
Red Hat Streams for Apache Kafka 2.7

Using the Streams for Apache Kafka Proxy

Enhancing Kafka with specialized features

Last Updated: 2024-07-03

Red Hat Streams for Apache Kafka 2.7 Using the Streams for Apache
Kafka Proxy

Enhancing Kafka with specialized features

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Streams for Apache Kafka Proxy is an Apache Kafka protocol-aware proxy designed to enhance
Kafka-based systems through its filter mechanism. In this preview, Streams for Apache Kafka Proxy
includes a Record Encryption filter, which provides encryption at rest for data stored in a Kafka
cluster.

. .

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

PREFACE

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

TECHNOLOGY PREVIEW

CHAPTER 1. STREAMS FOR APACHE KAFKA PROXY OVERVIEW
1.1. RECORD ENCRYPTION FILTER

1.1.1. How the filter encrypts records
1.1.2. How the filter decrypts records
1.1.3. How the filter uses the KMS
1.1.4. What part of a record is encrypted?
1.1.5. Unencrypted topics

CHAPTER 2. PREPARING HASHICORP VAULT FOR THE RECORD ENCRYPTION FILTER

CHAPTER 3. DEPLOYING STREAMS FOR APACHE KAFKA PROXY WITH THE RECORD ENCRYPTION FILTER

3.1. VERIFYING THE PROXY WHEN USING THE CLUSTER-IP TYPE LISTENER
3.2. VERIFYING THE PROXY WHEN USING THE LOADBALANCER TYPE LISTENER

CHAPTER 4. CONFIGURING STREAMS FOR APACHE KAFKA PROXY
4.1. EXAMPLE STREAMS FOR APACHE KAFKA PROXY CONFIGURATION
4.2. CONFIGURING VIRTUAL CLUSTERS

4.2.1. Securing connections from clients
4.2.2. Securing connections to target clusters

4.3. CONFIGURING NETWORK ADDRESSES

CHAPTER 5. INTRODUCING METRICS

APPENDIX A. USING YOUR SUBSCRIPTION
Accessing Your Account
Activating a Subscription
Downloading Zip and Tar Files
Installing packages with DNF

3

4

5

6
6
6
7
7
7
8

9

13
16
17

18
18
19

20
21
23

25

26
26
26
26
26

Table of Contents

1

Red Hat Streams for Apache Kafka 2.7 Using the Streams for Apache Kafka Proxy

2

PREFACE

PREFACE

3

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
We appreciate your feedback on our documentation.

To propose improvements, open a Jira issue and describe your suggested changes. Provide as much
detail as possible to enable us to address your request quickly.

Prerequisite

You have a Red Hat Customer Portal account. This account enables you to log in to the Red Hat
Jira Software instance.
If you do not have an account, you will be prompted to create one.

Procedure

1. Click the following: Create issue.

2. In the Summary text box, enter a brief description of the issue.

3. In the Description text box, provide the following information:

The URL of the page where you found the issue.

A detailed description of the issue.
You can leave the information in any other fields at their default values.

4. Add a reporter name.

5. Click Create to submit the Jira issue to the documentation team.

Thank you for taking the time to provide feedback.

Red Hat Streams for Apache Kafka 2.7 Using the Streams for Apache Kafka Proxy

4

https://issues.redhat.com/secure/CreateIssueDetails!init.jspa?pid=12320221&issuetype=1&components=12328148&priority=3&description=URL where issue was found%3A %0A%0ADescription of issue%3A &summary=%5BDOC%5D <summary here>

TECHNOLOGY PREVIEW
The Streams for Apache Kafka Proxy is a technology preview.

Technology Preview features are not supported with Red Hat production service-level agreements
(SLAs) and might not be functionally complete; therefore, Red Hat does not recommend implementing
any Technology Preview features in production environments. This Technology Preview feature provides
early access to upcoming product innovations, enabling you to test functionality and provide feedback
during the development process. For more information about the support scope, see Technology
Preview Features Support Scope.

TECHNOLOGY PREVIEW

5

https://access.redhat.com/support/offerings/techpreview/

CHAPTER 1. STREAMS FOR APACHE KAFKA PROXY
OVERVIEW

Streams for Apache Kafka Proxy is an Apache Kafka protocol-aware proxy designed to enhance Kafka-
based systems. Through its filter mechanism it allows additional behavior to be introduced into a Kafka-
based system without requiring changes to either your applications or the Kafka cluster itself.

Functioning as an intermediary, the Streams for Apache Kafka Proxy mediates communication between
a Kafka cluster and its clients. It takes on the responsibility of receiving, filtering, and forwarding
messages.

1.1. RECORD ENCRYPTION FILTER

Streams for Apache Kafka Proxy’s Record Encryption filter enhances the security of Kafka messages.
The filter uses industry-standard cryptographic techniques to apply encryption to Kafka messages,
ensuring the confidentiality of data stored in the Kafka Cluster. Streams for Apache Kafka Proxy
centralizes topic-level encryption, ensuring streamlined encryption across Kafka clusters.

The filter uses envelope encryption to encrypt the records with symmetric encryption keys.

Envelope encryption

Envelope encryption is an industry-standard technique suited for encrypting large volumes of data in
an efficient manner. Data is encrypted with a Data Encryption Key (DEK). The DEK is encrypted using
a Key Encryption Key (KEK). The KEK is stored securely in a Key Management System (KMS).

