
Red Hat Streams for Apache Kafka 2.7

Streams for Apache Kafka on OpenShift
Overview

Discover the features and functions of Streams for Apache Kafka 2.7 on OpenShift
Container Platform

Last Updated: 2024-05-30

Red Hat Streams for Apache Kafka 2.7 Streams for Apache Kafka on
OpenShift Overview

Discover the features and functions of Streams for Apache Kafka 2.7 on OpenShift Container
Platform

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Learn about the capabilities of Kafka components, and how you can use Streams for Apache Kafka
to deploy and manage Kafka on OpenShift.

. .

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

PREFACE

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

CHAPTER 1. KEY FEATURES
1.1. KAFKA CAPABILITIES
1.2. KAFKA USE CASES
1.3. HOW STREAMS FOR APACHE KAFKA SUPPORTS KAFKA

CHAPTER 2. STREAMS FOR APACHE KAFKA DEPLOYMENT OF KAFKA
2.1. KAFKA COMPONENT ARCHITECTURE

CHAPTER 3. ABOUT KAFKA
3.1. HOW KAFKA OPERATES AS A MESSAGE BROKER
3.2. PRODUCERS AND CONSUMERS

CHAPTER 4. ABOUT KAFKA CONNECT
4.1. HOW KAFKA CONNECT STREAMS DATA

4.1.1. Connectors
4.1.2. Tasks
4.1.3. Workers
4.1.4. Transforms
4.1.5. Converters

CHAPTER 5. KAFKA BRIDGE INTERFACE
5.1. HTTP REQUESTS
5.2. SUPPORTED CLIENTS FOR THE KAFKA BRIDGE

CHAPTER 6. STREAMS FOR APACHE KAFKA OPERATORS
6.1. CLUSTER OPERATOR
6.2. TOPIC OPERATOR
6.3. USER OPERATOR
6.4. FEATURE GATES IN STREAMS FOR APACHE KAFKA OPERATORS

CHAPTER 7. KAFKA CONFIGURATION
7.1. CUSTOM RESOURCES

Kafka topic custom resource
7.2. COMMON CONFIGURATION

Example YAML showing common configuration
7.3. KAFKA CLUSTER CONFIGURATION

7.3.1. Storage
7.3.2. Listeners
7.3.3. Rack awareness
7.3.4. Example YAML showing Kafka configuration

7.4. KAFKA NODE POOLS CONFIGURATION
Example YAML showing node pool configuration

7.5. KAFKA MIRRORMAKER 2 CONFIGURATION
Example YAML showing MirrorMaker 2 configuration

7.6. KAFKA MIRRORMAKER CONFIGURATION
Key Consumer configuration
Key Producer configuration
Example YAML showing MirrorMaker configuration

7.7. KAFKA CONNECT CONFIGURATION

4

5

6
6
6
6

8
8

10
10
11

13
13
13
17
17
17
18

19
19
19

21
22
23
24
25

26
26
26
26
27
28
28
29
29
30
30
30
31
31
32
32
32
33
33

Table of Contents

1

. .

. .

. .

. .

. .

Plugin configuration
Kafka Connect cluster configuration for workers
KafkaConnector management of connectors
Kafka Connect API

7.8. KAFKA BRIDGE CONFIGURATION
CORS
Example YAML showing Kafka Bridge configuration

CHAPTER 8. SECURING KAFKA
8.1. ENCRYPTION
8.2. AUTHENTICATION
8.3. AUTHORIZATION
8.4. FEDERAL INFORMATION PROCESSING STANDARDS (FIPS)

CHAPTER 9. (PREVIEW) STREAMS FOR APACHE KAFKA PROXY

CHAPTER 10. (PREVIEW) STREAMS FOR APACHE KAFKA CONSOLE (USER INTERFACE)

CHAPTER 11. MONITORING
11.1. PROMETHEUS
11.2. GRAFANA
11.3. KAFKA EXPORTER
11.4. DISTRIBUTED TRACING

Tracing for Kafka clients
11.5. CRUISE CONTROL

APPENDIX A. USING YOUR SUBSCRIPTION
Accessing Your Account
Activating a Subscription
Downloading Zip and Tar Files
Installing packages with DNF

33
35
36
38
39
39
39

41
41
41

42
42

44

45

46
46
46
47
47
47
48

49
49
49
49
49

Red Hat Streams for Apache Kafka 2.7 Streams for Apache Kafka on OpenShift Overview

2

Table of Contents

3

PREFACE

Red Hat Streams for Apache Kafka 2.7 Streams for Apache Kafka on OpenShift Overview

4

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
We appreciate your feedback on our documentation.

To propose improvements, open a Jira issue and describe your suggested changes. Provide as much
detail as possible to enable us to address your request quickly.

Prerequisite

You have a Red Hat Customer Portal account. This account enables you to log in to the Red Hat
Jira Software instance.
If you do not have an account, you will be prompted to create one.

Procedure

1. Click the following: Create issue.

2. In the Summary text box, enter a brief description of the issue.

3. In the Description text box, provide the following information:

The URL of the page where you found the issue.

A detailed description of the issue.
You can leave the information in any other fields at their default values.

4. Add a reporter name.

5. Click Create to submit the Jira issue to the documentation team.

Thank you for taking the time to provide feedback.

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

5

https://issues.redhat.com/secure/CreateIssueDetails!init.jspa?pid=12320221&issuetype=1&components=12328148&priority=3&description=URL where issue was found%3A %0A%0ADescription of issue%3A &summary=%5BDOC%5D <summary here>

CHAPTER 1. KEY FEATURES
Streams for Apache Kafka simplifies the process of running Apache Kafka in an OpenShift cluster.

This guide is intended as a starting point for building an understanding of Streams for Apache Kafka. The
guide introduces some of the key concepts behind Kafka, which is central to Streams for Apache Kafka,
explaining briefly the purpose of Kafka components. Configuration points are outlined, including options
to secure and monitor Kafka. A distribution of Streams for Apache Kafka provides the files to deploy
and manage a Kafka cluster, as well as example files for configuration and monitoring of your
deployment.

A typical Kafka deployment is described, as well as the tools used to deploy and manage Kafka.

1.1. KAFKA CAPABILITIES

The underlying data stream-processing capabilities and component architecture of Kafka can deliver:

Microservices and other applications to share data with extremely high throughput and low
latency

Message ordering guarantees

Message rewind/replay from data storage to reconstruct an application state

Message compaction to remove old records when using a key-value log

Horizontal scalability in a cluster configuration

Replication of data to control fault tolerance

Retention of high volumes of data for immediate access

1.2. KAFKA USE CASES

Kafka’s capabilities make it suitable for:

Event-driven architectures

Event sourcing to capture changes to the state of an application as a log of events

Message brokering

Website activity tracking

Operational monitoring through metrics

Log collection and aggregation

Commit logs for distributed systems

Stream processing so that applications can respond to data in real time

1.3. HOW STREAMS FOR APACHE KAFKA SUPPORTS KAFKA

Streams for Apache Kafka provides container images and operators for running Kafka on OpenShift.

Red Hat Streams for Apache Kafka 2.7 Streams for Apache Kafka on OpenShift Overview

6

https://kafka.apache.org/
https://docs.redhat.com/en/documentation/red_hat_streams_for_apache_kafka/2.7/html-single/deploying_and_managing_streams_for_apache_kafka_on_openshift/index#config-examples-str

Streams for Apache Kafka provides container images and operators for running Kafka on OpenShift.
Streams for Apache Kafka operators are purpose-built with specialist operational knowledge to
effectively manage Kafka on OpenShift.

Operators simplify the process of:

Deploying and running Kafka clusters

Deploying and running Kafka components

Configuring access to Kafka

Securing access to Kafka

Upgrading Kafka

Managing brokers

Creating and managing topics

Creating and managing users

CHAPTER 1. KEY FEATURES

7

CHAPTER 2. STREAMS FOR APACHE KAFKA DEPLOYMENT
OF KAFKA

Apache Kafka components are provided for deployment to OpenShift with the Streams for Apache
Kafka distribution. The Kafka components are generally run as clusters for availability.

A typical deployment incorporating Kafka components might include:

Kafka cluster of broker nodes

ZooKeeper cluster of replicated ZooKeeper instances

Kafka Connect cluster for external data connections

Kafka MirrorMaker cluster to mirror the Kafka cluster in a secondary cluster

Kafka Exporter to extract additional Kafka metrics data for monitoring

Kafka Bridge to make HTTP-based requests to the Kafka cluster

Cruise Control to rebalance topic partitions across broker nodes

Not all of these components are mandatory, though you need Kafka and ZooKeeper as a minimum.
Some components can be deployed without Kafka, such as MirrorMaker or Kafka Connect.

2.1. KAFKA COMPONENT ARCHITECTURE

A Kafka cluster comprises the brokers responsible for message delivery.

ZooKeeper is used for cluster management. When deploying Kafka in KRaft (Kafka Raft metadata)
mode, cluster management is simplified by integrating broker and controller roles within Kafka nodes,
eliminating the need for ZooKeeper. Kafka nodes take on the roles of brokers, controllers, or both. Roles
are configured in Streams for Apache Kafka using node pools.

Each of the other Kafka components interact with the Kafka cluster to perform specific roles.

Kafka component interaction

Red Hat Streams for Apache Kafka 2.7 Streams for Apache Kafka on OpenShift Overview

8

Apache ZooKeeper

Apache ZooKeeper provides a cluster coordination service, storing and tracking the status of brokers
and consumers. ZooKeeper is also used for controller election. If ZooKeeper is used, the ZooKeeper
cluster must be ready before running Kafka. In KRaft mode, ZooKeeper is not required because the
coordination is managed in the Kafka cluster by Kafka nodes operating as controllers.

