& RedHat

Red Hat support for Spring Boot 2.4

Spring Boot Runtime Guide

Use Spring Boot 2.4 to develop applications that run on OpenShift and on stand-
alone RHEL

Last Updated: 2022-03-11

Red Hat support for Spring Boot 2.4 Spring Boot Runtime Guide

Use Spring Boot 2.4 to develop applications that run on OpenShift and on stand-alone RHEL

Legal Notice

Copyright © 2022 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide provides details about using Spring Boot.

Table of Contents

Table of Contents

[3 Y O AP 3
PROVIDING FEEDBACK ON RED HAT DOCUMENTATION ..ottt iee i eieeeeneennnes, 4
CHAPTER 1. INTRODUCTION TO APPLICATION DEVELOPMENT WITHSPRINGBOOT 5
1.1. OVERVIEW OF APPLICATION DEVELOPMENT WITH RED HAT RUNTIMES 5
1.2. OVERVIEW OF SPRING BOOT 5
1.2.1. Spring Boot features and frameworks summary 6
1.2.2. Supported Architectures by Spring Boot 6
CHAPTER 2. CONFIGURING YOUR APPLICATION TOUSE SPRING BOOTiiiiiiiiiiiiiiieeannnnn 7
2.1. PREREQUISITES 7
2.2. USING THE SPRING BOOT BOM TO MANAGE DEPENDENCY VERSIONS 7
2.3. USING THE SPRING BOOT BOM TO AS A PARENT BOM OF YOUR APPLICATION 9
2.4. RELATED INFORMATION 10
CHAPTER 3. DEVELOPING AND DEPLOYING A SPRING BOOT RUNTIME APPLICATION 1
3.1. DEVELOPING SPRING BOOT APPLICATION 11
3.2. DEPLOYING SPRING BOOT APPLICATION TO OPENSHIFT 14
3.2.1. Supported Java images for Spring Boot 14
3.2.2. Preparing Spring Boot application for OpenShift deployment 14
3.2.3. Deploying Spring Boot application to OpenShift using Dekorate 16

3.3. DEPLOYING SPRING BOOT APPLICATION TO STAND-ALONE RED HAT ENTERPRISE LINUX 17
3.3.1. Preparing Spring Boot application for stand-alone Red Hat Enterprise Linux deployment 17
3.3.2. Deploying Spring Boot application to stand-alone Red Hat Enterprise Linux using jar 18
CHAPTER 4. DEBUGGING YOUR SPRING BOOT-BASED APPLICATION ...ttt iiiiiiieeeenns 19
4.1. REMOTE DEBUGGING 19
4.1.1. Starting your Spring Boot application locally in debugging mode 19
4.1.2. Starting an uberjar in debugging mode 19
4.1.3. Starting your application on OpenShift in debugging mode 20
4.1.4. Attaching a remote debugger to the application 21

4.2. DEBUG LOGGING 22
4.2.1. Add Spring Boot debug logging 22
4.2.2. Accessing Spring Boot debug logs on localhost 22
4.2.3. Accessing debug logs on OpenShift 23
CHAPTER 5. MONITORING YOUR APPLICATION ..ttt ittt i eeieeeaneennneeannenaneenn, 25
5.1. ACCESSING JVM METRICS FOR YOUR APPLICATION ON OPENSHIFT 25
5.1.1. Accessing JVM metrics using Jolokia on OpenShift 25
APPENDIX A. THE SOURCE-TO-IMAGE (S2I) BUILD PROCESSttt i eiennieennnn, 27
APPENDIX B. UPDATING THE DEPLOYMENT CONFIGURATION OF AN EXAMPLE APPLICATION 28
APPENDIX C. DEPLOYING A SPRING BOOT APPLICATION USINGWARFILESccciiiinnn.... 30
APPENDIX D. ADDITIONAL SPRING BOOT RESOURCESiiiittiiiiiiiiiienieenneennneennnes, 33
APPENDIX E. APPLICATION DEVELOPMENT RESOURCES ... i ittt iiii e eeiiaaeens 34
APPENDIX F. PROFICIENCY LEVELS ..ttt ittt ettt ettt eeiteeeieeeaneeanneeaneennneennnes 35
Foundational 35
Advanced 35
Expert 35

Red Hat support for Spring Boot 2.4 Spring Boot Runtime Guide

PREFACE

PREFACE

This guide covers concepts as well as practical details needed by developers to use the Spring Boot
runtime. It provides information governing the design of a Spring Boot application deployed as a Linux
container on OpenShift.

Red Hat support for Spring Boot 2.4 Spring Boot Runtime Guide

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

We appreciate your feedback on our documentation. To provide feedback, you can highlight the textin a
document and add comments.

This section explains how to submit feedback.

Prerequisites

® You are logged in to the Red Hat Customer Portal.
® |nthe Red Hat Customer Portal, view the document in Multi-page HTML format.

Procedure

To provide your feedback, perform the following steps:

1. Click the Feedback button in the top-right corner of the document to see existing feedback.

NOTE

The feedback feature is enabled only in the Multi-page HTML format.

2. Highlight the section of the document where you want to provide feedback.

3. Click the Add Feedback pop-up that appears near the highlighted text.
A text box appears in the feedback section on the right side of the page.

4. Enter your feedback in the text box and click Submit.
A documentation issue is created.

5. To view the issue, click the issue tracker link in the feedback view.

CHAPTER 1. INTRODUCTION TO APPLICATION DEVELOPMENT WITH SPRING BOOT

CHAPTER 1. INTRODUCTION TO APPLICATION
DEVELOPMENT WITH SPRING BOOT

This section explains the basic concepts of application development with Red Hat runtimes. It also
provides an overview about the Spring Boot runtime.

1.1. OVERVIEW OF APPLICATION DEVELOPMENT WITH RED HAT
RUNTIMES

Red Hat OpenShift is a container application platform, which provides a collection of cloud-native
runtimes. You can use the runtimes to develop, build, and deploy Java or JavaScript applications on
OpenShift.

Application development using Red Hat Runtimes for OpenShift includes:

® A collection of runtimes, such as, Eclipse Vert.x, Thorntail, Spring Boot, and so on, designed to
run on OpenShift.

® A prescriptive approach to cloud-native development on OpenShift.
OpenShift helps you manage, secure, and automate the deployment and monitoring of your
applications. You can break your business problems into smaller microservices and use OpenShift to

deploy, monitor, and maintain the microservices. You can implement patterns such as circuit breaker,
health check, and service discovery, in your applications.

