
Red Hat Virtualization 4.4

Python SDK Guide

Using the Red Hat Virtualization Python SDK

Last Updated: 2023-02-07

Red Hat Virtualization 4.4 Python SDK Guide

Using the Red Hat Virtualization Python SDK

Red Hat Virtualization Documentation Team
Red Hat Customer Content Services
rhev-docs@redhat.com

Legal Notice

Copyright © 2023 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide describes how to install and work with version 4 of the Red Hat Virtualization Python
software development kit.

. .

. .

. .

. .

Table of Contents

CHAPTER 1. OVERVIEW
1.1. PREREQUISITES
1.2. INSTALLING THE PYTHON SOFTWARE DEVELOPMENT KIT

CHAPTER 2. USING THE SOFTWARE DEVELOPMENT KIT
2.1. PACKAGES
2.2. CONNECTING TO THE SERVER
2.3. USING TYPES
2.4. USING LINKS
2.5. LOCATING SERVICES
2.6. USING SERVICES

2.6.1. Using get Methods
2.6.2. Using list Methods
2.6.3. Using add Methods
2.6.4. Using update Methods
2.6.5. Using remove Methods
2.6.6. Using Other Action Methods

2.7. ADDITIONAL RESOURCES
2.7.1. Generating documentation for modules

CHAPTER 3. PYTHON EXAMPLES
3.1. OVERVIEW
3.2. CONNECTING TO THE RED HAT VIRTUALIZATION MANAGER IN VERSION 4
3.3. LISTING DATA CENTERS
3.4. LISTING CLUSTERS
3.5. LISTING HOSTS
3.6. LISTING LOGICAL NETWORKS
3.7. LISTING VIRTUAL MACHINES AND TOTAL DISK SIZE
3.8. CREATING NFS DATA STORAGE
3.9. CREATING NFS ISO STORAGE
3.10. ATTACHING A STORAGE DOMAIN TO A DATA CENTER
3.11. ACTIVATING A STORAGE DOMAIN
3.12. LISTING FILES IN AN ISO STORAGE DOMAIN
3.13. CREATING A VIRTUAL MACHINE
3.14. CREATING A VIRTUAL NIC
3.15. CREATING A VIRTUAL MACHINE DISK
3.16. ATTACHING AN ISO IMAGE TO A VIRTUAL MACHINE
3.17. DETACHING A DISK
3.18. STARTING A VIRTUAL MACHINE
3.19. STARTING A VIRTUAL MACHINE WITH OVERRIDDEN PARAMETERS
3.20. STARTING A VIRTUAL MACHINE WITH CLOUD-INIT
3.21. CHECKING SYSTEM EVENTS

APPENDIX A. LEGAL NOTICE

3
3
4

5
5
5
6
7
8
8
9
9

10
11

13
13
14
14

15
15
15
17
18
18
19

20
21
22
24
25
26
27
28
29
30
32
33
34
36
37

39

Table of Contents

1

Red Hat Virtualization 4.4 Python SDK Guide

2

CHAPTER 1. OVERVIEW
Version 4 of the Python software development kit is a collection of classes that allows you to interact
with the Red Hat Virtualization Manager in Python-based projects. By downloading these classes and
adding them to your project, you can access a range of functionality for high-level automation of
administrative tasks.

NOTE

Version 3 of the SDK is no longer supported. For more information, consult the RHV 4.3
version of this guide.

Python 3.7 and async

In Python 3.7 and later versions, async is a reserved keyword. You cannot use the async parameter in
methods of services that previously supported it, as in the following example, because async=True will
cause an error:

The solution is to add an underscore to the parameter (async_):

NOTE

This limitation applies only to Python 3.7 and later. Earlier versions of Python do not
require this modification.

1.1. PREREQUISITES

To install the Python software development kit, you must have:

A system where Red Hat Enterprise Linux 8 is installed. Both the Server and Workstation
variants are supported.

A subscription to Red Hat Virtualization entitlements.

IMPORTANT

dc = dc_service.update(
 types.DataCenter(
 description='Updated description',
),
 async=True,
)

dc = dc_service.update(
 types.DataCenter(
 description='Updated description',
),
 async_=True,
)

CHAPTER 1. OVERVIEW

3

https://access.redhat.com/documentation/en-us/red_hat_virtualization/4.3/html-single/python_sdk_guide/
https://docs.python.org/3/reference/compound_stmts.html#async

IMPORTANT

The software development kit is an interface for the Red Hat Virtualization REST API.
Use the version of the software development kit that corresponds to the version of your
Red Hat Virtualization environment. For example, if you are using Red Hat Virtualization
4.3, use V4 Python software development kit.

1.2. INSTALLING THE PYTHON SOFTWARE DEVELOPMENT KIT

To install the Python software development kit:

1. Enable the repositories that are appropriate for your hardware platform . For example, for x86-
64 hardware, enable:

2. Install the required packages:

The Python software development kit is installed into the Python 3 site-packages directory, and the
accompanying documentation and example are installed to /usr/share/doc/python3-ovirt-engine-sdk4.

subscription-manager repos \
 --enable=rhel-8-for-x86_64-baseos-rpms \
 --enable=rhel-8-for-x86_64-appstream-rpms \
 --enable=rhv-4.4-manager-for-rhel-8-x86_64-rpms

subscription-manager repos \
 --enable=rhel-8-for-x86_64-baseos-eus-rpms \
 --enable=rhel-8-for-x86_64-appstream-eus-rpms

subscription-manager release --set=8.6

dnf install python3-ovirt-engine-sdk4

Red Hat Virtualization 4.4 Python SDK Guide

4

https://access.redhat.com/documentation/en-us/red_hat_virtualization/4.4/html-single/package_manifest/index

CHAPTER 2. USING THE SOFTWARE DEVELOPMENT KIT
This section describes how to use the software development kit for Version 4.

2.1. PACKAGES

The following modules are most frequently used by the Python SDK:

ovirtsdk4

This is the top level module. It most important element is the Connection class, which is the
mechanism to connect to the server and to obtain the reference to the root of the services tree.
The Error class is the base exception class that the SDK will raise when it needs to report an error.

For certain kinds of errors, there are specific error classes, which extend the base error class:

AuthError - Raised when authentication or authorization fails.

ConnectionError - Raised when the name of the server cannot be resolved or the server is
unreachable.

NotFoundError - Raised when the requested object does not exist.

TimeoutError - Raised when an operation times out.

ovirtsdk4.types

This module contains the classes that implement the types used in the API. For example, the
ovirtsdk4.types.Vm class is the implementation of the virtual machine type. These classes are data
containers and do not contain any logic.
Instances of these classes are used as parameters and return values of service methods. The
conversion to or from the underlying representation is handled transparently by the SDK.

ovirtsdk4.services

This module contains the classes that implement the services supported by the API. For example, the
ovirtsdk4.services.VmsService class is the implementation of the service that manages the
collection of virtual machines of the system.
Instances of these classes are automatically created by the SDK when a service is located. For
example, a new instance of the VmsService class is automatically created by the SDK when doing
the following:

It is best to avoid creating instances of these classes manually, as the parameters of the constructors
and, in general, all the methods except the service locators and service methods, may change in the
future.

There are other modules, like ovirtsdk4.http, ovirtsdk4.readers, and ovirtsdk4.writers. These are
used to implement the HTTP communication and for XML parsing and rendering. Avoid using them,
because they are internal implementation details that may change in the future; backwards
compatibility is not guaranteed.