Kafka Connect

Kafka Connect is an integration toolkit for streaming data between Kafka brokers and other systems
using Connector plugins. Kafka Connect provides a framework for integrating Kafka with an external
data source or target, such as a database, for import or export of data using connectors. Connectors
are plugins that provide the connection configuration needed.

A source connector pushes external data into Kafka.

A sink connector extracts data out of Kafka
External data is translated and transformed into the appropriate format.

You can deploy Kafka Connect with build configuration that automatically builds a container
image with the connector plugins you require for your data connections.

Kafka MirrorMaker

Kafka MirrorMaker replicates data between two Kafka clusters, within or across data centers.
MirrorMaker takes messages from a source Kafka cluster and writes them to a target Kafka cluster.

Kafka Bridge

Kafka Bridge provides an API for integrating HTTP-based clients with a Kafka cluster.

Kafka Exporter

Kafka Exporter extracts data for analysis as Prometheus metrics, primarily data relating to offsets,
consumer groups, consumer lag and topics. Consumer lag is the delay between the last message
written to a partition and the message currently being picked up from that partition by a consumer

CHAPTER 2. STREAMS FOR APACHE KAFKA DEPLOYMENT OF KAFKA

9

CHAPTER 3. ABOUT KAFKA
Apache Kafka is an open-source distributed publish-subscribe messaging system for fault-tolerant real-
time data feeds.

For more information about Apache Kafka, see the Apache Kafka documentation.

3.1. HOW KAFKA OPERATES AS A MESSAGE BROKER

To maximise your experience of using Streams for Apache Kafka, you need to understand how Kafka
operates as a message broker.

A Kafka cluster comprises multiple nodes.

Nodes operating as brokers contain topics that receive and store data.

Topics are split by partitions, where the data is written.

Partitions are replicated across brokers for fault tolerance.

Kafka brokers and topics

Broker

A broker orchestrates the storage and passing of messages.

Topic

A topic provides a destination for the storage of data. Each topic is split into one or more partitions.

Cluster

A group of broker instances.

Partition

The number of topic partitions is defined by a topic partition count .

Partition leader

A partition leader handles all producer requests for a topic.

Red Hat Streams for Apache Kafka 2.7 Streams for Apache Kafka on OpenShift Overview

10

https://kafka.apache.org/documentation/

Partition follower

A partition follower replicates the partition data of a partition leader, optionally handling consumer
requests.
Topics use a replication factor to configure the number of replicas of each partition within the cluster.
A topic comprises at least one partition.

An in-sync replica has the same number of messages as the leader. Configuration defines how many
replicas must be in-sync to be able to produce messages, ensuring that a message is committed only
after it has been successfully copied to the replica partition. In this way, if the leader fails the message
is not lost.

In the Kafka brokers and topics diagram, we can see each numbered partition has a leader and two
followers in replicated topics.

3.2. PRODUCERS AND CONSUMERS

Producers and consumers send and receive messages (publish and subscribe) through brokers.
Messages comprise an optional key and a value that contains the message data, plus headers and
related metadata. The key is used to identify the subject of the message, or a property of the message.
Messages are delivered in batches, and batches and records contain headers and metadata that provide
details that are useful for filtering and routing by clients, such as the timestamp and offset position for
the record.

Producers and consumers

Producer

A producer sends messages to a broker topic to be written to the end offset of a partition. Messages
are written to partitions by a producer on a round robin basis, or to a specific partition based on the
message key.

Consumer

A consumer subscribes to a topic and reads messages according to topic, partition and offset.

Consumer group

CHAPTER 3. ABOUT KAFKA

11

Consumer groups are used to share a typically large data stream generated by multiple producers
from a given topic. Consumers are grouped using a group.id, allowing messages to be spread across
the members. Consumers within a group do not read data from the same partition, but can receive
data from one or more partitions.

Offsets

Offsets describe the position of messages within a partition. Each message in a given partition has a
unique offset, which helps identify the position of a consumer within the partition to track the number
of records that have been consumed.
Committed offsets are written to an offset commit log. A __consumer_offsets topic stores
information on committed offsets, the position of last and next offset, according to consumer group.

Producing and consuming data

Red Hat Streams for Apache Kafka 2.7 Streams for Apache Kafka on OpenShift Overview

12

CHAPTER 4. ABOUT KAFKA CONNECT
Kafka Connect is an integration toolkit for streaming data between Kafka brokers and other systems.
The other system is typically an external data source or target, such as a database.

Kafka Connect uses a plugin architecture to provide the implementation artifacts for connectors.
Plugins allow connections to other systems and provide additional configuration to manipulate data.
Plugins include connectors and other components, such as data converters and transforms. A connector
operates with a specific type of external system. Each connector defines a schema for its configuration.
You supply the configuration to Kafka Connect to create a connector instance within Kafka Connect.
Connector instances then define a set of tasks for moving data between systems.

Streams for Apache Kafka operates Kafka Connect in distributed mode, distributing data streaming
tasks across one or more worker pods. A Kafka Connect cluster comprises a group of worker pods. Each
connector is instantiated on a single worker. Each connector comprises one or more tasks that are
distributed across the group of workers. Distribution across workers permits highly scalable pipelines.

Workers convert data from one format into another format that’s suitable for the source or target
system. Depending on the configuration of the connector instance, workers might also apply transforms
(also known as Single Message Transforms, or SMTs). Transforms adjust messages, such as filtering
certain data, before they are converted. Kafka Connect has some built-in transforms, but other
transformations can be provided by plugins if necessary.

4.1. HOW KAFKA CONNECT STREAMS DATA

Kafka Connect uses connector instances to integrate with other systems to stream data.

Kafka Connect loads existing connector instances on start up and distributes data streaming tasks and
connector configuration across worker pods. Workers run the tasks for the connector instances. Each
worker runs as a separate pod to make the Kafka Connect cluster more fault tolerant. If there are more
tasks than workers, workers are assigned multiple tasks. If a worker fails, its tasks are automatically
assigned to active workers in the Kafka Connect cluster.

The main Kafka Connect components used in streaming data are as follows:

Connectors to create tasks

Tasks to move data

Workers to run tasks

Transforms to manipulate data

Converters to convert data

4.1.1. Connectors

Connectors can be one of the following type:

Source connectors that push data into Kafka

Sink connectors that extract data out of Kafka

Plugins provide the implementation for Kafka Connect to run connector instances. Connector instances
create the tasks required to transfer data in and out of Kafka. The Kafka Connect runtime orchestrates
the tasks to split the work required between the worker pods.

CHAPTER 4. ABOUT KAFKA CONNECT

13

MirrorMaker 2 also uses the Kafka Connect framework. In this case, the external data system is another
Kafka cluster. Specialized connectors for MirrorMaker 2 manage data replication between source and
target Kafka clusters.

NOTE

In addition to the MirrorMaker 2 connectors, Kafka provides two connectors as examples:

FileStreamSourceConnector streams data from a file on the worker’s filesystem
to Kafka, reading the input file and sending each line to a given Kafka topic.

FileStreamSinkConnector streams data from Kafka to the worker’s filesystem,
reading messages from a Kafka topic and writing a line for each in an output file.

The following source connector diagram shows the process flow for a source connector that streams
records from an external data system. A Kafka Connect cluster might operate source and sink
connectors at the same time. Workers are running in distributed mode in the cluster. Workers can run
one or more tasks for more than one connector instance.

Source connector streaming data to Kafka

Red Hat Streams for Apache Kafka 2.7 Streams for Apache Kafka on OpenShift Overview

14

1. A plugin provides the implementation artifacts for the source connector

2. A single worker initiates the source connector instance

3. The source connector creates the tasks to stream data

4. Tasks run in parallel to poll the external data system and return records

5. Transforms adjust the records, such as filtering or relabelling them

6. Converters put the records into a format suitable for Kafka

7. The source connector is managed using KafkaConnectors or the Kafka Connect API

The following sink connector diagram shows the process flow when streaming data from Kafka to an

CHAPTER 4. ABOUT KAFKA CONNECT

15

The following sink connector diagram shows the process flow when streaming data from Kafka to an
external data system.

Sink connector streaming data from Kafka

1. A plugin provides the implementation artifacts for the sink connector

2. A single worker initiates the sink connector instance

3. The sink connector creates the tasks to stream data

4. Tasks run in parallel to poll Kafka and return records

5. Converters put the records into a format suitable for the external data system

Red Hat Streams for Apache Kafka 2.7 Streams for Apache Kafka on OpenShift Overview

16

6. Transforms adjust the records, such as filtering or relabelling them

7. The sink connector is managed using KafkaConnectors or the Kafka Connect API

4.1.2. Tasks

Data transfer orchestrated by the Kafka Connect runtime is split into tasks that run in parallel. A task is
started using the configuration supplied by a connector instance. Kafka Connect distributes the task
configurations to workers, which instantiate and execute tasks.

A source connector task polls the external data system and returns a list of records that a
worker sends to the Kafka brokers.

A sink connector task receives Kafka records from a worker for writing to the external data
system.

For sink connectors, the number of tasks created relates to the number of partitions being consumed.
For source connectors, how the source data is partitioned is defined by the connector. You can control
the maximum number of tasks that can run in parallel by setting tasksMax in the connector
configuration. The connector might create fewer tasks than the maximum setting. For example, the
connector might create fewer tasks if it’s not possible to split the source data into that many partitions.

