
Red Hat Trusted Application Pipeline 1.0

Managing compliance with Enterprise Contract

Learn how Enterprise Contract enables you to better verify and govern compliance
of the code you promote. Additionally, customize the sample policies to fit your

corporate standards.

Last Updated: 2024-07-01

Red Hat Trusted Application Pipeline 1.0 Managing compliance with
Enterprise Contract

Learn how Enterprise Contract enables you to better verify and govern compliance of the code you
promote. Additionally, customize the sample policies to fit your corporate standards.

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides information about how to manage and maintain software supply chain
security by defining and enforcing policies for building and testing container images.

. .

. .

. .

. .

. .

. .

Table of Contents

PREFACE

CHAPTER 1. ENTERPRISE CONTRACT FOR RED HAT TRUSTED APPLICATION PIPELINE

CHAPTER 2. INSTALLING THE ENTERPRISE CONTRACT COMMAND LINE

CHAPTER 3. CREATING A POLICY
3.1. CONFIGURING A POLICY

CHAPTER 4. SIGNING A CONTAINER IMAGE
4.1. GENERATING A SIGNING KEY TO SIGN AND ATTEST A CONTAINER IMAGE
4.2. VALIDATING CONTAINER IMAGE SIGNATURES WITH ENTERPRISE CONTRACT AND TRUSTED
ARTIFACT SIGNER

CHAPTER 5. ATTESTING AND VALIDATING A CONTAINER IMAGE
5.1. VERIFYING JSON AND YAML DEFINITIONS

3

4

6

7
8

11
12

13

17
18

Table of Contents

1

Red Hat Trusted Application Pipeline 1.0 Managing compliance with Enterprise Contract

2

PREFACE
Enterprise Contract is a policy-driven workflow tool for maintaining software supply chain security by
defining and enforcing policies for building and testing container images. A secure CI/CD workflow
should include artifact verification to detect problems early. It’s the job of Enterprise Contract to
validate that a container image is signed and attested by a known and trusted build system.

PREFACE

3

CHAPTER 1. ENTERPRISE CONTRACT FOR RED HAT TRUSTED
APPLICATION PIPELINE

The more complex a software supply chain becomes, the more critical it is to employ reliable checks and
best practices to guarantee software artifact integrity and source code dependability. Artifacts such as
your image containers. This is where Red Hat Enterprise Contract enters your Red Hat Trusted
Application Pipeline build and deploy experience.

Enterprise Contract is a policy-driven workflow tool for maintaining software supply chain security by
defining and enforcing policies for building and testing container images. For a build system that creates
Supply-chain Levels for Software Artifacts (SLSA) provenance attestations, such as Tekton with Tekton
Chains and GitHub Actions with the SLSA GitHub Generator, checking the signatures and confirming
that the contents of the attestations actually match what is expected is a critical part of verifying and
maintaining the integrity of your software supply chain. A secure CI/CD workflow should include artifact
verification to detect problems early. It’s the job of Enterprise Contract to validate that a container
image is signed and attested by a known and trusted build system.

The general steps for validating a signed and attested container image are as follows:

1. Create or copy a container image with Red Hat Trusted Application Pipeline.

2. Generate a signing key with Cosign.

3. Sign the container image with Cosign.

4. Attest the image with Cosign.

5. Verify your signed and attested container image with the Enterprise Contract CLI.

But what does it mean to sign and attest to the provenance of a software artifact like a container image?
Why do it? And how?

Signed software artifacts like container images are at a significantly lower risk of several attack vectors
than unsigned artifacts. When a container image is signed, various cryptographic techniques bind the
image to a specific entity or organization. The result is a digital signature that verifies the authenticity of
the image so that you can trace it back to its creator—that entity or organization—and also verify that the
image wasn’t altered or tampered with after it was signed. For more information about software supply
chain threats, see Supply chain threats .

Enterprise Contract uses the industry standard Sigstore Cosign as a resource library to validate your
container images. With Trusted Artifact Signer, Red Hat’s supported version of the Sigstore framework,
you can use your own on-prem instance of Sigstore’s services to sign and attest your container images
with the Cosign CLI. For more information about Trusted Artifact Signer, see Red Hat Trusted Artifact
Signer.

