
Red Hat Streams for Apache Kafka 2.7

Using Streams for Apache Kafka on RHEL in
KRaft mode

Configure and manage a deployment of Streams for Apache Kafka 2.7 on Red Hat
Enterprise Linux

Last Updated: 2024-05-30

Red Hat Streams for Apache Kafka 2.7 Using Streams for Apache Kafka on
RHEL in KRaft mode

Configure and manage a deployment of Streams for Apache Kafka 2.7 on Red Hat Enterprise Linux

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Configure the operators and Kafka components deployed with Streams for Apache Kafka to build a
large-scale messaging network.

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

PREFACE

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

CHAPTER 1. OVERVIEW OF STREAMS FOR APACHE KAFKA
1.1. USING THE KAFKA BRIDGE TO CONNECT WITH A KAFKA CLUSTER
1.2. DOCUMENT CONVENTIONS

CHAPTER 2. FIPS SUPPORT
2.1. INSTALLING STREAMS FOR APACHE KAFKA WITH FIPS MODE ENABLED

CHAPTER 3. GETTING STARTED
3.1. INSTALLATION ENVIRONMENT

3.1.1. Data storage considerations
3.1.2. File systems

3.2. DOWNLOADING STREAMS FOR APACHE KAFKA
3.3. INSTALLING KAFKA
3.4. RUNNING A KAFKA CLUSTER IN KRAFT MODE
3.5. STOPPING THE STREAMS FOR APACHE KAFKA SERVICES
3.6. PERFORMING A GRACEFUL ROLLING RESTART OF KAFKA BROKERS

CHAPTER 4. MIGRATING TO KRAFT MODE

CHAPTER 5. CONFIGURING STREAMS FOR APACHE KAFKA
5.1. USING STANDARD KAFKA CONFIGURATION PROPERTIES
5.2. LOADING CONFIGURATION VALUES FROM ENVIRONMENT VARIABLES
5.3. CONFIGURING KAFKA

5.3.1. Listeners
5.3.2. Commit logs
5.3.3. Node ID

CHAPTER 6. SECURING ACCESS TO KAFKA
6.1. LISTENER CONFIGURATION
6.2. TLS ENCRYPTION

6.2.1. Enabling TLS encryption
6.3. AUTHENTICATION

6.3.1. Enabling TLS client authentication
6.3.2. Enabling SASL PLAIN client authentication
6.3.3. Enabling SASL SCRAM client authentication
6.3.4. Enabling multiple SASL mechanisms
6.3.5. Enabling SASL for inter-broker authentication
6.3.6. Adding SASL SCRAM users
6.3.7. Deleting SASL SCRAM users
6.3.8. Enabling Kerberos (GSSAPI) authentication

6.4. AUTHORIZATION
6.4.1. Enabling an ACL authorizer

6.4.1.1. ACL rules
6.4.1.2. Principals
6.4.1.3. Authentication of users
6.4.1.4. Super users
6.4.1.5. Replica broker authentication

6.4.2. Adding ACL rules
6.4.3. Listing ACL rules

7

8

9
9

10

11
11

12
12
12
12
13
13
14
17
17

20

25
25
25
26
27
28
28

30
30
31
31
32
33
34
35
35
36
37
37
38
42
42
42
42
43
43
43
43
44

Table of Contents

1

. .

. .

6.4.4. Removing ACL rules
6.5. USING OAUTH 2.0 TOKEN-BASED AUTHENTICATION

6.5.1. OAuth 2.0 authentication mechanisms
6.5.1.1. Configuring OAuth 2.0 with properties or variables

6.5.2. OAuth 2.0 Kafka broker configuration
6.5.2.1. OAuth 2.0 client configuration on an authorization server
6.5.2.2. OAuth 2.0 authentication configuration in the Kafka cluster
6.5.2.3. Fast local JWT token validation configuration
6.5.2.4. OAuth 2.0 introspection endpoint configuration

6.5.3. Session re-authentication for Kafka brokers
6.5.4. OAuth 2.0 Kafka client configuration
6.5.5. OAuth 2.0 client authentication flows

6.5.5.1. Example client authentication flows using the SASL OAUTHBEARER mechanism
6.5.5.2. Example client authentication flows using the SASL PLAIN mechanism

6.5.6. Configuring OAuth 2.0 authentication
6.5.6.1. Configuring Red Hat Single Sign-On as an OAuth 2.0 authorization server
6.5.6.2. Configuring OAuth 2.0 support for Kafka brokers
6.5.6.3. Configuring Kafka Java clients to use OAuth 2.0

6.6. USING OAUTH 2.0 TOKEN-BASED AUTHORIZATION
6.6.1. OAuth 2.0 authorization mechanism

6.6.1.1. Kafka broker custom authorizer
6.6.2. Configuring OAuth 2.0 authorization support

6.7. USING OPA POLICY-BASED AUTHORIZATION
6.7.1. Defining OPA policies
6.7.2. Connecting to the OPA
6.7.3. Configuring OPA authorization support

CHAPTER 7. CREATING AND MANAGING TOPICS
7.1. PARTITIONS AND REPLICAS
7.2. MESSAGE RETENTION
7.3. TOPIC AUTO-CREATION
7.4. TOPIC DELETION
7.5. TOPIC CONFIGURATION
7.6. INTERNAL TOPICS
7.7. CREATING A TOPIC
7.8. LISTING AND DESCRIBING TOPICS
7.9. MODIFYING A TOPIC CONFIGURATION
7.10. DELETING A TOPIC

CHAPTER 8. USING STREAMS FOR APACHE KAFKA WITH KAFKA CONNECT
8.1. USING KAFKA CONNECT IN STANDALONE MODE

8.1.1. Configuring Kafka Connect in standalone mode
8.1.2. Running Kafka Connect in standalone mode

8.2. USING KAFKA CONNECT IN DISTRIBUTED MODE
8.2.1. Configuring Kafka Connect in distributed mode
8.2.2. Running Kafka Connect in distributed mode

8.3. MANAGING CONNECTORS
8.3.1. Limiting access to the Kafka Connect API
8.3.2. Configuring connectors

8.3.2.1. Using the Kafka Connect REST API to manage connectors
8.3.2.2. Specifying connector configuration properties

8.3.3. Creating connectors using the Kafka Connect API
8.3.4. Deleting connectors using the Kafka Connect API

44
45
46
48
48
48
49
53
55
55
57
57
58
60
61
61

63
67
72
72
72
72
76
76
76
77

79
79
79
80
80
80
81

82
83
83
84

86
86
86
87
87
87
88
89
89
89
90
91

92
92

Red Hat Streams for Apache Kafka 2.7 Using Streams for Apache Kafka on RHEL in KRaft mode

2

. .

. .

. .

. .

. .

8.3.5. Adding connector plugins

CHAPTER 9. USING STREAMS FOR APACHE KAFKA WITH MIRRORMAKER 2
9.1. CONFIGURING ACTIVE/ACTIVE OR ACTIVE/PASSIVE MODES

9.1.1. Bidirectional replication (active/active)
9.1.2. Unidirectional replication (active/passive)

9.2. CONFIGURING MIRRORMAKER 2 CONNECTORS
9.2.1. Changing the location of the consumer group offsets topic
9.2.2. Synchronizing consumer group offsets
9.2.3. Deciding when to use the heartbeat connector
9.2.4. Aligning the configuration of MirrorMaker 2 connectors

9.3. CONNECTOR PRODUCER AND CONSUMER CONFIGURATION
9.4. SPECIFYING A MAXIMUM NUMBER OF TASKS
9.5. ACL RULES SYNCHRONIZATION
9.6. RUNNING MIRRORMAKER 2 IN DEDICATED MODE
9.7. (DEPRECATED) USING MIRRORMAKER 2 IN LEGACY MODE

CHAPTER 10. CONFIGURING LOGGING FOR KAFKA COMPONENTS
10.1. CONFIGURING KAFKA LOGGING PROPERTIES
10.2. DYNAMICALLY CHANGE LOGGING LEVELS FOR KAFKA BROKER LOGGERS

Resetting a broker logger
10.3. DYNAMICALLY CHANGE LOGGING LEVELS FOR KAFKA CONNECT AND MIRRORMAKER 2

CHAPTER 11. SETTING LIMITS ON BROKERS USING THE KAFKA STATIC QUOTA PLUGIN

CHAPTER 12. SCALING CLUSTERS BY ADDING OR REMOVING BROKERS

CHAPTER 13. USING CRUISE CONTROL FOR CLUSTER REBALANCING
13.1. CRUISE CONTROL COMPONENTS AND FEATURES
13.2. DOWNLOADING CRUISE CONTROL
13.3. DEPLOYING THE CRUISE CONTROL METRICS REPORTER
13.4. CONFIGURING AND STARTING CRUISE CONTROL

Auto-created topics
13.5. OPTIMIZATION GOALS OVERVIEW

13.5.1. Goals order of priority
13.5.2. Goals configuration in the Cruise Control properties file
13.5.3. Hard and soft optimization goals
13.5.4. Main optimization goals
13.5.5. Default optimization goals
13.5.6. User-provided optimization goals

13.6. OPTIMIZATION PROPOSALS OVERVIEW
13.6.1. Rebalancing endpoints
13.6.2. Approving or rejecting an optimization proposal
13.6.3. Optimization proposal summary properties
13.6.4. Cached optimization proposal

13.7. REBALANCE PERFORMANCE TUNING OVERVIEW
Partition reassignment commands
Replica movement strategies
Rebalance tuning options

13.8. CRUISE CONTROL CONFIGURATION
Capacity configuration
Log cleanup policy for Cruise Control Metrics topic
Logging configuration

13.9. GENERATING OPTIMIZATION PROPOSALS

93

95
95
95
96
96

100
101
102
102
102
103
104
104
107

109
109
109
110
111

114

116

117
118
119
119

120
122
122
123
123
124
124
125
125
126
126
126
128
130
130
130
131
131

134
134
135
136
136

Table of Contents

3

. .

. .

. .

. .

. .

. .

. .

Asynchronous responses
13.10. APPROVING AN OPTIMIZATION PROPOSAL
13.11. STOPPING AN ACTIVE CLUSTER REBALANCE

CHAPTER 14. USING CRUISE CONTROL TO MODIFY TOPIC REPLICATION FACTOR

CHAPTER 15. USING THE PARTITION REASSIGNMENT TOOL
15.1. PARTITION REASSIGNMENT TOOL OVERVIEW

15.1.1. Generating a partition reassignment plan
15.1.2. Specifying topics in a partition reassignment JSON file
15.1.3. Reassigning partitions between JBOD volumes
15.1.4. Throttling partition reassignment

15.2. REASSIGNING PARTITIONS AFTER ADDING BROKERS
15.3. REASSIGNING PARTITIONS BEFORE REMOVING BROKERS
15.4. CHANGING THE REPLICATION FACTOR OF TOPICS

CHAPTER 16. SETTING UP DISTRIBUTED TRACING
16.1. OUTLINE OF PROCEDURES
16.2. TRACING OPTIONS
16.3. ENVIRONMENT VARIABLES FOR TRACING
16.4. ENABLING TRACING FOR KAFKA CONNECT
16.5. ENABLING TRACING FOR MIRRORMAKER 2
16.6. ENABLING TRACING FOR MIRRORMAKER
16.7. INITIALIZING TRACING FOR KAFKA CLIENTS
16.8. INSTRUMENTING PRODUCERS AND CONSUMERS FOR TRACING
16.9. INSTRUMENTING KAFKA STREAMS APPLICATIONS FOR TRACING
16.10. SPECIFYING TRACING SYSTEMS WITH OPENTELEMETRY
16.11. SPECIFYING CUSTOM SPAN NAMES FOR OPENTELEMETRY

CHAPTER 17. USING KAFKA EXPORTER
17.1. CONSUMER LAG
17.2. KAFKA EXPORTER ALERTING RULE EXAMPLES
17.3. KAFKA EXPORTER METRICS
17.4. RUNNING KAFKA EXPORTER
17.5. PRESENTING KAFKA EXPORTER METRICS IN GRAFANA

CHAPTER 18. UPGRADING STREAMS FOR APACHE KAFKA AND KAFKA
18.1. UPGRADE PREREQUISITES
18.2. STRATEGIES FOR UPGRADING CLIENTS
18.3. UPGRADING KAFKA CLUSTERS
18.4. UPGRADING KAFKA COMPONENTS

CHAPTER 19. MONITORING YOUR CLUSTER USING JMX
19.1. ENABLING THE JMX AGENT
19.2. DISABLING THE JMX AGENT
19.3. METRICS NAMING CONVENTIONS
19.4. ANALYZING KAFKA JMX METRICS FOR TROUBLESHOOTING

19.4.1. Checking for under-replicated partitions
19.4.2. Identifying performance problems in a Kafka cluster
19.4.3. Identifying performance problems with a Kafka controller
19.4.4. Identifying problems with requests
19.4.5. Using metrics to check the performance of clients
19.4.6. Using metrics to check the performance of topics and partitions

APPENDIX A. USING YOUR SUBSCRIPTION

139
140
141

143

144
144
144
145
146
147
147
149
151

154
154
155
156
156
157
158
159
160
162
163
164

166
166
166
167
168
170

171
171
171
171

173

176
176
176
177
178
178
179
181
181

183
183

185

Red Hat Streams for Apache Kafka 2.7 Using Streams for Apache Kafka on RHEL in KRaft mode

4

Accessing Your Account
Activating a Subscription
Downloading Zip and Tar Files
Installing packages with DNF

185
185
185
185

Table of Contents

5

Red Hat Streams for Apache Kafka 2.7 Using Streams for Apache Kafka on RHEL in KRaft mode

6

PREFACE

PREFACE

7

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
We appreciate your feedback on our documentation.

To propose improvements, open a Jira issue and describe your suggested changes. Provide as much
detail as possible to enable us to address your request quickly.

Prerequisite

You have a Red Hat Customer Portal account. This account enables you to log in to the Red Hat
Jira Software instance.
If you do not have an account, you will be prompted to create one.

Procedure

1. Click the following: Create issue.

2. In the Summary text box, enter a brief description of the issue.

3. In the Description text box, provide the following information:

The URL of the page where you found the issue.

A detailed description of the issue.
You can leave the information in any other fields at their default values.

4. Add a reporter name.

5. Click Create to submit the Jira issue to the documentation team.

Thank you for taking the time to provide feedback.

Red Hat Streams for Apache Kafka 2.7 Using Streams for Apache Kafka on RHEL in KRaft mode

8

https://issues.redhat.com/secure/CreateIssueDetails!init.jspa?pid=12320221&issuetype=1&components=12328148&priority=3&description=URL where issue was found%3A %0A%0ADescription of issue%3A &summary=%5BDOC%5D <summary here>

CHAPTER 1. OVERVIEW OF STREAMS FOR APACHE KAFKA
AMQ streams supports highly scalable, distributed, and high-performance data streaming based on the
Apache Kafka project.

The main components comprise:

Kafka Broker

Messaging broker responsible for delivering records from producing clients to consuming clients.

Kafka Streams API

API for writing stream processor applications.

Producer and Consumer APIs

Java-based APIs for producing and consuming messages to and from Kafka brokers.

Kafka Bridge

Streams for Apache Kafka Bridge provides a RESTful interface that allows HTTP-based clients to
interact with a Kafka cluster.

Kafka Connect

A toolkit for streaming data between Kafka brokers and other systems using Connector plugins.

Kafka MirrorMaker

Replicates data between two Kafka clusters, within or across data centers.

Kafka Exporter

An exporter used in the extraction of Kafka metrics data for monitoring.

A cluster of Kafka brokers is the hub connecting all these components.

Figure 1.1. Streams for Apache Kafka architecture

1.1. USING THE KAFKA BRIDGE TO CONNECT WITH A KAFKA CLUSTER

You can use the Streams for Apache Kafka Bridge API to create and manage consumers and send and
receive records over HTTP rather than the native Kafka protocol.

When you set up the Kafka Bridge you configure HTTP access to the Kafka cluster. You can then use the
Kafka Bridge to produce and consume messages from the cluster, as well as performing other operations
through its REST interface.

Additional resources

For information on installing and using the Kafka Bridge, see Using the Streams for Apache
Kafka Bridge.

CHAPTER 1. OVERVIEW OF STREAMS FOR APACHE KAFKA

9

https://docs.redhat.com/en/documentation/red_hat_streams_for_apache_kafka/2.7/html-single/using_the_streams_for_apache_kafka_bridge/index

1.2. DOCUMENT CONVENTIONS

User-replaced values

User-replaced values, also known as replaceables, are shown in with angle brackets (< >). Underscores (_
) are used for multi-word values. If the value refers to code or commands, monospace is also used.

For example, the following code shows that <bootstrap_address> and <topic_name> must be
replaced with your own address and topic name:

bin/kafka-console-consumer.sh --bootstrap-server <broker_host>:<port> --topic <topic_name> --
from-beginning

Red Hat Streams for Apache Kafka 2.7 Using Streams for Apache Kafka on RHEL in KRaft mode

10

CHAPTER 2. FIPS SUPPORT
Federal Information Processing Standards (FIPS) are standards for computer security and
interoperability. To use FIPS with Streams for Apache Kafka, you must have a FIPS-compliant OpenJDK
(Open Java Development Kit) installed on your system. If your RHEL system is FIPS-enabled, OpenJDK
automatically switches to FIPS mode when running Streams for Apache Kafka. This ensures that
Streams for Apache Kafka uses the FIPS-compliant security libraries provided by OpenJDK.

Minimum password length

When running in the FIPS mode, SCRAM-SHA-512 passwords need to be at least 32 characters long. If
you have a Kafka cluster with custom configuration that uses a password length that is less than 32
characters, you need to update your configuration. If you have any users with passwords shorter than 32
characters, you need to regenerate a password with the required length.

Additional resources

What are Federal Information Processing Standards (FIPS)

2.1. INSTALLING STREAMS FOR APACHE KAFKA WITH FIPS MODE
ENABLED

Enable FIPS mode before you install Streams for Apache Kafka on RHEL. Red Hat recommends
installing RHEL with FIPS mode enabled, as opposed to enabling FIPS mode later. Enabling FIPS mode
during the installation ensures that the system generates all keys with FIPS-approved algorithms and
continuous monitoring tests in place.

With RHEL running in FIPS mode, you must ensure that the Streams for Apache Kafka configuration is
FIPS-compliant. Additionally, your Java implementation must also be FIPS-compliant.

NOTE

Running Streams for Apache Kafka on RHEL in FIPS mode requires a FIPS-compliant
JDK.

Procedure

1. Install RHEL in FIPS mode.
For further information, see the information on security hardening in the RHEL documentation.

2. Proceed with the installation of Streams for Apache Kafka.

3. Configure Streams for Apache Kafka to use FIPS-compliant algorithms and protocols.
If used, ensure that the following configuration is compliant:

SSL cipher suites and TLS versions must be supported by the JDK framework.

SCRAM-SHA-512 passwords must be at least 32 characters long.

IMPORTANT

Make sure that your installation environment and Streams for Apache Kafka
configuration remains compliant as FIPS requirements change.

CHAPTER 2. FIPS SUPPORT

11

https://www.nist.gov/standardsgov/compliance-faqs-federal-information-processing-standards-fips
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux

CHAPTER 3. GETTING STARTED
Streams for Apache Kafka is distributed in a ZIP file that contains installation artifacts for the Kafka
components.

NOTE

The Kafka Bridge has separate installation files. For information on installing and using
the Kafka Bridge, see Using the Streams for Apache Kafka Bridge .

3.1. INSTALLATION ENVIRONMENT

Streams for Apache Kafka runs on Red Hat Enterprise Linux. The host (node) can be a physical or virtual
machine (VM). Use the installation files provided with Streams for Apache Kafka to install Kafka
components. You can install Kafka in a single-node or multi-node environment.

Single-node environment

A single-node Kafka cluster runs instances of Kafka components on a single host. This configuration
is not suitable for a production environment.

Multi-node environment

A multi-node Kafka cluster runs instances of Kafka components on multiple hosts.

We recommended that you run Kafka and other Kafka components, such as Kafka Connect, on separate
hosts. By running the components in this way, it’s easier to maintain and upgrade each component.

Kafka clients establish a connection to the Kafka cluster using the bootstrap.servers configuration
property. If you are using Kafka Connect, for example, the Kafka Connect configuration properties must
include a bootstrap.servers value that specifies the hostname and port of the hosts where the Kafka
brokers are running. If the Kafka cluster is running on more than one host with multiple Kafka brokers,
you specify a hostname and port for each broker. Each Kafka broker is identified by a node.id.

3.1.1. Data storage considerations

An efficient data storage infrastructure is essential to the optimal performance of Streams for Apache
Kafka.

Block storage is required. File storage, such as NFS, does not work with Kafka.

Choose from one of the following options for your block storage:

Cloud-based block storage solutions, such as Amazon Elastic Block Store (EBS)

Local storage

Storage Area Network (SAN) volumes accessed by a protocol such as Fibre Channel or iSCSI

3.1.2. File systems

Kafka uses a file system for storing messages. Streams for Apache Kafka is compatible with the XFS
and ext4 file systems, which are commonly used with Kafka. Consider the underlying architecture and
requirements of your deployment when choosing and setting up your file system.

For more information, refer to Filesystem Selection in the Kafka documentation.

Red Hat Streams for Apache Kafka 2.7 Using Streams for Apache Kafka on RHEL in KRaft mode

12

https://docs.redhat.com/en/documentation/red_hat_streams_for_apache_kafka/2.7/html-single/using_the_streams_for_apache_kafka_bridge/index
https://aws.amazon.com/ebs/
https://kafka.apache.org/documentation/#filesystems

3.2. DOWNLOADING STREAMS FOR APACHE KAFKA

A ZIP file distribution of Streams for Apache Kafka is available for download from the Red Hat website.
You can download the latest version of Red Hat Streams for Apache Kafka from the Streams for
Apache Kafka software downloads page.

For Kafka and other Kafka components, download the amq-streams-<version>-bin.zip file

For Kafka Bridge, download the amq-streams-<version>-bridge-bin.zip file.
For installation instructions, see Using the Streams for Apache Kafka Bridge .

3.3. INSTALLING KAFKA

Use the Streams for Apache Kafka ZIP files to install Kafka on Red Hat Enterprise Linux. You can install
Kafka in a single-node or multi-node environment. In this procedure, a single Kafka instance is installed
on a single host (node).

The Streams for Apache Kafka installation files include the binaries for running other Kafka components,
like Kafka Connect, Kafka MirrorMaker 2, and Kafka Bridge. In a single-node environment, you can run
these components from the same host where you installed Kafka. However, we recommend that you add
the installation files and run other Kafka components on separate hosts.

Prerequisites

You have downloaded the installation files.

You have reviewed the supported configurations in the Streams for Apache Kafka 2.7 on Red
Hat Enterprise Linux Release Notes.

You are logged in to Red Hat Enterprise Linux as admin (root) user.

Procedure

Install Kafka on your host.

1. Add a new kafka user and group:

2. Extract and move the contents of the amq-streams-<version>-bin.zip file into the /opt/kafka
directory:

3. Change the ownership of the /opt/kafka directory to the kafka user:

4. Create directory /var/lib/kafka for storing Kafka data and set its ownership to the kafka user:

groupadd kafka
useradd -g kafka kafka
passwd kafka

unzip amq-streams-<version>-bin.zip -d /opt
mv /opt/kafka*redhat* /opt/kafka

chown -R kafka:kafka /opt/kafka

mkdir /var/lib/kafka
chown -R kafka:kafka /var/lib/kafka

CHAPTER 3. GETTING STARTED

13

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?downloadType=distributions&product=jboss.amq.streams
https://docs.redhat.com/en/documentation/red_hat_streams_for_apache_kafka/2.7/html-single/using_the_streams_for_apache_kafka_bridge/index
https://docs.redhat.com/en/documentation/red_hat_streams_for_apache_kafka/2.7/html-single/release_notes_for_streams_for_apache_kafka_2.7_on_rhel/index

You can now run a default configuration of Kafka as a single-node cluster .

You can also use the installation to run other Kafka components, like Kafka Connect, on the
same host.

To run other components, specify the hostname and port to connect to the Kafka broker using
the bootstrap.servers property in the component configuration.

Example bootstrap servers configuration pointing to a single Kafka broker on the
same host

However, we recommend installing and running Kafka components on separate hosts.

5. (Optional) Install Kafka components on separate hosts.

a. Extract the installation files to the /opt/kafka directory on each host.

b. Change the ownership of the /opt/kafka directory to the kafka user.

c. Add bootstrap.servers configuration that connects the component to the host (or hosts in
a multi-node environment) running the Kafka brokers.

Example bootstrap servers configuration pointing to Kafka brokers on different
hosts

You can use this configuration for Kafka Connect, MirrorMaker 2, and the Kafka Bridge.

3.4. RUNNING A KAFKA CLUSTER IN KRAFT MODE

Configure and run Kafka in KRaft mode. You can run Kafka as a single-node or multi-node Kafka cluster.
Run a minimum of three broker and three controller nodes, with topic replication across the brokers, for
stability and availability.

Kafka nodes perform the role of broker, controller, or both.

Broker role

A broker, sometimes referred to as a node or server, orchestrates the storage and passing of
messages.

Controller role

A controller coordinates the cluster and manages the metadata used to track the status of brokers
and partitions.

NOTE

Cluster metadata is stored in the internal __cluster_metadata topic.

You can use combined broker and controller nodes, though you might want to separate these functions.

bootstrap.servers=localhost:9092

bootstrap.servers=kafka0.<host_ip_address>:9092,kafka1.
<host_ip_address>:9092,kafka2.<host_ip_address>:9092

Red Hat Streams for Apache Kafka 2.7 Using Streams for Apache Kafka on RHEL in KRaft mode

14

https://docs.redhat.com/en/documentation/red_hat_streams_for_apache_kafka/2.7/html-single/using_the_streams_for_apache_kafka_bridge/index

You can use combined broker and controller nodes, though you might want to separate these functions.
Brokers performing combined roles can be more convenient in simpler deployments.

To identify a cluster, you create an ID. The ID is used when creating logs for the nodes you add to the
cluster.

Specify the following in the configuration of each node:

A node ID

Broker roles

A list of nodes (or voters) that act as controllers

You specify a list of controllers, configured as voters, using the node ID and connection details
(hostname and port) for each controller.

You apply broker configuration, including the setting of roles, using a configuration properties file.
Broker configuration differs according to role. KRaft provides three example broker configuration
properties files.

/opt/kafka/config/kraft/broker.properties has example configuration for a broker role

/opt/kafka/config/kraft/controller.properties has example configuration for a controller role

/opt/kafka/config/kraft/server.properties has example configuration for a combined role

You can base your broker configuration on these example properties files. In this procedure, the
example server.properties configuration is used.

Prerequisites

Streams for Apache Kafka is installed on each host , and the configuration files are available.

Procedure

1. Generate a unique ID for the Kafka cluster.
You can use the kafka-storage tool to do this:

The command returns an ID. A cluster ID is required in KRaft mode.

2. Create a configuration properties file for each node in the cluster.
You can base the file on the examples provided with Kafka.

a. Specify a role as broker, controller, or broker, controller
For example, specify process.roles=broker, controller for a combined role.

b. Specify a unique node.id for each node in the cluster starting from 0.
For example, node.id=1.

c. Specify a list of controller.quorum.voters in the format <node_id>@<hostname:port>.
For example, controller.quorum.voters=1@localhost:9093.

d. Specify listeners:

/opt/kafka/bin/kafka-storage.sh random-uuid

CHAPTER 3. GETTING STARTED

15

Configure the name, hostname and port for each listener.
For example, listeners=PLAINTEXT:localhost:9092,CONTROLLER:localhost:9093.

Configure the listener names used for inter-broker communication.
For example, inter.broker.listener.name=PLAINTEXT.

Configure the listener names used by the controller quorum.
For example, controller.listener.names=CONTROLLER.

Configure the name, hostname and port for each listener that is advertised to clients for
connection to Kafka.
For example, advertised.listeners=PLAINTEXT:localhost:9092.

3. Set up log directories for each node in your Kafka cluster:

Returns:

Replace <uuid> with the cluster ID you generated. Use the same ID for each node in your cluster.

Apply the broker configuration using the properties file you created for the broker.

By default, the log directory (log.dirs) specified in the server.properties configuration file is
set to /tmp/kraft-combined-logs. The /tmp directory is typically cleared on each system
reboot, making it suitable for development environments only.

You can add a comma-separated list to set up multiple log directories.

4. Start each Kafka node.

5. Check that Kafka is running:

Returns:

Check the logs of each node to ensure that they have successfully joined the KRaft cluster:

You can now create topics, and send and receive messages from the brokers.

For brokers passing messages, you can use topic replication across the brokers in a cluster for data
durability. Configure topics to have a replication factor of at least three and a minimum number of in-
sync replicas set to 1 less than the replication factor. For more information, see Section 7.7, “Creating a
topic”.

/opt/kafka/bin/kafka-storage.sh format -t <uuid> -c /opt/kafka/config/kraft/server.properties

Formatting /tmp/kraft-combined-logs

/opt/kafka/bin/kafka-server-start.sh /opt/kafka/config/kraft/server.properties

jcmd | grep kafka

process ID kafka.Kafka /opt/kafka/config/kraft/server.properties

tail -f /opt/kafka/logs/server.log

Red Hat Streams for Apache Kafka 2.7 Using Streams for Apache Kafka on RHEL in KRaft mode

16

3.5. STOPPING THE STREAMS FOR APACHE KAFKA SERVICES

You can stop Kafka services by running a script. After running the script, all connections to the Kafka
services are terminated.

Procedure

1. Stop the Kafka node.

2. Confirm that the Kafka node is stopped.

3.6. PERFORMING A GRACEFUL ROLLING RESTART OF KAFKA
BROKERS

This procedure shows how to do a graceful rolling restart of brokers in a multi-node cluster. A rolling
restart is usually required following an upgrade or change to the Kafka cluster configuration properties.

NOTE

Some broker configurations do not need a restart of the broker. For more information,
see Updating Broker Configs in the Apache Kafka documentation.

After you perform a restart of a broker, check for under-replicated topic partitions to make sure that
replica partitions have caught up.

To achieve a graceful restart with no loss of availability, ensure that you are replicating topics and that at
least the minimum number of replicas (min.insync.replicas) replicas are in sync. The
min.insync.replicas configuration determines the minimum number of replicas that must acknowledge
a write for the write to be considered successful.

For a multi-node cluster, the standard approach is to have a topic replication factor of at least 3 and a
minimum number of in-sync replicas set to 1 less than the replication factor. If you are using acks=all in
your producer configuration for data durability, check that the broker you restarted is in sync with all the
partitions it’s replicating before restarting the next broker.

Single-node clusters are unavailable during a restart, since all partitions are on the same broker.

Prerequisites

Streams for Apache Kafka is installed on each host , and the configuration files are available.

The Kafka cluster is operating as expected.
Check for under-replicated partitions or any other issues affecting broker operation. The steps
in this procedure describe how to check for under-replicated partitions.

Procedure

Perform the following steps on each Kafka broker. Complete the steps on the first broker before moving

su - kafka
/opt/kafka/bin/kafka-server-stop.sh

jcmd | grep kafka

CHAPTER 3. GETTING STARTED

17

https://kafka.apache.org/documentation/#dynamicbrokerconfigs

Perform the following steps on each Kafka broker. Complete the steps on the first broker before moving
on to the next. Perform the steps on the brokers that also act as controllers last. Otherwise, the
controllers need to change on more than one restart.

1. Stop the Kafka broker:

2. Make any changes to the broker configuration that require a restart after completion.
For further information, see the following:

Configuring Kafka

Upgrading Kafka nodes

3. Restart the Kafka broker:

4. Check that Kafka is running:

Returns:

Check the logs of each node to ensure that they have successfully joined the KRaft cluster:

5. Wait until the broker has zero under-replicated partitions. You can check from the command line
or use metrics.

Use the kafka-topics.sh command with the --under-replicated-partitions parameter:

For example:

The command provides a list of topics with under-replicated partitions in a cluster.

Topics with under-replicated partitions

Under-replicated partitions are listed if the ISR (in-sync replica) count is less than the

/opt/kafka/bin/kafka-server-stop.sh

/opt/kafka/bin/kafka-server-start.sh -daemon /opt/kafka/config/kraft/server.properties

jcmd | grep kafka

process ID kafka.Kafka /opt/kafka/config/kraft/server.properties

tail -f /opt/kafka/logs/server.log

/opt/kafka/bin/kafka-topics.sh --bootstrap-server <broker_host>:<port> --describe --
under-replicated-partitions

/opt/kafka/bin/kafka-topics.sh --bootstrap-server localhost:9092 --describe --under-
replicated-partitions

Topic: topic3 Partition: 4 Leader: 2 Replicas: 2,3 Isr: 2
Topic: topic3 Partition: 5 Leader: 3 Replicas: 1,2 Isr: 1
Topic: topic1 Partition: 1 Leader: 3 Replicas: 1,3 Isr: 3
…

Red Hat Streams for Apache Kafka 2.7 Using Streams for Apache Kafka on RHEL in KRaft mode

18

Under-replicated partitions are listed if the ISR (in-sync replica) count is less than the
number of replicas. If a list is not returned, there are no under-replicated partitions.

Use the UnderReplicatedPartitions metric:

The metric provides a count of partitions where replicas have not caught up. You wait until
the count is zero.

TIP

Use the Kafka Exporter to create an alert when there are one or more under-replicated
partitions for a topic.

Checking logs when restarting

If a broker fails to start, check the application logs for information. You can also check the status of a
broker shutdown and restart in the /opt/kafka/logs/server.log application log.

kafka.server:type=ReplicaManager,name=UnderReplicatedPartitions

CHAPTER 3. GETTING STARTED

19

CHAPTER 4. MIGRATING TO KRAFT MODE
If you are using ZooKeeper for metadata management of your Kafka cluster, you can migrate to using
Kafka in KRaft mode. KRaft mode replaces ZooKeeper for distributed coordination, offering enhanced
reliability, scalability, and throughput.

During the migration, you install a quorum of controller nodes that replaces ZooKeeper for management
of your cluster. You enable KRaft migration in the controller configuration by setting the
zookeeper.metadata.migration.enable property to true. When the controllers are started, you enable
KRaft migration on the current cluster brokers using the same configuration property. After the
migration is complete, you switch the brokers to using KRaft and the controllers out of migration mode.

Before starting the migration, verify that your environment can support Kafka in KRaft mode, as KRaft
does not support JBOD storage with multiple disks.

Prerequisites

You are logged in to Red Hat Enterprise Linux as the kafka user.

Streams for Apache Kafka is installed on each host , and the configuration files are available.

You must be using Streams for Apache Kafka 2.7 or newer with Kafka 3.7.0 or newer. If you are
using an earlier version of Streams for Apache Kafka, upgrade before migrating to KRaft mode.

Logging is enabled to check the migration process.
It is useful to set a DEBUG level in log4j.properties for the root logger on the controllers and
brokers in the cluster. For the controller logger specific to migration, set TRACE:

Controller logging configuration

Procedure

1. Retrieve the cluster ID of your Kafka cluster.
You can use the zookeeper-shell tool to do this:

The command returns the cluster ID.

2. Install a KRaft controller quorum to the cluster.

a. Configure a controller node on each host using the controller.properties file.
At a minimum, each controller requires the following configuration:

A unique node ID

The migration enabled flag set to true

ZooKeeper connection details

Controller listeners

log4j.rootLogger=DEBUG
log4j.logger.org.apache.kafka.metadata.migration=TRACE

/opt/kafka/bin/zookeeper-shell.sh localhost:2181 get /cluster/id

Red Hat Streams for Apache Kafka 2.7 Using Streams for Apache Kafka on RHEL in KRaft mode

20

A quorum of controller voters

Example controller configuration

The format for the controller quorum is <node_id>@<hostname>:<port> in a comma-
separated list.

b. Set up log directories for each controller node:

Returns:

Replace <uuid> with the cluster ID you retrieved. Use the same cluster ID for each controller
node in your cluster.

Apply the controller configuration using the properties file you configured for the controller.

By default, the log directory (log.dirs) specified in the controller.properties configuration
file is set to /tmp/kraft-controller-logs. The /tmp directory is typically cleared on each
system reboot, making it suitable for development environments only.

You can add a comma-separated list to set up multiple log directories.

c. Start each controller.

d. Check that Kafka is running:

Returns:

Check the logs of each controller to ensure that they have successfully joined the KRaft
cluster:

process.roles=controller
node.id=1

zookeeper.metadata.migration.enable=true
zookeeper.connect=zoo1.my-domain.com:2181,zoo2.my-
domain.com:2181,zoo3.my-domain.com:2181

listeners=CONTROLLER://0.0.0.0:9090
controller.listener.names=CONTROLLER
listener.security.protocol.map=CONTROLLER:PLAINTEXT
controller.quorum.voters=1@localhost:9090

/opt/kafka/bin/kafka-storage.sh format -t <uuid> -c
/opt/kafka/config/kraft/controller.properties

Formatting /tmp/kraft-controller-logs

/opt/kafka/bin/kafka-server-start.sh -daemon /opt/kafka/config/kraft/controller.properties

jcmd | grep kafka

process ID kafka.Kafka /opt/kafka/config/kraft/controller.properties

CHAPTER 4. MIGRATING TO KRAFT MODE

21

3. Enable migration on each broker.

a. If running, stop the Kafka broker running on the host.

If you are running Kafka on a multi-node cluster, see Section 3.6, “Performing a graceful
rolling restart of Kafka brokers”.

b. Enable migration using the server.properties file.
At a minimum, each broker requires the following additional configuration:

Inter-broker protocol version set to version 3.5.

The migration enabled flag

Controller listeners

A quorum of controller voters

Example broker configuration

The ZooKeeper connection details should already be present. The controller configuration
for the brokers is the same as for the controllers.

c. Restart the updated broker:

The migration starts automatically and can take some time depending on the number of
topics and partitions in the cluster.

d. Check that Kafka is running:

Returns:

tail -f /opt/kafka/logs/controller.log

/opt/kafka/bin/kafka-server-stop.sh
jcmd | grep kafka

broker.id=0
inter.broker.protocol.version=3.5

zookeeper.metadata.migration.enable=true
zookeeper.connect=zoo1.my-domain.com:2181,zoo2.my-domain.com:2181,zoo3.my-
domain.com:2181

listeners=CONTROLLER://0.0.0.0:9090
controller.listener.names=CONTROLLER
listener.security.protocol.map=CONTROLLER:PLAINTEXT
controller.quorum.voters=1@localhost:9090

/opt/kafka/bin/kafka-server-start.sh -daemon /opt/kafka/config/kraft/server.properties

jcmd | grep kafka

process ID kafka.Kafka /opt/kafka/config/kraft/server.properties

Red Hat Streams for Apache Kafka 2.7 Using Streams for Apache Kafka on RHEL in KRaft mode

22

4. Check the log on the active controller to ensure that migration is complete:

Look for an INFO log entry that says the following: Completed migration of metadata from
ZooKeeper to KRaft.

5. Switch each broker to run in KRaft mode.

a. Stop the broker, as before.

b. Update the broker configuration in the server.properties file:

Replace the broker.id with a node.id using the same ID

Add a broker KRaft role for the broker

Remove the inter-broker protocol version (inter.broker.protocol.version)

Remove the migration enabled flag (zookeeper.metadata.migration.enable)

Remove ZooKeeper configuration

Example broker configuration for KRaft

c. If you are using ACLS in your broker configuration, update the authorizer using the
authorizer.class.name property to the KRaft-based standard authorizer.
ZooKeeper-based brokers use
authorizer.class.name=kafka.security.authorizer.AclAuthorizer.

When migrating to KRaft-based brokers, specify
authorizer.class.name=org.apache.kafka.metadata.authorizer.StandardAuthorizer.

d. Restart the broker, as before.

6. Switch each controller out of migration mode.

a. Stop the controller, as before.

b. Remove the zookeeper.metadata.migration.enable property from the
controller.properties file.

c. Restart the controller, as before.

Example controller configuration following migration

/opt/kafka/bin/zookeeper-shell.sh localhost:2181 get /controller

node.id=0
process.roles=broker

listeners=CONTROLLER://0.0.0.0:9090
controller.listener.names=CONTROLLER
listener.security.protocol.map=CONTROLLER:PLAINTEXT
controller.quorum.voters=1@localhost:9090

process.roles=controller
node.id=1

CHAPTER 4. MIGRATING TO KRAFT MODE

23

listeners=CONTROLLER://0.0.0.0:9090
controller.listener.names=CONTROLLER
listener.security.protocol.map=CONTROLLER:PLAINTEXT
controller.quorum.voters=1@localhost:9090

Red Hat Streams for Apache Kafka 2.7 Using Streams for Apache Kafka on RHEL in KRaft mode

24

CHAPTER 5. CONFIGURING STREAMS FOR APACHE KAFKA
Use the Kafka configuration properties files to configure Streams for Apache Kafka.

The properties file is in Java format, with each property on a separate line in the following format:

<option> = <value>

Lines starting with # or ! are treated as comments and are ignored by Streams for Apache Kafka
components.

This is a comment

Values can be split into multiple lines by using \ directly before the newline/carriage return.

sasl.jaas.config=org.apache.kafka.common.security.plain.PlainLoginModule required \
 username="bob" \
 password="bobs-password";

After saving the changes in the properties file, you need to restart the Kafka node. In a multi-node
environment, repeat the process on each node in the cluster.

5.1. USING STANDARD KAFKA CONFIGURATION PROPERTIES

Use standard Kafka configuration properties to configure Kafka components.

The properties provide options to control and tune the configuration of the following Kafka components:

Brokers

Topics

Producer, consumer, and management clients

Kafka Connect

Kafka Streams

Broker and client parameters include options to configure authorization, authentication and encryption.

For further information on Kafka configuration properties and how to use the properties to tune your
deployment, see the following guides:

Kafka configuration properties

Kafka configuration tuning

5.2. LOADING CONFIGURATION VALUES FROM ENVIRONMENT
VARIABLES

Use the Environment Variables Configuration Provider plugin to load configuration data from
environment variables. You can use the Environment Variables Configuration Provider, for example, to
load certificates or JAAS configuration from environment variables.

CHAPTER 5. CONFIGURING STREAMS FOR APACHE KAFKA

25

https://docs.redhat.com/en/documentation/red_hat_streams_for_apache_kafka/2.7/html-single/kafka_configuration_properties/index
https://docs.redhat.com/en/documentation/red_hat_streams_for_apache_kafka/2.7/html-single/kafka_configuration_tuning/index

You can use the provider to load configuration data for all Kafka components, including producers and
consumers. Use the provider, for example, to provide the credentials for Kafka Connect connector
configuration.

Prerequisites

Streams for Apache Kafka is installed on each host , and the configuration files are available.

The Environment Variables Configuration Provider JAR file.
The JAR file is available from the Streams for Apache Kafka archive .

Procedure

1. Add the Environment Variables Configuration Provider JAR file to the Kafka libs directory.

2. Initialize the Environment Variables Configuration Provider in the configuration properties file of
the Kafka component. For example, to initialize the provider for Kafka, add the configuration to
the server.properties file.

Configuration to enable the Environment Variables Configuration Provider

3. Add configuration to the properties file to load data from environment variables.

Configuration to load data from an environment variable

Use capitalized or upper-case environment variable naming conventions, such as
MY_ENV_VAR_NAME.

4. Save the changes.

5. Restart the Kafka component.
For information on restarting brokers in a multi-node cluster, see Section 3.6, “Performing a
graceful rolling restart of Kafka brokers”.

5.3. CONFIGURING KAFKA

Kafka uses properties files to store static configuration. The recommended location for the
configuration files is /opt/kafka/config/kraft/. The configuration files have to be readable by the kafka
user.

Streams for Apache Kafka ships example configuration files that highlight various basic and advanced
features of the product. They can be found under config/kraft/ in the Streams for Apache Kafka
installation directory as follows:

(default) config/kraft/server.properties for nodes running in combined mode

config/kraft/broker.properties for nodes running as brokers

config/kraft/controller.properties for nodes running as controllers

config.providers.env.class=org.apache.kafka.common.config.provider.EnvVarConfigProvider

option=${env:<MY_ENV_VAR_NAME>}

Red Hat Streams for Apache Kafka 2.7 Using Streams for Apache Kafka on RHEL in KRaft mode

26

This chapter explains the most important configuration options.

5.3.1. Listeners

Listeners are used to connect to Kafka brokers. Each Kafka broker can be configured to use multiple
listeners. Each listener requires a different configuration so it can listen on a different port or network
interface.

To configure listeners, edit the listeners property in the Kafka configuration properties file. Add
listeners to the listeners property as a comma-separated list. Configure each property as follows:

<listener_name>://<hostname>:<port>

If <hostname> is empty, Kafka uses the java.net.InetAddress.getCanonicalHostName() class as the
hostname.

Example configuration for multiple listeners

When a Kafka client wants to connect to a Kafka cluster, it first connects to the bootstrap server , which is
one of the cluster nodes. The bootstrap server provides the client with a list of all the brokers in the
cluster, and the client connects to each one individually. The list of brokers is based on the configured
listeners.

