‘® redhat.

Red Hat Single Sign-On

7.0
Server Developer Guide

Server Developer Guide

Red Hat Customer Content
Services

Red Hat Single Sign-On7.0 Server Developer Guide

Server Developer Guide

Legal Notice
Copyright © 2017 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution—Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.
Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other countries
and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide consist of information for developers to customize Red Hat Single Sign-On 7.0

Table of Contents

Table of Contents

CHAPTER 1. PREFACE ... ittt iia i iia i taa et saataas s ssaassannssaassannsnnnnsn, 3
CHAPTER 2. ADMIN REST APl ..ottt ii it a st aa st saa s saas s sannsnnnnsn, 4
2.1. EXAMPLE USING CURL 4
CHAPTER 3. THEMES ittt ie i it a st taa s aa s s sannsnnnnsn, 5
3.1. THEME TYPES 5
3.2. CONFIGURE THEME 5
3.3. DEFAULT THEMES 6
3.4. CREATING A THEME 6
3.5. DEPLOYING THEMES 10
CHAPTER 4. CUSTOMUSER ATTRIBUTES it iiiiiiii i iiatinna s saassannssnnnsnnnnas 13
4.1. REGISTRATION PAGE 13
4.2. ACCOUNT MANAGEMENT CONSOLE 13

Red Hat Single Sign-On 7.0 Server Developer Guide

CHAPTER 1. PREFACE

CHAPTER 1. PREFACE

In some of the example listings, what is meant to be displayed on one line does not fit inside the
available page width. These lines have been broken up. A '\' at the end of a line means that a break
has been introduced to fit in the page, with the following lines indented. So:

Let's pretend to have an extremely \
long line that \

does not fit

This one is short

Is really:

Let's pretend to have an extremely long line that does not fit
This one is short

Red Hat Single Sign-On 7.0 Server Developer Guide

CHAPTER 2. ADMIN REST API

Red Hat Single Sign-On comes with a fully functional Admin REST API with all features provided by
the Admin Console.

To invoke the APl you need to obtain an access token with the appropriate permissions. The
required permissions are described in Server Administration Guide.

A token can be obtained by enabling authenticating to your application with Red Hat Single Sign-
On, see the Securing Applications and Services Guide. You can also use direct access grant to
obtain an access token.

Refer to API Documentation for complete documentation.

2.1. EXAMPLE USING CURL

Obtain access token for user in the realm master with username admin and password password:

curl \
-d "client_id=admin-cli" \
-d "username=admin" \
-d "password=password" \
-d "grant_type=password" \
"http://localhost:8080/auth/realms/master/protocol/openid-
connect/token"

Note

By default this token expires in 1 minute

The result will be a JISON document. To invoke the API you need to extract the value of the
access_token property. You can then invoke the API by including the value in the
Authorization header of requests to the API.

The following example shows how to get the details of the master realm:

curl \
-H "Authorization: bearer eyJhbGciOiJSuUz..." \
"http://localhost:8080/auth/admin/realms/master"

https://access.redhat.com/documentation/en/red-hat-single-sign-on/7.0/server-administration-guide/
https://access.redhat.com/documentation/en/red-hat-single-sign-on/7.0/securing-applications-and-services-guide/
https://access.redhat.com/documentation/en/red-hat-single-sign-on/7.0/api-documentation/

CHAPTER 3. THEMES

CHAPTER 3. THEMES

Red Hat Single Sign-On provides theme support for web pages and emails. This allows customizing
the look and feel of end-user facing pages so they can be integrated with your applications.

Figure 3.1. Login page with sunrise example theme

Username or email

3.1. THEME TYPES

A theme can provide one or more types to customize different aspects of Red Hat Single Sign-On.
The types available are:

Account - Account management
Admin - Admin console

Email - Emails

Login - Login forms

Welcome - Welcome page

3.2. CONFIGURE THEME

All theme types, except welcome, is configured through the Admin Console. To change the theme
used for a realm open the Admin Console, select your realm from the drop-down box in the top
left corner. Under Realm Settings click on Themes.

Note

To set the theme for the master admin console you need to set the admin console theme
for the master realm. To see the changes to the admin console refresh the page.

Red Hat Single Sign-On 7.0 Server Developer Guide

To change the welcome theme you need to edit keycloak-server.json (in
standalone/configuration or domain/servers/{server name}/configuration)and
add welcomeTheme to the theme element, for example:

"theme": {

"welcomeTheme": "custom-theme",

If the server is running you need to restart the server for the changes to the welcome theme to take
effect.