2.2. CONNECTING TO THE SERVER

vms_service = connection.system_service().vms_service()

CHAPTER 2. USING THE SOFTWARE DEVELOPMENT KIT

5

To connect to the server, import the ovirtsdk4 module, which contains the Connection class. This is the
entry point of the SDK, and provides access to the root of the tree of services of the API:

The connection holds critical resources, including a pool of HTTP connections to the server and an
authentication token. It is very important to free these resources when they are no longer in use:

Once a connection is closed, it cannot be reused.

The ca.pem file is required when connecting to a server protected with TLS. In a normal installation, it is
located in /etc/pki/ovirt-engine/ on the Manager machine. If you do not specify the ca_file, the
system-wide CA certificate store will be used. For more information on obtaining the ca.pem file, see
the REST API Guide .

If the connection is not successful, the SDK will raise an ovirtsdk4.Error exception containing the
details.

2.3. USING TYPES

The classes in the ovirtsdk4.types module are pure data containers. They do not have any logic or
operations. Instances of types can be created and modified at will.

Creating or modifying an instance does not affect the server side, unless the change is explicitly passed
with a call to one of the service methods described below. Changes on the server side are not
automatically reflected in the instances that already exist in memory.

The constructors of these classes have multiple optional arguments, one for each attribute of the type.
This is intended to simplify creation of objects using nested calls to multiple constructors. This example
creates an instance of a virtual machine, specifying its cluster name, template, and memory, in bytes:

Using the constructors in this way is recommended, but not mandatory. You can also create the instance

import ovirtsdk4 as sdk

connection = sdk.Connection(
 url='https://engine.example.com/ovirt-engine/api',
 username='admin@internal',
 password='password',
 ca_file='ca.pem',
)

connection.close()

from ovirtsdk4 import types

vm = types.Vm(
 name='vm1',
 cluster=types.Cluster(
 name='Default'
),
 template=types.Template(
 name='mytemplate'
),
 memory=1073741824
)

Red Hat Virtualization 4.4 Python SDK Guide

6

https://access.redhat.com/documentation/en-us/red_hat_virtualization/4.4/html-single/rest_api_guide/index#documents-002_authentication_and_security

Using the constructors in this way is recommended, but not mandatory. You can also create the instance
with no arguments in the call to the constructor and populate the object step by step, using the setters,
or by using a mix of both approaches:

Attributes that are defined as lists of objects in the specification of the API are implemented as Python
lists. For example, the custom_properties attributes of the Vm type are defined as a list of objects of
type CustomProperty. When the attributes are used in the SDK, they are a Python list:

Attributes that are defined as enumerated values in API are implemented as enum in Python, using the
native support for enums in Python 3 and the enum34 package in Python 2.7. In this example, the
status attribute of the Vm type is defined using the VmStatus enum:

NOTE

In the API specification, the values of enum types appear in lower case, because that is
what is used for XML and JSON. The Python convention, however, is to capitalize enum
values.

Reading the attributes of instances of types is done using the corresponding properties:

2.4. USING LINKS

Some attributes of types are defined by the API as links. This convention indicates that the values are
not normally populated when retrieving the representation of that object. Rather, a link is returned
instead. For example, when retrieving a virtual machine, the XML response from the server includes the
<link> attribute:

<vm id="123" href="/ovirt-engine/api/vms/123">

vm = types.Vm()
vm.name = 'vm1'
vm.cluster = types.Cluster(name='Default')
vm.template = types.Template(name='mytemplate')
vm.memory=1073741824

vm = types.Vm(
 name='vm1',
 custom_properties=[
 types.CustomProperty(...),
 types.CustomProperty(...),
 ...
]
)

if vm.status == types.VmStatus.DOWN:
 ...
elif vm.status == types.VmStatus.IMAGE_LOCKED:

print("vm.name: %s" % vm.name)
print("vm.memory: %s" % vm.memory)
for custom_property in vm.custom_properties:
 ...

CHAPTER 2. USING THE SOFTWARE DEVELOPMENT KIT

7

 <name>vm1</name>
 <link rel="diskattachments" href="/ovirt-engine/api/vms/123/diskattachments/>
 ...
</vm>

The link to vm.diskattachments does not contain the actual disk attachments. To obtain the data, the
Connection class provides a follow_link method that uses the value of the href XML attribute to
retrieve the actual data. For example, to retrieve the details of the disks of the virtual machine, you
follow the link to the disk attachments, and then to each of the disks:

2.5. LOCATING SERVICES

The API provides a set of services, each associated with a path within the URL space of the server. For
example, the service that manages the collection of virtual machines of the system is located in /vms,
and the service that manages the virtual machine with identifier 123 is located in /vms/123.

In the SDK, the root of that tree of services is implemented by the system service. It is obtained calling
the system_service method of the connection:

When you have the reference to this system service, you can use it to obtain references to other
services, calling the *_service methods, called service locators, of the previous service. For example, to
obtain a reference to the service that manages the collection of virtual machines of the system, you use
the vms_service service locator:

To obtain a reference to the service that manages the virtual machine with identifier 123, you use the
vm_service service locator of the service that manages the collection of virtual machines. It uses the
identifier of the virtual machine as a parameter:

IMPORTANT

Calling service locators does not send a request to the server. The Python objects that
they return are pure services, which do not contain any data. For example, the
vm_service Python object called in this example is not the representation of a virtual
machine. It is the service that is used to retrieve, update, delete, start and stop that virtual
machine.

2.6. USING SERVICES

Retrieve the virtual machine:
vm = vm_service.get()

Follow the link to the disk attachments, and then to the disks:
attachments = connection.follow_link(vm.disk_attachments)
for attachment in attachments:
 disk = connection.follow_link(attachment.disk)
 print("disk.alias: " % disk.alias)

system_service = connection.system_service()

vms_service = system_service.vms_service()

vm_service = vms_service.vm_service('123')

Red Hat Virtualization 4.4 Python SDK Guide

8

After you have located a service, you can call its service methods, which send requests to the server and
do the real work.

Services that manage a single object usually support the get, update, and remove methods.

Services that manage collections of objects usually support the list and add methods.

Both kinds of services, especially services that manage a single object, can support additional action
methods.

2.6.1. Using get Methods

These service methods are used to retrieve the representation of a single object. The following example
retrieves the representation of the virtual machine with identifier 123:

The response is an instance of the corresponding type, in this case an instance of the Python class
ovirtsdk4.types.Vm.

The get methods of some services support additional parameters that control how to retrieve the
representation of the object or what representation to retrieve if there is more than one. For example,
you may want to retrieve either the current state of a virtual machine or its state the next time it is
started, as they may be different. The get method of the service that manages a virtual machine
supports a next_run Boolean parameter:

See the reference documentation of the SDK for details.

If the object cannot be retrieved for any reason, the SDK raises an ovirtsdk4.Error exception, with
details of the failure. This includes the situation when the object does not actually exist. Note that the
exception is raised when calling the get service method. The call to the service locator method never
fails, even if the object does not exist, because that call does not send a request to the server. For
example:

2.6.2. Using list Methods

These service methods retrieve the representations of the objects of a collection. This example

Find the service that manages the virtual machine:
vms_service = system_service.vms_service()
vm_service = vms_service.vm_service('123')

Retrieve the representation of the virtual machine:
vm = vm_service.get()

Retrieve the representation of the virtual machine, not the
current one, but the one that will be used after the next
boot:
vm = vm_service.get(next_run=True)

Call the service that manages a non-existent virtual machine.
This call will succeed.
vm_service = vms_service.vm_service('junk')

Retrieve the virtual machine. This call will raise an exception.
vm = vm_service.get()

CHAPTER 2. USING THE SOFTWARE DEVELOPMENT KIT

9

http://ovirt.github.io/ovirt-engine-sdk/master

These service methods retrieve the representations of the objects of a collection. This example
retrieves the complete collection of virtual machines of the system:

The result will be a Python list containing the instances of corresponding types. For example, in this
case, the result will be a list of instances of the class ovirtsdk4.types.Vm.

