& RedHat

Red Hat support for Spring Boot 2.4

Reactive Application Development Guide

Build reactive applications with Spring Boot Starters based on non-blocking
networking components provided by Eclipse Vert.x that run on OpenShift and on
stand-alone RHEL

Last Updated: 2022-03-11

Red Hat support for Spring Boot 2.4 Reactive Application Development
Guide

Build reactive applications with Spring Boot Starters based on non-blocking networking
components provided by Eclipse Vert.x that run on OpenShift and on stand-alone RHEL

Legal Notice

Copyright © 2022 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide provides details about using Spring Boot with Eclipse Vert.x to develop cloud-native
non-blocking reactive applications.

Table of Contents

Table of Contents

[3 2 Y o P 4
PROVIDING FEEDBACK ON RED HAT DOCUMENTATION ..ottt eiieeieeiiennneeannens 5
CHAPTER 1. CONFIGURING YOUR APPLICATION TOUSE SPRING BOOTcitiiitiiiniiiennnennns 6
1.1. PREREQUISITES 6
1.2. USING THE SPRING BOOT BOM TO MANAGE DEPENDENCY VERSIONS 6
1.3. USING THE SPRING BOOT BOM TO AS A PARENT BOM OF YOUR APPLICATION 8
1.4. RELATED INFORMATION 9
CHAPTER 2. DEVELOPING REACTIVE APPLICATIONS USING SPRING BOOT WITH ECLIPSE VERT.X ... 10
2.1. INTRODUCTION TO SPRING BOOT WITH ECLIPSE VERT.X 10
2.2. REACTIVE SPRING WEB 11
2.3. CREATING A REACTIVE SPRING BOOT HTTP SERVICE WITH WEBFLUX 12
2.4. USING BASIC AUTHENTICATION IN A REACTIVE SPRING BOOT WEBFLUX APPLICATION. 14
2.5. USING OAUTH2 AUTHENTICATION IN A REACTIVE SPRING BOOT APPLICATION. 17
2.6. CREATING A REACTIVE SPRING BOOT SMTP MAIL APPLICATION 19
2.7.SERVER-SENT EVENTS 22
2.8. USING SERVER-SENT EVENTS IN A REACTIVE SPRING BOOT APPLICATION 23
2.9. WEBSOCKET PROTOCOL 25
2.10. USING WEBSOCKETS IN A REACTIVE APPLICATION BASED ON WEBFLUX 25
2.11. ADVANCED MESSAGE QUEUING PROTOCOL 29
2.12. HOW THE AMQP REACTIVE EXAMPLE WORKS 29
2.13. USING AMQP IN A REACTIVE APPLICATION 30
2.14. APACHE KAFKA 37
2.15. HOW THE APACHE KAFKA REACTIVE EXAMPLE WORKS 38
2.16. USING KAFKA IN A REACTIVE APPLICATION 38
CHAPTER 3. DEBUGGING YOUR SPRING BOOT-BASED APPLICATIONiiitiiiiiiiiiieennnnn 44
3.1. REMOTE DEBUGGING 44
3.1.1. Starting your Spring Boot application locally in debugging mode 44
3.1.2. Starting an uberjar in debugging mode 44
3.1.3. Starting your application on OpenShift in debugging mode 45
3.1.4. Attaching a remote debugger to the application 46

3.2. DEBUG LOGGING 47
3.2.1. Add Spring Boot debug logging 47
3.2.2. Accessing Spring Boot debug logs on localhost 47
3.2.3. Accessing debug logs on OpenShift 48
CHAPTER 4. MONITORING YOUR APPLICATION ..ttt ettt eeeneeeaneennneenn 50
4.1. ACCESSING JVM METRICS FOR YOUR APPLICATION ON OPENSHIFT 50
4.1.1. Accessing JVM metrics using Jolokia on OpenShift 50
APPENDIX A. THE SOURCE-TO-IMAGE (S2I) BUILD PROCESS ...ttt i iienneennns, 52
APPENDIX B. UPDATING THE DEPLOYMENT CONFIGURATION OF AN EXAMPLE APPLICATION 53
APPENDIX C. ADDITIONAL SPRING BOOT RESOURCESttt iiiinieanenneennns, 55
APPENDIX D. APPLICATION DEVELOPMENT RESOURCESttt iiiiiainneennns, 56
APPENDIX E. PROFICIENCY LEVELS ..ottt ettt ettt eeit e eieeeaneeanneeannennneennnes 57
Foundational 57
Advanced 57

Red Hat support for Spring Boot 2.4 Reactive Application Development Guide

Expert

57

Table of Contents

Red Hat support for Spring Boot 2.4 Reactive Application Development Guide

PREFACE

Develop reactive applications with messaging, streaming and authentication capabilities using Spring
Boot Starters with reactive Eclipse Vert.x networking components. You can deploy your applications to
OpenShift and standalone RHEL.

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

We appreciate your feedback on our documentation. To provide feedback, you can highlight the textin a
document and add comments.

This section explains how to submit feedback.

Prerequisites

® You are logged in to the Red Hat Customer Portal.
® |nthe Red Hat Customer Portal, view the document in Multi-page HTML format.

Procedure

To provide your feedback, perform the following steps:

1. Click the Feedback button in the top-right corner of the document to see existing feedback.

NOTE

The feedback feature is enabled only in the Multi-page HTML format.

2. Highlight the section of the document where you want to provide feedback.

3. Click the Add Feedback pop-up that appears near the highlighted text.
A text box appears in the feedback section on the right side of the page.

4. Enter your feedback in the text box and click Submit.
A documentation issue is created.

5. To view the issue, click the issue tracker link in the feedback view.

Red Hat support for Spring Boot 2.4 Reactive Application Development Guide

CHAPTER 1. CONFIGURING YOUR APPLICATION TO USE
SPRING BOOT

Configure your application to use dependencies provided with Red Hat build of Spring Boot. By using
the BOM to manage your dependencies, you ensure that your applications always uses the product
version of these dependencies that Red Hat provides support for. Reference the Spring Boot BOM (Bill
of Materials) artifact in the pom.xml file at the root directory of your application. You can use the BOM
in your application project in 2 different ways:

® Asadependency in the <dependencyManagements section of the pom.xml. When using the
BOM as a dependency, your project inherits the version settings for all Spring Boot
dependencies from the <dependencyManagements> section of the BOM.

® Asaparent BOM in the <parents section of the pom.xml. When using the BOM as a parent, the
pom.xml of your project inherits the following configuration values from the parent BOM:

o versions of all Spring Boot dependencies in the <dependencyManagement> section
o versions plugins in the <pluginManagement> section
o the URLs and names of repositories in the <repositories> section

o the URLs and name of the repository that contains the Spring Boot plugin in the
<pluginRepositories> section

1.1. PREREQUISITES

® A Maven-based application project that you configure using a pom.xml file.

® Access to the Red Hat JBoss Middleware General Availability Maven Repository .

1.2. USING THE SPRING BOOT BOM TO MANAGE DEPENDENCY
VERSIONS

Manage versions of Spring Boot product dependencies in your application project using the product
BOM.

Procedure

1. Add the dev.snowdrop:snowdrop-dependencies artifact to the <dependencyManagement>

section of the pom.xml of your project, and specify the values of the <type> and <scope>
attributes:

<project>

<dependencyManagement>
<dependencies>
<dependency>
<groupld>dev.snowdrop</groupld>
<artifactld>snowdrop-dependencies</artifactld>
<version>2.4.9.Final-redhat-00001</version>
<type>pom</type>
<scope>import</scope>
</dependency>

https://maven.repository.redhat.com/ga/

CHAPTER 1. CONFIGURING YOUR APPLICATION TO USE SPRING BOOT

</dependencies>
</dependencyManagement>

</project>

2. Include the following properties to track the version of the Spring Boot Maven Plugin that you
are using:

<project>

<properties>
<spring-boot-maven-plugin.version>2.4.9</spring-boot-maven-plugin.version>
</properties>

</project>

3. Specify the names and URLs of repositories containing the BOM and the supported Spring
Boot Starters and the Spring Boot Maven plugin:

<!I-- Specify the repositories containing Spring Boot artifacts. -->
<repositories>
<repository>
<id>redhat-ga</id>
<name>Red Hat GA Repository</name>
<url>https://maven.repository.redhat.com/ga/</url>
</repository>
</repositories>

<!I-- Specify the repositories containing the plugins used to execute the build of your
application. -->
<pluginRepositories>
<pluginRepository>
<id>redhat-ga</id>
<name>Red Hat GA Repository</name>
<url>https://maven.repository.redhat.com/ga/</url>
</pluginRepository>
</pluginRepositories>

4. Add spring-boot-maven-plugin as the plugin that Maven uses to package your application.
<project>
;build>
<-b-|ugins>

<plugin>
<groupld>org.springframework.boot</groupld>
<artifactld>spring-boot-maven-plugin</artifactld>
<version>${spring-boot-maven-plugin.version}</version>
<executions>
<execution>
<goals>
<goal>repackage</goal>
</goals>

Red Hat support for Spring Boot 2.4 Reactive Application Development Guide

</execution>
</executions>
<configuration>
<redeploy>true</redeploy>
</configuration>
</plugin>
</plugins>
</build>

</project>

1.3. USING THE SPRING BOOT BOM TO AS A PARENT BOM OF YOUR
APPLICATION

Automatically manage the:
® versions of product dependencies
® version of the Spring Boot Maven plugin
e configuration of Maven repositories containing the product artifacts and plugins

that you use in your application project by including the product Spring Boot BOM as a parent BOM of
your project. This method provides an alternative to using the BOM as a dependency of your application.

Procedure

1. Add the dev.snowdrop:snowdrop-dependencies artifact to the <parents section of the
pom.xml:

<project>
<parent>
<groupld>dev.snowdrop</groupld>
<artifactld>snowdrop-dependencies</artifactld>
<version>2.4.9.Final-redhat-00001</version>

</parent>

</project>

2. Add spring-boot-maven-plugin as the plugin that Maven uses to package your application to
the <build> section of the pom.xml. The plugin version is automatically managed by the parent
BOM.

<project>
<build>
<plugins>

<plugin>
<groupld>org.springframework.boot</groupld>

CHAPTER 1. CONFIGURING YOUR APPLICATION TO USE SPRING BOOT

<artifactld>spring-boot-maven-plugin</artifactld>
<executions>
<execution>
<goals>
<goal>repackage</goal>
</goals>
</execution>
</executions>
<configuration>
<redeploy>true</redeploy>
</configuration>
</plugin>

</plugins>
</build>

</project>

1.4. RELATED INFORMATION

® For more information about packaging your Spring Boot application, see the Spring Boot
Maven Plugin documentation.

https://docs.spring.io/spring-boot/docs/current/maven-plugin/plugin-info.html

Red Hat support for Spring Boot 2.4 Reactive Application Development Guide

CHAPTER 2. DEVELOPING REACTIVE APPLICATIONS USING
SPRING BOOT WITH ECLIPSE VERT.X

This section provides an introduction to developing applications in a reactive way using Spring Boot
starters based on Spring Boot and Eclipse Vert.x. The following examples demonstrate how you can use
the starters to create reactive applications.

2.1.INTRODUCTION TO SPRING BOOT WITH ECLIPSE VERT.X

The Spring reactive stack is build on Project Reactor, a reactive library that implements backpressure
and is compliant with the Reactive Streams specification. It provides the Flux and Mono functional API
types that enable asynchronous event stream processing.

