Configuring Clusters
OpenShift Container Platform 3.10 Installation and Configuration
Abstract
Chapter 1. Overview
This guide covers further configuration options available for your OpenShift Container Platform cluster post-installation.
Chapter 2. Setting up the Registry
2.1. Registry Overview
2.1.1. About the Registry
OpenShift Container Platform can build container images from your source code, deploy them, and manage their lifecycle. To enable this, OpenShift Container Platform provides an internal, integrated Docker registry that can be deployed in your OpenShift Container Platform environment to locally manage images.
2.1.2. Integrated or Stand-alone Registries
During an initial installation of a full OpenShift Container Platform cluster, it is likely that the registry was deployed automatically during the installation process. If it was not, or if you want to further customize the configuration of your registry, see Deploying a Registry on Existing Clusters.
While it can be deployed to run as an integrated part of your full OpenShift Container Platform cluster, the OpenShift Container Platform registry can alternatively be installed separately as a stand-alone container image registry.
To install a stand-alone registry, follow Installing a Stand-alone Registry. This installation path deploys an all-in-one cluster running a registry and specialized web console.
2.1.3. Red Hat Quay Registries
If you need an enterprise-quality container image registry, Red Hat Quay is available both as a hosted service and as software you can install in your own data center or cloud environment. Advanced registry features in Red Hat Quay include geo-replication, image scanning, and the ability to rollback images.
Visit the Quay.io site to set up your own hosted Quay registry account. After that, the Quay Tutorial helps you login to the Quay registry and start managing your images. Alternatively, refer to Getting Started with Red Hat Quay for information on setting up your own Red Hat Quay registry.
At the moment, you access your Red Hat Quay registry from OpenShift as you would any remote container image registry. To learn how to set up credentials to access Red Hat Quay as a secured registry, refer to Allowing Pods to Reference Images from Other Secured Registries.
2.2. Deploying a Registry on Existing Clusters
2.2.1. Overview
If the integrated registry was not previously deployed automatically during the initial installation of your OpenShift Container Platform cluster, or if it is no longer running successfully and you need to redeploy it on your existing cluster, see the following sections for options on deploying a new registry.
This topic is not required if you installed a stand-alone registry.
2.2.2. Deploying the Registry
To deploy the integrated Docker registry, use the oc adm registry
command as a user with cluster administrator privileges. For example:
$ oc adm registry --config=/etc/origin/master/admin.kubeconfig \1 --service-account=registry \2 --images='registry.access.redhat.com/openshift3/ose-${component}:${version}' 3
This creates a service and a deployment configuration, both called docker-registry. Once deployed successfully, a pod is created with a name similar to docker-registry-1-cpty9.
To see a full list of options that you can specify when creating the registry:
$ oc adm registry --help
The value for --fs-group
must be permitted by the SCC used by the registry (typically, the restricted SCC).
2.2.3. Deploying the Registry as a DaemonSet
Use the oc adm registry
command to deploy the registry as a DaemonSet
with the --daemonset
option.
Daemonsets ensure that when nodes are created, they contain copies of a specified pod. When the nodes are removed, the pods are garbage collected.
For more information on DaemonSets
, see Using Daemonsets.
2.2.4. Registry Compute Resources
By default, the registry is created with no settings for compute resource requests or limits. For production, it is highly recommended that the deployment configuration for the registry be updated to set resource requests and limits for the registry pod. Otherwise, the registry pod will be considered a BestEffort pod.
See Compute Resources for more information on configuring requests and limits.
2.2.5. Storage for the Registry
The registry stores container images and metadata. If you simply deploy a pod with the registry, it uses an ephemeral volume that is destroyed if the pod exits. Any images anyone has built or pushed into the registry would disappear.
This section lists the supported registry storage drivers. See the Docker registry documentation for more information.
The following list includes storage drivers that need to be configured in the registry’s configuration file:
- Filesystem. Filesystem is the default and does not need to be configured.
- S3. See the CloudFront configuration documentation for more information.
- OpenStack Swift
- Google Cloud Storage (GCS)
- Microsoft Azure
- Aliyun OSS
General registry storage configuration options are supported. See the Docker registry documentation for more information.
The following storage options need to be configured through the filesystem driver:
For more information on supported persistent storage drivers, see Configuring Persistent Storage and Persistent Storage Examples.
2.2.5.1. Production Use
For production use, attach a remote volume or define and use the persistent storage method of your choice.
For example, to use an existing persistent volume claim:
$ oc volume deploymentconfigs/docker-registry --add --name=registry-storage -t pvc \ --claim-name=<pvc_name> --overwrite
Testing shows issues with using the RHEL NFS server as a storage backend for the container image registry. This includes the OpenShift Container Registry and Quay. Therefore, using the RHEL NFS server to back PVs used by core services is not recommended.
Other NFS implementations on the marketplace might not have these issues. Contact the individual NFS implementation vendor for more information on any testing that was possibly completed against these OpenShift core components.
2.2.5.1.1. Use Amazon S3 as a Storage Back-end
There is also an option to use Amazon Simple Storage Service storage with the internal Docker registry. It is a secure cloud storage manageable through AWS Management Console. To use it, the registry’s configuration file must be manually edited and mounted to the registry pod. However, before you start with the configuration, look at upstream’s recommended steps.
Take a default YAML configuration file as a base and replace the filesystem entry in the storage section with s3 entry such as below. The resulting storage section may look like this:
storage: cache: layerinfo: inmemory delete: enabled: true s3: accesskey: awsaccesskey 1 secretkey: awssecretkey 2 region: us-west-1 regionendpoint: http://myobjects.local bucket: bucketname encrypt: true keyid: mykeyid secure: true v4auth: false chunksize: 5242880 rootdirectory: /s3/object/name/prefix
All of the s3 configuration options are documented in upstream’s driver reference documentation.
Overriding the registry configuration will take you through the additional steps on mounting the configuration file into pod.
When the registry runs on the S3 storage back-end, there are reported issues.
If you want to use a S3 region that is not supported by the integrated registry you are using, see S3 Driver Configuration.
2.2.5.2. Non-Production Use
For non-production use, you can use the --mount-host=<path>
option to specify a directory for the registry to use for persistent storage. The registry volume is then created as a host-mount at the specified <path>
.
The --mount-host
option mounts a directory from the node on which the registry container lives. If you scale up the docker-registry deployment configuration, it is possible that your registry pods and containers will run on different nodes, which can result in two or more registry containers, each with its own local storage. This will lead to unpredictable behavior, as subsequent requests to pull the same image repeatedly may not always succeed, depending on which container the request ultimately goes to.
The --mount-host
option requires that the registry container run in privileged mode. This is automatically enabled when you specify --mount-host
. However, not all pods are allowed to run privileged containers by default. If you still want to use this option, create the registry and specify that it use the registry service account that was created during installation:
$ oc adm registry --service-account=registry \ --config=/etc/origin/master/admin.kubeconfig \ --images='registry.access.redhat.com/openshift3/ose-${component}:${version}' \ --mount-host=<path>
The Docker registry pod runs as user 1001. This user must be able to write to the host directory. You may need to change directory ownership to user ID 1001 with this command:
$ sudo chown 1001:root <path>
2.2.6. Enabling the Registry Console
OpenShift Container Platform provides a web-based interface to the integrated registry. This registry console is an optional component for browsing and managing images. It is deployed as a stateless service running as a pod.
If you installed OpenShift Container Platform as a stand-alone registry, the registry console is already deployed and secured automatically during installation.
If Cockpit is already running, you’ll need to shut it down before proceeding in order to avoid a port conflict (9090 by default) with the registry console.
2.2.6.1. Deploying the Registry Console
You must first have exposed the registry.
Create a passthrough route in the default project. You will need this when creating the registry console application in the next step.
$ oc create route passthrough --service registry-console \ --port registry-console \ -n default
Deploy the registry console application. Replace
<openshift_oauth_url>
with the URL of the OpenShift Container Platform OAuth provider, which is typically the master.$ oc new-app -n default --template=registry-console \ -p OPENSHIFT_OAUTH_PROVIDER_URL="https://<openshift_oauth_url>:8443" \ -p REGISTRY_HOST=$(oc get route docker-registry -n default --template='{{ .spec.host }}') \ -p COCKPIT_KUBE_URL=$(oc get route registry-console -n default --template='https://{{ .spec.host }}')
NoteIf the redirection URL is wrong when you are trying to log in to the registry console, check your OAuth client with
oc get oauthclients
.- Finally, use a web browser to view the console using the route URI.
2.2.6.2. Securing the Registry Console
By default, the registry console generates self-signed TLS certificates if deployed manually per the steps in Deploying the Registry Console. See Troubleshooting the Registry Console for more information.
Use the following steps to add your organization’s signed certificates as a secret volume. This assumes your certificates are available on the oc
client host.
Create a .cert file containing the certificate and key. Format the file with:
- One or more BEGIN CERTIFICATE blocks for the server certificate and the intermediate certificate authorities
A block containing a BEGIN PRIVATE KEY or similar for the key. The key must not be encrypted
For example:
-----BEGIN CERTIFICATE----- MIIDUzCCAjugAwIBAgIJAPXW+CuNYS6QMA0GCSqGSIb3DQEBCwUAMD8xKTAnBgNV BAoMIGI0OGE2NGNkNmMwNTQ1YThhZTgxOTEzZDE5YmJjMmRjMRIwEAYDVQQDDAls ... -----END CERTIFICATE----- -----BEGIN CERTIFICATE----- MIIDUzCCAjugAwIBAgIJAPXW+CuNYS6QMA0GCSqGSIb3DQEBCwUAMD8xKTAnBgNV BAoMIGI0OGE2NGNkNmMwNTQ1YThhZTgxOTEzZDE5YmJjMmRjMRIwEAYDVQQDDAls ... -----END CERTIFICATE----- -----BEGIN PRIVATE KEY----- MIIEvgIBADANBgkqhkiG9w0BAQEFAASCBKgwggSkAgEAAoIBAQCyOJ5garOYw0sm 8TBCDSqQ/H1awGMzDYdB11xuHHsxYS2VepPMzMzryHR137I4dGFLhvdTvJUH8lUS ... -----END PRIVATE KEY-----
The secured registry should contain the following Subject Alternative Names (SAN) list:
Two service hostnames.
For example:
docker-registry.default.svc.cluster.local docker-registry.default.svc
Service IP address.
For example:
172.30.124.220
Use the following command to get the Docker registry service IP address:
oc get service docker-registry --template='{{.spec.clusterIP}}'
Public hostname.
For example:
docker-registry-default.apps.example.com
Use the following command to get the Docker registry public hostname:
oc get route docker-registry --template '{{.spec.host}}'
For example, the server certificate should contain SAN details similar to the following:
X509v3 Subject Alternative Name: DNS:docker-registry-public.openshift.com, DNS:docker-registry.default.svc, DNS:docker-registry.default.svc.cluster.local, DNS:172.30.2.98, IP Address:172.30.2.98
The registry console loads a certificate from the /etc/cockpit/ws-certs.d directory. It uses the last file with a .cert extension in alphabetical order. Therefore, the .cert file should contain at least two PEM blocks formatted in the OpenSSL style.
If no certificate is found, a self-signed certificate is created using the
openssl
command and stored in the 0-self-signed.cert file.
Create the secret:
$ oc create secret generic console-secret \ --from-file=/path/to/console.cert
Add the secrets to the registry-console deployment configuration:
$ oc volume dc/registry-console --add --type=secret \ --secret-name=console-secret -m /etc/cockpit/ws-certs.d
This triggers a new deployment of the registry console to include your signed certificates.
2.2.6.3. Troubleshooting the Registry Console
2.2.6.3.1. Debug Mode
The registry console debug mode is enabled using an environment variable. The following command redeploys the registry console in debug mode:
$ oc set env dc registry-console G_MESSAGES_DEBUG=cockpit-ws,cockpit-wrapper
Enabling debug mode allows more verbose logging to appear in the registry console’s pod logs.
2.2.6.3.2. Display SSL Certificate Path
To check which certificate the registry console is using, a command can be run from inside the console pod.
List the pods in the default project and find the registry console’s pod name:
$ oc get pods -n default NAME READY STATUS RESTARTS AGE registry-console-1-rssrw 1/1 Running 0 1d
Using the pod name from the previous command, get the certificate path that the cockpit-ws process is using. This example shows the console using the auto-generated certificate:
$ oc exec registry-console-1-rssrw remotectl certificate certificate: /etc/cockpit/ws-certs.d/0-self-signed.cert
2.3. Accessing the Registry
2.3.1. Viewing Logs
To view the logs for the Docker registry, use the oc logs
command with the deployment configuration:
$ oc logs dc/docker-registry 2015-05-01T19:48:36.300593110Z time="2015-05-01T19:48:36Z" level=info msg="version=v2.0.0+unknown" 2015-05-01T19:48:36.303294724Z time="2015-05-01T19:48:36Z" level=info msg="redis not configured" instance.id=9ed6c43d-23ee-453f-9a4b-031fea646002 2015-05-01T19:48:36.303422845Z time="2015-05-01T19:48:36Z" level=info msg="using inmemory layerinfo cache" instance.id=9ed6c43d-23ee-453f-9a4b-031fea646002 2015-05-01T19:48:36.303433991Z time="2015-05-01T19:48:36Z" level=info msg="Using OpenShift Auth handler" 2015-05-01T19:48:36.303439084Z time="2015-05-01T19:48:36Z" level=info msg="listening on :5000" instance.id=9ed6c43d-23ee-453f-9a4b-031fea646002
2.3.2. File Storage
Tag and image metadata is stored in OpenShift Container Platform, but the registry stores layer and signature data in a volume that is mounted into the registry container at /registry. As oc exec
does not work on privileged containers, to view a registry’s contents you must manually SSH into the node housing the registry pod’s container, then run docker exec
on the container itself:
List the current pods to find the pod name of your Docker registry:
# oc get pods
Then, use
oc describe
to find the host name for the node running the container:# oc describe pod <pod_name>
Log into the desired node:
# ssh node.example.com
List the running containers from the default project on the node host and identify the container ID for the Docker registry:
# docker ps --filter=name=registry_docker-registry.*_default_
List the registry contents using the
oc rsh
command:# oc rsh dc/docker-registry find /registry /registry/docker /registry/docker/registry /registry/docker/registry/v2 /registry/docker/registry/v2/blobs 1 /registry/docker/registry/v2/blobs/sha256 /registry/docker/registry/v2/blobs/sha256/ed /registry/docker/registry/v2/blobs/sha256/ed/ede17b139a271d6b1331ca3d83c648c24f92cece5f89d95ac6c34ce751111810 /registry/docker/registry/v2/blobs/sha256/ed/ede17b139a271d6b1331ca3d83c648c24f92cece5f89d95ac6c34ce751111810/data 2 /registry/docker/registry/v2/blobs/sha256/a3 /registry/docker/registry/v2/blobs/sha256/a3/a3ed95caeb02ffe68cdd9fd84406680ae93d633cb16422d00e8a7c22955b46d4 /registry/docker/registry/v2/blobs/sha256/a3/a3ed95caeb02ffe68cdd9fd84406680ae93d633cb16422d00e8a7c22955b46d4/data /registry/docker/registry/v2/blobs/sha256/f7 /registry/docker/registry/v2/blobs/sha256/f7/f72a00a23f01987b42cb26f259582bb33502bdb0fcf5011e03c60577c4284845 /registry/docker/registry/v2/blobs/sha256/f7/f72a00a23f01987b42cb26f259582bb33502bdb0fcf5011e03c60577c4284845/data /registry/docker/registry/v2/repositories 3 /registry/docker/registry/v2/repositories/p1 /registry/docker/registry/v2/repositories/p1/pause 4 /registry/docker/registry/v2/repositories/p1/pause/_manifests /registry/docker/registry/v2/repositories/p1/pause/_manifests/revisions /registry/docker/registry/v2/repositories/p1/pause/_manifests/revisions/sha256 /registry/docker/registry/v2/repositories/p1/pause/_manifests/revisions/sha256/e9a2ac6418981897b399d3709f1b4a6d2723cd38a4909215ce2752a5c068b1cf /registry/docker/registry/v2/repositories/p1/pause/_manifests/revisions/sha256/e9a2ac6418981897b399d3709f1b4a6d2723cd38a4909215ce2752a5c068b1cf/signatures 5 /registry/docker/registry/v2/repositories/p1/pause/_manifests/revisions/sha256/e9a2ac6418981897b399d3709f1b4a6d2723cd38a4909215ce2752a5c068b1cf/signatures/sha256 /registry/docker/registry/v2/repositories/p1/pause/_manifests/revisions/sha256/e9a2ac6418981897b399d3709f1b4a6d2723cd38a4909215ce2752a5c068b1cf/signatures/sha256/ede17b139a271d6b1331ca3d83c648c24f92cece5f89d95ac6c34ce751111810 /registry/docker/registry/v2/repositories/p1/pause/_manifests/revisions/sha256/e9a2ac6418981897b399d3709f1b4a6d2723cd38a4909215ce2752a5c068b1cf/signatures/sha256/ede17b139a271d6b1331ca3d83c648c24f92cece5f89d95ac6c34ce751111810/link 6 /registry/docker/registry/v2/repositories/p1/pause/_uploads 7 /registry/docker/registry/v2/repositories/p1/pause/_layers 8 /registry/docker/registry/v2/repositories/p1/pause/_layers/sha256 /registry/docker/registry/v2/repositories/p1/pause/_layers/sha256/a3ed95caeb02ffe68cdd9fd84406680ae93d633cb16422d00e8a7c22955b46d4 /registry/docker/registry/v2/repositories/p1/pause/_layers/sha256/a3ed95caeb02ffe68cdd9fd84406680ae93d633cb16422d00e8a7c22955b46d4/link 9 /registry/docker/registry/v2/repositories/p1/pause/_layers/sha256/f72a00a23f01987b42cb26f259582bb33502bdb0fcf5011e03c60577c4284845 /registry/docker/registry/v2/repositories/p1/pause/_layers/sha256/f72a00a23f01987b42cb26f259582bb33502bdb0fcf5011e03c60577c4284845/link
- 1
- This directory stores all layers and signatures as blobs.
- 2
- This file contains the blob’s contents.
- 3
- This directory stores all the image repositories.
- 4
- This directory is for a single image repository p1/pause.
- 5
- This directory contains signatures for a particular image manifest revision.
- 6
- This file contains a reference back to a blob (which contains the signature data).
- 7
- This directory contains any layers that are currently being uploaded and staged for the given repository.
- 8
- This directory contains links to all the layers this repository references.
- 9
- This file contains a reference to a specific layer that has been linked into this repository via an image.
2.3.3. Accessing the Registry Directly
For advanced usage, you can access the registry directly to invoke docker
commands. This allows you to push images to or pull them from the integrated registry directly using operations like docker push
or docker pull
. To do so, you must be logged in to the registry using the docker login
command. The operations you can perform depend on your user permissions, as described in the following sections.
2.3.3.1. User Prerequisites
To access the registry directly, the user that you use must satisfy the following, depending on your intended usage:
For any direct access, you must have a regular user for your preferred identity provider. A regular user can generate an access token required for logging in to the registry. System users, such as system:admin, cannot obtain access tokens and, therefore, cannot access the registry directly.
For example, if you are using
HTPASSWD
authentication, you can create one using the following command:# htpasswd /etc/origin/master/htpasswd <user_name>
For pulling images, for example when using the
docker pull
command, the user must have the registry-viewer role. To add this role:$ oc policy add-role-to-user registry-viewer <user_name>
For writing or pushing images, for example when using the
docker push
command, the user must have the registry-editor role. To add this role:$ oc policy add-role-to-user registry-editor <user_name>
For more information on user permissions, see Managing Role Bindings.
2.3.3.2. Logging in to the Registry
Ensure your user satisfies the prerequisites for accessing the registry directly.
To log in to the registry directly:
Ensure you are logged in to OpenShift Container Platform as a regular user:
$ oc login
Log in to the Docker registry by using your access token:
docker login -u openshift -p $(oc whoami -t) <registry_ip>:<port>
You can pass any value for the username, the token contains all necessary information. Passing a username that contains colons will result in a login failure.
2.3.3.3. Pushing and Pulling Images
After logging in to the registry, you can perform docker pull
and docker push
operations against your registry.
You can pull arbitrary images, but if you have the system:registry role added, you can only push images to the registry in your project.
In the following examples, we use:
Component | Value |
<registry_ip> |
|
<port> |
|
<project> |
|
<image> |
|
<tag> |
omitted (defaults to |
Pull an arbitrary image:
$ docker pull docker.io/busybox
Tag the new image with the form
<registry_ip>:<port>/<project>/<image>
. The project name must appear in this pull specification for OpenShift Container Platform to correctly place and later access the image in the registry.$ docker tag docker.io/busybox 172.30.124.220:5000/openshift/busybox
NoteYour regular user must have the system:image-builder role for the specified project, which allows the user to write or push an image. Otherwise, the
docker push
in the next step will fail. To test, you can create a new project to push the busybox image.Push the newly-tagged image to your registry:
$ docker push 172.30.124.220:5000/openshift/busybox ... cf2616975b4a: Image successfully pushed Digest: sha256:3662dd821983bc4326bee12caec61367e7fb6f6a3ee547cbaff98f77403cab55
2.3.4. Accessing Registry Metrics
The OpenShift Container Registry provides an endpoint for Prometheus metrics. Prometheus is a stand-alone, open source systems monitoring and alerting toolkit.
The metrics are exposed at the /extensions/v2/metrics path of the registry endpoint. However, this route must first be enabled; see Extended Registry Configuration for instructions.
The following is a simple example of a metrics query:
$ curl -s -u <user>:<secret> \ 1
http://172.30.30.30:5000/extensions/v2/metrics | grep openshift | head -n 10
# HELP openshift_build_info A metric with a constant '1' value labeled by major, minor, git commit & git version from which OpenShift was built.
# TYPE openshift_build_info gauge
openshift_build_info{gitCommit="67275e1",gitVersion="v3.6.0-alpha.1+67275e1-803",major="3",minor="6+"} 1
# HELP openshift_registry_request_duration_seconds Request latency summary in microseconds for each operation
# TYPE openshift_registry_request_duration_seconds summary
openshift_registry_request_duration_seconds{name="test/origin-pod",operation="blobstore.create",quantile="0.5"} 0
openshift_registry_request_duration_seconds{name="test/origin-pod",operation="blobstore.create",quantile="0.9"} 0
openshift_registry_request_duration_seconds{name="test/origin-pod",operation="blobstore.create",quantile="0.99"} 0
openshift_registry_request_duration_seconds_sum{name="test/origin-pod",operation="blobstore.create"} 0
openshift_registry_request_duration_seconds_count{name="test/origin-pod",operation="blobstore.create"} 5
Another method to access the metrics is to use a cluster role. You still need to enable the endpoint, but you do not need to specify a <secret>
. The part of the configuration file responsible for metrics should look like this:
openshift: version: 1.0 metrics: enabled: true ...
You must create a cluster role if you do not already have one to access the metrics:
$ cat <<EOF | apiVersion: rbac.authorization.k8s.io/v1 kind: ClusterRole metadata: name: prometheus-scraper rules: - apiGroups: - image.openshift.io resources: - registry/metrics verbs: - get EOF oc create -f -
To add this role to a user, run the following command:
$ oc adm policy add-cluster-role-to-user prometheus-scraper <username>
See the upstream Prometheus documentation for more advanced queries and recommended visualizers.
2.4. Securing and Exposing the Registry
2.4.1. Overview
By default, the OpenShift Container Platform registry is secured during cluster installation so that it serves traffic via TLS. A passthrough route is also created by default to expose the service externally.
If for any reason your registry has not been secured or exposed, see the following sections for steps on how to manually do so.
2.4.2. Manually Securing the Registry
To manually secure the registry to serve traffic via TLS:
- Deploy the registry.
Fetch the service IP and port of the registry:
$ oc get svc/docker-registry NAME LABELS SELECTOR IP(S) PORT(S) docker-registry docker-registry=default docker-registry=default 172.30.124.220 5000/TCP
You can use an existing server certificate, or create a key and server certificate valid for specified IPs and host names, signed by a specified CA. To create a server certificate for the registry service IP and the docker-registry.default.svc.cluster.local host name, run the following command from the first master listed in the Ansible host inventory file, by default /etc/ansible/hosts:
$ oc adm ca create-server-cert \ --signer-cert=/etc/origin/master/ca.crt \ --signer-key=/etc/origin/master/ca.key \ --signer-serial=/etc/origin/master/ca.serial.txt \ --hostnames='docker-registry.default.svc.cluster.local,docker-registry.default.svc,172.30.124.220' \ --cert=/etc/secrets/registry.crt \ --key=/etc/secrets/registry.key
If the router will be exposed externally, add the public route host name in the
--hostnames
flag:--hostnames='mydocker-registry.example.com,docker-registry.default.svc.cluster.local,172.30.124.220 \
See Redeploying Registry and Router Certificates for additional details on updating the default certificate so that the route is externally accessible.
NoteThe
oc adm ca create-server-cert
command generates a certificate that is valid for two years. This can be altered with the--expire-days
option, but for security reasons, it is recommended to not make it greater than this value.Create the secret for the registry certificates:
$ oc create secret generic registry-certificates \ --from-file=/etc/secrets/registry.crt \ --from-file=/etc/secrets/registry.key
Add the secret to the registry pod’s service accounts (including the default service account):
$ oc secrets link registry registry-certificates $ oc secrets link default registry-certificates
NoteLimiting secrets to only the service accounts that reference them is disabled by default. This means that if
serviceAccountConfig.limitSecretReferences
is set tofalse
(the default setting) in the master configuration file, linking secrets to a service is not required.Pause the
docker-registry
service:$ oc rollout pause dc/docker-registry
Add the secret volume to the registry deployment configuration:
$ oc volume dc/docker-registry --add --type=secret \ --secret-name=registry-certificates -m /etc/secrets
Enable TLS by adding the following environment variables to the registry deployment configuration:
$ oc set env dc/docker-registry \ REGISTRY_HTTP_TLS_CERTIFICATE=/etc/secrets/registry.crt \ REGISTRY_HTTP_TLS_KEY=/etc/secrets/registry.key
See the Configuring a registry section of the Docker documentation for more information.
Update the scheme used for the registry’s liveness probe from HTTP to HTTPS:
$ oc patch dc/docker-registry -p '{"spec": {"template": {"spec": {"containers":[{ "name":"registry", "livenessProbe": {"httpGet": {"scheme":"HTTPS"}} }]}}}}'
If your registry was initially deployed on OpenShift Container Platform 3.2 or later, update the scheme used for the registry’s readiness probe from HTTP to HTTPS:
$ oc patch dc/docker-registry -p '{"spec": {"template": {"spec": {"containers":[{ "name":"registry", "readinessProbe": {"httpGet": {"scheme":"HTTPS"}} }]}}}}'
Resume the
docker-registry
service:$ oc rollout resume dc/docker-registry
Validate the registry is running in TLS mode. Wait until the latest docker-registry deployment completes and verify the Docker logs for the registry container. You should find an entry for
listening on :5000, tls
.$ oc logs dc/docker-registry | grep tls time="2015-05-27T05:05:53Z" level=info msg="listening on :5000, tls" instance.id=deeba528-c478-41f5-b751-dc48e4935fc2
Copy the CA certificate to the Docker certificates directory. This must be done on all nodes in the cluster:
$ dcertsdir=/etc/docker/certs.d $ destdir_addr=$dcertsdir/172.30.124.220:5000 $ destdir_name=$dcertsdir/docker-registry.default.svc.cluster.local:5000 $ sudo mkdir -p $destdir_addr $destdir_name $ sudo cp ca.crt $destdir_addr 1 $ sudo cp ca.crt $destdir_name
- 1
- The ca.crt file is a copy of /etc/origin/master/ca.crt on the master.
When using authentication, some versions of
docker
also require you to configure your cluster to trust the certificate at the OS level.Copy the certificate:
$ cp /etc/origin/master/ca.crt /etc/pki/ca-trust/source/anchors/myregistrydomain.com.crt
Run:
$ update-ca-trust enable
Remove the
--insecure-registry
option only for this particular registry in the /etc/sysconfig/docker file. Then, reload the daemon and restart the docker service to reflect this configuration change:$ sudo systemctl daemon-reload $ sudo systemctl restart docker
Validate the
docker
client connection. Runningdocker push
to the registry ordocker pull
from the registry should succeed. Make sure you have logged into the registry.$ docker tag|push <registry/image> <internal_registry/project/image>
For example:
$ docker pull busybox $ docker tag docker.io/busybox 172.30.124.220:5000/openshift/busybox $ docker push 172.30.124.220:5000/openshift/busybox ... cf2616975b4a: Image successfully pushed Digest: sha256:3662dd821983bc4326bee12caec61367e7fb6f6a3ee547cbaff98f77403cab55
2.4.3. Manually Exposing a Secure Registry
Instead of logging in to the OpenShift Container Platform registry from within the OpenShift Container Platform cluster, you can gain external access to it by first securing the registry and then exposing it with a route. This allows you to log in to the registry from outside the cluster using the route address, and to tag and push images using the route host.
Each of the following prerequisite steps are performed by default during a typical cluster installation. If they have not been, perform them manually:
A passthrough route should have been created by default for the registry during the initial cluster installation:
Verify whether the route exists:
$ oc get route/docker-registry -o yaml apiVersion: v1 kind: Route metadata: name: docker-registry spec: host: <host> 1 to: kind: Service name: docker-registry 2 tls: termination: passthrough 3
NoteRe-encrypt routes are also supported for exposing the secure registry.
If it does not exist, create the route via the
oc create route passthrough
command, specifying the registry as the route’s service. By default, the name of the created route is the same as the service name:Get the docker-registry service details:
$ oc get svc NAME CLUSTER_IP EXTERNAL_IP PORT(S) SELECTOR AGE docker-registry 172.30.69.167 <none> 5000/TCP docker-registry=default 4h kubernetes 172.30.0.1 <none> 443/TCP,53/UDP,53/TCP <none> 4h router 172.30.172.132 <none> 80/TCP router=router 4h
Create the route:
$ oc create route passthrough \ --service=docker-registry \1 --hostname=<host> route "docker-registry" created 2
Next, you must trust the certificates being used for the registry on your host system to allow the host to push and pull images. The certificates referenced were created when you secured your registry.
$ sudo mkdir -p /etc/docker/certs.d/<host> $ sudo cp <ca_certificate_file> /etc/docker/certs.d/<host> $ sudo systemctl restart docker
Log in to the registry using the information from securing the registry. However, this time point to the host name used in the route rather than your service IP. When logging in to a secured and exposed registry, make sure you specify the registry in the
docker login
command:# docker login -e user@company.com \ -u f83j5h6 \ -p Ju1PeM47R0B92Lk3AZp-bWJSck2F7aGCiZ66aFGZrs2 \ <host>
You can now tag and push images using the route host. For example, to tag and push a
busybox
image in a project calledtest
:$ oc get imagestreams -n test NAME DOCKER REPO TAGS UPDATED $ docker pull busybox $ docker tag busybox <host>/test/busybox $ docker push <host>/test/busybox The push refers to a repository [<host>/test/busybox] (len: 1) 8c2e06607696: Image already exists 6ce2e90b0bc7: Image successfully pushed cf2616975b4a: Image successfully pushed Digest: sha256:6c7e676d76921031532d7d9c0394d0da7c2906f4cb4c049904c4031147d8ca31 $ docker pull <host>/test/busybox latest: Pulling from <host>/test/busybox cf2616975b4a: Already exists 6ce2e90b0bc7: Already exists 8c2e06607696: Already exists Digest: sha256:6c7e676d76921031532d7d9c0394d0da7c2906f4cb4c049904c4031147d8ca31 Status: Image is up to date for <host>/test/busybox:latest $ oc get imagestreams -n test NAME DOCKER REPO TAGS UPDATED busybox 172.30.11.215:5000/test/busybox latest 2 seconds ago
NoteYour image streams will have the IP address and port of the registry service, not the route name and port. See
oc get imagestreams
for details.
2.4.4. Manually Exposing a Non-Secure Registry
Instead of securing the registry in order to expose the registry, you can simply expose a non-secure registry for non-production OpenShift Container Platform environments. This allows you to have an external route to the registry without using SSL certificates.
Only non-production environments should expose a non-secure registry to external access.
To expose a non-secure registry:
Expose the registry:
# oc expose service docker-registry --hostname=<hostname> -n default
This creates the following JSON file:
apiVersion: v1 kind: Route metadata: creationTimestamp: null labels: docker-registry: default name: docker-registry spec: host: registry.example.com port: targetPort: "5000" to: kind: Service name: docker-registry status: {}
Verify that the route has been created successfully:
# oc get route NAME HOST/PORT PATH SERVICE LABELS INSECURE POLICY TLS TERMINATION docker-registry registry.example.com docker-registry docker-registry=default
Check the health of the registry:
$ curl -v http://registry.example.com/healthz
Expect an HTTP 200/OK message.
After exposing the registry, update your /etc/sysconfig/docker file by adding the port number to the
OPTIONS
entry. For example:OPTIONS='--selinux-enabled --insecure-registry=172.30.0.0/16 --insecure-registry registry.example.com:80'
ImportantThe above options should be added on the client from which you are trying to log in.
Also, ensure that Docker is running on the client.
When logging in to the non-secured and exposed registry, make sure you specify the registry in the docker login
command. For example:
# docker login -e user@company.com \ -u f83j5h6 \ -p Ju1PeM47R0B92Lk3AZp-bWJSck2F7aGCiZ66aFGZrs2 \ <host>
2.5. Extended Registry Configuration
2.5.1. Maintaining the Registry IP Address
OpenShift Container Platform refers to the integrated registry by its service IP address, so if you decide to delete and recreate the docker-registry service, you can ensure a completely transparent transition by arranging to re-use the old IP address in the new service. If a new IP address cannot be avoided, you can minimize cluster disruption by rebooting only the masters.
- Re-using the Address
- To re-use the IP address, you must save the IP address of the old docker-registry service prior to deleting it, and arrange to replace the newly assigned IP address with the saved one in the new docker-registry service.
Make a note of the
clusterIP
for the service:$ oc get svc/docker-registry -o yaml | grep clusterIP:
Delete the service:
$ oc delete svc/docker-registry dc/docker-registry
Create the registry definition in registry.yaml, replacing
<options>
with, for example, those used in step 3 of the instructions in the Non-Production Use section:$ oc adm registry <options> -o yaml > registry.yaml
-
Edit registry.yaml, find the
Service
there, and change itsclusterIP
to the address noted in step 1. Create the registry using the modified registry.yaml:
$ oc create -f registry.yaml
- Rebooting the Masters
- If you are unable to re-use the IP address, any operation that uses a pull specification that includes the old IP address will fail. To minimize cluster disruption, you must reboot the masters:
# master-restart api # master-restart controllers
This ensures that the old registry URL, which includes the old IP address, is cleared from the cache.
We recommend against rebooting the entire cluster because that incurs unnecessary downtime for pods and does not actually clear the cache.
2.5.2. Whitelisting Docker Registries
You can specify a whitelist of docker registries, allowing you to curate a set of images and templates that are available for download by OpenShift Container Platform users. This curated set can be placed in one or more docker registries, and then added to the whitelist. When using a whitelist, only the specified registries are accessible within OpenShift Container Platform, and all other registries are denied access by default.
To configure a whitelist:
Edit the /etc/sysconfig/docker file to block all registries:
BLOCK_REGISTRY='--block-registry=all'
You may need to uncomment the
BLOCK_REGISTRY
line.In the same file, add registries to which you want to allow access:
ADD_REGISTRY='--add-registry=<registry1> --add-registry=<registry2>'
Allowing Access to Registries
ADD_REGISTRY='--add-registry=registry.access.redhat.com'
This example would restrict access to images available on the Red Hat Customer Portal.
Once the whitelist is configured, if a user tries to pull from a docker registry that is not on the whitelist, they will receive an error message stating that this registry is not allowed.
2.5.3. Setting the Registry Hostname
You can configure the hostname and port the registry is known by for both internal and external references. By doing this, image streams will provide hostname based push and pull specifications for images, allowing consumers of the images to be isolated from changes to the registry service ip and potentially allowing image streams and their references to be portable between clusters.
To set the hostname used to reference the registry from within the cluster, set the internalRegistryHostname
in the imagePolicyConfig
section of the master configuration file. The external hostname is controlled by setting the externalRegistryHostname
value in the same location.
Image Policy Configuration
imagePolicyConfig: internalRegistryHostname: docker-registry.default.svc.cluster.local:5000 externalRegistryHostname: docker-registry.mycompany.com
The registry itself must be configured with the same internal hostname value. This can be accomplished by setting the REGISTRY_OPENSHIFT_SERVER_ADDR
environment variable on the registry deployment configuration, or by setting the value in the OpenShift section of the registry configuration.
If you have enabled TLS for your registry the server certificate must include the hostnames by which you expect the registry to be referenced. See securing the registry for instructions on adding hostnames to the server certificate.
2.5.4. Overriding the Registry Configuration
You can override the integrated registry’s default configuration, found by default at /config.yml in a running registry’s container, with your own custom configuration.
Upstream configuration options in this file may also be overridden using environment variables. The middleware section is an exception as there are just a few options that can be overridden using environment variables. Learn how to override specific configuration options.
To enable management of the registry configuration file directly and deploy an updated configuration using a ConfigMap
:
- Deploy the registry.
Edit the registry configuration file locally as needed. The initial YAML file deployed on the registry is provided below. Review supported options.
Registry Configuration File
version: 0.1 log: level: debug http: addr: :5000 storage: cache: blobdescriptor: inmemory filesystem: rootdirectory: /registry delete: enabled: true auth: openshift: realm: openshift middleware: registry: - name: openshift repository: - name: openshift options: acceptschema2: true pullthrough: true enforcequota: false projectcachettl: 1m blobrepositorycachettl: 10m storage: - name: openshift openshift: version: 1.0 metrics: enabled: false secret: <secret>
Create a
ConfigMap
holding the content of each file in this directory:$ oc create configmap registry-config \ --from-file=</path/to/custom/registry/config.yml>/
Add the registry-config ConfigMap as a volume to the registry’s deployment configuration to mount the custom configuration file at /etc/docker/registry/:
$ oc volume dc/docker-registry --add --type=configmap \ --configmap-name=registry-config -m /etc/docker/registry/
Update the registry to reference the configuration path from the previous step by adding the following environment variable to the registry’s deployment configuration:
$ oc set env dc/docker-registry \ REGISTRY_CONFIGURATION_PATH=/etc/docker/registry/config.yml
This may be performed as an iterative process to achieve the desired configuration. For example, during troubleshooting, the configuration may be temporarily updated to put it in debug mode.
To update an existing configuration:
This procedure will overwrite the currently deployed registry configuration.
- Edit the local registry configuration file, config.yml.
Delete the registry-config configmap:
$ oc delete configmap registry-config
Recreate the configmap to reference the updated configuration file:
$ oc create configmap registry-config\ --from-file=</path/to/custom/registry/config.yml>/
Redeploy the registry to read the updated configuration:
$ oc rollout latest docker-registry
Maintain configuration files in a source control repository.
2.5.5. Registry Configuration Reference
There are many configuration options available in the upstream docker distribution library. Not all configuration options are supported or enabled. Use this section as a reference when overriding the registry configuration.
Upstream configuration options in this file may also be overridden using environment variables. However, the middleware section may not be overridden using environment variables. Learn how to override specific configuration options.
2.5.5.1. Log
Upstream options are supported.
Example:
log: level: debug formatter: text fields: service: registry environment: staging
2.5.5.2. Hooks
Mail hooks are not supported.
2.5.5.3. Storage
This section lists the supported registry storage drivers. See the Docker registry documentation for more information.
The following list includes storage drivers that need to be configured in the registry’s configuration file:
- Filesystem. Filesystem is the default and does not need to be configured.
- S3. See the CloudFront configuration documentation for more information.
- OpenStack Swift
- Google Cloud Storage (GCS)
- Microsoft Azure
- Aliyun OSS
General registry storage configuration options are supported. See the Docker registry documentation for more information.
The following storage options need to be configured through the filesystem driver:
For more information on supported persistent storage drivers, see Configuring Persistent Storage and Persistent Storage Examples.
General Storage Configuration Options
storage:
delete:
enabled: true 1
redirect:
disable: false
cache:
blobdescriptor: inmemory
maintenance:
uploadpurging:
enabled: true
age: 168h
interval: 24h
dryrun: false
readonly:
enabled: false
- 1
- This entry is mandatory for image pruning to work properly.
2.5.5.4. Auth
Auth options should not be altered. The openshift extension is the only supported option.
auth: openshift: realm: openshift
2.5.5.5. Middleware
The repository middleware extension allows to configure OpenShift Container Platform middleware responsible for interaction with OpenShift Container Platform and image proxying.
middleware: registry: - name: openshift 1 repository: - name: openshift 2 options: acceptschema2: true 3 pullthrough: true 4 mirrorpullthrough: true 5 enforcequota: false 6 projectcachettl: 1m 7 blobrepositorycachettl: 10m 8 storage: - name: openshift 9
- 1 2 9
- These entries are mandatory. Their presence ensures required components are loaded. These values should not be changed.
- 3
- Allows you to store manifest schema v2 during a push to the registry. See below for more details.
- 4
- Allows the registry to act as a proxy for remote blobs. See below for more details.
- 5
- Allows the registry cache blobs to be served from remote registries for fast access later. The mirroring starts when the blob is accessed for the first time. The option has no effect if the pullthrough is disabled.
- 6
- Prevents blob uploads exceeding the size limit, which are defined in the targeted project.
- 7
- An expiration timeout for limits cached in the registry. The lower the value, the less time it takes for the limit changes to propagate to the registry. However, the registry will query limits from the server more frequently and, as a consequence, pushes will be slower.
- 8
- An expiration timeout for remembered associations between blob and repository. The higher the value, the higher probability of fast lookup and more efficient registry operation. On the other hand, memory usage will raise as well as a risk of serving image layer to user, who is no longer authorized to access it.
2.5.5.5.1. S3 Driver Configuration
If you want to use a S3 region that is not supported by the integrated registry you are using, then you can specify a regionendpoint
to avoid the region
validation error.
For more information about using Amazon Simple Storage Service storage, see Amazon S3 as a Storage Back-end.
For example:
version: 0.1 log: level: debug http: addr: :5000 storage: cache: blobdescriptor: inmemory delete: enabled: true s3: accesskey: BJKMSZBRESWJQXRWMAEQ secretkey: 5ah5I91SNXbeoUXXDasFtadRqOdy62JzlnOW1goS bucket: docker.myregistry.com region: eu-west-3 regionendpoint: https://s3.eu-west-3.amazonaws.com auth: openshift: realm: openshift middleware: registry: - name: openshift repository: - name: openshift storage: - name: openshift
Verify the region
and regionendpoint
fields are consistent between themselves. Otherwise the integrated registry will start, but it can not read or write anything to the S3 storage.
The regionendpoint
can also be useful if you use a S3 storage different from the Amazon S3.
2.5.5.5.2. CloudFront Middleware
The CloudFront middleware extension can be added to support AWS, CloudFront CDN storage provider. CloudFront middleware speeds up distribution of image content internationally. The blobs are distributed to several edge locations around the world. The client is always directed to the edge with the lowest latency.
The CloudFront middleware extension can be only used with S3 storage. It is utilized only during blob serving. Therefore, only blob downloads can be speeded up, not uploads.
The following is an example of minimal configuration of S3 storage driver with a CloudFront middleware:
version: 0.1 log: level: debug http: addr: :5000 storage: cache: blobdescriptor: inmemory delete: enabled: true s3: 1 accesskey: BJKMSZBRESWJQXRWMAEQ secretkey: 5ah5I91SNXbeoUXXDasFtadRqOdy62JzlnOW1goS region: us-east-1 bucket: docker.myregistry.com auth: openshift: realm: openshift middleware: registry: - name: openshift repository: - name: openshift storage: - name: cloudfront 2 options: baseurl: https://jrpbyn0k5k88bi.cloudfront.net/ 3 privatekey: /etc/docker/cloudfront-ABCEDFGHIJKLMNOPQRST.pem 4 keypairid: ABCEDFGHIJKLMNOPQRST 5 - name: openshift
- 1
- The S3 storage must be configured the same way regardless of CloudFront middleware.
- 2
- The CloudFront storage middleware needs to be listed before OpenShift middleware.
- 3
- The CloudFront base URL. In the AWS management console, this is listed as Domain Name of CloudFront distribution.
- 4
- The location of your AWS private key on the filesystem. This must be not confused with Amazon EC2 key pair. See the AWS documentation on creating CloudFront key pairs for your trusted signers. The file needs to be mounted as a secret into the registry pod.
- 5
- The ID of your Cloudfront key pair.
2.5.5.5.3. Overriding Middleware Configuration Options
The middleware section cannot be overridden using environment variables. There are a few exceptions, however. For example:
middleware: repository: - name: openshift options: acceptschema2: true 1 pullthrough: true 2 mirrorpullthrough: true 3 enforcequota: false 4 projectcachettl: 1m 5 blobrepositorycachettl: 10m 6
- 1
- A configuration option that can be overridden by the boolean environment variable
REGISTRY_MIDDLEWARE_REPOSITORY_OPENSHIFT_ACCEPTSCHEMA2
, which allows for the ability to accept manifest schema v2 on manifest put requests. Recognized values aretrue
andfalse
(which applies to all the other boolean variables below). - 2
- A configuration option that can be overridden by the boolean environment variable
REGISTRY_MIDDLEWARE_REPOSITORY_OPENSHIFT_PULLTHROUGH
, which enables a proxy mode for remote repositories. - 3
- A configuration option that can be overridden by the boolean environment variable
REGISTRY_MIDDLEWARE_REPOSITORY_OPENSHIFT_MIRRORPULLTHROUGH
, which instructs registry to mirror blobs locally if serving remote blobs. - 4
- A configuration option that can be overridden by the boolean environment variable
REGISTRY_MIDDLEWARE_REPOSITORY_OPENSHIFT_ENFORCEQUOTA
, which allows the ability to turn quota enforcement on or off. By default, quota enforcement is off. - 5
- A configuration option that can be overridden by the environment variable
REGISTRY_MIDDLEWARE_REPOSITORY_OPENSHIFT_PROJECTCACHETTL
, specifying an eviction timeout for project quota objects. It takes a valid time duration string (for example,2m
). If empty, you get the default timeout. If zero (0m
), caching is disabled. - 6
- A configuration option that can be overridden by the environment variable
REGISTRY_MIDDLEWARE_REPOSITORY_OPENSHIFT_BLOBREPOSITORYCACHETTL
, specifying an eviction timeout for associations between blob and containing repository. The format of the value is the same as inprojectcachettl
case.
2.5.5.5.4. Image Pullthrough
If enabled, the registry will attempt to fetch requested blob from a remote registry unless the blob exists locally. The remote candidates are calculated from DockerImage entries stored in status of the image stream, a client pulls from. All the unique remote registry references in such entries will be tried in turn until the blob is found.
Pullthrough will only occur if an image stream tag exists for the image being pulled. For example, if the image being pulled is docker-registry.default.svc:5000/yourproject/yourimage:prod
then the registry will look for an image stream tag named yourimage:prod
in the project yourproject
. If it finds one, it will attempt to pull the image using the dockerImageReference
associated with that image stream tag.
When performing pullthrough, the registry will use pull credentials found in the project associated with the image stream tag that is being referenced. This capability also makes it possible for you to pull images that reside on a registry they do not have credentials to access, as long as you have access to the image stream tag that references the image.
You must ensure that your registry has appropriate certificates to trust any external registries you do a pullthrough against. The certificates need to be placed in the /etc/pki/tls/certs directory on the pod. You can mount the certificates using a configuration map or secret. Note that the entire /etc/pki/tls/certs directory must be replaced. You must include the new certificates and replace the system certificates in your secret or configuration map that you mount.
Note that by default image stream tags use a reference policy type of Source
which means that when the image stream reference is resolved to an image pull specification, the specification used will point to the source of the image. For images hosted on external registries, this will be the external registry and as a result the resource will reference and pull the image by the external registry. For example, registry.access.redhat.com/openshift3/jenkins-2-rhel7
and pullthrough will not apply. To ensure that resources referencing image streams use a pull specification that points to the internal registry, the image stream tag should use a reference policy type of Local
. More information is available on Reference Policy.
This feature is on by default. However, it can be disabled using a configuration option.
By default, all the remote blobs served this way are stored locally for subsequent faster access unless mirrorpullthrough
is disabled. The downside of this mirroring feature is an increased storage usage.
The mirroring starts when a client tries to fetch at least a single byte of the blob. To pre-fetch a particular image into integrated registry before it is actually needed, you can run the following command:
$ oc get imagestreamtag/${IS}:${TAG} -o jsonpath='{ .image.dockerImageLayers[*].name }' | \ xargs -n1 -I {} curl -H "Range: bytes=0-1" -u user:${TOKEN} \ http://${REGISTRY_IP}:${PORT}/v2/default/mysql/blobs/{}
This OpenShift Container Platform mirroring feature should not be confused with the upstream registry pull through cache feature, which is a similar but distinct capability.
2.5.5.5.5. Manifest Schema v2 Support
Each image has a manifest describing its blobs, instructions for running it and additional metadata. The manifest is versioned, with each version having different structure and fields as it evolves over time. The same image can be represented by multiple manifest versions. Each version will have different digest though.
The registry currently supports manifest v2 schema 1 (schema1) and manifest v2 schema 2 (schema2). The former is being obsoleted but will be supported for an extended amount of time.
You should be wary of compatibility issues with various Docker clients:
- Docker clients of version 1.9 or older support only schema1. Any manifest this client pulls or pushes will be of this legacy schema.
- Docker clients of version 1.10 support both schema1 and schema2. And by default, it will push the latter to the registry if it supports newer schema.
The registry, storing an image with schema1 will always return it unchanged to the client. Schema2 will be transferred unchanged only to newer Docker client. For the older one, it will be converted on-the-fly to schema1.
This has significant consequences. For example an image pushed to the registry by a newer Docker client cannot be pulled by the older Docker by its digest. That’s because the stored image’s manifest is of schema2 and its digest can be used to pull only this version of manifest.
For this reason, the registry is configured by default not to store schema2. This ensures that any docker client will be able to pull from the registry any image pushed there regardless of client’s version.
Once you’re confident that all the registry clients support schema2, you’ll be safe to enable its support in the registry. See the middleware configuration reference above for particular option.
2.5.5.6. OpenShift
This section reviews the configuration of global settings for features specific to OpenShift Container Platform. In a future release, openshift
-related settings in the Middleware section will be obsoleted.
Currently, this section allows you to configure registry metrics collection:
openshift: version: 1.0 1 server: addr: docker-registry.default.svc 2 metrics: enabled: false 3 secret: <secret> 4 requests: read: maxrunning: 10 5 maxinqueue: 10 6 maxwaitinqueue 2m 7 write: maxrunning: 10 8 maxinqueue: 10 9 maxwaitinqueue 2m 10
- 1
- A mandatory entry specifying configuration version of this section. The only supported value is
1.0
. - 2
- The hostname of the registry. Should be set to the same value configured on the master. It can be overridden by the environment variable
REGISTRY_OPENSHIFT_SERVER_ADDR
. - 3
- Can be set to
true
to enable metrics collection. It can be overridden by the boolean environment variableREGISTRY_OPENSHIFT_METRICS_ENABLED
. - 4
- A secret used to authorize client requests. Metrics clients must use it as a bearer token in
Authorization
header. It can be overridden by the environment variableREGISTRY_OPENSHIFT_METRICS_SECRET
. - 5
- Maximum number of simultaneous pull requests. It can be overridden by the environment variable
REGISTRY_OPENSHIFT_REQUESTS_READ_MAXRUNNING
. Zero indicates no limit. - 6
- Maximum number of queued pull requests. It can be overridden by the environment variable
REGISTRY_OPENSHIFT_REQUESTS_READ_MAXINQUEUE
. Zero indicates no limit. - 7
- Maximum time a pull request can wait in the queue before being rejected. It can be overridden by the environment variable
REGISTRY_OPENSHIFT_REQUESTS_READ_MAXWAITINQUEUE
. Zero indicates no limit. - 8
- Maximum number of simultaneous push requests. It can be overridden by the environment variable
REGISTRY_OPENSHIFT_REQUESTS_WRITE_MAXRUNNING
. Zero indicates no limit. - 9
- Maximum number of queued push requests. It can be overridden by the environment variable
REGISTRY_OPENSHIFT_REQUESTS_WRITE_MAXINQUEUE
. Zero indicates no limit. - 10
- Maximum time a push request can wait in the queue before being rejected. It can be overridden by the environment variable
REGISTRY_OPENSHIFT_REQUESTS_WRITE_MAXWAITINQUEUE
. Zero indicates no limit.
See Accessing Registry Metrics for usage information.
2.5.5.7. Reporting
Reporting is unsupported.
2.5.5.8. HTTP
Upstream options are supported. Learn how to alter these settings via environment variables. Only the tls section should be altered. For example:
http: addr: :5000 tls: certificate: /etc/secrets/registry.crt key: /etc/secrets/registry.key
2.5.5.9. Notifications
Upstream options are supported. The REST API Reference provides more comprehensive integration options.
Example:
notifications: endpoints: - name: registry disabled: false url: https://url:port/path headers: Accept: - text/plain timeout: 500 threshold: 5 backoff: 1000
2.5.5.10. Redis
Redis is not supported.
2.5.5.11. Health
Upstream options are supported. The registry deployment configuration provides an integrated health check at /healthz.
2.5.5.12. Proxy
Proxy configuration should not be enabled. This functionality is provided by the OpenShift Container Platform repository middleware extension, pullthrough: true.
2.5.5.13. Cache
The integrated registry actively caches data to reduce the number of calls to slow external resources. There are two caches:
- The storage cache that is used to cache blobs metadata. This cache does not have an expiration time and the data is there until it is explicitly deleted.
- The application cache contains association between blobs and repositories. The data in this cache has an expiration time.
In order to completely turn off the cache, you need to change the configuration:
version: 0.1 log: level: debug http: addr: :5000 storage: cache: {} 1 openshift: version: 1.0 cache: disabled: true 2 blobrepositoryttl: 10m
- 1
- Disables cache of metadata accessed in the storage backend. Without this cache, the registry server will constantly access the backend for metadata.
- 2
- Disables the cache in which contains the blob and repository associations. Without this cache, the registry server will continually re-query the data from the master API and recompute the associations.
2.6. Known Issues
2.6.1. Overview
The following are the known issues when deploying or using the integrated registry.
2.6.2. Concurrent Build with Registry Pull-through
The local docker-registry deployment takes on additional load. By default, it now caches content from registry.access.redhat.com. The images from registry.access.redhat.com for STI builds are now stored in the local registry. Attempts to pull them result in pulls from the local docker-registry. As a result, there are circumstances where extreme numbers of concurrent builds can result in timeouts for the pulls and the build can possibly fail. To alleviate the issue, scale the docker-registry deployment to more than one replica. Check for timeouts in the builder pod’s logs.
2.6.3. Image Push Errors with Scaled Registry Using Shared NFS Volume
When using a scaled registry with a shared NFS volume, you may see one of the following errors during the push of an image:
-
digest invalid: provided digest did not match uploaded content
-
blob upload unknown
-
blob upload invalid
These errors are returned by an internal registry service when Docker attempts to push the image. Its cause originates in the synchronization of file attributes across nodes. Factors such as NFS client side caching, network latency, and layer size can all contribute to potential errors that might occur when pushing an image using the default round-robin load balancing configuration.
You can perform the following steps to minimize the probability of such a failure:
Ensure that the
sessionAffinity
of your docker-registry service is set toClientIP
:$ oc get svc/docker-registry --template='{{.spec.sessionAffinity}}'
This should return
ClientIP
, which is the default in recent OpenShift Container Platform versions. If not, change it:$ oc patch svc/docker-registry -p '{"spec":{"sessionAffinity": "ClientIP"}}'
-
Ensure that the NFS export line of your registry volume on your NFS server has the
no_wdelay
options listed. Theno_wdelay
option prevents the server from delaying writes, which greatly improves read-after-write consistency, a requirement of the registry.
Testing shows issues with using the RHEL NFS server as a storage backend for the container image registry. This includes the OpenShift Container Registry and Quay. Therefore, using the RHEL NFS server to back PVs used by core services is not recommended.
Other NFS implementations on the marketplace might not have these issues. Contact the individual NFS implementation vendor for more information on any testing that was possibly completed against these OpenShift core components.
2.6.4. Pull of Internally Managed Image Fails with "not found" Error
This error occurs when the pulled image is pushed to an image stream different from the one it is being pulled from. This is caused by re-tagging a built image into an arbitrary image stream:
$ oc tag srcimagestream:latest anyproject/pullimagestream:latest
And subsequently pulling from it, using an image reference such as:
internal.registry.url:5000/anyproject/pullimagestream:latest
During a manual Docker pull, this will produce a similar error:
Error: image anyproject/pullimagestream:latest not found
To prevent this, avoid the tagging of internally managed images completely, or re-push the built image to the desired namespace manually.
2.6.5. Image Push Fails with "500 Internal Server Error" on S3 Storage
There are problems reported happening when the registry runs on S3 storage back-end. Pushing to a Docker registry occasionally fails with the following error:
Received unexpected HTTP status: 500 Internal Server Error
To debug this, you need to view the registry logs. In there, look for similar error messages occurring at the time of the failed push:
time="2016-03-30T15:01:21.22287816-04:00" level=error msg="unknown error completing upload: driver.Error{DriverName:\"s3\", Enclosed:(*url.Error)(0xc20901cea0)}" http.request.method=PUT ... time="2016-03-30T15:01:21.493067808-04:00" level=error msg="response completed with error" err.code=UNKNOWN err.detail="s3: Put https://s3.amazonaws.com/oso-tsi-docker/registry/docker/registry/v2/blobs/sha256/ab/abe5af443833d60cf672e2ac57589410dddec060ed725d3e676f1865af63d2e2/data: EOF" err.message="unknown error" http.request.method=PUT ... time="2016-04-02T07:01:46.056520049-04:00" level=error msg="error putting into main store: s3: The request signature we calculated does not match the signature you provided. Check your key and signing method." http.request.method=PUT atest
If you see such errors, contact your Amazon S3 support. There may be a problem in your region or with your particular bucket.
2.6.6. Image Pruning Fails
If you encounter the following error when pruning images:
BLOB sha256:49638d540b2b62f3b01c388e9d8134c55493b1fa659ed84e97cb59b87a6b8e6c error deleting blob
And your registry log contains the following information:
error deleting blob \"sha256:49638d540b2b62f3b01c388e9d8134c55493b1fa659ed84e97cb59b87a6b8e6c\": operation unsupported
It means that your custom configuration file lacks mandatory entries in the storage section, namely storage:delete:enabled
set to true. Add them, re-deploy the registry, and repeat your image pruning operation.
Chapter 3. Setting up a Router
3.1. Router Overview
3.1.1. About Routers
There are many ways to get traffic into the cluster. The most common approach is to use the OpenShift Container Platform router as the ingress point for external traffic destined for services in your OpenShift Container Platform installation.
OpenShift Container Platform provides and supports the following router plug-ins:
- The HAProxy template router is the default plug-in. It uses the openshift3/ose-haproxy-router image to run an HAProxy instance alongside the template router plug-in inside a container on OpenShift Container Platform. It currently supports HTTP(S) traffic and TLS-enabled traffic via SNI. The router’s container listens on the host network interface, unlike most containers that listen only on private IPs. The router proxies external requests for route names to the IPs of actual pods identified by the service associated with the route.
- The F5 router integrates with an existing F5 BIG-IP® system in your environment to synchronize routes. F5 BIG-IP® version 11.4 or newer is required in order to have the F5 iControl REST API.
The F5 router plug-in is available starting in OpenShift Container Platform 3.0.2.
3.1.2. Router Service Account
Before deploying an OpenShift Container Platform cluster, you must have a service account for the router, which is automatically created during cluster installation. This service account has permissions to a security context constraint (SCC) that allows it to specify host ports.
3.1.2.1. Permission to Access Labels
When namespace labels are used, for example in creating router shards, the service account for the router must have cluster-reader
permission.
$ oc adm policy add-cluster-role-to-user \ cluster-reader \ system:serviceaccount:default:router
With a service account in place, you can proceed to installing a default HAProxy Router, a customized HAProxy Router or F5 Router.
3.2. Using the Default HAProxy Router
3.2.1. Overview
The oc adm router
command is provided with the administrator CLI to simplify the tasks of setting up routers in a new installation. The oc adm router
command creates the service and deployment configuration objects. Use the --service-account
option to specify the service account the router will use to contact the master.
The router service account can be created in advance or created by the oc adm router --service-account
command.
Every form of communication between OpenShift Container Platform components is secured by TLS and uses various certificates and authentication methods. The --default-certificate
.pem format file can be supplied or one is created by the oc adm router
command. When routes are created, the user can provide route certificates that the router will use when handling the route.
When deleting a router, ensure the deployment configuration, service, and secret are deleted as well.
Routers are deployed on specific nodes. This makes it easier for the cluster administrator and external network manager to coordinate which IP address will run a router and which traffic the router will handle. The routers are deployed on specific nodes by using node selectors.
Routers use host networking by default, and they directly attach to port 80 and 443 on all interfaces on a host. Restrict routers to hosts where ports 80/443 are available and not being consumed by another service, and set this using node selectors and the scheduler configuration. As an example, you can achieve this by dedicating infrastructure nodes to run services such as routers.
It is recommended to use separate distinct openshift-router service account with your router. This can be provided using the --service-account
flag to the oc adm router
command.
$ oc adm router --dry-run --service-account=router 1
Router pods created using oc adm router
have default resource requests that a node must satisfy for the router pod to be deployed. In an effort to increase the reliability of infrastructure components, the default resource requests are used to increase the QoS tier of the router pods above pods without resource requests. The default values represent the observed minimum resources required for a basic router to be deployed and can be edited in the routers deployment configuration and you may want to increase them based on the load of the router.
3.2.2. Creating a Router
If the router does not exist, run the following to create a router:
$ oc adm router <router_name> --replicas=<number> --service-account=router
--replicas
is usually 1
unless a high availability configuration is being created.
To find the host IP address of the router:
$ oc get po <router-pod> --template={{.status.hostIP}}
You can also use router shards to ensure that the router is filtered to specific namespaces or routes, or set any environment variables after router creation. In this case create a router for each shard.
3.2.3. Other Basic Router Commands
- Checking the Default Router
- The default router service account, named router, is automatically created during cluster installations. To verify that this account already exists:
$ oc adm router --dry-run --service-account=router
- Viewing the Default Router
- To see what the default router would look like if created:
$ oc adm router --dry-run -o yaml --service-account=router
- Deploying the Router to a Labeled Node
- To deploy the router to any node(s) that match a specified node label:
$ oc adm router <router_name> --replicas=<number> --selector=<label> \ --service-account=router
For example, if you want to create a router named router
and have it placed on a node labeled with node-role.kubernetes.io/infra=true
:
$ oc adm router router --replicas=1 --selector='node-role.kubernetes.io/infra=true' \ --service-account=router
During cluster installation, the openshift_router_selector
and openshift_registry_selector
Ansible settings are set to node-role.kubernetes.io/infra=true
by default. The default router and registry will only be automatically deployed if a node exists that matches the node-role.kubernetes.io/infra=true
label.
For information on updating labels, see Updating Labels on Nodes.
Multiple instances are created on different hosts according to the scheduler policy.
- Using a Different Router Image
- To use a different router image and view the router configuration that would be used:
$ oc adm router <router_name> -o <format> --images=<image> \ --service-account=router
For example:
$ oc adm router region-west -o yaml --images=myrepo/somerouter:mytag \ --service-account=router
3.2.4. Filtering Routes to Specific Routers
Using the ROUTE_LABELS
environment variable, you can filter routes so that they are used only by specific routers.
For example, if you have multiple routers, and 100 routes, you can attach labels to the routes so that a portion of them are handled by one router, whereas the rest are handled by another.
After creating a router, use the
ROUTE_LABELS
environment variable to tag the router:$ oc env dc/<router=name> ROUTE_LABELS="key=value"
Add the label to the desired routes:
oc label route <route=name> key=value
To verify that the label has been attached to the route, check the route configuration:
$ oc describe route/<route_name>
- Setting the Maximum Number of Concurrent Connections
-
The router can handle a maximum number of 20000 connections by default. You can change that limit depending on your needs. Having too few connections prevents the health check from working, which causes unnecessary restarts. You need to configure the system to support the maximum number of connections. The limits shown in
'sysctl fs.nr_open'
and'sysctl fs.file-max'
must be large enough. Otherwise, HAproxy will not start.
When the router is created, the --max-connections=
option sets the desired limit:
$ oc adm router --max-connections=10000 ....
Edit the ROUTER_MAX_CONNECTIONS
environment variable in the router’s deployment configuration to change the value. The router pods are restarted with the new value. If ROUTER_MAX_CONNECTIONS
is not present, the default value of 20000, is used.
A connection includes the frontend and internal backend. This counts as two connections. Be sure to set ROUTER_MAX_CONNECTIONS
to double than the number of connections you intend to create.
3.2.5. HAProxy Strict SNI
The HAProxy strict-sni
can be controlled through the ROUTER_STRICT_SNI
environment variable in the router’s deployment configuration. It can also be set when the router is created by using the --strict-sni
command line option.
$ oc adm router --strict-sni
3.2.6. TLS Cipher Suites
Set the router cipher suite using the --ciphers
option when creating a router:
$ oc adm router --ciphers=modern ....
The values are: modern
, intermediate
, or old
, with intermediate
as the default. Alternatively, a set of ":" separated ciphers can be provided. The ciphers must be from the set displayed by:
$ openssl ciphers
Alternatively, use the ROUTER_CIPHERS
environment variable for an existing router.
3.2.7. Highly-Available Routers
You can set up a highly-available router on your OpenShift Container Platform cluster using IP failover. This setup has multiple replicas on different nodes so the failover software can switch to another replica if the current one fails.
3.2.8. Customizing the Router Service Ports
You can customize the service ports that a template router binds to by setting the environment variables ROUTER_SERVICE_HTTP_PORT
and ROUTER_SERVICE_HTTPS_PORT
. This can be done by creating a template router, then editing its deployment configuration.
The following example creates a router deployment with 0
replicas and customizes the router service HTTP and HTTPS ports, then scales it appropriately (to 1
replica).
$ oc adm router --replicas=0 --ports='10080:10080,10443:10443' 1
$ oc set env dc/router ROUTER_SERVICE_HTTP_PORT=10080 \
ROUTER_SERVICE_HTTPS_PORT=10443
$ oc scale dc/router --replicas=1
- 1
- Ensures exposed ports are appropriately set for routers that use the container networking mode
--host-network=false
.
If you do customize the template router service ports, you will also need to ensure that the nodes where the router pods run have those custom ports opened in the firewall (either via Ansible or iptables
, or any other custom method that you use via firewall-cmd
).
The following is an example using iptables
to open the custom router service ports.
$ iptables -A INPUT -p tcp --dport 10080 -j ACCEPT $ iptables -A INPUT -p tcp --dport 10443 -j ACCEPT
3.2.9. Working With Multiple Routers
An administrator can create multiple routers with the same definition to serve the same set of routes. Each router will be on a different node and will have a different IP address. The network administrator will need to get the desired traffic to each node.
Multiple routers can be grouped to distribute routing load in the cluster and separate tenants to different routers or shards. Each router or shard in the group admits routes based on the selectors in the router. An administrator can create shards over the whole cluster using ROUTE_LABELS
. A user can create shards over a namespace (project) by using NAMESPACE_LABELS
.
3.2.10. Adding a Node Selector to a Deployment Configuration
Making specific routers deploy on specific nodes requires two steps:
Add a label to the desired node:
$ oc label node 10.254.254.28 "router=first"
Add a node selector to the router deployment configuration:
$ oc edit dc <deploymentConfigName>
Add the
template.spec.nodeSelector
field with a key and value corresponding to the label:... template: metadata: creationTimestamp: null labels: router: router1 spec: nodeSelector: 1 router: "first" ...
- 1
- The key and value are
router
andfirst
, respectively, corresponding to therouter=first
label.
3.2.11. Using Router Shards
Router sharding uses NAMESPACE_LABELS
and ROUTE_LABELS
, to filter router namespaces and routes. This enables you to distribute subsets of routes over multiple router deployments. By using non-overlapping subsets, you can effectively partition the set of routes. Alternatively, you can define shards comprising overlapping subsets of routes.
By default, a router selects all routes from all projects (namespaces). Sharding involves adding labels to routes or namespaces and label selectors to routers. Each router shard comprises the routes that are selected by a specific set of label selectors or belong to the namespaces that are selected by a specific set of label selectors.
The router service account must have the [cluster reader
] permission set to allow access to labels in other namespaces.
Router Sharding and DNS
Because an external DNS server is needed to route requests to the desired shard, the administrator is responsible for making a separate DNS entry for each router in a project. A router will not forward unknown routes to another router.
Consider the following example:
-
Router A lives on host 192.168.0.5 and has routes with
*.foo.com
. -
Router B lives on host 192.168.1.9 and has routes with
*.example.com
.
Separate DNS entries must resolve *.foo.com to the node hosting Router A and *.example.com to the node hosting Router B:
-
*.foo.com A IN 192.168.0.5
-
*.example.com A IN 192.168.1.9
Router Sharding Examples
This section describes router sharding using namespace and route labels.
Figure 3.1. Router Sharding Based on Namespace Labels
Configure a router with a namespace label selector:
$ oc set env dc/router NAMESPACE_LABELS="router=r1"
Because the router has a selector on the namespace, the router will handle routes only for matching namespaces. In order to make this selector match a namespace, label the namespace accordingly:
$ oc label namespace default "router=r1"
Now, if you create a route in the default namespace, the route is available in the default router:
$ oc create -f route1.yaml
Create a new project (namespace) and create a route,
route2
:$ oc new-project p1 $ oc create -f route2.yaml
Notice the route is not available in your router.
Label namespace
p1
withrouter=r1
$ oc label namespace p1 "router=r1"
Adding this label makes the route available in the router.
- Example
A router deployment
finops-router
is configured with the label selectorNAMESPACE_LABELS="name in (finance, ops)"
, and a router deploymentdev-router
is configured with the label selectorNAMESPACE_LABELS="name=dev"
.If all routes are in namespaces labeled
name=finance
,name=ops
, andname=dev
, then this configuration effectively distributes your routes between the two router deployments.In the above scenario, sharding becomes a special case of partitioning, with no overlapping subsets. Routes are divided between router shards.
The criteria for route selection govern how the routes are distributed. It is possible to have overlapping subsets of routes across router deployments.
- Example
In addition to
finops-router
anddev-router
in the example above, you also havedevops-router
, which is configured with a label selectorNAMESPACE_LABELS="name in (dev, ops)"
.The routes in namespaces labeled
name=dev
orname=ops
now are serviced by two different router deployments. This becomes a case in which you have defined overlapping subsets of routes, as illustrated in the procedure in Router Sharding Based on Namespace Labels.In addition, this enables you to create more complex routing rules, allowing the diversion of higher priority traffic to the dedicated
finops-router
while sending lower priority traffic todevops-router
.
Router Sharding Based on Route Labels
NAMESPACE_LABELS
allows filtering of the projects to service and selecting all the routes from those projects, but you may want to partition routes based on other criteria associated with the routes themselves. The ROUTE_LABELS
selector allows you to slice-and-dice the routes themselves.
- Example
A router deployment
prod-router
is configured with the label selectorROUTE_LABELS="mydeployment=prod"
, and a router deploymentdevtest-router
is configured with the label selectorROUTE_LABELS="mydeployment in (dev, test)"
.This configuration partitions routes between the two router deployments according to the routes' labels, irrespective of their namespaces.
The example assumes you have all the routes you want to be serviced tagged with a label
"mydeployment=<tag>"
.
3.2.11.1. Creating Router Shards
This section describes an advanced example of router sharding. Suppose there are 26 routes, named a
— z
, with various labels:
Possible labels on routes
sla=high geo=east hw=modest dept=finance sla=medium geo=west hw=strong dept=dev sla=low dept=ops
These labels express the concepts including service level agreement, geographical location, hardware requirements, and department. The routes can have at most one label from each column. Some routes may have other labels or no labels at all.
Name(s) | SLA | Geo | HW | Dept | Other Labels |
---|---|---|---|---|---|
|
|
|
|
|
|
|
|
|
| ||
|
|
|
| ||
|
|
|
| ||
|
|
|
| ||
|
|
|
Here is a convenience script mkshard that illustrates how oc adm router
, oc set env
, and oc scale
can be used together to make a router shard.
#!/bin/bash # Usage: mkshard ID SELECTION-EXPRESSION id=$1 sel="$2" router=router-shard-$id 1 oc adm router $router --replicas=0 2 dc=dc/router-shard-$id 3 oc set env $dc ROUTE_LABELS="$sel" 4 oc scale $dc --replicas=3 5
Running mkshard several times creates several routers:
Router | Selection Expression | Routes |
---|---|---|
|
|
|
|
|
|
|
|
|
3.2.11.2. Modifying Router Shards
Because a router shard is a construct based on labels, you can modify either the labels (via oc label
) or the selection expression (via oc set env
).
This section extends the example started in the Creating Router Shards section, demonstrating how to change the selection expression.
Here is a convenience script modshard that modifies an existing router to use a new selection expression:
#!/bin/bash # Usage: modshard ID SELECTION-EXPRESSION... id=$1 shift router=router-shard-$id 1 dc=dc/$router 2 oc scale $dc --replicas=0 3 oc set env $dc "$@" 4 oc scale $dc --replicas=3 5
- 1
- The modified router has name
router-shard-<id>
. - 2
- The deployment configuration where the modifications occur.
- 3
- Scale it down.
- 4
- Set the new selection expression using
oc set env
. Unlikemkshard
from the Creating Router Shards section, the selection expression specified as the non-ID
arguments tomodshard
must include the environment variable name as well as its value. - 5
- Scale it back up.
In modshard
, the oc scale
commands are not necessary if the deployment strategy for router-shard-<id>
is Rolling
.
For example, to expand the department for router-shard-3
to include ops
as well as dev
:
$ modshard 3 ROUTE_LABELS='dept in (dev, ops)'
The result is that router-shard-3
now selects routes g
— s
(the combined sets of g
— k
and l
— s
).
