& RedHat

Red Hat Software Collections 3

Using Red Hat Software Collections Container
Images

Basic Usage Instructions for Red Hat Software Collections 3.8 Container images

Last Updated: 2023-12-20

Red Hat Software Collections 3 Using Red Hat Software Collections
Container Images

Basic Usage Instructions for Red Hat Software Collections 3.8 Container images
Lenka Spac¢kova

Ispackova@redhat.com

Olga Tikhomirova

Robert Kratky

Vladimir Slavik

Legal Notice

Copyright © 2023 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

As a part of the Red Hat Software Collections offering, Red Hat provides a number of container
images, which are based on the corresponding Software Collections. Red Hat Software Collections
container images include application, web server, and database images. This document provides
instructions for obtaining, configuring, and using container images that are distributed with Red Hat
Software Collections.

Table of Contents

Table of Contents

MAKING OPEN SOURCE MORE INCLUSIVE ... i e it et 4
CHAPTER 1. RED HAT SOFTWARE COLLECTIONS CONTAINERIMAGES, 5
11. RED HAT SOFTWARE COLLECTIONS CONTAINER IMAGES AS BUILDER IMAGES 6
1.2. EXTENDING EXISTING CONTAINER IMAGES 6

CHAPTER 2. BUILDING APPLICATION IMAGES USING RED HAT SOFTWARE COLLECTIONS CONTAINER

IM A G E S L e e 7
2.1. BUILDING APPLICATION IMAGES USING RED HAT SOFTWARE COLLECTIONS IMAGES AS BASE IMAGES

7

2.2. BUILDING APPLICATION IMAGES FROM DOCKERFILES USING S2I SCRIPTS 8
2.3. BUILDING APPLICATION IMAGES USING SOURCE-TO-IMAGE IN OPENSHIFT 10

2.4. BUILDING APPLICATION IMAGES USING THE SOURCE-TO-IMAGE UTILITY il

CHAPTER 3. CONTAINER IMAGES BASED ON RED HAT SOFTWARE COLLECTIONS3.8 13
CHAPTER 4. CONTAINER IMAGES BASED ON RED HAT SOFTWARE COLLECTIONS 3.7 15
CHAPTER 5. CONTAINER IMAGES BASED ON RED HAT SOFTWARE COLLECTIONS 3.6 17
CHAPTER 6. CONTAINER IMAGES BASED ON RED HAT SOFTWARE COLLECTIONS35 18
CHAPTER 7. CONTAINER IMAGES BASED ON RED HAT SOFTWARE COLLECTIONS 34 19
CHAPTER 8. CONTAINER IMAGES BASED ON RED HAT SOFTWARE COLLECTIONS3.3 20
CHAPTER 9. CONTAINER IMAGES BASED ON RED HAT SOFTWARE COLLECTIONS 3.2 21
CHAPTER 10. CONTAINER IMAGES BASED ON RED HAT SOFTWARE COLLECTIONS 3.1 22
CHAPTER 11. CONTAINER IMAGES BASED ON RED HAT SOFTWARE COLLECTIONS3.0 24
CHAPTER 12. APPLICATION IMAGES .. ittt ittt it tttee e tnneeeeeennnaeeeoennnneeeennnn 26
12.1. NODE.JS 26
12.1.1. Description 26
12.1.2. Access 26
12.1.3. Configuration 26
12.2. PHP 26
12.2.1. Description 26
12.2.2. Access 27
12.2.3. Configuration 27
12.2.4. Extending the Image 29
12.3. PERL 30
12.3.1. Description 30
12.3.2. Access 30
12.3.3. Configuration 30
12.4. PYTHON 31
12.4.1. Description 31
12.4.2. Access 31
12.4.3. Configuration 31
12.5. RUBY 33
12.5.1. Description 33
12.5.2. Access 33
12.5.3. Configuration 34

Red Hat Software Collections 3 Using Red Hat Software Collections Container Images

CHAPTER 13. DAEMON IMAGES ..ttt ettt et ettt eaeeeeseannneeeeaannnneenannn,
13.1. APACHE HTTP SERVER
13.1.1. Description
13.1.2. Access
13.1.3. Configuration and Usage
13.2. NGINX
13.2.1. Description
13.2.2. Access
13.2.3. Configuration
13.3. VARNISH CACHE
13.3.1. Description
13.3.2. Access
13.3.3. Configuration

CHAPTER 14. DATABASE IMAGES ..t ettt e a ettt eenieeeeaennnneennnnn,
14.1. MARIADB
14.1.1. Description
14.1.2. Access
14.1.3. Configuration and Usage
14.1.4. Extending the Image
14.2. MYSQL
14.2.1. Description
14.2.2. Access and Usage
14.2.3. Configuration
14.3. POSTGRESQL
14.3.1. Description
14.3.2. Access and Usage
14.3.3. Configuration
14.3.4. Data Migration
14.3.5. Upgrading the Database
14.3.6. Extending the Image
14.4. REDIS
14.4.1. Description
14.4.2. Access
14.4.3. Configuration and Usage

CHAPTER 15. RED HAT DEVELOPER TOOLSET IMAGES ittt eanns
15.1. RUNNING RED HAT DEVELOPER TOOLSET TOOLS FROM PRE-BUILT CONTAINER IMAGES
15.2. RED HAT DEVELOPER TOOLSET TOOLCHAIN CONTAINER IMAGE
15.2.1. Description
15.2.2. Access
15.3. RED HAT DEVELOPER TOOLSET PERFORMANCE TOOLS CONTAINER IMAGE
15.3.1. Description
15.3.2. Access
15.3.3. Usage

CHAPTER16. COMPILER TOOLSET IMAGES ... i i i et

CHAPTER 17. REVISION HISTORY . i i i e e ittt

35
35
35
35
36
36
36
36
37
37
37
37

38
38
38
38
38

41

41

41

41

41
44
44
44
45
47
48
49
49
49
50
50

51

51
52
52
53
53
53
53
54

Table of Contents

Red Hat Software Collections 3 Using Red Hat Software Collections Container Images

MAKING OPEN SOURCE MORE INCLUSIVE

Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright's message.

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

CHAPTER 1. RED HAT SOFTWARE COLLECTIONS CONTAINER IMAGES

CHAPTER 1. RED HAT SOFTWARE COLLECTIONS CONTAINER
IMAGES

Red Hat Software Collections container images are based on the corresponding collection and the rhel7
or the ubi7 base image. For more information about Universal Base Images, see Universal Base Images
(UBI): Images, repositories, packages, and source code.

Red Hat Software Collections container images include application, daemon, and database images.
Running Red Hat Software Collections container images is supported on:

® Red Hat Enterprise Linux 7 Server
® Red Hat Enterprise Linux 7 Atomic Host
® Red Hat Enterprise Linux 8

For information about components available as Software Collections for Red Hat Enterprise Linux 7, see
the Red Hat Software Collections and Red Hat Developer Toolset documentation.

Red Hat Software Collections container images are detailed in the tables:

® Chapter 3, Container Images Based on Red Hat Software Collections 3.8

Chapter 4, Container Images Based on Red Hat Software Collections 3.7
® Chapter 5, Container Images Based on Red Hat Software Collections 3.6
® Chapter 6, Container Images Based on Red Hat Software Collections 3.5
® Chapter 7, Container Images Based on Red Hat Software Collections 3.4
® Chapter 8, Container Images Based on Red Hat Software Collections 3.3
® Chapter 9, Container Images Based on Red Hat Software Collections 3.2
® Chapter 10, Container Images Based on Red Hat Software Collections 3.1
® Chapter 11, Container Images Based on Red Hat Software Collections 3.0

You can also search for available container images in the Red Hat Ecosystem Catalog.

IMPORTANT

Only the latest version of each container image provided by Red Hat is supported.

NOTE

When using SELinux for controlling processes within a container, make sure that any
content that is volume mounted into the container is readable, and potentially writable,
depending on the use case. For more information, see the podman man page.

Additional Resources

® Getting Started with Containers

https://access.redhat.com/articles/4238681
https://access.redhat.com/documentation/en-us/red_hat_software_collections
https://access.redhat.com/documentation/en-us/red_hat_developer_toolset
https://catalog.redhat.com/software/containers/explore
https://github.com/containers/podman/blob/master/docs/source/markdown/podman-run.1.md.in
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_atomic_host/7/html/getting_started_with_containers/index

Red Hat Software Collections 3 Using Red Hat Software Collections Container Images

® Managing Containers
® Core Concepts of the OpenShift Enterprise Architecture

e README files of the Red Hat Software Collections container images in the /help.1 file inside
the image, or in the upstream GitHub repository.

1.1. RED HAT SOFTWARE COLLECTIONS CONTAINER IMAGES AS
BUILDER IMAGES

You can use Red Hat Software Collections container images as builder images to build, deploy, and run
your applications. To support common use cases, the following Source-to-Image (S2I) scripts are
included in the builder images:

® The /usr/libexec/s2i/assemble script inside the image is run to produce a new image with the
application artifacts. The script takes sources of a given application and places them into
appropriate directories inside the image. If the application source includes definition of the
dependent components (for example, requirements.txt that lists components from PyPi in
case of Python projects), the components are installed into the image.

e The /ust/libexec/s2i/run script is set as the default command in the resulting container image
(the new image with the application artifacts).

You can run the resulting application images using podman. For instructions, see Working with
containers. In Red Hat Enterprise Linux 7, you can still use the docker command instead of podman with
the same command-line syntax.

1.2. EXTENDING EXISTING CONTAINER IMAGES

To extend a functionality of a container image provided by Red Hat, you have the following options:
® Set environment variables. See documentation for the respective container image.
® Use OpenShift secrets.

® Build your custom application images. For instructions, see Chapter 2, Building Application
Images Using Red Hat Software Collections Container Images.

® Use the Source-to-Image build strategy in OpenShift, which enables you to add your own
configuration files, for daemon images that support this feature. Follow documentation for the
respective container image.

® |n case of other daemon or database images, build a new container on top of the provided
container image. Write a custom Dockerfile and use the original container in the FROM clause.
See section called Build an application using a Dockerfile in the documentation for the respective
container image or the example described in the Knowledgebase article How to Extend the
rhscl/mariadb-101-rhel7 Container Image.

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_atomic_host/7/html-single/managing_containers/index
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/index#core-concepts
https://github.com/sclorg/
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_atomic_host/7/html/getting_started_with_containers/get_started_with_linux_containers#working_with_containers
https://docs.openshift.com/container-platform/4.5/nodes/pods/nodes-pods-secrets.html
https://access.redhat.com/articles/2379991

HAPTER 2. BUILDING APPLICATION IMAGES USING RED HAT SOFTWARE COLLECTIONS CONTAINER IMAGES

CHAPTER 2. BUILDING APPLICATION IMAGES USING RED
HAT SOFTWARE COLLECTIONS CONTAINER IMAGES

You have several options how to build your application images using Red Hat Software Collections
container images:

® Use container images provided by Red Hat as base images
® Use a Dockerfile with S2I scripts
e Use Source-to-Image in OpenShift

® Use the source-to-image utility

2.1. BUILDING APPLICATION IMAGES USING RED HAT SOFTWARE
COLLECTIONS IMAGES AS BASE IMAGES

To use container images provided by Red Hat as base images:

1. Create a Dockerfile for your application image and ensure it contains the following line:

I FROM regqistry.redhat.io/rhscl_image name

2. Add your application code in the sre/ directory to the image by putting the following line into
the Dockerfile:

I ADD src /opt/app-root/src

3. Build your application image using podman:
I # podman build -t application_image name .

4. Run your application image using podman. For example, to launch an interactive shell within
your application image, run:

I # podman run -ti application_image_name /bin/bash -I

Example 2.1. A Django application built from a Dockerfile using therhscl/python-38-rhel7 base
image

This example shows a Dockerfile that you can use for creating a simple Django application from the
rhscl/python-38-rhel7 container image.