3.3. DEFAULT THEMES

Red Hat Single Sign-On comes bundled with default themes in the server’s root themes directory.
To simplify upgrading you should not edit the bundled themes directly. Instead create your own
theme that extends one of the bundle themes.

3.4. CREATING A THEME

A theme consists of:
HTML templates (Freemarker Templates)
Images
Message bundles
Stylesheets
Scripts
Theme properties

Unless you plan to replace every single page you should extend another theme. Most likely you will
want to extend the Red Hat Single Sign-On theme, but you could also consider extending the base
theme if you are significantly changing the look and feel of the pages. The base theme primarily
consists of HTML templates and message bundles, while the Red Hat Single Sign-On theme
primarily contains images and stylesheets.

When extending a theme you can override individual resources (templates, stylesheets, etc.). If you
decide to override HTML templates bear in mind that you may need to update your custom template
when upgrading to a new release.

While creating a theme it's a good idea to disable caching as this makes it possible to edit theme
resources directly from the themes directory without restarting Red Hat Single Sign-On. To do this
edit standalone/configuration/keycloak-server. json for theme set staticMaxAge to
-1 and both cacheTemplates and cacheThemes to false:

"theme": {

"staticMaxAge": -1,
"cacheTemplates": false,

http://freemarker.org

CHAPTER 3. THEMES

"cacheThemes": false,

Remember to re-enable caching in production as it will significantly impact performance.

To create a new theme start by creating a new directory in the themes directory. The name of the
directory becomes the name of the theme. For example to create a theme called mytheme create
the directory themes/mytheme.

Inside the theme directory create a directory for each of the types your theme is going to provide.
For example to add the login type to the mytheme theme create the directory
themes/mytheme/login.

For each type create a file theme . properties which allows setting some configuration for the
theme. For example to configure the theme themes/mytheme/login that we just created to
extend the base theme and import some common resources create the file
themes/mytheme/login/theme.properties with following contents:

parent=base
import=common/keycloak

You have now created a theme with support for the login type. To check that it works open the
admin console. Select your realm and click on Themes. For Login Theme select mytheme and
click Save. Then open the login page for the realm.

You can do this either by login through your application or by opening the Account Management
console (/realms/{realm name}/account).

To see the effect of changing the parent theme, set parent=keycloak in theme.properties

and refresh the login page.

3.4.1. Theme Properties

Theme properties are set in the file <THEME TYPE>/theme.properties in the theme directory.
parent - Parent theme to extend
import - Import resources from another theme
styles - Space-separated list of styles to include
locales - Comma-separated list of supported locales

There are a list of properties that can be used to change the css class used for certain element
types. For a list of these properties look at the theme.properties file in the corresponding type of the
keycloak theme (themes/keycloak/<THEME TYPE>/theme.properties).

You can also add your own custom properties and use them from custom templates.

3.4.2. Stylesheets

A theme can have one or more stylesheets, to add a stylesheet create a file in the <THEME
TYPE>/resources/css directory of your theme. Then add it to thestyles property in
theme.properties.

Red Hat Single Sign-On 7.0 Server Developer Guide

For example to add styles.css to the mytheme create
themes/mytheme/login/resources/css/styles.css with the following content:

.login-pf body {
background: DimGrey none;
}
Then edit themes/mytheme/login/theme.properties and add:

I styles=css/styles.css

To see the changes open the login page for your realm. You will notice that the only styles being
applied are those from your custom stylesheet. To include the styles from the parent theme you
need to load the styles from that theme as well. Do this by editing
themes/mytheme/login/theme.properties and changing styles to:

styles=1ib/patternfly/css/patternfly.css lib/zocial/zocial.css
css/login.css css/styles.css

Note

To override styles from the parent stylesheets it's important that your stylesheet is listed
last.

3.4.3. Scripts

A theme can have one or more scripts, to add a script create a file in the <THEME
TYPE>/resources/js directory of your theme. Then add it to thescripts property in
theme.properties.

For example to add script. js to the mytheme create
themes/mytheme/login/resources/js/script. js with the following content:

I alert('Hello');
Then edit themes/mytheme/login/theme.properties and add:

I scripts=js/script.js

3.4.4. Images

To make images available to the theme add them to the <THEME TYPE>/resources/img
directory of your theme. These can be used from within stylesheets or directly in HTML templates.

For example to add an image to the mytheme copy an image to
themes/mytheme/login/resources/img/image. jpg.