The list methods of some services support additional parameters. For example, almost all top-level
collections support a search parameter to filter the results or a max parameter to limit the number of
results returned by the server. This example retrieves the names of virtual machines starting with my,
with an upper limit of 10 results:

NOTE

Not all list methods support these parameters. Some list methods support other
parameters. See the reference documentation of the SDK for details.

If a list of returned results is empty for any reason, the returned value will be an empty list. It will never be
None.

If there is an error while trying to retrieve the result, the SDK will raise an ovirtsdk4.Error exception
containing the details of the failure.

2.6.3. Using add Methods

These service methods add new elements to a collection. They receive an instance of the relevant type
describing the object to add, send the request to add it, and return an instance of the type describing
the added object.

This example adds a new virtual machine called vm1:

Find the service that manages the collection of virtual
machines:
vms_service = system_service.vms_service()

List the virtual machines in the collection
vms = vms_service.list()

vms = vms_service.list(search='name=my*', max=10)

from ovirtsdk4 import types

Add the virtual machine:
vm = vms_service.add(
 vm=types.Vm(
 name='vm1',
 cluster=types.Cluster(
 name='Default'
),
 template=types.Template(
 name='mytemplate'
)
)
)

Red Hat Virtualization 4.4 Python SDK Guide

10

http://ovirt.github.io/ovirt-engine-sdk/master

If the object cannot be created for any reason, the SDK will raise an ovirtsdk4.Error exception
containing the details of the failure. It will never return None.

IMPORTANT

The Python object returned by this add method is an instance of the relevant type. It is
not a service but a container of data. In this particular example, the returned object is an
instance of the ovirtsdk4.types.Vm class. If, after creating the virtual machine, you need
to perform an operation such as retrieving or starting it, you will first need to find the
service that manages it, and call the corresponding service locator:

Objects are created asynchronously. When you create a new virtual machine, the add method will return
a response before the virtual machine is completely created and ready to be used. It is good practice to
poll the status of the object to ensure that it is completely created. For a virtual machine, you should
check until its status is DOWN:

Using a loop to retrieve the object status, with the get method, ensures that the status attribute is
updated.

2.6.4. Using update Methods

These service methods update existing objects. They receive an instance of the relevant type describing
the update to perform, send the request to update it, and return an instance of the type describing the
updated object.

This example updates the name of a virtual machine from vm1 to newvm:

Add the virtual machine:
vm = vms_service.add(
 ...
)

Find the service that manages the virtual machine:
vm_service = vms_service.vm_service(vm.id)

Start the virtual machine
vm_service.start()

Add the virtual machine:
vm = vms_service.add(
 ...
)

Find the service that manages the virtual machine:
vm_service = vms_service.vm_service(vm.id)

Wait until the virtual machine is down, indicating that it is
completely created:
while True:
 time.sleep(5)
 vm = vm_service.get()
 if vm.status == types.VmStatus.DOWN:
 break

CHAPTER 2. USING THE SOFTWARE DEVELOPMENT KIT

11

When performing updates, avoid sending the complete representation of the object. Send only the
attributes that you want to update. Do not do this:

Sending the complete representation causes two problems:

You are sending much more information than the server needs, thus wasting resources.

The server will try to update all the attributes of the object, even those that you did not intend
to change. This may cause bugs on the server side.

The update methods of some services support additional parameters that control how or what to
update. For example, you may want to update either the current state of a virtual machine or the state
that will be used the next time the virtual machine is started. The update method of the service that
manages a virtual machine supports a next_run Boolean parameter:

If the update cannot be performed for any reason, the SDK will raise an ovirtsdk4.Error exception
containing the details of the failure. It will never return None.

The Python object returned by this update method is an instance of the relevant type. It is not a service,
but a container for data. In this particular example, the returned object will be an instance of the
ovirtsdk4.types.Vm class.

from ovirtsdk4 import types

Find the virtual machine, and then the service that
manages it:
vm = vms_service.list(search='name=vm1')[0]
vm_service = vm_service.vm_service(vm.id)

Update the name:
updated_vm = vm_service.update(
 vm=types.Vm(
 name='newvm'
)
)

Retrieve the complete representation:
vm = vm_service.get()

Update the representation, in memory, without sending a request
to the server:
vm.name = 'newvm'

Send the update. Do *not* do this.
vms_service.update(vm)

Update the memory of the virtual machine to 1 GiB,
not during the current run, but after next boot:
vm = vm_service.update(
 vm=types.Vm(
 memory=1073741824
),
 next_run=True
)

Red Hat Virtualization 4.4 Python SDK Guide

12

2.6.5. Using remove Methods

These service methods remove existing objects. They usually do not take parameters, because they are
methods of services that manage single objects. Therefore, the service already knows what object to
remove.

This example removes the virtual machine with identifier 123:

The remove methods of some services support additional parameters that control how or what to
remove. For example, it is possible to remove a virtual machine while preserving its disks, using the
detach_only Boolean parameter:

The remove method returns None if the object is removed successfully. It does not return the removed
object. If the object cannot be removed for any reason, the SDK raises an ovirtsdk4.Error exception
containing the details of the failure.

2.6.6. Using Other Action Methods

There are other service methods that perform miscellaneous operations, such as stopping and starting a
virtual machine:

Many of these methods include parameters that modify the operation. For example, the method that
starts a virtual machine supports a use_cloud_init parameter, if you want to start it using cloud-init:

Most action methods return None when they succeed and raise an ovirtsdk4.Error when they fail. A few
action methods return values. For example, the service that manages a storage domain has an
is_attached action method that checks whether the storage domain is already attached to a data center
and returns a Boolean value:

Check the reference documentation of the SDK to see the action methods supported by each service,

Find the virtual machine by name:
vm = vms_service.list(search='name=123')[0]

Find the service that manages the virtual machine using the ID:
vm_service = vms_service.vm_service(vm.id)

Remove the virtual machine:
vm_service.remove()

Remove the virtual machine while preserving the disks:
vm_service.remove(detach_only=True)

Start the virtual machine:
vm_service.start()

Start the virtual machine:
vm_service.start(cloud_init=True)

Check if the storage domain is attached to a data center:
sds_service = system_service.storage_domains_service()
sd_service = sds_service.storage_domain_service('123')
if sd_service.is_attached():
 ...

CHAPTER 2. USING THE SOFTWARE DEVELOPMENT KIT

13

Check the reference documentation of the SDK to see the action methods supported by each service,
the parameters that they take, and the values that they return.

2.7. ADDITIONAL RESOURCES

For detailed information and examples, see the following resources:

V4 REST API Guide

Python SDK reference documentation

Python SDK examples

2.7.1. Generating documentation for modules

You can generate documentation using pydoc for the following modules:

ovirtsdk.api

ovirtsdk.infrastructure.brokers

ovirtsdk.infrastructure.errors

The documentation is provided by the ovirt-engine-sdk-python package. Run the following command
on the Manager machine to view the latest version of these documents:

$ pydoc [MODULE]

Red Hat Virtualization 4.4 Python SDK Guide

14

http://ovirt.github.io/ovirt-engine-sdk
https://access.redhat.com/documentation/en-us/red_hat_virtualization/4.4/html-single/rest_api_guide/index
http://ovirt.github.io/ovirt-engine-sdk
https://github.com/oVirt/python-ovirt-engine-sdk4/tree/main/examples
http://docs.python.org/library/pydoc.html

CHAPTER 3. PYTHON EXAMPLES

3.1. OVERVIEW

This section provides examples demonstrating the steps to create a virtual machine within a basic Red
Hat Virtualization environment, using the Python SDK.