Set base image
FROM registry.redhat.io/rhscl/python-38-rhel7

Add application sources
ADD --chown=1001:0 app-src .

Install the dependencies
RUN pip install -U "pip>=19.3.1" &&\
pip install -r requirements.txt && \

Red Hat Software Collections 3 Using Red Hat Software Collections Container Images

python manage.py migrate

Run the application

python manage.py collectstatic --noinput && \
CMD python manage.py runserver 0.0.0.0:8080

Additional Resources
® Building an image from a Dockerfile

® Dockerfile reference document

2.2. BUILDING APPLICATION IMAGES FROM DOCKERFILES USING S2I
SCRIPTS

You can use Red Hat Software Collections container images as builder images and build your application
images from Dockerfile using the assemble and run S2I| scripts included in the builder images. For more
information about the assemble and run S2| scripts, see Section 1.1, “Red Hat Software Collections
Container Images as Builder Images”.

To create an application image from a Dockerfile using S2I scripts, follow these steps:

1. Login to the container registry:
I # podman login registry.redhat.io
2. Pull a builder image:
I # podman pull registry.redhat.io/rhscl_image _name

3. Prepare an application code.

4. Create a custom Dockerfile for your application image and ensure you:

a. Define the builder image with this line:

I FROM regqistry.redhat.io/rhscl_image name

b. Put the application source in the src/ directory into the container and ensure that the
default container user has sufficient permissions to access the source:

I ADD --chown=1001:0 src /tmp/src

c. Install dependencies using the /usr/libexec/s2i/assemble script:

I RUN /usr/libexec/s2i/assemble

d. Set the default command in the resulting image using the /usr/libexec/s2i/run script:

I CMD /usr/libexec/s2i/run

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_atomic_host/7/html-single/getting_started_with_containers/index#building_an_image_from_a_dockerfile
https://docs.docker.com/engine/reference/builder/

HAPTER 2. BUILDING APPLICATION IMAGES USING RED HAT SOFTWARE COLLECTIONS CONTAINER IMAGES

5. Build your application image using podman:
I # podman build -t application_image name .

6. Run your application image using podman. For example, to launch an interactive shell within your
application image, run:

I # podman run -ti application_image_name /bin/bash -I

Example 2.2. Creating a Python 3.8 application image from a Dockerfile using S2I scripts

This example shows how to build and run a Python 3.8 application from a Dockerfile with S2I scripts
provided by the builder image.

1. Login to the container registry:

I # podman login registry.redhat.io

2. Pull a builder image:

I # podman pull registry.redhat.io/rhscl/python-38-rhel7

3. Pull an application code available at https://github.com/sclorg/django-ex.git:
I $ git clone https://github.com/sclorg/django-ex.git app-src

Alternatively, use examples available at https://github.com/sclorg/s2i-python-
container/tree/master/examples.

4. Create a Dockerfile with this content:
FROM registry.redhat.io/rhscl/python-38-rhel7
Add application sources to a directory that the assemble script expects them
and set permissions so that the container runs without root access
USER 0
ADD app-src /tmp/src
RUN chown -R 1001:0 /tmp/src
USER 1001

Install the dependencies
RUN /usr/libexec/s2i/assemble

Set the default command for the resulting image
CMD /usr/libexec/s2i/run

5. Build a new image from a Dockerfile prepared in the previous step:
I # podman build -t python-app .
6. Run the resulting image with your Python application:

I # podman run -d python-app

https://github.com/sclorg/django-ex.git
https://github.com/sclorg/s2i-python-container/tree/master/examples

Red Hat Software Collections 3 Using Red Hat Software Collections Container Images

Additional Resources

® Building an image from a Dockerfile
® Dockerfile reference document

® The Environment variables for Source-to-Image section in the respective builder image
README file, which is located in the /help.1 file inside the image, or in the upstream GitHub
repository.

® The environment variables are also documented in the detailed description of the image in the
Red Hat Ecosystem Catalog.

2.3. BUILDING APPLICATION IMAGES USING SOURCE-TO-IMAGE IN
OPENSHIFT

Source-to-Image (S2l) in OpenShift is a framework which enables you to write images that take
application source code as an input, use a builder Red Hat Software Collections container image, and
produce a new image that runs the assembled application as an output.
To create an application using S2I in OpenShift:

1. Build an application using an image available through OpenShift:

I $ oc new-app openshift_image name~path_to_application_source_code

For example, to build a Python 3.8 application using the supported image available through the
python:3.8 imagestream tag in OpenShift, run:

I $ oc new-app python:3.8~https://github.com/sclorg/django-ex.git
2. List available pods (instances):

I $ oc get pods
3. Execute a selected pod on localhost:

I $ oc exec pod -- curl 127.0.0.1:8080

Additional Resources

® OpenShift Container Platform documentation
® S2| Requirements
® source-to-image README file on GitHub

® The Environment variables for Source-to-Image section in the respective builder image
README file.

10

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_atomic_host/7/html-single/getting_started_with_containers/index#building_an_image_from_a_dockerfile
https://docs.docker.com/engine/reference/builder/
https://github.com/sclorg/
https://catalog.redhat.com/software/containers/explore
https://access.redhat.com/documentation/en-us/openshift_container_platform
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html/creating_images/creating-images-s2i
https://github.com/openshift/source-to-image/blob/master/README.md

HAPTER 2. BUILDING APPLICATION IMAGES USING RED HAT SOFTWARE COLLECTIONS CONTAINER IMAGES

2.4. BUILDING APPLICATION IMAGES USING THE SOURCE-TO-IMAGE
UTILITY

The Red Hat Software Collections offering provides the source-to-image utility, which you can use
without OpenShift on Red Hat Enterprise Linux 7 Server.

NOTE
The source-to-image utility is available only for Red Hat Enterprise Linux 7 and works

only with images pulled by docker. You cannot use podman with the source-to-image
utility.

The build process consists of the following three fundamental elements, which are combined into a final
container image:

® Source code of your application, written in a programming language or framework.

® Abuilderimage, which is a Red Hat Software Collections container image that supports building
images using the source-to-image utility.

® S2|scripts that are part of the builder image. For more information about these scripts, see
Section 1.1, "Red Hat Software Collections Container Images as Builder Images” .

During the build process, the source-to-image utility creates a .tar file that contains the source code
and scripts, then streams that file into the builder image.

To use the source-to-image utility on your system:

1. Subscribe to Red Hat Software Collections. For instructions, see Getting Access to Red Hat
Software Collections.

2. Enable the Red Hat Software Collections Server repository, which provides the source-to-
image package, and the Red Hat Enterprise Linux 7 Server repository, which includes the
docker package, required by source-to-image:

I # subscription-manager repos --enable rhel-server-rhscl-7-rpms --enable rhel-7-server-
extras-rpms
3. Install the source-to-image package:
I # yum install source-to-image
4. Login to the container registry:
I # docker login registry.redhat.io
Pull a builder image:
I # docker pull registry.redhat.io/rhscl_image name

Build an application image from the application source code:

s2i build path_to_application_source _code_repository --context-
dir=source_code_context_directory application_image name

1

https://access.redhat.com/documentation/en-us/red_hat_software_collections/3/html/3.6_release_notes/chap-installation#sect-Installation-Subscribe

Red Hat Software Collections 3 Using Red Hat Software Collections Container Images

5. Run the resulting image using docker.

Example 2.3. Building a Python 3.8 application from a Git repository using thesource-to-image

utility

This example shows how to build a test application available from a public Git repository using the
rhscl/python-38-rhel7 builder image and the source-to-image utility.

1. Login to the container registry:

I # docker login registry.redhat.io

. Pull the rhscl/python-38-rhel7 builder image:

I # docker pull registry.redhat.io/rhscl/python-38-rhel7

. Build the test application from the GitHub s2i-python repository, in the 3.8/test/setup-test-

app/ directory:

s2i build https://github.com/sclorg/s2i-python-container.git --context-dir=3.8/test/setup-
test-app/ registry.redhat.io/rhscl/python-38-rhel7 python-38-rhel7-app

This produces a new application image, python-38-rhel7-app.

. Run the resulting python-38-rhel7-app image:

I # docker run -d -p 8080:8080 --name example-app python-38-rhel7-app

. Fetch the resulting example document from http://localhost:8080/:

I $ wget http://localhost:8080/

. Stop the container:

I # docker stop example-app

Additional Resources

® S2| Requirements

12

source-to-image README file on GitHub

The Environment variables for Source-to-Image section in the respective builder image
README file, which is located in the /help.1 file inside the image, or in the upstream GitHub
repository.

https://github.com/sclorg/s2i-python-container
http://localhost:8080/
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html/creating_images/creating-images-s2i
https://github.com/openshift/source-to-image/blob/master/README.md
https://github.com/sclorg/

CHAPTER 3. CONTAINER IMAGES BASED ON RED HAT SOFTWARE COLLECTIONS 3.8

CHAPTER 3. CONTAINER IMAGES BASED ON RED HAT
SOFTWARE COLLECTIONS 3.8

Component Description Supported

architectures

Daemon Images

rhscl/nginx-120-rhel7 nginx 1.20 server and a reverse proxy server x86_64, s390x,
ppc64le

Database Images

rhscl/redis-6-rhel7 Redis 6 key-value store x86_64, s390x,
ppc64le

Red Hat Developer Toolset Images

rhscl/devtoolset-12-toolchain- Red Hat Developer Toolset toolchain x86_64, s390x,
rhel7 (available since November ppc64le

2022)

rhscl/devtoolset-12-perftools- Red Hat Developer Toolset perftools x86_64, s390x,
rhel7 (available since November ppc64le

2022)

rhscl/devtoolset-11-toolchain- Red Hat Developer Toolset toolchain(EOL) x86_64, s390x,
rhel7 ppc64le
rhscl/devtoolset-11-perftools- Red Hat Developer Toolset perftools (EOL) x86_64, s390x,
rhel7 ppc64le

Legend:

® x86 64 - AMD64 and Intel 64 architectures
® s390x - 64-bitIBMZ
® ppc64le - IBM POWER, little endian

All images are based on components from Red Hat Software Collections. The images are available for
Red Hat Enterprise Linux 7 through the Red Hat Container Registry.

For detailed information about components provided by Red Hat Software Collections 3.8, see the
Red Hat Software Collections 3.8 Release Notes.

For more information about the Red Hat Developer Toolset 11 components, see the Red Hat
Developer Toolset 11 User Guide.

For information about the Red Hat Developer Toolset 12 components, see the Red Hat
Developer Toolset 12 User Guide.

13

https://access.redhat.com/documentation/en-us/red_hat_software_collections/3/html/3.8_release_notes/
https://access.redhat.com/documentation/en-US/Red_Hat_Developer_Toolset/11/html/User_Guide/
https://access.redhat.com/documentation/en-US/Red_Hat_Developer_Toolset/12/html/User_Guide/

Red Hat Software Collections 3 Using Red Hat Software Collections Container Images

EOL images are no longer supported.

14

CHAPTER 4. CONTAINER IMAGES BASED ON RED HAT SOFTWARE COLLECTIONS 3.7

CHAPTER 4. CONTAINER IMAGES BASED ON RED HAT
SOFTWARE COLLECTIONS 3.7

Component Description Supported

architectures

Application Images

rhscl/ruby-30-rhel7 Ruby 3.0 platform for building and running x86_64, s390x,
applications ppc64le

rhscl/ruby-27-rhel7 Ruby 2.7 platform for building and running x86_64, s390x,
applications (EOL) ppc64le

rhscl/ruby-26-rhel7 Ruby 2.6 platform for building and running x86_64, s390x,
applications (EOL) ppc64le

Database Images

rhscl/mariadb-105-rhel7 MariaDB 10.5 SQL database server x86_64, s390x,
ppc64le

rhscl/postgresql-13-rhel7 PostgreSQL 13 SQL database server x86_64, s390x,
ppc64le

Red Hat Developer Toolset Images

rhscl/devtoolset-10-toolchain- Red Hat Developer Toolset toolchain(EOL) x86_64, s390x,

rhel7 ppc64le

rhscl/devtoolset-10-perftools- Red Hat Developer Toolset perftools (EOL) x86_64, s390x,

rhel7 ppc64le
Legend:

® x86 64 - AMD64 and Intel 64 architectures
® s390x - 64-bitIBMZ
® ppcb4le - IBM POWER, little endian

All images are based on components from Red Hat Software Collections. The images are available for
Red Hat Enterprise Linux 7 through the Red Hat Container Registry.