As for software artifact attestation, it can’t happen without provenance. Provenance is the verifiable
information about software artifacts like container images that describes where, when, and how that
artifact was produced. The attestation itself is an authenticated statement, in the form of metadata,
that proves that an artifact is intact and trustworthy. Enterprise Contract uses that attestation to
cryptographically verify that the build was not tampered with, and to check the build against any set of
policies, such as SLSA requirements. For more information about SLSA, see About SLSA.

When you push your code from either the RHTAP development namespace to the stage namespace, or
from the stage namespace to the production namespace, Enterprise Contract automatically runs its
validation checks to make sure your container image was signed and attested by known and trusted build
systems. When your image passes the Enterprise Contract check, you can merge your code changes to

Red Hat Trusted Application Pipeline 1.0 Managing compliance with Enterprise Contract

4

https://slsa.dev/spec/v1.0/threats-overview
https://www.sigstore.dev/
https://docs.sigstore.dev/signing/quickstart/
https://access.redhat.com/documentation/en-us/red_hat_trusted_artifact_signer/1/html/deployment_guide/index
https://slsa.dev/spec/v1.0/about

complete your promotion from one environment to the next. For more information about deploying your
application to a different namespace, see Trusted Application Pipeline Software Template. For more
inforamtion about where RHTAP saves your deployment manifests, see the RHTAP GitOps repository
and its YAML files.

Additional resources

For more information about signing and attesting a container image, see Signing a container image .

CHAPTER 1. ENTERPRISE CONTRACT FOR RED HAT TRUSTED APPLICATION PIPELINE

5

https://github.com/redhat-appstudio/tssc-sample-templates/blob/main/skeleton/backstage/docs/index.md
https://github.com/redhat-appstudio/build-definitions/tree/main/pipelines/gitops-pull-request-rhtap
https://access.redhat.com/documentation/en-us/red_hat_trusted_application_pipeline/1.0/html-single/managing_compliance_with_enterprise_contract/index#proc_signing-container-image_enterprise_contract-rhtap

CHAPTER 2. INSTALLING THE ENTERPRISE CONTRACT
COMMAND LINE

Prerequisites

A working Red Hat Trusted Artifact Signer installation on Red Hat OpenShift Container
Platform version 4.13 or higher.

A workstation with the cosign and oc binary files installed.

Access to the OpenShift web console.

Procedure

1. Download the ec binary file from the OpenShift cluster.

a. Log in to the OpenShift web console. From the home page, click the ? icon, select
Command line tools, go to the ec download section, then click the link for your platform.

b. Open a terminal on your workstation, decompress the binary .gz file, then set the execute
bit:

Example

gunzip ec-amd64.gz
chmod +x ec-amd64

2. Move and rename the binary to a location within your $PATH environment:

Example

sudo mv ec-amd64 /usr/local/bin/ec

Verification

Run the ec version command. The result should be the version of the Enterprise Contract CLI
that you just installed.

Red Hat Trusted Application Pipeline 1.0 Managing compliance with Enterprise Contract

6

1

2

3

CHAPTER 3. CREATING A POLICY
An Enterprise Contract policy is a rule or set of rules and Enterprise Contract-specific annotations.
Enterprise Contract can perform several types of policy checks, including checking all of policy rules
required for Red Hat products. Enterprise Contract uses the general purpose policy engine called Open
Policy Agent, or OPA. OPA defines its policy rules in their own language, called Rego. This means that
the policy rules from OPA that are in an Enterprise Contract policy are also defined in Rego.

Procedure

1. Create a Rego file to define a new policy rule, as in the following example:

echo 'package zero_to_hero

import future.keywords.contains
import future.keywords.if
import future.keywords.in

METADATA 1
title: Builder ID
description: Verify the SLSA Provenance has the builder.id set to
the expected value.
custom:
short_name: builder_id 2
failure_msg: The builder ID %q is not the expected %q
solution: >-
Ensure the correct build system was used to build the container
image.
deny contains result if {
 some attestation in input.attestations 3
 attestation.statement.predicateType == "https://slsa.dev/provenance/v0.2"

 expected := "https://localhost/dummy-id"
 got := attestation.statement.predicate.builder.id

 expected != got

 result := {
 "code": "zero_to_hero.builder_id",
 "msg": sprintf("The builder ID %q is not expected, %q", [got, expected])
 }
}
' > rules.rego

The METADATA comment block—the first 10 lines of code, which are all preceded by
hashtags (#)--is how rego specifies rules annotations so that Enterprise Contract can
include those annotation details its successes and violations report. For more information
about rego metadata and annotations, see Metadata. For more information about the
annotations that Enterprise Contract policy rules must contain, see Rule annotations.