Symmetric encryption keys

AES(GCM) 256 bit encryption symmetric encryption keys are used to encrypt and decrypt record
data.

The process is as follows:

1. The filter intercepts produce requests from producing applications and encrypts the records.

2. The produce request is forwarded to the broker.

3. The filter intercepts fetch responses from consuming applications and decrypts the records.

4. The fetch response is forwarded to the consuming application.

The filter encrypts the record value only. Record keys, headers, and timestamps are not encrypted.

The entire process is transparent from the point of view of Kafka clients and Kafka brokers. Neither are
aware that the records are being encrypted, nor do they have any access to the encryption keys or have
any influence on the ciphering process to secure the records.

The filter integrates with a Key Management Service (KMS), which has ultimate responsibility for the
safe storage of key material. Currently, the filter integrates with HashiCorp Vault as its KMS, though
further supported KMS integrations are planned.

1.1.1. How the filter encrypts records

The filter encrypts records from produce requests as follows:

1. Filter selects a KEK to apply.

Red Hat Streams for Apache Kafka 2.7 Using the Streams for Apache Kafka Proxy

6

2. Requests the KMS to generate a DEK for the KEK.

3. Uses an encrypted DEK (DEK encrypted with the KEK) to encrypt the record.

4. Replaces the original record with a cipher record (encrypted record, encrypted DEK, and
metadata).

The filter uses a DEK reuse strategy. Encrypted records are sent to the same topic using the same DEK
until a time-out or an encryption limit is reached.

1.1.2. How the filter decrypts records

The filter decrypts records from fetch responses as follows:

1. Filter receives a cipher record from the Kafka broker.

2. Reverses the process that constructed the cipher record.

3. Uses KMS to decrypt the DEK.

4. Uses the decrypted DEK to decrypt the encrypted record.

5. Replaces the cipher record with a decrypted record.

The filter uses an LRU (least recently used) strategy for decrypted records. Decrypted DEKs are kept in
memory to reduce interactions with the KMS.

1.1.3. How the filter uses the KMS

To support the filter, the KMS provides the following:

A secure repository for storing Key Encryption Keys (KEKs)

A service for generating and decrypting Data Encryption Keys (DEKs)

KEKs stay within the KMS. The KMS generates a DEK (which is securely generated random data) for a
given KEK, then returns the DEK and an encrypted DEK. The encrypted DEK has the same data but
encrypted with the KEK. The KMS doesn’t store DEKs; they are stored as part of the cipher record in the
broker.

WARNING

The KMS must be available during runtime. If the KMS is unavailable, production and
consumption through the filter become impossible until KMS service is restored. It is
recommended to use the KMS in a high availability (HA) configuration.

1.1.4. What part of a record is encrypted?

The record encryption filter encrypts only the values of records, leaving record keys, headers, and
timestamps untouched. Null record values, which might represent deletions in compacted topics, are
transmitted to the broker unencrypted. This approach ensures that compacted topics function correctly.

CHAPTER 1. STREAMS FOR APACHE KAFKA PROXY OVERVIEW

7

1.1.5. Unencrypted topics

You may configure the system so that some topics are encrypted and others are not. This supports
scenarios where topics with confidential information are encrypted and Kafka topics with non-sensitive
information can be left unencrypted.

Red Hat Streams for Apache Kafka 2.7 Using the Streams for Apache Kafka Proxy

8

CHAPTER 2. PREPARING HASHICORP VAULT FOR THE
RECORD ENCRYPTION FILTER

To use Vault with the Record Encryption filter in an OpenShift cluster, use the following setup for your
Vault instance:

Enable the Transit Engine as the Record Encryption filter relies on its APIs.

Create a Vault policy specifically for the filter with permissions for generating and decrypting
Data Encryption Keys (DEKs) for envelope encryption.

Obtain a Vault token that includes the filter policy.

The deployment configuration for the proxy uses the URL for the Vault Transit Engine service.

Vault can be deployed as an existing instance, a cloud instance, or on OpenShift. With accessibility to the
proxy, it can either be co-located with the Streams for Apache Kafka Proxy or deployed remotely.

For information on installing Vault on OpenShift and setting up access, refer to the HashiCorp Vault
product documentation.

This procedure outlines two options for preparing Vault:

Deploying Vault to the OpenShift cluster using Helm with an example ephemeral deployment
configuration provided with Streams for Apache Kafka Proxy.

Updating your existing Vault instance.

When you have prepared a Vault instance, you must then create a Vault policy and token for the Record
Encryption filter.

WARNING

The example deployment configuration is not suitable for production environments.

Streams for Apache Kafka includes example installation artifacts in the examples/proxy/record-
encryption/vault folder, which contains pre-configured Vault deployment files compatible with the
proxy and Record Encryption filter.

amqstreams_proxy_encryption_filter_policy.hcl defines a Vault policy for the Record
Encryption filter

helm-dev-values.yaml specifies the Helm deployment configuration for Vault

These installation files offer a quick setup for trying out the proxy.

Prerequisites

Installation requires an OpenShift user with cluster-admin role, such as system:admin.

The oc command-line tool is installed and configured to connect to the OpenShift cluster with

CHAPTER 2. PREPARING HASHICORP VAULT FOR THE RECORD ENCRYPTION FILTER

9

The oc command-line tool is installed and configured to connect to the OpenShift cluster with
admin access.