For detailed information about components provided by Red Hat Software Collections 3.7, see the
Red Hat Software Collections 3.7 Release Notes.

For more information about the Red Hat Developer Toolset 10 components, see the Red Hat
Developer Toolset 10 User Guide.

15

https://access.redhat.com/documentation/en-us/red_hat_software_collections/3/html/3.7_release_notes/
https://access.redhat.com/documentation/en-us/red_hat_developer_toolset/10/html/user_guide/

Red Hat Software Collections 3 Using Red Hat Software Collections Container Images

For information regarding container images based on Red Hat Software Collections 2, see Using
Red Hat Software Collections 2 Container Images.

EOL images are no longer supported.

16

https://access.redhat.com/documentation/en-us/red_hat_software_collections/2/html/using_red_hat_software_collections_container_images/

CHAPTER 5. CONTAINER IMAGES BASED ON RED HAT SOFTWARE COLLECTIONS 3.6

CHAPTER 5. CONTAINER IMAGES BASED ON RED HAT
SOFTWARE COLLECTIONS 3.6

Component Description Supported

architectures

Application Images

rhscl/nodejs-14-rhel7 Node.js 14 platform for building and running x86_64, s390x,
applications ppc64le
rhscl/perl-530-rhel7 Perl 5.30 platform for building and running x86_64, s390x,
applications ppc64le
rhscl/php-73-rhel7 PHP 7.3 platform for building and running x86_64, s390x,
applications ppc64le
rhscl/ruby-25-rhel7 Ruby 2.5 platform for building and running x86_64

applications (EOL)

Daemon Images

rhscl/httpd-24-rhel7 Apache HTTP 2.4 Server x86_64, s390x,
ppc64le
rhscl/nginx-118-rhel7 nginx 1.18 server and a reverse proxy server x86_64, s390x,
(EOL) ppc64le
Legend:

® x86 64 - AMD64 and Intel 64 architectures
® s390x - 64-bitIBMZ
® ppcb4le - IBM POWER, little endian

All images are based on components from Red Hat Software Collections. The images are available for
Red Hat Enterprise Linux 7 through the Red Hat Container Registry.

For detailed information about components provided by Red Hat Software Collections 3.6, see the
Red Hat Software Collections 3.6 Release Notes.

For more information about the Red Hat Developer Toolset 10 components, see the Red Hat
Developer Toolset 10 User Guide.

For information regarding container images based on Red Hat Software Collections 2, see Using
Red Hat Software Collections 2 Container Images.

EOL images are no longer supported.

17

https://access.redhat.com/documentation/en-us/red_hat_software_collections/3/html/3.6_release_notes/
https://access.redhat.com/documentation/en-us/red_hat_developer_toolset/10/html/user_guide/
https://access.redhat.com/documentation/en-us/red_hat_software_collections/2/html/using_red_hat_software_collections_container_images/

Red Hat Software Collections 3 Using Red Hat Software Collections Container Images

CHAPTER 6. CONTAINER IMAGES BASED ON RED HAT
SOFTWARE COLLECTIONS 3.5

Component Description Supported

architectures

Application Images

rhscl/python-38-rhel7 Python 3.8 platform for building and running x86_64, s390x,
applications ppc64le

Daemon Images

rhscl/varnish-6-rhel7 Varnish Cache 6.0 HTTP reverse proxy x86_64, s390x,
ppc64le

Red Hat Developer Toolset Red Hat
Developer Toolset Images

rhscl/devtoolset-9-toolchain- Red Hat Developer Toolset toolchain(EOL) x86_64, s390x,

rhel7 ppc64le

rhscl/devtoolset-9-perftools- Red Hat Developer Toolset perftools (EOL) x86_64, s390x,

rhel7 ppc64le
Legend:

® x86 64 - AMD64 and Intel 64 architectures
® s390x - 64-bitIBMZ
® ppcb4le - IBM POWER, little endian

All images are based on components from Red Hat Software Collections. The images are available for
Red Hat Enterprise Linux 7 through the Red Hat Container Registry.

For detailed information about components provided by Red Hat Software Collections 3.5, see the
Red Hat Software Collections 3.5 Release Notes.

For more information about the Red Hat Developer Toolset 9.1 components, see the Red Hat
Developer Toolset 9 User Guide.

For information regarding container images based on Red Hat Software Collections 2, see Using
Red Hat Software Collections 2 Container Images.

EOL images are no longer supported.

18

https://access.redhat.com/documentation/en-us/red_hat_software_collections/3/html/3.5_release_notes/
https://access.redhat.com/documentation/en-us/red_hat_developer_toolset/9/html/user_guide/
https://access.redhat.com/documentation/en-us/red_hat_software_collections/2/html/using_red_hat_software_collections_container_images/

CHAPTER 7. CONTAINER IMAGES BASED ON RED HAT SOFTWARE COLLECTIONS 3.4

CHAPTER 7. CONTAINER IMAGES BASED ON RED HAT

SOFTWARE COLLECTIONS 3.4

Component Description

Supported
architectures

Application Images

rhscl/nodejs-12-rhel7 Node.js 12 platform for building and running
applications (EOL)

Daemon Images

rhscl/nginx-116-rhel7 nginx 116 server and a reverse proxy server
(EOL)

Database Images

rhscl/postgresql-12-rhel7 PostgreSQL 12 SQL database server

Legend:
® x86 64 - AMD64 and Intel 64 architectures
® s390x - 64-bitIBMZ

® ppcb4le - IBM POWER, little endian

x86_64, s390x,
ppc64le

x86_64, s390x,
ppc64le

x86_64, s390x,
ppc64le

All images are based on components from Red Hat Software Collections. The images are available for

Red Hat Enterprise Linux 7 through the Red Hat Container Registry.

For detailed information about components provided by Red Hat Software Collections 3.4, see the

Red Hat Software Collections 3.4 Release Notes.

For more information about the Red Hat Developer Toolset 9.0 components, see the Red Hat

Developer Toolset 9 User Guide.

For information regarding container images based on Red Hat Software Collections 2, see Using

Red Hat Software Collections 2 Container Images.

EOL images are no longer supported.

19

https://access.redhat.com/documentation/en-us/red_hat_software_collections/3/html/3.4_release_notes/
https://access.redhat.com/documentation/en-us/red_hat_developer_toolset/9/html/user_guide/
https://access.redhat.com/documentation/en-us/red_hat_software_collections/2/html/using_red_hat_software_collections_container_images/

Red Hat Software Collections 3 Using Red Hat Software Collections Container Images

CHAPTER 8. CONTAINER IMAGES BASED ON RED HAT
SOFTWARE COLLECTIONS 3.3

Component Description Supported

architectures

Database Images

rhscl/mariadb-103-rhel7 MariaDB 10.3 SQL database server (EOL) x86_64, s390x,
ppc64le

rhscl/redis-5-rhel7 Redis 5 key-value store (EOL) x86_64, s390x,
ppc64le

Red Hat Developer Toolset Images

rhscl/devtoolset-8-toolchain- Red Hat Developer Toolset toolchain(EOL) x86_64, s390x,

rhel7 ppc64le

rhscl/devtoolset-8-perftools- Red Hat Developer Toolset perftools (EOL) x86_64, s390x,

rhel7 ppc64le
Legend:

® x86 64 - AMD64 and Intel 64 architectures
® s390x - 64-bitIBMZ
® ppcb4le - IBM POWER, little endian

All images are based on components from Red Hat Software Collections. The images are available for
Red Hat Enterprise Linux 7 through the Red Hat Container Registry.

For detailed information about components provided by Red Hat Software Collections 3.3, see the
Red Hat Software Collections 3.3 Release Notes.

For more information about the Red Hat Developer Toolset 8.1 components, see the Red Hat
Developer Toolset 8 User Guide.

For information regarding container images based on Red Hat Software Collections 2, see Using
Red Hat Software Collections 2 Container Images.

EOL images are no longer supported.

20

https://access.redhat.com/documentation/en-us/red_hat_software_collections/3/html/3.3_release_notes/
https://access.redhat.com/documentation/en-us/red_hat_developer_toolset/8/html/user_guide/
https://access.redhat.com/documentation/en-us/red_hat_software_collections/2/html/using_red_hat_software_collections_container_images/

CHAPTER 9. CONTAINER IMAGES BASED ON RED HAT SOFTWARE COLLECTIONS 3.2

CHAPTER 9. CONTAINER IMAGES BASED ON RED HAT
SOFTWARE COLLECTIONS 3.2

Component Description Supported

architectures

Application Images

rhscl/nodejs-10-rhel7 Node.js 10 platform for building and running x86_64, s390x,
applications (EOL) ppc64le

rhscl/php-72-rhel7 PHP 7.2 platform for building and running x86_64, s390x,
applications (EOL) ppc64le

Daemon Images

rhscl/nginx-114-rhel7 nginx .14 server and a reverse proxy server x86_64, s390x,
(EOL) ppc64le

Database Images

rhscl/mysql-80-rhel7 MySQL 8.0 SQL database server x86_64, s390x,
ppc64le
Legend:
® x86_64 - AMD64 and Intel 64 architectures
® s390x - 64-bit IBMZ
® ppcb4le - IBM POWER, little endian

All images are based on components from Red Hat Software Collections. The images are available for
Red Hat Enterprise Linux 7 through the Red Hat Container Registry.

For detailed information about components provided by Red Hat Software Collections 3.2, see the
Red Hat Software Collections 3.2 Release Notes.

For more information about the Red Hat Developer Toolset 8.0 components, see the Red Hat
Developer Toolset 8 User Guide.

For information regarding container images based on Red Hat Software Collections 2, see Using
Red Hat Software Collections 2 Container Images.

EOL images are no longer supported.

21

https://access.redhat.com/documentation/en-us/red_hat_software_collections/3/html/3.2_release_notes/
https://access.redhat.com/documentation/en-us/red_hat_developer_toolset/8/html/user_guide/
https://access.redhat.com/documentation/en-us/red_hat_software_collections/2/html/using_red_hat_software_collections_container_images/

Red Hat Software Collections 3 Using Red Hat Software Collections Container Images

CHAPTER 10. CONTAINER IMAGES BASED ON RED HAT
SOFTWARE COLLECTIONS 3.1

Component

Description

Supported
architectures

Application Images

rhscl/php-70-rhel7

rhscl/perl-526-rhel7

Daemon Images

rhscl/varnish-5-rhel7

Database Images

rhscl/mongodb-36-rhel7

rhscl/postgresql-10-rhel7

Red Hat Developer Toolset Images

rhscl/devtoolset-7-toolchain-
rhel7

rhscl/devtoolset-7-perftools-
rhel7

Legend:

All images are based on components from Red Hat Software Collections. The images are available for

PHP 7.0 platform for building and running
applications (EOL)

Perl 5.26 platform for building and running
applications (EOL)

Varnish Cache 5.0HTTP reverse proxy
(EOL)

MongoDB 3.6 NoSQL database server
(EOL)

PostgreSQL 10 SQL database server

Red Hat Developer Toolset toolchain(EOL)

Red Hat Developer Toolset perftools (EOL)

® x86 64 - AMD64 and Intel 64 architectures

® s390x - 64-bit IBM Z

® ppcb4le - IBM POWER, little endian

Red Hat Enterprise Linux 7 through the Red Hat Container Registry.

x86_64

x86_64

x86_64, s390x,
ppc64le

x86_64

x86_64, s390x,
ppc64le

x86_64, s390x,
ppc64le

x86_64, s390x,
ppc64le

For detailed information about components provided by Red Hat Software Collections 3.1, see the
Red Hat Software Collections 3.1 Release Notes.