Cloud-native development takes full advantage of cloud computing.
You can build, deploy, and manage your applications on:

OpenShift Container Platform
A private on-premise cloud by Red Hat.
Red Hat CodeReady Studio

An integrated development environment (IDE) for developing, testing, and deploying applications.

This guide provides detailed information about the Spring Boot runtime. For more information on other
runtimes, see the relevant runtime documentation.

1.2. OVERVIEW OF SPRING BOOT

Spring Boot lets you create stand-alone Spring-based applications. See Additional Resources for a list
of documents about Spring Boot.

Spring Boot on OpenShift combines streamlined application development capabilities of Spring Boot
with the infrastructure and container orchestration functionalities of the OpenShift, such as:

® rolling updates
® service discovery
® canary deployments

® ways to implement common microservice patterns: externalized configuration, health check,
circuit breaker, and failover

https://www.redhat.com/en/technologies/cloud-computing/openshift
https://www.openshift.com/products/container-platform/
https://access.redhat.com/products/red-hat-codeready-studio
https://access.redhat.com/documentation/en-us
https://access.redhat.com/documentation/en-us/red_hat_support_for_spring_boot/2.4/html-single/spring_boot_runtime_guide/#additional-springboot-resources_spring-boot

Red Hat support for Spring Boot 2.4 Spring Boot Runtime Guide

1.2.1. Spring Boot features and frameworks summary

This guide covers using Spring Boot to develop cloud-native applications on OpenShift. The examples
applications in subsequent sections show how to integrate Spring Boot with other Red Hat
technologies. You can use these integration capabilities to implement a set of modern design patterns
that make your cloud-native Java applications:

® resilient

® responsive
® scalable

® secure

You can choose to build your Spring Boot applications on a regular web server stack or a non-blocking
reactive stack.

Red Hat provides support for a release of Spring Boot based on the Snowdrop community project.

The supported runtime framework components include:

® Aset of Spring Boot Starters for developing cloud-native Java-based applications on a servlet
stack based on Apache Tomcat (Provided with Red Hat Java Web Server product offering) and
JBoss Undertow (provided with Red Hat Enterprise Application Platform.)

® A set of Spring Boot Starters for developing cloud-native Java-based applications on a reactive
stack using the Spring WebFlux non-blocking API, networking components provided by Eclipse
Vert.x, and Reactor Netty.

® Dekorate, a collection of annotation parsers and application template generators for OpenShift
and Kubernetes that integrates with Spring Boot. With Dekorate you can automatically create
templates that you can use to configure your application for deployment to an OpenShift
cluster. When you build your application, Dekorate extracts the configuration parameters from
annotations in the source files of your application or from files that contain configuration
properties (for example, application.properties) in your application project. Dekorate then uses
the extracted parameters to create and populate resource files that you can use to deploy your
application to an OpenShift cluster. Dekorate works independently of the language and build
tools you use, and integrates with multiple cloud-native application frameworks. Red Hat
provides support for use of Dekorate to generate application templates for deploying Java-
based applications on OpenShift Container Platform. Red Hat provides support for using
Dekorate with Maven, other build tools are not supported.

1.2.2. Supported Architectures by Spring Boot

Spring Boot supports the following architectures:
® x86_64 (AMD64)
® |BM Z (s390x) in the OpenShift environment
® |BM Power Systems (ppc64le) in the OpenShift environment

Refer to the section Supported Java images for Spring Boot for more information about the image
names.

https://projects.spring.io/spring-boot/
https://access.redhat.com/products/spring-boot
https://snowdrop.dev/
https://access.redhat.com/documentation/en-us/red_hat_support_for_spring_boot/2.4/html-single/spring_boot_runtime_guide/#using-dekorate-in-a-spring-boot-application_spring-boot

CHAPTER 2. CONFIGURING YOUR APPLICATION TO USE SPRING BOOT

CHAPTER 2. CONFIGURING YOUR APPLICATION TO USE
SPRING BOOT

Configure your application to use dependencies provided with Red Hat build of Spring Boot. By using
the BOM to manage your dependencies, you ensure that your applications always uses the product
version of these dependencies that Red Hat provides support for. Reference the Spring Boot BOM (Bill
of Materials) artifact in the pom.xml file at the root directory of your application. You can use the BOM
in your application project in 2 different ways:

® Asadependency in the <dependencyManagements section of the pom.xml. When using the
BOM as a dependency, your project inherits the version settings for all Spring Boot
dependencies from the <dependencyManagements> section of the BOM.

® Asaparent BOM in the <parents section of the pom.xml. When using the BOM as a parent, the
pom.xml of your project inherits the following configuration values from the parent BOM:

o versions of all Spring Boot dependencies in the <dependencyManagement> section
o versions plugins in the <pluginManagement> section
o the URLs and names of repositories in the <repositories> section

o the URLs and name of the repository that contains the Spring Boot plugin in the
<pluginRepositories> section

2.1. PREREQUISITES

® A Maven-based application project that you configure using a pom.xml file.

® Access to the Red Hat JBoss Middleware General Availability Maven Repository .

2.2. USING THE SPRING BOOT BOM TO MANAGE DEPENDENCY
VERSIONS

Manage versions of Spring Boot product dependencies in your application project using the product
BOM.

Procedure

1. Add the dev.snowdrop:snowdrop-dependencies artifact to the <dependencyManagement>
section of the pom.xml of your project, and specify the values of the <type> and <scope>
attributes:

<project>

<dependencyManagement>
<dependencies>
<dependency>
<groupld>dev.snowdrop</groupld>
<artifactld>snowdrop-dependencies</artifactld>
<version>2.4.9.Final-redhat-00001</version>
<type>pom</type>
<scope>import</scope>
</dependency>

https://maven.repository.redhat.com/ga/

Red Hat support for Spring Boot 2.4 Spring Boot Runtime Guide

</dependencies>
</dependencyManagement>

</project>

2. Include the following properties to track the version of the Spring Boot Maven Plugin that you
are using:

<project>

<properties>
<spring-boot-maven-plugin.version>2.4.9</spring-boot-maven-plugin.version>
</properties>

</project>

3. Specify the names and URLs of repositories containing the BOM and the supported Spring
Boot Starters and the Spring Boot Maven plugin:

<!I-- Specify the repositories containing Spring Boot artifacts. -->
<repositories>
<repository>
<id>redhat-ga</id>
<name>Red Hat GA Repository</name>
<url>https://maven.repository.redhat.com/ga/</url>
</repository>
</repositories>