The helm command line tool is installed and configured to connect to the OpenShift cluster
with admin access.

An OpenShift project namespace called proxy, which is the same namespace where the proxy is
installed by default.

For information on the oc and helm command line options used in this procedure, check the --help.

Deploying Vault using the example Helm deployment configuration

1. Download and extract the Streams for Apache Kafka Proxy installation artifacts.
The proxy is available from Streams for Apache Kafka software downloads page .

The files contain the deployment configuration required for deploying Vault.

2. Create a root token and make a note of it:

3. Install Vault using Helm:

The root token is used for the Vault instance.

4. Check the status of the deployment:

Output shows the deployment name and readiness

A pod ID identifies the pod created.

With the default deployment, you install a single proxy pod.

READY shows the number of replicas that are ready/expected. The deployment is successful
when the STATUS displays as Running.

5. Create a Vault address (VAULT_ADDR) environment variable to point to the new Vault
instance:

cat /dev/urandom | LC_ALL=C tr -dc 'a-zA-Z0-9' | fold -w 32 | head -n 1 > vault.root.token
export VAULT_TOKEN=$(cat vault.root.token)

helm repo add hashicorp https://helm.releases.hashicorp.com
helm install vault hashicorp/vault \
 --create-namespace --namespace=vault \
 --version <helm_version> \
 --values vault/helm-dev-values.yaml \
 --set server.dev.devRootToken=${VAULT_TOKEN} \
 --wait

oc get pods -n vault

NAME READY STATUS RESTARTS
vault-0 1/1 Running 0

export VAULT_ADDR=$(oc get route -n vault vault --template='https://{{.spec.host}}')

Red Hat Streams for Apache Kafka 2.7 Using the Streams for Apache Kafka Proxy

10

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?downloadType=distributions&product=jboss.amq.streams

6. Login to Vault as an administrator and enable the Vault Transit secrets engine:

If the secrets engine is already enabled, ignore the error.

7. Create an environment variable to point to the Vault Transit address:

The address is used in the proxy deployment configuration.

8. Create a Vault policy and token .

Configuring your own Vault instance

If you already have a Kafka instance installed, you can update it to use it with Streams for Apache Kafka
Proxy.

1. Create a Vault address environment variable (VAULT_ADDR and VAULT_NAMESPACE, if
using Enterprise) to point to the Vault instance:

2. Login to Vault as an administrator and enable the Vault Transit secrets engine:

If the secrets engine is already enabled, ignore the error.

3. Create an environment variable to point to the Vault Transit address:

The address is used in the proxy deployment configuration.

4. Update the proxy deployment configuration to refer to your Vault instance:

5. Create a Vault policy and token .

Creating a Vault policy and token

With the Vault instance set up, create a Vault policy and token for the Record Encryption filter.

1. Create a Vault policy:

Write the policy to Vault using the HashiCorp policy definition file (.hcl) provided with Streams
for Apache Kafka Proxy. The policy is named amqstreams_proxy_encryption_filter_policy.

vault secrets enable transit

export VAULT_TRANSIT_URL=${VAULT_ADDR}/v1/transit

export VAULT_ADDR=https://<vault server>:8200
export VAULT_NAMESPACE=<namespaces>

vault secrets enable transit

export VAULT_TRANSIT_URL=${VAULT_ADDR}/v1/${VAULT_NAMESPACE}/transit

sed -i "s/\(vaultTransitEngineUrl:\).*$/\1 ${VAULT_TRANSIT_URL}/" */proxy/proxy-
config.yaml

vault policy write amqstreams_proxy_encryption_filter_policy
vault/amqstreams_proxy_encryption_filter_policy.hcl

CHAPTER 2. PREPARING HASHICORP VAULT FOR THE RECORD ENCRYPTION FILTER

11

2. Create a Vault token:

The command creates a token with the specified policy, and with no associated parent token or
default policies.

3. Create a secret containing the token:

The command stores the Vault token in the secret and creates the secret as a YAML file in the
proxy namespace.

The proxy-encryption-vault-token-secret.yaml secret is applied to the OpenShift cluster
when deploying Streams for Apache Kafka Proxy with the Record Encryption filter.

TIP

Rotate keys periodically to minimize the impact of compromised keys. When using a Key Management
System (KMS), such as HashiCorp Vault, rotate the Key Encryption Key (KEK) stored in the KMS.
Streams for Apache Kafka Proxy manages DEK rotation automatically. Occasional restarts may be
necessary for the proxy to pick up the new key. Additionally, encrypted messages should include key
version metadata to indicate key rotation.

vault token create \
 -display-name "amqstreams-proxy encryption filter" \
 -policy=amqstreams_proxy_encryption_filter_policy \
 -no-default-policy \
 -orphan \
 -field=token > vault.encryption.token

oc create secret generic proxy-encryption-vault-token \
 -n proxy \
 --from-file=encryption-vault-token.txt=vault.encryption.token \
 --dry-run=client \
 -o yaml > base/proxy/proxy-encryption-vault-token-secret.yaml

Red Hat Streams for Apache Kafka 2.7 Using the Streams for Apache Kafka Proxy

12

CHAPTER 3. DEPLOYING STREAMS FOR APACHE KAFKA
PROXY WITH THE RECORD ENCRYPTION FILTER

Streams for Apache Kafka Proxy is designed to seamlessly integrate with Kafka clusters managed by
Streams for Apache Kafka. Additionally, it offers compatibility with all types of Kafka instances,
irrespective of their distribution or protocol version. Whether your deployment involves public or private
clouds, or if you are setting up a local development environment, the instructions in this guide are
applicable in all cases.