22

https://access.redhat.com/documentation/en-us/red_hat_software_collections/3/html/3.1_release_notes/

CHAPTER 10. CONTAINER IMAGES BASED ON RED HAT SOFTWARE COLLECTIONS 3.1

For more information about the Red Hat Developer Toolset 7.1 components, see the Red Hat
Developer Toolset 7 User Guide.

For information regarding container images based on Red Hat Software Collections 2, see Using
Red Hat Software Collections 2 Container Images.

EOL images are no longer supported.

23

https://access.redhat.com/documentation/en-us/red_hat_developer_toolset/7/html/user_guide/
https://access.redhat.com/documentation/en-us/red_hat_software_collections/2/html/using_red_hat_software_collections_container_images/

Red Hat Software Collections 3 Using Red Hat Software Collections Container Images

CHAPTER 11. CONTAINER IMAGES BASED ON RED HAT
SOFTWARE COLLECTIONS 3.0

Component Description Supported

architectures

Application Images

rhscl/nodejs-8-rhel7 Node.js 8 platform for building and running x86_64, s390x,
applications (EOL) ppc64le
rhscl/php-71-rhel7 PHP 7.1 platform for building and running x86_64

applications (EOL)

rhscl/python-36-rhel7 Python 3.6 platform for building and running x86_64, s390x,
applications (EOL) ppc64le

Daemon Images

rhscl/nginx-112-rhel7 nginx 112 server and a reverse proxy server x86_64, s390x,
(EOL) ppc64le

Database Images

rhscl/mariadb-102-rhel7 MariaDB 10.2 SQL database server (EOL) x86_64
rhscl/mongodb-34-rhel7 MongoDB 3.4 NoSQL database server x86_64
(EOL)
rhscl/postgresql-96-rhel7 PostgreSQL 9.6 SQL database server (EOL) x86_64
Legend:

® x86 64 - AMD64 and Intel 64 architectures
® s390x - 64-bitIBMZ
® ppcb4le - IBM POWER, little endian

All images are based on components from Red Hat Software Collections. The images are available for
Red Hat Enterprise Linux 7 through the Red Hat Container Registry.

For detailed information about components provided by Red Hat Software Collections 3.0, see the
Red Hat Software Collections 3.0 Release Notes.

For more information about the Red Hat Developer Toolset 7.0 components, see the Red Hat
Developer Toolset 7 User Guide.

For information regarding container images based on Red Hat Software Collections 2, see the Using
Red Hat Software Collections 2 Container Images.

24

https://access.redhat.com/documentation/en-us/red_hat_software_collections/3/html/3.0_release_notes/
https://access.redhat.com/documentation/en-us/red_hat_developer_toolset/7/html/user_guide/
https://access.redhat.com/documentation/en-us/red_hat_software_collections/2/html/using_red_hat_software_collections_container_images/

CHAPTER 11. CONTAINER IMAGES BASED ON RED HAT SOFTWARE COLLECTIONS 3.C

EOL images are no longer supported.

25

Red Hat Software Collections 3 Using Red Hat Software Collections Container Images

CHAPTER 12. APPLICATION IMAGES

12.1. NODE.JS

12.1.1. Description

The rhscl/nodejs-14-rhel7 image provides a Node.js 14 platform for building and running applications.

12.1.2. Access

To pull the rhscl/nodejs-14-rhel7 image, run the following command as root:

I # podman pull registry.redhat.io/rhscl/nodejs-14-rhel7

12.1.3. Configuration

To set environment variables, you can place them as a key-value pair into a .s2i/environment file inside
your source code repository.

Variable Name Description

NODE_ENV NodeJS runtime mode (default: "production™)

DEV_MODE When set to "true", nodemon will be used to
automatically reload the server while you work
(default: "false"). Setting DEV_MODE to "true" will
change the NODE_ENV default to "development”
(if not explicitly set).

NPM_RUN Select an alternate / custom runtime mode, defined
in your package.json file's scripts section
(default: npm run "start"). These user-defined run-
scripts are unavailable while DEV_MODE is in use.

HTTP_PROXY Use an npm proxy during assembly
HTTPS_PROXY Use an npm proxy during assembly
NPM_MIRROR Use a custom NPM registry mirror to download

packages during the build process

12.2. PHP

12.2.1. Description

The rhscl/php-73-rhel7 image provides a PHP 7.3 platform for building and running applications.
Node.js with npm is preinstalled in the PHP images.

26

https://docs.npmjs.com/misc/scripts

CHAPTER 12. APPLICATION IMAGES

12.2.2. Access

To pull the rhscl/php-73-rhel7 image, run the following command as root:

I # podman pull registry.redhat.io/rhscl/php-73-rhel7

12.2.3. Configuration

To set environment variables, place them as a key-value pair into a .s2i/environment file inside your
source code repository.

The following environment variables set their equivalent property value in the php.ini file:

Variable Name

ERROR_REPORTING

DISPLAY_ERRORS

DISPLAY_STARTUP_ERROR
S

TRACK_ERRORS

HTML_ERRORS

INCLUDE_PATH

PHP_MEMORY_LIMIT

SESSION_NAME

SESSION_HANDLER

SESSION_PATH

SESSION_COOKIE_DOMAIN

Description

Informs PHP of which errors,
warnings and notices you would
like it to take action for

Controls whether or not and
where PHP will output errors,
notices and arnings

Cause display errors which occur
during PHP's startup sequence to
be handled separately from
display errors

Store the last error/warning
message in $php_errormsg
(boolean)

Link errors to documentation
related to the error

Path for PHP source files

Memory limit

Name of the session

Method for saving sessions

Location for session data files

The domain for which the cookie
is valid

Default

E_ALL & ~E_NOTICE

ON

OFF

OFF

ON

.:/lopt/app-root/src:/opt/rh/rh-
php73/root/usr/share/pear

128M

PHPSESSID

files

/tmp/sessions

27

Red Hat Software Collections 3 Using Red Hat Software Collections Container Images

Variable Name Description Default
SESSION_COOKIE_HTTPON Whether or not to add the 0
LY httpOnly flag to the cookie

SESSION_COOKIE_SECURE Specifies whether cookies should OFF

only be sent over secure
connections

SHORT_OPEN_TAG Determines whether or not PHP OFF
will recognize code between <?
and ?> tags

DOCUMENTROOT Path that defines the /

DocumentRoot for your
application (ie. /public)

Replace the version of the rh-php7* Software Collection when appropriate.

The following environment variables set their equivalent property value in the opcache.ini file:

Variable Name Description Default
OPCACHE_MEMORY_CONS The OPcache shared memory 128
UMPTION storage size in megabytes
OPCACHE_REVALIDATE_FR How often to check script 2

EQ timestamps for updates, in

seconds. O will result in OPcache
checking for updates on every
request.

OPCACHE_MAX_FILES The maximum number of keys 4000
(scripts) in the OPcache hash
table. Only numbers between 200
and 1000000 are allowed.

You can also override the entire directory used to load the PHP configuration by setting:

Variable Name Description

PHPRC Sets the path to the php.ini file

PHP_INI_SCAN_DIR Path to scan for additional ini configuration files

You can override the Apache MPM prefork settings to increase the performance for of the PHP
application. In case you set the Cgroup limits, the image will attempt to automatically set the optimal
values. You can override this at any time by specifying the values yourself:

28

https://httpd.apache.org/docs/2.4/mod/mpm_common.html

CHAPTER 12. APPLICATION IMAGES

Variable Name Description Default

HTTPD_START_SERVERS The StartServers directive sets 8
the number of child server
processes created on startup.

HTTPD_MAX_REQUEST WO The MaxRequestWorkers 256 (this is automatically tuned by
RKERS directive sets the limit on the setting Cgroup limits for the
number of simultaneous requests container using this formula:
that will be served. TOTAL_MEMORY / 15MB.
15MB is average size of a single
httpd process.

You can use a custom composer repository mirror URL to download packages instead of the default
packagist.org:

Variable Name Description

COMPOSER_MIRROR Adds a custom composer repository mirror URL to
composer configuration. Note: This only affects
packages listed in composer.json.

COMPOSER_INSTALLER Overrides the default URL for downloading
Composer of https://getcomposer.org/installer.
Useful in disconnected environments.

COMPOSER_ARGS Adds extra arguments to the composer install
command line (for example, --no-dev).

In case the DocumentRoot of the application is nested within the source directory /opt/app-root/src,
users can provide their own .htaccess file. This allows the overriding of Apache’s behavior and specifies
how application requests should be handled. The .htaccess file needs to be located at the root of the
application source. For details about .htaccess, see the Apache HTTP Server Tutorial.

12.2.4. Extending the Image

The PHP image can be extended using source-to-image.

For example, to build a customized PHP image my-php-rhel7 with configuration in the ~/image-
configuration/ directory, run:

I $ s2i build ~/image-configuration/ rhscl/php-73-rhel7 my-php-rhel7

Make sure to change the source image version accordingly.

The structure of the application can be similar to this example:

https://httpd.apache.org/docs/2.4/mod/mpm_common.html#startservers
https://httpd.apache.org/docs/2.4/mod/mpm_common.html#maxrequestworkers
https://getcomposer.org/installer
http://httpd.apache.org/docs/2.4/howto/htaccess.html
https://github.com/openshift/source-to-image

Red Hat Software Collections 3 Using Red Hat Software Collections Container Images

Directory name Description

J/httpd-cfg Can contain additional Apache configuration files
(*.conf)
/httpd-ssl Can contain own SSL certificate (in the certs/

subdirectory) and key (in the private/ subdirectory)

./php-pre-start Can contain shell scripts (*.sh) that are sourced
before httpd is started

./php-post-assemble Can contain shell scripts (*.sh) that are sourced at
the end of assemble script

J Application source code

12.3. PERL

12.3.1. Description

The rhscl/perl-530-rhel7 image provides a Perl 5.30 platform for building and running applications.
Apache httpd 2.4 with mod_perl for deploying Perl web applications is preinstalled, as well as Node.js
with npm.

These images also support deploying Perl Web Server Gateway Interface (PSGI) applications.
12.3.2. Access
To pull the rhscl/perl-530-rhel7 image, run the following command as root:

I # podman pull registry.redhat.io/rhscl/perl-530-rhel7

12.3.3. Configuration

To set environment variables, you can place them as a key-value pair into a .s2i/environment file inside
your source code repository.

Variable Name Description Default

ENABLE_CPAN_TEST Allows the installation of all false
specified cpan packages and the
running of their tests

CPAN_MIRROR Specifies a mirror URL which will URL is not specified by default
used by cpanminus to install
dependencies

30

CHAPTER 12. APPLICATION IMAGES

Variable Name Description Default

PERL_APACHE2_RELOAD Enables automatic reloading of false
modified Perl modules

HTTPD_START_SERVERS The StartServers directive sets 8
the number of child server
processes created on startup

HTTPD_MAX_REQUEST_WO Number of simultaneous requests 256 but will be automatically

RKERS that will be handled by Apache lowered if memory is limited
PSGI_FILE Specifies a relative path to the Single *.psgi file in the top-level
PSGI application file. Use an directory, if it exists

empty value to disable the PSGI
auto-configuration

PSGI_URI_PATH Specifies a URI path that is /
handled by the PSGI application

To install additional Perl modules from the Comprehensive Perl Archive Network (CPAN), create a
cpanfile in the root directory of your application sources. The file must conform to the cpanfile format
as defined in Module-CPANFile CPAN distribution. For detailed information about the cpanfile format,
refer to the cpanfile documentation.

To modify the Apache httpd behavior, drop the .htaccess file in the application sources tree where
appropriate. For details about .htaccess, see the Apache HTTP Server Tutorial.

