
Red Hat Trusted Application Pipeline 1.0

Getting Started with Red Hat Trusted
Application Pipeline

Explore ready-to-use software templates for building applications that are infused
with secure supply chain features, such as signatures, attestations, Software Bill of
Materials (SBOM), SLSA verification, CVE scanning, and release policy guardrails.

Last Updated: 2024-07-01

Red Hat Trusted Application Pipeline 1.0 Getting Started with Red Hat
Trusted Application Pipeline

Explore ready-to-use software templates for building applications that are infused with secure
supply chain features, such as signatures, attestations, Software Bill of Materials (SBOM), SLSA
verification, CVE scanning, and release policy guardrails.

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides instructions about using ready-to-use software templates for building
applications that are infused with secure supply chain features, such as signatures, attestations,
Software Bill of Materials (SBOM), SLSA verification, CVE scanning, and release policy guardrails.

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. UNDERSTANDING RHTAP'S FOUNDATIONS
1.1. SECURE CI/CD FRAMEWORK
1.2. DEEP DIVE INTO RHTAP'S SECURITY TOOLS
1.3. LEVERAGING READY-TO-USE SOFTWARE TEMPLATES
1.4. KEY SECURITY PRACTICES
1.5. THE PATH FORWARD

CHAPTER 2. YOUR PATH TO SECURE APPLICATION DEVELOPMENT
2.1. INSTALLATION OVERVIEW
2.2. INITIAL SETUP

CHAPTER 3. BUILD AN APPLICATION WITH SAMPLE SOFTWARE TEMPLATES
3.1. SETTING THE STAGE
3.2. BUILD AN APPLICATION

Provide application information
Provide application repository information
Provide deployment information

3.3. REVIEW YOUR APPLICATION
3.4. UNREGISTER YOUR APPLICATION

CHAPTER 4. UPDATE CODE AND VIEW SECURITY INSIGHTS
4.1. INITIATING CODE UPDATES
4.2. MAKING CHANGES TO YOUR CODE
4.3. VIEWING THE PIPELINE RUN
4.4. VIEW SECURITY INSIGHTS

4.4.1. Red Hat Advanced Cluster Security tasks
Visualizing RHACS reports
Interpreting RHACS reports

4.4.2. Understanding SBOM
Viewing SBOM
Downloading an SBOM in the CLI
Reading the SBOM

CHAPTER 5. DEPLOY APPLICATION AND VIEW SECURITY INSIGHTS
5.1. PROMOTING A BUILD TO A PRE-PRODUCTION OR PRODUCTION ENVIRONMENT
5.2. VIEW SECURITY INSIGHTS

5.2.1. Enterprise contract task
Interpreting compliance reports
Utilizing the insights from compliance reports

3
3
3
3
4
4

5
5
5

7
7
7
8
8
8
9

10

12
12
12
12
13
14
15
15
16
16
17
17

19
19
21
21
22
22

Table of Contents

1

Red Hat Trusted Application Pipeline 1.0 Getting Started with Red Hat Trusted Application Pipeline

2

CHAPTER 1. UNDERSTANDING RHTAP'S FOUNDATIONS
Discover the robust foundation of Red Hat Trusted Application Pipeline (RHTAP), a framework designed
to revolutionize cybersecurity practices across the software development lifecycle (SDLC). With
RHTAP, you embark on a journey that transcends traditional security measures, integrating cutting-edge
solutions and a DevSecOps CI/CD framework from inception to deployment. This proactive strategy
accelerates developer onboarding, process acceleration, and the embedding of security from the
beginning.

1.1. SECURE CI/CD FRAMEWORK

Central to RHTAP is its pioneering secure CI/CD framework, designed to uphold highest standards in
software development. By aligning with the Supply-chain Levels for Software Artifacts (SLSA) level 3 ,
RHTAP ensures that every line of code contributes to a fortress of security, significantly enhancing early
vulnerability detection and mitigation.

1.2. DEEP DIVE INTO RHTAP'S SECURITY TOOLS

Ensuring the security of software throughout its development is essential for mitigating potential
vulnerabilities. The RHTAP leverages a powerful suite of tools designed to bolster your security
measures. Let’s explore how RHTAP utilizes its components — RHDH, RHTAS, and RHTPA — to provide
a robust defense against security threats.

Red Hat Developer Hub (RHDH)

Red Hat Developer Hub serves as a self-service portal for developers. It streamlines the
onboarding process and offers access to a wealth of resources and tools necessary for secure
software development. This platform encourages best practices and facilitates the integration
of security measures right from the start of the development process.

Red Hat Trusted Artifact Signer (RHTAS)

Red Hat Trusted Artifact Signer focuses on enhancing software integrity through signature and
attestation mechanisms. By ensuring that every piece of code and every artifact is signed and
attested, RHTAS provides a verifiable trust chain that confirms the authenticity and security of
the software components being used.