This example takes into account that there are only three departments in this example scenario, and specifies a department to leave out of the shard, thus achieving the same result as the preceding example:
$ modshard 3 ROUTE_LABELS='dept != finance'
This example specifies three comma-separated qualities, and results in only route b
being selected:
$ modshard 3 ROUTE_LABELS='hw=strong,type=dynamic,geo=west'
Similarly to ROUTE_LABELS
, which involves a route’s labels, you can select routes based on the labels of the route’s namespace using the NAMESPACE_LABELS
environment variable. This example modifies router-shard-3
to serve routes whose namespace has the label frequency=weekly
:
$ modshard 3 NAMESPACE_LABELS='frequency=weekly'
The last example combines ROUTE_LABELS
and NAMESPACE_LABELS
to select routes with label sla=low
and whose namespace has the label frequency=weekly
:
$ modshard 3 \ NAMESPACE_LABELS='frequency=weekly' \ ROUTE_LABELS='sla=low'
3.2.12. Finding the Host Name of the Router
When exposing a service, a user can use the same route from the DNS name that external users use to access the application. The network administrator of the external network must make sure the host name resolves to the name of a router that has admitted the route. The user can set up their DNS with a CNAME that points to this host name. However, the user may not know the host name of the router. When it is not known, the cluster administrator can provide it.
The cluster administrator can use the --router-canonical-hostname
option with the router’s canonical host name when creating the router. For example:
# oc adm router myrouter --router-canonical-hostname="rtr.example.com"
This creates the ROUTER_CANONICAL_HOSTNAME
environment variable in the router’s deployment configuration containing the host name of the router.
For routers that already exist, the cluster administrator can edit the router’s deployment configuration and add the ROUTER_CANONICAL_HOSTNAME
environment variable:
spec: template: spec: containers: - env: - name: ROUTER_CANONICAL_HOSTNAME value: rtr.example.com
The ROUTER_CANONICAL_HOSTNAME
value is displayed in the route status for all routers that have admitted the route. The route status is refreshed every time the router is reloaded.
When a user creates a route, all of the active routers evaluate the route and, if conditions are met, admit it. When a router that defines the ROUTER_CANONICAL_HOSTNAME
environment variable admits the route, the router places the value in the routerCanonicalHostname
field in the route status. The user can examine the route status to determine which, if any, routers have admitted the route, select a router from the list, and find the host name of the router to pass along to the network administrator.
status: ingress: conditions: lastTransitionTime: 2016-12-07T15:20:57Z status: "True" type: Admitted host: hello.in.mycloud.com routerCanonicalHostname: rtr.example.com routerName: myrouter wildcardPolicy: None
oc describe
inclues the host name when available:
$ oc describe route/hello-route3 ... Requested Host: hello.in.mycloud.com exposed on router myroute (host rtr.example.com) 12 minutes ago
Using the above information, the user can ask the DNS administrator to set up a CNAME from the route’s host, hello.in.mycloud.com
, to the router’s canonical hostname, rtr.example.com
. This results in any traffic to hello.in.mycloud.com
reaching the user’s application.
3.2.13. Customizing the Default Routing Subdomain
You can customize the suffix used as the default routing subdomain for your environment by modifying the master configuration file (the /etc/origin/master/master-config.yaml file by default). Routes that do not specify a host name would have one generated using this default routing subdomain.
The following example shows how you can set the configured suffix to v3.openshift.test:
routingConfig: subdomain: v3.openshift.test
This change requires a restart of the master if it is running.
With the OpenShift Container Platform master(s) running the above configuration, the generated host name for the example of a route named no-route-hostname without a host name added to a namespace mynamespace would be:
no-route-hostname-mynamespace.v3.openshift.test
3.2.14. Forcing Route Host Names to a Custom Routing Subdomain
If an administrator wants to restrict all routes to a specific routing subdomain, they can pass the --force-subdomain
option to the oc adm router
command. This forces the router to override any host names specified in a route and generate one based on the template provided to the --force-subdomain
option.
The following example runs a router, which overrides the route host names using a custom subdomain template ${name}-${namespace}.apps.example.com
.
$ oc adm router --force-subdomain='${name}-${namespace}.apps.example.com'
3.2.15. Using Wildcard Certificates
A TLS-enabled route that does not include a certificate uses the router’s default certificate instead. In most cases, this certificate should be provided by a trusted certificate authority, but for convenience you can use the OpenShift Container Platform CA to create the certificate. For example:
$ CA=/etc/origin/master $ oc adm ca create-server-cert --signer-cert=$CA/ca.crt \ --signer-key=$CA/ca.key --signer-serial=$CA/ca.serial.txt \ --hostnames='*.cloudapps.example.com' \ --cert=cloudapps.crt --key=cloudapps.key
The oc adm ca create-server-cert
command generates a certificate that is valid for two years. This can be altered with the --expire-days
option, but for security reasons, it is recommended to not make it greater than this value.
Run oc adm
commands only from the first master listed in the Ansible host inventory file, by default /etc/ansible/hosts.
The router expects the certificate and key to be in PEM format in a single file:
$ cat cloudapps.crt cloudapps.key $CA/ca.crt > cloudapps.router.pem
From there you can use the --default-cert
flag:
$ oc adm router --default-cert=cloudapps.router.pem --service-account=router
Browsers only consider wildcards valid for subdomains one level deep. So in this example, the certificate would be valid for a.cloudapps.example.com but not for a.b.cloudapps.example.com.
3.2.16. Manually Redeploy Certificates
To manually redeploy the router certificates:
Check to see if a secret containing the default router certificate was added to the router:
$ oc volumes dc/router deploymentconfigs/router secret/router-certs as server-certificate mounted at /etc/pki/tls/private
If the certificate is added, skip the following step and overwrite the secret.
Make sure that you have a default certificate directory set for the following variable
DEFAULT_CERTIFICATE_DIR
:$ oc env dc/router --list DEFAULT_CERTIFICATE_DIR=/etc/pki/tls/private
If not, create the directory using the following command:
$ oc env dc/router DEFAULT_CERTIFICATE_DIR=/etc/pki/tls/private
Export the certificate to PEM format:
$ cat custom-router.key custom-router.crt custom-ca.crt > custom-router.crt
Overwrite or create a router certificate secret:
If the certificate secret was added to the router, overwrite the secret. If not, create a new secret.
To overwrite the secret, run the following command:
$ oc create secret generic router-certs --from-file=tls.crt=custom-router.crt --from-file=tls.key=custom-router.key --type=kubernetes.io/tls -o json --dry-run | oc replace -f -
To create a new secret, run the following commands:
$ oc create secret generic router-certs --from-file=tls.crt=custom-router.crt --from-file=tls.key=custom-router.key --type=kubernetes.io/tls $ oc volume dc/router --add --mount-path=/etc/pki/tls/private --secret-name='router-certs' --name router-certs
Deploy the router.
$ oc rollout latest dc/router
3.2.17. Using Secured Routes
Currently, password protected key files are not supported. HAProxy prompts for a password upon starting and does not have a way to automate this process. To remove a passphrase from a keyfile, you can run:
# openssl rsa -in <passwordProtectedKey.key> -out <new.key>
Here is an example of how to use a secure edge terminated route with TLS termination occurring on the router before traffic is proxied to the destination. The secure edge terminated route specifies the TLS certificate and key information. The TLS certificate is served by the router front end.
First, start up a router instance:
# oc adm router --replicas=1 --service-account=router
Next, create a private key, csr and certificate for our edge secured route. The instructions on how to do that would be specific to your certificate authority and provider. For a simple self-signed certificate for a domain named www.example.test
, see the example shown below:
# sudo openssl genrsa -out example-test.key 2048 # # sudo openssl req -new -key example-test.key -out example-test.csr \ -subj "/C=US/ST=CA/L=Mountain View/O=OS3/OU=Eng/CN=www.example.test" # # sudo openssl x509 -req -days 366 -in example-test.csr \ -signkey example-test.key -out example-test.crt
Generate a route using the above certificate and key.
$ oc create route edge --service=my-service \ --hostname=www.example.test \ --key=example-test.key --cert=example-test.crt route "my-service" created
Look at its definition.
$ oc get route/my-service -o yaml apiVersion: v1 kind: Route metadata: name: my-service spec: host: www.example.test to: kind: Service name: my-service tls: termination: edge key: | -----BEGIN PRIVATE KEY----- [...] -----END PRIVATE KEY----- certificate: | -----BEGIN CERTIFICATE----- [...] -----END CERTIFICATE-----
Make sure your DNS entry for www.example.test
points to your router instance(s) and the route to your domain should be available. The example below uses curl along with a local resolver to simulate the DNS lookup:
# routerip="4.1.1.1" # replace with IP address of one of your router instances. # curl -k --resolve www.example.test:443:$routerip https://www.example.test/
3.2.18. Using Wildcard Routes (for a Subdomain)
The HAProxy router has support for wildcard routes, which are enabled by setting the ROUTER_ALLOW_WILDCARD_ROUTES
environment variable to true
. Any routes with a wildcard policy of Subdomain
that pass the router admission checks will be serviced by the HAProxy router. Then, the HAProxy router exposes the associated service (for the route) per the route’s wildcard policy.
To change a route’s wildcard policy, you must remove the route and recreate it with the updated wildcard policy. Editing only the route’s wildcard policy in a route’s .yaml file does not work.
$ oc adm router --replicas=0 ... $ oc set env dc/router ROUTER_ALLOW_WILDCARD_ROUTES=true $ oc scale dc/router --replicas=1
Learn how to configure the web console for wildcard routes.
Using a Secure Wildcard Edge Terminated Route
This example reflects TLS termination occurring on the router before traffic is proxied to the destination. Traffic sent to any hosts in the subdomain example.org
(*.example.org
) is proxied to the exposed service.
The secure edge terminated route specifies the TLS certificate and key information. The TLS certificate is served by the router front end for all hosts that match the subdomain (*.example.org
).
Start up a router instance:
$ oc adm router --replicas=0 --service-account=router $ oc set env dc/router ROUTER_ALLOW_WILDCARD_ROUTES=true $ oc scale dc/router --replicas=1
Create a private key, certificate signing request (CSR), and certificate for the edge secured route.
The instructions on how to do this are specific to your certificate authority and provider. For a simple self-signed certificate for a domain named
*.example.test
, see this example:# sudo openssl genrsa -out example-test.key 2048 # # sudo openssl req -new -key example-test.key -out example-test.csr \ -subj "/C=US/ST=CA/L=Mountain View/O=OS3/OU=Eng/CN=*.example.test" # # sudo openssl x509 -req -days 366 -in example-test.csr \ -signkey example-test.key -out example-test.crt
Generate a wildcard route using the above certificate and key:
$ cat > route.yaml <<REOF apiVersion: v1 kind: Route metadata: name: my-service spec: host: www.example.test wildcardPolicy: Subdomain to: kind: Service name: my-service tls: termination: edge key: "$(perl -pe 's/\n/\\n/' example-test.key)" certificate: "$(perl -pe 's/\n/\\n/' example-test.cert)" REOF $ oc create -f route.yaml
Ensure your DNS entry for
*.example.test
points to your router instance(s) and the route to your domain is available.This example uses
curl
with a local resolver to simulate the DNS lookup:# routerip="4.1.1.1" # replace with IP address of one of your router instances. # curl -k --resolve www.example.test:443:$routerip https://www.example.test/ # curl -k --resolve abc.example.test:443:$routerip https://abc.example.test/ # curl -k --resolve anyname.example.test:443:$routerip https://anyname.example.test/
For routers that allow wildcard routes (ROUTER_ALLOW_WILDCARD_ROUTES
set to true
), there are some caveats to the ownership of a subdomain associated with a wildcard route.
Prior to wildcard routes, ownership was based on the claims made for a host name with the namespace with the oldest route winning against any other claimants. For example, route r1
in namespace ns1
with a claim for one.example.test
would win over another route r2
in namespace ns2
for the same host name one.example.test
if route r1
was older than route r2
.
In addition, routes in other namespaces were allowed to claim non-overlapping hostnames. For example, route rone
in namespace ns1
could claim www.example.test
and another route rtwo
in namespace d2
could claim c3po.example.test
.
This is still the case if there are no wildcard routes claiming that same subdomain (example.test
in the above example).
However, a wildcard route needs to claim all of the host names within a subdomain (host names of the form \*.example.test
). A wildcard route’s claim is allowed or denied based on whether or not the oldest route for that subdomain (example.test
) is in the same namespace as the wildcard route. The oldest route can be either a regular route or a wildcard route.
For example, if there is already a route eldest
that exists in the ns1
namespace that claimed a host named owner.example.test
and, if at a later point in time, a new wildcard route wildthing
requesting for routes in that subdomain (example.test
) is added, the claim by the wildcard route will only be allowed if it is the same namespace (ns1
) as the owning route.
The following examples illustrate various scenarios in which claims for wildcard routes will succeed or fail.
In the example below, a router that allows wildcard routes will allow non-overlapping claims for hosts in the subdomain example.test
as long as a wildcard route has not claimed a subdomain.
$ oc adm router ... $ oc set env dc/router ROUTER_ALLOW_WILDCARD_ROUTES=true $ oc project ns1 $ oc expose service myservice --hostname=owner.example.test $ oc expose service myservice --hostname=aname.example.test $ oc expose service myservice --hostname=bname.example.test $ oc project ns2 $ oc expose service anotherservice --hostname=second.example.test $ oc expose service anotherservice --hostname=cname.example.test $ oc project otherns $ oc expose service thirdservice --hostname=emmy.example.test $ oc expose service thirdservice --hostname=webby.example.test
In the example below, a router that allows wildcard routes will not allow the claim for owner.example.test
or aname.example.test
to succeed since the owning namespace is ns1
.
$ oc adm router ... $ oc set env dc/router ROUTER_ALLOW_WILDCARD_ROUTES=true $ oc project ns1 $ oc expose service myservice --hostname=owner.example.test $ oc expose service myservice --hostname=aname.example.test $ oc project ns2 $ oc expose service secondservice --hostname=bname.example.test $ oc expose service secondservice --hostname=cname.example.test $ # Router will not allow this claim with a different path name `/p1` as $ # namespace `ns1` has an older route claiming host `aname.example.test`. $ oc expose service secondservice --hostname=aname.example.test --path="/p1" $ # Router will not allow this claim as namespace `ns1` has an older route $ # claiming host name `owner.example.test`. $ oc expose service secondservice --hostname=owner.example.test $ oc project otherns $ # Router will not allow this claim as namespace `ns1` has an older route $ # claiming host name `aname.example.test`. $ oc expose service thirdservice --hostname=aname.example.test
In the example below, a router that allows wildcard routes will allow the claim for `\*.example.test
to succeed since the owning namespace is ns1
and the wildcard route belongs to that same namespace.
$ oc adm router ... $ oc set env dc/router ROUTER_ALLOW_WILDCARD_ROUTES=true $ oc project ns1 $ oc expose service myservice --hostname=owner.example.test $ # Reusing the route.yaml from the previous example. $ # spec: $ # host: www.example.test $ # wildcardPolicy: Subdomain $ oc create -f route.yaml # router will allow this claim.
In the example below, a router that allows wildcard routes will not allow the claim for `\*.example.test
to succeed since the owning namespace is ns1
and the wildcard route belongs to another namespace cyclone
.
$ oc adm router ... $ oc set env dc/router ROUTER_ALLOW_WILDCARD_ROUTES=true $ oc project ns1 $ oc expose service myservice --hostname=owner.example.test $ # Switch to a different namespace/project. $ oc project cyclone $ # Reusing the route.yaml from a prior example. $ # spec: $ # host: www.example.test $ # wildcardPolicy: Subdomain $ oc create -f route.yaml # router will deny (_NOT_ allow) this claim.
Similarly, once a namespace with a wildcard route claims a subdomain, only routes within that namespace can claim any hosts in that same subdomain.
In the example below, once a route in namespace ns1
with a wildcard route claims subdomain example.test
, only routes in the namespace ns1
are allowed to claim any hosts in that same subdomain.
$ oc adm router ... $ oc set env dc/router ROUTER_ALLOW_WILDCARD_ROUTES=true $ oc project ns1 $ oc expose service myservice --hostname=owner.example.test $ oc project otherns $ # namespace `otherns` is allowed to claim for other.example.test $ oc expose service otherservice --hostname=other.example.test $ oc project ns1 $ # Reusing the route.yaml from the previous example. $ # spec: $ # host: www.example.test $ # wildcardPolicy: Subdomain $ oc create -f route.yaml # Router will allow this claim. $ # In addition, route in namespace otherns will lose its claim to host $ # `other.example.test` due to the wildcard route claiming the subdomain. $ # namespace `ns1` is allowed to claim for deux.example.test $ oc expose service mysecondservice --hostname=deux.example.test $ # namespace `ns1` is allowed to claim for deux.example.test with path /p1 $ oc expose service mythirdservice --hostname=deux.example.test --path="/p1" $ oc project otherns $ # namespace `otherns` is not allowed to claim for deux.example.test $ # with a different path '/otherpath' $ oc expose service otherservice --hostname=deux.example.test --path="/otherpath" $ # namespace `otherns` is not allowed to claim for owner.example.test $ oc expose service yetanotherservice --hostname=owner.example.test $ # namespace `otherns` is not allowed to claim for unclaimed.example.test $ oc expose service yetanotherservice --hostname=unclaimed.example.test
In the example below, different scenarios are shown, in which the owner routes are deleted and ownership is passed within and across namespaces. While a route claiming host eldest.example.test
in the namespace ns1
exists, wildcard routes in that namespace can claim subdomain example.test
. When the route for host eldest.example.test
is deleted, the next oldest route senior.example.test
would become the oldest route and would not affect any other routes. Once the route for host senior.example.test
is deleted, the next oldest route junior.example.test
becomes the oldest route and block the wildcard route claimant.
$ oc adm router ... $ oc set env dc/router ROUTER_ALLOW_WILDCARD_ROUTES=true $ oc project ns1 $ oc expose service myservice --hostname=eldest.example.test $ oc expose service seniorservice --hostname=senior.example.test $ oc project otherns $ # namespace `otherns` is allowed to claim for other.example.test $ oc expose service juniorservice --hostname=junior.example.test $ oc project ns1 $ # Reusing the route.yaml from the previous example. $ # spec: $ # host: www.example.test $ # wildcardPolicy: Subdomain $ oc create -f route.yaml # Router will allow this claim. $ # In addition, route in namespace otherns will lose its claim to host $ # `junior.example.test` due to the wildcard route claiming the subdomain. $ # namespace `ns1` is allowed to claim for dos.example.test $ oc expose service mysecondservice --hostname=dos.example.test $ # Delete route for host `eldest.example.test`, the next oldest route is $ # the one claiming `senior.example.test`, so route claims are unaffacted. $ oc delete route myservice $ # Delete route for host `senior.example.test`, the next oldest route is $ # the one claiming `junior.example.test` in another namespace, so claims $ # for a wildcard route would be affected. The route for the host $ # `dos.example.test` would be unaffected as there are no other wildcard $ # claimants blocking it. $ oc delete route seniorservice
3.2.19. Using the Container Network Stack
The OpenShift Container Platform router runs inside a container and the default behavior is to use the network stack of the host (i.e., the node where the router container runs). This default behavior benefits performance because network traffic from remote clients does not need to take multiple hops through user space to reach the target service and container.
Additionally, this default behavior enables the router to get the actual source IP address of the remote connection rather than getting the node’s IP address. This is useful for defining ingress rules based on the originating IP, supporting sticky sessions, and monitoring traffic, among other uses.
This host network behavior is controlled by the --host-network
router command line option, and the default behaviour is the equivalent of using --host-network=true
. If you wish to run the router with the container network stack, use the --host-network=false
option when creating the router. For example:
$ oc adm router --service-account=router --host-network=false
Internally, this means the router container must publish the 80 and 443 ports in order for the external network to communicate with the router.
Running with the container network stack means that the router sees the source IP address of a connection to be the NATed IP address of the node, rather than the actual remote IP address.
On OpenShift Container Platform clusters using multi-tenant network isolation, routers on a non-default namespace with the --host-network=false
option will load all routes in the cluster, but routes across the namespaces will not be reachable due to network isolation. With the --host-network=true
option, routes bypass the container network and it can access any pod in the cluster. If isolation is needed in this case, then do not add routes across the namespaces.
3.2.20. Exposing Router Metrics
The HAProxy router metrics are, by default, exposed or published in Prometheus format for consumption by external metrics collection and aggregation systems (e.g. Prometheus, statsd). Metrics are also available directly from the HAProxy router in its own HTML format for viewing in a browser or CSV download. These metrics include the HAProxy native metrics and some controller metrics.
When you create a router using the following command, OpenShift Container Platform makes metrics available in Prometheus format on the stats port, by default 1936.
$ oc adm router --service-account=router
To extract the raw statistics in Prometheus format run the following command:
curl <user>:<password>@<router_IP>:<STATS_PORT>
For example:
$ curl admin:sLzdR6SgDJ@10.254.254.35:1936/metrics
You can get the information you need to access the metrics from the router service annotations:
$ oc edit service <router-name> apiVersion: v1 kind: Service metadata: annotations: prometheus.io/port: "1936" prometheus.io/scrape: "true" prometheus.openshift.io/password: IImoDqON02 prometheus.openshift.io/username: admin
The
prometheus.io/port
is the stats port, by default 1936. You might need to configure your firewall to permit access. Use the previous user name and password to access the metrics. The path is /metrics.$ curl <user>:<password>@<router_IP>:<STATS_PORT> for example: $ curl admin:sLzdR6SgDJ@10.254.254.35:1936/metrics ... # HELP haproxy_backend_connections_total Total number of connections. # TYPE haproxy_backend_connections_total gauge haproxy_backend_connections_total{backend="http",namespace="default",route="hello-route"} 0 haproxy_backend_connections_total{backend="http",namespace="default",route="hello-route-alt"} 0 haproxy_backend_connections_total{backend="http",namespace="default",route="hello-route01"} 0 ... # HELP haproxy_exporter_server_threshold Number of servers tracked and the current threshold value. # TYPE haproxy_exporter_server_threshold gauge haproxy_exporter_server_threshold{type="current"} 11 haproxy_exporter_server_threshold{type="limit"} 500 ... # HELP haproxy_frontend_bytes_in_total Current total of incoming bytes. # TYPE haproxy_frontend_bytes_in_total gauge haproxy_frontend_bytes_in_total{frontend="fe_no_sni"} 0 haproxy_frontend_bytes_in_total{frontend="fe_sni"} 0 haproxy_frontend_bytes_in_total{frontend="public"} 119070 ... # HELP haproxy_server_bytes_in_total Current total of incoming bytes. # TYPE haproxy_server_bytes_in_total gauge haproxy_server_bytes_in_total{namespace="",pod="",route="",server="fe_no_sni",service=""} 0 haproxy_server_bytes_in_total{namespace="",pod="",route="",server="fe_sni",service=""} 0 haproxy_server_bytes_in_total{namespace="default",pod="docker-registry-5-nk5fz",route="docker-registry",server="10.130.0.89:5000",service="docker-registry"} 0 haproxy_server_bytes_in_total{namespace="default",pod="hello-rc-vkjqx",route="hello-route",server="10.130.0.90:8080",service="hello-svc-1"} 0 ...
To get metrics in a browser:
Delete the following environment variables from the router deployment configuration file:
$ oc edit dc router - name: ROUTER_LISTEN_ADDR value: 0.0.0.0:1936 - name: ROUTER_METRICS_TYPE value: haproxy
Launch the stats window using the following URL in a browser, where the
STATS_PORT
value is1936
by default:http://admin:<Password>@<router_IP>:<STATS_PORT>
You can get the stats in CSV format by adding
;csv
to the URL:For example:
http://admin:<Password>@<router_IP>:1936;csv
To get the router IP, admin name, and password:
oc describe pod <router_pod>
To suppress metrics collection:
$ oc adm router --service-account=router --stats-port=0
3.2.21. ARP Cache Tuning for Large-scale Clusters
In OpenShift Container Platform clusters with large numbers of routes (greater than the value of net.ipv4.neigh.default.gc_thresh3
, which is 65536
by default), you must increase the default values of sysctl variables on each node in the cluster running the router pod to allow more entries in the ARP cache.
When the problem is occuring, the kernel messages would be similar to the following:
[ 1738.811139] net_ratelimit: 1045 callbacks suppressed [ 1743.823136] net_ratelimit: 293 callbacks suppressed
When this issue occurs, the oc
commands might start to fail with the following error:
Unable to connect to the server: dial tcp: lookup <hostname> on <ip>:<port>: write udp <ip>:<port>-><ip>:<port>: write: invalid argument
To verify the actual amount of ARP entries for IPv4, run the following:
# ip -4 neigh show nud all | wc -l
If the number begins to approach the net.ipv4.neigh.default.gc_thresh3
threshold, increase the values. Get the current value by running:
# sysctl net.ipv4.neigh.default.gc_thresh1 net.ipv4.neigh.default.gc_thresh1 = 128 # sysctl net.ipv4.neigh.default.gc_thresh2 net.ipv4.neigh.default.gc_thresh2 = 512 # sysctl net.ipv4.neigh.default.gc_thresh3 net.ipv4.neigh.default.gc_thresh3 = 1024
The following sysctl sets the variables to the OpenShift Container Platform current default values.
# sysctl net.ipv4.neigh.default.gc_thresh1=8192 # sysctl net.ipv4.neigh.default.gc_thresh2=32768 # sysctl net.ipv4.neigh.default.gc_thresh3=65536
To make these settings permanent, see this document.
3.2.22. Protecting Against DDoS Attacks
Add timeout http-request to the default HAProxy router image to protect the deployment against distributed denial-of-service (DDoS) attacks (for example, slowloris):
# and the haproxy stats socket is available at /var/run/haproxy.stats
global
stats socket ./haproxy.stats level admin
defaults
option http-server-close
mode http
timeout http-request 5s
timeout connect 5s 1
timeout server 10s
timeout client 30s
- 1
- timeout http-request is set up to 5 seconds. HAProxy gives a client 5 seconds *to send its whole HTTP request. Otherwise, HAProxy shuts the connection with *an error.
Also, when the environment variable ROUTER_SLOWLORIS_TIMEOUT
is set, it limits the amount of time a client has to send the whole HTTP request. Otherwise, HAProxy will shut down the connection.
Setting the environment variable allows information to be captured as part of the router’s deployment configuration and does not require manual modification of the template, whereas manually adding the HAProxy setting requires you to rebuild the router pod and maintain your router template file.
Using annotations implements basic DDoS protections in the HAProxy template router, including the ability to limit the:
- number of concurrent TCP connections
- rate at which a client can request TCP connections
- rate at which HTTP requests can be made
These are enabled on a per route basis because applications can have extremely different traffic patterns.
Setting | Description |
---|---|
| Enables the settings be configured (when set to true, for example). |
| The number of concurrent TCP connections that can be made by the same IP address on this route. |
| The number of TCP connections that can be opened by a client IP. |
| The number of HTTP requests that a client IP can make in a 3-second period. |
3.3. Deploying a Customized HAProxy Router
3.3.1. Overview
The default HAProxy router is intended to satisfy the needs of most users. However, it does not expose all of the capability of HAProxy. Therefore, users may need to modify the router for their own needs.
You may need to implement new features within the application back-ends, or modify the current operation. The router plug-in provides all the facilities necessary to make this customization.
The router pod uses a template file to create the needed HAProxy configuration file. The template file is a golang template. When processing the template, the router has access to OpenShift Container Platform information, including the router’s deployment configuration, the set of admitted routes, and some helper functions.
When the router pod starts, and every time it reloads, it creates an HAProxy configuration file, and then it starts HAProxy. The HAProxy configuration manual describes all of the features of HAProxy and how to construct a valid configuration file.
A configMap can be used to add the new template to the router pod. With this approach, the router deployment configuration is modified to mount the configMap as a volume in the router pod. The TEMPLATE_FILE
environment variable is set to the full path name of the template file in the router pod.
Alternatively, you can build a custom router image and use it when deploying some or all of your routers. There is no need for all routers to run the same image. To do this, modify the haproxy-template.config file, and rebuild the router image. The new image is pushed to the cluster’s Docker repository, and the router’s deployment configuration image: field is updated with the new name. When the cluster is updated, the image needs to be rebuilt and pushed.
In either case, the router pod starts with the template file.
3.3.2. Obtaining the Router Configuration Template
The HAProxy template file is fairly large and complex. For some changes, it may be easier to modify the existing template rather than writing a complete replacement. You can obtain a haproxy-config.template file from a running router by running this on master, referencing the router pod:
# oc get po NAME READY STATUS RESTARTS AGE router-2-40fc3 1/1 Running 0 11d # oc rsh router-2-40fc3 cat haproxy-config.template > haproxy-config.template # oc rsh router-2-40fc3 cat haproxy.config > haproxy.config
Alternatively, you can log onto the node that is running the router:
# docker run --rm --interactive=true --tty --entrypoint=cat \ registry.access.redhat.com/openshift3/ose-haproxy-router:v3.7 haproxy-config.template
The image name is from docker images.
Save this content to a file for use as the basis of your customized template. The saved haproxy.config shows what is actually running.
3.3.3. Modifying the Router Configuration Template
3.3.3.1. Background
The template is based on the golang template. It can reference any of the environment variables in the router’s deployment configuration, any configuration information that is described below, and router provided helper functions.
The structure of the template file mirrors the resulting HAProxy configuration file. As the template is processed, anything not surrounded by {{" something "}}
is directly copied to the configuration file. Passages that are surrounded by {{" something "}}
are evaluated. The resulting text, if any, is copied to the configuration file.
3.3.3.2. Go Template Actions
The define action names the file that will contain the processed template.
{{define "/var/lib/haproxy/conf/haproxy.config"}}pipeline{{end}}
Function | Meaning |
---|---|
| Returns the list of valid endpoints. When action is "shuffle", the order of endpoints is randomized. |
| Tries to get the named environment variable from the pod. If it is not defined or empty, it returns the optional second argument. Otherwise, it returns an empty string. |
| The first argument is a string that contains the regular expression, the second argument is the variable to test. Returns a Boolean value indicating whether the regular expression provided as the first argument matches the string provided as the second argument. |
| Determines if a given variable is an integer. |
| Compares a given string to a list of allowed strings. Returns first match scanning left to right through the list. |
| Compares a given string to a list of allowed strings. Returns "true" if the string is an allowed value, otherwise returns false. |
| Generates a regular expression matching the route hosts (and paths). The first argument is the host name, the second is the path, and the third is a wildcard Boolean. |
| Generates host name to use for serving/matching certificates. First argument is the host name and the second is the wildcard Boolean. |
| Determines if a given variable contains "true". |
These functions are provided by the HAProxy template router plug-in.
3.3.3.3. Router Provided Information
This section reviews the OpenShift Container Platform information that the router makes available to the template. The router configuration parameters are the set of data that the HAProxy router plug-in is given. The fields are accessed by (dot) .Fieldname
.
The tables below the Router Configuration Parameters expand on the definitions of the various fields. In particular, .State has the set of admitted routes.
Field | Type | Description |
---|---|---|
| string | The directory that files will be written to, defaults to /var/lib/containers/router |
|
| The routes. |
|
| The service lookup. |
| string | Full path name to the default certificate in pem format. |
|
| Peers. |
| string | User name to expose stats with (if the template supports it). |
| string | Password to expose stats with (if the template supports it). |
| int | Port to expose stats with (if the template supports it). |
| bool | Whether the router should bind the default ports. |
Field | Type | Description |
---|---|---|
| string | The user-specified name of the route. |
| string | The namespace of the route. |
| string |
The host name. For example, |
| string |
Optional path. For example, |
|
| The termination policy for this back-end; drives the mapping files and router configuration. |
|
| Certificates used for securing this back-end. Keyed by the certificate ID. |
|
| Indicates the status of configuration that needs to be persisted. |
| string | Indicates the port the user wants to expose. If empty, a port will be selected for the service. |
|
|
Indicates desired behavior for insecure connections to an edge-terminated route: |
| string | Hash of the route + namespace name used to obscure the cookie ID. |
| bool | Indicates this service unit needing wildcard support. |
|
| Annotations attached to this route. |
|
| Collection of services that support this route, keyed by service name and valued on the weight attached to it with respect to other entries in the map. |
| int |
Count of the |
The ServiceAliasConfig
is a route for a service. Uniquely identified by host + path. The default template iterates over routes using {{range $cfgIdx, $cfg := .State }}
. Within such a {{range}}
block, the template can refer to any field of the current ServiceAliasConfig
using $cfg.Field
.
Field | Type | Description |
---|---|---|
| string |
Name corresponds to a service name + namespace. Uniquely identifies the |
|
| Endpoints that back the service. This translates into a final back-end implementation for routers. |
ServiceUnit
is an encapsulation of a service, the endpoints that back that service, and the routes that point to the service. This is the data that drives the creation of the router configuration files
Field | Type |
---|---|
| string |
| string |
| string |
| string |
| string |
| string |
| bool |
Endpoint
is an internal representation of a Kubernetes endpoint.
Field | Type | Description |
---|---|---|
| string |
Represents a public/private key pair. It is identified by an ID, which will become the file name. A CA certificate will not have a |
| string | Indicates that the necessary files for this configuration have been persisted to disk. Valid values: "saved", "". |
Field | Type | Description |
---|---|---|
ID | string | |
Contents | string | The certificate. |
PrivateKey | string | The private key. |
Field | Type | Description |
---|---|---|
| string | Dictates where the secure communication will stop. |
| string | Indicates the desired behavior for insecure connections to a route. While each router may make its own decisions on which ports to expose, this is normally port 80. |
TLSTerminationType
and InsecureEdgeTerminationPolicyType
dictate where the secure communication will stop.
Constant | Value | Meaning |
---|---|---|
|
| Terminate encryption at the edge router. |
|
| Terminate encryption at the destination, the destination is responsible for decrypting traffic. |
|
| Terminate encryption at the edge router and re-encrypt it with a new certificate supplied by the destination. |
Type | Meaning |
---|---|
| Traffic is sent to the server on the insecure port (default). |
| No traffic is allowed on the insecure port. |
| Clients are redirected to the secure port. |
None (""
) is the same as Disable
.
3.3.3.4. Annotations
Each route can have annotations attached. Each annotation is just a name and a value.
apiVersion: v1 kind: Route metadata: annotations: haproxy.router.openshift.io/timeout: 5500ms [...]
The name can be anything that does not conflict with existing Annotations. The value is any string. The string can have multiple tokens separated by a space. For example, aa bb cc
. The template uses {{index}}
to extract the value of an annotation. For example:
{{$balanceAlgo := index $cfg.Annotations "haproxy.router.openshift.io/balance"}}
This is an example of how this could be used for mutual client authorization.
{{ with $cnList := index $cfg.Annotations "whiteListCertCommonName" }} {{ if ne $cnList "" }} acl test ssl_c_s_dn(CN) -m str {{ $cnList }} http-request deny if !test {{ end }} {{ end }}
Then, you can handle the white-listed CNs with this command.
$ oc annotate route <route-name> --overwrite whiteListCertCommonName="CN1 CN2 CN3"
See Route-specific Annotations for more information.
3.3.3.5. Environment Variables
The template can use any environment variables that exist in the router pod. The environment variables can be set in the deployment configuration. New environment variables can be added.
They are referenced by the env
function:
{{env "ROUTER_MAX_CONNECTIONS" "20000"}}
The first string is the variable, and the second string is the default when the variable is missing or nil
. When ROUTER_MAX_CONNECTIONS
is not set or is nil
, 20000 is used. Environment variables are a map where the key is the environment variable name and the content is the value of the variable.
See Route-specific Environment variables for more information.
3.3.3.6. Example Usage
Here is a simple template based on the HAProxy template file.
Start with a comment:
{{/* Here is a small example of how to work with templates taken from the HAProxy template file. */}}
The template can create any number of output files. Use a define construct to create an output file. The file name is specified as an argument to define, and everything inside the define block up to the matching end is written as the contents of that file.
{{ define "/var/lib/haproxy/conf/haproxy.config" }} global {{ end }}
The above will copy global
to the /var/lib/haproxy/conf/haproxy.config file, and then close the file.
Set up logging based on environment variables.
{{ with (env "ROUTER_SYSLOG_ADDRESS" "") }} log {{.}} {{env "ROUTER_LOG_FACILITY" "local1"}} {{env "ROUTER_LOG_LEVEL" "warning"}} {{ end }}
The env
function extracts the value for the environment variable. If the environment variable is not defined or nil
, the second argument is returned.
The with construct sets the value of "." (dot) within the with block to whatever value is provided as an argument to with. The with
action tests Dot for nil
. If not nil
, the clause is processed up to the end
. In the above, assume ROUTER_SYSLOG_ADDRESS
contains /var/log/msg, ROUTER_LOG_FACILITY
is not defined, and ROUTER_LOG_LEVEL
contains info
. The following will be copied to the output file:
log /var/log/msg local1 info
Each admitted route ends up generating lines in the configuration file. Use range
to go through the admitted routes:
{{ range $cfgIdx, $cfg := .State }} backend be_http_{{$cfgIdx}} {{end}}
.State
is a map of ServiceAliasConfig
, where the key is the route name. range
steps through the map and, for each pass, it sets $cfgIdx
with the key
, and sets `$cfg
to point to the ServiceAliasConfig
that describes the route. If there are two routes named myroute
and hisroute
, the above will copy the following to the output file:
backend be_http_myroute backend be_http_hisroute
Route Annotations, $cfg.Annotations
, is also a map with the annotation name as the key and the content string as the value. The route can have as many annotations as desired and the use is defined by the template author. The user codes the annotation into the route and the template author customized the HAProxy template to handle the annotation.
The common usage is to index the annotation to get the value.
{{$balanceAlgo := index $cfg.Annotations "haproxy.router.openshift.io/balance"}}
The index extracts the value for the given annotation, if any. Therefore, `$balanceAlgo
will contain the string associated with the annotation or nil
. As above, you can test for a non-nil
string and act on it with the with
construct.
{{ with $balanceAlgo }} balance $balanceAlgo {{ end }}
Here when $balanceAlgo
is not nil
, balance $balanceAlgo
is copied to the output file.
In a second example, you want to set a server timeout based on a timeout value set in an annotation.
$value := index $cfg.Annotations "haproxy.router.openshift.io/timeout"
The $value
can now be evaluated to make sure it contains a properly constructed string. The matchPattern
function accepts a regular expression and returns true
if the argument satisfies the expression.
matchPattern "[1-9][0-9]*(us\|ms\|s\|m\|h\|d)?" $value
This would accept 5000ms
but not 7y
. The results can be used in a test.
{{if (matchPattern "[1-9][0-9]*(us\|ms\|s\|m\|h\|d)?" $value) }} timeout server {{$value}} {{ end }}
It can also be used to match tokens:
matchPattern "roundrobin|leastconn|source" $balanceAlgo
Alternatively matchValues
can be used to match tokens:
matchValues $balanceAlgo "roundrobin" "leastconn" "source"
3.3.4. Using a ConfigMap to Replace the Router Configuration Template
You can use a ConfigMap to customize the router instance without rebuilding the router image. The haproxy-config.template, reload-haproxy, and other scripts can be modified as well as creating and modifying router environment variables.
- Copy the haproxy-config.template that you want to modify as described above. Modify it as desired.
Create a ConfigMap:
$ oc create configmap customrouter --from-file=haproxy-config.template
The
customrouter
ConfigMap now contains a copy of the modified haproxy-config.template file.Modify the router deployment configuration to mount the ConfigMap as a file and point the
TEMPLATE_FILE
environment variable to it. This can be done viaoc set env
andoc volume
commands, or alternatively by editing the router deployment configuration.- Using
oc
commands $ oc volume dc/router --add --overwrite \ --name=config-volume \ --mount-path=/var/lib/haproxy/conf/custom \ --source='{"configMap": { "name": "customrouter"}}' $ oc set env dc/router \ TEMPLATE_FILE=/var/lib/haproxy/conf/custom/haproxy-config.template
- Editing the Router Deployment Configuration
Use
oc edit dc router
to edit the router deployment configuration with a text editor.... - name: STATS_USERNAME value: admin - name: TEMPLATE_FILE 1 value: /var/lib/haproxy/conf/custom/haproxy-config.template image: openshift/origin-haproxy-routerp ... terminationMessagePath: /dev/termination-log volumeMounts: 2 - mountPath: /var/lib/haproxy/conf/custom name: config-volume dnsPolicy: ClusterFirst ... terminationGracePeriodSeconds: 30 volumes: 3 - configMap: name: customrouter name: config-volume ...
Save the changes and exit the editor. This restarts the router.
- Using
3.3.5. Using Stick Tables
The following example customization can be used in a highly-available routing setup to use stick-tables that synchronize between peers.
Adding a Peer Section
In order to synchronize stick-tables amongst peers you must a define a peers section in your HAProxy configuration. This section determines how HAProxy will identify and connect to peers. The plug-in provides data to the template under the .PeerEndpoints
variable to allow you to easily identify members of the router service. You may add a peer section to the haproxy-config.template file inside the router image by adding:
{{ if (len .PeerEndpoints) gt 0 }} peers openshift_peers {{ range $endpointID, $endpoint := .PeerEndpoints }} peer {{$endpoint.TargetName}} {{$endpoint.IP}}:1937 {{ end }} {{ end }}
Changing the Reload Script
When using stick-tables, you have the option of telling HAProxy what it should consider the name of the local host in the peer section. When creating endpoints, the plug-in attempts to set the TargetName
to the value of the endpoint’s TargetRef.Name
. If TargetRef
is not set, it will set the TargetName
to the IP address. The TargetRef.Name
corresponds with the Kubernetes host name, therefore you can add the -L
option to the reload-haproxy
script to identify the local host in the peer section.
peer_name=$HOSTNAME 1
if [ -n "$old_pid" ]; then
/usr/sbin/haproxy -f $config_file -p $pid_file -L $peer_name -sf $old_pid
else
/usr/sbin/haproxy -f $config_file -p $pid_file -L $peer_name
fi
- 1
- Must match an endpoint target name that is used in the peer section.
Modifying Back Ends
Finally, to use the stick-tables within back ends, you can modify the HAProxy configuration to use the stick-tables and peer set. The following is an example of changing the existing back end for TCP connections to use stick-tables:
{{ if eq $cfg.TLSTermination "passthrough" }} backend be_tcp_{{$cfgIdx}} balance leastconn timeout check 5000ms stick-table type ip size 1m expire 5m{{ if (len $.PeerEndpoints) gt 0 }} peers openshift_peers {{ end }} stick on src {{ range $endpointID, $endpoint := $serviceUnit.EndpointTable }} server {{$endpointID}} {{$endpoint.IP}}:{{$endpoint.Port}} check inter 5000ms {{ end }} {{ end }}
After this modification, you can rebuild your router.
3.3.6. Rebuilding Your Router
In order to rebuild the router, you need copies of several files that are present on a running router. Make a work directory and copy the files from the router:
# mkdir - myrouter/conf # cd myrouter # oc get po NAME READY STATUS RESTARTS AGE router-2-40fc3 1/1 Running 0 11d # oc rsh router-2-40fc3 cat haproxy-config.template > conf/haproxy-config.template # oc rsh router-2-40fc3 cat error-page-503.http > conf/error-page-503.http # oc rsh router-2-40fc3 cat default_pub_keys.pem > conf/default_pub_keys.pem # oc rsh router-2-40fc3 cat ../Dockerfile > Dockerfile # oc rsh router-2-40fc3 cat ../reload-haproxy > reload-haproxy
You can edit or replace any of these files. However, conf/haproxy-config.template and reload-haproxy are the most likely to be modified.
After updating the files:
# docker build -t openshift/origin-haproxy-router-myversion . # docker tag openshift/origin-haproxy-router-myversion 172.30.243.98:5000/openshift/haproxy-router-myversion 1 # docker push 172.30.243.98:5000/openshift/origin-haproxy-router-pc:latest 2
To use the new router, edit the router deployment configuration either by changing the image: string or by adding the --images=<repo>/<image>:<tag>
flag to the oc adm router
command.
When debugging the changes, it is helpful to set imagePullPolicy: Always
in the deployment configuration to force an image pull on each pod creation. When debugging is complete, you can change it back to imagePullPolicy: IfNotPresent
to avoid the pull on each pod start.
3.4. Configuring the HAProxy Router to Use the PROXY Protocol
3.4.1. Overview
By default, the HAProxy router expects incoming connections to unsecure, edge, and re-encrypt routes to use HTTP. However, you can configure the router to expect incoming requests by using the PROXY protocol instead. This topic describes how to configure the HAProxy router and an external load balancer to use the PROXY protocol.
3.4.2. Why Use the PROXY Protocol?
When an intermediary service such as a proxy server or load balancer forwards an HTTP request, it appends the source address of the connection to the request’s "Forwarded" header in order to provide this information to subsequent intermediaries and to the back-end service to which the request is ultimately forwarded. However, if the connection is encrypted, intermediaries cannot modify the "Forwarded" header. In this case, the HTTP header will not accurately communicate the original source address when the request is forwarded.
To solve this problem, some load balancers encapsulate HTTP requests using the PROXY protocol as an alternative to simply forwarding HTTP. Encapsulation enables the load balancer to add information to the request without modifying the forwarded request itself. In particular, this means that the load balancer can communicate the source address even when forwarding an encrypted connection.
The HAProxy router can be configured to accept the PROXY protocol and decapsulate the HTTP request. Because the router terminates encryption for edge and re-encrypt routes, the router can then update the "Forwarded" HTTP header (and related HTTP headers) in the request, appending any source address that is communicated using the PROXY protocol.
The PROXY protocol and HTTP are incompatible and cannot be mixed. If you use a load balancer in front of the router, both must use either the PROXY protocol or HTTP. Configuring one to use one protocol and the other to use the other protocol will cause routing to fail.
3.4.3. Using the PROXY Protocol
By default, the HAProxy router does not use the PROXY protocol. The router can be configured using the ROUTER_USE_PROXY_PROTOCOL
environment variable to expect the PROXY protocol for incoming connections:
Enable the PROXY Protocol
$ oc env dc/router ROUTER_USE_PROXY_PROTOCOL=true
Set the variable to any value other than true
or TRUE
to disable the PROXY protocol:
Disable the PROXY Protocol
$ oc env dc/router ROUTER_USE_PROXY_PROTOCOL=false
If you enable the PROXY protocol in the router, you must configure your load balancer in front of the router to use the PROXY protocol as well. Following is an example of configuring Amazon’s Elastic Load Balancer (ELB) service to use the PROXY protocol. This example assumes that ELB is forwarding ports 80 (HTTP), 443 (HTTPS), and 5000 (for the image registry) to the router running on one or more EC2 instances.
Configure Amazon ELB to Use the PROXY Protocol
To simplify subsequent steps, first set some shell variables:
$ lb='infra-lb' 1 $ instances=( 'i-079b4096c654f563c' ) 2 $ secgroups=( 'sg-e1760186' ) 3 $ subnets=( 'subnet-cf57c596' ) 4
Next, create the ELB with the appropriate listeners, security groups, and subnets.
NoteYou must configure all listeners to use the TCP protocol, not the HTTP protocol.
$ aws elb create-load-balancer --load-balancer-name "$lb" \ --listeners \ 'Protocol=TCP,LoadBalancerPort=80,InstanceProtocol=TCP,InstancePort=80' \ 'Protocol=TCP,LoadBalancerPort=443,InstanceProtocol=TCP,InstancePort=443' \ 'Protocol=TCP,LoadBalancerPort=5000,InstanceProtocol=TCP,InstancePort=5000' \ --security-groups $secgroups \ --subnets $subnets { "DNSName": "infra-lb-2006263232.us-east-1.elb.amazonaws.com" }
Register your router instance or instances with the ELB:
$ aws elb register-instances-with-load-balancer --load-balancer-name "$lb" \ --instances $instances { "Instances": [ { "InstanceId": "i-079b4096c654f563c" } ] }
Configure the ELB’s health check:
$ aws elb configure-health-check --load-balancer-name "$lb" \ --health-check 'Target=HTTP:1936/healthz,Interval=30,UnhealthyThreshold=2,HealthyThreshold=2,Timeout=5' { "HealthCheck": { "HealthyThreshold": 2, "Interval": 30, "Target": "HTTP:1936/healthz", "Timeout": 5, "UnhealthyThreshold": 2 } }
Finally, create a load-balancer policy with the
ProxyProtocol
attribute enabled, and configure it on the ELB’s TCP ports 80 and 443:$ aws elb create-load-balancer-policy --load-balancer-name "$lb" \ --policy-name "${lb}-ProxyProtocol-policy" \ --policy-type-name 'ProxyProtocolPolicyType' \ --policy-attributes 'AttributeName=ProxyProtocol,AttributeValue=true' $ for port in 80 443 do aws elb set-load-balancer-policies-for-backend-server \ --load-balancer-name "$lb" \ --instance-port "$port" \ --policy-names "${lb}-ProxyProtocol-policy" done
Verify the Configuration
You can examine the load balancer as follows to verify that the configuration is correct:
$ aws elb describe-load-balancers --load-balancer-name "$lb" | jq '.LoadBalancerDescriptions| [.[]|.ListenerDescriptions]' [ [ { "Listener": { "InstancePort": 80, "LoadBalancerPort": 80, "Protocol": "TCP", "InstanceProtocol": "TCP" }, "PolicyNames": ["infra-lb-ProxyProtocol-policy"] 1 }, { "Listener": { "InstancePort": 443, "LoadBalancerPort": 443, "Protocol": "TCP", "InstanceProtocol": "TCP" }, "PolicyNames": ["infra-lb-ProxyProtocol-policy"] 2 }, { "Listener": { "InstancePort": 5000, "LoadBalancerPort": 5000, "Protocol": "TCP", "InstanceProtocol": "TCP" }, "PolicyNames": [] 3 } ] ]
Alternatively, if you already have an ELB configured, but it is not configured to use the PROXY protocol, you will need to change the existing listener for TCP port 80 to use the TCP protocol instead of HTTP (TCP port 443 should already be using the TCP protocol):
$ aws elb delete-load-balancer-listeners --load-balancer-name "$lb" \ --load-balancer-ports 80 $ aws elb create-load-balancer-listeners --load-balancer-name "$lb" \ --listeners 'Protocol=TCP,LoadBalancerPort=80,InstanceProtocol=TCP,InstancePort=80'
Verify the Protocol Updates
Verify that the protocol has been updated as follows:
$ aws elb describe-load-balancers --load-balancer-name "$lb" |
jq '[.LoadBalancerDescriptions[]|.ListenerDescriptions]'
[
[
{
"Listener": {
"InstancePort": 443,
"LoadBalancerPort": 443,
"Protocol": "TCP",
"InstanceProtocol": "TCP"
},
"PolicyNames": []
},
{
"Listener": {
"InstancePort": 5000,
"LoadBalancerPort": 5000,
"Protocol": "TCP",
"InstanceProtocol": "TCP"
},
"PolicyNames": []
},
{
"Listener": {
"InstancePort": 80,
"LoadBalancerPort": 80,
"Protocol": "TCP", 1
"InstanceProtocol": "TCP"
},
"PolicyNames": []
}
]
]
- 1
- All listeners, including the listener for TCP port 80, should be using the TCP protocol.
Then, create a load-balancer policy and add it to the ELB as described in Step 5 above.
3.5. Using the F5 Router Plug-in
3.5.1. Overview
The F5 router plug-in is available starting in OpenShift Container Platform 3.0.2.
The F5 router plug-in will be deprecated in OpenShift Container Platform version 3.11. The functionality of the F5 router plug-in is replaced in the F5 BIG-IP® Controller for OpenShift. For more information, see F5 BIG-IP Controller for OpenShift. For information about migrating existing deployments from the F5 router plug-in to the BIG-IP Controller for OpenShift, see Replace the F5 Router with the F5 BIG-IP Controller for OpenShift.
The F5 router plug-in is provided as a container image and run as a pod, just like the default HAProxy router.
Support relationships between F5 and Red Hat provide a full scope of support for both models of F5 integration, F5 router plug-in and the F5 BIG-IP Controller for OpenShift. If you are currently using the F5 router plug-in, Red Hat support will provide the initial support and work with F5 support if necessary. If you are currently using the F5 BIG-IP Controller for OpenShift, F5 will provide the inital support and work with Red Hat if necessary.
3.5.2. Prerequisites and Supportability
When deploying the F5 router plug-in, ensure you meet the following requirements:
A F5 host IP with:
- Credentials for API access
- SSH access via a private key
- An F5 user with Advanced Shell access
A virtual server for HTTP routes:
- HTTP profile must be http.
A virtual server with HTTP profile routes:
- HTTP profile must be http
- SSL Profile (client) must be clientssl
- SSL Profile (server) must be serverssl
For edge integration (not recommended):
- A working ramp node
- A working tunnel to the ramp node
For native integration:
- A host-internal IP capable of communicating with all nodes on the port 4789/UDP
- The sdn-services add-on license installed on the F5 host.
The F5 router plug-in for OpenShift Container Platform supports only the following F5 BIG-IP versions:
- 11.x
- 12.x
The F5 BIG-IP Controller for OpenShift supports the OpenShift Container Platform versions found in the F5 BIG-IP Controller for OpenShift releases and versioningpage in the F5 documentation.
The following features are not supported with F5 BIG-IP using the F5 router plug-in:
- Wildcard routes together with re-encrypt routes - you must supply a certificate and a key in the route. If you provide a certificate, a key, and a certificate authority (CA), the CA is never used.
- A pool is created for all services, even for the ones with no associated route.
- Idling applications
-
Unencrypted HTTP traffic in redirect mode, with edge TLS termination. (
insecureEdgeTerminationPolicy: Redirect
) -
Sharding, that is, having multiple
vservers
on the F5. -
SSL cipher (
ROUTER_CIPHERS=modern/old
) - Customizing the endpoint health checks for time-intervals and the type of checks.
- Serving F5 metrics by using a metrics server.
-
Specifying a different target port (
PreferPort
/TargetPort
) rather than the ones specified in the service. - Customizing the source IP whitelists, that is, allowing traffic for a route only from specific IP addresses.
-
Customizing timeout values, such as
max connect time
, ortcp FIN timeout
. - HA mode for the F5 BIG-IP.
3.5.2.1. Configuring the Virtual Servers
As a prerequisite to working with the F5 router plug-in, two virtual servers (one virtual server each for HTTP and HTTPS profiles, respectively) need to be set up in the F5 BIG-IP appliance.
To set up a virtual server in the F5 BIG-IP appliance, follow the instructions from F5.
While creating the virtual server, ensure the following settings are in place:
-
For the HTTP server, set the
ServicePort
to'http'/80
. -
For the HTTPS server, set the
ServicePort
to'https'/443
. - In the basic configuration, set the HTTP profile to /Common/http for both of the virtual servers.
For the HTTPS server, create a default client-ssl profile and select it for the SSL Profile (Client).
- To create the default client SSL profile, follow the instructions from F5, especially the Configuring the fallback (default) client SSL profile section, which discusses that the certificate/key pair is the default that will be served in the case that custom certificates are not provided for a route or server name.
3.5.3. Deploying the F5 Router Plug-in
The F5 router must be run in privileged mode, because route certificates are copied using the scp
command:
$ oc adm policy remove-scc-from-user hostnetwork -z router $ oc adm policy add-scc-to-user privileged -z router
Deploy the F5 router plug-in with the oc adm router
command, but provide additional flags (or environment variables) specifying the following parameters for the F5 BIG-IP host:
Flag | Description |
---|---|
|
Specifies to launch an F5 router plug-in instead of the default haproxy-router. (the default |
| Specifies the F5 BIG-IP host’s management interface’s host name or IP address. |
| Specifies the F5 BIG-IP user name (typically admin). The F5 BIG-IP user account must have access to the Advanced Shell (Bash) on the F5 BIG-IP system. |
| Specifies the F5 BIG-IP password. |
| Specifies the name of the F5 virtual server for HTTP connections. This must be configured by the user prior to launching the router pod. |
| Specifies the name of the F5 virtual server for HTTPS connections. This must be configured by the user prior to launching the router pod. |
| Specifies the path to the SSH private key file for the F5 BIG-IP host. Required to upload and delete key and certificate files for routes. |
| A Boolean flag that indicates that the F5 router plug-in does not use strict certificate verification with the F5 BIG-IP host. |
| Specifies the F5 BIG-IP® partition path (the default is /Common). |
For example:
$ oc adm router \ --type=f5-router \ --external-host=10.0.0.2 \ --external-host-username=admin \ --external-host-password=mypassword \ --external-host-http-vserver=ose-vserver \ --external-host-https-vserver=https-ose-vserver \ --external-host-private-key=/path/to/key \ --host-network=false \ --service-account=router
As with the HAProxy router, the oc adm router
command creates the service and deployment configuration objects, and thus the replication controllers and pod(s) in which the F5 router plug-in itself runs. The replication controller restarts the F5 router plug-in in case of crashes. Because the F5 router plug-in is watching routes, endpoints, and nodes and configuring F5 BIG-IP accordingly, running the F5 router in this way, along with an appropriately configured F5 BIG-IP deployment, satisfies high-availability requirements.
3.5.4. F5 Router Plug-in Partition Paths
Partition paths allow you to store your OpenShift Container Platform routing configuration in a custom F5 BIG-IP administrative partition, instead of the default /Common partition. You can use custom administrative partitions to secure F5 BIG-IP environments. This means that an OpenShift Container Platform-specific configuration stored in F5 BIG-IP system objects reside within a logical container, allowing administrators to define access control policies on that specific administrative partition.
See the F5 BIG-IP documentation for more information about administrative partitions.
To configure your OpenShift Container Platform for partition paths:
Optionally, perform some cleaning steps:
- Ensure F5 is configured to be able to switch to the /Common and /Custom paths.
-
Delete the static FDB of
vxlan5000
. See the F5 BIG-IP® documentation for more information.
- Configure a virtual server for the custom partition.
To specify a partition path, deploy the F5 router plug-in using the
--external-host-partition-path
flag:$ oc adm router --external-host-partition-path=/OpenShift/zone1 ...
3.5.5. Setting Up F5 Router Plug-in
This section reviews how to set up F5 native integration with OpenShift Container Platform. The concepts of the F5 appliance and OpenShift Container Platform connection and data flow of the F5 router plug-in are discussed in the F5 Router Plug-in section of the Routes topic.
Only F5 BIG-IP appliance versions 11.x and 12.x work with the F5 router plug-in presented in this section. You also need sdn-services add-on license for the integration to work properly. For version 11.x, follow the instructions to set up a ramp node.
With F5 router plug-in for OpenShift Container Platform, you do not need to configure a ramp node for F5 to be able to reach the pods on the overlay network as created by OpenShift SDN.
The F5 router plug-in pod needs to be launched with enough information so that it can successfully directly connect to pods.
Create a ghost
hostsubnet
on the OpenShift Container Platform cluster:$ cat > f5-hostsubnet.yaml << EOF { "kind": "HostSubnet", "apiVersion": "v1", "metadata": { "name": "openshift-f5-node", "annotations": { "pod.network.openshift.io/assign-subnet": "true", "pod.network.openshift.io/fixed-vnid-host": "0" 1 } }, "host": "openshift-f5-node", "hostIP": "10.3.89.213" 2 } EOF $ oc create -f f5-hostsubnet.yaml
Determine the subnet allocated for the ghost
hostsubnet
just created:$ oc get hostsubnets NAME HOST HOST IP SUBNET openshift-f5-node openshift-f5-node 10.3.89.213 10.131.0.0/23 openshift-master-node openshift-master-node 172.17.0.2 10.129.0.0/23 openshift-node-1 openshift-node-1 172.17.0.3 10.128.0.0/23 openshift-node-2 openshift-node-2 172.17.0.4 10.130.0.0/23
-
Check the
SUBNET
for the newly createdhostsubnet
. In this example,10.131.0.0/23
. Get the entire pod network’s CIDR:
$ oc get clusternetwork
This value will be something like
10.128.0.0/14
, noting the mask (14
in this example).-
To construct the gateway address, pick any IP address from the
hostsubnet
(for example,10.131.0.5
). Use the mask of the pod network (14
). The gateway address becomes:10.131.0.5/14
. Launch the F5 router plug-in pod, following these instructions. Additionally, allow the access to 'node' cluster resource for the service account and use the two new additional options for VXLAN native integration.
$ # Add policy to allow router to access nodes using the sdn-reader role $ oc adm policy add-cluster-role-to-user system:sdn-reader system:serviceaccount:default:router $ # Launch the F5 router plug-in pod with vxlan-gw and F5's internal IP as extra arguments $ #--external-host-internal-ip=10.3.89.213 $ #--external-host-vxlan-gw=10.131.0.5/14 $ oc adm router \ --type=f5-router \ --external-host=10.3.89.90 \ --external-host-username=admin \ --external-host-password=mypassword \ --external-host-http-vserver=ose-vserver \ --external-host-https-vserver=https-ose-vserver \ --external-host-private-key=/path/to/key \ --service-account=router \ --host-network=false \ --external-host-internal-ip=10.3.89.213 \ --external-host-vxlan-gw=10.131.0.5/14
NoteThe
external-host-username
is a F5 BIG-IP user account with access to the Advanced Shell (Bash) on the F5 BIG-IP system.
Chapter 4. Deploying Red Hat CloudForms
4.1. Deploying Red Hat CloudForms on OpenShift Container Platform
4.1.1. Introduction
The OpenShift Container Platform installer includes the Ansible role openshift-management and playbooks for deploying Red Hat CloudForms 4.6 (CloudForms Management Engine 5.9, or CFME) on OpenShift Container Platform.
The current implementation is incompatible with the Technology Preview deployment process of Red Hat CloudForms 4.5 as described in OpenShift Container Platform 3.6 documentation.
When deploying Red Hat CloudForms on OpenShift Container Platform, there are two major decisions to make:
- Do you want an external or a containerized (also referred to as podified) PostgreSQL database?
- Which storage class will back your persistent volumes (PVs)?
For the first decision, you can deploy Red Hat CloudForms in one of two ways, depending on the location of the PostgreSQL database to be used by Red Hat CloudForms:
Deployment Variant | Description |
---|---|
Fully containerized | All application services and the PostgreSQL database are run as pods on OpenShift Container Platform. |
External database | The application utilizes an externally-hosted PostgreSQL database server, while all other services are ran as pods on OpenShift Container Platform. |
For the second decision, the openshift-management role provides customization options for overriding many default deployment parameters. This includes the following storage class options to back your PVs:
Storage Class | Description |
---|---|
NFS (default) | Local, on cluster |
NFS External | NFS somewhere else, like a storage appliance |
Cloud Provider | Use automatic storage provisioning from your cloud provider (Google Cloud Engine, Amazon Web Services, or Microsoft Azure) |
Preconfigured (advanced) | Assumes you created everything ahead of time |
Topics in this guide include the requirements for running Red Hat CloudForms on OpenShift Container Platform, descriptions of the available configuration variables, and instructions on running the installer either during your initial OpenShift Container Platform installation or after your cluster has been provisioned.
4.2. Requirements for Red Hat CloudForms on OpenShift Container Platform
The default requirements are listed in the table below. These can be overridden by customizing template parameters.
The application performance will suffer, or possibly even fail to deploy, if these requirements are not satisfied.
Item | Requirement | Description | Customization Parameter |
---|---|---|---|
Application Memory | ≥ 4.0 Gi | Minimum required memory for the application |
|
Application Storage | ≥ 5.0 Gi | Minimum PV size required for the application |
|
PostgreSQL Memory | ≥ 6.0 Gi | Minimum required memory for the database |
|
PostgreSQL Storage | ≥ 15.0 Gi | Minimum PV size required for the database |
|
Cluster Hosts | ≥ 3 | Number of hosts in your cluster | N/A |
To sum up these requirements:
- You must have several cluster nodes.
- Your cluster nodes must have lots of memory available.
- You must have several GiB’s of storage available, either locally or on your cloud provider.
- PV sizes can be changed by providing override values to template parameters.
4.3. Configuring Role Variables
4.3.1. Overview
The following sections describe role variables that may be used in your Ansible inventory file, which is used to control the behavior of the Red Hat CloudForms installation when running the installer.
4.3.2. General Variables
Variable | Required | Default | Description |
---|---|---|---|
| No |
|
Boolean, set to |
| Yes |
|
The deployment variant of Red Hat CloudForms to install. Set |
| No |
| Namespace (project) for the Red Hat CloudForms installation. |
| No |
| Namespace (project) description. |
| No |
| Default management user name. Changing this value does not change the user name; only change this value if you have changed the name already and are running integration scripts (such as the script to add container providers). |
| No |
| Default management password. Changing this value does not change the password; only change this value if you have changed the password already and are running integration scripts (such as the script to add container providers). |
4.3.3. Customizing Template Parameters
You can use the openshift_management_template_parameters
Ansible role variable to specify any template parameters you want to override in the application or PV templates.
For example, if you wanted to reduce the memory requirement of the PostgreSQL pod, then you could set the following:
openshift_management_template_parameters={'POSTGRESQL_MEM_REQ': '1Gi'}
When the Red Hat CloudForms template is processed, 1Gi
will be used for the value of the POSTGRESQL_MEM_REQ
template parameter.
Not all template parameters are present in both template variants (containerized or external database). For example, while the podified database template has a POSTGRESQL_MEM_REQ
parameter, no such parameter is present in the external db template, as there is no need for this information due to there being no databases that require pods.
Therefore, be very careful if you are overriding template parameters. Including parameters not defined in a template will cause errors. If you do receive an error during the Ensure the Management App is created
task, run the uninstall scripts first before running the installer again.
4.3.4. Database Variables
4.3.4.1. Containerized (Podified) Database
Any POSTGRES_*
or DATABASE_*
template parameters in the cfme-template.yaml file may be customized through the openshift_management_template_parameters
hash in your inventory file..
4.3.4.2. External Database
Any POSTGRES_*
or DATABASE_*
template parameters in the cfme-template-ext-db.yaml file may be customized through the openshift_management_template_parameters
hash in your inventory file..
External PostgreSQL databases require you to provide database connection parameters. You must set the required connection keys in the openshift_management_template_parameters
parameter in your inventory. The following keys are required:
-
DATABASE_USER
-
DATABASE_PASSWORD
-
DATABASE_IP
-
DATABASE_PORT
(Most PostgreSQL servers run on port5432
) -
DATABASE_NAME
Ensure your external database is running PostgreSQL 9.5 or you may not be able to deploy the CloudForms application successfully.
Your inventory would contain a line similar to:
[OSEv3:vars]
openshift_management_app_template=cfme-template-ext-db 1
openshift_management_template_parameters={'DATABASE_USER': 'root', 'DATABASE_PASSWORD': 'mypassword', 'DATABASE_IP': '10.10.10.10', 'DATABASE_PORT': '5432', 'DATABASE_NAME': 'cfme'}
- 1
- Set
openshift_management_app_template
parameter tocfme-template-ext-db
.
4.3.5. Storage Class Variables
Variable | Required | Default | Description |
---|---|---|---|
| No |
|
Storage type to use. Options are |
| No |
|
If you are using an external NFS server, such as a NetApp appliance, then you must set the host name here. Leave the value as |
| No |
| If you are using external NFS, then you can set the base path to the exports location here. For local NFS, you can also change this value if you want to change the default path used for local NFS exports. |
| No |
|
If you do not have an |
4.3.5.1. NFS (Default)
The NFS storage class is best suited for proof-of-concept and test deployments. It is also the default storage class for deployments. No additional configuration is required for this choice.
This storage class configures NFS on a cluster host (by default, the first master in the inventory file) to back the required PVs. The application requires a PV, and the database (which may be hosted externally) may require a second. PV minimum required sizes are 5GiB for the Red Hat CloudForms application, and 15GiB for the PostgreSQL database (20GiB minimum available space on a volume or partition if used specifically for NFS purposes).
Customization is provided through the following role variables:
-
openshift_management_storage_nfs_base_dir
-
openshift_management_storage_nfs_local_hostname
4.3.5.2. NFS External
External NFS leans on pre-configured NFS servers to provide exports for the required PVs. For external NFS you must have a cfme-app
and optionally a cfme-db
(for containerized database) exports.
Configuration is provided through the following role variables:
-
openshift_management_storage_nfs_external_hostname
-
openshift_management_storage_nfs_base_dir
The openshift_management_storage_nfs_external_hostname
parameter must be set to the host name or IP of your external NFS server.
If /exports is not the parent directory to your exports then you must set the base directory via the openshift_management_storage_nfs_base_dir
parameter.
For example, if your server export is /exports/hosted/prod/cfme-app, then you must set openshift_management_storage_nfs_base_dir=/exports/hosted/prod
.
4.3.5.3. Cloud Provider
If you are using OpenShift Container Platform cloud provider integration for your storage class, Red Hat CloudForms can also use the cloud provider storage to back its required PVs. For this functionality to work, you must have configured the openshift_cloudprovider_kind
variable (for AWS or GCE) and all associated parameters specific to your chosen cloud provider.
When the application is created using this storage class, the required PVs are automatically provisioned using the configured cloud provider storage integration.
There are no additional variables to configure the behavior of this storage class.
4.3.5.4. Preconfigured (Advanced)
The preconfigured
storage class implies that you know exactly what you are doing and that all storage requirements have been taken care ahead of time. Typically this means that you have already created the correctly sized PVs. The installer will do nothing to modify any storage settings.
There are no additional variables to configure the behavior of this storage class.
4.4. Running the Installer
4.4.1. Deploying Red Hat CloudForms During or After OpenShift Container Platform Installation
You can choose to deploy Red Hat CloudForms either during initial OpenShift Container Platform installation or after the cluster has been provisioned:
Ensure that
openshift_management_install_management
is set totrue
in your inventory file under the[OSEv3:vars]
section:[OSEv3:vars] openshift_management_install_management=true
- Set any other Red Hat CloudForms role variables in your inventory file as described in Configuring Role Variables. Resources to assist in this are provided in Example Inventory Files.
Choose which playbook to run depending on whether OpenShift Container Platform is already provisioned:
- If you want to install Red Hat CloudForms at the same time you install your OpenShift Container Platform cluster, call the standard config.yml playbook as described in Running the Installation Playbooks to begin the OpenShift Container Platform cluster and Red Hat CloudForms installation.
If you want to install Red Hat CloudForms on an already provisioned OpenShift Container Platform cluster, call the Red Hat CloudForms playbook directly to begin the installation:
# ansible-playbook -v [-i /path/to/inventory] \ /usr/share/ansible/openshift-ansible/playbooks/openshift-management/config.yml
4.4.2. Example Inventory Files
The following sections show example snippets of inventory files showing various configurations of Red Hat CloudForms on OpenShift Container Platform that can help you get started.
See Configuring Role Variables for complete variable descriptions.
4.4.2.1. All Defaults
This example is the simplest, using all of the default values and choices. This results in a fully-containerized (podified) Red Hat CloudForms installation. All application components, as well as the PostgreSQL database, are created as pods in OpenShift Container Platform:
[OSEv3:vars] openshift_management_app_template=cfme-template
4.4.2.2. External NFS Storage
This is as the previous example, except that instead of using local NFS services in the cluster, it uses an existing, external NFS server (such as a storage appliance). Note the two new parameters:
[OSEv3:vars] openshift_management_app_template=cfme-template openshift_management_storage_class=nfs_external 1 openshift_management_storage_nfs_external_hostname=nfs.example.com 2
If the external NFS host exports directories under a different parent directory, such as /exports/hosted/prod, add the following additional variable:
openshift_management_storage_nfs_base_dir=/exports/hosted/prod
4.4.2.3. Override PV Sizes
This example overrides the persistent volume (PV) sizes. PV sizes must be set via openshift_management_template_parameters
, which ensures that the application and database are able to make claims on created PVs without interfering with each other:
[OSEv3:vars] openshift_management_app_template=cfme-template openshift_management_template_parameters={'APPLICATION_VOLUME_CAPACITY': '10Gi', 'DATABASE_VOLUME_CAPACITY': '25Gi'}
4.4.2.4. Override Memory Requirements
In a test or proof-of-concept installation, you may need to reduce the application and database memory requirements to fit within your capacity. Note that reducing memory limits can result in reduced performance or a complete failure to initialize the application:
[OSEv3:vars] openshift_management_app_template=cfme-template openshift_management_template_parameters={'APPLICATION_MEM_REQ': '3000Mi', 'POSTGRESQL_MEM_REQ': '1Gi', 'ANSIBLE_MEM_REQ': '512Mi'}
This example instructs the installer to process the application template with the parameter APPLICATION_MEM_REQ
set to 3000Mi
, POSTGRESQL_MEM_REQ
set to 1Gi
, and ANSIBLE_MEM_REQ
set to 512Mi
.
These parameters can be combined with the parameters displayed in the previous example Override PV Sizes.
4.4.2.5. External PostgreSQL Database
To use an external database, you must change the openshift_management_app_template
parameter value to cfme-template-ext-db
.
Additionally, database connection information must be supplied using the openshift_management_template_parameters
variable. See Configuring Role Variables for more details.
[OSEv3:vars] openshift_management_app_template=cfme-template-ext-db openshift_management_template_parameters={'DATABASE_USER': 'root', 'DATABASE_PASSWORD': 'mypassword', 'DATABASE_IP': '10.10.10.10', 'DATABASE_PORT': '5432', 'DATABASE_NAME': 'cfme'}
Ensure your are running PostgreSQL 9.5 or you may not be able to deploy the application successfully.
4.5. Enabling Container Provider Integration
4.5.1. Adding a Single Container Provider
After deploying Red Hat CloudForms on OpenShift Container Platform as described in Running the Installer, there are two methods for enabling container provider integration. You can manually add OpenShift Container Platform as a container provider, or you can try the playbooks included with this role.
4.5.1.1. Adding Manually
See the following Red Hat CloudForms documentation for steps on manually adding your OpenShift Container Platform cluster as a container provider:
4.5.1.2. Adding Automatically
Automated container provider integration can be accomplished using the playbooks included with this role.
This playbook:
- Gathers the necessary authentication secrets.
- Finds the public routes to the Red Hat CloudForms application and the cluster API.
- Makes a REST call to add the OpenShift Container Platform cluster as a container provider.