On top of Project Reactor, Spring provides WebFlux, an asynchronous event-driven web application
framework. While WebFlux is designed to work primarily with Reactor Netty, it can also operate with
other reactive HTTP servers, such as Eclipse Vert.x.

Spring WebFlux and Reactor enable you to create applications that are:

e Non-blocking: The application continues to handle further requests when waiting for a response
from a remote component or service that is required to complete the current request.

® Asynchronous: the application responds to events from an event stream by generating response
events and publishing them back to the event stream where they can be picked up by other
clients in the application.

® Event-driven: The application responds to events generated by the user or by another service,
such as mouse clicks, HTTP requests, or new files being added to a storage.

® Scalable: Increasing the number of Publishers or Subscribers to match the required event
processing capacity of an application only results in a slight increase in the complexity of routing
requests between individual clients in the application. Reactive applications can handle large
numbers of events using fewer computing and networking resources as compared to other
application programming models.

® Resilient: The application can handle failure of services it depend on without a negative impact
on its overall quality of service.

Additional advantages of using Spring WebFlux include:

Similarity with SpringMVC

The SpringMVC API types and WebFlux API types are similar, and it is easy for developers to apply
knowledge of SpringMVC to programming applications with WebFlux.

The Spring Reactive offering by Red Hat brings the benefits of Reactor and WebFlux to OpenShift and
stand-alone RHEL, and introduces a set of Eclipse Vert.x extensions for the WebFLux framework. This
allows you to retain the level of abstraction and rapid prototyping capabilities of Spring Boot, and
provides an asynchronous IO API that handles the network communications between the services in your
application in a fully reactive manner.

Annotated controllers support

WebFlux retains the endpoint controller annotations introduced by SpringMVC (Both SpringMVC
and WebFlux support reactive RxJava2 and Reactor return types).

Functional programming support

10

https://projectreactor.io
https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html
https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Mono.html
https://docs.spring.io/spring/docs/current/spring-framework-reference/web-reactive.html#webflux
https://projectreactor.io/docs/netty/release/reference/index.html

CHAPTER 2. DEVELOPING REACTIVE APPLICATIONS USING SPRING BOOT WITH ECLIPSE VERT .

Reactor interacts with the Java 8 Functional API, as well as CompletablebFuture, and Stream APls.
In addition to annotation-based endpoints, WebFlux also supports functional endpoints.

Additional resources

See the following resources for additional in-depth information on the implementation details of
technologies that are part of the Spring Reactive stack:

® The Reactive Manifesto

® Reactive Streams specification

® Spring Framework reference documentation: Web Applications on Reactive Stack
® Reactor Netty documentation

® AP| Reference page for the Mono class in Project Reactor Documentation

® API| Reference page for the Flux class in Project Reactor Documentation

2.2. REACTIVE SPRING WEB

The spring-web module provides the foundational elements of the reactive capabilities of Spring
WebFlux, including:

® HTTP abstractions provided by the HttpHandler API
® Reactive Streams adapters for supported servers (Eclipse Vert.x, Undertow and others)

® Codecs for encoding and decoding event stream data. This includes:

o DataBuffer, an abstraction for different types of byte buffer representations (Netty
ByteBuf, java.nio.ByteBuffer, as well as others)

o Low-level contracts to encode and decode content independent of HTTP

o HttpMessageReader and HTTPMessageWriter contracts to encode and decode HTTP
message content

® The WebHandler API (a counterpart to the Servlet 3.11/O API that uses non-blocking
contracts).

When designing your web application, you can choose between 2 programming models that Spring
WebFlux provides:

Annotated Controllers

Annotated controllers in Spring WebFlux are consistent with Spring MVC, and are based on the same
annotations from the spring-web module. In addition to the spring-web module from SpringMVC,
its WebFlux counterpart also supports reactive @RequestBody arguments.

Functional Endpoints

Functional endpoints provided by spring WebFlux on Java 8 Lambda expressions and functional
APIs, this programming model relies on a dedicated library (Reactor, in this case) that routes and
handles requests. As opposed to annotation-based endpoint controllers that rely on declaring Intent
and using callbacks to complete an activity, the reactive model based on functional endpoints allows
request handling to be fully controlled by the application.

1

https://www.reactivemanifesto.org/
https://www.reactive-streams.org/
https://docs.spring.io/spring/docs/current/spring-framework-reference/web-reactive.html
https://projectreactor.io/docs/netty/release/reference/index.html
https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Mono.html
https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html
https://docs.spring.io/spring/docs/current/spring-framework-reference/web-reactive.html#webflux
https://docs.spring.io/spring/docs/current/spring-framework-reference/web-reactive.html#webflux-web-handler-api
https://docs.spring.io/spring/docs/current/spring-framework-reference/web-reactive.html#webflux-controller
https://docs.spring.io/spring/docs/current/spring-framework-reference/web-reactive.html#webflux-fn

Red Hat support for Spring Boot 2.4 Reactive Application Development Guide

12

2.3. CREATING A REACTIVE SPRING BOOT HTTP SERVICE WITH
WEBFLUX

Create a basic reactive Hello World HTTP web service using Spring Boot and WebFlux.

Prerequisites

e JDK 8 or JDK 1linstalled
® Maven installed

® A Maven-based application project configured to use Spring Boot

Procedure

1. Add vertx-spring-boot-starter-http as a dependency in the pom.xml file of your project.

pom.xml

<project>
<dependencies>

<dependency>
<groupld>dev.snowdrop</groupld>
<artifactld>vertx-spring-boot-starter-http</artifactld>
</dependency>

<dependencies>

</project>

2. Create a main class for your application and define the router and handler methods.

HttpSampleApplication.java

package dev.snowdrop.vertx.sample.http;

import org.springframework.boot.SpringApplication;

import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;

import org.springframework.web.reactive.function.server.RouterFunction;
import org.springframework.web.reactive.function.server.ServerRequest;
import org.springframework.web.reactive.function.server.ServerResponse;
import reactor.core.publisher.Mono;

import static org.springframework.web.reactive.function.Bodylnserters.fromObiject;
import static org.springframework.web.reactive.function.server.RouterFunctions.route;

import static org.springframework.web.reactive.function.server.ServerResponse.ok;

@SpringBootApplication
public class HitpSampleApplication {

public static void main(String[] args) {

https://access.redhat.com/documentation/en-us/red_hat_support_for_spring_boot/2.4/html-single/spring_boot_runtime_guide/#configuring-your-application-to-use-spring-boot_spring-boot

CHAPTER 2. DEVELOPING REACTIVE APPLICATIONS USING SPRING BOOT WITH ECLIPSE VERT .

SpringApplication.run(HttpSampleApplication.class, args);
}

@Bean
public RouterFunction<ServerResponse> helloRouter() {
return route()
.GET("/hello", this::helloHandler)
.build();

}

private Mono<ServerResponse> helloHandler(ServerRequest request) {
String name = request
.queryParam("name")
.orElse("World");
String message = String.format("Hello, %s!", name);

return ok()
.body(fromObject(message));

3. OPTIONAL: Run and test your application locally:

a. Navigate to the root directory of your Maven project:
I $ cd myApp
b. Package your application:
I $ mvn clean package
c. Start your application from the command line:
I $ java -jar target/vertx-spring-boot-sample-http.jar
d. Inanew terminal window, issue an HTTP request on the /hello endpoint:

$ curl localhost:8080/hello
Hello, World!

e. Provide a custom name with your request to get a personalized response:

$ curl http://localhost:8080/hello?name=John
Hello, John!

Additional resources

® You can deploy your application to an OpenShift cluster .

® You can also configure your application for deployment on stand-alone Red Hat Enterprise
Linux.

® For more detail on creating reactive web services with Spring Boot, see the reactive REST
service development guide in the Spring community documentation.

13

https://access.redhat.com/documentation/en-us/red_hat_support_for_spring_boot/2.4/html-single/spring_boot_runtime_guide/#deploying-runtime-application-to-openshift_spring-boot
https://access.redhat.com/documentation/en-us/red_hat_support_for_spring_boot/2.4/html-single/spring_boot_runtime_guide/#deploying-runtime-application-to-standalone-red-hat-enterprise-linux_spring-boot
https://spring.io/guides/gs/reactive-rest-service/

Red Hat support for Spring Boot 2.4 Reactive Application Development Guide

2.4. USING BASIC AUTHENTICATION IN A REACTIVE SPRING BOOT
WEBFLUX APPLICATION.

Create a reactive Hello World HTTP web service with basic form-based authentication using Spring
Security and WebFlux starters.

Prerequisites
e JDK 8 or JDK 1linstalled
® Maven installed

® A Maven-based application project configured to use Spring Boot

Procedure

1. Add vertx-spring-boot-starter-http and spring-boot-starter-security as dependencies in the
pom.xml file of your project.

pom.xml

<project>
<dependencies>
<dependency>
<groupld>dev.snowdrop</groupld>
<artifactld>vertx-spring-boot-starter-http</artifactid>
</dependency>
<dependency>
<groupld>org.springframework.boot</groupld>
<artifactld>spring-boot-starter-security</artifactld>
</dependency>
<dependencies>

</project>

2. Create an endpoint controller class for your application:

HelloController.java

package dev.snowdrop.vertx.sample.http.security;

import java.security.Principal;

import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RestController;

import reactor.core.publisher.Mono;

@RestController
public class HelloController {

@GetMapping("/")

14

https://access.redhat.com/documentation/en-us/red_hat_support_for_spring_boot/2.4/html-single/spring_boot_runtime_guide/#configuring-your-application-to-use-spring-boot_spring-boot

CHAPTER 2. DEVELOPING REACTIVE APPLICATIONS USING SPRING BOOT WITH ECLIPSE VERT .

public Mono<String> hello(Mono<Principal> principal) {
return principal
.map(Principal::getName)
.map(this::helloMessage);

}

private String helloMessage(String username) {
return "Hello, " + username + "!";
}
}

3. Create the main class of your application:

HttpSecuritySampleApplication.java

package dev.snowdrop.vertx.sample.http.security;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication
public class HitpSecuritySampleApplication {

public static void main(String[] args) {
SpringApplication.run(HttpSecuritySampleApplication.class, args);
}
}

4. Create a SecurityConfiguration class that stores the user credentials for accessing the /hello
endpoint.

SecurityConfiguration.java

package dev.snowdrop.vertx.sample.http.security;

import org.springframework.context.annotation.Bean;

import org.springframework.security.config.annotation.web.reactive.EnableWebFluxSecurity;
import org.springframework.security.core.userdetails.MapReactiveUserDetailsService;
import org.springframework.security.core.userdetails.User;

import org.springframework.security.core.userdetails.UserDetails;

@EnableWebFluxSecurity
public class SecurityConfiguration {

@Bean
public MapReactiveUserDetailsService userDetailsService() {
UserDetails user = User.withDefaultPasswordEncoder()
.username("user")
.password("user")
.roles("USER")
.build();

return new MapReactiveUserDetailsService(user);

}
}

15

Red Hat support for Spring Boot 2.4 Reactive Application Development Guide

5. OPTIONAL: Run and test your application locally:

a.

h.

Navigate to the root directory of your Maven project:

I $ cd myApp

Package your application:

I $ mvn clean package

Start your application from the command line:

I $ java -jar target/vertx-spring-boot-sample-http-security.jar

Navigate to http://localhost:8080 using a browser to access the login screen.

Log in using the credentials below:

® username: user
® password: user

You receive a customized greeting when you are logged in:
I Hello, user!