Red Hat Trusted Profile Analyzer (RHTPA)

Red Hat Trusted Profile Analyzer, deals with the generation and management of Software Bills
of Materials (SBOMs). SBOMs are critical for maintaining transparency and compliance, as they
provide a detailed list of all components, libraries, and dependencies included in a software
product. RHTPA automates the creation of SBOMs, ensuring that stakeholders have accurate
and up-to-date information on the software’s composition.

1.3. LEVERAGING READY-TO-USE SOFTWARE TEMPLATES

RHTAP offers ready-to-use software templates, embedding security directly into the development
workflow, thus allowing developers to concentrate on innovation while minimizing security related
distractions. These ready-to-use software templates are fully customizable, ensuring they meet your
organization’s unique requirements seamlessly.

Benefit from integrated features right out of the box:

Red Hat Advanced Cluster Security (RHACS): Strengthens your deployments against

CHAPTER 1. UNDERSTANDING RHTAP'S FOUNDATIONS

3

https://slsa.dev/spec/v1.0/levels

Red Hat Advanced Cluster Security (RHACS): Strengthens your deployments against
vulnerabilities.

Quay: Provides a secure repository for your container images.

Tekton pipelines: Enables precision in automated deployments.

GitOps: Maintains consistency and automated configuration management.

1.4. KEY SECURITY PRACTICES

RHTAP incorporates these tools to address specific security concerns effectively:

Vulnerability Scanning: With each pull request, RHTAP conducts thorough scans with your CVE
scanner of choice, such as Advanced Cluster Security, to identify and address vulnerabilities at
the earliest possible stage.

SBOM Generation: RHTAP’s automated generation of SBOMs plays a vital role in maintaining
software transparency and compliance. By providing a comprehensive inventory of software
components, organizations can better manage and secure their software supply chain.

Container Image Security: RHTAP verifies that container images comply with SLSA (Supply-
chain Levels for Software Artifacts) guidelines. This is achieved through an enterprise contract
that includes over 41 rules, ensuring that the container images used in the development process
meet stringent security standards.

1.5. THE PATH FORWARD

Embracing a DevSecOps mindset and utilizing RHTAP promotes a secure and efficient development
environment. This ongoing journey of assessment and elevation equips organizations to address both
current and future cybersecurity challenges effectively.

Next step

Your path to secure application development

Additional resources

For information on Red Hat Developer Hub, see Getting started with Red Hat Developer Hub
guide.

For information on Red Hat Trusted Artifact Signer, see RHTAS Deployment guide.

For information on Red Hat Trusted Profile Analyzer, see Quick Start guide.

Red Hat Trusted Application Pipeline 1.0 Getting Started with Red Hat Trusted Application Pipeline

4

https://slsa.dev/
https://access.redhat.com/documentation/en-us/red_hat_developer_hub/1.0/html/getting_started_with_red_hat_developer_hub/index
https://access.redhat.com/documentation/en-us/red_hat_trusted_artifact_signer/1/html/deployment_guide/index
https://access.redhat.com/documentation/en-us/red_hat_trusted_profile_analyzer/2023-q4/html/quick_start_guide/index

CHAPTER 2. YOUR PATH TO SECURE APPLICATION
DEVELOPMENT

Red Hat Trusted Application Pipeline (RHTAP) significantly enhances the efficiency of containerizing
and deploying applications, enabling developers to deploy their work within minutes. This innovative
platform not only facilitates the creation of a build pipeline for testing and integrating application
changes swiftly but also fortifies security measures against supply-chain attacks. By adhering to the
rigorous standards of the Supply-chain Levels for Software Artifacts (SLSA) security framework, RHTAP
ensures compliance with high-level security requirements.

2.1. INSTALLATION OVERVIEW

Before tapping into the vast array of benefits offered by RHTAP, the initial step involves its installation
within your organization. The installation of RHTAP is structured around seven key procedures:

1. Creating a GitHub application for RHTAP

2. Forking the template catalog

3. Creating a GitOps git token

4. Creating the Docker configuration value

5. Creating a private-values.yaml file

6. Installing RHTAP in your cluster

7. Finalizing your GitHub application

2.2. INITIAL SETUP

Prior to beginning the installation process, certain prerequisites must be met to ensure a smooth and
successful setup:

1. Cluster Access: Ensure you have ClusterAdmin access to an OpenShift Container Platform
(OCP) cluster, accessible both via the CLI and the web console.

2. Red Hat Advanced Cluster Security (ACS): Obtain necessary values from your ACS instance,
including:

ACS API token: Follow the instructions provided here to create an API token.

ACS central endpoint URL: Configure the endpoint by referring to the instructions available
here.

3. Configure ACS for Private Repositories: If you’re using private repositories in image registries
like Quay.io, configure ACS accordingly:

For Quay.io, navigate to Integrations > Image Integrations and select the Quay.io card.

Add your OAuth tokens to access your specific Quay.io instance.

Validate access via the test button to ensure ACS can scan private images when required.