NOTE

In the context of Kafka Connect, a partition can mean a topic partition or a shard of data
in an external system.

4.1.3. Workers

Workers employ the connector configuration deployed to the Kafka Connect cluster. The configuration
is stored in an internal Kafka topic used by Kafka Connect. Workers also run connectors and their tasks.

A Kafka Connect cluster contains a group of workers with the same group.id. The ID identifies the
cluster within Kafka. The ID is assigned in the worker configuration through the KafkaConnect resource.
Worker configuration also specifies the names of internal Kafka Connect topics. The topics store
connector configuration, offset, and status information. The group ID and names of these topics must
also be unique to the Kafka Connect cluster.

Workers are assigned one or more connector instances and tasks. The distributed approach to
deploying Kafka Connect is fault tolerant and scalable. If a worker pod fails, the tasks it was running are
reassigned to active workers. You can add to a group of worker pods through configuration of the
replicas property in the KafkaConnect resource.

4.1.4. Transforms

Kafka Connect translates and transforms external data. Single-message transforms change messages
into a format suitable for the target destination. For example, a transform might insert or rename a field.
Transforms can also filter and route data. Plugins contain the implementation required for workers to
perform one or more transformations.

Source connectors apply transforms before converting data into a format supported by Kafka.

Sink connectors apply transforms after converting data into a format suitable for an external
data system.

A transform comprises a set of Java class files packaged in a JAR file for inclusion in a connector plugin.

CHAPTER 4. ABOUT KAFKA CONNECT

17

A transform comprises a set of Java class files packaged in a JAR file for inclusion in a connector plugin.
Kafka Connect provides a set of standard transforms, but you can also create your own.

4.1.5. Converters

When a worker receives data, it converts the data into an appropriate format using a converter. You
specify converters for workers in the worker config in the KafkaConnect resource.

Kafka Connect can convert data to and from formats supported by Kafka, such as JSON or Avro. It also
supports schemas for structuring data. If you are not converting data into a structured format, you don’t
need to enable schemas.

NOTE

You can also specify converters for specific connectors to override the general Kafka
Connect worker configuration that applies to all workers.

Additional resources

Apache Kafka documentation

Kafka Connect configuration of workers

Synchronizing data between Kafka clusters using MirrorMaker 2

Red Hat Streams for Apache Kafka 2.7 Streams for Apache Kafka on OpenShift Overview

18

http://kafka.apache.org
https://docs.redhat.com/en/documentation/red_hat_streams_for_apache_kafka/2.7/html-single/streams_for_apache_kafka_api_reference/index#property-kafka-connect-config-reference
https://docs.redhat.com/en/documentation/red_hat_streams_for_apache_kafka/2.7/html-single/deploying_and_managing_streams_for_apache_kafka_on_openshift/index#proc-mirrormaker-replication-str

CHAPTER 5. KAFKA BRIDGE INTERFACE
The Kafka Bridge provides a RESTful interface that allows HTTP-based clients to interact with a Kafka
cluster. It offers the advantages of a HTTP API connection to Streams for Apache Kafka for clients to
produce and consume messages without the requirement to use the native Kafka protocol.

The API has two main resources — consumers and topics — that are exposed and made accessible
through endpoints to interact with consumers and producers in your Kafka cluster. The resources relate
only to the Kafka Bridge, not the consumers and producers connected directly to Kafka.

5.1. HTTP REQUESTS

The Kafka Bridge supports HTTP requests to a Kafka cluster, with methods to perform operations such
as the following:

Send messages to a topic.

Retrieve messages from topics.

Retrieve a list of partitions for a topic.

Create and delete consumers.

Subscribe consumers to topics, so that they start receiving messages from those topics.

Retrieve a list of topics that a consumer is subscribed to.

Unsubscribe consumers from topics.

Assign partitions to consumers.

Commit a list of consumer offsets.

Seek on a partition, so that a consumer starts receiving messages from the first or last offset
position, or a given offset position.

The methods provide JSON responses and HTTP response code error handling. Messages can be sent
in JSON or binary formats.

Additional resources

To view the API documentation, including example requests and responses, see Using the
Streams for Apache Kafka Bridge.

5.2. SUPPORTED CLIENTS FOR THE KAFKA BRIDGE

You can use the Kafka Bridge to integrate both internal and external HTTP client applications with your
Kafka cluster.

Internal clients

Internal clients are container-based HTTP clients running in the same OpenShift cluster as the Kafka
Bridge itself. Internal clients can access the Kafka Bridge on the host and port defined in the
KafkaBridge custom resource.

External clients

External clients are HTTP clients running outside the OpenShift cluster in which the Kafka Bridge is

CHAPTER 5. KAFKA BRIDGE INTERFACE

19

https://docs.redhat.com/en/documentation/red_hat_streams_for_apache_kafka/2.7/html-single/using_the_streams_for_apache_kafka_bridge/index

External clients are HTTP clients running outside the OpenShift cluster in which the Kafka Bridge is
deployed and running. External clients can access the Kafka Bridge through an OpenShift Route, a
loadbalancer service, or using an Ingress.

HTTP internal and external client integration

Red Hat Streams for Apache Kafka 2.7 Streams for Apache Kafka on OpenShift Overview

20

CHAPTER 6. STREAMS FOR APACHE KAFKA OPERATORS
Operators are a method of packaging, deploying, and managing OpenShift applications. They provide a
way to extend the Kubernetes API and simplify the administration tasks associated with specific
applications.

Streams for Apache Kafka operators support tasks related to a Kafka deployment. Streams for Apache
Kafka custom resources provide the deployment configuration. This includes configuration for Kafka
clusters, topics, users, and other components. Leveraging custom resource configuration, Streams for
Apache Kafka operators create, configure, and manage Kafka components within an OpenShift
environment. Using operators reduces the need for manual intervention and streamlines the process of
managing Kafka in an OpenShift cluster.

Streams for Apache Kafka provides the following operators for managing a Kafka cluster running within
an OpenShift cluster.

Cluster Operator

Deploys and manages Apache Kafka clusters, Kafka Connect, Kafka MirrorMaker, Kafka Bridge, Kafka
Exporter, Cruise Control, and the Entity Operator

Entity Operator

Comprises the Topic Operator and User Operator

Topic Operator

Manages Kafka topics

User Operator

Manages Kafka users

The Cluster Operator can deploy the Topic Operator and User Operator as part of an Entity Operator
configuration at the same time as a Kafka cluster.

Operators within the Streams for Apache Kafka architecture

CHAPTER 6. STREAMS FOR APACHE KAFKA OPERATORS

21

6.1. CLUSTER OPERATOR

Streams for Apache Kafka uses the Cluster Operator to deploy and manage clusters. By default, when
you deploy Streams for Apache Kafka a single Cluster Operator replica is deployed. You can add replicas
with leader election so that additional Cluster Operators are on standby in case of disruption.

The Cluster Operator manages the clusters of the following Kafka components:

Kafka (including ZooKeeper, Entity Operator, Kafka Exporter, and Cruise Control)

Kafka Connect

Kafka MirrorMaker

Kafka Bridge

The clusters are deployed using custom resources.

For example, to deploy a Kafka cluster:

A Kafka resource with the cluster configuration is created within the OpenShift cluster.

The Cluster Operator deploys a corresponding Kafka cluster, based on what is declared in the
Kafka resource.

The Cluster Operator can also deploy the following Streams for Apache Kafka operators through
configuration of the Kafka resource:

Topic Operator to provide operator-style topic management through KafkaTopic custom

Red Hat Streams for Apache Kafka 2.7 Streams for Apache Kafka on OpenShift Overview

22

Topic Operator to provide operator-style topic management through KafkaTopic custom
resources

User Operator to provide operator-style user management through KafkaUser custom
resources

The Topic Operator and User Operator function within the Entity Operator on deployment.

You can use the Cluster Operator with a deployment of Streams for Apache Kafka Drain Cleaner to help
with pod evictions. By deploying the Streams for Apache Kafka Drain Cleaner, you can use the Cluster
Operator to move Kafka pods instead of OpenShift. Streams for Apache Kafka Drain Cleaner annotates
pods being evicted with a rolling update annotation. The annotation informs the Cluster Operator to
perform the rolling update.

Example architecture for the Cluster Operator

6.2. TOPIC OPERATOR

The Topic Operator provides a way of managing topics in a Kafka cluster through KafkaTopic
resources.

Example architecture for the Topic Operator

CHAPTER 6. STREAMS FOR APACHE KAFKA OPERATORS

23

The Topic Operator manages Kafka topics by watching for KafkaTopic resources that describe Kafka
topics, and ensuring that they are configured properly in the Kafka cluster.

When a KafkaTopic is created, deleted, or changed, the Topic Operator performs the corresponding
action on the Kafka topic.

You can declare a KafkaTopic as part of your application’s deployment and the Topic Operator
manages the Kafka topic for you.

The Topic Operator operates in the following modes:

Unidirectional mode

Unidirectional mode means that the Topic Operator solely manages topics through the KafkaTopic
resource. This mode does not require ZooKeeper and is compatible with using Streams for Apache
Kafka in KRaft mode.

Bidirectional mode

Bidirectional mode means that the Topic Operator can reconcile changes to a KafkaTopic resource
to and from a Kafka cluster. This means that you can update topics either through the KafkaTopic
resource or directly in Kafka, and the Topic Operator will ensure that both sources are updated to
reflect the changes. This mode requires ZooKeeper for cluster management.
The Topic Operator maintains information about each topic in a topic store, which is continually
synchronized with updates from OpenShift KafkaTopic custom resources or Kafka topics. Updates
from operations applied to a local in-memory topic store are persisted to a backup topic store on
disk.