To run the container provider playbook:
# ansible-playbook -v [-i /path/to/inventory] \ /usr/share/ansible/openshift-ansible/playbooks/openshift-management/add_container_provider.yml
4.5.2. Multiple Container Providers
As well as providing playbooks to integrate your current OpenShift Container Platform cluster into your Red Hat CloudForms deployment, this role includes a script which allows you to add multiple container platforms as container providers in any arbitrary Red Hat CloudForms server. The container platforms can be OpenShift Container Platform or OpenShift Origin.
Using the multiple provider script requires manual configuration and setting an EXTRA_VARS
parameter on the CLI when running the playbook.
4.5.2.1. Preparing the Script
To prepare the multiple provider script, complete the following manual configuration:
- Copy the /usr/share/ansible/openshift-ansible/roles/openshift_management/files/examples/container_providers.yml example somewhere, such as /tmp/cp.yml. You will be modifying this file.
-
If you changed your Red Hat CloudForms name or password, update the
hostname
,user
, andpassword
parameters in themanagement_server
key in the container_providers.yml file that you copied. Fill in an entry under the
container_providers
key for each container platform cluster you want to add as container providers.The following parameters must be configured:
-
auth_key
- This is the token of a service account that hascluster-admin
privileges. -
hostname
- This is the host name that points to the cluster API. Each container provider must have a unique host name. -
name
- This is the name of the cluster to be displayed in the Red Hat CloudForms server container providers overview page. This must be unique.
TipTo obtain the
auth_key
bearer token from your clusters:$ oc serviceaccounts get-token -n management-infra management-admin
-
The following parameters may be optionally configured:
-
port
- Update this key if your container platform cluster runs the API on a port other than8443
. -
endpoint
- You may enable SSL verification (verify_ssl
) or change the validation setting tossl-with-validation
. Support for custom trusted CA certificates is not currently available.
-
4.5.2.1.1. Example
As an example, consider the following scenario:
- You copied the container_providers.yml file to /tmp/cp.yml.
- You want to add two OpenShift Container Platform clusters.
-
Your Red Hat CloudForms server runs on
mgmt.example.com
For this scenario, you would customize /tmp/cp.yml as follows:
container_providers: - connection_configurations: - authentication: {auth_key: "<token>", authtype: bearer, type: AuthToken} 1 endpoint: {role: default, security_protocol: ssl-without-validation, verify_ssl: 0} hostname: "<provider_hostname1>" name: <display_name1> port: 8443 type: "ManageIQ::Providers::Openshift::ContainerManager" - connection_configurations: - authentication: {auth_key: "<token>", authtype: bearer, type: AuthToken} 2 endpoint: {role: default, security_protocol: ssl-without-validation, verify_ssl: 0} hostname: "<provider_hostname2>" name: <display_name2> port: 8443 type: "ManageIQ::Providers::Openshift::ContainerManager" management_server: hostname: "<hostname>" user: <user_name> password: <password>
4.5.2.2. Running the Playbook
To run the multiple-providers integration script, you must provide the path to the container providers configuration file as an EXTRA_VARS
parameter to the ansible-playbook
command. Use the -e
(or --extra-vars
) parameter to set container_providers_config
to the configuration file path:
# ansible-playbook -v [-i /path/to/inventory] \ -e container_providers_config=/tmp/cp.yml \ /usr/share/ansible/openshift-ansible/playbooks/openshift-management/add_many_container_providers.yml
After the playbook completes, you should find two new container providers in your Red Hat CloudForms service. Navigate to the Compute → Containers → Providers
page to see an overview.
4.5.3. Refreshing Providers
After adding either a single or multiple container providers, the new provider(s) must be refreshed in Red Hat CloudForms to get all the latest data about the container provider and the containers being managed. This involves navigating to each provider in the Red Hat CloudForms web console and clicking a refresh button for each.
See the following Red Hat CloudForms documentation for steps:
4.6. Uninstalling Red Hat CloudForms
4.6.1. Running the Uninstall Playbook
To uninstall and erase a deployed Red Hat CloudForms installation from OpenShift Container Platform, run the following playbook:
# ansible-playbook -v [-i /path/to/inventory] \ /usr/share/ansible/openshift-ansible/playbooks/openshift-management/uninstall.yml
NFS export definitions and data stored on NFS exports are not automatically removed. You are urged to manually erase any data from old application or database deployments before attempting to initialize a new deployment.
4.6.2. Troubleshooting
Failure to erase old PostgreSQL data can result in cascading errors, causing the postgresql pod to enter a crashloopbackoff
state. This blocks the cfme pod from ever starting. The cause of the crashloopbackoff
is due to incorrect file permissions on the database NFS export created during a previous deployment.
To continue, erase all data from the PostgreSQL export and delete the pod (not the deployer pod). For example, if you had the following pods:
$ oc get pods NAME READY STATUS RESTARTS AGE httpd-1-cx7fk 1/1 Running 1 21h cfme-0 0/1 Running 1 21h memcached-1-vkc7p 1/1 Running 1 21h postgresql-1-deploy 1/1 Running 1 21h postgresql-1-6w2t4 0/1 CrashLoopBackOff 1 21h
Then you would:
- Erase the data from the database NFS export.
Run:
$ oc delete postgresql-1-6w2t4
The PostgreSQL deployer pod will try to scale up a new postgresql pod to replace the one you deleted. After the postgresql pod is running, the cfme pod will stop blocking and begin application initialization.
Chapter 5. Master and Node Configuration
5.1. Customizing master and node configuration after installation
The openshift start
command and its subcommands (master
to launch a master server and node
to launch a node server) take a limited set of arguments that are sufficient for launching servers in a development or experimental environment.
However, these arguments are insufficient to describe and control the full set of configuration and security options that are necessary in a production environment. You must provide those options in the Master host files, at /etc/origin/master/master-config.yaml and the node configuration maps:
These files define options including overriding the default plug-ins, connecting to etcd, automatically creating service accounts, building image names, customizing project requests, configuring volume plug-ins, and much more.
This topic covers the available options for customizing your OpenShift Container Platform master and node hosts, and shows you how to make changes to the configuration after installation.
These files are fully specified with no default values. Therefore, an empty value indicates that you want to start up with an empty value for that parameter. This makes it easy to reason about exactly what your configuration is, but it also makes it difficult to remember all of the options to specify. To make this easier, the configuration files can be created with the --write-config
option and then used with the --config
option.
5.2. Installation dependencies
Production environments should be installed using the standard cluster installation process. In production environments, it is a good idea to use multiple masters for the purposes of high availability (HA). A cluster architecture of three masters is recommended, and HAproxy is the recommended solution for this.
If etcd is installed on the master hosts, you must configure your cluster to use at least three masters, because etcd would not be able to decide which one is authoritative. The only way to successfully run only two masters is if you install etcd on hosts other than the masters.
5.3. Configuring masters and nodes
The method you use to configure your master and node configuration files must match the method that was used to install your OpenShift Container Platform cluster. If you followed the standard cluster installation processe, then make your configuration changes in the Ansible inventory file.
5.4. Making configuration changes using Ansible
For this section, familiarity with Ansible is assumed.
Only a portion of the available host configuration options are exposed to Ansible. After an OpenShift Container Platform install, Ansible creates an inventory file with some substituted values. Modifying this inventory file and re-running the Ansible installer playbook is how you customize your OpenShift Container Platform cluster.
While OpenShift Container Platform supports using Ansible for cluster installation, using an Ansible playbook and inventory file, you can also use other management tools, such as Puppet, Chef, or Salt.
Use Case: Configuring the cluster to use HTPasswd authentication
- This use case assumes you have already set up SSH keys to all the nodes referenced in the playbook.
The
htpasswd
utility is in thehttpd-tools
package:# yum install httpd-tools
To modify the Ansible inventory and make configuration changes:
- Open the ./hosts inventory file.
Add the following new variables to the
[OSEv3:vars]
section of the file:# htpasswd auth openshift_master_identity_providers=[{'name': 'htpasswd_auth', 'login': 'true', 'challenge': 'true', 'kind': 'HTPasswdPasswordIdentityProvider'}] # Defining htpasswd users #openshift_master_htpasswd_users={'<name>': '<hashed-password>', '<name>': '<hashed-password>'} # or #openshift_master_htpasswd_file=/etc/origin/master/htpasswd
For HTPasswd authentication the
openshift_master_identity_providers
variable enables the authentication type. You can configure three different authentication options that use HTPasswd:-
Specify only
openshift_master_identity_providers
if/etc/origin/master/htpasswd
is already configured and present on the host. -
Specify both
openshift_master_identity_providers
andopenshift_master_htpasswd_file
to copy a local htpasswd file to the host. -
Specify both
openshift_master_identity_providers
andopenshift_master_htpasswd_users
to generate a new htpasswd file on the host.
Because OpenShift Container Platform requires a hashed password to configure HTPasswd authentication, you can use the
htpasswd
command, as shown in the following section, to generate the hashed password(s) for your user(s) or to create the flat file with the users and associated hashed passwords.The following example changes the authentication method from the default
deny all
setting tohtpasswd
and uses the specified file to generate user IDs and passwords for thejsmith
andbloblaw
users.# htpasswd auth openshift_master_identity_providers=[{'name': 'htpasswd_auth', 'login': 'true', 'challenge': 'true', 'kind': 'HTPasswdPasswordIdentityProvider'}] # Defining htpasswd users openshift_master_htpasswd_users={'jsmith': '$apr1$wIwXkFLI$bAygtKGmPOqaJftB', 'bloblaw': '7IRJ$2ODmeLoxf4I6sUEKfiA$2aDJqLJe'} # or #openshift_master_htpasswd_file=/etc/origin/master/htpasswd
-
Specify only
Re-run the ansible playbook for these modifications to take effect:
$ ansible-playbook -b -i ./hosts ~/src/openshift-ansible/playbooks/deploy_cluster.yml
The playbook updates the configuration, and restarts the OpenShift Container Platform master service to apply the changes.
You have now modified the master and node configuration files using Ansible, but this is just a simple use case. From here you can see which master and node configuration options are exposed to Ansible and customize your own Ansible inventory.
5.4.1. Using the htpasswd
commmand
To configure the OpenShift Container Platform cluster to use HTPasswd authentication, you need at least one user with a hashed password to include in the inventory file.
You can:
- Generate the username and password to add directly to the ./hosts inventory file.
- Create a flat file to pass the credentials to the ./hosts inventory file.
To create a user and hashed password:
Run the following command to add the specified user:
$ htpasswd -n <user_name>
NoteYou can include the
-b
option to supply the password on the command line:$ htpasswd -nb <user_name> <password>
Enter and confirm a clear-text password for the user.
For example:
$ htpasswd -n myuser New password: Re-type new password: myuser:$apr1$vdW.cI3j$WSKIOzUPs6Q
The command generates a hashed version of the password.
You can then use the hashed password when configuring HTPasswd authentication. The hashed password is the string after the :
. In the above example,you would enter:
openshift_master_htpasswd_users={'myuser': '$apr1$wIwXkFLI$bAygtISk2eKGmqaJftB'}
To create a flat file with a user name and hashed password:
Execute the following command:
$ htpasswd -c /etc/origin/master/htpasswd <user_name>
NoteYou can include the
-b
option to supply the password on the command line:$ htpasswd -c -b <user_name> <password>
Enter and confirm a clear-text password for the user.
For example:
htpasswd -c /etc/origin/master/htpasswd user1 New password: Re-type new password: Adding password for user user1
The command generates a file that includes the user name and a hashed version of the user’s password.
You can then use the password file when configuring HTPasswd authentication.
For more information on the htpasswd
command, see HTPasswd Identity Provider.
5.5. Making manual configuration changes
Use Case: Configure the cluster to use HTPasswd authentication
To manually modify a configuration file:
- Open the configuration file you want to modify, which in this case is the /etc/origin/master/master-config.yaml file:
Add the following new variables to the
identityProviders
stanza of the file:oauthConfig: ... identityProviders: - name: my_htpasswd_provider challenge: true login: true mappingMethod: claim provider: apiVersion: v1 kind: HTPasswdPasswordIdentityProvider file: /etc/origin/master/htpasswd
- Save your changes and close the file.
Restart the master for the changes to take effect:
# master-restart api # master-restart controllers
You have now manually modified the master and node configuration files, but this is just a simple use case. From here you can see all the master and node configuration options, and further customize your own cluster by making further modifications.
To modify a node in your cluster, update the node configuration maps as needed. Do not manually edit the node-config.yaml
file.
5.6. Master Configuration Files
This section reviews parameters mentioned in the master-config.yaml file.
You can create a new master configuration file to see the valid options for your installed version of OpenShift Container Platform.
Whenever you modify the master-config.yaml file, you must restart the master for the changes to take effect. See Restarting OpenShift Container Platform services.
5.6.1. Admission Control Configuration
Parameter Name | Description |
---|---|
| Contains the admission control plug-in configuration. OpenShift Container Platform has a configurable list of admission controller plug-ins that are triggered whenever API objects are created or modified. This option allows you to override the default list of plug-ins; for example, disabling some plug-ins, adding others, changing the ordering, and specifying configuration. Both the list of plug-ins and their configuration can be controlled from Ansible. |
|
Key-value pairs that will be passed directly to the Kube API server that match the API servers' command line arguments. These are not migrated, but if you reference a value that does not exist the server will not start. These values may override other settings in apiServerArguments: event-ttl: - "15m" |
|
Key-value pairs that will be passed directly to the Kube controller manager that match the controller manager’s command line arguments. These are not migrated, but if you reference a value that does not exist the server will not start. These values may override other settings in |
|
Used to enable or disable various admission plug-ins. When this type is present as the configuration object under |
| Allows specifying a configuration file per admission control plug-in. |
| A list of admission control plug-in names that will be installed on the master. Order is significant. If empty, a default list of plug-ins is used. |
|
Key-value pairs that will be passed directly to the Kube scheduler that match the scheduler’s command line arguments. These are not migrated, but if you reference a value that does not exist the server will not start. These values may override other settings in |
5.6.2. Asset Configuration
Parameter Name | Description |
---|---|
| If present, then the asset server starts based on the defined parameters. For example: assetConfig: logoutURL: "" masterPublicURL: https://master.ose32.example.com:8443 publicURL: https://master.ose32.example.com:8443/console/ servingInfo: bindAddress: 0.0.0.0:8443 bindNetwork: tcp4 certFile: master.server.crt clientCA: "" keyFile: master.server.key maxRequestsInFlight: 0 requestTimeoutSeconds: 0 |
|
To access the API server from a web application using a different host name, you must whitelist that host name by specifying |
| A list of features that should not be started. You will likely want to set this as null. It is very unlikely that anyone will want to manually disable features and that is not encouraged. |
| Files to serve from the asset server file system under a subcontext. |
| When set to true, tells the asset server to reload extension scripts and stylesheets for every request rather than only at startup. It lets you develop extensions without having to restart the server for every change. |
|
Key- (string) and value- (string) pairs that will be injected into the console under the global variable |
| File paths on the asset server files to load as scripts when the web console loads. |
| File paths on the asset server files to load as style sheets when the web console loads. |
| The public endpoint for logging (optional). |
| An optional, absolute URL to redirect web browsers to after logging out of the web console. If not specified, the built-in logout page is shown. |
| How the web console can access the OpenShift Container Platform server. |
| The public endpoint for metrics (optional). |
| URL of the asset server. |
5.6.3. Authentication and Authorization Configuration
Parameter Name | Description |
---|---|
| Holds authentication and authorization configuration options. |
| Indicates how many authentication results should be cached. If 0, the default cache size is used. |
| Indicates how long an authorization result should be cached. It takes a valid time duration string (e.g. "5m"). If empty, you get the default timeout. If zero (e.g. "0m"), caching is disabled. |
5.6.4. Controller Configuration
Parameter Name | Description |
---|---|
|
List of the controllers that should be started. If set to none, no controllers will start automatically. The default value is * which will start all controllers. When using *, you may exclude controllers by prepending a |
|
Enables controller election, instructing the master to attempt to acquire a lease before controllers start and renewing it within a number of seconds defined by this value. Setting this value non-negative forces |
| Instructs the master to not automatically start controllers, but instead to wait until a notification to the server is received before launching them. |
5.6.5. etcd Configuration
Parameter Name | Description |
---|---|
| The advertised host:port for client connections to etcd. |
| Contains information about how to connect to etcd. Specifies if etcd is run as embedded or non-embedded, and the hosts. The rest of the configuration is handled by the Ansible inventory. For example: etcdClientInfo: ca: ca.crt certFile: master.etcd-client.crt keyFile: master.etcd-client.key urls: - https://m1.aos.example.com:4001 |
| If present, then etcd starts based on the defined parameters. For example: etcdConfig: address: master.ose32.example.com:4001 peerAddress: master.ose32.example.com:7001 peerServingInfo: bindAddress: 0.0.0.0:7001 certFile: etcd.server.crt clientCA: ca.crt keyFile: etcd.server.key servingInfo: bindAddress: 0.0.0.0:4001 certFile: etcd.server.crt clientCA: ca.crt keyFile: etcd.server.key storageDirectory: /var/lib/origin/openshift.local.etcd |
| Contains information about how API resources are stored in etcd. These values are only relevant when etcd is the backing store for the cluster. |
| The path within etcd that the Kubernetes resources will be rooted under. This value, if changed, will mean existing objects in etcd will no longer be located. The default value is kubernetes.io. |
| The API version that Kubernetes resources in etcd should be serialized to. This value should not be advanced until all clients in the cluster that read from etcd have code that allows them to read the new version. |
| The path within etcd that the OpenShift Container Platform resources will be rooted under. This value, if changed, will mean existing objects in etcd will no longer be located. The default value is openshift.io. |
| API version that OS resources in etcd should be serialized to. This value should not be advanced until all clients in the cluster that read from etcd have code that allows them to read the new version. |
| The advertised host:port for peer connections to etcd. |
| Describes how to start serving the etcd peer. |
| Describes how to start serving. For example: servingInfo: bindAddress: 0.0.0.0:8443 bindNetwork: tcp4 certFile: master.server.crt clientCA: ca.crt keyFile: master.server.key maxRequestsInFlight: 500 requestTimeoutSeconds: 3600 |
| The path to the etcd storage directory. |
5.6.6. Grant Configuration
Parameter Name | Description |
---|---|
| Describes how to handle grants. |
| Auto-approves client authorization grant requests. |
| Auto-denies client authorization grant requests. |
| Prompts the user to approve new client authorization grant requests. |
| Determines the default strategy to use when an OAuth client requests a grant.This method will be used only if the specific OAuth client does not provide a strategy of their own. Valid grant handling methods are:
|
5.6.7. Image Configuration
Parameter Name | Description |
---|---|
| The format of the name to be built for the system component. |
| Determines if the latest tag will be pulled from the registry. |
5.6.8. Image Policy Configuration
Parameter Name | Description |
---|---|
| Allows scheduled background import of images to be disabled. |
| Controls the number of images that are imported when a user does a bulk import of a Docker repository. This number defaults to 5 to prevent users from importing large numbers of images accidentally. Set -1 for no limit. |
| The maximum number of scheduled image streams that will be imported in the background per minute. The default value is 60. |
| The minimum number of seconds that can elapse between when image streams scheduled for background import are checked against the upstream repository. The default value is 15 minutes. |
| Limits the docker registries that normal users may import images from. Set this list to the registries that you trust to contain valid Docker images and that you want applications to be able to import from. Users with permission to create Images or ImageStreamMappings via the API are not affected by this policy - typically only administrators or system integrations will have those permissions. |
|
Sets the hostname for the default internal image registry. The value must be in |
|
ExternalRegistryHostname sets the hostname for the default external image registry. The external hostname should be set only when the image registry is exposed externally. The value is used in |
5.6.9. Kubernetes Master Configuration
Parameter Name | Description |
---|---|
| A list of API levels that should be enabled on startup, v1 as examples. |
|
A map of groups to the versions (or |
| Contains information about how to connect to kubelets. |
| Contains information about how to connect to kubelet’s KubernetesMasterConfig. If present, then start the kubernetes master with this process. |
| The number of expected masters that should be running. This value defaults to 1 and may be set to a positive integer, or if set to -1, indicates this is part of a cluster. |
|
The public IP address of Kubernetes resources. If empty, the first result from |
| File name for the .kubeconfig file that describes how to connect this node to the master. |
| The range to use for assigning service public ports on a host. Default 30000-32767. |
| The subnet to use for assigning service IPs. |
| The list of nodes that are statically known. |
5.6.10. Network Configuration
Choose the CIDRs in the following parameters carefully, because the IPv4 address space is shared by all users of the nodes. OpenShift Container Platform reserves CIDRs from the IPv4 address space for its own use, and reserves CIDRs from the IPv4 address space for addresses that are shared between the external user and the cluster.
Parameter Name | Description |
---|---|
| The CIDR string to specify the global overlay network’s L3 space. This is reserved for the internal use of the cluster networking. |
|
Controls what values are acceptable for the service external IP field. If empty, no |
| The number of bits to allocate to each host’s subnet. For example, 8 would mean a /24 network on the host. |
|
Controls the range to assign ingress IPs from for services of type LoadBalancer on bare metal. It may contain a single CIDR that it will be allocated from. By default |
| The number of bits to allocate to each host’s subnet. For example, 8 would mean a /24 network on the host. |
| To be passed to the compiled-in-network plug-in. Many of the options here can be controlled in the Ansible inventory.
For Example: networkConfig: clusterNetworks - cidr: 10.3.0.0/16 hostSubnetLength: 8 networkPluginName: example/openshift-ovs-subnet # serviceNetworkCIDR must match kubernetesMasterConfig.servicesSubnet serviceNetworkCIDR: 179.29.0.0/16 |
| The name of the network plug-in to use. |
| The CIDR string to specify the service networks. |
5.6.11. OAuth Authentication Configuration
Parameter Name | Description |
---|---|
| Forces the provider selection page to render even when there is only a single provider. |
| Used for building valid client redirect URLs for external access. |
| A path to a file containing a go template used to render error pages during the authentication or grant flow If unspecified, the default error page is used. |
| Ordered list of ways for a user to identify themselves. |
| A path to a file containing a go template used to render the login page. If unspecified, the default login page is used. |
|
CA for verifying the TLS connection back to the |
| Used for building valid client redirect URLs for external access. |
| Used for making server-to-server calls to exchange authorization codes for access tokens. |
| If present, then the /oauth endpoint starts based on the defined parameters. For example: oauthConfig: assetPublicURL: https://master.ose32.example.com:8443/console/ grantConfig: method: auto identityProviders: - challenge: true login: true mappingMethod: claim name: htpasswd_all provider: apiVersion: v1 kind: HTPasswdPasswordIdentityProvider file: /etc/origin/openshift-passwd masterCA: ca.crt masterPublicURL: https://master.ose32.example.com:8443 masterURL: https://master.ose32.example.com:8443 sessionConfig: sessionMaxAgeSeconds: 3600 sessionName: ssn sessionSecretsFile: /etc/origin/master/session-secrets.yaml tokenConfig: accessTokenMaxAgeSeconds: 86400 authorizeTokenMaxAgeSeconds: 500 |
| Allows for customization of pages like the login page. |
| A path to a file containing a go template used to render the provider selection page. If unspecified, the default provider selection page is used. |
| Holds information about configuring sessions. |
| Allows you to customize pages like the login page. |
| Contains options for authorization and access tokens. |
5.6.12. Project Configuration
Parameter Name | Description |
---|---|
| Holds default project node label selector. |
| Holds information about project creation and defaults:
|
| The string presented to a user if they are unable to request a project via the project request API endpoint. |
| The template to use for creating projects in response to a projectrequest. It is in the format namespace/template and it is optional. If it is not specified, a default template is used. |
5.6.13. Scheduler Configuration
Parameter Name | Description |
---|---|
| Points to a file that describes how to set up the scheduler. If empty, you get the default scheduling rules |
5.6.14. Security Allocator Configuration
Parameter Name | Description |
---|---|
|
Defines the range of MCS categories that will be assigned to namespaces. The format is |
| Controls the automatic allocation of UIDs and MCS labels to a project. If nil, allocation is disabled. |
| Defines the total set of Unix user IDs (UIDs) that will be allocated to projects automatically, and the size of the block that each namespace gets. For example, 1000-1999/10 will allocate ten UIDs per namespace, and will be able to allocate up to 100 blocks before running out of space. The default is to allocate from 1 billion to 2 billion in 10k blocks (which is the expected size of the ranges container images will use once user namespaces are started). |
5.6.15. Service Account Configuration
Parameter Name | Description |
---|---|
| Controls whether or not to allow a service account to reference any secret in a namespace without explicitly referencing them. |
|
A list of service account names that will be auto-created in every namespace. If no names are specified, the |
| The CA for verifying the TLS connection back to the master. The service account controller will automatically inject the contents of this file into pods so they can verify connections to the master. |
|
A file containing a PEM-encoded private RSA key, used to sign service account tokens. If no private key is specified, the service account |
| A list of files, each containing a PEM-encoded public RSA key. If any file contains a private key, the public portion of the key is used. The list of public keys is used to verify presented service account tokens. Each key is tried in order until the list is exhausted or verification succeeds. If no keys are specified, no service account authentication will be available. |
| Holds options related to service accounts:
|
5.6.16. Serving Information Configuration
Parameter Name | Description |
---|---|
| Allows the DNS server on the master to answer queries recursively. Note that open resolvers can be used for DNS amplification attacks and the master DNS should not be made accessible to public networks. |
| The ip:port to serve on. |
| Controls limits and behavior for importing images. |
| A file containing a PEM-encoded certificate. |
| TLS cert information for serving secure traffic. |
| The certificate bundle for all the signers that you recognize for incoming client certificates. |
| If present, then start the DNS server based on the defined parameters. For example: dnsConfig: bindAddress: 0.0.0.0:8053 bindNetwork: tcp4 |
| Holds the domain suffix. |
| Holds the IP. |
|
A file containing a PEM-encoded private key for the certificate specified by |
| Provides overrides to the client connection used to connect to the master. This parameter is not supported. To set QPS and burst values, see Setting Node QPS and Burst Values. |
| The number of concurrent requests allowed to the server. If zero, no limit. |
| A list of certificates to use to secure requests to specific host names. |
| The number of seconds before requests are timed out. The default is 60 minutes. If -1, there is no limit on requests. |
| The HTTP serving information for the assets. |
5.6.17. Volume Configuration
Parameter Name | Description |
---|---|
| A boolean to enable or disable dynamic provisioning. Default is true. |
FSGroup |
Enables local storage quotas on each node for each FSGroup. At present this is only implemented for emptyDir volumes, and if the underlying |
| Contains options for configuring volume plug-ins in the master node. |
| Contains options for configuring volumes on the node. |
| Contains options for configuring volume plug-ins in the node:
|
| The directory that volumes are stored under. |
5.6.18. Basic Audit
Audit provides a security-relevant chronological set of records documenting the sequence of activities that have affected system by individual users, administrators, or other components of the system.
Audit works at the API server level, logging all requests coming to the server. Each audit log contains two entries:
The request line containing:
- A Unique ID allowing to match the response line (see #2)
- The source IP of the request
- The HTTP method being invoked
- The original user invoking the operation
-
The impersonated user for the operation (
self
meaning himself) -
The impersonated group for the operation (
lookup
meaning user’s group) - The namespace of the request or <none>
- The URI as requested
The response line containing:
- The unique ID from #1
- The response code
Example output for user admin asking for a list of pods:
AUDIT: id="5c3b8227-4af9-4322-8a71-542231c3887b" ip="127.0.0.1" method="GET" user="admin" as="<self>" asgroups="<lookup>" namespace="default" uri="/api/v1/namespaces/default/pods" AUDIT: id="5c3b8227-4af9-4322-8a71-542231c3887b" response="200"
The openshift_master_audit_config
variable enables API service auditing. It takes an array of the following options:
Parameter Name | Description |
---|---|
|
A boolean to enable or disable audit logs. Default is |
| File path where the requests should be logged to. If not set, logs are printed to master logs. |
| Specifies maximum number of days to retain old audit log files based on the time stamp encoded in their filename. |
| Specifies the maximum number of old audit log files to retain. |
| Specifies maximum size in megabytes of the log file before it gets rotated. Defaults to 100MB. |
Because the OpenShift Container Platform master API now runs as static pod, you must define the auditFilePath
location in the /var/lib/origin or /etc/origin/master/ file.
Example Audit Configuration
auditConfig: auditFilePath: "/var/lib/origin/audit-ocp.log" enabled: true maximumFileRetentionDays: 10 maximumFileSizeMegabytes: 10 maximumRetainedFiles: 10
Advanced Setup for the Audit Log
The directory /var/lib/origin will be created if it does not exist.
You can specify advanced audit log parameters by using the following parameter value format:
openshift_master_audit_config={"enabled": true, "auditFilePath": "/var/lib/origin/openpaas-oscp-audit.log", "maximumFileRetentionDays": 14, "maximumFileSizeMegabytes": 500, "maximumRetainedFiles": 5}
5.6.19. Advanced Audit
The advanced audit feature provides several improvements over the basic audit functionality, including fine-grained events filtering and multiple output back ends.
To enable the advanced audit feature, provide the following values in the openshift_master_audit_config
parameter:
openshift_master_audit_config={"enabled": true, "auditFilePath": "/var/lib/origin/oscp-audit.log", "maximumFileRetentionDays": 14, "maximumFileSizeMegabytes": 500, "maximumRetainedFiles": 5, "policyFile": "/etc/origin/master/adv-audit.yaml", "logFormat":"json"}
The policy file /etc/origin/master/adv-audit.yaml must be available on each master node.
The following table contains additional options you can use.
Parameter Name | Description |
---|---|
| Path to the file that defines the audit policy configuration. |
| An embedded audit policy configuration. |
|
Specifies the format of the saved audit logs. Allowed values are |
|
Path to a |
|
Specifies the strategy for sending audit events. Allowed values are |
To enable the advanced audit feature, you must provide either policyFile
orpolicyConfiguration
describing the audit policy rules:
Sample Audit Policy Configuration
apiVersion: audit.k8s.io/v1beta1 kind: Policy rules: # Do not log watch requests by the "system:kube-proxy" on endpoints or services - level: None 1 users: ["system:kube-proxy"] 2 verbs: ["watch"] 3 resources: 4 - group: "" resources: ["endpoints", "services"] # Do not log authenticated requests to certain non-resource URL paths. - level: None userGroups: ["system:authenticated"] 5 nonResourceURLs: 6 - "/api*" # Wildcard matching. - "/version" # Log the request body of configmap changes in kube-system. - level: Request resources: - group: "" # core API group resources: ["configmaps"] # This rule only applies to resources in the "kube-system" namespace. # The empty string "" can be used to select non-namespaced resources. namespaces: ["kube-system"] 7 # Log configmap and secret changes in all other namespaces at the metadata level. - level: Metadata resources: - group: "" # core API group resources: ["secrets", "configmaps"] # Log all other resources in core and extensions at the request level. - level: Request resources: - group: "" # core API group - group: "extensions" # Version of group should NOT be included. # A catch-all rule to log all other requests at the Metadata level. - level: Metadata 8 # Log login failures from the web console or CLI. Review the logs and refine your policies. - level: Metadata nonResourceURLs: - /login* 9 - /oauth* 10
- 1 8
- There are four possible levels every event can be logged at:
-
None
- Do not log events that match this rule. -
Metadata
- Log request metadata (requesting user, time stamp, resource, verb, etc.), but not request or response body. This is the same level as the one used in basic audit. -
Request
- Log event metadata and request body, but not response body. -
RequestResponse
- Log event metadata, request, and response bodies.
-
- 2
- A list of users the rule applies to. An empty list implies every user.
- 3
- A list of verbs this rule applies to. An empty list implies every verb. This is Kubernetes verb associated with API requests (including
get
,list
,watch
,create
,update
,patch
,delete
,deletecollection
, andproxy
). - 4
- A list of resources the rule applies to. An empty list implies every resource. Each resource is specified as a group it is assigned to (for example, an empty for Kubernetes core API, batch, build.openshift.io, etc.), and a resource list from that group.
- 5
- A list of groups the rule applies to. An empty list implies every group.
- 6
- A list of non-resources URLs the rule applies to.
- 7
- A list of namespaces the rule applies to. An empty list implies every namespace.
- 9
- Endpoint used by the web console.
- 10
- Endpoint used by the CLI.
For more information on advanced audit, see the Kubernetes documentation
5.6.20. Specifying TLS ciphers for etcd
You can specify the supported TLS ciphers to use in communication between the master and etcd servers.
On each etcd node, upgrade etcd:
# yum update etcd iptables-services
Confirm that your etcd version is 3.2.22 or later:
# etcd --version etcd Version: 3.2.22
On each master host, specify the ciphers to enable in the
/etc/origin/master/master-config.yaml
file:servingInfo: ... minTLSVersion: VersionTLS12 cipherSuites: - TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 - TLS_RSA_WITH_AES_256_CBC_SHA - TLS_RSA_WITH_AES_128_CBC_SHA ...
On each master host, restart the master service:
# master-restart api # master-restart controllers
Confirm that the cipher is applied. For example, for TLSv1.2 cipher
ECDHE-RSA-AES128-GCM-SHA256
, run the following command:# openssl s_client -connect etcd1.example.com:2379 1 CONNECTED(00000003) depth=0 CN = etcd1.example.com verify error:num=20:unable to get local issuer certificate verify return:1 depth=0 CN = etcd1.example.com verify error:num=21:unable to verify the first certificate verify return:1 139905367488400:error:14094412:SSL routines:ssl3_read_bytes:sslv3 alert bad certificate:s3_pkt.c:1493:SSL alert number 42 139905367488400:error:140790E5:SSL routines:ssl23_write:ssl handshake failure:s23_lib.c:177: --- Certificate chain 0 s:/CN=etcd1.example.com i:/CN=etcd-signer@1529635004 --- Server certificate -----BEGIN CERTIFICATE----- MIIEkjCCAnqgAwIBAgIBATANBgkqhkiG9w0BAQsFADAhMR8wHQYDVQQDDBZldGNk ........ .... eif87qttt0Sl1vS8DG1KQO1oOBlNkg== -----END CERTIFICATE----- subject=/CN=etcd1.example.com issuer=/CN=etcd-signer@1529635004 --- Acceptable client certificate CA names /CN=etcd-signer@1529635004 Client Certificate Types: RSA sign, ECDSA sign Requested Signature Algorithms: RSA+SHA256:ECDSA+SHA256:RSA+SHA384:ECDSA+SHA384:RSA+SHA1:ECDSA+SHA1 Shared Requested Signature Algorithms: RSA+SHA256:ECDSA+SHA256:RSA+SHA384:ECDSA+SHA384:RSA+SHA1:ECDSA+SHA1 Peer signing digest: SHA384 Server Temp Key: ECDH, P-256, 256 bits --- SSL handshake has read 1666 bytes and written 138 bytes --- New, TLSv1/SSLv3, Cipher is ECDHE-RSA-AES128-GCM-SHA256 Server public key is 2048 bit Secure Renegotiation IS supported Compression: NONE Expansion: NONE No ALPN negotiated SSL-Session: Protocol : TLSv1.2 Cipher : ECDHE-RSA-AES128-GCM-SHA256 Session-ID: Session-ID-ctx: Master-Key: 1EFA00A91EE5FC5EDDCFC67C8ECD060D44FD3EB23D834EDED929E4B74536F273C0F9299935E5504B562CD56E76ED208D Key-Arg : None Krb5 Principal: None PSK identity: None PSK identity hint: None Start Time: 1529651744 Timeout : 300 (sec) Verify return code: 21 (unable to verify the first certificate)
- 1
etcd1.example.com
is the name of an etcd host.
5.7. Node Configuration Files
During installation, OpenShift Container Platform creates a configmap in the openshift-node project for each type of node group:
- node-config-master
- node-config-infra
- node-config-compute
- node-config-all-in-one
- node-config-master-infra
To make configuration changes to an existing node, edit the appropriate configuration map. A sync pod on each node watches for changes in the configuration maps. During installation, the sync pods are created by using sync Daemonsets, and a /etc/origin/node/node-config.yaml file, where the node configuration parameters reside, is added to each node. When a sync pod detects configuration map change, it updates the node-config.yaml on all nodes in that node group and restarts the appropriate nodes.
$ oc get cm -n openshift-node NAME DATA AGE node-config-all-in-one 1 1d node-config-compute 1 1d node-config-infra 1 1d node-config-master 1 1d node-config-master-infra 1 1d
Sample configuration map for the node-config-compute group
apiVersion: v1 authConfig: 1 authenticationCacheSize: 1000 authenticationCacheTTL: 5m authorizationCacheSize: 1000 authorizationCacheTTL: 5m dnsBindAddress: 127.0.0.1:53 dnsDomain: cluster.local dnsIP: 0.0.0.0 2 dnsNameservers: null dnsRecursiveResolvConf: /etc/origin/node/resolv.conf dockerConfig: dockerShimRootDirectory: /var/lib/dockershim dockerShimSocket: /var/run/dockershim.sock execHandlerName: native enableUnidling: true imageConfig: format: registry.reg-aws.openshift.com/openshift3/ose-${component}:${version} latest: false iptablesSyncPeriod: 30s kind: NodeConfig kubeletArguments: 3 bootstrap-kubeconfig: - /etc/origin/node/bootstrap.kubeconfig cert-dir: - /etc/origin/node/certificates cloud-config: - /etc/origin/cloudprovider/aws.conf cloud-provider: - aws enable-controller-attach-detach: - 'true' feature-gates: - RotateKubeletClientCertificate=true,RotateKubeletServerCertificate=true node-labels: - node-role.kubernetes.io/compute=true pod-manifest-path: - /etc/origin/node/pods 4 rotate-certificates: - 'true' masterClientConnectionOverrides: acceptContentTypes: application/vnd.kubernetes.protobuf,application/json burst: 40 contentType: application/vnd.kubernetes.protobuf qps: 20 masterKubeConfig: node.kubeconfig networkConfig: 5 mtu: 8951 networkPluginName: redhat/openshift-ovs-subnet 6 servingInfo: 7 bindAddress: 0.0.0.0:10250 bindNetwork: tcp4 clientCA: client-ca.crt volumeConfig: localQuota: perFSGroup: null 8 volumeDirectory: /var/lib/origin/openshift.local.volumes
- 1
- Authentication and authorization configuration options.
- 2
- IP address prepended to a pod’s /etc/resolv.conf.
- 3
- Key value pairs that are passed directly to the Kubelet that match the Kubelet’s command line arguments.
- 4
- The path to the pod manifest file or directory. A directory must contain one or more manifest files. OpenShift Container Platform uses the manifest files to create pods on the node.
- 5
- The pod network settings on the node.
- 6
- Software defined network (SDN) plug-in. Set to
redhat/openshift-ovs-subnet
for the ovs-subnet plug-in;redhat/openshift-ovs-multitenant
for the ovs-multitenant plug-in; orredhat/openshift-ovs-networkpolicy
for the ovs-networkpolicy plug-in. - 7
- Certificate information for the node.
- 8
- Optional: PEM-encoded certificate bundle. If set, a valid client certificate must be presented and validated against the certificate authorities in the specified file before the request headers are checked for user names.
Do not manually modify the /etc/origin/node/node-config.yaml file.
The node configuration file determines the resources of a node. See the Allocating node resources section in the Cluster Administrator guide for more information.
5.7.1. Pod and Node Configuration
Parameter Name | Description |
---|---|
| The fully specified configuration starting an OpenShift Container Platform node. |
| Node may have multiple IPs, so this specifies the IP to use for pod traffic routing. If not specified, network parse/lookup on the nodeName is performed and the first non-loopback address is used. |
| The value used to identify this particular node in the cluster. If possible, this should be your fully qualified hostname. If you are describing a set of static nodes to the master, this value must match one of the values in the list. |
| Controls grace period for deleting pods on failed nodes. It takes valid time duration string. If empty, you get the default pod eviction timeout. |
| Specifies the client cert/key to use when proxying to pods. |
5.7.2. Docker Configuration
Parameter Name | Description |
---|---|
| If true, the kubelet will ignore errors from Docker. This means that a node can start on a machine that does not have docker started. |
| Holds Docker related configuration options |
| The handler to use for executing commands in Docker containers. |
5.7.3. Local Storage Configuration
You can use the XFS quota subsystem to limit the size of emptyDir
volumes and volumes based on an emptyDir
volume, such as secrets and configuration maps, on each node.
To limit the size of emptyDir
volumes in an XFS filesystem, configure local volume quota for each unique FSGroup using the node-config-compute configuration map in the openshift-node project.
apiVersion: kubelet.config.openshift.io/v1 kind: VolumeConfig localQuota: 1 perFSGroup: 1Gi 2
- 1
- Contains options for controlling local volume quota on the node.
- 2
- Set this value to a resource quantity representing the desired quota per [FSGroup], per node, such as
1Gi
,512Mi
, and so forth. Requires the volumeDirectory to be on an XFS filesystem mounted with thegrpquota
option. The matching security context constraint fsGroup type must be set toMustRunAs
.
If no FSGroup is specified, indicating the request matched an SCC with RunAsAny
, the quota application is skipped.
Do not edit the /etc/origin/node/volume-config.yaml file directly. The file is created from the node-config-compute configuration map. Use the node-config-compute configuration map to create or edit the paramaters in the volume-config.yaml file.
5.7.4. Setting Node Queries per Second (QPS) Limits and Burst Values
The rate at which Kubelet talks to API server depends on Queries per Second (QPS) and burst values. The default values are good enough if there are limited pods running on each node. Provided there are enough CPU and memory resources on the node, the QPS and burst values can be tweaked in the /etc/origin/node/node-config.yaml file:
kubeletArguments: kube-api-qps: - "20" kube-api-burst: - "40"
Then restart OpenShift Container Platform node services.
The QPS and burst values above are defaults for OpenShift Container Platform.
5.7.5. Parallel Image Pulls with Docker 1.9+
If you are using Docker 1.9+, you may want to consider enabling parallel image pulling, as the default is to pull images one at a time.
There is a potential issue with data corruption prior to Docker 1.9. However, starting with 1.9, the corruption issue is resolved and it is safe to switch to parallel pulls.
kubeletArguments:
serialize-image-pulls:
- "false" 1
- 1
- Change to true to disable parallel pulls. (This is the default config)
5.8. Passwords and Other Sensitive Data
For some authentication configurations, an LDAP bindPassword
or OAuth clientSecret
value is required. Instead of specifying these values directly in the master configuration file, these values may be provided as environment variables, external files, or in encrypted files.
Environment Variable Example
... bindPassword: env: BIND_PASSWORD_ENV_VAR_NAME
External File Example
... bindPassword: file: bindPassword.txt
Encrypted External File Example
... bindPassword: file: bindPassword.encrypted keyFile: bindPassword.key
To create the encrypted file and key file for the above example:
$ oc adm ca encrypt --genkey=bindPassword.key --out=bindPassword.encrypted > Data to encrypt: B1ndPass0rd!
Run oc adm
commands only from the first master listed in the Ansible host inventory file, by default /etc/ansible/hosts.
Encrypted data is only as secure as the decrypting key. Care should be taken to limit filesystem permissions and access to the key file.
5.9. Creating New Configuration Files
When defining an OpenShift Container Platform configuration from scratch, start by creating new configuration files.
For master host configuration files, use the openshift start
command with the --write-config
option to write the configuration files. For node hosts, use the oc adm create-node-config
command to write the configuration files.
The following commands write the relevant launch configuration file(s), certificate files, and any other necessary files to the specified --write-config
or --node-dir
directory.
Generated certificate files are valid for two years, while the certification authority (CA) certificate is valid for five years. This can be altered with the --expire-days
and --signer-expire-days
options, but for security reasons, it is recommended to not make them greater than these values.
To create configuration files for an all-in-one server (a master and a node on the same host) in the specified directory:
$ openshift start --write-config=/openshift.local.config
To create a master configuration file and other required files in the specified directory:
$ openshift start master --write-config=/openshift.local.config/master
To create a node configuration file and other related files in the specified directory:
$ oc adm create-node-config \ --node-dir=/openshift.local.config/node-<node_hostname> \ --node=<node_hostname> \ --hostnames=<node_hostname>,<ip_address> \ --certificate-authority="/path/to/ca.crt" \ --signer-cert="/path/to/ca.crt" \ --signer-key="/path/to/ca.key" --signer-serial="/path/to/ca.serial.txt" --node-client-certificate-authority="/path/to/ca.crt"
When creating node configuration files, the --hostnames
option accepts a comma-delimited list of every host name or IP address you want server certificates to be valid for.
5.10. Launching Servers Using Configuration Files
Once you have modified the master and/or node configuration files to your specifications, you can use them when launching servers by specifying them as an argument. Keep in mind that if you specify a configuration file, none of the other command line options you pass are respected.
To modify a node in your cluster, update the node configuration maps as needed. Do not manually edit the node-config.yaml
file.
To launch an all-in-one server using a master configuration and a node configuration file:
$ openshift start --master-config=/openshift.local.config/master/master-config.yaml --node-config=/openshift.local.config/node-<node_hostname>/node-config.yaml
To launch a master server using a master configuration file:
$ openshift start master --config=/openshift.local.config/master/master-config.yaml
To launch a node server using a node configuration file:
$ openshift start node --config=/openshift.local.config/node-<node_hostname>/node-config.yaml
5.11. Viewing Master and Node Logs
OpenShift Container Platform collects log messages for debugging, using the systemd-journald.service
for nodes and a script, called master-logs
, for masters.
The number of lines displayed in the web console is hard-coded at 5000 and cannot be changed. To see the entire log, use the CLI.
The logging uses five log message severities based on Kubernetes logging conventions, as follows:
Option | Description |
---|---|
0 | Errors and warnings only |
2 | Normal information |
4 | Debugging-level information |
6 | API-level debugging information (request / response) |
8 | Body-level API debugging information |
You can change the log levels independently for masters or nodes as needed.
View node logs
To view logs for the node system, run the following command:
# journalctl -r -u <journal_name>
Use the -r
option to show the newest entries first.
View master logs
To view logs for the master components, run the following command:
# /usr/local/bin/master-logs <component> <container>
For example:
# /usr/local/bin/master-logs controllers controllers # /usr/local/bin/master-logs api api # /usr/local/bin/master-logs etcd etcd
Redirect master log to a file
To redirect the output of master log into a file, run the following command:
master-logs api api 2> file
5.11.1. Configuring Logging Levels
You can control which INFO messages are logged by setting the DEBUG_LOGLEVEL
option in the in node configuration files or the /etc/origin/master/master.env file. Configuring the logs to collect all messages can lead to large logs that are difficult to interpret and can take up excessive space. Only collect all messages when you need to debug your cluster.
Messages with FATAL, ERROR, WARNING, and some INFO severities appear in the logs regardless of the log configuration.
To change the logging level:
- Edit the /etc/origin/master/master.env file for the master or /etc/sysconfig/atomic-openshift-node file for the nodes.
Enter a value from the Log Level Options table in the
DEBUG_LOGLEVEL
field.For example:
DEBUG_LOGLEVEL=4
- Restart the master or node host as appropriate. See Restarting OpenShift Container Platform services.
After the restart, all new log messages will conform to the new setting. Older messages do not change.
The default log level can be set using the standard cluster installation process. For more information, see Cluster Variables.
The following examples are excerpts of redirected master log files at various log levels. System information has been removed from these examples.
Excerpt of master-logs api api 2> file
output at loglevel=2
W1022 15:08:09.787705 1 server.go:79] Unable to keep dnsmasq up to date, 0.0.0.0:8053 must point to port 53 I1022 15:08:09.787894 1 logs.go:49] skydns: ready for queries on cluster.local. for tcp4://0.0.0.0:8053 [rcache 0] I1022 15:08:09.787913 1 logs.go:49] skydns: ready for queries on cluster.local. for udp4://0.0.0.0:8053 [rcache 0] I1022 15:08:09.889022 1 dns_server.go:63] DNS listening at 0.0.0.0:8053 I1022 15:08:09.893156 1 feature_gate.go:190] feature gates: map[AdvancedAuditing:true] I1022 15:08:09.893500 1 master.go:431] Starting OAuth2 API at /oauth I1022 15:08:09.914759 1 master.go:431] Starting OAuth2 API at /oauth I1022 15:08:09.942349 1 master.go:431] Starting OAuth2 API at /oauth W1022 15:08:09.977088 1 swagger.go:38] No API exists for predefined swagger description /oapi/v1 W1022 15:08:09.977176 1 swagger.go:38] No API exists for predefined swagger description /api/v1 [restful] 2018/10/22 15:08:09 log.go:33: [restful/swagger] listing is available at https://openshift.com:443/swaggerapi [restful] 2018/10/22 15:08:09 log.go:33: [restful/swagger] https://openshift.com:443/swaggerui/ is mapped to folder /swagger-ui/ I1022 15:08:10.231405 1 master.go:431] Starting OAuth2 API at /oauth W1022 15:08:10.259523 1 swagger.go:38] No API exists for predefined swagger description /oapi/v1 W1022 15:08:10.259555 1 swagger.go:38] No API exists for predefined swagger description /api/v1 I1022 15:08:23.895493 1 logs.go:49] http: TLS handshake error from 10.10.94.10:46322: EOF I1022 15:08:24.449577 1 crdregistration_controller.go:110] Starting crd-autoregister controller I1022 15:08:24.449916 1 controller_utils.go:1019] Waiting for caches to sync for crd-autoregister controller I1022 15:08:24.496147 1 logs.go:49] http: TLS handshake error from 127.0.0.1:39140: EOF I1022 15:08:24.821198 1 cache.go:39] Caches are synced for APIServiceRegistrationController controller I1022 15:08:24.833022 1 cache.go:39] Caches are synced for AvailableConditionController controller I1022 15:08:24.865087 1 controller.go:537] quota admission added evaluator for: { events} I1022 15:08:24.865393 1 logs.go:49] http: TLS handshake error from 127.0.0.1:39162: read tcp4 127.0.0.1:443->127.0.0.1:39162: read: connection reset by peer I1022 15:08:24.966917 1 controller_utils.go:1026] Caches are synced for crd-autoregister controller I1022 15:08:24.967961 1 autoregister_controller.go:136] Starting autoregister controller I1022 15:08:24.967977 1 cache.go:32] Waiting for caches to sync for autoregister controller I1022 15:08:25.015924 1 controller.go:537] quota admission added evaluator for: { serviceaccounts} I1022 15:08:25.077984 1 cache.go:39] Caches are synced for autoregister controller W1022 15:08:25.304265 1 lease_endpoint_reconciler.go:176] Resetting endpoints for master service "kubernetes" to [10.10.94.10] E1022 15:08:25.472536 1 memcache.go:153] couldn't get resource list for servicecatalog.k8s.io/v1beta1: the server could not find the requested resource E1022 15:08:25.550888 1 memcache.go:153] couldn't get resource list for servicecatalog.k8s.io/v1beta1: the server could not find the requested resource I1022 15:08:29.480691 1 healthz.go:72] /healthz/log check I1022 15:08:30.981999 1 controller.go:105] OpenAPI AggregationController: Processing item v1beta1.servicecatalog.k8s.io E1022 15:08:30.990914 1 controller.go:111] loading OpenAPI spec for "v1beta1.servicecatalog.k8s.io" failed with: OpenAPI spec does not exists I1022 15:08:30.990965 1 controller.go:119] OpenAPI AggregationController: action for item v1beta1.servicecatalog.k8s.io: Rate Limited Requeue. I1022 15:08:31.530473 1 trace.go:76] Trace[1253590531]: "Get /api/v1/namespaces/openshift-infra/serviceaccounts/serviceaccount-controller" (started: 2018-10-22 15:08:30.868387562 +0000 UTC m=+24.277041043) (total time: 661.981642ms): Trace[1253590531]: [661.903178ms] [661.89217ms] About to write a response I1022 15:08:31.531366 1 trace.go:76] Trace[83808472]: "Get /api/v1/namespaces/aws-sb/secrets/aws-servicebroker" (started: 2018-10-22 15:08:30.831296749 +0000 UTC m=+24.239950203) (total time: 700.049245ms):
Excerpt of master-logs api api 2> file
output at loglevel=4
I1022 15:08:09.746980 1 plugins.go:149] Loaded 1 admission controller(s) successfully in the following order: AlwaysDeny. I1022 15:08:09.747597 1 plugins.go:149] Loaded 1 admission controller(s) successfully in the following order: ResourceQuota. I1022 15:08:09.748038 1 plugins.go:149] Loaded 1 admission controller(s) successfully in the following order: openshift.io/ClusterResourceQuota. I1022 15:08:09.786771 1 start_master.go:458] Starting master on 0.0.0.0:443 (v3.10.45) I1022 15:08:09.786798 1 start_master.go:459] Public master address is https://openshift.com:443 I1022 15:08:09.786844 1 start_master.go:463] Using images from "registry.access.redhat.com/openshift3/ose-<component>:v3.10.45" W1022 15:08:09.787046 1 dns_server.go:37] Binding DNS on port 8053 instead of 53, which may not be resolvable from all clients W1022 15:08:09.787705 1 server.go:79] Unable to keep dnsmasq up to date, 0.0.0.0:8053 must point to port 53 I1022 15:08:09.787894 1 logs.go:49] skydns: ready for queries on cluster.local. for tcp4://0.0.0.0:8053 [rcache 0] I1022 15:08:09.787913 1 logs.go:49] skydns: ready for queries on cluster.local. for udp4://0.0.0.0:8053 [rcache 0] I1022 15:08:09.889022 1 dns_server.go:63] DNS listening at 0.0.0.0:8053 I1022 15:08:09.893156 1 feature_gate.go:190] feature gates: map[AdvancedAuditing:true] I1022 15:08:09.893500 1 master.go:431] Starting OAuth2 API at /oauth I1022 15:08:09.914759 1 master.go:431] Starting OAuth2 API at /oauth I1022 15:08:09.942349 1 master.go:431] Starting OAuth2 API at /oauth W1022 15:08:09.977088 1 swagger.go:38] No API exists for predefined swagger description /oapi/v1 W1022 15:08:09.977176 1 swagger.go:38] No API exists for predefined swagger description /api/v1 [restful] 2018/10/22 15:08:09 log.go:33: [restful/swagger] listing is available at https://openshift.com:443/swaggerapi [restful] 2018/10/22 15:08:09 log.go:33: [restful/swagger] https://openshift.com:443/swaggerui/ is mapped to folder /swagger-ui/ I1022 15:08:10.231405 1 master.go:431] Starting OAuth2 API at /oauth W1022 15:08:10.259523 1 swagger.go:38] No API exists for predefined swagger description /oapi/v1 W1022 15:08:10.259555 1 swagger.go:38] No API exists for predefined swagger description /api/v1 [restful] 2018/10/22 15:08:10 log.go:33: [restful/swagger] listing is available at https://openshift.com:443/swaggerapi [restful] 2018/10/22 15:08:10 log.go:33: [restful/swagger] https://openshift.com:443/swaggerui/ is mapped to folder /swagger-ui/ I1022 15:08:10.444303 1 master.go:431] Starting OAuth2 API at /oauth W1022 15:08:10.492409 1 swagger.go:38] No API exists for predefined swagger description /oapi/v1 W1022 15:08:10.492507 1 swagger.go:38] No API exists for predefined swagger description /api/v1 [restful] 2018/10/22 15:08:10 log.go:33: [restful/swagger] listing is available at https://openshift.com:443/swaggerapi [restful] 2018/10/22 15:08:10 log.go:33: [restful/swagger] https://openshift.com:443/swaggerui/ is mapped to folder /swagger-ui/ I1022 15:08:10.774824 1 master.go:431] Starting OAuth2 API at /oauth I1022 15:08:23.808685 1 logs.go:49] http: TLS handshake error from 10.128.0.11:39206: EOF I1022 15:08:23.815311 1 logs.go:49] http: TLS handshake error from 10.128.0.14:53054: EOF I1022 15:08:23.822286 1 customresource_discovery_controller.go:174] Starting DiscoveryController I1022 15:08:23.822349 1 naming_controller.go:276] Starting NamingConditionController I1022 15:08:23.822705 1 logs.go:49] http: TLS handshake error from 10.128.0.14:53056: EOF +24.277041043) (total time: 661.981642ms): Trace[1253590531]: [661.903178ms] [661.89217ms] About to write a response I1022 15:08:31.531366 1 trace.go:76] Trace[83808472]: "Get /api/v1/namespaces/aws-sb/secrets/aws-servicebroker" (started: 2018-10-22 15:08:30.831296749 +0000 UTC m=+24.239950203) (total time: 700.049245ms): Trace[83808472]: [700.049245ms] [700.04027ms] END I1022 15:08:31.531695 1 trace.go:76] Trace[1916801734]: "Get /api/v1/namespaces/aws-sb/secrets/aws-servicebroker" (started: 2018-10-22 15:08:31.031163449 +0000 UTC m=+24.439816907) (total time: 500.514208ms): Trace[1916801734]: [500.514208ms] [500.505008ms] END I1022 15:08:44.675371 1 healthz.go:72] /healthz/log check I1022 15:08:46.589759 1 controller.go:537] quota admission added evaluator for: { endpoints} I1022 15:08:46.621270 1 controller.go:537] quota admission added evaluator for: { endpoints} I1022 15:08:57.159494 1 healthz.go:72] /healthz/log check I1022 15:09:07.161315 1 healthz.go:72] /healthz/log check I1022 15:09:16.297982 1 trace.go:76] Trace[2001108522]: "GuaranteedUpdate etcd3: *core.Node" (started: 2018-10-22 15:09:15.139820419 +0000 UTC m=+68.548473981) (total time: 1.158128974s): Trace[2001108522]: [1.158012755s] [1.156496534s] Transaction committed I1022 15:09:16.298165 1 trace.go:76] Trace[1124283912]: "Patch /api/v1/nodes/master-0.com/status" (started: 2018-10-22 15:09:15.139695483 +0000 UTC m=+68.548348970) (total time: 1.158434318s): Trace[1124283912]: [1.158328853s] [1.15713683s] Object stored in database I1022 15:09:16.298761 1 trace.go:76] Trace[24963576]: "GuaranteedUpdate etcd3: *core.Node" (started: 2018-10-22 15:09:15.13159057 +0000 UTC m=+68.540244112) (total time: 1.167151224s): Trace[24963576]: [1.167106144s] [1.165570379s] Transaction committed I1022 15:09:16.298882 1 trace.go:76] Trace[222129183]: "Patch /api/v1/nodes/node-0.com/status" (started: 2018-10-22 15:09:15.131269234 +0000 UTC m=+68.539922722) (total time: 1.167595526s): Trace[222129183]: [1.167517296s] [1.166135605s] Object stored in database
Excerpt of master-logs api api 2> file
output at loglevel=8
1022 15:11:58.829357 1 plugins.go:84] Registered admission plugin "NamespaceLifecycle" I1022 15:11:58.839967 1 plugins.go:84] Registered admission plugin "Initializers" I1022 15:11:58.839994 1 plugins.go:84] Registered admission plugin "ValidatingAdmissionWebhook" I1022 15:11:58.840012 1 plugins.go:84] Registered admission plugin "MutatingAdmissionWebhook" I1022 15:11:58.840025 1 plugins.go:84] Registered admission plugin "AlwaysAdmit" I1022 15:11:58.840082 1 plugins.go:84] Registered admission plugin "AlwaysPullImages" I1022 15:11:58.840105 1 plugins.go:84] Registered admission plugin "LimitPodHardAntiAffinityTopology" I1022 15:11:58.840126 1 plugins.go:84] Registered admission plugin "DefaultTolerationSeconds" I1022 15:11:58.840146 1 plugins.go:84] Registered admission plugin "AlwaysDeny" I1022 15:11:58.840176 1 plugins.go:84] Registered admission plugin "EventRateLimit" I1022 15:11:59.850825 1 feature_gate.go:190] feature gates: map[AdvancedAuditing:true] I1022 15:11:59.859108 1 register.go:154] Admission plugin AlwaysAdmit is not enabled. It will not be started. I1022 15:11:59.859284 1 plugins.go:149] Loaded 1 admission controller(s) successfully in the following order: AlwaysAdmit. I1022 15:11:59.859809 1 register.go:154] Admission plugin NamespaceAutoProvision is not enabled. It will not be started. I1022 15:11:59.859939 1 plugins.go:149] Loaded 1 admission controller(s) successfully in the following order: NamespaceAutoProvision. I1022 15:11:59.860594 1 register.go:154] Admission plugin NamespaceExists is not enabled. It will not be started. I1022 15:11:59.860778 1 plugins.go:149] Loaded 1 admission controller(s) successfully in the following order: NamespaceExists. I1022 15:11:59.863999 1 plugins.go:149] Loaded 1 admission controller(s) successfully in the following order: NamespaceLifecycle. I1022 15:11:59.864626 1 register.go:154] Admission plugin EventRateLimit is not enabled. It will not be started. I1022 15:11:59.864768 1 plugins.go:149] Loaded 1 admission controller(s) successfully in the following order: EventRateLimit. I1022 15:11:59.865259 1 register.go:154] Admission plugin ProjectRequestLimit is not enabled. It will not be started. I1022 15:11:59.865376 1 plugins.go:149] Loaded 1 admission controller(s) successfully in the following order: ProjectRequestLimit. I1022 15:11:59.866126 1 plugins.go:149] Loaded 1 admission controller(s) successfully in the following order: OriginNamespaceLifecycle. I1022 15:11:59.866709 1 register.go:154] Admission plugin openshift.io/RestrictSubjectBindings is not enabled. It will not be started. I1022 15:11:59.866761 1 plugins.go:149] Loaded 1 admission controller(s) successfully in the following order: openshift.io/RestrictSubjectBindings. I1022 15:11:59.867304 1 plugins.go:149] Loaded 1 admission controller(s) successfully in the following order: openshift.io/JenkinsBootstrapper. I1022 15:11:59.867823 1 plugins.go:149] Loaded 1 admission controller(s) successfully in the following order: openshift.io/BuildConfigSecretInjector. I1022 15:12:00.015273 1 master_config.go:476] Initializing cache sizes based on 0MB limit I1022 15:12:00.015896 1 master_config.go:539] Using the lease endpoint reconciler with TTL=15s and interval=10s I1022 15:12:00.018396 1 storage_factory.go:285] storing { apiServerIPInfo} in v1, reading as __internal from storagebackend.Config{Type:"etcd3", Prefix:"kubernetes.io", ServerList:[]string{"https://master-0.com:2379"}, KeyFile:"/etc/origin/master/master.etcd-client.key", CertFile:"/etc/origin/master/master.etcd-client.crt", CAFile:"/etc/origin/master/master.etcd-ca.crt", Quorum:true, Paging:true, DeserializationCacheSize:0, Codec:runtime.Codec(nil), Transformer:value.Transformer(nil), CompactionInterval:300000000000, CountMetricPollPeriod:60000000000} I1022 15:12:00.037710 1 storage_factory.go:285] storing { endpoints} in v1, reading as __internal from storagebackend.Config{Type:"etcd3", Prefix:"kubernetes.io", ServerList:[]string{"https://master-0.com:2379"}, KeyFile:"/etc/origin/master/master.etcd-client.key", CertFile:"/etc/origin/master/master.etcd-client.crt", CAFile:"/etc/origin/master/master.etcd-ca.crt", Quorum:true, Paging:true, DeserializationCacheSize:0, Codec:runtime.Codec(nil), Transformer:value.Transformer(nil), CompactionInterval:300000000000, CountMetricPollPeriod:60000000000} I1022 15:12:00.054112 1 compact.go:54] compactor already exists for endpoints [https://master-0.com:2379] I1022 15:12:00.054678 1 start_master.go:458] Starting master on 0.0.0.0:443 (v3.10.45) I1022 15:12:00.054755 1 start_master.go:459] Public master address is https://openshift.com:443 I1022 15:12:00.054837 1 start_master.go:463] Using images from "registry.access.redhat.com/openshift3/ose-<component>:v3.10.45" W1022 15:12:00.056957 1 dns_server.go:37] Binding DNS on port 8053 instead of 53, which may not be resolvable from all clients W1022 15:12:00.065497 1 server.go:79] Unable to keep dnsmasq up to date, 0.0.0.0:8053 must point to port 53 I1022 15:12:00.066061 1 logs.go:49] skydns: ready for queries on cluster.local. for tcp4://0.0.0.0:8053 [rcache 0] I1022 15:12:00.066265 1 logs.go:49] skydns: ready for queries on cluster.local. for udp4://0.0.0.0:8053 [rcache 0] I1022 15:12:00.158725 1 dns_server.go:63] DNS listening at 0.0.0.0:8053 I1022 15:12:00.167910 1 htpasswd.go:118] Loading htpasswd file /etc/origin/master/htpasswd... I1022 15:12:00.168182 1 htpasswd.go:118] Loading htpasswd file /etc/origin/master/htpasswd... I1022 15:12:00.231233 1 storage_factory.go:285] storing {apps.openshift.io deploymentconfigs} in apps.openshift.io/v1, reading as apps.openshift.io/__internal from storagebackend.Config{Type:"etcd3", Prefix:"openshift.io", ServerList:[]string{"https://master-0.com:2379"}, KeyFile:"/etc/origin/master/master.etcd-client.key", CertFile:"/etc/origin/master/master.etcd-client.crt", CAFile:"/etc/origin/master/master.etcd-ca.crt", Quorum:true, Paging:true, DeserializationCacheSize:0, Codec:runtime.Codec(nil), Transformer:value.Transformer(nil), CompactionInterval:300000000000, CountMetricPollPeriod:60000000000} I1022 15:12:00.248136 1 compact.go:54] compactor already exists for endpoints [https://master-0.com:2379] I1022 15:12:00.248697 1 store.go:1391] Monitoring deploymentconfigs.apps.openshift.io count at <storage-prefix>//deploymentconfigs W1022 15:12:00.256861 1 swagger.go:38] No API exists for predefined swagger description /oapi/v1 W1022 15:12:00.258106 1 swagger.go:38] No API exists for predefined swagger description /api/v1
5.12. Restarting master and node services
To apply master or node configuration changes, you must restart the respective services.
To reload master configuration changes, restart master services running in control plane static pods using the master-restart
command:
# master-restart api # master-restart controllers
To reload node configuration changes, restart the node service on the node host:
# systemctl restart atomic-openshift-node
Chapter 6. OpenShift Ansible Broker Configuration
6.1. Overview
When the OpenShift Ansible broker (OAB) is deployed in a cluster, its behavior is largely dictated by the broker’s configuration file loaded on startup. The broker’s configuration is stored as a ConfigMap object in the broker’s namespace (openshift-ansible-service-broker by default).
Example OpenShift Ansible Broker Configuration File
registry: 1 - type: dockerhub name: docker url: https://registry.hub.docker.com org: <dockerhub_org> fail_on_error: false - type: rhcc name: rhcc url: https://registry.access.redhat.com fail_on_error: true white_list: - "^foo.*-apb$" - ".*-apb$" black_list: - "bar.*-apb$" - "^my-apb$" - type: local_openshift name: lo namespaces: - openshift white_list: - ".*-apb$" dao: 2 etcd_host: localhost etcd_port: 2379 log: 3 logfile: /var/log/ansible-service-broker/asb.log stdout: true level: debug color: true openshift: 4 host: "" ca_file: "" bearer_token_file: "" image_pull_policy: IfNotPresent sandbox_role: "edit" keep_namespace: false keep_namespace_on_error: true broker: 5 bootstrap_on_startup: true dev_broker: true launch_apb_on_bind: false recovery: true output_request: true ssl_cert_key: /path/to/key ssl_cert: /path/to/cert refresh_interval: "600s" auth: - type: basic enabled: true secrets: 6 - title: Database credentials secret: db_creds apb_name: dh-rhscl-postgresql-apb
- 1
- See Registry Configuration for details.
- 2
- See DAO Configuration for details.
- 3
- See Log Configuration for details.
- 4
- See OpenShift Configuration for details.
- 5
- See Broker Configuration for details.
- 6
- See Secrets Configuration for details.
6.2. Modifying the OpenShift Ansible Broker Configuration
To modify the OAB’s default broker configuration after it has been deployed:
Edit the broker-config ConfigMap object in the OAB’s namespace as a user with cluster-admin privileges:
$ oc edit configmap broker-config -n openshift-ansible-service-broker
After saving any updates, redeploy the OAB’s deployment configuration for the changes to take effect:
$ oc rollout latest dc/asb -n openshift-ansible-service-broker
6.3. Registry Configuration
The registry
section allows you to define the registries that the broker should look at for APBs.
Field | Description | Required |
---|---|---|
| The name of the registry. Used by the broker to identify APBs from this registry. | Y |
|
The user name for authenticating to the registry. Not used when | N |
|
The password for authenticating to the registry. Not used when | N |
|
How the broker should read the registry credentials if they are not defined in the broker configuration via | N |
|
Name of the secret or file storing the registry credentials that should be read. Used when |
N, only required when |
| The namespace or organization that the image is contained in. | N |
|
The type of registry. Available adapters are | Y |
|
The list of namespaces to configure the | N |
|
The URL that is used to retrieve image information. Used extensively for RHCC while the | N |
| Should this registry fail, the bootstrap request if it fails. Will stop the execution of other registries loading. | N |
|
The list of regular expressions used to define which image names should be allowed through. Must have a white list to allow APBs to be added to the catalog. The most permissive regular expression that you can use is | N |
| The list of regular expressions used to define which images names should never be allowed through. See APB Filtering for more details. | N |
| The list of images to be used with an OpenShift Container Registry. | N |
6.3.1. Production or Development
A production broker configuration is designed to be pointed at a trusted container distribution registry, such as the Red Hat Container Catalog (RHCC):
registry: - name: rhcc type: rhcc url: https://registry.access.redhat.com tag: v3.10 white_list: - ".*-apb$" - type: local_openshift name: localregistry namespaces: - openshift white_list: []
However, a development broker configuration is primarily used by developers working on the broker. To enable developer settings, set the registry name to dev
and the dev_broker
field in the broker
section to true
:
registry: name: dev
broker: dev_broker: true
6.3.2. Storing Registry Credentials
The broker configuration determines how the broker should read any registry credentials. They can be read from the user
and pass
values in the registry
section, for example:
registry: - name: isv type: openshift url: https://registry.connect.redhat.com user: <user> pass: <password>
If you want to ensure these credentials are not publicly accessible, the auth_type
field in the registry
section can be set to the secret
or file
type. The secret
type configures a registry to use a secret from the broker’s namespace, while the file
type configures a registry to use a secret that has been mounted as a volume.
To use the secret
or file
type:
The associated secret should have the values
username
andpassword
defined. When using a secret, you must ensure that theopenshift-ansible-service-broker
namespace exists, as this is where the secret will be read from.For example, create a reg-creds.yaml file:
$ cat reg-creds.yaml --- username: <user_name> password: <password>
Create a secret from this file in the
openshift-ansible-service-broker
namespace:$ oc create secret generic \ registry-credentials-secret \ --from-file reg-creds.yaml \ -n openshift-ansible-service-broker
Choose whether you want to use the
secret
orfile
type:To use the
secret
type:In the broker configuration, set
auth_type
tosecret
andauth_name
to the name of the secret:registry: - name: isv type: openshift url: https://registry.connect.redhat.com auth_type: secret auth_name: registry-credentials-secret
Set the namespace where the secret is located:
openshift: namespace: openshift-ansible-service-broker
To use the
file
type:Edit the
asb
deployment configuration to mount your file into /tmp/registry-credentials/reg-creds.yaml:$ oc edit dc/asb -n openshift-ansible-service-broker
In the
containers.volumeMounts
section, add:volumeMounts: - mountPath: /tmp/registry-credentials name: reg-auth
In the
volumes
section, add:volumes: - name: reg-auth secret: defaultMode: 420 secretName: registry-credentials-secret
In the broker configuration, set
auth_type
tofile
andauth_type
to the location of the file:registry: - name: isv type: openshift url: https://registry.connect.redhat.com auth_type: file auth_name: /tmp/registry-credentials/reg-creds.yaml
6.3.3. Mock Registry
A mock registry is useful for reading local APB specs. Instead of going out to a registry to search for image specs, this uses a list of local specs. Set the name of the registry to mock
to use the mock registry.
registry: - name: mock type: mock
6.3.4. Dockerhub Registry
The dockerhub
type allows you to load APBs from a specific organization in the DockerHub. For example, the ansibleplaybookbundle organization.
registry: - name: dockerhub type: dockerhub org: ansibleplaybookbundle user: <user> pass: <password> white_list: - ".*-apb$"
6.3.5. APB Filtering
APBs can be filtered out by their image name using a combination of the white_list
or black_list
parameters, set on a registry basis inside the broker’s configuration.
Both are optional lists of regular expressions that will be run over the total set of discovered APBs for a given registry to determine matches.
Present | Allowed | Blocked |
---|---|---|
Only whitelist | Matches a regex in list. | Any APB that does not match. |
Only blacklist | All APBs that do not match. | APBs that match a regex in list. |
Both present | Matches regex in whitelist but not in blacklist. | APBs that match a regex in blacklist. |
None | No APBs from the registry. | All APBs from that registry. |
For example:
Whitelist Only
white_list: - "foo.*-apb$" - "^my-apb$"
Anything matching on foo.*-apb$
and only my-apb
will be allowed through in this case. All other APBs will be rejected.
Blacklist Only
black_list: - "bar.*-apb$" - "^foobar-apb$"
Anything matching on bar.*-apb$
and only foobar-apb
will be blocked in this case. All other APBs will be allowed through.
Whitelist and Blacklist
white_list: - "foo.*-apb$" - "^my-apb$" black_list: - "^foo-rootkit-apb$"
Here, foo-rootkit-apb
is specifically blocked by the blacklist despite its match in the whitelist because the whitelist match is overridden.
Otherwise, only those matching on foo.*-apb$
and my-apb
will be allowed through.