This single policy rule verifies that the builder.id in your new policy rule matches the
builder.id in your Supply-chain Levels for Software Artifacts, or SLSA, provenance.

input.attestations is a rego object that contains all of the information about your container
image, its signature, and its attestations. See Policy Input for more information about

CHAPTER 3. CREATING A POLICY

7

https://enterprisecontract.dev/docs/ec-policies/release_policy.html#redhat
https://www.openpolicyagent.org/docs/latest/policy-language/#metadata
https://enterprisecontract.dev/docs/ec-policies/authoring.html#_rule_annotations
https://enterprisecontract.dev/docs/ec-cli/main/policy_input.html

image, its signature, and its attestations. See Policy Input for more information about
where and how Enterprise Contract defines input.attestations contents.

TIP

You can save the input.attestations object to a JSON file so that you can borrow from it when
you specify new policy rules. To save input.attestations as a JSON file, run a command that’s
similar to the following example:

ec validate image --public-key cosign.pub --image "$REPOSITORY:latest" --policy
policy.yaml \
 --show-successes --info --output yaml

2. Create a policy configuration to use your new policy rule, as in the following example:

3. Use your new policy to validate your container image, and to display additional information in the
successes and violations report, as in the following example:

ec validate image --public-key cosign.pub --image "$REPOSITORY:latest" --policy
policy.yaml \
 --show-successes --info --output yaml

Verification

Check the Successes and violations report to make sure that your new rule is in the successes
list.

Additional resources

For a set of useful Enterprise Contract policy rules, see the ec-policies GitHub repository.

For more information about OPA and Rego, see OPA’s Policy Language content.

For more information about SLSA provenance, see SLSA Provenance.

3.1. CONFIGURING A POLICY

You can configure an Enterprise Contract policy with an inline JSON or YAML string. This policy,
sometimes called a config or a contract, specifies where Enterprise Contract should find the rules and
data to use to apply the policies you want to enforce. You can also include or exclude a single rule or a
particular package of rules.

Procedure

1. Configure your policy in the command line as a JSON or YAML string, as in the following

echo "

sources:
 - policy:
 - $(pwd)/rules.rego
" > policy.yaml

Red Hat Trusted Application Pipeline 1.0 Managing compliance with Enterprise Contract

8

https://github.com/enterprise-contract/ec-policies
https://www.openpolicyagent.org/docs/latest/policy-language/
https://slsa.dev/spec/v0.1/provenance

1

1. Configure your policy in the command line as a JSON or YAML string, as in the following
example:

ec validate image --policy '{
 "configuration": {
 "include": ["@minimal"]
 },
 "sources": [
 {
 "policy": ["oci::quay.io/enterprise-contract/ec-release-policy:latest"],
 "data": ["git::https://github.com/enterprise-contract/ec-policies//example/data"]
 }
]
}' ...

2. (Optional) Exclude a particular package of rules from your Enterprise Contract policy, as in the
following example:

exclude:
- attestation_task_bundle
- slsa_build_scripted_build

This command includes every rule from every package except for the rules in the specified
packages.

3. (Optional) Exclude a single rule, as in the following example:

exclude:
- attestation_task_bundle.unacceptable_task_bundle

This commands includes every rule from the attestation_task_bundle package except for the
unacceptable_task_bundle rule.

4. (Optional) Include rules from only a particular package, as in the following example:

include:
- test
- java

This command includes only the rules from the specified packages.

5. (Optional) Include only some rules from a particular package. This means that you can specify
both include and exclude to select only the rules you want your Enterprise Contract policy to
include, as in the following example:

include:
- "*" 1
- attestation_task_bundle.unacceptable_task_bundle
exclude:
- attestation_task_bundle.*

The asterisk (*) acts as a wildcard to match any package. Note that it does not match partial
names, which means that, for example, you can’t specify "s*" to match every package that
starts with "s".

These commands specify that you want to include only the unacceptable_task_bundle rule

CHAPTER 3. CREATING A POLICY

9

These commands specify that you want to include only the unacceptable_task_bundle rule
from the attestation_task_bundle package, and exclude all the other rules in that package.