12.4. PYTHON

12.4.1. Description

The rhscl/python-38-rhel7 image provides a Python 3.8 platform for building and running applications.
Node.js with npm is preinstalled.

12.4.2. Access

To pull the rhscl/python-38-rhel7 image, run the following command as root:
I # podman pull registry.redhat.io/rhscl/python-38-rhel7
12.4.3. Configuration

To set environment variables, you can place them as a key-value pair into a .s2i/environment file inside
your source code repository.

31

https://httpd.apache.org/docs/2.4/mod/mpm_common.html#startservers
http://search.cpan.org/~miyagawa/Module-CPANfile/lib/cpanfile.pod
http://httpd.apache.org/docs/2.4/howto/htaccess.html

Red Hat Software Collections 3 Using Red Hat Software Collections Container Images

Variable Name Description

32

APP_SCRIPT

APP_FILE

APP_MODULE

APP_HOME

APP_CONFIG

DISABLE_MIGRATE

DISABLE_COLLECTSTATIC

DISABLE_SETUP_PY_PROCESSING

Used to run the application from a script file. This
should be a path to a script file (defaults to app.sh
unless set to null) that will be run to start the
application.

Used to run the application from a Python script. This
should be a path to a Python file (defaults to
app-py) that will be passed to the Python
interpreter to start the application.

Used to run the application with Gunicorn, as
documented here. This variable specifies a WSGI
callable with the pattern
MODULE_NAME:VARIABLE_NAME, where
MODULE_NAME is the full dotted path of a
module, and VARIABLE_NAME refers to a WSGI
callable inside the specified module. Gunicorn will
look for a WSGI callable named application if not
specified. If APP_MODULE is not provided, the run
script will look for a wsgi.py file in your project and
use it if it exists. If using setup.py for installing the
application, the MODULE_NAME part can be read
from there. For an example, see setup-test-app.

This variable can be used to specify a sub-directory
in which the application to be run is contained. The
directory pointed to by this variable needs to contain
wsgi.py (for Gunicorn) ormanage.py (for Django).
If APP_HOME is not provided, the assemble and
run scripts will use the application’s root directory.

Path to a valid Python file with a Gunicorn
configuration file.

Set this variable to a non-empty value to inhibit the
execution of manage.py migrate when the
produced image is run. This affects only Django
projects.

Set this variable to a non-empty value to inhibit the
execution of manage.py collectstatic during the
build. This affects only Django projects.

Set this variable to a non-empty value to skip
processing of the setup.py script if you use=e . in
requirements.txt to trigger its processing or you
don’t want your application to be installed into a site-
packages directory.

CHAPTER 12. APPLICATION IMAGES

Variable Name Description

ENABLE_PIPENV

ENABLE_INIT_WRAPPER

PIP_INDEX_URL

UPGRADE_PIP_TO_LATEST

WEB_CONCURRENCY

12.5. RUBY

12.5.1. Description

Set this variable to use Pipenv, the higher-level
Python packaging tool, to manage dependencies of
the application. This should be used only if your
project contains an appropriately formatted Pipfile
and Pipfile.lock.

Set this variable to a non-empty value to make use
of an init wrapper. This is useful for servers that are
not capable of reaping zombie processes, such as
Django development server or Tornado. This option
can be used together with the APP_SCRIPT or
APP_FILE variables. It never applies to Gunicorn
used through APP_MODULE as Gunicorn reaps
zombie processes correctly.

Set this variable to use a custom index URL or mirror
to download required packages during build process.
This only affects packages listed in requirements.txt.

Set this variable to a non-empty value to have the
pip program be upgraded to the most recent version
before any Python packages are installed. If not set,
it will use whatever the default version is included by
the platform for the Python version being used.

Set this to change the default setting for the number
of workers. By default, this is set to the number of
available cores times 2.

The rhscl/ruby-30-rhel7 image provides a Ruby 3.0 platform for building and running applications and
the rhscl/ruby-27-rhel7 image provides a Ruby 2.7 platform.

Node.js with npm is preinstalled.

12.5.2. Access

To pull the rhscl/ruby-30-rhel7 image, run the following command as root:

I # podman pull registry.redhat.io/rhscl/ruby-30-rhel7

To pull the rhscl/ruby-27-rhel7 image, run the following command as root:

I # podman pull registry.redhat.io/rhscl/ruby-27-rhel7

33

https://github.com/kennethreitz/pipenv
http://docs.gunicorn.org/en/stable/settings.html#workers

Red Hat Software Collections 3 Using Red Hat Software Collections Container Images

12.5.3. Configuration

To set environment variables, you can place them as a key-value pair into a .s2i/environment file inside

your source code repository.

Variable Name Description

RACK_ENV

DISABLE_ASSET_COMPILATION

PUMA_MIN_THREADS,
PUMA_MAX_THREADS

PUMA_WORKERS

RUBYGEM_MIRROR

This variable specifies the environment where the
Ruby application will be deployed (unless
overwritten) - production, development, test.
Each level has different behaviors in terms of logging
verbosity, error pages, Ruby gem installation, and
other. Note that application assets will be compiled
only if the RACK_ENV is set to production.

This variable set to true indicates that the asset
compilation process will be skipped. Because this
only takes place when the application is run in the
production environment, it should be used only
when assets are already compiled.

These variables indicate the minimum and maximum
threads that will be available in Puma's thread pool.

This variable indicates the number of worker
processes that will be launched. See documentation
on Puma’s clustered mode.

Set this variable to use a custom RubyGems mirror
URL to download required gem packages during the
build process.

For S2l scripts to work, you need to include the puma or rack gem in the application’s Gemfile.

34

https://github.com/puma/puma
https://github.com/puma/puma#clustered-mode

CHAPTER 13. DAEMON IMAGES

CHAPTER 13. DAEMON IMAGES

13.1. APACHE HTTP SERVER

13.1.1. Description

The rhscl/httpd-24-rhel7 image provides an Apache HTTP 2.4 Server. The image can be used as a
base image for other applications based on Apache HTTP web server.

13.1.2. Access

To pull the rhscl/httpd-24-rhel7 image, run the following command as root:

I # podman pull registry.redhat.io/rhscl/httpd-24-rhel7

The rhscl/httpd-24-rhel7 image supports using the S2I tool.

13.1.3. Configuration and Usage

The Apache HTTP Server container image supports the following configuration variables, which can be
set by using the -e option with the podman run command:

Variable Name Description

HTTPD_LOG_TO_VOLUME By default, httpd logs into standard output, so the
logs are accessible by using the podman logs
command. When HTTPD_LOG_TO_VOLUME is
set, httpd logs into/var/log/httpd24, which can be
mounted to host system using the container
volumes. This option is allowed allowed when the
containeris runas UID 0.

HTTPD_MPM This variable can be set to change the default Multi-
Processing Module (MPM) from the package default
MPM.

If you want to run the image and mount the log files into /wwwlogs on the host as a container volume,
execute the following command:

$ podman run -d -u 0 -e HTTPD_LOG_TO_VOLUME=1 --name httpd -v /wwwlogs:/var/log/httpd24:Z
rhscl/httpd-24-rhel7

To run an image using the event MPM (rather than the default prefork), execute the following
command:

I $ podman run -d -e HTTPD_MPM=event --name httpd rhscl/httpd-24-rhel7

You can also set the following mount points by passing the -v /host:/container option to the podman
run command:

35

Red Hat Software Collections 3 Using Red Hat Software Collections Container Images

Volume Mount Point Description

/var/www Apache HTTP Server data directory

/var/log/httpd24 Apache HTTP Server log directory (available only
when running as root)

When mouting a directory from the host into the container, ensure that the mounted directory has the
appropriate permissions and that the owner and group of the directory matches the user UID or name
which is running inside the container.

NOTE

The rhscl/httpd-24-rhel7 container image now uses 1001 as the default UID to work
correctly within the source-to-image strategy in OpenShift. Additionally, the container
image listens on port 8080 by default. Previously, the rhscl/httpd-24-rhel7 container
image listened on port 80 by default and ran as UID 0.

To run the rhscl/httpd-24-rhel7 container image as UID 0, specify the -u 0 option of the podman run
command:

I podman run -u 0 rhscl/httpd-24-rhel7

13.2. NGINX

13.2.1. Description

The rhscl/nginx-120-rhel7 image provides an nginx 1.20 server and a reverse proxy server; the image
can be used as a base image for other applications based on the nginx 1.20 web server, the rhscl/nginx-
118-rhel7 image provides nginx 1.18.

13.2.2. Access

To pull the rhscl/nginx-120-rhel7 image, run the following command as root:

I # podman pull registry.redhat.io/rhscl/nginx-120-rhel7

To pull the rhscl/nginx-118-rhel7 image, run the following command as root:
I # podman pull registry.redhat.io/rhscl/nginx-118-rhel7
13.2.3. Configuration

The nginx container images support the following configuration variable, which can be set by using the -
e option with the podman run command:

36

CHAPTER 13. DAEMON IMAGES

Variable Name Description

NGINX_LOG_TO_VOLUME By default, nginx logs into standard output, so the
logs are accessible by using the podman logs
command. When NGINX_LOG_TO_VOLUME is
set, nginx logs into /var/opt/rh/rh-
nginx120/log/nginx/ or/var/opt/rh/rh-
nginx120/log/nginx/, which can be mounted to
host system using the container volumes.

The rhscl/nginx-120-rhel7 and rhscl/nginx-118-rhel7 images support using the S2I tool.

13.3. VARNISH CACHE

13.3.1. Description

The rhscl/varnish-6-rhel7 image provides Varnish Cache 6.0, an HTTP reverse proxy.

13.3.2. Access

To pull the rhscl/varnish-6-rhel7 image, run the following command as root:

I # podman pull registry.redhat.io/rhscl/varnish-6-rhel7

13.3.3. Configuration

No further configuration is required.

The Red Hat Software Collections Varnish Cache images support using the S2I tool. Note that the
default.vcl configuration file in the directory accessed by S2I needs to be in the VCL format.

37

http://varnish-cache.org/docs/6.0/reference/vcl.html

Red Hat Software Collections 3 Using Red Hat Software Collections Container Images

CHAPTER 14. DATABASE IMAGES

14.1. MARIADB

14.1.1. Description

The rhscl/mariadb-105-rhel7 image provides a MariaDB 10.5 SQL database server.

14.1.2. Access

To pull the rhscl/mariadb-105-rhel7 image, run the following command as root:

I # podman pull registry.redhat.io/rhscl/mariadb-105-rhel7

14.1.3. Configuration and Usage

The usage and configuration is the same as for the MySQL image. Note that the name of the daemon is
mysqld and all environment variables have the same names as in MySQL.

The image recognizes the following environment variables that you can set during initialization by
passing the -e VAR=VALUE option to the podman run command:

Variable Name Description

MYSQL_USER User name for MySQL account to be created
MYSQL_PASSWORD Password for the user account
MYSQL_DATABASE Database name
MYSQL_ROOT_PASSWORD Password for the root user (optional)
MYSQL_CHARSET Default character set (optional)
MYSQL_COLLATION Default collation (optional)

NOTE

The root user has no password set by default, only allowing local connections. You can
set it by setting the MYSQL_ROOT_PASSWORD environment variable when initializing
your container. This will allow you to login to the root account remotely. Local
connections will still not require a password. To disable remote root access, simply unset
MYSQL_ROOT_PASSWORD and restart the container.

38

IMPORTANT

CHAPTER 14. DATABASE IMAGES

Because passwords are part of the image configuration, the only supported method to
change passwords for an unpriviledged user (MYSQL_USER) and the root user is by
changing the environment variables MYSQL_PASSWORD and
MYSQL_ROOT_PASSWORD, respectively. Changing database passwords through SQL
statements or any other way will cause a mismatch between the values stored in the
variables and the actual passwords. Whenever a database container starts, it will reset the
passwords to the values stored in the environment variables.