Navigate to http://localhost:8080/logout using a web browser and use the Log out button
to log out of your application.

Alternatively, use a terminal to make an unauthenticated HTTP request on localhost:8080.
You receive HTTP 401 Unauthorized response from your application.

$ curl -1 http://localhost:8080

HTTP/1.1 401 Unauthorized

WWW:-Authenticate: Basic realm="Realm"

Cache-Control: no-cache, no-store, max-age=0, must-revalidate
Pragma: no-cache

Expires: 0

X-Content-Type-Options: nosniff

X-Frame-Options: DENY

X-XSS-Protection: 1 ; mode=Dblock

Referrer-Policy: no-referrer

Issue an authenticated request using the example user credentials. You receive a
personalized response.

$ curl -u user:user http://localhost:8080
Hello, user!

Additional resources

® You can deploy your application to an OpenShift cluster .

16

http://localhost:8080
http://localhost:8080/logout
https://access.redhat.com/documentation/en-us/red_hat_support_for_spring_boot/2.4/html-single/spring_boot_runtime_guide/#deploying-runtime-application-to-openshift_spring-boot

CHAPTER 2. DEVELOPING REACTIVE APPLICATIONS USING SPRING BOOT WITH ECLIPSE VERT .

® You can also configure your application for deployment on stand-alone Red Hat Enterprise
Linux.

® For the full specification of the Basic HTTP authentication scheme, see document RFC-7617.

e For the full specification of HTTP authentication extensions for interactive clients, including
form-based authentication, see document RFC-8053.

2.5. USING OAUTH2 AUTHENTICATION IN A REACTIVE SPRING BOOT
APPLICATION.

Set up OAuth2 authentication for your reactive Spring Boot application and authenticate using your
client ID and client secret.

Prerequisites

® JDK 8 or JDK 1linstalled
® Maven installed
® A Maven-based application project configured to use Spring Boot

e A GitHub account

Procedure

1. Register a new OAuth 2 application on your Github account. Ensure that you provide the
following values in the registration form:

® Homepage URL: http://localhost:8080
® Authorization callback URL: http://localhost:8080/login/oauth2/code/github
Ensure that you save the client ID and a client secret that you receive upon completing the

registration.

2. Add the following dependencies in the pom.xml file of your project:

® vertx-spring-boot-starter-http
® spring-boot-starter-security
® spring-boot-starter-oauth2-client

e reactor-netty
Note that the reactor-netty client is required to ensure that spring-boot-starter-oauth2-
client works properly.

pom.xml

<project>
<dependencies>
<dependency>

<groupld>dev.snowdrop</groupld>
<artifactld>vertx-spring-boot-starter-http</artifactid>

17

https://access.redhat.com/documentation/en-us/red_hat_support_for_spring_boot/2.4/html-single/spring_boot_runtime_guide/#deploying-runtime-application-to-standalone-red-hat-enterprise-linux_spring-boot
https://tools.ietf.org/html/rfc7617
https://tools.ietf.org/html/rfc8053
https://oauth.net/2/
https://access.redhat.com/documentation/en-us/red_hat_support_for_spring_boot/2.4/html-single/spring_boot_runtime_guide/#configuring-your-application-to-use-spring-boot_spring-boot
https://github.com/settings/developers
http://localhost:8080
http://localhost:8080/login/oauth2/code/github

Red Hat support for Spring Boot 2.4 Reactive Application Development Guide

</dependency>

<dependency>
<groupld>org.springframework.boot</groupld>
<artifactld>spring-boot-starter-security</artifactld>

</dependency>

<dependency>
<groupld>org.springframework.boot</groupld>
<artifactld>spring-boot-starter-oauth2-client</artifactld>

</dependency>

<!I-- Spring OAuth2 client only works with Reactor Netty client -->

<dependency>
<groupld>io.projectreactor.netty</groupld>
<artifactld>reactor-netty</artifactld>

</dependency>

<dependencies>

</project>

3. Create an endpoint controller class for your application:

HelloController.java

package dev.snowdrop.vertx.sample.http.oauth;

import org.springframework.security.core.annotation.AuthenticationPrincipal;
import org.springframework.security.oauth2.core.user.OAuth2User;

import org.springframework.web.bind.annotation.GetMapping;

import org.springframework.web.bind.annotation.RestController;

import reactor.core.publisher.Mono;

@RestController
public class HelloController {

@GetMapping

public Mono<String> hello(@AuthenticationPrincipal OAuth2User oauth2User) {
return Mono.just("Hello, " + oauth2User.getAttributes().get("name") + "I");

}
}

4. Create the main class of your application:

OAuthSampleApplication.java

package dev.snowdrop.vertx.sample.http.oauth;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication
public class OAuthSampleApplication {

public static void main(String[] args) {

18

CHAPTER 2. DEVELOPING REACTIVE APPLICATIONS USING SPRING BOOT WITH ECLIPSE VERT .

SpringApplication.run(OAuthSampleApplication.class, args);

}
}

5. Create a YAML configuration file to store the OAuth2 client ID and client secret you received
from GitHub upon registering your application.

src/main/resources/application.yml

spring:

security:

oauth2:

client:

registration:
github:
client-id: YOUR_GITHUB_CLIENT_ID

client-secret: YOUR_GITHUB_CLIENT_SECRET

6. OPTIONAL: Run and test your application locally:

a. Navigate to the root directory of your Maven project:
I $ cd myApp
b. Package your application:

I $ mvn clean package

c. Start your application from the command line:
I $ java -jar target/vertx-spring-boot-sample-http-oauth.jar

d. Navigate to http://localhost:8080 using a web browser. You are redirected to an OAuth2
application authorization screen on GitHub. If prompted, log in using your GitHub account
credentials.

e. Click Authorize to confirm. You are redirected to a screen showing a personalized greeting
message.

Additional resources

® You can deploy your application to an OpenShift cluster .

® You can also configure your application for deployment on stand-alone Red Hat Enterprise
Linux.

® For more information, see the OAuth2 tutorial in the Spring community documentation.
Alternatively, see the tutorial on using OAuth2 with Spring Security.

e For the full OAuth2 authentication framework specification, see document RFC-6749.

2.6. CREATING A REACTIVE SPRING BOOT SMTP MAIL APPLICATION

Create a reactive SMTP email service with Spring Boot with Eclipse Vert.x.

19

http://localhost:8080
https://access.redhat.com/documentation/en-us/red_hat_support_for_spring_boot/2.4/html-single/spring_boot_runtime_guide/#deploying-runtime-application-to-openshift_spring-boot
https://access.redhat.com/documentation/en-us/red_hat_support_for_spring_boot/2.4/html-single/spring_boot_runtime_guide/#deploying-runtime-application-to-standalone-red-hat-enterprise-linux_spring-boot
https://spring.io/guides/tutorials/spring-boot-oauth2/
https://developer.okta.com/blog/2019/03/12/oauth2-spring-security-guide?utm_campaign=text_website_all_multiple_dev_dev_oauth2-spring-security_null&utm_source=oauthio&utm_medium=cpc
https://tools.ietf.org/html/rfc6749

Red Hat support for Spring Boot 2.4 Reactive Application Development Guide

Prerequisites

® JDK 8 or JDK 1linstalled
® Maven installed
® A Maven-based application project configured to use Spring Boot

® A SMTP mail server configured on your machine

Procedure

1. Add vertx-spring-boot-starter-http and vertx-spring-boot-starter-mail as dependencies in the
pom.xml file of your project.

pom.xml

<project>
<dependencies>

<dependency>
<groupld>dev.snowdrop</groupld>
<artifactld>vertx-spring-boot-starter-http</artifactld>
</dependency>
<dependency>
<groupld>dev.snowdrop</groupld>
<artifactld>vertx-spring-boot-starter-mail</artifactld>
</dependency>

<dependencies>

</project>

2. Create a mail handler class for your application:

MailHandler.java

package dev.snowdrop.vertx.sample.malil;

import dev.snowdrop.vertx.mail.MailClient;

import dev.snowdrop.vertx.mail.MailMessage;

import dev.snowdrop.vertx.mail.SimpleMailMessage;

import org.springframework.stereotype.Component;

import org.springframework.util. MultiValueMap;

import org.springframework.web.reactive.function.server.ServerRequest;
import org.springframework.web.reactive.function.server.ServerResponse;
import reactor.core.publisher.Mono;

import static org.springframework.web.reactive.function.server.ServerResponse.noContent;

@Component
public class MailHandler {

private final MailClient mailClient;

20

https://access.redhat.com/documentation/en-us/red_hat_support_for_spring_boot/2.4/html-single/spring_boot_runtime_guide/#configuring-your-application-to-use-spring-boot_spring-boot

CHAPTER 2. DEVELOPING REACTIVE APPLICATIONS USING SPRING BOOT WITH ECLIPSE VERT .

public MailHandler(MailClient mailClient) {
this.mailClient = mailClient;

}

public Mono<ServerResponse> send(ServerRequest request) {
return request.formData()
Jlog()
.map(this::formToMessage)
flatMap(mailClient::send)
flatMap(result -> noContent().build());

}

private MailMessage formToMessage(MultiValueMap<String, String> form) {
return new SimpleMailMessage()
.setFrom(form.getFirst("from"))
.setTo(form.get("to"))
.setSubject(form.getFirst("subject"))
.setText(form.getFirst("text"));

3. Create the main class of your application:

MailSampleApplication.java

package dev.snowdrop.vertx.sample.malil;

import org.springframework.boot.SpringApplication;

import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;

import org.springframework.core.io.ClassPathResource;

import org.springframework.web.reactive.function.server.RouterFunction;
import org.springframework.web.reactive.function.server.ServerResponse;

import static org.springframework.http.MediaType.APPLICATION_FORM_URLENCODED;
import static org.springframework.web.reactive.function.server.RequestPredicates.accept;
import static org.springframework.web.reactive.function.server.RouterFunctions.resources;
import static org.springframework.web.reactive.function.server.RouterFunctions.route;

@SpringBootApplication
public class MailSampleApplication {

public static void main(String[] args) {
SpringApplication.run(MailSampleApplication.class, args);

}

@Bean
public RouterFunction<ServerResponse> mailRouter(MailHandler mailHandler) {
return route()
.POST("/mail", accept(APPLICATION_FORM_URLENCODED),
mailHandler::send)
.build();

}

21

Red Hat support for Spring Boot 2.4 Reactive Application Development Guide

@Bean
public RouterFunction<ServerResponse> staticResourceRouter() {
return resources("/**", new ClassPathResource("static/"));

}

4. Create an application.properties file to store your SMTP server credentials:

application.properties

vertx.mail.host=YOUR_SMTP_SERVER_HOSTNAME
vertx.mail.username=YOUR_SMTP_SERVER_USERNAME
vertx.mail.password=YOUR_SMTP_SERVER_PASSWORD

5. Create a src/main/resources/static/index.html file that serves as the frontend of your
application. Alternatively, use the example HTML email form available for this procedure.

6. OPTIONAL: Run and test your application locally:

a. Navigate to the root directory of your Maven project:
I $ cd myApp
b. Package your application:

I $ mvn clean package

c. Start your application from the command line.
I $ java -jar target/vertx-spring-boot-sample-mail.jar

d. Navigate to http://localhost:8080/index.html using a web browser to access the email
form.
Additional resources

® For more information on setting up an SMTP mail server on RHEL 7, see the Mail Transport
Agent Configuration section in the RHEL 7 documentation.

® You can deploy your application to an OpenShift cluster .