In this procedure, the Streams for Apache Kafka Proxy is deployed with the Record Encryption filter for
use with a Kafka instance managed by Streams for Apache Kafka on OpenShift.

Streams for Apache Kafka provides example installation artifacts with the necessary configuration for
the Streams for Apache Kafka Proxy to connect to the Kafka cluster in the examples/proxy/record-
encryption folder.

Using the example configuration files, deploy and expose the proxy with the following types of listener:

cluster-ip type listener using per-broker ClusterIP services to expose the proxy within the
OpenShift cluster

loadbalancer type listener using per-broker loadbalancer services to expose the proxy outside
the OpenShift cluster

For each option, the following files are provided:

kustomization.yaml specifies the Kubernetes customization for deploying the proxy

proxy-config.yaml specifies the ConfigMap resource configuration for the proxy

proxy-service.yaml specifies the Service resource configuration for the proxy service

The ConfigMap resource provides the configuration for setting up virtual clusters and filters. Virtual
clusters represent the Kafka clusters you wish to use with the proxy.

Prerequisites

An OpenShift cluster running a supported version.

A Kafka cluster managed by Streams for Apache Kafka running on the OpenShift cluster.

Kafka binaries installed locally to verify a proxy setup for external access through a loadbalancer.
The Kafka binaries are included with the installation artifacts for Streams for Apache Kafka on
RHEL from the Streams for Apache Kafka software downloads page .

A config map that includes the configuration for creating virtual clusters and filters.

The oc command-line tool is installed and configured to connect to the OpenShift cluster with
admin access.

The helm command line tool is installed and configured to connect to the OpenShift cluster
with admin access.

HashiCorp Vault is set up for the proxy and is accessible from the Streams for Apache Kafka
Proxy.
Make sure the Vault instance is set up for the Record Encryption filter.

CHAPTER 3. DEPLOYING STREAMS FOR APACHE KAFKA PROXY WITH THE RECORD ENCRYPTION FILTER

13

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?downloadType=distributions&product=jboss.amq.streams

For information on the oc and helm command line options used in this procedure, check the --help.

In addition to the files to install the Streams for Apache Kafka Proxy, Streams for Apache Kafka Proxy
also provides pre-configured files to install a Kafka cluster. The installation files offer the quickest way
to set up and try the proxy, though you can use your own deployments of a Kafka cluster managed by
Streams for Apache Kafka and Vault.

In this procedure, we are connecting to a Kafka cluster named my-cluster that is deployed to the kafka
namespace. To deploy the proxy to the same namespace as the cluster managed by Streams for
Apache Kafka, change the namespace setting in the kustomization.yaml file. The proxy is deployed to
the proxy namespace by default. If you keep this setting, the Streams for Apache Kafka Operator must
be installed cluster-wide.

Procedure

1. Download and extract the Streams for Apache Kafka Proxy installation artifacts.
The artifacts are included with installation and example files available from the Streams for
Apache Kafka software downloads page.

The files contain the deployment configuration required for connecting through a cluster-ip or
loadbalancer type listener.

2. Create a topic in the Kafka cluster:

In this example, we create a topic named my-topic through an interactive pod container.

3. Create a key for my-topic in Vault:

4. Edit the ConfigMap that provides the filter configuration for the proxy.
The Record Encryption filter config requires credentials for the HashiCorp Vault KMS.

Example Record Encryption filter configuration

oc run -n <my_proxy_namespace> -ti proxy-producer \
 --image=registry.redhat.io/amq-streams/kafka-37-rhel9:2.7.0 \
 --rm=true \
 --restart=Never \
 -- bin/kafka-topics.sh \
 --bootstrap-server proxy-service:9092 \
 --create -topic my-topic

vault write -f transit/keys/KEK_my-topic

filters:
 - type: RecordEncryption
 config:
 kms: VaultKmsService 1
 kmsConfig:
 vaultTransitEngineUrl: http://vault.vault.svc.cluster.local:8200/v1/transit 2
 vaultToken:
 passwordFile: /opt/proxy/encryption/token.txt 3
 selector: TemplateKekSelector 4

Red Hat Streams for Apache Kafka 2.7 Using the Streams for Apache Kafka Proxy

14

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?downloadType=distributions&product=jboss.amq.streams

1

2

3

4

5

The type of KMS (key management system) used. In this case, HashiCorp Vault.

The URL of the Vault Transit Engine service.

The file containing the token required to access the Vault service. If this location changes,
equivalent changes are required in the proxy deployment configuration.

The Key Encryption Key (KEK) selector to use. The ${topicName} is a literal understood by
the proxy.

The template for deriving the KEK, based on a specific topic name.

5. Deploy Streams for Apache Kafka Proxy with the Record Encryption filter and the appropriate
listener to your OpenShift cluster:

Deploying the proxy with a cluster-ip listener

Deploying the proxy with a loadbalancer listener

6. If you are using a loadbalancer listener, update the proxy configuration to use the address of
loadbalancer service that was created.

a. Get the external address of the proxy service:

b. Update the brokerAddressPattern property in the proxy service configuration to use the
broker address:

c. Apply the change to the proxy configuration and restart the proxy pod.