<!I-- Specify the repositories containing the plugins used to execute the build of your
application. -->
<pluginRepositories>
<pluginRepository>
<id>redhat-ga</id>
<name>Red Hat GA Repository</name>
<url>https://maven.repository.redhat.com/ga/</url>
</pluginRepository>
</pluginRepositories>

4. Add spring-boot-maven-plugin as the plugin that Maven uses to package your application.
<project>
;build>
<-b-|ugins>

<plugin>
<groupld>org.springframework.boot</groupld>
<artifactld>spring-boot-maven-plugin</artifactld>
<version>${spring-boot-maven-plugin.version}</version>
<executions>
<execution>
<goals>
<goal>repackage</goal>
</goals>

CHAPTER 2. CONFIGURING YOUR APPLICATION TO USE SPRING BOOT

</execution>
</executions>
<configuration>
<redeploy>true</redeploy>
</configuration>
</plugin>

</plugins>
</build>

</project>

2.3. USING THE SPRING BOOT BOM TO AS APARENT BOM OF YOUR
APPLICATION

Automatically manage the:
® versions of product dependencies
® version of the Spring Boot Maven plugin
e configuration of Maven repositories containing the product artifacts and plugins

that you use in your application project by including the product Spring Boot BOM as a parent BOM of
your project. This method provides an alternative to using the BOM as a dependency of your application.

Procedure

1. Add the dev.snowdrop:snowdrop-dependencies artifact to the <parents section of the
pom.xml:

<project>
<parent>
<groupld>dev.snowdrop</groupld>
<artifactld>snowdrop-dependencies</artifactld>
<version>2.4.9.Final-redhat-00001</version>
</parent>

</project>
2. Add spring-boot-maven-plugin as the plugin that Maven uses to package your application to

the <build> section of the pom.xml. The plugin version is automatically managed by the parent
BOM.

<project>
<build>
<plugins>

<plugin>
<groupld>org.springframework.boot</groupld>

Red Hat support for Spring Boot 2.4 Spring Boot Runtime Guide

<artifactld>spring-boot-maven-plugin</artifactld>
<executions>
<execution>
<goals>
<goal>repackage</goal>
</goals>
</execution>
</executions>
<configuration>
<redeploy>true</redeploy>
</configuration>
</plugin>

</plugins>
</build>

</project>

2.4. RELATED INFORMATION

® For more information about packaging your Spring Boot application, see the Spring Boot
Maven Plugin documentation.

10

https://docs.spring.io/spring-boot/docs/current/maven-plugin/plugin-info.html

CHAPTER 3. DEVELOPING AND DEPLOYING A SPRING BOOT RUNTIME APPLICATION

CHAPTER 3. DEVELOPING AND DEPLOYING A SPRING BOOT
RUNTIME APPLICATION

You can create new Spring Boot applications from scratch and deploy them to OpenShift. The
recommended approach for specifying and using supported and tested Maven artifacts in a Spring Boot
application is to use the OpenShift Application Runtimes Spring Boot BOM.

3.1. DEVELOPING SPRING BOOT APPLICATION
For a basic Spring Boot application, you need to create the following:
® A Java class containing Spring Boot methods.
e A pom.xml file containing information required by Maven to build the application.

The following procedure creates a simple Greeting application that returns "{"content":"Greetings!"}" as
response.

NOTE
For building and deploying your applications to OpenShift, Spring Boot 2.4 only supports

builder images based on OpenJDK 8 and OpenJDK 11. Oracle JDK and OpenJDK 9
builder images are not supported.

-

Prerequisites
® OpendDK 8 or OpenJDK 11installed.

® Maven installed.

Procedure

1. Create a new directory myApp, and navigate to it.

$ mkdir myApp
$ cd myApp
This is the root directory for the application.

2. Create directory structure src/main/java/com/example/ in the root directory, and navigate to it.

$ mkdir -p src/main/java/com/example/
$ cd src/main/java/com/example/

3. Create a Java class file MyApp.java containing the application code.
package com.example;

import org.springframework.boot.SpringApplication;

import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.ResponseBody;
import org.springframework.web.bind.annotation.RestController;

1

Red Hat support for Spring Boot 2.4 Spring Boot Runtime Guide

12

@SpringBootApplication
@RestController
public class MyApp {

public static void main(String[] args) {
SpringApplication.run(MyApp.class, args);
}

@RequestMapping("/")

@ResponseBody

public Message displayMessage() {
return new Message();

}

static class Message {
private String content = "Greetings!";

public String getContent() {
return content;

}

public void setContent(String content) {
this.content = content;

}
}
}

4. Create a pom.xml file in the application root directory myApp with the following content:

<?xml version="1.0" encoding="UTF-8"7>
<project xmins="http://maven.apache.org/POM/4.0.0"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>

<groupld>com.example</groupld>
<artifactld>my-app</artifactid>
<version>1.0.0-SNAPSHOT </version>

<name>MyApp</name>
<description>My Application</description>

<!-- Import dependencies from the Spring Boot BOM. -->
<dependencyManagement>
<dependencies>
<dependency>
<groupld>dev.snowdrop</groupld>
<artifactld>snowdrop-dependencies</artifactld>
<version>2.4.9.Final-redhat-00001</version>
<type>pom</type>
<scope>import</scope>
</dependency>
<dependency>
<groupld>io.dekorate</groupld>

CHAPTER 3. DEVELOPING AND DEPLOYING A SPRING BOOT RUNTIME APPLICATION

<artifactld>openshift-spring-starter</artifactid>

</dependency>

<dependency>
<groupld>org.springframework.boot</groupld>
<artifactld>spring-boot-starter-tomcat</artifactld>

</dependency>

<dependency>
<groupld>org.springframework.boot</groupld>
<artifactld>spring-boot-starter-actuator</artifactld>

</dependency>

<dependency>
<groupld>org.springframework.boot</groupld>
<artifactld>spring-boot-starter-web</artifactld>

</dependency>

</dependencies>
</dependencyManagement>

<build>
<plugins>
<plugin>
<groupld>org.springframework.boot</groupld>
<artifactld>spring-boot-maven-plugin</artifactld>
<version>2.4.9</version>
</plugin>
</plugins>
</build>

<!I-- Specify the repositories containing Spring Boot artifacts -->
<repositories>
<repository>
<id>redhat-ga</id>
<name>Red Hat GA Repository</name>
<url>https://maven.repository.redhat.com/ga/</url>
</repository>
</repositories>

<pluginRepositories>
<pluginRepository>
<id>redhat-ga</id>
<name>Red Hat GA Repository</name>
<url>https://maven.repository.redhat.com/ga/</url>
</pluginRepository>
</pluginRepositories>

</project>
5. Build the application using Maven from the root directory of the application.