Example Broker Configuration registry
Section:
registry: - type: dockerhub name: dockerhub url: https://registry.hub.docker.com user: <user> pass: <password> org: <org> white_list: - "foo.*-apb$" - "^my-apb$" black_list: - "bar.*-apb$" - "^foobar-apb$"
6.3.6. Local OpenShift Container Registry
Using the local_openshift
type will allow you to load APBs from the OpenShift Container Registry that is internal to the OpenShift Container Platform cluster. You can configure the namespaces in which you want to look for published APBs.
registry: - type: local_openshift name: lo namespaces: - openshift white_list: - ".*-apb$"
6.3.7. Red Hat Container Catalog Registry
Using the rhcc
type will allow you to load APBs that are published to the Red Hat Container Catalog (RHCC) registry.
registry: - name: rhcc type: rhcc url: https://registry.access.redhat.com white_list: - ".*-apb$"
6.3.8. Red Hat Connect Partner Registry
Third-party images in the Red Hat Container Catalog are served from the Red Hat Connect Partner Registry at https://registry.connect.redhat.com. The partner_rhcc
type allows the broker to be bootstrapped from the Partner Registry to retrieve a list of APBs and load their specs. The Partner Registry requires authentication for pulling images with a valid Red Hat Customer Portal user name and password.
registry: - name: partner_reg type: partner_rhcc url: https://registry.connect.redhat.com user: <registry_user> pass: <registry_password> white_list: - ".*-apb$"
Because the Partner Registry requires authentication, the following manual step is also required to configure the broker to use the Partner Registry URL:
Run the following command on all nodes of a OpenShift Container Platform cluster:
# docker --config=/var/lib/origin/.docker \ login -u <registry_user> -p <registry_password> \ registry.connect.redhat.com
6.3.9. Multiple Registries
You can use more than one registry to separate APBs into logical organizations and be able to manage them from the same broker. The registries must have a unique, non-empty name. If there is no unique name, the service broker will fail to start with an error message alerting you to the problem.
registry: - name: dockerhub type: dockerhub org: ansibleplaybookbundle user: <user> pass: <password> white_list: - ".*-apb$" - name: rhcc type: rhcc url: <rhcc_url> white_list: - ".*-apb$"
6.4. Broker Authentication
The broker supports authentication, meaning when connecting to the broker, the caller must supply the Basic Auth or Bearer Auth credentials for each request. Using curl
, it is as simple as supplying:
-u <user_name>:<password>
or
-h "Authorization: bearer <token>
to the command. The service catalog must be configured with a secret containing the user name and password combinations or the bearer token.
6.4.1. Basic Auth
To enable Basic Auth usage, set the following in the broker configuration:
broker: ... auth: - type: basic 1 enabled: true 2
6.4.1.1. Deployment Template and Secrets
Typically the broker is configured using a ConfigMap in a deployment template. You supply the authentication configuration the same way as in the file configuration.
The following is an example of the deployment template:
auth: - type: basic enabled: ${ENABLE_BASIC_AUTH}
Another part to Basic Auth is the user name and password used to authenticate against the broker. While the Basic Auth implementation can be backed by different back-end services, the currently supported one is backed by a secret. The secret must be injected into the pod via a volume mount at the /var/run/asb_auth location. This is from where the broker will read the user name and password.
In the deployment template, a secret must be specified. For example:
- apiVersion: v1 kind: Secret metadata: name: asb-auth-secret namespace: openshift-ansible-service-broker data: username: ${BROKER_USER} password: ${BROKER_PASS}
The secret must contain a user name and password. The values must be base64 encoded. The easiest way to generate the values for those entries is to use the echo
and base64
commands:
$ echo -n admin | base64 1
YWRtaW4=
- 1
- The
-n
option is very important.
This secret must now be injected to the pod via a volume mount. This is configured in the deployment template as well:
spec: serviceAccount: asb containers: - image: ${BROKER_IMAGE} name: asb imagePullPolicy: IfNotPresent volumeMounts: ... - name: asb-auth-volume mountPath: /var/run/asb-auth
Then, in the volumes
section, mount the secret:
volumes: ... - name: asb-auth-volume secret: secretName: asb-auth-secret
The above will have created a volume mount located at /var/run/asb-auth. This volume will have two files: a user name and password written by the asb-auth-secret secret.
6.4.1.2. Configuring Service Catalog and Broker Communication
Now that the broker is configured to use Basic Auth, you must tell the service catalog how to communicate with the broker. This is accomplished by the authInfo
section of the broker resource.
The following is an example of creating a broker
resource in the service catalog. The spec
tells the service catalog what URL the broker is listening at. The authInfo
tells it what secret to read to get the authentication information.
apiVersion: servicecatalog.k8s.io/v1alpha1 kind: Broker metadata: name: ansible-service-broker spec: url: https://asb-1338-openshift-ansible-service-broker.172.17.0.1.nip.io authInfo: basicAuthSecret: namespace: openshift-ansible-service-broker name: asb-auth-secret
Starting with v0.0.17 of the service catalog, the broker resource configuration changes:
apiVersion: servicecatalog.k8s.io/v1alpha1 kind: ServiceBroker metadata: name: ansible-service-broker spec: url: https://asb-1338-openshift-ansible-service-broker.172.17.0.1.nip.io authInfo: basic: secretRef: namespace: openshift-ansible-service-broker name: asb-auth-secret
6.4.2. Bearer Auth
By default, if no authentication is specified the broker will use bearer token authentication (Bearer Auth). Bearer Auth uses delegated authentication from the Kubernetes apiserver library.
Bearer Auth is only available starting in OpenShift Container Platform 3.7.
The configuration grants access, through Kubernetes RBAC roles and role bindings, to the URL prefix. The broker has added a configuration option cluster_url
to specify the url_prefix
. This value defaults to openshift-ansible-service-broker
.
Example Cluster Role
- apiVersion: authorization.k8s.io/v1 kind: ClusterRole metadata: name: access-asb-role rules: - nonResourceURLs: ["/ansible-service-broker", "/ansible-service-broker/*"] verbs: ["get", "post", "put", "patch", "delete"]
6.4.2.1. Deployment Template and Secrets
The following is an example of creating a secret that the service catalog can use. This example assumes that the role, access-asb-role, has been created already. From the deployment template:
- apiVersion: v1 kind: ServiceAccount metadata: name: ansibleservicebroker-client namespace: openshift-ansible-service-broker - apiVersion: authorization.openshift.io/v1 kind: ClusterRoleBinding metadata: name: ansibleservicebroker-client subjects: - kind: ServiceAccount name: ansibleservicebroker-client namespace: openshift-ansible-service-broker roleRef: kind: ClusterRole name: access-asb-role - apiVersion: v1 kind: Secret metadata: name: ansibleservicebroker-client annotations: kubernetes.io/service-account.name: ansibleservicebroker-client type: kubernetes.io/service-account-token
The above example creates a service account, granting access to access-asb-role and creating a secret for that service accounts token.
6.4.2.2. Configuring Service Catalog and Broker Communication
Now that the broker is configured to use Bearer Auth tokens, you must tell the service catalog how to communicate with the broker. This is accomplished by the authInfo
section of the broker
resource.
The following is an example of creating a broker
resource in the service catalog. The spec
tells the service catalog what URL the broker is listening at. The authInfo
tells it what secret to read to get the authentication information.
apiVersion: servicecatalog.k8s.io/v1alpha1 kind: ServiceBroker metadata: name: ansible-service-broker spec: url: https://asb.openshift-ansible-service-broker.svc:1338${BROKER_URL_PREFIX}/ authInfo: bearer: secretRef: kind: Secret namespace: openshift-ansible-service-broker name: ansibleservicebroker-client
6.5. DAO Configuration
Field | Description | Required |
---|---|---|
| The URL of the etcd host. | Y |
|
The port to use when communicating with | Y |
6.6. Log Configuration
Field | Description | Required |
---|---|---|
| Where to write the broker’s logs. | Y |
| Write logs to stdout. | Y |
| Level of the log output. | Y |
| Color the logs. | Y |
6.7. OpenShift Configuration
Field | Description | Required |
---|---|---|
| OpenShift Container Platform host. | N |
| Location of the certificate authority file. | N |
| Location of bearer token to be used. | N |
| When to pull the image. | Y |
| The namespace that the broker has been deployed to. Important for things like passing parameter values via secret. | Y |
| Role to give to an APB sandbox environment. | Y |
| Always keep namespace after an APB execution. | N |
| Keep namespace after an APB execution has an error. | N |
6.8. Broker Configuration
The broker
section tells the broker what functionality should be enabled and disabled. It will also tell the broker where to find files on disk that will enable the full functionality.
Field | Description | Default Value | Required |
---|---|---|---|
| Allow development routes to be accessible. |
| N |
| Allow bind to be a no-op. |
| N |
| Allow the broker attempt to bootstrap itself on start up. Will retrieve the APBs from configured registries. |
| N |
| Allow the broker to attempt to recover itself by dealing with pending jobs noted in etcd. |
| N |
| Allow the broker to output the requests to the log file as they come in for easier debugging. |
| N |
| Tells the broker where to find the TLS key file. If not set, the API server will attempt to create one. |
| N |
| Tells the broker where to find the TLS .crt file. If not set, the API server will attempt to create one. |
| N |
| The interval to query registries for new image specs. |
| N |
| Allows the broker to escalate the permissions of a user while running the APB. |
| N |
| Sets the prefix for the URL that the broker is expecting. |
| N |
Async bind and unbind is an experimental feature and is not supported or enabled by default. With the absence of async bind, setting launch_apb_on_bind
to true
can cause the bind action to timeout and will span a retry. The broker will handle this with "409 Conflicts" because it is the same bind request with different parameters.
6.9. Secrets Configuration
The secrets
section creates associations between secrets in the broker’s namespace and APBs the broker runs. The broker uses these rules to mount secrets into running APBs, allowing the user to use secrets to pass parameters without exposing them to the catalog or users.
The section is a list where each entry has the following structure:
Field | Description | Required |
---|---|---|
| The title of the rule. This is just for display and output purposes. | Y |
|
The name of the APB to associate with the specified secret. This is the fully qualified name ( | Y |
| The name of the secret to pull parameters from. | Y |
You can download and use the create_broker_secret.py file to create and format this configuration section.
secrets: - title: Database credentials secret: db_creds apb_name: dh-rhscl-postgresql-apb
6.10. Running Behind a Proxy
When running the OAB inside of a proxied OpenShift Container Platform cluster, it is important to understand its core concepts and consider them within the context of a proxy used for external network access.
As an overview, the broker itself runs as a pod within the cluster. It has a requirement for external network access depending on how its registries have been configured.
6.10.1. Registry Adapter Whitelists
The broker’s configured registry adapters must be able to communicate with their external registries in order to bootstrap successfully and load remote APB manifests. These requests can be made via the proxy, however, the proxy must ensure that the required remote hosts are accessible.
Example required whitelisted hosts:
Registry Adapter Type | Whitelisted Hosts |
---|---|
|
|
|
|
6.10.2. Configuring the Broker Behind a Proxy Using Ansible
If during initial installation you configure your OpenShift Container Platform cluster to run behind a proxy (see Configuring Global Proxy Options), when the OAB is deployed it will:
- inherit those cluster-wide proxy settings automatically and
-
generate the required
NO_PROXY
list, including thecidr
fields andserviceNetworkCIDR
,
and no further configuration is needed.
6.10.3. Configuring the Broker Behind a Proxy Manually
If your cluster’s global proxy options were not configured during initial installation or prior to the broker being deployed, or if you have modified the global proxy settings, you must manually configure the broker for external access via proxy:
Before attempting to run the OAB behind a proxy, review Working with HTTP Proxies and ensure your cluster is configured accordingly to run behind a proxy.
In particular, the cluster must be configured to not proxy internal cluster requests. This is typically configured with a
NO_PROXY
setting of:.cluster.local,.svc,<serviceNetworkCIDR_value>,<master_IP>,<master_domain>,.default
in addition to any other desired
NO_PROXY
settings. See Configuring NO_PROXY for more details.NoteBrokers deploying unversioned, or v1 APBs must also add
172.30.0.1
to theirNO_PROXY
list. APBs prior to v2 extracted their credentials from running APB pods via anexec
HTTP request, rather than a secret exchange. Unless you are running a broker with experimental proxy support in a cluster prior to OpenShift Container Platform 3.9, you probably do not have to worry about this.Edit the broker’s
DeploymentConfig
as a user with cluster-admin privileges:$ oc edit dc/asb -n openshift-ansible-service-broker
Set the following environment variables:
-
HTTP_PROXY
-
HTTPS_PROXY
-
NO_PROXY
NoteSee Setting Proxy Environment Variables in Pods for more information.
-
After saving any updates, redeploy the OAB’s deployment configuration for the changes to take effect:
$ oc rollout latest dc/asb -n openshift-ansible-service-broker
6.10.4. Setting Proxy Environment Variables in Pods
It is common that APB pods themselves may require external access via proxy as well. If the broker recognizes it has a proxy configuration, it will transparently apply these environment variables to the APB pods that it spawns. As long as the modules used within the APB respect proxy configuration via environment variable, the APB will also use these settings to perform its work.
Finally, it is possible the services spawned by the APB may also require external network access via proxy. The APB must be authored to set these environment variables explicitly if recognizes them in its own execution environment, or the cluster operator must manually modify the required services to inject them into their environments.
Chapter 7. Adding Hosts to an Existing Cluster
7.1. Adding hosts
You can add new hosts to your cluster by running the scaleup.yml playbook. This playbook queries the master, generates and distributes new certificates for the new hosts, and then runs the configuration playbooks on only the new hosts. Before running the scaleup.yml playbook, complete all prerequisite host preparation steps.
The scaleup.yml playbook configures only the new host. It does not update NO_PROXY in master services, and it does not restart master services.
You must have an existing inventory file,for example /etc/ansible/hosts, that is representative of your current cluster configuration in order to run the scaleup.yml playbook. If you previously used the atomic-openshift-installer
command to run your installation, you can check ~/.config/openshift/hosts for the last inventory file that the installer generated and use that file as your inventory file. You can modify this file as required. You must then specify the file location with -i
when you run the ansible-playbook
.
See the cluster limits section for the recommended maximum number of nodes.
Procedure
Ensure you have the latest playbooks by updating the atomic-openshift-utils package:
# yum update atomic-openshift-utils
Edit your /etc/ansible/hosts file and add new_<host_type> to the [OSEv3:children] section:
For example, to add a new node host, add new_nodes:
[OSEv3:children] masters nodes new_nodes
To add new master hosts, add new_masters.
Create a [new_<host_type>] section to specify host information for the new hosts. Format this section like an existing section, as shown in the following example of adding a new node:
[nodes] master[1:3].example.com node1.example.com openshift_node_group_name='node-config-compute' node2.example.com openshift_node_group_name='node-config-compute' infra-node1.example.com openshift_node_group_name='node-config-infra' infra-node2.example.com openshift_node_group_name='node-config-infra' [new_nodes] node3.example.com openshift_node_group_name='node-config-infra'
See Configuring Host Variables for more options.
When adding new masters, add hosts to both the [new_masters] section and the [new_nodes] section to ensure that the new master host is part of the OpenShift SDN.
[masters] master[1:2].example.com [new_masters] master3.example.com [nodes] master[1:2].example.com node1.example.com openshift_node_group_name='node-config-compute' node2.example.com openshift_node_group_name='node-config-compute' infra-node1.example.com openshift_node_group_name='node-config-infra' infra-node2.example.com openshift_node_group_name='node-config-infra' [new_nodes] master3.example.com
ImportantIf you label a master host with the
node-role.kubernetes.io/infra=true
label and have no other dedicated infrastructure nodes, you must also explicitly mark the host as schedulable by addingopenshift_schedulable=true
to the entry. Otherwise, the registry and router pods cannot be placed anywhere.Run the scaleup.yml playbook. If your inventory file is located somewhere other than the default of /etc/ansible/hosts, specify the location with the
-i
option.For additional nodes:
# ansible-playbook [-i /path/to/file] \ /usr/share/ansible/openshift-ansible/playbooks/openshift-node/scaleup.yml
For additional masters:
# ansible-playbook [-i /path/to/file] \ /usr/share/ansible/openshift-ansible/playbooks/openshift-master/scaleup.yml
Set the node label to
logging-infra-fluentd=true
, if you deployed the EFK stack in your cluster.# oc label node/new-node.example.com logging-infra-fluentd=true
- After the playbook runs, verify the installation.
Move any hosts that you defined in the [new_<host_type>] section to their appropriate section. By moving these hosts, subsequent playbook runs that use this inventory file treat the nodes correctly. You can keep the empty [new_<host_type>] section. For example, when adding new nodes:
[nodes] master[1:3].example.com node1.example.com openshift_node_group_name='node-config-compute' node2.example.com openshift_node_group_name='node-config-compute' node3.example.com openshift_node_group_name='node-config-compute' infra-node1.example.com openshift_node_group_name='node-config-infra' infra-node2.example.com openshift_node_group_name='node-config-infra' [new_nodes]
7.2. Adding etcd Hosts to existing cluster
You can add new etcd hosts to your cluster by running the etcd scaleup playbook. This playbook queries the master, generates and distributes new certificates for the new hosts, and then runs the configuration playbooks on the new hosts only. Before running the etcd scaleup.yml playbook, complete all prerequisite host preparation steps.
To add an etcd host to an existing cluster:
Ensure you have the latest playbooks by updating the openshift-ansible package:
$ yum update openshift-ansible
Edit your /etc/ansible/hosts file, add new_<host_type> to the [OSEv3:children] group and add hosts under the new_<host_type> group:
For example, to add a new etcd, add new_etcd:
[OSEv3:children] masters nodes etcd new_etcd [etcd] etcd1.example.com etcd2.example.com [new_etcd] etcd3.example.com
Run the etcd scaleup.yml playbook. If your inventory file is located somewhere other than the default of /etc/ansible/hosts, specify the location with the
-i
option.$ ansible-playbook [-i /path/to/file] \ /usr/share/ansible/openshift-ansible/playbooks/openshift-etcd/scaleup.yml
- After the playbook completes successfully, verify the installation.
7.3. Replacing existing masters with etcd colocated
Follow these steps when you are migrating your machines to a different data center and the network and IPs assigned to it will change.
Back up the primary etcd and master nodes.
ImportantEnsure that you back up the /etc/etcd/ directory, as noted in the etcd backup instructions.
- Provision as many new machines as there are masters to replace.
- Add or expand the cluster. for example, if you want to add 3 masters with etcd colocated, scale up 3 master nodes.
In the initial release of OpenShift Container Platform version 3.11, the scaleup.yml playbook does not scale up etcd. This will be fixed in a future release on BZ#1628201.
-
Add a master. In step 3 of that process, add the host of the new data center in
[new_masters]
and[new_nodes]
and run the master scaleup.yml playbook. - Put the same host in the etcd section and run the etcd scaleup.yml playbook.
Verify that the host was added:
# oc get nodes
Verify that the master host IP was added:
# oc get ep kubernetes
Verify that etcd was added. The value of
ETCDCTL_API
depends on the version being used:# source /etc/etcd/etcd.conf # ETCDCTL_API=2 etcdctl --cert-file=$ETCD_PEER_CERT_FILE --key-file=$ETCD_PEER_KEY_FILE \ --ca-file=/etc/etcd/ca.crt --endpoints=$ETCD_LISTEN_CLIENT_URLS member list
Copy /etc/origin/master/ca.serial.txt from the /etc/origin/master directory to the new master host that is listed first in your inventory file. By default, this is /etc/ansible/hosts.
- Remove the etcd hosts.
- Copy the /etc/etcd/ca directory to the new etcd host that is listed first in your inventory file. By default, this is /etc/ansible/hosts.
Remove the old etcd clients from the master-config.yaml file:
# grep etcdClientInfo -A 11 /etc/origin/master/master-config.yaml
Restart the masters:
# master-restart api # master-restart controllers
Remove the old etcd members from the cluster. The value of
ETCDCTL_API
depends on the version being used:# source /etc/etcd/etcd.conf # ETCDCTL_API=2 etcdctl --cert-file=$ETCD_PEER_CERT_FILE --key-file=$ETCD_PEER_KEY_FILE \ --ca-file=/etc/etcd/ca.crt --endpoints=$ETCD_LISTEN_CLIENT_URLS member list
Take the IDs from the output of the command above and remove the old members using the IDs:
# etcdctl --cert-file=$ETCD_PEER_CERT_FILE --key-file=$ETCD_PEER_KEY_FILE \ --ca-file=/etc/etcd/ca.crt --endpoints=$ETCD_LISTEN_CLIENT_URL member remove 1609b5a3a078c227
Stop the etcd services on the old etcd hosts by removing the etcd pod definition:
# mkdir -p /etc/origin/node/pods-stopped # mv /etc/origin/node/pods/* /etc/origin/node/pods-stopped/
Shut down old master API and controller services by moving definition files out of the static pods dir /etc/origin/node/pods:
# mkdir -p /etc/origin/node/pods/disabled # mv /etc/origin/node/pods/controller.yaml /etc/origin/node/pods/disabled/:
- Remove the master nodes from the HA proxy configuration, which was installed as a load balancer by default during the native installation process.
- Decommission the machine.
Stop the node service on the master to be removed by removing the pod definition and rebooting the host:
# mkdir -p /etc/origin/node/pods-stopped # mv /etc/origin/node/pods/* /etc/origin/node/pods-stopped/ # reboot
Delete the node resource:
# oc delete node
7.4. Migrating the nodes
You can migrate nodes individually or in groups (of 2, 5, 10, and so on), depending on what you are comfortable with and how the services on the node are run and scaled.
- For the migration node or nodes, provision new VMs for the node’s use in the new data center.
- To add the new node, scale up the infrastructure. Ensure the labels for the new node are set properly and that your new API servers are added to your load balancer and successfully serving traffic.
Evaluate and scale down.
- Mark the current node (in the old data center) unscheduled.
- Evacuate the node, so that pods on it are scheduled to other nodes.
- Verify that the evacuated services are running on the new nodes.
Remove the node.
- Verify that the node is empty and does not have running processes.
- Stop the service or delete the node.
Chapter 8. Adding the Default Image Streams and Templates
8.1. Overview
If you installed OpenShift Container Platform on servers with x86_64 architecture, your cluster includes useful sets of Red Hat-provided image streams and templates to make it easy for developers to create new applications. By default, the cluster installation process automatically create these sets in the openshift project, which is a default global project to which all users have view access.
If you installed OpenShift Container Platform on servers with IBM POWER architecture, you can add image streams and templates to your cluster.
8.2. Offerings by Subscription Type
Depending on the active subscriptions on your Red Hat account, the following sets of image streams and templates are provided and supported by Red Hat. Contact your Red Hat sales representative for further subscription details.
8.2.1. OpenShift Container Platform Subscription
The core set of image streams and templates are provided and supported with an active OpenShift Container Platform subscription. This includes the following technologies:
Type | Technology |
---|---|
Languages & Frameworks | |
Databases | |
Middleware Services | |
Other Services |
8.2.2. xPaaS Middleware Add-on Subscriptions
Support for xPaaS middleware images are provided by xPaaS Middleware add-on subscriptions, which are separate subscriptions for each xPaaS product. If the relevant subscription is active on your account, image streams and templates are provided and supported for the following technologies:
Type | Technology |
---|---|
Middleware Services |
8.3. Before You Begin
Before you consider performing the tasks in this topic, confirm if these image streams and templates are already registered in your OpenShift Container Platform cluster by doing one of the following:
- Log into the web console and click Add to Project.
List them for the openshift project using the CLI:
$ oc get is -n openshift $ oc get templates -n openshift
If the default image streams and templates are ever removed or changed, you can follow this topic to create the default objects yourself. Otherwise, the following instructions are not necessary.
8.4. Prerequisites
Before you can create the default image streams and templates:
- The integrated Docker registry service must be deployed in your OpenShift Container Platform installation.
-
You must be able to run the
oc create
command with cluster-admin privileges, because they operate on the default openshiftproject. - You must have installed the openshift-ansible RPM package. See Software Prerequisites for instructions.
Define shell variables for the directories containing image streams and templates. This significantly shortens the commands in the following sections. To do this:
- For cloud installations and on-premise installations on x86_64 servers:
$ IMAGESTREAMDIR="/usr/share/ansible/openshift-ansible/roles/openshift_examples/files/examples/v3.10/image-streams"; \ XPAASSTREAMDIR="/usr/share/ansible/openshift-ansible/roles/openshift_examples/files/examples/v3.10/xpaas-streams"; \ XPAASTEMPLATES="/usr/share/ansible/openshift-ansible/roles/openshift_examples/files/examples/v3.10/xpaas-templates"; \ DBTEMPLATES="/usr/share/ansible/openshift-ansible/roles/openshift_examples/files/examples/v3.10/db-templates"; \ QSTEMPLATES="/usr/share/ansible/openshift-ansible/roles/openshift_examples/files/examples/v3.10/quickstart-templates"
- For on-premise installations on IBM POWER8 or IBM POWER9 servers:
IMAGESTREAMDIR="/usr/share/ansible/openshift-ansible/roles/openshift_examples/files/examples/ppc64le/image-streams"; \ DBTEMPLATES="/usr/share/ansible/openshift-ansible/roles/openshift_examples/files/examples/ppc64le/db-templates"; \ QSTEMPLATES="/usr/share/ansible/openshift-ansible/roles/openshift_examples/files/examples/ppc64le/quickstart-templates"
8.5. Creating Image Streams for OpenShift Container Platform Images
If your node hosts are subscribed using Red Hat Subscription Manager and you want to use the core set of image streams that used Red Hat Enterprise Linux (RHEL) 7 based images:
$ oc create -f $IMAGESTREAMDIR/image-streams-rhel7.json -n openshift
Alternatively, to create the core set of image streams that use the CentOS 7 based images:
$ oc create -f $IMAGESTREAMDIR/image-streams-centos7.json -n openshift
Creating both the CentOS and RHEL sets of image streams is not possible, because they use the same names. To have both sets of image streams available to users, either create one set in a different project, or edit one of the files and modify the image stream names to make them unique.
8.6. Creating Image Streams for xPaaS Middleware Images
The xPaaS Middleware image streams provide images for JBoss EAP, JBoss JWS, JBoss A-MQ, JBoss Fuse Integration Services, Decision Server, JBoss Data Virtualization and JBoss Data Grid. They can be used to build applications for those platforms using the provided templates.
To create the xPaaS Middleware set of image streams:
$ oc create -f $XPAASSTREAMDIR/jboss-image-streams.json -n openshift
Access to the images referenced by these image streams requires the relevant xPaaS Middleware subscriptions.
8.7. Creating Database Service Templates
The database service templates make it easy to run a database image which can be utilized by other components. For each database (MongoDB, MySQL, and PostgreSQL), two templates are defined.
One template uses ephemeral storage in the container which means data stored will be lost if the container is restarted, for example if the pod moves. This template should be used for demonstration purposes only.
The other template defines a persistent volume for storage, however it requires your OpenShift Container Platform installation to have persistent volumes configured.
To create the core set of database templates:
$ oc create -f $DBTEMPLATES -n openshift
After creating the templates, users are able to easily instantiate the various templates, giving them quick access to a database deployment.
8.8. Creating Instant App and Quickstart Templates
The Instant App and Quickstart templates define a full set of objects for a running application. These include:
- Build configurations to build the application from source located in a GitHub public repository
- Deployment configurations to deploy the application image after it is built.
- Services to provide load balancing for the application pods.
- Routes to provide external access to the application.
Some of the templates also define a database deployment and service so the application can perform database operations.
The templates which define a database use ephemeral storage for the database content. These templates should be used for demonstration purposes only as all database data will be lost if the database pod restarts for any reason.
Using these templates, users are able to easily instantiate full applications using the various language images provided with OpenShift Container Platform. They can also customize the template parameters during instantiation so that it builds source from their own repository rather than the sample repository, so this provides a simple starting point for building new applications.
To create the core Instant App and Quickstart templates:
$ oc create -f $QSTEMPLATES -n openshift
There is also a set of templates for creating applications using various xPaaS Middleware products (JBoss EAP, JBoss JWS, JBoss A-MQ, JBoss Fuse Integration Services, Decision Server, and JBoss Data Grid), which can be registered by running:
$ oc create -f $XPAASTEMPLATES -n openshift
The xPaaS Middleware templates require the xPaaS Middleware image streams, which in turn require the relevant xPaaS Middleware subscriptions.
The templates which define a database use ephemeral storage for the database content. These templates should be used for demonstration purposes only as all database data will be lost if the database pod restarts for any reason.
8.9. What’s Next?
With these artifacts created, developers can now log into the web console and follow the flow for creating from a template. Any of the database or application templates can be selected to create a running database service or application in the current project. Note that some of the application templates define their own database services as well.
The example applications are all built out of GitHub repositories which are referenced in the templates by default, as seen in the SOURCE_REPOSITORY_URL
parameter value. Those repositories can be forked, and the fork can be provided as the SOURCE_REPOSITORY_URL
parameter value when creating from the templates. This allows developers to experiment with creating their own applications.
You can direct your developers to the Using the Instant App and Quickstart Templates section in the Developer Guide for these instructions.
Chapter 9. Configuring Custom Certificates
9.1. Overview
Administrators can configure custom serving certificates for the public host names of the OpenShift Container Platform API and web console. This can be done during a cluster installation or configured after installation.
9.2. Configuring a Certificate Chain
If a certificate chain is used, then all certificates must be manually concatenated into a single named certificate file. These certificates must be placed in the following order:
- OpenShift Container Platform master host certificate
- Intermediate CA certificate
- Root CA certificate
- Third party certificate
To create this certificate chain, concatenate the certificates into a common file. You must run this command for each certificate and ensure that they are in the previously defined order.
$ cat <certificate>.pem >> ca-chain.cert.pem
9.3. Configuring Custom Certificates During Installation
During cluster installations, custom certificates can be configured using the openshift_master_named_certificates
and openshift_master_overwrite_named_certificates
parameters, which are configurable in the inventory file. More details are available about configuring custom certificates with Ansible.
Custom Certificate Configuration Parameters
openshift_master_overwrite_named_certificates=true 1 openshift_master_named_certificates=[{"certfile": "/path/on/host/to/crt-file", "keyfile": "/path/on/host/to/key-file", "names": ["public-master-host.com"], "cafile": "/path/on/host/to/ca-file"}] 2 openshift_hosted_router_certificate={"certfile": "/path/on/host/to/app-crt-file", "keyfile": "/path/on/host/to/app-key-file", "cafile": "/path/on/host/to/app-ca-file"} 3
- 1
- If you provide a value for the
openshift_master_named_certificates
parameter, set this parameter totrue
. - 2
- Provisions a master API certificate.
- 3
- Provisions a router wildcard certificate.
Example parameters for a master API certificate:
openshift_master_overwrite_named_certificates=true openshift_master_named_certificates=[{"names": ["master.148.251.233.173.nip.io"], "certfile": "/home/cloud-user/master-bundle.cert.pem", "keyfile": "/home/cloud-user/master.148.251.233.173.nip.io.key.pem" ]
Example parameters for a router wildcard certificate:
openshift_hosted_router_certificate={"certfile": "/home/cloud-user/star-apps.148.251.233.173.nip.io.cert.pem", "keyfile": "/home/cloud-user/star-apps.148.251.233.173.nip.io.key.pem", "cafile": "/home/cloud-user/ca-chain.cert.pem"}
9.4. Configuring Custom Certificates for the Web Console or CLI
You can specify custom certificates for the web console and for the CLI through the servingInfo
section of the master configuration file:
-
The
servingInfo.namedCertificates
section serves up custom certificates for the web console. -
The
servingInfo
section serves up custom certificates for the CLI and other API calls.
You can configure multiple certificates this way, and each certificate can be associated with multiple host names, multiple routers, or the OpenShift Container Platform image registry.
A default certificate must be configured in the servingInfo.certFile
and servingInfo.keyFile
configuration sections in addition to namedCertificates
.
The namedCertificates
section should be configured only for the host name associated with the masterPublicURL
and oauthConfig.assetPublicURL
settings in the /etc/origin/master/master-config.yaml file. Using a custom serving certificate for the host name associated with the masterURL
will result in TLS errors as infrastructure components will attempt to contact the master API using the internal masterURL
host.
Custom Certificates Configuration
servingInfo: logoutURL: "" masterPublicURL: https://openshift.example.com:8443 publicURL: https://openshift.example.com:8443/console/ bindAddress: 0.0.0.0:8443 bindNetwork: tcp4 certFile: master.server.crt 1 clientCA: "" keyFile: master.server.key 2 maxRequestsInFlight: 0 requestTimeoutSeconds: 0 namedCertificates: - certFile: wildcard.example.com.crt 3 keyFile: wildcard.example.com.key 4 names: - "openshift.example.com" metricsPublicURL: "https://metrics.os.example.com/hawkular/metrics"
The openshift_master_cluster_public_hostname
and openshift_master_cluster_hostname
parameters in the Ansible inventory file, by default /etc/ansible/hosts
, must be different. If they are the same, the named certificates will fail and you will need to re-install them.
# Native HA with External LB VIPs openshift_master_cluster_hostname=internal.paas.example.com openshift_master_cluster_public_hostname=external.paas.example.com
For more information on using DNS with OpenShift Container Platform, see the DNS installation prerequisites.
This approach allows you to take advantage of the self-signed certificates generated by OpenShift Container Platform and add custom trusted certificates to individual components as needed.
Note that the internal infrastructure certificates remain self-signed, which might be perceived as bad practice by some security or PKI teams. However, any risk here is minimal, as the only clients that trust these certificates are other components within the cluster. All external users and systems use custom trusted certificates.
Relative paths are resolved based on the location of the master configuration file. Restart the server to pick up the configuration changes.
9.5. Configuring a Custom Master Host Certificate
In order to facilitate trusted connections with external users of OpenShift Container Platform, you can provision a named certificate that matches the domain name provided in the openshift_master_cluster_public_hostname
paramater in the Ansible inventory file, by default /etc/ansible/hosts
.
You must place this certificate in a directory accessible to Ansible and add the path in the Ansible inventory file, as follows:
openshift_master_named_certificates=[{"certfile": "/path/to/console.ocp-c1.myorg.com.crt", "keyfile": "/path/to/console.ocp-c1.myorg.com.key", "names": ["console.ocp-c1.myorg.com"]}]
Where the parameter values are:
- certfile is the path to the file that contains the OpenShift Container Platform custom master API certificate.
- keyfile is the path to the file that contains the OpenShift Container Platform custom master API certificate key.
- names is the cluster public hostname.
The file paths must be local to the system where Ansible runs. Certificates are copied to master hosts and are deployed within the /etc/origin/master directory.
When securing the registry, add the service hostnames and IP addresses to the server certificate for the registry. The Subject Alternative Names (SAN) must contain the following.
Two service hostnames:
docker-registry.default.svc.cluster.local docker-registry.default.svc
Service IP address.
For example:
172.30.252.46
Use the following command to get the Docker registry service IP address:
oc get service docker-registry --template='{{.spec.clusterIP}}'
Public hostname.
docker-registry-default.apps.example.com
Use the following command to get the Docker registry public hostname:
oc get route docker-registry --template '{{.spec.host}}'
For example, the server certificate should contain SAN details similar to the following:
X509v3 Subject Alternative Name: DNS:docker-registry-public.openshift.com, DNS:docker-registry.default.svc, DNS:docker-registry.default.svc.cluster.local, DNS:172.30.2.98, IP Address:172.30.2.98
9.6. Configuring a Custom Wildcard Certificate for the Default Router
You can configure the OpenShift Container Platform default router with a default wildcard certificate. A default wildcard certificate provides a convenient way for applications that are deployed in OpenShift Container Platform to use default encryption without needing custom certificates.
Default wildcard certificates are recommended for non-production environments only.
To configure a default wildcard certificate, provision a certificate that is valid for *.<app_domain>
, where <app_domain>
is the value of openshift_master_default_subdomain
in the Ansible inventory file, by default /etc/ansible/hosts
. Once provisioned, place the certificate, key, and ca certificate files on your Ansible host, and add the following line to your Ansible inventory file.
openshift_hosted_router_certificate={"certfile": "/path/to/apps.c1-ocp.myorg.com.crt", "keyfile": "/path/to/apps.c1-ocp.myorg.com.key", "cafile": "/path/to/apps.c1-ocp.myorg.com.ca.crt"}
For example:
openshift_hosted_router_certificate={"certfile": "/home/cloud-user/star-apps.148.251.233.173.nip.io.cert.pem", "keyfile": "/home/cloud-user/star-apps.148.251.233.173.nip.io.key.pem", "cafile": "/home/cloud-user/ca-chain.cert.pem"}
Where the parameter values are:
- certfile is the path to the file that contains the OpenShift Container Platform router wildcard certificate.
- keyfile is the path to the file that contains the OpenShift Container Platform router wildcard certificate key.
- cafile is the path to the file that contains the root CA for this key and certificate. If an intermediate CA is in use, the file should contain both the intermediate and root CA.
If these certificate files are new to your OpenShift Container Platform cluster, run the Ansible deploy_router.yml playbook to add these files to the OpenShift Container Platform configuration files. The playbook adds the certificate files to the /etc/origin/master/ directory.
# ansible-playbook [-i /path/to/inventory] \ /usr/share/ansible/openshift-ansible/playbooks/openshift-hosted/deploy_router.yml
If the certificates are not new, for example, you want to change existing certificates or replace expired certificates, run the following playbook:
ansible-playbook /usr/share/ansible/openshift-ansible/playbooks/redeploy-certificates.yml
For this playbook to run, the certificate names must not change. If the certificate names change, rerun the Ansible deploy_cluster.yml playbook as if the certificates were new.
9.7. Configuring a Custom Certificate for the Image Registry
The OpenShift Container Platform image registry is an internal service that facilitates builds and deployments. Most of the communication with the registry is handled by internal components in OpenShift Container Platform. As such, you should not need to replace the certificate used by the registry service itself.
However, by default, the registry uses routes to allow external systems and users to do pulls and pushes of images. You can use a re-encrypt route with a custom certificate that is presented to external users instead of using the internal, self-signed certificate.
To configure this, add the following lines of code to the [OSEv3:vars]
section of the Ansible inventory file, by default /etc/ansible/hosts file. Specify the certificates to use with the registry route.
openshift_hosted_registry_routehost=registry.apps.c1-ocp.myorg.com 1 openshift_hosted_registry_routecertificates={"certfile": "/path/to/registry.apps.c1-ocp.myorg.com.crt", "keyfile": "/path/to/registry.apps.c1-ocp.myorg.com.key", "cafile": "/path/to/registry.apps.c1-ocp.myorg.com-ca.crt"} 2 openshift_hosted_registry_routetermination=reencrypt 3
- 1
- The host name of the registry.
- 2
- The locations of the cacert, cert, and key files.
- certfile is the path to the file that contains the OpenShift Container Platform registry certificate.
- keyfile is the path to the file that contains the OpenShift Container Platform registry certificate key.
- cafile is the path to the file that contains the root CA for this key and certificate. If an intermediate CA is in use, the file should contain both the intermediate and root CA.
- 3
- Specify where encryption is performed:
-
Set to
reencrypt
with a re-encrypt route to terminate encryption at the edge router and re-encrypt it with a new certificate supplied by the destination. -
Set to
passthrough
to terminate encryption at the destination. The destination is responsible for decrypting traffic.
-
Set to
9.8. Configuring a Custom Certificate for a Load Balancer
If your OpenShift Container Platform cluster uses the default load balancer or an enterprise-level load balancer, you can use custom certificates to make the web console and API available externally using a publicly-signed custom certificate. leaving the existing internal certificates for the internal endpoints.
To configure OpenShift Container Platform to use custom certificates in this way:
Edit the
servingInfo
section of the master configuration file:servingInfo: logoutURL: "" masterPublicURL: https://openshift.example.com:8443 publicURL: https://openshift.example.com:8443/console/ bindAddress: 0.0.0.0:8443 bindNetwork: tcp4 certFile: master.server.crt clientCA: "" keyFile: master.server.key maxRequestsInFlight: 0 requestTimeoutSeconds: 0 namedCertificates: - certFile: wildcard.example.com.crt 1 keyFile: wildcard.example.com.key 2 names: - "openshift.example.com" metricsPublicURL: "https://metrics.os.example.com/hawkular/metrics"
NoteConfigure the
namedCertificates
section for only the host name associated with themasterPublicURL
andoauthConfig.assetPublicURL
settings. Using a custom serving certificate for the host name associated with themasterURL
causes in TLS errors as infrastructure components attempt to contact the master API using the internal masterURL host.Specify the
openshift_master_cluster_public_hostname
andopenshift_master_cluster_hostname
paramaters in the Ansible inventory file, by default /etc/ansible/hosts. These values must be different. If they are the same, the named certificates will fail.# Native HA with External LB VIPs openshift_master_cluster_hostname=paas.example.com 1 openshift_master_cluster_public_hostname=public.paas.example.com 2
For information specific to your load balancer environment, refer to the OpenShift Container Platform Reference Architecture for your provider and Custom Certificate SSL Termination (Production).
9.9. Retrofit Custom Certificates into a Cluster
You can retrofit custom master and custom router certificates into an existing OpenShift Container Platform cluster.
9.9.1. Retrofit Custom Master Certificates into a Cluster
To retrofit custom certificates:
-
Edit the Ansible inventory file to set the
openshift_master_overwrite_named_certificates=true
. Specify the path to the certificate using the
openshift_master_named_certificates
parameter.openshift_master_overwrite_named_certificates=true openshift_master_named_certificates=[{"certfile": "/path/on/host/to/crt-file", "keyfile": "/path/on/host/to/key-file", "names": ["public-master-host.com"], "cafile": "/path/on/host/to/ca-file"}] 1
- 1
- Path to a master API certificate.
Run the following playbook:
ansible-playbook /usr/share/ansible/openshift-ansible/playbooks/redeploy-certificates.yml
If you use named certificates:
- Update the certificate parameters in the master-config.yaml file on each master node.
Restart the OpenShift Container Platform master service to apply the changes.
# master-restart api # master-restart controllers
9.9.2. Retrofit Custom Router Certificates into a Cluster
To retrofit custom router certificates:
-
Edit the Ansible inventory file to set the
openshift_master_overwrite_named_certificates=true
. Specify the path to the certificate using the
openshift_hosted_router_certificate
parameter.openshift_master_overwrite_named_certificates=true openshift_hosted_router_certificate={"certfile": "/path/on/host/to/app-crt-file", "keyfile": "/path/on/host/to/app-key-file", "cafile": "/path/on/host/to/app-ca-file"} 1
- 1
- Path to a router wildcard certificate.
Run the following playbook:
ansible-playbook /usr/share/ansible/openshift-ansible/playbooks/openshift-hosted/redeploy-router-certificates.yml
9.10. Using Custom Certificates with Other Components
For information on how other components, such as Logging & Metrics, use custom certificates, see Certificate Management.
Chapter 10. Redeploying Certificates
10.1. Overview
OpenShift Container Platform uses certificates to provide secure connections for the following components:
- masters (API server and controllers)
- etcd
- nodes
- registry
- router
You can use Ansible playbooks provided with the installer to automate checking expiration dates for cluster certificates. Playbooks are also provided to automate backing up and redeploying these certificates, which can fix common certificate errors.
Possible use cases for redeploying certificates include:
- The installer detected the wrong host names and the issue was identified too late.
- The certificates are expired and you need to update them.
- You have a new CA and want to create certificates using it instead.
10.2. Checking Certificate Expirations
You can use the installer to warn you about any certificates expiring within a configurable window of days and notify you about any certificates that have already expired. Certificate expiry playbooks use the Ansible role openshift_certificate_expiry
.
Certificates examined by the role include:
- Master and node service certificates
- Router and registry service certificates from etcd secrets
- Master, node, router, registry, and kubeconfig files for cluster-admin users
- etcd certificates (including embedded)
10.2.1. Role Variables
The openshift_certificate_expiry
role uses the following variables:
Variable Name | Default Value | Description |
---|---|---|
|
| Base OpenShift Container Platform configuration directory. |
|
| Flag certificates that will expire in this many days from now. |
|
| Include healthy (non-expired and non-warning) certificates in results. |
Variable Name | Default Value | Description |
---|---|---|
|
| Generate an HTML report of the expiry check results. |
|
| The full path for saving the HTML report. |
|
| Save expiry check results as a JSON file. |
|
| The full path for saving the JSON report. |
10.2.2. Running Certificate Expiration Playbooks
The OpenShift Container Platform installer provides a set of example certificate expiration playbooks, using different sets of configuration for the openshift_certificate_expiry
role.
These playbooks must be used with an inventory file that is representative of the cluster. For best results, run ansible-playbook
with the -v
option.
Using the easy-mode.yaml example playbook, you can try the role out before tweaking it to your specifications as needed. This playbook:
- Produces JSON and stylized HTML reports in /tmp/.
- Sets the warning window very large, so you will almost always get results back.
- Includes all certificates (healthy or not) in the results.
easy-mode.yaml Playbook
- name: Check cert expirys hosts: nodes:masters:etcd become: yes gather_facts: no vars: openshift_certificate_expiry_warning_days: 1500 openshift_certificate_expiry_save_json_results: yes openshift_certificate_expiry_generate_html_report: yes openshift_certificate_expiry_show_all: yes roles: - role: openshift_certificate_expiry
To run the easy-mode.yaml playbook:
$ ansible-playbook -v -i <inventory_file> \ /usr/share/ansible/openshift-ansible/playbooks/openshift-checks/certificate_expiry/easy-mode.yaml
Other Example Playbooks
The other example playbooks are also available to run directly out of the /usr/share/ansible/openshift-ansible/playbooks/certificate_expiry/ directory.
File Name | Usage |
---|---|
default.yaml |
Produces the default behavior of the |
html_and_json_default_paths.yaml | Generates HTML and JSON artifacts in their default paths. |
longer_warning_period.yaml | Changes the expiration warning window to 1500 days. |
longer-warning-period-json-results.yaml | Changes the expiration warning window to 1500 days and saves the results as a JSON file. |
To run any of these example playbooks:
$ ansible-playbook -v -i <inventory_file> \ /usr/share/ansible/openshift-ansible/playbooks/openshift-checks/certificate_expiry/<playbook>
10.2.3. Output Formats
As noted above, there are two ways to format your check report. In JSON format for machine parsing, or as a stylized HTML page for easy skimming.
HTML Report
An example of an HTML report is provided with the installer. You can open the following file in your browser to view it:
/usr/share/ansible/openshift-ansible/roles/openshift_certificate_expiry/examples/cert-expiry-report.html
JSON Report
There are two top-level keys in the saved JSON results: data
and summary
.
The data
key is a hash where the keys are the names of each host examined and the values are the check results for the certificates identified on each respective host.
The summary
key is a hash that summarizes the total number of certificates:
- examined on the entire cluster
- that are OK
- expiring within the configured warning window
- already expired
For an example of the full JSON report, see /usr/share/ansible/openshift-ansible/roles/openshift_certificate_expiry/examples/cert-expiry-report.json.
The summary from the JSON data can be easily checked for warnings or expirations using a variety of command-line tools. For example, using grep
you can look for the word summary
and print out the two lines after the match (-A2
):
$ grep -A2 summary /tmp/cert-expiry-report.json "summary": { "warning": 16, "expired": 0
If available, the jq
tool can also be used to pick out specific values. The first two examples below show how to select just one value, either warning
or expired
. The third example shows how to select both values at once:
$ jq '.summary.warning' /tmp/cert-expiry-report.json 16 $ jq '.summary.expired' /tmp/cert-expiry-report.json 0 $ jq '.summary.warning,.summary.expired' /tmp/cert-expiry-report.json 16 0
10.3. Redeploying Certificates
Use the following playbooks to redeploy master, etcd, node, registry, and router certificates on all relevant hosts. You can redeploy all of them at once using the current CA, redeploy certificates for specific components only, or redeploy a newly generated or custom CA on its own.
Just like the certificate expiry playbooks, these playbooks must be run with an inventory file that is representative of the cluster.
In particular, the inventory must specify or override all host names and IP addresses set via the following variables such that they match the current cluster configuration:
-
openshift_public_hostname
-
openshift_public_ip
-
openshift_master_cluster_hostname
-
openshift_master_cluster_public_hostname
The playbooks you need are provided by:
# yum install openshift-ansible
The validity (length in days until they expire) for any certificates auto-generated while redeploying can be configured via Ansible as well. See Configuring Certificate Validity.
OpenShift Container Platform CA and etcd certificates expire after five years. Signed OpenShift Container Platform certificates expire after two years.
10.3.1. Redeploying All Certificates Using the Current OpenShift Container Platform and etcd CA
The redeploy-certificates.yml playbook does not regenerate the OpenShift Container Platform CA certificate. New master, etcd, node, registry, and router certificates are created using the current CA certificate to sign new certificates.
This also includes serial restarts of:
- etcd
- master services
- node services
To redeploy master, etcd, and node certificates using the current OpenShift Container Platform CA, run this playbook, specifying your inventory file:
$ ansible-playbook -i <inventory_file> \ /usr/share/ansible/openshift-ansible/playbooks/redeploy-certificates.yml
If the OpenShift Container Platform CA was redeployed with the openshift-master/redeploy-openshift-ca.yml playbook you must add -e openshift_redeploy_openshift_ca=true
to this command.
10.3.2. Redeploying a New or Custom OpenShift Container Platform CA
The openshift-master/redeploy-openshift-ca.yml playbook redeploys the OpenShift Container Platform CA certificate by generating a new CA certificate and distributing an updated bundle to all components including client kubeconfig files and the node’s database of trusted CAs (the CA-trust).
This also includes serial restarts of:
- master services
- node services
- docker
Additionally, you can specify a custom CA certificate when redeploying certificates instead of relying on a CA generated by OpenShift Container Platform.
When the master services are restarted, the registry and routers can continue to communicate with the master without being redeployed because the master’s serving certificate is the same, and the CA the registry and routers have are still valid.
To redeploy a newly generated or custom CA:
Optionally, specify a custom CA. The
certfile
that you specify as part of the custom CA parameter,openshift_master_ca_certificate
, must contain only the single certificate that signs the OpenShift Container Platform certificates. If you have intermediate certificates in your chain, you must bundle them into a different file.To specify a CA without intermediate certificates, set the following variable in your inventory file:
# Configure custom ca certificate # NOTE: CA certificate will not be replaced with existing clusters. # This option may only be specified when creating a new cluster or # when redeploying cluster certificates with the redeploy-certificates # playbook. openshift_master_ca_certificate={'certfile': '</path/to/ca.crt>', 'keyfile': '</path/to/ca.key>'}
To specify a CA certificate that is issued by an intermediate CA:
Create a bundled certificate that contains the full chain of intermediate and root certificates for the CA:
# cat intermediate/certs/<intermediate.cert.pem> \ certs/ca.cert.pem >> intermediate/certs/ca-chain.cert.pem
Set the following variables in your inventory file:
# Configure custom ca certificate # NOTE: CA certificate will not be replaced with existing clusters. # This option may only be specified when creating a new cluster or # when redeploying cluster certificates with the redeploy-certificates # playbook. openshift_master_ca_certificate={'certfile': '</path/to/ca.crt>', 'keyfile': '</path/to/ca.key>'} openshift_additional_ca=intermediate/certs/ca-chain.cert.pem
Run the openshift-master/redeploy-openshift-ca.yml playbook, specifying your inventory file:
$ ansible-playbook -i <inventory_file> \ /usr/share/ansible/openshift-ansible/playbooks/openshift-master/redeploy-openshift-ca.yml
With the new OpenShift Container Platform CA in place, you can then use the redeploy-certificates.yml playbook at your discretion whenever you want to redeploy certificates signed by the new CA on all components.
ImportantWhen using the redeploy-certificates.yml playbook after the new OpenShift Container Platform CA is in place, you must add
-e openshift_redeploy_openshift_ca=true
to the playbook command.
10.3.3. Redeploying a New etcd CA
The openshift-etcd/redeploy-ca.yml playbook redeploys the etcd CA certificate by generating a new CA certificate and distributing an updated bundle to all etcd peers and master clients.
This also includes serial restarts of:
- etcd
- master services
To redeploy a newly generated etcd CA:
Run the openshift-etcd/redeploy-ca.yml playbook, specifying your inventory file:
$ ansible-playbook -i <inventory_file> \ /usr/share/ansible/openshift-ansible/playbooks/openshift-etcd/redeploy-ca.yml
With the new etcd CA in place, you can then use the openshift-etcd/redeploy-certificates.yml playbook at your discretion whenever you want to redeploy certificates signed by the new etcd CA on etcd peers and master clients. Alternatively, you can use the redeploy-certificates.yml playbook to redeploy certificates for OpenShift Container Platform components in addition to etcd peers and master clients.
The etcd
certificate redeployment can result in copying the serial
to all master hosts.
10.3.4. Redeploying Master Certificates Only
The openshift-master/redeploy-certificates.yml playbook only redeploys master certificates. This also includes serial restarts of master services.
To redeploy master certificates, run this playbook, specifying your inventory file:
$ ansible-playbook -i <inventory_file> \ /usr/share/ansible/openshift-ansible/playbooks/openshift-master/redeploy-certificates.yml
After running this playbook, you must regenerate any service signing certificate or key pairs by deleting existing secrets that contain service serving certificates or removing and re-adding annotations to appropriate services.
10.3.5. Redeploying etcd Certificates Only
The openshift-etcd/redeploy-certificates.yml playbook only redeploys etcd certificates including master client certificates.
This also include serial restarts of:
- etcd
- master services.
To redeploy etcd certificates, run this playbook, specifying your inventory file:
$ ansible-playbook -i <inventory_file> \ /usr/share/ansible/openshift-ansible/playbooks/openshift-etcd/redeploy-certificates.yml
10.3.6. Redeploying Node Certificates
OpenShift Container Platform automatically rotates node certificates when they get close to expiring. If you need to redeploy certificates because the CA certificate was changed, you can use the playbooks/redeploy-certificates.yml playbook with the -e openshift_redeploy_openshift_ca=true
flag. See Redeploying All Certificates Using the Current OpenShift Container Platform and etcd CA for details.
10.3.7. Redeploying Registry or Router Certificates Only
The openshift-hosted/redeploy-registry-certificates.yml and openshift-hosted/redeploy-router-certificates.yml playbooks replace installer-created certificates for the registry and router. If custom certificates are in use for these components, see Redeploying Custom Registry or Router Certificates to replace them manually.
10.3.7.1. Redeploying Registry Certificates Only
To redeploy registry certificates, run the following playbook, specifying your inventory file:
$ ansible-playbook -i <inventory_file> \ /usr/share/ansible/openshift-ansible/playbooks/openshift-hosted/redeploy-registry-certificates.yml
10.3.7.2. Redeploying Router Certificates Only
To redeploy router certificates, run the following playbook, specifying your inventory file:
$ ansible-playbook -i <inventory_file> \ /usr/share/ansible/openshift-ansible/playbooks/openshift-hosted/redeploy-router-certificates.yml
10.3.8. Redeploying Custom Registry or Router Certificates
When nodes are evacuated due to a redeployed CA, registry and router pods are restarted. If the registry and router certificates were not also redeployed with the new CA, this can cause outages because they cannot reach the masters using their old certificates.
The playbooks for redeploying certificates cannot redeploy custom registry or router certificates, so to address this issue, you can manually redeploy the registry and router certificates.
10.3.8.1. Redeploying Registry Certificates Manually
To redeploy registry certificates manually, you must add new registry certificates to a secret named registry-certificates
, then redeploy the registry:
Switch to the
default
project for the remainder of these steps:$ oc project default
If your registry was initially created on OpenShift Container Platform 3.1 or earlier, it may still be using environment variables to store certificates (which has been deprecated in favor of using secrets).
Run the following and look for the
OPENSHIFT_CA_DATA
,OPENSHIFT_CERT_DATA
,OPENSHIFT_KEY_DATA
environment variables:$ oc env dc/docker-registry --list
If they do not exist, skip this step. If they do, create the following
ClusterRoleBinding
:$ cat <<EOF | apiVersion: v1 groupNames: null kind: ClusterRoleBinding metadata: creationTimestamp: null name: registry-registry-role roleRef: kind: ClusterRole name: system:registry subjects: - kind: ServiceAccount name: registry namespace: default userNames: - system:serviceaccount:default:registry EOF oc create -f -
Then, run the following to remove the environment variables:
$ oc env dc/docker-registry OPENSHIFT_CA_DATA- OPENSHIFT_CERT_DATA- OPENSHIFT_KEY_DATA- OPENSHIFT_MASTER-
Set the following environment variables locally to make later commands less complex:
$ REGISTRY_IP=`oc get service docker-registry -o jsonpath='{.spec.clusterIP}'` $ REGISTRY_HOSTNAME=`oc get route/docker-registry -o jsonpath='{.spec.host}'`
Create new registry certificates:
$ oc adm ca create-server-cert \ --signer-cert=/etc/origin/master/ca.crt \ --signer-key=/etc/origin/master/ca.key \ --hostnames=$REGISTRY_IP,docker-registry.default.svc,docker-registry.default.svc.cluster.local,$REGISTRY_HOSTNAME \ --cert=/etc/origin/master/registry.crt \ --key=/etc/origin/master/registry.key \ --signer-serial=/etc/origin/master/ca.serial.txt
Run
oc adm
commands only from the first master listed in the Ansible host inventory file, by default /etc/ansible/hosts.Update the
registry-certificates
secret with the new registry certificates:$ oc create secret generic registry-certificates \ --from-file=/etc/origin/master/registry.crt,/etc/origin/master/registry.key \ -o json --dry-run | oc replace -f -
Redeploy the registry:
$ oc rollout latest dc/docker-registry
10.3.8.2. Redeploying Router Certificates Manually
To redeploy router certificates manually, you must add new router certificates to a secret named router-certs
, then redeploy the router:
Switch to the
default
project for the remainder of these steps:$ oc project default
If your router was initially created on OpenShift Container Platform 3.1 or earlier, it might still use environment variables to store certificates, which has been deprecated in favor of using service serving certificate secret.
Run the following command and look for the
OPENSHIFT_CA_DATA
,OPENSHIFT_CERT_DATA
,OPENSHIFT_KEY_DATA
environment variables:$ oc env dc/router --list
If those variables exist, create the following
ClusterRoleBinding
:$ cat <<EOF | apiVersion: v1 groupNames: null kind: ClusterRoleBinding metadata: creationTimestamp: null name: router-router-role roleRef: kind: ClusterRole name: system:router subjects: - kind: ServiceAccount name: router namespace: default userNames: - system:serviceaccount:default:router EOF oc create -f -
If those variables exist, run the following command to remove them:
$ oc env dc/router OPENSHIFT_CA_DATA- OPENSHIFT_CERT_DATA- OPENSHIFT_KEY_DATA- OPENSHIFT_MASTER-
Obtain a certificate.
- If you use an external Certificate Authority (CA) to sign your certificates, create a new certificate and provide it to OpenShift Container Platform by following your internal processes.
If you use the internal OpenShift Container Platform CA to sign certificates, run the following commands:
ImportantThe following commands generate a certificate that is internally signed. It will be trusted by only clients that trust the OpenShift Container Platform CA.
$ cd /root $ mkdir cert ; cd cert $ oc adm ca create-server-cert \ --signer-cert=/etc/origin/master/ca.crt \ --signer-key=/etc/origin/master/ca.key \ --signer-serial=/etc/origin/master/ca.serial.txt \ --hostnames='*.hostnames.for.the.certificate' \ --cert=router.crt \ --key=router.key \
These commands generate the following files:
- A new certificate named router.crt.
- A copy of the signing CA certificate chain, /etc/origin/master/ca.crt. This chain can contain more than one certificate if you use intermediate CAs.
- A corresponding private key named router.key.
Create a new file that concatenates the generated certificates:
$ cat router.crt /etc/origin/master/ca.crt router.key > router.pem
NoteThis step is only valid if you are using a certificate signed by the OpenShift CA. If a custom certificate is used, a file with the correct CA chain should be used instead of
/etc/origin/master/ca.crt
.Before you generate a new secret, back up the current one:
$ oc get -o yaml --export secret router-certs > ~/old-router-certs-secret.yaml
Create a new secret to hold the new certificate and key, and replace the contents of the existing secret:
$ oc create secret tls router-certs --cert=router.pem \ 1 --key=router.key -o json --dry-run | \ oc replace -f -
- 1
- router.pem is the file that contains the concatenation of the certificates that you generated.
Redeploy the router:
$ oc rollout latest dc/router
When routers are initially deployed, an annotation is added to the router’s service that automatically creates a service serving certificate secret named
router-metrics-tls
.To redeploy
router-metrics-tls
certificates manually, that service serving certificate can be triggered to be recreated by deleting the secret, removing and re-adding annotations to the router service, then redeploying therouter-metrics-tls
secret:Remove the following annotations from the
router
service:$ oc annotate service router \ service.alpha.openshift.io/serving-cert-secret-name- \ service.alpha.openshift.io/serving-cert-signed-by-
Remove the existing
router-metrics-tls
secret.$ oc delete secret router-metrics-tls
Re-add the annotations:
$ oc annotate service router \ service.alpha.openshift.io/serving-cert-secret-name=router-metrics-tls
Chapter 11. Configuring authentication and user agent
11.1. Overview
The OpenShift Container Platform master includes a built-in OAuth server. Developers and administrators obtain OAuth access tokens to authenticate themselves to the API.
As an administrator, you can configure OAuth using the master configuration file to specify an identity provider. It is a best practice to configure your identity provider during cluster installation, but you can configure it after installation.
OpenShift Container Platform user names containing /
, :
, and %
are not supported.
The Deny All identity provider is used by default, which denies access for all user names and passwords. To allow access, you must choose a different identity provider and configure the master configuration file appropriately (located at /etc/origin/master/master-config.yaml by default).
When you run a master without a configuration file, the Allow All identity provider is used by default, which allows any non-empty user name and password to log in. This is useful for testing purposes. To use other identity providers, or to modify any token, grant, or session options, you must run the master from a configuration file.
Roles need to be assigned to administer the setup with an external user.
After making changes to an identity provider, you must restart the master services for the changes to take effect:
# master-restart api # master-restart controllers
11.2. Identity provider parameters
There are four parameters common to all identity providers:
Parameter | Description |
---|---|
| The provider name is prefixed to provider user names to form an identity name. |
|
When true, unauthenticated token requests from non-web clients (like the CLI) are sent a
To prevent cross-site request forgery (CSRF) attacks against browser clients Basic authentication challenges are only sent if a |
| When true, unauthenticated token requests from web clients (like the web console) are redirected to a login page backed by this provider. Not supported by all identity providers.
If you want users to be sent to a branded page before being redirected to the identity provider’s login, then set |
| Defines how new identities are mapped to users when they log in. Enter one of the following values:
|
When adding or changing identity providers, you can map identities from the new provider to existing users by setting the mappingMethod
parameter to add
.
11.3. Configuring identity providers
OpenShift Container Platform supports configuring only a single identity provider. However, you can extend the basic authentication for more complex configurations such as LDAP failover.
You can use these parameters to define the identity provider during installation or after installation.
11.3.1. Configuring identity providers with Ansible
For initial cluster installations, the Deny All identity provider is configured by default, though it can be overriden during installation by configuring openshift_master_identity_providers
parameter in the inventory file. Session options in the OAuth configuration are also configurable in the inventory file.
Example identity provider configuration with Ansible
# htpasswd auth openshift_master_identity_providers=[{'name': 'htpasswd_auth', 'login': 'true', 'challenge': 'true', 'kind': 'HTPasswdPasswordIdentityProvider'}] # Defining htpasswd users #openshift_master_htpasswd_users={'user1': '<pre-hashed password>', 'user2': '<pre-hashed password>'} # or #openshift_master_htpasswd_file=/etc/origin/master/htpasswd # Allow all auth #openshift_master_identity_providers=[{'name': 'allow_all', 'login': 'true', 'challenge': 'true', 'kind': 'AllowAllPasswordIdentityProvider'}] # LDAP auth #openshift_master_identity_providers=[{'name': 'my_ldap_provider', 'challenge': 'true', 'login': 'true', 'kind': 'LDAPPasswordIdentityProvider', 'attributes': {'id': ['dn'], 'email': ['mail'], 'name': ['cn'], 'preferredUsername': ['uid']}, 'bindDN': '', 'bindPassword': '', 'insecure': 'false', 'url': 'ldap://ldap.example.com:389/ou=users,dc=example,dc=com?uid'}] # Configuring the ldap ca certificate 1 #openshift_master_ldap_ca=<ca text> # or #openshift_master_ldap_ca_file=<path to local ca file to use> 2 # Available variables for configuring certificates for other identity providers: #openshift_master_openid_ca #openshift_master_openid_ca_file 3 #openshift_master_request_header_ca #openshift_master_request_header_ca_file 4
- 1
- If you specified
'insecure': 'true'
in theopenshift_master_identity_providers
parameter for only an LDAP identity provider, you can omit the CA certificate. - 2 3 4
- If you specify a file on the host you run the playbook on, its contents are copied to the /etc/origin/master/<identity_provider_name>_<identity_provider_type>_ca.crt file. The identity provider name is the value of the
openshift_master_identity_providers
parameter,ldap
,openid
, orrequest_header
. If you do not specify the CA text or the path to the local CA file, you must place the CA certificate in this location. If you specify multiple identity providers, you must manually place the CA certificate for each provider in this location. You cannot change this location.
You can specify multiple identity providers. If you do, you must place the CA certificate for each identity provider in the /etc/origin/master/ directory. For example, you include the following providers in your openshift_master_identity_providers
value:
openshift_master_identity_providers: - name: foo provider: kind: OpenIDIdentityProvider ... - name: bar provider: kind: OpenIDIdentityProvider ... - name: baz provider: kind: RequestHeaderIdentityProvider ...
You must place the CA certificates for these identity providers in the following files:
- /etc/origin/master/foo_openid_ca.crt
- /etc/origin/master/bar_openid_ca.crt
- /etc/origin/master/baz_requestheader_ca.crt
11.3.2. Configuring identity providers in the master configuration file
You can configure the master host for authentication using your desired identity provider by modifying the master configuration file.
Example 11.1. Example identity provider configuration in the master configuration file
... oauthConfig: identityProviders: - name: htpasswd_auth challenge: true login: true mappingMethod: "claim" ...
When set to the default claim
value, OAuth will fail if the identity is mapped to a previously-existing user name.
11.3.2.1. Manually provisioning a user when using the lookup mapping method
When using the lookup
mapping method, user provisioning is done by an external system, via the API. Typically, identities are automatically mapped to users during login. The 'lookup' mapping method automatically disables this automatic mapping, which requires you to provision users manually.
For more information on identity objects, see the Identity user API obejct.
If you are using the lookup
mapping method, use the following steps for each user after configuring the identity provider:
Create an OpenShift Container Platform User, if not created already:
$ oc create user <username>
For example, the following command creates a OpenShift Container Platform User
bob
:$ oc create user bob
Create an OpenShift Container Platform Identity, if not created already. Use the name of the identity provider and the name that uniquely represents this identity in the scope of the identity provider:
$ oc create identity <identity-provider>:<user-id-from-identity-provider>
The
<identity-provider>
is the name of the identity provider in the master configuration, as shown in the appropriate identity provider section below.For example, the following commands creates an Identity with identity provider
ldap_provider
and the identity provider user namebob_s
.$ oc create identity ldap_provider:bob_s
Create a user/identity mapping for the created user and identity:
$ oc create useridentitymapping <identity-provider>:<user-id-from-identity-provider> <username>
For example, the following command maps the identity to the user:
$ oc create useridentitymapping ldap_provider:bob_s bob
11.3.3. Allow all
Set AllowAllPasswordIdentityProvider in the identityProviders
stanza to allow any non-empty user name and password to log in.
Example 11.2. Master Configuration Using AllowAllPasswordIdentityProvider
oauthConfig: ... identityProviders: - name: my_allow_provider 1 challenge: true 2 login: true 3 mappingMethod: claim 4 provider: apiVersion: v1 kind: AllowAllPasswordIdentityProvider
- 1
- This provider name is prefixed to provider user names to form an identity name.
- 2
- When true, unauthenticated token requests from non-web clients (like the CLI) are sent a
WWW-Authenticate
challenge header for this provider. - 3
- When true, unauthenticated token requests from web clients (like the web console) are redirected to a login page backed by this provider.
- 4
- Controls how mappings are established between this provider’s identities and user objects, as described above.
11.3.4. Deny all
Set DenyAllPasswordIdentityProvider in the identityProviders
stanza to deny access for all user names and passwords.
Example 11.3. Master Configuration Using DenyAllPasswordIdentityProvider
oauthConfig: ... identityProviders: - name: my_deny_provider 1 challenge: true 2 login: true 3 mappingMethod: claim 4 provider: apiVersion: v1 kind: DenyAllPasswordIdentityProvider
- 1
- This provider name is prefixed to provider user names to form an identity name.
- 2
- When true, unauthenticated token requests from non-web clients (like the CLI) are sent a
WWW-Authenticate
challenge header for this provider. - 3
- When true, unauthenticated token requests from web clients (like the web console) are redirected to a login page backed by this provider.
- 4
- Controls how mappings are established between this provider’s identities and user objects, as described above.
11.3.5. HTPasswd
Set HTPasswdPasswordIdentityProvider in the identityProviders
stanza to validate user names and passwords against a flat file generated using htpasswd
.
The htpasswd
utility is in the httpd-tools
package:
# yum install httpd-tools
OpenShift Container Platform supports the Bcrypt, SHA-1, and MD5 cryptographic hash functions, and MD5 is the default for htpasswd
. Plaintext, encrypted text, and other hash functions are not currently supported.
The flat file is reread if its modification time changes, without requiring a server restart.
Because the OpenShift Container Platform master API now runs as a static pod, you must create the HTPasswdPasswordIdentityProvider
htpasswd file in /etc/origin/master/ so it can be read by the container.
To use the htpasswd command:
To create a flat file with a user name and hashed password, run:
$ htpasswd -c /etc/origin/master/htpasswd <user_name>
Then, enter and confirm a clear-text password for the user. The command generates a hashed version of the password.
For example:
htpasswd -c /etc/origin/master/htpasswd user1 New password: Re-type new password: Adding password for user user1
NoteYou can include the
-b
option to supply the password on the command line:$ htpasswd -c -b <user_name> <password>
For example:
$ htpasswd -c -b file user1 MyPassword! Adding password for user user1
To add or update a login to the file, run:
$ htpasswd /etc/origin/master/htpasswd <user_name>
To remove a login from the file, run:
$ htpasswd -D /etc/origin/master/htpasswd <user_name>
Example 11.4. Master Configuration Using HTPasswdPasswordIdentityProvider
oauthConfig: ... identityProviders: - name: my_htpasswd_provider 1 challenge: true 2 login: true 3 mappingMethod: claim 4 provider: apiVersion: v1 kind: HTPasswdPasswordIdentityProvider file: /etc/origin/master/htpasswd 5
- 1
- This provider name is prefixed to provider user names to form an identity name.
- 2
- When true, unauthenticated token requests from non-web clients (like the CLI) are sent a
WWW-Authenticate
challenge header for this provider. - 3
- When true, unauthenticated token requests from web clients (like the web console) are redirected to a login page backed by this provider.
- 4
- Controls how mappings are established between this provider’s identities and user objects, as described above.
- 5
- File generated using
htpasswd
.
11.3.6. Keystone
Keystone is an OpenStack project that provides identity, token, catalog, and policy services. You can integrate your OpenShift Container Platform cluster with Keystone to enable shared authentication with an OpenStack Keystone v3 server configured to store users in an internal database. Once configured, this configuration allows users to log in to OpenShift Container Platform with their Keystone credentials.
11.3.6.1. Configuring authentication on the master
If you have:
Already completed the installation of Openshift, then copy the /etc/origin/master/master-config.yaml file into a new directory; for example:
$ cd /etc/origin/master $ mkdir keystoneconfig; cp master-config.yaml keystoneconfig
Not yet installed OpenShift Container Platform, then start the OpenShift Container Platform API server, specifying the hostname of the (future) OpenShift Container Platform master and a directory to store the configuration file created by the start command:
$ openshift start master --public-master=<apiserver> --write-config=<directory>
For example:
$ openshift start master --public-master=https://myapiserver.com:8443 --write-config=keystoneconfig
NoteIf you are installing with Ansible, then you must add the
identityProvider
configuration to the Ansible playbook. If you use the following steps to modify your configuration manually after installing with Ansible, then you will lose any modifications whenever you re-run the install tool or upgrade.
Edit the new keystoneconfig/master-config.yaml file’s
identityProviders
stanza, and copy the exampleKeystonePasswordIdentityProvider
configuration and paste it to replace the existing stanza:oauthConfig: ... identityProviders: - name: my_keystone_provider 1 challenge: true 2 login: true 3 mappingMethod: claim 4 provider: apiVersion: v1 kind: KeystonePasswordIdentityProvider domainName: default 5 url: http://keystone.example.com:5000 6 ca: ca.pem 7 certFile: keystone.pem 8 keyFile: keystonekey.pem 9
- 1
- This provider name is prefixed to provider user names to form an identity name.
- 2
- When true, unauthenticated token requests from non-web clients (like the CLI) are sent a
WWW-Authenticate
challenge header for this provider. - 3
- When true, unauthenticated token requests from web clients (like the web console) are redirected to a login page backed by this provider.
- 4
- Controls how mappings are established between this provider’s identities and user objects, as described above.
- 5
- Keystone domain name. In Keystone, usernames are domain-specific. Only a single domain is supported.
- 6
- The URL to use to connect to the Keystone server (required).
- 7
- Optional: Certificate bundle to use to validate server certificates for the configured URL.
- 8
- Optional: Client certificate to present when making requests to the configured URL.
- 9
- Key for the client certificate. Required if
certFile
is specified.
Make the following modifications to the
identityProviders
stanza:-
Change the provider
name
("my_keystone_provider") to match your Keystone server. This name is prefixed to provider user names to form an identity name. -
If required, change
mappingMethod
to control how mappings are established between the provider’s identities and user objects. -
Change the
domainName
to the domain name of your OpenStack Keystone server. In Keystone, user names are domain-specific. Only a single domain is supported. -
Specify the
url
to use to connect to your OpenStack Keystone server. -
Optionally, change the
ca
to the certificate bundle to use in order to validate server certificates for the configured URL. -
Optionally, change the
certFile
to the client certificate to present when making requests to the configured URL. -
If
certFile
is specified, then you must change thekeyFile
to the key for the client certificate.
-
Change the provider
- Save your changes and close the file.
Start the OpenShift Container Platform API server, specifying the configuration file you just modified:
$ openshift start master --config=<path/to/modified/config>/master-config.yaml
Once configured, any user logging in to the OpenShift Container Platform web console will be prompted to log in using their Keystone credentials.
11.3.6.2. Creating Users with Keystone Authentication
You do not create users in OpenShift Container Platform when integrating with an external authentication provider, such as, in this case, Keystone. Keystone is the system of record, meaning that users are defined in a Keystone database, and any user with a valid Keystone user name for the configured authentication server can log in.