6.3. USER OPERATOR

The User Operator provides a way of managing users in a Kafka cluster through KafkaUser resources.

The User Operator manages Kafka users for a Kafka cluster by watching for KafkaUser resources that
describe Kafka users, and ensuring that they are configured properly in the Kafka cluster.

When a KafkaUser is created, deleted, or changed, the User Operator performs the corresponding
action on the Kafka user.

You can declare a KafkaUser resource as part of your application’s deployment and the User Operator

Red Hat Streams for Apache Kafka 2.7 Streams for Apache Kafka on OpenShift Overview

24

manages the Kafka user for you. You can specify the authentication and authorization mechanism for
the user. You can also configure user quotas that control usage of Kafka resources to ensure, for
example, that a user does not monopolize access to a broker.

When the user is created, the user credentials are created in a Secret. Your application needs to use the
user and its credentials for authentication and to produce or consume messages.

In addition to managing credentials for authentication, the User Operator also manages authorization
rules by including a description of the user’s access rights in the KafkaUser declaration.

6.4. FEATURE GATES IN STREAMS FOR APACHE KAFKA OPERATORS

Streams for Apache Kafka operators use feature gates to enable or disable specific features and
functions. Enabling a feature gate alters the behavior of the associated operator, introducing the
corresponding feature to your Streams for Apache Kafka deployment.

Feature gates are set in the operator configuration and have three stages of maturity: alpha, beta, or
graduated. Graduated feature gates have reached General Availability (GA) and are permanently
enabled features.

For more information, see Feature gates.

CHAPTER 6. STREAMS FOR APACHE KAFKA OPERATORS

25

https://docs.redhat.com/en/documentation/red_hat_streams_for_apache_kafka/2.7/html-single/deploying_and_managing_streams_for_apache_kafka_on_openshift/index#ref-operator-cluster-feature-gates-str

CHAPTER 7. KAFKA CONFIGURATION
The deployment of Kafka components onto an OpenShift cluster using Streams for Apache Kafka is
highly configurable through the use of custom resources. These resources are created as instances of
APIs introduced by Custom Resource Definitions (CRDs), which extend OpenShift resources.

CRDs act as configuration instructions to describe the custom resources in an OpenShift cluster, and are
provided with Streams for Apache Kafka for each Kafka component used in a deployment, as well as
users and topics. CRDs and custom resources are defined as YAML files. Example YAML files are
provided with the Streams for Apache Kafka distribution.

CRDs also allow Streams for Apache Kafka resources to benefit from native OpenShift features like CLI
accessibility and configuration validation.

In this section we look at how Kafka components are configured through custom resources, starting with
common configuration points and then important configuration considerations specific to components.

Streams for Apache Kafka provides example configuration files , which can serve as a starting point when
building your own Kafka component configuration for deployment.

7.1. CUSTOM RESOURCES

After a new custom resource type is added to your cluster by installing a CRD, you can create instances
of the resource based on its specification.

The custom resources for Streams for Apache Kafka components have common configuration
properties, which are defined under spec.

In this fragment from a Kafka topic custom resource, the apiVersion and kind properties identify the
associated CRD. The spec property shows configuration that defines the number of partitions and
replicas for the topic.

Kafka topic custom resource

There are many additional configuration options that can be incorporated into a YAML definition, some
common and some specific to a particular component.

Additional resources

Extend the Kubernetes API with CustomResourceDefinitions

7.2. COMMON CONFIGURATION

Some of the configuration options common to resources are described here. Security and metrics

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaTopic
metadata:
 name: my-topic
 labels:
 strimzi.io/cluster: my-cluster
spec:
 partitions: 1
 replicas: 1
 # ...

Red Hat Streams for Apache Kafka 2.7 Streams for Apache Kafka on OpenShift Overview

26

https://docs.redhat.com/en/documentation/red_hat_streams_for_apache_kafka/2.7/html-single/deploying_and_managing_streams_for_apache_kafka_on_openshift/index#config-examples-str
https://kubernetes.io/docs/tasks/access-kubernetes-api/custom-resources/custom-resource-definitions/

Some of the configuration options common to resources are described here. Security and metrics
collection might also be adopted where applicable.

Bootstrap servers

Bootstrap servers are used for host/port connection to a Kafka cluster for:

Kafka Connect

Kafka Bridge

Kafka MirrorMaker producers and consumers

CPU and memory resources

You request CPU and memory resources for components. Limits specify the maximum resources
that can be consumed by a given container.
Resource requests and limits for the Topic Operator and User Operator are set in the Kafka
resource.

Logging

You define the logging level for the component. Logging can be defined directly (inline) or externally
using a config map.

Healthchecks

Healthcheck configuration introduces liveness and readiness probes to know when to restart a
container (liveness) and when a container can accept traffic (readiness).

JVM options

JVM options provide maximum and minimum memory allocation to optimize the performance of the
component according to the platform it is running on.

Pod scheduling

Pod schedules use affinity/anti-affinity rules to determine under what circumstances a pod is
scheduled onto a node.

Example YAML showing common configuration

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
metadata:
 name: my-cluster
spec:
 # ...
 bootstrapServers: my-cluster-kafka-bootstrap:9092
 resources:
 requests:
 cpu: 12
 memory: 64Gi
 limits:
 cpu: 12
 memory: 64Gi
 logging:
 type: inline
 loggers:
 connect.root.logger.level: INFO
 readinessProbe:
 initialDelaySeconds: 15

CHAPTER 7. KAFKA CONFIGURATION

27

7.3. KAFKA CLUSTER CONFIGURATION

A kafka cluster comprises one or more brokers. For producers and consumers to be able to access
topics within the brokers, Kafka configuration must define how data is stored in the cluster, and how the
data is accessed. You can configure a Kafka cluster to run with multiple broker nodes across racks.

7.3.1. Storage

Streams for Apache Kafka supports the following storage configuration options for managing Kafka and
ZooKeeper data:

Ephemeral (Recommended for development only)

Ephemeral storage stores data for the lifetime of an instance. Data is lost when the instance is
restarted.

Persistent

Persistent storage relates to long-term data storage independent of the lifecycle of the instance.

JBOD (Just a Bunch of Disks, suitable for Kafka only)

JBOD allows you to use multiple disks to store commit logs in each broker.

In addition to these options, you can configure Streams for Apache Kafka to use tiered storage. Tiered
storage is an early access feature in Kafka, providing more flexibility for data management by
leveraging the parallel use of storage types with different characteristics. While one of the basic storage
options must be configured alongside tiered storage, it enables combinations such as block storage with
object storage for enhanced performance and scalability.

Storage types are specified in the custom resource using storage or tieredStorage configuration
properties:

storage configuration types:

type: ephemeral

type: persistent-claim for persistent storage using Persistent Volume Claims (PVCs)

 timeoutSeconds: 5
 livenessProbe:
 initialDelaySeconds: 15
 timeoutSeconds: 5
 jvmOptions:
 "-Xmx": "2g"
 "-Xms": "2g"
 template:
 pod:
 affinity:
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: node-type
 operator: In
 values:
 - fast-network
 # ...

Red Hat Streams for Apache Kafka 2.7 Streams for Apache Kafka on OpenShift Overview

28

https://kubernetes.io/docs/concepts/storage/dynamic-provisioning/

type: jbod for JBOD storage

tieredStorage configuration types:

type: custom for custom tiered storage

For the Kafka and ZooKeeper data stored on disks, the file system format for storage must be XFS or
EXT4. The disk capacity used by an existing Kafka cluster can be increased if supported by the
infrastructure.

7.3.2. Listeners

Listeners configure how clients connect to a Kafka cluster.

By specifying a unique name and port for each listener within a Kafka cluster, you can configure multiple
listeners.

The following types of listener are supported:

Internal listeners for access within OpenShift

External listeners for access outside of OpenShift

You can enable TLS encryption for listeners, and configure authentication.

Internal listeners expose Kafka by specifying an internal type:

internal to connect within the same OpenShift cluster

cluster-ip to expose Kafka using per-broker ClusterIP services

External listeners expose Kafka by specifying an external type:

route to use OpenShift routes and the default HAProxy router

loadbalancer to use loadbalancer services

nodeport to use ports on OpenShift nodes

ingress to use OpenShift Ingress and the Ingress NGINX Controller for Kubernetes

NOTE

With the cluster-ip type can add your own access mechanism. For example, you can use
the listener with a custom Ingress controller or the OpenShift Gateway API.

If you are using OAuth 2.0 for token-based authentication , you can configure listeners to use the
authorization server.

7.3.3. Rack awareness

Racks represent data centers, or racks in data centers, or availability zones. Configure rack awareness to
distribute Kafka broker pods and topic replicas across racks. Enable rack awareness using the rack
property to specify a topologyKey. The topologyKey is the name of the label assigned to OpenShift
worker nodes, which identifies the rack. Streams for Apache Kafka assigns a rack ID to each Kafka
broker. Kafka brokers use the IDs to spread partition replicas across racks. You can also specify the

CHAPTER 7. KAFKA CONFIGURATION

29

https://github.com/kubernetes/ingress-nginx

RackAwareReplicaSelector selector plugin to use with rack awareness. The plugin matches the rack
IDs of brokers and consumers, so that messages are consumed from the closest replica. To use the
plugin, consumers must also have rack awareness enabled. You can enable rack awareness in Kafka
Connect, MirrorMaker 2, and the Kafka Bridge.