Advertised listeners

Optionally, you can use the advertised.listeners property to provide the client with a different set of
listener addresses than those given in the listeners property. This is useful if additional network
infrastructure, such as a proxy, is between the client and the broker, or an external DNS name is being
used instead of an IP address.

The advertised.listeners property is formatted in the same way as the listeners property.

Example configuration for advertised listeners

NOTE

The names of the advertised listeners must match those listed in the listeners property.

Inter-broker listeners

Inter-broker listeners are used for communication between Kafka brokers. Inter-broker communication is
required for:

Coordinating workloads between different brokers

Replicating messages between partitions stored on different brokers

The inter-broker listener can be assigned to a port of your choice. When multiple listeners are

listeners=internal-1://:9092,internal-2://:9093,replication://:9094

listeners=internal-1://:9092,internal-2://:9093
advertised.listeners=internal-1://my-broker-1.my-domain.com:1234,internal-2://my-broker-1.my-
domain.com:1235

CHAPTER 5. CONFIGURING STREAMS FOR APACHE KAFKA

27

The inter-broker listener can be assigned to a port of your choice. When multiple listeners are
configured, you can define the name of the inter-broker listener in the inter.broker.listener.name
property of your broker configuration.

Here, the inter-broker listener is named as REPLICATION:

Controller listeners

Controller configuration is used to connect and communicate with the controller that coordinates the
cluster and manages the metadata used to track the status of brokers and partitions.

By default, communication between the controllers and brokers uses a dedicated controller listener.
Controllers are responsible for coordinating administrative tasks, such as partition leadership changes,
so one or more of these listeners is required.

Specify listeners to use for controllers using the controller.listener.names property. You can specify a
quorum of controller voters using the controller.quorum.voters property. The quorum enables a
leader-follower structure for administrative tasks, with the leader actively managing operations and
followers as hot standbys, ensuring metadata consistency in memory and facilitating failover.

The format for the controller voters is <cluster_id>@<hostname>:<port>.

5.3.2. Commit logs

Apache Kafka stores all records it receives from producers in commit logs. The commit logs contain the
actual data, in the form of records, that Kafka needs to deliver. Note that these records differ from
application log files, which detail the broker’s activities.

Log directories

You can configure log directories using the log.dirs property file to store commit logs in one or multiple
log directories. It should be set to /var/lib/kafka directory created during installation:

log.dirs=/var/lib/kafka

For performance reasons, you can configure log.dirs to multiple directories and place each of them on a
different physical device to improve disk I/O performance. For example:

log.dirs=/var/lib/kafka1,/var/lib/kafka2,/var/lib/kafka3

5.3.3. Node ID

Node ID is a unique identifier for each node (broker or controller) in the cluster. You can assign an
integer greater than or equal to 0 as node ID. The node ID is used to identify the nodes after restarts or
crashes and it is therefore important that the ID is stable and does not change over time.

The node ID is configured in the Kafka configuration properties file:

listeners=REPLICATION://0.0.0.0:9091
inter.broker.listener.name=REPLICATION

listeners=CONTROLLER://0.0.0.0:9090
controller.listener.names=CONTROLLER
controller.quorum.voters=1@localhost:9090

Red Hat Streams for Apache Kafka 2.7 Using Streams for Apache Kafka on RHEL in KRaft mode

28

node.id=1

CHAPTER 5. CONFIGURING STREAMS FOR APACHE KAFKA

29

CHAPTER 6. SECURING ACCESS TO KAFKA
Secure your Kafka cluster by managing the access a client has to Kafka brokers. Specify configuration
options to secure Kafka brokers and clients

A secure connection between Kafka brokers and clients can encompass the following:

Encryption for data exchange

Authentication to prove identity

Authorization to allow or decline actions executed by users

The authentication and authorization mechanisms specified for a client must match those specified for
the Kafka brokers.

6.1. LISTENER CONFIGURATION

Encryption and authentication in Kafka brokers is configured per listener. For more information about
Kafka listener configuration, see Section 5.3.1, “Listeners”.

Each listener in the Kafka broker is configured with its own security protocol. The configuration property
listener.security.protocol.map defines which listener uses which security protocol. It maps each
listener name to its security protocol. Supported security protocols are:

PLAINTEXT

Listener without any encryption or authentication.

SSL

Listener using TLS encryption and, optionally, authentication using TLS client certificates.

SASL_PLAINTEXT

Listener without encryption but with SASL-based authentication.

SASL_SSL

Listener with TLS-based encryption and SASL-based authentication.

Given the following listeners configuration:

listeners=INT1://:9092,INT2://:9093,REPLICATION://:9094

the listener.security.protocol.map might look like this:

listener.security.protocol.map=INT1:SASL_PLAINTEXT,INT2:SASL_SSL,REPLICATION:SSL

This would configure the listener INT1 to use unencrypted connections with SASL authentication, the
listener INT2 to use encrypted connections with SASL authentication and the REPLICATION interface
to use TLS encryption (possibly with TLS client authentication). The same security protocol can be used
multiple times. The following example is also a valid configuration:

listener.security.protocol.map=INT1:SSL,INT2:SSL,REPLICATION:SSL

Such a configuration would use TLS encryption and TLS authentication (optional) for all interfaces.

Red Hat Streams for Apache Kafka 2.7 Using Streams for Apache Kafka on RHEL in KRaft mode

30

6.2. TLS ENCRYPTION

Kafka supports TLS for encrypting communication with Kafka clients.

In order to use TLS encryption and server authentication, a keystore containing private and public keys
has to be provided. This is usually done using a file in the Java Keystore (JKS) format. A path to this file
is set in the ssl.keystore.location property. The ssl.keystore.password property should be used to
set the password protecting the keystore. For example:

ssl.keystore.location=/path/to/keystore/server-1.jks
ssl.keystore.password=123456

In some cases, an additional password is used to protect the private key. Any such password can be set
using the ssl.key.password property.

Kafka is able to use keys signed by certification authorities as well as self-signed keys. Using keys signed
by certification authorities should always be the preferred method. In order to allow clients to verify the
identity of the Kafka broker they are connecting to, the certificate should always contain the advertised
hostname(s) as its Common Name (CN) or in the Subject Alternative Names (SAN).

It is possible to use different SSL configurations for different listeners. All options starting with ssl. can
be prefixed with listener.name.<NameOfTheListener>., where the name of the listener has to be
always in lowercase. This will override the default SSL configuration for that specific listener. The
following example shows how to use different SSL configurations for different listeners:

listeners=INT1://:9092,INT2://:9093,REPLICATION://:9094
listener.security.protocol.map=INT1:SSL,INT2:SSL,REPLICATION:SSL

Default configuration - will be used for listeners INT1 and INT2
ssl.keystore.location=/path/to/keystore/server-1.jks
ssl.keystore.password=123456

Different configuration for listener REPLICATION
listener.name.replication.ssl.keystore.location=/path/to/keystore/replication.jks
listener.name.replication.ssl.keystore.password=123456

Additional TLS configuration options

In addition to the main TLS configuration options described above, Kafka supports many options for
fine-tuning the TLS configuration. For example, to enable or disable TLS / SSL protocols or cipher
suites:

ssl.cipher.suites

List of enabled cipher suites. Each cipher suite is a combination of authentication, encryption, MAC
and key exchange algorithms used for the TLS connection. By default, all available cipher suites are
enabled.

ssl.enabled.protocols

List of enabled TLS / SSL protocols. Defaults to TLSv1.2,TLSv1.1,TLSv1.

6.2.1. Enabling TLS encryption

This procedure describes how to enable encryption in Kafka brokers.

Prerequisites

CHAPTER 6. SECURING ACCESS TO KAFKA

31

Streams for Apache Kafka is installed on each host , and the configuration files are available.

Procedure

1. Generate TLS certificates for all Kafka brokers in your cluster. The certificates should have their
advertised and bootstrap addresses in their Common Name or Subject Alternative Name.

2. Edit the Kafka configuration properties file on all cluster nodes for the following:

Change the listener.security.protocol.map field to specify the SSL protocol for the
listener where you want to use TLS encryption.

Set the ssl.keystore.location option to the path to the JKS keystore with the broker
certificate.

Set the ssl.keystore.password option to the password you used to protect the keystore.
For example:

listeners=UNENCRYPTED://:9092,ENCRYPTED://:9093,REPLICATION://:9094
listener.security.protocol.map=UNENCRYPTED:PLAINTEXT,ENCRYPTED:SSL,REPLICA
TION:PLAINTEXT
ssl.keystore.location=/path/to/keystore/server-1.jks
ssl.keystore.password=123456

3. (Re)start the Kafka brokers

6.3. AUTHENTICATION

To authenticate client connections to your Kafka cluster, the following options are available:

TLS client authentication

TLS (Transport Layer Security) using X.509 certificates on encrypted connections

Kafka SASL

Kafka SASL (Simple Authentication and Security Layer) using supported authentication mechanisms

OAuth 2.0

OAuth 2.0 token-based authentication

SASL authentication supports various mechanisms for both plain unencrypted connections and TLS
connections:

PLAIN ― Authentication based on usernames and passwords.

SCRAM-SHA-256 and SCRAM-SHA-512 ― Authentication using Salted Challenge Response
Authentication Mechanism (SCRAM).

GSSAPI ― Authentication against a Kerberos server.

Red Hat Streams for Apache Kafka 2.7 Using Streams for Apache Kafka on RHEL in KRaft mode

32

WARNING

The PLAIN mechanism sends usernames and passwords over the network in an
unencrypted format. It should only be used in combination with TLS encryption.

6.3.1. Enabling TLS client authentication

Enable TLS client authentication in Kafka brokers to enhance security for connections to Kafka nodes
already using TLS encryption.

Use the ssl.client.auth property to set TLS authentication with one of these values:

none ― TLS client authentication is off (default)

requested ― Optional TLS client authentication

required ― Clients must authenticate using a TLS client certificate

When a client authenticates using TLS client authentication, the authenticated principal name is derived
from the distinguished name in the client certificate. For instance, a user with a certificate having a
distinguished name CN=someuser will be authenticated with the principal
CN=someuser,OU=Unknown,O=Unknown,L=Unknown,ST=Unknown,C=Unknown. This principal
name provides a unique identifier for the authenticated user or entity. When TLS client authentication is
not used, and SASL is disabled, the principal name defaults to ANONYMOUS.

Prerequisites

Streams for Apache Kafka is installed on each host , and the configuration files are available.

TLS encryption is enabled.

Procedure

1. Prepare a JKS (Java Keystore) truststore containing the public key of the CA (Certification
Authority) used to sign the user certificates.

2. Edit the Kafka configuration properties file on all cluster nodes as follows:

Specify the path to the JKS truststore using the ssl.truststore.location property.

If the truststore is password-protected, set the password using ssl.truststore.password
property.

Set the ssl.client.auth property to required.

TLS client authentication configuration

ssl.truststore.location=/path/to/truststore.jks
ssl.truststore.password=123456
ssl.client.auth=required



CHAPTER 6. SECURING ACCESS TO KAFKA

33

3. (Re)start the Kafka brokers.

6.3.2. Enabling SASL PLAIN client authentication

Enable SASL PLAIN authentication in Kafka to enhance security for connections to Kafka nodes.

SASL authentication is enabled through the Java Authentication and Authorization Service (JAAS)
using the KafkaServer JAAS context. You can define the JAAS configuration in a dedicated file or
directly in the Kafka configuration.

The recommended location for the dedicated file is /opt/kafka/config/jaas.conf. Ensure that the file is
readable by the kafka user. Keep the JAAS configuration file in sync on all Kafka nodes.

Prerequisites

Streams for Apache Kafka is installed on each host , and the configuration files are available.

Procedure

1. Edit or create the /opt/kafka/config/jaas.conf JAAS configuration file to enable the
PlainLoginModule and specify the allowed usernames and passwords.
Make sure this file is the same on all Kafka brokers.

JAAS configuration

KafkaServer {
 org.apache.kafka.common.security.plain.PlainLoginModule required
 user_admin="123456"
 user_user1="123456"
 user_user2="123456";
};

2. Edit the Kafka configuration properties file on all cluster nodes as follows:

Enable SASL PLAIN authentication on specific listeners using the
listener.security.protocol.map property. Specify SASL_PLAINTEXT or SASL_SSL.

Set the sasl.enabled.mechanisms property to PLAIN.

SASL plain configuration

listeners=INSECURE://:9092,AUTHENTICATED://:9093,REPLICATION://:9094
listener.security.protocol.map=INSECURE:PLAINTEXT,AUTHENTICATED:SASL_PLAINT
EXT,REPLICATION:PLAINTEXT
sasl.enabled.mechanisms=PLAIN

3. (Re)start the Kafka brokers using the KAFKA_OPTS environment variable to pass the JAAS
configuration to Kafka brokers:

su - kafka
export KAFKA_OPTS="-Djava.security.auth.login.config=/opt/kafka/config/jaas.conf";
/opt/kafka/bin/kafka-server-start.sh -daemon /opt/kafka/config/kraft/server.properties

Red Hat Streams for Apache Kafka 2.7 Using Streams for Apache Kafka on RHEL in KRaft mode

34

6.3.3. Enabling SASL SCRAM client authentication

Enable SASL SCRAM authentication in Kafka to enhance security for connections to Kafka nodes.

SASL authentication is enabled through the Java Authentication and Authorization Service (JAAS)
using the KafkaServer JAAS context. You can define the JAAS configuration in a dedicated file or
directly in the Kafka configuration.

The recommended location for the dedicated file is /opt/kafka/config/jaas.conf. Ensure that the file is
readable by the kafka user. Keep the JAAS configuration file in sync on all Kafka nodes.

Prerequisites

Streams for Apache Kafka is installed on each host , and the configuration files are available.

Procedure

1. Edit or create the /opt/kafka/config/jaas.conf JAAS configuration file to enable the
ScramLoginModule.
Make sure this file is the same on all Kafka brokers.

JAAS configuration

KafkaServer {
 org.apache.kafka.common.security.scram.ScramLoginModule required;
};

2. Edit the Kafka configuration properties file on all cluster nodes as follows:

Enable SASL SCRAM authentication on specific listeners using the
listener.security.protocol.map property. Specify SASL_PLAINTEXT or SASL_SSL.

Set the sasl.enabled.mechanisms option to SCRAM-SHA-256 or SCRAM-SHA-512.
For example:

listeners=INSECURE://:9092,AUTHENTICATED://:9093,REPLICATION://:9094
listener.security.protocol.map=INSECURE:PLAINTEXT,AUTHENTICATED:SASL_PLAINT
EXT,REPLICATION:PLAINTEXT
sasl.enabled.mechanisms=SCRAM-SHA-512

3. (Re)start the Kafka brokers using the KAFKA_OPTS environment variable to pass the JAAS
configuration to Kafka brokers.

su - kafka
export KAFKA_OPTS="-Djava.security.auth.login.config=/opt/kafka/config/jaas.conf";
/opt/kafka/bin/kafka-server-start.sh -daemon /opt/kafka/config/kraft/server.properties

6.3.4. Enabling multiple SASL mechanisms

When using SASL authentication, you can enable more than one mechanism. Kafka can use more than
one SASL mechanism simultaneously. When multiple mechanisms are enabled, you can choose the
mechanism specific clients use.

To use more than one mechanism, you set up the configuration required for each mechanism. You can

CHAPTER 6. SECURING ACCESS TO KAFKA

35

add different KafkaServer JAAS configurations to the same context and enable more than one
mechanism in the Kafka configuration as a comma-separated list using the
sasl.mechanism.inter.broker.protocol property.

JAAS configuration for more than one SASL mechanism

KafkaServer {
 org.apache.kafka.common.security.plain.PlainLoginModule required
 user_admin="123456"
 user_user1="123456"
 user_user2="123456";

 com.sun.security.auth.module.Krb5LoginModule required
 useKeyTab=true
 storeKey=true
 keyTab="/etc/security/keytabs/kafka_server.keytab"
 principal="kafka/kafka1.hostname.com@EXAMPLE.COM";

 org.apache.kafka.common.security.scram.ScramLoginModule required;
};

SASL mechanisms enabled

sasl.enabled.mechanisms=PLAIN,SCRAM-SHA-256,SCRAM-SHA-512

6.3.5. Enabling SASL for inter-broker authentication

Enable SASL SCRAM authentication between Kafka nodes to enhance security for inter-broker
connections. As well as using SASL authentication for client connections to a Kafka cluster, you can also
use SASL for inter-broker authentication. Unlike SASL for client connections, you can only choose one
mechanism for inter-broker communication.

Prerequisites

Streams for Apache Kafka is installed on each host , and the configuration files are available.

If you are using a SCRAM mechanism, register SCRAM credentials on the Kafka cluster.
For all nodes in the Kafka cluster, use the kafka-storage.sh tool to add the inter-broker SASL
SCRAM user to the __cluster_metadata topic. This ensures that the credentials for
authentication are updated for bootstrapping before the Kafka cluster is running.

Registering an inter-broker SASL SCRAM user

Procedure

1. Specify an inter-broker SASL mechanism in the Kafka configuration using the

bin/kafka-storage.sh format \
--config /opt/kafka/config/kraft/server.properties \
--cluster-id 1 \
--release-version 3.7 \
--add-scram 'SCRAM-SHA-512=[name=kafka, password=changeit]' \
--ignore formatted

Red Hat Streams for Apache Kafka 2.7 Using Streams for Apache Kafka on RHEL in KRaft mode

36

1. Specify an inter-broker SASL mechanism in the Kafka configuration using the
sasl.mechanism.inter.broker.protocol property.

Inter-broker SASL mechanism

sasl.mechanism.inter.broker.protocol=SCRAM-SHA-512

2. Specify the username and password for inter-broker communication in the KafkaServer JAAS
context using the username and password fields.

Inter-broker JAAS context

KafkaServer {
 org.apache.kafka.common.security.plain.ScramLoginModule required
 username="kafka"
 password="changeit"
 # ...
};

6.3.6. Adding SASL SCRAM users

This procedure outlines the steps to register new users for authentication using SASL SCRAM in Kafka.
SASL SCRAM authentication enhances the security of client connections.

Prerequisites

Streams for Apache Kafka is installed on each host , and the configuration files are available.

SASL SCRAM authentication is enabled.

Procedure

Use the kafka-configs.sh tool to add new SASL SCRAM users.

For example:

6.3.7. Deleting SASL SCRAM users

This procedure outlines the steps to remove users registered for authentication using SASL SCRAM in
Kafka.

/opt/kafka/kafka-configs.sh \
--bootstrap-server <broker_host>:<port> \
--alter \
--add-config 'SCRAM-SHA-512=[password=<password>]' \
--entity-type users --entity-name <username>

/opt/kafka/kafka-configs.sh \
--bootstrap-server localhost:9092 \
--alter \
--add-config 'SCRAM-SHA-512=[password=123456]' \
--entity-type users \
--entity-name user1

CHAPTER 6. SECURING ACCESS TO KAFKA

37

Prerequisites

Streams for Apache Kafka is installed on each host , and the configuration files are available.

SASL SCRAM authentication is enabled.

Procedure

Use the kafka-configs.sh tool to delete SASL SCRAM users.

For example:

6.3.8. Enabling Kerberos (GSSAPI) authentication

Streams for Apache Kafka supports the use of the Kerberos (GSSAPI) authentication protocol for
secure single sign-on access to your Kafka cluster. GSSAPI is an API wrapper for Kerberos functionality,
insulating applications from underlying implementation changes.

Kerberos is a network authentication system that allows clients and servers to authenticate to each
other by using symmetric encryption and a trusted third party, the Kerberos Key Distribution Centre
(KDC).

This procedure shows how to configure Streams for Apache Kafka so that Kafka clients can access
Kafka using Kerberos (GSSAPI) authentication.

The procedure assumes that a Kerberos krb5 resource server has been set up on a Red Hat Enterprise
Linux host.

The procedure shows, with examples, how to configure:

1. Service principals

2. Kafka brokers to use the Kerberos login

3. Producer and consumer clients to access Kafka using Kerberos authentication

The instructions describe Kerberos set up for a Kafka installation on a single host, with additional
configuration for a producer and consumer client.

Prerequisites

To be able to configure Kafka to authenticate and authorize Kerberos credentials, you need the

/opt/kafka/bin/kafka-configs.sh \
--bootstrap-server <broker_host>:<port> \
--alter \
--delete-config 'SCRAM-SHA-512' \
--entity-type users \
--entity-name <username>

/opt/kafka/bin/kafka-configs.sh \
--bootstrap-server localhost:9092 \
--alter \
--delete-config 'SCRAM-SHA-512' \
--entity-type users \
--entity-name user1

Red Hat Streams for Apache Kafka 2.7 Using Streams for Apache Kafka on RHEL in KRaft mode

38

To be able to configure Kafka to authenticate and authorize Kerberos credentials, you need the
following:

Access to a Kerberos server

A Kerberos client on each Kafka broker host

Add service principals for authentication

From your Kerberos server, create service principals (users) for Kafka brokers, and Kafka producer and
consumer clients. Service principals must take the form SERVICE-NAME/FULLY-QUALIFIED-HOST-
NAME@DOMAIN-REALM.

1. Create the service principals, and keytabs that store the principal keys, through the Kerberos
KDC.
Make sure the domain name in the Kerberos principal is in uppercase.

For example:

kafka/node1.example.redhat.com@EXAMPLE.REDHAT.COM

producer1/node1.example.redhat.com@EXAMPLE.REDHAT.COM

consumer1/node1.example.redhat.com@EXAMPLE.REDHAT.COM

2. Create a directory on the host and add the keytab files:
For example:

3. Ensure the kafka user can access the directory:

Configure the Kafka broker server to use a Kerberos login

Configure Kafka to use the Kerberos Key Distribution Center (KDC) for authentication using the user
principals and keytabs previously created for kafka.

1. Modify the opt/kafka/config/jaas.conf file with the following elements:

/opt/kafka/krb5/kafka-node1.keytab
/opt/kafka/krb5/kafka-producer1.keytab
/opt/kafka/krb5/kafka-consumer1.keytab

chown kafka:kafka -R /opt/kafka/krb5

KafkaServer {
 com.sun.security.auth.module.Krb5LoginModule required
 useKeyTab=true
 storeKey=true
 keyTab="/opt/kafka/krb5/kafka-node1.keytab"
 principal="kafka/node1.example.redhat.com@EXAMPLE.REDHAT.COM";
};
KafkaClient {
 com.sun.security.auth.module.Krb5LoginModule required debug=true
 useKeyTab=true
 storeKey=true
 useTicketCache=false

CHAPTER 6. SECURING ACCESS TO KAFKA

39

1

2

3

4

5

2. Configure each broker in the Kafka cluster by modifying the listener configuration in the
config/server.properties file so the listeners use the SASL/GSSAPI login.
Add the SASL protocol to the map of security protocols for the listener, and remove any
unwanted protocols.

For example:

Two listeners are configured: a secure listener for general-purpose communications with
clients (supporting TLS for communications), and a replication listener for inter-broker
communications.

For TLS-enabled listeners, the protocol name is SASL_PLAINTEXT. For non-TLS-enabled
connectors, the protocol name is SASL_PLAINTEXT. If SSL is not required, you can
remove the ssl.* properties.

SASL mechanism for Kerberos authentication is GSSAPI.

Kerberos authentication for inter-broker communication.

The name of the service used for authentication requests is specified to distinguish it from
other services that may also be using the same Kerberos configuration.

3. Start the Kafka broker, with JVM parameters to specify the Kerberos login configuration:

4. Configure Kafka producer and consumer clients to use Kerberos authentication

Configure Kafka producer and consumer clients to use the Kerberos Key Distribution Center (KDC) for
authentication using the user principals and keytabs previously created for producer1 and consumer1.

1. Add the Kerberos configuration to the producer or consumer configuration file.
For example:

 keyTab="/opt/kafka/krb5/kafka-node1.keytab"
 principal="kafka/node1.example.redhat.com@EXAMPLE.REDHAT.COM";
};

...
broker.id=0
...
listeners=SECURE://:9092,REPLICATION://:9094 1
inter.broker.listener.name=REPLICATION
...
listener.security.protocol.map=SECURE:SASL_PLAINTEXT,REPLICATION:SASL_PLAINTEX
T 2
..
sasl.enabled.mechanisms=GSSAPI 3
sasl.mechanism.inter.broker.protocol=GSSAPI 4
sasl.kerberos.service.name=kafka 5
...

su - kafka
export KAFKA_OPTS="-Djava.security.krb5.conf=/etc/krb5.conf -
Djava.security.auth.login.config=/opt/kafka/config/jaas.conf"; /opt/kafka/bin/kafka-server-
start.sh -daemon /opt/kafka/config/kraft/server.properties

Red Hat Streams for Apache Kafka 2.7 Using Streams for Apache Kafka on RHEL in KRaft mode

40

1

2

3

4

/opt/kafka/config/producer.properties

Configuration for Kerberos (GSSAPI) authentication.

Kerberos uses the SASL plaintext (username/password) security protocol.

The service principal (user) for Kafka that was configured in the Kerberos KDC.

Configuration for the JAAS using the same properties defined in jaas.conf.

/opt/kafka/config/consumer.properties

2. Run the clients to verify that you can send and receive messages from the Kafka brokers.
Producer client:

Consumer client:

Additional resources

...
sasl.mechanism=GSSAPI 1
security.protocol=SASL_PLAINTEXT 2
sasl.kerberos.service.name=kafka 3
sasl.jaas.config=com.sun.security.auth.module.Krb5LoginModule required \ 4
 useKeyTab=true \
 useTicketCache=false \
 storeKey=true \
 keyTab="/opt/kafka/krb5/producer1.keytab" \
 principal="producer1/node1.example.redhat.com@EXAMPLE.REDHAT.COM";
...

...
sasl.mechanism=GSSAPI
security.protocol=SASL_PLAINTEXT
sasl.kerberos.service.name=kafka
sasl.jaas.config=com.sun.security.auth.module.Krb5LoginModule required \
 useKeyTab=true \
 useTicketCache=false \
 storeKey=true \
 keyTab="/opt/kafka/krb5/consumer1.keytab" \
 principal="consumer1/node1.example.redhat.com@EXAMPLE.REDHAT.COM";
...

export KAFKA_HEAP_OPTS="-Djava.security.krb5.conf=/etc/krb5.conf -
Dsun.security.krb5.debug=true"; /opt/kafka/bin/kafka-console-producer.sh --producer.config
/opt/kafka/config/producer.properties --topic topic1 --bootstrap-server
node1.example.redhat.com:9094

export KAFKA_HEAP_OPTS="-Djava.security.krb5.conf=/etc/krb5.conf -
Dsun.security.krb5.debug=true"; /opt/kafka/bin/kafka-console-consumer.sh --
consumer.config /opt/kafka/config/consumer.properties --topic topic1 --bootstrap-server
node1.example.redhat.com:9094

CHAPTER 6. SECURING ACCESS TO KAFKA

41

Kerberos man pages: krb5.conf, kinit, klist, and kdestroy

6.4. AUTHORIZATION

Authorization in Kafka brokers is implemented using authorizer plugins.

In this section we describe how to use the StandardAuthorizer plugin provided with Kafka.

Alternatively, you can use your own authorization plugins. For example, if you are using OAuth 2.0 token-
based authentication, you can use OAuth 2.0 authorization .

6.4.1. Enabling an ACL authorizer

Edit the Kafka configuration properties file to add an ACL authorizer. Enable the authorizer by specifying
its fully-qualified name in the authorizer.class.name property:

Enabling the authorizer

6.4.1.1. ACL rules

An ACL authorizer uses ACL rules to manage access to Kafka brokers.

ACL rules are defined in the following format:

Principal P is allowed / denied <operation> O on <kafka_resource> R from host H

For example, a rule might be set so that user John can view the topic comments from host 127.0.0.1.
Host is the IP address of the machine that John is connecting from.

In most cases, the user is a producer or consumer application:

Consumer01 can write to the consumer group accounts from host 127.0.0.1

If ACL rules are not present for a given resource, all actions are denied. This behavior can be changed by
setting the property allow.everyone.if.no.acl.found to true in the Kafka configuration file.

6.4.1.2. Principals

A principal represents the identity of a user. The format of the ID depends on the authentication
mechanism used by clients to connect to Kafka:

User:ANONYMOUS when connected without authentication.

User:<username> when connected using simple authentication mechanisms, such as PLAIN or
SCRAM.
For example User:admin or User:user1.

User:<DistinguishedName> when connected using TLS client authentication.
For example User:CN=user1,O=MyCompany,L=Prague,C=CZ.

User:<Kerberos username> when connected using Kerberos.

The DistinguishedName is the distinguished name from the client certificate.

authorizer.class.name=org.apache.kafka.metadata.authorizer.StandardAuthorizer

Red Hat Streams for Apache Kafka 2.7 Using Streams for Apache Kafka on RHEL in KRaft mode

42

The Kerberos username is the primary part of the Kerberos principal, which is used by default when
connecting using Kerberos. You can use the sasl.kerberos.principal.to.local.rules property to
configure how the Kafka principal is built from the Kerberos principal.

6.4.1.3. Authentication of users

To use authorization, you need to have authentication enabled and used by your clients. Otherwise, all
connections will have the principal User:ANONYMOUS.

For more information on methods of authentication, see Section 6.3, “Authentication”.

6.4.1.4. Super users

Super users are allowed to take all actions regardless of the ACL rules.

Super users are defined in the Kafka configuration file using the property super.users.

For example:

super.users=User:admin,User:operator

6.4.1.5. Replica broker authentication

When authorization is enabled, it is applied to all listeners and all connections. This includes the inter-
broker connections used for replication of data between brokers. If enabling authorization, therefore,
ensure that you use authentication for inter-broker connections and give the users used by the brokers
sufficient rights. For example, if authentication between brokers uses the kafka-broker user, then super
user configuration must include the username super.users=User:kafka-broker.

NOTE

For more information on the operations on Kafka resources you can control with ACLs,
see the Apache Kafka documentation.

6.4.2. Adding ACL rules

When using an ACL authorizer to control access to Kafka based on Access Control Lists (ACLs), you can
add new ACL rules using the kafka-acls.sh utility.

Use kafka-acls.sh parameter options to add, list and remove ACL rules, and perform other functions.
The parameters require a double-hyphen convention, such as --add.

Prerequisites

Users have been created and granted appropriate permissions to access Kafka resources.

Streams for Apache Kafka is installed on each host , and the configuration files are available.

Authorization is enabled in Kafka brokers.

Procedure

Run kafka-acls.sh with the --add option.
Examples:

CHAPTER 6. SECURING ACCESS TO KAFKA

43

https://kafka.apache.org/documentation/

Allow user1 and user2 access to read from myTopic using the MyConsumerGroup consumer
group.

Deny user1 access to read myTopic from IP address host 127.0.0.1.

Add user1 as the consumer of myTopic with MyConsumerGroup.

6.4.3. Listing ACL rules

When using an ACL authorizer to control access to Kafka based on Access Control Lists (ACLs), you can
list existing ACL rules using the kafka-acls.sh utility.

Prerequisites

ACLs have been added.

Procedure

Run kafka-acls.sh with the --list option.
For example:

6.4.4. Removing ACL rules

When using an ACL authorizer to control access to Kafka based on Access Control Lists (ACLs), you can
remove existing ACL rules using the kafka-acls.sh utility.

opt/kafka/bin/kafka-acls.sh --bootstrap-server localhost:9092 --add --operation Read --topic
myTopic --allow-principal User:user1 --allow-principal User:user2

opt/kafka/bin/kafka-acls.sh --bootstrap-server localhost:9092 --add --operation Describe --
topic myTopic --allow-principal User:user1 --allow-principal User:user2

opt/kafka/bin/kafka-acls.sh --bootstrap-server localhost:9092 --add --operation Read --
operation Describe --group MyConsumerGroup --allow-principal User:user1 --allow-principal
User:user2

opt/kafka/bin/kafka-acls.sh --bootstrap-server localhost:9092 --add --operation Describe --
operation Read --topic myTopic --group MyConsumerGroup --deny-principal User:user1 --
deny-host 127.0.0.1

opt/kafka/bin/kafka-acls.sh --bootstrap-server localhost:9092 --add --consumer --topic
myTopic --group MyConsumerGroup --allow-principal User:user1

opt/kafka/bin/kafka-acls.sh --bootstrap-server localhost:9092 --list --topic myTopic

Current ACLs for resource `Topic:myTopic`:

User:user1 has Allow permission for operations: Read from hosts: *
User:user2 has Allow permission for operations: Read from hosts: *
User:user2 has Deny permission for operations: Read from hosts: 127.0.0.1
User:user1 has Allow permission for operations: Describe from hosts: *
User:user2 has Allow permission for operations: Describe from hosts: *
User:user2 has Deny permission for operations: Describe from hosts: 127.0.0.1

Red Hat Streams for Apache Kafka 2.7 Using Streams for Apache Kafka on RHEL in KRaft mode

44

Prerequisites

ACLs have been added.

Procedure

Run kafka-acls.sh with the --remove option.
Examples:

Remove the ACL allowing Allow user1 and user2 access to read from myTopic using the
MyConsumerGroup consumer group.

Remove the ACL adding user1 as the consumer of myTopic with MyConsumerGroup.

Remove the ACL denying user1 access to read myTopic from IP address host 127.0.0.1.

6.5. USING OAUTH 2.0 TOKEN-BASED AUTHENTICATION

Streams for Apache Kafka supports the use of OAuth 2.0 authentication using the OAUTHBEARER and
PLAIN mechanisms.

OAuth 2.0 enables standardized token-based authentication and authorization between applications,
using a central authorization server to issue tokens that grant limited access to resources.

You can configure OAuth 2.0 authentication, then OAuth 2.0 authorization .

Kafka brokers and clients both need to be configured to use OAuth 2.0. OAuth 2.0 authentication can
also be used in conjunction with simple or OPA-based Kafka authorization.

Using OAuth 2.0 authentication, application clients can access resources on application servers (called
resource servers) without exposing account credentials.

The application client passes an access token as a means of authenticating, which application servers
can also use to determine the level of access to grant. The authorization server handles the granting of
access and inquiries about access.

In the context of Streams for Apache Kafka:

opt/kafka/bin/kafka-acls.sh --bootstrap-server localhost:9092 --remove --operation Read --
topic myTopic --allow-principal User:user1 --allow-principal User:user2

opt/kafka/bin/kafka-acls.sh --bootstrap-server localhost:9092 --remove --operation Describe -
-topic myTopic --allow-principal User:user1 --allow-principal User:user2

opt/kafka/bin/kafka-acls.sh --bootstrap-server localhost:9092 --remove --operation Read --
operation Describe --group MyConsumerGroup --allow-principal User:user1 --allow-principal
User:user2

opt/kafka/bin/kafka-acls.sh --bootstrap-server localhost:9092 --remove --consumer --topic
myTopic --group MyConsumerGroup --allow-principal User:user1

opt/kafka/bin/kafka-acls.sh --bootstrap-server localhost:9092 --remove --operation Describe -
-operation Read --topic myTopic --group MyConsumerGroup --deny-principal User:user1 --
deny-host 127.0.0.1

CHAPTER 6. SECURING ACCESS TO KAFKA

45

https://oauth.net/2/

Kafka brokers act as OAuth 2.0 resource servers

Kafka clients act as OAuth 2.0 application clients

Kafka clients authenticate to Kafka brokers. The brokers and clients communicate with the OAuth 2.0
authorization server, as necessary, to obtain or validate access tokens.

For a deployment of Streams for Apache Kafka, OAuth 2.0 integration provides:

Server-side OAuth 2.0 support for Kafka brokers

Client-side OAuth 2.0 support for Kafka MirrorMaker, Kafka Connect, and the Kafka Bridge

Streams for Apache Kafka on RHEL includes two OAuth 2.0 libraries:

kafka-oauth-client

Provides a custom login callback handler class named
io.strimzi.kafka.oauth.client.JaasClientOauthLoginCallbackHandler. To handle the
OAUTHBEARER authentication mechanism, use the login callback handler with the
OAuthBearerLoginModule provided by Apache Kafka.

kafka-oauth-common

A helper library that provides some of the functionality needed by the kafka-oauth-client library.

The provided client libraries also have dependencies on some additional third-party libraries, such as:
keycloak-core, jackson-databind, and slf4j-api.

We recommend using a Maven project to package your client to ensure that all the dependency libraries
are included. Dependency libraries might change in future versions.

Additional resources

OAuth 2.0 site

6.5.1. OAuth 2.0 authentication mechanisms

Streams for Apache Kafka supports the OAUTHBEARER and PLAIN mechanisms for OAuth 2.0
authentication. Both mechanisms allow Kafka clients to establish authenticated sessions with Kafka
brokers. The authentication flow between clients, the authorization server, and Kafka brokers is different
for each mechanism.

We recommend that you configure clients to use OAUTHBEARER whenever possible. OAUTHBEARER
provides a higher level of security than PLAIN because client credentials are never shared with Kafka
brokers. Consider using PLAIN only with Kafka clients that do not support OAUTHBEARER.

You configure Kafka broker listeners to use OAuth 2.0 authentication for connecting clients. If
necessary, you can use the OAUTHBEARER and PLAIN mechanisms on the same oauth listener. The
properties to support each mechanism must be explicitly specified in the oauth listener configuration.

OAUTHBEARER overview

To use OAUTHBEARER, set sasl.enabled.mechanisms to OAUTHBEARER in the OAuth
authentication listener configuration for the Kafka broker. For detailed configuration, see Section 6.5.2,
“OAuth 2.0 Kafka broker configuration”.

listener.name.client.sasl.enabled.mechanisms=OAUTHBEARER

Red Hat Streams for Apache Kafka 2.7 Using Streams for Apache Kafka on RHEL in KRaft mode

46

https://oauth.net/2/

Many Kafka client tools use libraries that provide basic support for OAUTHBEARER at the protocol
level. To support application development, Streams for Apache Kafka provides an OAuth callback
handler for the upstream Kafka Client Java libraries (but not for other libraries). Therefore, you do not
need to write your own callback handlers. An application client can use the callback handler to provide
the access token. Clients written in other languages, such as Go, must use custom code to connect to
the authorization server and obtain the access token.

With OAUTHBEARER, the client initiates a session with the Kafka broker for credentials exchange, where
credentials take the form of a bearer token provided by the callback handler. Using the callbacks, you
can configure token provision in one of three ways:

Client ID and Secret (by using the OAuth 2.0 client credentials mechanism)

A long-lived access token, obtained manually at configuration time

A long-lived refresh token, obtained manually at configuration time

NOTE

OAUTHBEARER authentication can only be used by Kafka clients that support the
OAUTHBEARER mechanism at the protocol level.

PLAIN overview

To use PLAIN, add PLAIN to the value of sasl.enabled.mechanisms.

PLAIN is a simple authentication mechanism used by all Kafka client tools. To enable PLAIN to be used
with OAuth 2.0 authentication, Streams for Apache Kafka provides OAuth 2.0 over PLAIN server-side
callbacks.

Client credentials are handled centrally behind a compliant authorization server, similar to when
OAUTHBEARER authentication is used. When used with the OAuth 2.0 over PLAIN callbacks, Kafka
clients authenticate with Kafka brokers using either of the following methods:

Client ID and secret (by using the OAuth 2.0 client credentials mechanism)

A long-lived access token, obtained manually at configuration time

For both methods, the client must provide the PLAIN username and password properties to pass
credentials to the Kafka broker. The client uses these properties to pass a client ID and secret or
username and access token.

Client IDs and secrets are used to obtain access tokens.

Access tokens are passed as password property values. You pass the access token with or without an
$accessToken: prefix.

If you configure a token endpoint (oauth.token.endpoint.uri) in the listener configuration, you
need the prefix.

If you don’t configure a token endpoint (oauth.token.endpoint.uri) in the listener
configuration, you don’t need the prefix. The Kafka broker interprets the password as a raw
access token.

listener.name.client.sasl.enabled.mechanisms=OAUTHBEARER,PLAIN

CHAPTER 6. SECURING ACCESS TO KAFKA

47

If the password is set as the access token, the username must be set to the same principal name that
the Kafka broker obtains from the access token. You can specify username extraction options in your
listener using the oauth.username.claim, oauth.fallback.username.claim,
oauth.fallback.username.prefix, and oauth.userinfo.endpoint.uri properties. The username
extraction process also depends on your authorization server; in particular, how it maps client IDs to
account names.

NOTE

OAuth over PLAIN does not support passing a username and password (password grants)
using the (deprecated) OAuth 2.0 password grant mechanism.

6.5.1.1. Configuring OAuth 2.0 with properties or variables

You can configure OAuth 2.0 settings using Java Authentication and Authorization Service (JAAS)
properties or environment variables.

JAAS properties are configured in the server.properties configuration file, and passed as key-
values pairs of the listener.name.LISTENER-NAME.oauthbearer.sasl.jaas.config property.

If using environment variables, you still need to provide the listener.name.LISTENER-
NAME.oauthbearer.sasl.jaas.config property in the server.properties file, but you can omit
the other JAAS properties.
You can use capitalized or upper-case environment variable naming conventions.

The Streams for Apache Kafka OAuth 2.0 libraries use properties that start with:

oauth. to configure authentication

strimzi. to configure OAuth 2.0 authorization

Additional resources

OAuth 2.0 Kafka broker configuration

6.5.2. OAuth 2.0 Kafka broker configuration

Kafka broker configuration for OAuth 2.0 authentication involves:

Creating the OAuth 2.0 client in the authorization server

Configuring OAuth 2.0 authentication in the Kafka cluster

NOTE

In relation to the authorization server, Kafka brokers and Kafka clients are both regarded
as OAuth 2.0 clients.

6.5.2.1. OAuth 2.0 client configuration on an authorization server

To configure a Kafka broker to validate the token received during session initiation, the recommended
approach is to create an OAuth 2.0 client definition in an authorization server, configured as confidential,
with the following client credentials enabled:

Client ID of kafka-broker (for example)

Red Hat Streams for Apache Kafka 2.7 Using Streams for Apache Kafka on RHEL in KRaft mode

48

Client ID and secret as the authentication mechanism

NOTE

You only need to use a client ID and secret when using a non-public introspection
endpoint of the authorization server. The credentials are not typically required when using
public authorization server endpoints, as with fast local JWT token validation.

6.5.2.2. OAuth 2.0 authentication configuration in the Kafka cluster

To use OAuth 2.0 authentication in the Kafka cluster, you enable an OAuth authentication listener
configuration for your Kafka cluster, in the Kafka server.properties file. A minimum configuration is
required. You can also configure a TLS listener, where TLS is used for inter-broker communication.

You can configure the broker for token validation by the authorization server using one of the following
methods:

Fast local token validation: a JWKS endpoint in combination with signed JWT-formatted access
tokens

Introspection endpoint

You can configure OAUTHBEARER or PLAIN authentication, or both.

The following example shows a minimum configuration that applies a global listener configuration, which
means that inter-broker communication goes through the same listener as application clients.

The example also shows an OAuth 2.0 configuration for a specific listener, where you specify
listener.name.LISTENER-NAME.sasl.enabled.mechanisms instead of sasl.enabled.mechanisms.
LISTENER-NAME is the case-insensitive name of the listener. Here, we name the listener CLIENT, so
the property name is listener.name.client.sasl.enabled.mechanisms.

The example uses OAUTHBEARER authentication.

Example: Minimum listener configuration for OAuth 2.0 authentication using a JWKS
endpoint

sasl.enabled.mechanisms=OAUTHBEARER 1
listeners=CLIENT://0.0.0.0:9092 2
listener.security.protocol.map=CLIENT:SASL_PLAINTEXT 3
listener.name.client.sasl.enabled.mechanisms=OAUTHBEARER 4
sasl.mechanism.inter.broker.protocol=OAUTHBEARER 5
inter.broker.listener.name=CLIENT 6
listener.name.client.oauthbearer.sasl.server.callback.handler.class=io.strimzi.kafka.oauth.server.JaasSer
verOauthValidatorCallbackHandler 7
listener.name.client.oauthbearer.sasl.jaas.config=org.apache.kafka.common.security.oauthbearer.OAut
hBearerLoginModule required \ 8
 oauth.valid.issuer.uri="https://<oauth_server_address>" \ 9
 oauth.jwks.endpoint.uri="https://<oauth_server_address>/jwks" \ 10
 oauth.username.claim="preferred_username" \ 11
 oauth.client.id="kafka-broker" \ 12
 oauth.client.secret="kafka-secret" \ 13
 oauth.token.endpoint.uri="https://<oauth_server_address>/token" ; 14

CHAPTER 6. SECURING ACCESS TO KAFKA

49

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Enables the OAUTHBEARER mechanism for credentials exchange over SASL.

Configures a listener for client applications to connect to. The system hostname is used as an
advertised hostname, which clients must resolve in order to reconnect. The listener is named
CLIENT in this example.

Specifies the channel protocol for the listener. SASL_SSL is for TLS. SASL_PLAINTEXT is used
for an unencrypted connection (no TLS), but there is risk of eavesdropping and interception at the
TCP connection layer.

Specifies the OAUTHBEARER mechanism for the CLIENT listener. The client name (CLIENT) is
usually specified in uppercase in the listeners property, in lowercase for listener.name properties
(listener.name.client), and in lowercase when part of a listener.name.client.* property.