4. Quay.io Account: Ensure you have an active Quay.io account.

CHAPTER 2. YOUR PATH TO SECURE APPLICATION DEVELOPMENT

5

https://github.com/redhat-appstudio/tssc-sample-pipelines/blob/main/hack/build/README.md#prerequisits
https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_security_for_kubernetes/4.1/html/configuring/configure-endpoints#doc-wrapper

5. Helm CLI Tool: Install the Helm CLI tool by following the guidelines provided here.

6. GitHub Account: Lastly, make sure you have a GitHub account to facilitate certain installation
procedures.

With these prerequisites in place, you are well-prepared to initiate the installation process by creating a
new GitHub application specifically for your RHTAP instance.

Next step

Install Red Hat Trusted Application Pipeline

Red Hat Trusted Application Pipeline 1.0 Getting Started with Red Hat Trusted Application Pipeline

6

https://helm.sh/docs/intro/install/
https://access.redhat.com/documentation/en-us/red_hat_trusted_application_pipeline/1.0/html/installing_red_hat_trusted_application_pipeline/index

CHAPTER 3. BUILD AN APPLICATION WITH SAMPLE
SOFTWARE TEMPLATES

RHTAP transforms the development landscape with its ready-to-use software templates available in
Red Hat Developer Hub (RHDH). These templates are meticulously designed for seamless integration
with Red Hat’s comprehensive suite of tools (RHDH, RHTAS, RHTPA) and technologies. This integration
furnishes a solid framework for a secure, effective, and developer-oriented SDLC within an on-premises
environment.

Beyond these foundational elements, RHTAP’s ready-to-use software templates include default
integrations with key technologies to further secure and optimize your development experience:

ACS (Advanced Cluster Security): Bolsters your deployments by identifying and mitigating
vulnerabilities early in the development process, ensuring your applications are fortified from
inception to deployment.

Quay: Acts as a secure harbor for your container images, providing a reliable repository that
continuously scans for vulnerabilities, keeping your containerized applications safe.

Tekton Pipelines: Automates your build and deployment processes with precision, enabling a
CI/CD framework that integrates seamlessly into your SDLC, thus accelerating your path to
production.

GitOps: Implements a GitOps strategy by maintaining your infrastructure and application
configurations in Git repositories, ensuring consistent and automated deployment across all
environments.

Additionally, RHTAP supports the development and containerization of applications across a wide range
of popular programming languages such as Java, Python, Node.js, and Go, expanding your application
development capabilities.

Upon the installation of RHTAP, cluster administrators have the capability to tailor the Red Hat
Developer Hub portal with specific templates and enhancements. This customization process is crucial
for enabling developers to focus primarily on coding by simplifying development workflows and
mitigating concerns related to pipelines, vulnerabilities, and policies.

Before proceeding with customization, it’s essential for cluster administrators to familiarize themselves
with the available software and pipeline templates through this guide. Such exploration is key to
grasping how RHTAP supports a secure supply chain, laying the groundwork for any subsequent
customization.

3.1. SETTING THE STAGE

Ensure you have successfully installed RHTAP.

Log in to Red Hat Developer Hub (RHDH) using the link provided by RHTAP. RHDH operates as
an inclusive developer platform, facilitating the creation of developer portals. It offers
engineering teams a unified platform that enhances the development process, providing an
assortment of tools and resources for crafting high-quality software efficiently.

3.2. BUILD AN APPLICATION

On the RHDH portal, select Create, and then select an appropriate template. For example, Quarkus
Java - Trusted Application Pipeline.

CHAPTER 3. BUILD AN APPLICATION WITH SAMPLE SOFTWARE TEMPLATES

7

Building an application or microservice for your developers in RHDH using the templates offered by
RHTAP is essentially only a three step process:

Provide application information

Provide application repository information

Provide deployment information

Provide application information

1. In the Name field, provide an application name. Your name may incorporate lowercase letters
(a-z), numbers (0-9), and dashes (-), but it must start and end with a lowercase alphanumeric
character. Examples of valid names are my-name or abc-123, and the length should range from
1 to 63 characters.

2. From the Owner dropdown list, select an appropriate RHDH component owner for this
application. The default value is user:guest, which appears if no specific owner is registered in
the system. If you have not registered an owner, retain the default user:guest selection. If
needed, you have the option to replace guest with your username, personalizing ownership of
the application.

3. Select Next. The system displays the Application Repository Information form.

Provide application repository information

1. From the Host Type dropdown list, select an appropriate repository host type.

2. In the Repository Owner field, enter name of the organization that owns the Git App you are
using. This could be a personal user account, an organization, or a project within your
organization.

3. In the Repository Name field, enter an appropriate repository name using characters restricted
to A-Z, a-z, 0-9, underscore (_), and dashes (-). The system uses this information to name the
repository that it creates on the host repository server.

4. In the Repository Default Branch field, enter the default branch for your repository. This field
displays main by default you can choose to keep it the same.