I $ mvn clean package -Popenshift -Ddekorate.deploy=true

6. Verify that the application is running.
Using curl or your browser, verify your application is running at http://localhost:8080.

$ curl http://localhost:8080
{"content":"Greetings!"}

13

http://localhost:8080

Red Hat support for Spring Boot 2.4 Spring Boot Runtime Guide

3.2. DEPLOYING SPRING BOOT APPLICATION TO OPENSHIFT

To deploy your Spring Boot application to OpenShift, configure the pom.xml to use the Dekorate
Maven dependency.

You can specify the Dekorate Maven dependency in the pom.xml file as follows:

<dependency>
<groupld>io.dekorate</groupld>
<artifactld>openshift-spring-starter</artifactid>
</dependency>

You can specify a Java image in the application.properties file as follows:

I dekorate.s2i.builder-image=registry.access.redhat.com/ubi8/openjdk-8:1.3

The images are available in the Red Hat Ecosystem Catalog.

3.2.1. Supported Java images for Spring Boot

Spring Boot is certified and tested with various Java images that are available for different operating
systems. For example, Java images are available for RHEL 7 and RHEL 8 with OpenJDK 8 or OpenJDK
1.

You require Docker or podman authentication to access the RHEL 8 images in the Red Hat Ecosystem
Catalog.

The following table lists the OpenJDK images supported by Spring Boot for different architectures.
These container images are available in the Red Hat Ecosystem Catalog. In the catalog, you can search
and download the images listed in the table below. The image pages contain authentication procedures
required to access the images.

JDK (OS) Architecture supported Red Hat Ecosystem Catalog
OpenJDK8 (RHEL 7) x86_64 redhat-openjdk-18/openjdki18-
openshift
OpenJDKI11 (RHEL 7) x86_64 openjdk/openjdk-11-rhel7
OpenJDK8 (RHEL 8) x86_64 ubi8/openjdk-8-runtime
OpenJDKI11 (RHEL 8) x86_64,I1BM Z, and IBM Power ubi8/openjdk-11
Systems
NOTE

The use of a RHEL 8-based container on a RHEL 7 host, for example with OpenShift 3 or
OpenShift 4, has limited support. For more information, see the Red Hat Enterprise Linux
Container Compatibility Matrix.

3.2.2. Preparing Spring Boot application for OpenShift deployment

14

https://catalog.redhat.com/
https://catalog.redhat.com/software/containers/search?
https://access.redhat.com/support/policy/rhel-container-compatibility

CHAPTER 3. DEVELOPING AND DEPLOYING A SPRING BOOT RUNTIME APPLICATION

In the following procedure, a profile with Dekorate Maven dependency is used for building and deploying
the application to OpenShift.

Prerequisites

® Maven is installed.

® Docker or podman authentication into Red Hat Ecosystem Catalog to access RHEL 8 images.

Procedure

1. Add the following content to the pom.xml file in the application root directory:

<profiles>
<profile>
<id>openshift</id>
<build>
<plugins>
<dependency>
<groupld>io.dekorate</groupld>
<artifactld>openshift-spring-starter</artifactid>
</dependency>
</plugins>
</build>
</profile>
</profiles>

2. Set the Java image in the application.properties file.
® x86_64 architecture

o RHEL 7 with OpenJDK 8

I dekorate.s2i.builder-image=registry.access.redhat.com/ubi7/openjdk-8:1.3

o RHEL 7 with OpenJDK

dekorate.s2i.builder-image=registry.access.redhat.com/openjdk/openjdk-11-
rhel7:latest

o RHEL 8 with OpenJDK 8
I dekorate.s2i.builder-image=registry.access.redhat.com/ubi8/openjdk-8:1.3
o RHEL 8 with OpenJDK 11
I dekorate.s2i.builder-image=registry.access.redhat.com/ubi8/openjdk-11:latest

® x86_64,|BM Z, and IBM Power System architectures

o RHEL 8 with OpenJDK 11

15

https://access.redhat.com/containers/

Red Hat support for Spring Boot 2.4 Spring Boot Runtime Guide
I dekorate.s2i.builder-image=registry.access.redhat.com/ubi8/openjdk-11:latest

3.2.3. Deploying Spring Boot application to OpenShift using Dekorate
To deploy your Spring Boot application to OpenShift, you must perform the following:
® | ogin to your OpenShift instance.

® Deploy the application to the OpenShift instance.

Prerequisites
® oc CLl client installed.

® Maven installed.
Procedure
1. Login to your OpenShift instance with the oc client.
I $ oc login ...
2. Create a new project in the OpenShift instance.

I $ oc new-project MY_PROJECT_NAME

3. Deploy the application to OpenShift using Maven from the application’s root directory. The root
directory of an application contains the pom.xml file.

I $ mvn clean package -Popenshift -Ddekorate.deploy=true

This command uses Dekorate to launch the S2| process on OpenShift and start the pod.
4. Verify the deployment.

a. Check the status of your application and ensure your pod is running.

$ oc get pods -w

NAME READY STATUS RESTARTS AGE
MY_APP_NAME-1-aaaaa 1/1 Running 0 58s
MY_APP_NAME-s2i-1-build 0/1 Completed 0 2m

The MY_APP_NAME-1-aaaaa pod should have a status of Running once it is fully
deployed and started.

Your specific pod name will vary.
b. Determine the route for the pod.

Example Route Information

$ oc get routes
NAME HOST/PORT PATH SERVICES
PORT TERMINATION

16

https://docs.openshift.com/container-platform/latest/architecture/core_concepts/builds_and_image_streams.html#source-build

CHAPTER 3. DEVELOPING AND DEPLOYING A SPRING BOOT RUNTIME APPLICATION

MY_APP_NAME MY_APP_NAME-
MY_PROJECT NAME.OPENSHIFT_HOSTNAME MY_APP_NAME 8080

The route information of a pod gives you the base URL which you use to access it.

In this example, http://MY_APP_NAME-MY_PROJECT_NAME.OPENSHIFT_HOSTNAME
is the base URL to access the application.

c. Verify that your application is running in OpenShift.