To add a user to OpenShift Container Platform, the user must exist in the Keystone database, and if required you must create a new Keystone account for the user.
11.3.6.3. Verifying Users
Once one or more users have logged in, you can run oc get users
to view a list of users and verify that users were created successfully:
Example 11.5. Output of oc get users
command
$ oc get users
NAME UID FULL NAME IDENTITIES
bobsmith a0c1d95c-1cb5-11e6-a04a-002186a28631 Bob Smith keystone:bobsmith 1
- 1
- Identities in OpenShift Container Platform are comprised of the identity provider name prefixed to the Keystone user name.
From here, you might want to learn how to manage user roles.
11.3.7. LDAP authentication
Set LDAPPasswordIdentityProvider in the identityProviders
stanza to validate user names and passwords against an LDAPv3 server, using simple bind authentication.
If you require failover for your LDAP server, instead of following these steps, extend the basic authentication method by configuring SSSD for LDAP failover.
During authentication, the LDAP directory is searched for an entry that matches the provided user name. If a single unique match is found, a simple bind is attempted using the distinguished name (DN) of the entry plus the provided password.
These are the steps taken:
-
Generate a search filter by combining the attribute and filter in the configured
url
with the user-provided user name. - Search the directory using the generated filter. If the search does not return exactly one entry, deny access.
- Attempt to bind to the LDAP server using the DN of the entry retrieved from the search, and the user-provided password.
- If the bind is unsuccessful, deny access.
- If the bind is successful, build an identity using the configured attributes as the identity, email address, display name, and preferred user name.
The configured url
is an RFC 2255 URL, which specifies the LDAP host and search parameters to use. The syntax of the URL is:
ldap://host:port/basedn?attribute?scope?filter
For the above example:
URL Component | Description |
---|---|
|
For regular LDAP, use the string |
|
The name and port of the LDAP server. Defaults to |
| The DN of the branch of the directory where all searches should start from. At the very least, this must be the top of your directory tree, but it could also specify a subtree in the directory. |
|
The attribute to search for. Although RFC 2255 allows a comma-separated list of attributes, only the first attribute will be used, no matter how many are provided. If no attributes are provided, the default is to use |
|
The scope of the search. Can be either |
|
A valid LDAP search filter. If not provided, defaults to |
When doing searches, the attribute, filter, and provided user name are combined to create a search filter that looks like:
(&(<filter>)(<attribute>=<username>))
For example, consider a URL of:
ldap://ldap.example.com/o=Acme?cn?sub?(enabled=true)
When a client attempts to connect using a user name of bob
, the resulting search filter will be (&(enabled=true)(cn=bob))
.
If the LDAP directory requires authentication to search, specify a bindDN
and bindPassword
to use to perform the entry search.
Master Configuration Using LDAPPasswordIdentityProvider
oauthConfig: ... identityProviders: - name: "my_ldap_provider" 1 challenge: true 2 login: true 3 mappingMethod: claim 4 provider: apiVersion: v1 kind: LDAPPasswordIdentityProvider attributes: id: 5 - dn email: 6 - mail name: 7 - cn preferredUsername: 8 - uid bindDN: "" 9 bindPassword: "" 10 ca: my-ldap-ca-bundle.crt 11 insecure: false 12 url: "ldap://ldap.example.com/ou=users,dc=acme,dc=com?uid" 13
- 1
- This provider name is prefixed to the returned user ID to form an identity name.
- 2
- When true, unauthenticated token requests from non-web clients (like the CLI) are sent a
WWW-Authenticate
challenge header for this provider. - 3
- When true, unauthenticated token requests from web clients (like the web console) are redirected to a login page backed by this provider.
- 4
- Controls how mappings are established between this provider’s identities and user objects, as described above.
- 5
- List of attributes to use as the identity. First non-empty attribute is used. At least one attribute is required. If none of the listed attribute have a value, authentication fails.
- 6
- List of attributes to use as the email address. First non-empty attribute is used.
- 7
- List of attributes to use as the display name. First non-empty attribute is used.
- 8
- List of attributes to use as the preferred user name when provisioning a user for this identity. First non-empty attribute is used.
- 9
- Optional DN to use to bind during the search phase.
- 10
- Optional password to use to bind during the search phase. This value may also be provided in an environment variable, external file, or encrypted file.
- 11
- Certificate bundle to use to validate server certificates for the configured URL. If empty, system trusted roots are used. Only applies if insecure: false.
- 12
- When true, no TLS connection is made to the server. When false,
ldaps://
URLs connect using TLS, andldap://
URLs are upgraded to TLS. - 13
- An RFC 2255 URL which specifies the LDAP host and search parameters to use, as described above.
To whitelist users for an LDAP integration, use the lookup
mapping method. Before a login from LDAP would be allowed, a cluster administrator must create an identity and user object for each LDAP user.
11.3.8. Basic authentication (remote)
Basic Authentication is a generic backend integration mechanism that allows users to log in to OpenShift Container Platform with credentials validated against a remote identity provider.
Because basic authentication is generic, you can use this identity provider for advanced authentication configurations. You can configure LDAP failover or use the containerized basic authentication repository as a starting point for another advanced remote basic authentication configuration.
Basic authentication must use an HTTPS connection to the remote server to prevent potential snooping of the user ID and password and man-in-the-middle attacks.
With BasicAuthPasswordIdentityProvider
configured, users send their user name and password to OpenShift Container Platform, which then validates those credentials against a remote server by making a server-to-server request, passing the credentials as a Basic Auth header. This requires users to send their credentials to OpenShift Container Platform during login.
This only works for user name/password login mechanisms, and OpenShift Container Platform must be able to make network requests to the remote authentication server.
Set BasicAuthPasswordIdentityProvider in the identityProviders
stanza to validate user names and passwords against a remote server using a server-to-server Basic authentication request. User names and passwords are validated against a remote URL that is protected by Basic authentication and returns JSON.
A 401
response indicates failed authentication.
A non-200
status, or the presence of a non-empty "error" key, indicates an error:
{"error":"Error message"}
A 200
status with a sub
(subject) key indicates success:
{"sub":"userid"} 1
- 1
- The subject must be unique to the authenticated user and must not be able to be modified.
A successful response may optionally provide additional data, such as:
A display name using the
name
key. For example:{"sub":"userid", "name": "User Name", ...}
An email address using the
email
key. For example:{"sub":"userid", "email":"user@example.com", ...}
A preferred user name using the
preferred_username
key. This is useful when the unique, unchangeable subject is a database key or UID, and a more human-readable name exists. This is used as a hint when provisioning the OpenShift Container Platform user for the authenticated identity. For example:{"sub":"014fbff9a07c", "preferred_username":"bob", ...}
11.3.8.1. Configuring authentication on the master
If you have:
Already completed the installation of Openshift, then copy the /etc/origin/master/master-config.yaml file into a new directory; for example:
$ mkdir basicauthconfig; cp master-config.yaml basicauthconfig
Not yet installed OpenShift Container Platform, then start the OpenShift Container Platform API server, specifying the hostname of the (future) OpenShift Container Platform master and a directory to store the configuration file created by the start command:
$ openshift start master --public-master=<apiserver> --write-config=<directory>
For example:
$ openshift start master --public-master=https://myapiserver.com:8443 --write-config=basicauthconfig
NoteIf you are installing with Ansible, then you must add the
identityProvider
configuration to the Ansible playbook. If you use the following steps to modify your configuration manually after installing with Ansible, then you will lose any modifications whenever you re-run the install tool or upgrade.
Edit the new master-config.yaml file’s
identityProviders
stanza, and copy the exampleBasicAuthPasswordIdentityProvider
configuration and paste it to replace the existing stanza:oauthConfig: ... identityProviders: - name: my_remote_basic_auth_provider 1 challenge: true 2 login: true 3 mappingMethod: claim 4 provider: apiVersion: v1 kind: BasicAuthPasswordIdentityProvider url: https://www.example.com/remote-idp 5 ca: /path/to/ca.file 6 certFile: /path/to/client.crt 7 keyFile: /path/to/client.key 8
- 1
- This provider name is prefixed to the returned user ID to form an identity name.
- 2
- When true, unauthenticated token requests from non-web clients (like the CLI) are sent a
WWW-Authenticate
challenge header for this provider. - 3
- When true, unauthenticated token requests from web clients (like the web console) are redirected to a login page backed by this provider.
- 4
- Controls how mappings are established between this provider’s identities and user objects, as described above.
- 5
- URL accepting credentials in Basic authentication headers.
- 6
- Optional: Certificate bundle to use to validate server certificates for the configured URL.
- 7
- Optional: Client certificate to present when making requests to the configured URL.
- 8
- Key for the client certificate. Required if
certFile
is specified.
Make the following modifications to the
identityProviders
stanza:-
Set the provider
name
to something unique and relevant to your deployment. This name is prefixed to the returned user ID to form an identity name. -
If required, set
mappingMethod
to control how mappings are established between the provider’s identities and user objects. -
Specify the HTTPS
url
to use to connect to a server that accepts credentials in Basic authentication headers. -
Optionally, set the
ca
to the certificate bundle to use in order to validate server certificates for the configured URL, or leave it empty to use the system-trusted roots. -
Optionally, remove or set the
certFile
to the client certificate to present when making requests to the configured URL. -
If
certFile
is specified, then you must set thekeyFile
to the key for the client certificate.
- Save your changes and close the file.
Start the OpenShift Container Platform API server, specifying the configuration file you just modified:
$ openshift start master --config=<path/to/modified/config>/master-config.yaml
Once configured, any user logging in to the OpenShift Container Platform web console will be prompted to log in using their Basic authentication credentials.
11.3.8.2. Troubleshooting
The most common issue relates to network connectivity to the backend server. For simple debugging, run curl
commands on the master. To test for a successful login, replace the <user>
and <password>
in the following example command with valid credentials. To test an invalid login, replace them with false credentials.
curl --cacert /path/to/ca.crt --cert /path/to/client.crt --key /path/to/client.key -u <user>:<password> -v https://www.example.com/remote-idp
Successful responses
A 200
status with a sub
(subject) key indicates success:
{"sub":"userid"}
The subject must be unique to the authenticated user, and must not be able to be modified.
A successful response may optionally provide additional data, such as:
A display name using the
name
key:{"sub":"userid", "name": "User Name", ...}
An email address using the
email
key:{"sub":"userid", "email":"user@example.com", ...}
A preferred user name using the
preferred_username
key:{"sub":"014fbff9a07c", "preferred_username":"bob", ...}
The
preferred_username
key is useful when the unique, unchangeable subject is a database key or UID, and a more human-readable name exists. This is used as a hint when provisioning the OpenShift Container Platform user for the authenticated identity.
Failed responses
-
A
401
response indicates failed authentication. -
A non-
200
status or the presence of a non-empty "error" key indicates an error:{"error":"Error message"}
11.3.9. Request header
Set RequestHeaderIdentityProvider in the identityProviders
stanza to identify users from request header values, such as X-Remote-User
. It is typically used in combination with an authenticating proxy, which sets the request header value. This is similar to how the remote user plug-in in OpenShift Enterprise 2 allowed administrators to provide Kerberos, LDAP, and many other forms of enterprise authentication.
You can also use the request header identity provider for advanced configurations such as the community-supported SAML authentication. Note that SAML authentication is not supported by Red Hat.
For users to authenticate using this identity provider, they must access https://<master>/oauth/authorize
(and subpaths) via an authenticating proxy. To accomplish this, configure the OAuth server to redirect unauthenticated requests for OAuth tokens to the proxy endpoint that proxies to https://<master>/oauth/authorize
.
To redirect unauthenticated requests from clients expecting browser-based login flows:
-
Set the
login
parameter to true. -
Set the
provider.loginURL
parameter to the authenticating proxy URL that will authenticate interactive clients and then proxy the request tohttps://<master>/oauth/authorize
.
To redirect unauthenticated requests from clients expecting WWW-Authenticate
challenges:
-
Set the
challenge
parameter to true. -
Set the
provider.challengeURL
parameter to the authenticating proxy URL that will authenticate clients expectingWWW-Authenticate
challenges and then proxy the request tohttps://<master>/oauth/authorize
.
The provider.challengeURL
and provider.loginURL
parameters can include the following tokens in the query portion of the URL:
${url}
is replaced with the current URL, escaped to be safe in a query parameter.For example:
https://www.example.com/sso-login?then=${url}
${query}
is replaced with the current query string, unescaped.For example:
https://www.example.com/auth-proxy/oauth/authorize?${query}
If you expect unauthenticated requests to reach the OAuth server, a clientCA
parameter MUST be set for this identity provider, so that incoming requests are checked for a valid client certificate before the request’s headers are checked for a user name. Otherwise, any direct request to the OAuth server can impersonate any identity from this provider, merely by setting a request header.
Master Configuration Using RequestHeaderIdentityProvider
oauthConfig: ... identityProviders: - name: my_request_header_provider 1 challenge: true 2 login: true 3 mappingMethod: claim 4 provider: apiVersion: v1 kind: RequestHeaderIdentityProvider challengeURL: "https://www.example.com/challenging-proxy/oauth/authorize?${query}" 5 loginURL: "https://www.example.com/login-proxy/oauth/authorize?${query}" 6 clientCA: /path/to/client-ca.file 7 clientCommonNames: 8 - my-auth-proxy headers: 9 - X-Remote-User - SSO-User emailHeaders: 10 - X-Remote-User-Email nameHeaders: 11 - X-Remote-User-Display-Name preferredUsernameHeaders: 12 - X-Remote-User-Login
- 1
- This provider name is prefixed to the user name in the request header to form an identity name.
- 2
- RequestHeaderIdentityProvider can only respond to clients that request
WWW-Authenticate
challenges by redirecting to a configuredchallengeURL
. The configured URL should respond with aWWW-Authenticate
challenge. - 3
- RequestHeaderIdentityProvider can only respond to clients requesting a login flow by redirecting to a configured
loginURL
. The configured URL should respond with a login flow. - 4
- Controls how mappings are established between this provider’s identities and user objects, as described above.
- 5
- Optional: URL to redirect unauthenticated
/oauth/authorize
requests to, that will authenticate browser-based clients and then proxy their request tohttps://<master>/oauth/authorize
. The URL that proxies tohttps://<master>/oauth/authorize
must end with/authorize
(with no trailing slash), and also proxy subpaths, in order for OAuth approval flows to work properly.${url}
is replaced with the current URL, escaped to be safe in a query parameter.${query}
is replaced with the current query string. - 6
- Optional: URL to redirect unauthenticated
/oauth/authorize
requests to, that will authenticate clients which expectWWW-Authenticate
challenges, and then proxy them tohttps://<master>/oauth/authorize
.${url}
is replaced with the current URL, escaped to be safe in a query parameter.${query}
is replaced with the current query string. - 7
- Optional: PEM-encoded certificate bundle. If set, a valid client certificate must be presented and validated against the certificate authorities in the specified file before the request headers are checked for user names.
- 8
- Optional: list of common names (
cn
). If set, a valid client certificate with a Common Name (cn
) in the specified list must be presented before the request headers are checked for user names. If empty, any Common Name is allowed. Can only be used in combination withclientCA
. - 9
- Header names to check, in order, for the user identity. The first header containing a value is used as the identity. Required, case-insensitive.
- 10
- Header names to check, in order, for an email address. The first header containing a value is used as the email address. Optional, case-insensitive.
- 11
- Header names to check, in order, for a display name. The first header containing a value is used as the display name. Optional, case-insensitive.
- 12
- Header names to check, in order, for a preferred user name, if different than the immutable identity determined from the headers specified in
headers
. The first header containing a value is used as the preferred user name when provisioning. Optional, case-insensitive.
Apache authentication using Request header
This example configures an authentication proxy on the same host as the master. Having the proxy and master on the same host is merely a convenience and may not be suitable for your environment. For example, if you were already running a router on the master, port 443 would not be available.
It is also important to note that while this reference configuration uses Apache’s mod_auth_gssapi, it is by no means required and other proxies can easily be used if the following requirements are met:
-
Block the
X-Remote-User
header from client requests to prevent spoofing. - Enforce client certificate authentication in the RequestHeaderIdentityProvider configuration.
-
Require the
X-Csrf-Token
header be set for all authentication request using the challenge flow. -
Only the
/oauth/authorize
endpoint and its subpaths should be proxied, and redirects should not be rewritten to allow the backend server to send the client to the correct location. The URL that proxies to
https://<master>/oauth/authorize
must end with/authorize
(with no trailing slash). For example:-
https://proxy.example.com/login-proxy/authorize?…
→https://<master>/oauth/authorize?…
-
Subpaths of the URL that proxies to
https://<master>/oauth/authorize
must proxy to subpaths ofhttps://<master>/oauth/authorize
. For example:-
https://proxy.example.com/login-proxy/authorize/approve?…
→https://<master>/oauth/authorize/approve?…
-
Installing the prerequisites
Obtain the mod_auth_gssapi module from the Optional channel. Install the following packages:
# yum install -y httpd mod_ssl mod_session apr-util-openssl mod_auth_gssapi
Generate a CA for validating requests that submit the trusted header. This CA should be used as the file name for
clientCA
in the master’s identity provider configuration.# oc adm ca create-signer-cert \ --cert='/etc/origin/master/proxyca.crt' \ --key='/etc/origin/master/proxyca.key' \ --name='openshift-proxy-signer@1432232228' \ --serial='/etc/origin/master/proxyca.serial.txt'
NoteThe
oc adm ca create-signer-cert
command generates a certificate that is valid for five years. This can be altered with the--expire-days
option, but for security reasons, it is recommended to not make it greater than this value.Run
oc adm
commands only from the first master listed in the Ansible host inventory file, by default /etc/ansible/hosts.Generate a client certificate for the proxy. This can be done using any x509 certificate tooling. For convenience, the
oc adm
CLI can be used:# oc adm create-api-client-config \ --certificate-authority='/etc/origin/master/proxyca.crt' \ --client-dir='/etc/origin/master/proxy' \ --signer-cert='/etc/origin/master/proxyca.crt' \ --signer-key='/etc/origin/master/proxyca.key' \ --signer-serial='/etc/origin/master/proxyca.serial.txt' \ --user='system:proxy' 1 # pushd /etc/origin/master # cp master.server.crt /etc/pki/tls/certs/localhost.crt 2 # cp master.server.key /etc/pki/tls/private/localhost.key # cp ca.crt /etc/pki/CA/certs/ca.crt # cat proxy/system\:proxy.crt \ proxy/system\:proxy.key > \ /etc/pki/tls/certs/authproxy.pem # popd
- 1
- The user name can be anything, however it is useful to give it a descriptive name as it will appear in logs.
- 2
- When running the authentication proxy on a different host name than the master, it is important to generate a certificate that matches the host name instead of using the default master certificate as shown above. The value for
masterPublicURL
in the /etc/origin/master/master-config.yaml file must be included in theX509v3 Subject Alternative Name
in the certificate that is specified forSSLCertificateFile
. If a new certificate needs to be created, theoc adm ca create-server-cert
command can be used.
NoteThe
oc adm create-api-client-config
command generates a certificate that is valid for two years. This can be altered with the--expire-days
option, but for security reasons, it is recommended to not make it greater than this value. Runoc adm
commands only from the first master listed in the Ansible host inventory file, by default /etc/ansible/hosts.
Configuring Apache
This proxy does not need to reside on the same host as the master. It uses a client certificate to connect to the master, which is configured to trust the X-Remote-User
header.
-
Create the certificate for the Apache configuration. The certificate that you specify as the
SSLProxyMachineCertificateFile
parameter value is the proxy’s client cert that is used to authenticate the proxy to the server. It must useTLS Web Client Authentication
as the extended key type. Create the Apache configuration. Use the following template to provide your required settings and values:
ImportantCarefully review the template and customize its contents to fit your environment.
LoadModule request_module modules/mod_request.so LoadModule auth_gssapi_module modules/mod_auth_gssapi.so # Some Apache configurations might require these modules. # LoadModule auth_form_module modules/mod_auth_form.so # LoadModule session_module modules/mod_session.so # Nothing needs to be served over HTTP. This virtual host simply redirects to # HTTPS. <VirtualHost *:80> DocumentRoot /var/www/html RewriteEngine On RewriteRule ^(.*)$ https://%{HTTP_HOST}$1 [R,L] </VirtualHost> <VirtualHost *:443> # This needs to match the certificates you generated. See the CN and X509v3 # Subject Alternative Name in the output of: # openssl x509 -text -in /etc/pki/tls/certs/localhost.crt ServerName www.example.com DocumentRoot /var/www/html SSLEngine on SSLCertificateFile /etc/pki/tls/certs/localhost.crt SSLCertificateKeyFile /etc/pki/tls/private/localhost.key SSLCACertificateFile /etc/pki/CA/certs/ca.crt SSLProxyEngine on SSLProxyCACertificateFile /etc/pki/CA/certs/ca.crt # It's critical to enforce client certificates on the Master. Otherwise # requests could spoof the X-Remote-User header by accessing the Master's # /oauth/authorize endpoint directly. SSLProxyMachineCertificateFile /etc/pki/tls/certs/authproxy.pem # Send all requests to the console RewriteEngine On RewriteRule ^/console(.*)$ https://%{HTTP_HOST}:8443/console$1 [R,L] # In order to using the challenging-proxy an X-Csrf-Token must be present. RewriteCond %{REQUEST_URI} ^/challenging-proxy RewriteCond %{HTTP:X-Csrf-Token} ^$ [NC] RewriteRule ^.* - [F,L] <Location /challenging-proxy/oauth/authorize> # Insert your backend server name/ip here. ProxyPass https://[MASTER]:8443/oauth/authorize AuthName "SSO Login" # For Kerberos AuthType GSSAPI Require valid-user RequestHeader set X-Remote-User %{REMOTE_USER}s GssapiCredStore keytab:/etc/httpd/protected/auth-proxy.keytab # Enable the following if you want to allow users to fallback # to password based authntication when they do not have a client # configured to perform kerberos authentication GssapiBasicAuth On # For ldap: # AuthBasicProvider ldap # AuthLDAPURL "ldap://ldap.example.com:389/ou=People,dc=my-domain,dc=com?uid?sub?(objectClass=*)" # It's possible to remove the mod_auth_gssapi usage and replace it with # something like mod_auth_mellon, which only supports the login flow. </Location> <Location /login-proxy/oauth/authorize> # Insert your backend server name/ip here. ProxyPass https://[MASTER]:8443/oauth/authorize AuthName "SSO Login" AuthType GSSAPI Require valid-user RequestHeader set X-Remote-User %{REMOTE_USER}s env=REMOTE_USER GssapiCredStore keytab:/etc/httpd/protected/auth-proxy.keytab # Enable the following if you want to allow users to fallback # to password based authntication when they do not have a client # configured to perform kerberos authentication GssapiBasicAuth On ErrorDocument 401 /login.html </Location> </VirtualHost> RequestHeader unset X-Remote-User
Configuring the master
The identityProviders
stanza in the /etc/origin/master/master-config.yaml file must be updated as well:
identityProviders: - name: requestheader challenge: true login: true provider: apiVersion: v1 kind: RequestHeaderIdentityProvider challengeURL: "https://[MASTER]/challenging-proxy/oauth/authorize?${query}" loginURL: "https://[MASTER]/login-proxy/oauth/authorize?${query}" clientCA: /etc/origin/master/proxyca.crt headers: - X-Remote-User
Restarting services
Finally, restart the following services:
# systemctl restart httpd # master-restart api # master-restart controllers
Verifying the configuration
Test by bypassing the proxy. You should be able to request a token if you supply the correct client certificate and header:
# curl -L -k -H "X-Remote-User: joe" \ --cert /etc/pki/tls/certs/authproxy.pem \ https://[MASTER]:8443/oauth/token/request
If you do not supply the client certificate, the request should be denied:
# curl -L -k -H "X-Remote-User: joe" \ https://[MASTER]:8443/oauth/token/request
This should show a redirect to the configured
challengeURL
(with additional query parameters):# curl -k -v -H 'X-Csrf-Token: 1' \ '<masterPublicURL>/oauth/authorize?client_id=openshift-challenging-client&response_type=token'
This should show a 401 response with a
WWW-Authenticate
basic challenge, a negotiate challenge, or both challenges:# curl -k -v -H 'X-Csrf-Token: 1' \ '<redirected challengeURL from step 3 +query>'
Test logging into the
oc
command line with and without using a Kerberos ticket:If you generated a Kerberos ticket by using
kinit
, destroy it:# kdestroy -c cache_name 1
- 1
- Provide the name of your Kerberos cache.
Log in to the
oc
command line by using your Kerberos credentials:# oc login
Enter your Kerberos user name and password at the prompt.
Log out of the
oc
command line:# oc logout
Use your Kerberos credentials to get a ticket:
# kinit
Enter your Kerberos user name and password at the prompt.
Confirm that you can log in to the
oc
command line:# oc login
If your configuration is correct, you are logged in without entering separate credentials.
11.3.10. GitHub
GitHub uses OAuth, and you can integrate your OpenShift Container Platform cluster to use that OAuth authentication. OAuth basically facilitates a token exchange flow.
Configuring GitHub authentication allows users to log in to OpenShift Container Platform with their GitHub credentials. To prevent anyone with any GitHub user ID from logging in to your OpenShift Container Platform cluster, you can restrict access to only those in specific GitHub organizations.
11.3.10.1. Registering the application on GitHub
- On GitHub, click Settings → Developer settings → Register a new application to navigate to the page to Register a new OAuth application.
-
Type an application name. For example:
My OpenShift Install
-
Type a homepage URL. For example:
https://myapiserver.com:8443
- Optionally, type an application description.
Type the authorization callback URL, where the end of the URL contains the identity provider name (defined in the
identityProviders
stanza of the master configuration file, which you configure in the next section of this topic):<apiserver>/oauth2callback/<identityProviderName>
For example:
https://myapiserver.com:8443/oauth2callback/github/
- Click Register application. GitHub provides a Client ID and a Client Secret. Keep this window open so you can copy these values and paste them into the master configuration file.
11.3.10.2. Configuring authentication on the master
If you have:
Already completed the installation of Openshift, then copy the /etc/origin/master/master-config.yaml file into a new directory; for example:
$ cd /etc/origin/master $ mkdir githubconfig; cp master-config.yaml githubconfig
Not yet installed OpenShift Container Platform, then start the OpenShift Container Platform API server, specifying the hostname of the (future) OpenShift Container Platform master and a directory to store the configuration file created by the start command:
$ openshift start master --public-master=<apiserver> --write-config=<directory>
For example:
$ openshift start master --public-master=https://myapiserver.com:8443 --write-config=githubconfig
NoteIf you are installing with Ansible, then you must add the
identityProvider
configuration to the Ansible playbook. If you use the following steps to modify your configuration manually after installing with Ansible, then you will lose any modifications whenever you re-run the install tool or upgrade.NoteUsing
openshift start master
on its own would auto-detect host names, but GitHub must be able to redirect to the exact host name that you specified when registering the application. For this reason, you cannot auto-detect the ID because it might redirect to the wrong address. Instead, you must specify the hostname that web browsers use to interact with your OpenShift Container Platform cluster.
Edit the new master-config.yaml file’s
identityProviders
stanza, and copy the exampleGitHubIdentityProvider
configuration and paste it to replace the existing stanza:oauthConfig: ... identityProviders: - name: github 1 challenge: false 2 login: true 3 mappingMethod: claim 4 provider: apiVersion: v1 kind: GitHubIdentityProvider clientID: ... 5 clientSecret: ... 6 organizations: 7 - myorganization1 - myorganization2 teams: 8 - myorganization1/team-a - myorganization2/team-b
- 1
- This provider name is prefixed to the GitHub numeric user ID to form an identity name. It is also used to build the callback URL.
- 2
- GitHubIdentityProvider cannot be used to send
WWW-Authenticate
challenges. - 3
- When true, unauthenticated token requests from web clients (like the web console) are redirected to GitHub to log in.
- 4
- Controls how mappings are established between this provider’s identities and user objects, as described above.
- 5
- The client ID of a registered GitHub OAuth application. The application must be configured with a callback URL of
<master>/oauth2callback/<identityProviderName>
. - 6
- The client secret issued by GitHub. This value may also be provided in an environment variable, external file, or encrypted file.
- 7
- Optional list of organizations. If specified, only GitHub users that are members of at least one of the listed organizations will be allowed to log in. If the GitHub OAuth application configured in clientID is not owned by the organization, an organization owner must grant third-party access in order to use this option. This can be done during the first GitHub login by the organization’s administrator, or from the GitHub organization settings. Cannot be used in combination with the
teams
field. - 8
- Optional list of teams. If specified, only GitHub users that are members of at least one of the listed teams will be allowed to log in. If the GitHub OAuth application configured in clientID is not owned by the team’s organization, an organization owner must grant third-party access in order to use this option. This can be done during the first GitHub login by the organization’s administrator, or from the GitHub organization settings. Cannot be used in combination with the
organizations
field.
Make the following modifications to the
identityProviders
stanza:Change the provider
name
to match the callback URL you configured on GitHub.For example, if you defined the callback URL as
https://myapiserver.com:8443/oauth2callback/github/
then thename
must begithub
.-
Change
clientID
to the Client ID from GitHub that you registered previously. -
Change
clientSecret
to the Client Secret from GitHub that you registered previously. -
Change
organizations
orteams
to include a list of one or more GitHub organizations or teams to which a user must have membership in order to authenticate. If specified, only GitHub users that are members of at least one of the listed organizations or teams will be allowed to log in. If this is not specified, then any person with a valid GitHub account can log in.
- Save your changes and close the file.
Start the OpenShift Container Platform API server, specifying the configuration file you just modified:
$ openshift start master --config=<path/to/modified/config>/master-config.yaml
Once configured, any user logging in to the OpenShift Container Platform web console will be prompted to log in using their GitHub credentials. On their first login, the user must click authorize application to permit GitHub to use their user name, password, and organization membership with OpenShift Container Platform. The user is then redirected back to the web console.
11.3.10.3. Creating users with GitHub authentication
You do not create users in OpenShift Container Platform when integrating with an external authentication provider, such as, in this case, GitHub. GitHub is the system of record, meaning that users are defined by GitHub, and any user belonging to a specified organization can log in.
To add a user to OpenShift Container Platform, you must add that user to an approved organization on GitHub, and if required create a new GitHub account for the user.
11.3.10.4. Verifying users
Once one or more users have logged in, you can run oc get users
to view a list of users and verify that users were created successfully:
Example 11.6. Output of oc get users
command
$ oc get users
NAME UID FULL NAME IDENTITIES
bobsmith 433b5641-066f-11e6-a6d8-acfc32c1ca87 Bob Smith github:873654 1
- 1
- Identities in OpenShift Container Platform are comprised of the identity provider name and GitHub’s internal numeric user ID. This way, if a user changes their GitHub user name or e-mail they can still log in to OpenShift Container Platform instead of relying on the credentials attached to the GitHub account. This creates a stable login.
From here, you might want to learn how to control user roles.
11.3.11. GitLab
Set GitLabIdentityProvider in the identityProviders
stanza to use GitLab.com or any other GitLab instance as an identity provider, using the OAuth integration. The OAuth provider feature requires GitLab version 7.7.0 or higher.
Using GitLab as an identity provider requires users to get a token using <master>/oauth/token/request
to use with command-line tools.
Example 11.7. Master Configuration Using GitLabIdentityProvider
oauthConfig: ... identityProviders: - name: gitlab 1 challenge: true 2 login: true 3 mappingMethod: claim 4 provider: apiVersion: v1 kind: GitLabIdentityProvider url: ... 5 clientID: ... 6 clientSecret: ... 7 ca: ... 8
- 1
- This provider name is prefixed to the GitLab numeric user ID to form an identity name. It is also used to build the callback URL.
- 2
- When true, unauthenticated token requests from non-web clients (like the CLI) are sent a
WWW-Authenticate
challenge header for this provider. This uses the Resource Owner Password Credentials grant flow to obtain an access token from GitLab. - 3
- When true, unauthenticated token requests from web clients (like the web console) are redirected to GitLab to log in.
- 4
- Controls how mappings are established between this provider’s identities and user objects, as described above.
- 5
- The host URL of a GitLab OAuth provider. This could either be
https://gitlab.com/
or any other self hosted instance of GitLab. - 6
- The client ID of a registered GitLab OAuth application. The application must be configured with a callback URL of
<master>/oauth2callback/<identityProviderName>
. - 7
- The client secret issued by GitLab. This value may also be provided in an environment variable, external file, or encrypted file.
- 8
- CA is an optional trusted certificate authority bundle to use when making requests to the GitLab instance. If empty, the default system roots are used.
11.3.12. Google
Set GoogleIdentityProvider in the identityProviders
stanza to use Google as an identity provider, using Google’s OpenID Connect integration.
Using Google as an identity provider requires users to get a token using <master>/oauth/token/request
to use with command-line tools.
Using Google as an identity provider allows any Google user to authenticate to your server. You can limit authentication to members of a specific hosted domain with the hostedDomain
configuration attribute, as shown below.
Example 11.8. Master Configuration Using GoogleIdentityProvider
oauthConfig: ... identityProviders: - name: google 1 challenge: false 2 login: true 3 mappingMethod: claim 4 provider: apiVersion: v1 kind: GoogleIdentityProvider clientID: ... 5 clientSecret: ... 6 hostedDomain: "" 7
- 1
- This provider name is prefixed to the Google numeric user ID to form an identity name. It is also used to build the redirect URL.
- 2
- GoogleIdentityProvider cannot be used to send
WWW-Authenticate
challenges. - 3
- When true, unauthenticated token requests from web clients (like the web console) are redirected to Google to log in.
- 4
- Controls how mappings are established between this provider’s identities and user objects, as described above.
- 5
- The client ID of a registered Google project. The project must be configured with a redirect URI of
<master>/oauth2callback/<identityProviderName>
. - 6
- The client secret issued by Google. This value may also be provided in an environment variable, external file, or encrypted file.
- 7
- Optional hosted domain to restrict sign-in accounts to. If empty, any Google account is allowed to authenticate.
11.3.13. OpenID connect
Set OpenIDIdentityProvider in the identityProviders
stanza to integrate with an OpenID Connect identity provider using an Authorization Code Flow.
You can configure Red Hat Single Sign-On as an OpenID Connect identity provider for OpenShift Container Platform.
ID Token and UserInfo decryptions are not supported.
By default, the openid scope is requested. If required, extra scopes can be specified in the extraScopes
field.
Claims are read from the JWT id_token
returned from the OpenID identity provider and, if specified, from the JSON returned by the UserInfo
URL.
At least one claim must be configured to use as the user’s identity. The standard identity claim is sub
.
You can also indicate which claims to use as the user’s preferred user name, display name, and email address. If multiple claims are specified, the first one with a non-empty value is used. The standard claims are:
| Short for "subject identifier." The remote identity for the user at the issuer. |
|
The preferred user name when provisioning a user. A shorthand name that the user wants to be referred to as, such as |
| Email address. |
| Display name. |
See the OpenID claims documentation for more information.
Using an OpenID Connect identity provider requires users to get a token using <master>/oauth/token/request
to use with command-line tools.
Standard Master Configuration Using OpenIDIdentityProvider
oauthConfig: ... identityProviders: - name: my_openid_connect 1 challenge: true 2 login: true 3 mappingMethod: claim 4 provider: apiVersion: v1 kind: OpenIDIdentityProvider clientID: ... 5 clientSecret: ... 6 claims: id: 7 - sub preferredUsername: - preferred_username name: - name email: - email urls: authorize: https://myidp.example.com/oauth2/authorize 8 token: https://myidp.example.com/oauth2/token 9
- 1
- This provider name is prefixed to the value of the identity claim to form an identity name. It is also used to build the redirect URL.
- 2
- When true, unauthenticated token requests from non-web clients (like the CLI) are sent a
WWW-Authenticate
challenge header for this provider. This requires the OpenID provider to support the Resource Owner Password Credentials grant flow. - 3
- When true, unauthenticated token requests from web clients (like the web console) are redirected to the authorize URL to log in.
- 4
- Controls how mappings are established between this provider’s identities and user objects, as described above.
- 5
- The client ID of a client registered with the OpenID provider. The client must be allowed to redirect to
<master>/oauth2callback/<identityProviderName>
. - 6
- The client secret. This value may also be provided in an environment variable, external file, or encrypted file.
- 7
- List of claims to use as the identity. First non-empty claim is used. At least one claim is required. If none of the listed claims have a value, authentication fails. For example, this uses the value of the
sub
claim in the returnedid_token
as the user’s identity. - 8
- Authorization Endpoint described in the OpenID spec. Must use
https
. - 9
- Token Endpoint described in the OpenID spec. Must use
https
.
A custom certificate bundle, extra scopes, extra authorization request parameters, and userInfo
URL can also be specified:
Example 11.9. Full Master Configuration Using OpenIDIdentityProvider
oauthConfig: ... identityProviders: - name: my_openid_connect challenge: false login: true mappingMethod: claim provider: apiVersion: v1 kind: OpenIDIdentityProvider clientID: ... clientSecret: ... ca: my-openid-ca-bundle.crt 1 extraScopes: 2 - email - profile extraAuthorizeParameters: 3 include_granted_scopes: "true" claims: id: 4 - custom_id_claim - sub preferredUsername: 5 - preferred_username - email name: 6 - nickname - given_name - name email: 7 - custom_email_claim - email urls: authorize: https://myidp.example.com/oauth2/authorize token: https://myidp.example.com/oauth2/token userInfo: https://myidp.example.com/oauth2/userinfo 8
- 1
- Certificate bundle to use to validate server certificates for the configured URLs. If empty, system trusted roots are used.
- 2
- Optional list of scopes to request, in addition to the openid scope, during the authorization token request.
- 3
- Optional map of extra parameters to add to the authorization token request.
- 4
- List of claims to use as the identity. First non-empty claim is used. At least one claim is required. If none of the listed claims have a value, authentication fails.
- 5
- List of claims to use as the preferred user name when provisioning a user for this identity. First non-empty claim is used.
- 6
- List of claims to use as the display name. First non-empty claim is used.
- 7
- List of claims to use as the email address. First non-empty claim is used.
- 8
- UserInfo Endpoint described in the OpenID spec. Must use
https
.
11.4. Token options
The OAuth server generates two kinds of tokens:
Access tokens | Longer-lived tokens that grant access to the API. |
Authorize codes | Short-lived tokens whose only use is to be exchanged for an access token. |
Use the tokenConfig
stanza to set token options:
Example 11.10. Master Configuration Token Options
oauthConfig: ... tokenConfig: accessTokenMaxAgeSeconds: 86400 1 authorizeTokenMaxAgeSeconds: 300 2
You can override the accessTokenMaxAgeSeconds
value through an OAuthClient
object definition.
11.5. Grant options
When the OAuth server receives token requests for a client to which the user has not previously granted permission, the action that the OAuth server takes is dependent on the OAuth client’s grant strategy.
When the OAuth client requesting token does not provide its own grant strategy, the server-wide default strategy is used. To configure the default strategy, set the method
value in the grantConfig
stanza. Valid values for method
are:
| Auto-approve the grant and retry the request. |
| Prompt the user to approve or deny the grant. |
| Auto-deny the grant and return a failure error to the client. |
Example 11.11. Master Configuration Grant Options
oauthConfig: ... grantConfig: method: auto
11.6. Session options
The OAuth server uses a signed and encrypted cookie-based session during login and redirect flows.
Use the sessionConfig
stanza to set session options:
Example 11.12. Master Configuration Session Options
oauthConfig: ... sessionConfig: sessionMaxAgeSeconds: 300 1 sessionName: ssn 2 sessionSecretsFile: "..." 3
- 1
- Controls the maximum age of a session; sessions auto-expire once a token request is complete. If auto-grant is not enabled, sessions must last as long as the user is expected to take to approve or reject a client authorization request.
- 2
- Name of the cookie used to store the session.
- 3
- File name containing serialized
SessionSecrets
object. If empty, a random signing and encryption secret is generated at each server start.
If no sessionSecretsFile
is specified, a random signing and encryption secret is generated at each start of the master server. This means that any logins in progress will have their sessions invalidated if the master is restarted. It also means they will not be able to decode sessions generated by one of the other masters.
To specify the signing and encryption secret to use, specify a sessionSecretsFile
. This allows you separate secret values from the configuration file and keep the configuration file distributable, for example for debugging purposes.
Multiple secrets can be specified in the sessionSecretsFile
to enable rotation. New sessions are signed and encrypted using the first secret in the list. Existing sessions are decrypted and authenticated by each secret until one succeeds.
Example 11.13. Session Secret Configuration:
apiVersion: v1 kind: SessionSecrets secrets: 1 - authentication: "..." 2 encryption: "..." 3 - authentication: "..." encryption: "..." ...
- 1
- List of secrets used to authenticate and encrypt cookie sessions. At least one secret must be specified. Each secret must set an authentication and encryption secret.
- 2
- Signing secret, used to authenticate sessions using HMAC. Recommended to use a secret with 32 or 64 bytes.
- 3
- Encrypting secret, used to encrypt sessions. Must be 16, 24, or 32 characters long, to select AES-128, AES-192, or AES-256.
11.7. Preventing CLI version mismatch with user agent
OpenShift Container Platform implements a user agent that can be used to prevent an application developer’s CLI accessing the OpenShift Container Platform API.
User agents for the OpenShift Container Platform CLI are constructed from a set of values within OpenShift Container Platform:
<command>/<version> (<platform>/<architecture>) <client>/<git_commit>
So, for example, when:
-
<command> =
oc
-
<version> = The client version. For example,
v3.3.0
. Requests made against the Kubernetes API at/api
receive the Kubernetes version, while requests made against the OpenShift Container Platform API at/oapi
receive the OpenShift Container Platform version (as specified byoc version
) -
<platform> =
linux
-
<architecture> =
amd64
-
<client> =
openshift
, orkubernetes
depending on if the request is made against the Kubernetes API at/api
, or the OpenShift Container Platform API at/oapi
-
<git_commit> = The Git commit of the client version (for example,
f034127
)
the user agent will be:
oc/v3.3.0 (linux/amd64) openshift/f034127
As an OpenShift Container Platform administrator, you can prevent clients from accessing the API with the userAgentMatching
configuration setting of a master configuration. So, if a client is using a particular library or binary, they will be prevented from accessing the API.
The following user agent example denies the Kubernetes 1.2 client binary, OpenShift Origin 1.1.3 binary, and the POST and PUT httpVerbs:
policyConfig: userAgentMatchingConfig: defaultRejectionMessage: "Your client is too old. Go to https://example.org to update it." deniedClients: - regex: '\w+/v(?:(?:1\.1\.1)|(?:1\.0\.1)) \(.+/.+\) openshift/\w{7}' - regex: '\w+/v(?:1\.1\.3) \(.+/.+\) openshift/\w{7}' httpVerbs: - POST - PUT - regex: '\w+/v1\.2\.0 \(.+/.+\) kubernetes/\w{7}' httpVerbs: - POST - PUT requiredClients: null
Administrators can also deny clients that do not exactly match the expected clients:
policyConfig: userAgentMatchingConfig: defaultRejectionMessage: "Your client is too old. Go to https://example.org to update it." deniedClients: [] requiredClients: - regex: '\w+/v1\.1\.3 \(.+/.+\) openshift/\w{7}' - regex: '\w+/v1\.2\.0 \(.+/.+\) kubernetes/\w{7}' httpVerbs: - POST - PUT
When the client’s user agent mismatches the configuration, errors occur. To ensure that mutating requests match, enforce a whitelist. Rules are mapped to specific verbs, so you can ban mutating requests while allowing non-mutating requests.
Chapter 12. Syncing groups With LDAP
12.1. Overview
As an OpenShift Container Platform administrator, you can use groups to manage users, change their permissions, and enhance collaboration. Your organization may have already created user groups and stored them in an LDAP server. OpenShift Container Platform can sync those LDAP records with internal OpenShift Container Platform records, enabling you to manage your groups in one place. OpenShift Container Platform currently supports group sync with LDAP servers using three common schemas for defining group membership: RFC 2307, Active Directory, and augmented Active Directory.
You must have cluster-admin
privileges to sync groups.
12.2. Configuring LDAP sync
Before you can run LDAP sync, you need a sync configuration file. This file contains LDAP client configuration details:
- Configuration for connecting to your LDAP server.
- Sync configuration options that are dependent on the schema used in your LDAP server.
A sync configuration file can also contain an administrator-defined list of name mappings that maps OpenShift Container Platform group names to groups in your LDAP server.
12.2.1. LDAP client configuration
LDAP client configuration
url: ldap://10.0.0.0:389 1 bindDN: cn=admin,dc=example,dc=com 2 bindPassword: password 3 insecure: false 4 ca: my-ldap-ca-bundle.crt 5
- 1
- The connection protocol, IP address of the LDAP server hosting your database, and the port to connect to, formatted as
scheme://host:port
. - 2
- Optional distinguished name (DN) to use as the Bind DN. OpenShift Container Platform uses this if elevated privilege is required to retrieve entries for the sync operation.
- 3
- Optional password to use to bind. OpenShift Container Platform uses this if elevated privilege is necessary to retrieve entries for the sync operation. This value may also be provided in an environment variable, external file, or encrypted file.
- 4
- When
false
, secure LDAP (ldaps://
) URLs connect using TLS, and insecure LDAP (ldap://
) URLs are upgraded to TLS. Whentrue
, no TLS connection is made to the server unless you specify aldaps://
URL, in which case URLs still attempt to connect by using TLS. - 5
- The certificate bundle to use for validating server certificates for the configured URL. If empty, OpenShift Container Platform uses system-trusted roots. This only applies if
insecure
is set tofalse
.
12.2.2. LDAP query definition
Sync configurations consist of LDAP query definitions for the entries that are required for synchronization. The specific definition of an LDAP query depends on the schema used to store membership information in the LDAP server.
LDAP query definition
baseDN: ou=users,dc=example,dc=com 1 scope: sub 2 derefAliases: never 3 timeout: 0 4 filter: (objectClass=inetOrgPerson) 5 pageSize: 0 6
- 1
- The distinguished name (DN) of the branch of the directory where all searches will start from. It is required that you specify the top of your directory tree, but you can also specify a subtree in the directory.
- 2
- The scope of the search. Valid values are
base
,one
, orsub
. If this is left undefined, then a scope ofsub
is assumed. Descriptions of the scope options can be found in the table below. - 3
- The behavior of the search with respect to aliases in the LDAP tree. Valid values are
never
,search
,base
, oralways
. If this is left undefined, then the default is toalways
dereference aliases. Descriptions of the dereferencing behaviors can be found in the table below. - 4
- The time limit allowed for the search by the client, in seconds. A value of 0 imposes no client-side limit.
- 5
- A valid LDAP search filter. If this is left undefined, then the default is
(objectClass=*)
. - 6
- The optional maximum size of response pages from the server, measured in LDAP entries. If set to 0, no size restrictions will be made on pages of responses. Setting paging sizes is necessary when queries return more entries than the client or server allow by default.
LDAP Search Scope | Description |
---|---|
| Only consider the object specified by the base DN given for the query. |
| Consider all of the objects on the same level in the tree as the base DN for the query. |
| Consider the entire subtree rooted at the base DN given for the query. |
Dereferencing Behavior | Description |
---|---|
| Never dereference any aliases found in the LDAP tree. |
| Only dereference aliases found while searching. |
| Only dereference aliases while finding the base object. |
| Always dereference all aliases found in the LDAP tree. |
12.2.3. User-defined name mapping
A user-defined name mapping explicitly maps the names of OpenShift Container Platform groups to unique identifiers that find groups on your LDAP server. The mapping uses normal YAML syntax. A user-defined mapping can contain an entry for every group in your LDAP server or only a subset of those groups. If there are groups on the LDAP server that do not have a user-defined name mapping, the default behavior during sync is to use the attribute specified as the OpenShift Container Platform group’s name.
User-defined name mapping
groupUIDNameMapping: "cn=group1,ou=groups,dc=example,dc=com": firstgroup "cn=group2,ou=groups,dc=example,dc=com": secondgroup "cn=group3,ou=groups,dc=example,dc=com": thirdgroup
12.3. Running LDAP sync
Once you have created a sync configuration file, then sync can begin. OpenShift Container Platform allows administrators to perform a number of different sync types with the same server.
By default, all group synchronization or pruning operations are dry-run, so you must set the --confirm
flag on the sync-groups
command in order to make changes to OpenShift Container Platform Group records.
To sync all groups from the LDAP server with OpenShift Container Platform:
$ oc adm groups sync --sync-config=config.yaml --confirm
To sync all groups already in OpenShift Container Platform that correspond to groups in the LDAP server specified in the configuration file:
$ oc adm groups sync --type=openshift --sync-config=config.yaml --confirm
To sync a subset of LDAP groups with OpenShift Container Platform, you can use whitelist files, blacklist files, or both:
You can use any combination of blacklist files, whitelist files, or whitelist literals. Whitelist and blacklist files must contain one unique group identifier per line, and you can include whitelist literals directly in the command itself. These guidelines apply to groups found on LDAP servers as well as groups already present in OpenShift Container Platform.
$ oc adm groups sync --whitelist=<whitelist_file> \ --sync-config=config.yaml \ --confirm $ oc adm groups sync --blacklist=<blacklist_file> \ --sync-config=config.yaml \ --confirm $ oc adm groups sync <group_unique_identifier> \ --sync-config=config.yaml \ --confirm $ oc adm groups sync <group_unique_identifier> \ --whitelist=<whitelist_file> \ --blacklist=<blacklist_file> \ --sync-config=config.yaml \ --confirm $ oc adm groups sync --type=openshift \ --whitelist=<whitelist_file> \ --sync-config=config.yaml \ --confirm
12.4. Running a group pruning job
An administrator can also choose to remove groups from OpenShift Container Platform records if the records on the LDAP server that created them are no longer present. The prune job will accept the same sync configuration file and white- or black-lists as used for the sync job. More information is available in Pruning groups section.
12.5. Sync examples
This section contains examples for the RFC 2307, Active Directory, and augmented Active Directory schemas. All of the following examples synchronize a group named admins
that has two members: Jane
and Jim
. Each example explains:
- How the group and users are added to the LDAP server.
- What the LDAP sync configuration file looks like.
- What the resulting group record in OpenShift Container Platform will be after synchronization.
These examples assume that all users are direct members of their respective groups. Specifically, no groups have other groups as members. See Nested Membership Sync Example for information on how to sync nested groups.
12.5.1. Syncing groups by using RFC 2307 schema
In the RFC 2307 schema, both users (Jane and Jim) and groups exist on the LDAP server as first-class entries, and group membership is stored in attributes on the group. The following snippet of ldif
defines the users and group for this schema:
LDAP entries that use RFC 2307 schema: rfc2307.ldif
dn: ou=users,dc=example,dc=com objectClass: organizationalUnit ou: users dn: cn=Jane,ou=users,dc=example,dc=com objectClass: person objectClass: organizationalPerson objectClass: inetOrgPerson cn: Jane sn: Smith displayName: Jane Smith mail: jane.smith@example.com dn: cn=Jim,ou=users,dc=example,dc=com objectClass: person objectClass: organizationalPerson objectClass: inetOrgPerson cn: Jim sn: Adams displayName: Jim Adams mail: jim.adams@example.com dn: ou=groups,dc=example,dc=com objectClass: organizationalUnit ou: groups dn: cn=admins,ou=groups,dc=example,dc=com 1 objectClass: groupOfNames cn: admins owner: cn=admin,dc=example,dc=com description: System Administrators member: cn=Jane,ou=users,dc=example,dc=com 2 member: cn=Jim,ou=users,dc=example,dc=com
To sync this group, you must first create the configuration file. The RFC 2307 schema requires you to provide an LDAP query definition for both user and group entries, as well as the attributes with which to represent them in the internal OpenShift Container Platform records.
For clarity, the group you create in OpenShift Container Platform should use attributes other than the distinguished name whenever possible for user- or administrator-facing fields. For example, identify the users of an OpenShift Container Platform group by their e-mail, and use the name of the group as the common name. The following configuration file creates these relationships:
If using user-defined name mappings, your configuration file will differ.
LDAP sync configuration that uses RFC 2307 schema: rfc2307_config.yaml
kind: LDAPSyncConfig apiVersion: v1 url: ldap://LDAP_SERVICE_IP:389 1 insecure: false 2 rfc2307: groupsQuery: baseDN: "ou=groups,dc=example,dc=com" scope: sub derefAliases: never pageSize: 0 groupUIDAttribute: dn 3 groupNameAttributes: [ cn ] 4 groupMembershipAttributes: [ member ] 5 usersQuery: baseDN: "ou=users,dc=example,dc=com" scope: sub derefAliases: never pageSize: 0 userUIDAttribute: dn 6 userNameAttributes: [ uid ] 7 tolerateMemberNotFoundErrors: false tolerateMemberOutOfScopeErrors: false
- 1
- The IP address and host of the LDAP server where this group’s record is stored.
- 2
- When
false
, secure LDAP (ldaps://
) URLs connect using TLS, and insecure LDAP (ldap://
) URLs are upgraded to TLS. Whentrue
, no TLS connection is made to the server unless you specify aldaps://
URL, in which case URLs still attempt to connect by using TLS. - 3
- The attribute that uniquely identifies a group on the LDAP server. You cannot specify
groupsQuery
filters when using DN for groupUIDAttribute. For fine-grained filtering, use the whitelist / blacklist method. - 4
- The attribute to use as the name of the group.
- 5
- The attribute on the group that stores the membership information.
- 6
- The attribute that uniquely identifies a user on the LDAP server. You cannot specify
usersQuery
filters when using DN for userUIDAttribute. For fine-grained filtering, use the whitelist / blacklist method. - 7
- The attribute to use as the name of the user in the OpenShift Container Platform group record.
To run sync with the rfc2307_config.yaml file:
$ oc adm groups sync --sync-config=rfc2307_config.yaml --confirm
OpenShift Container Platform creates the following group record as a result of the above sync operation:
OpenShift Container Platform group created by using the rfc2307_config.yaml file
apiVersion: user.openshift.io/v1 kind: Group metadata: annotations: openshift.io/ldap.sync-time: 2015-10-13T10:08:38-0400 1 openshift.io/ldap.uid: cn=admins,ou=groups,dc=example,dc=com 2 openshift.io/ldap.url: LDAP_SERVER_IP:389 3 creationTimestamp: name: admins 4 users: 5 - jane.smith@example.com - jim.adams@example.com
- 1
- The last time this OpenShift Container Platform group was synchronized with the LDAP server, in ISO 6801 format.
- 2
- The unique identifier for the group on the LDAP server.
- 3
- The IP address and host of the LDAP server where this group’s record is stored.
- 4
- The name of the group as specified by the sync file.
- 5
- The users that are members of the group, named as specified by the sync file.
12.5.1.1. RFC2307 with user-defined name mappings
When syncing groups with user-defined name mappings, the configuration file changes to contain these mappings as shown below.
LDAP sync configuration that uses RFC 2307 schema with user-defined name mappings: rfc2307_config_user_defined.yaml
kind: LDAPSyncConfig apiVersion: v1 groupUIDNameMapping: "cn=admins,ou=groups,dc=example,dc=com": Administrators 1 rfc2307: groupsQuery: baseDN: "ou=groups,dc=example,dc=com" scope: sub derefAliases: never pageSize: 0 groupUIDAttribute: dn 2 groupNameAttributes: [ cn ] 3 groupMembershipAttributes: [ member ] usersQuery: baseDN: "ou=users,dc=example,dc=com" scope: sub derefAliases: never pageSize: 0 userUIDAttribute: dn 4 userNameAttributes: [ uid ] tolerateMemberNotFoundErrors: false tolerateMemberOutOfScopeErrors: false
- 1
- The user-defined name mapping.
- 2
- The unique identifier attribute that is used for the keys in the user-defined name mapping. You cannot specify
groupsQuery
filters when using DN for groupUIDAttribute. For fine-grained filtering, use the whitelist / blacklist method. - 3
- The attribute to name OpenShift Container Platform groups with if their unique identifier is not in the user-defined name mapping.
- 4
- The attribute that uniquely identifies a user on the LDAP server. You cannot specify
usersQuery
filters when using DN for userUIDAttribute. For fine-grained filtering, use the whitelist / blacklist method.
To run sync with the rfc2307_config_user_defined.yaml file:
$ oc adm groups sync --sync-config=rfc2307_config_user_defined.yaml --confirm
OpenShift Container Platform creates the following group record as a result of the above sync operation:
OpenShift Container Platform group created by using the rfc2307_config_user_defined.yaml file
apiVersion: user.openshift.io/v1
kind: Group
metadata:
annotations:
openshift.io/ldap.sync-time: 2015-10-13T10:08:38-0400
openshift.io/ldap.uid: cn=admins,ou=groups,dc=example,dc=com
openshift.io/ldap.url: LDAP_SERVER_IP:389
creationTimestamp:
name: Administrators 1
users:
- jane.smith@example.com
- jim.adams@example.com
- 1
- The name of the group as specified by the user-defined name mapping.
12.5.2. Syncing groups by using RFC 2307 with user-defined error tolerances
By default, if the groups being synced contain members whose entries are outside of the scope defined in the member query, the group sync fails with an error:
Error determining LDAP group membership for "<group>": membership lookup for user "<user>" in group "<group>" failed because of "search for entry with dn="<user-dn>" would search outside of the base dn specified (dn="<base-dn>")".
This often indicates a mis-configured baseDN
in the usersQuery
field. However, in cases where the baseDN
intentionally does not contain some of the members of the group, setting tolerateMemberOutOfScopeErrors: true
allows the group sync to continue. Out of scope members will be ignored.
Similarly, when the group sync process fails to locate a member for a group, it fails outright with errors:
Error determining LDAP group membership for "<group>": membership lookup for user "<user>" in group "<group>" failed because of "search for entry with base dn="<user-dn>" refers to a non-existent entry". Error determining LDAP group membership for "<group>": membership lookup for user "<user>" in group "<group>" failed because of "search for entry with base dn="<user-dn>" and filter "<filter>" did not return any results".
This often indicates a mis-configured usersQuery
field. However, in cases where the group contains member entries that are known to be missing, setting tolerateMemberNotFoundErrors: true
allows the group sync to continue. Problematic members will be ignored.
Enabling error tolerances for the LDAP group sync causes the sync process to ignore problematic member entries. If the LDAP group sync is not configured correctly, this could result in synced OpenShift Container Platform groups missing members.
LDAP entries that use RFC 2307 schema with problematic group membership: rfc2307_problematic_users.ldif
dn: ou=users,dc=example,dc=com objectClass: organizationalUnit ou: users dn: cn=Jane,ou=users,dc=example,dc=com objectClass: person objectClass: organizationalPerson objectClass: inetOrgPerson cn: Jane sn: Smith displayName: Jane Smith mail: jane.smith@example.com dn: cn=Jim,ou=users,dc=example,dc=com objectClass: person objectClass: organizationalPerson objectClass: inetOrgPerson cn: Jim sn: Adams displayName: Jim Adams mail: jim.adams@example.com dn: ou=groups,dc=example,dc=com objectClass: organizationalUnit ou: groups dn: cn=admins,ou=groups,dc=example,dc=com objectClass: groupOfNames cn: admins owner: cn=admin,dc=example,dc=com description: System Administrators member: cn=Jane,ou=users,dc=example,dc=com member: cn=Jim,ou=users,dc=example,dc=com member: cn=INVALID,ou=users,dc=example,dc=com 1 member: cn=Jim,ou=OUTOFSCOPE,dc=example,dc=com 2
In order to tolerate the errors in the above example, the following additions to your sync configuration file must be made:
LDAP sync configuration that uses RFC 2307 schema tolerating errors: rfc2307_config_tolerating.yaml
kind: LDAPSyncConfig apiVersion: v1 url: ldap://LDAP_SERVICE_IP:389 rfc2307: groupsQuery: baseDN: "ou=groups,dc=example,dc=com" scope: sub derefAliases: never groupUIDAttribute: dn groupNameAttributes: [ cn ] groupMembershipAttributes: [ member ] usersQuery: baseDN: "ou=users,dc=example,dc=com" scope: sub derefAliases: never userUIDAttribute: dn 1 userNameAttributes: [ uid ] tolerateMemberNotFoundErrors: true 2 tolerateMemberOutOfScopeErrors: true 3
- 2
- When
true
, the sync job tolerates groups for which some members were not found, and members whose LDAP entries are not found are ignored. The default behavior for the sync job is to fail if a member of a group is not found. - 3
- When
true
, the sync job tolerates groups for which some members are outside the user scope given in theusersQuery
base DN, and members outside the member query scope are ignored. The default behavior for the sync job is to fail if a member of a group is out of scope. - 1
- The attribute that uniquely identifies a user on the LDAP server. You cannot specify
usersQuery
filters when using DN for userUIDAttribute. For fine-grained filtering, use the whitelist / blacklist method.
To run sync with the rfc2307_config_tolerating.yaml file:
$ oc adm groups sync --sync-config=rfc2307_config_tolerating.yaml --confirm
OpenShift Container Platform creates the following group record as a result of the above sync operation:
OpenShift Container Platform group created by using the rfc2307_config.yaml file
apiVersion: user.openshift.io/v1
kind: Group
metadata:
annotations:
openshift.io/ldap.sync-time: 2015-10-13T10:08:38-0400
openshift.io/ldap.uid: cn=admins,ou=groups,dc=example,dc=com
openshift.io/ldap.url: LDAP_SERVER_IP:389
creationTimestamp:
name: admins
users: 1
- jane.smith@example.com
- jim.adams@example.com
- 1
- The users that are members of the group, as specified by the sync file. Members for which lookup encountered tolerated errors are absent.
12.5.3. Syncing groups by using Active Directory
In the Active Directory schema, both users (Jane and Jim) exist in the LDAP server as first-class entries, and group membership is stored in attributes on the user. The following snippet of ldif
defines the users and group for this schema:
LDAP entries that use Active Directory schema: active_directory.ldif
dn: ou=users,dc=example,dc=com
objectClass: organizationalUnit
ou: users
dn: cn=Jane,ou=users,dc=example,dc=com
objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson
objectClass: testPerson
cn: Jane
sn: Smith
displayName: Jane Smith
mail: jane.smith@example.com
memberOf: admins 1
dn: cn=Jim,ou=users,dc=example,dc=com
objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson
objectClass: testPerson
cn: Jim
sn: Adams
displayName: Jim Adams
mail: jim.adams@example.com
memberOf: admins
- 1
- The user’s group memberships are listed as attributes on the user, and the group does not exist as an entry on the server. The
memberOf
attribute does not have to be a literal attribute on the user; in some LDAP servers, it is created during search and returned to the client, but not committed to the database.
To sync this group, you must first create the configuration file. The Active Directory schema requires you to provide an LDAP query definition for user entries, as well as the attributes to represent them with in the internal OpenShift Container Platform group records.
For clarity, the group you create in OpenShift Container Platform should use attributes other than the distinguished name whenever possible for user- or administrator-facing fields. For example, identify the users of an OpenShift Container Platform group by their e-mail, but define the name of the group by the name of the group on the LDAP server. The following configuration file creates these relationships:
LDAP sync configuration that uses Active Directory schema: active_directory_config.yaml
kind: LDAPSyncConfig apiVersion: v1 url: ldap://LDAP_SERVICE_IP:389 activeDirectory: usersQuery: baseDN: "ou=users,dc=example,dc=com" scope: sub derefAliases: never filter: (objectclass=inetOrgPerson) pageSize: 0 userNameAttributes: [ uid ] 1 groupMembershipAttributes: [ memberOf ] 2
To run sync with the active_directory_config.yaml file:
$ oc adm groups sync --sync-config=active_directory_config.yaml --confirm
OpenShift Container Platform creates the following group record as a result of the above sync operation:
OpenShift Container Platform group created by using the active_directory_config.yaml file
apiVersion: user.openshift.io/v1 kind: Group metadata: annotations: openshift.io/ldap.sync-time: 2015-10-13T10:08:38-0400 1 openshift.io/ldap.uid: admins 2 openshift.io/ldap.url: LDAP_SERVER_IP:389 3 creationTimestamp: name: admins 4 users: 5 - jane.smith@example.com - jim.adams@example.com
- 1
- The last time this OpenShift Container Platform group was synchronized with the LDAP server, in ISO 6801 format.
- 2
- The unique identifier for the group on the LDAP server.
- 3
- The IP address and host of the LDAP server where this group’s record is stored.
- 4
- The name of the group as listed in the LDAP server.
- 5
- The users that are members of the group, named as specified by the sync file.
12.5.4. Syncing groups by using augmented Active Directory
In the augmented Active Directory schema, both users (Jane and Jim) and groups exist in the LDAP server as first-class entries, and group membership is stored in attributes on the user. The following snippet of ldif
defines the users and group for this schema:
LDAP entries that use augmented Active Directory schema: augmented_active_directory.ldif
dn: ou=users,dc=example,dc=com objectClass: organizationalUnit ou: users dn: cn=Jane,ou=users,dc=example,dc=com objectClass: person objectClass: organizationalPerson objectClass: inetOrgPerson objectClass: testPerson cn: Jane sn: Smith displayName: Jane Smith mail: jane.smith@example.com memberOf: cn=admins,ou=groups,dc=example,dc=com 1 dn: cn=Jim,ou=users,dc=example,dc=com objectClass: person objectClass: organizationalPerson objectClass: inetOrgPerson objectClass: testPerson cn: Jim sn: Adams displayName: Jim Adams mail: jim.adams@example.com memberOf: cn=admins,ou=groups,dc=example,dc=com dn: ou=groups,dc=example,dc=com objectClass: organizationalUnit ou: groups dn: cn=admins,ou=groups,dc=example,dc=com 2 objectClass: groupOfNames cn: admins owner: cn=admin,dc=example,dc=com description: System Administrators member: cn=Jane,ou=users,dc=example,dc=com member: cn=Jim,ou=users,dc=example,dc=com
To sync this group, you must first create the configuration file. The augmented Active Directory schema requires you to provide an LDAP query definition for both user entries and group entries, as well as the attributes with which to represent them in the internal OpenShift Container Platform group records.
For clarity, the group you create in OpenShift Container Platform should use attributes other than the distinguished name whenever possible for user- or administrator-facing fields. For example, identify the users of an OpenShift Container Platform group by their e-mail, and use the name of the group as the common name. The following configuration file creates these relationships.
LDAP sync configuration that uses augmented Active Directory schema: augmented_active_directory_config.yaml
kind: LDAPSyncConfig apiVersion: v1 url: ldap://LDAP_SERVICE_IP:389 augmentedActiveDirectory: groupsQuery: baseDN: "ou=groups,dc=example,dc=com" scope: sub derefAliases: never pageSize: 0 groupUIDAttribute: dn 1 groupNameAttributes: [ cn ] 2 usersQuery: baseDN: "ou=users,dc=example,dc=com" scope: sub derefAliases: never filter: (objectclass=inetOrgPerson) pageSize: 0 userNameAttributes: [ uid ] 3 groupMembershipAttributes: [ memberOf ] 4
- 1
- The attribute that uniquely identifies a group on the LDAP server. You cannot specify
groupsQuery
filters when using DN for groupUIDAttribute. For fine-grained filtering, use the whitelist / blacklist method. - 2
- The attribute to use as the name of the group.
- 3
- The attribute to use as the name of the user in the OpenShift Container Platform group record.
- 4
- The attribute on the user that stores the membership information.
To run sync with the augmented_active_directory_config.yaml file:
$ oc adm groups sync --sync-config=augmented_active_directory_config.yaml --confirm
OpenShift Container Platform creates the following group record as a result of the above sync operation:
OpenShift group created by using the augmented_active_directory_config.yaml file
apiVersion: user.openshift.io/v1 kind: Group metadata: annotations: openshift.io/ldap.sync-time: 2015-10-13T10:08:38-0400 1 openshift.io/ldap.uid: cn=admins,ou=groups,dc=example,dc=com 2 openshift.io/ldap.url: LDAP_SERVER_IP:389 3 creationTimestamp: name: admins 4 users: 5 - jane.smith@example.com - jim.adams@example.com
- 1
- The last time this OpenShift Container Platform group was synchronized with the LDAP server, in ISO 6801 format.
- 2
- The unique identifier for the group on the LDAP server.
- 3
- The IP address and host of the LDAP server where this group’s record is stored.
- 4
- The name of the group as specified by the sync file.
- 5
- The users that are members of the group, named as specified by the sync file.
12.6. Nested membership sync example
Groups in OpenShift Container Platform do not nest. The LDAP server must flatten group membership before the data can be consumed. Microsoft’s Active Directory Server supports this feature via the LDAP_MATCHING_RULE_IN_CHAIN
rule, which has the OID 1.2.840.113556.1.4.1941
. Furthermore, only explicitly whitelisted groups can be synced when using this matching rule.
This section has an example for the augmented Active Directory schema, which synchronizes a group named admins
that has one user Jane
and one group otheradmins
as members. The otheradmins
group has one user member: Jim
. This example explains:
- How the group and users are added to the LDAP server.
- What the LDAP sync configuration file looks like.
- What the resulting group record in OpenShift Container Platform will be after synchronization.
In the augmented Active Directory schema, both users (Jane
and Jim
) and groups exist in the LDAP server as first-class entries, and group membership is stored in attributes on the user or the group. The following snippet of ldif
defines the users and groups for this schema:
LDAP entries that use augmented Active Directory schema with nested members: augmented_active_directory_nested.ldif
dn: ou=users,dc=example,dc=com objectClass: organizationalUnit ou: users dn: cn=Jane,ou=users,dc=example,dc=com objectClass: person objectClass: organizationalPerson objectClass: inetOrgPerson objectClass: testPerson cn: Jane sn: Smith displayName: Jane Smith mail: jane.smith@example.com memberOf: cn=admins,ou=groups,dc=example,dc=com 1 dn: cn=Jim,ou=users,dc=example,dc=com objectClass: person objectClass: organizationalPerson objectClass: inetOrgPerson objectClass: testPerson cn: Jim sn: Adams displayName: Jim Adams mail: jim.adams@example.com memberOf: cn=otheradmins,ou=groups,dc=example,dc=com 2 dn: ou=groups,dc=example,dc=com objectClass: organizationalUnit ou: groups dn: cn=admins,ou=groups,dc=example,dc=com 3 objectClass: group cn: admins owner: cn=admin,dc=example,dc=com description: System Administrators member: cn=Jane,ou=users,dc=example,dc=com member: cn=otheradmins,ou=groups,dc=example,dc=com dn: cn=otheradmins,ou=groups,dc=example,dc=com 4 objectClass: group cn: otheradmins owner: cn=admin,dc=example,dc=com description: Other System Administrators memberOf: cn=admins,ou=groups,dc=example,dc=com 5 6 member: cn=Jim,ou=users,dc=example,dc=com
To sync nested groups with Active Directory, you must provide an LDAP query definition for both user entries and group entries, as well as the attributes with which to represent them in the internal OpenShift Container Platform group records. Furthermore, certain changes are required in this configuration:
-
The
oc adm groups sync
command must explicitly whitelist groups. -
The user’s
groupMembershipAttributes
must include"memberOf:1.2.840.113556.1.4.1941:"
to comply with theLDAP_MATCHING_RULE_IN_CHAIN
rule. -
The
groupUIDAttribute
must be set todn
. The
groupsQuery
:-
Must not set
filter
. -
Must set a valid
derefAliases
. -
Should not set
baseDN
as that value is ignored. -
Should not set
scope
as that value is ignored.
-
Must not set
For clarity, the group you create in OpenShift Container Platform should use attributes other than the distinguished name whenever possible for user- or administrator-facing fields. For example, identify the users of an OpenShift Container Platform group by their e-mail, and use the name of the group as the common name. The following configuration file creates these relationships:
LDAP sync configuration that uses augmented Active Directory schema with nested members: augmented_active_directory_config_nested.yaml
kind: LDAPSyncConfig apiVersion: v1 url: ldap://LDAP_SERVICE_IP:389 augmentedActiveDirectory: groupsQuery: 1 derefAliases: never pageSize: 0 groupUIDAttribute: dn 2 groupNameAttributes: [ cn ] 3 usersQuery: baseDN: "ou=users,dc=example,dc=com" scope: sub derefAliases: never filter: (objectclass=inetOrgPerson) pageSize: 0 userNameAttributes: [ uid ] 4 groupMembershipAttributes: [ "memberOf:1.2.840.113556.1.4.1941:" ] 5
- 1
groupsQuery
filters cannot be specified. ThegroupsQuery
base DN and scope values are ignored.groupsQuery
must set a validderefAliases
.- 2
- The attribute that uniquely identifies a group on the LDAP server. It must be set to
dn
. - 3
- The attribute to use as the name of the group.
- 4
- The attribute to use as the name of the user in the OpenShift Container Platform group record.
uid
orsAMAccountName
are preferred choices in most installations. - 5
- The attribute on the user that stores the membership information. Note the use of
LDAP_MATCHING_RULE_IN_CHAIN
.
To run sync with the augmented_active_directory_config_nested.yaml file:
$ oc adm groups sync \ 'cn=admins,ou=groups,dc=example,dc=com' \ --sync-config=augmented_active_directory_config_nested.yaml \ --confirm
You must explicitly whitelist the cn=admins,ou=groups,dc=example,dc=com
group.
OpenShift Container Platform creates the following group record as a result of the above sync operation:
OpenShift group created by using the augmented_active_directory_config_nested.yaml file
apiVersion: user.openshift.io/v1 kind: Group metadata: annotations: openshift.io/ldap.sync-time: 2015-10-13T10:08:38-0400 1 openshift.io/ldap.uid: cn=admins,ou=groups,dc=example,dc=com 2 openshift.io/ldap.url: LDAP_SERVER_IP:389 3 creationTimestamp: name: admins 4 users: 5 - jane.smith@example.com - jim.adams@example.com
- 1
- The last time this OpenShift Container Platform group was synchronized with the LDAP server, in ISO 6801 format.
- 2
- The unique identifier for the group on the LDAP server.
- 3
- The IP address and host of the LDAP server where this group’s record is stored.
- 4
- The name of the group as specified by the sync file.
- 5
- The users that are members of the group, named as specified by the sync file. Note that members of nested groups are included since the group membership was flattened by the Microsoft Active Directory Server.