Specifies the OAUTHBEARER mechanism for inter-broker communication.

Specifies the listener for inter-broker communication. The specification is required for the
configuration to be valid.

Configures OAuth 2.0 authentication on the client listener.

Configures authentication settings for client and inter-broker communication. The oauth.client.id,
oauth.client.secret, and auth.token.endpoint.uri properties relate to inter-broker configuration.

A valid issuer URI. Only access tokens issued by this issuer will be accepted. For example,
https://AUTH-SERVER-ADDRESS/auth/realms/REALM-NAME.

The JWKS endpoint URL. For example, https://AUTH-SERVER-ADDRESS/auth/realms/REALM-
NAME/protocol/openid-connect/certs.

The token claim (or key) that contains the actual user name in the token. The user name is the
principal used to identify the user. The value will depend on the authentication flow and the
authorization server used. If required, you can use a JsonPath expression like "['user.info'].
['user.id']" to retrieve the username from nested JSON attributes within a token.

Client ID of the Kafka broker, which is the same for all brokers. This is the client registered with the
authorization server as kafka-broker.

Secret for the Kafka broker, which is the same for all brokers.

The OAuth 2.0 token endpoint URL to your authorization server. For production, always use
https:// urls. For example, https://AUTH-SERVER-ADDRESS/auth/realms/REALM-
NAME/protocol/openid-connect/token.

Enables (and is only required for) OAuth 2.0 authentication for inter-broker communication.

(Optional) Enforces session expiry when a token expires, and also activates the Kafka re-
authentication mechanism. If the specified value is less than the time left for the access token to
expire, then the client will have to re-authenticate before the actual token expiry. By default, the
session does not expire when the access token expires, and the client does not attempt re-
authentication.

listener.name.client.oauthbearer.sasl.login.callback.handler.class=io.strimzi.kafka.oauth.client.JaasClient
OauthLoginCallbackHandler 15
listener.name.client.oauthbearer.connections.max.reauth.ms=3600000 16

Red Hat Streams for Apache Kafka 2.7 Using Streams for Apache Kafka on RHEL in KRaft mode

50

1

2

3

4

5

6

7

8

9

The following example shows a minimum configuration for a TLS listener, where TLS is used for inter-
broker communication.

Example: TLS listener configuration for OAuth 2.0 authentication

Separate configurations are required for inter-broker communication and client applications.

Configures the REPLICATION listener to use TLS, and the CLIENT listener to use SASL over an
unencrypted channel. The client could use an encrypted channel (SASL_SSL) in a production
environment.

The ssl. properties define the TLS configuration.

Random number generator implementation. If not set, the Java platform SDK default is used.

Hostname verification. If set to an empty string, the hostname verification is turned off. If not set,
the default value is HTTPS, which enforces hostname verification for server certificates.

Path to the keystore for the listener.

Path to the truststore for the listener.

Specifies that clients of the REPLICATION listener have to authenticate with a client certificate
when establishing a TLS connection (used for inter-broker connectivity).

Configures the CLIENT listener for OAuth 2.0. Connectivity with the authorization server should
use secure HTTPS connections.

The following example shows a minimum configuration for OAuth 2.0 authentication using the PLAIN
authentication mechanism for credentials exchange over SASL. Fast local token validation is used.

Example: Minimum listener configuration for PLAIN authentication

listeners=REPLICATION://kafka:9091,CLIENT://kafka:9092 1
listener.security.protocol.map=REPLICATION:SSL,CLIENT:SASL_PLAINTEXT 2
listener.name.client.sasl.enabled.mechanisms=OAUTHBEARER
inter.broker.listener.name=REPLICATION
listener.name.replication.ssl.keystore.password=<keystore_password> 3
listener.name.replication.ssl.truststore.password=<truststore_password>
listener.name.replication.ssl.keystore.type=JKS
listener.name.replication.ssl.truststore.type=JKS
listener.name.replication.ssl.secure.random.implementation=SHA1PRNG 4
listener.name.replication.ssl.endpoint.identification.algorithm=HTTPS 5
listener.name.replication.ssl.keystore.location=<path_to_keystore> 6
listener.name.replication.ssl.truststore.location=<path_to_truststore> 7
listener.name.replication.ssl.client.auth=required 8
listener.name.client.oauthbearer.sasl.server.callback.handler.class=io.strimzi.kafka.oauth.server.JaasSer
verOauthValidatorCallbackHandler
listener.name.client.oauthbearer.sasl.jaas.config=org.apache.kafka.common.security.oauthbearer.OAut
hBearerLoginModule required \ 9
 oauth.valid.issuer.uri="https://<oauth_server_address>" \
 oauth.jwks.endpoint.uri="https://<oauth_server_address>/jwks" \
 oauth.username.claim="preferred_username" ;

CHAPTER 6. SECURING ACCESS TO KAFKA

51

1

2

3

4

5

6

7

Configures a listener (named CLIENT in this example) for client applications to connect to. The
system hostname is used as an advertised hostname, which clients must resolve in order to
reconnect. Because this is the only configured listener, it is also used for inter-broker
communication.

Configures the example CLIENT listener to use SASL over an unencrypted channel. In a production
environment, the client should use an encrypted channel (SASL_SSL) in order to guard against
eavesdropping and interception at the TCP connection layer.

Enables the PLAIN authentication mechanism for credentials exchange over SASL as well as
OAUTHBEARER. OAUTHBEARER is also specified because it is required for inter-broker
communication. Kafka clients can choose which mechanism to use to connect.

Specifies the OAUTHBEARER authentication mechanism for inter-broker communication.

Specifies the listener (named CLIENT in this example) for inter-broker communication. Required
for the configuration to be valid.

Configures the server callback handler for the OAUTHBEARER mechanism.

Configures authentication settings for client and inter-broker communication using the
OAUTHBEARER mechanism. The oauth.client.id, oauth.client.secret, and
oauth.token.endpoint.uri properties relate to inter-broker configuration.

listeners=CLIENT://0.0.0.0:9092 1
listener.security.protocol.map=CLIENT:SASL_PLAINTEXT 2
listener.name.client.sasl.enabled.mechanisms=OAUTHBEARER,PLAIN 3
sasl.mechanism.inter.broker.protocol=OAUTHBEARER 4
inter.broker.listener.name=CLIENT 5
listener.name.client.oauthbearer.sasl.server.callback.handler.class=io.strimzi.kafka.oauth.server.JaasSer
verOauthValidatorCallbackHandler 6
listener.name.client.oauthbearer.sasl.jaas.config=org.apache.kafka.common.security.oauthbearer.OAut
hBearerLoginModule required \ 7
 oauth.valid.issuer.uri="http://<auth_server>/auth/realms/<realm>" \ 8
 oauth.jwks.endpoint.uri="https://<auth_server>/auth/realms/<realm>/protocol/openid-connect/certs" \
9

 oauth.username.claim="preferred_username" \ 10
 oauth.client.id="kafka-broker" \ 11
 oauth.client.secret="kafka-secret" \ 12
 oauth.token.endpoint.uri="https://<oauth_server_address>/token" ; 13
listener.name.client.oauthbearer.sasl.login.callback.handler.class=io.strimzi.kafka.oauth.client.JaasClient
OauthLoginCallbackHandler 14
listener.name.client.plain.sasl.server.callback.handler.class=io.strimzi.kafka.oauth.server.plain.JaasServe
rOauthOverPlainValidatorCallbackHandler 15
listener.name.client.plain.sasl.jaas.config=org.apache.kafka.common.security.plain.PlainLoginModule
required \ 16
 oauth.valid.issuer.uri="https://<oauth_server_address>" \ 17
 oauth.jwks.endpoint.uri="https://<oauth_server_address>/jwks" \ 18
 oauth.username.claim="preferred_username" \ 19
 oauth.token.endpoint.uri="http://<auth_server>/auth/realms/<realm>/protocol/openid-connect/token"
; 20
connections.max.reauth.ms=3600000 21

Red Hat Streams for Apache Kafka 2.7 Using Streams for Apache Kafka on RHEL in KRaft mode

52

8

9

10

11

12

13

14

15

16

17

18

19

20

21

A valid issuer URI. Only access tokens from this issuer are accepted. For example, https://AUTH-
SERVER-ADDRESS/auth/realms/REALM-NAME

The JWKS endpoint URL. For example, https://AUTH-SERVER-ADDRESS/auth/realms/REALM-
NAME/protocol/openid-connect/certs

The token claim (or key) that contains the actual user name in the token. The user name is the
principal used to identify the user. The value will depend on the authentication flow and the
authorization server used. If required, you can use a JsonPath expression like "['user.info'].
['user.id']" to retrieve the username from nested JSON attributes within a token.

Client ID of the Kafka broker, which is the same for all brokers. This is the client registered with the
authorization server as kafka-broker.

Secret for the Kafka broker (the same for all brokers).

The OAuth 2.0 token endpoint URL to your authorization server. For production, always use
https:// urls. For example, https://AUTH-SERVER-ADDRESS/auth/realms/REALM-
NAME/protocol/openid-connect/token

Enables OAuth 2.0 authentication for inter-broker communication.

Configures the server callback handler for PLAIN authentication.

Configures authentication settings for client communication using PLAIN authentication.

oauth.token.endpoint.uri is an optional property that enables OAuth 2.0 over PLAIN using the
OAuth 2.0 client credentials mechanism .

A valid issuer URI. Only access tokens from this issuer are accepted. For example, https://AUTH-
SERVER-ADDRESS/auth/realms/REALM-NAME

The JWKS endpoint URL. For example, https://AUTH-SERVER-ADDRESS/auth/realms/REALM-
NAME/protocol/openid-connect/certs

The token claim (or key) that contains the actual user name in the token. The user name is the
principal used to identify the user. The value will depend on the authentication flow and the
authorization server used. If required, you can use a JsonPath expression like "['user.info'].
['user.id']" to retrieve the username from nested JSON attributes within a token.

The OAuth 2.0 token endpoint URL to your authorization server. Additional configuration for the
PLAIN mechanism. If specified, clients can authenticate over PLAIN by passing an access token as
the password using an $accessToken: prefix.

For production, always use https:// urls. For example, https://AUTH-SERVER-
ADDRESS/auth/realms/REALM-NAME/protocol/openid-connect/token.

(Optional) Enforces session expiry when a token expires, and also activates the Kafka re-
authentication mechanism. If the specified value is less than the time left for the access token to
expire, then the client will have to re-authenticate before the actual token expiry. By default, the
session does not expire when the access token expires, and the client does not attempt re-
authentication.

6.5.2.3. Fast local JWT token validation configuration

Fast local JWT token validation checks a JWT token signature locally.

CHAPTER 6. SECURING ACCESS TO KAFKA

53

1

2

3

4

5

6

The local check ensures that a token:

Conforms to type by containing a (typ) claim value of Bearer for an access token

Is valid (not expired)

Has an issuer that matches a validIssuerURI

You specify a valid issuer URI when you configure the listener, so that any tokens not issued by the
authorization server are rejected.

The authorization server does not need to be contacted during fast local JWT token validation. You
activate fast local JWT token validation by specifying a JWKs endpoint URI exposed by the OAuth 2.0
authorization server. The endpoint contains the public keys used to validate signed JWT tokens, which
are sent as credentials by Kafka clients.

NOTE

All communication with the authorization server should be performed using HTTPS.

For a TLS listener, you can configure a certificate truststore and point to the truststore file.

Example properties for fast local JWT token validation

A valid issuer URI. Only access tokens issued by this issuer will be accepted. For example,
https://AUTH-SERVER-ADDRESS/auth/realms/REALM-NAME.

The JWKS endpoint URL. For example, https://AUTH-SERVER-ADDRESS/auth/realms/REALM-
NAME/protocol/openid-connect/certs.

The period between endpoint refreshes (default 300).

The minimum pause in seconds between consecutive attempts to refresh JWKS public keys. When
an unknown signing key is encountered, the JWKS keys refresh is scheduled outside the regular
periodic schedule with at least the specified pause since the last refresh attempt. The refreshing of
keys follows the rule of exponential backoff, retrying on unsuccessful refreshes with ever
increasing pause, until it reaches oauth.jwks.refresh.seconds. The default value is 1.

The duration the JWKs certificates are considered valid before they expire. Default is 360 seconds.
If you specify a longer time, consider the risk of allowing access to revoked certificates.

The token claim (or key) that contains the actual user name in the token. The user name is the

listener.name.client.oauthbearer.sasl.jaas.config=org.apache.kafka.common.security.oauthbearer.OAut
hBearerLoginModule required \
 oauth.valid.issuer.uri="https://<oauth_server_address>" \ 1
 oauth.jwks.endpoint.uri="https://<oauth_server_address>/jwks" \ 2
 oauth.jwks.refresh.seconds="300" \ 3
 oauth.jwks.refresh.min.pause.seconds="1" \ 4
 oauth.jwks.expiry.seconds="360" \ 5
 oauth.username.claim="preferred_username" \ 6
 oauth.ssl.truststore.location="<path_to_truststore_p12_file>" \ 7
 oauth.ssl.truststore.password="<truststore_password>" \ 8
 oauth.ssl.truststore.type="PKCS12" ; 9

Red Hat Streams for Apache Kafka 2.7 Using Streams for Apache Kafka on RHEL in KRaft mode

54

7

8

9

1

2

3

4

5

6

7

The location of the truststore used in the TLS configuration.

Password to access the truststore.

The truststore type in PKCS #12 format.

6.5.2.4. OAuth 2.0 introspection endpoint configuration

Token validation using an OAuth 2.0 introspection endpoint treats a received access token as opaque.
The Kafka broker sends an access token to the introspection endpoint, which responds with the token
information necessary for validation. Importantly, it returns up-to-date information if the specific access
token is valid, and also information about when the token expires.

To configure OAuth 2.0 introspection-based validation, you specify an introspection endpoint URI rather
than the JWKs endpoint URI specified for fast local JWT token validation. Depending on the
authorization server, you typically have to specify a client ID and client secret, because the introspection
endpoint is usually protected.

Example properties for an introspection endpoint

The OAuth 2.0 introspection endpoint URI. For example, https://AUTH-SERVER-
ADDRESS/auth/realms/REALM-NAME/protocol/openid-connect/token/introspect.

Client ID of the Kafka broker.

Secret for the Kafka broker.

The location of the truststore used in the TLS configuration.

Password to access the truststore.

The truststore type in PKCS #12 format.

The token claim (or key) that contains the actual user name in the token. The user name is the
principal used to identify the user. The value will depend on the authentication flow and the
authorization server used. If required, you can use a JsonPath expression like "['user.info'].
['user.id']" to retrieve the username from nested JSON attributes within a token.

6.5.3. Session re-authentication for Kafka brokers

You can configure OAuth listeners to use Kafka session re-authentication for OAuth 2.0 sessions
between Kafka clients and Kafka brokers. This mechanism enforces the expiry of an authenticated
session between the client and the broker after a defined period of time. When a session expires, the

listener.name.client.oauthbearer.sasl.jaas.config=org.apache.kafka.common.security.oauthbearer.OAut
hBearerLoginModule required \
 oauth.introspection.endpoint.uri="https://<oauth_server_address>/introspection" \ 1
 oauth.client.id="kafka-broker" \ 2
 oauth.client.secret="kafka-broker-secret" \ 3
 oauth.ssl.truststore.location="<path_to_truststore_p12_file>" \ 4
 oauth.ssl.truststore.password="<truststore_password>" \ 5
 oauth.ssl.truststore.type="PKCS12" \ 6
 oauth.username.claim="preferred_username" ; 7

CHAPTER 6. SECURING ACCESS TO KAFKA

55

client immediately starts a new session by reusing the existing connection rather than dropping it.

Session re-authentication is disabled by default. You can enable it in the server.properties file. Set the
connections.max.reauth.ms property for a TLS listener with OAUTHBEARER or PLAIN enabled as the
SASL mechanism.

You can specify session re-authentication per listener. For example:

listener.name.client.oauthbearer.connections.max.reauth.ms=3600000

Session re-authentication must be supported by the Kafka client libraries used by the client.

Session re-authentication can be used with fast local JWT or introspection endpoint token validation.

Client re-authentication

When the broker’s authenticated session expires, the client must re-authenticate to the existing session
by sending a new, valid access token to the broker, without dropping the connection.

If token validation is successful, a new client session is started using the existing connection. If the client
fails to re-authenticate, the broker will close the connection if further attempts are made to send or
receive messages. Java clients that use Kafka client library 2.2 or later automatically re-authenticate if
the re-authentication mechanism is enabled on the broker.

Session re-authentication also applies to refresh tokens, if used. When the session expires, the client
refreshes the access token by using its refresh token. The client then uses the new access token to re-
authenticate over the existing connection.

Session expiry for OAUTHBEARER and PLAIN

When session re-authentication is configured, session expiry works differently for OAUTHBEARER and
PLAIN authentication.

For OAUTHBEARER and PLAIN, using the client ID and secret method:

The broker’s authenticated session will expire at the configured connections.max.reauth.ms.

The session will expire earlier if the access token expires before the configured time.

For PLAIN using the long-lived access token method:

The broker’s authenticated session will expire at the configured connections.max.reauth.ms.

Re-authentication will fail if the access token expires before the configured time. Although
session re-authentication is attempted, PLAIN has no mechanism for refreshing tokens.

If connections.max.reauth.ms is not configured, OAUTHBEARER and PLAIN clients can remain
connected to brokers indefinitely, without needing to re-authenticate. Authenticated sessions do not
end with access token expiry. However, this can be considered when configuring authorization, for
example, by using keycloak authorization or installing a custom authorizer.

Additional resources

OAuth 2.0 Kafka broker configuration

Configuring OAuth 2.0 support for Kafka brokers

Red Hat Streams for Apache Kafka 2.7 Using Streams for Apache Kafka on RHEL in KRaft mode

56

KIP-368: Allow SASL Connections to Periodically Re-Authenticate

6.5.4. OAuth 2.0 Kafka client configuration

A Kafka client is configured with either:

The credentials required to obtain a valid access token from an authorization server (client ID
and Secret)

A valid long-lived access token or refresh token, obtained using tools provided by an
authorization server

The only information ever sent to the Kafka broker is an access token. The credentials used to
authenticate with the authorization server to obtain the access token are never sent to the broker.

When a client obtains an access token, no further communication with the authorization server is
needed.

The simplest mechanism is authentication with a client ID and Secret. Using a long-lived access token, or
a long-lived refresh token, adds more complexity because there is an additional dependency on
authorization server tools.

NOTE

If you are using long-lived access tokens, you may need to configure the client in the
authorization server to increase the maximum lifetime of the token.

If the Kafka client is not configured with an access token directly, the client exchanges credentials for an
access token during Kafka session initiation by contacting the authorization server. The Kafka client
exchanges either:

Client ID and Secret

Client ID, refresh token, and (optionally) a secret

Username and password, with client ID and (optionally) a secret

6.5.5. OAuth 2.0 client authentication flows

OAuth 2.0 authentication flows depend on the underlying Kafka client and Kafka broker configuration.
The flows must also be supported by the authorization server used.

The Kafka broker listener configuration determines how clients authenticate using an access token. The
client can pass a client ID and secret to request an access token.

If a listener is configured to use PLAIN authentication, the client can authenticate with a client ID and
secret or username and access token. These values are passed as the username and password
properties of the PLAIN mechanism.

Listener configuration supports the following token validation options:

You can use fast local token validation based on JWT signature checking and local token
introspection, without contacting an authorization server. The authorization server provides a
JWKS endpoint with public certificates that are used to validate signatures on the tokens.

You can use a call to a token introspection endpoint provided by an authorization server. Each

CHAPTER 6. SECURING ACCESS TO KAFKA

57

https://cwiki.apache.org/confluence/display/KAFKA/KIP-368%3A+Allow+SASL+Connections+to+Periodically+Re-Authenticate

time a new Kafka broker connection is established, the broker passes the access token received
from the client to the authorization server. The Kafka broker checks the response to confirm
whether or not the token is valid.

NOTE

An authorization server might only allow the use of opaque access tokens, which means
that local token validation is not possible.

Kafka client credentials can also be configured for the following types of authentication:

Direct local access using a previously generated long-lived access token

Contact with the authorization server for a new access token to be issued (using a client ID and
a secret, or a refresh token, or a username and a password)

6.5.5.1. Example client authentication flows using the SASL OAUTHBEARER mechanism

You can use the following communication flows for Kafka authentication using the SASL
OAUTHBEARER mechanism.

Client using client ID and secret, with broker delegating validation to authorization server

Client using client ID and secret, with broker performing fast local token validation

Client using long-lived access token, with broker delegating validation to authorization server

Client using long-lived access token, with broker performing fast local validation

Client using client ID and secret, with broker delegating validation to authorization server

1. The Kafka client requests an access token from the authorization server using a client ID and
secret, and optionally a refresh token. Alternatively, the client may authenticate using a
username and a password.

2. The authorization server generates a new access token.

3. The Kafka client authenticates with the Kafka broker using the SASL OAUTHBEARER
mechanism to pass the access token.

4. The Kafka broker validates the access token by calling a token introspection endpoint on the
authorization server using its own client ID and secret.

5. A Kafka client session is established if the token is valid.

Client using client ID and secret, with broker performing fast local token validation

Red Hat Streams for Apache Kafka 2.7 Using Streams for Apache Kafka on RHEL in KRaft mode

58

1. The Kafka client authenticates with the authorization server from the token endpoint, using a
client ID and secret, and optionally a refresh token. Alternatively, the client may authenticate
using a username and a password.

2. The authorization server generates a new access token.

3. The Kafka client authenticates with the Kafka broker using the SASL OAUTHBEARER
mechanism to pass the access token.

4. The Kafka broker validates the access token locally using a JWT token signature check, and
local token introspection.

Client using long-lived access token, with broker delegating validation to authorization
server

1. The Kafka client authenticates with the Kafka broker using the SASL OAUTHBEARER
mechanism to pass the long-lived access token.

2. The Kafka broker validates the access token by calling a token introspection endpoint on the
authorization server, using its own client ID and secret.

3. A Kafka client session is established if the token is valid.

Client using long-lived access token, with broker performing fast local validation

1. The Kafka client authenticates with the Kafka broker using the SASL OAUTHBEARER
mechanism to pass the long-lived access token.

CHAPTER 6. SECURING ACCESS TO KAFKA

59

2. The Kafka broker validates the access token locally using a JWT token signature check and local
token introspection.

WARNING

Fast local JWT token signature validation is suitable only for short-lived tokens as
there is no check with the authorization server if a token has been revoked. Token
expiration is written into the token, but revocation can happen at any time, so
cannot be accounted for without contacting the authorization server. Any issued
token would be considered valid until it expires.

6.5.5.2. Example client authentication flows using the SASL PLAIN mechanism

You can use the following communication flows for Kafka authentication using the OAuth PLAIN
mechanism.

Client using a client ID and secret, with the broker obtaining the access token for the client

Client using a long-lived access token without a client ID and secret

Client using a client ID and secret, with the broker obtaining the access token for the client

1. The Kafka client passes a clientId as a username and a secret as a password.

2. The Kafka broker uses a token endpoint to pass the clientId and secret to the authorization
server.

3. The authorization server returns a fresh access token or an error if the client credentials are not
valid.

4. The Kafka broker validates the token in one of the following ways:

a. If a token introspection endpoint is specified, the Kafka broker validates the access token
by calling the endpoint on the authorization server. A session is established if the token
validation is successful.

b. If local token introspection is used, a request is not made to the authorization server. The
Kafka broker validates the access token locally using a JWT token signature check.



Red Hat Streams for Apache Kafka 2.7 Using Streams for Apache Kafka on RHEL in KRaft mode

60

Client using a long-lived access token without a client ID and secret

1. The Kafka client passes a username and password. The password provides the value of an
access token that was obtained manually and configured before running the client.

2. The password is passed with or without an $accessToken: string prefix depending on whether
or not the Kafka broker listener is configured with a token endpoint for authentication.

a. If the token endpoint is configured, the password should be prefixed by $accessToken: to
let the broker know that the password parameter contains an access token rather than a
client secret. The Kafka broker interprets the username as the account username.

b. If the token endpoint is not configured on the Kafka broker listener (enforcing a no-client-
credentials mode), the password should provide the access token without the prefix. The
Kafka broker interprets the username as the account username. In this mode, the client
doesn’t use a client ID and secret, and the password parameter is always interpreted as a
raw access token.

3. The Kafka broker validates the token in one of the following ways:

a. If a token introspection endpoint is specified, the Kafka broker validates the access token
by calling the endpoint on the authorization server. A session is established if token
validation is successful.

b. If local token introspection is used, there is no request made to the authorization server.
Kafka broker validates the access token locally using a JWT token signature check.

6.5.6. Configuring OAuth 2.0 authentication

OAuth 2.0 is used for interaction between Kafka clients and Streams for Apache Kafka components.

In order to use OAuth 2.0 for Streams for Apache Kafka, you must:

1. Configure an OAuth 2.0 authorization server for the Streams for Apache Kafka cluster and
Kafka clients

2. Deploy or update the Kafka cluster with Kafka broker listeners configured to use OAuth 2.0

3. Update your Java-based Kafka clients to use OAuth 2.0

6.5.6.1. Configuring Red Hat Single Sign-On as an OAuth 2.0 authorization server

This procedure describes how to deploy Red Hat Single Sign-On as an authorization server and

CHAPTER 6. SECURING ACCESS TO KAFKA

61

This procedure describes how to deploy Red Hat Single Sign-On as an authorization server and
configure it for integration with Streams for Apache Kafka.

The authorization server provides a central point for authentication and authorization, and management
of users, clients, and permissions. Red Hat Single Sign-On has a concept of realms where a realm
represents a separate set of users, clients, permissions, and other configuration. You can use a default
master realm, or create a new one. Each realm exposes its own OAuth 2.0 endpoints, which means that
application clients and application servers all need to use the same realm.

To use OAuth 2.0 with Streams for Apache Kafka, you use a deployment of Red Hat Single Sign-On to
create and manage authentication realms.

NOTE

If you already have Red Hat Single Sign-On deployed, you can skip the deployment step
and use your current deployment.

Before you begin

You will need to be familiar with using Red Hat Single Sign-On.

For installation and administration instructions, see:

Server Installation and Configuration Guide

Server Administration Guide

Prerequisites

Streams for Apache Kafka and Kafka are running

For the Red Hat Single Sign-On deployment:

Check the Red Hat Single Sign-On Supported Configurations

Procedure

1. Install Red Hat Single Sign-On.
You can install from a ZIP file or by using an RPM.

2. Log in to the Red Hat Single Sign-On Admin Console to create the OAuth 2.0 policies for
Streams for Apache Kafka.
Login details are provided when you deploy Red Hat Single Sign-On.

3. Create and enable a realm.
You can use an existing master realm.

4. Adjust the session and token timeouts for the realm, if required.

5. Create a client called kafka-broker.

6. From the Settings tab, set:

Access Type to Confidential

Standard Flow Enabled to OFF to disable web login for this client

Red Hat Streams for Apache Kafka 2.7 Using Streams for Apache Kafka on RHEL in KRaft mode

62

https://docs.redhat.com/en/documentation/red_hat_single_sign-on
https://docs.redhat.com/en/documentation/red_hat_single_sign-on
https://access.redhat.com/articles/2342861

Service Accounts Enabled to ON to allow this client to authenticate in its own name

7. Click Save before continuing.

8. From the Credentials tab, take a note of the secret for using in your Streams for Apache Kafka
cluster configuration.

9. Repeat the client creation steps for any application client that will connect to your Kafka
brokers.
Create a definition for each new client.

You will use the names as client IDs in your configuration.

What to do next

After deploying and configuring the authorization server, configure the Kafka brokers to use OAuth 2.0 .

6.5.6.2. Configuring OAuth 2.0 support for Kafka brokers

This procedure describes how to configure Kafka brokers so that the broker listeners are enabled to use
OAuth 2.0 authentication using an authorization server.

We advise use of OAuth 2.0 over an encrypted interface through configuration of TLS listeners. Plain
listeners are not recommended.

Configure the Kafka brokers using properties that support your chosen authorization server, and the
type of authorization you are implementing.

Before you start

For more information on the configuration and authentication of Kafka broker listeners, see:

Listeners

OAuth 2.0 authentication mechanisms

For a description of the properties used in the listener configuration, see:

OAuth 2.0 Kafka broker configuration

Prerequisites

Streams for Apache Kafka is installed on each host , and the configuration files are available.

An OAuth 2.0 authorization server is deployed.

Procedure

1. Configure the Kafka broker listener configuration in the server.properties file.
For example, using the OAUTHBEARER mechanism:

sasl.enabled.mechanisms=OAUTHBEARER
listeners=CLIENT://0.0.0.0:9092
listener.security.protocol.map=CLIENT:SASL_PLAINTEXT
listener.name.client.sasl.enabled.mechanisms=OAUTHBEARER
sasl.mechanism.inter.broker.protocol=OAUTHBEARER
inter.broker.listener.name=CLIENT

CHAPTER 6. SECURING ACCESS TO KAFKA

63

2. Configure broker connection settings as part of the
listener.name.client.oauthbearer.sasl.jaas.config.
The examples here show connection configuration options.

Example 1: Local token validation using a JWKS endpoint configuration

Example 2: Delegating token validation to the authorization server through the
OAuth 2.0 introspection endpoint

3. If required, configure access to the authorization server.
This step is normally required for a production environment, unless a technology like service
mesh is used to configure secure channels outside containers.

a. Provide a custom truststore for connecting to a secured authorization server. SSL is always
required for access to the authorization server.
Set properties to configure the truststore.

For example:

listener.name.client.oauthbearer.sasl.server.callback.handler.class=io.strimzi.kafka.oauth.server.
JaasServerOauthValidatorCallbackHandler
listener.name.client.oauthbearer.sasl.jaas.config=org.apache.kafka.common.security.oauthbear
er.OAuthBearerLoginModule required ;
listener.name.client.oauthbearer.sasl.login.callback.handler.class=io.strimzi.kafka.oauth.client.Ja
asClientOauthLoginCallbackHandler

listener.name.client.oauthbearer.sasl.jaas.config=org.apache.kafka.common.security.oauthbear
er.OAuthBearerLoginModule required \
 oauth.valid.issuer.uri="https://<oauth_server_address>/auth/realms/<realm_name>" \

oauth.jwks.endpoint.uri="https://<oauth_server_address>/auth/realms/<realm_name>/protocol/
openid-connect/certs" \
 oauth.jwks.refresh.seconds="300" \
 oauth.jwks.refresh.min.pause.seconds="1" \
 oauth.jwks.expiry.seconds="360" \
 oauth.username.claim="preferred_username" \
 oauth.ssl.truststore.location="<path_to_truststore_p12_file>" \
 oauth.ssl.truststore.password="<truststore_password>" \
 oauth.ssl.truststore.type="PKCS12" ;
listener.name.client.oauthbearer.connections.max.reauth.ms=3600000

listener.name.client.oauthbearer.sasl.jaas.config=org.apache.kafka.common.security.oauthbear
er.OAuthBearerLoginModule required \

oauth.introspection.endpoint.uri="https://<oauth_server_address>/auth/realms/<realm_name>/
protocol/openid-connect/introspection" \
 # ...

listener.name.client.oauthbearer.sasl.jaas.config=org.apache.kafka.common.security.oauth
bearer.OAuthBearerLoginModule required \
 # ...
 oauth.client.id="kafka-broker" \
 oauth.client.secret="kafka-broker-secret" \

Red Hat Streams for Apache Kafka 2.7 Using Streams for Apache Kafka on RHEL in KRaft mode

64

1

2

3

4

b. If the certificate hostname does not match the access URL hostname, you can turn off
certificate hostname validation:

The check ensures that client connection to the authorization server is authentic. You may
wish to turn off the validation in a non-production environment.

4. Configure additional properties according to your chosen authentication flow:

The OAuth 2.0 token endpoint URL to your authorization server. For production, always
use https:// urls. Required when KeycloakAuthorizer is used, or an OAuth 2.0 enabled
listener is used for inter-broker communication.

(Optional) Custom claim checking. A JsonPath filter query that applies additional custom
rules to the JWT access token during validation. If the access token does not contain the
necessary data, it is rejected. When using the introspection endpoint method, the custom
check is applied to the introspection endpoint response JSON.

(Optional) A scope parameter passed to the token endpoint. A scope is used when
obtaining an access token for inter-broker authentication. It is also used in the name of a
client for OAuth 2.0 over PLAIN client authentication using a clientId and secret. This only
affects the ability to obtain the token, and the content of the token, depending on the
authorization server. It does not affect token validation rules by the listener.

(Optional) Audience checking. If your authorization server provides an aud (audience)

 oauth.ssl.truststore.location="<path_to_truststore_p12_file>" \
 oauth.ssl.truststore.password="<truststore_password>" \
 oauth.ssl.truststore.type="PKCS12" ;

oauth.ssl.endpoint.identification.algorithm=""

listener.name.client.oauthbearer.sasl.jaas.config=org.apache.kafka.common.security.oauthbear
er.OAuthBearerLoginModule required \
 # ...

oauth.token.endpoint.uri="https://<oauth_server_address>/auth/realms/<realm_name>/protocol
/openid-connect/token" \ 1
 oauth.custom.claim.check="@.custom == 'custom-value'" \ 2
 oauth.scope="<scope>" \ 3
 oauth.check.audience="true" \ 4
 oauth.audience="<audience>" \ 5
 oauth.valid.issuer.uri="https://https://<oauth_server_address>/auth/<realm_name>" \ 6
 oauth.client.id="kafka-broker" \ 7
 oauth.client.secret="kafka-broker-secret" \ 8
 oauth.connect.timeout.seconds=60 \ 9
 oauth.read.timeout.seconds=60 \ 10
 oauth.http.retries=2 \ 11
 oauth.http.retry.pause.millis=300 \ 12
 oauth.groups.claim="$.groups" \ 13
 oauth.groups.claim.delimiter="," \ 14
 oauth.include.accept.header="false" ; 15

CHAPTER 6. SECURING ACCESS TO KAFKA

65

5

6

7

8

9

10

11

12

13

14

15

(Optional) An audience parameter passed to the token endpoint. An audience is used
when obtaining an access token for inter-broker authentication. It is also used in the name

A valid issuer URI. Only access tokens issued by this issuer will be accepted. (Always
required.)

The configured client ID of the Kafka broker, which is the same for all brokers. This is the
client registered with the authorization server as kafka-broker. Required when an
introspection endpoint is used for token validation, or when KeycloakAuthorizer is used.

The configured secret for the Kafka broker, which is the same for all brokers. When the
broker must authenticate to the authorization server, either a client secret, access token or
a refresh token has to be specified.

(Optional) The connect timeout in seconds when connecting to the authorization server.
The default value is 60.

(Optional) The read timeout in seconds when connecting to the authorization server. The
default value is 60.

The maximum number of times to retry a failed HTTP request to the authorization server.
The default value is 0, meaning that no retries are performed. To use this option
effectively, consider reducing the timeout times for the oauth.connect.timeout.seconds
and oauth.read.timeout.seconds options. However, note that retries may prevent the
current worker thread from being available to other requests, and if too many requests
stall, it could make the Kafka broker unresponsive.

The time to wait before attempting another retry of a failed HTTP request to the
authorization server. By default, this time is set to zero, meaning that no pause is applied.
This is because many issues that cause failed requests are per-request network glitches or
proxy issues that can be resolved quickly. However, if your authorization server is under
stress or experiencing high traffic, you may want to set this option to a value of 100 ms or
more to reduce the load on the server and increase the likelihood of successful retries.

A JsonPath query used to extract groups information from JWT token or introspection
endpoint response. Not set by default. This can be used by a custom authorizer to make
authorization decisions based on user groups.

A delimiter used to parse groups information when returned as a single delimited string.
The default value is ',' (comma).

(Optional) Sets oauth.include.accept.header to false to remove the Accept header from
requests. You can use this setting if including the header is causing issues when
communicating with the authorization server.

5. Depending on how you apply OAuth 2.0 authentication, and the type of authorization server
being used, add additional configuration settings:

listener.name.client.oauthbearer.sasl.jaas.config=org.apache.kafka.common.security.oauthbear
er.OAuthBearerLoginModule required \
 # ...
 oauth.check.issuer=false \ 1
 oauth.fallback.username.claim="<client_id>" \ 2
 oauth.fallback.username.prefix="<client_account>" \ 3
 oauth.valid.token.type="bearer" \ 4

Red Hat Streams for Apache Kafka 2.7 Using Streams for Apache Kafka on RHEL in KRaft mode

66

1

2

3

4

5

If your authorization server does not provide an iss claim, it is not possible to perform an
issuer check. In this situation, set oauth.check.issuer to false and do not specify a
oauth.valid.issuer.uri. Default is true.

An authorization server may not provide a single attribute to identify both regular users
and clients. When a client authenticates in its own name, the server might provide a client
ID. When a user authenticates using a username and password, to obtain a refresh token or
an access token, the server might provide a username attribute in addition to a client ID.
Use this fallback option to specify the username claim (attribute) to use if a primary user ID
attribute is not available. If required, you can use a JsonPath expression like "['client.info'].
['client.id']" to retrieve the fallback username from nested JSON attributes within a token.

In situations where oauth.fallback.username.claim is applicable, it may also be necessary
to prevent name collisions between the values of the username claim, and those of the
fallback username claim. Consider a situation where a client called producer exists, but
also a regular user called producer exists. In order to differentiate between the two, you
can use this property to add a prefix to the user ID of the client.

(Only applicable when using oauth.introspection.endpoint.uri) Depending on the
authorization server you are using, the introspection endpoint may or may not return the
token type attribute, or it may contain different values. You can specify a valid token type
value that the response from the introspection endpoint has to contain.

(Only applicable when using oauth.introspection.endpoint.uri) The authorization server
may be configured or implemented in such a way to not provide any identifiable
information in an introspection endpoint response. In order to obtain the user ID, you can
configure the URI of the userinfo endpoint as a fallback. The
oauth.fallback.username.claim, oauth.fallback.username.claim, and
oauth.fallback.username.prefix settings are applied to the response of the userinfo
endpoint.

What to do next

Configure your Kafka clients to use OAuth 2.0

6.5.6.3. Configuring Kafka Java clients to use OAuth 2.0

Configure Kafka producer and consumer APIs to use OAuth 2.0 for interaction with Kafka brokers. Add a
callback plugin to your client pom.xml file, then configure your client for OAuth 2.0.

Specify the following in your client configuration:

A SASL (Simple Authentication and Security Layer) security protocol:

SASL_SSL for authentication over TLS encrypted connections

SASL_PLAINTEXT for authentication over unencrypted connections
Use SASL_SSL for production and SASL_PLAINTEXT for local development only. When
using SASL_SSL, additional ssl.truststore configuration is needed. The truststore
configuration is required for secure connection (https://) to the OAuth 2.0 authorization

oauth.userinfo.endpoint.uri="https://<oauth_server_address>/auth/realms/<realm_name>/proto
col/openid-connect/userinfo" ; 5

CHAPTER 6. SECURING ACCESS TO KAFKA

67

server. To verify the OAuth 2.0 authorization server, add the CA certificate for the
authorization server to the truststore in your client configuration. You can configure a
truststore in PEM or PKCS #12 format.

A Kafka SASL mechanism:

OAUTHBEARER for credentials exchange using a bearer token

PLAIN to pass client credentials (clientId + secret) or an access token

A JAAS (Java Authentication and Authorization Service) module that implements the SASL
mechanism:

org.apache.kafka.common.security.oauthbearer.OAuthBearerLoginModule
implements the OAuthbearer mechanism

org.apache.kafka.common.security.plain.PlainLoginModule implements the plain
mechanism

To be able to use the OAuthbearer mechanism, you must also add the custom
io.strimzi.kafka.oauth.client.JaasClientOauthLoginCallbackHandler class as the callback
handler. JaasClientOauthLoginCallbackHandler handles OAuth callbacks to the authorization
server for access tokens during client login. This enables automatic token renewal, ensuring
continuous authentication without user intervention. Additionally, it handles login credentials for
clients using the OAuth 2.0 password grant method.

SASL authentication properties, which support the following authentication methods:

OAuth 2.0 client credentials

OAuth 2.0 password grant (deprecated)

Access token

Refresh token

Add the SASL authentication properties as JAAS configuration (sasl.jaas.config and
sasl.login.callback.handler.class). How you configure the authentication properties depends
on the authentication method you are using to access the OAuth 2.0 authorization server. In this
procedure, the properties are specified in a properties file, then loaded into the client
configuration.

NOTE

You can also specify authentication properties as environment variables, or as Java
system properties. For Java system properties, you can set them using setProperty and
pass them on the command line using the -D option.

Prerequisites

Streams for Apache Kafka and Kafka are running

An OAuth 2.0 authorization server is deployed and configured for OAuth access to Kafka
brokers

Kafka brokers are configured for OAuth 2.0

Red Hat Streams for Apache Kafka 2.7 Using Streams for Apache Kafka on RHEL in KRaft mode

68

1

2

3

4

5

6

7

Procedure

1. Add the client library with OAuth 2.0 support to the pom.xml file for the Kafka client:

2. Configure the client properties by specifying the following configuration in a properties file:

The security protocol

The SASL mechanism

The JAAS module and authentication properties according to the method being used
For example, we can add the following to a client.properties file:

Client credentials mechanism properties

SASL_SSL security protocol for TLS-encrypted connections. Use SASL_PLAINTEXT
over unencrypted connections for local development only.

The SASL mechanism specified as OAUTHBEARER or PLAIN.

The truststore configuration for secure access to the Kafka cluster.

URI of the authorization server token endpoint.

Client ID, which is the name used when creating the client in the authorization server.

Client secret created when creating the client in the authorization server.

The location contains the public key certificate (truststore.p12) for the authorization
server.

<dependency>
 <groupId>io.strimzi</groupId>
 <artifactId>kafka-oauth-client</artifactId>
 <version>0.15.0.redhat-00007</version>
</dependency>

security.protocol=SASL_SSL 1
sasl.mechanism=OAUTHBEARER 2
ssl.truststore.location=/tmp/truststore.p12 3
ssl.truststore.password=$STOREPASS
ssl.truststore.type=PKCS12
sasl.jaas.config=org.apache.kafka.common.security.oauthbearer.OAuthBearerLoginModule
required \
 oauth.token.endpoint.uri="<token_endpoint_url>" \ 4
 oauth.client.id="<client_id>" \ 5
 oauth.client.secret="<client_secret>" \ 6
 oauth.ssl.truststore.location="/tmp/oauth-truststore.p12" \ 7
 oauth.ssl.truststore.password="$STOREPASS" \ 8
 oauth.ssl.truststore.type="PKCS12" \ 9
 oauth.scope="<scope>" \ 10
 oauth.audience="<audience>" ; 11
sasl.login.callback.handler.class=io.strimzi.kafka.oauth.client.JaasClientOauthLoginCallback
Handler

CHAPTER 6. SECURING ACCESS TO KAFKA

69

8

9

10

11

1

2

3

4

The password for accessing the truststore.

The truststore type.

(Optional) The scope for requesting the token from the token endpoint. An
authorization server may require a client to specify the scope.

(Optional) The audience for requesting the token from the token endpoint. An
authorization server may require a client to specify the audience.

Password grants mechanism properties

Client ID, which is the name used when creating the client in the authorization server.

(Optional) Client secret created when creating the client in the authorization server.

Username for password grant authentication. OAuth password grant configuration
(username and password) uses the OAuth 2.0 password grant method. To use
password grants, create a user account for a client on your authorization server with
limited permissions. The account should act like a service account. Use in environments
where user accounts are required for authentication, but consider using a refresh token
first.

Password for password grant authentication.

NOTE

SASL PLAIN does not support passing a username and password
(password grants) using the OAuth 2.0 password grant method.

Access token properties

security.protocol=SASL_SSL
sasl.mechanism=OAUTHBEARER
ssl.truststore.location=/tmp/truststore.p12
ssl.truststore.password=$STOREPASS
ssl.truststore.type=PKCS12
sasl.jaas.config=org.apache.kafka.common.security.oauthbearer.OAuthBearerLoginModule
required \
 oauth.token.endpoint.uri="<token_endpoint_url>" \
 oauth.client.id="<client_id>" \ 1
 oauth.client.secret="<client_secret>" \ 2
 oauth.password.grant.username="<username>" \ 3
 oauth.password.grant.password="<password>" \ 4
 oauth.ssl.truststore.location="/tmp/oauth-truststore.p12" \
 oauth.ssl.truststore.password="$STOREPASS" \
 oauth.ssl.truststore.type="PKCS12" \
 oauth.scope="<scope>" \
 oauth.audience="<audience>" ;
sasl.login.callback.handler.class=io.strimzi.kafka.oauth.client.JaasClientOauthLoginCallback
Handler

Red Hat Streams for Apache Kafka 2.7 Using Streams for Apache Kafka on RHEL in KRaft mode

70

1

1

2

3

Long-lived access token for Kafka clients.

Refresh token properties

Client ID, which is the name used when creating the client in the authorization server.

(Optional) Client secret created when creating the client in the authorization server.