7. Check the status of the deployment:

Output shows the deployment name and readiness

 selectorConfig:
 template: "KEK_${topicName}" 5
 # ...

cd /examples/proxy/record-encryption/
oc apply -k cluster-ip

cd /examples/proxy/record-encryption/
oc apply -k loadbalancer

LOAD_BALANCER_ADDRESS=$(oc get service -n <my_proxy_namespace> proxy-
service --template='{{(index .status.loadBalancer.ingress 0).hostname}}')

sed -i "s/\(brokerAddressPattern:\).*$/\1 ${LOAD_BALANCER_ADDRESS}/" load-
balancer/proxy/proxy-config.yaml

 oc apply -k load-balancer && oc delete pod -n <my_proxy_namespace> --all

oc get pods -n <my_proxy_namespace>

CHAPTER 3. DEPLOYING STREAMS FOR APACHE KAFKA PROXY WITH THE RECORD ENCRYPTION FILTER

15

my-cluster-proxy is the name of the proxy.

A pod ID identifies the pod created.

With the default deployment, you install a single proxy pod.

READY shows the number of replicas that are ready/expected. The deployment is successful
when the STATUS displays as Running.

8. Verify that the encryption has been applied to the specified topics by producing messages
through the proxy and then consuming directly and indirectly from the Kafka cluster.

3.1. VERIFYING THE PROXY WHEN USING THE CLUSTER-IP TYPE
LISTENER

Verify the proxy is working when using the cluster-ip type listener by running interactive pod containers
for Kafka producers and consumers within the OpenShift cluster.

1. Produce messages from the proxy:

Producing messages through the proxy

2. Consume messages directly from the Kafka cluster to show they are encrypted:

Consuming messages directly from the Kafka cluster

3. Consume messages from the proxy to show they are decrypted automatically:

Consuming messages directly from the Kafka cluster

NAME READY STATUS RESTARTS
my-cluster-kafka-0 1/1 Running 0
my-cluster-kafka-1 1/1 Running 0
my-cluster-kafka-2 1/1 Running 0
my-cluster-proxy-<pod_id> 1/1 Running 0

oc run -n <my_proxy_namespace> -ti proxy-producer \
 --image=registry.redhat.io/amq-streams/kafka-37-rhel9:2.7.0 \
 --rm=true \
 --restart=Never \
 -- bin/kafka-console-producer.sh \
 --bootstrap-server proxy-service:9092 \
 --topic my-topic

oc run -n my-cluster -ti cluster-consumer \
 --image=registry.redhat.io/amq-streams/kafka-37-rhel9:2.7.0 \
 --rm=true \
 --restart=Never
 -- ./bin/kafka-console-consumer.sh \
 --bootstrap-server my-cluster-kafka-bootstrap:9092 \
 --topic my-topic \
 --from-beginning \
 --timeout-ms 10000

Red Hat Streams for Apache Kafka 2.7 Using the Streams for Apache Kafka Proxy

16

3.2. VERIFYING THE PROXY WHEN USING THE LOADBALANCER TYPE
LISTENER

Verify the proxy is working when using the loadbalancer type listener by running a Kafka producer and
consumer through the proxy locally.

1. Produce messages from the proxy using the loadbalancer address:

Producing messages through the proxy

2. Consume messages directly from the Kafka cluster using an interactive pod container to show
they are encrypted:

Consuming messages directly from the Kafka cluster

3. Consume messages from the proxy to show they are decrypted automatically:

Consuming messages directly from the Kafka cluster

oc run -n <my_proxy_namespace> -ti proxy-consumer \
 --image=registry.redhat.io/amq-streams/kafka-37-rhel9:2.7.0 \
 --rm=true \
 --restart=Never \
 -- ./bin/kafka-console-consumer.sh \
 --bootstrap-server proxy-service:9092 \
 --topic my-topic --from-beginning --timeout-ms 10000

kafka-console-producer \
--bootstrap-server <load_balancer_address>:9092 \
--topic my-topic

 oc run -n my-cluster -ti cluster-consumer \
 --image=registry.redhat.io/amq-streams/kafka-37-rhel9:2.7.0 \
 --rm=true \
 --restart=Never
 -- ./bin/kafka-console-consumer.sh \
 --bootstrap-server my-cluster-kafka-bootstrap:9092 \
 --topic my-topic \
 --from-beginning \
 --timeout-ms 10000

 kafka-console-consumer \
 --bootstrap-server <load_balancer_address>:9092 \
 --topic my-topic \
 --from-beginning \
 --timeout-ms 10000

CHAPTER 3. DEPLOYING STREAMS FOR APACHE KAFKA PROXY WITH THE RECORD ENCRYPTION FILTER

17

CHAPTER 4. CONFIGURING STREAMS FOR APACHE KAFKA
PROXY

Fine-tune your deployment by configuring Streams for Apache Kafka Proxy resources to include
additional features according to your specific requirements.

4.1. EXAMPLE STREAMS FOR APACHE KAFKA PROXY
CONFIGURATION

Streams for Apache Kafka Proxy configuration is defined in a ConfigMap resource. Use the data
properties of the ConfigMap resource to configure the following:

Virtual clusters that represent the Kafka clusters

Network addresses for broker communication in a Kafka cluster

Filters to introduce additional functionality to the Kafka deployment

In this example, configuration for the Record Encryption filter is shown.