6. (Optional) Exclude certain checks so that Enterprise Contract can validate your container image
even if those checks fail or don’t complete, as in the following example:

exclude:
- test:get-clair-scan
- test:clamav-scan

This command specifies that, if either of the identified checks fails or doesn’t complete,
Enterprise Contract can still finish to validate your container image.

7. (Optional) Modify the defaults for rules in a package by running either the
config.policy.include command or the config.policy.exclude command, along with a list of
strings.
Your list of strings should include one of the following:

"package name" - Choose from the packages in the Available rule collections list.

"rule name" - Specify a rule name by entering the name of the package and the rule code,
separated by a dot (.), as in this example: attestation_type.unknown_att_type. You can
find rule codes under "Attestation type" here.

"package name:term" - Some policy rules process a list of items. When you add "term" to
the "package name" string, you can exclude or include a particular item from that list. This
works similarly to "package name," except that it applies only to policy rules in the package
that match that term. For example, if you run the test package, you can choose to ignore a
given test case but include all the others.

"rule name:term" - This is similar to "package name:term" except that, instead of including or
excluding an item from a package, you can include ot exclude a particular package policy
rule.

"@collection name" - Add this to your string to specify a predefined collection of rules.
TMake sure you prefix the collection name with the @ symbol. Choose from the available
rule collections here.

Additional resources

For a comprehensive list of release policy details, see Release Policy .

Red Hat Trusted Application Pipeline 1.0 Managing compliance with Enterprise Contract

10

https://enterprisecontract.dev/docs/ec-policies/release_policy.html#_available_rule_collections
https://enterprisecontract.dev/docs/ec-policies/release_policy.html#attestation_type_package
https://enterprisecontract.dev/docs/ec-policies/release_policy.html#_available_rule_collections
https://enterprisecontract.dev/docs/ec-policies/release_policy.html

CHAPTER 4. SIGNING A CONTAINER IMAGE

Prerequisites

Access to the OpenShift web console.

A working Red Hat Trusted Artifact Signer installation running on OpenShift version 4.13 or
later.

A workstation with the ec, cosign, and oc binary files installed.

Procedure

1. Log in to your OpenShift cluster:

Syntax

oc login --token=TOKEN --server=SERVER_URL_AND_PORT

Example

oc login --token=sha256~ZvFDBvoIYAbVECixS4-WmkN4RfnNd8Neh3y1WuiFPXC --
server=https://example.com:6443

NOTE

To find your command line login token and URL, log in to the OpenShift web
console. Click your user name, then click Copy login command. If prompted,
enter your user name and password again, then click Display Token.

2. Log in to Trusted Artifact Signer. Make sure to configure your Trusted Artifact Signer shell
environment to sign and verify container images; for example:

cd sigstore-ocp
source tas-env-variables.sh

You also have the option to set the environment variables manually; for example:

export OPENSHIFT_APPS_SUBDOMAIN=apps.$(oc get dns cluster -o jsonpath='{
.spec.baseDomain }')
export OIDC_AUTHENTICATION_REALM=sigstore
export FULCIO_URL=https://fulcio.$OPENSHIFT_APPS_SUBDOMAIN
export OIDC_ISSUER_URL=https://keycloak-keycloak-
system.$OPENSHIFT_APPS_SUBDOMAIN/auth/realms/$OIDC_AUTHENTICATION_REALM

export REKOR_URL=https://rekor.$OPENSHIFT_APPS_SUBDOMAIN
export TUF_URL=https://tuf.$OPENSHIFT_APPS_SUBDOMAIN

Example

$ source ./tas-env-vars.sh

3. Log out of your OpenShift cluster by running this command: oc logout.

CHAPTER 4. SIGNING A CONTAINER IMAGE

11

https://docs.openshift.com/container-platform/4.10/web_console/web-console.html

4. Identify the container image you want to sign and attest; for example:
IMAGE=quay.io/lucarval/rhtas-
test@sha256:6b95efc134c2af3d45472c0a2f88e6085433df058cc210abb2bb061ac4d74359.

5. Indicate to RHTAP that you want to sign and attest your container image with Trusted Artifact
Signer instead of the public Sigstore deployment. Enter this command: cosign initialize --
mirror=$TUF_URL --root=$TUF_URL/root.json.

6. Sign your container image with the following command:

cosign sign -y --fulcio-url=$FULCIO_URL --rekor-url=$REKOR_URL \
 --oidc-issuer=$OIDC_ISSUER_URL $IMAGE

7. When prompted, log in to the Keycloak instance that RHTAP installed when you installed
Trusted Artifact Signer. This is so Keycloak can authenticate you.