® You can also configure your application for deployment on stand-alone Red Hat Enterprise
Linux.

2.7. SERVER-SENT EVENTS

Server-sent events (SSE) is a push technology allowing HTTP sever to send unidirectional updates to
the client. SSE works by establishing a connection between the event source and the client. The event
source uses this connection to push events to the client-side. After the server pushes the events, the
connection remains open and can be used to push subsequent events. When the client terminates the
request on the server, the connection is closed. SSE represents a more resource-efficient alternative to

22

https://raw.githubusercontent.com/snowdrop/vertx-spring-boot/master/vertx-spring-boot-samples/vertx-spring-boot-sample-mail/src/main/resources/static/index.html
http://localhost:8080/index.html
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html-single/system_administrators_guide/index#s1-email-mta
https://access.redhat.com/documentation/en-us/red_hat_support_for_spring_boot/2.4/html-single/spring_boot_runtime_guide/#deploying-runtime-application-to-openshift_spring-boot
https://access.redhat.com/documentation/en-us/red_hat_support_for_spring_boot/2.4/html-single/spring_boot_runtime_guide/#deploying-runtime-application-to-standalone-red-hat-enterprise-linux_spring-boot

CHAPTER 2. DEVELOPING REACTIVE APPLICATIONS USING SPRING BOOT WITH ECLIPSE VERT .

polling, where a new connection must be established each time the client polls the event source for
updates. As opposed to WebSockets, SSE pushes events in one direction only (that is, from the source
to the client). It does not handle bidirectional communication between the event source and the client.
The specification for SSE is incorporated into HTML5, and is widely supported by web browsers,
including their legacy versions. SSE can be used from the command line, and is relatively simple to set up
compared to other protocols.

SSE is suitable for use cases that require frequent updates from the server to the client, while updates
from the client side to the server are expected to be less frequent. Updates form the client side to the

server can then be handled over a different protocol, such as REST. Examples of such use cases include
social media feed updates or notifications sent to a client when new files are uploaded to a file server.

2.8. USING SERVER-SENT EVENTS IN A REACTIVE SPRING BOOT
APPLICATION

Create a simple service that accepts HTTP requests and returns a stream of server-sent events (SSE).
When the client establishes a connection to the server and the streaming starts, the connection remains
open. The server re-uses the connection to continuously push new events to the client. Canceling the
request closes the connection and stops the stream, causing the client to stop receiving updates form
the server.

Prerequisites

e JDK 8 or JDK 1linstalled
® Maven installed

® A Maven-based application project configured to use Spring Boot

Procedure

1. Add vertx-spring-boot-starter-http as a dependency in the pom.xml file of your project.

pom.xml

<project>
<dependencies>
<dependency>
<groupld>dev.snowdrop</groupld>
<artifactld>vertx-spring-boot-starter-http</artifactid>
</dependency>
<dependencies>
</project>

2. Create the main class of your application:

SseExampleApplication.java

I package dev.snowdrop.vertx.sample.sse;

23

https://access.redhat.com/documentation/en-us/red_hat_support_for_spring_boot/2.4/html-single/spring_boot_runtime_guide/#configuring-your-application-to-use-spring-boot_spring-boot

Red Hat support for Spring Boot 2.4 Reactive Application Development Guide

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication
public class SseSampleApplication {

public static void main(String[] args) {
SpringApplication.run(SseSampleApplication.class, args);

}
}

3. Create a Server-sent Event controller class for your application. In this example, the class
generates a stream of random integers and prints them to a terminal application.

SseController.java

package dev.snowdrop.vertx.sample.sse;

import java.time.Duration;
import java.util. Random;

import org.springframework.http.MediaType;

import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RestController;
import reactor.core.publisher.Flux;

@RestController
public class SseController {

@GetMapping(produces = MediaType. TEXT_EVENT_STREAM_VALUE)
public Flux<Integer> getRandomNumberStream() {

Random random = new Random();

return Flux.interval(Duration.ofSeconds(1))
.map(i -> random.nextInt())

Jog();

4. OPTIONAL: Run and test your application locally:

a. Navigate to the root directory of your Maven project:
I $ cd myApp
b. Package your application:

I $ mvn clean package
c. Start your application from the command line:

I $ java -jar target/vertx-spring-boot-sample-sse.jar

24

CHAPTER 2. DEVELOPING REACTIVE APPLICATIONS USING SPRING BOOT WITH ECLIPSE VERT .

d. Inanew terminal window, issue a HTTP request to localhost. You start receiving a
continuous stream of random integers from the server-sent event controller:

$ curl localhost:8080
data:-2126721954

data:-573499422
data:1404187823
data:1338766210

data:-666543077

Press Ctrl+C to cancel your HTTP request and terminate the stream of responses.

Additional resources

® You can deploy your application to an OpenShift cluster .

® You can also configure your application for deployment on stand-alone Red Hat Enterprise
Linux.

2.9. WEBSOCKET PROTOCOL

The WebSocket protocol upgrades a standard HTTP connection to make it persistent and subsequently
uses that connection to pass specially formatted messages between the client and server of your
application. While the protocol relies on HTTP like handshakes to establish the initial connection
between client and server over TCP, it uses a special message format for communication between client
and server.

Unlike a standard HTTP connection, a WebSocket connection:
® can be used to send messages in both directions
® remains open after the initial request is completed,

® uses special framing headers in messages, which allows you to send non-HTTP-formatted
message payloads (for example control data) inside an HTTP request.

As a result, the WebSockets protocol extends the possibilities of a standard HTTP connection while
requiring fewer networking resources and decreasing the risk of services failing due to network timeouts
(compared to alternative methods of providing a real time messaging functionality, such as HTTP Long
Polling).

WebSockets connections are supported by default on most currently available web browsers across

different operating systems and hardware architectures, which makes WebSockets a suitable choice for
writing cross-platform web-based applications that you can connect to using only a web browser.

2.10. USING WEBSOCKETS IN A REACTIVE APPLICATION BASED ON
WEBFLUX

The following example demonstrates how you can use the WebSocket protocol in an application that
provides a backend service that you can connect to using a web browser. When you access the web front

25

https://access.redhat.com/documentation/en-us/red_hat_support_for_spring_boot/2.4/html-single/spring_boot_runtime_guide/#deploying-runtime-application-to-openshift_spring-boot
https://access.redhat.com/documentation/en-us/red_hat_support_for_spring_boot/2.4/html-single/spring_boot_runtime_guide/#deploying-runtime-application-to-standalone-red-hat-enterprise-linux_spring-boot

Red Hat support for Spring Boot 2.4 Reactive Application Development Guide

end URL of your application using a web browser, the front-end initiates a WebSocket connection to a
backend service. You can use the web form available on the website to send values formatted as text
strings to the back-end service using the WebSocket connection. The application processes the
received value by converting all characters to uppercase and sends the result to the front end using the
same WebSocket connection.

Create an application using Spring on Reactive Stack that consists of:
® aback end Java-based service with a WebSocket handler

® aweb front end based on HTML and JavaScript.

Prerequisites

® A Maven-based Java application project that uses Spring Boot
e JDK 8 or JDK 1linstalled

® Maven installed

Procedure:

1. Add the vertx-spring-boot-starter-http as a dependency in the pom.xml file of your application
project:

pom.xml

<dependencies>

<dependency>
<groupld>dev.snowdrop</groupld>
<artifactld>vertx-spring-boot-starter-http</artifactld>
</dependency>

</dependencies>

2. Create the class file containing the back-end application code:

/src/main/java/webSocketSampleApplication.java

package dev.snowdrop.WebSocketSampleApplication;

import java.util.Collections;
import java.util.Map;

import org.springframework.boot.SpringApplication;

import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;

import org.springframework.web.reactive.HandlerMapping;

import org.springframework.web.reactive.handler.SimpleUrIHandlerMapping;
import org.springframework.web.reactive.socket. WebSocketHandler;

import org.springframework.web.reactive.socket. WebSocketMessage;
import org.springframework.web.reactive.socket. WebSocketSession;

26

CHAPTER 2. DEVELOPING REACTIVE APPLICATIONS USING SPRING BOOT WITH ECLIPSE VERT .

import reactor.core.publisher.Flux;
import reactor.core.publisher.Mono;

@SpringBootApplication
public class WebSocketSampleApplication {

public static void main(String[] args) {
SpringApplication.run(WebSocketSampleApplication.class, args);

}

@Bean
public HandlerMapping handlerMapping() {
// Define URL mapping for the socket handlers
Map<String, WebSocketHandler> handlers = Collections.singletonMap("/echo-upper",
this::toUppercaseHandler);

SimpleUrlHandlerMapping handlerMapping = new SimpleUrlHandlerMapping();

handlerMapping.setUrIMap(handlers);

// Set a higher precedence than annotated controllers (smaller value means higher
precedence)

handlerMapping.setOrder(-1);

return handlerMapping;
1

private Mono<Void> toUppercaseHandler(WebSocketSession session) {
Flux<WebSocketMessage> messages = session.receive() // Get incoming messages

Stream

filter(message -> message.getType() == WebSocketMessage.Type. TEXT) // Filter
out non-text messages

.map(message -> message.getPayloadAsText().toUpperCase()) // Execute service
logic

.map(session::textMessage); // Create a response message

return session.send(messages); // Send response messages

}
}

3. Create the HTML document that serves as a front end for the application. Note, that in the
following example, the <script> element contains the JavaScript code that handles the
communication with the back end of your application:

/src/main/resources/static/index.html

<!doctype html>
<html>
<head>
<meta charset="utf-8"/>
<title>WebSocket Example</itle>
<script>
const socket = new WebSocket("ws://localhost:8080/echo-upper");

socket.onmessage = function(e) {

console.log("Received a value: " + e.data);
const messages = document.getElementByld("messages");

27

Red Hat support for Spring Boot 2.4 Reactive Application Development Guide

const message = document.createElement("li");
message.innerHTML = e.data;
messages.append(message);

}

window.onbeforeunload = function(e) {
console.log("Closing socket");
socket.close();

}

function send(event) {
event.preventDefault();

const value = document.getElementByld("value-to-send”).value.trim();
if (value.length > 0) {
console.log("Sending value to socket: " + value);
socket.send(value);

}
}

</script>
</head>
<body>
<div>
<h1>Vert.x Spring Boot WebSocket example</h1>
<p>
Enter a value to the form below and click submit. The value will be sent via socket to a
backend service.
The service will then uppercase the value and send it back via the same socket.
</p>
</div>
<div>
<form onsubmit="send(event)">
<input type="text" id="value-to-send" placeholder="A value to be sent"/>
<input type="submit"/>
</form>
</div>
<div>
<ol id="messages">
</div>
</body>
</html>

4. OPTIONAL: Run and test your application locally:

a. Navigate to the root directory of your Maven project:
I $ cd myApp
b. Package your application:

I $ mvn clean package
c. Start your application from the command line:

I $ java -jar target/vertx-spring-boot-sample-websocket.jar

28

CHAPTER 2. DEVELOPING REACTIVE APPLICATIONS USING SPRING BOOT WITH ECLIPSE VERT .

d. Navigate to http://localhost:8080/index.html using a web browser. The website shows a
web interface that contains

® aninput text box,
® alist of processed results,
® a Submit button.
5. Enter a string value into the text box and select Submit.

6. View the resulting value rendered in uppercase in the list below the input text box.

Additional resources

® You can deploy your application to an OpenShift cluster .

® You can also configure your application for deployment on stand-alone Red Hat Enterprise
Linux.