Example Streams for Apache Kafka Proxy configuration

apiVersion: v1
kind: ConfigMap
metadata:
 name: proxy-config
data:
 config.yaml: |
 adminHttp: 1
 endpoints:
 prometheus: {}
 virtualClusters: 2
 my-cluster-proxy: 3
 targetCluster:
 bootstrap_servers: my-cluster-kafka-bootstrap.kafka.svc.cluster.local:9093 4
 tls: 5
 trust:
 storeFile: /opt/proxy/trust/ca.p12
 storePassword:
 passwordFile: /opt/proxy/trust/ca.password
 clusterNetworkAddressConfigProvider: 6
 type: SniRoutingClusterNetworkAddressConfigProvider
 Config:
 bootstrapAddress: mycluster-proxy.kafka:9092
 brokerAddressPattern: broker$(nodeId).mycluster-proxy.kafka
 logNetwork: false 7
 logFrames: false
 tls: 8
 key:
 storeFile: /opt/proxy/server/key-material/keystore.p12
 storePassword:
 passwordFile: /opt/proxy/server/keystore-password/storePassword
filters: 9

Red Hat Streams for Apache Kafka 2.7 Using the Streams for Apache Kafka Proxy

18

1

2

3

4

5

6

7

8

9

10

11

12

Enables metrics for the proxy.

Virtual cluster configuration.

The name of the virtual cluster.

The bootstrap address of the target physical Kafka Cluster being proxied.

TLS configuration for the connection to the target cluster.

The configuration for the cluster network address configuration provider that controls how the
virtual cluster is presented to the network.

Logging is disabled by default. Enable logging related to network activity (logNetwork) and
messages (logFrames) by setting the logging properties to true.

TLS encryption for securing connections with the clients.

Filter configuration.

The type of filter, which is the Record Encryption filter in this example.

The configuration specific to the type of filter.

The Record Encryption filter requires a connection to Vault. If required, you can also specify the
credentials for TLS authentication with Vault, with key names under which TLS certificates are
stored.

4.2. CONFIGURING VIRTUAL CLUSTERS

A Kafka cluster is represented by the proxy as a virtual cluster. Clients connect to the virtual cluster
rather than the actual cluster. When Streams for Apache Kafka Proxy is deployed, it includes
configuration to create virtual clusters.

A virtual cluster has exactly one target cluster, but many virtual clusters can target the same cluster.
Each virtual cluster targets a single listener on the target cluster, so multiple listeners on the Kafka side

 - type: EnvelopeEncryption 10
 config: 11
 kms: VaultKmsService
 kmsConfig:
 vaultTransitEngineUrl: https://vault.vault.svc.cluster.local:8200/v1/transit
 vaultToken:
 passwordFile: /opt/proxy/server/token.txt
 tls: 12
 key:
 storeFile: /opt/cert/server.p12
 storePassword:
 passwordFile: /opt/cert/store.password
 keyPassword:
 passwordFile: /opt/cert/key.password
 storeType: PKCS12
 selector: TemplateKekSelector
 selectorConfig:
 template: "${topicName}"

CHAPTER 4. CONFIGURING STREAMS FOR APACHE KAFKA PROXY

19

1

2

3

4

are represented as multiple virtual clusters by the proxy. Clients connect to a virtual cluster using a
bootstrap_servers address. The virtual cluster has a bootstrap address that maps to each broker in the
target cluster. When a client connects to the proxy, communication is proxied to the target broker by
rewriting the address. Responses back to clients are rewritten to reflect the appropriate network
addresses of the virtual clusters.

You can secure virtual cluster connections from clients and to target clusters.

Streams for Apache Kafka Proxy accepts keys and certificates in PEM (Privacy Enhanced Mail), PKCS
#12 (Public-Key Cryptography Standards), or JKS (Java KeyStore) keystore format.

4.2.1. Securing connections from clients

To secure client connections to virtual clusters, configure TLS on the virtual cluster by doing the
following:

Obtain a CA (Certificate Authority) certificate for the virtual cluster from a Certificate Authority. When
requesting the certificate, ensure it matches the names of the virtual cluster’s bootstrap and broker
addresses. This might require wildcard certificates and Subject Alternative Names (SANs).

Specify TLS credentials in the virtual cluster configuration using tls properties.

Example PKCS #12 configuration

PKCS #12 store for the public CA certificate of the virtual cluster.

Password to protect the PKCS #12 store.

(Optional) Password for the key. If a password is not specified, the keystore’s password is used to
decrypt the key too.

(Optional) Keystore type. If a keystore type is not specified, the default JKS (Java Keystore) type
is used.

NOTE

TLS is recommended on Kafka clients and virtual clusters for production configurations.

Example PEM configuration

virtualClusters:
 my-cluster-proxy:
 tls:
 key:
 storeFile: <path>/server.p12 1
 storePassword:
 passwordFile: <path>/store.password 2
 keyPassword:
 passwordFile: <path>/key.password 3
 storeType: PKCS12 4
 # ...

virtualClusters:

Red Hat Streams for Apache Kafka 2.7 Using the Streams for Apache Kafka Proxy

20

1

2

3

1

Private key of the virtual cluster.