$ curl http://MY_APP_NAME-MY_PROJECT_NAME.OPENSHIFT_HOSTNAME
{"content":"Greetings!"}

3.3. DEPLOYING SPRING BOOT APPLICATION TO STAND-ALONE RED
HAT ENTERPRISE LINUX

To deploy your Spring Boot application to stand-alone Red Hat Enterprise Linux, configure the
pom.xml file in the application, package it using Maven and deploy using the java -jar command.

Prerequisites

® RHEL 7 or RHEL 8 installed.

3.3.1. Preparing Spring Boot application for stand-alone Red Hat Enterprise Linux
deployment

For deploying your Spring Boot application to stand-alone Red Hat Enterprise Linux, you must first
package the application using Maven.

Prerequisites

® Maven installed.

Procedure

1. Add the following content to the pom.xml file in the application’s root directory:

<!I-- Specify target artifact type for the repackage goal. -->
<packaging>jar</packaging>

<build>
<plugins>
<plugin>
<groupld>org.springframework.boot</groupld>
<artifactld>spring-boot-maven-plugin</artifactld>
<version>${spring-boot.version}</version>
<executions>
<execution>
<goals>
<goal>repackage</goal>
</goals>
</execution>

17

Red Hat support for Spring Boot 2.4 Spring Boot Runtime Guide

</executions>
</plugin>
</plugins>
</build>
2. Package your application using Maven.

I $ mvn clean package

The resulting JAR file is in the target directory.

3.3.2. Deploying Spring Boot application to stand-alone Red Hat Enterprise Linux
using jar

To deploy your Spring Boot application to stand-alone Red Hat Enterprise Linux, use java -jar
command.

Prerequisites

® RHEL 7 or RHEL 8 installed.
® OpendDK 8 or OpenJDK 11installed.

o A JAR file with the application.

Procedure

1. Deploy the JAR file with the application.
I $ java -jar my-project-1.0.0.jar

2. Verify the deployment.
Use curl or your browser to verify your application is running at http://localhost:8080:

I $ curl http://localhost:8080

18

http://localhost:8080

CHAPTER 4. DEBUGGING YOUR SPRING BOOT-BASED APPLICATION

CHAPTER 4. DEBUGGING YOUR SPRING BOOT-BASED
APPLICATION

This sections contains information about debugging your Spring Boot-based application both in local
and remote deployments.

4.1. REMOTE DEBUGGING

To remotely debug an application, you must first configure it to start in a debugging mode, and then
attach a debugger to it.
4.1.1. Starting your Spring Boot application locally in debugging mode

One of the ways of debugging a Maven-based project is manually launching the application while
specifying a debugging port, and subsequently connecting a remote debugger to that port. This method
is applicable at least when launching the application manually using the mvn spring-boot:run goal.

Prerequisites

® A Maven-based application

Procedure

1. In a console, navigate to the directory with your application.

2. Launch your application and specify the necessary JVM arguments and the debug port using
the following syntax:

$ mvn spring-boot:run -Drun.jvmArguments="-Xdebug -
Xrunjdwp:transport=dt_socket,server=y,suspend=n,address=$PORT_NUMBER"

$PORT_NUMBER is an unused port number of your choice. Remember this number for the
remote debugger configuration.

If you want the JVM to pause and wait for remote debugger connection before it starts the
application, change suspend to .

4.1.2. Starting an uberjar in debugging mode

If you chose to package your application as a Spring Boot uberjar, debug it by executing it with the
following parameters.

Prerequisites

® An uberjar with your application

Procedure

1. In a console, navigate to the directory with the uberjar.

2. Execute the uberjar with the following parameters. Ensure that all the parameters are specified
before the name of the uberjar on the line.

19

Red Hat support for Spring Boot 2.4 Spring Boot Runtime Guide

$ java -agentlib:jdwp=transport=dt_socket,server=y,suspend=n,address=$PORT_NUMBER -
jar SUBERJAR_FILENAME

$PORT_NUMBER is an unused port number of your choice. Remember this number for the
remote debugger configuration.

If you want the JVM to pause and wait for remote debugger connection before it starts the
application, change suspend to .

4.1.3. Starting your application on OpenShift in debugging mode

To debug your Spring Boot-based application on OpenShift remotely, you must set the JAVA_DEBUG
environment variable inside the container to true and configure port forwarding so that you can connect
to your application from a remote debugger.

Prerequisites

® Your application running on OpenShift.
® The oc binary installed.

® The ability to execute the oc port-forward command in your target OpenShift environment.
Procedure
1. Using the oc command, list the available deployment configurations:

I $ oc getdc

2. Set the JAVA_DEBUG environment variable in the deployment configuration of your
application to true, which configures the JVM to open the port number 5005 for debugging. For
example:

I $ oc set env dc/MY_APP_NAME JAVA DEBUG=true

3. Redeploy the application if it is not set to redeploy automatically on configuration change. For
example:

I $ oc rollout latest de/MY_APP_NAME

4. Configure port forwarding from your local machine to the application pod:
a. List the currently running pods and find one containing your application:
$ oc get pod
NAME READY STATUS RESTARTS AGE
MY_APP_NAME-3-1xrsp 01 Running 0 6s

b. Configure port forwarding:

I $ oc port-forward MY_APP_NAME-3-1xrsp $LOCAL_PORT_NUMBER:5005

20

CHAPTER 4. DEBUGGING YOUR SPRING BOOT-BASED APPLICATION

Here, SLOCAL_PORT_NUMBER is an unused port number of your choice on your local
machine. Remember this number for the remote debugger configuration.

5. When you are done debugging, unset the JAVA_DEBUG environment variable in your
application pod. For example:

I $ oc set env dc/MY_APP_NAME JAVA DEBUG-

Additional resources

You can also set the JAVA_DEBUG_PORT environment variable if you want to change the debug port
from the default, which is 5005.

4.1.4. Attaching a remote debugger to the application

When your application is configured for debugging, attach a remote debugger of your choice to it. In this
guide, Red Hat CodeReady Studio is covered, but the procedure is similar when using other programs.

Prerequisites

® The application running either locally or on OpenShift, and configured for debugging.
® The port number that your application is listening on for debugging.

® Red Hat CodeReady Studio installed on your machine. You can download it from the Red Hat
CodeReady Studio download page.