These examples use the ovirtsdk Python library provided by the ovirt-engine-sdk-python package.
This package is available to systems attached to a Red Hat Virtualization subscription pool in Red Hat
Subscription Manager. See Installing the Software Development Kit for more information on subscribing
your system(s) to download the software.

You will also need:

A networked installation of Red Hat Virtualization Manager.

A networked and configured Red Hat Virtualization Host.

An ISO image file containing an operating system for installation on a virtual machine.

A working understanding of both the logical and physical objects that make up a Red Hat
Virtualization environment.

A working understanding of the Python programming language.

The examples include placeholders for authentication details (admin@internal for user name, and
password for password). Replace the placeholders with the authentication requirements of your
environment.

Red Hat Virtualization Manager generates a globally unique identifier (GUID) for the id attribute for
each resource. Identifier codes in these examples differ from the identifier codes in your Red Hat
Virtualization environment.

The examples contain only basic exception and error handling logic. For more information on the
exception handling specific to the SDK, see the pydoc for the ovirtsdk.infrastructure.errors module:

3.2. CONNECTING TO THE RED HAT VIRTUALIZATION MANAGER IN
VERSION 4

To connect to the Red Hat Virtualization Manager, you must create an instance of the Connection class
from the ovirtsdk4.sdk module by importing the class at the start of the script:

The constructor of the Connection class takes a number of arguments. Supported arguments are:

url

A string containing the base URL of the Manager, such as https://server.example.com/ovirt-
engine/api.

username

Specifies the user name to connect, such as admin@internal. This parameter is mandatory.

$ pydoc ovirtsdk.infrastructure.errors

import ovirtsdk4 as sdk

CHAPTER 3. PYTHON EXAMPLES

15

password

Specifies the password for the user name provided by the username parameter. This parameter is
mandatory.

token

An optional token to access the API, instead of a user name and password. If the token parameter is
not specified, the SDK will create one automatically.

insecure

A Boolean flag that indicates whether the server’s TLS certificate and host name should be checked.

ca_file

A PEM file containing the trusted CA certificates. The certificate presented by the server will be
verified using these CA certificates. If ca_file parameter is not set, the system-wide CA certificate
store is used.

debug

A Boolean flag indicating whether debug output should be generated. If the value is True and the log
parameter is not None, the data sent to and received from the server will be written to the log.

NOTE

User names and passwords are written to the debug log, so handle it with care.

Compression is disabled in debug mode, which means that debug messages are sent
as plain text.

log

The logger where the log messages will be written.

kerberos

A Boolean flag indicating whether Kerberos authentication should be used instead of the default
basic authentication.

timeout

The maximum total time to wait for the response, in seconds. A value of 0 (default) means to wait
forever. If the timeout expires before the response is received, an exception is raised.

compress

A Boolean flag indicating whether the SDK should ask the server to send compressed responses. The
default is True. This is a hint for the server, which may return uncompressed data even when this
parameter is set to True. Compression is disabled in debug mode, which means that debug messages
are sent as plain text.

sso_url

A string containing the base SSO URL of the server. The default SSO URL is computed from the url
if no sso_url is provided.

sso_revoke_url

A string containing the base URL of the SSO revoke service. This needs to be specified only when
using an external authentication service. By default, this URL is automatically calculated from the
value of the url parameter, so that SSO token revoke will be performed using the SSO service, which
is part of the Manager.

sso_token_name

The token name in the JSON SSO response returned from the SSO server. Default value is
access_token.

Red Hat Virtualization 4.4 Python SDK Guide

16

headers

A dictionary with headers, which should be sent with every request.

connections

The maximum number of connections to open to the host. If the value is 0 (default), the number of
connections is unlimited.

pipeline

The maximum number of requests to put in an HTTP pipeline without waiting for the response. If the
value is 0 (default), pipelining is disabled.

For a full list of supported methods, you can generate the documentation for the ovirtsdk.api module
on the Manager machine:

3.3. LISTING DATA CENTERS

The datacenters collection contains all the data centers in the environment.

Example 3.1. Listing data centers

This example lists the data centers in the datacenters collection and output some basic information
about each data center in the collection.

V4

import ovirtsdk4 as sdk

Create a connection to the server:
connection = sdk.Connection(
 url='https://engine.example.com/ovirt-engine/api',
 username='admin@internal',
 password='password',
 ca_file='ca.pem',
)

connection.test()

print("Connected successfully!")

connection.close()

$ pydoc ovirtsdk.api

import ovirtsdk4 as sdk
import ovirtsdk4.types as types

connection = sdk.Connection(
 url='https://engine.example.com/ovirt-engine/api',
 username='admin@internal',
 password='password',
 ca_file='ca.pem',
)

dcs_service = connection.system_service().dcs_service()

CHAPTER 3. PYTHON EXAMPLES

17

In an environment where only the Default data center exists, and it is not activated, the examples
output the text:

3.4. LISTING CLUSTERS

The clusters collection contains all clusters in the environment.

Example 3.2. Listing clusters

This example lists the clusters in the clusters collection and output some basic information about
each cluster in the collection.

V4

In an environment where only the Default cluster exists, the examples output the text:

3.5. LISTING HOSTS

The hosts collection contains all hosts in the environment.

dcs = dcs_service.list()

for dc in dcs:
 print("%s (%s)" % (dc.name, dc.id))

connection.close()

Default (00000000-0000-0000-0000-000000000000)

import ovirtsdk4 as sdk
import ovirtsdk4.types as types

connection = sdk.Connection(
 url='https://engine.example.com/ovirt-engine/api',
 username='admin@internal',
 password='password',
 ca_file='ca.pem',
)

cls_service = connection.system_service().clusters_service()

cls = cls_service.list()

for cl in cls:
 print("%s (%s)" % (cl.name, cl.id))

connection.close()

Default (00000000-0000-0000-0000-000000000000)

Red Hat Virtualization 4.4 Python SDK Guide

18

Example 3.3. Listing hosts

This example lists the hosts in the hosts collection and their IDs.

V4

In an environment where only one host, MyHost, has been attached, the examples output the text:

3.6. LISTING LOGICAL NETWORKS

The networks collection contains all logical networks in the environment.

Example 3.4. Listing logical networks

This example lists the logical networks in the networks collection and outputs some basic
information about each network in the collection.

V4

import ovirtsdk4 as sdk
import ovirtsdk4.types as types

connection = sdk.Connection(
 url='https://engine.example.com/ovirt-engine/api',
 username='admin@internal',
 password='password',
 ca_file='ca.pem',
)

host_service = connection.system_service().hosts_service()

hosts = host_service.list()

for host in hosts:
 print("%s (%s)" % (host.name, host.id))

connection.close()

MyHost (00000000-0000-0000-0000-000000000000)

import ovirtsdk4 as sdk
import ovirtsdk4.types as types

connection = sdk.Connection(
 url='https://engine.example.com/ovirt-engine/api',
 username='admin@internal',
 password='password',
 ca_file='ca.pem',
)

nws_service = connection.system_service().networks_service()

nws = nws_service.list()

CHAPTER 3. PYTHON EXAMPLES

19

In an environment where only the default management network exists, the examples output the text:

3.7. LISTING VIRTUAL MACHINES AND TOTAL DISK SIZE

The vms collection contains a disks collection that describes the details of each disk attached to a
virtual machine.