Long-lived refresh token for Kafka clients.

3. Input the client properties for OAUTH 2.0 authentication into the Java client code.

Example showing input of client properties

4. Verify that the Kafka client can access the Kafka brokers.

security.protocol=SASL_SSL
sasl.mechanism=OAUTHBEARER
ssl.truststore.location=/tmp/truststore.p12
ssl.truststore.password=$STOREPASS
ssl.truststore.type=PKCS12
sasl.jaas.config=org.apache.kafka.common.security.oauthbearer.OAuthBearerLoginModule
required \
 oauth.token.endpoint.uri="<token_endpoint_url>" \
 oauth.access.token="<access_token>" \ 1
 oauth.ssl.truststore.location="/tmp/oauth-truststore.p12" \
 oauth.ssl.truststore.password="$STOREPASS" \
 oauth.ssl.truststore.type="PKCS12" ;
sasl.login.callback.handler.class=io.strimzi.kafka.oauth.client.JaasClientOauthLoginCallback
Handler

security.protocol=SASL_SSL
sasl.mechanism=OAUTHBEARER
ssl.truststore.location=/tmp/truststore.p12
ssl.truststore.password=$STOREPASS
ssl.truststore.type=PKCS12
sasl.jaas.config=org.apache.kafka.common.security.oauthbearer.OAuthBearerLoginModule
required \
 oauth.token.endpoint.uri="<token_endpoint_url>" \
 oauth.client.id="<client_id>" \ 1
 oauth.client.secret="<client_secret>" \ 2
 oauth.refresh.token="<refresh_token>" \ 3
 oauth.ssl.truststore.location="/tmp/oauth-truststore.p12" \
 oauth.ssl.truststore.password="$STOREPASS" \
 oauth.ssl.truststore.type="PKCS12" ;
sasl.login.callback.handler.class=io.strimzi.kafka.oauth.client.JaasClientOauthLoginCallback
Handler

Properties props = new Properties();
try (FileReader reader = new FileReader("client.properties", StandardCharsets.UTF_8)) {
 props.load(reader);
}

CHAPTER 6. SECURING ACCESS TO KAFKA

71

6.6. USING OAUTH 2.0 TOKEN-BASED AUTHORIZATION

If you are using OAuth 2.0 with Red Hat Single Sign-On for token-based authentication, you can also
use Red Hat Single Sign-On to configure authorization rules to constrain client access to Kafka brokers.
Authentication establishes the identity of a user. Authorization decides the level of access for that user.

Streams for Apache Kafka supports the use of OAuth 2.0 token-based authorization through Red Hat
Single Sign-On Authorization Services, which allows you to manage security policies and permissions
centrally.

Security policies and permissions defined in Red Hat Single Sign-On are used to grant access to
resources on Kafka brokers. Users and clients are matched against policies that permit access to
perform specific actions on Kafka brokers.

Kafka allows all users full access to brokers by default, and also provides the AclAuthorizer and
StandardAuthorizer plugins to configure authorization based on Access Control Lists (ACLs). The ACL
rules managed by these plugins are used to grant or deny access to resources based on the username,
and these rules are stored within the Kafka cluster itself. However, OAuth 2.0 token-based authorization
with Red Hat Single Sign-On offers far greater flexibility on how you wish to implement access control to
Kafka brokers. In addition, you can configure your Kafka brokers to use OAuth 2.0 authorization and
ACLs.

Additional resources

Using OAuth 2.0 token-based authentication

Kafka Authorization

Red Hat Single Sign-On documentation

6.6.1. OAuth 2.0 authorization mechanism

OAuth 2.0 authorization in Streams for Apache Kafka uses Red Hat Single Sign-On server Authorization
Services REST endpoints to extend token-based authentication with Red Hat Single Sign-On by
applying defined security policies on a particular user, and providing a list of permissions granted on
different resources for that user. Policies use roles and groups to match permissions to users. OAuth 2.0
authorization enforces permissions locally based on the received list of grants for the user from Red Hat
Single Sign-On Authorization Services.

6.6.1.1. Kafka broker custom authorizer

A Red Hat Single Sign-On authorizer (KeycloakAuthorizer) is provided with Streams for Apache Kafka.
To be able to use the Red Hat Single Sign-On REST endpoints for Authorization Services provided by
Red Hat Single Sign-On, you configure a custom authorizer on the Kafka broker.

The authorizer fetches a list of granted permissions from the authorization server as needed, and
enforces authorization locally on the Kafka Broker, making rapid authorization decisions for each client
request.

6.6.2. Configuring OAuth 2.0 authorization support

This procedure describes how to configure Kafka brokers to use OAuth 2.0 authorization using Red Hat
Single Sign-On Authorization Services.

Before you begin

Red Hat Streams for Apache Kafka 2.7 Using Streams for Apache Kafka on RHEL in KRaft mode

72

https://docs.redhat.com/en/documentation/red_hat_single_sign-on
https://docs.redhat.com/en/documentation/red_hat_single_sign-on

1

Consider the access you require or want to limit for certain users. You can use a combination of Red Hat
Single Sign-On groups, roles, clients, and users to configure access in Red Hat Single Sign-On.

Typically, groups are used to match users based on organizational departments or geographical
locations. And roles are used to match users based on their function.

With Red Hat Single Sign-On, you can store users and groups in LDAP, whereas clients and roles cannot
be stored this way. Storage and access to user data may be a factor in how you choose to configure
authorization policies.

NOTE

Super users always have unconstrained access to a Kafka broker regardless of the
authorization implemented on the Kafka broker.

Prerequisites

Streams for Apache Kafka must be configured to use OAuth 2.0 with Red Hat Single Sign-On
for token-based authentication. You use the same Red Hat Single Sign-On server endpoint
when you set up authorization.

You need to understand how to manage policies and permissions for Red Hat Single Sign-On
Authorization Services, as described in the Red Hat Single Sign-On documentation .

Procedure

1. Access the Red Hat Single Sign-On Admin Console or use the Red Hat Single Sign-On Admin
CLI to enable Authorization Services for the Kafka broker client you created when setting up
OAuth 2.0 authentication.

2. Use Authorization Services to define resources, authorization scopes, policies, and permissions
for the client.

3. Bind the permissions to users and clients by assigning them roles and groups.

4. Configure the Kafka brokers to use Red Hat Single Sign-On authorization.
Add the following to the Kafka server.properties configuration file to install the authorizer in
Kafka:

5. Add configuration for the Kafka brokers to access the authorization server and Authorization
Services.
Here we show example configuration added as additional properties to server.properties, but
you can also define them as environment variables using capitalized or upper-case naming
conventions.

The OAuth 2.0 token endpoint URL to Red Hat Single Sign-On. For production, always use
https:// urls.

authorizer.class.name=io.strimzi.kafka.oauth.server.authorizer.KeycloakAuthorizer
principal.builder.class=io.strimzi.kafka.oauth.server.OAuthKafkaPrincipalBuilder

strimzi.authorization.token.endpoint.uri="https://<auth_server_address>/auth/realms/REALM-
NAME/protocol/openid-connect/token" 1
strimzi.authorization.client.id="kafka" 2

CHAPTER 6. SECURING ACCESS TO KAFKA

73

https://docs.redhat.com/en/documentation/red_hat_single_sign-on

2

1

1

1

2

3

4

5

The client ID of the OAuth 2.0 client definition in Red Hat Single Sign-On that has
Authorization Services enabled. Typically, kafka is used as the ID.

6. (Optional) Add configuration for specific Kafka clusters.
For example:

The name of a specific Kafka cluster. Names are used to target permissions, making it
possible to manage multiple clusters within the same Red Hat Single Sign-On realm. The
default value is kafka-cluster.

7. (Optional) Delegate to simple authorization:

Delegate authorization to Kafka AclAuthorizer if access is denied by Red Hat Single Sign-
On Authorization Services policies. The default is false.

8. (Optional) Add configuration for TLS connection to the authorization server.
For example:

The path to the truststore that contain the certificates.

The password for the truststore.

The truststore type. If not set, the default Java keystore type is used.

Random number generator implementation. If not set, the Java platform SDK default is
used.

Hostname verification. If set to an empty string, the hostname verification is turned off. If
not set, the default value is HTTPS, which enforces hostname verification for server
certificates.

9. (Optional) Configure the refresh of grants from the authorization server. The grants refresh job
works by enumerating the active tokens and requesting the latest grants for each.
For example:

strimzi.authorization.kafka.cluster.name="kafka-cluster" 1

strimzi.authorization.delegate.to.kafka.acl="true" 1

strimzi.authorization.ssl.truststore.location=<path_to_truststore> 1
strimzi.authorization.ssl.truststore.password=<my_truststore_password> 2
strimzi.authorization.ssl.truststore.type=JKS 3
strimzi.authorization.ssl.secure.random.implementation=SHA1PRNG 4
strimzi.authorization.ssl.endpoint.identification.algorithm=HTTPS 5

strimzi.authorization.grants.refresh.period.seconds="120" 1
strimzi.authorization.grants.refresh.pool.size="10" 2
strimzi.authorization.grants.max.idle.time.seconds="300" 3
strimzi.authorization.grants.gc.period.seconds="300" 4
strimzi.authorization.reuse.grants="false" 5

Red Hat Streams for Apache Kafka 2.7 Using Streams for Apache Kafka on RHEL in KRaft mode

74

1

2

3

4

5

1

2

3

1

1

Specifies how often the list of grants from the authorization server is refreshed (once per
minute by default). To turn grants refresh off for debugging purposes, set to "0".

Specifies the size of the thread pool (the degree of parallelism) used by the grants refresh
job. The default value is "5".

The time, in seconds, after which an idle grant in the cache can be evicted. The default
value is 300.

The time, in seconds, between consecutive runs of a job that cleans stale grants from the
cache. The default value is 300.

Controls whether the latest grants are fetched for a new session. When disabled, grants are
retrieved from Red Hat Single Sign-On and cached for the user. The default value is true.

10. (Optional) Configure network timeouts when communicating with the authorization server.
For example:

The connect timeout in seconds when connecting to the Red Hat Single Sign-On token
endpoint. The default value is 60.

The read timeout in seconds when connecting to the Red Hat Single Sign-On token
endpoint. The default value is 60.

The maximum number of times to retry (without pausing) a failed HTTP request to the
authorization server. The default value is 0, meaning that no retries are performed. To use
this option effectively, consider reducing the timeout times for the
strimzi.authorization.connect.timeout.seconds and
strimzi.authorization.read.timeout.seconds options. However, note that retries may
prevent the current worker thread from being available to other requests, and if too many
requests stall, it could make the Kafka broker unresponsive.

11. (Optional) Enable OAuth 2.0 metrics for token validation and authorization:

Controls whether to enable or disable OAuth metrics. The default value is false.

12. (Optional) Remove the Accept header from requests:

Set to false if including the header is causing issues when communicating with the
authorization server. The default value is true.

13. Verify the configured permissions by accessing Kafka brokers as clients or users with specific

strimzi.authorization.connect.timeout.seconds="60" 1
strimzi.authorization.read.timeout.seconds="60" 2
strimzi.authorization.http.retries="2" 3

oauth.enable.metrics="true" 1

oauth.include.accept.header="false" 1

CHAPTER 6. SECURING ACCESS TO KAFKA

75

13. Verify the configured permissions by accessing Kafka brokers as clients or users with specific
roles, making sure they have the necessary access, or do not have the access they are not
supposed to have.

6.7. USING OPA POLICY-BASED AUTHORIZATION

Open Policy Agent (OPA) is an open-source policy engine. You can integrate OPA with Streams for
Apache Kafka to act as a policy-based authorization mechanism for permitting client operations on
Kafka brokers.

When a request is made from a client, OPA will evaluate the request against policies defined for Kafka
access, then allow or deny the request.

NOTE

Red Hat does not support the OPA server.

Additional resources

Open Policy Agent website

6.7.1. Defining OPA policies

Before integrating OPA with Streams for Apache Kafka, consider how you will define policies to provide
fine-grained access controls.

You can define access control for Kafka clusters, consumer groups and topics. For instance, you can
define an authorization policy that allows write access from a producer client to a specific broker topic.

For this, the policy might specify the:

User principal and host address associated with the producer client

Operations allowed for the client

Resource type (topic) and resource name the policy applies to

Allow and deny decisions are written into the policy, and a response is provided based on the request
and client identification data provided.

In our example the producer client would have to satisfy the policy to be allowed to write to the topic.

6.7.2. Connecting to the OPA

To enable Kafka to access the OPA policy engine to query access control policies, , you configure a
custom OPA authorizer plugin (kafka-authorizer-opa-VERSION.jar) in your Kafka server.properties
file.

When a request is made by a client, the OPA policy engine is queried by the plugin using a specified URL
address and a REST endpoint, which must be the name of the defined policy.

The plugin provides the details of the client request — user principal, operation, and resource — in JSON
format to be checked against the policy. The details will include the unique identity of the client; for
example, taking the distinguished name from the client certificate if TLS authentication is used.

OPA uses the data to provide a response — either true or false — to the plugin to allow or deny the

Red Hat Streams for Apache Kafka 2.7 Using Streams for Apache Kafka on RHEL in KRaft mode

76

https://www.openpolicyagent.org

OPA uses the data to provide a response — either true or false — to the plugin to allow or deny the
request.

6.7.3. Configuring OPA authorization support

This procedure describes how to configure Kafka brokers to use OPA authorization.

Before you begin

Consider the access you require or want to limit for certain users. You can use a combination of users
and Kafka resources to define OPA policies.

It is possible to set up OPA to load user information from an LDAP data source.

NOTE

Super users always have unconstrained access to a Kafka broker regardless of the
authorization implemented on the Kafka broker.

Prerequisites

Streams for Apache Kafka is installed on each host , and the configuration files are available.

An OPA server must be available for connection.

The OPA authorizer plugin for Kafka .

Procedure

1. Write the OPA policies required for authorizing client requests to perform operations on the
Kafka brokers.
See Defining OPA policies .

Now configure the Kafka brokers to use OPA.

2. Install the OPA authorizer plugin for Kafka .
See Connecting to the OPA.

Make sure that the plugin files are included in the Kafka classpath.

3. Add the following to the Kafka server.properties configuration file to enable the OPA plugin:

4. Add further configuration to server.properties for the Kafka brokers to access the OPA policy
engine and policies.
For example:

authorizer.class.name: com.bisnode.kafka.authorization.OpaAuthorizer

opa.authorizer.url=https://OPA-ADDRESS/allow 1
opa.authorizer.allow.on.error=false 2
opa.authorizer.cache.initial.capacity=50000 3
opa.authorizer.cache.maximum.size=50000 4
opa.authorizer.cache.expire.after.seconds=600000 5
super.users=User:alice;User:bob 6

CHAPTER 6. SECURING ACCESS TO KAFKA

77

https://github.com/Bisnode/opa-kafka-plugin
https://github.com/Bisnode/opa-kafka-plugin

1

2

3

4

5

6

(Required) The OAuth 2.0 token endpoint URL for the policy the authorizer plugin will
query. In this example, the policy is called allow.

Flag to specify whether a client is allowed or denied access by default if the authorizer
plugin fails to connect with the OPA policy engine.

Initial capacity in bytes of the local cache. The cache is used so that the plugin does not
have to query the OPA policy engine for every request.

Maximum capacity in bytes of the local cache.

Time in milliseconds that the local cache is refreshed by reloading from the OPA policy
engine.

A list of user principals treated as super users, so that they are always allowed without
querying the Open Policy Agent policy.

Refer to the Open Policy Agent website for information on authentication and
authorization options.

5. Verify the configured permissions by accessing Kafka brokers using clients that have and do not
have the correct authorization.

Red Hat Streams for Apache Kafka 2.7 Using Streams for Apache Kafka on RHEL in KRaft mode

78

https://www.openpolicyagent.org

CHAPTER 7. CREATING AND MANAGING TOPICS
Messages in Kafka are always sent to or received from a topic. This chapter describes how to create and
manage Kafka topics.

7.1. PARTITIONS AND REPLICAS

A topic is always split into one or more partitions. Partitions act as shards. That means that every
message sent by a producer is always written only into a single partition.

Each partition can have one or more replicas, which will be stored on different brokers in the cluster.
When creating a topic you can configure the number of replicas using the replication factor. Replication
factor defines the number of copies which will be held within the cluster. One of the replicas for a given
partition will be elected as a leader. The leader replica will be used by the producers to send new
messages and by the consumers to consume messages. The other replicas will be follower replicas. The
followers replicate the leader.

If the leader fails, one of the in-sync followers will automatically become the new leader. Each server
acts as a leader for some of its partitions and a follower for others so the load is well balanced within the
cluster.

NOTE

The replication factor determines the number of replicas including the leader and the
followers. For example, if you set the replication factor to 3, then there will be one leader
and two follower replicas.

7.2. MESSAGE RETENTION

The message retention policy defines how long the messages will be stored on the Kafka brokers. It can
be defined based on time, partition size or both.

For example, you can define that the messages should be kept:

For 7 days

Until the partition has 1GB of messages. Once the limit is reached, the oldest messages will be
removed.

For 7 days or until the 1GB limit has been reached. Whatever limit comes first will be used.

WARNING

Kafka brokers store messages in log segments. The messages which are past their
retention policy will be deleted only when a new log segment is created. New log
segments are created when the previous log segment exceeds the configured log
segment size. Additionally, users can request new segments to be created
periodically.



CHAPTER 7. CREATING AND MANAGING TOPICS

79

Kafka brokers support a compacting policy.

For a topic with the compacted policy, the broker will always keep only the last message for each key.
The older messages with the same key will be removed from the partition. Because compacting is a
periodically executed action, it does not happen immediately when the new message with the same key
is sent to the partition. Instead it might take some time until the older messages are removed.

For more information about the message retention configuration options, see Section 7.5, “Topic
configuration”.

7.3. TOPIC AUTO-CREATION

By default, Kafka automatically creates a topic if a producer or consumer attempts to send or receive
messages from a non-existent topic. This behavior is governed by the auto.create.topics.enable
configuration property, which is set to true by default.

For production environments, it is recommended to disable automatic topic creation. To do so, set
auto.create.topics.enable to false in the Kafka configuration properties file:

Disabling automatic topic creation

auto.create.topics.enable=false

7.4. TOPIC DELETION

Kafka provides the option to prevent topic deletion, controlled by the delete.topic.enable property. By
default, this property is set to true, allowing topics to be deleted.

However, setting it to false in the Kafka configuration properties file will disable topic deletion. In this
case, attempts to delete a topic will return a success status, but the topic itself will not be deleted.

Disabling topic deletion

delete.topic.enable=false

7.5. TOPIC CONFIGURATION

Auto-created topics will use the default topic configuration which can be specified in the broker
properties file. However, when creating topics manually, their configuration can be specified at creation
time. It is also possible to change a topic’s configuration after it has been created. The main topic
configuration options for manually created topics are:

cleanup.policy

Configures the retention policy to delete or compact. The delete policy will delete old records. The
compact policy will enable log compaction. The default value is delete. For more information about
log compaction, see Kafka website.

compression.type

Specifies the compression which is used for stored messages. Valid values are gzip, snappy, lz4,
uncompressed (no compression) and producer (retain the compression codec used by the
producer). The default value is producer.

max.message.bytes

The maximum size of a batch of messages allowed by the Kafka broker, in bytes. The default value is

Red Hat Streams for Apache Kafka 2.7 Using Streams for Apache Kafka on RHEL in KRaft mode

80

http://kafka.apache.org/documentation/#compaction

The maximum size of a batch of messages allowed by the Kafka broker, in bytes. The default value is
1000012.

min.insync.replicas

The minimum number of replicas which must be in sync for a write to be considered successful. The
default value is 1.

retention.ms

Maximum number of milliseconds for which log segments will be retained. Log segments older than
this value will be deleted. The default value is 604800000 (7 days).

retention.bytes

The maximum number of bytes a partition will retain. Once the partition size grows over this limit, the
oldest log segments will be deleted. Value of -1 indicates no limit. The default value is -1.

segment.bytes

The maximum file size of a single commit log segment file in bytes. When the segment reaches its
size, a new segment will be started. The default value is 1073741824 bytes (1 gibibyte).

The defaults for auto-created topics can be specified in the Kafka broker configuration using similar
options:

log.cleanup.policy

See cleanup.policy above.

compression.type

See compression.type above.

message.max.bytes

See max.message.bytes above.

min.insync.replicas

See min.insync.replicas above.

log.retention.ms

See retention.ms above.

log.retention.bytes

See retention.bytes above.

log.segment.bytes

See segment.bytes above.

default.replication.factor

Default replication factor for automatically created topics. Default value is 1.

num.partitions

Default number of partitions for automatically created topics. Default value is 1.

7.6. INTERNAL TOPICS

Internal topics are created and used internally by the Kafka brokers and clients. Kafka has several internal
topics, two of which are used to store consumer offsets (__consumer_offsets) and transaction state
(__transaction_state).

__consumer_offsets and __transaction_state topics can be configured using dedicated Kafka broker
configuration options starting with prefix offsets.topic. and transaction.state.log..

The most important configuration options are:

CHAPTER 7. CREATING AND MANAGING TOPICS

81

offsets.topic.replication.factor

Number of replicas for __consumer_offsets topic. The default value is 3.

offsets.topic.num.partitions

Number of partitions for __consumer_offsets topic. The default value is 50.

transaction.state.log.replication.factor

Number of replicas for __transaction_state topic. The default value is 3.

transaction.state.log.num.partitions

Number of partitions for __transaction_state topic. The default value is 50.

transaction.state.log.min.isr

Minimum number of replicas that must acknowledge a write to __transaction_state topic to be
considered successful. If this minimum cannot be met, then the producer will fail with an exception.
The default value is 2.

7.7. CREATING A TOPIC

Use the kafka-topics.sh tool to manage topics. kafka-topics.sh is part of the Streams for Apache
Kafka distribution and is found in the bin directory.

Prerequisites

Streams for Apache Kafka is installed on each host , and the configuration files are available.

Creating a topic

1. Create a topic using the kafka-topics.sh utility and specify the following:

Host and port of the Kafka broker in the --bootstrap-server option.

The new topic to be created in the --create option.

Topic name in the --topic option.

The number of partitions in the --partitions option.

Topic replication factor in the --replication-factor option.
You can also override some of the default topic configuration options using the option --
config. This option can be used multiple times to override different options.

Example of the command to create a topic named mytopic

2. Verify that the topic exists using kafka-topics.sh.

/opt/kafka/bin/kafka-topics.sh --bootstrap-server <broker_address> --create --topic
<TopicName> --partitions <NumberOfPartitions> --replication-factor <ReplicationFactor>
--config <Option1>=<Value1> --config <Option2>=<Value2>

/opt/kafka/bin/kafka-topics.sh --bootstrap-server localhost:9092 --create --topic mytopic -
-partitions 50 --replication-factor 3 --config cleanup.policy=compact --config
min.insync.replicas=2

Red Hat Streams for Apache Kafka 2.7 Using Streams for Apache Kafka on RHEL in KRaft mode

82

Example of the command to describe a topic named mytopic

7.8. LISTING AND DESCRIBING TOPICS

The kafka-topics.sh tool can be used to list and describe topics. kafka-topics.sh is part of the Streams
for Apache Kafka distribution and can be found in the bin directory.

Prerequisites

Streams for Apache Kafka is installed on each host , and the configuration files are available.

Describing a topic

1. Describe a topic using the kafka-topics.sh utility and specify the following:

Host and port of the Kafka broker in the --bootstrap-server option.

Use the --describe option to specify that you want to describe a topic.

Topic name must be specified in the --topic option.

When the --topic option is omitted, it describes all available topics.

Example of the command to describe a topic named mytopic

The command lists all partitions and replicas which belong to this topic. It also lists all topic
configuration options.

7.9. MODIFYING A TOPIC CONFIGURATION

The kafka-configs.sh tool can be used to modify topic configurations. kafka-configs.sh is part of the
Streams for Apache Kafka distribution and can be found in the bin directory.

Prerequisites

Streams for Apache Kafka is installed on each host , and the configuration files are available.

Modify topic configuration

1. Use the kafka-configs.sh tool to get the current configuration.

/opt/kafka/bin/kafka-topics.sh --bootstrap-server <broker_address> --describe --topic
<TopicName>

/opt/kafka/bin/kafka-topics.sh --bootstrap-server localhost:9092 --describe --topic mytopic

/opt/kafka/bin/kafka-topics.sh --bootstrap-server <broker_host>:<port> --describe --topic
<topic_name>

/opt/kafka/bin/kafka-topics.sh --bootstrap-server localhost:9092 --describe --topic
mytopic

CHAPTER 7. CREATING AND MANAGING TOPICS

83

Specify the host and port of the Kafka broker in the --bootstrap-server option.

Set the --entity-type as topic and --entity-name to the name of your topic.

Use --describe option to get the current configuration.

Example of the command to get configuration of a topic named mytopic

2. Use the kafka-configs.sh tool to change the configuration.

Specify the host and port of the Kafka broker in the --bootstrap-server option.

Set the --entity-type as topic and --entity-name to the name of your topic.

Use --alter option to modify the current configuration.

Specify the options you want to add or change in the option --add-config.

Example of the command to change configuration of a topic named mytopic

3. Use the kafka-configs.sh tool to delete an existing configuration option.

Specify the host and port of the Kafka broker in the --bootstrap-server option.

Set the --entity-type as topic and --entity-name to the name of your topic.

Use --delete-config option to remove existing configuration option.

Specify the options you want to remove in the option --remove-config.

Example of the command to change configuration of a topic named mytopic

7.10. DELETING A TOPIC

The kafka-topics.sh tool can be used to manage topics. kafka-topics.sh is part of the Streams for

/opt/kafka/bin/kafka-configs.sh --bootstrap-server <broker_host>:<port> --entity-type
topics --entity-name <topic_name> --describe

/opt/kafka/bin/kafka-configs.sh --bootstrap-server localhost:9092 --entity-type topics --
entity-name mytopic --describe

/opt/kafka/bin/kafka-configs.sh --bootstrap-server <broker_host>:<port> --entity-type
topics --entity-name <topic_name> --alter --add-config <option>=<value>

/opt/kafka/bin/kafka-configs.sh --bootstrap-server localhost:9092 --entity-type topics --
entity-name mytopic --alter --add-config min.insync.replicas=1

/opt/kafka/bin/kafka-configs.sh --bootstrap-server <broker_host>:<port> --entity-type
topics --entity-name <topic_name> --alter --delete-config <option>

/opt/kafka/bin/kafka-configs.sh --bootstrap-server localhost:9092 --entity-type topics --
entity-name mytopic --alter --delete-config min.insync.replicas

Red Hat Streams for Apache Kafka 2.7 Using Streams for Apache Kafka on RHEL in KRaft mode

84

The kafka-topics.sh tool can be used to manage topics. kafka-topics.sh is part of the Streams for
Apache Kafka distribution and can be found in the bin directory.

Prerequisites

Streams for Apache Kafka is installed on each host , and the configuration files are available.

Deleting a topic

1. Delete a topic using the kafka-topics.sh utility.

Host and port of the Kafka broker in the --bootstrap-server option.

Use the --delete option to specify that an existing topic should be deleted.

Topic name must be specified in the --topic option.

Example of the command to create a topic named mytopic

2. Verify that the topic was deleted using kafka-topics.sh.

Example of the command to list all topics

/opt/kafka/bin/kafka-topics.sh --bootstrap-server <broker_host>:<port> --delete --topic
<topic_name>

/opt/kafka/bin/kafka-topics.sh --bootstrap-server localhost:9092 --delete --topic mytopic

/opt/kafka/bin/kafka-topics.sh --bootstrap-server <broker_host>:<port> --list

/opt/kafka/bin/kafka-topics.sh --bootstrap-server localhost:9092 --list

CHAPTER 7. CREATING AND MANAGING TOPICS

85

CHAPTER 8. USING STREAMS FOR APACHE KAFKA WITH
KAFKA CONNECT

Use Kafka Connect to stream data between Kafka and external systems. Kafka Connect provides a
framework for moving large amounts of data while maintaining scalability and reliability. Kafka Connect is
typically used to integrate Kafka with database, storage, and messaging systems that are external to
your Kafka cluster.

Kafka Connect runs in standalone or distributed modes.

Standalone mode

In standalone mode, Kafka Connect runs on a single node. Standalone mode is intended for
development and testing.

Distributed mode

In distributed mode, Kafka Connect runs across one or more worker nodes and the workloads are
distributed among them. Distributed mode is intended for production.

Kafka Connect uses connector plugins that implement connectivity for different types of external
systems. There are two types of connector plugins: sink and source. Sink connectors stream data from
Kafka to external systems. Source connectors stream data from external systems into Kafka.

You can also use the Kafka Connect REST API to create, manage, and monitor connector instances.

Connector configuration specifies details such as the source or sink connectors and the Kafka topics to
read from or write to. How you manage the configuration depends on whether you are running Kafka
Connect in standalone or distributed mode.

In standalone mode, you can provide the connector configuration as JSON through the Kafka
Connect REST API or you can use properties files to define the configuration.

In distributed mode, you can only provide the connector configuration as JSON through the
Kafka Connect REST API.

Handling high volumes of messages

You can tune the configuration to handle high volumes of messages. For more information, see
Handling high volumes of messages .

8.1. USING KAFKA CONNECT IN STANDALONE MODE

In Kafka Connect standalone mode, connectors run on the same node as the Kafka Connect worker
process, which runs as a single process in a single JVM. This means that the worker process and
connectors share the same resources, such as CPU, memory, and disk.

8.1.1. Configuring Kafka Connect in standalone mode

To configure Kafka Connect in standalone mode, edit the config/connect-standalone.properties
configuration file. The following options are the most important.

bootstrap.servers

A list of Kafka broker addresses used as bootstrap connections to Kafka. For example, kafka0.my-
domain.com:9092,kafka1.my-domain.com:9092,kafka2.my-domain.com:9092.

key.converter

The class used to convert message keys to and from Kafka format. For example,

Red Hat Streams for Apache Kafka 2.7 Using Streams for Apache Kafka on RHEL in KRaft mode

86

https://docs.redhat.com/en/documentation/red_hat_streams_for_apache_kafka/2.7/html-single/kafka_configuration_tuning/index#con-high-volume-config-properties-str

The class used to convert message keys to and from Kafka format. For example,
org.apache.kafka.connect.json.JsonConverter.

value.converter

The class used to convert message payloads to and from Kafka format. For example,
org.apache.kafka.connect.json.JsonConverter.

offset.storage.file.filename

Specifies the file in which the offset data is stored.

Connector plugins open client connections to the Kafka brokers using the bootstrap address. To
configure these connections, use the standard Kafka producer and consumer configuration options
prefixed by producer. or consumer..

8.1.2. Running Kafka Connect in standalone mode

Configure and run Kafka Connect in standalone mode.

Prerequisites

Streams for Apache Kafka is installed on each host , and the configuration files are available.

You have specified connector configuration in properties files.
You can also use the Kafka Connect REST API to manage connectors.

Procedure

1. Edit the /opt/kafka/config/connect-standalone.properties Kafka Connect configuration file
and set bootstrap.server to point to your Kafka brokers. For example:

2. Start Kafka Connect with the configuration file and specify one or more connector
configurations.

3. Verify that Kafka Connect is running.

8.2. USING KAFKA CONNECT IN DISTRIBUTED MODE

In distributed mode, Kafka Connect runs as a cluster of worker processes, with each worker running on a
separate node. Connectors can run on any worker in the cluster, allowing for greater scalability and fault
tolerance. The connectors are managed by the workers, which coordinate with each other to distribute
the work and ensure that each connector is running on a single node at any given time.

8.2.1. Configuring Kafka Connect in distributed mode

To configure Kafka Connect in distributed mode, edit the config/connect-distributed.properties

bootstrap.servers=kafka0.my-domain.com:9092,kafka1.my-domain.com:9092,kafka2.my-
domain.com:9092

su - kafka
/opt/kafka/bin/connect-standalone.sh /opt/kafka/config/connect-standalone.properties
connector1.properties
[connector2.properties ...]

jcmd | grep ConnectStandalone

CHAPTER 8. USING STREAMS FOR APACHE KAFKA WITH KAFKA CONNECT

87

To configure Kafka Connect in distributed mode, edit the config/connect-distributed.properties
configuration file. The following options are the most important.

bootstrap.servers

A list of Kafka broker addresses used as bootstrap connections to Kafka. For example, kafka0.my-
domain.com:9092,kafka1.my-domain.com:9092,kafka2.my-domain.com:9092.

key.converter

The class used to convert message keys to and from Kafka format. For example,
org.apache.kafka.connect.json.JsonConverter.

value.converter

The class used to convert message payloads to and from Kafka format. For example,
org.apache.kafka.connect.json.JsonConverter.

group.id

The name of the distributed Kafka Connect cluster. This must be unique and must not conflict with
another consumer group ID. The default value is connect-cluster.

config.storage.topic

The Kafka topic used to store connector configurations. The default value is connect-configs.

offset.storage.topic

The Kafka topic used to store offsets. The default value is connect-offset.

status.storage.topic

The Kafka topic used for worker node statuses. The default value is connect-status.

Streams for Apache Kafka includes an example configuration file for Kafka Connect in distributed mode
– see config/connect-distributed.properties in the Streams for Apache Kafka installation directory.

Connector plugins open client connections to the Kafka brokers using the bootstrap address. To
configure these connections, use the standard Kafka producer and consumer configuration options
prefixed by producer. or consumer..

8.2.2. Running Kafka Connect in distributed mode

Configure and run Kafka Connect in distributed mode.

Prerequisites

Streams for Apache Kafka is installed on each host , and the configuration files are available.

Running the cluster

1. Edit the /opt/kafka/config/connect-distributed.properties Kafka Connect configuration file on
all Kafka Connect worker nodes.

Set the bootstrap.server option to point to your Kafka brokers.

Set the group.id option.

Set the config.storage.topic option.

Set the offset.storage.topic option.

Set the status.storage.topic option.

Red Hat Streams for Apache Kafka 2.7 Using Streams for Apache Kafka on RHEL in KRaft mode

88

For example:

2. Start the Kafka Connect workers with the /opt/kafka/config/connect-distributed.properties
configuration file on all Kafka Connect nodes.

3. Verify that Kafka Connect is running.

4. Use the Kafka Connect REST API to manage connectors.

8.3. MANAGING CONNECTORS

The Kafka Connect REST API provides endpoints for creating, updating, and deleting connectors
directly. You can also use the API to check the status of connectors or change logging levels. When you
create a connector through the API, you provide the configuration details for the connector as part of
the API call.

You can also add and manage connectors as plugins. Plugins are packaged as JAR files that contain the
classes to implement the connectors through the Kafka Connect API. You just need to specify the plugin
in the classpath or add it to a plugin path for Kafka Connect to run the connector plugin on startup.

In addition to using the Kafka Connect REST API or plugins to manage connectors, you can also add
connector configuration using properties files when running Kafka Connect in standalone mode. To do
this, you simply specify the location of the properties file when starting the Kafka Connect worker
process. The properties file should contain the configuration details for the connector, including the
connector class, source and destination topics, and any required authentication or serialization settings.

8.3.1. Limiting access to the Kafka Connect API

The Kafka Connect REST API can be accessed by anyone who has authenticated access and knows the
endpoint URL, which includes the hostname/IP address and port number. It is crucial to restrict access
to the Kafka Connect API only to trusted users to prevent unauthorized actions and potential security
issues.

For improved security, we recommend configuring the following properties for the Kafka Connect API:

(Kafka 3.4 or later) org.apache.kafka.disallowed.login.modules to specifically exclude
insecure login modules

connector.client.config.override.policy set to NONE to prevent connector configurations
from overriding the Kafka Connect configuration and the consumers and producers it uses

8.3.2. Configuring connectors

bootstrap.servers=kafka0.my-domain.com:9092,kafka1.my-domain.com:9092,kafka2.my-
domain.com:9092
group.id=my-group-id
config.storage.topic=my-group-id-configs
offset.storage.topic=my-group-id-offsets
status.storage.topic=my-group-id-status

su - kafka
/opt/kafka/bin/connect-distributed.sh /opt/kafka/config/connect-distributed.properties

jcmd | grep ConnectDistributed

CHAPTER 8. USING STREAMS FOR APACHE KAFKA WITH KAFKA CONNECT

89

Use the Kafka Connect REST API or properties files to create, manage, and monitor connector
instances. You can use the REST API when using Kafka Connect in standalone or distributed mode. You
can use properties files when using Kafka Connect in standalone mode.

8.3.2.1. Using the Kafka Connect REST API to manage connectors

When using the Kafka Connect REST API, you can create connectors dynamically by sending PUT or
POST HTTP requests to the Kafka Connect REST API, specifying the connector configuration details in
the request body.

TIP

When you use the PUT command, it’s the same command for starting and updating connectors.

The REST interface listens on port 8083 by default and supports the following endpoints:

GET /connectors

Return a list of existing connectors.

POST /connectors

Create a connector. The request body has to be a JSON object with the connector configuration.

GET /connectors/<connector_name>

Get information about a specific connector.

GET /connectors/<connector_name>/config

Get configuration of a specific connector.

PUT /connectors/<connector_name>/config

Update the configuration of a specific connector.

GET /connectors/<connector_name>/status

Get the status of a specific connector.

GET /connectors/<connector_name>/tasks

Get a list of tasks for a specific connector

GET /connectors/<connector_name>/tasks/<task_id>/status

Get the status of a task for a specific connector

PUT /connectors/<connector_name>/pause

Pause the connector and all its tasks. The connector will stop processing any messages.

PUT /connectors/<connector_name>/stop

Stop the connector and all its tasks. The connector will stop processing any messages. Stopping a
connector from running may be more suitable for longer durations than just pausing.

PUT /connectors/<connector_name>/resume

Resume a paused connector.

POST /connectors/<connector_name>/restart

Restart a connector in case it has failed.

POST /connectors/<connector_name>/tasks/<task_id>/restart

Restart a specific task.

DELETE /connectors/<connector_name>

Delete a connector.

Red Hat Streams for Apache Kafka 2.7 Using Streams for Apache Kafka on RHEL in KRaft mode

90

GET /connectors/<connector_name>/topics

Get the topics for a specific connector.

PUT /connectors/<connector_name>/topics/reset

Empty the set of active topics for a specific connector.

GET /connectors/<connector_name>/offsets

Get the current offsets for a connector.

DELETE /connectors/<connector_name>/offsets

Reset the offsets for a connector, which must be in a stopped state.

PATCH /connectors/<connector_name>/offsets

Adjust the offsets (using an offset property in the request) for a connector, which must be in a
stopped state.

GET /connector-plugins

Get a list of all supported connector plugins.

GET /connector-plugins/<connector_plugin_type>/config

Get the configuration for a connector plugin.

PUT /connector-plugins/<connector_type>/config/validate

Validate connector configuration.

8.3.2.2. Specifying connector configuration properties

To configure a Kafka Connect connector, you need to specify the configuration details for source or sink
connectors. There are two ways to do this: through the Kafka Connect REST API, using JSON to provide
the configuration, or by using properties files to define the configuration properties. The specific
configuration options available for each type of connector may differ, but both methods provide a
flexible way to specify the necessary settings.

The following options apply to all connectors:

name

The name of the connector, which must be unique within the current Kafka Connect instance.

connector.class

The class of the connector plug-in. For example,
org.apache.kafka.connect.file.FileStreamSinkConnector.

tasks.max

The maximum number of tasks that the specified connector can use. Tasks enable the connector to
perform work in parallel. The connector might create fewer tasks than specified.

key.converter

The class used to convert message keys to and from Kafka format. This overrides the default value
set by the Kafka Connect configuration. For example,
org.apache.kafka.connect.json.JsonConverter.

value.converter

The class used to convert message payloads to and from Kafka format. This overrides the default
value set by the Kafka Connect configuration. For example,
org.apache.kafka.connect.json.JsonConverter.

You must set at least one of the following options for sink connectors:

topics

CHAPTER 8. USING STREAMS FOR APACHE KAFKA WITH KAFKA CONNECT

91

A comma-separated list of topics used as input.

topics.regex

A Java regular expression of topics used as input.

For all other options, see the connector properties in the Apache Kafka documentation.

NOTE

Streams for Apache Kafka includes the example connector configuration files
config/connect-file-sink.properties and config/connect-file-source.properties in the
Streams for Apache Kafka installation directory.

Additional resources

Kafka Connect REST API OpenAPI documentation

8.3.3. Creating connectors using the Kafka Connect API

Use the Kafka Connect REST API to create a connector to use with Kafka Connect.

Prerequisites

A Kafka Connect installation.

Procedure

1. Prepare a JSON payload with the connector configuration. For example:

2. Send a POST request to <KafkaConnectAddress>:8083/connectors to create the connector.
The following example uses curl:

3. Verify that the connector was deployed by sending a GET request to
<KafkaConnectAddress>:8083/connectors. The following example uses curl:

8.3.4. Deleting connectors using the Kafka Connect API

Use the Kafka Connect REST API to delete a connector from Kafka Connect.

{
 "name": "my-connector",
 "config": {
 "connector.class": "org.apache.kafka.connect.file.FileStreamSinkConnector",
 "tasks.max": "1",
 "topics": "my-topic-1,my-topic-2",
 "file": "/tmp/output-file.txt"
 }
}

curl -X POST -H "Content-Type: application/json" --data @sink-connector.json
http://connect0.my-domain.com:8083/connectors

curl http://connect0.my-domain.com:8083/connectors

Red Hat Streams for Apache Kafka 2.7 Using Streams for Apache Kafka on RHEL in KRaft mode

92

https://kafka.apache.org/documentation/
https://kafka.apache.org/37/generated/connect_rest.yaml

Prerequisites

A Kafka Connect installation.

Deleting connectors

1. Verify that the connector exists by sending a GET request to
<KafkaConnectAddress>:8083/connectors/<ConnectorName>. The following example uses
curl:

2. To delete the connector, send a DELETE request to
<KafkaConnectAddress>:8083/connectors. The following example uses curl:

3. Verify that the connector was deleted by sending a GET request to
<KafkaConnectAddress>:8083/connectors. The following example uses curl:

8.3.5. Adding connector plugins

Kafka provides example connectors to use as a starting point for developing connectors. The following
example connectors are included with Streams for Apache Kafka:

FileStreamSink

Reads data from Kafka topics and writes the data to a file.

FileStreamSource

Reads data from a file and sends the data to Kafka topics.

Both connectors are contained in the libs/connect-file-<kafka_version>.redhat-<build>.jar plugin.

To use the connector plugins in Kafka Connect, you can add them to the classpath or specify a plugin
path in the Kafka Connect properties file and copy the plugins to the location.

Specifying the example connectors in the classpath

Setting a plugin path

The plugin.path configuration option can contain a comma-separated list of paths.

You can add more connector plugins if needed. Kafka Connect searches for and runs connector plugins
at startup.

NOTE

curl http://connect0.my-domain.com:8083/connectors

curl -X DELETE http://connect0.my-domain.com:8083/connectors/my-connector

curl http://connect0.my-domain.com:8083/connectors

CLASSPATH=/opt/kafka/libs/connect-file-<kafka_version>.redhat-<build>.jar opt/kafka/bin/connect-
distributed.sh

plugin.path=/opt/kafka/connector-plugins,/opt/connectors

CHAPTER 8. USING STREAMS FOR APACHE KAFKA WITH KAFKA CONNECT

93

NOTE

When running Kafka Connect in distributed mode, plugins must be made available on all
worker nodes.

Red Hat Streams for Apache Kafka 2.7 Using Streams for Apache Kafka on RHEL in KRaft mode

94

CHAPTER 9. USING STREAMS FOR APACHE KAFKA WITH
MIRRORMAKER 2

Use MirrorMaker 2 to replicate data between two or more active Kafka clusters, within or across data
centers.

To configure MirrorMaker 2, edit the config/connect-mirror-maker.properties configuration file. If
required, you can enable distributed tracing for MirrorMaker 2.

Handling high volumes of messages

You can tune the configuration to handle high volumes of messages. For more information, see
Handling high volumes of messages .

NOTE

MirrorMaker 2 has features not supported by the previous version of MirrorMaker.
However, you can configure MirrorMaker 2 to be used in legacy mode .

9.1. CONFIGURING ACTIVE/ACTIVE OR ACTIVE/PASSIVE MODES

You can use MirrorMaker 2 in active/passive or active/active cluster configurations.

active/active cluster configuration

An active/active configuration has two active clusters replicating data bidirectionally. Applications
can use either cluster. Each cluster can provide the same data. In this way, you can make the same
data available in different geographical locations. As consumer groups are active in both clusters,
consumer offsets for replicated topics are not synchronized back to the source cluster.

active/passive cluster configuration

An active/passive configuration has an active cluster replicating data to a passive cluster. The passive
cluster remains on standby. You might use the passive cluster for data recovery in the event of
system failure.

The expectation is that producers and consumers connect to active clusters only. A MirrorMaker 2
cluster is required at each target destination.

9.1.1. Bidirectional replication (active/active)

The MirrorMaker 2 architecture supports bidirectional replication in an active/active cluster
configuration.