Next steps

Your image is now signed. Now you can:

1. Create a SLSA provenance attestation and associate it with your container image.

2. Validate your container image with the Red Hat Enterprise Contract.

Additional resources

For more information about Red Hat Trusted Artifact Signer, and especially about how it works
with RHTAP and Enterprise Contract, see Red Hat Trusted Artifact Signer Deployment .

For more information about Keycloak, see Keycloak.org.

4.1. GENERATING A SIGNING KEY TO SIGN AND ATTEST A
CONTAINER IMAGE

You must have a signing key before you can sign and attest a container image.

Prerequisites

A workstation with the cosign binary files installed.

Procedure

1. In your CLI, run this command: cosign generate-key-pair.

2. When prompted, enter a new password for the key-pair. Make sure your password is memorable
and strong.

Verification

You should now have two new files in your working directory: a cosign.pub file and a
cosign.key file.

The cosign.pub file contains your public signing key. You can share this key with any
collaborator who needs to validate the container image.

The cosign.key file is your private key for signing content. Only the person responsible for

Red Hat Trusted Application Pipeline 1.0 Managing compliance with Enterprise Contract

12

https://access.redhat.com/documentation/en-us/red_hat_trusted_artifact_signer/2023-q4/html-single/deployment_guide/index#installing-red-hat-trusted-artifact-signer-on-openshift_deploy
https://www.keycloak.org/

The cosign.key file is your private key for signing content. Only the person responsible for
signing and attesting images should have access to the cosign.key file.

4.2. VALIDATING CONTAINER IMAGE SIGNATURES WITH ENTERPRISE
CONTRACT AND TRUSTED ARTIFACT SIGNER

When you install the Red Hat Trusted Artifact Signer service RHTAS, you can use the ec binary file to
validate the attestation and signature of container images that use the RHTAS service’s keyless signing
framework. For more information about installing RHTAS, see Installing Red Hat Trusted Artifact Signer
using the Operator Lifecycle Manager.

Prerequisites

A working RHTAS installation running on OpenShift version 4.13 or later.

Access to the OpenShift web console.

A workstation with the cosign and oc binary files installed.

Procedure

1. Download the ec binary file from the OpenShift cluster:

a. Log in to the OpenShift web console. From the home page, click the ? icon in the upper
right, then select Command Line Tools.

b. From the ec download section, click the link for your platform.

c. Open a terminal, decompress the .gz file, and set the execute bit on the ec binary file:

Examples for Linux and macOS

$ gunzip ec-amd64.gz

$ chmod +x ec-amd64

d. Move the ec binary file to a directory within your $PATH environment:

Example

$ sudo mv ec-amd64 /usr/local/bin/ec

TIP

Run the ec validate image --help command to see all the image validation command options.

2. Configure your shell environment for container image signing and verification.

a. Open a terminal and run the tas-env-variables.sh script from the sigstore-ocp directory:

Example

cd sigstore-ocp
source tas-env-variables.sh

CHAPTER 4. SIGNING A CONTAINER IMAGE

13

https://access.redhat.com/documentation/en-us/red_hat_trusted_artifact_signer/1/html/deployment_guide/installing-trusted-artifact-signer-using-the-operator-lifecycle-manager_deploy
https://docs.openshift.com/container-platform/4.10/web_console/web-console.html

b. (Optional) Set the environment variables manually:

Example

export OPENSHIFT_APPS_SUBDOMAIN=apps.$(oc get dns cluster -o jsonpath='{
.spec.baseDomain }')
export OIDC_AUTHENTICATION_REALM=sigstore
export FULCIO_URL=https://fulcio.$OPENSHIFT_APPS_SUBDOMAIN
export OIDC_ISSUER_URL=https://keycloak-keycloak-
system.$OPENSHIFT_APPS_SUBDOMAIN/auth/realms/$OIDC_AUTHENTICATION_RE
ALM
export REKOR_URL=https://rekor.$OPENSHIFT_APPS_SUBDOMAIN
export TUF_URL=https://tuf.$OPENSHIFT_APPS_SUBDOMAIN

Example

$ source ./tas-env-vars.sh

3. Initialize The Update Framework (TUF) system:

Example

cosign initialize --mirror=$TUF_URL --root=$TUF_URL/root.json

4. Sign your container image:

Syntax

cosign sign -y --fulcio-url=$FULCIO_URL --rekor-url=$REKOR_URL --oidc-
issuer=$OIDC_ISSUER_URL IMAGE_NAME

Example

cosign sign -y --fulcio-url=$FULCIO_URL --rekor-url=$REKOR_URL --oidc-
issuer=$OIDC_ISSUER_URL example-hello-
world@sha256:2788a47fd0ef1ece30898c1e608050ea71036d3329b9772dbb3d1f69313f745c

In the web browser that opens, sign the container image with an email address.