The following environment variables influence the MySQL configuration file and are all optional:

Variable name

MYSQL_LOWER_CASE_TAB
LE_NAMES

MYSQL_MAX_CONNECTION
S

MYSQL_MAX_ALLOWED_PA
CKET

MYSQL_FT_MIN_WORD_LE
N

MYSQL_FT_MAX_WORD_LE
N

MYSQL_AIO

MYSQL_TABLE_OPEN_CAC
HE

MYSQL_KEY_BUFFER_SIZE

MYSQL_SORT_BUFFER_SIZ
E

MYSQL_READ_BUFFER_SIZ
E

Description

Sets how the table names are
stored and compared

The maximum permitted number
of simultaneous client
connections

The maximum size of one packet
or any generated/intermediate
string

The minimum length of the word
to beincluded in a FULLTEXT
index

The maximum length of the word
to be included in a FULLTEXT
index

Controls the
innodb_use_native_aio
setting value in case the native
AlO is broken. See
http://help.directadmin.com/item
.php?id=529

The number of open tables for all
threads

The size of the buffer used for
index blocks

The size of the buffer used for
sorting

The size of the buffer used for a
sequential scan

Default

151

200M

20

400

32M (or 10% of available memory)

256K

8M (or 5% of available memory)

39

http://help.directadmin.com/item.php?id=529

Red Hat Software Collections 3 Using Red Hat Software Collections Container Images

Variable name Description Default

MYSQL_INNODB_BUFFER_P The size of the buffer pool where 32M (or 50% of available

OOL_SIZE InnoDB caches table and index memory)

data
MYSQL_INNODB_LOG_FILE The size of each log file in a log 8M (or 15% of available memory)
_SIZE group

MYSQL_INNODB_LOG_BUF The size of the buffer that InnoDB ~ 8M (or 15% of available memory)

FER_SIZE uses to write to the log files on
disk
MYSQL_DEFAULTS_FILE Point to an alternative /etc/my.cnf

configuration file

MYSQL_BINLOG_FORMAT Set sets the binlog format; statement

supported values are FOW and
statement

When the MariaDB image is run with the --memory parameter set, values of the following parameters
will be automatically calculated based on the available memory unless the parameters are explicitly
specified:

Variable name Default memory percentage

MYSQL_KEY_BUFFER_SIZE 10%
MYSQL_READ_BUFFER_SIZE 5%

MYSQL_INNODB_BUFFER_POOL_SIZE 50%
MYSQL_INNODB_LOG_FILE_SIZE 15%
MYSQL_INNODB_LOG_BUFFER_SIZE 15%

You can also set the following mount point by passing the -v /host:/container option to the podman
run command:

Volume Mount Point Description

/var/lib/mysql/data MySQL data directory

40

CHAPTER 14. DATABASE IMAGES

NOTE

When mounting a directory from the host into the container, ensure that the mounted
directory has the appropriate permissions and that the owner and group of the directory
matches the user UID or name which is running inside the container.

14.1.4. Extending the Image

See How to Extend the rhscl/mariadb-101-rhel7 Container Image , which is applicable also to
rhscl/mariadb-105-rhel7.

14.2. MYSQL

14.2.1. Description

The rhscl/mysql-80-rhel7 image provides a MySQL 8.0 SQL database server.

14.2.2. Access and Usage

To pull the rhscl/mysql-80-rhel7 image, run the following command as root:

I # podman pull registry.redhat.io/rhscl/mysql-80-rhel7

To set only the mandatory environment variables and not store the database in a host directory, execute
the following command:

podman run -d --name mysql_database -e MYSQL_USER=<user> -e
MYSQL_PASSWORD=<pass>\
-e MYSQL_DATABASE=<db> -p 3306:3306 rhscl/mysql-80-rhel7

This will create a container named mysql_database running MySQL with database db and user with
credentials user:pass. Port 3306 will be exposed and mapped to the host. If you want your database to
be persistent across container executions, also add a -v /host/db/path:/var/lib/mysql/data argument.
The directory /host/db/path will be the MySQL data directory.

If the database directory is not initialized, the entrypoint script will first run mysql_install_db and set up
necessary database users and passwords. After the database is initialized, or if it was already present,

mysqld is executed and will run as PID 1. You can stop the detached container by running the podman
stop mysql_database command.

14.2.3. Configuration

The image recognizes the following environment variables that you can set during initialization by
passing -e VAR=VALUE to the podman run command:

Variable Name Description

MYSQL_USER User name for MySQL account to be created

MYSQL_PASSWORD Password for the user account

41

https://access.redhat.com/articles/2379991

Red Hat Software Collections 3 Using Red Hat Software Collections Container Images

Variable Name Description

MYSQL_DATABASE Database name

MYSQL_ROOT_PASSWORD Password for the root user (optional)

NOTE

The root user has no password set by default, only allowing local connections. You can
set it by setting the MYSQL_ROOT_PASSWORD environment variable when initializing
your container. This will allow you to login to the root account remotely. Local
connections will still not require a password. To disable remote root access, simply unset
MYSQL_ROOT_PASSWORD and restart the container.

IMPORTANT

Because passwords are part of the image configuration, the only supported method to
change passwords for an unpriviledged user (MYSQL_USER) and the root user is by
changing the environment variables MYSQL_PASSWORD and
MYSQL_ROOT_PASSWORD, respectively. Changing database passwords through SQL
statements or any other way will cause a mismatch between the values stored in the
variables and the actual passwords. Whenever a database container starts, it will reset the
passwords to the values stored in the environment variables.

The following environment variables influence the MySQL configuration file and are all optional:

Default

Description

Variable name

MYSQL_LOWER_CASE_TAB Sets how the table names are 0
LE_NAMES stored and compared
MYSQL_MAX_CONNECTION The maximum permitted number 151
S of simultaneous client

connections
MYSQL_MAX_ALLOWED PA The maximum size of one packet 200M
CKET or any generated/intermediate

string
MYSQL_FT_MIN_WORD_LE The minimum length of the word 4
N to be included in a FULLTEXT

index
MYSQL_FT_MAX_WORD_LE The maximum length of the word 20

N

to be included in a FULLTEXT
index

Variable name

MYSQL_AIO

MYSQL_TABLE_OPEN_CAC
HE

MYSQL_KEY_BUFFER_SIZE

MYSQL_SORT_BUFFER_SIZ
E

MYSQL_READ_BUFFER_SIZ
E

MYSQL_INNODB_BUFFER_P
OOL_SIZE

MYSQL_INNODB_LOG_FILE

_SIZE

MYSQL_INNODB_LOG_BUF

FER_SIZE

MYSQL_DEFAULTS_FILE

MYSQL_BINLOG_FORMAT

MYSQL_LOG_QUERIES_EN
ABLED

Description

Controls the
innodb_use_native_aio
setting value in case the native
AlO is broken. See
http://help.directadmin.com/item
.php?id=529

The number of open tables for all
threads

The size of the buffer used for
index blocks

The size of the buffer used for
sorting

The size of the buffer used for a
sequential scan

The size of the buffer pool where
InnoDB caches table and index
data

The size of each log file in a log
group

The size of the buffer that InnoDB
uses to write to the log files on
disk

Point to an alternative
configuration file

Set sets the binlog format,
supported values are FOW and
statement

To enable query logging, set this
variable to 1

CHAPTER 14. DATABASE IMAGES

Default

400

32M (or 10% of available memory)

256K

8M (or 5% of available memory)

32M (or 50% of available
memory)

8M (or 15% of available memory)

8M (or 15% of available memory)

/etc/my.cnf

statement

When the MySQL image is run with the --memory parameter set, values of the following parameters will
be automatically calculated based on the available memory unless the parameters are explicitly

specified:

Variable name Default memory percentage

MYSQL_KEY_BUFFER_SIZE

10%

43

http://help.directadmin.com/item.php?id=529

Red Hat Software Collections 3 Using Red Hat Software Collections Container Images

Variable name Default memory percentage

MYSQL_READ_BUFFER_SIZE 5%
MYSQL_INNODB_BUFFER_POOL_SIZE 50%
MYSQL_INNODB_LOG_FILE_SIZE 15%
MYSQL_INNODB_LOG_BUFFER_SIZE 15%

You can also set the following mount point by passing the -v /host:/container option to the podman
run command:

Volume Mount Point Description

/var/lib/mysql/data MySQL data directory

NOTE

When mounting a directory from the host into the container, ensure that the mounted
directory has the appropriate permissions and that the owner and group of the directory

- matches the user UID or name which is running inside the container.

14.3. POSTGRESQL

14.3.1. Description

The rhscl/postgresql-13-rhel7 image provides a PostgreSQL 13 SQL database server; the
rhscl/postgresql-12-rhel7 image provides a PostgreSQL 12 server, and the rhscl/postgresql-10-rhel7
image provides a PostgreSQL 10 server.

14.3.2. Access and Usage

To pull the rhscl/postgresql-13-rhel7 image, run the following command as root:
I # podman pull registry.redhat.io/rhscl/postgresql-13-rhel7

To pull the rhscl/postgresql-12-rhel7 image, run the following command as root:
I # podman pull registry.redhat.io/rhscl/postgresqgl-12-rhel7

To pull the rhscl/postgresql-10-rhel7 image, run the following command as root:
I # podman pull registry.redhat.io/rhscl/postgresqgl-10-rhel7

To set only the mandatory environment variables and not store the database in a host directory, execute
the following command:

44

CHAPTER 14. DATABASE IMAGES

podman run -d --name postgresql_database -e POSTGRESQL_USER=<user>\
-e POSTGRESQL_PASSWORD=<pass> -e POSTGRESQL_DATABASE=<db>\
-p 5432:5432 <image_name>

This will create a container named postgresql_database running PostgreSQL with database db and
user with credentials user:pass. Port 5432 will be exposed and mapped to the host. If you want your
database to be persistent across container executions, also add a -v /host/db/path:/var/lib/pgsql/data
argument. This will be the PostgreSQL database cluster directory.

If the database cluster directory is not initialized, the entrypoint script will first run initdb and set up
necessary database users and passwords. After the database is initialized, or if it was already present,
postgres is executed and will run as PID 1. You can stop the detached container by running the podman
stop postgresql_database command.

The the postgres daemon first writes its logs to the standard output. To examine the container image
log, use the podman logs <image_name> command. Then the log output is redirected to the logging
collector process and appears in the pg_log/ directory.

14.3.3. Configuration

The image recognizes the following environment variables that you can set during initialization by
passing -e VAR=VALUE to the podman run command:

Variable Name Description

POSTGRESQL_USER User name for PostgreSQL account to be created

POSTGRESQL_PASSWORD Password for the user account

POSTGRESQL_DATABASE Database name

POSTGRESQL_ADMIN_PASSWORD Password for the postgres admin account (optional)
NOTE

The postgres administrator account has no password set by default, only allowing local
connections. You can set it by setting the POSTGRESQL_ADMIN_PASSWORD
environment variable when initializing your container. This will allow you to login to the
postgres account remotely. Local connections will still not require a password.

IMPORTANT

Since passwords are part of the image configuration, the only supported method to
change passwords for the database user and postgres admin user is by changing the
environment variables POSTGRESQL_PASSWORD and
POSTGRESQL_ADMIN_PASSWORD, respectively. Changing database passwords
through SQL statements or any way other than through the environment variables
aforementioned will cause a mismatch between the values stored in the variables and the
actual passwords. Whenever a database container image starts, it will reset the passwords
to the values stored in the environment variables.

The following options are related to migration:

45

Red Hat Software Collections 3 Using Red Hat Software Collections Container Images

Variable Name

POSTGRESQL_MIGRATION_
REMOTE_HOST

POSTGRESQL_MIGRATION_
ADMIN_PASSWORD

POSTGRESQL_MIGRATION_
IGNORE_ERRORS

Description Default
Hostname/IP to migrate from

Password for the remote

postgres admin user

Optional: Ignore sql import errors no

The following environment variables influence the PostgreSQL configuration file and are all optional:

Variable Name

POSTGRESQL_MAX_CONNE
CTIONS

POSTGRESQL_MAX_PREPA
RED_TRANSACTIONS

POSTGRESQL_SHARED_BU
FFERS

POSTGRESQL_EFFECTIVE_
CACHE_SIZE

NOTE

Description Default

The maximum number of client 100
connections allowed. This also

sets the maximum number of

prepared transactions.