Each cluster replicates the data of the other cluster using the concept of source and remote topics. As
the same topics are stored in each cluster, remote topics are automatically renamed by MirrorMaker 2 to
represent the source cluster. The name of the originating cluster is prepended to the name of the topic.

Figure 9.1. Topic renaming

CHAPTER 9. USING STREAMS FOR APACHE KAFKA WITH MIRRORMAKER 2

95

https://docs.redhat.com/en/documentation/red_hat_streams_for_apache_kafka/2.7/html-single/kafka_configuration_tuning/index#con-high-volume-config-properties-str

Figure 9.1. Topic renaming

By flagging the originating cluster, topics are not replicated back to that cluster.

The concept of replication through remote topics is useful when configuring an architecture that
requires data aggregation. Consumers can subscribe to source and remote topics within the same
cluster, without the need for a separate aggregation cluster.

9.1.2. Unidirectional replication (active/passive)

The MirrorMaker 2 architecture supports unidirectional replication in an active/passive cluster
configuration.

You can use an active/passive cluster configuration to make backups or migrate data to another cluster.
In this situation, you might not want automatic renaming of remote topics.

You can override automatic renaming by adding IdentityReplicationPolicy to the source connector
configuration. With this configuration applied, topics retain their original names.

9.2. CONFIGURING MIRRORMAKER 2 CONNECTORS

Use MirrorMaker 2 connector configuration for the internal connectors that orchestrate the
synchronization of data between Kafka clusters.

MirrorMaker 2 consists of the following connectors:

MirrorSourceConnector

The source connector replicates topics from a source cluster to a target cluster. It also replicates
ACLs and is necessary for the MirrorCheckpointConnector to run.

MirrorCheckpointConnector

The checkpoint connector periodically tracks offsets. If enabled, it also synchronizes consumer group

Red Hat Streams for Apache Kafka 2.7 Using Streams for Apache Kafka on RHEL in KRaft mode

96

The checkpoint connector periodically tracks offsets. If enabled, it also synchronizes consumer group
offsets between the source and target cluster.

MirrorHeartbeatConnector

The heartbeat connector periodically checks connectivity between the source and target cluster.

The following table describes connector properties and the connectors you configure to use them.

Table 9.1. MirrorMaker 2 connector configuration properties

Property sourceConnector checkpointConne
ctor

heartbeatConnec
tor

admin.timeout.ms
Timeout for admin tasks, such as
detecting new topics. Default is
60000 (1 minute).

✓ ✓ ✓

replication.policy.class
Policy to define the remote topic
naming convention. Default is
org.apache.kafka.connect.mirror
.DefaultReplicationPolicy.

✓ ✓ ✓

replication.policy.separator
The separator used for topic naming in
the target cluster. By default, the
separator is set to a dot (.). Separator
configuration is only applicable to the
DefaultReplicationPolicy
replication policy class, which defines
remote topic names. The
IdentityReplicationPolicy class
does not use the property as topics
retain their original names.

✓ ✓ ✓

consumer.poll.timeout.ms
Timeout when polling the source
cluster. Default is 1000 (1 second).

✓ ✓

offset-syncs.topic.location
The location of the offset-syncs
topic, which can be the source
(default) or target cluster.

✓ ✓

CHAPTER 9. USING STREAMS FOR APACHE KAFKA WITH MIRRORMAKER 2

97

topic.filter.class
Topic filter to select the topics to
replicate. Default is
org.apache.kafka.connect.mirror
.DefaultTopicFilter.

✓ ✓

config.property.filter.class
Topic filter to select the topic
configuration properties to replicate.
Default is
org.apache.kafka.connect.mirror
.DefaultConfigPropertyFilter.

✓

config.properties.exclude
Topic configuration properties that
should not be replicated. Supports
comma-separated property names
and regular expressions.

✓

offset.lag.max
Maximum allowable (out-of-sync)
offset lag before a remote partition is
synchronized. Default is 100.

✓

offset-syncs.topic.replication.factor
Replication factor for the internal
offset-syncs topic. Default is 3.

✓

refresh.topics.enabled
Enables check for new topics and
partitions. Default is true.

✓

refresh.topics.interval.seconds
Frequency of topic refresh. Default is
600 (10 minutes). By default, a check
for new topics in the source cluster is
made every 10 minutes. You can
change the frequency by adding
refresh.topics.interval.seconds
to the source connector configuration.

✓

Property sourceConnector checkpointConne
ctor

heartbeatConnec
tor

Red Hat Streams for Apache Kafka 2.7 Using Streams for Apache Kafka on RHEL in KRaft mode

98

replication.factor
The replication factor for new topics.
Default is 2.

✓

sync.topic.acls.enabled
Enables synchronization of ACLs from
the source cluster. Default is true. For
more information, see Section 9.5,
“ACL rules synchronization”.

✓

sync.topic.acls.interval.seconds
Frequency of ACL synchronization.
Default is 600 (10 minutes).

✓

sync.topic.configs.enabled
Enables synchronization of topic
configuration from the source cluster.
Default is true.

✓

sync.topic.configs.interval.seconds
Frequency of topic configuration
synchronization. Default 600 (10
minutes).

✓

checkpoints.topic.replication.factor
Replication factor for the internal
checkpoints topic. Default is 3.

 ✓

emit.checkpoints.enabled
Enables synchronization of consumer
offsets to the target cluster. Default is
true.

 ✓

emit.checkpoints.interval.seconds
Frequency of consumer offset
synchronization. Default is 60 (1
minute).

 ✓

Property sourceConnector checkpointConne
ctor

heartbeatConnec
tor

CHAPTER 9. USING STREAMS FOR APACHE KAFKA WITH MIRRORMAKER 2

99

group.filter.class
Group filter to select the consumer
groups to replicate. Default is
org.apache.kafka.connect.mirror
.DefaultGroupFilter.

 ✓

refresh.groups.enabled
Enables check for new consumer
groups. Default is true.

 ✓

refresh.groups.interval.seconds
Frequency of consumer group refresh.
Default is 600 (10 minutes).

 ✓

sync.group.offsets.enabled
Enables synchronization of consumer
group offsets to the target cluster
__consumer_offsets topic. Default
is false.

 ✓

sync.group.offsets.interval.seconds
Frequency of consumer group offset
synchronization. Default is 60 (1
minute).

 ✓

emit.heartbeats.enabled
Enables connectivity checks on the
target cluster. Default is true.

 ✓

emit.heartbeats.interval.seconds
Frequency of connectivity checks.
Default is 1 (1 second).

 ✓

heartbeats.topic.replication.factor
Replication factor for the internal
heartbeats topic. Default is 3.

 ✓

Property sourceConnector checkpointConne
ctor

heartbeatConnec
tor

9.2.1. Changing the location of the consumer group offsets topic

MirrorMaker 2 tracks offsets for consumer groups using internal topics.

Red Hat Streams for Apache Kafka 2.7 Using Streams for Apache Kafka on RHEL in KRaft mode

100

offset-syncs topic

The offset-syncs topic maps the source and target offsets for replicated topic partitions from
record metadata.

checkpoints topic

The checkpoints topic maps the last committed offset in the source and target cluster for
replicated topic partitions in each consumer group.

As they are used internally by MirrorMaker 2, you do not interact directly with these topics.

MirrorCheckpointConnector emits checkpoints for offset tracking. Offsets for the checkpoints topic
are tracked at predetermined intervals through configuration. Both topics enable replication to be fully
restored from the correct offset position on failover.

The location of the offset-syncs topic is the source cluster by default. You can use the offset-
syncs.topic.location connector configuration to change this to the target cluster. You need read/write
access to the cluster that contains the topic. Using the target cluster as the location of the offset-syncs
topic allows you to use MirrorMaker 2 even if you have only read access to the source cluster.

9.2.2. Synchronizing consumer group offsets

The __consumer_offsets topic stores information on committed offsets for each consumer group.
Offset synchronization periodically transfers the consumer offsets for the consumer groups of a source
cluster into the consumer offsets topic of a target cluster.

Offset synchronization is particularly useful in an active/passive configuration. If the active cluster goes
down, consumer applications can switch to the passive (standby) cluster and pick up from the last
transferred offset position.

To use topic offset synchronization, enable the synchronization by adding sync.group.offsets.enabled
to the checkpoint connector configuration, and setting the property to true. Synchronization is disabled
by default.

When using the IdentityReplicationPolicy in the source connector, it also has to be configured in the
checkpoint connector configuration. This ensures that the mirrored consumer offsets will be applied for
the correct topics.

Consumer offsets are only synchronized for consumer groups that are not active in the target cluster. If
the consumer groups are in the target cluster, the synchronization cannot be performed and an
UNKNOWN_MEMBER_ID error is returned.

If enabled, the synchronization of offsets from the source cluster is made periodically. You can change
the frequency by adding sync.group.offsets.interval.seconds and
emit.checkpoints.interval.seconds to the checkpoint connector configuration. The properties specify
the frequency in seconds that the consumer group offsets are synchronized, and the frequency of
checkpoints emitted for offset tracking. The default for both properties is 60 seconds. You can also
change the frequency of checks for new consumer groups using the refresh.groups.interval.seconds
property, which is performed every 10 minutes by default.

Because the synchronization is time-based, any switchover by consumers to a passive cluster will likely
result in some duplication of messages.

NOTE

CHAPTER 9. USING STREAMS FOR APACHE KAFKA WITH MIRRORMAKER 2

101

NOTE

If you have an application written in Java, you can use the RemoteClusterUtils.java
utility to synchronize offsets through the application. The utility fetches remote offsets
for a consumer group from the checkpoints topic.

9.2.3. Deciding when to use the heartbeat connector

The heartbeat connector emits heartbeats to check connectivity between source and target Kafka
clusters. An internal heartbeat topic is replicated from the source cluster, which means that the
heartbeat connector must be connected to the source cluster. The heartbeat topic is located on the
target cluster, which allows it to do the following:

Identify all source clusters it is mirroring data from

Verify the liveness and latency of the mirroring process

This helps to make sure that the process is not stuck or has stopped for any reason. While the heartbeat
connector can be a valuable tool for monitoring the mirroring processes between Kafka clusters, it’s not
always necessary to use it. For example, if your deployment has low network latency or a small number of
topics, you might prefer to monitor the mirroring process using log messages or other monitoring tools.
If you decide not to use the heartbeat connector, simply omit it from your MirrorMaker 2 configuration.

9.2.4. Aligning the configuration of MirrorMaker 2 connectors

To ensure that MirrorMaker 2 connectors work properly, make sure to align certain configuration
settings across connectors. Specifically, ensure that the following properties have the same value across
all applicable connectors:

replication.policy.class

replication.policy.separator

offset-syncs.topic.location

topic.filter.class

For example, the value for replication.policy.class must be the same for the source, checkpoint, and
heartbeat connectors. Mismatched or missing settings cause issues with data replication or offset
syncing, so it’s essential to keep all relevant connectors configured with the same settings.

9.3. CONNECTOR PRODUCER AND CONSUMER CONFIGURATION

MirrorMaker 2 connectors use internal producers and consumers. If needed, you can configure these
producers and consumers to override the default settings.

IMPORTANT

Producer and consumer configuration options depend on the MirrorMaker 2
implementation, and may be subject to change.

Producer and consumer configuration applies to all connectors. You specify the configuration in the
config/connect-mirror-maker.properties file.

Use the properties file to override any default configuration for the producers and consumers in the

Red Hat Streams for Apache Kafka 2.7 Using Streams for Apache Kafka on RHEL in KRaft mode

102

Use the properties file to override any default configuration for the producers and consumers in the
following format:

<source_cluster_name>.consumer.<property>

<source_cluster_name>.producer.<property>

<target_cluster_name>.consumer.<property>

<target_cluster_name>.producer.<property>

The following example shows how you configure the producers and consumers. Though the properties
are set for all connectors, some configuration properties are only relevant to certain connectors.

Example configuration for connector producers and consumers

9.4. SPECIFYING A MAXIMUM NUMBER OF TASKS

Connectors create the tasks that are responsible for moving data in and out of Kafka. Each connector
comprises one or more tasks that are distributed across a group of worker pods that run the tasks.
Increasing the number of tasks can help with performance issues when replicating a large number of
partitions or synchronizing the offsets of a large number of consumer groups.

Tasks run in parallel. Workers are assigned one or more tasks. A single task is handled by one worker pod,
so you don’t need more worker pods than tasks. If there are more tasks than workers, workers handle
multiple tasks.

You can specify the maximum number of connector tasks in your MirrorMaker configuration using the
tasks.max property. Without specifying a maximum number of tasks, the default setting is a single task.

The heartbeat connector always uses a single task.

The number of tasks that are started for the source and checkpoint connectors is the lower value
between the maximum number of possible tasks and the value for tasks.max. For the source connector,
the maximum number of tasks possible is one for each partition being replicated from the source cluster.
For the checkpoint connector, the maximum number of tasks possible is one for each consumer group
being replicated from the source cluster. When setting a maximum number of tasks, consider the
number of partitions and the hardware resources that support the process.

If the infrastructure supports the processing overhead, increasing the number of tasks can improve
throughput and latency. For example, adding more tasks reduces the time taken to poll the source
cluster when there is a high number of partitions or consumer groups.

tasks.max configuration for MirrorMaker connectors

clusters=cluster-1,cluster-2

...
cluster-1.consumer.fetch.max.bytes=52428800
cluster-2.producer.batch.size=327680
cluster-2.producer.linger.ms=100
cluster-2.producer.request.timeout.ms=30000

clusters=cluster-1,cluster-2
...
tasks.max = 10

CHAPTER 9. USING STREAMS FOR APACHE KAFKA WITH MIRRORMAKER 2

103

By default, MirrorMaker 2 checks for new consumer groups every 10 minutes. You can adjust the
refresh.groups.interval.seconds configuration to change the frequency. Take care when adjusting
lower. More frequent checks can have a negative impact on performance.

9.5. ACL RULES SYNCHRONIZATION

If AclAuthorizer is being used, ACL rules that manage access to brokers also apply to remote topics.
Users that can read a source topic can read its remote equivalent.

NOTE

OAuth 2.0 authorization does not support access to remote topics in this way.

9.6. RUNNING MIRRORMAKER 2 IN DEDICATED MODE

Use MirrorMaker 2 to synchronize data between Kafka clusters through configuration. This procedure
shows how to configure and run a dedicated single-node MirrorMaker 2 cluster. Dedicated clusters use
Kafka Connect worker nodes to mirror data between Kafka clusters.

NOTE

It is also possible to run MirrorMaker 2 in distributed mode. MirrorMaker 2 operates as
connectors in both dedicated and distributed modes. When running a dedicated
MirrorMaker cluster, connectors are configured in the Kafka Connect cluster. As a
consequence, this allows direct access to the Kafka Connect cluster, the running of
additional connectors, and use of the REST API. For more information, refer to the
Apache Kafka documentation.

The configuration must specify:

Each Kafka cluster

Connection information for each cluster, including TLS authentication

The replication flow and direction

Cluster to cluster

Topic to topic

Replication rules

Committed offset tracking intervals

This procedure describes how to implement MirrorMaker 2 by creating the configuration in a properties
file, then passing the properties when using the MirrorMaker script file to set up the connections.

You can specify the topics and consumer groups you wish to replicate from a source cluster. You specify
the names of the source and target clusters, then specify the topics and consumer groups to replicate.

In the following example, topics and consumer groups are specified for replication from cluster 1 to 2.

Example configuration to replicate specific topics and consumer groups

Red Hat Streams for Apache Kafka 2.7 Using Streams for Apache Kafka on RHEL in KRaft mode

104

https://kafka.apache.org/documentation/

You can provide a list of names or use a regular expression. By default, all topics and consumer groups
are replicated if you do not set these properties. You can also replicate all topics and consumer groups
by using .* as a regular expression. However, try to specify only the topics and consumer groups you
need to avoid causing any unnecessary extra load on the cluster.

Before you begin

A sample configuration properties file is provided in ./config/connect-mirror-maker.properties.

Prerequisites

Streams for Apache Kafka is installed on each host , and the configuration files are available.

Procedure

1. Open the sample properties file in a text editor, or create a new one, and edit the file to include
connection information and the replication flows for each Kafka cluster.
The following example shows a configuration to connect two clusters, cluster-1 and cluster-2,
bidirectionally. Cluster names are configurable through the clusters property.

Example MirrorMaker 2 configuration

clusters=cluster-1,cluster-2
cluster-1->cluster-2.topics = topic-1, topic-2
cluster-1->cluster-2.groups = group-1, group-2

clusters=cluster-1,cluster-2 1

cluster-1.bootstrap.servers=<cluster_name>-kafka-bootstrap-<project_name_one>:443 2
cluster-1.security.protocol=SSL 3
cluster-1.ssl.truststore.password=<truststore_name>
cluster-1.ssl.truststore.location=<path_to_truststore>/truststore.cluster-1.jks_
cluster-1.ssl.keystore.password=<keystore_name>
cluster-1.ssl.keystore.location=<path_to_keystore>/user.cluster-1.p12

cluster-2.bootstrap.servers=<cluster_name>-kafka-bootstrap-<project_name_two>:443 4
cluster-2.security.protocol=SSL 5
cluster-2.ssl.truststore.password=<truststore_name>
cluster-2.ssl.truststore.location=<path_to_truststore>/truststore.cluster-2.jks_
cluster-2.ssl.keystore.password=<keystore_name>
cluster-2.ssl.keystore.location=<path_to_keystore>/user.cluster-2.p12

cluster-1->cluster-2.enabled=true 6
cluster-2->cluster-1.enabled=true 7
cluster-1->cluster-2.topics=.* 8
cluster-2->cluster-1.topics=topic-1, topic-2 9
cluster-1->cluster-2.groups=.* 10
cluster-2->cluster-1.groups=group-1, group-2 11

replication.policy.separator=- 12
sync.topic.acls.enabled=false 13
refresh.topics.interval.seconds=60 14
refresh.groups.interval.seconds=60 15

CHAPTER 9. USING STREAMS FOR APACHE KAFKA WITH MIRRORMAKER 2

105

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

1

2

3

Each Kafka cluster is identified with its alias.

Connection information for cluster-1, using the bootstrap address and port 443. Both
clusters use port 443 to connect to Kafka using OpenShift Routes.

The ssl. properties define TLS configuration for cluster-1.

Connection information for cluster-2.

The ssl. properties define the TLS configuration for cluster-2.

Replication flow enabled from cluster-1 to cluster-2.

Replication flow enabled from cluster-2 to cluster-1.

Replication of all topics from cluster-1 to cluster-2. The source connector replicates the
specified topics. The checkpoint connector tracks offsets for the specified topics.

Replication of specific topics from cluster-2 to cluster-1.

Replication of all consumer groups from cluster-1 to cluster-2. The checkpoint connector
replicates the specified consumer groups.

Replication of specific consumer groups from cluster-2 to cluster-1.

Defines the separator used for the renaming of remote topics.

When enabled, ACLs are applied to synchronized topics. The default is false.

The period between checks for new topics to synchronize.

The period between checks for new consumer groups to synchronize.

2. OPTION: If required, add a policy that overrides the automatic renaming of remote topics.
Instead of prepending the name with the name of the source cluster, the topic retains its
original name.
This optional setting is used for active/passive backups and data migration.

3. OPTION: If you want to synchronize consumer group offsets, add configuration to enable and
manage the synchronization:

Optional setting to synchronize consumer group offsets, which is useful for recovery in an
active/passive configuration. Synchronization is not enabled by default.

If the synchronization of consumer group offsets is enabled, you can adjust the frequency
of the synchronization.

Adjusts the frequency of checks for offset tracking. If you change the frequency of offset

replication.policy.class=org.apache.kafka.connect.mirror.IdentityReplicationPolicy

refresh.groups.interval.seconds=60
sync.group.offsets.enabled=true 1
sync.group.offsets.interval.seconds=60 2
emit.checkpoints.interval.seconds=60 3

Red Hat Streams for Apache Kafka 2.7 Using Streams for Apache Kafka on RHEL in KRaft mode

106

Adjusts the frequency of checks for offset tracking. If you change the frequency of offset
synchronization, you might also need to adjust the frequency of these checks.

4. Start Kafka in the target clusters:

5. Start MirrorMaker with the cluster connection configuration and replication policies you defined
in your properties file:

MirrorMaker sets up connections between the clusters.

6. For each target cluster, verify that the topics are being replicated:

9.7. (DEPRECATED) USING MIRRORMAKER 2 IN LEGACY MODE

This procedure describes how to configure MirrorMaker 2 to use it in legacy mode. Legacy mode
supports the previous version of MirrorMaker.

The MirrorMaker script /opt/kafka/bin/kafka-mirror-maker.sh can run MirrorMaker 2 in legacy mode.

IMPORTANT

Kafka MirrorMaker 1 (referred to as just MirrorMaker in the documentation) has been
deprecated in Apache Kafka 3.0.0 and will be removed in Apache Kafka 4.0.0. As a result,
Kafka MirrorMaker 1 has been deprecated in Streams for Apache Kafka as well. Kafka
MirrorMaker 1 will be removed from Streams for Apache Kafka when we adopt Apache
Kafka 4.0.0. As a replacement, use MirrorMaker 2 with the IdentityReplicationPolicy.

Prerequisites

You need the properties files you currently use with the legacy version of MirrorMaker.

/opt/kafka/config/consumer.properties

/opt/kafka/config/producer.properties

Procedure

1. Edit the MirrorMaker consumer.properties and producer.properties files to turn off
MirrorMaker 2 features.
For example:

/opt/kafka/bin/kafka-server-start.sh -daemon \
/opt/kafka/config/kraft/server.properties

/opt/kafka/bin/connect-mirror-maker.sh \
/opt/kafka/config/connect-mirror-maker.properties

/opt/kafka/bin/kafka-topics.sh --bootstrap-server <broker_host>:<port> --list

replication.policy.class=org.apache.kafka.mirror.LegacyReplicationPolicy 1

refresh.topics.enabled=false 2
refresh.groups.enabled=false

CHAPTER 9. USING STREAMS FOR APACHE KAFKA WITH MIRRORMAKER 2

107

1

2

Emulate the previous version of MirrorMaker.

MirrorMaker 2 features disabled, including the internal checkpoint and heartbeat topics

2. Save the changes and restart MirrorMaker with the properties files you used with the previous
version of MirrorMaker:

The consumer properties provide the configuration for the source cluster and the producer
properties provide the target cluster configuration.

MirrorMaker sets up connections between the clusters.

3. Start Kafka in the target cluster:

4. For the target cluster, verify that the topics are being replicated:

emit.checkpoints.enabled=false
emit.heartbeats.enabled=false
sync.topic.configs.enabled=false
sync.topic.acls.enabled=false

su - kafka /opt/kafka/bin/kafka-mirror-maker.sh \
--consumer.config /opt/kafka/config/consumer.properties \
--producer.config /opt/kafka/config/producer.properties \
--num.streams=2

su - kafka
/opt/kafka/bin/kafka-server-start.sh -daemon /opt/kafka/config/kraft/server.properties

/opt/kafka/bin/kafka-topics.sh --bootstrap-server <broker_host>:<port> --list

Red Hat Streams for Apache Kafka 2.7 Using Streams for Apache Kafka on RHEL in KRaft mode

108

CHAPTER 10. CONFIGURING LOGGING FOR KAFKA
COMPONENTS

Configure the logging levels of Kafka components directly in the configuration properties. You can also
change the broker levels dynamically for Kafka brokers, Kafka Connect, and MirrorMaker 2.

Increasing the log level detail, such as from INFO to DEBUG, can aid in troubleshooting a Kafka cluster.
However, more verbose logs may also negatively impact performance and make it more difficult to
diagnose issues.

10.1. CONFIGURING KAFKA LOGGING PROPERTIES

Kafka components use the Log4j framework for error logging. By default, logging configuration is read
from the classpath or config directory using the following properties files:

log4j.properties for Kafka

connect-log4j.properties for Kafka Connect and MirrorMaker 2

If they are not set explicitly, loggers inherit the log4j.rootLogger logging level configuration in each file.
You can change the logging level in these files. You can also add and set logging levels for other loggers.

You can change the location and name of logging properties file using the KAFKA_LOG4J_OPTS
environment variable, which is used by the start script for the component.

Passing the name and location of the logging properties file used by Kafka nodes

Passing the name and location of the logging properties file used by Kafka Connect

Passing the name and location of the logging properties file used by MirrorMaker 2

10.2. DYNAMICALLY CHANGE LOGGING LEVELS FOR KAFKA BROKER
LOGGERS

Kafka broker logging is provided by broker loggers in each broker. Dynamically change the logging level
for broker loggers at runtime without having to restart the broker.

su - kafka
export KAFKA_LOG4J_OPTS="-Dlog4j.configuration=file:/my/path/to/log4j.properties"; \
/opt/kafka/bin/kafka-server-start.sh \
/opt/kafka/config/kraft/server.properties

su - kafka
export KAFKA_LOG4J_OPTS="-Dlog4j.configuration=file:/my/path/to/connect-log4j.properties"; \
/opt/kafka/bin/connect-distributed.sh \
/opt/kafka/config/connect-distributed.properties

su - kafka
export KAFKA_LOG4J_OPTS="-Dlog4j.configuration=file:/my/path/to/connect-log4j.properties"; \
/opt/kafka/bin/connect-mirror-maker.sh \
/opt/kafka/config/connect-mirror-maker.properties

CHAPTER 10. CONFIGURING LOGGING FOR KAFKA COMPONENTS

109

You can also reset broker loggers dynamically to their default logging levels.

Prerequisites

Streams for Apache Kafka is installed on each host , and the configuration files are available.

Kafka is running.

Procedure

1. Switch to the kafka user:

2. List all the broker loggers for a broker by using the kafka-configs.sh tool:

For example, for broker 0:

This returns the logging level for each logger: TRACE, DEBUG, INFO, WARN, ERROR, or
FATAL.

For example:

3. Change the logging level for one or more broker loggers. Use the --alter and --add-config
options and specify each logger and its level as a comma-separated list in double quotes.

For example, for broker 0:

If successful this returns:

Resetting a broker logger

You can reset one or more broker loggers to their default logging levels by using the kafka-configs.sh

su - kafka

/opt/kafka/bin/kafka-configs.sh --bootstrap-server <broker_address> --describe --entity-type
broker-loggers --entity-name BROKER-ID

/opt/kafka/bin/kafka-configs.sh --bootstrap-server localhost:9092 --describe --entity-type
broker-loggers --entity-name 0

#...
kafka.controller.ControllerChannelManager=INFO sensitive=false synonyms={}
kafka.log.TimeIndex=INFO sensitive=false synonyms={}

/opt/kafka/bin/kafka-configs.sh --bootstrap-server <broker_address> --alter --add-config
"LOGGER-ONE=NEW-LEVEL,LOGGER-TWO=NEW-LEVEL" --entity-type broker-loggers --
entity-name BROKER-ID

/opt/kafka/bin/kafka-configs.sh --bootstrap-server localhost:9092 --alter --add-config
"kafka.controller.ControllerChannelManager=WARN,kafka.log.TimeIndex=WARN" --entity-
type broker-loggers --entity-name 0

Completed updating config for broker: 0.

Red Hat Streams for Apache Kafka 2.7 Using Streams for Apache Kafka on RHEL in KRaft mode

110

You can reset one or more broker loggers to their default logging levels by using the kafka-configs.sh
tool. Use the --alter and --delete-config options and specify each broker logger as a comma-separated
list in double quotes:

Additional resources

Updating Broker Configs in the Apache Kafka documentation

10.3. DYNAMICALLY CHANGE LOGGING LEVELS FOR KAFKA
CONNECT AND MIRRORMAKER 2

Dynamically change logging levels for Kafka Connect workers or MirrorMaker 2 connectors at runtime
without having to restart.

Use the Kafka Connect API to change the log level temporarily for a worker or connector logger. The
Kafka Connect API provides an admin/loggers endpoint to get or modify logging levels. When you
change the log level using the API, the logger configuration in the connect-log4j.properties
configuration file does not change. If required, you can permanently change the logging levels in the
configuration file.

NOTE

You can only change the logging level of MirrorMaker 2 at runtime when in distributed or
standalone mode. Dedicated MirrorMaker 2 clusters have no Kafka Connect REST API, so
changing the logging level is not possible.

The default listener for the Kafka Connect API is on port 8083, which is used in this procedure. You can
change or add more listeners, and also enable TLS authentication, using admin.listeners configuration.

Example listener configuration for the admin endpoint

If you do not want the admin endpoint to be available, you can disable it in the configuration by
specifying an empty string.

Example listener configuration to disable the admin endpoint

Prerequisites

Streams for Apache Kafka is installed on each host , and the configuration files are available.

Kafka is running.

/opt/kafka/bin/kafka-configs.sh --bootstrap-server localhost:9092 --alter --delete-config "LOGGER-
ONE,LOGGER-TWO" --entity-type broker-loggers --entity-name BROKER-ID

admin.listeners=https://localhost:8083
admin.listeners.https.ssl.truststore.location=/path/to/truststore.jks
admin.listeners.https.ssl.truststore.password=123456
admin.listeners.https.ssl.keystore.location=/path/to/keystore.jks
admin.listeners.https.ssl.keystore.password=123456

admin.listeners=

CHAPTER 10. CONFIGURING LOGGING FOR KAFKA COMPONENTS

111

https://kafka.apache.org/documentation/#dynamicbrokerconfigs

Kafka Connect or MirrorMaker 2 is running.

Procedure

1. Switch to the kafka user:

2. Check the current logging level for the loggers configured in the connect-log4j.properties file:

Use a curl command to check the logging levels from the admin/loggers endpoint of the Kafka
Connect API:

jq prints the output in JSON format. The list shows standard org and root level loggers, plus
any specific loggers with modified logging levels.

If you configure TLS (Transport Layer Security) authentication for the admin.listeners
configuration in Kafka Connect, then the address of the loggers endpoint is the value specified
for admin.listeners with the protocol as https, such as https://localhost:8083.

You can also get the log level of a specific logger:

3. Use a PUT method to change the log level for a logger:

su - kafka

$ cat /opt/kafka/config/connect-log4j.properties

...
log4j.rootLogger=INFO, stdout, connectAppender
...
log4j.logger.org.reflections=ERROR

curl -s http://localhost:8083/admin/loggers/ | jq

{
 "org.reflections": {
 "level": "ERROR"
 },
 "root": {
 "level": "INFO"
 }
}

curl -s
http://localhost:8083/admin/loggers/org.apache.kafka.connect.mirror.MirrorCheckpointConnecto
r | jq

{
 "level": "INFO"
}

curl -Ss -X PUT -H 'Content-Type: application/json' -d '{"level": "TRACE"}'
http://localhost:8083/admin/loggers/root

{

Red Hat Streams for Apache Kafka 2.7 Using Streams for Apache Kafka on RHEL in KRaft mode

112

If you change the root logger, the logging level for loggers that used the root logging level by
default are also changed.

 # ...

 "org.reflections": {
 "level": "TRACE"
 },
 "org.reflections.Reflections": {
 "level": "TRACE"
 },
 "root": {
 "level": "TRACE"
 }
}

CHAPTER 10. CONFIGURING LOGGING FOR KAFKA COMPONENTS

113

CHAPTER 11. SETTING LIMITS ON BROKERS USING THE
KAFKA STATIC QUOTA PLUGIN

IMPORTANT

The Kafka Static Quota plugin is a Technology Preview only. Technology Preview features
are not supported with Red Hat production service-level agreements (SLAs) and might
not be functionally complete. Red Hat does not recommend implementing any
Technology Preview features in production environments. This Technology Preview
feature provides early access to upcoming product innovations, enabling you to test
functionality and provide feedback during the development process. For more
information about the support scope of Red Hat Technology Preview features, see
Technology Preview Features Support Scope .

Use the Kafka Static Quota plugin to set throughput and storage limits on brokers in your Kafka cluster.
You enable the plugin and set limits by adding properties to the Kafka configuration file. You can set a
byte-rate threshold and storage quotas to put limits on the clients interacting with your brokers.

You can set byte-rate thresholds for producer and consumer bandwidth. The total limit is distributed
across all clients accessing the broker. For example, you can set a byte-rate threshold of 40 MBps for
producers. If two producers are running, they are each limited to a throughput of 20 MBps.

Storage quotas throttle Kafka disk storage limits between a soft limit and hard limit. The limits apply to
all available disk space. Producers are slowed gradually between the soft and hard limit. The limits
prevent disks filling up too quickly and exceeding their capacity. Full disks can lead to issues that are
hard to rectify. The hard limit is the maximum storage limit.

NOTE

For JBOD storage, the limit applies across all disks. If a broker is using two 1 TB disks and
the quota is 1.1 TB, one disk might fill and the other disk will be almost empty.

Prerequisites

Streams for Apache Kafka is installed on each host , and the configuration files are available.

Procedure

1. Edit the Kafka configuration properties file.
The plugin properties are shown in this example configuration.

Example Kafka Static Quota plugin configuration

...
client.quota.callback.class=io.strimzi.kafka.quotas.StaticQuotaCallback 1
client.quota.callback.static.produce=1000000 2
client.quota.callback.static.fetch=1000000 3
client.quota.callback.static.storage.soft=400000000000 4
client.quota.callback.static.storage.hard=500000000000 5
client.quota.callback.static.storage.check-interval=5 6
...

Red Hat Streams for Apache Kafka 2.7 Using Streams for Apache Kafka on RHEL in KRaft mode

114

https://access.redhat.com/support/offerings/techpreview/

1

2

3

4

5

6

Loads the Kafka Static Quota plugin.

Sets the producer byte-rate threshold. 1 MBps in this example.

Sets the consumer byte-rate threshold. 1 MBps in this example.

Sets the lower soft limit for storage. 400 GB in this example.

Sets the higher hard limit for storage. 500 GB in this example.

Sets the interval in seconds between checks on storage. 5 seconds in this example. You can
set this to 0 to disable the check.

2. Start the Kafka broker with the default configuration file.

3. Verify that the Kafka broker is running.

su - kafka
/opt/kafka/bin/kafka-server-start.sh -daemon /opt/kafka/config/kraft/server.properties

jcmd | grep Kafka

CHAPTER 11. SETTING LIMITS ON BROKERS USING THE KAFKA STATIC QUOTA PLUGIN

115

CHAPTER 12. SCALING CLUSTERS BY ADDING OR REMOVING
BROKERS

Scaling Kafka clusters by adding brokers can increase the performance and reliability of the cluster.
Adding more brokers increases available resources, allowing the cluster to handle larger workloads and
process more messages. It can also improve fault tolerance by providing more replicas and backups.
Conversely, removing underutilized brokers can reduce resource consumption and improve efficiency.
Scaling must be done carefully to avoid disruption or data loss. By redistributing partitions across all
brokers in the cluster, the resource utilization of each broker is reduced, which can increase the overall
throughput of the cluster.

NOTE

To increase the throughput of a Kafka topic, you can increase the number of partitions for
that topic. This allows the load of the topic to be shared between different brokers in the
cluster. However, if every broker is constrained by a specific resource (such as I/O),
adding more partitions will not increase the throughput. In this case, you need to add
more brokers to the cluster.

Adding brokers when running a multi-node Kafka cluster affects the number of brokers in the cluster
that act as replicas. The actual replication factor for topics is determined by settings for the
default.replication.factor and min.insync.replicas, and the number of available brokers. For example,
a replication factor of 3 means that each partition of a topic is replicated across three brokers, ensuring
fault tolerance in the event of a broker failure.

Example replica configuration

When you add or remove brokers, Kafka does not automatically reassign partitions. The best way to do
this is using Cruise Control. You can use Cruise Control’s add-brokers and remove-brokers modes
when scaling a cluster up or down.

Use the add-brokers mode after scaling up a Kafka cluster to move partition replicas from
existing brokers to the newly added brokers.

Use the remove-brokers mode before scaling down a Kafka cluster to move partition replicas
off the brokers that are going to be removed.

NOTE

When scaling down brokers, you cannot specify which specific pod to remove from the
cluster. Instead, the broker removal process starts from the highest numbered pod.

default.replication.factor = 3
min.insync.replicas = 2

Red Hat Streams for Apache Kafka 2.7 Using Streams for Apache Kafka on RHEL in KRaft mode

116

CHAPTER 13. USING CRUISE CONTROL FOR CLUSTER
REBALANCING

Cruise Control is an open source system for automating Kafka operations, such as monitoring cluster
workload, rebalancing a cluster based on predefined constraints, and detecting and fixing anomalies. It
consists of four main components—​the Load Monitor, the Analyzer, the Anomaly Detector, and the
Executor—​and a REST API for client interactions.

You can use Cruise Control to rebalance a Kafka cluster. Cruise Control for Streams for Apache Kafka
on Red Hat Enterprise Linux is provided as a separate zipped distribution.

Streams for Apache Kafka utilizes the REST API to support the following Cruise Control features:

Generating optimization proposals from optimization goals.

Rebalancing a Kafka cluster based on an optimization proposal.

Optimization goals

An optimization goal describes a specific objective to achieve from a rebalance. For example,
a goal might be to distribute topic replicas across brokers more evenly. You can change what
goals to include through configuration. A goal is defined as a hard goal or soft goal. You can
add hard goals through Cruise Control deployment configuration. You also have main,
default, and user-provided goals that fit into each of these categories.

Hard goals are preset and must be satisfied for an optimization proposal to be
successful.

Soft goals do not need to be satisfied for an optimization proposal to be successful.
They can be set aside if it means that all hard goals are met.

Main goals are inherited from Cruise Control. Some are preset as hard goals. Main goals
are used in optimization proposals by default.

Default goals are the same as the main goals by default. You can specify your own set
of default goals.

User-provided goals are a subset of default goals that are configured for generating a
specific optimization proposal.

Optimization proposals

Optimization proposals comprise the goals you want to achieve from a rebalance. You
generate an optimization proposal to create a summary of proposed changes and the results
that are possible with the rebalance. The goals are assessed in a specific order of priority.
You can then choose to approve or reject the proposal. You can reject the proposal to run it
again with an adjusted set of goals.
You can generate and approve an optimization proposal by making a request to one of the
following API endpoints.

/rebalance endpoint to run a full rebalance.

/add_broker endpoint to rebalance after adding brokers when scaling up a Kafka cluster.

/remove_broker endpoint to rebalance before removing brokers when scaling down a
Kafka cluster.

CHAPTER 13. USING CRUISE CONTROL FOR CLUSTER REBALANCING

117

https://github.com/linkedin/cruise-control

You configure optimization goals through a configuration properties file. Streams for Apache Kafka
provides example properties files for Cruise Control.

13.1. CRUISE CONTROL COMPONENTS AND FEATURES

Cruise Control consists of four main components—​the Load Monitor, the Analyzer, the Anomaly
Detector, and the Executor—​and a REST API for client interactions. Streams for Apache Kafka utilizes
the REST API to support the following Cruise Control features:

Generating optimization proposals from optimization goals.

Rebalancing a Kafka cluster based on an optimization proposal.

Optimization goals

An optimization goal describes a specific objective to achieve from a rebalance. For example, a goal
might be to distribute topic replicas across brokers more evenly. You can change what goals to
include through configuration. A goal is defined as a hard goal or soft goal. You can add hard goals
through Cruise Control deployment configuration. You also have main, default, and user-provided
goals that fit into each of these categories.

Hard goals are preset and must be satisfied for an optimization proposal to be successful.

Soft goals do not need to be satisfied for an optimization proposal to be successful. They
can be set aside if it means that all hard goals are met.

Main goals are inherited from Cruise Control. Some are preset as hard goals. Main goals are
used in optimization proposals by default.

Default goals are the same as the main goals by default. You can specify your own set of
default goals.

User-provided goals are a subset of default goals that are configured for generating a
specific optimization proposal.

Optimization proposals

Optimization proposals comprise the goals you want to achieve from a rebalance. You generate an
optimization proposal to create a summary of proposed changes and the results that are possible
with the rebalance. The goals are assessed in a specific order of priority. You can then choose to
approve or reject the proposal. You can reject the proposal to run it again with an adjusted set of
goals.
You can generate an optimization proposal in one of three modes.

full is the default mode and runs a full rebalance.

add-brokers is the mode you use after adding brokers when scaling up a Kafka cluster.

remove-brokers is the mode you use before removing brokers when scaling down a Kafka
cluster.

Other Cruise Control features are not currently supported, including self healing, notifications, write-
your-own goals, and changing the topic replication factor.

Additional resources

Red Hat Streams for Apache Kafka 2.7 Using Streams for Apache Kafka on RHEL in KRaft mode

118

Cruise Control documentation

13.2. DOWNLOADING CRUISE CONTROL

A ZIP file distribution of Cruise Control is available for download from the Red Hat website. You can
download the latest version of Red Hat Streams for Apache Kafka from the Streams for Apache Kafka
software downloads page.

Procedure

1. Download the latest version of the Red Hat Streams for Apache Kafka Cruise Control archive
from the Red Hat Customer Portal .

2. Create the /opt/cruise-control directory:

3. Extract the contents of the Cruise Control ZIP file to the new directory:

4. Change the ownership of the /opt/cruise-control directory to the kafka user:

13.3. DEPLOYING THE CRUISE CONTROL METRICS REPORTER

Before starting Cruise Control, you must configure the Kafka brokers to use the provided Cruise Control
Metrics Reporter. The file for the Metrics Reporter is supplied with the Streams for Apache Kafka
installation artifacts.

When loaded at runtime, the Metrics Reporter sends metrics to the __CruiseControlMetrics topic, one
of three auto-created topics. Cruise Control uses these metrics to create and update the workload
model and to calculate optimization proposals.

Prerequisites

Streams for Apache Kafka is installed on each host , and the configuration files are available.

You are logged in to Red Hat Enterprise Linux as the kafka user.

Procedure

For each broker in the Kafka cluster and one at a time:

1. Stop the Kafka broker:

2. Edit the Kafka configuration properties file to configure the Cruise Control Metrics Reporter.

a. Add the CruiseControlMetricsReporter class to the metric.reporters configuration option.
Do not remove any existing Metrics Reporters.

sudo mkdir /opt/cruise-control

unzip amq-streams-<version>-cruise-control-bin.zip -d /opt/cruise-control

sudo chown -R kafka:kafka /opt/cruise-control

/opt/kafka/bin/kafka-server-stop.sh

CHAPTER 13. USING CRUISE CONTROL FOR CLUSTER REBALANCING

119

https://github.com/linkedin/cruise-control/wiki/Configurations
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?downloadType=distributions&product=jboss.amq.streams
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?downloadType=distributions&product=jboss.amq.streams&productChanged=yes

metric.reporters=com.linkedin.kafka.cruisecontrol.metricsreporter.CruiseControlMetricsRep
orter

b. Add the following configuration options and values:

cruise.control.metrics.topic.auto.create=true
cruise.control.metrics.topic.num.partitions=1
cruise.control.metrics.topic.replication.factor=1

These options enable the Cruise Control Metrics Reporter to create the
__CruiseControlMetrics topic with a log cleanup policy of DELETE. For more information,
see Auto-created topics and Log cleanup policy for Cruise Control Metrics topic .

3. Configure SSL, if required.

a. In the Kafka configuration properties file, configure SSL between the Cruise Control Metrics
Reporter and the Kafka broker by setting the relevant client configuration properties.
The Metrics Reporter accepts all standard producer-specific configuration properties with
the cruise.control.metrics.reporter prefix. For example:
cruise.control.metrics.reporter.ssl.truststore.password.

b. In the Cruise Control properties file (/opt/cruise-control/config/cruisecontrol.properties)
configure SSL between the Kafka broker and the Cruise Control server by setting the
relevant client configuration properties.
Cruise Control inherits SSL client property options from Kafka and uses those properties for
all Cruise Control server clients.

4. Restart the Kafka broker:

For information on restarting brokers in a multi-node cluster, see Section 3.6, “Performing a
graceful rolling restart of Kafka brokers”.

5. Repeat steps 1-5 for the remaining brokers.

13.4. CONFIGURING AND STARTING CRUISE CONTROL

Configure the properties used by Cruise Control and then start the Cruise Control server using the
kafka-cruise-control-start.sh script. The server is hosted on a single machine for the whole Kafka
cluster.

Three topics are auto-created when Cruise Control starts. For more information, see Auto-created
topics.

Prerequisites

You are logged in to Red Hat Enterprise Linux as the kafka user.

You have downloaded Cruise Control.

You have deployed the Cruise Control Metrics Reporter .

Procedure

/opt/kafka/bin/kafka-server-start.sh -daemon /opt/kafka/config/kraft/server.properties

Red Hat Streams for Apache Kafka 2.7 Using Streams for Apache Kafka on RHEL in KRaft mode

120

1

2

3

4

5

6

7

1. Edit the Cruise Control properties file (/opt/cruise-control/config/cruisecontrol.properties).

2. Configure the properties shown in the following example configuration:

Host and port numbers of the Kafka broker (always port 9092).

Replication factor of the Kafka metric sample store topic. If you are evaluating Cruise
Control in a single-node Kafka cluster, set this property to 1. For production use, set this
property to 2 or more.

The configuration file that sets the maximum capacity limits for broker resources. Use the
file that applies to your Kafka deployment configuration. For more information, see
Capacity configuration .