Procedure

1. Start Red Hat CodeReady Studio.

2. Create a new debug configuration for your application:

a. Click Run-»Debug Configurations.

b. In the list of configurations, double-click Remote Java application. This creates a new
remote debugging configuration.

c. Enter a suitable name for the configuration in the Name field.

d. Enter the path to the directory with your application into the Project field. You can use the
Browse... button for convenience.

e. Set the Connection Type field to Standard (Socket Attach) if it is not already.
f. Set the Port field to the port number that your application is listening on for debugging.
g. Click Apply.

3. Start debugging by clicking the Debug button in the Debug Configurations window.

To quickly launch your debug configuration after the first time, click Run-Debug History and
select the configuration from the list.

Additional resources

21

https://www.redhat.com/en/technologies/jboss-middleware/codeready-studio
https://developers.redhat.com/products/codeready-studio/download

Red Hat support for Spring Boot 2.4 Spring Boot Runtime Guide

® Debug an OpenShift Java Application with JBoss Developer Studio on Red Hat
Knowledgebase.
Red Hat CodeReady Studio was previously called JBoss Developer Studio.

® A Debugging Java Applications On OpenShift and Kubernetes article on OpenShift Blog.

4.2. DEBUG LOGGING

4.2.1. Add Spring Boot debug logging

Add debug logging to your application.

Prerequisites

® An application that you want to debug.

Procedure

1. Declare a org.apache.commons.logging.Log object using the
org.apache.commons.logging.LogFactory for the class you want to add logging.

import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;

private static Log logger = LogFactory.getLog(TheClass.class);

2. Add debugging statements using logger.debug("my logging message").

Example logging statement

@GET
@Path("/greeting")
@Produces("application/json")

public Greeting greeting(@QueryParam("name") @DefaultValue("World") String name) {

String message = String.format(properties.getMessage(), name);
logger.debug("Message: " + message);

return new Greeting(message);

}

3. Add a logging.level.fully.qualified.name.of.TheClass=DEBUG in
src/main/resources/application.properties.
For example, if you added a logging statement to
dev.snowdrop.example.service.GreetingEndpoint you would use:

I logging.level.dev.snowdrop.example.service.GreetingEndpoint=DEBUG

This enables log messages at the DEBUG level and above to be shown in the logs for your class.

4.2.2. Accessing Spring Boot debug logs on localhost

Start your application and interact with it to see the debugging statements.

22

https://access.redhat.com/articles/1290703
https://blog.openshift.com/debugging-java-applications-on-openshift-kubernetes/

CHAPTER 4. DEBUGGING YOUR SPRING BOOT-BASED APPLICATION

Prerequisites

® An application with debug logging enabled.
Procedure
1. Start your application.
I $ mvn spring-boot:run
2. Test your application to invoke debug logging.

I $ curl http://localhost:8080/api/greeting?name=Sarah

3. View your application logs to see your debug messages.

I dev.snowdrop.example.service.GreetingEndpoint : Message: Hello, Sarah!

To disable debug logging, remove logging.level.fully.qualified.name.of.TheClass=DEBUG from
src/main/resources/application.properties and restart your application.

4.2.3. Accessing debug logs on OpenShift

Start your application and interact with it to see the debugging statements in OpenShift.

Prerequisites

® The oc CLlI client installed and authenticated.

® A Maven-based application with debug logging enabled.
Procedure
1. Deploy your application to OpenShift:
I $ mvn clean package -Popenshift -Ddekorate.deploy=true

2. View the logs:

1. Get the name of the pod with your application:
I $ oc get pods

2. Start watching the log output:
I $ oc logs -f pod/MY_APP_NAME-2-aaaaa

Keep the terminal window displaying the log output open so that you can watch the log
output.

3. Interact with your application:

1. Get the route of your application:

23

Red Hat support for Spring Boot 2.4 Spring Boot Runtime Guide

I $ oc get routes

2. Make an HTTP request on the /api/greeting endpoint of your application:

I $ curl SAPPLICATION_ROUTE/api/greeting?name=Sarah

4. Return to the window with your pod logs and inspect debug logging messages in the logs.

I dev.snowdrop.example.service.GreetingEndpoint : Message: Hello, Sarah!

5. To disable debug logging, remove logging.level.fully.qualified.name.of.TheClass=DEBUG
from src/main/resources/application.properties and redeploy your application.

24

CHAPTER 5. MONITORING YOUR APPLICATION

CHAPTER 5. MONITORING YOUR APPLICATION

This section contains information about monitoring your Spring Boot-based application running on
OpenShift.

5.1. ACCESSING JVM METRICS FOR YOUR APPLICATION ON
OPENSHIFT

5.1.1. Accessing JVM metrics using Jolokia on OpenShift

Jolokia is a built-in lightweight solution for accessing JMX (Java Management Extension) metrics over
HTTP on OpenShift. Jolokia allows you to access CPU, storage, and memory usage data collected by
JMX over an HTTP bridge. Jolokia uses a REST interface and JSON-formatted message payloads. It is
suitable for monitoring cloud applications thanks to its comparably high speed and low resource
requirements.

For Java-based applications, the OpenShift Web console provides the integrated hawt.io console that
collects and displays all relevant metrics output by the JVM running your application.

Prerequistes

® the oc client authenticated
® 3 Java-based application container running in a project on OpenShift

® |atest JDK1.8.0 image

Procedure

1. List the deployment configurations of the pods inside your project and select the one that
corresponds to your application.

I oc getdc

NAME REVISION DESIRED CURRENT TRIGGERED BY
MY_APP_NAME 2 1 1 config,image(my-app:6)
2. Open the YAML deployment template of the pod running your application for editing.

I oc edit de/MY_APP_NAME

3. Add the following entry to the ports section of the template and save your changes:

spec:

ports:

- containerPort: 8778
name: jolokia
protocol: TCP

25

https://jolokia.org/documentation.html
https://docs.openshift.com/container-platform/3.6/architecture/infrastructure_components/web_console.html#jvm-console
https://github.com/jboss-container-images/openjdk/blob/openjdk18-dev/image.yaml

Red Hat support for Spring Boot 2.4 Spring Boot Runtime Guide

4. Redeploy the pod running your application.

I oc rollout latest dc/MY_APP_NAME

The pod is redeployed with the updated deployment configuration and exposes the port 8778.
5. Log into the OpenShift Web console.