7.3.4. Example YAML showing Kafka configuration

7.4. KAFKA NODE POOLS CONFIGURATION

A node pool refers to a distinct group of Kafka nodes within a Kafka cluster. By using node pools, nodes
can have different configuration within the same Kafka cluster. Configuration options not specified in
the node pool are inherited from the Kafka configuration.

You can deploy a Kafka cluster with one or more node pools. The node pool configuration includes
mandatory and optional settings. Configuration for replicas, roles, and storage is mandatory.

If you are using KRaft mode, you can specify roles that all nodes in the node pool operate as brokers,
controllers, or both. Controller and dual roles are specific to KRaft. If you are using Kafka clusters that
use ZooKeeper for cluster management, you can use node pools that are configured with broker roles
only.

Example YAML showing node pool configuration

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 # ...
 listeners:
 - name: tls
 port: 9093
 type: internal
 tls: true
 authentication:
 type: tls
 - name: external1
 port: 9094
 type: route
 tls: true
 authentication:
 type: tls
 # ...
 storage:
 type: persistent-claim
 size: 10000Gi
 # ...
 rack:
 topologyKey: topology.kubernetes.io/zone
 config:
 replica.selector.class: org.apache.kafka.common.replica.RackAwareReplicaSelector
 # ...

Red Hat Streams for Apache Kafka 2.7 Streams for Apache Kafka on OpenShift Overview

30

7.5. KAFKA MIRRORMAKER 2 CONFIGURATION

Kafka MirrorMaker 2 replicates data between two or more active Kafka clusters, within or across data
centers. To set up MirrorMaker 2, a source and target (destination) Kafka cluster must be running.

The process of mirroring data from a source cluster to a target cluster is asynchronous. Each
MirrorMaker 2 instance mirrors data from one source cluster to one target cluster. You can use more
than one MirrorMaker 2 instance to mirror data between any number of clusters.

Figure 7.1. Replication across two clusters

MirrorMaker 2 uses source and target cluster configuration as follows:

Source cluster configuration for consuming data from the source cluster

Target cluster configuration for outputting data to the target cluster

Topic and consumer group replication is specified as comma-separated lists or regular expression
patterns.

Example YAML showing MirrorMaker 2 configuration

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaNodePool
metadata:
 name: pool-a
 labels:
 strimzi.io/cluster: my-cluster
spec:
 replicas: 3
 roles:
 - broker
 storage:
 type: jbod
 volumes:
 - id: 0
 type: persistent-claim
 size: 100Gi
 deleteClaim: false

 apiVersion: kafka.strimzi.io/v1beta2
 kind: KafkaMirrorMaker2

CHAPTER 7. KAFKA CONFIGURATION

31

7.6. KAFKA MIRRORMAKER CONFIGURATION

Kafka MirrorMaker (also referred to as MirrorMaker 1) uses producers and consumers to replicate data
across clusters as follows:

Consumers consume data from the source cluster

Producers output data to the target cluster

Consumer and producer configuration includes any required authentication and encryption settings. An
include property defines the topics to mirror from the source to the target cluster.

NOTE

MirrorMaker was deprecated in Kafka 3.0.0 and will be removed in Kafka 4.0.0. As a
consequence, the Streams for Apache Kafka KafkaMirrorMaker custom resource which
is used to deploy MirrorMaker has been deprecated. The KafkaMirrorMaker resource will
be removed from Streams for Apache Kafka when Kafka 4.0.0 is adopted.

Key Consumer configuration

Consumer group identifier

The consumer group ID for a MirrorMaker consumer so that messages consumed are assigned to a
consumer group.

Number of consumer streams

A value to determine the number of consumers in a consumer group that consume a message in
parallel.

Offset commit interval

An offset commit interval to set the time between consuming and committing a message.

Key Producer configuration

Cancel option for send failure

You can define whether a message send failure is ignored or MirrorMaker is terminated and
recreated.

 metadata:
 name: my-mirror-maker2
 spec:
 version: 3.7.0
 connectCluster: "my-cluster-target"
 clusters:
 - alias: "my-cluster-source"
 bootstrapServers: my-cluster-source-kafka-bootstrap:9092
 - alias: "my-cluster-target"
 bootstrapServers: my-cluster-target-kafka-bootstrap:9092
 mirrors:
 - sourceCluster: "my-cluster-source"
 targetCluster: "my-cluster-target"
 sourceConnector: {}
 topicsPattern: ".*"
 groupsPattern: "group1|group2|group3"

Red Hat Streams for Apache Kafka 2.7 Streams for Apache Kafka on OpenShift Overview

32

Example YAML showing MirrorMaker configuration

7.7. KAFKA CONNECT CONFIGURATION

Use Streams for Apache Kafka’s KafkaConnect resource to quickly and easily create new Kafka
Connect clusters.

When you deploy Kafka Connect using the KafkaConnect resource, you specify bootstrap server
addresses (in spec.bootstrapServers) for connecting to a Kafka cluster. You can specify more than one
address in case a server goes down. You also specify the authentication credentials and TLS encryption
certificates to make a secure connection.

NOTE

The Kafka cluster doesn’t need to be managed by Streams for Apache Kafka or deployed
to an OpenShift cluster.

You can also use the KafkaConnect resource to specify the following:

Plugin configuration to build a container image that includes the plugins to make connections

Configuration for the worker pods that belong to the Kafka Connect cluster

An annotation to enable use of the KafkaConnector resource to manage plugins

The Cluster Operator manages Kafka Connect clusters deployed using the KafkaConnect resource and
connectors created using the KafkaConnector resource.

Plugin configuration
Plugins provide the implementation for creating connector instances. When a plugin is instantiated,
configuration is provided for connection to a specific type of external data system. Plugins provide a set
of one or more JAR files that define a connector and task implementation for connecting to a given kind
of data source. Plugins for many external systems are available for use with Kafka Connect. You can also
create your own plugins.

The configuration describes the source input data and target output data to feed into and out of Kafka

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaMirrorMaker
metadata:
 name: my-mirror-maker
spec:
 # ...
 consumer:
 bootstrapServers: my-source-cluster-kafka-bootstrap:9092
 groupId: "my-group"
 numStreams: 2
 offsetCommitInterval: 120000
 # ...
 producer:
 # ...
 abortOnSendFailure: false
 # ...
 include: "my-topic|other-topic"
 # ...

CHAPTER 7. KAFKA CONFIGURATION

33

1

2

3

The configuration describes the source input data and target output data to feed into and out of Kafka
Connect. For a source connector, external source data must reference specific topics that will store the
messages. The plugins might also contain the libraries and files needed to transform the data.

A Kafka Connect deployment can have one or more plugins, but only one version of each plugin.

You can create a custom Kafka Connect image that includes your choice of plugins. You can create the
image in two ways:

Automatically using Kafka Connect configuration

Manually using a Dockerfile and a Kafka container image as a base image

To create the container image automatically, you specify the plugins to add to your Kafka Connect
cluster using the build property of the KafkaConnect resource. Streams for Apache Kafka
automatically downloads and adds the plugin artifacts to a new container image.

Example plugin configuration

Build configuration properties for building a container image with plugins automatically.

Configuration of the container registry where new images are pushed. The output properties
describe the type and name of the image, and optionally the name of the secret containing the
credentials needed to access the container registry.

List of plugins and their artifacts to add to the new container image. The plugins properties
describe the type of artifact and the URL from which the artifact is downloaded. Each plugin must
be configured with at least one artifact. Additionally, you can specify a SHA-512 checksum to verify
the artifact before unpacking it.

If you are using a Dockerfile to build an image, you can use Streams for Apache Kafka’s latest container
image as a base image to add your plugin configuration file.

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
metadata:
 name: my-connect-cluster
 annotations:
 strimzi.io/use-connector-resources: "true"
spec:
 # ...
 build: 1
 output: 2
 type: docker
 image: my-registry.io/my-org/my-connect-cluster:latest
 pushSecret: my-registry-credentials
 plugins: 3
 - name: my-connector
 artifacts:
 - type: tgz
 url: https://<plugin_download_location>.tgz
 sha512sum: <checksum_to_verify_the_plugin>
 # ...
 # ...

Red Hat Streams for Apache Kafka 2.7 Streams for Apache Kafka on OpenShift Overview

34

https://docs.redhat.com/en/documentation/red_hat_streams_for_apache_kafka/2.7/html-single/deploying_and_managing_streams_for_apache_kafka_on_openshift/index#creating-new-image-using-kafka-connect-build-str
https://docs.redhat.com/en/documentation/red_hat_streams_for_apache_kafka/2.7/html-single/deploying_and_managing_streams_for_apache_kafka_on_openshift/index#creating-new-image-from-base-str
https://docs.redhat.com/en/documentation/red_hat_streams_for_apache_kafka/2.7/html-single/streams_for_apache_kafka_api_reference/index#type-Build-reference

1

Example showing manual addition of plugin configuration

FROM registry.redhat.io/amq-streams/kafka-37-rhel9:2.7.0
USER root:root
COPY ./my-plugins/ /opt/kafka/plugins/
USER 1001

Kafka Connect cluster configuration for workers
You specify the configuration for workers in the config property of the KafkaConnect resource.

A distributed Kafka Connect cluster has a group ID and a set of internal configuration topics.

group.id

offset.storage.topic

config.storage.topic

status.storage.topic

Kafka Connect clusters are configured by default with the same values for these properties. Kafka
Connect clusters cannot share the group ID or topic names as it will create errors. If multiple different
Kafka Connect clusters are used, these settings must be unique for the workers of each Kafka Connect
cluster created.