5. Create a predicate.json file:

Example

{
 "builder": {
 "id": "https://localhost/dummy-id"
 },
 "buildType": "https://example.com/tekton-pipeline",
 "invocation": {},
 "buildConfig": {},
 "metadata": {
 "completeness": {
 "parameters": false,
 "environment": false,
 "materials": false
 },
 "reproducible": false

Red Hat Trusted Application Pipeline 1.0 Managing compliance with Enterprise Contract

14

 },
 "materials": []
}

6. Associate the predicate.json file with your container image:

Syntax

cosign attest -y --predicate ./predicate.json \
--type slsaprovenance IMAGE_NAME:TAG

Example

$ cosign attest -y --predicate ./predicate.json \
--type slsaprovenance example.io/hello-world:latest

7. Verify that the container image has at least one attestation and signature:

Syntax

cosign tree IMAGE_NAME:TAG

Example

$ cosign tree example.io/hello-world:latest
� Supply Chain Security Related artifacts for an image: example.io/hello-
world@sha256:7de5fa822a9d1e507c36565ee0cf50c08faa64505461c844a3ce3944d23efa35
└── � Attestations for an image tag: example.io/hello-world:sha256-
7de5fa822a9d1e507c36565ee0cf50c08faa64505461c844a3ce3944d23efa35.att
 └── �
sha256:40d94d96a6d3ab3d94b429881e1b470ae9a3cac55a3ec874051bdecd9da06c2e
└── � Signatures for an image tag: example.io/hello-world:sha256-
7de5fa822a9d1e507c36565ee0cf50c08faa64505461c844a3ce3944d23efa35.sig
 └── �
sha256:f32171250715d4538aec33adc40fac2343f5092631d4fc2457e2116a489387b7

8. Verify the container image with Enterprise Contract:

Syntax

ec validate image --image IMAGE_NAME:TAG \
--certificate-identity-regexp 'SIGNER_EMAIL_ADDR' \
--certificate-oidc-issuer-regexp 'keycloak-keycloak-system' \
--output yaml --show-successes

Example

$ ec validate image --image example.io/hello-world:latest \
--certificate-identity 'jdoe@example.com' \
--certificate-oidc-issuer 'keycloak-keycloak-system' \
--output yaml --show-successes

success: true
successes:

CHAPTER 4. SIGNING A CONTAINER IMAGE

15

 - metadata:
 code: builtin.attestation.signature_check
 msg: Pass
 - metadata:
 code: builtin.attestation.syntax_check
 msg: Pass
 - metadata:
 code: builtin.image.signature_check
 msg: Pass
ec-version: v0.1.2427-499ef12
effective-time: "2024-01-21T19:57:51.338191Z"
key: ""
policy: {}
success: true

Enterprise Contract generates a pass/fail report with details about any security violations. When
you add the --info flag, the report includes more details and possible solutions for any
violations.

Additional resources

For more information about RHTAS, see Product Documentation for Red Hat Trusted Artifact
Signer.

For more information about TUF, see The Update Framework .

For more information about signing and verifying container images with Cosign, see ADD
LATER.

For more information about SLSA provenance predicate specification, see SLSA Provenance.

Red Hat Trusted Application Pipeline 1.0 Managing compliance with Enterprise Contract

16

https://access.redhat.com/documentation/en-us/red_hat_trusted_artifact_signer/1
https://theupdateframework.io/
https://slsa.dev/spec/v1.0/provenance

CHAPTER 5. ATTESTING AND VALIDATING A CONTAINER
IMAGE

Before Enterprise Contract can validate your signed container image, you must first create SLSA
provenance and associate it with your container image. Provenance is the verifiable information about
software artifacts, including where, when, and how a given software "link" in a supply chain was
produced. For more information about Supply-chain Levels for Software Artifacts (SLSA) provenance,
see SLSA Provenance.