6. Inthe sidebar, navigate to Applications > Pods, and click on the name of the pod running your
application.

7. In the pod details screen, click Open Java Console to access the hawt.io console.

Additional resources

® hawt.io documentation

26

https://hawt.io/docs/index.html

APPENDIX A. THE SOURCE-TO-IMAGE (S2I) BUILD PROCESS

APPENDIX A. THE SOURCE-TO-IMAGE (S2I) BUILD PROCESS

Source-to-Image (S2I) is a build tool for generating reproducible Docker-formatted container images
from online SCM repositories with application sources. With S2I builds, you can easily deliver the latest
version of your application into production with shorter build times, decreased resource and network
usage, improved security, and a number of other advantages. OpenShift supports multiple build
strategies and input sources.

For more information, see the Source-to-Image (S2I) Build chapter of the OpenShift Container
Platform documentation.

You must provide three elements to the S2I process to assemble the final container image:
® The application sources hosted in an online SCM repository, such as GitHub.

® The S2| Builder image, which serves as the foundation for the assembled image and provides
the ecosystem in which your application is running.

® Optionally, you can also provide environment variables and parameters that are used by S2|
scripts.

The process injects your application source and dependencies into the Builder image according to
instructions specified in the S2I script, and generates a Docker-formatted container image that runs the
assembled application. For more information, check the S2I build requirements, build options and how
builds work sections of the OpenShift Container Platform documentation.

27

https://docs.openshift.com/container-platform/latest/builds/understanding-image-builds.html#build-strategy-s2i_understanding-image-builds
https://docs.openshift.com/container-platform/latest/builds/understanding-image-builds.html
https://docs.openshift.com/container-platform/latest/builds/understanding-image-builds.html#build-strategy-s2i_understanding-image-builds
https://docs.openshift.com/container-platform/latest/openshift_images/create-images.html
https://docs.openshift.com/container-platform/latest/openshift_images/create-images.html
https://docs.openshift.com/container-platform/latest/builds/build-strategies.html
https://docs.openshift.com/container-platform/latest/builds/understanding-image-builds.html

Red Hat support for Spring Boot 2.4 Spring Boot Runtime Guide

APPENDIX B. UPDATING THE DEPLOYMENT
CONFIGURATION OF AN EXAMPLE APPLICATION

The deployment configuration for an example application contains information related to deploying and
running the application in OpenShift, such as route information or readiness probe location. The
deployment configuration of an example application is stored in a set of YAML files. For the example
applications that use Nodeshift, the YAML files are located in the .nodeshift directory.

IMPORTANT

The deployment configuration files used by Nodeshift do not have to be full OpenShift
resource definitions. Nodeshift can take the deployment configuration files and add some
missing information to create a full OpenShift resource definition. The resource
definitions generated by Dekorate are available in the target/classes/META-
INF/dekorate/ directory. The resource definitions generated by Nodeshift are available in
the tmp/nodeshift/resource/ directory.

Prerequisites
® An existing example project.

® The oc CLlI client installed.

Procedure
1. Edit an existing YAML file or create an additional YAML file with your configuration update.

® For example, if your example already has a YAML file with a readinessProbe configured,
you could change the path value to a different available path to check for readiness:

spec:
template:
spec:
containers:
readinessProbe:
httpGet:

path: /path/to/probe
port: 8080
scheme: HTTP

e |f a readinessProbe is not configured in an existing YAML file, you can also create a new
YAML file in the same directory with the readinessProbe configuration.

2. Deploy the updated version of your example using Maven or npm.

3. Verify that your configuration updates show in the deployed version of your example.
$ oc export all --as-template="my-template’
apiVersion: template.openshift.io/v1
kind: Template

metadata:
creationTimestamp: null

28

APPENDIX B. UPDATING THE DEPLOYMENT CONFIGURATION OF AN EXAMPLE APPLICATION

name: my-template

objects:

- apiVersion: template.openshift.io/v1
kind: DeploymentConfig

spec:
template:

spec:
containers:

livenessProbe:

failureThreshold: 3
httpGet:

path: /path/to/different/probe

port: 8080

scheme: HTTP
initialDelaySeconds: 60
periodSeconds: 30
successThreshold: 1
timeoutSeconds: 1

Additional resources

If you updated the configuration of your application directly using the web-based console or the oc CLI
client, export and add these changes to your YAML file. Use the oc export all command to show the
configuration of your deployed application.

29

Red Hat support for Spring Boot 2.4 Spring Boot Runtime Guide

APPENDIX C. DEPLOYING A SPRING BOOT APPLICATION
USING WAR FILES

As an alternative to the supported application packaging and deployment workflow using fat JAR files,
you can package and deploy a Spring Boot application as a WAR (Web Application Archive) file. You
must configure your build and deployment settings to ensure that your application builds and deploys
correctly on OpenShift.

Prerequisites
® A Spring Boot application.
® Fabric8 Maven Plugin used to deploy your application to OpenShift.

® Spring Boot Maven Plugin used to package your application.

Procedure

1. Add war packaging to the pom.xml file of your project:

Example pom.xml

<project ...>
;backaging>war</packaging>
<}b.roject>
2. Specify spring-boot-starter-tomcat as a dependency of your application:

Example pom.xml

<project ...>
<dependencies>
<dependency>
<groupld>org.springframework.boot</groupld>
<artifactld>spring-boot-starter-tomcat</artifactld>
</dependency>

</dependencies>

</project>

3. Ensure the repackage Maven goal for the Spring Boot Maven plugin is defined in the pom.xml
file:

Example pom.xml

<project ...>

<build>

30

APPENDIX C. DEPLOYING A SPRING BOOT APPLICATION USING WAR FILES

<plugins>

<plugin>
<groupld>org.springframework.boot</groupld>
<artifactld>spring-boot-maven-plugin</artifactld>
<executions>
<execution>
<goals>
<goal>repackage</goal>
</goals>
</execution>
</executions>
</plugin>
</plugins>
</build>

</project>

This ensures that the Spring Boot classes used to launch the application are included in the
WAR file, and that the corresponding properties for these classes are defined in the
MANIFEST.mf file of the WAR file:

® Main-Class: org.springframework.boot.loader.WarLauncher
e Spring-Boot-Classes: WEB-INF/classes/

e Spring-Boot-Lib: WEB-INF/lib/

e Spring-Boot-Version: 2.4.9

. Add the ARTIFACT_COPY_ARGS environment variable to the pom.xml file.