2.11. ADVANCED MESSAGE QUEUING PROTOCOL

The Advanced Message Queuing Protocol (AMQP) is a communication protocol designed to move
messages between applications in a a non-blocking way. Standardized as AMQP 1.0, the protocol
provides interoperability and messaging integration between new and legacy applications across
different network topologies and environments. AMQP works with multiple broker architectures and
provides a range of ways to deliver, receive, queue and route messages. AMQP can also work peer-to-
peer when you are not using a broker. In a hybrid cloud environment, you can use AMQP to integrate your
services with legacy applications without having to deal with processing a variety of different message
formats. AMQP Supports real-time asynchronous message processing capabilities and is therefore
suitable for use in reactive applications.

2.12. HOW THE AMQP REACTIVE EXAMPLE WORKS

The messaging integration pattern that this example features is a Publisher-Subscriber pattern that 2
queues and a broker.

® The Request queue stores HTTP requests containing strings that you enter using the Web
interface to be processed by the text string processor.

® The Result queue stores responses containing the strings that have been converted to
Uppercase and are ready to be displayed.

The components that the application consist of are:
® A front-end service that you can use to submit a text string to the application.
® A back-end service that converts the string to uppercase characters.
® AHTTP controller that is configured and provided by the Spring Boot HTTP Starter

® Anembedded Artemis AMQP Broker instance that routes messages between 2 messaging
queues:

The request queue passes messages containing text strings from the front end to the text string
processor service. When you submit a string for processing:

29

http://localhost:8080/index.html
https://access.redhat.com/documentation/en-us/red_hat_support_for_spring_boot/2.4/html-single/spring_boot_runtime_guide/#deploying-runtime-application-to-openshift_spring-boot
https://access.redhat.com/documentation/en-us/red_hat_support_for_spring_boot/2.4/html-single/spring_boot_runtime_guide/#deploying-runtime-application-to-standalone-red-hat-enterprise-linux_spring-boot

Red Hat support for Spring Boot 2.4 Reactive Application Development Guide

The front end service sends a HTTP POST request containing your string as the payload of the
request to the HTTP controller.

The request is picked up by the messaging manager that routes the message to the AMQP
Broker.

The broker routes the message to the text string processor service. If the text processor service
is unavailable to pick up the request, the broker routes the message to the next available
processor instance, if such instance is available. Alternatively, the broker waits before resending
the request to the same instance when it becomes available again.

. The text string processor service picks up the message and converts the characters in the string

to uppercase. The processor service sends a request with the processed result in uppercase to
the AMQP Broker.

The AMQP broker routes the request with the processed results to the messaging manager.

The messaging manager stores the request with the processed results in the outgoing queue
where it can be accessed by the front end service.

The response queue stores HTTP responses that contain results processed by the string processor
service. The front end application polls this queue at regular intervals to retrieve the results. When the
processed result is ready to be displayed:

1.

The front end service sends a HTTP GET request to the HTTP controller provided by the Spring
Boot HTTP Starter.

. The HTTP controller routes the request to the messaging manager.

When a request previously submitted by the front end for processing is ready and available in
the outgoing queue, the messaging manager sends the result as a response to the HTTP GET
request back to the HTTP controller

The HTTP controller routes the response back to the front end service that displays the result.

2.13. USING AMQP IN A REACTIVE APPLICATION

Develop a simple messaging reactive application using the AMQP Client Starter with a Spring Boot
HTTP controller. This example application integrates 2 services in a Publisher-Subscriber messaging
integration pattern that uses 2 messaging queues and a broker.

This example shows how you can create a basic application with Spring Boot and Eclipse Vert.x on
Reactor Netty that consists of 2 services integrated using AMQP messaging. The application consist of
the following components:

A front-end service that you can use to submit text strings to the application
A back-end service that converts strings to uppercase characters

An Artemis AMQP broker that routes massages between the services and manages the request
queue and response queue.

A HTTP controller provided by the Spring Boot HTTP Starter

Prerequisites

30

CHAPTER 2. DEVELOPING REACTIVE APPLICATIONS USING SPRING BOOT WITH ECLIPSE VERT .

® A Maven-based Java application project configured to use Spring Boot
e JDK 8 or JDK 1linstalled

® Maven installed

Procedure

1. Add the following dependencies to the pom.xml file of your application project:

pom.xml

<dependencies>

<dependency>
<groupld>dev.snowdrop</groupld>
<artifactld>vertx-spring-boot-starter-http</artifactid>
</dependency>
<dependency>
<groupld>dev.snowdrop</groupld>
<artifactld>vertx-spring-boot-starter-amqp</artifactid>
</dependency>
<dependency>
<groupld>org.springframework.boot</groupld>
<artifactld>spring-boot-starter-artemis</artifactld>
</dependency>
<dependency>
<groupld>org.apache.activemg</groupld>
<artifactld>artemis-jms-server</artifactid>
</dependency>
<dependency>
<groupld>org.apache.activemg</groupld>
<artifactld>artemis-amqp-protocol</artifactid>
<exclusions>
<exclusion>
<groupld>org.apache.qpid</groupld>
<artifactld>proton-j</artifactid>
</exclusion>
</exclusions>
</dependency>

</dependencies>

2. Create the main class file of the example application. This class contains methods that define
the respective processing queues for requests and results:

/src/main/java/AmgpExampleApplication.java

package dev.snowdrop.AmgpExampleApplication.java;

import java.util.HashMap;
import java.util.Map;

31

Red Hat support for Spring Boot 2.4 Reactive Application Development Guide

32

import dev.snowdrop.vertx.amqgp.AmgpProperties;

import org.apache.activemq.artemis.api.core. TransportConfiguration;

import org.apache.activemq.artemis.core.remoting.impl.netty.NettyAcceptorFactory;

import org.springframework.boot.SpringApplication;

import org.springframework.boot.autoconfigure.SpringBootApplication;

import org.springframework.boot.autoconfigure.jms.artemis.ArtemisConfigurationCustomizer;
import org.springframework.context.annotation.Bean;

@SpringBootApplication
public class AmgpExampleApplication {

final static String PROCESSING_REQUESTS_QUEUE = "processing-requests";
final static String PROCESSING_RESULTS_QUEUE = "processing-results”;

public static void main(String[] args) {
SpringApplication.run(AmgpExampleApplication.class, args);

}

Jax
* Add Netty acceptor to the embedded Artemis server.
Y/
@Bean
public ArtemisConfigurationCustomizer artemisConfigurationCustomizer(AmqgpProperties
properties) {
Map<String, Object> params = new HashMap<>();
params.put("host", properties.getHost());
params.put("port", properties.getPort());

return configuration -> configuration
.addAcceptorConfiguration(new
TransportConfiguration(NettyAcceptorFactory.class.getName(), params));
}
}

3. Create the class file containing the code for the HTTP REST controller that manages the
request queue and the response queue by exposing REST endpoints that handle your GET and
POST requests:

/src/main/java/Controller.java

package dev.snowdrop.vertx.sample.amqp;

import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.PostMapping;
import org.springframework.web.bind.annotation.RequestBody;
import org.springframework.web.bind.annotation.RestController;
import reactor.core.publisher.Flux;

import reactor.core.publisher.Mono;

import static org.springframework.http.MediaType. TEXT_EVENT_STREAM_VALUE;

/**

* Rest controller exposing GET and POST resources to receive processed messages and
submit messages for processing.

Y/

CHAPTER 2. DEVELOPING REACTIVE APPLICATIONS USING SPRING BOOT WITH ECLIPSE VERT .

@RestController
public class Controller {

private final MessagesManager messagesManager;

public Controller(MessagesManager messagesManager) {
this.messagesManager = messagesManager;

}

/**
* Get a flux of messages processed up to this point.
Y/
@GetMapping(produces = TEXT_EVENT_STREAM_VALUE)
public Flux<String> getProcessedMessages() {
return Flux.fromlterable(messagesManager.getProcessedMessages());

}

/**
* Submit a message for processing by publishing it to a processing requests queue.
Y/
@PostMapping
public Mono<Void> submitMessageForProcessing(@RequestBody String body) {
return messagesManager.processMessage(body.trim());

}
}

4. Create the class file containing the messaging manager. The manager controls how applications
components publish requests to the request queue and subsequently subscribe to the response
queue to obtain processed results:

/src/main/java/MessagesManager.java:

package dev.snowdrop.vertx.sample.amqp;

import java.util.List;
import java.util.concurrent.CopyOnWriteArrayList;

import dev.snowdrop.vertx.amgp.AmgpClient;

import dev.snowdrop.vertx.amqgp.AmgpMessage;

import dev.snowdrop.vertx.amgp.AmgpSender;

import org.apache.activemq.artemis.core.server.embedded.EmbeddedActiveMQ;
import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

import org.springframework.beans.factory.DisposableBean;
import org.springframework.beans.factory.InitializingBean;
import org.springframework.stereotype.Component;

import reactor.core.Disposable;

import reactor.core.publisher.Mono;

import static
dev.snowdrop.vertx.sample.amgp.AmgpSampleApplication.PROCESSING_REQUESTS_QUE
UE;

import static
dev.snowdrop.vertx.sample.amqgp.AmgpSampleApplication.PROCESSING_RESULTS_QUEU
E;

33

Red Hat support for Spring Boot 2.4 Reactive Application Development Guide

/**
* Processor client submits messages to the requests queue and subscribes to the results
queue for processed messages.
Y/
@Component
public class MessagesManager implements InitializingBean, DisposableBean {

private final Logger logger = LoggerFactory.getLogger(MessagesManager.class);
private final List<String> processedMessages = new CopyOnWriteArrayList<>();
private final AmgpClient client;

private Disposable receiverDisposer;

// Injecting EmbeddedActiveMQ to make sure it has started before creating this
component.
public MessagesManager(AmgpClient client, EmbeddedActiveMQ server) {
this.client = client;

}

Jax
* Create a processed messages receiver and subscribe to its messages publisher.
Y/
@Override
public void afterPropertiesSet() {
receiverDisposer = client.createReceiver(PROCESSING_RESULTS_QUEUE)
flatMapMany(receiver -> receiver.flux()
.doOnCancel(() -> receiver.close().block())) // Close the receiver once subscription
is disposed
.subscribe(this::handleMessage);

}

/**
* Cancel processed messages publisher subscription.
Y/
@Override
public void destroy() {
if (receiverDisposer = null) {
receiverDisposer.dispose();

}
}

/**
* Get messages which were processed up to this moment.

*

* @return List of processed messages.
Y/
public List<String> getProcessedMessages() {
return processedMessages;

}

/**
* Submit a message for processing by publishing it to a processing requests queue.

*

* @param body Message body to be processed.

34

CHAPTER 2. DEVELOPING REACTIVE APPLICATIONS USING SPRING BOOT WITH ECLIPSE VERT .