Sets the maximum number of 0
transactions that can be in the
"prepared" state. If you are using
prepared transactions, you will
probably want this to be at least

as large as max_connections

Sets how much memory is 32M
dedicated to PostgreSQL to use

for caching data

Set to an estimate of how much 128M
memory is available for disk
caching by the operating system

and within the database itself

When the PostgreSQL image is run with the =-memory parameter set and if there are no
values provided for POSTGRESQL_SHARED_BUFFERS and
POSTGRESQL_EFFECTIVE_CACHE_SIZE, these values are automatically calculated
based on the value provided in the =-memory parameter. The values are calculated based
on the upstream formulas and are set to 1/4 and 1/2 of the given memory, respectively.

You can also set the following mount point by passing the -v /host:/container option to the podman
run command:

46

CHAPTER 14. DATABASE IMAGES

Volume Mount Point Description

/var/lib/pgsql/data PostgreSQL database cluster directory

NOTE

When mounting a directory from the host into the container, ensure that the mounted
directory has the appropriate permissions and that the owner and group of the directory
matches the user UID or name which is running inside the container.

Unless you use the -u option with the podman run command, processes in containers are usually run
under UID 26. To change the data directory permissions, use the following command:

$ setfacl -m u:26:-wx /your/data/dir
$ podman run <...> -v /your/data/dir:/var/lib/pgsql/data:Z <...>

14.3.4. Data Migration

PostgreSQL container images support migration of data from a remote PostgreSQL server. Use the
following command and change the image name and add optional configuration variables when
necessary:

$ podman run -d --name postgresql_database \
-e POSTGRESQL_MIGRATION_REMOTE_HOST=172.17.0.2\
-e POSTGRESQL_MIGRATION_ADMIN_PASSWORD=remoteAdminP@ssword \
[OPTIONAL_CONFIGURATION_VARIABLES]
rhscl/postgresql-12-rhel7

The migration is done the dump and restore way (running pg_dumpall against a remote cluster and
importing the dump locally by psql). Because the process is streamed (unix pipeline), there are no
intermediate dump files created during this process to not waste additional storage space.

If some SQL commands fail during applying, the default behavior of the migration script is to fail as well
to ensure the "all or nothing" result of a scripted, unattended migration. In most common cases,
successful migration is expected (but not guaranteed), given you migrate from a previous version of
PostgreSQL server container, which is created using the same principles - for example, migration from
rhscl/postgresql-10-rhel7 to rhscl/postgresql-12-rhel7. Migration from a different kind of
PostgreSQL container image will likely fail.

If this "all or nothing" principle is inadequate for you, there is an optional
POSTGRESQL_MIGRATION_IGNORE_ERRORS option which peforms "best effort" migration.

However, some data might be lost and it is up to the user to review the standard error output and fix
issues manually in the post-migration time.

NOTE

The container image provides migration help for users' convenience, but fully automatic
migration is not guaranteed. Thus, before you start proceeding with the database
migration, you will need to perform manual steps to get all your data migrated.

You might not use variables such as POSTGRESQL_USER in the migration scenario. All data (including

47

Red Hat Software Collections 3 Using Red Hat Software Collections Container Images

information about databases, roles, or passwords) are copied from the old cluster. Ensure that you use
the same optional configuration variables as you used for initialization of the old PostgreSQL container
image. If some non-default configuration is done on a remote cluster, you might need to copy the
configuration files manually, too.

' WARNING
A The IP communication between the old and the new PostgreSQL clusters is not

encrypted by default, it is up to the user to configure SSL on a remote cluster or
ensure security using different means.

14.3.5. Upgrading the Database

' WARNING
A Before you decide to perform the data directory upgrade, make sure you have

backed up all your data. Note that you may need to manually roll back if the upgrade
fails.

The PostreSQL image supports automatic upgrade of a data directory created by the PostgreSQL
server version provided by the previous rhscl image, for example, the rhscl/postgresql-13-rhel7 image
supports upgrading from rhscl/postgresql-12-rhel7. The upgrade process is designed so that you
should be able to just switch from image A to image B, and set the $POSTGRESQL_UPGRADE variable
appropriately to explicitly request the database data transformation.

The upgrade process is internally implemented using the pg_upgrade binary, and for that purpose the
container needs to contain two versions of PostgreSQL server (see the pg_upgrade man page for more
information).

For the pg_upgrade process and the new server version, it is necessary to initialize a new data directory.
This data directory is created automatically by the container tooling in the /var/lib/pgsql/data/ directory,
which is usually an external bind-mountpoint. The pg_upgrade execution is then similar to the dump
and restore approach. It starts both the old and the new PostgreSQL servers (within the container) and
"dumps" the old data directory and, at the same time, it "restores” it into new data directory. This
operation requires a lot of data files copying. Set the $POSTGRESQL_UPGRADE variable accordingly
based on what type of upgrade you choose:

copy The data files are copied from the old data directory
to the new directory. This option has a low risk of
data loss in case of an upgrade failure.

48

CHAPTER 14. DATABASE IMAGES

hardlink Data files are hard-linked from the old to the new
data directory, which brings performance
optimization. However, the old directory becomes
unusable, even in case of a failure.

NOTE

Make sure you have enough space for the copied data. Upgrade failure because of
insufficient space might lead to a data loss.

14.3.6. Extending the Image

The PostgreSQL image can be extended using using source-to-image.

For example, to build a customized new-postgresql image with configuration in the ~/image-
configuration/ directory, use the following command:

I $ s2i build ~/image-configuration/ postgresql new-postgresq|

The directory passed to the S2I build should contain one or more of the following directories:

postgresql-pre-start/ Source all *.sh files from this directory during an
early start of the container. There is no PostgreSQL
daemon running in the background.

postgresql-cfg/ Contained configuration files (*.conf) will be
included at the end of the image's postgresql.conf
file.

postgresql-init/ Contained shell scripts (*.sh) are sourced when the

database is freshly initialized (after successful initdb
run, which made the data directory non-empty). At
the time of sourcing these scripts, the local
PostgreSQL server is running. For re-deployments
scenarios with persistent data directory, the scripts
are not sourced (no-op).

postgresql-start/ Similar to postgresql-init/, except these scripts are
always sourced (after the postgresql-init/ scripts, if
they exist).

During the S2I build, all provided files are copied into the /opt/app-root/src/ directory in the new image.

Only one file with the same name can be used for customization, and user-provided files are preferred
over default files in the /usr/share/container-scripts/ directory, so it is possible to overwrite them.

14.4. REDIS

14.4.1. Description

The rhscl/redis-6-rhel7 image provides Redis 6, an advanced key-value store.

49

https://github.com/openshift/source-to-image

Red Hat Software Collections 3 Using Red Hat Software Collections Container Images

14.4.2. Access

To pull the rhscl/redis-6-rhel7 image, run the following command as root:

I # podman pull registry.redhat.io/rhscl/redis-6-rhel7

14.4.3. Configuration and Usage

To set only the mandatory environment variables and not store the database in a host directory, run:

I # podman run -d --name redis_database -p 6379:6379 rhscl/redis-6-rhel7

This command creates a container named redis_database. Port 6379 is exposed and mapped to the
host.

The following environment variable influences the Redis configuration file and is optional:

Variable Name Description

REDIS_PASSWORD Password for the server access

To set a password, run:

I # podman run -d --name redis_database -e REDIS_PASSWORD=strongpassword rhscl/redis-6-rhel7

IMPORTANT

Use a very strong password because Redis is fast and thus can become a target of a
brute-force attack.

To make your database persistent across container executions, add the -v
/host/db/path:/var/lib/redis/data:Z option to the podman run command.

Volume Mount Point Description

/var/lib/redis/data Redis data directory

NOTE

When mounting a directory from the host into the container, ensure that the mounted
directory has the appropriate permissions and that the owner and group of the directory
matches the user UID or name that is running inside the container.

To examine the container image log, use the podman logs <image_name> command.

50

CHAPTER 15. RED HAT DEVELOPER TOOLSET IMAGES

CHAPTER15. RED HAT DEVELOPER TOOLSET IMAGES

Red Hat Developer Toolset is a Red Hat offering for developers on the Red Hat Enterprise Linux
platform. It provides a complete set of development and performance analysis tools that can be
installed and used on multiple versions of Red Hat Enterprise Linux. Executables built with the Red Hat
Developer Toolset toolchain can then also be deployed and run on multiple versions of Red Hat
Enterprise Linux. For detailed compatibility information, see Red Hat Developer Toolset 12 User Guide .

IMPORTANT

Only container images providing the latest version of Red Hat Developer Toolset are
supported.

15.1. RUNNING RED HAT DEVELOPER TOOLSET TOOLS FROM PRE-
BUILT CONTAINER IMAGES

To display general usage information for pre-built Red Hat Developer Toolset container images that you
have already pulled to your local machine, run the following command as root:

I # podman run image_name usage

To launch an interactive shell within a pre-built container image, run the following command as root:

I # podman run -ti image_name /bin/bash -I

In both of the above commands, substitute the image_name parameter with the name of the container
image you pulled to your local system and now want to use.

For example, to launch an interactive shell within the container image with selected toolchain
components, run the following command as root:

I # podman run -ti rhscl/devtoolset-12-toolchain-rhel7 /bin/bash -I

Example 15.1. Using GCC in the Pre-Built Red Hat Developer Toolset Toolchain Image

This example illustrates how to obtain and launch the pre-built container image with selected
toolchain components of the Red Hat Developer Toolset and how to run the gec compiler within that
image.

1. Make sure you have a container environment set up properly on your system by following
instructions at Using podman to work with containers in the Managing Containers document.

2. Pull the pre-built toolchain Red Hat Developer Toolset container image from the official Red
Hat Container Registry:

I # podman pull rhscl/devtoolset-12-toolchain-rhel7

3. Tolaunch the container image with an interactive shell, issue the following command:

I # podman run -ti rhscl/devtoolset-12-toolchain-rhel7 /bin/bash -I

51

https://access.redhat.com/documentation/en-us/red_hat_developer_toolset/12/html/user_guide/chap-red_hat_developer_toolset#sect-Red_Hat_Developer_Toolset-Compatibility
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_atomic_host/7/html-single/managing_containers/index#using_podman_to_work_with_containers

Red Hat Software Collections 3 Using Red Hat Software Collections Container Images

4. To launch the container as a regular (non-root) user, use the sudo command. To map a
directory from the host system to the container file system, include the -v (or --volume)
option in the podman command:

I $ sudo podman run -v ~/Source:/src -ti rhscl/devtoolset-12-toolchain-rhel7 /bin/bash -I

In the above command, the host’s ~/Source/ directory is mounted as the /src/ directory
within the container.

5. Once you are in the container’s interactive shell, you can run Red Hat Developer Toolset
tools as expected. For example, to verify the version of the gee compiler, run:

bash-4.2$ gcc -v

[--]
gcc version 12.2.1 20221121 (Red Hat 12.2.1-4) (GCC)

Additional Resources

For more information about components available in Red Hat Developer Toolset, see the following
online resources:

® Red Hat Developer Toolset 12 User Guide
® Red Hat Developer Toolset 12.1 Release Notes

® Red Hat Developer Toolset 12.0 Release Notes

15.2. RED HAT DEVELOPER TOOLSET TOOLCHAIN CONTAINER
IMAGE

15.2.1. Description

The Red Hat Developer Toolset Toolchain image provides the GNU Compiler Collection (GCC) and
GNU Debugger (GDB).