Comma-separated list of default optimization goals, using fully-qualified domain names
(FQDNs). A number of main optimization goals (see 5) are already set as default
optimization goals; you can add or remove goals if desired. For more information, see
Section 13.5, “Optimization goals overview” .

Comma-separated list of main optimization goals, using FQDNs. To completely exclude
goals from being used to generate optimization proposals, remove them from the list. For
more information, see Section 13.5, “Optimization goals overview” .

Comma-separated list of hard goals, using FQDNs. Seven of the main optimization goals
are already set as hard goals; you can add or remove goals if desired. For more information,
see Section 13.5, “Optimization goals overview” .

The interval, in milliseconds, for refreshing the cached optimization proposal that is

The Kafka cluster to control.
bootstrap.servers=localhost:9092 1

The replication factor of Kafka metric sample store topic
sample.store.topic.replication.factor=2 2

The configuration for the BrokerCapacityConfigFileResolver (supports JBOD, non-JBOD,
and heterogeneous CPU core capacities)
#capacity.config.file=config/capacity.json
#capacity.config.file=config/capacityCores.json
capacity.config.file=config/capacityJBOD.json 3

The list of goals to optimize the Kafka cluster for with pre-computed proposals
default.goals={List of default optimization goals} 4

The list of supported goals
goals={list of main optimization goals} 5

The list of supported hard goals
hard.goals={List of hard goals} 6

How often should the cached proposal be expired and recalculated if necessary
proposal.expiration.ms=60000 7

#Set failure detection to true
kafka.broker.failure.detection.enable=true 8

CHAPTER 13. USING CRUISE CONTROL FOR CLUSTER REBALANCING

121

8

The interval, in milliseconds, for refreshing the cached optimization proposal that is
generated from the default optimization goals. For more information, see Section 13.6,

Enables Cruise Control to use the Kafka API to detect broker failures.

3. Start the Cruise Control server. The server starts on port 9092 by default; optionally, specify a
different port.

4. To verify that Cruise Control is running, send a GET request to the /state endpoint of the Cruise
Control server:

Auto-created topics
The following table shows the three topics that are automatically created when Cruise Control starts.
These topics are required for Cruise Control to work properly and must not be deleted or changed.

Table 13.1. Auto-created topics

Auto-created topic Created by Function

__CruiseControlMetrics Cruise
Control
Metrics
Reporter

Stores the raw metrics from the
Metrics Reporter in each Kafka
broker.

__KafkaCruiseControlPartitionMetricSamples Cruise
Control

Stores the derived metrics for each
partition. These are created by the
Metric Sample Aggregator.

__KafkaCruiseControlModelTrainingSamples Cruise
Control

Stores the metrics samples used to
create the Cluster Workload Model.

To ensure that log compaction is disabled in the auto-created topics, make sure that you configure the
Cruise Control Metrics Reporter as described in Section 13.3, “Deploying the Cruise Control Metrics
Reporter”. Log compaction can remove records that are needed by Cruise Control and prevent it from
working properly.

Additional resources

Log cleanup policy for Cruise Control Metrics topic

13.5. OPTIMIZATION GOALS OVERVIEW

Optimization goals are constraints on workload redistribution and resource utilization across a Kafka
cluster. To rebalance a Kafka cluster, Cruise Control uses optimization goals to generate optimization
proposals.

cd /opt/cruise-control/
./kafka-cruise-control-start.sh config/cruisecontrol.properties <port_number>

curl -X GET 'http://<cc_host>:<cc_port>/kafkacruisecontrol/state'

Red Hat Streams for Apache Kafka 2.7 Using Streams for Apache Kafka on RHEL in KRaft mode

122

https://github.com/linkedin/cruise-control/wiki/Overview#metric-sample-aggregator
https://github.com/linkedin/cruise-control/wiki/Overview#cluster-workload-model

13.5.1. Goals order of priority

Streams for Apache Kafka on Red Hat Enterprise Linux supports all the optimization goals developed in
the Cruise Control project. The supported goals, in the default descending order of priority, are as
follows:

1. Rack-awareness

2. Minimum number of leader replicas per broker for a set of topics

3. Replica capacity

4. Capacity: Disk capacity, Network inbound capacity, Network outbound capacity

5. CPU capacity

6. Replica distribution

7. Potential network output

8. Resource distribution: Disk utilization distribution, Network inbound utilization distribution,
Network outbound utilization distribution

9. Leader bytes-in rate distribution

10. Topic replica distribution

11. CPU usage distribution

12. Leader replica distribution

13. Preferred leader election

14. Kafka Assigner disk usage distribution

15. Intra-broker disk capacity

16. Intra-broker disk usage

For more information on each optimization goal, see Goals in the Cruise Control Wiki.

13.5.2. Goals configuration in the Cruise Control properties file

You configure optimization goals in the cruisecontrol.properties file in the cruise-control/config/
directory. Cruise Control has configurations for hard optimization goals that must be satisfied, as well as
main, default, and user-provided optimization goals.

You can specify the following types of optimization goal in the following configuration:

Main goals — cruisecontrol.properties file

Hard goals — cruisecontrol.properties file

Default goals — cruisecontrol.properties file

User-provided goals — runtime parameters

Optionally, user-provided optimization goals are set at runtime as parameters in requests to the

CHAPTER 13. USING CRUISE CONTROL FOR CLUSTER REBALANCING

123

https://github.com/linkedin/cruise-control/wiki/Pluggable-Components#goals
https://github.com/linkedin/cruise-control/wiki

Optionally, user-provided optimization goals are set at runtime as parameters in requests to the
/rebalance endpoint.

Optimization goals are subject to any capacity limits on broker resources.

13.5.3. Hard and soft optimization goals

Hard goals are goals that must be satisfied in optimization proposals. Goals that are not configured as
hard goals are known as soft goals. You can think of soft goals as best effort goals: they do not need to
be satisfied in optimization proposals, but are included in optimization calculations.

Cruise Control will calculate optimization proposals that satisfy all the hard goals and as many soft goals
as possible (in their priority order). An optimization proposal that does not satisfy all the hard goals is
rejected by the Analyzer and is not sent to the user.

NOTE

For example, you might have a soft goal to distribute a topic’s replicas evenly across the
cluster (the topic replica distribution goal). Cruise Control will ignore this goal if doing so
enables all the configured hard goals to be met.

In Cruise Control, the following main optimization goals are preset as hard goals:

RackAwareGoal; MinTopicLeadersPerBrokerGoal; ReplicaCapacityGoal; DiskCapacityGoal;
NetworkInboundCapacityGoal; NetworkOutboundCapacityGoal; CpuCapacityGoal

To change the hard goals, edit the hard.goals property of the cruisecontrol.properties file and
specify the goals using their fully-qualified domain names.

Increasing the number of hard goals reduces the likelihood that Cruise Control will calculate and
generate valid optimization proposals.

13.5.4. Main optimization goals

The main optimization goals are available to all users. Goals that are not listed in the main optimization
goals are not available for use in Cruise Control operations.

The following main optimization goals are preset in the goals property of the cruisecontrol.properties
file in descending priority order:

RackAwareGoal; MinTopicLeadersPerBrokerGoal; ReplicaCapacityGoal; DiskCapacityGoal;
NetworkInboundCapacityGoal; NetworkOutboundCapacityGoal; ReplicaDistributionGoal;
PotentialNwOutGoal; DiskUsageDistributionGoal; NetworkInboundUsageDistributionGoal;
NetworkOutboundUsageDistributionGoal; CpuUsageDistributionGoal; TopicReplicaDistributionGoal;
LeaderReplicaDistributionGoal; LeaderBytesInDistributionGoal; PreferredLeaderElectionGoal

To reduce complexity, we recommend that you do not change the preset main optimization goals,
unless you need to completely exclude one or more goals from being used to generate optimization
proposals. The priority order of the main optimization goals can be modified, if desired, in the
configuration for default optimization goals.

To modify the preset main optimization goals, specify a list of goals in the goals property in descending
priority order. Use fully-qualified domain names as shown in the cruisecontrol.properties file.

Red Hat Streams for Apache Kafka 2.7 Using Streams for Apache Kafka on RHEL in KRaft mode

124

You must specify at least one main goal, or Cruise Control will crash.

NOTE

If you change the preset main optimization goals, you must ensure that the configured
hard.goals are a subset of the main optimization goals that you configured. Otherwise,
errors will occur when generating optimization proposals.

13.5.5. Default optimization goals

Cruise Control uses the default optimization goals list to generate the cached optimization proposal . For
more information, see Section 13.6, “Optimization proposals overview” .

You can override the default optimization goals at runtime by setting user-provided optimization goals .

The following default optimization goals are preset in the default.goals property of the
cruisecontrol.properties file in descending priority order:

RackAwareGoal; MinTopicLeadersPerBrokerGoal; ReplicaCapacityGoal; DiskCapacityGoal;
NetworkInboundCapacityGoal; NetworkOutboundCapacityGoal; CpuCapacityGoal;
ReplicaDistributionGoal; PotentialNwOutGoal; DiskUsageDistributionGoal;
NetworkInboundUsageDistributionGoal; NetworkOutboundUsageDistributionGoal;
CpuUsageDistributionGoal; TopicReplicaDistributionGoal; LeaderReplicaDistributionGoal;
LeaderBytesInDistributionGoal

You must specify at least one default goal, or Cruise Control will crash.

To modify the default optimization goals, specify a list of goals in the default.goals property in
descending priority order. Default goals must be a subset of the main optimization goals; use fully-
qualified domain names.

13.5.6. User-provided optimization goals

User-provided optimization goals narrow down the configured default goals for a particular optimization
proposal. You can set them, as required, as parameters in HTTP requests to the /rebalance endpoint.
For more information, see Section 13.9, “Generating optimization proposals” .

User-provided optimization goals can generate optimization proposals for different scenarios. For
example, you might want to optimize leader replica distribution across the Kafka cluster without
considering disk capacity or disk utilization. So, you send a request to the /rebalance endpoint
containing a single goal for leader replica distribution.

User-provided optimization goals must:

Include all configured hard goals, or an error occurs

Be a subset of the main optimization goals

To ignore the configured hard goals in an optimization proposal, add the skip_hard_goals_check=true
parameter to the request.

Additional resources

Cruise Control configuration

CHAPTER 13. USING CRUISE CONTROL FOR CLUSTER REBALANCING

125

Configurations in the Cruise Control Wiki

13.6. OPTIMIZATION PROPOSALS OVERVIEW

An optimization proposal is a summary of proposed changes that would produce a more balanced Kafka
cluster, with partition workloads distributed more evenly among the brokers.

Each optimization proposal is based on the set of optimization goals that was used to generate it,
subject to any configured capacity limits on broker resources.

All optimization proposals are estimates of the impact of a proposed rebalance. You can approve or
reject a proposal. You cannot approve a cluster rebalance without first generating the optimization
proposal.

You can run the optimization proposal using one of the following endpoints:

/rebalance

/add_broker

/remove_broker

13.6.1. Rebalancing endpoints

You specify a rebalancing endpoint when you send a POST request to generate an optimization
proposal.

/rebalance

The /rebalance endpoint runs a full rebalance by moving replicas across all the brokers in the cluster.

/add_broker

The add_broker endpoint is used after scaling up a Kafka cluster by adding one or more brokers.
Normally, after scaling up a Kafka cluster, new brokers are used to host only the partitions of newly
created topics. If no new topics are created, the newly added brokers are not used and the existing
brokers remain under the same load. By using the add_broker endpoint immediately after adding
brokers to the cluster, the rebalancing operation moves replicas from existing brokers to the newly
added brokers. You specify the new brokers as a brokerid list in the POST request.

/remove_broker

The /remove_broker endpoint is used before scaling down a Kafka cluster by removing one or more
brokers. If you scale down a Kafka cluster, brokers are shut down even if they host replicas. This can
lead to under-replicated partitions and possibly result in some partitions being under their minimum
ISR (in-sync replicas). To avoid this potential problem, the /remove_broker endpoint moves replicas
off the brokers that are going to be removed. When these brokers are not hosting replicas anymore,
you can safely run the scaling down operation. You specify the brokers you’re removing as a
brokerid list in the POST request.

In general, use the /rebalance endpoint to rebalance a Kafka cluster by spreading the load across
brokers. Use the /add-broker endpoint and /remove_broker endpoint only if you want to scale your
cluster up or down and rebalance the replicas accordingly.

The procedure to run a rebalance is actually the same across the three different endpoints. The only
difference is with listing brokers that have been added or will be removed to the request.

13.6.2. Approving or rejecting an optimization proposal

Red Hat Streams for Apache Kafka 2.7 Using Streams for Apache Kafka on RHEL in KRaft mode

126

https://github.com/linkedin/cruise-control/wiki/Configurations

An optimization proposal summary shows the proposed scope of changes. The summary is returned in a
response to a HTTP request through the Cruise Control API.

When you make a POST request to the /rebalance endpoint, an optimization proposal summary is
returned in the response.

Returning an optimization proposal summary

Use the summary to decide whether to approve or reject an optimization proposal.

Approving an optimization proposal

You approve the optimization proposal by making a POST request to the /rebalance endpoint and
setting the dryrun parameter to false (default true). Cruise Control applies the proposal to the
Kafka cluster and starts a cluster rebalance operation.

Rejecting an optimization proposal

If you choose not to approve an optimization proposal, you can change the optimization goals or
update any of the rebalance performance tuning options , and then generate another proposal. You
can resend a request without the dryrun parameter to generate a new optimization proposal.

Use the optimization proposal to assess the movements required for a rebalance. For example, a
summary describes inter-broker and intra-broker movements. Inter-broker rebalancing moves data
between separate brokers. Intra-broker rebalancing moves data between disks on the same broker
when you are using a JBOD storage configuration. Such information can be useful even if you don’t go
ahead and approve the proposal.

You might reject an optimization proposal, or delay its approval, because of the additional load on a
Kafka cluster when rebalancing.

In the following example, the proposal suggests the rebalancing of data between separate brokers. The
rebalance involves the movement of 55 partition replicas, totaling 12MB of data, across the brokers.
Though the inter-broker movement of partition replicas has a high impact on performance, the total
amount of data is not large. If the total data was much larger, you could reject the proposal, or time
when to approve the rebalance to limit the impact on the performance of the Kafka cluster.

Rebalance performance tuning options can help reduce the impact of data movement. If you can extend
the rebalance period, you can divide the rebalance into smaller batches. Fewer data movements at a
single time reduces the load on the cluster.

Example optimization proposal summary

The proposal will also move 24 partition leaders to different brokers, which has a low impact on
performance.

curl -v -X POST 'cruise-control-server:9090/kafkacruisecontrol/rebalance'

Optimization has 55 inter-broker replica (12 MB) moves, 0 intra-broker
replica (0 MB) moves and 24 leadership moves with a cluster model of 5
recent windows and 100.000% of the partitions covered.
Excluded Topics: [].
Excluded Brokers For Leadership: [].
Excluded Brokers For Replica Move: [].
Counts: 3 brokers 343 replicas 7 topics.
On-demand Balancedness Score Before (78.012) After (82.912).
Provision Status: RIGHT_SIZED.

CHAPTER 13. USING CRUISE CONTROL FOR CLUSTER REBALANCING

127

The balancedness scores are measurements of the overall balance of the Kafka Cluster before and after
the optimization proposal is approved. A balancedness score is based on optimization goals. If all goals
are satisfied, the score is 100. The score is reduced for each goal that will not be met. Compare the
balancedness scores to see whether the Kafka cluster is less balanced than it could be following a
rebalance.

The provision status indicates whether the current cluster configuration supports the optimization
goals. Check the provision status to see if you should add or remove brokers.

Table 13.2. Optimization proposal provision status

Status Description

RIGHT_SIZED The cluster has an appropriate number of brokers to
satisfy the optimization goals.

UNDER_PROVISIONED The cluster is under-provisioned and requires more
brokers to satisfy the optimization goals.

OVER_PROVISIONED The cluster is over-provisioned and requires fewer
brokers to satisfy the optimization goals.

UNDECIDED The status is not relevant or it has not yet been
decided.

13.6.3. Optimization proposal summary properties

The following table describes the properties contained in an optimization proposal.

Table 13.3. Properties contained in an optimization proposal summary

Property Description

n inter-broker replica (y MB)
moves

n: The number of partition replicas that will be moved between
separate brokers.

Performance impact during rebalance operation: Relatively high.

y MB: The sum of the size of each partition replica that will be moved
to a separate broker.

Performance impact during rebalance operation: Variable. The
larger the number of MBs, the longer the cluster rebalance will take to
complete.

Red Hat Streams for Apache Kafka 2.7 Using Streams for Apache Kafka on RHEL in KRaft mode

128

n intra-broker replica (y MB)
moves

n: The total number of partition replicas that will be transferred
between the disks of the cluster’s brokers.

Performance impact during rebalance operation: Relatively high, but
less than inter-broker replica moves.

y MB: The sum of the size of each partition replica that will be moved
between disks on the same broker.

Performance impact during rebalance operation: Variable. The
larger the number, the longer the cluster rebalance will take to
complete. Moving a large amount of data between disks on the same
broker has less impact than between separate brokers (see inter-
broker replica moves).

n excluded topics The number of topics excluded from the calculation of partition
replica/leader movements in the optimization proposal.

You can exclude topics in one of the following ways:

In the cruisecontrol.properties file, specify a regular expression in
the topics.excluded.from.partition.movement property.

In a POST request to the /rebalance endpoint, specify a regular
expression in the excluded_topics parameter.

Topics that match the regular expression are listed in the response
and will be excluded from the cluster rebalance.

n leadership moves n: The number of partitions whose leaders will be switched to
different replicas.

Performance impact during rebalance operation: Relatively low.

n recent windows n: The number of metrics windows upon which the optimization
proposal is based.

n% of the partitions covered n%: The percentage of partitions in the Kafka cluster covered by the
optimization proposal.

Property Description

CHAPTER 13. USING CRUISE CONTROL FOR CLUSTER REBALANCING

129

On-demand Balancedness
Score Before (nn.yyy) After
(nn.yyy)

Measurements of the overall balance of a Kafka Cluster.

Cruise Control assigns a Balancedness Score to every
optimization goal based on several factors, including priority (the
goal’s position in the list of default.goals or user-provided goals).
The On-demand Balancedness Score is calculated by
subtracting the sum of the Balancedness Score of each violated
soft goal from 100.

The Before score is based on the current configuration of the Kafka
cluster. The After score is based on the generated optimization
proposal.

Property Description

13.6.4. Cached optimization proposal

Cruise Control maintains a cached optimization proposal based on the configured default optimization
goals. Generated from the workload model, the cached optimization proposal is updated every 15
minutes to reflect the current state of the Kafka cluster.

The most recent cached optimization proposal is returned when the following goal configurations are
used:

The default optimization goals

User-provided optimization goals that can be met by the current cached proposal

To change the cached optimization proposal refresh interval, edit the proposal.expiration.ms setting
in the cruisecontrol.properties file. Consider a shorter interval for fast changing clusters, although this
increases the load on the Cruise Control server.

Additional resources

Optimization goals overview

Generating optimization proposals

Initiating a cluster rebalance

13.7. REBALANCE PERFORMANCE TUNING OVERVIEW

You can adjust several performance tuning options for cluster rebalances. These options control how
partition replicas and leadership movements in a rebalance are executed, as well as the bandwidth that is
allocated to a rebalance operation.

Partition reassignment commands
Optimization proposals are composed of separate partition reassignment commands. When you initiate
a proposal, the Cruise Control server applies these commands to the Kafka cluster.

A partition reassignment command consists of either of the following types of operations:

Partition movement: Involves transferring the partition replica and its data to a new location.
Partition movements can take one of two forms:

Red Hat Streams for Apache Kafka 2.7 Using Streams for Apache Kafka on RHEL in KRaft mode

130

Inter-broker movement: The partition replica is moved to a log directory on a different
broker.

Intra-broker movement: The partition replica is moved to a different log directory on the
same broker.

Leadership movement: Involves switching the leader of the partition’s replicas.

Cruise Control issues partition reassignment commands to the Kafka cluster in batches. The
performance of the cluster during the rebalance is affected by the number of each type of movement
contained in each batch.

To configure partition reassignment commands, see Rebalance tuning options.

Replica movement strategies
Cluster rebalance performance is also influenced by the replica movement strategy that is applied to the
batches of partition reassignment commands. By default, Cruise Control uses the
BaseReplicaMovementStrategy, which applies the commands in the order in which they were
generated. However, if there are some very large partition reassignments early in the proposal, this
strategy can slow down the application of the other reassignments.

Cruise Control provides three alternative replica movement strategies that can be applied to
optimization proposals:

PrioritizeSmallReplicaMovementStrategy: Order reassignments in ascending size.

PrioritizeLargeReplicaMovementStrategy: Order reassignments in descending size.

PostponeUrpReplicaMovementStrategy: Prioritize reassignments for replicas of partitions
which have no out-of-sync replicas.

These strategies can be configured as a sequence. The first strategy attempts to compare two partition
reassignments using its internal logic. If the reassignments are equivalent, then it passes them to the
next strategy in the sequence to decide the order, and so on.

To configure replica movement strategies, see Rebalance tuning options.

Rebalance tuning options
Cruise Control provides several configuration options for tuning rebalance parameters. These options
are set in the following ways:

As properties, in the default Cruise Control configuration, in the cruisecontrol.properties file

As parameters in POST requests to the /rebalance endpoint

The relevant configurations for both methods are summarized in the following table.

Table 13.4. Rebalance performance tuning configuration

Cruise Control properties KafkaRebalance parameters Defau
lt

Description

CHAPTER 13. USING CRUISE CONTROL FOR CLUSTER REBALANCING

131

num.concurrent.partition.move
ments.per.broker

concurrent_partition_movemen
ts_per_broker

5 The maximum
number of inter-
broker partition
movements in
each partition
reassignment
batch

num.concurrent.intra.broker.par
tition.movements

concurrent_intra_broker_partiti
on_movements

2 The maximum
number of intra-
broker partition
movements in
each partition
reassignment
batch

num.concurrent.leader.moveme
nts

concurrent_leader_movements 1000 The maximum
number of
partition
leadership
changes in each
partition
reassignment
batch

default.replication.throttle replication_throttle Null
(no
limit)

The bandwidth
(in bytes per
second) to
assign to
partition
reassignment

Cruise Control properties KafkaRebalance parameters Defau
lt

Description

Red Hat Streams for Apache Kafka 2.7 Using Streams for Apache Kafka on RHEL in KRaft mode

132

default.replica.movement.strate
gies

replica_movement_strategies Base
Repli
caMo
veme
ntStr
ategy

The list of
strategies (in
priority order)
used to
determine the
order in which
partition
reassignment
commands are
executed for
generated
proposals. There
are three
strategies:
PrioritizeSmall
ReplicaMove
mentStrategy,
PrioritizeLarg
eReplicaMove
mentStrategy,
and
PostponeUrp
ReplicaMove
mentStrategy.
For the server
setting, use a
comma-
separated list
with the fully
qualified names
of the strategy
class (add
com.linkedin.
kafka.cruisec
ontrol.execut
or.strategy. to
the start of each
class name). For
the rebalance
parameters, use
a comma-
separated list of
the class names
of the replica
movement
strategies.

Cruise Control properties KafkaRebalance parameters Defau
lt

Description

Changing the default settings affects the length of time that the rebalance takes to complete, as well as
the load placed on the Kafka cluster during the rebalance. Using lower values reduces the load but
increases the amount of time taken, and vice versa.

CHAPTER 13. USING CRUISE CONTROL FOR CLUSTER REBALANCING

133

Additional resources

Configurations in the Cruise Control Wiki

REST APIs in the Cruise Control Wiki

13.8. CRUISE CONTROL CONFIGURATION

The config/cruisecontrol.properties file contains the configuration for Cruise Control. The file consists
of properties in one of the following types:

String

Number

Boolean

You can specify and configure all the properties listed in the Configurations section of the Cruise
Control Wiki.

Capacity configuration
Cruise Control uses capacity limits to determine if certain resource-based optimization goals are being
broken. An attempted optimization fails if one or more of these resource-based goals is set as a hard
goal and then broken. This prevents the optimization from being used to generate an optimization
proposal.

You specify capacity limits for Kafka broker resources in one of the following three .json files in cruise-
control/config:

capacityJBOD.json: For use in JBOD Kafka deployments (the default file).

capacity.json: For use in non-JBOD Kafka deployments where each broker has the same
number of CPU cores.

capacityCores.json: For use in non-JBOD Kafka deployments where each broker has varying
numbers of CPU cores.

Set the file in the capacity.config.file property in cruisecontrol.properties. The selected file will be
used for broker capacity resolution. For example:

capacity.config.file=config/capacityJBOD.json

Capacity limits can be set for the following broker resources in the described units:

DISK: Disk storage in MB

CPU: CPU utilization as a percentage (0-100) or as a number of cores

NW_IN: Inbound network throughput in KB per second

NW_OUT: Outbound network throughput in KB per second

To apply the same capacity limits to every broker monitored by Cruise Control, set capacity limits for
broker ID -1. To set different capacity limits for individual brokers, specify each broker ID and its
capacity configuration.

Red Hat Streams for Apache Kafka 2.7 Using Streams for Apache Kafka on RHEL in KRaft mode

134

https://github.com/linkedin/cruise-control/wiki/Configurations
https://github.com/linkedin/cruise-control/wiki/REST-APIs
https://github.com/linkedin/cruise-control/wiki/Configurations

Example capacity limits configuration

For more information, see Populating the Capacity Configuration File in the Cruise Control Wiki.

Log cleanup policy for Cruise Control Metrics topic
It is important that the auto-created __CruiseControlMetrics topic (see auto-created topics) has a log
cleanup policy of DELETE rather than COMPACT. Otherwise, records that are needed by Cruise
Control might be removed.

As described in Section 13.3, “Deploying the Cruise Control Metrics Reporter” , setting the following
options in the Kafka configuration file ensures that the COMPACT log cleanup policy is correctly set:

cruise.control.metrics.topic.auto.create=true

cruise.control.metrics.topic.num.partitions=1

cruise.control.metrics.topic.replication.factor=1

If topic auto-creation is disabled in the Cruise Control Metrics Reporter
(cruise.control.metrics.topic.auto.create=false), but enabled in the Kafka cluster, then the
__CruiseControlMetrics topic is still automatically created by the broker. In this case, you must change
the log cleanup policy of the __CruiseControlMetrics topic to DELETE using the kafka-configs.sh
tool.

1. Get the current configuration of the __CruiseControlMetrics topic:

{
 "brokerCapacities":[
 {
 "brokerId": "-1",
 "capacity": {
 "DISK": "100000",
 "CPU": "100",
 "NW_IN": "10000",
 "NW_OUT": "10000"
 },
 "doc": "This is the default capacity. Capacity unit used for disk is in MB, cpu is in percentage,
network throughput is in KB."
 },
 {
 "brokerId": "0",
 "capacity": {
 "DISK": "500000",
 "CPU": "100",
 "NW_IN": "50000",
 "NW_OUT": "50000"
 },
 "doc": "This overrides the capacity for broker 0."
 }
]
}

opt/kafka/bin/kafka-configs.sh --bootstrap-server <broker_address> --entity-type topics --
entity-name __CruiseControlMetrics --describe

CHAPTER 13. USING CRUISE CONTROL FOR CLUSTER REBALANCING

135

https://github.com/linkedin/cruise-control/wiki/Configurations#populating-the-capacity-config-file

2. Change the log cleanup policy in the topic configuration:

If topic auto-creation is disabled in both the Cruise Control Metrics Reporter and the Kafka cluster, you
must create the __CruiseControlMetrics topic manually and then configure it to use the DELETE log
cleanup policy using the kafka-configs.sh tool.

For more information, see Section 7.9, “Modifying a topic configuration” .

Logging configuration
Cruise Control uses log4j1 for all server logging. To change the default configuration, edit the
log4j.properties file in /opt/cruise-control/config/log4j.properties.

You must restart the Cruise Control server before the changes take effect.

13.9. GENERATING OPTIMIZATION PROPOSALS

When you make a POST request to the /rebalance endpoint, Cruise Control generates an optimization
proposal to rebalance the Kafka cluster based on the optimization goals provided. You can use the
results of the optimization proposal to rebalance your Kafka cluster.

You can run the optimization proposal using one of the following endpoints:

/rebalance

/add_broker

/remove_broker

The endpoint you use depends on whether you are rebalancing across all the brokers already running in
the Kafka cluster; or you want to rebalance after scaling up or before scaling down your Kafka cluster.
For more information, see Rebalancing endpoints with broker scaling .

The optimization proposal is generated as a dry run, unless the dryrun parameter is supplied and set to
false. In "dry run mode", Cruise Control generates the optimization proposal and the estimated result,
but doesn’t initiate the proposal by rebalancing the cluster.

You can analyze the information returned in the optimization proposal and decide whether to approve it.

Use the following parameters to make requests to the endpoints:

dryrun

type: boolean, default: true

Informs Cruise Control whether you want to generate an optimization proposal only (true), or generate
an optimization proposal and perform a cluster rebalance (false).

When dryrun=true (the default), you can also pass the verbose parameter to return more detailed
information about the state of the Kafka cluster. This includes metrics for the load on each Kafka broker
before and after the optimization proposal is applied, and the differences between the before and after
values.

excluded_topics

/opt/kafka/bin/kafka-configs.sh --bootstrap-server <broker_address> --entity-type topics --
entity-name __CruiseControlMetrics --alter --add-config cleanup.policy=delete

Red Hat Streams for Apache Kafka 2.7 Using Streams for Apache Kafka on RHEL in KRaft mode

136

type: regex

A regular expression that matches the topics to exclude from the calculation of the optimization
proposal.

goals

type: list of strings, default: the configured default.goals list

List of user-provided optimization goals to use to prepare the optimization proposal. If goals are not
supplied, the configured default.goals list in the cruisecontrol.properties file is used.

skip_hard_goals_check

type: boolean, default: false

By default, Cruise Control checks that the user-provided optimization goals (in the goals parameter)
contain all the configured hard goals (in hard.goals). A request fails if you supply goals that are not a
subset of the configured hard.goals.

Set skip_hard_goals_check to true if you want to generate an optimization proposal with user-
provided optimization goals that do not include all the configured hard.goals.

json

type: boolean, default: false

Controls the type of response returned by the Cruise Control server. If not supplied, or set to false, then
Cruise Control returns text formatted for display on the command line. If you want to extract elements
of the returned information programmatically, set json=true. This will return JSON formatted text that
can be piped to tools such as jq, or parsed in scripts and programs.

verbose

type: boolean, default: false

Controls the level of detail in responses that are returned by the Cruise Control server. Can be used with
dryrun=true.

NOTE

Other parameters are available. For more information, see REST APIs in the Cruise
Control Wiki.

Prerequisites

Kafka is running.

You have configured Cruise Control.

(Optional for scaling up) You have installed new brokers on hosts to include in the rebalance.

Procedure

1. Generate an optimization proposal using a POST request to the /rebalance, /add_broker, or
/remove_broker endpoint.

CHAPTER 13. USING CRUISE CONTROL FOR CLUSTER REBALANCING

137

https://github.com/linkedin/cruise-control/wiki/REST-APIs

Example request to /rebalance using default goals

The cached optimization proposal is immediately returned.

NOTE

If NotEnoughValidWindows is returned, Cruise Control has not yet recorded
enough metrics data to generate an optimization proposal. Wait a few minutes
and then resend the request.

Example request to /rebalance using specified goals

If the request satisfies the supplied goals, the cached optimization proposal is immediately
returned. Otherwise, a new optimization proposal is generated using the supplied goals; this
takes longer to calculate. You can enforce this behavior by adding the
ignore_proposal_cache=true parameter to the request.

Example request to /rebalance using specified goals without hard goals

Example request to /add_broker that includes specified brokers

The request includes the IDs of the new brokers only. For example, this request adds brokers
with the IDs 3 and 4. Replicas are moved to the new brokers from existing brokers when
rebalancing.

Example request to /remove_broker that excludes specified brokers

The request includes the IDs of the brokers being excluded only. For example, this request
excludes brokers with the IDs 3 and 4. Replicas are moved from the brokers being removed to
other existing brokers when rebalancing.

NOTE

If a broker that is being removed has excluded topics, replicas are still moved.

2. Review the optimization proposal contained in the response. The properties describe the
pending cluster rebalance operation.

The proposal contains a high level summary of the proposed optimization, followed by

curl -v -X POST 'cruise-control-server:9090/kafkacruisecontrol/rebalance'

curl -v -X POST 'cruise-control-server:9090/kafkacruisecontrol/rebalance?
goals=RackAwareGoal,ReplicaCapacityGoal'

curl -v -X POST 'cruise-control-server:9090/kafkacruisecontrol/rebalance?
goals=RackAwareGoal,ReplicaCapacityGoal,ReplicaDistributionGoal&skip_hard_goal_check=tr
ue'

curl -v -X POST 'cruise-control-server:9090/kafkacruisecontrol/add_broker?brokerid=3,4'

curl -v -X POST 'cruise-control-server:9090/kafkacruisecontrol/remove_broker?brokerid=3,4'

Red Hat Streams for Apache Kafka 2.7 Using Streams for Apache Kafka on RHEL in KRaft mode

138

The proposal contains a high level summary of the proposed optimization, followed by
summaries for each default optimization goal, and the expected cluster state after the proposal
has executed.

Pay particular attention to the following information:

The Cluster load after rebalance summary. If it meets your requirements, you should
assess the impact of the proposed changes using the high level summary.

n inter-broker replica (y MB) moves indicates how much data will be moved across the
network between brokers. The higher the value, the greater the potential performance
impact on the Kafka cluster during the rebalance.

n intra-broker replica (y MB) moves indicates how much data will be moved within the
brokers themselves (between disks). The higher the value, the greater the potential
performance impact on individual brokers (although less than that of n inter-broker replica
(y MB) moves).

The number of leadership moves. This has a negligible impact on the performance of the
cluster during the rebalance.

Asynchronous responses
The Cruise Control REST API endpoints timeout after 10 seconds by default, although proposal
generation continues on the server. A timeout might occur if the most recent cached optimization
proposal is not ready, or if user-provided optimization goals were specified with
ignore_proposal_cache=true.

To allow you to retrieve the optimization proposal at a later time, take note of the request’s unique
identifier, which is given in the header of responses from the /rebalance endpoint.

To obtain the response using curl, specify the verbose (-v) option:

curl -v -X POST 'cruise-control-server:9090/kafkacruisecontrol/rebalance'

Here is an example header:

If an optimization proposal is not ready within the timeout, you can re-submit the POST request, this
time including the User-Task-ID of the original request in the header:

* Connected to cruise-control-server (::1) port 9090 (#0)
> POST /kafkacruisecontrol/rebalance HTTP/1.1
> Host: cc-host:9090
> User-Agent: curl/7.70.0
> Accept: /
>
* Mark bundle as not supporting multiuse
< HTTP/1.1 200 OK
< Date: Mon, 01 Jun 2023 15:19:26 GMT
< Set-Cookie: JSESSIONID=node01wk6vjzjj12go13m81o7no5p7h9.node0; Path=/
< Expires: Thu, 01 Jan 1970 00:00:00 GMT
< User-Task-ID: 274b8095-d739-4840-85b9-f4cfaaf5c201
< Content-Type: text/plain;charset=utf-8
< Cruise-Control-Version: 2.0.103.redhat-00002
< Cruise-Control-Commit_Id: 58975c9d5d0a78dd33cd67d4bcb497c9fd42ae7c
< Content-Length: 12368
< Server: Jetty(9.4.26.v20200117-redhat-00001)

CHAPTER 13. USING CRUISE CONTROL FOR CLUSTER REBALANCING

139

What to do next

Section 13.10, “Approving an optimization proposal”

13.10. APPROVING AN OPTIMIZATION PROPOSAL

If you are satisfied with your most recently generated optimization proposal, you can instruct Cruise
Control to initiate a cluster rebalance and begin reassigning partitions.

Leave as little time as possible between generating an optimization proposal and initiating the cluster
rebalance. If some time has passed since you generated the original optimization proposal, the cluster
state might have changed. Therefore, the cluster rebalance that is initiated might be different to the
one you reviewed. If in doubt, first generate a new optimization proposal.

Only one cluster rebalance, with a status of "Active", can be in progress at a time.

Prerequisites

You have generated an optimization proposal from Cruise Control.

Procedure

1. Send a POST request to the /rebalance, /add_broker, or /remove_broker endpoint with the
dryrun=false parameter:
If you used the /add_broker or /remove_broker endpoint to generate a proposal that included
or excluded brokers, use the same endpoint to perform the rebalance with or without the
specified brokers.

Example request to /rebalance

Example request to /add_broker

Example request to /remove_broker

Cruise Control initiates the cluster rebalance and returns the optimization proposal.

2. Check the changes that are summarized in the optimization proposal. If the changes are not
what you expect, you can stop the rebalance.

3. Check the progress of the cluster rebalance using the /user_tasks endpoint. The cluster
rebalance in progress has a status of "Active".
To view all cluster rebalance tasks executed on the Cruise Control server:

curl -v -X POST -H 'User-Task-ID: 274b8095-d739-4840-85b9-f4cfaaf5c201' 'cruise-control-
server:9090/kafkacruisecontrol/rebalance'

curl -X POST 'cruise-control-server:9090/kafkacruisecontrol/rebalance?dryrun=false'

curl -v -X POST 'cruise-control-server:9090/kafkacruisecontrol/add_broker?
dryrun=false&brokerid=3,4'

curl -v -X POST 'cruise-control-server:9090/kafkacruisecontrol/remove_broker?
dryrun=false&brokerid=3,4'

Red Hat Streams for Apache Kafka 2.7 Using Streams for Apache Kafka on RHEL in KRaft mode

140

4. To view the status of a particular cluster rebalance task, supply the user-task-ids parameter
and the task ID:

curl 'cruise-control-server:9090/kafkacruisecontrol/user_tasks?user_task_ids=c459316f-
9eb5-482f-9d2d-97b5a4cd294d'

(Optional) Removing brokers when scaling down

After a successful rebalance you can stop any brokers you excluded in order to scale down the Kafka
cluster.

1. Check that each broker being removed does not have any live partitions in its log (log.dirs).

If a log directory does not match the regular expression \.[a-z0-9]-delete$, active partitions are
still present. If you have active partitions, check the rebalance has finished or the configuration
for the optimization proposal. You can run the proposal again. Make sure that there are no
active partitions before moving on to the next step.

2. Stop the broker.

3. Confirm that the broker has stopped.

13.11. STOPPING AN ACTIVE CLUSTER REBALANCE

You can stop the cluster rebalance that is currently in progress.

This instructs Cruise Control to finish the current batch of partition reassignments and then stop the
rebalance. When the rebalance has stopped, completed partition reassignments have already been
applied; therefore, the state of the Kafka cluster is different when compared to before the start of the
rebalance operation. If further rebalancing is required, you should generate a new optimization proposal.

NOTE

The performance of the Kafka cluster in the intermediate (stopped) state might be worse
than in the initial state.

curl 'cruise-control-server:9090/kafkacruisecontrol/user_tasks'

USER TASK ID CLIENT ADDRESS START TIME STATUS REQUEST URL
c459316f-9eb5-482f-9d2d-97b5a4cd294d 0:0:0:0:0:0:0:1 2020-06-01_16:10:29 UTC
Active POST /kafkacruisecontrol/rebalance?dryrun=false
445e2fc3-6531-4243-b0a6-36ef7c5059b4 0:0:0:0:0:0:0:1 2020-06-01_14:21:26 UTC
Completed GET /kafkacruisecontrol/state?json=true
05c37737-16d1-4e33-8e2b-800dee9f1b01 0:0:0:0:0:0:0:1 2020-06-01_14:36:11 UTC
Completed GET /kafkacruisecontrol/state?json=true
aebae987-985d-4871-8cfb-6134ecd504ab 0:0:0:0:0:0:0:1 2020-06-01_16:10:04 UTC

ls -l <LogDir> | grep -E '^d' | grep -vE '[a-zA-Z0-9.-]+\.[a-z0-9]+-delete$'

su - kafka
/opt/kafka/bin/kafka-server-stop.sh

jcmd | grep kafka

CHAPTER 13. USING CRUISE CONTROL FOR CLUSTER REBALANCING

141

Prerequisites

A cluster rebalance is in progress (indicated by a status of "Active").

Procedure

Send a POST request to the /stop_proposal_execution endpoint:

curl -X POST 'cruise-control-server:9090/kafkacruisecontrol/stop_proposal_execution'

Additional resources

Generating optimization proposals

Red Hat Streams for Apache Kafka 2.7 Using Streams for Apache Kafka on RHEL in KRaft mode

142

CHAPTER 14. USING CRUISE CONTROL TO MODIFY TOPIC
REPLICATION FACTOR

Make requests to the /topic_configuration endpoint of the Cruise Control REST API to modify topic
configurations, including the replication factor.

Prerequisites

You are logged in to Red Hat Enterprise Linux as the kafka user.

You have configured Cruise Control.

You have deployed the Cruise Control Metrics Reporter .

Procedure

1. Start the Cruise Control server. The server starts on port 9092 by default; optionally, specify a
different port.

2. To verify that Cruise Control is running, send a GET request to the /state endpoint of the Cruise
Control server:

3. Run the bin/kafka-topics.sh command with the --describe option and to check the current
replication factor of the target topic:

4. Update the replication factor for the topic:

For example, curl -X POST 'localhost:9090/kafkacruisecontrol/topic_configuration?
topic=topic1&replication_factor=3&dryrun=false'.

5. Run the bin/kafka-topics.sh command with the --describe option, as before, to see the results
of the change to the topic.

cd /opt/cruise-control/
./kafka-cruise-control-start.sh config/cruisecontrol.properties <port_number>

curl -X GET 'http://<cc_host>:<cc_port>/kafkacruisecontrol/state'

/opt/kafka/bin/kafka-topics.sh \
 --bootstrap-server localhost:9092 \
 --topic <topic_name> \
 --describe

curl -X POST 'http://<cc_host>:<cc_port>/kafkacruisecontrol/topic_configuration?topic=
<topic_name>&replication_factor=<new_replication_factor>&dryrun=false'

CHAPTER 14. USING CRUISE CONTROL TO MODIFY TOPIC REPLICATION FACTOR

143

CHAPTER 15. USING THE PARTITION REASSIGNMENT TOOL
When scaling a Kafka cluster, you may need to add or remove brokers and update the distribution of
partitions or the replication factor of topics. To update partitions and topics, you can use the kafka-
reassign-partitions.sh tool.

You can change the replication factor of a topic using the kafka-reassign-partitions.sh tool. The tool
can also be used to reassign partitions and balance the distribution of partitions across brokers to
improve performance. However, it is recommended to use Cruise Control for automated partition
reassignments and cluster rebalancing and changing the topic replication factor . Cruise Control can
move topics from one broker to another without any downtime, and it is the most efficient way to
reassign partitions.

15.1. PARTITION REASSIGNMENT TOOL OVERVIEW

The partition reassignment tool provides the following capabilities for managing Kafka partitions and
brokers:

Redistributing partition replicas

Scale your cluster up and down by adding or removing brokers, and move Kafka partitions from
heavily loaded brokers to under-utilized brokers. To do this, you must create a partition reassignment
plan that identifies which topics and partitions to move and where to move them. Cruise Control is
recommended for this type of operation as it automates the cluster rebalancing process .

Scaling topic replication factor up and down

Increase or decrease the replication factor of your Kafka topics. To do this, you must create a
partition reassignment plan that identifies the existing replication assignment across partitions and
an updated assignment with the replication factor changes.

Changing the preferred leader

Change the preferred leader of a Kafka partition. This can be useful if the current preferred leader is
unavailable or if you want to redistribute load across the brokers in the cluster. To do this, you must
create a partition reassignment plan that specifies the new preferred leader for each partition by
changing the order of replicas.

Changing the log directories to use a specific JBOD volume

Change the log directories of your Kafka brokers to use a specific JBOD volume. This can be useful if
you want to move your Kafka data to a different disk or storage device. To do this, you must create a
partition reassignment plan that specifies the new log directory for each topic.

15.1.1. Generating a partition reassignment plan

The partition reassignment tool (kafka-reassign-partitions.sh) works by generating a partition
assignment plan that specifies which partitions should be moved from their current broker to a new
broker.

If you are satisfied with the plan, you can execute it. The tool then does the following:

Migrates the partition data to the new broker

Updates the metadata on the Kafka brokers to reflect the new partition assignments

Triggers a rolling restart of the Kafka brokers to ensure that the new assignments take effect

The partition reassignment tool has three different modes:

Red Hat Streams for Apache Kafka 2.7 Using Streams for Apache Kafka on RHEL in KRaft mode

144

--generate

Takes a set of topics and brokers and generates a reassignment JSON file which will result in the
partitions of those topics being assigned to those brokers. Because this operates on whole topics, it
cannot be used when you only want to reassign some partitions of some topics.

--execute

Takes a reassignment JSON file and applies it to the partitions and brokers in the cluster. Brokers
that gain partitions as a result become followers of the partition leader. For a given partition, once
the new broker has caught up and joined the ISR (in-sync replicas) the old broker will stop being a
follower and will delete its replica.