The names of the connectors used by each Kafka Connect cluster must also be unique.

In the following example worker configuration, JSON converters are specified. A replication factor is set
for the internal Kafka topics used by Kafka Connect. This should be at least 3 for a production
environment. Changing the replication factor after the topics have been created will have no effect.

Example worker configuration

The Kafka Connect cluster ID within Kafka. Must be unique for each Kafka Connect cluster.

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
...
spec:
 config:
 # ...
 group.id: my-connect-cluster 1
 offset.storage.topic: my-connect-cluster-offsets 2
 config.storage.topic: my-connect-cluster-configs 3
 status.storage.topic: my-connect-cluster-status 4
 key.converter: org.apache.kafka.connect.json.JsonConverter 5
 value.converter: org.apache.kafka.connect.json.JsonConverter 6
 key.converter.schemas.enable: true 7
 value.converter.schemas.enable: true 8
 config.storage.replication.factor: 3 9
 offset.storage.replication.factor: 3 10
 status.storage.replication.factor: 3 11
 # ...

CHAPTER 7. KAFKA CONFIGURATION

35

2

3

4

5

6

7

8

9

10

11

Kafka topic that stores connector offsets. Must be unique for each Kafka Connect cluster.

Kafka topic that stores connector and task status configurations. Must be unique for each Kafka
Connect cluster.

Kafka topic that stores connector and task status updates. Must be unique for each Kafka Connect
cluster.

Converter to transform message keys into JSON format for storage in Kafka.

Converter to transform message values into JSON format for storage in Kafka.

Schema enabled for converting message keys into structured JSON format.

Schema enabled for converting message values into structured JSON format.

Replication factor for the Kafka topic that stores connector offsets.

Replication factor for the Kafka topic that stores connector and task status configurations.

Replication factor for the Kafka topic that stores connector and task status updates.

KafkaConnector management of connectors
After plugins have been added to the container image used for the worker pods in a deployment, you
can use Streams for Apache Kafka’s KafkaConnector custom resource or the Kafka Connect API to
manage connector instances. You can also create new connector instances using these options.

The KafkaConnector resource offers an OpenShift-native approach to management of connectors by
the Cluster Operator. To manage connectors with KafkaConnector resources, you must specify an
annotation in your KafkaConnect custom resource.

Annotation to enable KafkaConnectors

Setting use-connector-resources to true enables KafkaConnectors to create, delete, and reconfigure
connectors.

If use-connector-resources is enabled in your KafkaConnect configuration, you must use the
KafkaConnector resource to define and manage connectors. KafkaConnector resources are
configured to connect to external systems. They are deployed to the same OpenShift cluster as the
Kafka Connect cluster and Kafka cluster interacting with the external data system.

Kafka components are contained in the same OpenShift cluster

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
metadata:
 name: my-connect-cluster
 annotations:
 strimzi.io/use-connector-resources: "true"
 # ...

Red Hat Streams for Apache Kafka 2.7 Streams for Apache Kafka on OpenShift Overview

36

1

2

3

4

5

The configuration specifies how connector instances connect to an external data system, including any
authentication. You also need to state what data to watch. For a source connector, you might provide a
database name in the configuration. You can also specify where the data should sit in Kafka by
specifying a target topic name.

Use tasksMax to specify the maximum number of tasks. For example, a source connector with
tasksMax: 2 might split the import of source data into two tasks.

Example KafkaConnector source connector configuration

Name of the KafkaConnector resource, which is used as the name of the connector. Use any name
that is valid for an OpenShift resource.

Name of the Kafka Connect cluster to create the connector instance in. Connectors must be
deployed to the same namespace as the Kafka Connect cluster they link to.

Full name of the connector class. This should be present in the image being used by the Kafka
Connect cluster.

Maximum number of Kafka Connect tasks that the connector can create.

Enables automatic restarts of failed connectors and tasks. By default, the number of restarts is
indefinite, but you can set a maximum on the number of automatic restarts using the maxRestarts
property.

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnector
metadata:
 name: my-source-connector 1
 labels:
 strimzi.io/cluster: my-connect-cluster 2
spec:
 class: org.apache.kafka.connect.file.FileStreamSourceConnector 3
 tasksMax: 2 4
 autoRestart: 5
 enabled: true
 config: 6
 file: "/opt/kafka/LICENSE" 7
 topic: my-topic 8
 # ...

CHAPTER 7. KAFKA CONFIGURATION

37

6

7

8

property.

Connector configuration as key-value pairs.

Location of the external data file. In this example, we’re configuring the
FileStreamSourceConnector to read from the /opt/kafka/LICENSE file.

Kafka topic to publish the source data to.

NOTE

You can load confidential configuration values for a connector from external sources,
such as OpenShift Secrets or ConfigMaps.

Kafka Connect API
Use the Kafka Connect REST API as an alternative to using KafkaConnector resources to manage
connectors. The Kafka Connect REST API is available as a service running on
<connect_cluster_name>-connect-api:8083, where <connect_cluster_name> is the name of your Kafka
Connect cluster.

You add the connector configuration as a JSON object.

Example curl request to add connector configuration

If KafkaConnectors are enabled, manual changes made directly using the Kafka Connect REST API are
reverted by the Cluster Operator.

The operations supported by the REST API are described in the Apache Kafka Connect API
documentation.

NOTE

You can expose the Kafka Connect API service outside OpenShift. You do this by
creating a service that uses a connection mechanism that provides the access, such as an
ingress or route. Use advisedly as the connection is insecure.

Additional resources

Kafka Connect configuration options

curl -X POST \
 http://my-connect-cluster-connect-api:8083/connectors \
 -H 'Content-Type: application/json' \
 -d '{ "name": "my-source-connector",
 "config":
 {
 "connector.class":"org.apache.kafka.connect.file.FileStreamSourceConnector",
 "file": "/opt/kafka/LICENSE",
 "topic":"my-topic",
 "tasksMax": "4",
 "type": "source"
 }
}'

Red Hat Streams for Apache Kafka 2.7 Streams for Apache Kafka on OpenShift Overview

38

https://docs.redhat.com/en/documentation/red_hat_streams_for_apache_kafka/2.7/html-single/deploying_and_managing_streams_for_apache_kafka_on_openshift/index#kafkaconnector-configs
https://docs.redhat.com/en/documentation/red_hat_streams_for_apache_kafka/2.7/html-single/deploying_and_managing_streams_for_apache_kafka_on_openshift/index#assembly-loading-config-with-providers-str
https://kafka.apache.org/documentation#connect_rest
https://docs.redhat.com/en/documentation/red_hat_streams_for_apache_kafka/2.7/html-single/deploying_and_managing_streams_for_apache_kafka_on_openshift/index#con-kafka-connect-config-str

Kafka Connect configuration for multiple instances

Extending Kafka Connect with plugins

Creating a new container image automatically using Streams for Apache Kafka

Creating a Docker image from the Kafka Connect base image

Build schema reference

Source and sink connector configuration options

Loading configuration values from external sources

7.8. KAFKA BRIDGE CONFIGURATION

A Kafka Bridge configuration requires a bootstrap server specification for the Kafka cluster it connects
to, as well as any encryption and authentication options required.

Kafka Bridge consumer and producer configuration is standard, as described in the Apache Kafka
configuration documentation for consumers and Apache Kafka configuration documentation for
producers.

HTTP-related configuration options set the port connection which the server listens on.

CORS
The Kafka Bridge supports the use of Cross-Origin Resource Sharing (CORS). CORS is a HTTP
mechanism that allows browser access to selected resources from more than one origin, for example,
resources on different domains. If you choose to use CORS, you can define a list of allowed resource
origins and HTTP methods for interaction with the Kafka cluster through the Kafka Bridge. The lists are
defined in the http specification of the Kafka Bridge configuration.

CORS allows for simple and preflighted requests between origin sources on different domains.

A simple request is a HTTP request that must have an allowed origin defined in its header.

A preflighted request sends an initial OPTIONS HTTP request before the actual request to
check that the origin and the method are allowed.

Example YAML showing Kafka Bridge configuration

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaBridge
metadata:
 name: my-bridge
spec:
 # ...
 bootstrapServers: my-cluster-kafka:9092
 http:
 port: 8080
 cors:
 allowedOrigins: "https://strimzi.io"
 allowedMethods: "GET,POST,PUT,DELETE,OPTIONS,PATCH"
 consumer:
 config:
 auto.offset.reset: earliest

CHAPTER 7. KAFKA CONFIGURATION

39

https://docs.redhat.com/en/documentation/red_hat_streams_for_apache_kafka/2.7/html-single/deploying_and_managing_streams_for_apache_kafka_on_openshift/index#con-kafka-connect-multiple-instances-str
https://docs.redhat.com/en/documentation/red_hat_streams_for_apache_kafka/2.7/html-single/deploying_and_managing_streams_for_apache_kafka_on_openshift/index#using-kafka-connect-with-plug-ins-str
https://docs.redhat.com/en/documentation/red_hat_streams_for_apache_kafka/2.7/html-single/deploying_and_managing_streams_for_apache_kafka_on_openshift/index#creating-new-image-using-kafka-connect-build-str
https://docs.redhat.com/en/documentation/red_hat_streams_for_apache_kafka/2.7/html-single/deploying_and_managing_streams_for_apache_kafka_on_openshift/index#creating-new-image-from-base-str
https://docs.redhat.com/en/documentation/red_hat_streams_for_apache_kafka/2.7/html-single/streams_for_apache_kafka_api_reference/index#type-Build-reference
https://docs.redhat.com/en/documentation/red_hat_streams_for_apache_kafka/2.7/html-single/deploying_and_managing_streams_for_apache_kafka_on_openshift/index#kafkaconnector-configs
https://docs.redhat.com/en/documentation/red_hat_streams_for_apache_kafka/2.7/html-single/deploying_and_managing_streams_for_apache_kafka_on_openshift/index#assembly-loading-config-with-providers-str
https://kafka.apache.org/documentation/#consumerconfigs
https://kafka.apache.org/documentation/#producerconfigs

Additional resources

Fetch CORS specification

 producer:
 config:
 delivery.timeout.ms: 300000
 # ...