12.7. LDAP sync configuration specification
The object specification for the configuration file is below. Note that the different schema objects have different fields. For example, v1.ActiveDirectoryConfig has no groupsQuery
field whereas v1.RFC2307Config and v1.AugmentedActiveDirectoryConfig both do.
There is no support for binary attributes. All attribute data coming from the LDAP server must be in the format of a UTF-8 encoded string. For example, never use a binary attribute, such as objectGUID
, as an ID attribute. You must use string attributes, such as sAMAccountName
or userPrincipalName
, instead.
12.7.1. v1.LDAPSyncConfig
LDAPSyncConfig
holds the necessary configuration options to define an LDAP group sync.
Name | Description | Schema |
---|---|---|
| String value representing the REST resource this object represents. Servers may infer this from the endpoint the client submits requests to. Cannot be updated. In CamelCase. More info: https://github.com/kubernetes/community/blob/master/contributors/devel/api-conventions.md#types-kinds | string |
| Defines the versioned schema of this representation of an object. Servers should convert recognized schemas to the latest internal value, and may reject unrecognized values. More info: https://github.com/kubernetes/community/blob/master/contributors/devel/api-conventions.md#resources | string |
|
Host is the scheme, host and port of the LDAP server to connect to: | string |
| Optional DN to bind to the LDAP server with. | string |
| Optional password to bind with during the search phase. | |
|
If | boolean |
| Optional trusted certificate authority bundle to use when making requests to the server. If empty, the default system roots are used. | string |
| Optional direct mapping of LDAP group UIDs to OpenShift Container Platform group names. | object |
| Holds the configuration for extracting data from an LDAP server set up in a fashion similar to RFC2307: first-class group and user entries, with group membership determined by a multi-valued attribute on the group entry listing its members. | |
| Holds the configuration for extracting data from an LDAP server set up in a fashion similar to that used in Active Directory: first-class user entries, with group membership determined by a multi-valued attribute on members listing groups they are a member of. | |
| Holds the configuration for extracting data from an LDAP server set up in a fashion similar to that used in Active Directory as described above, with one addition: first-class group entries exist and are used to hold metadata but not group membership. |
12.7.2. v1.StringSource
StringSource
allows specifying a string inline, or externally via environment variable or file. When it contains only a string value, it marshals to a simple JSON string.
Name | Description | Schema |
---|---|---|
|
Specifies the cleartext value, or an encrypted value if | string |
|
Specifies an environment variable containing the cleartext value, or an encrypted value if the | string |
|
References a file containing the cleartext value, or an encrypted value if a | string |
| References a file containing the key to use to decrypt the value. | string |
12.7.3. v1.LDAPQuery
LDAPQuery
holds the options necessary to build an LDAP query.
Name | Description | Schema |
---|---|---|
| DN of the branch of the directory where all searches should start from. | string |
|
The (optional) scope of the search. Can be | string |
|
The (optional) behavior of the search with regards to alisases. Can be | string |
|
Holds the limit of time in seconds that any request to the server can remain outstanding before the wait for a response is given up. If this is | integer |
| A valid LDAP search filter that retrieves all relevant entries from the LDAP server with the base DN. | string |
|
Maximum preferred page size, measured in LDAP entries. A page size of | integer |
12.7.4. v1.RFC2307Config
RFC2307Config
holds the necessary configuration options to define how an LDAP group sync interacts with an LDAP server using the RFC2307 schema.
Name | Description | Schema |
---|---|---|
| Holds the template for an LDAP query that returns group entries. | |
|
Defines which attribute on an LDAP group entry will be interpreted as its unique identifier. ( | string |
| Defines which attributes on an LDAP group entry will be interpreted as its name to use for an OpenShift Container Platform group. | string array |
|
Defines which attributes on an LDAP group entry will be interpreted as its members. The values contained in those attributes must be queryable by your | string array |
| Holds the template for an LDAP query that returns user entries. | |
|
Defines which attribute on an LDAP user entry will be interpreted as its unique identifier. It must correspond to values that will be found from the | string |
|
Defines which attributes on an LDAP user entry will be used, in order, as its OpenShift Container Platform user name. The first attribute with a non-empty value is used. This should match your | string array |
|
Determines the behavior of the LDAP sync job when missing user entries are encountered. If | boolean |
|
Determines the behavior of the LDAP sync job when out-of-scope user entries are encountered. If | boolean |
12.7.5. v1.ActiveDirectoryConfig
ActiveDirectoryConfig
holds the necessary configuration options to define how an LDAP group sync interacts with an LDAP server using the Active Directory schema.
Name | Description | Schema |
---|---|---|
| Holds the template for an LDAP query that returns user entries. | |
|
Defines which attributes on an LDAP user entry will be interpreted as its OpenShift Container Platform user name. The attribute to use as the name of the user in the OpenShift Container Platform group record. | string array |
| Defines which attributes on an LDAP user entry will be interpreted as the groups it is a member of. | string array |
12.7.6. v1.AugmentedActiveDirectoryConfig
AugmentedActiveDirectoryConfig
holds the necessary configuration options to define how an LDAP group sync interacts with an LDAP server using the augmented Active Directory schema.
Name | Description | Schema |
---|---|---|
| Holds the template for an LDAP query that returns user entries. | |
|
Defines which attributes on an LDAP user entry will be interpreted as its OpenShift Container Platform user name. The attribute to use as the name of the user in the OpenShift Container Platform group record. | string array |
| Defines which attributes on an LDAP user entry will be interpreted as the groups it is a member of. | string array |
| Holds the template for an LDAP query that returns group entries. | |
|
Defines which attribute on an LDAP group entry will be interpreted as its unique identifier. ( | string |
| Defines which attributes on an LDAP group entry will be interpreted as its name to use for an OpenShift Container Platform group. | string array |
Chapter 13. Configuring LDAP failover
OpenShift Container Platform provides an authentication provider for use with Lightweight Directory Access Protocol (LDAP) setups, but it can connect to only a single LDAP server. During OpenShift Container Platform installation, you can configure the System Security Services Daemon (SSSD) for LDAP failover to ensure access to your cluster if one LDAP server fails.
The setup for this configuration is advanced and requires a separate authentication server, also called an remote basic authentication server, for OpenShift Container Platform to communicate with. You configure this server to pass extra attributes, such as email addresses, to OpenShift Container Platform so it can display them in the web console.
This topic describes how to complete this set up on a dedicated physical or virtual machine (VM), but you can also configure SSSD in containers.
You must complete all sections of this topic.
13.1. Prerequisites for configuring basic remote authentication
Before starting setup, you need to know the following information about your LDAP server:
- Whether the directory server is powered by FreeIPA, Active Directory, or another LDAP solution.
- The Uniform Resource Identifier (URI) for the LDAP server, for example, ldap.example.com.
- The location of the CA certificate for the LDAP server.
- Whether the LDAP server corresponds to RFC 2307 or RFC2307bis for user groups.
Prepare the servers:
remote-basic.example.com: A VM to use as the remote basic authentication server.
- Select an operating system that includes SSSD version 1.12.0 for this server such as Red Hat Enterprise Linux 7.0 or later.
openshift.example.com: A new installation of OpenShift Container Platform.
- You must not have an authentication method configured for this cluster.
- Do not start OpenShift Container Platform on this cluster.
13.2. Generating and sharing certificates with the remote basic authentication server
Complete the following steps on the first master host listed in the Ansible host inventory file, by default /etc/ansible/hosts.
To ensure that communication between the remote basic authentication server and OpenShift Container Platform is trustworthy, create a set of Transport Layer Security (TLS) certificates to use during the other phases of this set up. Run the following command:
# openshift start \ --public-master=https://openshift.example.com:8443 \ --write-config=/etc/origin/
The output inclues the /etc/origin/master/ca.crt and /etc/origin/master/ca.key signing certificates.
Use the signing certificate to generate keys to use on the remote basic authentication server:
# mkdir -p /etc/origin/remote-basic/ # oc adm ca create-server-cert \ --cert='/etc/origin/remote-basic/remote-basic.example.com.crt' \ --key='/etc/origin/remote-basic/remote-basic.example.com.key' \ --hostnames=remote-basic.example.com \ 1 --signer-cert='/etc/origin/master/ca.crt' \ --signer-key='/etc/origin/master/ca.key' \ --signer-serial='/etc/origin/master/ca.serial.txt'
- 1
- A comma-separated list of all the host names and interface IP addresses that need to access the remote basic authentication server.
NoteThe certificate files that you generate are valid for two years. You can alter this period by changing the
--expire-days
and--signer-expire-days
values, but for security reasons, do not make them greater than 730.ImportantIf you do not list all host names and interface IP addresses that need to access the remote basic authentication server, the HTTPS connection will fail.
Copy the necessary certificates and key to the remote basic authentication server:
# scp /etc/origin/master/ca.crt \ root@remote-basic.example.com:/etc/pki/CA/certs/ # scp /etc/origin/remote-basic/remote-basic.example.com.crt \ root@remote-basic.example.com:/etc/pki/tls/certs/ # scp /etc/origin/remote-basic/remote-basic.example.com.key \ root@remote-basic.example.com:/etc/pki/tls/private/
13.3. Configuring SSSD for LDAP failover
Complete these steps on the remote basic authentication server.
You can configure the SSSD to retrieve attributes, such as email addresses and display names, and pass them to OpenShift Container Platform to display in the web interface. In the following steps, you configure the SSSD to provide email addresses to OpenShift Container Platform:
Install the required SSSD and the web server components:
# yum install -y sssd \ sssd-dbus \ realmd \ httpd \ mod_session \ mod_ssl \ mod_lookup_identity \ mod_authnz_pam \ php \ mod_php
Set up SSSD to authenticate this VM against the LDAP server. If the LDAP server is a FreeIPA or Active Directory environment, then use realmd to join this machine to the domain.
# realm join ldap.example.com
For more advanced cases, see the System-Level Authentication Guide
- To use SSSD to manage failover situations for LDAP, add more entries to the /etc/sssd/sssd.conf file on the ldap_uri line. Systems that are enrolled with FreeIPA can automatically handle failover by using DNS SRV records.
Modify the [domain/DOMAINNAME] section of the /etc/sssd/sssd.conf file and add this attribute:
[domain/example.com] ... ldap_user_extra_attrs = mail 1
- 1
- Specify the correct attribute to retrieve email addresses for your LDAP solution. For IPA, specify
mail
. Other LDAP solutions might use another attribute, such asemail
.
Confirm that the domain parameter in the /etc/sssd/sssd.conf file contains only the domain name listed in the [domain/DOMAINNAME] section.
domains = example.com
Grant Apache permission to retrieve the email attribute. Add the following lines to the [ifp] section of the /etc/sssd/sssd.conf file:
[ifp] user_attributes = +mail allowed_uids = apache, root
To ensure that all of the changes are applied properly, restart SSSD:
$ systemctl restart sssd.service
Test that the user information can be retrieved properly:
$ getent passwd <username> username:*:12345:12345:Example User:/home/username:/usr/bin/bash
Confirm that the mail attribute you specified returns an email address from your domain:
# dbus-send --print-reply --system --dest=org.freedesktop.sssd.infopipe \ /org/freedesktop/sssd/infopipe org.freedesktop.sssd.infopipe.GetUserAttr \ string:username \ 1 array:string:mail 2 method return time=1528091855.672691 sender=:1.2787 -> destination=:1.2795 serial=13 reply_serial=2 array [ dict entry( string "mail" variant array [ string "username@example.com" ] ) ]
- Attempt to log into the VM as an LDAP user and confirm that you can log in using LDAP credentials. You can use either the local console or a remote service like SSH to log in.
By default, all users can log into the remote basic authentication server by using their LDAP credentials. You can change this behavior:
- If you use IPA joined systems, configure host-based access control.
- If you use Active Directory joined systems, use a group policy object.
- For other cases, see the SSSD configuration documentation.
13.4. Configuring Apache to use SSSD
Create a /etc/pam.d/openshift file that contains the following contents:
auth required pam_sss.so account required pam_sss.so
This configuration enables PAM, the pluggable authentication module, to use pam_sss.so to determine authentication and access control when an authentication request is issued for the openshift stack.
Edit the /etc/httpd/conf.modules.d/55-authnz_pam.conf file and uncomment the following line:
LoadModule authnz_pam_module modules/mod_authnz_pam.so
To configure the Apache httpd.conf file for remote basic authentication, create the openshift-remote-basic-auth.conf file in the /etc/httpd/conf.d directory. Use the following template to provide your required settings and values:
ImportantCarefully review the template and customize its contents to fit your environment.
LoadModule request_module modules/mod_request.so LoadModule php7_module modules/libphp7.so # Nothing needs to be served over HTTP. This virtual host simply redirects to # HTTPS. <VirtualHost *:80> DocumentRoot /var/www/html RewriteEngine On RewriteRule ^(.*)$ https://%{HTTP_HOST}$1 [R,L] </VirtualHost> <VirtualHost *:443> # This needs to match the certificates you generated. See the CN and X509v3 # Subject Alternative Name in the output of: # openssl x509 -text -in /etc/pki/tls/certs/remote-basic.example.com.crt ServerName remote-basic.example.com DocumentRoot /var/www/html # Secure all connections with TLS SSLEngine on SSLCertificateFile /etc/pki/tls/certs/remote-basic.example.com.crt SSLCertificateKeyFile /etc/pki/tls/private/remote-basic.example.com.key SSLCACertificateFile /etc/pki/CA/certs/ca.crt # Require that TLS clients provide a valid certificate SSLVerifyClient require SSLVerifyDepth 10 # Other SSL options that may be useful # SSLCertificateChainFile ... # SSLCARevocationFile ... # Send logs to a specific location to make them easier to find ErrorLog logs/remote_basic_error_log TransferLog logs/remote_basic_access_log LogLevel warn # PHP script that turns the Apache REMOTE_USER env var # into a JSON formatted response that OpenShift understands <Location /check_user.php> # all requests not using SSL are denied SSLRequireSSL # denies access when SSLRequireSSL is applied SSLOptions +StrictRequire # Require both a valid basic auth user (so REMOTE_USER is always set) # and that the CN of the TLS client matches that of the OpenShift master <RequireAll> Require valid-user Require expr %{SSL_CLIENT_S_DN_CN} == 'system:openshift-master' </RequireAll> # Use basic auth since OpenShift will call this endpoint with a basic challenge AuthType Basic AuthName openshift AuthBasicProvider PAM AuthPAMService openshift # Store attributes in environment variables. Specify the email attribute that # you confirmed. LookupOutput Env LookupUserAttr mail REMOTE_USER_MAIL LookupUserGECOS REMOTE_USER_DISPLAY_NAME # Other options that might be useful # While REMOTE_USER is used as the sub field and serves as the immutable ID, # REMOTE_USER_PREFERRED_USERNAME could be used to have a different username # LookupUserAttr <attr_name> REMOTE_USER_PREFERRED_USERNAME # Group support may be added in a future release # LookupUserGroupsIter REMOTE_USER_GROUP </Location> # Deny everything else <Location ~ "^((?!\/check_user\.php).)*$"> Deny from all </Location> </VirtualHost>
Create the check_user.php script in the /var/www/html directory. Include the following code:
<?php // Get the user based on the Apache var, this should always be // set because we 'Require valid-user' in the configuration $user = apache_getenv('REMOTE_USER'); // However, we assume it may not be set and // build an error response by default $data = array( 'error' => 'remote PAM authentication failed' ); // Build a success response if we have a user if (!empty($user)) { $data = array( 'sub' => $user ); // Map of optional environment variables to optional JSON fields $env_map = array( 'REMOTE_USER_MAIL' => 'email', 'REMOTE_USER_DISPLAY_NAME' => 'name', 'REMOTE_USER_PREFERRED_USERNAME' => 'preferred_username' ); // Add all non-empty environment variables to JSON data foreach ($env_map as $env_name => $json_name) { $env_data = apache_getenv($env_name); if (!empty($env_data)) { $data[$json_name] = $env_data; } } } // We always output JSON from this script header('Content-Type: application/json', true); // Write the response as JSON echo json_encode($data); ?>
Enable Apache to load the module. Modify the /etc/httpd/conf.modules.d/55-lookup_identity.conf file and uncomment the following line:
LoadModule lookup_identity_module modules/mod_lookup_identity.so
Set an SELinux boolean so that SElinux allows Apache to connect to SSSD over D-BUS:
# setsebool -P httpd_dbus_sssd on
Set a boolean to tell SELinux that it is acceptable for Apache to contact the PAM subsystem:
# setsebool -P allow_httpd_mod_auth_pam on
Start Apache:
# systemctl start httpd.service
13.5. Configuring OpenShift Container Platform to use SSSD as the basic remote authentication server
Modify the default configuration of your cluster to use the new identity provider that you created. Complete the following steps on the first master host listed in the Ansible host inventory file.
- Open the /etc/origin/master/master-config.yaml file.
Locate the identityProviders section and replace it with the following code:
identityProviders: - name: sssd challenge: true login: true mappingMethod: claim provider: apiVersion: v1 kind: BasicAuthPasswordIdentityProvider url: https://remote-basic.example.com/check_user.php ca: /etc/origin/master/ca.crt certFile: /etc/origin/master/openshift-master.crt keyFile: /etc/origin/master/openshift-master.key
Restart OpenShift Container Platform with the updated configuration:
# /usr/local/bin/master-restart api api # /usr/local/bin/master-restart controllers controllers
Test a login by using the
oc
CLI:$ oc login https://openshift.example.com:8443
You can log in only with valid LDAP credentials.
List the identities and confirm that an email address is displayed for each user name. Run the following command:
$ oc get identity -o yaml
Chapter 14. Configuring the SDN
14.1. Overview
The OpenShift SDN enables communication between pods across the OpenShift Container Platform cluster, establishing a pod network. Three SDN plug-ins are currently available (ovs-subnet, ovs-multitenant, and ovs-networkpolicy), which provide different methods for configuring the pod network.
14.2. Available SDN Providers
The upstream Kubernetes project does not come with a default network solution. Instead, Kubernetes has developed a Container Network Interface (CNI) to allow network providers for integration with their own SDN solutions.
There are several OpenShift SDN plug-ins available out of the box from Red Hat, as well as third-party plug-ins.
Red Hat has worked with a number of SDN providers to certify their SDN network solution on OpenShift Container Platform via the Kubernetes CNI interface, including a support process for their SDN plug-in through their product’s entitlement process. Should you open a support case with OpenShift, Red Hat can facilitate an exchange process so that both companies are involved in meeting your needs.
The following SDN solutions are validated and supported on OpenShift Container Platform directly by the third-party vendor:
- Cisco Contiv (™)
- Juniper Contrail (™)
- Nokia Nuage (™)
- Tigera Calico (™)
- VMware NSX-T (™)
Installing VMware NSX-T (™) on OpenShift Container Platform
VMware NSX-T (™) provides an SDN and security infrastructure to build cloud-native application environments. In addition to vSphere hypervisors (ESX), these environments include KVM and native public clouds.
The current integration requires a new install of both NSX-T and OpenShift Container Platform. Currently, NSX-T version 2.1 is supported, and only supports the use of ESX and KVM hypervisors at this time.
See the NSX-T Container Plug-in for OpenShift - Installation and Administration Guide for more information.
14.3. Configuring the Pod Network with Ansible
For initial cluster installations, the ovs-subnet plug-in is installed and configured by default, though it can be overridden during installation using the os_sdn_network_plugin_name
parameter, which is configurable in the Ansible inventory file.
For example, to override the standard ovs-subnet plug-in and use the ovs-multitenant plug-in instead:
# Configure the multi-tenant SDN plugin (default is 'redhat/openshift-ovs-subnet') os_sdn_network_plugin_name='redhat/openshift-ovs-multitenant'
See Configuring Cluster Variables for descriptions of networking-related Ansible variables that can be set in your inventory file.
14.4. Configuring the Pod Network on Masters
The cluster administrators can control pod network settings on master hosts by modifying parameters in the networkConfig
section of the master configuration file (located at /etc/origin/master/master-config.yaml by default):
Configuring a pod network for a single CIDR
networkConfig: clusterNetworks: - cidr: 10.128.0.0/14 1 hostSubnetLength: 9 2 networkPluginName: "redhat/openshift-ovs-subnet" 3 serviceNetworkCIDR: 172.30.0.0/16 4
- 1
- Cluster network for node IP allocation
- 2
- Number of bits for pod IP allocation within a node
- 3
- Set to
redhat/openshift-ovs-subnet
for the ovs-subnet plug-in,redhat/openshift-ovs-multitenant
for the ovs-multitenant plug-in, orredhat/openshift-ovs-networkpolicy
for the ovs-networkpolicy plug-in - 4
- Service IP allocation for the cluster
Alternatively, you can create a pod network with multiple CIDR ranges by adding separate ranges into the clusterNetworks
field with the range and the hostSubnetLength
.
Multiple ranges can be used at once, and the range can be expanded or contracted. Nodes can be moved from one range to another by evacuating a node, then deleting and re-creating the node. See the Managing Nodes section for more information. Node allocations occur in the order listed, then when the range is full, move to the next on the list.
Configuring a pod network for multiple CIDRs
networkConfig: clusterNetworks: - cidr: 10.128.0.0/14 1 hostSubnetLength: 9 2 - cidr: 10.132.0.0/14 hostSubnetLength: 9 externalIPNetworkCIDRs: null hostSubnetLength: 9 ingressIPNetworkCIDR: 172.29.0.0/16 networkPluginName: redhat/openshift-ovs-multitenant 3 serviceNetworkCIDR: 172.30.0.0/16
You can add elements to the clusterNetworks
value, or remove them if no node is using that CIDR range, but be sure to restart the API and master services for any changes to take effect.
master-restart api master-restart controllers
The hostSubnetLength
value cannot be changed after the cluster is first created, A cidr
field can only be changed to be a larger network that still contains the original network if nodes are allocated within it’s range , and serviceNetworkCIDR
can only be expanded. For example, given the default value of 10.128.0.0/14, you could change cidr
to 10.128.0.0/9 (i.e., the entire upper half of net 10) but not to 10.64.0.0/16, because that does not overlap the original value.
You can change serviceNetworkCIDR
from 172.30.0.0/16 to 172.30.0.0/15, but not to 172.28.0.0/14, because even though the original range is entirely inside the new range, the original range must be at the start of the CIDR. See Expanding the service network for more information.
14.5. Configuring the Pod Network on Nodes
The cluster administrators can control pod network settings on nodes by modifying parameters in the networkConfig
section of the appropriate node configuration map:
networkConfig: mtu: 1450 1 networkPluginName: "redhat/openshift-ovs-subnet" 2
You must change the MTU size on all masters and nodes that are part of the OpenShift Container Platform SDN. Also, the MTU size of the tun0 interface must be the same across all nodes that are part of the cluster.
14.6. Expanding the service network
If you are running low on addresses in your service network, you can expand the range as long as you ensure that the current range is at the beginning of the new range:
-
Change the
serviceNetworkCIDR
parameter in the configuration files for all masters (/etc/origin/master/master-config.yaml by default). Change only the number following the/
to a smaller number. Delete the
clusterNetwork
object:$ oc delete clusternetwork default
Restart the master host services:
# master-restart controllers
Update the value of the
openshift_portal_net
variable in the Ansible inventory file to the new CIDR:# Configure SDN cluster network and kubernetes service CIDR blocks. These # network blocks should be private and should not conflict with network blocks # in your infrastructure that pods may require access to. Can not be changed # after deployment. #osm_cluster_network_cidr=10.1.0.0/16 #openshift_portal_net=172.30.0.0/<new_CIDR_range>
Run the
config.yml
Ansible playbook to redeploy the cluster:# ansible-playbook /usr/share/ansible/openshift-ansible/playbooks/openshift-master/config.yml
From a master instance, or as a cluster administrator, allow the evacuation of any pod from the node and disable scheduling of other pods on that node:
$ NODE=ose-app-node01.example.com $ oc adm manage-node ${NODE} --schedulable=false NAME STATUS AGE VERSION ose-app-node01.example.com Ready,SchedulingDisabled 20m v1.6.1+5115d708d7 $ oc adm drain ${NODE} --ignore-daemonsets node "ose-app-node01.example.com" already cordoned pod "perl-1-build" evicted pod "perl-1-3lnsh" evicted pod "perl-1-9jzd8" evicted node "ose-app-node01.example.com" drained
NoteIf there are containers running with local volumes that will not migrate, run the following command:
oc adm drain ${NODE} --ignore-daemonsets --delete-local-data
.List the pods on the node to verify that they have been removed:
$ oc adm manage-node ${NODE} --list-pods Listing matched pods on node: ose-app-node01.example.com NAME READY STATUS RESTARTS AGE
- Repeat the previous two steps for each node.
For more information on evacuating and draining pods or nodes, see Node maintenance.
14.7. Migrating Between SDN Plug-ins
If you are already using one SDN plug-in and want to switch to another:
-
Change the
networkPluginName
parameter on all masters and nodes in their configuration files. Restart the API and master services on all masters.
# master-restart api # master-restart controllers
Stop the node service on all masters and nodes:
# systemctl stop atomic-openshift-node.service
If you are switching between OpenShift SDN plug-ins, restart OpenShift SDN on all masters and nodes.
oc delete pod --all -n openshift-sdn
Restart the node service on all masters and nodes.
# systemctl restart atomic-openshift-node.service
If you are switching from an OpenShift SDN plug-in to a third-party plug-in, then clean up OpenShift SDN-specific artifacts:
$ oc delete clusternetwork --all $ oc delete hostsubnets --all $ oc delete netnamespaces --all
When switching from the ovs-subnet to the ovs-multitenant OpenShift SDN plug-in, all the existing projects in the cluster will be fully isolated (assigned unique VNIDs). The cluster administrators can choose to modify the project networks using the administrator CLI.
Check VNIDs by running:
$ oc get netnamespace
14.7.1. Migrating from ovs-multitenant to ovs-networkpolicy
The v1
NetworkPolicy features are available only in OpenShift Container Platform. This means that egress policy types, IPBlock, and combining podSelector
and namespaceSelector
are not available in OpenShift Container Platform.
Do not apply NetworkPolicy
features on default OpenShift Container Platform projects, because they can disrupt communication with the cluster.
In addition to the generic plug-in migration steps above in the Migrating between SDN plug-ins section, there is one additional step when migrating from the ovs-multitenant plug-in to the ovs-networkpolicy plug-in; you must ensure that every namespace has a unique NetID
. This means that if you have previously joined projects together or made projects global, you will need to undo that before switching to the ovs-networkpolicy plug-in, or the NetworkPolicy objects may not function correctly.
A helper script is available that fixes NetID’s
, creates NetworkPolicy objects to isolate previously-isolated namespaces, and enables connections between previously-joined namespaces.
Use the following steps to migrate to the ovs-networkpolicy plug-in, by using this helper script, while still running the ovs-multitenant plug-in:
Download the script and add the execution file permission:
$ curl -O https://raw.githubusercontent.com/openshift/origin/master/contrib/migration/migrate-network-policy.sh $ chmod a+x migrate-network-policy.sh
Run the script (requires the cluster administrator role).
$ ./migrate-network-policy.sh
After running this script, every namespace is fully isolated from every other namespace, therefore connection attempts between pods in different namespaces will fail until you complete the migration to the ovs-networkpolicy plug-in.
If you want newly-created namespaces to also have the same policies by default, you can set default NetworkPolicy objects to be created matching the default-deny
and allow-from-global-namespaces
policies created by the migration script.
In case of script failures or other errors, or if you later decide you want to revert back to the ovs-multitenant plug-in, you can use the un-migration script. This script undoes the changes made by the migration script and re-joins previously-joined namespaces.
14.8. External Access to the Cluster Network
If a host that is external to OpenShift Container Platform requires access to the cluster network, you have two options:
- Configure the host as an OpenShift Container Platform node but mark it unschedulable so that the master does not schedule containers on it.
- Create a tunnel between your host and a host that is on the cluster network.
Both options are presented as part of a practical use-case in the documentation for configuring routing from an edge load-balancer to containers within OpenShift SDN.
14.9. Using Flannel
As an alternate to the default SDN, OpenShift Container Platform also provides Ansible playbooks for installing flannel-based networking. This is useful if running OpenShift Container Platform within a cloud provider platform that also relies on SDN, such as Red Hat OpenStack Platform, and you want to avoid encapsulating packets twice through both platforms.
Flannel uses a single IP network space for all of the containers allocating a contiguous subset of the space to each instance. Consequently, nothing prevents a container from attempting to contact any IP address in the same network space. This hinders multi-tenancy because the network cannot be used to isolate containers in one application from another.
Depending on whether you prefer mutli-tenancy isolation or performance, you should determine the appropriate choice when deciding between OpenShift SDN (multi-tenancy) and flannel (performance) for internal networks.
Flannel is only supported for OpenShift Container Platform on Red Hat OpenStack Platform.
The current version of Neutron enforces port security on ports by default. This prevents the port from sending or receiving packets with a MAC address different from that on the port itself. Flannel creates virtual MACs and IP addresses and must send and receive packets on the port, so port security must be disabled on the ports that carry flannel traffic.
To enable flannel within your OpenShift Container Platform cluster:
Neutron port security controls must be configured to be compatible with Flannel. The default configuration of Red Hat OpenStack Platform disables user control of
port_security
. Configure Neutron to allow users to control theport_security
setting on individual ports.On the Neutron servers, add the following to the /etc/neutron/plugins/ml2/ml2_conf.ini file:
[ml2] ... extension_drivers = port_security
Then, restart the Neutron services:
service neutron-dhcp-agent restart service neutron-ovs-cleanup restart service neutron-metadata-agentrestart service neutron-l3-agent restart service neutron-plugin-openvswitch-agent restart service neutron-vpn-agent restart service neutron-server restart
When creating the OpenShift Container Platform instances on Red Hat OpenStack Platform, disable both port security and security groups in the ports where the container network flannel interface will be:
neutron port-update $port --no-security-groups --port-security-enabled=False
NoteFlannel gather information from etcd to configure and assign the subnets in the nodes. Therefore, the security group attached to the etcd hosts should allow access from nodes to port 2379/tcp, and nodes security group should allow egress communication to that port on the etcd hosts.
Set the following variables in your Ansible inventory file before running the installation:
openshift_use_openshift_sdn=false 1 openshift_use_flannel=true 2 flannel_interface=eth0
Optionally, you can specify the interface to use for inter-host communication using the
flannel_interface
variable. Without this variable, the OpenShift Container Platform installation uses the default interface.NoteCustom networking CIDR for pods and services using flannel will be supported in a future release. BZ#1473858
After the OpenShift Container Platform installation, add a set of iptables rules on every OpenShift Container Platform node:
iptables -A DOCKER -p all -j ACCEPT iptables -t nat -A POSTROUTING -o eth1 -j MASQUERADE
To persist those changes in the /etc/sysconfig/iptables use the following command on every node:
cp /etc/sysconfig/iptables{,.orig} sh -c "tac /etc/sysconfig/iptables.orig | sed -e '0,/:DOCKER -/ s/:DOCKER -/:DOCKER ACCEPT/' | awk '"\!"p && /POSTROUTING/{print \"-A POSTROUTING -o eth1 -j MASQUERADE\"; p=1} 1' | tac > /etc/sysconfig/iptables"
NoteThe
iptables-save
command saves all the current in memory iptables rules. However, because Docker, Kubernetes and OpenShift Container Platform create a high number of iptables rules (services, etc.) not designed to be persisted, saving these rules can become problematic.
To isolate container traffic from the rest of the OpenShift Container Platform traffic, Red Hat recommends creating an isolated tenant network and attaching all the nodes to it. If you are using a different network interface (eth1), remember to configure the interface to start at boot time through the /etc/sysconfig/network-scripts/ifcfg-eth1 file:
DEVICE=eth1 TYPE=Ethernet BOOTPROTO=dhcp ONBOOT=yes DEFTROUTE=no PEERDNS=no
Chapter 15. Configuring Nuage SDN
15.1. Nuage SDN and OpenShift Container Platform
Nuage Networks Virtualized Services Platform (VSP) provides virtual networking and software-defined networking (SDN) infrastructure to Docker container environments that simplifies IT operations and expands OpenShift Container Platform’s native networking capabilities.
Nuage Networks VSP supports Docker-based applications running on OpenShift Container Platform to accelerate the provisioning of virtual networks between pods and traditional workloads, and to enable security policies across the entire cloud infrastructure. VSP allows for the automation of security appliances to include granular security and microsegmentation policies for container applications.
Integrating VSP with the OpenShift Container Platform application workflow allows business applications to be quickly turned up and updated by removing the network lag faced by DevOps teams. VSP supports different workflows with OpenShift Container Platform in order to accommodate scenarios where users can choose ease-of-use or complete control using policy-based automation.
See Networking for more information on how VSP is integrated with OpenShift Container Platform.
15.2. Developer Workflow
This workflow is used in developer environments and requires little input from the developer in setting up the networking. In this workflow, nuage-openshift-monitor is responsible for creating the VSP constructs (Zone, Subnets, etc.) needed to provide appropriate policies and networking for pods created in an OpenShift Container Platform project. When a project is created, a default zone and default subnet for that project are created by nuage-openshift-monitor. When the default subnet created for a given project gets depleted, nuage-openshift-monitor dynamically creates additional subnets.
A separate VSP Zone is created for each OpenShift Container Platform project ensuring isolation amongst the projects.
15.3. Operations Workflow
This workflow is used by operations teams rolling out applications. In this workflow, the network and security policies are first configured on the VSD in accordance with the rules set by the organization to deploy applications. Administrative users can potentially create multiple zones and subnets and map them to the same project using labels. While spinning up the pods, the user can use the Nuage Labels to specify what network a pod needs to attach to and what network policies need to be applied to it. This allows for deployments where inter- and intra-project traffic can be controlled in a fine-grained manner. For example, inter-project communication is enabled on a project by project basis. This may be used to connect projects to common services that are deployed in a shared project.
15.4. Installation
The VSP integration with OpenShift Container Platform works for both virtual machines (VMs) and bare metal OpenShift Container Platform installations.
An environment with High Availability (HA) can be configured with multiple masters and multiple nodes.
Nuage VSP integration in multi-master mode only supports the native HA configuration method described in this section. This can be combined with any load balancing solution, the default being HAProxy. The inventory file contains three master hosts, the nodes, an etcd server, and a host that functions as the HAProxy to balance the master API on all master hosts. The HAProxy host is defined in the [lb] section of the inventory file enabling Ansible to automatically install and configure HAProxy as the load balancing solution.
In the Ansible nodes file, the following parameters need to be specified in order to setup Nuage VSP as the network plug-in:
# Create and OSEv3 group that contains masters, nodes, load-balancers, and etcd hosts masters nodes etcd lb # Nuage specific parameters openshift_use_openshift_sdn=False openshift_use_nuage=True os_sdn_network_plugin_name='nuage/vsp-openshift' openshift_node_proxy_mode='userspace' # VSP related parameters vsd_api_url=https://192.168.103.200:8443 vsp_version=v4_0 enterprise=nuage domain=openshift vsc_active_ip=192.168.103.201 vsc_standby_ip=192.168.103.202 uplink_interface=eth0 # rpm locations nuage_openshift_rpm=http://location_of_rpm_server/openshift/RPMS/x86_64/nuage-openshift-monitor-4.0.X.1830.el7.centos.x86_64.rpm vrs_rpm=http://location_of_rpm_server/openshift/RPMS/x86_64/nuage-openvswitch-4.0.X.225.el7.x86_64.rpm plugin_rpm=http://location_of_rpm_server/openshift/RPMS/x86_64/vsp-openshift-4.0.X1830.el7.centos.x86_64.rpm # Required for Nuage Monitor REST server and HA openshift_master_cluster_method=native openshift_master_cluster_hostname=lb.nuageopenshift.com openshift_master_cluster_public_hostname=lb.nuageopenshift.com nuage_openshift_monitor_rest_server_port=9443 # Optional parameters nuage_interface_mtu=1460 nuage_master_adminusername='admin's user-name' nuage_master_adminuserpasswd='admin's password' nuage_master_cspadminpasswd='csp admin password' nuage_openshift_monitor_log_dir=/var/log/nuage-openshift-monitor # Required for brownfield install (where a {product-title} cluster exists without Nuage as the networking plugin) nuage_dockker_bridge=lbr0 # Specify master hosts [masters] fqdn_of_master_1 fqdn_of_master_2 fqdn_of_master_3 # Specify load balancer host [lb] fqdn_of_load_balancer
Chapter 16. Configuring Kuryr SDN
16.1. Kuryr SDN and OpenShift Container Platform
Prior to OpenShift Container Platform 3.10.119, the ability to configure Kuryr SDN is a Technology Preview feature. Technology Preview features are not supported with Red Hat production service level agreements (SLAs), might not be functionally complete, and Red Hat does not recommend to use them for production. These features provide early access to upcoming product features, enabling customers to test functionality and provide feedback during the development process.
For more information on Red Hat Technology Preview features support scope, see https://access.redhat.com/support/offerings/techpreview/.
Kuryr (or more specifically Kuryr-Kubernetes) is an SDN solution built using CNI and OpenStack Neutron. Its advantages include being able to use a wide range of Neutron SDN backends and providing inter-connectivity between Kubernetes pods and OpenStack virtual machines (VMs).
Kuryr-Kubernetes and OpenShift Container Platform integration is primarily designed for OpenShift Container Platform clusters running on OpenStack VMs. Kuryr-Kubernetes components are installed as pods on OpenShift Container Platform in the openshift-infra
namespace:
-
kuryr-controller - a single service instance, installed on any node. Modeled in OpenShift Container Platform as a
Deployment
. -
kuryr-cni - container installing and configuring Kuryr as CNI driver on each OpenShift Container Platform node. Modeled in OpenShift Container Platform as a
DaemonSet
.
16.2. Installation
The system running openshift-ansible must be subscribed to the OSP as well as OCP repositories. The OpenStack integration requires a few extra packages. To install the dependencies, run:
$ sudo yum install -y ansible openshift-ansible python2-shade python-dns \ python2-heatclient python2-octaviaclient python-openstackclient bind-utils
In the Ansible nodes file, specify the following parameters in order to set up Kuryr-Kubernetes as the network plug-in:
# Enable Kuryr. openshift_use_openshift_sdn=False openshift_use_kuryr=True os_sdn_network_plugin_name=cni # Set userspace so that there are no iptables remains. openshift_node_proxy_mode='userspace' # Keystone URL. kuryr_openstack_auth_url=http://127.0.0.1/identity # OpenStack domain name of user owning Kuryr resources. kuryr_openstack_user_domain_name=default # OpenStack project name of user owning Kuryr resources. kuryr_openstack_user_project_name=admin # OpenStack project id for Kuryr resources. kuryr_openstack_project_id=ec0b31802fd043c08bc15b74d2f9a3d3 # OpenStack username that will own kuryr resources. kuryr_openstack_username=admin # Password for that user. kuryr_openstack_password=password # Default Neutron security groups' IDs for Kubernetes pods kuryr_openstack_pod_sg_id=f74c83a8-a520-421a-930e-21b6cd098c6a,01f85594-9950-4ded-a92c-5ad546a41188 # Default Neutron subnet ID for Kubernetes pods. kuryr_openstack_pod_subnet_id=c85cdee6-0ed1-4d8f-ae61-7afa4674b311 # Default OpenStack project ID for Kubernetes resources. kuryr_openstack_pod_project_id=ec0b31802fd043c08bc15b74d2f9a3d3 # Neutron subnet ID for Kubernetes worker node VMs. kuryr_openstack_worker_nodes_subnet_id=477cfa49-e641-4d31-a7b5-5bc834743f61 # Default Neutron subnet ID for Kubernetes services. kuryr_openstack_service_subnet_id=3b31a106-4084-4db9-bc0c-00b97afe186e
You must also specify an OpenStack cloud provider as described in the OpenStack configuration documentation.
Prior to the installation, you must also provide a DNS server the OpenShift Container Platform nodes will be using for internal name resolution. OpenStack does not provide a node name resolution out of the box. In the following example, 10.20.30.40
is the IP address of the DNS server:
openshift_openstack_dns_nameservers=[10.20.30.40]
If the DNS server supports remote updates via nsupdate
(RFC 2136), the playbooks can populate it automatically, if you add the following configuration:
openshift_openstack_external_nsupdate_keys={private: {"key_secret": "<nsupdate key>", "key_algorithm": "<nsupdate key algorithm>", "key_name": "<nsupdate key name>", "server": 10.20.30.40}}
Finally, install OpenShift Container Platform by running the provision_install.yml playbook. You must specify the dynamic inventory file, inventory.py, and the the path to the Ansible nodes file that you created:
$ ansible-playbook --user openshift -i /usr/share/ansible/openshift-ansible/playbooks/openstack/inventory.py -i ansible-nodes.txt /usr/share/ansible/openshift-ansible/playbooks/openstack/openshift-cluster/provision_install.yml
If you want to do any custom setup on the created nodes before the OpenShift Container Platform installation, you can run the provision.yml and install.yml playbooks separately. provision.yml will create the OpenStack resources (nodes, networks, and so on) and install.yml will install OpenShift Container Platform.
16.3. Verification
Once the installation of OpenShift Container Platform is finished, you can check if Kuryr pods are deployed successfully:
$ oc -n openshift-infra get pods -o wide NAME READY STATUS RESTARTS AGE IP NODE bootstrap-autoapprover-0 1/1 Running 0 3d 10.11.0.7 master-0.openshift.example.com kuryr-cni-ds-66kt2 2/2 Running 0 3d 192.168.99.14 infra-node-0.openshift.example.com kuryr-cni-ds-ggcpz 2/2 Running 0 3d 192.168.99.16 master-0.openshift.example.com kuryr-cni-ds-mhzjt 2/2 Running 0 3d 192.168.99.6 app-node-1.openshift.example.com kuryr-cni-ds-njctb 2/2 Running 0 3d 192.168.99.12 app-node-0.openshift.example.com kuryr-cni-ds-v8hp8 2/2 Running 0 3d 192.168.99.5 infra-node-1.openshift.example.com kuryr-controller-59fc7f478b-qwk4k 1/1 Running 0 3d 192.168.99.5 infra-node-1.openshift.example.com
kuryr-cni pods should run on every OpenShift Container Platform node. Single kuryr-controller instances should run on any of the nodes.
Network policies, namespace isolation and nodeport services are not supported when Kuryr SDN is enabled.
Chapter 17. Configuring for Amazon Web Services (AWS)
17.1. Overview
OpenShift Container Platform can be configured to access an AWS EC2 infrastructure, including using AWS volumes as persistent storage for application data. After you configure AWS, some additional configurations must be completed on the OpenShift Container Platform hosts.
17.1.1. Configuring authorization for Amazon Web Services (AWS)
Permissions AWS instances require either IAM account with Programmatic Access using an access and secret key or IAM role assigned to instances at creation to be able to request and manage load balancers and storage in OpenShift Container Platform.
The IAM account or IAM role must have the following policy permissions permissions to have full cloud provider functionality.
{ "Version": "2012-10-17", "Statement": [ { "Action": [ "ec2:DescribeVolume*", "ec2:CreateVolume", "ec2:CreateTags", "ec2:DescribeInstances", "ec2:AttachVolume", "ec2:DetachVolume", "ec2:DeleteVolume", "ec2:DescribeSubnets", "ec2:CreateSecurityGroup", "ec2:DescribeSecurityGroups", "ec2:DescribeRouteTables", "ec2:AuthorizeSecurityGroupIngress", "ec2:RevokeSecurityGroupIngress", "elasticloadbalancing:DescribeTags", "elasticloadbalancing:CreateLoadBalancerListeners", "elasticloadbalancing:ConfigureHealthCheck", "elasticloadbalancing:DeleteLoadBalancerListeners", "elasticloadbalancing:RegisterInstancesWithLoadBalancer", "elasticloadbalancing:DescribeLoadBalancers", "elasticloadbalancing:CreateLoadBalancer", "elasticloadbalancing:DeleteLoadBalancer", "elasticloadbalancing:ModifyLoadBalancerAttributes", "elasticloadbalancing:DescribeLoadBalancerAttributes" ], "Resource": "*", "Effect": "Allow", "Sid": "1" } ] }
aws iam put-role-policy \ --role-name openshift-role \ --policy-name openshift-admin \ --policy-document file: //openshift_iam_policy
aws iam put-user-policy \ --user-name openshift-admin \ --policy-name openshift-admin \ --policy-document file: //openshift_iam_policy
The OpenShift node instances only need the ec2:DescribeInstance
permission but the installer only allows for a single AWS access key and secret to be defined. This can be bypassed using IAM roles and assigning the permissions above to the master instances and the ec2:DescribeInstance
to nodes.
17.1.1.1. Configuring the OpenShift Container Platform cloud provider at installation
Procedure
To configure the configure the Amazon Web Services cloud provider using an IAM account with an access and secret key add the following values to the inventory:
[OSEv3:vars] openshift_cloudprovider_kind=aws openshift_clusterid=openshift 1 openshift_cloudprovider_aws_access_key=AKIAJ6VLBLISADPBUA 2 openshift_cloudprovider_aws_secret_key=g/8PmDNYHVSQn0BQE+xtsHzbaZaGYjGNzhbdgwjH 3
To configure the configure the Amazon Web Services cloud provider using an IAM role add the following values to the inventory:
[source,yaml]
----
[OSEv3:vars]
openshift_cloudprovider_kind=aws
openshift_clusterid=openshift 1
----
<1> A tag assigned to all resources (instances, load balancers, vpc, etc) used for OpenShift.
NOTE: The IAM role takes the place of needing an access and secret key.
17.1.1.2. Configuring the OpenShift Container Platform cloud provider after installation.
In the event that the Amazon Web Services cloud provider values were not provided at installation time the configuration can be defined and created after the installation. Follow the steps to configure the configuration file and manually configuring the master and node Manually Configuring OpenShift Container Platform Masters for AWS.
-
Every master host, node host, and subnet must have the
kubernetes.io/cluster/<clusterid>,Value=(owned|shared)
tag. One security group, preferably the one linked to the nodes, must have the
kubernetes.io/cluster/<clusterid>,Value=(owned|shared)
tag.-
Do not tag all security groups with the
kubernetes.io/cluster/<clusterid>,Value=(owned|shared)
tag or the Elastic Load Balancing (ELB) will not be able to create a load balancer.
-
Do not tag all security groups with the
17.2. Configuring a Security Group
When installing OpenShift Container Platform on AWS, ensure that you set up the appropriate security groups.
These are some ports that you must have in your security groups, without which the installation fails. You may need more depending on the cluster configuration you want to install. For more information and to adjust your security groups accordingly, see Required Ports for more information.
All OpenShift Container Platform Hosts |
|
etcd Security Group |
|
Master Security Group |
|
Node Security Group |
|
Infrastructure Nodes (ones that can host the OpenShift Container Platform router) |
|
CRI-O |
If using CRIO, you must open tcp/10010 to allow |
If configuring external load-balancers (ELBs) for load balancing the masters and/or routers, you also need to configure Ingress and Egress security groups for the ELBs appropriately.
17.2.1. Overriding Detected IP Addresses and Host Names
In AWS, situations that require overriding the variables include:
Variable | Usage |
---|---|
|
The user is installing in a VPC that is not configured for both |
| You have multiple network interfaces configured and want to use one other than the default. |
|
|
|
|
For EC2 hosts in particular, they must be deployed in a VPC that has both DNS host names
and DNS resolution
enabled.
17.2.1.1. Configuring the OpenShift Container Platform registry for Amazon Web Services (AWS)
Amazon Web Services (AWS) provides object cloud storage that OpenShift Container Platform can use to store container images using the OpenShift Container Platform container registry.
For more information, see Amazon S3.
Prerequisites
OpenShift Container Platform uses S3 for image storage. A S3 bucket, IAM policy, and IAM user with Programmatic Access
should be created to allow for the installer to configure the registry.
The example below uses awscli to create a bucket with the name of openshift-registry-storage
in the region of us-east-1
.
# aws s3api create-bucket \ --bucket openshift-registry-storage \ --region us-east-1
The default policy
{ "Version": "2012-10-17", "Statement": [ { "Effect": "Allow", "Action": [ "s3:ListBucket", "s3:GetBucketLocation", "s3:ListBucketMultipartUploads" ], "Resource": "arn:aws:s3:::S3_BUCKET_NAME" }, { "Effect": "Allow", "Action": [ "s3:PutObject", "s3:GetObject", "s3:DeleteObject", "s3:ListMultipartUploadParts", "s3:AbortMultipartUpload" ], "Resource": "arn:aws:s3:::S3_BUCKET_NAME/*" } ] }
17.2.1.1.1. Configuring the OpenShift Container Platform inventory to use S3
Procedure
To configure the Ansible inventory for the registry to use the S3 bucket and IAM user:
[OSEv3:vars] # AWS Registry Configuration openshift_hosted_manage_registry=true openshift_hosted_registry_storage_kind=object openshift_hosted_registry_storage_provider=s3 openshift_hosted_registry_storage_s3_accesskey=AKIAJ6VLREDHATSPBUA 1 openshift_hosted_registry_storage_s3_secretkey=g/8PmTYDQVGssFWWFvfawHpDbZyGkjGNZhbWQpjH 2 openshift_hosted_registry_storage_s3_bucket=openshift-registry-storage 3 openshift_hosted_registry_storage_s3_region=us-east-1 4 openshift_hosted_registry_storage_s3_chunksize=26214400 openshift_hosted_registry_storage_s3_rootdirectory=/registry openshift_hosted_registry_pullthrough=true openshift_hosted_registry_acceptschema2=true openshift_hosted_registry_enforcequota=true openshift_hosted_registry_replicas=3
17.2.1.1.2. Manually configuring OpenShift Container Platform registry to use S3
To use Amazon Web Services (AWS) S3 object storage, edit the registry’s configuration file and mount to the registry pod.
Procedure
Export the current config.yml:
$ oc get secret registry-config \ -o jsonpath='{.data.config\.yml}' -n default | base64 -d \ >> config.yml.old
Create a new configuration file from the old config.yml:
$ cp config.yml.old config.yml
Edit the file to include the S3 parameters. Specify the accountname, accountkey, container, and realm in the
storage
section of a registry’s configuration file:storage: delete: enabled: true cache: blobdescriptor: inmemory s3: accesskey: AKIAJ6VLREDHATSPBUA 1 secretkey: g/8PmTYDQVGssFWWFvfawHpDbZyGkjGNZhbWQpjH 2 region: us-east-1 3 bucket: openshift-registry-storage 4 encrypt: False secure: true v4auth: true rootdirectory: /registry 5 chunksize: "26214400"
Delete the
registry-config
secret:$ oc delete secret registry-config -n default
Recreate the secret to reference the updated configuration file:
$ oc create secret generic registry-config \ --from-file=config.yml -n default
Redeploy the registry to read the updated configuration:
$ oc rollout latest docker-registry -n default
17.2.1.1.3. Verify the registry is using S3 storage
To verify if the registry is using Amazon S3 storage:
Procedure
After a successful registry deployment, the registry
deploymentconfig
describes registry-storage asemptydir
instead of AWS S3 but the configuration for the AWS S3 bucket resides in the secretdocker-config
. Thedocker-config
secret mounts toREGISTRY_CONFIGURATION_PATH
which provides all of the paramaters when using AWS S3 for the registry object storage.$ oc describe dc docker-registry -n default ... Environment: REGISTRY_HTTP_ADDR: :5000 REGISTRY_HTTP_NET: tcp REGISTRY_HTTP_SECRET: SPLR83SDsPaGbGuwSMDfnDwrDRvGf6YXl4h9JQrToQU= REGISTRY_MIDDLEWARE_REPOSITORY_OPENSHIFT_ENFORCEQUOTA: false REGISTRY_HTTP_TLS_KEY: /etc/secrets/registry.key OPENSHIFT_DEFAULT_REGISTRY: docker-registry.default.svc:5000 REGISTRY_CONFIGURATION_PATH: /etc/registry/config.yml REGISTRY_OPENSHIFT_SERVER_ADDR: docker-registry.default.svc:5000 REGISTRY_HTTP_TLS_CERTIFICATE: /etc/secrets/registry.crt Mounts: /etc/registry from docker-config (rw) /etc/secrets from registry-certificates (rw) /registry from registry-storage (rw) Volumes: registry-storage: Type: EmptyDir (a temporary directory that shares a pod's lifetime) Medium: registry-certificates: Type: Secret (a volume populated by a Secret) SecretName: registry-certificates Optional: false docker-config: Type: Secret (a volume populated by a Secret) SecretName: registry-config Optional: false ....
- The temporary directory that shares a pod’s lifetime.
Ensure that the /registry mountpoint is empty:
$ oc exec \ $(oc get pod -l deploymentconfig=docker-registry \ -o=jsonpath='{.items[0].metadata.name}') -i -t -- ls -l /registry total 0
If it is empty, it is because the S3 configuration is defined in the
registry-config
secret:$ oc describe secret registry-config Name: registry-config Namespace: default Labels: <none> Annotations: <none> Type: Opaque Data ==== config.yml: 398 bytes
The installer creates a config.yml file with the desired configuration using the extended registry capabilities as seen in Storage in the installation documentation. To view the configuration file, including the
storage
section where the storage bucket configuration is stored:$ oc exec \ $(oc get pod -l deploymentconfig=docker-registry \ -o=jsonpath='{.items[0].metadata.name}') \ cat /etc/registry/config.yml version: 0.1 log: level: debug http: addr: :5000 storage: delete: enabled: true cache: blobdescriptor: inmemory s3: accesskey: AKIAJ6VLREDHATSPBUA secretkey: g/8PmTYDQVGssFWWFvfawHpDbZyGkjGNZhbWQpjH region: us-east-1 bucket: openshift-registry-storage encrypt: False secure: true v4auth: true rootdirectory: /registry chunksize: "26214400" auth: openshift: realm: openshift middleware: registry: - name: openshift repository: - name: openshift options: pullthrough: true acceptschema2: true enforcequota: true storage: - name: openshift
Alternatively, you can view the secret:
$ oc get secret registry-config -o jsonpath='{.data.config\.yml}' | base64 -d version: 0.1 log: level: debug http: addr: :5000 storage: delete: enabled: true cache: blobdescriptor: inmemory s3: accesskey: AKIAJ6VLREDHATSPBUA secretkey: g/8PmTYDQVGssFWWFvfawHpDbZyGkjGNZhbWQpjH region: us-east-1 bucket: openshift-registry-storage encrypt: False secure: true v4auth: true rootdirectory: /registry chunksize: "26214400" auth: openshift: realm: openshift middleware: registry: - name: openshift repository: - name: openshift options: pullthrough: true acceptschema2: true enforcequota: true storage: - name: openshift
If using an emptyDir
volume, the /registry
mountpoint looks like the following:
$ oc exec \ $(oc get pod -l deploymentconfig=docker-registry \ -o=jsonpath='{.items[0].metadata.name}') -i -t -- df -h /registry Filesystem Size Used Avail Use% Mounted on /dev/sdc 100G 226M 30G 1% /registry $ oc exec \ $(oc get pod -l deploymentconfig=docker-registry \ -o=jsonpath='{.items[0].metadata.name}') -i -t -- ls -l /registry total 0 drwxr-sr-x. 3 1000000000 1000000000 22 Jun 19 12:24 docker
17.3. Configuring AWS Variables
To set the required AWS variables, create a /etc/origin/cloudprovider/aws.conf file with the following contents on all of your OpenShift Container Platform hosts, both masters and nodes:
[Global]
Zone = us-east-1c 1
- 1
- This is the Availability Zone of your AWS Instance and where your EBS Volume resides; this information is obtained from the AWS Management Console.
17.4. Configuring OpenShift Container Platform for AWS
You can set the AWS configuration on OpenShift Container Platform in two ways:
17.4.1. Configuring OpenShift Container Platform for AWS with Ansible
During cluster installations, AWS can be configured using the openshift_cloudprovider_aws_access_key
, openshift_cloudprovider_aws_secret_key
, openshift_cloudprovider_kind
, openshift_clusterid
parameters, which are configurable in the inventory file.
Example AWS Configuration with Ansible
# Cloud Provider Configuration # # Note: You may make use of environment variables rather than store # sensitive configuration within the ansible inventory. # For example: #openshift_cloudprovider_aws_access_key="{{ lookup('env','AWS_ACCESS_KEY_ID') }}" #openshift_cloudprovider_aws_secret_key="{{ lookup('env','AWS_SECRET_ACCESS_KEY') }}" # #openshift_clusterid=unique_identifier_per_availablility_zone # # AWS (Using API Credentials) #openshift_cloudprovider_kind=aws #openshift_cloudprovider_aws_access_key=aws_access_key_id #openshift_cloudprovider_aws_secret_key=aws_secret_access_key # # AWS (Using IAM Profiles) #openshift_cloudprovider_kind=aws # Note: IAM roles must exist before launching the instances.
When Ansible configures AWS, it automatically makes the necessary changes to the following files:
- /etc/origin/cloudprovider/aws.conf
- /etc/origin/master/master-config.yaml
- /etc/origin/node/node-config.yaml
17.4.2. Manually Configuring OpenShift Container Platform Masters for AWS
Edit or create the master configuration file on all masters (/etc/origin/master/master-config.yaml by default) and update the contents of the apiServerArguments
and controllerArguments
sections:
kubernetesMasterConfig: ... apiServerArguments: cloud-provider: - "aws" cloud-config: - "/etc/origin/cloudprovider/aws.conf" controllerArguments: cloud-provider: - "aws" cloud-config: - "/etc/origin/cloudprovider/aws.conf"
Currently, the nodeName
must match the instance name in AWS in order for the cloud provider integration to work properly. The name must also be RFC1123 compliant.
When triggering a containerized installation, only the directories of /etc/origin and /var/lib/origin are mounted to the master and node container. Therefore, aws.conf should be in /etc/origin/ instead of /etc/.
17.4.3. Manually Configuring OpenShift Container Platform Nodes for AWS
Edit the appropriate node configuration map and update the contents of the kubeletArguments
section:
kubeletArguments: cloud-provider: - "aws" cloud-config: - "/etc/origin/cloudprovider/aws.conf"
When triggering a containerized installation, only the directories of /etc/origin and /var/lib/origin are mounted to the master and node container. Therefore, aws.conf should be in /etc/origin/ instead of /etc/.
17.4.4. Manually Setting Key-Value Access Pairs
Make sure the following environment variables are set in the /etc/origin/master/master.env file on masters and the /etc/sysconfig/atomic-openshift-node file on nodes:
AWS_ACCESS_KEY_ID=<key_ID> AWS_SECRET_ACCESS_KEY=<secret_key>
Access keys are obtained when setting up your AWS IAM user.
17.5. Applying Configuration Changes
Start or restart OpenShift Container Platform services on all master and node hosts to apply your configuration changes, see Restarting OpenShift Container Platform services:
# master-restart api # master-restart controllers # systemctl restart atomic-openshift-node
Switching from not using a cloud provider to using a cloud provider produces an error message. Adding the cloud provider tries to delete the node because the node switches from using the hostname as the externalID
(which would have been the case when no cloud provider was being used) to using the cloud provider’s instance-id
(which is what the cloud provider specifies). To resolve this issue:
- Log in to the CLI as a cluster administrator.
Check and back up existing node labels:
$ oc describe node <node_name> | grep -Poz '(?s)Labels.*\n.*(?=Taints)'
Delete the nodes:
$ oc delete node <node_name>
On each node host, restart the OpenShift Container Platform service.
# systemctl restart atomic-openshift-node
- Add back any labels on each node that you previously had.
17.6. Labeling Clusters for AWS
Starting with OpenShift Container Platform version 3.7 of the atomic-openshift-installer
, if you configured AWS provider credentials, you must also ensure that all hosts are labeled.
To correctly identify which resources are associated with a cluster, tag resources with the key kubernetes.io/cluster/<clusterid>
, where:
-
<clusterid>
is a unique name for the cluster.
Set the corresponding value to owned
if the node belongs exclusively to the cluster or to shared
if it is a resource shared with other systems.
Tagging all resources with the kubernetes.io/cluster/<clusterid>,Value=(owned|shared)
tag avoids potential issues with multiple zones or multiple clusters.
In versions prior to OpenShift Container Platform version 3.6, this was Key=KubernetesCluster,Value=clusterid
.
See Pods and Services to learn more about labeling and tagging in OpenShift Container Platform.
17.6.1. Resources That Need Tags
There are four types of resources that need to be tagged:
- Instances
- Security Groups
- Load Balancers
- EBS Volumes
17.6.2. Tagging an Existing Cluster
A cluster uses the value of the kubernetes.io/cluster/<clusterid>,Value=(owned|shared)
tag to determine which resources belong to the AWS cluster. This means that all relevant resources must be labeled with the kubernetes.io/cluster/<clusterid>,Value=(owned|shared)
tag using the same values for that key. These resources include:
- All hosts.
- All relevant load balancers to be used in the AWS instances.
All EBS volumes. The EBS Volumes that need to be tagged can found with:
$ oc get pv -o json|jq '.items[].spec.awsElasticBlockStore.volumeID'
All relevant security groups to be used with the AWS instances.
NoteDo not tag all existing security groups with the
kubernetes.io/cluster/<name>,Value=<clusterid>
tag, or the Elastic Load Balancing (ELB) will not be able to create a load balancer.
After tagging any resources, restart the master services on the master and restart the node service on all nodes. See the Applying Configuration Section.
17.6.3. About Red Hat OpenShift Container Storage
Red Hat OpenShift Container Storage (RHOCS) is a provider of agnostic persistent storage for OpenShift Container Platform either in-house or in hybrid clouds. As a Red Hat storage solution, RHOCS is completely integrated with OpenShift Container Platform for deployment, management, and monitoring regardless if it is installed on OpenShift Container Platform (converged) or with OpenShift Container Platform (independent). OpenShift Container Storage is not limited to a single availability zone or node, which makes it likely to survive an outage. You can find complete instructions for using RHOCS in the RHOCS 3.10 Deployment Guide.
Chapter 18. Configuring for Red Hat Virtualization
You can configure OpenShift Container Platform to use Red Hat Virtualization.
18.1. Configuring Red Hat Virtualization objects
To integrate OpenShift Container Platform with Red Hat Virtualization, take the following actions as part of your host preparation.
- To provide high availability in case of the loss of one hypervisor host, add each class of instance to a negative affinity group. See VM Affinity.
To ensure that the OpenShift Container Platform environment meets the minimum hardware requirements, create templates for virtual machines that use the following resources:
Master nodes
- Minimum 2 CPU Cores
- 16 GB Memory
- Minimum 10 GB root disk
- Minimum 15 GB container image registry disk
- 30 GB local volume disk
- Minimum 25 GB etcd disk
Infrastructure nodes
- Minimum 2 CPU Cores
- 16 GB Memory
- Minimum 10 GB root disk
- Minimum 15 GB container image registry disk
- 30 GB local volume disk
- Minimum 25 GB Gluster registry disk
Application nodes
- 2 CPU Cores
- 8 GB Memory
- Minimum 10 GB root disk
- Minimum 15 GB container image registry disk
- 30 GB local volume disk
Load balancer node
- 1 CPU Core
- 4 GB Memory
- 10 GB root disk
- Create master, infrastructure, and application nodes as well as a load balancer node. Use the templates that you created.
- Create DNS entries for the routers. Provide entries for all infrastructure instances and configure a round-robin strategy so that the router can pass traffic to applications.
- Create a DNS entry for the OpenShift Container Platform web console. Specify the IP address of the load balancer node.
- To use Red Hat Virtualization, you must provide external storage, for example GlusterFS, for persistent storage of registry images and for application storage.
18.2. Configuring OpenShift Container Platform for Red Hat Virtualization
You configure OpenShift Container Platform for Red Hat Virtualization by modifying the Ansible inventory file before you install the cluster.
Modify the Ansible inventory file, located at /etc/ansible/hosts by default, to use the following YAML sections:
[OSEv3:children] nodes masters etcd glusterfs_registry lb [OSEv3:vars] # General variables ansible_ssh_user=root openshift_deployment_type=openshift-enterprise openshift_release='3.10' openshift_master_cluster_method=native debug_level=2 openshift_debug_level="{{ debug_level }}" openshift_node_debug_level="{{ node_debug_level | default(debug_level, true) }}" openshift_enable_service_catalog=False app_dns_prefix=apps public_hosted_zone=example.com load_balancer_hostname=lb.{{public_hosted_zone}} openshift_master_cluster_hostname="{{ load_balancer_hostname }}" openshift_master_cluster_public_hostname="{{ load_balancer_hostname }}" openshift_master_default_subdomain="{{ app_dns_prefix }}.{{ public_hosted_zone }}" # Pod Networking os_sdn_network_plugin_name=redhat/openshift-ovs-networkpolicy # Registry openshift_hosted_registry_storage_kind=glusterfs # Authentication (example here creates one user, myuser with password changeme) openshift_master_identity_providers="[{'name': 'htpasswd_auth', 'login': 'true', 'challenge': 'True', 'kind': 'HTPasswdPasswordIdentityProvider', 'filename': '/etc/origin/master/htpasswd'}]" openshift_master_htpasswd_users={'myuser': '$apr1$zAhyA9Ko$rBxBOwAwwtRuuaw8OtCwH0'} # Docker and extra file system setup container_runtime_docker_storage_setup_device=/dev/vdb container_runtime_docker_storage_type=overlay2 openshift_docker_use_system_container=False openshift_node_local_quota_per_fsgroup=512Mi 1 openshift_use_system_containers=False [masters] master0.example.com master1.example.com master2.example.com [etcd] master0.example.com master1.example.com master2.example.com [infras] infra0.example.com infra1.example.com infra2.example.com [glusterfs_registry] infra0.example.com glusterfs_devices="['/dev/vdd']" infra1.example.com glusterfs_devices="['/dev/vdd']" infra2.example.com glusterfs_devices="['/dev/vdd']" [lb] lb.example.com [nodes] master0.example.com openshift_node_group_name=node-config-master master1.example.com openshift_node_group_name=node-config-master master2.example.com openshift_node_group_name=node-config-master infra0.example.com openshift_node_group_name=node-config-infra infra1.example.com openshift_node_group_name=node-config-infra infra2.example.com openshift_node_group_name=node-config-infra app0.example.com openshift_node_group_name=node-config-compute app1.example.com openshift_node_group_name=node-config-compute app2.example.com openshift_node_group_name=node-config-compute
- 1
- If you use the
openshift_node_local_quota_per_fsgroup
parameter, you must specify the partition or LVM to use for the directory of/var/lib/origin/openshift.local.volumes
. The partition must be mounted with the option ofgquota
in fstab.
This inventory file uses the following nodes and disks:
- One load balancer instance
Three master instances
- Extra disks attached: 15 GB for the container image registry, 30 GB for local volume storage, and 25 GB for etcd
Three infrastructure instances
- Extra disks attached: 15 GB for Docker, 30 GB for local volume storage, and, because this cluster uses GlusterFS for persistent storage, 25 GB for a GlusterFS registry
One or more application instance
- Extra disks attached: 15 GB for Docker, 30 GB for local volume storage
- Continue to install the cluster following the Installing OpenShift Container Platform steps. During that process, make any changes to your inventory file that your cluster needs.
Chapter 19. Configuring for OpenStack
19.1. Overview
When deployed on OpenStack, OpenShift Container Platform can be configured to access the OpenStack infrastructure, including using OpenStack Cinder volumes as persistent storage for application data.
19.2. Before you Begin
19.2.1. OpenShift Container Platform Prerequisites
A successful deployment of OpenShift Container Platform requires many prerequisites. This consists of a set of infrastructure and host configuration steps prior to the actual installation of OpenShift Container Platform using Ansible. In the following subsequent sections, details regarding the prerequisites and configuration changes required for an OpenShift Container Platform on a OpenStack environment are discussed in detail.
All the OpenStack CLI commands in this reference environment are executed using the CLI openstack
commands within the OpenStack director node. If using a workstation or laptop to execute these commands instead of the OpenStack director node, please ensure to install the following packages found within the specified repositories.
Example:
Enable the rhel-7-server-openstack-13-rpms and the required OpenShift Container Platform repositories from Set Up Repositories.
$ sudo subscription-manager repos \ --enable rhel-7-server-openstack-13-rpms $ sudo yum install -y python2-openstackclient python2-heatclient python2-octaviaclient ansible
Verify the packages are of at least the following versions (use rpm -q <package_name>
):
-
python2-openstackclient
-3.14.1.-1
-
python2-heatclient
1.14.0-1
-
python2-octaviaclient
1.4.0-1
-
ansible > 2.4.3
19.2.1.1. Enabling Octavia: OpenStack Load Balancing as a Service (LBaaS)
Octavia is a supported load balancer solution that is recommended to be used in conjunction with OpenShift Container Platform in order to load balance the external incoming traffic and provide a single view of the OpenShift Container Platform master services for the applications.
In order to enable Octavia, the Octavia service must be included during the installation of the OpenStack overcloud or upgraded if the overcloud already exists. The following steps provide basic non-custom steps in enabling Octavia and apply to both either a clean install of the overcloud or an overcloud update.
The following steps only capture the key pieces required during the deployment of OpenStack when dealing with Octavia. For more information visit the documentation of Installation of OpenStack. It is also important to note that registry methods vary. For more information visit the documentation on Registry Methods. This example used the local registry method.
If using the local registry, create a template to upload the images to the registry. Example shown below.
(undercloud) $ openstack overcloud container image prepare \ -e /usr/share/openstack-tripleo-heat-templates/environments/services-docker/octavia.yaml \ --namespace=registry.access.redhat.com/rhosp13 \ --push-destination=<local-ip-from-undercloud.conf>:8787 \ --prefix=openstack- \ --tag-from-label {version}-{release} \ --output-env-file=/home/stack/templates/overcloud_images.yaml \ --output-images-file /home/stack/local_registry_images.yaml
Verify that the created local_registry_images.yaml contains the Octavia images.
Octavia images in local registry file
... - imagename: registry.access.redhat.com/rhosp13/openstack-octavia-api:13.0-43 push_destination: <local-ip-from-undercloud.conf>:8787 - imagename: registry.access.redhat.com/rhosp13/openstack-octavia-health-manager:13.0-45 push_destination: <local-ip-from-undercloud.conf>:8787 - imagename: registry.access.redhat.com/rhosp13/openstack-octavia-housekeeping:13.0-45 push_destination: <local-ip-from-undercloud.conf>:8787 - imagename: registry.access.redhat.com/rhosp13/openstack-octavia-worker:13.0-44 push_destination: <local-ip-from-undercloud.conf>:8787 ...
The versions of the Octavia containers will vary depending upon the specific Red Hat OpenStack Platform release installed.
The following step pulls the container images from registry.access.redhat.com to the undercloud node. This may take soem time depending on the speed of the network and undercloud disk.
(undercloud) $ sudo openstack overcloud container image upload \ --config-file /home/stack/local_registry_images.yaml \ --verbose
As an Octavia Load Balancer is used to access the OpenShift API, there is a need to increase their listeners default timeouts for the connections. The default timeout is 50 seconds. Increase the timeout to 20 minutes by passying the following file to the overcloud deploy command:
(undercloud) $ cat octavia_timeouts.yaml parameter_defaults: OctaviaTimeoutClientData: 1200000 OctaviaTimeoutMemberData: 1200000
This is not needed from Red Hat OpenStack Platform 14 and onwards.
Install or update your overcloud environment with Octavia:
openstack overcloud deploy --templates \ . . . -e /usr/share/openstack-tripleo-heat-templates/environments/services-docker/octavia.yaml \ -e octavia_timeouts.yaml . . .
The command above only includes the files associated with Octavia. This command will vary based upon your specifc installation of OpenStack. See the official OpenStack documentation for further information. For more information on customizing your Octavia installation, see installation of Octavia using Director.
If Kuryr SDN is used, the overcloud installation requires the "trunk" extension to be enabled at Neutron. This is enabled by default on Director deployments. Use the openvswitch firewall instead of the default ovs-hybrid when the Neutron backend is ML2/OVS. There is no need for modifications if the backend is ML2/OVN.
19.2.1.2. Creating OpenStack User Accounts, Projects, and Roles
Before installing OpenShift Container Platform, the Red Hat OpenStack Platform (RHOSP) environment requires a project, often referred to as a tenant, that stores the OpenStack instances that are to install the OpenShift Container Platform. This project requires ownership by a user and the role of that user to be set to _member_
.
The following steps show how to accomplish the above.
As the OpenStack overcloud administrator,
Create a project (tenant) that is to store the RHOSP instances
$ openstack project create <project>
Create a RHOSP user that has ownership of the previously created project:
$ openstack user create --password <password> <username>
Set the role of the user:
$ openstack role add --user <username> --project <project> _member_
The default quotas assigned to new RH OSP projects are not high enough for OpenShift Container Platform installations. Increase the quotas to at least 30 security groups, 200 security group rules, and 200 ports.
$ openstack quota set --secgroups 30 --secgroup-rules 200 --ports 200 *<project>*
Once the above is complete, an OpenStack administrator can create an RC file with all the required information to the user(s) implementing the OpenShift Container Platform environment.
An example RC file:
$ cat path/to/examplerc # Clear any old environment that may conflict. for key in $( set | awk '{FS="="} /^OS_/ {print $1}' ); do unset $key ; done export OS_PROJECT_DOMAIN_NAME=Default export OS_USER_DOMAIN_NAME=Default export OS_PROJECT_NAME=<project-name> export OS_USERNAME=<username> export OS_PASSWORD=<password> export OS_AUTH_URL=http://<ip>:5000//v3 export OS_CLOUDNAME=<cloud-name> export OS_IDENTITY_API_VERSION=3 # Add OS_CLOUDNAME to PS1 if [ -z "${CLOUDPROMPT_ENABLED:-}" ]; then export PS1=${PS1:-""} export PS1=\${OS_CLOUDNAME:+"(\$OS_CLOUDNAME)"}\ $PS1 export CLOUDPROMPT_ENABLED=1 fi
Changing _OS_PROJECT_DOMAIN_NAME and _OS_USER_DOMAIN_NAME from the Default value is supported as long as both reference the same domain.
As the user(s) implementing the OpenShift Container Platform environment, within the OpenStack director node or workstation, ensure to source
the credentials as follows:
$ source path/to/examplerc
19.2.1.3. Create an OpenStack Flavor
Within OpenStack, flavors define the size of a virtual server by defining the compute, memory, and storage capacity of nova
computing instances. Since the base image within this reference architecture is Red Hat Enterprise Linux 7.5, a m1.node
and m1.master
sized flavor is created with the following specifications as shown in Table 19.1, “Minimum System Requirements for OpenShift”.