5. In the Repository Server field, enter your on-prem host URL without the HTTP protocol and
without the .git extension. For example, gitlab-gitlab.apps.cluster-ljg9z.sandbox219.opentlc.com

6. Select Next. The system displays the Deployment Information form.

Provide deployment information

1. In the Image Registry field, enter your on-prem image registry URL without the HTTP protocol.
For example, quay-tv2pb.apps.cluster-tv2pb.sandbox1194.opentlc.com.

2. In the Image Organization field, enter the image organization for the image registry you
provided in the Step 1.

3. In the Image Name field, enter an appropriate image name following these guidelines: use only
lowercase letters, dights, and separators. Separators include a period (.), up to two underscores
(_), or one or more hyphens (-). For example, my-app_1.2.

NOTE

Red Hat Trusted Application Pipeline 1.0 Getting Started with Red Hat Trusted Application Pipeline

8

NOTE

You must ensure that the name does not start or end with a separator.

4. In the Deployment Namespace field, enter the prefix for the namespaces or cluster where your
intend to deploy your application. The system creates the actual namespaces as rhtap-app-
development, rhtap-app-stage, and rhtap-app-prod.

NOTE

rhtap-app is the default deployment namespace prefix. Cluster administrators
have the option to customize this prefix. For instructions on how to customize
the default deployment namespace prefix, refer to Customizing sample software
templates.

5. Select Review to review all the information that you added.

6. Select Create. RHTAP initiates a sequence of automated tasks that are pivotal for setting up
your application’s infrastructure and deployment pipeline. This process involves several key
operations that unfold behind the scenes:

Repository Creation and Configuration: A new repository is automatically created in your
specified hosting service (GitLab or GitHub), tailored specifically for your application. This
includes the setup of both the GitOps repository, which holds your deployment
configurations, and the source repository, where your application code resides.

Argo CD Integration: With the repositories in place, Argo CD resources are created and
configured. Argo CD, a declarative, GitOps continuous delivery tool, springs into action,
orchestrating the deployment of your application across the specified namespaces.

Namespace Creation: As part of setting up your deployment environments, various
namespaces are automatically generated based on your application’s requirements. This
includes separate namespaces for development, staging, and production environments,
ensuring isolation and security between stages.

Pipeline Definition: Finally, a pipeline definition is added to your setup, providing you with a
'Pipeline as code' model. This defines the automated workflow for building, testing, and
deploying your application, aligning with best practices and security measures.

3.3. REVIEW YOUR APPLICATION

Once you’ve successfully created an application using RHTAP, reviewing its components, source code,
GitOps configurations, and associated documentation is straightforward. Here’s how you can conduct a
comprehensive analysis:

Access Your Application:

To find your application, select Open Component in catalog. You can also navigate to the
Catalog where the system lists your newly created application.

Examine the Source Code:

1. Go to the Overview tab.

2. Select View Source to open the repository where your application’s source code is housed.
This step provides insight into the construction and logic of your application.

CHAPTER 3. BUILD AN APPLICATION WITH SAMPLE SOFTWARE TEMPLATES

9

https://access.redhat.com/documentation/en-us/red_hat_trusted_application_pipeline/1.0/html/customizing_red_hat_trusted_application_pipeline/

1

Review GitOps repository:

1. On the Overview tab, use the Kind dropdown to select Resource and find the relevant
GitOps repository.

2. Choose View Source to examine the GitOps configurations directly. Alternatively, for a
broader overview including technical documentation, select View TechDocs from the
Catalog section and then choose the GitOps repository under the Home > Repository
section.

Review the Documentation:

1. From the Overview tab, click View Tech Docs.

2. This opens the technical documentation for your application, providing detailed insights into
its features, configuration steps, and how to utilize it effectively.

3.4. UNREGISTER YOUR APPLICATION

This process removes the application’s source and GitOps repository from your catalog and resource
view, essentially hiding it. The application itself remains functional within the cluster. Unregistered
applications can be re-registered at any time.

1. Navigate to the Catalog and select the component that you want to unregister.

2. Select vertical three-dot menu associated with the component, and then select Unregister
entity. A confirmation dialog appears.

3. Select Unregister Location. This removes the application’s Git repository from your catalog
view.

4. Navigate to the Catalog, from the Kind drop down list, select Resource, and then unregister
the corresponding GitOps resource.

5. Remove the application from the cluster, by running the following command:

rhtap is the default namespace. Additionally, your-app-name is the name of your
application.

oc delete application your-app-name-app-of-apps -n rhtap 1

Red Hat Trusted Application Pipeline 1.0 Getting Started with Red Hat Trusted Application Pipeline

10

Next steps

Update code and view security insights

CHAPTER 3. BUILD AN APPLICATION WITH SAMPLE SOFTWARE TEMPLATES

11

CHAPTER 4. UPDATE CODE AND VIEW SECURITY INSIGHTS
After successfully building your component with RHTAP, the next step is to make a code change and
delve into the security insights.

4.1. INITIATING CODE UPDATES

With RHTAP, this process is straightforward.