Red Hat Streams for Apache Kafka 2.7 Streams for Apache Kafka on OpenShift Overview

40

https://fetch.spec.whatwg.org/

CHAPTER 8. SECURING KAFKA
A secure deployment of Streams for Apache Kafka might encompass one or more of the following
security measures:

Encryption for data exchange

Authentication to prove identity

Authorization to allow or decline actions executed by users

Running Streams for Apache Kafka on FIPS-enabled OpenShift clusters to ensure data security
and system interoperability

8.1. ENCRYPTION

Streams for Apache Kafka supports Transport Layer Security (TLS), a protocol for encrypted
communication.

Communication is always encrypted for communication between:

Kafka brokers

ZooKeeper nodes

Kafka brokers and ZooKeeper nodes

Operators and Kafka brokers

Operators and ZooKeeper nodes

Kafka Exporter

You can also configure TLS encryption between Kafka brokers and clients. TLS is specified for external
clients when configuring an external listener for the Kafka broker.

Streams for Apache Kafka components and Kafka clients use digital certificates for encryption. The
Cluster Operator sets up certificates to enable encryption within the Kafka cluster. You can provide your
own server certificates, referred to as Kafka listener certificates, for communication between Kafka
clients and Kafka brokers, and inter-cluster communication.

Streams for Apache Kafka uses Secrets to store the certificates and private keys required for mTLS in
PEM and PKCS #12 format.

A TLS CA (certificate authority) issues certificates to authenticate the identity of a component. Streams
for Apache Kafka verifies the certificates for the components against the CA certificate.

Streams for Apache Kafka components are verified against the cluster CA

Kafka clients are verified against the clients CA

8.2. AUTHENTICATION

Kafka listeners use authentication to ensure a secure client connection to the Kafka cluster.

Supported authentication mechanisms:

CHAPTER 8. SECURING KAFKA

41

mTLS authentication (on listeners with TLS-enabled encryption)

SASL SCRAM-SHA-512

OAuth 2.0 token based authentication

Custom authentication

The User Operator manages user credentials for mTLS and SCRAM authentication, but not OAuth 2.0.
For example, through the User Operator you can create a user representing a client that requires access
to the Kafka cluster, and specify tls as the authentication type.

Using OAuth 2.0 token-based authentication, application clients can access Kafka brokers without
exposing account credentials. An authorization server handles the granting of access and inquiries about
access.

Custom authentication allows for any type of Kafka-supported authentication. It can provide more
flexibility, but also adds complexity.

8.3. AUTHORIZATION

Kafka clusters use authorization to control the operations that are permitted on Kafka brokers by
specific clients or users. If applied to a Kafka cluster, authorization is enabled for all listeners used for
client connection.

If a user is added to a list of super users in a Kafka broker configuration, the user is allowed unlimited
access to the cluster regardless of any authorization constraints implemented through authorization
mechanisms.

Supported authorization mechanisms:

Simple authorization

OAuth 2.0 authorization (if you are using OAuth 2.0 token-based authentication)

Open Policy Agent (OPA) authorization

Custom authorization

Simple authorization uses the AclAuthorizer and StandardAuthorizer Kafka plugins, which are
responsible for managing Access Control Lists (ACLs) that specify user access to various resources.
For custom authorization, you configure your own Authorizer plugin to enforce ACL rules.

OAuth 2.0 and OPA provide policy-based control from an authorization server. Security policies and
permissions used to grant access to resources on Kafka brokers are defined in the authorization server.

URLs are used to connect to the authorization server and verify that an operation requested by a client
or user is allowed or denied. Users and clients are matched against the policies created in the
authorization server that permit access to perform specific actions on Kafka brokers.

8.4. FEDERAL INFORMATION PROCESSING STANDARDS (FIPS)

Federal Information Processing Standards (FIPS) are a set of security standards established by the US
government to ensure the confidentiality, integrity, and availability of sensitive data and information
that is processed or transmitted by information systems. The OpenJDK used in Streams for Apache

Red Hat Streams for Apache Kafka 2.7 Streams for Apache Kafka on OpenShift Overview

42

Kafka container images automatically enables FIPS mode when running on a FIPS-enabled OpenShift
cluster.

NOTE

If you don’t want the FIPS mode enabled in the Java OpenJDK, you can disable it in the
deployment configuration of the Cluster Operator using the FIPS_MODE environment
variable.

For more information about the NIST validation program and validated modules, see Cryptographic
Module Validation Program on the NIST website.

NOTE

Compatibility with the technology previews of Streams for Apache Kafka Proxy and
Streams for Apache Kafka Console has not been tested regarding FIPS support. While
they are expected to function properly, we cannot guarantee full support at this time.

CHAPTER 8. SECURING KAFKA

43

https://csrc.nist.gov/Projects/cryptographic-module-validation-program/validated-modules

CHAPTER 9. (PREVIEW) STREAMS FOR APACHE KAFKA
PROXY

Streams for Apache Kafka Proxy is an Apache Kafka protocol-aware proxy designed to enhance Kafka-
based systems. Through its filter mechanism it allows additional behaviour to be introduced into a Kafka-
based system without requiring changes to either your applications or the Kafka cluster itself.

Streams for Apache Kafka Proxy is currently available as a technology preview, which introduces
Streams for Apache Kafka Proxy’s Record Encryption filter. The Record Encryption filter provides
encryption at rest, using industry-standard cryptographic techniques to apply encryption to Kafka
Messages, ensuring the confidentiality of data stored in the Kafka Cluster.

For more information on connecting to and using the Streams for Apache Kafka Proxy, see the proxy
guide in the Streams for Apache Kafka documentation .

Red Hat Streams for Apache Kafka 2.7 Streams for Apache Kafka on OpenShift Overview

44

https://docs.redhat.com/en/documentation/red_hat_streams_for_apache_kafka

CHAPTER 10. (PREVIEW) STREAMS FOR APACHE KAFKA
CONSOLE (USER INTERFACE)

After you have deployed your Kafka cluster, you can connect it to the Streams for Apache Kafka
Console. The Streams for Apache Kafka Console supports the monitoring and management of Kafka
clusters.

Connect a Kafka cluster managed by Streams for Apache Kafka to gain real-time insights and optimize
cluster performance from its user interface. The console’s homepage displays connected Kafka clusters,
allowing you to access detailed information on components such as brokers, topics, partitions, and
consumer groups.

From the Streams for Apache Kafka Console, you can view the status of a Kafka cluster before
navigating to view information on the cluster’s brokers and topics, or the consumer groups connected to
the Kafka cluster.

You can monitor your deployment by checking the following from the console:

Connected clusters

The status of cluster brokers

The flow of topic messages

The status of partitions for specific topics

The consumer groups associated with specific topics

For more information on connecting to and using the Streams for Apache Kafka Console, see the
console guide in the Streams for Apache Kafka documentation .

NOTE

The Streams for Apache Kafka Console is currently available as a technology preview.

CHAPTER 10. (PREVIEW) STREAMS FOR APACHE KAFKA CONSOLE (USER INTERFACE)

45

https://docs.redhat.com/en/documentation/red_hat_streams_for_apache_kafka

CHAPTER 11. MONITORING
Monitoring data allows you to monitor the performance and health of Streams for Apache Kafka. You
can configure your deployment to capture metrics data for analysis and notifications.

Metrics data is useful when investigating issues with connectivity and data delivery. For example, metrics
data can identify under-replicated partitions or the rate at which messages are consumed. Alerting rules
can provide time-critical notifications on such metrics through a specified communications channel.
Monitoring visualizations present real-time metrics data to help determine when and how to update the
configuration of your deployment. Example metrics configuration files are provided with Streams for
Apache Kafka.

Distributed tracing complements the gathering of metrics data by providing a facility for end-to-end
tracking of messages through Streams for Apache Kafka.

Cruise Control provides support for rebalancing of Kafka clusters, based on workload data.

Metrics and monitoring tools

Streams for Apache Kafka can employ the following tools for metrics and monitoring:

Prometheus

Prometheus pulls metrics from Kafka, ZooKeeper and Kafka Connect clusters. The Prometheus
Alertmanager plugin handles alerts and routes them to a notification service.

Kafka Exporter

Kafka Exporter adds additional Prometheus metrics.

Grafana

Grafana Labs provides dashboard visualizations of Prometheus metrics.

OpenTelemetry

OpenTelemetry documentation provides distributed tracing support to track transactions between
applications.

Cruise Control

Cruise Control monitors data distribution and performs data rebalances across a Kafka cluster.

11.1. PROMETHEUS

Prometheus can extract metrics data from Kafka components and the Streams for Apache Kafka
Operators.

To use Prometheus to obtain metrics data and provide alerts, Prometheus and the Prometheus
Alertmanager plugin must be deployed. Kafka resources must also be deployed or redeployed with
metrics configuration to expose the metrics data.