--verify

Using the same reassignment JSON file as the --execute step, --verify checks whether all the
partitions in the file have been moved to their intended brokers. If the reassignment is complete, --
verify also removes any traffic throttles (--throttle) that are in effect. Unless removed, throttles will
continue to affect the cluster even after the reassignment has finished.

It is only possible to have one reassignment running in a cluster at any given time, and it is not possible
to cancel a running reassignment. If you must cancel a reassignment, wait for it to complete and then
perform another reassignment to revert the effects of the first reassignment. The kafka-reassign-
partitions.sh will print the reassignment JSON for this reversion as part of its output. Very large
reassignments should be broken down into a number of smaller reassignments in case there is a need to
stop in-progress reassignment.

15.1.2. Specifying topics in a partition reassignment JSON file

The kafka-reassign-partitions.sh tool uses a reassignment JSON file that specifies the topics to
reassign. You can generate a reassignment JSON file or create a file manually if you want to move
specific partitions.

A basic reassignment JSON file has the structure presented in the following example, which describes
three partitions belonging to two Kafka topics. Each partition is reassigned to a new set of replicas, which
are identified by their broker IDs. The version, topic, partition, and replicas properties are all required.

Example partition reassignment JSON file structure

{
 "version": 1, 1
 "partitions": [2
 {
 "topic": "example-topic-1", 3
 "partition": 0, 4
 "replicas": [1, 2, 3] 5
 },
 {
 "topic": "example-topic-1",
 "partition": 1,
 "replicas": [2, 3, 4]
 },
 {
 "topic": "example-topic-2",
 "partition": 0,
 "replicas": [3, 4, 5]

CHAPTER 15. USING THE PARTITION REASSIGNMENT TOOL

145

1

2

3

4

5

 }
]
}

The version of the reassignment JSON file format. Currently, only version 1 is supported, so this
should always be 1.

An array that specifies the partitions to be reassigned.

The name of the Kafka topic that the partition belongs to.

The ID of the partition being reassigned.

An ordered array of the IDs of the brokers that should be assigned as replicas for this partition. The
first broker in the list is the leader replica.

NOTE

Partitions not included in the JSON are not changed.

If you specify only topics using a topics array, the partition reassignment tool reassigns all the partitions
belonging to the specified topics.

Example reassignment JSON file structure for reassigning all partitions for a topic

{
 "version": 1,
 "topics": [
 { "topic": "my-topic"}
]
}

15.1.3. Reassigning partitions between JBOD volumes

When using JBOD storage in your Kafka cluster, you can reassign the partitions between specific
volumes and their log directories (each volume has a single log directory).

To reassign a partition to a specific volume, add log_dirs values for each partition in the reassignment
JSON file. Each log_dirs array contains the same number of entries as the replicas array, since each
replica should be assigned to a specific log directory. The log_dirs array contains either an absolute
path to a log directory or the special value any. The any value indicates that Kafka can choose any
available log directory for that replica, which can be useful when reassigning partitions between JBOD
volumes.

Example reassignment JSON file structure with log directories

{
 "version": 1,
 "partitions": [
 {
 "topic": "example-topic-1",
 "partition": 0,
 "replicas": [1, 2, 3]

Red Hat Streams for Apache Kafka 2.7 Using Streams for Apache Kafka on RHEL in KRaft mode

146

 "log_dirs": ["/var/lib/kafka/data-0/kafka-log1", "any", "/var/lib/kafka/data-1/kafka-log2"]
 },
 {
 "topic": "example-topic-1",
 "partition": 1,
 "replicas": [2, 3, 4]
 "log_dirs": ["any", "/var/lib/kafka/data-2/kafka-log3", "/var/lib/kafka/data-3/kafka-log4"]
 },
 {
 "topic": "example-topic-2",
 "partition": 0,
 "replicas": [3, 4, 5]
 "log_dirs": ["/var/lib/kafka/data-4/kafka-log5", "any", "/var/lib/kafka/data-5/kafka-log6"]
 }
]
}

15.1.4. Throttling partition reassignment

Partition reassignment can be a slow process because it involves transferring large amounts of data
between brokers. To avoid a detrimental impact on clients, you can throttle the reassignment process.
Use the --throttle parameter with the kafka-reassign-partitions.sh tool to throttle a reassignment. You
specify a maximum threshold in bytes per second for the movement of partitions between brokers. For
example, --throttle 5000000 sets a maximum threshold for moving partitions of 50 MBps.

Throttling might cause the reassignment to take longer to complete.

If the throttle is too low, the newly assigned brokers will not be able to keep up with records
being published and the reassignment will never complete.

If the throttle is too high, clients will be impacted.

For example, for producers, this could manifest as higher than normal latency waiting for
acknowledgment. For consumers, this could manifest as a drop in throughput caused by higher latency
between polls.

15.2. REASSIGNING PARTITIONS AFTER ADDING BROKERS

Use a reassignment file generated by the kafka-reassign-partitions.sh tool to reassign partitions after
increasing the number of brokers in a Kafka cluster. The reassignment file should describe how partitions
are reassigned to brokers in the enlarged Kafka cluster. You apply the reassignment specified in the file
to the brokers and then verify the new partition assignments.

This procedure describes a secure scaling process that uses TLS. You’ll need a Kafka cluster that uses
TLS encryption and mTLS authentication.

NOTE

Though you can use the kafka-reassign-partitions.sh tool, Cruise Control is
recommended for automated partition reassignments and cluster rebalancing . Cruise
Control can move topics from one broker to another without any downtime, and it is the
most efficient way to reassign partitions.

Prerequisites

CHAPTER 15. USING THE PARTITION REASSIGNMENT TOOL

147

1

2

An existing Kafka cluster.

A new machine with the additional AMQ broker installed.

You have created a JSON file to specify how partitions should be reassigned to brokers in the
enlarged cluster.
In this procedure, we are reassigning all partitions for a topic called my-topic. A JSON file
named topics.json specifies the topic, and is used to generate a reassignment.json file.

Example JSON file specifies my-topic

Procedure

1. Create a configuration file for the new broker using the same settings as for the other brokers in
your cluster, except for broker.id, which should be a number that is not already used by any of
the other brokers.

2. Start the new Kafka broker passing the configuration file you created in the previous step as the
argument to the kafka-server-start.sh script:

3. Verify that the Kafka broker is running.

4. Repeat the above steps for each new broker.

5. If you haven’t done so, generate a reassignment JSON file named reassignment.json using the
kafka-reassign-partitions.sh tool.

Example command to generate the reassignment JSON file

The JSON file that specifies the topic.

Brokers IDs in the kafka cluster to include in the operation. This assumes broker 4 has been
added.

Example reassignment JSON file showing the current and proposed replica

{
 "version": 1,
 "topics": [
 { "topic": "my-topic"}
]
}

su - kafka
/opt/kafka/bin/kafka-server-start.sh -daemon /opt/kafka/config/kraft/server.properties

jcmd | grep Kafka

/opt/kafka/bin/kafka-reassign-partitions.sh \
 --bootstrap-server localhost:9092 \
 --topics-to-move-json-file topics.json \ 1
 --broker-list 0,1,2,3,4 \ 2
 --generate

Red Hat Streams for Apache Kafka 2.7 Using Streams for Apache Kafka on RHEL in KRaft mode

148

Example reassignment JSON file showing the current and proposed replica
assignment

Save a copy of this file locally in case you need to revert the changes later on.

6. Run the partition reassignment using the --execute option.

If you are going to throttle replication you can also pass the --throttle option with an inter-
broker throttled rate in bytes per second. For example:

7. Verify that the reassignment has completed using the --verify option.

The reassignment has finished when the --verify command reports that each of the partitions
being moved has completed successfully. This final --verify will also have the effect of removing
any reassignment throttles.

15.3. REASSIGNING PARTITIONS BEFORE REMOVING BROKERS

Use a reassignment file generated by the kafka-reassign-partitions.sh tool to reassign partitions
before decreasing the number of brokers in a Kafka cluster. The reassignment file must describe how
partitions are reassigned to the remaining brokers in the Kafka cluster. You apply the reassignment
specified in the file to the brokers and then verify the new partition assignments. Brokers in the highest
numbered pods are removed first.

This procedure describes a secure scaling process that uses TLS. You’ll need a Kafka cluster that uses
TLS encryption and mTLS authentication.

Current partition replica assignment
{"version":1,"partitions":[{"topic":"my-topic","partition":0,"replicas":[0,1,2],"log_dirs":
["any","any","any"]},{"topic":"my-topic","partition":1,"replicas":[1,2,3],"log_dirs":
["any","any","any"]},{"topic":"my-topic","partition":2,"replicas":[2,3,0],"log_dirs":
["any","any","any"]}]}

Proposed partition reassignment configuration
{"version":1,"partitions":[{"topic":"my-topic","partition":0,"replicas":[0,1,2,3],"log_dirs":
["any","any","any","any"]},{"topic":"my-topic","partition":1,"replicas":[1,2,3,4],"log_dirs":
["any","any","any","any"]},{"topic":"my-topic","partition":2,"replicas":[2,3,4,0],"log_dirs":
["any","any","any","any"]}]}

/opt/kafka/bin/kafka-reassign-partitions.sh \
 --bootstrap-server localhost:9092 \
 --reassignment-json-file reassignment.json \
 --execute

/opt/kafka/bin/kafka-reassign-partitions.sh \
 --bootstrap-server localhost:9092 \
 --reassignment-json-file reassignment.json \
 --throttle 5000000 \
 --execute

/opt/kafka/bin/kafka-reassign-partitions.sh \
 --bootstrap-server localhost:9092 \
 --reassignment-json-file reassignment.json \
 --verify

CHAPTER 15. USING THE PARTITION REASSIGNMENT TOOL

149

1

2

NOTE

Though you can use the kafka-reassign-partitions.sh tool, Cruise Control is
recommended for automated partition reassignments and cluster rebalancing . Cruise
Control can move topics from one broker to another without any downtime, and it is the
most efficient way to reassign partitions.

Prerequisites

An existing Kafka cluster.

You have created a JSON file to specify how partitions should be reassigned to brokers in the
reduced cluster.
In this procedure, we are reassigning all partitions for a topic called my-topic. A JSON file
named topics.json specifies the topic, and is used to generate a reassignment.json file.

Example JSON file specifies my-topic

Procedure

1. If you haven’t done so, generate a reassignment JSON file named reassignment.json using the
kafka-reassign-partitions.sh tool.

Example command to generate the reassignment JSON file

The JSON file that specifies the topic.

Brokers IDs in the kafka cluster to include in the operation. This assumes broker 4 has been
removed.

Example reassignment JSON file showing the current and proposed replica
assignment

{
 "version": 1,
 "topics": [
 { "topic": "my-topic"}
]
}

/opt/kafka/bin/kafka-reassign-partitions.sh \
 --bootstrap-server localhost:9092 \
 --topics-to-move-json-file topics.json \ 1
 --broker-list 0,1,2,3 \ 2
 --generate

Current partition replica assignment
{"version":1,"partitions":[{"topic":"my-topic","partition":0,"replicas":[3,4,2,0],"log_dirs":
["any","any","any","any"]},{"topic":"my-topic","partition":1,"replicas":[0,2,3,1],"log_dirs":
["any","any","any","any"]},{"topic":"my-topic","partition":2,"replicas":[1,3,0,4],"log_dirs":
["any","any","any","any"]}]}

Proposed partition reassignment configuration

Red Hat Streams for Apache Kafka 2.7 Using Streams for Apache Kafka on RHEL in KRaft mode

150

Save a copy of this file locally in case you need to revert the changes later on.

2. Run the partition reassignment using the --execute option.

If you are going to throttle replication you can also pass the --throttle option with an inter-
broker throttled rate in bytes per second. For example:

3. Verify that the reassignment has completed using the --verify option.

The reassignment has finished when the --verify command reports that each of the partitions
being moved has completed successfully. This final --verify will also have the effect of removing
any reassignment throttles.

4. Check that each broker being removed does not have any live partitions in its log (log.dirs).

If a log directory does not match the regular expression \.[a-z0-9]-delete$, active partitions are
still present. If you have active partitions, check the reassignment has finished or the
configuration in the reassignment JSON file. You can run the reassignment again. Make sure
that there are no active partitions before moving on to the next step.

5. Stop the broker.

6. Confirm that the Kafka broker has stopped.

15.4. CHANGING THE REPLICATION FACTOR OF TOPICS

{"version":1,"partitions":[{"topic":"my-topic","partition":0,"replicas":[0,1,2],"log_dirs":
["any","any","any"]},{"topic":"my-topic","partition":1,"replicas":[1,2,3],"log_dirs":
["any","any","any"]},{"topic":"my-topic","partition":2,"replicas":[2,3,0],"log_dirs":
["any","any","any"]}]}

/opt/kafka/bin/kafka-reassign-partitions.sh \
 --bootstrap-server localhost:9092 \
 --reassignment-json-file reassignment.json \
 --execute

/opt/kafka/bin/kafka-reassign-partitions.sh \
 --bootstrap-server localhost:9092 \
 --reassignment-json-file reassignment.json \
 --throttle 5000000 \
 --execute

/opt/kafka/bin/kafka-reassign-partitions.sh \
 --bootstrap-server localhost:9092 \
 --reassignment-json-file reassignment.json \
 --verify

ls -l <LogDir> | grep -E '^d' | grep -vE '[a-zA-Z0-9.-]+\.[a-z0-9]+-delete$'

su - kafka
/opt/kafka/bin/kafka-server-stop.sh

jcmd | grep kafka

CHAPTER 15. USING THE PARTITION REASSIGNMENT TOOL

151

1

2

Use the kafka-reassign-partitions.sh tool to change the replication factor of topics in a Kafka cluster.
This can be done using a reassignment file to describe how the topic replicas should be changed.

Prerequisites

An existing Kafka cluster.

You have created a JSON file to specify the topics to include in the operation.
In this procedure, a topic called my-topic has 4 replicas and we want to reduce it to 3. A JSON
file named topics.json specifies the topic, and is used to generate a reassignment.json file.

Example JSON file specifies my-topic

Procedure

1. If you haven’t done so, generate a reassignment JSON file named reassignment.json using the
kafka-reassign-partitions.sh tool.

Example command to generate the reassignment JSON file

The JSON file that specifies the topic.

Brokers IDs in the kafka cluster to include in the operation.

Example reassignment JSON file showing the current and proposed replica
assignment

Save a copy of this file locally in case you need to revert the changes later on.

{
 "version": 1,
 "topics": [
 { "topic": "my-topic"}
]
}

/opt/kafka/bin/kafka-reassign-partitions.sh \
 --bootstrap-server localhost:9092 \
 --topics-to-move-json-file topics.json \ 1
 --broker-list 0,1,2,3,4 \ 2
 --generate

Current partition replica assignment
{"version":1,"partitions":[{"topic":"my-topic","partition":0,"replicas":[3,4,2,0],"log_dirs":
["any","any","any","any"]},{"topic":"my-topic","partition":1,"replicas":[0,2,3,1],"log_dirs":
["any","any","any","any"]},{"topic":"my-topic","partition":2,"replicas":[1,3,0,4],"log_dirs":
["any","any","any","any"]}]}

Proposed partition reassignment configuration
{"version":1,"partitions":[{"topic":"my-topic","partition":0,"replicas":[0,1,2,3],"log_dirs":
["any","any","any","any"]},{"topic":"my-topic","partition":1,"replicas":[1,2,3,4],"log_dirs":
["any","any","any","any"]},{"topic":"my-topic","partition":2,"replicas":[2,3,4,0],"log_dirs":
["any","any","any","any"]}]}

Red Hat Streams for Apache Kafka 2.7 Using Streams for Apache Kafka on RHEL in KRaft mode

152

2. Edit the reassignment.json to remove a replica from each partition.
For example use jq to remove the last replica in the list for each partition of the topic:

Removing the last topic replica for each partition

Example reassignment file showing the updated replicas

3. Make the topic replica change using the --execute option.

NOTE

Removing replicas from a broker does not require any inter-broker data
movement, so there is no need to throttle replication. If you are adding replicas,
then you may want to change the throttle rate.

4. Verify that the change to the topic replicas has completed using the --verify option.

The reassignment has finished when the --verify command reports that each of the partitions
being moved has completed successfully. This final --verify will also have the effect of removing
any reassignment throttles.

5. Run the bin/kafka-topics.sh command with the --describe option to see the results of the
change to the topics.

Results of reducing the number of replicas for a topic

jq '.partitions[].replicas |= del(.[-1])' reassignment.json > reassignment.json

{"version":1,"partitions":[{"topic":"my-topic","partition":0,"replicas":[0,1,2],"log_dirs":
["any","any","any","any"]},{"topic":"my-topic","partition":1,"replicas":[1,2,3],"log_dirs":
["any","any","any","any"]},{"topic":"my-topic","partition":2,"replicas":[2,3,4],"log_dirs":
["any","any","any","any"]}]}

/opt/kafka/bin/kafka-reassign-partitions.sh \
 --bootstrap-server localhost:9092 \
 --reassignment-json-file reassignment.json \
 --execute

/opt/kafka/bin/kafka-reassign-partitions.sh \
 --bootstrap-server localhost:9092 \
 --reassignment-json-file reassignment.json \
 --verify

/opt/kafka/bin/kafka-topics.sh \
 --bootstrap-server localhost:9092 \
 --describe

my-topic Partition: 0 Leader: 0 Replicas: 0,1,2 Isr: 0,1,2
my-topic Partition: 1 Leader: 2 Replicas: 1,2,3 Isr: 1,2,3
my-topic Partition: 2 Leader: 3 Replicas: 2,3,4 Isr: 2,3,4

CHAPTER 15. USING THE PARTITION REASSIGNMENT TOOL

153

CHAPTER 16. SETTING UP DISTRIBUTED TRACING
Distributed tracing allows you to track the progress of transactions between applications in a distributed
system. In a microservices architecture, tracing tracks the progress of transactions between services.
Trace data is useful for monitoring application performance and investigating issues with target systems
and end-user applications.

In Streams for Apache Kafka, tracing facilitates the end-to-end tracking of messages: from source
systems to Kafka, and then from Kafka to target systems and applications. It complements the metrics
that are available to view in JMX metrics, as well as the component loggers.

Support for tracing is built in to the following Kafka components:

Kafka Connect

MirrorMaker

MirrorMaker 2

Streams for Apache Kafka Bridge

Tracing is not supported for Kafka brokers.

You add tracing configuration to the properties file of the component.

To enable tracing, you set environment variables and add the library of the tracing system to the Kafka
classpath. For Jaeger tracing, you can add tracing artifacts for OpenTelemetry with the Jaeger
Exporter.

NOTE

Streams for Apache Kafka no longer supports OpenTracing. If you were previously using
OpenTracing with Jaeger, we encourage you to transition to using OpenTelemetry
instead.

To enable tracing in Kafka producers, consumers, and Kafka Streams API applications, you instrument
application code. When instrumented, clients generate trace data; for example, when producing
messages or writing offsets to the log.

NOTE

Setting up tracing for applications and systems beyond Streams for Apache Kafka is
outside the scope of this content.

16.1. OUTLINE OF PROCEDURES

To set up tracing for Streams for Apache Kafka, follow these procedures in order:

Set up tracing for Kafka Connect, MirrorMaker 2, and MirrorMaker:

Enable tracing for Kafka Connect

Enable tracing for MirrorMaker 2

Enable tracing for MirrorMaker

Red Hat Streams for Apache Kafka 2.7 Using Streams for Apache Kafka on RHEL in KRaft mode

154

Set up tracing for clients:

Initialize a Jaeger tracer for Kafka clients

Instrument clients with tracers:

Instrument producers and consumers for tracing

Instrument Kafka Streams applications for tracing

NOTE

For information on enabling tracing for the Kafka Bridge, see Using the Streams for
Apache Kafka Bridge.

16.2. TRACING OPTIONS

Use OpenTelemetry with the Jaeger tracing system.

OpenTelemetry provides an API specification that is independent from the tracing or monitoring
system.

You use the APIs to instrument application code for tracing.

Instrumented applications generate traces for individual requests across the distributed system.

Traces are composed of spans that define specific units of work over time.

Jaeger is a tracing system for microservices-based distributed systems.

The Jaeger user interface allows you to query, filter, and analyze trace data.

The Jaeger user interface showing a simple query

Additional resources

Jaeger documentation

CHAPTER 16. SETTING UP DISTRIBUTED TRACING

155

https://docs.redhat.com/en/documentation/red_hat_streams_for_apache_kafka/2.7/html-single/using_the_streams_for_apache_kafka_bridge/index
https://www.jaegertracing.io/docs/

OpenTelemetry documentation

16.3. ENVIRONMENT VARIABLES FOR TRACING

Use environment variables when you are enabling tracing for Kafka components or initializing a tracer for
Kafka clients.

Tracing environment variables are subject to change. For the latest information, see the OpenTelemetry
documentation.

The following tables describe the key environment variables for setting up a tracer.

Table 16.1. OpenTelemetry environment variables

Property Required Description

OTEL_SERVICE_NAME Yes The name of the Jaeger tracing service
for OpenTelemetry.

OTEL_EXPORTER_JAEGER_ENDP
OINT

Yes The exporter used for tracing.

OTEL_TRACES_EXPORTER Yes The exporter used for tracing. Set to otlp
by default. If using Jaeger tracing, you
need to set this environment variable as
jaeger. If you are using another tracing
implementation, specify the exporter
used.

16.4. ENABLING TRACING FOR KAFKA CONNECT

Enable distributed tracing for Kafka Connect using configuration properties. Only messages produced
and consumed by Kafka Connect itself are traced. To trace messages sent between Kafka Connect and
external systems, you must configure tracing in the connectors for those systems.

You can enable tracing that uses OpenTelemetry.

Procedure

1. Add the tracing artifacts to the opt/kafka/libs directory.

2. Configure producer and consumer tracing in the relevant Kafka Connect configuration file.

If you are running Kafka Connect in standalone mode, edit the /opt/kafka/config/connect-
standalone.properties file.

If you are running Kafka Connect in distributed mode, edit the /opt/kafka/config/connect-
distributed.properties file.

Add the following tracing interceptor properties to the configuration file:

Properties for OpenTelemetry

Red Hat Streams for Apache Kafka 2.7 Using Streams for Apache Kafka on RHEL in KRaft mode

156

https://opentelemetry.io/docs/
https://opentelemetry.io/docs/

With tracing enabled, you initialize tracing when you run the Kafka Connect script.

3. Save the configuration file.

4. Set the environment variables for tracing.

5. Start Kafka Connect in standalone or distributed mode with the configuration file as a
parameter (plus any connector properties):

Running Kafka Connect in standalone mode

Running Kafka Connect in distributed mode

The internal consumers and producers of Kafka Connect are now enabled for tracing.

16.5. ENABLING TRACING FOR MIRRORMAKER 2

Enable distributed tracing for MirrorMaker 2 by defining the Interceptor properties in the MirrorMaker 2
properties file. Messages are traced between Kafka clusters. The trace data records messages entering
and leaving the MirrorMaker 2 component.

You can enable tracing that uses OpenTelemetry.

Procedure

1. Add the tracing artifacts to the opt/kafka/libs directory.

2. Configure producer and consumer tracing in the opt/kafka/config/connect-mirror-
maker.properties file.
Add the following tracing interceptor properties to the configuration file:

Properties for OpenTelemetry

ByteArrayConverter prevents Kafka Connect from converting message headers (containing

producer.interceptor.classes=io.opentelemetry.instrumentation.kafkaclients.TracingProducerInte
rceptor
consumer.interceptor.classes=io.opentelemetry.instrumentation.kafkaclients.TracingConsumerI
nterceptor

su - kafka
/opt/kafka/bin/connect-standalone.sh \
/opt/kafka/config/connect-standalone.properties \
connector1.properties \
[connector2.properties ...]

su - kafka
/opt/kafka/bin/connect-distributed.sh /opt/kafka/config/connect-distributed.properties

header.converter=org.apache.kafka.connect.converters.ByteArrayConverter
producer.interceptor.classes=io.opentelemetry.instrumentation.kafkaclients.TracingProducerInte
rceptor
consumer.interceptor.classes=io.opentelemetry.instrumentation.kafkaclients.TracingConsumerI
nterceptor

CHAPTER 16. SETTING UP DISTRIBUTED TRACING

157

ByteArrayConverter prevents Kafka Connect from converting message headers (containing
trace IDs) to base64 encoding. This ensures that messages are the same in both the source and
the target clusters.

With tracing enabled, you initialize tracing when you run the Kafka MirrorMaker 2 script.

3. Save the configuration file.

4. Set the environment variables for tracing.

5. Start MirrorMaker 2 with the producer and consumer configuration files as parameters:

The internal consumers and producers of MirrorMaker 2 are now enabled for tracing.

16.6. ENABLING TRACING FOR MIRRORMAKER

Enable distributed tracing for MirrorMaker by passing the Interceptor properties as consumer and
producer configuration parameters. Messages are traced from the source cluster to the target cluster.
The trace data records messages entering and leaving the MirrorMaker component.

You can enable tracing that uses OpenTelemetry.

Procedure

1. Add the tracing artifacts to the opt/kafka/libs directory.

2. Configure producer tracing in the /opt/kafka/config/producer.properties file.
Add the following tracing interceptor property:

Producer property for OpenTelemetry

3. Save the configuration file.

4. Configure consumer tracing in the /opt/kafka/config/consumer.properties file.
Add the following tracing interceptor property:

Consumer property for OpenTelemetry

With tracing enabled, you initialize tracing when you run the Kafka MirrorMaker script.

5. Save the configuration file.

6. Set the environment variables for tracing.

7. Start MirrorMaker with the producer and consumer configuration files as parameters:

su - kafka
/opt/kafka/bin/connect-mirror-maker.sh \
/opt/kafka/config/connect-mirror-maker.properties

producer.interceptor.classes=io.opentelemetry.instrumentation.kafkaclients.TracingProducerInte
rceptor

consumer.interceptor.classes=io.opentelemetry.instrumentation.kafkaclients.TracingConsumerI
nterceptor

Red Hat Streams for Apache Kafka 2.7 Using Streams for Apache Kafka on RHEL in KRaft mode

158

The internal consumers and producers of MirrorMaker are now enabled for tracing.

16.7. INITIALIZING TRACING FOR KAFKA CLIENTS

Initialize a tracer for OpenTelemetry, then instrument your client applications for distributed tracing. You
can instrument Kafka producer and consumer clients, and Kafka Streams API applications.

Configure and initialize a tracer using a set of tracing environment variables.

Procedure

In each client application add the dependencies for the tracer:

1. Add the Maven dependencies to the pom.xml file for the client application:

Dependencies for OpenTelemetry

su - kafka
/opt/kafka/bin/kafka-mirror-maker.sh \
--producer.config /opt/kafka/config/producer.properties \
--consumer.config /opt/kafka/config/consumer.properties \
--num.streams=2

<dependency>
 <groupId>io.opentelemetry.semconv</groupId>
 <artifactId>opentelemetry-semconv</artifactId>
 <version>1.21.0-alpha</version>
</dependency>
<dependency>
 <groupId>io.opentelemetry</groupId>
 <artifactId>opentelemetry-exporter-otlp</artifactId>
 <version>1.34.1</version>
 <exclusions>
 <exclusion>
 <groupId>io.opentelemetry</groupId>
 <artifactId>opentelemetry-exporter-sender-okhttp</artifactId>
 </exclusion>
 </exclusions>
</dependency>
<dependency>
 <groupId>io.opentelemetry</groupId>
 <artifactId>opentelemetry-exporter-sender-grpc-managed-channel</artifactId>
 <version>1.34.1</version>
 <scope>runtime</scope>
</dependency>
<dependency>
 <groupId>io.opentelemetry</groupId>
 <artifactId>opentelemetry-sdk-extension-autoconfigure</artifactId>
 <version>1.34.1</version>
</dependency>
<dependency>
 <groupId>io.opentelemetry.instrumentation</groupId>
 <artifactId>opentelemetry-kafka-clients-2.6</artifactId>
 <version>1.32.0-alpha</version>
</dependency>

CHAPTER 16. SETTING UP DISTRIBUTED TRACING

159

2. Define the configuration of the tracer using the tracing environment variables.

3. Create a tracer, which is initialized with the environment variables:

Creating a tracer for OpenTelemetry

4. Register the tracer as a global tracer:

5. Instrument your client:

Section 16.8, “Instrumenting producers and consumers for tracing”

Section 16.9, “Instrumenting Kafka Streams applications for tracing”

16.8. INSTRUMENTING PRODUCERS AND CONSUMERS FOR TRACING

Instrument application code to enable tracing in Kafka producers and consumers. Use a decorator
pattern or interceptors to instrument your Java producer and consumer application code for tracing.
You can then record traces when messages are produced or retrieved from a topic.

OpenTelemetry instrumentation project provides classes that support instrumentation of producers
and consumers.

Decorator instrumentation

For decorator instrumentation, create a modified producer or consumer instance for tracing.

Interceptor instrumentation

For interceptor instrumentation, add the tracing capability to the consumer or producer
configuration.

Prerequisites

You have initialized tracing for the client .

You enable instrumentation in producer and consumer applications by adding the tracing JARs

<dependency>
 <groupId>io.opentelemetry</groupId>
 <artifactId>opentelemetry-sdk</artifactId>
 <version>1.34.1</version>
</dependency>
<dependency>
 <groupId>io.opentelemetry</groupId>
 <artifactId>opentelemetry-exporter-sender-jdk</artifactId>
 <version>1.34.1-alpha</version>
 <scope>runtime</scope>
</dependency>
<dependency>
 <groupId>io.grpc</groupId>
 <artifactId>grpc-netty-shaded</artifactId>
 <version>1.61.0</version>
</dependency>

OpenTelemetry ot = GlobalOpenTelemetry.get();

GlobalTracer.register(tracer);

Red Hat Streams for Apache Kafka 2.7 Using Streams for Apache Kafka on RHEL in KRaft mode

160

You enable instrumentation in producer and consumer applications by adding the tracing JARs
as dependencies to your project.

Procedure

Perform these steps in the application code of each producer and consumer application. Instrument
your client application code using either a decorator pattern or interceptors.

To use a decorator pattern, create a modified producer or consumer instance to send or receive
messages.
You pass the original KafkaProducer or KafkaConsumer class.

Example decorator instrumentation for OpenTelemetry

To use interceptors, set the interceptor class in the producer or consumer configuration.
You use the KafkaProducer and KafkaConsumer classes in the usual way. The
TracingProducerInterceptor and TracingConsumerInterceptor interceptor classes take care
of the tracing capability.

Example producer configuration using interceptors

Example consumer configuration using interceptors

// Producer instance
Producer < String, String > op = new KafkaProducer < > (
 configs,
 new StringSerializer(),
 new StringSerializer()
);
 Producer < String, String > producer = tracing.wrap(op);
KafkaTracing tracing = KafkaTracing.create(GlobalOpenTelemetry.get());
producer.send(...);

//consumer instance
Consumer<String, String> oc = new KafkaConsumer<>(
 configs,
 new StringDeserializer(),
 new StringDeserializer()
);
 Consumer<String, String> consumer = tracing.wrap(oc);
consumer.subscribe(Collections.singleton("mytopic"));
ConsumerRecords<Integer, String> records = consumer.poll(1000);
ConsumerRecord<Integer, String> record = ...
SpanContext spanContext = TracingKafkaUtils.extractSpanContext(record.headers(), tracer);

senderProps.put(ProducerConfig.INTERCEPTOR_CLASSES_CONFIG,
 TracingProducerInterceptor.class.getName());

KafkaProducer<Integer, String> producer = new KafkaProducer<>(senderProps);
producer.send(...);

consumerProps.put(ConsumerConfig.INTERCEPTOR_CLASSES_CONFIG,
 TracingConsumerInterceptor.class.getName());

KafkaConsumer<Integer, String> consumer = new KafkaConsumer<>(consumerProps);

CHAPTER 16. SETTING UP DISTRIBUTED TRACING

161

16.9. INSTRUMENTING KAFKA STREAMS APPLICATIONS FOR
TRACING

Instrument application code to enable tracing in Kafka Streams API applications. Use a decorator
pattern or interceptors to instrument your Kafka Streams API applications for tracing. You can then
record traces when messages are produced or retrieved from a topic.

Decorator instrumentation

For decorator instrumentation, create a modified Kafka Streams instance for tracing. For
OpenTelemetry, you need to create a custom TracingKafkaClientSupplier class to provide tracing
instrumentation for Kafka Streams.

Interceptor instrumentation

For interceptor instrumentation, add the tracing capability to the Kafka Streams producer and
consumer configuration.

Prerequisites

You have initialized tracing for the client .
You enable instrumentation in Kafka Streams applications by adding the tracing JARs as
dependencies to your project.

To instrument Kafka Streams with OpenTelemetry, you’ll need to write a custom
TracingKafkaClientSupplier.

The custom TracingKafkaClientSupplier can extend Kafka’s DefaultKafkaClientSupplier,
overriding the producer and consumer creation methods to wrap the instances with the
telemetry-related code.

Example custom TracingKafkaClientSupplier

consumer.subscribe(Collections.singletonList("messages"));
ConsumerRecords<Integer, String> records = consumer.poll(1000);
ConsumerRecord<Integer, String> record = ...
SpanContext spanContext = TracingKafkaUtils.extractSpanContext(record.headers(), tracer);

private class TracingKafkaClientSupplier extends DefaultKafkaClientSupplier {
 @Override
 public Producer<byte[], byte[]> getProducer(Map<String, Object> config) {
 KafkaTelemetry telemetry = KafkaTelemetry.create(GlobalOpenTelemetry.get());
 return telemetry.wrap(super.getProducer(config));
 }

 @Override
 public Consumer<byte[], byte[]> getConsumer(Map<String, Object> config) {
 KafkaTelemetry telemetry = KafkaTelemetry.create(GlobalOpenTelemetry.get());
 return telemetry.wrap(super.getConsumer(config));
 }

 @Override
 public Consumer<byte[], byte[]> getRestoreConsumer(Map<String, Object> config) {
 return this.getConsumer(config);
 }

Red Hat Streams for Apache Kafka 2.7 Using Streams for Apache Kafka on RHEL in KRaft mode

162

1

2

Procedure

Perform these steps for each Kafka Streams API application.

To use a decorator pattern, create an instance of the TracingKafkaClientSupplier supplier
interface, then provide the supplier interface to KafkaStreams.

Example decorator instrumentation

To use interceptors, set the interceptor class in the Kafka Streams producer and consumer
configuration.
The TracingProducerInterceptor and TracingConsumerInterceptor interceptor classes take
care of the tracing capability.

Example producer and consumer configuration using interceptors

16.10. SPECIFYING TRACING SYSTEMS WITH OPENTELEMETRY

Instead of the default Jaeger system, you can specify other tracing systems that are supported by
OpenTelemetry.

If you want to use another tracing system with OpenTelemetry, do the following:

1. Add the library of the tracing system to the Kafka classpath.

2. Add the name of the tracing system as an additional exporter environment variable.

Additional environment variable when not using Jaeger

The name of the tracing system. In this example, Zipkin is specified.

The endpoint of the specific selected exporter that listens for spans. In this example, a
Zipkin endpoint is specified.

 @Override
 public Consumer<byte[], byte[]> getGlobalConsumer(Map<String, Object> config) {
 return this.getConsumer(config);
 }
}

KafkaClientSupplier supplier = new TracingKafkaClientSupplier(tracer);
KafkaStreams streams = new KafkaStreams(builder.build(), new StreamsConfig(config),
supplier);
streams.start();

props.put(StreamsConfig.PRODUCER_PREFIX +
ProducerConfig.INTERCEPTOR_CLASSES_CONFIG,
TracingProducerInterceptor.class.getName());
props.put(StreamsConfig.CONSUMER_PREFIX +
ConsumerConfig.INTERCEPTOR_CLASSES_CONFIG,
TracingConsumerInterceptor.class.getName());

OTEL_SERVICE_NAME=my-tracing-service
OTEL_TRACES_EXPORTER=zipkin 1
OTEL_EXPORTER_ZIPKIN_ENDPOINT=http://localhost:9411/api/v2/spans 2

CHAPTER 16. SETTING UP DISTRIBUTED TRACING

163

Zipkin endpoint is specified.

Additional resources

OpenTelemetry exporter values

16.11. SPECIFYING CUSTOM SPAN NAMES FOR OPENTELEMETRY

A tracing span is a logical unit of work in Jaeger, with an operation name, start time, and duration. Spans
have built-in names, but you can specify custom span names in your Kafka client instrumentation where
used.

Specifying custom span names is optional and only applies when using a decorator pattern in producer
and consumer client instrumentation or Kafka Streams instrumentation .

Custom span names cannot be specified directly with OpenTelemetry. Instead, you retrieve span names
by adding code to your client application to extract additional tags and attributes.

Example code to extract attributes

//Defines attribute extraction for a producer
private static class ProducerAttribExtractor implements AttributesExtractor < ProducerRecord < ? , ? >
, Void > {
 @Override
 public void onStart(AttributesBuilder attributes, ProducerRecord < ? , ? > producerRecord) {
 set(attributes, AttributeKey.stringKey("prod_start"), "prod1");
 }
 @Override
 public void onEnd(AttributesBuilder attributes, ProducerRecord < ? , ? > producerRecord,
@Nullable Void unused, @Nullable Throwable error) {
 set(attributes, AttributeKey.stringKey("prod_end"), "prod2");
 }
}
//Defines attribute extraction for a consumer
private static class ConsumerAttribExtractor implements AttributesExtractor < ConsumerRecord < ? ,
? > , Void > {
 @Override
 public void onStart(AttributesBuilder attributes, ConsumerRecord < ? , ? > producerRecord) {
 set(attributes, AttributeKey.stringKey("con_start"), "con1");
 }
 @Override
 public void onEnd(AttributesBuilder attributes, ConsumerRecord < ? , ? > producerRecord,
@Nullable Void unused, @Nullable Throwable error) {
 set(attributes, AttributeKey.stringKey("con_end"), "con2");
 }
}
//Extracts the attributes
public static void main(String[] args) throws Exception {
 Map < String, Object > configs = new HashMap < >
(Collections.singletonMap(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092"));
 System.setProperty("otel.traces.exporter", "jaeger");
 System.setProperty("otel.service.name", "myapp1");
 KafkaTracing tracing = KafkaTracing.newBuilder(GlobalOpenTelemetry.get())

Red Hat Streams for Apache Kafka 2.7 Using Streams for Apache Kafka on RHEL in KRaft mode

164

https://github.com/open-telemetry/opentelemetry-java/tree/main/sdk-extensions/autoconfigure#exporters

 .addProducerAttributesExtractors(new ProducerAttribExtractor())
 .addConsumerAttributesExtractors(new ConsumerAttribExtractor())
 .build();

CHAPTER 16. SETTING UP DISTRIBUTED TRACING

165

CHAPTER 17. USING KAFKA EXPORTER
Kafka Exporter is an open source project to enhance monitoring of Apache Kafka brokers and clients.

Kafka Exporter is provided with Streams for Apache Kafka for deployment with a Kafka cluster to
extract additional metrics data from Kafka brokers related to offsets, consumer groups, consumer lag,
and topics.

The metrics data is used, for example, to help identify slow consumers.

Lag data is exposed as Prometheus metrics, which can then be presented in Grafana for analysis.

If you are already using Prometheus and Grafana for monitoring of built-in Kafka metrics, you can
configure Prometheus to also scrape the Kafka Exporter Prometheus endpoint.

Kafka exposes metrics through JMX, which can then be exported as Prometheus metrics. For more
information, see Monitoring your cluster using JMX .

17.1. CONSUMER LAG

Consumer lag indicates the difference in the rate of production and consumption of messages.
Specifically, consumer lag for a given consumer group indicates the delay between the last message in
the partition and the message being currently picked up by that consumer. The lag reflects the position
of the consumer offset in relation to the end of the partition log.

This difference is sometimes referred to as the delta between the producer offset and consumer offset,
the read and write positions in the Kafka broker topic partitions.

Suppose a topic streams 100 messages a second. A lag of 1000 messages between the producer offset
(the topic partition head) and the last offset the consumer has read means a 10-second delay.

The importance of monitoring consumer lag

For applications that rely on the processing of (near) real-time data, it is critical to monitor consumer lag
to check that it does not become too big. The greater the lag becomes, the further the process moves
from the real-time processing objective.

Consumer lag, for example, might be a result of consuming too much old data that has not been purged,
or through unplanned shutdowns.

Reducing consumer lag

Typical actions to reduce lag include:

Scaling-up consumer groups by adding new consumers

Increasing the retention time for a message to remain in a topic

Adding more disk capacity to increase the message buffer

Actions to reduce consumer lag depend on the underlying infrastructure and the use cases Streams for
Apache Kafka is supporting. For instance, a lagging consumer is less likely to benefit from the broker
being able to service a fetch request from its disk cache. And in certain cases, it might be acceptable to
automatically drop messages until a consumer has caught up.

17.2. KAFKA EXPORTER ALERTING RULE EXAMPLES

Red Hat Streams for Apache Kafka 2.7 Using Streams for Apache Kafka on RHEL in KRaft mode

166

https://github.com/danielqsj/kafka_exporter

The sample alert notification rules specific to Kafka Exporter are as follows:

UnderReplicatedPartition

An alert to warn that a topic is under-replicated and the broker is not replicating enough partitions.
The default configuration is for an alert if there are one or more under-replicated partitions for a
topic. The alert might signify that a Kafka instance is down or the Kafka cluster is overloaded. A
planned restart of the Kafka broker may be required to restart the replication process.

TooLargeConsumerGroupLag

An alert to warn that the lag on a consumer group is too large for a specific topic partition. The
default configuration is 1000 records. A large lag might indicate that consumers are too slow and are
falling behind the producers.

NoMessageForTooLong

An alert to warn that a topic has not received messages for a period of time. The default
configuration for the time period is 10 minutes. The delay might be a result of a configuration issue
preventing a producer from publishing messages to the topic.

You can adapt alerting rules according to your specific needs.

Additional resources

For more information about setting up alerting rules, see Configuration in the Prometheus
documentation.

17.3. KAFKA EXPORTER METRICS

Lag information is exposed by Kafka Exporter as Prometheus metrics for presentation in Grafana.

Kafka Exporter exposes metrics data for brokers, topics, and consumer groups.

Table 17.1. Broker metrics output

Name Information

kafka_brokers Number of brokers in the Kafka cluster

Table 17.2. Topic metrics output

Name Information

kafka_topic_partitions Number of partitions for a topic

kafka_topic_partition_current_offset Current topic partition offset for a broker

kafka_topic_partition_oldest_offset Oldest topic partition offset for a broker

kafka_topic_partition_in_sync_replica Number of in-sync replicas for a topic partition

kafka_topic_partition_leader Leader broker ID of a topic partition

CHAPTER 17. USING KAFKA EXPORTER

167

https://prometheus.io/docs/prometheus/latest/configuration/configuration

kafka_topic_partition_leader_is_preferred Shows 1 if a topic partition is using the preferred
broker

kafka_topic_partition_replicas Number of replicas for this topic partition

kafka_topic_partition_under_replicated_parti
tion

Shows 1 if a topic partition is under-replicated

Name Information

Table 17.3. Consumer group metrics output

Name Information

kafka_consumergroup_current_offset Current topic partition offset for a consumer group

kafka_consumergroup_lag Current approximate lag for a consumer group at a
topic partition

17.4. RUNNING KAFKA EXPORTER

Run Kafka Exporter to expose Prometheus metrics for presentation in a Grafana dashboard.

Download and install the Kafka Exporter package to use the Kafka Exporter with Streams for Apache
Kafka. You need a Streams for Apache Kafka subscription to be able to download and install the
package.

Prerequisites

Streams for Apache Kafka is installed on each host , and the configuration files are available.

You have a subscription to Streams for Apache Kafka .

This procedure assumes you already have access to a Grafana user interface and Prometheus is
deployed and added as a data source.

Procedure

1. Install the Kafka Exporter package:

2. Verify the package has installed:

3. Run the Kafka Exporter using appropriate configuration parameter values:

dnf install kafka_exporter

dnf info kafka_exporter

kafka_exporter --kafka.server=<kafka_bootstrap_address>:9092 --kafka.version=3.7.0 -
-<my_other_parameters>

Red Hat Streams for Apache Kafka 2.7 Using Streams for Apache Kafka on RHEL in KRaft mode

168

The parameters require a double-hyphen convention, such as --kafka.server.

Table 17.4. Kafka Exporter configuration parameters

Option Description Default

kafka.server Host/post address of the Kafka
server.

kafka:9092

kafka.version Kafka broker version. 1.0.0

group.filter A regular expression to specify
the consumer groups to
include in the metrics.

.* (all)

topic.filter A regular expression to specify
the topics to include in the
metrics.

.* (all)

sasl.<parameter> Parameters to enable and
connect to the Kafka cluster
using SASL/PLAIN
authentication, with user name
and password.

false

tls.<parameter> Parameters to enable connect
to the Kafka cluster using TLS
authentication, with optional
certificate and key.

false

web.listen-address Port address to expose the
metrics.