Public CA certificate of the virtual cluster.

(Optional) Password for the key.

If required, configure the insecure property to disable trust and establish insecure connections with any
Kafka Cluster, irrespective of certificate validity. However, this option is not recommended for
production use.

Example to enable insecure TLS

Enables insecure TLS.

4.2.2. Securing connections to target clusters

To secure a virtual cluster connection to a target cluster, configure TLS on the virtual cluster. The target
cluster must already be configured to use TLS.

Specify TLS for the virtual cluster configuration using targetCluster.tls properties

Use an empty object ({}) to inherit trust from the OpenShift platform. This option is suitable if the target
cluster is using a TLS certificate signed by a public CA.

Example target cluster configuration for TLS

If it is using a TLS certificate signed by a private CA, you must add truststore configuration for the target

 my-cluster-proxy:
 tls:
 key:
 privateKeyFile: <path>/server.key 1
 certificateFile: <path>/server.crt 2
 keyPassword:
 passwordFile: <path>/key.password 3
…

virtualClusters:
 demo:
 targetCluster:
 bootstrap_servers: myprivatecluster:9092
 tls:
 trust:
 insecure: true 1
 #...
…

virtualClusters:
 my-cluster-proxy:
 targetCluster:
 bootstrap_servers: my-cluster-kafka-bootstrap.kafka.svc.cluster.local:9093
 tls: {}
 #...

CHAPTER 4. CONFIGURING STREAMS FOR APACHE KAFKA PROXY

21

1

2

3

1

2

If it is using a TLS certificate signed by a private CA, you must add truststore configuration for the target
cluster.

Example truststore configuration for a target cluster

PKCS #12 store for the public CA certificate of the Kafka cluster.

Password to access the public Kafka cluster CA certificate.

(Optional) Keystore type. If a keystore type is not specified, the default JKS (Java Keystore) type
is used.

For mTLS, you can add keystore configuration for the virtual cluster too.

Example keystore and truststore configuration for mTLS

Private key of the virtual cluster.

Public CA certificate of the virtual cluster.

For the purposes of testing outside of a production environment, you can set the insecure property to
true to turn off TLS so that the Streams for Apache Kafka Proxy can connect to any Kafka cluster.

Example configuration to turn off TLS

virtualClusters:
 my-cluster-proxy:
 targetCluster:
 bootstrap_servers: my-cluster-kafka-bootstrap.kafka.svc.cluster.local:9093
 tls:
 trust:
 storeFile: <path>/trust.p12 1
 storePassword:
 passwordFile: <path>/store.password 2
 storeType: PKCS12 3
 #...

virtualClusters:
 my-cluster-proxy:
 targetCluster:
 bootstrap_servers: my-cluster-kafka-bootstrap.kafka.svc.cluster.local:9093:9092
 tls:
 key:
 privateKeyFile: <path>/client.key 1
 certificateFile: <path>/client.crt 2
 trust:
 storeFile: <path>/server.crt
 storeType: PEM
...

virtualClusters:
 my-cluster-proxy:
 targetCluster:

Red Hat Streams for Apache Kafka 2.7 Using the Streams for Apache Kafka Proxy

22

1

2

3

4

5

4.3. CONFIGURING NETWORK ADDRESSES

Virtual cluster configuration requires a network address configuration provider that manages network
communication and provides broker address information to clients.

Streams for Apache Kafka Proxy has two built-in providers:

Broker address provider (PortPerBrokerClusterNetworkAddressConfigProvider)

The per-broker network address configuration provider opens one port for a virtual cluster’s
bootstrap address and one port for each broker in the target Kafka cluster. The ports are maintained
dynamically. For example, if a broker is removed from the cluster, the port assigned to it is closed.

SNI routing address provider (SniRoutingClusterNetworkAddressConfigProvider)

The SNI routing provider opens a single port for all virtual clusters or a port for each. For the Kafka
cluster, you can open a port for the whole cluster or each broker. The SNI routing provider uses SNI
information to determine where to route the traffic.

Example broker address provider configuration

The hostname and port of the bootstrap address used by Kafka clients.

(Optional) The broker address pattern used to form broker addresses. If not defined, it defaults to
the hostname part of the bootstrap address and the port number allocated to the broker. The
$(nodeId) token is replaced by the broker’s node.id (or broker.id if node.id is not set).

(Optional) The starting number for broker port range. Defaults to the port of the bootstrap address
plus 1.

(Optional) The maximum number of broker ports that are permitted. Defaults to 3.

(Optional) The bind address used when binding the ports. If undefined, all network interfaces are
bound.

The example broker address configuration creates the following broker addresses:

 bootstrap_servers: myprivatecluster:9092
 tls:
 trust:
 insecure: true
 #...

clusterNetworkAddressConfigProvider:
 type: PortPerBrokerClusterNetworkAddressConfigProvider
 config:
 bootstrapAddress: mycluster.kafka.com:9192 1
 brokerAddressPattern: mybroker-$(nodeId).mycluster.kafka.com 2
 brokerStartPort: 9193 3
 numberOfBrokerPorts: 3 4
 bindAddress: 192.168.0.1 5

mybroker-0.mycluster.kafka.com:9193
mybroker-1.mycluster.kafka.com:9194
mybroker-2.mycluster.kafka.com:9194

CHAPTER 4. CONFIGURING STREAMS FOR APACHE KAFKA PROXY

23

1

NOTE

For a configuration with multiple physical clusters, ensure that the
numberOfBrokerPorts is set to (number of brokers * number of listeners per broker) +
number of bootstrap listeners across all clusters. For instance, if there are two physical
clusters with 3 nodes each, and each broker has one listener, the configuration requires a
value of 8 (comprising 3 ports for broker listeners + 1 port for the bootstrap listener in
each cluster).