Although the minimum system requirements are sufficient to run a cluster, to improve performance, it is recommended to increase vCPU on master nodes. Additionally, more memory is recommended if etcd is co-located on the master nodes.
Node Type | CPU | RAM | Root Disk | Flavor |
---|---|---|---|---|
Masters | 4 | 16 GB | 45 GB |
|
Nodes | 1 | 8 GB | 20 GB |
|
As an OpenStack administrator,
$ openstack flavor create <flavor_name> \ --id auto \ --ram <ram_in_MB> \ --disk <disk_in_GB> \ --vcpus <num_vcpus>
An example below showing the creation of flavors within this reference environment.
$ openstack flavor create m1.master \ --id auto \ --ram 16384 \ --disk 45 \ --vcpus 4 $ openstack flavor create m1.node \ --id auto \ --ram 8192 \ --disk 20 \ --vcpus 1
If access to OpenStack administrator privileges to create new flavors is unavailable, use existing flavors within the OpenStack environment that meet the requirements in Table 19.1, “Minimum System Requirements for OpenShift”.
Verification of the OpenStack flavors via:
$ openstack flavor list
19.2.1.4. Creating an OpenStack Keypair
Red Hat OpenStack Platform uses cloud-init
to place an ssh
public key on each instance as it is created to allow ssh
access to the instance. Red Hat OpenStack Platform expects the user to hold the private key.
Losing the private key will cause the inability to access the instances.
To generate a keypair, use the following command:
$ openstack keypair create <keypair-name> > /path/to/<keypair-name>.pem
Verification of the keypair creation can be done via:
$ openstack keypair list
Once the keypair is created, set the permissions to 600
thus only allowing the owner of the file to read and write to that file.
$ chmod 600 /path/to/<keypair-name>.pem
19.2.1.5. Setting up DNS for OpenShift Container Platform
DNS service is an important component in the OpenShift Container Platform environment. Regardless of the provider of DNS, an organization is required to have certain records in place to serve the various OpenShift Container Platform components.
Using /etc/hosts
is not valid, a proper DNS service must exist.
Using the key secret of the DNS, you can provide the information to the OpenShift Ansible Installer and it will automatically add A records for the target instances and the various OpenShift Container Platform components. This process setup is described later when configuring the OpenShift Ansible Installer.
Access to a DNS server is expected. You can use Red Hat Labs DNS Helper for assistance with access.
Application DNS
Applications served by OpenShift are accessible by the router on ports 80/TCP and 443/TCP. The router uses a wildcard record to map all host names under a specific sub domain to the same IP address without requiring a separate record for each name.
This allows OpenShift Container Platform to add applications with arbitrary names as long as they are under that sub domain.
For example, a wildcard record for *.apps.example.com
causes DNS name lookups for tax.apps.example.com
and home-goods.apps.example.com
to both return the same IP address: 10.19.x.y
. All traffic is forwarded to the OpenShift Routers. The Routers examine the HTTP headers of the queries and forward them to the correct destination.
With a load-balancer such as Octavia, host address of 10.19.x.y, the wildcard DNS record can be added as follows:
IP Address | Hostname | Purpose |
---|---|---|
10.19.x.y |
| User access to application web services |
19.2.1.6. Creation of OpenShift Container Platform Networks via OpenStack
When deploying OpenShift Container Platform on Red Hat OpenStack Platform as described in this segment, the requirements are two networks — public and internal network.
Public Network
The public network is a network that contains external access and can be reached by the outside world. The public network creation can be only done by an OpenStack administrator.
The following commands provide an example of creating an OpenStack provider network for public network access.
As an OpenStack administrator (overcloudrc access),
$ source /path/to/examplerc $ openstack network create <public-net-name> \ --external \ --provider-network-type flat \ --provider-physical-network datacentre $ openstack subnet create <public-subnet-name> \ --network <public-net-name> \ --dhcp \ --allocation-pool start=<float_start_ip>,end=<float_end_ip> \ --gateway <ip> \ --subnet-range <CIDR>
Once the network and subnet have been created verify via:
$ openstack network list $ openstack subnet list
<float_start_ip>
and <float_end_ip>
are the associated floating IP pool provided to the network labeled public network. The Classless Inter-Domain Routing (CIDR) uses the format <ip>/<routing_prefix>
, i.e. 10.0.0.1/24.
Internal Network
The internal network is connected to the public network via a router during the network setup. This allows each Red Hat OpenStack Platform instance attached to the internal network the ability to request a floating IP from the public network for public access. The internal network is created automically by the OpenShift Ansible installer via setting the openshift_openstack_private_network_name
. More information regarding changes required for the OpenShift Ansible installer are described later.
19.2.1.7. Creating OpenStack Deployment Host Security Group
OpenStack networking allows the user to define inbound and outbound traffic filters that can be applied to each instance on a network. This allows the user to limit network traffic to each instance based on the function of the instance services and not depend on host based filtering. The OpenShift Ansible installer handles the proper creation of all the ports and services required for each type of host that is part of the OpenShift Container Platform cluster except for the deployment host.
The following command creates an empty security group with no rules set for the deployment host.
$ source path/to/examplerc
$ openstack security group create <deployment-sg-name>
Verify the creation of the security group:
$ openstack security group list
Deployment Host Security Group
The deployment instance only needs to allow inbound ssh
. This instance exists to give operators a stable base to deploy, monitor and manage the OpenShift Container Platform environment.
Port/Protocol | Service | Remote source | Purpose |
---|---|---|---|
ICMP | ICMP | Any | Allow ping, traceroute, etc. |
22/TCP | SSH | Any | Secure shell login |
Creation of the above security group rules is as follows:
$ source /path/to/examplerc $ openstack security group rule create \ --ingress \ --protocol icmp \ <deployment-sg-name> $ openstack security group rule create \ --ingress \ --protocol tcp \ --dst-port 22 \ <deployment-sg-name>
Verification of the security group rules is as follows:
$ openstack security group rule list <deployment-sg-name>
+--------------------------------------+-------------+-----------+------------+-----------------------+
| ID | IP Protocol | IP Range | Port Range | Remote Security Group |
+--------------------------------------+-------------+-----------+------------+-----------------------+
| 7971fc03-4bfe-4153-8bde-5ae0f93e94a8 | icmp | 0.0.0.0/0 | | None |
| b8508884-e82b-4ee3-9f36-f57e1803e4a4 | None | None | | None |
| cb914caf-3e84-48e2-8a01-c23e61855bf6 | tcp | 0.0.0.0/0 | 22:22 | None |
| e8764c02-526e-453f-b978-c5ea757c3ac5 | None | None | | None |
+--------------------------------------+-------------+-----------+------------+-----------------------+
19.2.1.8. OpenStack Cinder Volumes
OpenStack Block Storage provides persistent block storage management via the cinder
service. Block storage enables the OpenStack user to create a volume that may be attached to different OpenStack instances.
19.2.1.8.1. Docker Volume
The master and node instances contain a volume to store docker
images. The purpose of the volume is to ensure that a large image or container does not compromise node performance or abilities of the existing node.
A docker volume of a minimum of 15GB is required for running containers. This may need adjustment depending on the size and number of containers each node will run.
The docker volume is created by the OpenShift Ansible installer via the variable openshift_openstack_docker_volume_size
. More information regarding changes required for the OpenShift Ansible installer are described later.
19.2.1.8.2. Registry volume
The OpenShift image registry requires a cinder
volume to ensure that images are saved in the event that the registry needs to migrate to another node. The following steps show how to create the image registry via OpenStack. Once the volume is created, the volume ID will be included in the OpenShift Ansible Installer OSEv3.yml file via the parameter openshift_hosted_registry_storage_openstack_volumeID
as described later.
$ source /path/to/examplerc $ openstack volume create --size <volume-size-in-GB> <registry-name>
The registry volume size should be at least 30GB.
Verify the creation of the volume.
$ openstack volume list ----------------------------------------+------------------------------------------------+ | ID | Name | Status | Size | Attached to | +--------------------------------------+-------------------------------------------------+ | d65209f0-9061-4cd8-8827-ae6e2253a18d | <regisry-name>| available | 30 | | +--------------------------------------+-------------------------------------------------+
19.2.1.9. Creating and Configuring the Deployment Instance
The role of the deployment instance is to serve as a utility host for the deployment and management of OpenShift Container Platform.
Creating the Deployment Host Network and Router
Prior to instance creation, an internal network and router must be created for communication with the deployment host. The following commands create that network and router.
$ source path/to/examplerc $ openstack network create <deployment-net-name> $ openstack subnet create --network <deployment-net-name> \ --subnet-range <subnet_range> \ --dns-nameserver <dns-ip> \ <deployment-subnet-name> $ openstack router create <deployment-router-name> $ openstack router set --external-gateway <public-net-name> <deployment-router-name> $ openstack router add subnet <deployment-router-name> <deployment-subnet-name>
Deploying the Deployment Instance
With the network and security group created, deploy the instance.
$ domain=<domain> $ netid1=$(openstack network show <deployment-net-name> -f value -c id) $ openstack server create \ --nic net-id=$netid1 \ --flavor <flavor> \ --image <image> \ --key-name <keypair> \ --security-group <deployment-sg-name> \ deployment.$domain
If the m1.small
flavor does not exist by default then use an existing flavor that meets the requirements of 1 vCPU and 2GB of RAM.
Creating and Adding Floating IP to the Deployment Instance
Once the deployment instance is created, a floating IP must be created and then allocated to the instance. The following shows an example.
$ source /path/to/examplerc
$ openstack floating ip create <public-network-name>
+---------------------+--------------------------------------+
| Field | Value |
+---------------------+--------------------------------------+
| created_at | 2017-08-24T22:44:03Z |
| description | |
| fixed_ip_address | None |
| floating_ip_address | 10.20.120.150 |
| floating_network_id | 084884f9-d9d2-477a-bae7-26dbb4ff1873 |
| headers | |
| id | 2bc06e39-1efb-453e-8642-39f910ac8fd1 |
| port_id | None |
| project_id | ca304dfee9a04597b16d253efd0e2332 |
| project_id | ca304dfee9a04597b16d253efd0e2332 |
| revision_number | 1 |
| router_id | None |
| status | DOWN |
| updated_at | 2017-08-24T22:44:03Z |
+---------------------+--------------------------------------+
Within the above output, the floating_ip_address
field shows that the floating IP 10.20.120.150
is created. In order to assign this IP to the deployment instance, run the following command:
$ source /path/to/examplerc
$ openstack server add floating ip <deployment-instance-name> <ip>
For example, if instance deployment.example.com
is to be assigned IP 10.20.120.150
the command would be:
$ source /path/to/examplerc $ openstack server add floating ip deployment.example.com 10.20.120.150
Adding the RC File to the Deployment Host
Once the deployment host exists, copy the RC file created earlier to the deployment host via scp
as follows
scp <rc-file-deployment-host> cloud-user@<ip>:/home/cloud-user/
19.2.1.10. Deployment Host Configuration for OpenShift Container Platform
The following subsections describe all the steps needed to properly configure the deployment instance.
Configure ~/.ssh/config to use Deployment Host as a Jumphost
To easily connect to the OpenShift Container Platform environment, follow the steps below.
On the OpenStack director node or local workstation with the private key, <keypair-name>.pem:
$ exec ssh-agent bash $ ssh-add /path/to/<keypair-name>.pem Identity added: /path/to/<keypair-name>.pem (/path/to/<keypair-name>.pem)
Add to the ~/.ssh/config
file:
Host deployment HostName <deployment_fqdn_hostname OR IP address> User cloud-user IdentityFile /path/to/<keypair-name>.pem ForwardAgent yes
ssh
into the deployment host with the -A
option that enables forwarding of the authentication agent connection.
Ensure the permissions are read write only for the owner of the ~/.ssh/config file:
$ chmod 600 ~/.ssh/config
$ ssh -A cloud-user@deployment
Once logged into the deployment host, verify the ssh agent forwarding is working via checking for the SSH_AUTH_SOCK
$ echo "$SSH_AUTH_SOCK" /tmp/ssh-NDFDQD02qB/agent.1387
Subscription Manager and Enabling OpenShift Container Platform Repositories
Within the deployment instance, register it with the Red Hat Subscription Manager. This can be accomplished by using credentials:
$ sudo subscription-manager register --username <user> --password '<password>'
Alternatively, you can use an activation key:
$ sudo subscription-manager register --org="<org_id>" --activationkey=<keyname>
Once registered, enable the following repositories as follows.
$ sudo subscription-manager repos \ --enable="rhel-7-server-rpms" \ --enable="rhel-7-server-extras-rpms" \ --enable="rhel-7-server-ose-3.10-rpms" \ --enable="rhel-7-server-ansible-2.4-rpms" \ --enable="rhel-7-server-openstack-13-rpms" \ --enable="rhel-7-server-openstack-13-tools-rpms"
Refer to the Set Up Repositories to confirm the proper OpenShift Container Platform repositories and Ansible versions to enable. The above file is just a sample.
Required Packages on the Deployment Host
The following packages are required to be installed on the deployment host.
Install the following packages:
-
openshift-ansible
-
python-openstackclient
-
python2-heatclient
-
python2-octaviaclient
-
python2-shade
-
python-dns
-
git
-
ansible
$ sudo yum -y install openshift-ansible python-openstackclient python2-heatclient python2-octaviaclient python2-shade python-dns git ansible
Configure Ansible
ansible
is installed on the deployment instance to perform the registration, installation of packages, and the deployment of the OpenShift Container Platform environment on the master and node instances.
Before running playbooks, it is important to create an ansible.cfg file to reflect the environment you wish to deploy:
$ cat ~/ansible.cfg
[defaults]
forks = 20
host_key_checking = False
remote_user = openshift
gathering = smart
fact_caching = jsonfile
fact_caching_connection = $HOME/ansible/facts
fact_caching_timeout = 600
log_path = $HOME/ansible.log
nocows = 1
callback_whitelist = profile_tasks
inventory = /usr/share/ansible/openshift-ansible/playbooks/openstack/inventory.py,/home/cloud-user/inventory
[ssh_connection]
ssh_args = -o ControlMaster=auto -o ControlPersist=600s -o UserKnownHostsFile=/dev/null -o StrictHostKeyChecking=false
control_path = %(directory)s/%%h-%%r
pipelining = True
timeout = 10
[persistent_connection]
connect_timeout = 30
connect_retries = 30
connect_interval = 1
The following parameters values are important to the ansible.cfg file.
-
The
remote_user
must remain as the user openshift. - The inventory parameter ensure that there is no space between the two inventories.
Example: inventory = path/to/inventory1,path/to/inventory2
The code block above can overwrite the default values in the file. Ensure to populate <keypair-name> with the keypair that was copied to the deployment instance.
The inventory folder is created in Section 19.3.1, “Preparing the Inventory for Provisioning”.
OpenShift Authentication
OpenShift Container Platform provides the ability to use many different authentication platforms. A listing of authentication options are available at Configuring Authentication and User Agent.
Configuring the default identity provider is important as the default configuration is to Deny All.
19.3. Provisioning OpenShift Container Platform Instances using the OpenShift Ansible Playbooks
Once the creation and configuration of the deployment host is complete, we turn to preparing the environment for the deployment of OpenShift Container Platform using Ansible. In the following subsections, Ansible is configured and certain YAML files are modified to achieve a successful OpenShift Container Platform on OpenStack deployment.
19.3.1. Preparing the Inventory for Provisioning
With the installation of the openshift-ansible
package complete via our previous steps, there resides a sample-inventory
directory that we will copy to our cloud-user
home directory of the deployment host.
On the deployment host,
$ cp -r /usr/share/ansible/openshift-ansible/playbooks/openstack/sample-inventory/ ~/inventory
Within this inventory directory, the all.yml file contains all the different parameters that must be set in to order to achieve successful provisioning of the RHOCP instances. The OSEv3.yml file contains some references required by the all.yml file and all the available OpenShift Container Platform cluster parameters that you can customize.
19.3.1.1. all.yml configuration
The all.yml has many options that can be modified to meet your specific needs. The information gathered in this file is for the provisioning portion of the instances required for a successful deployment of OpenShift Container Platform. It is important to review these carefully. This document will provide a condensed version of the all.yml and focus on the most critical parameters that need to be set for a successful deployment.
$ cat ~/inventory/group_vars/all.yml --- openshift_openstack_clusterid: "openshift" openshift_openstack_public_dns_domain: "example.com" openshift_openstack_dns_nameservers: ["10.19.115.228"] openshift_openstack_public_hostname_suffix: "-public" openshift_openstack_nsupdate_zone: "{{ openshift_openstack_public_dns_domain }}" openshift_openstack_keypair_name: "openshift" openshift_openstack_external_network_name: "public" openshift_openstack_default_image_name: "rhel75" Optional (Recommended) - This removes the need for floating IPs on the OpenShift Cluster nodes openshift_openstack_node_network_name: <deployment-net-name> openshift_openstack_node_subnet_name: <deployment-subnet-name> openshift_openstack_router_name: <deployment-router-name> openshift_openstack_master_floating_ip: false openshift_openstack_infra_floating_ip: false openshift_openstack_compute_floating_ip: false End of Optional Floating IP section openshift_openstack_num_masters: 3 openshift_openstack_num_infra: 3 openshift_openstack_num_cns: 0 openshift_openstack_num_nodes: 2 openshift_openstack_master_flavor: "m1.master" openshift_openstack_default_flavor: "m1.node" openshift_openstack_use_lbaas_load_balancer: true openshift_openstack_docker_volume_size: "15" # # Roll-your-own DNS openshift_openstack_external_nsupdate_keys: public: key_secret: '/alb8h0EAFWvb4i+CMA12w==' key_name: "update-key" key_algorithm: 'hmac-md5' server: '<ip-of-DNS>' private: key_secret: '/alb8h0EAFWvb4i+CMA12w==' key_name: "update-key" key_algorithm: 'hmac-md5' server: '<ip-of-DNS>' ansible_user: openshift cloud config openshift_openstack_disable_root: true openshift_openstack_user: openshift
Due to using an external DNS server, the private and public sections use the public IP address of the DNS server as the DNS server does not reside in the OpenStack environment.
The values above that are enclosed by asterisks (*) require modification based upon your OpenStack environment and DNS server.
In order to properly modify the DNS portion of the all.yml, login to the DNS server and perform the following commands to capture the key name, key algorithm and key secret:
$ ssh <ip-of-DNS> $ sudo -i # cat /etc/named/<key-name.key> key "update-key" { algorithm hmac-md5; secret "/alb8h0EAFWvb4i+CMA02w=="; };
The key name may vary and the above is only an example.
The following [filename]all.yaml file enables Kuryr SDN instead of the default openshift-sdn. Note that the example below is a condensed version and it is important to review the default template carefully.
$ cat ~/inventory/group_vars/all.yml --- openshift_openstack_clusterid: "openshift" openshift_openstack_public_dns_domain: *"example.com"* openshift_openstack_dns_nameservers: *["10.19.115.228"]* openshift_openstack_public_hostname_suffix: "-public" openshift_openstack_nsupdate_zone: "{{ openshift_openstack_public_dns_domain }}" openshift_openstack_keypair_name: *"openshift"* openshift_openstack_external_network_name: *"public"* openshift_openstack_default_image_name: *"rhel75"* ## Optional (Recommended) - This removes the need for floating IPs ## on the OpenShift Cluster nodes openshift_openstack_node_network_name: *<deployment-net-name>* openshift_openstack_node_subnet_name: *<deployment-subnet-name>* openshift_openstack_router_name: *<deployment-router-name>* openshift_openstack_master_floating_ip: *false* openshift_openstack_infra_floating_ip: *false* openshift_openstack_compute_floating_ip: *false* ## End of Optional Floating IP section openshift_openstack_num_masters: *3* openshift_openstack_num_infra: *3* openshift_openstack_num_cns: *0* openshift_openstack_num_nodes: *2* openshift_openstack_master_flavor: *"m1.master"* openshift_openstack_default_flavor: *"m1.node"* ## Kuryr configuration openshift_use_kuryr: True openshift_use_openshift_sdn: False use_trunk_ports: True os_sdn_network_plugin_name: cni openshift_node_proxy_mode: userspace kuryr_openstack_pool_driver: nested openshift_kuryr_precreate_subports: 5 kuryr_openstack_public_net_id: *<public_ID>* # Select kuryr image (always latest available) openshift_openstack_kuryr_controller_image: registry.access.redhat.com/rhosp14/openstack-kuryr-controller:latest openshift_openstack_kuryr_cni_image: registry.access.redhat.com/rhosp14/openstack-kuryr-cni:latest openshift_master_open_ports: - service: dns tcp port: 53/tcp - service: dns udp port: 53/udp openshift_node_open_ports: - service: dns tcp port: 53/tcp - service: dns udp port: 53/udp # End of Kuryr configuration openshift_openstack_use_lbaas_load_balancer: *true* openshift_openstack_docker_volume_size: "15" # # Roll-your-own DNS *openshift_openstack_external_nsupdate_keys:* public: *key_secret: '/alb8h0EAFWvb4i+CMA12w=='* *key_name: "update-key"* *key_algorithm: 'hmac-md5'* *server: '<ip-of-DNS>'* private: *key_secret: '/alb8h0EAFWvb4i+CMA12w=='* *key_name: "update-key"* *key_algorithm: 'hmac-md5'* *server: '<ip-of-DNS>'* ansible_user: openshift ## cloud config openshift_openstack_disable_root: true openshift_openstack_user: openshift
Use the latest supported kuryr images, regardless of the overcloud Red Hat OpenStack version. For instance, use kuryr images from OSP 14, whether the overcloud is OSP 14 or OSP 13. Kuryr is just another workload on top of the overcloud, and it aligns better with new OpenShift features if you use the latest images.
Network policies, namespace isolation and nodeport services are not supported when Kuryr SDN is enabled.
Brief description of each variable in the table below:
Variable | Description |
---|---|
openshift_openstack_clusterid | Cluster identification name |
openshift_openstack_public_dns_domain | Public DNS domain name |
openshift_openstack_dns_nameservers | IP of DNS nameservers |
openshift_openstack_public_hostname_suffix | Adds a suffix to the node hostname in the DNS record for both public and private |
openshift_openstack_nsupdate_zone | Zone to be updated with OCP instance IPs |
openshift_openstack_keypair_name | Keypair name used to log into OCP instances |
openshift_openstack_external_network_name | OpenStack public network name |
openshift_openstack_default_image_name | OpenStack image used for OCP instances |
openshift_openstack_num_masters | Number of master nodes to deploy |
openshift_openstack_num_infra | Number of infrastructure nodes to deploy |
openshift_openstack_num_cns | Number of container native storage nodes to deploy |
openshift_openstack_num_nodes | Number of application nodes to deploy |
openshift_openstack_master_flavor | Name of the OpenStack flavor used for master instances |
openshift_openstack_default_flavor | Name of the Openstack flavor used for all instances, if specific flavor not specified. |
openshift_openstack_use_lbaas_load_balancer | Boolean value enabling Octavia load balancer (Octavia must be installed) |
openshift_openstack_docker_volume_size | Minimum size of the Docker volume (required variable) |
openshift_openstack_external_nsupdate_keys | Updating the DNS with the instance IP addresses |
ansible_user | Ansible user used to deploy OpenShift Container Platform. "openshift" is the required name and must not be changed. |
openshift_openstack_disable_root | Boolean value that disables root access |
openshift_openstack_user | OCP instances created with this user |
openshift_openstack_node_network_name | Name of existing OpenShift network to use for deployment. This should be the same network name used for your deployment host. |
openshift_openstack_node_subnet_name | Name of existing OpenShift subnet to use for deployment. This should be the same subnet name used for your deployment host. |
openshift_openstack_router_name | Name of existing OpenShift router to use for deployment. This should be the same router name used for your deployment host. |
openshift_openstack_master_floating_ip |
Default is |
openshift_openstack_infra_floating_ip |
Default is |
openshift_openstack_compute_floating_ip |
Default is |
openshift_use_openshift_sdn |
Must set to |
openshift_use_kuryr |
Must set to |
use_trunk_ports |
Must be set to |
os_sdn_network_plugin_name |
selection of the SDN behavior. Must set to |
openshift_node_proxy_mode |
Must set to |
openshift_master_open_ports | Ports to be opened on the VMs when using Kuryr |
kuryr_openstack_public_net_id | Need by Kuryr. ID of the public OpenStack network from where FIPs are obtained |
19.3.1.2. OSEv3.yml
The OSEv3.yml file specificies all the different parameters and customizations relating the installation of OpenShift.
Below is a condensed version of the file with all required variables for a successful deployment. Additional variables may be required depending on what customization is required for your specific OpenShift Container Platform deployment.
$ cat ~/inventory/group_vars/OSEv3.yml --- openshift_deployment_type: openshift-enterprise openshift_release: v3.10 openshift_master_default_subdomain: "apps.{{ (openshift_openstack_clusterid|trim == '') | ternary(openshift_openstack_public_dns_domain, openshift_openstack_clusterid + '.' + openshift_openstack_public_dns_domain) }}" openshift_master_cluster_public_hostname: "console.{{ (openshift_openstack_clusterid|trim == '') | ternary(openshift_openstack_public_dns_domain, openshift_openstack_clusterid + '.' + openshift_openstack_public_dns_domain) }}" OpenStack Credentials: openshift_cloudprovider_kind: openstack openshift_cloudprovider_openstack_auth_url: "{{ lookup('env','OS_AUTH_URL') }}" openshift_cloudprovider_openstack_username: "{{ lookup('env','OS_USERNAME') }}" openshift_cloudprovider_openstack_password: "{{ lookup('env','OS_PASSWORD') }}" openshift_cloudprovider_openstack_tenant_name: "{{ lookup('env','OS_PROJECT_NAME') }}" openshift_cloudprovider_openstack_blockstorage_version: v2 openshift_cloudprovider_openstack_domain_name: "{{ lookup('env','OS_USER_DOMAIN_NAME') }}" # Use Cinder volume for Openshift registry: openshift_hosted_registry_storage_kind: openstack openshift_hosted_registry_storage_access_modes: ['ReadWriteOnce'] openshift_hosted_registry_storage_openstack_filesystem: xfs openshift_hosted_registry_storage_volume_size: 30Gi openshift_hosted_registry_storage_openstack_volumeID: d65209f0-9061-4cd8-8827-ae6e2253a18d openshift_hostname_check: false ansible_become: true #Setting SDN (defaults to ovs-networkpolicy) not part of OSEv3.yml #For more info, on which to choose, visit: #https://docs.openshift.com/container-platform/3.10/architecture/networking/sdn.html#overview networkPluginName: redhat/ovs-networkpolicy #networkPluginName: redhat/ovs-multitenant #Configuring identity providers with Ansible #For initial cluster installations, the Deny All identity provider is configured #by default. It is recommended to be configured with either htpasswd #authentication, LDAP authentication, or Allowing all authentication (not recommended) #For more info, visit: #https://docs.openshift.com/container-platform/3.10/install_config/configuring_authentication.html#identity-providers-ansible #Example of Allowing All #openshift_master_identity_providers: [{'name': 'allow_all', 'login': 'true', 'challenge': 'true', 'kind': 'AllowAllPasswordIdentityProvider'}] #Optional Metrics (uncomment below lines for installation) #openshift_metrics_install_metrics: true #openshift_metrics_cassandra_storage_type: dynamic #openshift_metrics_storage_volume_size: 25Gi #openshift_metrics_cassandra_nodeselector: {"node-role.kubernetes.io/infra":"true"} #openshift_metrics_hawkular_nodeselector: {"node-role.kubernetes.io/infra":"true"} #openshift_metrics_heapster_nodeselector: {"node-role.kubernetes.io/infra":"true"} #Optional Aggregated Logging (uncomment below lines for installation) #openshift_logging_install_logging: true #openshift_logging_es_pvc_dynamic: true #openshift_logging_es_pvc_size: 30Gi #openshift_logging_es_cluster_size: 3 #openshift_logging_es_number_of_replicas: 1 #openshift_logging_es_nodeselector: {"node-role.kubernetes.io/infra":"true"} #openshift_logging_kibana_nodeselector: {"node-role.kubernetes.io/infra":"true"} #openshift_logging_curator_nodeselector: {"node-role.kubernetes.io/infra":"true"}
For further details on any of the variables listed, see an example OpenShift-Ansible host inventory.
19.3.2. OpenStack Prerequisites Playbook
The OpenShift Container Platform Ansible Installer provides a playbook to ensure all the provisioning steps of the OpenStack instances have been met.
Prior to running the playbook, ensure to source the RC file
$ source path/to/examplerc
Via the ansible-playbook
command on the deployment host, ensure all the prerequisites are met using prerequisites.yml
playbook:
$ ansible-playbook /usr/share/ansible/openshift-ansible/playbooks/openstack/openshift-cluster/prerequisites.yml
Once the prerequisite playbook completes successfully, run the provision playbook as follows:
$ ansible-playbook /usr/share/ansible/openshift-ansible/playbooks/openstack/openshift-cluster/provision.yml
If provision.yml prematurely errors, check if the status of the OpenStack stack and wait for it finish
$ watch openstack stack list +--------------------------------------+-------------------+--------------------+----------------------+--------------+ | ID | Stack Name | Stack Status | Creation Time | Updated Time | +--------------------------------------+-------------------+--------------------+----------------------+--------------+ | 87cb6d1c-8516-40fc-892b-49ad5cb87fac | openshift-cluster | CREATE_IN_PROGRESS | 2018-08-20T23:44:46Z | None | +--------------------------------------+-------------------+--------------------+----------------------+--------------+
If the stack shows a CREATE_IN_PROGRESS
, wait for the stack to complete with a final result such as CREATE_COMPLETE
. If the stack does complete successfully, re-run the provision.yml playbook for it to finish all the additional required steps.
If the stack shows a CREATE_FAILED
, make sure to run the following command to see what caused the errors:
$ openstack stack failures list openshift-cluster
19.4. Registering with Subscription Manager the OpenShift Container Platform Instances
With the nodes successfully provisioned, the next step is to ensure all the nodes are successfully registered via subscription-manager
to install all the required packages for a successful OpenShift Container Platform installation. For simplicity, a repos.yml file has been created and provided.
$ cat ~/repos.yml --- - name: Enable the proper repositories for OpenShift installation hosts: OSEv3 become: yes tasks: - name: Register with activationkey and consume subscriptions matching Red Hat Cloud Suite or Red Hat OpenShift Container Platform redhat_subscription: state: present activationkey: <key-name> org_id: <orig_id> pool: '^(Red Hat Cloud Suite|Red Hat OpenShift Container Platform)$' - name: Disable all current repositories rhsm_repository: name: '*' state: disabled - name: Enable Repositories rhsm_repository: name: "{{ item }}" state: enabled with_items: - rhel-7-server-rpms - rhel-7-server-extras-rpms - rhel-7-server-ansible-2.4-rpms - rhel-7-server-ose-3.10-rpms
Refer to the Set Up Repositories to confirm the proper repositories and versions to enable. The above file is just a sample.
With the repos.yml, run the ansible-playbook
command:
$ ansible-playbook repos.yml
The above example uses Ansible’s redhat_subscription
and rhsm_repository
modules for all registration, disabling and enabling of repositories. This specific example takes advantage of using a Red Hat activation key. If you don’t have an activation key, ensure to visit the Ansible redhat_subscription
module to modify using a username and password instead as shown in the examples: https://docs.ansible.com/ansible/2.6/modules/redhat_subscription_module.html
At times, the redhat_subscription
module may fail on certain nodes. If this issue occurs, please manually register that OpenShift Container Platform instance using subscription-manager
.
19.5. Installing OpenShift Container Platform by Using an Ansible Playbook
With the OpenStack instances provisioned, the focus shifts to the installation OpenShift Container Platform. The installation and configuration is done via a series of Ansible playbooks and roles provided by the OpenShift RPM packages. Review the OSEv3.yml file that was previous configured to ensure all the options have been properly set.
Prior to running the installer playbook, ensure all the {rhocp} prerequisites are met via:
$ ansible-playbook /usr/share/ansible/openshift-ansible/playbooks/prerequisites.yml
Run the installer playbook to install Red Hat OpenShift Container Platform:
$ ansible-playbook /usr/share/ansible/openshift-ansible/playbooks/openstack/openshift-cluster/install.yml
{product-tittle} version 3.11 is supported on RH OSP 14 and RH OSP 13. {product-tittle} version 3.10 is supported on RH OSP 13.
19.6. Applying Configuration Changes to Existing OpenShift Container Platform Environment
Start or restart OpenShift Container Platform services on all master and node hosts to apply your configuration changes, see Restarting OpenShift Container Platform services:
# master-restart api # master-restart controllers # systemctl restart atomic-openshift-node
Switching from not using a cloud provider to using a cloud provider produces an error message. Adding the cloud provider tries to delete the node because the node switches from using the hostname as the externalID
(which would have been the case when no cloud provider was being used) to using the cloud provider’s instance-id
(which is what the cloud provider specifies). To resolve this issue:
- Log in to the CLI as a cluster administrator.
Check and back up existing node labels:
$ oc describe node <node_name> | grep -Poz '(?s)Labels.*\n.*(?=Taints)'
Delete the nodes:
$ oc delete node <node_name>
On each node host, restart the OpenShift Container Platform service.
# systemctl restart atomic-openshift-node
- Add back any labels on each node that you previously had.
19.6.1. Configuring OpenStack Variables on an existing OpenShift Environment
To set the required OpenStack variables, modify the /etc/origin/cloudprovider/openstack.conf file with the following contents on all of your OpenShift Container Platform hosts, both masters and nodes:
[Global] auth-url = <OS_AUTH_URL> username = <OS_USERNAME> password = <password> domain-id = <OS_USER_DOMAIN_ID> tenant-id = <OS_TENANT_ID> region = <OS_REGION_NAME> [LoadBalancer] subnet-id = <UUID of the load balancer subnet>
Consult your OpenStack administrators for values of the OS_
variables, which are commonly used in OpenStack configuration.
19.6.2. Configuring Zone Labels for Dynamically Created OpenStack PVs
Administrators can configure zone labels for dynamically created OpenStack PVs. This option is useful if the OpenStack Cinder zone name does not match the compute zone names, for example, if there is only one Cinder zone and many compute zones. Administrators can create Cinder volumes dynamically and then check the labels.
To view the zone labels for the PVs:
# oc get pv --show-labels NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON AGE LABELS pvc-1faa6f93-64ac-11e8-930c-fa163e3c373c 1Gi RWO Delete Bound openshift-node/pvc1 standard 12s failure-domain.beta.kubernetes.io/zone=nova
The default setting is enabled. Using the oc get pv --show-labels
command returns the failure-domain.beta.kubernetes.io/zone=nova
label.
To disable the zone label, update the openstack.conf file by adding:
[BlockStorage] ignore-volume-az = yes
The PVs created after restarting the master services will not have the zone label.
Chapter 20. Configuring for Google Compute Engine
You can configure OpenShift Container Platform to access an existing Google Compute Engine (GCE) infrastructure, including using GCE volumes as persistent storage for application data.
20.1. Before you begin
20.1.1. Configuring authorization for Google Cloud Platform
Roles
Configuring GCP for OpenShift Container Platform requires the following GCP role:
| Needed for creating service accounts, cloud storage, instances, images, templates, Cloud DNS entries, and to deploy load balancers and health checks. |
delete
permissions might also be required if the user is expected to redeploy the environment during testing phases.
You can also create a service account to avoid using personal users when deploying GCP objects.
See the Understanding roles section of the GCP documentation for more information, including steps for how to configure roles.
Scopes and service accounts
GCP uses scopes to determine if an authenticated identity is authorized to perform operations within a resource. For example, if application A with a read-only scope access token can only read, while application B with a read-write scope access token can read and modify data.
The scopes are defined at the GCP API level as https://www.googleapis.com/auth/compute.readonly
.
You can specify scopes using the --scopes=[SCOPE,…]
option when creating instances, or you can use the --no-scopes
option to create the instance without scopes if you don’t want the instance accessing the GCP API.
See the Scopes section of the GCP documentation for more information.
All GCP projects include a default [PROJECT_NUMBER]-compute@developer.gserviceaccount.com
service account with project editor permissions.
By default, a newly created instance is automatically enabled to run as the default service account with the following access scopes:
- https://www.googleapis.com/auth/devstorage.read_only
- https://www.googleapis.com/auth/logging.write
- https://www.googleapis.com/auth/monitoring.write
- https://www.googleapis.com/auth/pubsub
- https://www.googleapis.com/auth/service.management.readonly
- https://www.googleapis.com/auth/servicecontrol
- https://www.googleapis.com/auth/trace.append
- https://www.googleapis.com/auth/bigquery
- https://www.googleapis.com/auth/cloud-platform
- https://www.googleapis.com/auth/compute.readonly
- https://www.googleapis.com/auth/compute
- https://www.googleapis.com/auth/datastore
- https://www.googleapis.com/auth/logging.write
- https://www.googleapis.com/auth/monitoring
- https://www.googleapis.com/auth/monitoring.write
- https://www.googleapis.com/auth/servicecontrol
- https://www.googleapis.com/auth/service.management.readonly
- https://www.googleapis.com/auth/sqlservice.admin
- https://www.googleapis.com/auth/devstorage.full_control
- https://www.googleapis.com/auth/devstorage.read_only
- https://www.googleapis.com/auth/devstorage.read_write
- https://www.googleapis.com/auth/taskqueue
- https://www.googleapis.com/auth/userinfo.email
You can specify another service account with the --service-account=SERVICE_ACCOUNT
option when creating the instance, or explicitly disabling service accounts for the instance using the --no-service-account
option using the gcloud
CLI.
See the Creating a new service account section of the GCP documentation for more information.
20.1.2. Google Compute Engine objects
Integrating OpenShift Container Platform with Google Compute Engine (GCE) requires the following components or services.
- A GCP project
- A GCP project is the base level organizing entity that forms the basis for creating, enabling, and using all GCP services. This includes managing APIs, enabling billing, adding and removing collaborators, and managing permissions.
See the project resource section in the GCP documentation for more information.
Project IDs are unique identifiers, and project IDs must be unique across all of Google Cloud Engine. This means you cannot use myproject
as a project ID if someone else has created a project with that ID before.
- Billing
- You cannot create new resources unless billing is attached to an account. The new project can be linked to an existing project or new information can be entered.
See Create, Modify, or Close Your Billing Account in the GCP documentation for more information.
- Cloud identity and access management
- Deploying OpenShift Container Platform requires the proper permissions. A user must be able to create service accounts, cloud storage, instances, images, templates, Cloud DNS entries, and deploy load balancers and health checks. Delete permissions are also helpful in order to be able to redeploy the environment while testing.
You can create service accounts with specific permissions, then use them to deploy infrastructure components instead of regular users. You can also create roles to limit access to different users or service accounts.
GCP instances use service accounts to allow applications to call GCP APIs. For example, OpenShift Container Platform node hosts can call the GCP disk API to provide a persistent volume to an application.
Access control to the various infrastructure, service resources, and fine-grained roles are available using the IAM service. For more information, see the Access cloud overview section of the GCP documentation.
- SSH keys
- GCP injects SSH public keys as authorized keys so you can log in using SSH in the created instances. You can configure the SSH keys per instance or per project.
You can use existing SSH keys. GCP metadata can help with storing the SSH keys that are injected at boot time in the instances to allow SSH access.
See the Metadata section of the GCP documentation for more information.
- GCP regions and zones
- GCP has a global infrastructure that covers regions and availability zones. While deploying OpenShift Container Platform in GCP on different zones can help avoid single-point-of-failures, there are some caveats regarding storage.
GCP disks are created within a zone. Therefore, if a OpenShift Container Platform node host goes down in zone "A" and the pods move to zone "B", the persistent storage cannot be attached to those pods because the disks are in a different zone.
Deploying a single zone of multizone OpenShift Container Platform environment is an important decision to make before installing OpenShift Container Platform. If deploying a multizone environment, the recommended setup is to use three different zones in a single region.
See the GCP documentation on regions and zones and the Kubernetes documentation on multiple zones for more information.
- External IP address
- So that GCP instances can communicate with the Internet, you must attach an external IP address to the instance. Also, an external IP address is required to communicate with instances deployed in GCP from outside the Virtual Private Cloud (VPC) Network.
Requiring an External IP address
for internet access is a limitation of the provider. You can configure firewall rules to block incoming external traffic in instances if not needed.
See the GCP documentation on external IP address for more information.
- Cloud DNS
- GCP cloud DNS is a DNS service used to publish domain names to the global DNS using GCP DNS servers.
The public cloud DNS zone requires a domain name that you purchased either through Google’s "Domains" service or through a third-party provider. When you create the zone, you must add the name servers provided by Google to the registrar.
See the GCP documentation on Cloud DNS for more information.
GCP VPC networks have an internal DNS service that automatically resolves internal host names.
The internal fully qualified domain name (FQDN) for an instance follows the [HOST_NAME].c.[PROJECT_ID].internal
format.
See the GCP documentation on Internal DNS for more information.
- Load balancing
- The GCP load balancing service enables the distribution of traffic across multiple instances in the GCP cloud.
There are five types of Load Balancing:
HTTPS and TCP proxy load balancing are the only options for using HTTPS health checks for master nodes, which checks the status of /healthz.
Because HTTPS load balancing requires a custom certificate, this implementation uses TCP Proxy load balancing to simplify the process.
See the GCP documentation on Load balancing for more information.
- Instances sizes
- A successful OpenShift Container Platform environment requires some minimum hardware requirements:
Role | Size |
---|---|
Master |
|
Node |
|
GCP allows you to create custom instance sizes to fit different requirements. See Creating an Instance with a Custom Machine Type for more information, or see Machine types and OpenShift Container Platform Minimum Hardware Requirements for more information about instance sizes.
- Storage Options
By default, each GCP instance has a small root persistent disk that contains the operating system. When applications running on the instance require more storage space, you can add additional storage options to the instance:
- Standard persistent disks
- SSD persistent disks
- Local SSDs
- Cloud storage buckets
For more information, see the GCP documentation on Storage options.
20.2. Configuring OpenShift Container Platform for GCE
You can configure OpenShift Container Platform for GCE in two ways:
20.2.1. Option 1: Configuring OpenShift Container Platform for GCP using Ansible
You can configure OpenShift Container Platform for Google Compute Platform (GCP) by modifying the Ansible inventory file at installation time or after installation.
Procedure
At minimum, you must define the
openshift_cloudprovider_kind
,openshift_gcp_project
andopenshift_gcp_prefix
parameters, as well as the optionalopenshift_gcp_multizone
for multizone deployments andopenshift_gcp_network_name
if you are not using the default network name.Add the following section to the Ansible inventory file at installation to configure your OpenShift Container Platform environment for GCP:
[OSEv3:vars] openshift_cloudprovider_kind=gce openshift_gcp_project=<projectid> 1 openshift_gcp_prefix=<uid> 2 openshift_gcp_multizone=False 3 openshift_gcp_network_name=<network name> 4
- 1
- Provide the GCP project ID where the existing instances are running. This ID is generated when you create the project in the Google Cloud Platform Console.
- 2
- Provide a unique string to identify each OpenShift Container Platform cluster. This must be unique across GCP.
- 3
- Optionally, set to
True
to trigger multizone deployments on GCP. Set toFalse
by default. - 4
- Optionally, provide the network name if not using
default
network.
Installing with Ansible also creates and configures the following files to fit your GCP environment:
- /etc/origin/cloudprovider/gce.conf
- /etc/origin/master/master-config.yaml
- /etc/origin/node/node-config.yaml
-
If you are running load balancer services using GCP, the Compute Engine VM node instances require the
ocp
suffix. For example, if the value of theopenshift_gcp_prefix
parameter is set tomycluster
, you must tag the nodes withmyclusterocp
. See Adding and Removing Network Tags for more information on how to add network tags to Compute Engine VM instances. Optionally, you can configure multizone support.
The cluster installation process configures single-zone support by default, but you can configure for multiple zones to avoid single-point-of-failures.
Because GCP disks are created within a zone, deploying OpenShift Container Platform in GCP on different zones can cause problems with storage. If an OpenShift Container Platform node host goes down in zone "A" and the pods move to zone "B", the persistent storage cannot be attached to those pods because the disks are now in a different zone. See Multiple zone limitations in the Kubernetes documentation for more information.
To enable multizone support using the Ansible inventory file, add the following parameter:
[OSEv3:vars] openshift_gcp_multizone=true
To return to single-zone support, set the
openshift_gcp_multizone
value tofalse
and rerun the Ansible inventory file.
20.2.2. Option 2: Manually configuring OpenShift Container Platform for GCE
20.2.2.1. Manually configuring master hosts for GCE
Perform the following procedure on all master hosts.
Procedure
Add the GCE parameters to the
apiServerArguments
andcontrollerArguments
sections of the master configuration file at/etc/origin/master/master-config.yaml
by default:apiServerArguments: cloud-provider: - "gce" cloud-config: - "/etc/origin/cloudprovider/gce.conf" controllerArguments: cloud-provider: - "gce" cloud-config: - "/etc/origin/cloudprovider/gce.conf"
When you configure OpenShift Container Platform for GCP using Ansible, the /etc/origin/cloudprovider/gce.conf file is created automatically. Because you are manually configuring OpenShift Container Platform for GCP, you must create the file and enter the following:
[Global] project-id = <project-id> 1 network-name = <network-name> 2 node-tags = <node-tags> 3 node-instance-prefix = <instance-prefix> 4 multizone = true 5
- 1
- Provide the GCP project ID where the existing instances are running.
- 2
- Provide the network name if not using the default.
- 3
- Provide the tag for the GCP nodes. Must contain
ocp
as a suffix. For example, if the value of thenode-instance-prefix
parameter is set tomycluster
, the nodes must be tagged withmyclusterocp
. - 4
- Provide a unique string to identify your OpenShift Container Platform cluster.
- 5
- Set to
true
to trigger multizone deployments on GCP. Set toFalse
by default.
The cluster installation process configures single-zone support by default.
Deploying OpenShift Container Platform in GCP on different zones can be helpful to avoid single-point-of-failures, but can cause problems with storage. This is because GCP disks are created within a zone. If an OpenShift Container Platform node host goes down in zone "A" and the pods should be moved to zone "B", the persistent storage cannot be attached to those pods, because the disks are now in a different zone. See Multiple zone limitations in the Kubernetes documentation for more information.
ImportantFor running load balancer services using GCP, the Compute Engine VM node instances require the
ocp
suffix:<openshift_gcp_prefix>ocp
. For example, if the value of theopenshift_gcp_prefix
parameter is set tomycluster
, you must tag the nodes withmyclusterocp
. See Adding and Removing Network Tags for more information on how to add network tags to Compute Engine VM instances.Restart the OpenShift Container Platform host services:
# master-restart api # master-restart controllers # systemctl restart atomic-openshift-node
To return to single-zone support, set the multizone
value to false
and restart the master and node host services.
20.2.2.2. Manually configuring node hosts for GCE
Perform the following on all node hosts.
Procedure
Edit the appropriate node configuration map and update the contents of the
kubeletArguments
section:kubeletArguments: cloud-provider: - "gce" cloud-config: - "/etc/origin/cloudprovider/gce.conf"
ImportantThe
nodeName
must match the instance name in GCP in order for the cloud provider integration to work properly. The name must also be RFC1123 compliant.Restart the OpenShift Container Platform services on all nodes.
# systemctl restart atomic-openshift-node
20.2.3. Configuring the OpenShift Container Platform registry for GCP
Google Cloud Platform (GCP) provides object cloud storage that OpenShift Container Platform can use to store container images using the OpenShift Container Platform container registry.
For more information, see Cloud Storage in the GCP documentation.
Prerequisites
You must create the bucket to host the registry images before the installation. The following commands create a regional bucket using the configured service account:
gsutil mb -c regional -l <region> gs://ocp-registry-bucket cat <<EOF > labels.json { "ocp-cluster": "mycluster" } EOF gsutil label set labels.json gs://ocp-registry-bucket rm -f labels.json
A bucket’s data is automatically encrypted using a Google-managed key by default. To specify a different key to encrypt the data, see the Data Encryption Options available in GCP.
See the Creating storage buckets documentation for more information.
Procedure
To configure the Ansible inventory file for the registry to use a Google Cloud Storage (GCS) bucket:
[OSEv3:vars] # GCP Provider Configuration openshift_hosted_registry_storage_provider=gcs openshift_hosted_registry_storage_kind=object openshift_hosted_registry_replicas=1 1 openshift_hosted_registry_storage_gcs_bucket=<bucket_name> 2 openshift_hosted_registry_storage_gcs_keyfile=<bucket_keyfile> 3 openshift_hosted_registry_storage_gcs_rootdirectory=<registry_directory> 4
For more information, see Cloud Storage in the GCP documentation.
20.2.3.1. Manually configuring OpenShift Container Platform registry for GCP
To use GCP object storage, edit the registry’s configuration file and mount to the registry pod.
See the Google Cloud Storage Driver documentation for more information about storage driver configuration files.
Procedure
Export the current /etc/registry/config.yml file:
$ oc get secret registry-config \ -o jsonpath='{.data.config\.yml}' -n default | base64 -d \ >> config.yml.old
Create a new configuration file from the old /etc/registry/config.yml file:
$ cp config.yml.old config.yml
Edit the file to include the GCP parameters. Specify the bucket and keyfile in the
storage
section of a registry’s configuration file:storage: delete: enabled: true cache: blobdescriptor: inmemory gcs: bucket: ocp-registry 1 keyfile: mykeyfile 2
Delete the
registry-config
secret:$ oc delete secret registry-config -n default
Recreate the secret to reference the updated configuration file:
$ oc create secret generic registry-config \ --from-file=config.yml -n default
Redeploy the registry to read the updated configuration:
$ oc rollout latest docker-registry -n default
20.2.3.1.1. Verify the registry is using GCP object storage
To verify if the registry is using GCP bucket storage:
Procedure
After a successful registry deployment using GCP storage, the registry
deploymentconfig
does not show any information if the registry is using anemptydir
instead of GCP bucket storage:$ oc describe dc docker-registry -n default ... Mounts: ... /registry from registry-storage (rw) Volumes: registry-storage: Type: EmptyDir 1 ...
- 1
- The temporary directory that shares a pod’s lifetime.
Check if the /registry mountpoint is empty. This is the volume GCP storage will use:
$ oc exec \ $(oc get pod -l deploymentconfig=docker-registry \ -o=jsonpath='{.items[0].metadata.name}') -i -t -- ls -l /registry total 0
If it is empty, it is because the GCP bucket configuration is performed in the
registry-config
secret:$ oc describe secret registry-config Name: registry-config Namespace: default Labels: <none> Annotations: <none> Type: Opaque Data ==== config.yml: 398 bytes
The installer creates a config.yml file with the desired configuration using the extended registry capabilities as seen in Storage in the installation documentation. To view the configuration file, including the
storage
section where the storage bucket configuration is stored:$ oc exec \ $(oc get pod -l deploymentconfig=docker-registry \ -o=jsonpath='{.items[0].metadata.name}') \ cat /etc/registry/config.yml version: 0.1 log: level: debug http: addr: :5000 storage: delete: enabled: true cache: blobdescriptor: inmemory gcs: bucket: ocp-registry auth: openshift: realm: openshift middleware: registry: - name: openshift repository: - name: openshift options: pullthrough: True acceptschema2: True enforcequota: False storage: - name: openshift
Or you can view the secret:
$ oc get secret registry-config -o jsonpath='{.data.config\.yml}' | base64 -d version: 0.1 log: level: debug http: addr: :5000 storage: delete: enabled: true cache: blobdescriptor: inmemory gcs: bucket: ocp-registry auth: openshift: realm: openshift middleware: registry: - name: openshift repository: - name: openshift options: pullthrough: True acceptschema2: True enforcequota: False storage: - name: openshift
You can verify that any image push was successful by viewing Storage in the GCP console, then clicking Browser and selecting the bucket, or by running the
gsutil
command:$ gsutil ls gs://ocp-registry/ gs://ocp-registry/docker/ $ gsutil du gs://ocp-registry/ 7660385 gs://ocp-registry/docker/registry/v2/blobs/sha256/03/033565e6892e5cc6dd03187d00a4575720a928db111274e0fbf31b410a093c10/data 7660385 gs://ocp-registry/docker/registry/v2/blobs/sha256/03/033565e6892e5cc6dd03187d00a4575720a928db111274e0fbf31b410a093c10/ 7660385 gs://ocp-registry/docker/registry/v2/blobs/sha256/03/ ...
If using an emptyDir
volume, the /registry
mountpoint looks similar to the following:
$ oc exec \ $(oc get pod -l deploymentconfig=docker-registry \ -o=jsonpath='{.items[0].metadata.name}') -i -t -- df -h /registry Filesystem Size Used Avail Use% Mounted on /dev/sdc 30G 226M 30G 1% /registry $ oc exec \ $(oc get pod -l deploymentconfig=docker-registry \ -o=jsonpath='{.items[0].metadata.name}') -i -t -- ls -l /registry total 0 drwxr-sr-x. 3 1000000000 1000000000 22 Jun 19 12:24 docker
20.2.4. Configuring OpenShift Container Platform to use GCP storage
OpenShift Container Platform can use GCP storage using persistent volumes mechanisms. OpenShift Container Platform creates the disk in GCP and attaches the disk to the correct instance.
GCP disks are ReadWriteOnce
access mode, which means the volume can be mounted as read-write by a single node. See the Access modes section of the Architecture guide for more information.
Procedure
OpenShift Container Platform creates the following
storageclass
when you use thegce-pd
provisioner and if you use theopenshift_cloudprovider_kind=gce
andopenshift_gcp_*
variables in the Ansible inventory. Otherwise, if you configured OpenShift Container Platform without using Ansible and thestorageclass
has not been created at installation time, you can create it manually:$ oc get --export storageclass standard -o yaml apiVersion: storage.k8s.io/v1 kind: StorageClass metadata: annotations: storageclass.kubernetes.io/is-default-class: "true" creationTimestamp: null name: standard selfLink: /apis/storage.k8s.io/v1/storageclasses/standard parameters: type: pd-standard provisioner: kubernetes.io/gce-pd reclaimPolicy: Delete
After you request a PV and using the storageclass shown in the previous step, OpenShift Container Platform creates disks in the GCP infrastructure. To verify that the disks were created:
$ gcloud compute disks list | grep kubernetes kubernetes-dynamic-pvc-10ded514-7625-11e8-8c52-42010af00003 us-west1-b 10 pd-standard READY
20.2.5. About Red Hat OpenShift Container Storage
Red Hat OpenShift Container Storage (RHOCS) is a provider of agnostic persistent storage for OpenShift Container Platform either in-house or in hybrid clouds. As a Red Hat storage solution, RHOCS is completely integrated with OpenShift Container Platform for deployment, management, and monitoring regardless if it is installed on OpenShift Container Platform (converged) or with OpenShift Container Platform (independent). OpenShift Container Storage is not limited to a single availability zone or node, which makes it likely to survive an outage. You can find complete instructions for using RHOCS in the RHOCS 3.10 Deployment Guide.
20.3. Using the GCP external load balancer as a service
You can configure OpenShift Container Platform to use the GCP load balancer by exposing services externally using a LoadBalancer
service. OpenShift Container Platform creates the load balancer in GCP and creates the necessary firewall rules.
Procedure
Create a new application:
$ oc new-app openshift/hello-openshift
Expose the load balancer service:
$ oc expose dc hello-openshift --name='hello-openshift-external' --type='LoadBalancer'
This command creates a
LoadBalancer
service similar to the following example:apiVersion: v1 kind: Service metadata: labels: app: hello-openshift name: hello-openshift-external spec: externalTrafficPolicy: Cluster ports: - name: port-1 nodePort: 30714 port: 8080 protocol: TCP targetPort: 8080 - name: port-2 nodePort: 30122 port: 8888 protocol: TCP targetPort: 8888 selector: app: hello-openshift deploymentconfig: hello-openshift sessionAffinity: None type: LoadBalancer
To verify that the service has been created:
$ oc get svc NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE hello-openshift ClusterIP 172.30.62.10 <none> 8080/TCP,8888/TCP 20m hello-openshift-external LoadBalancer 172.30.147.214 35.230.97.224 8080:31521/TCP,8888:30843/TCP 19m
The
LoadBalancer
type and External IP values indicate that the service is using GCP load balancers to expose the application.
OpenShift Container Platform creates the required objects in the GCP infrastructure such as:
Firewall rules:
$ gcloud compute firewall-rules list | grep k8s k8s-4612931a3a47c204-node-http-hc my-net INGRESS 1000 tcp:10256 k8s-fw-a1a8afaa7762811e88c5242010af0000 my-net INGRESS 1000 tcp:8080,tcp:8888
NoteThese firewall rules are applied to instances tagged with
<openshift_gcp_prefix>ocp
. For example, if the value of theopenshift_gcp_prefix
parameter is set tomycluster
, you must tag the nodes withmyclusterocp
. See Adding and Removing Network Tags for more information on how to add network tags to Compute Engine VM instances.Health checks:
$ gcloud compute http-health-checks list | grep k8s k8s-4612931a3a47c204-node 10256 /healthz
A load balancer:
$ gcloud compute target-pools list | grep k8s a1a8afaa7762811e88c5242010af0000 us-west1 NONE k8s-4612931a3a47c204-node $ gcloud compute forwarding-rules list | grep a1a8afaa7762811e88c5242010af0000 a1a8afaa7762811e88c5242010af0000 us-west1 35.230.97.224 TCP us-west1/targetPools/a1a8afaa7762811e88c5242010af0000
To verify that the load balancer is properly configured, run the following command from an external host:
$ curl 35.230.97.224:8080 Hello OpenShift!
Chapter 21. Configuring for Azure
You can configure OpenShift Container Platform to use Microsoft Azure load balancers and disks for persistent application data.
21.1. Before you begin
21.1.1. Configuring authorization for Microsoft Azure
Azure roles
Configuring Microsoft Azure for OpenShift Container Platform requires the following Microsoft Azure role:
Contributor | To create and manage all types of Microsoft Azure resources. |
See the Classic subscription administrator roles vs. Azure RBAC roles vs. Azure AD administrator roles documentation for more information.
Permissions
Configuring Microsoft Azure for OpenShift Container Platform requires a service principal, which allows the creation and management of Kubernetes service load balancers and disks for persistent storage. The service principal values are defined at installation time and deployed to the Azure configuration file, located at /etc/origin/cloudprovider/azure.conf
on OpenShift Container Platform master and node hosts.
Procedure
Using the Azure CLI, obtain the account subscription ID:
# az account list [ { "cloudName": "AzureCloud", "id": "<subscription>", 1 "isDefault": false, "name": "Pay-As-You-Go", "state": "Enabled", "tenantId": "<tenant-id>", "user": { "name": "admin@example.com", "type": "user" } ]
- 1
- The subscription ID to use to create the new permissions.
Create the service principal with the Microsoft Azure role of contributor and with the scope of the Microsoft Azure subscription and the resource group. Record the output of these values to be used when defining the inventory. Use the
<subscription>
value from the previous step in place of the value below:# az ad sp create-for-rbac --name openshiftcloudprovider \ --password <secret> --role contributor \ --scopes /subscriptions/<subscription>/resourceGroups/<resource-group> Retrying role assignment creation: 1/36 Retrying role assignment creation: 2/36 { "appId": "<app-id>", "displayName": "ocpcloudprovider", "name": "http://ocpcloudprovider", "password": "<secret>", "tenant": "<tenant-id>" }
21.1.2. Configuring Microsoft Azure objects
Integrating OpenShift Container Platform with Microsoft Azure requires the following components or services to create a highly-available and full-featured environment.
To ensure that the appropriate amount of instances can be launched, request an increase in CPU quota from Microsoft before creating instances.
- A resource group
- Resource groups contain all Microsoft Azure components for a deployment, including networking, load balancers, virtual machines, and DNS. Quotas and permissions can be applied to resources groups to control and manage resources deployed on Microsoft Azure. Resource groups are created and defined per geographic region. All resources created for an OpenShift Container Platform environment should be within the same geographic region and within the same resource group.
See Azure Resource Manager overview for more information.
- Azure Virtual Networks
- Azure Virtual Networks are used to isolate Azure cloud networks from one another. Instances and load balancers use the virtual network to allow communication with each other and to and from the Internet. The virtual network allows for the creation of one or many subnets to be used by components within a resource group. You can also connect virtual networks to various VPN services, allowing communication with on-premise services.
See What is Azure Virtual Network? for more information.
- Azure DNS
- Azure offers a managed DNS service that provides internal and Internet-accessible host name and load balancer resolution. The reference environment uses a DNS zone to host three DNS A records to allow for mapping of public IPs to OpenShift Container Platform resources and a bastion.
See What is Azure DNS? for more information.
- Load balancing
- Azure load balancers allow network connectivity for scaling and high availability of services running on virtual machines within the Azure environment.
See What is Azure Load Balancer?
- Storage Account
-
Storage Accounts allow for resources, such as virtual machines, to access the different type of storage components offered by Microsoft Azure. During installation, the storage account defines the location of the object-based
blob
storage used for the OpenShift Container Platform registry.
See Introduction to Azure Storage for more information, or the Configuring the OpenShift Container Platform registry for Microsoft Azure section for steps to create the storage account for the registry.
- Service Principal
- Azure offers the ability to create service accounts, which access, manage, or create components within Azure. The service account grants API access to specific services. For example, a service principal allows Kubernetes or OpenShift Container Platform instances to request persistent storage and load balancers. Service principals allow for granular access to be given to instances or users for specific functions.
See Application and service principal objects in Azure Active Directory for more information.
- Availability Sets
- Availability sets ensure that the deployed VMs are distributed across multiple isolated hardware nodes in a cluster. The distribution helps to ensure that when maintenance on the cloud provider hardware occurs, instances will not all run on one specific node.
You should segment instances to different availability sets based on their role. For example, one availability set containing three master hosts, one availability set containing infrastructure hosts, and one availability set containing application hosts. This allows for segmentation and the ability to use external load balancers within OpenShift Container Platform.
See Manage the availability of Linux virtual machines for more information.
- Network Security Groups
- Network Security Groups (NSGs) provide a list of rules to either allow or deny traffic to resources deployed within an Azure Virtual Network. NSGs use numeric priority values and rules to define what items are allowed to communicate with each other. You can place restrictions on where communication is allowed to occur, such as within only the virtual network, from load balancers, or from everywhere.
Priority values allow for administrators to grant granular values on the order in which port communication is allowed or not allowed to occur.
See Plan virtual networks for more information.
- Instances sizes
- A successful OpenShift Container Platform environment requires some minimum hardware requirements.
See the Minimum Hadware Requirements section in the OpenShift Container Platform documentation or Sizes for Cloud Services for more information.
21.2. The Azure configuration file
Configuring OpenShift Container Platform for Azure requires the /etc/azure/azure.conf file, on each node host.
If the file does not exist, you can create it.
tenantId: <> 1 subscriptionId: <> 2 aadClientId: <> 3 aadClientSecret: <> 4 aadTenantId: <> 5 resourceGroup: <> 6 cloud: <> 7 location: <> 8 vnetName: <> 9 securityGroupName: <> 10 primaryAvailabilitySetName: <> 11
- 1
- The AAD tenant ID for the subscription that the cluster is deployed in.
- 2
- The Azure subscription ID that the cluster is deployed in.
- 3
- The client ID for an AAD application with RBAC access to talk to Azure RM APIs.
- 4
- The client secret for an AAD application with RBAC access to talk to Azure RM APIs.
- 5
- Ensure this is the same as tenant ID (optional).
- 6
- The Azure Resource Group name that the Azure VM belongs to.
- 7
- The specific cloud region. For example,
AzurePublicCloud
. - 8
- The compact style Azure region. For example,
southeastasia
(optional). - 9
- Virtual network containing instances and used when creating load balancers.
- 10
- Security group name associated with instances and load balancers.
- 11
- Availability set to use when creating resources such as load balancers (optional).
The NIC used for accessing the instance must have an internal-dns-name
set or the node will not be able to rejoin the cluster, display build logs to the console, and will cause oc rsh
to not work correctly.
21.3. Example inventory for OpenShift Container Platform on Microsoft Azure
The example inventory below assumes that the following items have been created:
- A resource group
- An Azure virtual network
- One or more network security groups that contain the required OpenShift Container Platform ports
- A storage account
- A service principal
- Two load balancers
- Two or more DNS entries for the routers and for the OpenShift Container Platform web console
- Three Availability Sets
- Three master instances
- Three infrastructure instances
- One or more application instances
The inventory below uses the default storageclass
to create persistent volumes to be used by the metrics, logging, and service catalog components managed by a service principal. The registry uses Microsoft Azure blob storage.
If the Microsoft Azure instances use managed disks, provide the following variable in the inventory:
openshift_storageclass_parameters={'kind': 'managed', 'storageaccounttype': 'Premium_LRS'}
or
openshift_storageclass_parameters={'kind': 'managed', 'storageaccounttype': 'Standard_LRS'}
This ensures the storageclass
creates the correct disk type for PVs
as it relates to the instances deployed. If unmanaged disks are used, the storageclass
will use the shared
parameter allowing for unmanged disks to be created for PVs
.
[OSEv3:children] masters etcd nodes [OSEv3:vars] ansible_ssh_user=cloud-user ansible_become=true openshift_cloudprovider_kind=azure #cloudprovider openshift_cloudprovider_kind=azure openshift_cloudprovider_azure_client_id=v9c97ead-1v7E-4175-93e3-623211bed834 openshift_cloudprovider_azure_client_secret=s3r3tR3gistryN0special openshift_cloudprovider_azure_tenant_id=422r3f91-21fe-4esb-vad5-d96dfeooee5d openshift_cloudprovider_azure_subscription_id=6003c1c9-d10d-4366-86cc-e3ddddcooe2d openshift_cloudprovider_azure_resource_group=openshift openshift_cloudprovider_azure_location=eastus #endcloudprovider openshift_master_api_port=443 openshift_master_console_port=443 openshift_hosted_router_replicas=3 openshift_hosted_registry_replicas=1 openshift_master_cluster_method=native openshift_master_cluster_hostname=openshift-master.example.com openshift_master_cluster_public_hostname=openshift-master.example.com openshift_master_default_subdomain=apps.openshift.example.com openshift_deployment_type=openshift-enterprise openshift_master_identity_providers=[{'name': 'idm', 'challenge': 'true', 'login': 'true', 'kind': 'LDAPPasswordIdentityProvider', 'attributes': {'id': ['dn'], 'email': ['mail'], 'name': ['cn'], 'preferredUsername': ['uid']}, 'bindDN': 'uid=admin,cn=users,cn=accounts,dc=example,dc=com', 'bindPassword': 'ldapadmin', 'ca': '/etc/origin/master/ca.crt', 'insecure': 'false', 'url': 'ldap://ldap.example.com/cn=users,cn=accounts,dc=example,dc=com?uid?sub?(memberOf=cn=ose-user,cn=groups,cn=accounts,dc=example,dc=com)'}] networkPluginName=redhat/ovs-networkpolicy openshift_examples_modify_imagestreams=true # Storage Class change to use managed storage openshift_storageclass_parameters={'kind': 'managed', 'storageaccounttype': 'Standard_LRS'} # service catalog openshift_enable_service_catalog=true openshift_hosted_etcd_storage_kind=dynamic openshift_hosted_etcd_storage_volume_name=etcd-vol openshift_hosted_etcd_storage_access_modes=["ReadWriteOnce"] openshift_hosted_etcd_storage_volume_size=SC_STORAGE openshift_hosted_etcd_storage_labels={'storage': 'etcd'} # metrics openshift_metrics_install_metrics=true openshift_metrics_cassandra_storage_type=dynamic openshift_metrics_storage_volume_size=20Gi openshift_metrics_hawkular_nodeselector={"node-role.kubernetes.io/infra": "true"} openshift_metrics_cassandra_nodeselector={"node-role.kubernetes.io/infra": "true"} openshift_metrics_heapster_nodeselector={"node-role.kubernetes.io/infra": "true"} # logging openshift_logging_install_logging=true openshift_logging_es_pvc_dynamic=true openshift_logging_storage_volume_size=50Gi openshift_logging_kibana_nodeselector={"node-role.kubernetes.io/infra": "true"} openshift_logging_curator_nodeselector={"node-role.kubernetes.io/infra": "true"} openshift_logging_es_nodeselector={"node-role.kubernetes.io/infra": "true"} # Setup azure blob registry storage openshift_hosted_registry_storage_kind=object openshift_hosted_registry_storage_azure_blob_accountkey=uZdkVlbca6xzwBqK8VDz15/loLUoc8I6cPfP31ZS+QOSxL6ylWT6CLrcadSqvtNTMgztxH4CGjYfVnRNUhvMiA== openshift_hosted_registry_storage_provider=azure_blob openshift_hosted_registry_storage_azure_blob_accountname=registry openshift_hosted_registry_storage_azure_blob_container=registry openshift_hosted_registry_storage_azure_blob_realm=core.windows.net [masters] ocp-master-1 ocp-master-2 ocp-master-3 [etcd] ocp-master-1 ocp-master-2 ocp-master-3 [nodes] ocp-master-1 openshift_node_group_name="node-config-master" ocp-master-2 openshift_node_group_name="node-config-master" ocp-master-3 openshift_node_group_name="node-config-master" ocp-infra-1 openshift_node_group_name="node-config-infra" ocp-infra-2 openshift_node_group_name="node-config-infra" ocp-infra-3 openshift_node_group_name="node-config-infra" ocp-app-1 openshift_node_group_name="node-config-compute"
21.4. Configuring OpenShift Container Platform for Microsoft Azure
You can configure OpenShift Container Platform for Microsoft Azure in two ways:
21.4.1. Configuring OpenShift Container Platform for Azure using Ansible
You can configure OpenShift Container Platform for Azure at installation time or by running the Ansible inventory file after installation.
Add the following to the Ansible inventory file located at /etc/ansible/hosts by default to configure your OpenShift Container Platform environment for Microsoft Azure:
[OSEv3:vars] openshift_cloudprovider_kind=azure openshift_cloudprovider_azure_client_id=<app_ID> 1 openshift_cloudprovider_azure_client_secret=<secret> 2 openshift_cloudprovider_azure_tenant_id=<tenant_ID> 3 openshift_cloudprovider_azure_subscription_id=<subscription> 4 openshift_cloudprovider_azure_resource_group=<resource_group> 5 openshift_cloudprovider_azure_location=<location> 6
- 1
- The app ID value for the service principal.
- 2
- The secret containing the password for the service principal.
- 3
- The tenant in which the service principal exists.
- 4
- The subscription used by the service principal.
- 5
- The resource group where the service account exists.
- 6
- The Microsoft Azure location where the resource group exists.
Installing with Ansible also creates and configures the following files to fit your Microsoft Azure environment:
- /etc/origin/cloudprovider/azure.conf
- /etc/origin/master/master-config.yaml
- /etc/origin/node/node-config.yaml
21.4.2. Manually configuring OpenShift Container Platform for Microsoft Azure
21.4.2.1. Manually configuring master hosts for Microsoft Azure
Perform the following on all master hosts.
Procedure
Edit the master configuration file located at
/etc/origin/master/master-config.yaml
by default on all masters and update the contents of theapiServerArguments
andcontrollerArguments
sections:kubernetesMasterConfig: ... apiServerArguments: cloud-provider: - "azure" cloud-config: - "/etc/origin/cloudprovider/azure.conf" controllerArguments: cloud-provider: - "azure" cloud-config: - "/etc/origin/cloudprovider/azure.conf"
ImportantWhen triggering a containerized installation, only the /etc/origin and /var/lib/origin directories are mounted to the master and node container. Therefore, ensure master-config.yaml is in the /etc/origin/master directory instead of /etc/.
When you configure OpenShift Container Platform for Microsoft Azure using Ansible, the
/etc/origin/cloudprovider/azure.conf
file is created automatically. Because you are manually configuring OpenShift Container Platform for Microsoft Azure, you must create the file on all node instances and include the following:tenantId: <tenant_ID> 1 subscriptionId: <subscription> 2 aadClientId: <app_ID> 3 aadClientSecret: <secret> 4 aadTenantId: <tenant_ID> 5 resourceGroup: <resource_group> 6 location: <location> 7
- 1
- The tenant in which the service principal exists.
- 2
- The subscription used by the service principal.
- 3
- The appID value for the service principal.
- 4
- The secret containing the password for the service principal.
- 5
- The tenant in which the service principal exists.
- 6
- The resource group where the service account exists.
- 7
- The Microsoft Azure location where the resource group exists.
Restart the OpenShift Container Platform master services:
# master-restart api # master-restart controllers
21.4.2.2. Manually configuring node hosts for Microsoft Azure
Perform the following on all node hosts.
Procedure
Edit the appropriate node configuration map and update the contents of the
kubeletArguments
section:kubeletArguments: cloud-provider: - "azure" cloud-config: - "/etc/origin/cloudprovider/azure.conf"
ImportantThe NIC used for accessing the instance must have an internal DNS name set or the node will not be able to rejoin the cluster, display build logs to the console, and will cause
oc rsh
to not work correctly.Restart the OpenShift Container Platform services on all nodes:
# systemctl restart atomic-openshift-node
21.4.3. Configuring the OpenShift Container Platform registry for Microsoft Azure
Microsoft Azure provides object cloud storage that OpenShift Container Platform can use to store container images using the OpenShift Container Platform container registry.
For more information, see Cloud Storage in the Azure documentation.
You can configure the registry either using Ansible or manually by configuring the registry configuration file.
Prerequisites
You must create a storage account to host the registry images before installation. The following command creates a storage account which is used during installation for image storage:
You can use Microsoft Azure blob storage for storing container images. The OpenShift Container Platform registry uses blob storage to allow for the registry to grow dynamically in size without the need for intervention from an administrator.
Create an Azure storage account:
az storage account create --name <account_name> \ --resource-group <resource_group> \ --location <location> \ --sku Standard_LRS
This creates an account key. To view the account key:
az storage account keys list \ --account-name <account-name> \ --resource-group <resource-group> \ --output table KeyName Permissions Value key1 Full <account-key> key2 Full <extra-account-key>
Only one account key value is required for the configuration of the OpenShift Container Platform registry.