Prometheus scrapes the exposed metrics data for monitoring. Alertmanager issues alerts when
conditions indicate potential problems, based on pre-defined alerting rules.

Sample metrics and alerting rules configuration files are provided with Streams for Apache Kafka. The
sample alerting mechanism provided with Streams for Apache Kafka is configured to send notifications
to a Slack channel.

11.2. GRAFANA

Grafana uses the metrics data exposed by Prometheus to present dashboard visualizations for

Red Hat Streams for Apache Kafka 2.7 Streams for Apache Kafka on OpenShift Overview

46

https://github.com/prometheus
https://github.com/danielqsj/kafka_exporter
https://grafana.com/
https://opentelemetry.io/docs/
https://github.com/linkedin/cruise-control

Grafana uses the metrics data exposed by Prometheus to present dashboard visualizations for
monitoring.

A deployment of Grafana is required, with Prometheus added as a data source. Example dashboards,
supplied with Streams for Apache Kafka as JSON files, are imported through the Grafana interface to
present monitoring data.

11.3. KAFKA EXPORTER

Kafka Exporter is an open source project to enhance monitoring of Apache Kafka brokers and clients.
Kafka Exporter is deployed with a Kafka cluster to extract additional Prometheus metrics data from
Kafka brokers related to offsets, consumer groups, consumer lag, and topics. You can use the Grafana
dashboard provided to visualize the data collected by Prometheus from Kafka Exporter.

A sample configuration file, alerting rules and Grafana dashboard for Kafka Exporter are provided with
Streams for Apache Kafka.

11.4. DISTRIBUTED TRACING

Distributed tracing tracks the progress of transactions between applications in a distributed system. In a
microservices architecture, tracing tracks the progress of transactions between services. Trace data is
useful for monitoring application performance and investigating issues with target systems and end-
user applications.

In Streams for Apache Kafka, tracing facilitates the end-to-end tracking of messages: from source
systems to Kafka, and then from Kafka to target systems and applications. Distributed tracing
complements the monitoring of metrics in Grafana dashboards, as well as the component loggers.

Support for tracing is built in to the following Kafka components:

MirrorMaker to trace messages from a source cluster to a target cluster

Kafka Connect to trace messages consumed and produced by Kafka Connect

Kafka Bridge to trace messages between Kafka and HTTP client applications

Tracing is not supported for Kafka brokers.

You enable and configure tracing for these components through their custom resources. You add
tracing configuration using spec.template properties.

You enable tracing by specifying a tracing type using the spec.tracing.type property:

opentelemetry

Specify type: opentelemetry to use OpenTelemetry. By Default, OpenTelemetry uses the OTLP
(OpenTelemetry Protocol) exporter and endpoint to get trace data. You can specify other tracing
systems supported by OpenTelemetry, including Jaeger tracing. To do this, you change the
OpenTelemetry exporter and endpoint in the tracing configuration.

CAUTION

Streams for Apache Kafka no longer supports OpenTracing. If you were previously using OpenTracing
with the type: jaeger option, we encourage you to transition to using OpenTelemetry instead.

Tracing for Kafka clients

CHAPTER 11. MONITORING

47

Client applications, such as Kafka producers and consumers, can also be set up so that transactions are
monitored. Clients are configured with a tracing profile, and a tracer is initialized for the client
application to use.

11.5. CRUISE CONTROL

Cruise Control is an open source system that supports the following Kafka operations:

Monitoring cluster workload

Rebalancing a cluster based on predefined constraints

The operations help with running a more balanced Kafka cluster that uses broker pods more efficiently.

A typical cluster can become unevenly loaded over time. Partitions that handle large amounts of
message traffic might not be evenly distributed across the available brokers. To rebalance the cluster,
administrators must monitor the load on brokers and manually reassign busy partitions to brokers with
spare capacity.

Cruise Control automates the cluster rebalancing process. It constructs a workload model of resource
utilization for the cluster—​based on CPU, disk, and network load—​and generates optimization proposals
(that you can approve or reject) for more balanced partition assignments. A set of configurable
optimization goals is used to calculate these proposals.

You can generate optimization proposals in specific modes. The default full mode rebalances partitions
across all brokers. You can also use the add-brokers and remove-brokers modes to accommodate
changes when scaling a cluster up or down.

When you approve an optimization proposal, Cruise Control applies it to your Kafka cluster. You
configure and generate optimization proposals using a KafkaRebalance resource. You can configure
the resource using an annotation so that optimization proposals are approved automatically or manually.

NOTE

Prometheus can extract Cruise Control metrics data, including data related to
optimization proposals and rebalancing operations. A sample configuration file and
Grafana dashboard for Cruise Control are provided with Streams for Apache Kafka.

Red Hat Streams for Apache Kafka 2.7 Streams for Apache Kafka on OpenShift Overview

48

APPENDIX A. USING YOUR SUBSCRIPTION
Streams for Apache Kafka is provided through a software subscription. To manage your subscriptions,
access your account at the Red Hat Customer Portal.

Accessing Your Account

1. Go to access.redhat.com.

2. If you do not already have an account, create one.

3. Log in to your account.

Activating a Subscription

1. Go to access.redhat.com.

2. Navigate to My Subscriptions.

3. Navigate to Activate a subscription and enter your 16-digit activation number.

Downloading Zip and Tar Files
To access zip or tar files, use the customer portal to find the relevant files for download. If you are using
RPM packages, this step is not required.

1. Open a browser and log in to the Red Hat Customer Portal Product Downloads page at
access.redhat.com/downloads.

2. Locate the Streams for Apache Kafka for Apache Kafka entries in the INTEGRATION AND
AUTOMATION category.

3. Select the desired Streams for Apache Kafka product. The Software Downloads page opens.

4. Click the Download link for your component.

Installing packages with DNF
To install a package and all the package dependencies, use:

To install a previously-downloaded package from a local directory, use:

Revised on 2024-05-30 17:23:04 UTC

dnf install <package_name>

dnf install <path_to_download_package>

APPENDIX A. USING YOUR SUBSCRIPTION

49

https://access.redhat.com
https://access.redhat.com
https://access.redhat.com/downloads

	Table of Contents
	PREFACE
	PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
	CHAPTER 1. KEY FEATURES
	1.1. KAFKA CAPABILITIES
	1.2. KAFKA USE CASES
	1.3. HOW STREAMS FOR APACHE KAFKA SUPPORTS KAFKA

	CHAPTER 2. STREAMS FOR APACHE KAFKA DEPLOYMENT OF KAFKA
	2.1. KAFKA COMPONENT ARCHITECTURE

	CHAPTER 3. ABOUT KAFKA
	3.1. HOW KAFKA OPERATES AS A MESSAGE BROKER
	3.2. PRODUCERS AND CONSUMERS

	CHAPTER 4. ABOUT KAFKA CONNECT
	4.1. HOW KAFKA CONNECT STREAMS DATA
	4.1.1. Connectors
	4.1.2. Tasks
	4.1.3. Workers
	4.1.4. Transforms
	4.1.5. Converters

	CHAPTER 5. KAFKA BRIDGE INTERFACE
	5.1. HTTP REQUESTS
	5.2. SUPPORTED CLIENTS FOR THE KAFKA BRIDGE

	CHAPTER 6. STREAMS FOR APACHE KAFKA OPERATORS
	6.1. CLUSTER OPERATOR
	6.2. TOPIC OPERATOR
	6.3. USER OPERATOR
	6.4. FEATURE GATES IN STREAMS FOR APACHE KAFKA OPERATORS

	CHAPTER 7. KAFKA CONFIGURATION
	7.1. CUSTOM RESOURCES
	Kafka topic custom resource

	7.2. COMMON CONFIGURATION
	Example YAML showing common configuration

	7.3. KAFKA CLUSTER CONFIGURATION
	7.3.1. Storage
	7.3.2. Listeners
	7.3.3. Rack awareness
	7.3.4. Example YAML showing Kafka configuration

	7.4. KAFKA NODE POOLS CONFIGURATION
	Example YAML showing node pool configuration

	7.5. KAFKA MIRRORMAKER 2 CONFIGURATION
	Example YAML showing MirrorMaker 2 configuration

	7.6. KAFKA MIRRORMAKER CONFIGURATION
	Key Consumer configuration
	Key Producer configuration
	Example YAML showing MirrorMaker configuration

	7.7. KAFKA CONNECT CONFIGURATION
	Plugin configuration
	Kafka Connect cluster configuration for workers
	KafkaConnector management of connectors
	Kafka Connect API

	7.8. KAFKA BRIDGE CONFIGURATION
	CORS
	Example YAML showing Kafka Bridge configuration

	CHAPTER 8. SECURING KAFKA
	8.1. ENCRYPTION
	8.2. AUTHENTICATION
	8.3. AUTHORIZATION
	8.4. FEDERAL INFORMATION PROCESSING STANDARDS (FIPS)

	CHAPTER 9. (PREVIEW) STREAMS FOR APACHE KAFKA PROXY
	CHAPTER 10. (PREVIEW) STREAMS FOR APACHE KAFKA CONSOLE (USER INTERFACE)
	CHAPTER 11. MONITORING
	11.1. PROMETHEUS
	11.2. GRAFANA
	11.3. KAFKA EXPORTER
	11.4. DISTRIBUTED TRACING
	Tracing for Kafka clients

	11.5. CRUISE CONTROL

	APPENDIX A. USING YOUR SUBSCRIPTION
	Accessing Your Account
	Activating a Subscription
	Downloading Zip and Tar Files
	Installing packages with DNF