1. Select Catalog and then select an appropriate component for which you want to view security
insights.

2. On the Overview tab, select View Source tab to see your project in GitLab or GitHub. Here,
you can also select View Tech Docs to see your project’s documentation. The source of the
documentation is the docs directory in your repository. If you update these files and the
pipeline runs successfully, your Tech Docs will update too.

4.2. MAKING CHANGES TO YOUR CODE

With access to your repository, you’re ready to engage in the familiar process of working with a git
repository. Here’s how to proceed:

Clone your repository to start working on it either locally or in your development environment.

Modify your application, like updating technical docs or index.html, or by adding new features
or bug fixes.

Commit your changes.

Push your changes to the repository.

NOTE

You can also use GitLab or GitHub UI, to directly update your code within the
web interface.

For GitLab users only: You have to set up webhooks and secrets in GitLab to
automatically trigger pipeline run upon code updates. For information on setting
up webhooks and secrets in GitLab, refer to Configuring GitLab Webhooks for
automated pipeline triggers.

4.3. VIEWING THE PIPELINE RUN

To view the pipeline run after making changes to your code:

1. Return to RHDH platform to see how your changes progressed.

2. Navigate to the Catalog and select the specific component you just modified.

3. Open the CI tab to access the pipeline run.

Beyond the pipeline run, RHDH offers valuable insights through other tabs:

CD: Gain insights into deployments managed by ArgoCD and GitOps using the CD tab.

Red Hat Trusted Application Pipeline 1.0 Getting Started with Red Hat Trusted Application Pipeline

12

https://access.redhat.com/documentation/en-us/red_hat_trusted_application_pipeline/1.0/html/customizing_red_hat_trusted_application_pipeline/webhook-configurations-for-gitlab_default

Topology: Visualize your application’s deployment within the development namespace with the
Topology tab.

4.4. VIEW SECURITY INSIGHTS

When you update your code and push the changes, the system triggers the on-push pipeline
automatically. By default, RHTAP uses a standard build pipeline for quick, containerized deployment,
enhancing supply chain security by meeting Software Artifacts (SLSA) level 3 specifications.

Figure 4.1. A successful pipeline run

This visual representation outlines each pipeline task. A green status indicates successful completion,
streamlining your workflow without extensive oversight.

The initial build pipeline tasks comprise:

init: Initializes the pipeline, configuring rebuild flags and authentication, and generates an image
repository secret for the PipelineRun.

clone-repository: Clones the specified repository into the workspace, readying it for action with
the git-clone Task.

build-container: This task employs Buildah to convert source code into a container image,
which is then pushed to a specified registry. Key actions and outcomes of this task include:

Container Image Creation and Deployment: Buildah compiles the source code into a
container image. Upon successful creation, the image is pushed to the designated image
registry.

Software Bill of Materials (SBOM) Generation: As part of ensuring transparency and
compliance, an SBOM is generated, detailing the components, libraries, and dependencies
included in the container image. This SBOM is then embedded within the final container
image for easy access and verification.

SBOM Publishing: In addition to incorporating the SBOM into the container image, this task
pushes the SBOM as an independent image using Cosign. This facilitates easier
management and verification of the SBOM by security and compliance teams.

Artifact Creation: The task generates critical security artifacts, including the image
signature (.sig) and attestation (.att). These artifacts are essential for verifying the integrity
and authenticity of the container image and its contents, providing a robust mechanism for
trust and security verification within the deployment pipeline.

update-deployment: Updates the deployment environment with the newly built image. This
update is performed in the GitOps repository in the Overlay > Development directory.

CHAPTER 4. UPDATE CODE AND VIEW SECURITY INSIGHTS

13

https://slsa.dev/spec/v1.0/levels

acs tasks: Conducts security assessments on the code and deployment configurations, ensuring
compliance with established security policies and best practices.

show-sbom: Creates a comprehensive list of all software components and libraries utilized in
the application, improving transparency and supporting vulnerability management.

summary: Provides a summary of the PipelineRun, includes PipelineRun information, and
removes the image repository secret utilized by the PipelineRun.

NOTE

You can click on any tasks within the pipeline run to access logs and additional details
produced upon the successful completion of a task, indicated by a green check.

4.4.1. Red Hat Advanced Cluster Security tasks

RHTAP leverages Red Hat Advanced Cluster Security (RHACS) and its security checks within the
pipeline. If RHACS is installed and configured, the pipeline runs the RHACS tasks (for example, roxctl
image scan) and displays a green check upon completion. However, if RHACS is not installed or
configured, pipeline skips the RHACS tasks.

NOTE

RHACS tasks in the pipeline succeed only if you already have installed and
configured RHACS as part of the RHTAP installation process. For detailed
instructions on installing RHACS, refer Installing Red Hat Red Hat Advanced
Cluster Security for Kubernetes.

If you did not install and configure RHACS during the RHTAP installation process,
refer Configure ACS.