Example SNI routing address provider configuration

A Single address for all traffic, including bootstrap address and brokers.

In the SNI routing address configuration, the brokerAddressPattern specification is mandatory, as it is
required to generate routes for each broker.

clusterNetworkAddressConfigProvider:
 type: SniRoutingClusterNetworkAddressConfigProvider
 config:
 bootstrapAddress: mycluster.kafka.com:9192 1
 brokerAddressPattern: mybroker-$(nodeId).mycluster.kafka.com
 bindAddress: 192.168.0.1

Red Hat Streams for Apache Kafka 2.7 Using the Streams for Apache Kafka Proxy

24

CHAPTER 5. INTRODUCING METRICS
If you want to introduce metrics to your Streams for Apache Kafka Proxy deployment, you can configure
an insecure HTTP and Prometheus endpoint (at /metrics).

Add the following to the ConfigMap resource that defines the Streams for Apache Kafka Proxy
configuration:

Minimal metrics configuration

By default, the HTTP endpoint listens on 0.0.0.0:9190. You can change the hostname and port as
follows:

Example metrics configuration with hostname and port

The example files provided with the proxy include a PodMonitor resource. If you have enabled
monitoring in OpenShift for user-defined projects, you can use a PodMonitor resource to ingest the
proxy metrics.

Example PodMonitor resource configuration

adminHttp:
 endpoints:
 prometheus: {}

adminHttp:
 host: localhost
 port: 9999
 endpoints:
 prometheus: {}

apiVersion: monitoring.coreos.com/v1
kind: PodMonitor
metadata:
 name: proxy
 labels:
 app: proxy
spec:
 selector:
 matchLabels:
 app: proxy
 namespaceSelector:
 matchNames:
 - proxy
 podMetricsEndpoints:
 - path: /metrics
 port: metrics

CHAPTER 5. INTRODUCING METRICS

25

APPENDIX A. USING YOUR SUBSCRIPTION
Streams for Apache Kafka is provided through a software subscription. To manage your subscriptions,
access your account at the Red Hat Customer Portal.

Accessing Your Account

1. Go to access.redhat.com.

2. If you do not already have an account, create one.

3. Log in to your account.

Activating a Subscription

1. Go to access.redhat.com.

2. Navigate to My Subscriptions.

3. Navigate to Activate a subscription and enter your 16-digit activation number.

Downloading Zip and Tar Files
To access zip or tar files, use the customer portal to find the relevant files for download. If you are using
RPM packages, this step is not required.

1. Open a browser and log in to the Red Hat Customer Portal Product Downloads page at
access.redhat.com/downloads.

2. Locate the Streams for Apache Kafka for Apache Kafka entries in the INTEGRATION AND
AUTOMATION category.

3. Select the desired Streams for Apache Kafka product. The Software Downloads page opens.

4. Click the Download link for your component.

Installing packages with DNF
To install a package and all the package dependencies, use:

To install a previously-downloaded package from a local directory, use:

Revised on 2024-07-03 09:00:33 UTC

dnf install <package_name>

dnf install <path_to_download_package>

Red Hat Streams for Apache Kafka 2.7 Using the Streams for Apache Kafka Proxy

26

https://access.redhat.com
https://access.redhat.com
https://access.redhat.com/downloads

	Table of Contents
	PREFACE
	PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
	TECHNOLOGY PREVIEW
	CHAPTER 1. STREAMS FOR APACHE KAFKA PROXY OVERVIEW
	1.1. RECORD ENCRYPTION FILTER
	1.1.1. How the filter encrypts records
	1.1.2. How the filter decrypts records
	1.1.3. How the filter uses the KMS
	1.1.4. What part of a record is encrypted?
	1.1.5. Unencrypted topics

	CHAPTER 2. PREPARING HASHICORP VAULT FOR THE RECORD ENCRYPTION FILTER
	CHAPTER 3. DEPLOYING STREAMS FOR APACHE KAFKA PROXY WITH THE RECORD ENCRYPTION FILTER
	3.1. VERIFYING THE PROXY WHEN USING THE CLUSTER-IP TYPE LISTENER
	3.2. VERIFYING THE PROXY WHEN USING THE LOADBALANCER TYPE LISTENER

	CHAPTER 4. CONFIGURING STREAMS FOR APACHE KAFKA PROXY
	4.1. EXAMPLE STREAMS FOR APACHE KAFKA PROXY CONFIGURATION
	4.2. CONFIGURING VIRTUAL CLUSTERS
	4.2.1. Securing connections from clients
	4.2.2. Securing connections to target clusters

	4.3. CONFIGURING NETWORK ADDRESSES

	CHAPTER 5. INTRODUCING METRICS
	APPENDIX A. USING YOUR SUBSCRIPTION
	Accessing Your Account
	Activating a Subscription
	Downloading Zip and Tar Files
	Installing packages with DNF

