ip>:8080/api/health
OK

If everything is in order, you can now access the web interface by navigating to
http://<external-ip>:8080/ in your browser.

47

http://:8080/

	Table of Contents
	CHAPTER 1. INTRODUCTION TO EXAMPLES
	CHAPTER 2. SKUPPER HELLO WORLD
	CHAPTER 3. ACCESSING ACTIVEMQ USING SKUPPER
	CHAPTER 4. SKUPPER CAMEL INTEGRATION EXAMPLE
	CHAPTER 5. ACCESSING AN FTP SERVER USING SKUPPER
	CHAPTER 6. IPERF
	CHAPTER 7. ACCESSING KAFKA USING SKUPPER
	CHAPTER 8. PATIENT PORTAL
	CHAPTER 9. TRADE ZOO