* @return Mono which is completed once the message is sent.
Y/
public Mono<Void> processMessage(String body) {
logger.info("Sending message '{}' for processing", body);

AmgpMessage message = AmgpMessage.create()
.withBody(body)
.build();

return client.createSender(PROCESSING_REQUESTS_QUEUE)
.map(sender -> sender.send(message))
flatMap(AmqgpSender::close);

}

private void handleMessage(AmgpMessage message) {
String body = message.bodyAsString();

logger.info("Received processed message '{}'", body);
processedMessages.add(body);

}
}

5. Create the class file containing the uppercase processor that receives text strings from the
request queue and converts them to uppercase characters. The processor subsequently
publishes the results to the response queue:

/src/main/java/UppercaseProcessor.java

package dev.snowdrop.vertx.sample.amqp;

import dev.snowdrop.vertx.amgp.AmgpClient;

import dev.snowdrop.vertx.amqgp.AmgpMessage;

import dev.snowdrop.vertx.amgp.AmgpSender;

import org.apache.activemq.artemis.core.server.embedded.EmbeddedActiveMQ;
import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

import org.springframework.beans.factory.DisposableBean;
import org.springframework.beans.factory.InitializingBean;
import org.springframework.stereotype.Component;

import reactor.core.Disposable;

import reactor.core.publisher.Mono;

import static
dev.snowdrop.vertx.sample.amgp.AmgpSampleApplication.PROCESSING_REQUESTS_QUE
UE;

import static
dev.snowdrop.vertx.sample.amqgp.AmgpSampleApplication.PROCESSING_RESULTS_QUEU
E;

o
* Uppercase processor subscribes to the requests queue, converts each received message
to uppercase and send it to the
* results queue.
Y/
@Component
public class UppercaseProcessor implements InitializingBean, DisposableBean {

35

Red Hat support for Spring Boot 2.4 Reactive Application Development Guide

private final Logger logger = LoggerFactory.getLogger(UppercaseProcessor.class);
private final AmgpClient client;
private Disposable receiverDisposer;

// Injecting EmbeddedActiveMQ to make sure it has started before creating this
component.
public UppercaseProcessor(AmqpClient client, EmbeddedActiveMQ server) {
this.client = client;

}

Jxx
* Create a processing requests receiver and subscribe to its messages publisher.
Y/
@Override
public void afterPropertiesSet() {
receiverDisposer = client.createReceiver(PROCESSING_REQUESTS_QUEUE)
flatMapMany(receiver -> receiver.flux()
.doOnCancel(() -> receiver.close().block())) // Close the receiver once subscription
is disposed
flatMap(this::handleMessage)
.subscribe();

}

Jax
* Cancel processing requests publisher subscription.
Y/

@Override

public void destroy() {

if (receiverDisposer = null) {
receiverDisposer.dispose();
}
}

/**
* Convert the message body to uppercase and send it to the results queue.
Y/
private Mono<Void> handleMessage (AmgpMessage originalMessage) {
logger.info("Processing '{}'"", originalMessage.bodyAsString());

AmgpMessage processedMessage = AmgpMessage.create()

.withBody(originalMessage.bodyAsString().toUpperCase())
.build();

return client.createSender(PROCESSING_RESULTS_QUEUE)

.map(sender -> sender.send(processedMessage))
flatMap(AmqgpSender::close);

6. OPTIONAL: Run and test your application locally:

a. Navigate to the root directory of your Maven project:

36

CHAPTER 2. DEVELOPING REACTIVE APPLICATIONS USING SPRING BOOT WITH ECLIPSE VERT .

I $ cd myApp
b. Package your application:
I $ mvn clean package
c. Start your application from the command line:
I $ java -jar target/vertx-spring-boot-sample-amaqp.jar
d. Inanew terminal window, send a number of HTTP POST request that contain text strings to
be processed to localhost

$ curl -H "Content-Type: text/plain” -d 'Hello, World' -X POST http://localhost:8080
$ curl -H "Content-Type: text/plain” -d 'Hello again' -X POST http://localhost:8080

e. Send an HTTP GET request to localhost. You receive a HTTP response with the strings in
uppercase.

$ curl http://localhost:8080

HTTP/1.1 200 OK

Content-Type: text/event-stream;charset=UTF-8
transfer-encoding: chunked

data:HELLO, WORLD

data:HELLO AGAIN

Additional resources

® You can deploy your application to an OpenShift cluster .

® You can also configure your application for deployment on stand-alone Red Hat Enterprise
Linux.

2.14. APACHE KAFKA

Apache Kafka is a scalable messaging integration system that is designed to exchange messages
between processes, applications, and services. Kafka is based on clusters with one or more brokers that
maintain a set of topics. Essentially, topics are categories that can be defined for every cluster using
topic IDs. Each topic contains pieces of data called records that contain information about the events
taking place in your application. Applications connected to the system can add records to these topics,
or process and reprocess messages added earlier.

The broker is responsible for handling the communication with client applications and for managing the
records in the topic. To ensure that no records are lost, the broker tracks all records in a commit log and
keeps track of an offset value for each application. The offset is similar to a pointer that indicates the
most recently added record.

Applications can pull the latest records from the topic, or they can change the offset to read records

that have been added earlier earlier message. This functionality prevents client applications from
becoming overwhelmed with incoming requests in case they can not process them in real time. When

37

https://access.redhat.com/documentation/en-us/red_hat_support_for_spring_boot/2.4/html-single/spring_boot_runtime_guide/#deploying-runtime-application-to-openshift_spring-boot
https://access.redhat.com/documentation/en-us/red_hat_support_for_spring_boot/2.4/html-single/spring_boot_runtime_guide/#deploying-runtime-application-to-standalone-red-hat-enterprise-linux_spring-boot

Red Hat support for Spring Boot 2.4 Reactive Application Development Guide

this happens, Kafka prevents loss of data by storing records that cannot be processed in real time in the
commit log. when the client application is able to catch up with the incoming requests, it resumes
processing records in real time

A broker can manage records in multiple topics by sorting them into topic partitions. Apache Kafka
replicates these partitions to allow records form a single topic to be handled by multiple brokers in
parallel, allowing you to scale the rate at which your applications process records in a topic. The
replicated topic partitions (also called followers) are synchronized with the original topic partition (also

called a Leader) to avoid redundancy in processing records. New records are committed to the Leader
partition, Followers only replicate the changes made to the leader.

2.15. HOW THE APACHE KAFKA REACTIVE EXAMPLE WORKS

This example application is based on a Publisher-Subscriber message streaming pattern implemented
using an Apache Kafka. The components that the application consist of are:

o The KafkaExampleApplication class that instantiates the log message producer and consumer

o A WebFlux HTTP controller that is configured and provided by the Spring Boot HTTP Starter.
The controller provides rest resources used to publish and read messages.

o A KafkalLogger class that defines how the producer publishes messages to the log topic on
Kafka.

e A Kafkalog class that displays messages that the example application receives from the log
topic on Kafka.

Publishing messages:

1. You make an HTTP POST request to the example application with the log message as the
payload.

2. The HTTP controller routes the message to the REST endpoint used for publishing messages,
and passes the message to the logger instance.

3. The HTTP controller publishes the received message to the log topic on Kafka.
4. KafkalLog instance receives the log message from a Kafka topic.

Reading messages:
1. Yousend a HTTP GET request to the example application URL.

2. The controller gets the messages from the KafkalLog instance and returns them as the body of
the HTTP response.

2.16. USING KAFKA IN A REACTIVE APPLICATION
This example shows how you can create an example messaging application that uses Apache Kafka with
Spring Boot and Eclipse Vert.x on Reactor Netty. The application publishes messages to a Kafka topic

and then retrieves them and displays them when you send a request.

The Kafka configuration properties for message topics, URLs, and metadata used by the the Kafka
cluster are stored in src/main/resources/application.yml.

Prerequisites

38

CHAPTER 2. DEVELOPING REACTIVE APPLICATIONS USING SPRING BOOT WITH ECLIPSE VERT .

® A Maven-based Java application project configured to use Spring Boot
e JDK 8 or JDK 1linstalled

® Maven installed

Procedure

1. Add the WebFlux HTTP Starter and the Apache Kafka Starter as dependencies in the pom.xml
file of your application project:

pom.xml

<dependencies>

<!I-- Vert.x WebFlux starter used to handle HTTP requests -->

<dependency>
<groupld>dev.snowdrop</groupld>
<artifactld>vertx-spring-boot-starter-http</artifactid>

</dependency>

<!I-- Vert.x Kafka starter used to send and receive messages to/from Kafka cluster -->

<dependency>
<groupld>dev.snowdrop</groupld>
<artifactld>vertx-spring-boot-starter-kafka</artifactld>

</dependency>

</dependencies>

1. Create the KafkaLogger class. This class functions s a producer and sendas messages The
KafkaLogger class defines how the Producer publishes messages (also called records) to the
topic:

/src/main/java/KafkaLogger.java

final class KafkalLogger {
private final KafkaProducer<String, String> producer;

KafkaLogger(KafkaProducer<String, String> producer) {
this.producer = producer;

}

public Mono<Void> logMessage(String body) {
// Generic key and value types can be inferred if both key and value are used to create a
builder
ProducerRecord<String, String> record = ProducerRecord.<String,
String>builder(LOG_TOPIC, body).build();

return producer.send(record)

Jog("Kafka logger producer")
.then();

39

Red Hat support for Spring Boot 2.4 Reactive Application Development Guide

2. Crate KafkalLog class. This class functions as the consumer of kafka messages. KafkalLog
retrieves messages from the topic an displays them in your terminal:

/src/main/java/Kafkalog.java

1-‘i-r-1al class KafkaLog implements InitializingBean, DisposableBean {
private final List<String> messages = new CopyOnWriteArrayList<>();
private final KafkaConsumer<String, String> consumer;
private Disposable consumerDisposer;

KafkaLog(KafkaConsumer<String, String> consumer) {
this.consumer = consumer;

}

@Override
public void afterPropertiesSet() {
consumerDisposer = consumer.subscribe(LOG_TOPIC)
.thenMany(consumer.flux())
Jlog("Kafka log consumer")
.map(ConsumerRecord::value)
.subscribe(messages::add);

}

@Override
public void destroy() {
if (consumerDisposer != null) {
consumerDisposer.dispose();

}

consumer.unsubscribe()
.block(Duration.ofSeconds(2));

}

public List<String> getMessages() {
return messages;

}
}

3. Create the class file that contains the the HTTP REST controller. The controller that exposes
REST resources that your application uses to handle the logging and reading of messages.

/src/main/java/Controller.java

package dev.snowdrop.vertx.sample.kafka;

import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.PostMapping;

40

CHAPTER 2. DEVELOPING REACTIVE APPLICATIONS USING SPRING BOOT WITH ECLIPSE VERT .

import org.springframework.web.bind.annotation.RequestBody;
import org.springframework.web.bind.annotation.RestController;
import reactor.core.publisher.Flux;

import reactor.core.publisher.Mono;

import static org.springframework.http.MediaType. TEXT_EVENT_STREAM_VALUE;

/**
*HTTP controller exposes GET and POST resources to log messages and to receive the
previously logged ones.
Y/
@RestController
public class Controller {

private final KafkaLogger logger;
private final KafkaLog log;

public Controller(KafkaLogger logger, KafkalLog log) {
this.logger = logger;

this.log = log;
}
/**
* Get a Flux of previously logged messages.
Y/

@GetMapping(produces = TEXT_EVENT_STREAM_VALUE)
public Flux<String> getMessages() {
return Flux.fromlterable(log.getMessages());

}

/**
*Log a message.
Y/
@PostMapping
public Mono<Void> logMessage(@RequestBody String body) {
return logger.logMessage(body.trim());

}
}

4. Crate the YAML template that contains the URLs that producers and consumers in your Apache
Kafka Cluster use to log and read messages. In this example, the consumer and producer on
your Apache Kafka Cluster communicate using port 9092 on localhost by default. Note, that
you must configure the producers and consumers separately, as the following example shows:

/src/main/resources/application.yml

vertx:
kafka:
producer:

bootstrap:
The producer in your cluster uses this URL to publish messages to the log.
servers: localhost:9092

key:

This class assigns the mandatory key attribute that is assigned to each message.

serializer: org.apache.kafka.common.serialization.StringSerializer

41

Red Hat support for Spring Boot 2.4 Reactive Application Development Guide

value:
This class assigns the mandatory value attribute that is assigned to each message.
serializer: org.apache.kafka.common.serialization.StringSerializer
consumer:
bootstrap:
servers: localhost:9092 # The consumer in your cluster uses this URL to read messages
from the log.
group:
id: log # The consumer group IDs used to define a group of consumers that subscribe to
the same topic. In this example, all consumers belong in the same consumer group.
key:
deserializer: org.apache.kafka.common.serialization.StringDeserializer # This class
generates the mandatory key attribute that is assigned to each message.
value:
deserializer: org.apache.kafka.common.serialization.StringDeserializer # This class
generates the mandatory value attribute that is assigned to each message.