The rhscl/devtoolset-12-toolchain-rhel7 image contains content corresponding to the following
packages:

Component Version Package

gcc 12.2. devtoolset-12-gcc

O++ devtoolset-12-gcc-c++
gfortran devtoolset-12-gcc-gfortran
gdb n.2 devtoolset-12-gdb

Additionally, the devtoolset-12-binutils package is included as a dependency.

52

https://access.redhat.com/documentation/en-us/red_hat_developer_toolset/12/html/user_guide/
https://access.redhat.com/documentation/en-us/red_hat_developer_toolset/12/html/12.1_release_notes/
https://access.redhat.com/documentation/en-us/red_hat_developer_toolset/12/html/12.0_release_notes/

CHAPTER 15. RED HAT DEVELOPER TOOLSET IMAGES

15.2.2. Access

To pull the rhscl/devtoolset-12-toolchain-rhel7 image, run the following command as root:

I # podman pull registry.redhat.io/rhscl/devtoolset-12-toolchain-rhel7

15.3. RED HAT DEVELOPER TOOLSET PERFORMANCE TOOLS
CONTAINER IMAGE

15.3.1. Description

The Red Hat Developer Toolset Performance Tools image provides a number of profiling and
performance measurement tools.

The rhscl/devtoolset-12-perftools-rhel7 image includes the following components:

Component Version Package

dwz 0.14 devtoolset-12-dwz
Dyninst 12.1.0 devtoolset-12-dyninst
elfutils 0.187 devtoolset-12-elfutils
Itrace 0.7.91 devtoolset-12-Itrace
make 43 devtoolset-12-make
memstomp 0.1.5 devtoolset-12-memstomp
OProfile 1.4.0 devtoolset-12-oprofile
strace 518 devtoolset-12-strace
SystemTap 47 devtoolset-12-systemtap
Valgrind 3.19.0 devtoolset-12-valgrind

Additionally, the devtoolset-12-gcc and devtoolset-12-binutils packages are included as a
dependency.

15.3.2. Access

To pull the rhscl/devtoolset-12-perftools-rhel7 image, run the following command as root:

I # podman pull registry.redhat.io/rhscl/devtoolset-12-perftools-rhel7

53

Red Hat Software Collections 3 Using Red Hat Software Collections Container Images

15.3.3. Usage

Using the SystemTap Tool from Container Images

When using the SystemTap tool from a container image, additional configuration is required, and the
container needs to be run with special command-line options.

The following three conditions need to be met:

1. The image needs to be run with super-user privileges. To do this, run the image using the
following command:

~]$ podman run --ti --privileged --ipc=host --net=host --pid=host devtoolset-12-my-perftools
/bin/bash -|

To use the pre-built perftools image, substitute the image name for devtoolset-12-perftools-
rhel7 in the above command.

2. The following kernel packages need to be installed in the container:
® kernel
® kernel-devel

e kernel-debuginfo
The version and release numbers of the above packages must match the version and
release numbers of the kernel running on the host system. Run the following command to
determine the version and release numbers of the hosts system'’s kernel:

~]$ uname -r
3.10.0-1160.90.1.el7.x86_64

Note that the kernel-debuginfo package is only available from the Debug repository.
Enable the rhel-7-server-debug-rpms repository. For more information on how to get
access to debuginfo packages, see How can | download or install debuginfo packages for
RHEL systems?.

To install the required packages with the correct version, use the yum package manager
and the output of the uname command. For example, to install the correct version of the
kernel package, run the following command as root:

I ~]# yum install -y kernel-$(uname -r)

3. Save the container to a reusable image by executing the podman commit command. To save a
custom-built SystemTap container:

I ~]$ podman commit devtoolset-12-systemtap-$(uname -r)

54

https://access.redhat.com/solutions/9907

CHAPTER 16. COMPILER TOOLSET IMAGES

CHAPTER 16. COMPILER TOOLSET IMAGES

Red Hat Developer Tools container images are available for the AMD64 and Intel 64, 64-bit IBM Z, and
IBM POWER, little endian architectures for the following compiler toolsets:

® Clangand LLVM Toolset
® Rust Toolset
® Go Toolset

For details, see the Red Hat Developer Tools documentation.

55

https://access.redhat.com/documentation/en-us/red_hat_developer_tools/

Red Hat Software Collections 3 Using Red Hat Software Collections Container Images

CHAPTER 17. REVISION HISTORY

Author

Version

56

0.2-7

0.2-6

0.2-5

0.2-4

0.2-3

0.2-2

0.2-1

0.2-0

0.1-7

0.1-4

Dec 20 2023

Jul 032023

May 23 2023

Nov 22 2022

Nov 15 2021

Oct 112021

Jun 03 2021

May 03 2021

Apr 06 2021

Jan 13 2021

Dec 012020

Oct 29 2020

May 26 2020

Apr 212020

Dec 10 2019

Nov 07 2019

Removed an outdated link.

The rhscl/mariadb-103-rhel7 container image

is EOL.

Update with the release of Red Hat Developer
Toolset 12.1.

Update with the release of Red Hat Developer
Toolset 12.0.

Release of Using Red Hat Software Collections
3.8 Container Images.

Release of Using Red Hat Software Collections
3.8 Beta Container Images.

Release of Using Red Hat Software Collections
3.7 Container Images.

Release of Using Red Hat Software Collections
3.7 Beta Container Images.

Improved supported architectures.

Improved introductory chapters and extended
information about building application images.

Release of Using Red Hat Software Collections
3.6 Container Images.

Release of Using Red Hat Software Collections
3.6 Beta Container Images.

Release of Using Red Hat Software Collections
3.5 Container Images.

Release of Using Red Hat Software Collections
3.5 Beta Container Images.

Release of Using Red Hat Software Collections
3.4 Container Images.

Release of Using Red Hat Software Collections
3.4 Beta Container Images.

Lenka Spackova

Lenka Spackova

Lenka Spackova

Lenka Spackova

Lenka Spackova

Lenka Spackova

Lenka Spackova

Lenka Spackova

Lenka Spackova

Lenka Spackova

Lenka Spackova

Lenka Spackova

Lenka Spackova

Lenka Spackova

Lenka Spackova

Lenka Spackova

Version

CHAPTER 17. REVISION HISTORY

Author

0.1-0

0.0-9

0.0-8

0.0-8

0.0-7

0.0-6

0.0-5

0.0-3

0.0-2

0.0-1

Jun 112019

Apr 16 2019

Nov 13 2018

Oct 23 2018

Aug 29 2018

May 10 2018

May 03 2018

Apr 04 2018

Nov 29 2017

Oct 24 2017

Oct 03 2017

Release of Using Red Hat Software Collections
3.3 Container Images.

Release of Using Red Hat Software Collections
3.3 Beta Container Images.

Release of Using Red Hat Software Collections
3.2 Container Images.

Release of Using Red Hat Software Collections
3.2 Beta Container Images.

Added a known issue related to SystemTap in
devtoolset-6-perftools.

Extended MongoDB image documentation.

Release of Using Red Hat Software Collections
3.1 Container Images.

Release of Using Red Hat Software Collections
3.1 Beta Container Images.

Added the Extending Existing Container Images
section.

Release of Using Red Hat Software Collections
3.0 Container Images.

Release of Using Red Hat Software Collections
3.0 Beta Container Images.

Lenka Spackova

Lenka Spackova

Lenka Spackova

Lenka Spackova

Lenka Spackova

Lenka Spackova

Lenka Spackova

Lenka Spackova

Lenka Spackova

Lenka Spackova

Lenka Spackova

57

	Table of Contents
	MAKING OPEN SOURCE MORE INCLUSIVE
	CHAPTER 1. RED HAT SOFTWARE COLLECTIONS CONTAINER IMAGES
	1.1. RED HAT SOFTWARE COLLECTIONS CONTAINER IMAGES AS BUILDER IMAGES
	1.2. EXTENDING EXISTING CONTAINER IMAGES

	CHAPTER 2. BUILDING APPLICATION IMAGES USING RED HAT SOFTWARE COLLECTIONS CONTAINER IMAGES
	2.1. BUILDING APPLICATION IMAGES USING RED HAT SOFTWARE COLLECTIONS IMAGES AS BASE IMAGES
	2.2. BUILDING APPLICATION IMAGES FROM DOCKERFILES USING S2I SCRIPTS
	2.3. BUILDING APPLICATION IMAGES USING SOURCE-TO-IMAGE IN OPENSHIFT
	2.4. BUILDING APPLICATION IMAGES USING THE SOURCE-TO-IMAGE UTILITY

	CHAPTER 3. CONTAINER IMAGES BASED ON RED HAT SOFTWARE COLLECTIONS 3.8
	CHAPTER 4. CONTAINER IMAGES BASED ON RED HAT SOFTWARE COLLECTIONS 3.7
	CHAPTER 5. CONTAINER IMAGES BASED ON RED HAT SOFTWARE COLLECTIONS 3.6
	CHAPTER 6. CONTAINER IMAGES BASED ON RED HAT SOFTWARE COLLECTIONS 3.5
	CHAPTER 7. CONTAINER IMAGES BASED ON RED HAT SOFTWARE COLLECTIONS 3.4
	CHAPTER 8. CONTAINER IMAGES BASED ON RED HAT SOFTWARE COLLECTIONS 3.3
	CHAPTER 9. CONTAINER IMAGES BASED ON RED HAT SOFTWARE COLLECTIONS 3.2
	CHAPTER 10. CONTAINER IMAGES BASED ON RED HAT SOFTWARE COLLECTIONS 3.1
	CHAPTER 11. CONTAINER IMAGES BASED ON RED HAT SOFTWARE COLLECTIONS 3.0
	CHAPTER 12. APPLICATION IMAGES
	12.1. NODE.JS
	12.1.1. Description
	12.1.2. Access
	12.1.3. Configuration

	12.2. PHP
	12.2.1. Description
	12.2.2. Access
	12.2.3. Configuration
	12.2.4. Extending the Image

	12.3. PERL
	12.3.1. Description
	12.3.2. Access
	12.3.3. Configuration

	12.4. PYTHON
	12.4.1. Description
	12.4.2. Access
	12.4.3. Configuration

	12.5. RUBY
	12.5.1. Description
	12.5.2. Access
	12.5.3. Configuration

	CHAPTER 13. DAEMON IMAGES
	13.1. APACHE HTTP SERVER
	13.1.1. Description
	13.1.2. Access
	13.1.3. Configuration and Usage

	13.2. NGINX
	13.2.1. Description
	13.2.2. Access
	13.2.3. Configuration

	13.3. VARNISH CACHE
	13.3.1. Description
	13.3.2. Access
	13.3.3. Configuration

	CHAPTER 14. DATABASE IMAGES
	14.1. MARIADB
	14.1.1. Description
	14.1.2. Access
	14.1.3. Configuration and Usage
	14.1.4. Extending the Image

	14.2. MYSQL
	14.2.1. Description
	14.2.2. Access and Usage
	14.2.3. Configuration

	14.3. POSTGRESQL
	14.3.1. Description
	14.3.2. Access and Usage
	14.3.3. Configuration
	14.3.4. Data Migration
	14.3.5. Upgrading the Database
	14.3.6. Extending the Image

	14.4. REDIS
	14.4.1. Description
	14.4.2. Access
	14.4.3. Configuration and Usage

	CHAPTER 15. RED HAT DEVELOPER TOOLSET IMAGES
	15.1. RUNNING RED HAT DEVELOPER TOOLSET TOOLS FROM PRE-BUILT CONTAINER IMAGES
	15.2. RED HAT DEVELOPER TOOLSET TOOLCHAIN CONTAINER IMAGE
	15.2.1. Description
	15.2.2. Access

	15.3. RED HAT DEVELOPER TOOLSET PERFORMANCE TOOLS CONTAINER IMAGE
	15.3.1. Description
	15.3.2. Access
	15.3.3. Usage

	CHAPTER 16. COMPILER TOOLSET IMAGES
	CHAPTER 17. REVISION HISTORY