Example 3.5. Listing virtual machines and total disk size

This example prints a list of virtual machines and their total disk size in bytes:

V4

The examples output the virtual machine names and their disk sizes:

for nw in nws:
 print("%s (%s)" % (nw.name, nw.id))

connection.close()

ovirtmgmt (00000000-0000-0000-0000-000000000000)

import ovirtsdk4 as sdk
import ovirtsdk4.types as types

connection = sdk.Connection(
 url='https://engine.example.com/ovirt-engine/api',
 username='admin@internal',
 password='password',
 ca_file='ca.pem',
)

vms_service = connection.system_service().vms_service()

virtual_machines = vms_service.list()

if len(virtual_machines) > 0:

 print("%-30s %s" % ("Name", "Disk Size"))
 print("==")

 for virtual_machine in virtual_machines:
 vm_service = vms_service.vm_service(virtual_machine.id)
 disk_attachments = vm_service.disk_attachments_service().list()
 disk_size = 0
 for disk_attachment in disk_attachments:
 disk = connection.follow_link(disk_attachment.disk)
 disk_size += disk.provisioned_size

 print("%-30s: %d" % (virtual_machine.name, disk_size))

Red Hat Virtualization 4.4 Python SDK Guide

20

3.8. CREATING NFS DATA STORAGE

When a Red Hat Virtualization environment is first created, it is necessary to define at least a data
storage domain and an ISO storage domain. The data storage domain stores virtual disks while the ISO
storage domain stores the installation media for guest operating systems.

The storagedomains collection contains all the storage domains in the environment and can be used to
add and remove storage domains.

NOTE

The code provided in this example assumes that the remote NFS share has been pre-
configured for use with Red Hat Virtualization. See the Administration Guide for more
information on preparing NFS shares.

Example 3.6. Creating NFS data storage

This example adds an NFS data domain to the storagedomains collection.

V4

For V4, the add method is used to add the new storage domain and the types class is used to pass
the following parameters:

A name for the storage domain.

The data center object that was retrieved from the datacenters collection.

The host object that was retrieved from the hosts collection.

The type of storage domain being added (data, iso, or export).

The storage format to use (v1, v2, or v3).

Name Disk Size
==
vm1 50000000000

import ovirtsdk4 as sdk
import ovirtsdk4.types as types

Create the connection to the server:
connection = sdk.Connection(
 url='https://engine.example.com/ovirt-engine/api',
 username='admin@internal',
 password='password',
 ca_file='ca.pem',
)

Get the reference to the storage domains service:
sds_service = connection.system_service().storage_domains_service()

Create a new NFS storage domain:

CHAPTER 3. PYTHON EXAMPLES

21

https://access.redhat.com/documentation/en-us/red_hat_virtualization/4.4/html-single/administration_guide/index#sect-preparing_and_adding_nfs_storage

If the add method call is successful, the examples output the text:

3.9. CREATING NFS ISO STORAGE

To create a virtual machine, you need installation media for the guest operating system. The installation
media are stored in an ISO storage domain.

NOTE

The code provided in this example assumes that the remote NFS share has been pre-
configured for use with Red Hat Virtualization. See the Administration Guide for more
information on preparing NFS shares.

Example 3.7. Creating NFS ISO storage

This example adds an NFS ISO domain to the storagedomains collection.

V4

For V4, the add method is used to add the new storage domain and the types class is used to pass
the following parameters:

A name for the storage domain.

sd = sds_service.add(
 types.StorageDomain(
 name='mydata',
 description='My data',
 type=types.StorageDomainType.DATA,
 host=types.Host(
 name='myhost',
),
 storage=types.HostStorage(
 type=types.StorageType.NFS,
 address='_FQDN_',
 path='/nfs/ovirt/path/to/mydata',
),
),
)

Wait until the storage domain is unattached:
sd_service = sds_service.storage_domain_service(sd.id)
while True:
 time.sleep(5)
 sd = sd_service.get()
 if sd.status == types.StorageDomainStatus.UNATTACHED:
 break

print("Storage Domain '%s' added (%s)." % (sd.name(), sd.id()))

connection.close()

Storage Domain 'mydata' added (00000000-0000-0000-0000-000000000000).

Red Hat Virtualization 4.4 Python SDK Guide

22

https://access.redhat.com/documentation/en-us/red_hat_virtualization/4.4/html-single/administration_guide/index#sect-preparing_and_adding_nfs_storage

The data center object that was retrieved from the datacenters collection.

The host object that was retrieved from the hosts collection.

The type of storage domain being added (data, iso, or export).

The storage format to use (v1, v2, or v3).

If the add method call is successful, the examples output the text:

import ovirtsdk4 as sdk
import ovirtsdk4.types as types

connection = sdk.Connection(
 url='https://engine.example.com/ovirt-engine/api',
 username='admin@internal',
 password='password',
 ca_file='ca.pem',
)

Get the reference to the storage domains service:
sds_service = connection.system_service().storage_domains_service()

Use the "add" method to create a new NFS storage domain:
sd = sds_service.add(
 types.StorageDomain(
 name='myiso',
 description='My ISO',
 type=types.StorageDomainType.ISO,
 host=types.Host(
 name='myhost',
),
 storage=types.HostStorage(
 type=types.StorageType.NFS,
 address='FQDN',
 path='/nfs/ovirt/path/to/myiso',
),
),
)

Wait until the storage domain is unattached:
sd_service = sds_service.storage_domain_service(sd.id)
while True:
 time.sleep(5)
 sd = sd_service.get()
 if sd.status == types.StorageDomainStatus.UNATTACHED:
 break

print("Storage Domain '%s' added (%s)." % (sd.name(), sd.id()))

Close the connection to the server:
connection.close()

Storage Domain 'myiso' added (00000000-0000-0000-0000-000000000000).

CHAPTER 3. PYTHON EXAMPLES

23

3.10. ATTACHING A STORAGE DOMAIN TO A DATA CENTER

Once you have added a storage domain to Red Hat Virtualization, you must attach it to a data center
and activate it before it will be ready for use.

Example 3.8. Attaching a storage domain to a data center

This example attaches an existing NFS storage domain, mydata, to the an existing data center,
Default. The attach action is facilitated by the add method of the data center’s storagedomains
collection. These examples may be used to attach both data and ISO storage domains.

V4

import ovirtsdk4 as sdk
import ovirtsdk4.types as types

Create the connection to the server:
connection = sdk.Connection(
 url='https://engine.example.com/ovirt-engine/api',
 username='admin@internal',
 password='password',
 ca_file='ca.pem',
)

Locate the service that manages the storage domains and use it to
search for the storage domain:
sds_service = connection.system_service().storage_domains_service()
sd = sds_service.list(search='name=mydata')[0]

Locate the service that manages the data centers and use it to
search for the data center:
dcs_service = connection.system_service().data_centers_service()
dc = dcs_service.list(search='name=Default')[0]

Locate the service that manages the data center where we want to
attach the storage domain:
dc_service = dcs_service.data_center_service(dc.id)

Locate the service that manages the storage domains that are attached
to the data centers:
attached_sds_service = dc_service.storage_domains_service()

Use the "add" method of service that manages the attached storage
domains to attach it:
attached_sds_service.add(
 types.StorageDomain(
 id=sd.id,
),
)

Wait until the storage domain is active:
attached_sd_service = attached_sds_service.storage_domain_service(sd.id)
while True:
 time.sleep(5)
 sd = attached_sd_service.get()
 if sd.status == types.StorageDomainStatus.ACTIVE:

Red Hat Virtualization 4.4 Python SDK Guide

24

If the calls to the add methods are successful, the examples output the following text:

Status: maintenance indicates that the storage domains still need to be activated.