5. OPTIONAL: Run and test your application locally:

a. Navigate to the root directory of your Maven project:
I $ cd vertx-spring-boot-sample-kafka

b. Package your application:

I $ mvn clean package

c. Start your application from the command line:
I $ java -jar target/vertx-spring-boot-sample-kafka.jar

d. Inanew terminal window, send a number of HTTP POST request that contain messages
formatted as text strings to localhost. The messages are all published to the log topic.

$ curl -H "Content-Type: text/plain” -d 'Hello, World' -X POST http://localhost:8080
$ curl -H "Content-Type: text/plain” -d 'Hello again' -X POST http://localhost:8080

e. Send an HTTP GET request to localhost. You receive a HTTP response that contains all the
messages in the topic that your consumers subscribe to.

$ curl http://localhost:8080

HTTP/1.1 200 OK

Content-Type: text/event-stream;charset=UTF-8
transfer-encoding: chunked

data:Hello, World

data:Hello, again

Additional resources

® You can deploy your application to an OpenShift cluster .

42

https://access.redhat.com/documentation/en-us/red_hat_support_for_spring_boot/2.4/html-single/spring_boot_runtime_guide/#deploying-runtime-application-to-openshift_spring-boot

CHAPTER 2. DEVELOPING REACTIVE APPLICATIONS USING SPRING BOOT WITH ECLIPSE VERT.X

® You can also configure your application for deployment on stand-alone Red Hat Enterprise
Linux.

43

https://access.redhat.com/documentation/en-us/red_hat_support_for_spring_boot/2.4/html-single/spring_boot_runtime_guide/#deploying-runtime-application-to-standalone-red-hat-enterprise-linux_spring-boot

Red Hat support for Spring Boot 2.4 Reactive Application Development Guide

CHAPTER 3. DEBUGGING YOUR SPRING BOOT-BASED
APPLICATION

This sections contains information about debugging your Spring Boot-based application both in local
and remote deployments.

3.1. REMOTE DEBUGGING

To remotely debug an application, you must first configure it to start in a debugging mode, and then
attach a debugger to it.

3.1.1. Starting your Spring Boot application locally in debugging mode

One of the ways of debugging a Maven-based project is manually launching the application while
specifying a debugging port, and subsequently connecting a remote debugger to that port. This method
is applicable at least when launching the application manually using the mvn spring-boot:run goal.

Prerequisites

® A Maven-based application

Procedure
1. In a console, navigate to the directory with your application.

2. Launch your application and specify the necessary JVM arguments and the debug port using
the following syntax:

$ mvn spring-boot:run -Drun.jvmArguments="-Xdebug -
Xrunjdwp:transport=dt_socket,server=y,suspend=n,address=$PORT_NUMBER"

$PORT_NUMBER is an unused port number of your choice. Remember this number for the
remote debugger configuration.

If you want the JVM to pause and wait for remote debugger connection before it starts the
application, change suspend to .

3.1.2. Starting an uberjar in debugging mode

If you chose to package your application as a Spring Boot uberjar, debug it by executing it with the
following parameters.

Prerequisites

® An uberjar with your application

Procedure

1. In a console, navigate to the directory with the uberjar.

2. Execute the uberjar with the following parameters. Ensure that all the parameters are specified
before the name of the uberjar on the line.

44

CHAPTER 3. DEBUGGING YOUR SPRING BOOT-BASED APPLICATION

$ java -agentlib:jdwp=transport=dt_socket,server=y,suspend=n,address=$PORT_NUMBER -
jar SUBERJAR_FILENAME

$PORT_NUMBER is an unused port number of your choice. Remember this number for the
remote debugger configuration.

If you want the JVM to pause and wait for remote debugger connection before it starts the
application, change suspend to .

3.1.3. Starting your application on OpenShift in debugging mode

To debug your Spring Boot-based application on OpenShift remotely, you must set the JAVA_DEBUG
environment variable inside the container to true and configure port forwarding so that you can connect
to your application from a remote debugger.

Prerequisites

® Your application running on OpenShift.
® The oc binary installed.

® The ability to execute the oc port-forward command in your target OpenShift environment.
Procedure
1. Using the oc command, list the available deployment configurations:

I $ oc getdc

2. Set the JAVA_DEBUG environment variable in the deployment configuration of your
application to true, which configures the JVM to open the port number 5005 for debugging. For
example:

I $ oc set env dc/MY_APP_NAME JAVA DEBUG=true

3. Redeploy the application if it is not set to redeploy automatically on configuration change. For
example:

I $ oc rollout latest de/MY_APP_NAME

4. Configure port forwarding from your local machine to the application pod:
a. List the currently running pods and find one containing your application:
$ oc get pod
NAME READY STATUS RESTARTS AGE
MY_APP_NAME-3-1xrsp 0/1 Running 0 6s

b. Configure port forwarding:

I $ oc port-forward MY_APP_NAME-3-1xrsp $LOCAL_PORT_NUMBER:5005

45

Red Hat support for Spring Boot 2.4 Reactive Application Development Guide

Here, SBLOCAL_PORT_NUMBER is an unused port number of your choice on your local
machine. Remember this number for the remote debugger configuration.

5. When you are done debugging, unset the JAVA_DEBUG environment variable in your
application pod. For example:

I $ oc set env dc/MY_APP_NAME JAVA DEBUG-

Additional resources

You can also set the JAVA_DEBUG_PORT environment variable if you want to change the debug port
from the default, which is 5005.

3.1.4. Attaching a remote debugger to the application

When your application is configured for debugging, attach a remote debugger of your choice to it. In this
guide, Red Hat CodeReady Studio is covered, but the procedure is similar when using other programs.

Prerequisites

® The application running either locally or on OpenShift, and configured for debugging.
® The port number that your application is listening on for debugging.

® Red Hat CodeReady Studio installed on your machine. You can download it from the Red Hat
CodeReady Studio download page.

Procedure

1. Start Red Hat CodeReady Studio.

2. Create a new debug configuration for your application:

a. Click Run-»Debug Configurations.

b. In the list of configurations, double-click Remote Java application. This creates a new
remote debugging configuration.

c. Enter asuitable name for the configuration in the Name field.

d. Enter the path to the directory with your application into the Project field. You can use the
Browse... button for convenience.

e. Set the Connection Type field to Standard (Socket Attach) if it is not already.
f. Set the Port field to the port number that your application is listening on for debugging.
g. Click Apply.

3. Start debugging by clicking the Debug button in the Debug Configurations window.

To quickly launch your debug configuration after the first time, click Run-Debug History and
select the configuration from the list.

Additional resources

46

https://www.redhat.com/en/technologies/jboss-middleware/codeready-studio
https://developers.redhat.com/products/codeready-studio/download

CHAPTER 3. DEBUGGING YOUR SPRING BOOT-BASED APPLICATION

® Debug an OpenShift Java Application with JBoss Developer Studio on Red Hat
Knowledgebase.
Red Hat CodeReady Studio was previously called JBoss Developer Studio.

® A Debugging Java Applications On OpenShift and Kubernetes article on OpenShift Blog.

3.2. DEBUG LOGGING

3.2.1. Add Spring Boot debug logging

Add debug logging to your application.

Prerequisites

® An application that you want to debug.

Procedure

1. Declare a org.apache.commons.logging.Log object using the
org.apache.commons.logging.LogFactory for the class you want to add logging.

import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;

private static Log logger = LogFactory.getLog(TheClass.class);

2. Add debugging statements using logger.debug("my logging message").

Example logging statement

@GET

@Path("/greeting")

@Produces("application/json")

public Greeting greeting(@QueryParam("name") @DefaultValue("World") String name) {
String message = String.format(properties.getMessage(), name);

logger.debug("Message: " + message);

return new Greeting(message);

}
3. Add a logging.level.fully.qualified.name.of.TheClass=DEBUG in
src/main/resources/application.properties.

For example, if you added a logging statement to
dev.snowdrop.example.service.GreetingEndpoint you would use:

I logging.level.dev.snowdrop.example.service.GreetingEndpoint=DEBUG

This enables log messages at the DEBUG level and above to be shown in the logs for your class.

3.2.2. Accessing Spring Boot debug logs on localhost

Start your application and interact with it to see the debugging statements.

47

https://access.redhat.com/articles/1290703
https://blog.openshift.com/debugging-java-applications-on-openshift-kubernetes/

Red Hat support for Spring Boot 2.4 Reactive Application Development Guide

Prerequisites

® An application with debug logging enabled.
Procedure
1. Start your application.
I $ mvn spring-boot:run
2. Test your application to invoke debug logging.

I $ curl http://localhost:8080/api/greeting?name=Sarah

3. View your application logs to see your debug messages.

I dev.snowdrop.example.service.GreetingEndpoint : Message: Hello, Sarah!

To disable debug logging, remove logging.level.fully.qualified.name.of.TheClass=DEBUG from
src/main/resources/application.properties and restart your application.

3.2.3. Accessing debug logs on OpenShift

Start your application and interact with it to see the debugging statements in OpenShift.

Prerequisites

® The oc CLlI client installed and authenticated.

® A Maven-based application with debug logging enabled.
Procedure
1. Deploy your application to OpenShift:
I $ mvn clean package -Popenshift -Ddekorate.deploy=true
2. View the logs:
1. Get the name of the pod with your application:
I $ oc get pods
2. Start watching the log output:
I $ oc logs -f pod/MY_APP_NAME-2-aaaaa

Keep the terminal window displaying the log output open so that you can watch the log
output.

3. Interact with your application:

1. Get the route of your application:

48

CHAPTER 3. DEBUGGING YOUR SPRING BOOT-BASED APPLICATION

I $ oc get routes

2. Make an HTTP request on the /api/greeting endpoint of your application:

I $ curl SAPPLICATION_ROUTE/api/greeting?name=Sarah

4. Return to the window with your pod logs and inspect debug logging messages in the logs.

I dev.snowdrop.example.service.GreetingEndpoint : Message: Hello, Sarah!

5. To disable debug logging, remove logging.level.fully.qualified.name.of.TheClass=DEBUG
from src/main/resources/application.properties and redeploy your application.

49

Red Hat support for Spring Boot 2.4 Reactive Application Development Guide

CHAPTER 4. MONITORING YOUR APPLICATION

This section contains information about monitoring your Spring Boot-based application running on
OpenShift.

4.1. ACCESSING JVM METRICS FOR YOUR APPLICATION ON
OPENSHIFT

4.1.1. Accessing JVM metrics using Jolokia on OpenShift

Jolokia is a built-in lightweight solution for accessing JMX (Java Management Extension) metrics over
HTTP on OpenShift. Jolokia allows you to access CPU, storage, and memory usage data collected by
JMX over an HTTP bridge. Jolokia uses a REST interface and JSON-formatted message payloads. It is
suitable for monitoring cloud applications thanks to its comparably high speed and low resource
requirements.