You can then use this image from within a custom stylesheet with:

CHAPTER 3. THEMES

body {
background-image: url('../img/image.jpg');
background-size: cover;

Or to use directly in HTML templates add the following to a custom HTML template:

I

3.4.5. Messages

Text in the templates are loaded from message bundles. A theme that extends another theme will
inherit all messages from the parents message bundle and you can override individual messages by
adding <THEME TYPE>/messages/messages_en.properties to your theme.

For example to replace Username on the login form with Your Username for the mytheme create
the file themes/mytheme/login/messages/messages_en.properties with the following
content:

I usernameOrEmail=Your Username

Within a message values like {0} and {1} are replaced with arguments when the message is
used. For example {0} in "Log in to {0} is replaced with the name of the realm.

3.4.6. Internationalization

Red Hat Single Sign-On supports internationalization. To enable internationalization for a realm see
Server Administration Guide. This section will describe how you can add your own language.

To add a new language create the file <THEME TYPE>/messages/messages_<LOCALE> in the
directory of your theme. Then add it to the 1ocales property in <THEME
TYPE>/theme.properties. For a language to be available to users the realmslogin, account
and email theme has to support the language, so you need to add your language for those theme

types.

For example to add Norwegian translations to the mytheme theme create the file
themes/mytheme/login/messages/messages_no.properties with the following content:

usernameOrEmail=Brukernavn
password=Passord

All messages you don't provide a translation for will use the default English translation.

Then edit themes/mytheme/login/theme.properties and add:
I locales=en, no

You also need to do the same for the account and email theme types. To do this create
themes/mytheme/account/messages/messages_no.properties and
themes/mytheme/email/messages/messages_no.properties. Leaving these files empty
will result in the English messages being used. Then copy

https://access.redhat.com/documentation/en/red-hat-single-sign-on/7.0/server-administration-guide/

Red Hat Single Sign-On 7.0 Server Developer Guide

10

themes/mytheme/login/theme.properties to
themes/mytheme/account/theme.properties and
themes/mytheme/email/theme.properties.

Finally you need to add a translation for the language selector. This is done by adding a message to
the English translation. To do this add the following to
themes/mytheme/account/messages/messages_en.properties and
themes/mytheme/login/messages/messages_en.properties:

I locale_no=Norsk

3.4.7. HTML Templates

Red Hat Single Sign-On uses Freemarker Templates in order to generate HTML. You can override
individual templates in your own theme by creating <THEME TYPE>/<TEMPLATE>.ftl. For a list
of templates used see themes/base/<THEME TYPE>.

When creating a custom template it is a good idea to copy the template from the base theme to your
own theme, then applying the modifications you need. Bear in mind when upgrading to a new
version of Red Hat Single Sign-On you may need to update your custom templates to apply
changes to the original template if applicable.

For example to create a custom login form for the mytheme theme copy
themes/base/login/login. ftl to themes/mytheme/login and open it in an editor. After the
first line (<#import ...>) add <h1>HELLO WORLD!</h1> like so:

<#import "template.ftl" as layout>
<h1>HELLO WORLD!</h1>

Check out the FreeMarker Manual for more details on how to edit templates.

3.4.8. Emails

To edit the subject and contents for emails, for example password recovery email, add a message
bundle to the email type of your theme. There’s three messages for each email. One for the
subject, one for the plain text body and one for the html body.

To see all emails available take a look at
themes/base/email/messages/messages_en.properties.

For example to change the password recovery email for the mytheme theme create
themes/mytheme/email/messages/messages_en.properties with the following content:

passwordResetSubject=My password recovery
passwordResetBody=Reset password link: {0}
passwordResetBodyHtml=Reset password

3.5. DEPLOYING THEMES

Themes can be deployed to Red Hat Single Sign-On by copying the theme directory to themes or it
can be deployed as an archive. During development copying the theme to the themes directory, but
in production you may want to consider using an archive. An archive makes it simpler to have a

http://freemarker.org
http://freemarker.org/docs/index.html

CHAPTER 3. THEMES
versioned copy of the theme, especially when you have multiple instances of Red Hat Single Sign-
On for example with clustering.

To deploy a theme as an archive you need to create a ZIP archive with the theme resources. You
also need to add a file META-INF/keycloak-themes. json to the archive that lists the available
themes in the archive as well as what types each theme provides.