3.11. ACTIVATING A STORAGE DOMAIN

Once you have added a storage domain to Red Hat Virtualization and attached it to a data center, you
must activate it before it will be ready for use.

Example 3.9. Activating a storage domain

This example activates an NFS storage domain, mydata, attached to the data center, Default. The
activate action is facilitated by the activate method of the storage domain.

V4

 break

print("Attached data storage domain '%s' to data center '%s' (Status: %s)." %
 (sd.name(), dc.name(), sd.status.state()))

Close the connection to the server:
connection.close()

Attached data storage domain 'data1' to data center 'Default' (Status: maintenance).

import ovirtsdk4 as sdk

connection = sdk.Connection
 url='https://engine.example.com/ovirt-engine/api',
 username='admin@internal',
 password='password',
 ca_file='ca.pem',
)

Locate the service that manages the storage domains and use it to
search for the storage domain:
sds_service = connection.system_service().storage_domains_service()
sd = sds_service.list(search='name=mydata')[0]

Locate the service that manages the data centers and use it to
search for the data center:
dcs_service = connection.system_service().data_centers_service()
dc = dcs_service.list(search='name=Default')[0]

Locate the service that manages the data center where we want to
attach the storage domain:
dc_service = dcs_service.data_center_service(dc.id)

Locate the service that manages the storage domains that are attached
to the data centers:
attached_sds_service = dc_service.storage_domains_service()

CHAPTER 3. PYTHON EXAMPLES

25

If the activate requests are successful, the examples output the text:

Status: active indicates that the storage domains have been activated.

3.12. LISTING FILES IN AN ISO STORAGE DOMAIN

The storagedomains collection contains a files collection that describes the files in a storage domain.

Example 3.10. Listing Files in an ISO Storage Domain

This example prints a list of the ISO files in each ISO storage domain:

V4

Activate storage domain:
attached_sd_service = attached_sds_service.storage_domain_service(sd.id)
attached_sd_service.activate()

Wait until the storage domain is active:
while True:
 time.sleep(5)
 sd = attached_sd_service.get()
 if sd.status == types.StorageDomainStatus.ACTIVE:
 break

print("Attached data storage domain '%s' to data center '%s' (Status: %s)." %
 (sd.name(), dc.name(), sd.status.state()))

Close the connection to the server:
connection.close()

Activated storage domain 'mydata' in data center 'Default' (Status: active).

import ovirtsdk4 as sdk
import ovirtsdk4.types as types

connection = sdk.Connection(
 url='https://engine.example.com/ovirt-engine/api',
 username='admin@internal',
 password='password',
 ca_file='ca.pem',
)

storage_domains_service = connection.system_service().storage_domains_service()

storage_domains = storage_domains_service.list()

for storage_domain in storage_domains:
 if(storage_domain.type == types.StorageDomainType.ISO):
 print(storage_domain.name + ":\n")
 files = storage_domain.files_service().list()

 for file in files:

Red Hat Virtualization 4.4 Python SDK Guide

26

The examples output the text:

ISO_storage_domain:
file1
file2

3.13. CREATING A VIRTUAL MACHINE

Virtual machine creation is performed in several steps. The first step, covered here, is to create the
virtual machine object itself.

Example 3.11. Creating a virtual machine

This example creates a virtual machine, vm1, with the following requirements:

512 MB of memory, expressed in bytes.

Attached to the Default cluster, and therefore the Default data center.

Based on the default Blank template.

Boots from the virtual hard disk drive.

V4

In V4, the options are added as types, using the add method.

 print("%s" % file.name + "\n")

connection.close()

import ovirtsdk4 as sdk
import ovirtsdk4.types as types

connection = sdk.Connection(
 url='https://engine.example.com/ovirt-engine/api',
 username='admin@internal',
 password='password',
 ca_file='ca.pem',
)

Get the reference to the "vms" service:
vms_service = connection.system_service().vms_service()

Use the "add" method to create a new virtual machine:
vms_service.add(
 types.Vm(
 name='vm1',
 memory = 512*1024*1024
 cluster=types.Cluster(
 name='Default',
),
 template=types.Template(
 name='Blank',

CHAPTER 3. PYTHON EXAMPLES

27

If the add request is successful, the examples output the text:

3.14. CREATING A VIRTUAL NIC

To ensure that a newly created virtual machine has network access, you must create and attach a virtual
NIC.

Example 3.12. Creating a virtual NIC

This example creates a NIC, nic1, and attach it to a virtual machine, vm1. The NIC in this example is a
virtio network device and attached to the ovirtmgmt management network.

V4

),
 os=types.OperatingSystem(boot=types.Boot(devices=[types.BootDevice.HD)]
),
)

print("Virtual machine '%s' added." % vm.name)

Close the connection to the server:
connection.close()

Virtual machine 'vm1' added.

import ovirtsdk4 as sdk
import ovirtsdk4.types as types

connection = sdk.Connection(
 url='https://engine.example.com/ovirt-engine/api',
 username='admin@internal',
 password='password',
 ca_file='ca.pem',
)

Locate the virtual machines service and use it to find the virtual
machine:
vms_service = connection.system_service().vms_service()
vm = vms_service.list(search='name=vm1')[0]

Locate the service that manages the network interface cards of the
virtual machine:
nics_service = vms_service.vm_service(vm.id).nics_service()

Locate the vnic profiles service and use it to find the ovirmgmt
network's profile id:
profiles_service = connection.system_service().vnic_profiles_service()
profile_id = None
for profile in profiles_service.list():
 if profile.name == 'ovirtmgmt':
 profile_id = profile.id
 break

Red Hat Virtualization 4.4 Python SDK Guide

28

If the add request is successful, the examples output the text:

3.15. CREATING A VIRTUAL MACHINE DISK

To ensure that a newly created virtual machine has access to persistent storage, you must create and
attach a disk.

Example 3.13. Creating a virtual machine disk

This example creates an 8 GB virtio disk and attach it to a virtual machine, vm1. The disk has the
following requirements:

Stored on the storage domain named data1.

8 GB in size.

system type disk (as opposed to data).

virtio storage device.

COW format.

Marked as a usable boot device.

V4

Use the "add" method of the network interface cards service to add the
new network interface card:

nic = nics_service.add(
 types.Nic(
 name='nic1',
 interface=types.NicInterface.VIRTIO,
 vnic_profile=types.VnicProfile(id=profile_id),
),
)

print("Network interface '%s' added to '%s'." % (nic.name, vm.name))

connection.close()

Network interface 'nic1' added to 'vm1'.

import ovirtsdk4 as sdk
import ovirtsdk4.types as types

connection = sdk.Connection(
 url='https://engine.example.com/ovirt-engine/api',
 username='admin@internal',
 password='password',
 ca_file='ca.pem',
)

CHAPTER 3. PYTHON EXAMPLES

29

If the add request is successful, the examples output the text:

3.16. ATTACHING AN ISO IMAGE TO A VIRTUAL MACHINE

To install a guest operating system on a newly created virtual machine, you must attach an ISO file
containing the operating system installation media. To locate the ISO file, see Listing Files in an ISO
Storage Domain.