Figure 4.2. The RHACS tasks in the pipeline run

The pipeline incorporates three RHACS tasks using roxctl to perform comprehensive security checks:

roxctl image scan - Returns the components and vulnerabilities found in the image in JSON
format.

roxctl image check - Checks the build-time violations of your security policies in the image. For
example, 'No log4j allowed' or perhaps no curl, wget nor a package manager in a production
image.

roxctl deployment check - Checks the build-time and deploy-time violations of your security

Red Hat Trusted Application Pipeline 1.0 Getting Started with Red Hat Trusted Application Pipeline

14

https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_security_for_kubernetes/4.3/html/installing/index
https://github.com/redhat-appstudio/tssc-sample-pipelines/blob/main/hack/build/README.md

roxctl deployment check - Checks the build-time and deploy-time violations of your security
policies in YAML deployment files.

These tasks ensure adherence to security policies and configurations right from the development stage.

Visualizing RHACS reports
In Red Hat Developer Hub, under the CI tab, the Pipeline Runs section offers a feature to access and
interpret detailed task reports through a structured pop-up interface. The pop-up consists of the
following sections:

Red Hat Advanced Cluster Security (conditionally shown on the availability of RHACS
tasks): This section displays the individual tabs all the RHACS tasks, for example, Image scan,
Image check, and Deployment check, and offers an initial summary of the security issues.

Others: This section displays the results of a PipelineRun, for example, IMAGE_URL, and
IMAGE_DIGEST. This section displays only when there is more than one section (for example,
Enterprise Contract or {RHRHACSLongName}) available in the pop-up.

To view RHACS reports:

1. Select Catalog and open an appropriate component for which you want to review the RHACS
reports

2. Select the CI tab > Actions column > View output icon and review the detailed RHACS reports
in the software components.

Figure 4.3. The detailed RHACS reports

NOTE

If you have appropriate permissions, you can manage vulnerabilities, policies, and review
detailed vulnerability reports for a specific image by navigating to your RHACS console.
For more information, refer Viewing the dashboard.

Interpreting RHACS reports
The detailed reports generated by Red Hat Advanced Cluster Security (RHACS) tasks are instrumental
in providing security insights crucial for maintaining a robust security posture.

Here’s an example of how to interpret roxctl image scan (Image Scan) reports. You can apply a similar
approach to interpret reports from roxctl image check (Image Check) and roxctl deployment check
(Deployment Check).

Vulnerability Breakdown: RHACS categorize detected vulnerabilities by severity (Critical,
Important, Moderate, Low), status (fixable, non-fixable), and offer a summary of the scan

CHAPTER 4. UPDATE CODE AND VIEW SECURITY INSIGHTS

15

https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_security_for_kubernetes/4.3/html-single/operating/index#view-dashboard

results. This categorization includes the total number of vulnerabilities and components
analyzed, alongside specific Common Vulnerabilities and Exposures (CVEs) identified.

Details Provided: For each identified vulnerability, the report includes:

CVE ID: A unique identifier for the vulnerability.

Severity: The level of threat posed by the vulnerability.

Component: The software component affected by the vulnerability.

Component Version: The version of the affected component.

Remediation Suggestions: Recommendations for addressing the vulnerability, including
the version in which the vulnerability is fixed, if applicable.

4.4.2. Understanding SBOM

The show-sbom task contributes to software supply chain transparency by listing all software libraries a
component uses, facilitating the identification of vulnerabilities and assessment of security impacts.

Figure 4.4. The show-sbom task in the pipeline run

Viewing SBOM

Procedures

1. Select Catalog and open an appropriate component for which you want to view SBOM.

2. Select the CI tab and then select the link icon. The system displays the SBOM task logs and you
can use your web browser to immediately search the SBOM for terms that indicate
vulnerabilities in your software supply chain. For example, try searching for log4j.

Figure 4.5. The SBOM details

Red Hat Trusted Application Pipeline 1.0 Getting Started with Red Hat Trusted Application Pipeline

16

Figure 4.5. The SBOM details

Downloading an SBOM in the CLI

Prerequisites

You have installed the Cosign CLI tool.

The build-container and show-sbom tasks ran successfully.

Procedures

1. Expand an appropriate successful pipeline run and select the show-summary task.

2. Find and copy the SBOM image URL, and run the following command on your terminal.

Example cosign command

a. (Optional) To view the full SBOM in a searchable format, run the following command to
redirect the output:

Example cosign command

Reading the SBOM
In the SBOM, as the following sample excerpt shows, you can see four characteristics of each library
that a project uses:

Its author or publisher

Its name

$ cosign download sbom <the-sbom-url-you-copied>

$ cosign download sbom <the-sbom-url-you-copied> > sbom.txt

CHAPTER 4. UPDATE CODE AND VIEW SECURITY INSIGHTS

17

https://redhat-appstudio.github.io/docs.appstudio.io/Documentation/main/how-to-guides/Secure-your-supply-chain/proc_inspect_sbom/

Its version

Its licenses

This information helps you verify that individual libraries are safely-sourced, updated, and compliant.