For Java-based applications, the OpenShift Web console provides the integrated hawt.io console that
collects and displays all relevant metrics output by the JVM running your application.

Prerequistes

® the oc client authenticated
® 3 Java-based application container running in a project on OpenShift

® |atest JDK1.8.0 image

Procedure

1. List the deployment configurations of the pods inside your project and select the one that
corresponds to your application.

I oc getdc

NAME REVISION DESIRED CURRENT TRIGGERED BY
MY_APP_NAME 2 1 1 config,image(my-app:6)
2. Open the YAML deployment template of the pod running your application for editing.

I oc edit dc/MY_APP_NAME

3. Add the following entry to the ports section of the template and save your changes:

spec:

ports:

- containerPort: 8778
name: jolokia
protocol: TCP

50

https://jolokia.org/documentation.html
https://docs.openshift.com/container-platform/3.6/architecture/infrastructure_components/web_console.html#jvm-console
https://github.com/jboss-container-images/openjdk/blob/openjdk18-dev/image.yaml

CHAPTER 4. MONITORING YOUR APPLICATION

4. Redeploy the pod running your application.

I oc rollout latest dc/MY_APP_NAME

The pod is redeployed with the updated deployment configuration and exposes the port 8778.
5. Log into the OpenShift Web console.

6. Inthe sidebar, navigate to Applications > Pods, and click on the name of the pod running your
application.

7. In the pod details screen, click Open Java Console to access the hawt.io console.

Additional resources

® hawt.io documentation

51

https://hawt.io/docs/index.html

Red Hat support for Spring Boot 2.4 Reactive Application Development Guide

APPENDIX A. THE SOURCE-TO-IMAGE (S2I) BUILD PROCESS

Source-to-Image (S2l) is a build tool for generating reproducible Docker-formatted container images
from online SCM repositories with application sources. With S2I builds, you can easily deliver the latest
version of your application into production with shorter build times, decreased resource and network
usage, improved security, and a number of other advantages. OpenShift supports multiple build
strategies and input sources.

For more information, see the Source-to-Image (S2I) Build chapter of the OpenShift Container
Platform documentation.

You must provide three elements to the S2I process to assemble the final container image:
® The application sources hosted in an online SCM repository, such as GitHub.

® The S2| Builder image, which serves as the foundation for the assembled image and provides
the ecosystem in which your application is running.

® Optionally, you can also provide environment variables and parameters that are used by S2|
scripts.

The process injects your application source and dependencies into the Builder image according to
instructions specified in the S2I script, and generates a Docker-formatted container image that runs the
assembled application. For more information, check the S2I build requirements, build options and how
builds work sections of the OpenShift Container Platform documentation.

52

https://docs.openshift.com/container-platform/latest/builds/understanding-image-builds.html#build-strategy-s2i_understanding-image-builds
https://docs.openshift.com/container-platform/latest/builds/understanding-image-builds.html
https://docs.openshift.com/container-platform/latest/builds/understanding-image-builds.html#build-strategy-s2i_understanding-image-builds
https://docs.openshift.com/container-platform/latest/openshift_images/create-images.html
https://docs.openshift.com/container-platform/latest/openshift_images/create-images.html
https://docs.openshift.com/container-platform/latest/builds/build-strategies.html
https://docs.openshift.com/container-platform/latest/builds/understanding-image-builds.html

APPENDIX B. UPDATING THE DEPLOYMENT CONFIGURATION OF AN EXAMPLE APPLICATION

APPENDIX B. UPDATING THE DEPLOYMENT
CONFIGURATION OF AN EXAMPLE APPLICATION

The deployment configuration for an example application contains information related to deploying and
running the application in OpenShift, such as route information or readiness probe location. The
deployment configuration of an example application is stored in a set of YAML files. For the example
applications that use Nodeshift, the YAML files are located in the .nodeshift directory.

IMPORTANT

The deployment configuration files used by Nodeshift do not have to be full OpenShift
resource definitions. Nodeshift can take the deployment configuration files and add some
missing information to create a full OpenShift resource definition. The resource
definitions generated by Dekorate are available in the target/classes/META-
INF/dekorate/ directory. The resource definitions generated by Nodeshift are available in
the tmp/nodeshift/resource/ directory.

Prerequisites
® An existing example project.

® The oc CLlI client installed.

Procedure
1. Edit an existing YAML file or create an additional YAML file with your configuration update.

® For example, if your example already has a YAML file with a readinessProbe configured,
you could change the path value to a different available path to check for readiness:

spec:
template:
spec:
containers:
readinessProbe:
httpGet:

path: /path/to/probe
port: 8080
scheme: HTTP

e |f a readinessProbe is not configured in an existing YAML file, you can also create a new
YAML file in the same directory with the readinessProbe configuration.

2. Deploy the updated version of your example using Maven or npm.

3. Verify that your configuration updates show in the deployed version of your example.
$ oc export all --as-template="my-template’
apiVersion: template.openshift.io/v1
kind: Template

metadata:
creationTimestamp: null

53

Red Hat support for Spring Boot 2.4 Reactive Application Development Guide

name: my-template

objects:

- apiVersion: template.openshift.io/v1
kind: DeploymentConfig

spec:
template:

spec:
containers:

livenessProbe:

failureThreshold: 3
httpGet:

path: /path/to/different/probe

port: 8080

scheme: HTTP
initialDelaySeconds: 60
periodSeconds: 30
successThreshold: 1
timeoutSeconds: 1

Additional resources

If you updated the configuration of your application directly using the web-based console or the oc CLI
client, export and add these changes to your YAML file. Use the oc export all command to show the
configuration of your deployed application.

54

APPENDIX C. ADDITIONAL SPRING BOOT RESOURCES

APPENDIX C. ADDITIONAL SPRING BOOT RESOURCES

OpenShift Architecture Overview

Spring Boot Microservices On Red Hat OpenShift Container Platform 3
Spring Cloud Kubernetes

Spring Boot Project

Spring Framework Project

OpenShift Spring Boot Lab Microservices

55

https://docs.openshift.com/container-platform/latest/architecture/architecture.html
https://access.redhat.com/documentation/en-us/reference_architectures/2017/html/spring_boot_microservices_on_red_hat_openshift_container_platform_3/
https://github.com/spring-cloud/spring-cloud-kubernetes/
https://projects.spring.io/spring-boot/
https://projects.spring.io/spring-framework/
https://github.com/redhat-microservices/lab_springboot-openshift/

Red Hat support for Spring Boot 2.4 Reactive Application Development Guide

APPENDIX D. APPLICATION DEVELOPMENT RESOURCES

For additional information about application development with OpenShift, see:
® OpenShift Interactive Learning Portal

To reduce network load and shorten the build time of your application, set up a Nexus mirror for Maven
on your OpenShift Container Platform:

® Setting Up a Nexus Mirror for Maven

56

https://learn.openshift.com/
https://docs.openshift.com/container-platform/3.11/dev_guide/dev_tutorials/maven_tutorial.html

APPENDIX E. PROFICIENCY LEVELS

APPENDIX E. PROFICIENCY LEVELS

Each available example teaches concepts that require certain minimum knowledge. This requirement
varies by example. The minimum requirements and concepts are organized in several levels of
proficiency. In addition to the levels described here, you might need additional information specific to
each example.

Foundational

The examples rated at Foundational proficiency generally require no prior knowledge of the subject
matter; they provide general awareness and demonstration of key elements, concepts, and terminology.
There are no special requirements except those directly mentioned in the description of the example.

Advanced

When using Advanced examples, the assumption is that you are familiar with the common concepts and
terminology of the subject area of the example in addition to Kubernetes and OpenShift. You must also
be able to perform basic tasks on your own, for example, configuring services and applications, or
administering networks. If a service is needed by the example, but configuring it is not in the scope of the
example, the assumption is that you have the knowledge to properly configure it, and only the resulting
state of the service is described in the documentation.

Expert

Expert examples require the highest level of knowledge of the subject matter. You are expected to
perform many tasks based on feature-based documentation and manuals, and the documentation is
aimed at most complex scenarios.

57

	Table of Contents
	PREFACE
	PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
	CHAPTER 1. CONFIGURING YOUR APPLICATION TO USE SPRING BOOT
	1.1. PREREQUISITES
	1.2. USING THE SPRING BOOT BOM TO MANAGE DEPENDENCY VERSIONS
	1.3. USING THE SPRING BOOT BOM TO AS A PARENT BOM OF YOUR APPLICATION
	1.4. RELATED INFORMATION

	CHAPTER 2. DEVELOPING REACTIVE APPLICATIONS USING SPRING BOOT WITH ECLIPSE VERT.X
	2.1. INTRODUCTION TO SPRING BOOT WITH ECLIPSE VERT.X
	2.2. REACTIVE SPRING WEB
	2.3. CREATING A REACTIVE SPRING BOOT HTTP SERVICE WITH WEBFLUX
	2.4. USING BASIC AUTHENTICATION IN A REACTIVE SPRING BOOT WEBFLUX APPLICATION.
	2.5. USING OAUTH2 AUTHENTICATION IN A REACTIVE SPRING BOOT APPLICATION.
	2.6. CREATING A REACTIVE SPRING BOOT SMTP MAIL APPLICATION
	2.7. SERVER-SENT EVENTS
	2.8. USING SERVER-SENT EVENTS IN A REACTIVE SPRING BOOT APPLICATION
	2.9. WEBSOCKET PROTOCOL
	2.10. USING WEBSOCKETS IN A REACTIVE APPLICATION BASED ON WEBFLUX
	2.11. ADVANCED MESSAGE QUEUING PROTOCOL
	2.12. HOW THE AMQP REACTIVE EXAMPLE WORKS
	2.13. USING AMQP IN A REACTIVE APPLICATION
	2.14. APACHE KAFKA
	2.15. HOW THE APACHE KAFKA REACTIVE EXAMPLE WORKS
	2.16. USING KAFKA IN A REACTIVE APPLICATION

	CHAPTER 3. DEBUGGING YOUR SPRING BOOT-BASED APPLICATION
	3.1. REMOTE DEBUGGING
	3.1.1. Starting your Spring Boot application locally in debugging mode
	3.1.2. Starting an uberjar in debugging mode
	3.1.3. Starting your application on OpenShift in debugging mode
	3.1.4. Attaching a remote debugger to the application

	3.2. DEBUG LOGGING
	3.2.1. Add Spring Boot debug logging
	3.2.2. Accessing Spring Boot debug logs on localhost
	3.2.3. Accessing debug logs on OpenShift

	CHAPTER 4. MONITORING YOUR APPLICATION
	4.1. ACCESSING JVM METRICS FOR YOUR APPLICATION ON OPENSHIFT
	4.1.1. Accessing JVM metrics using Jolokia on OpenShift

	APPENDIX A. THE SOURCE-TO-IMAGE (S2I) BUILD PROCESS
	APPENDIX B. UPDATING THE DEPLOYMENT CONFIGURATION OF AN EXAMPLE APPLICATION
	APPENDIX C. ADDITIONAL SPRING BOOT RESOURCES
	APPENDIX D. APPLICATION DEVELOPMENT RESOURCES
	APPENDIX E. PROFICIENCY LEVELS
	Foundational
	Advanced
	Expert