Locate the virtual machines service and use it to find the virtual
machine:
vms_service = connection.system_service().vms_service()
vm = vms_service.list(search='name=vm1')[0]

Locate the service that manages the disk attachments of the virtual
machine:
disk_attachments_service = vms_service.vm_service(vm.id).disk_attachments_service()

Use the "add" method of the disk attachments service to add the disk.
Note that the size of the disk, the `provisioned_size` attribute, is
specified in bytes, so to create a disk of 10 GiB the value should
be 10 * 2^30.
disk_attachment = disk_attachments_service.add(
 types.DiskAttachment(
 disk=types.Disk(
 format=types.DiskFormat.COW,
 provisioned_size=8*1024*1024,
 storage_domains=[
 types.StorageDomain(
 name='data1',
),
],
),
 interface=types.DiskInterface.VIRTIO,
 bootable=True,
 active=True,
),
)

Wait until the disk status is OK:
disks_service = connection.system_service().disks_service()
disk_service = disks_service.disk_service(disk_attachment.disk.id)
while True:
 time.sleep(5)
 disk = disk_service.get()
 if disk.status == types.DiskStatus.OK:
 break

print("Disk '%s' added to '%s'." % (disk.name(), vm.name()))

Close the connection to the server:
connection.close()

Disk 'vm1_Disk1' added to 'vm1'.

Red Hat Virtualization 4.4 Python SDK Guide

30

Example 3.14. Attaching an ISO image to a virtual machine

This example attaches my_iso_file.iso to the vm1 virtual machine, using the add method of the
virtual machine’s cdroms collection.

V4

If the add request is successful, the examples output the text:

import ovirtsdk4 as sdk
import ovirtsdk4.types as types

connection = sdk.Connection(
 url='https://engine.example.com/ovirt-engine/api',
 username='admin@internal',
 password='password',
 ca_file='ca.pem',
)

Get the reference to the "vms" service:
vms_service = connection.system_service().vms_service()

Find the virtual machine:
vm = vms_service.list(search='name=vm1')[0]

Locate the service that manages the virtual machine:
vm_service = vms_service.vm_service(vm.id)

Locate the service that manages the CDROM devices of the virtual machine:
cdroms_service = vm_service.cdroms_service()

Get the first CDROM:
cdrom = cdroms_service.list()[0]

Locate the service that manages the CDROM device found in previous step:
cdrom_service = cdroms_service.cdrom_service(cdrom.id)

Change the CD of the VM to 'my_iso_file.iso'. By default the
operation permanently changes the disk that is visible to the
virtual machine after the next boot, but has no effect
on the currently running virtual machine. If you want to change the
disk that is visible to the current running virtual machine, change
the `current` parameter's value to `True`.
cdrom_service.update(
 cdrom=types.Cdrom(
 file=types.File(
 id='my_iso_file.iso'
),
),
 current=False,
)

print("Attached CD to '%s'." % vm.name())

Close the connection to the server:
connection.close()

CHAPTER 3. PYTHON EXAMPLES

31

Example 3.15. Ejecting a cdrom from a virtual machine

This example ejects an ISO image from a virtual machine’s cdrom collection.

V4

If the delete or remove request is successful, the examples output the text:

3.17. DETACHING A DISK

You can detach a disk from a virtual machine.

Attached CD to 'vm1'.

import ovirtsdk4 as sdk
import ovirtsdk4.types as types

connection = sdk.Connection(
 url='https://engine.example.com/ovirt-engine/api',
 username='admin@internal',
 password='password',
 ca_file='ca.pem',
)

Get the reference to the "vms" service:
vms_service = connection.system_service().vms_service()

Find the virtual machine:
vm = vms_service.list(search='name=vm1')[0]

Locate the service that manages the virtual machine:
vm_service = vms_service.vm_service(vm.id)

Locate the service that manages the CDROM devices of the VM:
cdroms_service = vm_service.cdroms_service()

Get the first found CDROM:
cdrom = cdroms_service.list()[0]

Locate the service that manages the CDROM device found in previous step
of the VM:
cdrom_service = cdroms_service.cdrom_service(cdrom.id)

cdrom_service.remove()

print("Removed CD from '%s'." % vm.name())

connection.close()

Removed CD from 'vm1'.

Red Hat Virtualization 4.4 Python SDK Guide

32

Detaching a disk

V4

If the delete or remove request is successful, the examples output the text:

3.18. STARTING A VIRTUAL MACHINE

You can start a virtual machine.

Example 3.16. Starting a virtual machine

This example starts the virtual machine using the start method.

V4

import ovirtsdk4 as sdk
import ovirtsdk4.types as types

connection = sdk.Connection(
 url='https://engine.example.com/ovirt-engine/api',
 username='admin@internal',
 password='password',
 ca_file='ca.pem',
)

Get the reference to the "vms" service:
vms_service = connection.system_service().vms_service()

Find the virtual machine:
vm = vms_service.list(search='name=vm1')[0]

Locate the service that manages the virtual machine:
vm_service = vms_service.vm_service(vm.id)

attachments_service = vm_service.disk_attachments_service()
attachment = next(
 (a for a in disk_attachments if a.disk.id == disk.id), None
)

Remove the attachment. The default behavior is that the disk is detached
from the virtual machine, but not deleted from the system. If you wish to
delete the disk, change the detach_only parameter to "False".
attachment.remove(detach_only=True)

print("Detached disk %s successfully!" % attachment)

Close the connection to the server:
connection.close()

Detached disk vm1_disk1 successfully!

import time
import ovirtsdk4 as sdk
import ovirtsdk4.types as types

CHAPTER 3. PYTHON EXAMPLES

33

If the start request is successful, the examples output the text:

The UP status indicates that the virtual machine is running.

3.19. STARTING A VIRTUAL MACHINE WITH OVERRIDDEN
PARAMETERS

You can start a virtual machine, overriding its default parameters.

Example 3.17. Starting a virtual machine with overridden parameters

This example boots a virtual machine with a Windows ISO and attach the virtio-win_x86.vfd floppy
disk, which contains Windows drivers. This action is equivalent to using the Run Once window in the
Administration Portal to start a virtual machine.

V4

connection = sdk.Connection(
 url='https://engine.example.com/ovirt-engine/api',
 username='admin@internal',
 password='password',
 ca_file='ca.pem',
)

Get the reference to the "vms" service:
vms_service = connection.system_service().vms_service()

Find the virtual machine:
vm = vms_service.list(search='name=vm1')[0]

Locate the service that manages the virtual machine, as that is where
the action methods are defined:
vm_service = vms_service.vm_service(vm.id)

Call the "start" method of the service to start it:
vm_service.start()

Wait until the virtual machine is up:
while True:
 time.sleep(5)
 vm = vm_service.get()
 if vm.status == types.VmStatus.UP:
 break

print("Started '%s'." % vm.name())

Close the connection to the server:
connection.close()

Started 'vm1'.

import time

Red Hat Virtualization 4.4 Python SDK Guide

34

import ovirtsdk4 as sdk
import ovirtsdk4.types as types

connection = sdk.Connection(
 url='https://engine.example.com/ovirt-engine/api',
 username='admin@internal',
 password='password',
 ca_file='ca.pem',
)

Get the reference to the "vms" service:
vms_service = connection.system_service().vms_service()

Find the virtual machine:
vm = vms_service.list(search='name=vm1')[0]

Locate the service that manages the virtual machine:
vm_service = vms_service.vm_service(vm.id)

Locate the service that manages the CDROM devices of the virtual machine:
cdroms_service = vm_service.cdroms_service()

Get the first CDROM:
cdrom = cdroms_service.list()[0]

Locate the service that manages the CDROM device found in previous step:
cdrom_service = cdroms_service.cdrom_service(cdrom.id)

Change the CD of the VM to 'windows_example.iso':
cdrom_service.update(
 cdrom=types.Cdrom(
 file=types.File(
 id='windows_example.iso'
),
),
 current=False,
)

Call the "start" method of the service to start it:
vm_service.start(
 vm=types.Vm(
 os=types.OperatingSystem(
 boot=types.Boot(
 devices=[
 types.BootDevice.CDROM,
]
)
),
)
)

Wait until the virtual machine's status is "UP":
while True:
 time.sleep(5)
 vm = vm_service.get()
 if vm.status == types.VmStatus.UP:

CHAPTER 3. PYTHON EXAMPLES

35

NOTE

The CD image and floppy disk file must be available to the virtual machine. See
Uploading Images to a Data Storage Domain for details.