:9308

web.telemetry-path Path for the exposed metrics. /metrics

log.level Logging configuration, to log
messages with a given severity
(debug, info, warn, error, fatal)
or above.

info

log.enable-sarama Boolean to enable Sarama
logging, a Go client library
used by the Kafka Exporter.

false

legacy.partitions Boolean to enable metrics to
be fetched from inactive topic
partitions as well as from active
partitions. If you want Kafka
Exporter to return metrics for
inactive partitions, set to true.

false

CHAPTER 17. USING KAFKA EXPORTER

169

You can use kafka_exporter --help for information on the properties.

4. Configure Prometheus to monitor the Kafka Exporter metrics.
For more information on configuring Prometheus, see the Prometheus documentation.

5. Enable Grafana to present the Kafka Exporter metrics data exposed by Prometheus.
For more information, see Presenting Kafka Exporter metrics in Grafana .

Updating Kafka Exporter

Use the latest version of Kafka Exporter with your Streams for Apache Kafka installation.

To check for updates, use:

To update Kafka Exporter, use:

17.5. PRESENTING KAFKA EXPORTER METRICS IN GRAFANA

Using Kafka Exporter Prometheus metrics as a data source, you can create a dashboard of Grafana
charts.

For example, from the metrics you can create the following Grafana charts:

Message in per second (from topics)

Message in per minute (from topics)

Lag by consumer group

Messages consumed per minute (by consumer groups)

When metrics data has been collected for some time, the Kafka Exporter charts are populated.

Use the Grafana charts to analyze lag and to check if actions to reduce lag are having an impact on an
affected consumer group. If, for example, Kafka brokers are adjusted to reduce lag, the dashboard will
show the Lag by consumer group chart going down and the Messages consumed per minute chart going
up.

Additional resources

Example dashboard for Kafka Exporter

Grafana documentation

dnf check-update

dnf update kafka_exporter

Red Hat Streams for Apache Kafka 2.7 Using Streams for Apache Kafka on RHEL in KRaft mode

170

https://prometheus.io/docs/
https://grafana.com/grafana/dashboards/7589
https://grafana.com/docs/

CHAPTER 18. UPGRADING STREAMS FOR APACHE KAFKA
AND KAFKA

Upgrade your Kafka cluster with no downtime. Streams for Apache Kafka 2.7 supports and uses Apache
Kafka version 3.7.0. Kafka 3.6.0 is supported only for the purpose of upgrading to Streams for Apache
Kafka 2.7. You upgrade to the latest supported version of Kafka when you install the latest version of
Streams for Apache Kafka.

18.1. UPGRADE PREREQUISITES

Before you begin the upgrade process, make sure you are familiar with any upgrade changes described
in the Streams for Apache Kafka 2.7 on Red Hat Enterprise Linux Release Notes .

18.2. STRATEGIES FOR UPGRADING CLIENTS

Upgrading Kafka clients ensures that they benefit from the features, fixes, and improvements that are
introduced in new versions of Kafka. Upgraded clients maintain compatibility with other upgraded Kafka
components. The performance and stability of the clients might also be improved.

Consider the best approach for upgrading Kafka clients and brokers to ensure a smooth transition. The
chosen upgrade strategy depends on whether you are upgrading brokers or clients first. Since Kafka 3.0,
you can upgrade brokers and client independently and in any order. The decision to upgrade clients or
brokers first depends on several factors, such as the number of applications that need to be upgraded
and how much downtime is tolerable.

If you upgrade clients before brokers, some new features may not work as they are not yet supported by
brokers. However, brokers can handle producers and consumers running with different versions and
supporting different log message versions.

18.3. UPGRADING KAFKA CLUSTERS

Upgrade a KRaft-based Kafka cluster to a newer supported Kafka version and KRaft metadata version.
You update the installation files, then configure and restart all Kafka nodes. After performing these
steps, data is transmitted between the Kafka brokers according to the new metadata version.

WARNING

When downgrading a KRaft-based Strimzi Kafka cluster to a lower version, like
moving from 3.7.0 to 3.6.0, ensure that the metadata version used by the Kafka
cluster is a version supported by the Kafka version you want to downgrade to. The
metadata version for the Kafka version you are downgrading from must not be
higher than the version you are downgrading to.

Prerequisites

You are logged in to Red Hat Enterprise Linux as the kafka user.

Streams for Apache Kafka is installed on each host , and the configuration files are available.



CHAPTER 18. UPGRADING STREAMS FOR APACHE KAFKA AND KAFKA

171

https://docs.redhat.com/en/documentation/red_hat_streams_for_apache_kafka/2.7/html-single/release_notes_for_streams_for_apache_kafka_2.7_on_rhel/index

You have downloaded the installation files.

Procedure

For each Kafka node in your Streams for Apache Kafka cluster, starting with controller nodes and then
brokers, and one at a time:

1. Download the Streams for Apache Kafka archive from the Streams for Apache Kafka software
downloads page.

NOTE

If prompted, log in to your Red Hat account.

2. On the command line, create a temporary directory and extract the contents of the amq-
streams-<version>-bin.zip file.

3. If running, stop the Kafka broker running on the host.

If you are running Kafka on a multi-node cluster, see Section 3.6, “Performing a graceful rolling
restart of Kafka brokers”.

4. Delete the libs and bin directories from your existing installation:

5. Copy the libs and bin directories from the temporary directory:

6. If required, update the configuration files in the config directory to reflect any changes in the
new Kafka version.

7. Delete the temporary directory.

8. Restart the updated Kafka node:

Restarting nodes with combined roles

Restarting controller nodes

mkdir /tmp/kafka
unzip amq-streams-<version>-bin.zip -d /tmp/kafka

/opt/kafka/bin/kafka-server-stop.sh
jcmd | grep kafka

rm -rf /opt/kafka/libs /opt/kafka/bin

cp -r /tmp/kafka/kafka_<version>/libs /opt/kafka/
cp -r /tmp/kafka/kafka_<version>/bin /opt/kafka/

rm -r /tmp/kafka

/opt/kafka/bin/kafka-server-start.sh -daemon /opt/kafka/config/kraft/server.properties

/opt/kafka/bin/kafka-server-start.sh -daemon /opt/kafka/config/kraft/controller.properties

Red Hat Streams for Apache Kafka 2.7 Using Streams for Apache Kafka on RHEL in KRaft mode

172

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?downloadType=distributions&product=jboss.amq.streams

Restarting nodes with broker roles

The Kafka broker starts using the binaries for the latest Kafka version.

For information on restarting brokers in a multi-node cluster, see Section 3.6, “Performing a
graceful rolling restart of Kafka brokers”.

9. Check that Kafka is running:

10. Update the Kafka metadata version:

Use the correct version for the Kafka version you are upgrading to.

NOTE

Verify that a restarted Kafka broker has caught up with the partition replicas it is following
using the kafka-topics.sh tool to ensure that all replicas contained in the broker are back
in sync. For instructions, see Listing and describing topics .

Upgrading client applications

Ensure all Kafka client applications are updated to use the new version of the client binaries as part of
the upgrade process and verify their compatibility with the Kafka upgrade. If needed, coordinate with
the team responsible for managing the client applications.

TIP

To check that a client is using the latest message format, use the
kafka.server:type=BrokerTopicMetrics,name={Produce|Fetch}MessageConversionsPerSec metric.
The metric shows 0 if the latest message format is being used.

18.4. UPGRADING KAFKA COMPONENTS

Upgrade Kafka components on a host machine to use the latest version of Streams for Apache Kafka.
You can use the Streams for Apache Kafka installation files to upgrade the following components:

Kafka Connect

MirrorMaker

Kafka Bridge (separate ZIP file)

Prerequisites

You are logged in to Red Hat Enterprise Linux as the kafka user.

You have downloaded the installation files.

/opt/kafka/bin/kafka-server-start.sh -daemon /opt/kafka/config/kraft/broker.properties

jcmd | grep kafka

./bin/kafka-features.sh --bootstrap-server <broker_host>:<port> upgrade --metadata 3.7

CHAPTER 18. UPGRADING STREAMS FOR APACHE KAFKA AND KAFKA

173

You have upgraded Kafka.
If a Kafka component is running on the same host as Kafka, you’ll also need to stop and start
Kafka when upgrading.

Procedure

For each host running an instance of the Kafka component:

1. Download the Streams for Apache Kafka or Kafka Bridge installation files from the Streams for
Apache Kafka software downloads page.

NOTE

If prompted, log in to your Red Hat account.

2. On the command line, create a temporary directory and extract the contents of the amq-
streams-<version>-bin.zip file.

For Kafka Bridge, extract the amq-streams-<version>-bridge-bin.zip file.

3. If running, stop the Kafka component running on the host.

4. Delete the libs and bin directories from your existing installation:

5. Copy the libs and bin directories from the temporary directory:

6. If required, update the configuration files in the config directory to reflect any changes in the
new versions.

7. Delete the temporary directory.

8. Start the Kafka component using the appropriate script and properties files.

Starting Kafka Connect in standalone mode

Starting Kafka Connect in distributed mode

mkdir /tmp/kafka
unzip amq-streams-<version>-bin.zip -d /tmp/kafka

rm -rf /opt/kafka/libs /opt/kafka/bin

cp -r /tmp/kafka/kafka_<version>/libs /opt/kafka/
cp -r /tmp/kafka/kafka_<version>/bin /opt/kafka/

rm -r /tmp/kafka

/opt/kafka/bin/connect-standalone.sh \
/opt/kafka/config/connect-standalone.properties <connector1>.properties
[<connector2>.properties ...]

/opt/kafka/bin/connect-distributed.sh \
/opt/kafka/config/connect-distributed.properties

Red Hat Streams for Apache Kafka 2.7 Using Streams for Apache Kafka on RHEL in KRaft mode

174

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?downloadType=distributions&product=jboss.amq.streams

Starting MirrorMaker 2 in dedicated mode

Starting Kafka Bridge

9. Verify that the Kafka component is running, and producing or consuming data as expected.

Verifying Kafka Connect in standalone mode is running

Verifying Kafka Connect in distributed mode is running

Verifying MirrorMaker 2 in dedicated mode is running

Verifying Kafka Bridge is running by checking the log

/opt/kafka/bin/connect-mirror-maker.sh \
/opt/kafka/config/connect-mirror-maker.properties

su - kafka
./bin/kafka_bridge_run.sh \
--config-file=<path>/application.properties

jcmd | grep ConnectStandalone

jcmd | grep ConnectDistributed

jcmd | grep mirrorMaker

HTTP-Kafka Bridge started and listening on port 8080
HTTP-Kafka Bridge bootstrap servers localhost:9092

CHAPTER 18. UPGRADING STREAMS FOR APACHE KAFKA AND KAFKA

175

CHAPTER 19. MONITORING YOUR CLUSTER USING JMX
Collecting metrics is critical for understanding the health and performance of your Kafka deployment. By
monitoring metrics, you can actively identify issues before they become critical and make informed
decisions about resource allocation and capacity planning. Without metrics, you may be left with limited
visibility into the behavior of your Kafka deployment, which can make troubleshooting more difficult and
time-consuming. Setting up metrics can save you time and resources in the long run, and help ensure
the reliability of your Kafka deployment.

Kafka components use Java Management Extensions (JMX) to share management information through
metrics. These metrics are crucial for monitoring a Kafka cluster’s performance and overall health. Like
many other Java applications, Kafka employs Managed Beans (MBeans) to supply metric data to
monitoring tools and dashboards. JMX operates at the JVM level, allowing external tools to connect and
retrieve management information from Kafka components. To connect to the JVM, these tools typically
need to run on the same machine and with the same user privileges by default.

19.1. ENABLING THE JMX AGENT

Enable JMX monitoring of Kafka components using JVM system properties. Use the
KAFKA_JMX_OPTS environment variable to set the JMX system properties required for enabling JMX
monitoring. The scripts that run the Kafka component use these properties.

Procedure

1. Set the KAFKA_JMX_OPTS environment variable with the JMX properties for enabling JMX
monitoring.

Replace <port> with the name of the port on which you want the Kafka component to listen for
JMX connections.

2. Add org.apache.kafka.common.metrics.JmxReporter to metric.reporters in the
server.properties file.

3. Start the Kafka component using the appropriate script, such as bin/kafka-server-start.sh for a
broker or bin/connect-distributed.sh for Kafka Connect.

IMPORTANT

It is recommended that you configure authentication and SSL to secure a remote JMX
connection. For more information about the system properties needed to do this, see the
Oracle documentation.

19.2. DISABLING THE JMX AGENT

Disable JMX monitoring for Kafka components by updating the KAFKA_JMX_OPTS environment
variable.

export KAFKA_JMX_OPTS=-Dcom.sun.management.jmxremote=true
 -Dcom.sun.management.jmxremote.port=<port>
 -Dcom.sun.management.jmxremote.authenticate=false
 -Dcom.sun.management.jmxremote.ssl=false

metric.reporters=org.apache.kafka.common.metrics.JmxReporter

Red Hat Streams for Apache Kafka 2.7 Using Streams for Apache Kafka on RHEL in KRaft mode

176

https://docs.oracle.com/en/

Procedure

1. Set the KAFKA_JMX_OPTS environment variable to disable JMX monitoring.

NOTE

Other JMX properties, like port, authentication, and SSL properties do not need
to be specified when disabling JMX monitoring.

2. Set auto.include.jmx.reporter to false in the Kafka server.properties file.

NOTE

The auto.include.jmx.reporter property is deprecated. From Kafka 4, the
JMXReporter is only enabled if
org.apache.kafka.common.metrics.JmxReporter is added to the
metric.reporters configuration in the properties file.

3. Start the Kafka component using the appropriate script, such as bin/kafka-server-start.sh for a
broker or bin/connect-distributed.sh for Kafka Connect.

19.3. METRICS NAMING CONVENTIONS

When working with Kafka JMX metrics, it’s important to understand the naming conventions used to
identify and retrieve specific metrics. Kafka JMX metrics use the following format:

Metrics format

<metric_group> is the name of the metric group

<type_name> is the name of the type of metric

<metric_name> is the name of the specific metric

<other_attribute> represents zero or more additional attributes

For example, the BytesInPerSec metric is a BrokerTopicMetrics type in the kafka.server group:

In some cases, metrics may include the ID of an entity. For instance, when monitoring a specific client,
the metric format includes the client ID:

Metrics for a specific client

export KAFKA_JMX_OPTS=-Dcom.sun.management.jmxremote=false

auto.include.jmx.reporter=false

<metric_group>:type=<type_name>,name=<metric_name><other_attribute>=<value>

kafka.server:type=BrokerTopicMetrics,name=BytesInPerSec

kafka.consumer:type=consumer-fetch-manager-metrics,client-id=<client_id>

CHAPTER 19. MONITORING YOUR CLUSTER USING JMX

177

Similarly, a metric can be further narrowed down to a specific client and topic:

Metrics for a specific client and topic

Understanding these naming conventions will allow you to accurately specify the metrics you want to
monitor and analyze.

NOTE

To view the full list of available JMX metrics for a Strimzi installation, you can use a
graphical tool like JConsole. JConsole is a Java Monitoring and Management Console
that allows you to monitor and manage Java applications, including Kafka. By connecting
to the JVM running the Kafka component using its process ID, the tool’s user interface
allows you to view the list of metrics.

19.4. ANALYZING KAFKA JMX METRICS FOR TROUBLESHOOTING

JMX provides a way to gather metrics about Kafka brokers for monitoring and managing their
performance and resource usage. By analyzing these metrics, common broker issues such as high CPU
usage, memory leaks, thread contention, and slow response times can be diagnosed and resolved.
Certain metrics can pinpoint the root cause of these issues.

JMX metrics also provide insights into the overall health and performance of a Kafka cluster. They help
monitor the system’s throughput, latency, and availability, diagnose issues, and optimize performance.
This section explores the use of JMX metrics to help identify common issues and provides insights into
the performance of a Kafka cluster.

Collecting and graphing these metrics using tools like Prometheus and Grafana allows you to visualize
the information returned. This can be particularly helpful in detecting issues or optimizing performance.
Graphing metrics over time can also help with identifying trends and forecasting resource consumption.

19.4.1. Checking for under-replicated partitions

A balanced Kafka cluster is important for optimal performance. In a balanced cluster, partitions and
leaders are evenly distributed across all brokers, and I/O metrics reflect this. As well as using metrics, you
can use the kafka-topics.sh tool to get a list of under-replicated partitions and identify the problematic
brokers. If the number of under-replicated partitions is fluctuating or many brokers show high request
latency, this typically indicates a performance issue in the cluster that requires investigation. On the
other hand, a steady (unchanging) number of under-replicated partitions reported by many of the
brokers in a cluster normally indicates that one of the brokers in the cluster is offline.

Use the describe --under-replicated-partitions option from the kafka-topics.sh tool to show
information about partitions that are currently under-replicated in the cluster. These are the partitions
that have fewer replicas than the configured replication factor.

If the output is blank, the Kafka cluster has no under-replicated partitions. Otherwise, the output shows
replicas that are not in sync or available.

In the following example, only 2 of the 3 replicas are in sync for each partition, with a replica missing from
the ISR (in-sync replica).

Returning information on under-replicated partitions from the command line

kafka.consumer:type=consumer-fetch-manager-metrics,client-id=<client_id>,topic=<topic_id>

Red Hat Streams for Apache Kafka 2.7 Using Streams for Apache Kafka on RHEL in KRaft mode

178

1

2

3

4

5

6

Here are some metrics to check for I/O and under-replicated partitions:

Metrics to check for under-replicated partitions

Total number of partitions across all topics in the cluster.

Total number of leaders across all topics in the cluster.

Rate of incoming bytes per second for each broker.

Rate of outgoing bytes per second for each broker.

Number of under-replicated partitions across all topics in the cluster.

Number of partitions below the minimum ISR.

If topic configuration is set for high availability, with a replication factor of at least 3 for topics and a
minimum number of in-sync replicas being 1 less than the replication factor, under-replicated partitions
can still be usable. Conversely, partitions below the minimum ISR have reduced availability. You can
monitor these using the kafka.server:type=ReplicaManager,name=UnderMinIsrPartitionCount
metric and the under-min-isr-partitions option from the kafka-topics.sh tool.

TIP

Use Cruise Control to automate the task of monitoring and rebalancing a Kafka cluster to ensure that
the partition load is evenly distributed. For more information, see Chapter 13, Using Cruise Control for
cluster rebalancing.

19.4.2. Identifying performance problems in a Kafka cluster

Spikes in cluster metrics may indicate a broker issue, which is often related to slow or failing storage
devices or compute restraints from other processes. If there is no issue at the operating system or
hardware level, an imbalance in the load of the Kafka cluster is likely, with some partitions receiving
disproportionate traffic compared to others in the same Kafka topic.

To anticipate performance problems in a Kafka cluster, it’s useful to monitor the
RequestHandlerAvgIdlePercent metric. RequestHandlerAvgIdlePercent provides a good overall
indicator of how the cluster is behaving. The value of this metric is between 0 and 1. A value below 0.7

bin/kafka-topics.sh --bootstrap-server :9092 --describe --under-replicated-partitions

Topic: topic-1 Partition: 0 Leader: 4 Replicas: 4,2,3 Isr: 4,3
Topic: topic-1 Partition: 1 Leader: 3 Replicas: 2,3,4 Isr: 3,4
Topic: topic-1 Partition: 2 Leader: 3 Replicas: 3,4,2 Isr: 3,4

kafka.server:type=ReplicaManager,name=PartitionCount 1
kafka.server:type=ReplicaManager,name=LeaderCount 2
kafka.server:type=BrokerTopicMetrics,name=BytesInPerSec 3
kafka.server:type=BrokerTopicMetrics,name=BytesOutPerSec 4
kafka.server:type=ReplicaManager,name=UnderReplicatedPartitions 5
kafka.server:type=ReplicaManager,name=UnderMinIsrPartitionCount 6

CHAPTER 19. MONITORING YOUR CLUSTER USING JMX

179

1

2

3

4

5

6

7

indicates that threads are busy 30% of the time and performance is starting to degrade. If the value
drops below 50%, problems are likely to occur, especially if the cluster needs to scale or rebalance. At
30%, a cluster is barely usable.

Another useful metric is kafka.network:type=Processor,name=IdlePercent, which you can use to
monitor the extent (as a percentage) to which network processors in a Kafka cluster are idle. The metric
helps identify whether the processors are over or underutilized.

To ensure optimal performance, set the num.io.threads property equal to the number of processors in
the system, including hyper-threaded processors. If the cluster is balanced, but a single client has
changed its request pattern and is causing issues, reduce the load on the cluster or increase the number
of brokers.

It’s important to note that a single disk failure on a single broker can severely impact the performance of
an entire cluster. Since producer clients connect to all brokers that lead partitions for a topic, and those
partitions are evenly spread over the entire cluster, a poorly performing broker will slow down produce
requests and cause back pressure in the producers, slowing down requests to all brokers. A RAID
(Redundant Array of Inexpensive Disks) storage configuration that combines multiple physical disk
drives into a single logical unit can help prevent this issue.

Here are some metrics to check the performance of a Kafka cluster:

Metrics to check the performance of a Kafka cluster

Average idle percentage of the request handler threads in the Kafka broker’s thread pool. The
OneMinuteRate and FifteenMinuteRate attributes show the request rate of the last one minute
and fifteen minutes, respectively.

Rate at which new connections are being created on a specific network processor of a specific
listener in the Kafka broker. The listener attribute refers to the name of the listener, and the
networkProcessor attribute refers to the ID of the network processor. The connection-creation-
rate attribute shows the rate of connection creation in connections per second.

Current size of the request queue.

Current sizes of the response queue.

Percentage of time the specified network processor is idle. The networkProcessor specifies the
ID of the network processor to monitor.

Total number of bytes read from disk by a Kafka server.

Total number of bytes written to disk by a Kafka server.

kafka.server:type=KafkaRequestHandlerPool,name=RequestHandlerAvgIdlePercent 1
attributes: OneMinuteRate, FifteenMinuteRate
kafka.server:type=socket-server-metrics,listener=([-.\w]+),networkProcessor=([\d]+) 2
attributes: connection-creation-rate
kafka.network:type=RequestChannel,name=RequestQueueSize 3
kafka.network:type=RequestChannel,name=ResponseQueueSize 4
kafka.network:type=Processor,name=IdlePercent,networkProcessor=([-.\w]+) 5
kafka.server:type=KafkaServer,name=TotalDiskReadBytes 6
kafka.server:type=KafkaServer,name=TotalDiskWriteBytes 7

Red Hat Streams for Apache Kafka 2.7 Using Streams for Apache Kafka on RHEL in KRaft mode

180

1

2

3

19.4.3. Identifying performance problems with a Kafka controller

The Kafka controller is responsible for managing the overall state of the cluster, such as broker
registration, partition reassignment, and topic management. Problems with the controller in the Kafka
cluster are difficult to diagnose and often fall into the category of bugs in Kafka itself. Controller issues
might manifest as broker metadata being out of sync, offline replicas when the brokers appear to be
fine, or actions on topics like topic creation not happening correctly.

There are not many ways to monitor the controller, but you can monitor the active controller count and
the controller queue size. Monitoring these metrics gives a high-level indicator if there is a problem.
Although spikes in the queue size are expected, if this value continuously increases, or stays steady at a
high value and does not drop, it indicates that the controller may be stuck. If you encounter this problem,
you can move the controller to a different broker, which requires shutting down the broker that is
currently the controller.

Here are some metrics to check the performance of a Kafka controller:

Metrics to check the performance of a Kafka controller

Number of active controllers in the Kafka cluster. A value of 1 indicates that there is only one active
controller, which is the desired state.

Number of partitions that are currently offline. If this value is continuously increasing or stays at a
high value, there may be a problem with the controller.

Size of the event queue in the controller. Events are actions that must be performed by the
controller, such as creating a new topic or moving a partition to a new broker. if the value
continuously increases or stays at a high value, the controller may be stuck and unable to perform
the required actions.

19.4.4. Identifying problems with requests

You can use the RequestHandlerAvgIdlePercent metric to determine if requests are slow. Additionally,
request metrics can identify which specific requests are experiencing delays and other issues.

To effectively monitor Kafka requests, it is crucial to collect two key metrics: count and 99th percentile
latency, also known as tail latency.

The count metric represents the number of requests processed within a specific time interval. It provides
insights into the volume of requests handled by your Kafka cluster and helps identify spikes or drops in
traffic.

The 99th percentile latency metric measures the request latency, which is the time taken for a request
to be processed. It represents the duration within which 99% of requests are handled. However, it does
not provide information about the exact duration for the remaining 1% of requests. In other words, the
99th percentile latency metric tells you that 99% of the requests are handled within a certain duration,
and the remaining 1% may take even longer, but the precise duration for this remaining 1% is not known.
The choice of the 99th percentile is primarily to focus on the majority of requests and exclude outliers
that can skew the results.

This metric is particularly useful for identifying performance issues and bottlenecks related to the

kafka.controller:type=KafkaController,name=ActiveControllerCount 1
kafka.controller:type=KafkaController,name=OfflinePartitionsCount 2
kafka.controller:type=ControllerEventManager,name=EventQueueSize 3

CHAPTER 19. MONITORING YOUR CLUSTER USING JMX

181

1

2

3

4

5

6

7

8

9

10

This metric is particularly useful for identifying performance issues and bottlenecks related to the
majority of requests, but it does not give a complete picture of the maximum latency experienced by a
small fraction of requests.

By collecting and analyzing both count and 99th percentile latency metrics, you can gain an
understanding of the overall performance and health of your Kafka cluster, as well as the latency of the
requests being processed.

Here are some metrics to check the performance of Kafka requests:

Metrics to check the performance of requests

Request types to break down the request metrics.

Rate at which requests are being processed by the Kafka broker per second.

Time (in milliseconds) that a request spends waiting in the broker’s request queue before being
processed.

Total time (in milliseconds) that a request takes to complete, from the time it is received by the
broker to the time the response is sent back to the client.

Time (in milliseconds) that a request spends being processed by the broker on the local machine.

Time (in milliseconds) that a request spends being processed by other brokers in the cluster.

Time (in milliseconds) that a request spends being throttled by the broker. Throttling occurs when
the broker determines that a client is sending too many requests too quickly and needs to be
slowed down.

Time (in milliseconds) that a response spends waiting in the broker’s response queue before being
sent back to the client.

Time (in milliseconds) that a response takes to be sent back to the client after it has been
generated by the broker.

For all of the requests metrics, the Count and 99thPercentile attributes show the total number of
requests that have been processed and the time it takes for the slowest 1% of requests to
complete, respectively.

requests: EndTxn, Fetch, FetchConsumer, FetchFollower, FindCoordinator, Heartbeat,
InitProducerId,
JoinGroup, LeaderAndIsr, LeaveGroup, Metadata, Produce, SyncGroup, UpdateMetadata 1
kafka.network:type=RequestMetrics,name=RequestsPerSec,request=([\w]+) 2
kafka.network:type=RequestMetrics,name=RequestQueueTimeMs,request=([\w]+) 3
kafka.network:type=RequestMetrics,name=TotalTimeMs,request=([\w]+) 4
kafka.network:type=RequestMetrics,name=LocalTimeMs,request=([\w]+) 5
kafka.network:type=RequestMetrics,name=RemoteTimeMs,request=([\w]+) 6
kafka.network:type=RequestMetrics,name=ThrottleTimeMs,request=([\w]+) 7
kafka.network:type=RequestMetrics,name=ResponseQueueTimeMs,request=([\w]+) 8
kafka.network:type=RequestMetrics,name=ResponseSendTimeMs,request=([\w]+) 9
attributes: Count, 99thPercentile 10

Red Hat Streams for Apache Kafka 2.7 Using Streams for Apache Kafka on RHEL in KRaft mode

182

1

2

3

19.4.5. Using metrics to check the performance of clients

By analyzing client metrics, you can monitor the performance of the Kafka clients (producers and
consumers) connected to a broker. This can help identify issues highlighted in broker logs, such as
consumers being frequently kicked off their consumer groups, high request failure rates, or frequent
disconnections.

Here are some metrics to check the performance of Kafka clients:

Metrics to check the performance of client requests

(Consumer) Average and maximum time between poll requests, which can help determine if the
consumers are polling for messages frequently enough to keep up with the message flow. The
time-between-poll-avg and time-between-poll-max attributes show the average and maximum
time in milliseconds between successive polls by a consumer, respectively.

(Consumer) Metrics to monitor the coordination process between Kafka consumers and the broker
coordinator. Attributes relate to the heartbeat, join, and rebalance process.

(Producer) Metrics to monitor the performance of Kafka producers. Attributes relate to buffer
usage, request latency, in-flight requests, transactional processing, and record handling.

19.4.6. Using metrics to check the performance of topics and partitions

Metrics for topics and partitions can also be helpful in diagnosing issues in a Kafka cluster. You can also
use them to debug issues with a specific client when you are unable to collect client metrics.

Here are some metrics to check the performance of a specific topic and partition:

Metrics to check the performance of topics and partitions

kafka.consumer:type=consumer-metrics,client-id=([-.\w]+) 1
attributes: time-between-poll-avg, time-between-poll-max
kafka.consumer:type=consumer-coordinator-metrics,client-id=([-.\w]+) 2
attributes: heartbeat-response-time-max, heartbeat-rate, join-time-max, join-rate, rebalance-rate-
per-hour
kafka.producer:type=producer-metrics,client-id=([-.\w]+) 3
attributes: buffer-available-bytes, bufferpool-wait-time, request-latency-max, requests-in-flight
attributes: txn-init-time-ns-total, txn-begin-time-ns-total, txn-send-offsets-time-ns-total, txn-commit-
time-ns-total, txn-abort-time-ns-total
attributes: record-error-total, record-queue-time-avg, record-queue-time-max, record-retry-rate,
record-retry-total, record-send-rate, record-send-total

#Topic metrics
kafka.server:type=BrokerTopicMetrics,name=BytesInPerSec,topic=([-.\w]+) 1
kafka.server:type=BrokerTopicMetrics,name=BytesOutPerSec,topic=([-.\w]+) 2
kafka.server:type=BrokerTopicMetrics,name=FailedFetchRequestsPerSec,topic=([-.\w]+) 3
kafka.server:type=BrokerTopicMetrics,name=FailedProduceRequestsPerSec,topic=([-.\w]+) 4
kafka.server:type=BrokerTopicMetrics,name=MessagesInPerSec,topic=([-.\w]+) 5
kafka.server:type=BrokerTopicMetrics,name=TotalFetchRequestsPerSec,topic=([-.\w]+) 6
kafka.server:type=BrokerTopicMetrics,name=TotalProduceRequestsPerSec,topic=([-.\w]+) 7
#Partition metrics
kafka.log:type=Log,name=Size,topic=([-.\w]+),partition=([\d]+)) 8

CHAPTER 19. MONITORING YOUR CLUSTER USING JMX

183

1

2

3

4

5

6

7

8

9

10

11

Rate of incoming bytes per second for a specific topic.

Rate of outgoing bytes per second for a specific topic.

Rate of fetch requests that failed per second for a specific topic.

Rate of produce requests that failed per second for a specific topic.

Incoming message rate per second for a specific topic.

Total rate of fetch requests (successful and failed) per second for a specific topic.

Total rate of fetch requests (successful and failed) per second for a specific topic.

Size of a specific partition’s log in bytes.

Number of log segments in a specific partition.

Offset of the last message in a specific partition’s log.

Offset of the first message in a specific partition’s log

Additional resources

Apache Kafka documentation for a full list of available metrics

Prometheus documentation

Grafana documentation

kafka.log:type=Log,name=NumLogSegments,topic=([-.\w]+),partition=([\d]+)) 9
kafka.log:type=Log,name=LogEndOffset,topic=([-.\w]+),partition=([\d]+)) 10
kafka.log:type=Log,name=LogStartOffset,topic=([-.\w]+),partition=([\d]+)) 11

Red Hat Streams for Apache Kafka 2.7 Using Streams for Apache Kafka on RHEL in KRaft mode

184

https://kafka.apache.org/documentation/
https://prometheus.io/docs/
https://grafana.com/docs/

APPENDIX A. USING YOUR SUBSCRIPTION
Streams for Apache Kafka is provided through a software subscription. To manage your subscriptions,
access your account at the Red Hat Customer Portal.

Accessing Your Account

1. Go to access.redhat.com.

2. If you do not already have an account, create one.

3. Log in to your account.

Activating a Subscription

1. Go to access.redhat.com.

2. Navigate to My Subscriptions.

3. Navigate to Activate a subscription and enter your 16-digit activation number.

Downloading Zip and Tar Files
To access zip or tar files, use the customer portal to find the relevant files for download. If you are using
RPM packages, this step is not required.

1. Open a browser and log in to the Red Hat Customer Portal Product Downloads page at
access.redhat.com/downloads.

2. Locate the Streams for Apache Kafka for Apache Kafka entries in the INTEGRATION AND
AUTOMATION category.

3. Select the desired Streams for Apache Kafka product. The Software Downloads page opens.

4. Click the Download link for your component.

Installing packages with DNF
To install a package and all the package dependencies, use:

To install a previously-downloaded package from a local directory, use:

Revised on 2024-05-30 15:30:56 UTC

dnf install <package_name>

dnf install <path_to_download_package>

APPENDIX A. USING YOUR SUBSCRIPTION

185

https://access.redhat.com
https://access.redhat.com
https://access.redhat.com/downloads

	Table of Contents
	PREFACE
	PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
	CHAPTER 1. OVERVIEW OF STREAMS FOR APACHE KAFKA
	1.1. USING THE KAFKA BRIDGE TO CONNECT WITH A KAFKA CLUSTER
	1.2. DOCUMENT CONVENTIONS

	CHAPTER 2. FIPS SUPPORT
	2.1. INSTALLING STREAMS FOR APACHE KAFKA WITH FIPS MODE ENABLED

	CHAPTER 3. GETTING STARTED
	3.1. INSTALLATION ENVIRONMENT
	3.1.1. Data storage considerations
	3.1.2. File systems

	3.2. DOWNLOADING STREAMS FOR APACHE KAFKA
	3.3. INSTALLING KAFKA
	3.4. RUNNING A KAFKA CLUSTER IN KRAFT MODE
	3.5. STOPPING THE STREAMS FOR APACHE KAFKA SERVICES
	3.6. PERFORMING A GRACEFUL ROLLING RESTART OF KAFKA BROKERS

	CHAPTER 4. MIGRATING TO KRAFT MODE
	CHAPTER 5. CONFIGURING STREAMS FOR APACHE KAFKA
	5.1. USING STANDARD KAFKA CONFIGURATION PROPERTIES
	5.2. LOADING CONFIGURATION VALUES FROM ENVIRONMENT VARIABLES
	5.3. CONFIGURING KAFKA
	5.3.1. Listeners
	5.3.2. Commit logs
	5.3.3. Node ID

	CHAPTER 6. SECURING ACCESS TO KAFKA
	6.1. LISTENER CONFIGURATION
	6.2. TLS ENCRYPTION
	6.2.1. Enabling TLS encryption

	6.3. AUTHENTICATION
	6.3.1. Enabling TLS client authentication
	6.3.2. Enabling SASL PLAIN client authentication
	6.3.3. Enabling SASL SCRAM client authentication
	6.3.4. Enabling multiple SASL mechanisms
	6.3.5. Enabling SASL for inter-broker authentication
	6.3.6. Adding SASL SCRAM users
	6.3.7. Deleting SASL SCRAM users
	6.3.8. Enabling Kerberos (GSSAPI) authentication

	6.4. AUTHORIZATION
	6.4.1. Enabling an ACL authorizer
	6.4.1.1. ACL rules
	6.4.1.2. Principals
	6.4.1.3. Authentication of users
	6.4.1.4. Super users
	6.4.1.5. Replica broker authentication

	6.4.2. Adding ACL rules
	6.4.3. Listing ACL rules
	6.4.4. Removing ACL rules

	6.5. USING OAUTH 2.0 TOKEN-BASED AUTHENTICATION
	6.5.1. OAuth 2.0 authentication mechanisms
	6.5.1.1. Configuring OAuth 2.0 with properties or variables

	6.5.2. OAuth 2.0 Kafka broker configuration
	6.5.2.1. OAuth 2.0 client configuration on an authorization server
	6.5.2.2. OAuth 2.0 authentication configuration in the Kafka cluster
	6.5.2.3. Fast local JWT token validation configuration
	6.5.2.4. OAuth 2.0 introspection endpoint configuration

	6.5.3. Session re-authentication for Kafka brokers
	6.5.4. OAuth 2.0 Kafka client configuration
	6.5.5. OAuth 2.0 client authentication flows
	6.5.5.1. Example client authentication flows using the SASL OAUTHBEARER mechanism
	6.5.5.2. Example client authentication flows using the SASL PLAIN mechanism

	6.5.6. Configuring OAuth 2.0 authentication
	6.5.6.1. Configuring Red Hat Single Sign-On as an OAuth 2.0 authorization server
	6.5.6.2. Configuring OAuth 2.0 support for Kafka brokers
	6.5.6.3. Configuring Kafka Java clients to use OAuth 2.0

	6.6. USING OAUTH 2.0 TOKEN-BASED AUTHORIZATION
	6.6.1. OAuth 2.0 authorization mechanism
	6.6.1.1. Kafka broker custom authorizer

	6.6.2. Configuring OAuth 2.0 authorization support

	6.7. USING OPA POLICY-BASED AUTHORIZATION
	6.7.1. Defining OPA policies
	6.7.2. Connecting to the OPA
	6.7.3. Configuring OPA authorization support

	CHAPTER 7. CREATING AND MANAGING TOPICS
	7.1. PARTITIONS AND REPLICAS
	7.2. MESSAGE RETENTION
	7.3. TOPIC AUTO-CREATION
	7.4. TOPIC DELETION
	7.5. TOPIC CONFIGURATION
	7.6. INTERNAL TOPICS
	7.7. CREATING A TOPIC
	7.8. LISTING AND DESCRIBING TOPICS
	7.9. MODIFYING A TOPIC CONFIGURATION
	7.10. DELETING A TOPIC

	CHAPTER 8. USING STREAMS FOR APACHE KAFKA WITH KAFKA CONNECT
	8.1. USING KAFKA CONNECT IN STANDALONE MODE
	8.1.1. Configuring Kafka Connect in standalone mode
	8.1.2. Running Kafka Connect in standalone mode

	8.2. USING KAFKA CONNECT IN DISTRIBUTED MODE
	8.2.1. Configuring Kafka Connect in distributed mode
	8.2.2. Running Kafka Connect in distributed mode

	8.3. MANAGING CONNECTORS
	8.3.1. Limiting access to the Kafka Connect API
	8.3.2. Configuring connectors
	8.3.2.1. Using the Kafka Connect REST API to manage connectors
	8.3.2.2. Specifying connector configuration properties

	8.3.3. Creating connectors using the Kafka Connect API
	8.3.4. Deleting connectors using the Kafka Connect API
	8.3.5. Adding connector plugins

	CHAPTER 9. USING STREAMS FOR APACHE KAFKA WITH MIRRORMAKER 2
	9.1. CONFIGURING ACTIVE/ACTIVE OR ACTIVE/PASSIVE MODES
	9.1.1. Bidirectional replication (active/active)
	9.1.2. Unidirectional replication (active/passive)

	9.2. CONFIGURING MIRRORMAKER 2 CONNECTORS
	9.2.1. Changing the location of the consumer group offsets topic
	9.2.2. Synchronizing consumer group offsets
	9.2.3. Deciding when to use the heartbeat connector
	9.2.4. Aligning the configuration of MirrorMaker 2 connectors

	9.3. CONNECTOR PRODUCER AND CONSUMER CONFIGURATION
	9.4. SPECIFYING A MAXIMUM NUMBER OF TASKS
	9.5. ACL RULES SYNCHRONIZATION
	9.6. RUNNING MIRRORMAKER 2 IN DEDICATED MODE
	9.7. (DEPRECATED) USING MIRRORMAKER 2 IN LEGACY MODE

	CHAPTER 10. CONFIGURING LOGGING FOR KAFKA COMPONENTS
	10.1. CONFIGURING KAFKA LOGGING PROPERTIES
	10.2. DYNAMICALLY CHANGE LOGGING LEVELS FOR KAFKA BROKER LOGGERS
	Resetting a broker logger

	10.3. DYNAMICALLY CHANGE LOGGING LEVELS FOR KAFKA CONNECT AND MIRRORMAKER 2

	CHAPTER 11. SETTING LIMITS ON BROKERS USING THE KAFKA STATIC QUOTA PLUGIN
	CHAPTER 12. SCALING CLUSTERS BY ADDING OR REMOVING BROKERS
	CHAPTER 13. USING CRUISE CONTROL FOR CLUSTER REBALANCING
	13.1. CRUISE CONTROL COMPONENTS AND FEATURES
	13.2. DOWNLOADING CRUISE CONTROL
	13.3. DEPLOYING THE CRUISE CONTROL METRICS REPORTER
	13.4. CONFIGURING AND STARTING CRUISE CONTROL
	Auto-created topics

	13.5. OPTIMIZATION GOALS OVERVIEW
	13.5.1. Goals order of priority
	13.5.2. Goals configuration in the Cruise Control properties file
	13.5.3. Hard and soft optimization goals
	13.5.4. Main optimization goals
	13.5.5. Default optimization goals
	13.5.6. User-provided optimization goals

	13.6. OPTIMIZATION PROPOSALS OVERVIEW
	13.6.1. Rebalancing endpoints
	13.6.2. Approving or rejecting an optimization proposal
	13.6.3. Optimization proposal summary properties
	13.6.4. Cached optimization proposal

	13.7. REBALANCE PERFORMANCE TUNING OVERVIEW
	Partition reassignment commands
	Replica movement strategies
	Rebalance tuning options

	13.8. CRUISE CONTROL CONFIGURATION
	Capacity configuration
	Log cleanup policy for Cruise Control Metrics topic
	Logging configuration

	13.9. GENERATING OPTIMIZATION PROPOSALS
	Asynchronous responses

	13.10. APPROVING AN OPTIMIZATION PROPOSAL
	13.11. STOPPING AN ACTIVE CLUSTER REBALANCE

	CHAPTER 14. USING CRUISE CONTROL TO MODIFY TOPIC REPLICATION FACTOR
	CHAPTER 15. USING THE PARTITION REASSIGNMENT TOOL
	15.1. PARTITION REASSIGNMENT TOOL OVERVIEW
	15.1.1. Generating a partition reassignment plan
	15.1.2. Specifying topics in a partition reassignment JSON file
	15.1.3. Reassigning partitions between JBOD volumes
	15.1.4. Throttling partition reassignment

	15.2. REASSIGNING PARTITIONS AFTER ADDING BROKERS
	15.3. REASSIGNING PARTITIONS BEFORE REMOVING BROKERS
	15.4. CHANGING THE REPLICATION FACTOR OF TOPICS

	CHAPTER 16. SETTING UP DISTRIBUTED TRACING
	16.1. OUTLINE OF PROCEDURES
	16.2. TRACING OPTIONS
	16.3. ENVIRONMENT VARIABLES FOR TRACING
	16.4. ENABLING TRACING FOR KAFKA CONNECT
	16.5. ENABLING TRACING FOR MIRRORMAKER 2
	16.6. ENABLING TRACING FOR MIRRORMAKER
	16.7. INITIALIZING TRACING FOR KAFKA CLIENTS
	16.8. INSTRUMENTING PRODUCERS AND CONSUMERS FOR TRACING
	16.9. INSTRUMENTING KAFKA STREAMS APPLICATIONS FOR TRACING
	16.10. SPECIFYING TRACING SYSTEMS WITH OPENTELEMETRY
	16.11. SPECIFYING CUSTOM SPAN NAMES FOR OPENTELEMETRY

	CHAPTER 17. USING KAFKA EXPORTER
	17.1. CONSUMER LAG
	17.2. KAFKA EXPORTER ALERTING RULE EXAMPLES
	17.3. KAFKA EXPORTER METRICS
	17.4. RUNNING KAFKA EXPORTER
	17.5. PRESENTING KAFKA EXPORTER METRICS IN GRAFANA

	CHAPTER 18. UPGRADING STREAMS FOR APACHE KAFKA AND KAFKA
	18.1. UPGRADE PREREQUISITES
	18.2. STRATEGIES FOR UPGRADING CLIENTS
	18.3. UPGRADING KAFKA CLUSTERS
	18.4. UPGRADING KAFKA COMPONENTS

	CHAPTER 19. MONITORING YOUR CLUSTER USING JMX
	19.1. ENABLING THE JMX AGENT
	19.2. DISABLING THE JMX AGENT
	19.3. METRICS NAMING CONVENTIONS
	19.4. ANALYZING KAFKA JMX METRICS FOR TROUBLESHOOTING
	19.4.1. Checking for under-replicated partitions
	19.4.2. Identifying performance problems in a Kafka cluster
	19.4.3. Identifying performance problems with a Kafka controller
	19.4.4. Identifying problems with requests
	19.4.5. Using metrics to check the performance of clients
	19.4.6. Using metrics to check the performance of topics and partitions

	APPENDIX A. USING YOUR SUBSCRIPTION
	Accessing Your Account
	Activating a Subscription
	Downloading Zip and Tar Files
	Installing packages with DNF