Example SBOM

{
 "bomFormat": "CycloneDX",
 "specVersion": "1.4",
 "serialNumber": "urn:uuid:89146fc4-342f-496b-9cc9-07a6a1554220",
 "version": 1,
 "metadata": {
 ...
 },
 "components": [
 {
 "bom-ref": "pkg:pypi/flask@2.1.0?package-id=d6ad7ed5aac04a8",
 "type": "library",
 "author": "Armin Ronacher <armin.ronacher@active-4.com>",
 "name": "Flask",
 "version": "2.1.0",
 "licenses": [
 {
 "license": {
 "id": "BSD-3-Clause"
 }
 }
],
 "cpe": "cpe:2.3:a:armin-ronacher:python-Flask:2.1.0:*:*:*:*:*:*:*",
 "purl": "pkg:pypi/Flask@2.1.0",
 "properties": [
 {
 "name": "syft:package:foundBy",
 "value": "python-package-cataloger"
 ...

Red Hat Trusted Application Pipeline 1.0 Getting Started with Red Hat Trusted Application Pipeline

18

CHAPTER 5. DEPLOY APPLICATION AND VIEW SECURITY
INSIGHTS

Organizations leverage a structured approach for application deployment, typically involving
development, pre-production, and production stages. This process is often automated and governed by
defined rules and triggers.

This guide outlines deploying applications through ArgoCD in OpenShift GitOps, enabling continuous
deployment across all stages. ArgoCD facilitates a GitOps-based deployment strategy, treading your
Git repository as a single source of truth for your infrastructure configurations. Updates to this
repository trigger deployments across environments.

NOTE

This guide shows an example deployment approach; organizations may adopt any method
that suits their workflow.

5.1. PROMOTING A BUILD TO A PRE-PRODUCTION OR PRODUCTION
ENVIRONMENT

Promoting a build from one environment to another (like from development to stage or production)
involves updating the GitOps repository through a pull request (PR).

1. On RHDH platform, select Catalog.

2. From the Kind dropdown list, select Resource, and then select an appropriate GitOps
repository.

3. On the Overview tab, select View Source.

4. (Optional) Alternatively, select Catalog, and then on the Overview tab, select View TechDocs

a. In the Home > Repository section, select the GitOps repository.

5. Clone your GitOps repository, and go to the component/<app-name> directory.

NOTE

Ensure that the local clone is up-to-date.

6. Checkout a new branch.

7. Within the repository, locate the component/<app-name>/overlays directory, where you’ll find
the development, stage, and prod subdirectories, each correspond to an environment.

8. Manually move an application from development environment to the stage or production
environment.

To move your application Do this

CHAPTER 5. DEPLOY APPLICATION AND VIEW SECURITY INSIGHTS

19

From development to stage environment
1. Expand development directory and select

deployment-patch.yaml.

2. Copy the containers image URL. For
example, quay.io/<username>/<app-
name>/imageurl.

3. Go to stage directory, select
deployment-patch.yaml, and replace the
existing container image URL with the one
copied.

NOTE

If you want to promote other
configuration changes (for
example, replicas) in addition to
the container image from the
development to the stage
environment, copy the changes
from the deployment-
patch.yaml file located in the
development directory and
paste them into the
deployment-patch.yaml file
in the stage directory.

From stage to production environment
1. Expand stage directory and select

deployment-patch.yaml.

2. Copy the containers image URL. For
example, quay.io/<username>/<app-
name>/imageurl.

3. Go to prod directory, select deployment-
patch.yaml, and replace the existing
container image URL with the one copied.

NOTE

If you want to promote other
configuration changes (for
example, replicas) in addition to
the container image from the
stage to the production
environment, copy the changes
from the deployment-
patch.yaml file located in the
stage directory and paste them
into the deployment-
patch.yaml file in the prod
directory.

To move your application Do this

9. Commit and push your updates.

Red Hat Trusted Application Pipeline 1.0 Getting Started with Red Hat Trusted Application Pipeline

20

10. Create a pull request (PR). This action initiates a promotion pipeline run that validates the
updated container images against Red Hat Enterprise Contract (Enterprise Contract) policies.
The pipeline run visually represents all tasks, with a green status signifying successful
completion.

a. Review the promotion pipeline in the CI tab within RHDH.

11. Review and merge the PR. Merging the PR triggers ArgoCD, which then automatically applies
the necessary changes to promote the build to the next environment.

a. Review the latest deployment updates in the CD tab within RHDH. It displays updates on the
application’s current status, deployment details, the author of the pipeline run, the commit
message (for example, Promote stage to prod), and the container image advanced to
production.

Verification

To assess the successful promotion of your application, navigate to the Topology tab. Here, you
can review the application’s distribution across the designated namespaces.

5.2. VIEW SECURITY INSIGHTS

The promotion pipeline run offers a visual representation of all the tasks in a pipeline. A green status
indicates successful completion, streamlining your workflow without extensive oversight.