3.20. STARTING A VIRTUAL MACHINE WITH CLOUD-INIT

You can start a virtual machine with a specific configuration, using the Cloud-Init tool.

Example 3.18. Starting a virtual machine with Cloud-Init

This example shows you how to start a virtual machine using the Cloud-Init tool to set a host name
and a static IP for the eth0 interface.

V4

 break

print("Started '%s'." % vm.name())

Close the connection to the server:
connection.close()

import ovirtsdk4 as sdk
import ovirtsdk4.types as types

connection = sdk.Connection(
 url='https://engine.example.com/ovirt-engine/api',
 username='admin@internal',
 password='password',
 ca_file='ca.pem',
)

Find the virtual machine:
vms_service = connection.system_service().vms_service()
vm = vms_service.list(search = 'name=vm1')[0]

Find the service that manages the virtual machine:
vm_service = vms_service.vm_service(vm.id)

Start the virtual machine enabling cloud-init and providing the
password for the `root` user and the network configuration:
vm_service.start(
 use_cloud_init=True,
 vm=types.Vm(
 initialization=types.Initialization(
 user_name='root',
 root_password='password',
 host_name='MyHost.example.com',
 nic_configurations=[
 types.NicConfiguration(
 name='eth0',
 on_boot=True,

Red Hat Virtualization 4.4 Python SDK Guide

36

https://access.redhat.com/documentation/en-us/red_hat_virtualization/4.4/html-single/administration_guide/index#Uploading_Images_to_a_Data_Storage_Domain

3.21. CHECKING SYSTEM EVENTS

Red Hat Virtualization Manager records and logs many system events. These event logs are accessible
through the user interface, the system log files, and using the API. The ovirtsdk library exposes events
using the events collection.

Example 3.19. Checking system events

In this example the events collection is listed.

The query parameter of the list method is used to ensure that all available pages of results are
returned. By default the list method returns only the first page of results, which is 100 records in
length.

The returned list is sorted in reverse chronological order, to display the events in the order in which
they occurred.

V4

 boot_protocol=types.BootProtocol.STATIC,
 ip=types.Ip(
 version=types.IpVersion.V4,
 address='10.10.10.1',
 netmask='255.255.255.0',
 gateway='10.10.10.1'
)
)
)
)
)

Close the connection to the server:
connection.close()

import ovirtsdk4 as sdk
import ovirtsdk4.types as types

connection = sdk.Connection(
 url='https://engine.example.com/ovirt-engine/api',
 username='admin@internal',
 password='password',
 ca_file='ca.pem',
)

Find the service that manages the collection of events:
events_service = connection.system_service().events_service()

page_number = 1
events = events_service.list(search='page %s' % page_number)
while events:
 for event in events:
 print(
 "%s %s CODE %s - %s" % (
 event.time,

CHAPTER 3. PYTHON EXAMPLES

37

These examples output events in the following format:

 event.severity,
 event.code,
 event.description,
)
)
 page_number = page_number + 1
 events = events_service.list(search='page %s' % page_number)

Close the connection to the server:
connection.close()

YYYY-MM-DD_T_HH:MM:SS NORMAL CODE 30 - User admin@internal logged in.
YYYY-MM-DD_T_HH:MM:SS NORMAL CODE 153 - VM vm1 was started by admin@internal
(Host: MyHost).
YYYY-MM-DD_T_HH:MM:SS NORMAL CODE 30 - User admin@internal logged in.

Red Hat Virtualization 4.4 Python SDK Guide

38

APPENDIX A. LEGAL NOTICE
Copyright © 2022 Red Hat, Inc.

Licensed under the (Creative Commons Attribution–ShareAlike 4.0 International License). Derived from
documentation for the (oVirt Project). If you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Modified versions must remove all Red Hat trademarks.

Red Hat, Red Hat Enterprise Linux, the Red Hat logo, the Shadowman logo, JBoss, OpenShift, Fedora,
the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux® is the registered trademark of Linus Torvalds in the United States and other countries.

Java® is a registered trademark of Oracle and/or its affiliates.

XFS® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States and/or
other countries.

MySQL® is a registered trademark of MySQL AB in the United States, the European Union and other
countries.

Node.js® is an official trademark of Joyent. Red Hat Software Collections is not formally related to or
endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack® Word Mark and OpenStack logo are either registered trademarks/service marks or
trademarks/service marks of the OpenStack Foundation, in the United States and other countries and
are used with the OpenStack Foundation’s permission. We are not affiliated with, endorsed or sponsored
by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

APPENDIX A. LEGAL NOTICE

39

https://creativecommons.org/licenses/by-sa/4.0/
https://ovirt.org

	Table of Contents
	CHAPTER 1. OVERVIEW
	1.1. PREREQUISITES
	1.2. INSTALLING THE PYTHON SOFTWARE DEVELOPMENT KIT

	CHAPTER 2. USING THE SOFTWARE DEVELOPMENT KIT
	2.1. PACKAGES
	2.2. CONNECTING TO THE SERVER
	2.3. USING TYPES
	2.4. USING LINKS
	2.5. LOCATING SERVICES
	2.6. USING SERVICES
	2.6.1. Using get Methods
	2.6.2. Using list Methods
	2.6.3. Using add Methods
	2.6.4. Using update Methods
	2.6.5. Using remove Methods
	2.6.6. Using Other Action Methods

	2.7. ADDITIONAL RESOURCES
	2.7.1. Generating documentation for modules

	CHAPTER 3. PYTHON EXAMPLES
	3.1. OVERVIEW
	3.2. CONNECTING TO THE RED HAT VIRTUALIZATION MANAGER IN VERSION 4
	3.3. LISTING DATA CENTERS
	3.4. LISTING CLUSTERS
	3.5. LISTING HOSTS
	3.6. LISTING LOGICAL NETWORKS
	3.7. LISTING VIRTUAL MACHINES AND TOTAL DISK SIZE
	3.8. CREATING NFS DATA STORAGE
	3.9. CREATING NFS ISO STORAGE
	3.10. ATTACHING A STORAGE DOMAIN TO A DATA CENTER
	3.11. ACTIVATING A STORAGE DOMAIN
	3.12. LISTING FILES IN AN ISO STORAGE DOMAIN
	3.13. CREATING A VIRTUAL MACHINE
	3.14. CREATING A VIRTUAL NIC
	3.15. CREATING A VIRTUAL MACHINE DISK
	3.16. ATTACHING AN ISO IMAGE TO A VIRTUAL MACHINE
	3.17. DETACHING A DISK
	3.18. STARTING A VIRTUAL MACHINE
	3.19. STARTING A VIRTUAL MACHINE WITH OVERRIDDEN PARAMETERS
	3.20. STARTING A VIRTUAL MACHINE WITH CLOUD-INIT
	3.21. CHECKING SYSTEM EVENTS

	APPENDIX A. LEGAL NOTICE