Prerequisites

A signed container image.

Access to the OpenShift web console.

A working Red Hat Trusted Artifact Signer installation running on OpenShift version 4.13 or
later.

A workstation with the cosign and oc binary files installed.

Procedure

1. Create a SLSA provenance predicate.json file; for example:

echo '{
 "builder": {
 "id": "https://localhost/dummy-id"
 },
 "buildType": "https://localhost/dummy-type",
 "invocation": {},
 "buildConfig": {},
 "metadata": {
 "buildStartedOn": "2023-09-25T16:26:44Z",
 "buildFinishedOn": "2023-09-25T16:28:59Z",
 "completeness": {
 "parameters": false,
 "environment": false,
 "materials": false
 },
 "reproducible": false
 },
 "materials": []
}
' > predicate.json

2. Sign and attest the predicate.json file you just created; for example:

cosign attest -y --fulcio-url=$FULCIO_URL \
 --rekor-url=$REKOR_URL \
 --oidc-issuer=$OIDC_ISSUER_URL \
 --predicate predicate.json \
 --type slsaprovenance $IMAGE

Keycloak opens to automatically authenticate you based on your login when you signed your

CHAPTER 5. ATTESTING AND VALIDATING A CONTAINER IMAGE

17

https://slsa.dev/spec/v1.0/provenance#schema

Keycloak opens to automatically authenticate you based on your login when you signed your
container image.

3. Verify the signature and attestation with Enterprise Contract, for example:

ec validate image --image $IMAGE \
 --certificate-identity-regexp '.*' \
 --certificate-oidc-issuer-regexp '.*' \
 --output yaml --show-successes

IMPORTANT

Be as specific as possible when you run the ec validate image command so that each
signature matches the expected identity.

Verification

When Enterprise Contract has validated your container image, a detailed report of all Enterprise
Contract verifications and signatures opens.

Additional resources

For more information about Red Hat Trusted Artifact Signer, and especially about how it works
with RHTAP and Enterprise Contract, see Red Hat Trusted Artifact Signer Deployment .

For more information about SLSA, see slsa.dev.

For more information about Keycloak, see keycloak.org.

5.1. VERIFYING JSON AND YAML DEFINITIONS

When you’re considering all of your options for securing your software supply chain, you might choose to
apply policies to task or pipeline definitions. For example, maybe you want to use Enterprise Contract to
check which tasks are performed in a given pipeline. Perhaps you want to make some pipeline tasks
mandatory, allow only certain tasks to be performed, or any other convention you want to enforce
before tasks and pipelines run.

Prerequisites

You’ve installed the Enterprise Contract CLI. For install instructions, refer to the Installing
Enterprise Contract CLI guide. You can find the required files in the ec-cli GitHub repository.

Procedure

To verify that an Enterprise Contract JSON or YAML definition is valid, perform the following steps:

In the Enterprise Contract CLI, enter the ec validate input command.

Red Hat Trusted Application Pipeline 1.0 Managing compliance with Enterprise Contract

18

https://access.redhat.com/documentation/en-us/red_hat_trusted_artifact_signer/2023-q4/html-single/deployment_guide/index#installing-red-hat-trusted-artifact-signer-on-openshift_deploy
https://slsa.dev/
https://www.keycloak.org/
https://access.redhat.com/documentation/en-us/red_hat_trusted_application_pipeline/1.0/html-single/managing_compliance_with_enterprise_contract/index#proc_installing-ec-cli_enterprise_contract-rhtap
https://github.com/enterprise-contract/ec-cli

	Table of Contents
	PREFACE
	CHAPTER 1. ENTERPRISE CONTRACT FOR RED HAT TRUSTED APPLICATION PIPELINE
	CHAPTER 2. INSTALLING THE ENTERPRISE CONTRACT COMMAND LINE
	CHAPTER 3. CREATING A POLICY
	3.1. CONFIGURING A POLICY

	CHAPTER 4. SIGNING A CONTAINER IMAGE
	4.1. GENERATING A SIGNING KEY TO SIGN AND ATTEST A CONTAINER IMAGE
	4.2. VALIDATING CONTAINER IMAGE SIGNATURES WITH ENTERPRISE CONTRACT AND TRUSTED ARTIFACT SIGNER

	CHAPTER 5. ATTESTING AND VALIDATING A CONTAINER IMAGE
	5.1. VERIFYING JSON AND YAML DEFINITIONS