The Fabric8 Maven Plugin consumes this variable during the build process and ensures that the
Build and Deploy tool uses the WAR file (rather than the default fat JAR file) to create the
application container image:

Example pom.xml

<profile>
<id>openshift</id>
<build>
<plugins>
<plugin>
<groupld>io.fabric8</groupld>
<artifactld>fabric8-maven-plugin</artifactld>
<executions>

</executions>
<configuration>
<images>

</images>
</configuration>
</plugin>
</plugins>
</build>
</profile>

5. Add the JAVA_APP_JAR environment variable to the src/main/fabric8/deployment.yml file.
This variable instructs the Fabric8 Maven Plugin to launch your application using the WAR file

included with the container. If src/main/fabric8/deployment.yml does not exist, you can create
it.

Example deployment.yml

spec:
template:
spec:
containers:
env:
- name: JAVA_APP_JAR
value: ${project.artifactld}-${project.version}.war

6. Build and deploy your application:

I mvn clean fabric8:deploy -Popenshift

32

APPENDIX D. ADDITIONAL SPRING BOOT RESOURCES

APPENDIX D. ADDITIONAL SPRING BOOT RESOURCES

OpenShift Architecture Overview

Spring Boot Microservices On Red Hat OpenShift Container Platform 3
Spring Cloud Kubernetes

Spring Boot Project

Spring Framework Project

OpenShift Spring Boot Lab Microservices

33

https://docs.openshift.com/container-platform/latest/architecture/architecture.html
https://access.redhat.com/documentation/en-us/reference_architectures/2017/html/spring_boot_microservices_on_red_hat_openshift_container_platform_3/
https://github.com/spring-cloud/spring-cloud-kubernetes/
https://projects.spring.io/spring-boot/
https://projects.spring.io/spring-framework/
https://github.com/redhat-microservices/lab_springboot-openshift/

Red Hat support for Spring Boot 2.4 Spring Boot Runtime Guide

APPENDIX E. APPLICATION DEVELOPMENT RESOURCES

For additional information about application development with OpenShift, see:
® OpenShift Interactive Learning Portal

To reduce network load and shorten the build time of your application, set up a Nexus mirror for Maven
on your OpenShift Container Platform:

® Setting Up a Nexus Mirror for Maven

34

https://learn.openshift.com/
https://docs.openshift.com/container-platform/3.11/dev_guide/dev_tutorials/maven_tutorial.html

APPENDIX F. PROFICIENCY LEVELS

APPENDIX F. PROFICIENCY LEVELS

Each available example teaches concepts that require certain minimum knowledge. This requirement
varies by example. The minimum requirements and concepts are organized in several levels of
proficiency. In addition to the levels described here, you might need additional information specific to
each example.

Foundational

The examples rated at Foundational proficiency generally require no prior knowledge of the subject
matter; they provide general awareness and demonstration of key elements, concepts, and terminology.
There are no special requirements except those directly mentioned in the description of the example.

Advanced

When using Advanced examples, the assumption is that you are familiar with the common concepts and
terminology of the subject area of the example in addition to Kubernetes and OpenShift. You must also
be able to perform basic tasks on your own, for example, configuring services and applications, or
administering networks. If a service is needed by the example, but configuring it is not in the scope of the
example, the assumption is that you have the knowledge to properly configure it, and only the resulting
state of the service is described in the documentation.

Expert

Expert examples require the highest level of knowledge of the subject matter. You are expected to
perform many tasks based on feature-based documentation and manuals, and the documentation is
aimed at most complex scenarios.

35

	Table of Contents
	PREFACE
	PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
	CHAPTER 1. INTRODUCTION TO APPLICATION DEVELOPMENT WITH SPRING BOOT
	1.1. OVERVIEW OF APPLICATION DEVELOPMENT WITH RED HAT RUNTIMES
	1.2. OVERVIEW OF SPRING BOOT
	1.2.1. Spring Boot features and frameworks summary
	1.2.2. Supported Architectures by Spring Boot

	CHAPTER 2. CONFIGURING YOUR APPLICATION TO USE SPRING BOOT
	2.1. PREREQUISITES
	2.2. USING THE SPRING BOOT BOM TO MANAGE DEPENDENCY VERSIONS
	2.3. USING THE SPRING BOOT BOM TO AS A PARENT BOM OF YOUR APPLICATION
	2.4. RELATED INFORMATION

	CHAPTER 3. DEVELOPING AND DEPLOYING A SPRING BOOT RUNTIME APPLICATION
	3.1. DEVELOPING SPRING BOOT APPLICATION
	3.2. DEPLOYING SPRING BOOT APPLICATION TO OPENSHIFT
	3.2.1. Supported Java images for Spring Boot
	3.2.2. Preparing Spring Boot application for OpenShift deployment
	3.2.3. Deploying Spring Boot application to OpenShift using Dekorate

	3.3. DEPLOYING SPRING BOOT APPLICATION TO STAND-ALONE RED HAT ENTERPRISE LINUX
	3.3.1. Preparing Spring Boot application for stand-alone Red Hat Enterprise Linux deployment
	3.3.2. Deploying Spring Boot application to stand-alone Red Hat Enterprise Linux using jar

	CHAPTER 4. DEBUGGING YOUR SPRING BOOT-BASED APPLICATION
	4.1. REMOTE DEBUGGING
	4.1.1. Starting your Spring Boot application locally in debugging mode
	4.1.2. Starting an uberjar in debugging mode
	4.1.3. Starting your application on OpenShift in debugging mode
	4.1.4. Attaching a remote debugger to the application

	4.2. DEBUG LOGGING
	4.2.1. Add Spring Boot debug logging
	4.2.2. Accessing Spring Boot debug logs on localhost
	4.2.3. Accessing debug logs on OpenShift

	CHAPTER 5. MONITORING YOUR APPLICATION
	5.1. ACCESSING JVM METRICS FOR YOUR APPLICATION ON OPENSHIFT
	5.1.1. Accessing JVM metrics using Jolokia on OpenShift

	APPENDIX A. THE SOURCE-TO-IMAGE (S2I) BUILD PROCESS
	APPENDIX B. UPDATING THE DEPLOYMENT CONFIGURATION OF AN EXAMPLE APPLICATION
	APPENDIX C. DEPLOYING A SPRING BOOT APPLICATION USING WAR FILES
	APPENDIX D. ADDITIONAL SPRING BOOT RESOURCES
	APPENDIX E. APPLICATION DEVELOPMENT RESOURCES
	APPENDIX F. PROFICIENCY LEVELS
	Foundational
	Advanced
	Expert