For example for the mytheme theme create mytheme. zip with the contents:
META-INF/keycloak-themes.json
theme/mytheme/login/theme.properties
theme/mytheme/login/login.ftl
theme/mytheme/login/resources/css/styles.css
theme/mytheme/login/resources/img/image.png
theme/mytheme/login/messages/messages_en.properties
theme/mytheme/email/messages/messages_en.properties

The contents of META-INF/keycloak-themes. json in this case would be:

{
"themes": [{
"name" : "mytheme",
"types": ["login", "email"]
1]
}

A single archive can contain multiple themes and each theme can support one or more types.

The deploy the archive to Red Hat Single Sign-On you can either manually create a module in
modules or use the jboss-cli command. It's simplest to use jboss-cli as it creates the
required directories and module descriptor for you.

To deploy mytheme. zip on Linux run:

bin/jboss-cli.sh --command="module add --name=org.example.mytheme --
resources=mytheme.zip"

On Windows run;

bin\jboss-cli.bat --command="module add --name=org.example.mytheme --
resources=mytheme.zip"

This command creates modules/org/example/mytheme/main directory with the mytheme.zip

archive and module.xml.

To manually create the module create the directory
modules/org/keycloak/example/mytheme/main, copy mytheme. zip to this directory and
create the file modules/org/keycloak/example/mytheme/main/module.xml with the
contents:

<?xml version="1.0" ?>
<module xmlns="urn:jboss:module:1.3" name="org.keycloak.example.themes">

11

Red Hat Single Sign-On 7.0 Server Developer Guide

12

<resources>
<resource-root path="mytheme.zip"/>
</resources>
</module>

You also need to register the module with Red Hat Single Sign-On. This is done by editing
keycloak-server. json (in standalone/configuration or domain/servers/{server
name}/configuration) and adding the module to theme/module/modules. For example:

[
"theme": {
"module": {
"modules": ["org.example.mytheme"]
}
3

If the server is running you need to restart the server after changing keycloak-server. json.

If the same theme is deployed to both the themes directory and as a module the version
in the themes directory is used.

CHAPTER 4. CUSTOM USER ATTRIBUTES

CHAPTER 4. CUSTOM USER ATTRIBUTES

You can add custom user attributes to the registration page and account management console with
a custom theme. This chapter describes how to add attributes to a custom theme, but you should
refer to the Themes chapter on how to create a custom theme.

4.1. REGISTRATION PAGE

To be able to enter custom attributes in the registration page copy the template
themes/base/login/register.ftl to the login type of your custom theme. Then open the
copy in an editor.

As an example to add a mobile number to the registration page add the following snippet to the form:

<div class="form-group">
<div class="${properties.kcLabelWrapperClass!}'">
<label for="user.attributes.mobile"
class="${properties.kcLabelClass!}">Mobile number</label>
</div>

<div class="col-sm-10 col-md-10">
<input type="text" class="${properties.kcInputClass!}"
id="user.attributes.mobile" name="user.attributes.mobile"/>
</div>
</div>

To see the changes make sure your realm is using your custom theme for the login theme and open
the registration page.

4.2. ACCOUNT MANAGEMENT CONSOLE

To be able to manage custom attributes in the user profile page in the account management console
copy the template themes/base/account/account . flt to the account type of your custom
theme. Then open the copy in an editor.

As an example to add a mobile number to the account page add the following snippet to the form:

<div class="form-group">
<div class="col-sm-2 col-md-2">
<label for="user.attributes.mobile" class="control-label">Mobile
number</label>
</div>

<div class="col-sm-10 col-md-10">
<input type="text" class="form-control"
id="user.attributes.mobile" name="user.attributes.mobile"
value="${(account.attributes.mobile!"'"')?html}"/>
</div>
</div>

To see the changes make sure your realm is using your custom theme for the account theme and
open the user profile page in the account management console.

13

Red Hat Single Sign-On 7.0 Server Developer Guide

14

	Table of Contents
	CHAPTER 1. PREFACE
	CHAPTER 2. ADMIN REST API
	2.1. EXAMPLE USING CURL

	CHAPTER 3. THEMES
	3.1. THEME TYPES
	3.2. CONFIGURE THEME
	3.3. DEFAULT THEMES
	3.4. CREATING A THEME
	3.4.1. Theme Properties
	3.4.2. Stylesheets
	3.4.3. Scripts
	3.4.4. Images
	3.4.5. Messages
	3.4.6. Internationalization
	3.4.7. HTML Templates
	3.4.8. Emails

	3.5. DEPLOYING THEMES

	CHAPTER 4. CUSTOM USER ATTRIBUTES
	4.1. REGISTRATION PAGE
	4.2. ACCOUNT MANAGEMENT CONSOLE