The promotion pipeline tasks comprise:

clone-repository: Clones the specified repository into the workspace, readying it for action with
the git-clone Task.

gather-deploy-images: Detects container images to scan based on the changes in the PR.

verify-enterprise-contract: Validates the changed container images. This task ensures images
originate from a corporate standard or approved build system. It leverages the Enterprise
Contract (EC) policies, working alongside Sigstore’s cosign tool, to assess the integrity of image
signatures and attestations.

NOTE

You can click on any tasks within the pipeline run to access logs and additional details
related to that task.

5.2.1. Enterprise contract task

The Enterprise Contract is a suite of tools designed to maintain software supply chain security. It allows
for defining and enforcing policies related to how container images are built and tested.

The Enterprise Contract ensures container images produced by Red Hat Trusted Application Pipeline
meet clearly defined requirements before releasing them to production. Should an image fail to meet
these criteria, the EC generates a report outlining the specific issues that need to be addressed.

The Red Hat Trusted Application Pipeline build process utilizes Tekton Chains to create a signed in-toto
attestation of the build pipeline. The EC then leverages this signed attestation to cryptographically
verify the build’s integrity and assess it against a set of policies. These policies ensure that the build
process adheres to prescribed best practices and any organization-specific security guidelines.

CHAPTER 5. DEPLOY APPLICATION AND VIEW SECURITY INSIGHTS

21

https://tekton.dev/docs/chains/
https://in-toto.io/in-toto/

Interpreting compliance reports
The detailed reports generated by Enterprise Contract (EC) scans are instrumental in providing security
insights crucial for maintaining a robust security posture. Here’s how to interpret these reports:

Policy Compliance Overview: EC scans assess the application’s compliance with the Supply
Chain Levels for Software Artifacts (SLSA) security framework. The reports list the checks
conducted, the status (success, warning, failure) of each check, and provide messages for any
warnings or failures observed.

Details Provided: Policy reports detail:

Successful Checks: Counts and specifics of policy rules met.

Warnings and Failures: Any policy rules that resulted in warnings or failures, with messages
explaining the reason.

Rule Compliance: Specifics on how well the application adheres to individual policy rules,
such as source code reference and attestation checks.

Figure 5.1. The EC report

Utilizing the insights from compliance reports
The insights gleaned EC scan reports are critical for prioritizing security and compliance efforts:

Review Policy Compliance: Ensure your application’s integrity by closely reviewing compliance
with SLSA and other relevant standards. Address any compliance gaps as per the EC scan
recommendations.

Streamline Report Review: Employ provided filters within the reports to focus on significant
areas, facilitating a more efficient review process and allowing for quick identification of critical
issues and compliance gaps.

Additional resources

For more information on EC policy and configuration, refer Managing compliance with
Enterprise Contract.

Red Hat Trusted Application Pipeline 1.0 Getting Started with Red Hat Trusted Application Pipeline

22

https://access.redhat.com/documentation/en-us/red_hat_trusted_application_pipeline/1.0/html/managing_compliance_with_enterprise_contract/

Revised on 2024-07-01 13:31:48 UTC

CHAPTER 5. DEPLOY APPLICATION AND VIEW SECURITY INSIGHTS

23

	Table of Contents
	CHAPTER 1. UNDERSTANDING RHTAP'S FOUNDATIONS
	1.1. SECURE CI/CD FRAMEWORK
	1.2. DEEP DIVE INTO RHTAP'S SECURITY TOOLS
	1.3. LEVERAGING READY-TO-USE SOFTWARE TEMPLATES
	1.4. KEY SECURITY PRACTICES
	1.5. THE PATH FORWARD

	CHAPTER 2. YOUR PATH TO SECURE APPLICATION DEVELOPMENT
	2.1. INSTALLATION OVERVIEW
	2.2. INITIAL SETUP

	CHAPTER 3. BUILD AN APPLICATION WITH SAMPLE SOFTWARE TEMPLATES
	3.1. SETTING THE STAGE
	3.2. BUILD AN APPLICATION
	Provide application information
	Provide application repository information
	Provide deployment information

	3.3. REVIEW YOUR APPLICATION
	3.4. UNREGISTER YOUR APPLICATION

	CHAPTER 4. UPDATE CODE AND VIEW SECURITY INSIGHTS
	4.1. INITIATING CODE UPDATES
	4.2. MAKING CHANGES TO YOUR CODE
	4.3. VIEWING THE PIPELINE RUN
	4.4. VIEW SECURITY INSIGHTS
	4.4.1. Red Hat Advanced Cluster Security tasks
	Visualizing RHACS reports
	Interpreting RHACS reports

	4.4.2. Understanding SBOM
	Viewing SBOM
	Downloading an SBOM in the CLI
	Reading the SBOM

	CHAPTER 5. DEPLOY APPLICATION AND VIEW SECURITY INSIGHTS
	5.1. PROMOTING A BUILD TO A PRE-PRODUCTION OR PRODUCTION ENVIRONMENT
	5.2. VIEW SECURITY INSIGHTS
	5.2.1. Enterprise contract task
	Interpreting compliance reports
	Utilizing the insights from compliance reports