Option 1: Configuring the OpenShift Container Platform registry for Azure using Ansible
Procedure
Configure the Ansible inventory for the registry to use the storage account:
[OSEv3:vars] # Azure Registry Configuration openshift_hosted_registry_replicas=1 1 openshift_hosted_registry_storage_kind=object openshift_hosted_registry_storage_azure_blob_accountkey=<account_key> 2 openshift_hosted_registry_storage_provider=azure_blob openshift_hosted_registry_storage_azure_blob_accountname=<account_name> 3 openshift_hosted_registry_storage_azure_blob_container=<registry> 4 openshift_hosted_registry_storage_azure_blob_realm=core.windows.net
Option 2: Manually configuring OpenShift Container Platform registry for Microsoft Azure
To use Microsoft Azure object storage, edit the registry’s configuration file and mount to the registry pod.
Procedure
Export the current config.yml:
$ oc get secret registry-config \ -o jsonpath='{.data.config\.yml}' -n default | base64 -d \ >> config.yml.old
Create a new configuration file from the old config.yml:
$ cp config.yml.old config.yml
Edit the file to include the Azure parameters:
storage: delete: enabled: true cache: blobdescriptor: inmemory azure: accountname: <account-name> 1 accountkey: <account-key> 2 container: registry 3 realm: core.windows.net 4
Delete the
registry-config
secret:$ oc delete secret registry-config -n default
Recreate the secret to reference the updated configuration file:
$ oc create secret generic registry-config \ --from-file=config.yml -n default
Redeploy the registry to read the updated configuration:
$ oc rollout latest docker-registry -n default
Verifying the registry is using blob object storage
To verify if the registry is using Microsoft Azure blob storage:
Procedure
After a successful registry deployment, the registry
deploymentconfig
will always show that the registry is using anemptydir
instead of Microsoft Azure blob storage:$ oc describe dc docker-registry -n default ... Mounts: ... /registry from registry-storage (rw) Volumes: registry-storage: Type: EmptyDir 1 ...
- 1
- The temporary directory that shares a pod’s lifetime.
Check if the /registry mount point is empty. This is the volume Microsoft Azure storage will use:
$ oc exec \ $(oc get pod -l deploymentconfig=docker-registry \ -o=jsonpath='{.items[0].metadata.name}') -i -t -- ls -l /registry total 0
If it is empty, it is because the Microsoft Azure blob configuration is performed in the
registry-config
secret:$ oc describe secret registry-config Name: registry-config Namespace: default Labels: <none> Annotations: <none> Type: Opaque Data ==== config.yml: 398 bytes
The installer creates a config.yml file with the desired configuration using the extended registry capabilities as seen in Storage in the installation documentation. To view the configuration file, including the
storage
section where the storage bucket configuration is stored:$ oc exec \ $(oc get pod -l deploymentconfig=docker-registry \ -o=jsonpath='{.items[0].metadata.name}') \ cat /etc/registry/config.yml version: 0.1 log: level: debug http: addr: :5000 storage: delete: enabled: true cache: blobdescriptor: inmemory azure: accountname: registry accountkey: uZekVBJBa6xzwAqK8EDz15/hoHUoc8I6cPfP31ZS+QOSxLfo7WT7CLrVPKaqvtNTMgztxH7CGjYfpFRNUhvMiA== container: registry realm: core.windows.net auth: openshift: realm: openshift middleware: registry: - name: openshift repository: - name: openshift options: pullthrough: True acceptschema2: True enforcequota: False storage: - name: openshift
Or you can view the secret:
$ oc get secret registry-config -o jsonpath='{.data.config\.yml}' | base64 -d version: 0.1 log: level: debug http: addr: :5000 storage: delete: enabled: true cache: blobdescriptor: inmemory azure: accountname: registry accountkey: uZekVBJBa6xzwAqK8EDz15/hoHUoc8I6cPfP31ZS+QOSxLfo7WT7CLrVPKaqvtNTMgztxH7CGjYfpFRNUhvMiA== container: registry realm: core.windows.net auth: openshift: realm: openshift middleware: registry: - name: openshift repository: - name: openshift options: pullthrough: True acceptschema2: True enforcequota: False storage: - name: openshift
If using an emptyDir
volume, the /registry
mountpoint looks like the following:
$ oc exec \ $(oc get pod -l deploymentconfig=docker-registry \ -o=jsonpath='{.items[0].metadata.name}') -i -t -- df -h /registry Filesystem Size Used Avail Use% Mounted on /dev/sdc 30G 226M 30G 1% /registry $ oc exec \ $(oc get pod -l deploymentconfig=docker-registry \ -o=jsonpath='{.items[0].metadata.name}') -i -t -- ls -l /registry total 0 drwxr-sr-x. 3 1000000000 1000000000 22 Jun 19 12:24 docker
21.4.4. Configuring OpenShift Container Platform to use Microsoft Azure storage
OpenShift Container Platform can use Microsoft Azure storage using persistent volumes mechanisms. OpenShift Container Platform creates the disk in the resource group and attaches the disk to the correct instance.
Procedure
The following
storageclass
is created when you configure the Azure cloud provider at installation using theopenshift_cloudprovider_kind=azure
andopenshift_cloud_provider_azure
variables in the Ansible inventory:$ oc get --export storageclass azure-standard -o yaml apiVersion: storage.k8s.io/v1 kind: StorageClass metadata: annotations: storageclass.kubernetes.io/is-default-class: "true" creationTimestamp: null name: azure-standard parameters: kind: Shared storageaccounttype: Standard_LRS provisioner: kubernetes.io/azure-disk reclaimPolicy: Delete volumeBindingMode: Immediate
If you did not use Ansible to enable OpenShift Container Platform and Microsoft Azure integration, you can create the
storageclass
manually. See the Dynamic provisioning and creating storage classes section for more information.-
Currently, the default
storageclass
kind isshared
which means that the Microsoft Azure instances must use unmanaged disks. You can optionally modify this by allowing instances to use managed disks by providing theopenshift_storageclass_parameters={'kind': 'Managed', 'storageaccounttype': 'Premium_LRS'}
oropenshift_storageclass_parameters={'kind': 'Managed', 'storageaccounttype': 'Standard_LRS'}
variables in the Ansible inventory file at installation.
Microsoft Azure disks are ReadWriteOnce
access mode, which means the volume can be mounted as read-write by a single node. See the Access modes section of the Architecture guide for more information.
21.4.5. About Red Hat OpenShift Container Storage
Red Hat OpenShift Container Storage (RHOCS) is a provider of agnostic persistent storage for OpenShift Container Platform either in-house or in hybrid clouds. As a Red Hat storage solution, RHOCS is completely integrated with OpenShift Container Platform for deployment, management, and monitoring regardless if it is installed on OpenShift Container Platform (converged) or with OpenShift Container Platform (independent). OpenShift Container Storage is not limited to a single availability zone or node, which makes it likely to survive an outage. You can find complete instructions for using RHOCS in the RHOCS 3.10 Deployment Guide.
21.5. Using the Microsoft Azure external load balancer as a service
OpenShift Container Platform can leverage the Microsoft Azure load balancer by exposing services externally using a LoadBalancer
service. OpenShift Container Platform creates the load balancer in Microsoft Azure and creates the proper firewall rules.
Currently, a bug causes extra variables to be included in the Microsoft Azure infrastructure when using it as a cloud provider and when using it as an external load balancer. See the following for more information:
Prerequisites
Ensure the the Azure configuration file located at /etc/origin/cloudprovider/azure.conf is correctly configured with the appropriate objects. See the Manually configuring OpenShift Container Platform for Microsoft Azure section for an example /etc/origin/cloudprovider/azure.conf file.
Once the values are added, restart the OpenShift Container Platform services on all hosts:
# systemctl restart atomic-openshift-node # master-restart api # master-restart controllers
21.5.1. Deploying a sample application using a load balancer
Procedure
Create a new application:
$ oc new-app openshift/hello-openshift
Expose the load balancer service:
$ oc expose dc hello-openshift --name='hello-openshift-external' --type='LoadBalancer'
This creates a
Loadbalancer
service similar to the following:apiVersion: v1 kind: Service metadata: labels: app: hello-openshift name: hello-openshift-external spec: externalTrafficPolicy: Cluster ports: - name: port-1 nodePort: 30714 port: 8080 protocol: TCP targetPort: 8080 - name: port-2 nodePort: 30122 port: 8888 protocol: TCP targetPort: 8888 selector: app: hello-openshift deploymentconfig: hello-openshift sessionAffinity: None type: LoadBalancer
Verify that the service has been created:
$ oc get svc NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE hello-openshift ClusterIP 172.30.223.255 <none> 8080/TCP,8888/TCP 1m hello-openshift-external LoadBalancer 172.30.99.54 40.121.42.180 8080:30714/TCP,8888:30122/TCP 4m
The
LoadBalancer
type andExternal-IP
fields indicate that the service is using Microsoft Azure load balancers to expose the application.
This creates the following required objects in the Azure infrastructure:
A load balancer:
az network lb list -o table Location Name ProvisioningState ResourceGroup ResourceGuid ---------- ----------- ------------------- --------------- ------------------------------------ eastus kubernetes Succeeded refarch-azr 30ec1980-b7f5-407e-aa4f-e570f06f168d eastus OcpMasterLB Succeeded refarch-azr acb537b2-8a1a-45d2-aae1-ea9eabfaea4a eastus OcpRouterLB Succeeded refarch-azr 39087c4c-a5dc-457e-a5e6-b25359244422
To verify that the load balancer is properly configured, run the following from an external host:
$ curl 40.121.42.180:8080 1
Hello OpenShift!
- 1
- Replace with the values from the
EXTERNAL-IP
verification step above as well as the port number.
Chapter 22. Configuring for VMware vSphere
You can configure OpenShift Container Platform to access VMware vSphere VMDK Volumes. This includes using VMware vSphere VMDK Volumes as persistent storage for application data.
The vSphere Cloud Provider allows using vSphere managed storage within OpenShift Container Platform and supports:
- Volumes
- Persistent volumes
- Storage classes and provisioning volumes
22.1. Before you begin
22.1.1. VMware vSphere cloud provider prerequisites
Prerequisites
Enabling VMware vSphere requires installing the VMware Tools on each Node VM. See Installing VMware tools for more information.
Procedure
- Create a VM folder and move OpenShift Container Platform Node VMs to this folder.
Verify that the Node VM names complies with the regex
[a-z](()?[0-9a-z])?(\.[a-z0-9](([-0-9a-z])?[0-9a-z])?)*
.ImportantVM Names cannot:
- Begin with numbers.
- Have any capital letters.
-
Have any special characters except
-
. - Be shorter than three characters and longer than 63 characters.
Set the
disk.EnableUUID
parameter totrue
for each Node VM. This ensures that the VMware vSphere’s Virtual Machine Disk (VMDK) always presents a consistent UUID to the VM, allowing the disk to be mounted properly.For every vSphere virtual machine node that will be participating in the cluster, follow the steps below using the vSphere console:
Navigate to VM properties → VM Options → Advanced → Configuration Parameters → disk.enableUUID=TRUE
Set up the GOVC environment:
curl -LO https://github.com/vmware/govmomi/releases/download/v0.15.0/govc_linux_amd64.gz gunzip govc_linux_amd64.gz chmod +x govc_linux_amd64 cp govc_linux_amd64 /usr/bin/govc export GOVC_URL='vCenter IP OR FQDN' export GOVC_USERNAME='vCenter User' export GOVC_PASSWORD='vCenter Password' export GOVC_INSECURE=1
Find the Node VM paths:
govc ls /datacenter/vm/<vm-folder-name>
Set
disk.EnableUUID
totrue
for all VMs:govc vm.change -e="disk.enableUUID=1" -vm='VM Path'
If OpenShift Container Platform node VMs are created from a template VM, then disk.EnableUUID=1
can be set on the template VM. VMs cloned from this template inherit this property.
Create and assign roles to the vSphere Cloud Provider user and vSphere entities. vSphere Cloud Provider requires the following privileges to interact with vCenter.
Roles Privileges Entities Propagate to Children manage-k8s-node-vms
Resource.AssignVMToPool System.Anonymous System.Read System.View VirtualMachine.Config.AddExistingDisk VirtualMachine.Config.AddNewDisk VirtualMachine.Config.AddRemoveDevice VirtualMachine.Config.RemoveDisk VirtualMachine.Inventory.Create VirtualMachine.Inventory.Delete
Cluster, Hosts, VM Folder
Yes
manage-k8s-volumes
Datastore.AllocateSpace Datastore.FileManagement System.Anonymous System.Read System.View
Datastore
No
k8s-system-read-and-spbm-profile-view
StorageProfile.View System.Anonymous System.Read System.View
vCenter
No
ReadOnly
System.Anonymous System.Read System.View
Datacenter, Datastore Cluster, Datastore Storage Folder
No
See the vSphere Documentation Center for steps to create a custom role, user, and role assignment.
22.2. Configuring OpenShift Container Platform for vSphere
You can configure OpenShift Container Platform for vSphere in two ways:
22.2.1. Option 1: Configuring OpenShift Container Platform for vSphere using Ansible
You can configure OpenShift Container Platform for VMware vSphere (VCP) by modifying the Ansible inventory file. These changes can be made before installation, or to an existing cluster.
Procedure
Add the following to the Ansible inventory file:
[OSEv3:vars] openshift_cloudprovider_kind=vsphere openshift_cloudprovider_vsphere_username=administrator@vsphere.local 1 openshift_cloudprovider_vsphere_password=<password> openshift_cloudprovider_vsphere_host=10.x.y.32 2 openshift_cloudprovider_vsphere_datacenter=<Datacenter> 3 openshift_cloudprovider_vsphere_datastore=<Datastore> 4
Run the
deploy_cluster.yml
playbook.$ ansible-playbook -i <inventory_file> \ playbooks/deploy_cluster.yml
Installing with Ansible also creates and configures the following files to fit your vSphere environment:
- /etc/origin/cloudprovider/vsphere.conf
- /etc/origin/master/master-config.yaml
- /etc/origin/node/node-config.yaml
As a reference, a full inventory is shown as follows:
The openshift_cloudprovider_vsphere_
values are required for OpenShift Container Platform to be able to create vSphere
resources such as VMDKs on datastores for persistent volumes.
$ cat /etc/ansible/hosts [OSEv3:children] ansible masters infras apps etcd nodes lb [OSEv3:vars] become=yes ansible_become=yes ansible_user=root openshift_release="v3.10" openshift_version="3.10" openshift_deployment_type=openshift-enterprise # Required per https://access.redhat.com/solutions/3480921 oreg_url=registry.access.redhat.com/openshift3/ose-${component}:${version} openshift_examples_modify_imagestreams=true # vSphere Cloud provider openshift_cloudprovider_kind=vsphere openshift_cloudprovider_vsphere_username="administrator@vsphere.local" openshift_cloudprovider_vsphere_password="password" openshift_cloudprovider_vsphere_host="vcsa65-dc1.example.com" openshift_cloudprovider_vsphere_datacenter=Datacenter openshift_cloudprovider_vsphere_cluster=Cluster openshift_cloudprovider_vsphere_resource_pool=ResourcePool openshift_cloudprovider_vsphere_datastore="datastore" openshift_cloudprovider_vsphere_folder="folder" # Service catalog openshift_hosted_etcd_storage_kind=dynamic openshift_hosted_etcd_storage_volume_name=etcd-vol openshift_hosted_etcd_storage_access_modes=["ReadWriteOnce"] openshift_hosted_etcd_storage_volume_size=1G openshift_hosted_etcd_storage_labels={'storage': 'etcd'} openshift_master_ldap_ca_file=/home/cloud-user/mycert.crt openshift_master_identity_providers=[{'name': 'idm', 'challenge': 'true', 'login': 'true', 'kind': 'LDAPPasswordIdentityProvider', 'attributes': {'id': ['dn'], 'email': ['mail'], 'name': ['cn'], 'preferredUsername': ['uid']}, 'bindDN': 'uid=admin,cn=users,cn=accounts,dc=example,dc=com', 'bindPassword': 'ldapadmin', 'ca': '/etc/origin/master/ca.crt', 'insecure': 'false', 'url': 'ldap://ldap.example.com/cn=users,cn=accounts,dc=example,dc=com?uid?sub?(memberOf=cn=ose-user,cn=groups,cn=accounts,dc=openshift,dc=com)'}] # Setup vsphere registry storage openshift_hosted_registry_storage_kind=vsphere openshift_hosted_registry_storage_access_modes=['ReadWriteOnce'] openshift_hosted_registry_storage_annotations=['volume.beta.kubernetes.io/storage-provisioner: kubernetes.io/vsphere-volume'] openshift_hosted_registry_replicas=1 openshift_hosted_router_replicas=3 openshift_master_cluster_method=native openshift_node_local_quota_per_fsgroup=512Mi default_subdomain=example.com openshift_master_cluster_hostname=openshift.example.com openshift_master_cluster_public_hostname=openshift.example.com openshift_master_default_subdomain=apps.example.com os_sdn_network_plugin_name='redhat/openshift-ovs-networkpolicy' osm_use_cockpit=true # Red Hat subscription name and password rhsub_user=username rhsub_pass=password rhsub_pool=8a85f9815e9b371b015e9b501d081d4b # metrics openshift_metrics_install_metrics=true openshift_metrics_storage_kind=dynamic openshift_metrics_storage_volume_size=25Gi # logging openshift_logging_install_logging=true openshift_logging_es_pvc_dynamic=true openshift_logging_es_pvc_size=30Gi openshift_logging_elasticsearch_storage_type=pvc openshift_logging_es_cluster_size=1 openshift_logging_es_nodeselector={"node-role.kubernetes.io/infra": "true"} openshift_logging_kibana_nodeselector={"node-role.kubernetes.io/infra": "true"} openshift_logging_curator_nodeselector={"node-role.kubernetes.io/infra": "true"} openshift_logging_fluentd_nodeselector={"node-role.kubernetes.io/infra": "true"} openshift_logging_storage_kind=dynamic #registry openshift_public_hostname=openshift.example.com [ansible] localhost [masters] master-0.example.com vm_name=master-0 ipv4addr=10.x.y.103 master-1.example.com vm_name=master-1 ipv4addr=10.x.y.104 master-2.example.com vm_name=master-2 ipv4addr=10.x.y.105 [infras] infra-0.example.com vm_name=infra-0 ipv4addr=10.x.y.100 infra-1.example.com vm_name=infra-1 ipv4addr=10.x.y.101 infra-2.example.com vm_name=infra-2 ipv4addr=10.x.y.102 [apps] app-0.example.com vm_name=app-0 ipv4addr=10.x.y.106 app-1.example.com vm_name=app-1 ipv4addr=10.x.y.107 app-2.example.com vm_name=app-2 ipv4addr=10.x.y.108 [etcd] master-0.example.com master-1.example.com master-2.example.com [lb] haproxy-0.example.com vm_name=haproxy-0 ipv4addr=10.x.y.200 [nodes] master-0.example.com openshift_node_group_name="node-config-master" openshift_schedulable=true master-1.example.com openshift_node_group_name="node-config-master" openshift_schedulable=true master-2.example.com openshift_node_group_name="node-config-master" openshift_schedulable=true infra-0.example.com openshift_node_group_name="node-config-infra" infra-1.example.com openshift_node_group_name="node-config-infra" infra-2.example.com openshift_node_group_name="node-config-infra" app-0.example.com openshift_node_group_name="node-config-compute" app-1.example.com openshift_node_group_name="node-config-compute" app-2.example.com openshift_node_group_name="node-config-compute"
Deploying a vSphere VM environment is not officially supported by Red Hat, but it can be configured.
22.2.2. Option 2: Manually configuring OpenShift Container Platform for vSphere
22.2.2.1. Manually configuring master hosts for vSphere
Perform the following on all master hosts.
Procedure
Edit the master configuration file at /etc/origin/master/master-config.yaml by default on all masters and update the contents of the
apiServerArguments
andcontrollerArguments
sections:kubernetesMasterConfig: ... apiServerArguments: cloud-provider: - "vsphere" cloud-config: - "/etc/origin/cloudprovider/vsphere.conf" controllerArguments: cloud-provider: - "vsphere" cloud-config: - "/etc/origin/cloudprovider/vsphere.conf"
ImportantWhen triggering a containerized installation, only the /etc/origin and /var/lib/origin directories are mounted to the master and node container. Therefore, master-config.yaml must be in /etc/origin/master rather than /etc/.
When you configure OpenShift Container Platform for vSphere using Ansible, the /etc/origin/cloudprovider/vsphere.conf file is created automatically. Because you are manually configuring OpenShift Container Platform for vSphere, you must create the file. Before you create the file, decide if you want multiple vCenter zones or not.
The cluster installation process configures single-zone or single vCenter by default. However, deploying OpenShift Container Platform in vSphere on different zones can be helpful to avoid single-point-of-failures, but creates the need for shared storage across zones. If an OpenShift Container Platform node host goes down in zone "A" and the pods should be moved to zone "B". See Multiple zone limitations in the Kubernetes documentation for more information.
To configure a single vCenter server, use the following format for the /etc/origin/cloudprovider/vsphere.conf file:
[Global] 1 user = "myusername" 2 password = "mypassword" 3 port = "443" 4 insecure-flag = "1" 5 datacenters = "mydatacenter" 6 [VirtualCenter "10.10.0.2"] 7 user = "myvCenterusername" password = "password" [Workspace] 8 server = "10.10.0.2" 9 datacenter = "mydatacenter" folder = "path/to/vms" 10 default-datastore = "shared-datastore" 11 resourcepool-path = "myresourcepoolpath" 12 [Disk] scsicontrollertype = pvscsi 13 [Network] public-network = "VM Network" 14
- 1
- Any properties set in the
[Global]
section are used for all specified vcenters unless overriden by the settings in the individual[VirtualCenter]
sections. - 2
- vCenter username for the vSphere cloud provider.
- 3
- vCenter password for the specified user.
- 4
- Optional. Port number for the vCenter server. Defaults to port
443
. - 5
- Set to
1
if the vCenter uses a self-signed certificate. - 6
- Name of the data center on which Node VMs are deployed.
- 7
- Override specific
[Global]
properties for this Virtual Center. Possible setting scan be[Port]
,[user]
,[insecure-flag]
,[datacenters]
. Any settings not specified are pulled from the[Global]
section. - 8
- Set any properties used for various vSphere Cloud Provider functionality. For example, dynamic provisioning, Storage Profile Based Volume provisioning, and others.
- 9
- IP Address or FQDN for the vCenter server.
- 10
- Path to the VM directory for node VMs.
- 11
- Set to the name of the datastore to use for provisioning volumes using the storage classes or dynamic provisioning. Prior to OpenShift Container Platform 3.9, if the datastore was located in a storage directory or is a member of a datastore cluster, the full path was required.
- 12
- Optional. Set to the path to the resource pool where dummy VMs for Storage Profile Based volume provisioning must be created.
- 13
- Type of SCSI controller the VMDK will be attached to the VM as.
- 14
- Set to the network port group for vSphere to access the node, which is called VM Network by default. This is the node host’s ExternalIP that is registered with Kubernetes.
To configure a multiple vCenter servers, use the following format for the /etc/origin/cloudprovider/vsphere.conf file:
[Global] 1 user = "myusername" 2 password = "mypassword" 3 port = "443" 4 insecure-flag = "1" 5 datacenters = "us-east, us-west" 6 [VirtualCenter "10.10.0.2"] 7 user = "myvCenterusername" password = "password" [VirtualCenter "10.10.0.3"] port = "448" insecure-flag = "0" [Workspace] 8 server = "10.10.0.2" 9 datacenter = "mydatacenter" folder = "path/to/vms" 10 default-datastore = "shared-datastore" 11 resourcepool-path = "myresourcepoolpath" 12 [Disk] scsicontrollertype = pvscsi 13 [Network] public-network = "VM Network" 14
- 1
- Any properties set in the
[Global]
section are used for all specified vcenters unless overriden by the settings in the individual[VirtualCenter]
sections. - 2
- vCenter username for the vSphere cloud provider.
- 3
- vCenter password for the specified user.
- 4
- Optional. Port number for the vCenter server. Defaults to port
443
. - 5
- Set to
1
if the vCenter uses a self-signed certificate. - 6
- Name of the data centers on which Node VMs are deployed.
- 7
- Override specific
[Global]
properties for this Virtual Center. Possible setting scan be[Port]
,[user]
,[insecure-flag]
,[datacenters]
. Any settings not specified are pulled from the[Global]
section. - 8
- Set any properties used for various vSphere Cloud Provider functionality. For example, dynamic provisioning, Storage Profile Based Volume provisioning, and others.
- 9
- IP Address or FQDN for the vCenter server where the Cloud Provider communicates.
- 10
- Path to the VM directory for node VMs.
- 11
- Set to the name of the datastore to use for provisioning volumes using the storage classes or dynamic provisioning. Prior to OpenShift Container Platform 3.9, if the datastore was located in a storage directory or is a member of a datastore cluster, the full path was required.
- 12
- Optional. Set to the path to the resource pool where dummy VMs for Storage Profile Based volume provisioning must be created.
- 13
- Type of SCSI controller the VMDK will be attached to the VM as.
- 14
- Set to the network port group for vSphere to access the node, which is called VM Network by default. This is the node host’s ExternalIP that is registered with Kubernetes.
ImportantThis ensures that the VMDK always presents a consistent UUID to the VM, allowing the disk to be mounted properly.
For every virtual machine node that will be participating in the cluster: VM properties → VM Options → Advanced → Configuration Parameters → disk.enableUUID=TRUE
Alternatively, the GOVC tool can be used:
Set up the GOVC environment:
export GOVC_URL='vCenter IP OR FQDN' export GOVC_USERNAME='vCenter User' export GOVC_PASSWORD='vCenter Password' export GOVC_INSECURE=1
Find the Node VM paths:
govc ls /datacenter/vm/<vm-folder-name>
Set disk.EnableUUID to true for all VMs:
govc vm.change -e="disk.enableUUID=1" -vm='VM Path'
NoteIf OpenShift Container Platform node VMs are created from a template VM, then
disk.EnableUUID=1
can be set on the template VM. VMs cloned from this template inherit this property.
Restart the OpenShift Container Platform host services:
# master-restart api # master-restart controllers # systemctl restart atomic-openshift-node
22.2.2.2. Manually configuring node hosts for vSphere
Perform the following on all node hosts.
Procedure
To configure the OpenShift Container Platform nodes for vSphere:
Edit the appropriate node configuration map and update the contents of the
kubeletArguments
section:kubeletArguments: cloud-provider: - "vsphere" cloud-config: - "/etc/origin/cloudprovider/vsphere.conf"
ImportantThe
nodeName
must match the VM name in vSphere in order for the cloud provider integration to work properly. The name must also be RFC1123 compliant.Restart the OpenShift Container Platform services on all nodes.
# systemctl restart atomic-openshift-node
22.2.2.3. Applying Configuration Changes
Start or restart OpenShift Container Platform services on all master and node hosts to apply your configuration changes, see Restarting OpenShift Container Platform services:
# master-restart api # master-restart controllers # systemctl restart atomic-openshift-node
Switching from not using a cloud provider to using a cloud provider produces an error message. Adding the cloud provider tries to delete the node because the node switches from using the hostname as the externalID
(which would have been the case when no cloud provider was being used) to using the cloud provider’s instance-id
(which is what the cloud provider specifies). To resolve this issue:
- Log in to the CLI as a cluster administrator.
Check and back up existing node labels:
$ oc describe node <node_name> | grep -Poz '(?s)Labels.*\n.*(?=Taints)'
Delete the nodes:
$ oc delete node <node_name>
On each node host, restart the OpenShift Container Platform service.
# systemctl restart atomic-openshift-node
- Add back any labels on each node that you previously had.
22.2.3. Configuring OpenShift Container Platform to use vSphere storage
OpenShift Container Platform supports VMware vSphere’s Virtual Machine Disk (VMDK) volumes. You can provision your OpenShift Container Platform cluster with persistent storage using VMware vSphere. Some familiarity with Kubernetes and VMware vSphere is assumed.
OpenShift Container Platform creates the disk in vSphere and attaches the disk to the proper instance.
The OpenShift Container Platform persistent volume (PV) framework allows administrators to provision a cluster with persistent storage and gives users a way to request those resources without having any knowledge of the underlying infrastructure. vSphere VMDK volumes can be provisioned dynamically.
PVs are not bound to a single project or namespace; they can be shared across the OpenShift Container Platform cluster. PV claims, however, are specific to a project or namespace and can be requested by users.
High availability of storage in the infrastructure is left to the underlying storage provider.
Prerequisites
Before creating PVs using vSphere, ensure your OpenShift Container Platform cluster meets the following requirements:
- OpenShift Container Platform must first be configured for vSphere Cloud Provider
- Each node host in the infrastructure must match the vSphere VM name.
- Each node host must be in the same resource group.
22.2.3.1. Provisioning VMware vSphere volumes
Storage must exist in the underlying infrastructure before it can be mounted as a volume in OpenShift Container Platform. After ensuring OpenShift Container Platform is configured for vSphere, all that is required for OpenShift Container Platform and vSphere is a VM folder path, file system type, and the PersistentVolume
API.
22.2.3.1.1. Creating persistent volumes
Define a PV object definition, for example vsphere-pv.yaml:
apiVersion: v1 kind: PersistentVolume metadata: name: pv0001 1 spec: capacity: storage: 2Gi 2 accessModes: - ReadWriteOnce persistentVolumeReclaimPolicy: Retain vsphereVolume: 3 volumePath: "[datastore1] volumes/myDisk" 4 fsType: ext4 5
- 1
- The name of the volume. This must be how it is identified by PV claims or from pods.
- 2
- The amount of storage allocated to this volume.
- 3
- The volume type being used. This example uses
vsphereVolume
, and the label is used to mount a vSphere VMDK volume into pods. The contents of a volume are preserved when it is unmounted. The volume type supports VMFS and VSAN datastore. - 4
- This VMDK volume must exist, and you must include brackets ([]) in the volume definition.
- 5
- The file system type to mount. For example,
ext4
,xfs
, or other file-systems.
ImportantChanging the value of the
fsType
parameter after the volume is formatted and provisioned can result in data loss and pod failure.Create the PV:
$ oc create -f vsphere-pv.yaml persistentvolume "pv0001" created
Verify that the PV was created:
$ oc get pv NAME LABELS CAPACITY ACCESSMODES STATUS CLAIM REASON AGE pv0001 <none> 2Gi RWO Available 2s
Now you can request storage using PV claims, which can now use your PV.
PV claims only exist in the user’s namespace and can only be referenced by a pod within that same namespace. Any attempt to access a PV from a different namespace causes the pod to fail.
22.2.3.1.2. Formatting VMware vSphere volumes
Before OpenShift Container Platform mounts the volume and passes it to a container, it checks that the volume contains a file system as specified by the fsType
parameter in the PV definition. If the device is not formatted with the file system, all data from the device is erased, and the device is automatically formatted with the given file system.
This allows unformatted vSphere volumes to be used as PVs, because OpenShift Container Platform formats them before the first use.
22.2.3.2. Provisioning VMware vSphere volumes via a Storage Class
OpenShift Container Platform creates the following
storageclass
when you use thevsphere-volume
provisioner and if you use theopenshift_cloudprovider_kind=vsphere
andopenshift_vsphere_*
variables in the Ansible inventory. Otherwise, you can create it manually:$ oc get --export storageclass vsphere-standard -o yaml kind: StorageClass apiVersion: storage.k8s.io/v1 metadata: name: "vsphere-standard" 1 provisioner: kubernetes.io/vsphere-volume 2 parameters: diskformat: zeroedthick 3 datastore: "ose3-vmware" 4 reclaimPolicy: Delete
After you request a PV and using the storageclass shown in the previous step, OpenShift Container Platform creates VMDK disks in the vSphere infrastructure. To verify that the disks were created:
$ ls /vmfs/volumes/ose3-vmware/kubevols | grep kubernetes kubernetes-dynamic-pvc-790615e8-a22a-11e8-bc85-0050568e2982.vmdk
vSphere-volume disks are ReadWriteOnce
access mode, which means the volume can be mounted as read-write by a single node. See the Access modes section of the Architecture guide for more information.
22.2.4. About Red Hat OpenShift Container Storage
Red Hat OpenShift Container Storage (RHOCS) is a provider of agnostic persistent storage for OpenShift Container Platform either in-house or in hybrid clouds. As a Red Hat storage solution, RHOCS is completely integrated with OpenShift Container Platform for deployment, management, and monitoring regardless if it is installed on OpenShift Container Platform (converged) or with OpenShift Container Platform (independent). OpenShift Container Storage is not limited to a single availability zone or node, which makes it likely to survive an outage. You can find complete instructions for using RHOCS in the RHOCS 3.10 Deployment Guide.
22.2.5. Configuring the OpenShift Container Platform registry for vSphere
The following steps define the manual process of storage creation, which is used to create storage for the registry if a storage class is unavailable or not used.
# VMFS cd /vmfs/volumes/datastore1/ mkdir kubevols # Not needed but good hygiene # VSAN cd /vmfs/volumes/vsanDatastore/ /usr/lib/vmware/osfs/bin/osfs-mkdir kubevols # Needed cd kubevols vmkfstools -c 25G registry.vmdk
22.2.5.1. Configuring the OpenShift Container Platform registry for vSphere using Ansible
Procedure
To configure the Ansible inventory for the registry to use a vSphere volume:
[OSEv3:vars] # vSphere Provider Configuration openshift_hosted_registry_storage_kind=vsphere 1 openshift_hosted_registry_storage_access_modes=['ReadWriteOnce'] 2 openshift_hosted_registry_storage_annotations=['volume.beta.kubernetes.io/storage-provisioner: kubernetes.io/vsphere-volume'] 3 openshift_hosted_registry_replicas=1 4
The brackets in the configuration file above are required.
22.2.5.2. Manually configuring OpenShift Container Platform registry for vSphere
To use vSphere volume storage, edit the registry’s configuration file and mount to the registry pod.
Procedure
Create a new configuration file from the vSphere volume:
kind: PersistentVolumeClaim apiVersion: v1 metadata: name: vsphere-registry-storage annotations: volume.beta.kubernetes.io/storage-class: vsphere-standard spec: accessModes: - ReadWriteOnce resources: requests: storage: 30Gi
Create the file in OpenShift Container Platform:
$ oc create -f pvc-registry.yaml
Update the volume configuration to use the new PVC:
$ oc volume dc docker-registry --add --name=registry-storage -t \ pvc --claim-name=vsphere-registry-storage --overwrite
Redeploy the registry to read the updated configuration:
$ oc rollout latest docker-registry -n default
Verify the volume has been assigned:
$ oc volume dc docker-registry -n default
22.3. Backup of persistent volumes
OpenShift Container Platform provisions new volumes as independent persistent disks to freely attach and detach the volume on any node in the cluster. As a consequence, it is not possible to back up volumes that use snapshots.
To create a backup of PVs:
- Stop the application using the PV.
- Clone the persistent disk.
- Restart the application.
- Create a backup of the cloned disk.
- Delete the cloned disk.
Chapter 23. Configuring Local Volumes
23.1. Overview
OpenShift Container Platform can be configured to access local volumes for application data.
Local volumes are persistent volumes (PV) that represent locally-mounted file systems. As of OpenShift Container Platform 3.10, this also includes raw block devices. A raw device offers a more direct route to the physical device and allows an application more control over the timing of I/O operations to that physical device. This makes raw devices suitable for complex applications such as database management systems that typically do their own caching. Local volumes have a few unique features. Any pod that uses a local volume PV is scheduled on the node where the local volume is mounted.
In addition, local volumes include a provisioner that automatically creates PVs for locally-mounted devices. This provisioner currently scans only pre-configured directories. This provisioner cannot dynamically provision volumes, but this feature might be implemented in a future release.
The local volume provisioner allows using local storage within OpenShift Container Platform and supports:
- Volumes
- PVs
Local volumes is a Technology Preview feature only. Technology Preview features are not supported with Red Hat production service level agreements (SLAs), might not be functionally complete, and Red Hat does not recommend to use them for production. These features provide early access to upcoming product features, enabling customers to test functionality and provide feedback during the development process. For more information on Red Hat Technology Preview features support scope, see https://access.redhat.com/support/offerings/techpreview/.
23.2. Mounting local volumes
All local volumes must be manually mounted before they can be consumed by OpenShift Container Platform as PVs.
To mount local volumes:
Mount all volumes into the /mnt/local-storage/<storage-class-name>/<volume> path. Administrators must create local devices as needed using any method such as disk partition or LVM, create suitable file systems on these devices, and mount these devices using a script or
/etc/fstab
entries, for example:# device name # mount point # FS # options # extra /dev/sdb1 /mnt/local-storage/ssd/disk1 ext4 defaults 1 2 /dev/sdb2 /mnt/local-storage/ssd/disk2 ext4 defaults 1 2 /dev/sdb3 /mnt/local-storage/ssd/disk3 ext4 defaults 1 2 /dev/sdc1 /mnt/local-storage/hdd/disk1 ext4 defaults 1 2 /dev/sdc2 /mnt/local-storage/hdd/disk2 ext4 defaults 1 2
Make all volumes accessible to the processes running within the Docker containers. You can change the labels of mounted file systems to allow this, for example:
--- $ chcon -R unconfined_u:object_r:svirt_sandbox_file_t:s0 /mnt/local-storage/ ---
23.3. Configuring the local provisioner
OpenShift Container Platform depends on an external provisioner to create PVs for local devices and to clean up PVs when they are not in use to enable reuse.
- The local volume provisioner is different from most provisioners and does not support dynamic provisioning.
- The local volume provisioner requires administrators to preconfigure the local volumes on each node and mount them under discovery directories. The provisioner then manages the volumes by creating and cleaning up PVs for each volume.
To configure the local provisioner:
Configure the external provisioner using a ConfigMap to relate directories with storage classes. This configuration must be created before the provisioner is deployed, for example:
apiVersion: v1 kind: ConfigMap metadata: name: local-volume-config data: storageClassMap: | local-ssd: 1 hostDir: /mnt/local-storage/ssd 2 mountDir: /mnt/local-storage/ssd 3 local-hdd: hostDir: /mnt/local-storage/hdd mountDir: /mnt/local-storage/hdd
-
(Optional) Create a standalone namespace for the local volume provisioner and its configuration, for example:
oc new-project local-storage
.
With this configuration, the provisioner creates:
-
One PV with storage class
local-ssd
for every subdirectory mounted in the /mnt/local-storage/ssd directory -
One PV with storage class
local-hdd
for every subdirectory mounted in the /mnt/local-storage/hdd directory
The syntax of the ConfigMap has changed between OpenShift Container Platform 3.9 and 3.10. Since this feature is in Technology Preview, the ConfigMap is not automatically converted during the update.
23.4. Deploying the local provisioner
Before starting the provisioner, mount all local devices and create a ConfigMap with storage classes and their directories.
To deploy the local provisioner:
- Install the local provisioner from the local-storage-provisioner-template.yaml file.
Create a service account that allows running pods as a root user, using hostPath volumes, and using any SELinux context to monitor, manage, and clean local volumes:
$ oc create serviceaccount local-storage-admin $ oc adm policy add-scc-to-user privileged -z local-storage-admin
To allow the provisioner pod to delete content on local volumes created by any pod, root privileges and any SELinux context are required. hostPath is required to access the /mnt/local-storage path on the host.
Install the template:
$ oc create -f https://raw.githubusercontent.com/openshift/origin/release-3.10/examples/storage-examples/local-examples/local-storage-provisioner-template.yaml
Instantiate the template by specifying values for the
CONFIGMAP
,SERVICE_ACCOUNT
,NAMESPACE
, andPROVISIONER_IMAGE
parameters:$ oc new-app -p CONFIGMAP=local-volume-config \ -p SERVICE_ACCOUNT=local-storage-admin \ -p NAMESPACE=local-storage \ -p PROVISIONER_IMAGE=registry.access.redhat.com/openshift3/local-storage-provisioner:v3.9 \ 1 local-storage-provisioner
- 1
- Provide your OpenShift Container Platform version number, such as
v3.10
.
Add the necessary storage classes:
$ oc create -f ./storage-class-ssd.yaml $ oc create -f ./storage-class-hdd.yaml
For example:
storage-class-ssd.yaml
apiVersion: storage.k8s.io/v1 kind: StorageClass metadata: name: local-ssd provisioner: kubernetes.io/no-provisioner volumeBindingMode: WaitForFirstConsumer
storage-class-hdd.yaml
apiVersion: storage.k8s.io/v1 kind: StorageClass metadata: name: local-hdd provisioner: kubernetes.io/no-provisioner volumeBindingMode: WaitForFirstConsumer
See the local storage provisioner template for other configurable options. This template creates a DaemonSet that runs a pod on every node. The pod watches the directories that are specified in the ConfigMap and automatically creates PVs for them.
The provisioner runs with root permissions because it removes all data from the modified directories when a PV is released.
23.5. Adding new devices
Adding a new device is semi-automatic. The provisioner periodically checks for new mounts in configured directories. Administrators must create a new subdirectory, mount a device, and allow pods to use the device by applying the SELinux label, for example:
$ chcon -R unconfined_u:object_r:svirt_sandbox_file_t:s0 /mnt/local-storage/
Omitting any of these steps may result in the wrong PV being created.
23.6. Configuring raw block devices
It is possible to statically provision raw block devices using the local volume provisioner. This feature is disabled by default and requires additional configuration.
To configure raw block devices:
Enable the
BlockVolume
feature gate on all masters. Edit or create the master configuration file on all masters (/etc/origin/master/master-config.yaml by default) and addBlockVolume=true
under theapiServerArguments
andcontrollerArguments
sections:apiServerArguments: feature-gates: - BlockVolume=true ... controllerArguments: feature-gates: - BlockVolume=true ...
Enable the feature gate on all nodes by editing the node configuration ConfigMap:
$ oc edit configmap node-config-compute --namespace openshift-node $ oc edit configmap node-config-master --namespace openshift-node $ oc edit configmap node-config-infra --namespace openshift-node
Ensure that all ConfigMaps contain
BlockVolume=true
in the feature gates array of thekubeletArguments
, for example:node configmap feature-gates setting
kubeletArguments: feature-gates: - RotateKubeletClientCertificate=true,RotateKubeletServerCertificate=true,BlockVolume=true
- Restart the master. The nodes restart automatically after the configuration change. This may take several minutes.
23.6.1. Preparing raw block devices
Before you start the provisioner, link all the raw block devices that pods can use to the /mnt/local-storage/<storage class> directory structure. For example, to make directory /dev/dm-36 available:
Create a directory for the device’s storage class in /mnt/local-storage:
$ mkdir -p /mnt/local-storage/block-devices
Create a symbolic link that points to the device:
$ ln -s /dev/dm-36 dm-uuid-LVM-1234
NoteTo avoid possible name conflicts, use the same name for the symbolic link and the link from the /dev/disk/by-uuid or /dev/disk/by-id directory .
Create or update the ConfigMap that configures the provisioner:
apiVersion: v1 kind: ConfigMap metadata: name: local-volume-config data: storageClassMap: | block-devices: 1 hostDir: /mnt/local-storage/block-devices 2 mountDir: /mnt/local-storage/block-devices 3
Change the
SELinux
label of the device and the /mnt/local-storage/:$ chcon -R unconfined_u:object_r:svirt_sandbox_file_t:s0 /mnt/local-storage/ $ chcon unconfined_u:object_r:svirt_sandbox_file_t:s0 /dev/dm-36
Create a storage class for the raw block devices:
apiVersion: storage.k8s.io/v1 kind: StorageClass metadata: name: block-devices provisioner: kubernetes.io/no-provisioner volumeBindingMode: WaitForFirstConsumer
The block device /dev/dm-36 is now ready to be used by the provisioner and provisioned as a PV.
23.6.2. Deploying raw block device provisioners
Deploying the provisioner for raw block devices is similar to deploying the provisioner on local volumes. There are two differences:
- The provisioner must run in a privileged container.
- The provisioner must have access to the /dev file system from the host.
To deploy the provisioner for raw block devices:
- Download the template from the local-storage-provisioner-template.yaml file.
Edit the template:
Set the
privileged
attribute of thesecurityContext
of the container spec totrue
:... containers: ... name: provisioner ... securityContext: privileged: true ...
Mount the host /dev/ file system to the container using
hostPath
:... containers: ... name: provisioner ... volumeMounts: - mountPath: /dev name: dev ... volumes: - hostPath: path: /dev name: dev ...
Create the template from the modified YAML file:
$ oc create -f local-storage-provisioner-template.yaml
Start the provisioner:
$ oc new-app -p CONFIGMAP=local-volume-config \ -p SERVICE_ACCOUNT=local-storage-admin \ -p NAMESPACE=local-storage \ -p PROVISIONER_IMAGE=registry.access.redhat.com/openshift3/local-storage-provisioner:v3.10 \ local-storage-provisioner
23.6.3. Using raw block device persistent volumes
To use the raw block device in the pod, create a persistent volume claim (PVC) with volumeMode:
set to Block
and storageClassName
set to block-devices
, for example:
apiVersion: v1 kind: PersistentVolumeClaim metadata: name: block-pvc spec: storageClassName: block-devices accessModes: - ReadWriteOnce volumeMode: Block resources: requests: storage: 1Gi
Pod using the raw block device PVC
apiVersion: v1 kind: Pod metadata: name: busybox-test labels: name: busybox-test spec: restartPolicy: Never containers: - resources: limits : cpu: 0.5 image: gcr.io/google_containers/busybox command: - "/bin/sh" - "-c" - "while true; do date; sleep 1; done" name: busybox volumeDevices: - name: vol devicePath: /dev/xvda volumes: - name: vol persistentVolumeClaim: claimName: block-pvc
The volume is not mounted in the pod but is exposed as the /dev/xvda raw block device.
Chapter 24. Configuring Persistent Storage
24.1. Overview
The Kubernetes persistent volume framework allows you to provision an OpenShift Container Platform cluster with persistent storage using networked storage available in your environment. This can be done after completing the initial OpenShift Container Platform installation depending on your application needs, giving users a way to request those resources without having any knowledge of the underlying infrastructure.
These topics show how to configure persistent volumes in OpenShift Container Platform using the following supported volume plug-ins:
24.2. Persistent Storage Using NFS
24.2.1. Overview
OpenShift Container Platform clusters can be provisioned with persistent storage using NFS. Persistent volumes (PVs) and persistent volume claims (PVCs) provide a convenient method for sharing a volume across a project. While the NFS-specific information contained in a PV definition could also be defined directly in a pod definition, doing so does not create the volume as a distinct cluster resource, making the volume more susceptible to conflicts.
This topic covers the specifics of using the NFS persistent storage type. Some familiarity with OpenShift Container Platform and NFS is beneficial. See the Persistent Storage concept topic for details on the OpenShift Container Platform persistent volume (PV) framework in general.
24.2.2. Provisioning
Storage must exist in the underlying infrastructure before it can be mounted as a volume in OpenShift Container Platform. To provision NFS volumes, a list of NFS servers and export paths are all that is required.
You must first create an object definition for the PV:
Example 24.1. PV Object Definition Using NFS
apiVersion: v1 kind: PersistentVolume metadata: name: pv0001 1 spec: capacity: storage: 5Gi 2 accessModes: - ReadWriteOnce 3 nfs: 4 path: /tmp 5 server: 172.17.0.2 6 persistentVolumeReclaimPolicy: Recycle 7
- 1
- The name of the volume. This is the PV identity in various
oc <command> pod
commands. - 2
- The amount of storage allocated to this volume.
- 3
- Though this appears to be related to controlling access to the volume, it is actually used similarly to labels and used to match a PVC to a PV. Currently, no access rules are enforced based on the
accessModes
. - 4
- The volume type being used, in this case the nfs plug-in.
- 5
- The path that is exported by the NFS server.
- 6
- The host name or IP address of the NFS server.
- 7
- The reclaim policy for the PV. This defines what happens to a volume when released from its claim. Valid options are Retain (default) and Recycle. See Reclaiming Resources.
Each NFS volume must be mountable by all schedulable nodes in the cluster.
Save the definition to a file, for example nfs-pv.yaml, and create the PV:
$ oc create -f nfs-pv.yaml persistentvolume "pv0001" created
Verify that the PV was created:
# oc get pv NAME LABELS CAPACITY ACCESSMODES STATUS CLAIM REASON AGE pv0001 <none> 5368709120 RWO Available 31s
The next step can be to create a PVC, which binds to the new PV:
Example 24.2. PVC Object Definition
apiVersion: v1 kind: PersistentVolumeClaim metadata: name: nfs-claim1 spec: accessModes: - ReadWriteOnce 1 resources: requests: storage: 1Gi 2
Save the definition to a file, for example nfs-claim.yaml, and create the PVC:
# oc create -f nfs-claim.yaml
24.2.3. Enforcing Disk Quotas
You can use disk partitions to enforce disk quotas and size constraints. Each partition can be its own export. Each export is one PV. OpenShift Container Platform enforces unique names for PVs, but the uniqueness of the NFS volume’s server and path is up to the administrator.
Enforcing quotas in this way allows the developer to request persistent storage by a specific amount (for example, 10Gi) and be matched with a corresponding volume of equal or greater capacity.
24.2.4. NFS Volume Security
This section covers NFS volume security, including matching permissions and SELinux considerations. The user is expected to understand the basics of POSIX permissions, process UIDs, supplemental groups, and SELinux.
See the full Volume Security topic before implementing NFS volumes.
Developers request NFS storage by referencing, in the volumes
section of their pod definition, either a PVC by name or the NFS volume plug-in directly.
The /etc/exports file on the NFS server contains the accessible NFS directories. The target NFS directory has POSIX owner and group IDs. The OpenShift Container Platform NFS plug-in mounts the container’s NFS directory with the same POSIX ownership and permissions found on the exported NFS directory. However, the container is not run with its effective UID equal to the owner of the NFS mount, which is the desired behavior.
As an example, if the target NFS directory appears on the NFS server as:
# ls -lZ /opt/nfs -d drwxrws---. nfsnobody 5555 unconfined_u:object_r:usr_t:s0 /opt/nfs # id nfsnobody uid=65534(nfsnobody) gid=65534(nfsnobody) groups=65534(nfsnobody)
Then the container must match SELinux labels, and either run with a UID of 65534 (nfsnobody owner) or with 5555 in its supplemental groups in order to access the directory.
The owner ID of 65534 is used as an example. Even though NFS’s root_squash maps root (0) to nfsnobody (65534), NFS exports can have arbitrary owner IDs. Owner 65534 is not required for NFS exports.
24.2.4.1. Group IDs
The recommended way to handle NFS access (assuming it is not an option to change permissions on the NFS export) is to use supplemental groups. Supplemental groups in OpenShift Container Platform are used for shared storage, of which NFS is an example. In contrast, block storage, such as Ceph RBD or iSCSI, use the fsGroup SCC strategy and the fsGroup value in the pod’s securityContext
.
It is generally preferable to use supplemental group IDs to gain access to persistent storage versus using user IDs. Supplemental groups are covered further in the full Volume Security topic.
Because the group ID on the example target NFS directory shown above is 5555, the pod can define that group ID using supplementalGroups
under the pod-level securityContext
definition. For example:
spec: containers: - name: ... securityContext: 1 supplementalGroups: [5555] 2
Assuming there are no custom SCCs that might satisfy the pod’s requirements, the pod likely matches the restricted SCC. This SCC has the supplementalGroups
strategy set to RunAsAny, meaning that any supplied group ID is accepted without range checking.
As a result, the above pod passes admissions and is launched. However, if group ID range checking is desired, a custom SCC, as described in pod security and custom SCCs, is the preferred solution. A custom SCC can be created such that minimum and maximum group IDs are defined, group ID range checking is enforced, and a group ID of 5555 is allowed.
To use a custom SCC, you must first add it to the appropriate service account. For example, use the default
service account in the given project unless another has been specified on the pod specification. See Add an SCC to a User, Group, or Project for details.
24.2.4.2. User IDs
User IDs can be defined in the container image or in the pod definition. The full Volume Security topic covers controlling storage access based on user IDs, and should be read prior to setting up NFS persistent storage.
It is generally preferable to use supplemental group IDs to gain access to persistent storage versus using user IDs.
In the example target NFS directory shown above, the container needs its UID set to 65534 (ignoring group IDs for the moment), so the following can be added to the pod definition:
spec: containers: 1 - name: ... securityContext: runAsUser: 65534 2
Assuming the default project and the restricted SCC, the pod’s requested user ID of 65534 is not allowed, and therefore the pod fails. The pod fails for the following reasons:
- It requests 65534 as its user ID.
- All SCCs available to the pod are examined to see which SCC allows a user ID of 65534 (actually, all policies of the SCCs are checked but the focus here is on user ID).
-
Because all available SCCs use MustRunAsRange for their
runAsUser
strategy, UID range checking is required. - 65534 is not included in the SCC or project’s user ID range.
It is generally considered a good practice not to modify the predefined SCCs. The preferred way to fix this situation is to create a custom SCC, as described in the full Volume Security topic. A custom SCC can be created such that minimum and maximum user IDs are defined, UID range checking is still enforced, and the UID of 65534 is allowed.
To use a custom SCC, you must first add it to the appropriate service account. For example, use the default
service account in the given project unless another has been specified on the pod specification. See Add an SCC to a User, Group, or Project for details.
24.2.4.3. SELinux
See the full Volume Security topic for information on controlling storage access in conjunction with using SELinux.
By default, SELinux does not allow writing from a pod to a remote NFS server. The NFS volume mounts correctly, but is read-only.
To enable writing to NFS volumes with SELinux enforcing on each node, run:
# setsebool -P virt_use_nfs 1
The -P
option above makes the bool persistent between reboots.
The virt_use_nfs boolean is defined by the docker-selinux package. If an error is seen indicating that this bool is not defined, ensure this package has been installed.
24.2.4.4. Export Settings
In order to enable arbitrary container users to read and write the volume, each exported volume on the NFS server should conform to the following conditions:
Each export must be:
/<example_fs> *(rw,root_squash)
The firewall must be configured to allow traffic to the mount point.
For NFSv4, configure the default port
2049
(nfs) and port111
(portmapper).NFSv4
# iptables -I INPUT 1 -p tcp --dport 2049 -j ACCEPT # iptables -I INPUT 1 -p tcp --dport 111 -j ACCEPT
For NFSv3, there are three ports to configure:
2049
(nfs),20048
(mountd), and111
(portmapper).NFSv3
# iptables -I INPUT 1 -p tcp --dport 2049 -j ACCEPT # iptables -I INPUT 1 -p tcp --dport 20048 -j ACCEPT # iptables -I INPUT 1 -p tcp --dport 111 -j ACCEPT
-
The NFS export and directory must be set up so that it is accessible by the target pods. Either set the export to be owned by the container’s primary UID, or supply the pod group access using
supplementalGroups
, as shown in Group IDs above. See the full Volume Security topic for additional pod security information as well.
24.2.5. Reclaiming Resources
NFS implements the OpenShift Container Platform Recyclable plug-in interface. Automatic processes handle reclamation tasks based on policies set on each persistent volume.
By default, PVs are set to Retain. NFS volumes which are set to Recycle are scrubbed (i.e., rm -rf
is run on the volume) after being released from their claim (i.e, after the user’s PersistentVolumeClaim
bound to the volume is deleted). Once recycled, the NFS volume can be bound to a new claim.
Once claim to a PV is released (that is, the PVC is deleted), the PV object should not be re-used. Instead, a new PV should be created with the same basic volume details as the original.
For example, the administrator creates a PV named nfs1
:
apiVersion: v1 kind: PersistentVolume metadata: name: nfs1 spec: capacity: storage: 1Mi accessModes: - ReadWriteMany nfs: server: 192.168.1.1 path: "/"
The user creates PVC1
, which binds to nfs1
. The user then deletes PVC1
, releasing claim to nfs1
, which causes nfs1
to be Released
. If the administrator wishes to make the same NFS share available, they should create a new PV with the same NFS server details, but a different PV name:
apiVersion: v1 kind: PersistentVolume metadata: name: nfs2 spec: capacity: storage: 1Mi accessModes: - ReadWriteMany nfs: server: 192.168.1.1 path: "/"
Deleting the original PV and re-creating it with the same name is discouraged. Attempting to manually change the status of a PV from Released
to Available
causes errors and potential data loss.
A PV with retention policy of Recycle
scrubs (rm -rf
) the data and marks it as Available
for claim. The Recycle
retention policy is deprecated starting in OpenShift Container Platform 3.6 and should be avoided. Anyone using recycler should use dynamic provision and volume deletion instead.
24.2.6. Automation
Clusters can be provisioned with persistent storage using NFS in the following ways:
- Enforce storage quotas using disk partitions.
- Enforce security by restricting volumes to the project that has a claim to them.
- Configure reclamation of discarded resources for each PV.
They are many ways that you can use scripts to automate the above tasks. You can use an example Ansible playbook to help you get started.
24.2.7. Additional Configuration and Troubleshooting
Depending on what version of NFS is being used and how it is configured, there may be additional configuration steps needed for proper export and security mapping. The following are some that may apply:
NFSv4 mount incorrectly shows all files with ownership of nobody:nobody |
|
Disabling ID mapping on NFSv4 |
|
24.3. Persistent Storage Using Red Hat Gluster Storage
24.3.1. Overview
Red Hat Gluster Storage can be configured to provide persistent storage and dynamic provisioning for OpenShift Container Platform. It can be used both containerized within OpenShift Container Platform (converged mode) and non-containerized on its own nodes (independent mode).
24.3.1.1. converged mode
With converged mode, Red Hat Gluster Storage runs containerized directly on OpenShift Container Platform nodes. This allows for compute and storage instances to be scheduled and run from the same set of hardware.
Figure 24.1. Architecture - converged mode
converged mode is available starting with Red Hat Gluster Storage 3.1 update 3. See converged mode for OpenShift Container Platform for additional documentation.
24.3.1.2. independent mode
With independent mode, Red Hat Gluster Storage runs on its own dedicated nodes and is managed by an instance of heketi, the GlusterFS volume management REST service. This heketi service can run either standalone or containerized. Containerization allows for an easy mechanism to provide high-availability to the service. This documentation will focus on the configuration where heketi is containerized.
24.3.1.3. Standalone Red Hat Gluster Storage
If you have a standalone Red Hat Gluster Storage cluster available in your environment, you can make use of volumes on that cluster using OpenShift Container Platform’s GlusterFS volume plug-in. This solution is a conventional deployment where applications run on dedicated compute nodes, an OpenShift Container Platform cluster, and storage is provided from its own dedicated nodes.
Figure 24.2. Architecture - Standalone Red Hat Gluster Storage Cluster Using OpenShift Container Platform's GlusterFS Volume Plug-in
See the Red Hat Gluster Storage Installation Guide and the Red Hat Gluster Storage Administration Guide for more on Red Hat Gluster Storage.
High availability of storage in the infrastructure is left to the underlying storage provider.
24.3.1.4. GlusterFS Volumes
GlusterFS volumes present a POSIX-compliant filesystem and are comprised of one or more "bricks" across one or more nodes in their cluster. A brick is just a directory on a given storage node and is typically the mount point for a block storage device. GlusterFS handles distribution and replication of files across a given volume’s bricks per that volume’s configuration.
It is recommended to use heketi for most common volume management operations such as create, delete, and resize. OpenShift Container Platform expects heketi to be present when using the GlusterFS provisioner. heketi by default will create volumes that are three-ray replica, that is volumes where each file has three copies across three different nodes. As such it is recommended that any Red Hat Gluster Storage clusters which will be used by heketi have at least three nodes available.
There are many features available for GlusterFS volumes, but they are beyond the scope of this documentation.
24.3.1.5. gluster-block Volumes
gluster-block volumes are volumes that can be mounted over iSCSI. This is done by creating a file on an existing GlusterFS volume and then presenting that file as a block device via an iSCSI target. Such GlusterFS volumes are called block-hosting volumes.
gluster-block volumes present a sort of trade-off. Being consumed as iSCSI targets, gluster-block volumes can only be mounted by one node/client at a time which is in contrast to GlusterFS volumes which can be mounted by multiple nodes/clients. Being files on the backend, however, allows for operations which are typically costly on GlusterFS volumes (e.g. metadata lookups) to be converted to ones which are typically much faster on GlusterFS volumes (e.g. reads and writes). This leads to potentially substantial performance improvements for certain workloads.
At this time, it is recommended to only use gluster-block volumes for OpenShift Logging and OpenShift Metrics storage.
24.3.1.6. Gluster S3 Storage
The Gluster S3 service allows user applications to access GlusterFS storage via an S3 interface. The service binds to two GlusterFS volumes, one for object data and one for object metadata, and translates incoming S3 REST requests into filesystem operations on the volumes. It is recommended to run the service as a pod inside OpenShift Container Platform.
At this time, use and installation of the Gluster S3 service is in tech preview.
24.3.2. Considerations
This section covers a few topics that should be taken into consideration when using Red Hat Gluster Storage with OpenShift Container Platform.
24.3.2.1. Software Prerequisites
To access GlusterFS volumes, the mount.glusterfs
command must be available on all schedulable nodes. For RPM-based systems, the glusterfs-fuse package must be installed:
# yum install glusterfs-fuse
This package comes installed on every RHEL system. However, it is recommended to update to the latest available version from Red Hat Gluster Storage if your servers use x86_64 architecture. To do this, the following RPM repository must be enabled:
# subscription-manager repos --enable=rh-gluster-3-client-for-rhel-7-server-rpms
If glusterfs-fuse is already installed on the nodes, ensure that the latest version is installed:
# yum update glusterfs-fuse
24.3.2.2. Hardware Requirements
Any nodes used in a converged mode or independent mode cluster are considered storage nodes. Storage nodes can be grouped into distinct cluster groups, though a single node can not be in multiple groups. For each group of storage nodes:
- A minimum of three storage nodes per group is required.
Each storage node must have a minimum of 8 GB of RAM. This is to allow running the Red Hat Gluster Storage pods, as well as other applications and the underlying operating system.
- Each GlusterFS volume also consumes memory on every storage node in its storage cluster, which is about 30 MB. The total amount of RAM should be determined based on how many concurrent volumes are desired or anticipated.
Each storage node must have at least one raw block device with no present data or metadata. These block devices will be used in their entirety for GlusterFS storage. Make sure the following are not present:
- Partition tables (GPT or MSDOS)
- Filesystems or residual filesystem signatures
- LVM2 signatures of former Volume Groups and Logical Volumes
- LVM2 metadata of LVM2 physical volumes
If in doubt,
wipefs -a <device>
should clear any of the above.
It is recommended to plan for two clusters: one dedicated to storage for infrastructure applications (such as an OpenShift Container Registry) and one dedicated to storage for general applications. This would require a total of six storage nodes. This recommendation is made to avoid potential impacts on performance in I/O and volume creation.
24.3.2.3. Storage Sizing
Every GlusterFS cluster must be sized based on the needs of the anticipated applications that will use its storage. For example, there are sizing guides available for both OpenShift Logging and OpenShift Metrics.
Some additional things to consider are:
For each converged mode or independent mode cluster, the default behavior is to create GlusterFS volumes with three-way replication. As such, the total storage to plan for should be the desired capacity times three.
-
As an example, each heketi instance creates a
heketidbstorage
volume that is 2 GB in size, requiring a total of 6 GB of raw storage across three nodes in the storage cluster. This capacity is always required and should be taken into consideration for sizing calculations. - Applications like an integrated OpenShift Container Registry share a single GlusterFS volume across multiple instances of the application.
-
As an example, each heketi instance creates a
gluster-block volumes require the presence of a GlusterFS block-hosting volume with enough capacity to hold the full size of any given block volume’s capacity.
- By default, if no such block-hosting volume exists, one will be automatically created at a set size. The default for this size is 100 GB. If there is not enough space in the cluster to create the new block-hosting volume, the creation of the block volume will fail. Both the auto-create behavior and the auto-created volume size are configurable.
- Applications with multiple instances that use gluster-block volumes, such as OpenShift Logging and OpenShift Metrics, will use one volume per instance.
- The Gluster S3 service binds to two GlusterFS volumes. In a default cluster installation, these volumes are 1 GB each, consuming a total of 6 GB of raw storage.
24.3.2.4. Volume Operation Behaviors
Volume operations, such as create and delete, can be impacted by a variety of environmental circumstances and can in turn affect applications as well.
If the application pod requests a dynamically provisioned GlusterFS persistent volume claim (PVC), then extra time might have to be considered for the volume to be created and bound to the corresponding PVC. This effects the startup time for an application pod.
NoteCreation time of GlusterFS volumes scales linearly depending on the number of volumes. As an example, given 100 volumes in a cluster using recommended hardware specifications, each volume took approximately 6 seconds to be created, allocated, and bound to a pod.
When a PVC is deleted, that action will trigger the deletion of the underlying GlusterFS volume. While PVCs will disappear immediately from the
oc get pvc
output, this does not mean the volume has been fully deleted. A GlusterFS volume can only be considered deleted when it does not show up in the command-line outputs forheketi-cli volume list
andgluster volume list
.NoteThe time to delete the GlusterFS volume and recycle its storage depends on and scales linearly with the number of active GlusterFS volumes. While pending volume deletes do not affect running applications, storage administrators should be aware of and be able to estimate how long they will take, especially when tuning resource consumption at scale.
24.3.2.5. Volume Security
This section covers Red Hat Gluster Storage volume security, including Portable Operating System Interface [for Unix] (POSIX) permissions and SELinux considerations. Understanding the basics of Volume Security, POSIX permissions, and SELinux is presumed.
24.3.2.5.1. POSIX Permissions
Red Hat Gluster Storage volumes present POSIX-compliant file systems. As such, access permissions can be managed using standard command-line tools such as chmod and chown.
For converged mode and independent mode, it is also possible to specify a group ID that will own the root of the volume at volume creation time. For static provisioning, this is specified as part of the heketi-cli volume creation command:
$ heketi-cli volume create --size=100 --gid=10001000
The PersistentVolume that will be associated with this volume must be annotated with the group ID so that pods consuming the PersistentVolume can have access to the file system. This annotation takes the form of:
pv.beta.kubernetes.io/gid: "<GID>" ---
For dynamic provisioning, the provisioner automatically generates and applies a group ID. It is possible to control the range from which this group ID is selected using the gidMin and gidMax StorageClass parameters (see Dynamic Provisioning). The provisioner also takes care of annotating the generated PersistentVolume with the group ID.
24.3.2.5.2. SELinux
By default, SELinux does not allow writing from a pod to a remote Red Hat Gluster Storage server. To enable writing to Red Hat Gluster Storage volumes with SELinux on, run the following on each node running GlusterFS:
$ sudo setsebool -P virt_sandbox_use_fusefs on 1
$ sudo setsebool -P virt_use_fusefs on
- 1
- The
-P
option makes the boolean persistent between reboots.
The virt_sandbox_use_fusefs
boolean is defined by the docker-selinux package. If you get an error saying it is not defined, ensure that this package is installed.
If you use Atomic Host, the SELinux booleans are cleared when you upgrade Atomic Host. When you upgrade Atomic Host, you must set these boolean values again.
24.3.3. Support Requirements
The following requirements must be met to create a supported integration of Red Hat Gluster Storage and OpenShift Container Platform.
For independent mode or standalone Red Hat Gluster Storage:
- Minimum version: Red Hat Gluster Storage 3.1.3
- All Red Hat Gluster Storage nodes must have valid subscriptions to Red Hat Network channels and Subscription Manager repositories.
- Red Hat Gluster Storage nodes must adhere to the requirements specified in the Planning Red Hat Gluster Storage Installation.
- Red Hat Gluster Storage nodes must be completely up to date with the latest patches and upgrades. Refer to the Red Hat Gluster Storage Installation Guide to upgrade to the latest version.
- A fully-qualified domain name (FQDN) must be set for each Red Hat Gluster Storage node. Ensure that correct DNS records exist, and that the FQDN is resolvable via both forward and reverse DNS lookup.
24.3.4. Installation
For standalone Red Hat Gluster Storage, there is no component installation required to use it with OpenShift Container Platform. OpenShift Container Platform comes with a built-in GlusterFS volume driver, allowing it to make use of existing volumes on existing clusters. See provisioning for more on how to make use of existing volumes.
For converged mode and independent mode, it is recommended to use the cluster installation process to install the required components.
24.3.4.1. independent mode: Installing Red Hat Gluster Storage Nodes
For independent mode, each Red Hat Gluster Storage node must have the appropriate system configurations (e.g. firewall ports, kernel modules) and the Red Hat Gluster Storage services must be running. The services should not be further configured, and should not have formed a Trusted Storage Pool.
The installation of Red Hat Gluster Storage nodes is beyond the scope of this documentation. For more information, see Setting Up independent mode.
24.3.4.2. Using the Installer
The cluster installation process can be used to install one or both of two GlusterFS node groups:
-
glusterfs
: A general storage cluster for use by user applications. -
glusterfs_registry
: A dedicated storage cluster for use by infrastructure applications such as an integrated OpenShift Container Registry.
It is recommended to deploy both groups to avoid potential impacts on performance in I/O and volume creation. Both of these are defined in the inventory hosts file.
The definition of the clusters is done by including the relevant names in the [OSEv3:children]
group, creating similarly named groups, and then populating the groups with the node information. The clusters can then be configured through a variety of variables in the [OSEv3:vars]
group. glusterfs
variables begin with openshift_storage_glusterfs_
and glusterfs_registry
variables begin with openshift_storage_glusterfs_registry_
. A few other variables, such as openshift_hosted_registry_storage_kind
, interact with the GlusterFS clusters.
To prevent Red Hat Gluster Storage pods from upgrading after an outage leading to a cluster with different Red Hat Gluster Storage versions, it is recommended to specify the image name and version tags for all containerized components. The relevant variables are:
-
openshift_storage_glusterfs_image
-
openshift_storage_glusterfs_block_image
-
openshift_storage_glusterfs_s3_image
-
openshift_storage_glusterfs_heketi_image
-
openshift_storage_glusterfs_registry_image
-
openshift_storage_glusterfs_registry_block_image
-
openshift_storage_glusterfs_registry_s3_image
-
openshift_storage_glusterfs_registry_heketi_image
The image variables for gluster-block and gluster-s3 are only necessary if the corresponding deployment variables (the variables ending in _block_deploy
and _s3_deploy
) are true.
A valid image tag is required for your deployment to succeed. Replace <tag>
with the version of Red Hat Gluster Storage that is compatible with OpenShift Container Platform 3.10 as described in the interoperability matrix for the following variables in your inventory file:
-
openshift_storage_glusterfs_image=registry.redhat.io/rhgs3/rhgs-server-rhel7:<tag>
-
openshift_storage_glusterfs_block_image=registry.redhat.io/rhgs3/rhgs-gluster-block-prov-rhel7:<tag>
-
openshift_storage_glusterfs_s3_image=registry.redhat.io/rhgs3/rhgs-s3-server-rhel7:<tag>
-
openshift_storage_glusterfs_heketi_image=registry.redhat.io/rhgs3/rhgs-volmanager-rhel7:<tag>
-
openshift_storage_glusterfs_registry_image=registry.redhat.io/rhgs3/rhgs-server-rhel7:<tag>
-
openshift_storage_glusterfs_block_registry_image=registry.redhat.io/rhgs3/rhgs-gluster-block-prov-rhel7:<tag>
-
openshift_storage_glusterfs_s3_registry_image=registry.redhat.io/rhgs3/rhgs-s3-server-rhel7:<tag>
-
openshift_storage_glusterfs_heketi_registry_image=registry.redhat.io/rhgs3/rhgs-volmanager-rhel7:<tag>
For a complete list of variables, see the GlusterFS role README on GitHub.
Once the variables are configured, there are several playbooks available depending on the circumstances of the installation:
The main playbook for cluster installations can be used to deploy the GlusterFS clusters in tandem with an initial installation of OpenShift Container Platform.
- This includes deploying an integrated OpenShift Container Registry that uses GlusterFS storage.
- This does not include OpenShift Logging or OpenShift Metrics, as that is currently still a separate step. See converged mode for OpenShift Logging and Metrics for more information.
-
playbooks/openshift-glusterfs/config.yml
can be used to deploy the clusters onto an existing OpenShift Container Platform installation. playbooks/openshift-glusterfs/registry.yml
can be used to deploy the clusters onto an existing OpenShift Container Platform installation. In addition, this will deploy an integrated OpenShift Container Registry which uses GlusterFS storage.ImportantThere must not be a pre-existing registry in the OpenShift Container Platform cluster.
playbooks/openshift-glusterfs/uninstall.yml
can be used to remove existing clusters matching the configuration in the inventory hosts file. This is useful for cleaning up the OpenShift Container Platform environment in the case of a failed deployment due to configuration errors.NoteThe GlusterFS playbooks are not guaranteed to be idempotent.
NoteRunning the playbooks more than once for a given installation is currently not supported without deleting the entire GlusterFS installation (including disk data) and starting over.
24.3.4.2.1. Example: Basic converged mode Installation
In your inventory file, include the following variables in the
[OSEv3:vars]
section, and adjust them as required for your configuration:[OSEv3:vars] ... openshift_storage_glusterfs_namespace=app-storage openshift_storage_glusterfs_storageclass=true openshift_storage_glusterfs_storageclass_default=false openshift_storage_glusterfs_block_deploy=true openshift_storage_glusterfs_block_host_vol_size=100 openshift_storage_glusterfs_block_storageclass=true openshift_storage_glusterfs_block_storageclass_default=false
Add
glusterfs
in the[OSEv3:children]
section to enable the[glusterfs]
group:[OSEv3:children] masters nodes glusterfs
Add a
[glusterfs]
section with entries for each storage node that will host the GlusterFS storage. For each node, setglusterfs_devices
to a list of raw block devices that will be completely managed as part of a GlusterFS cluster. There must be at least one device listed. Each device must be bare, with no partitions or LVM PVs. Specifying the variable takes the form:<hostname_or_ip> glusterfs_devices='[ "</path/to/device1/>", "</path/to/device2>", ... ]'
For example:
[glusterfs] node11.example.com glusterfs_devices='[ "/dev/xvdc", "/dev/xvdd" ]' node12.example.com glusterfs_devices='[ "/dev/xvdc", "/dev/xvdd" ]' node13.example.com glusterfs_devices='[ "/dev/xvdc", "/dev/xvdd" ]'
Add the hosts listed under
[glusterfs]
to the[nodes]
group:[nodes] ... node11.example.com openshift_node_group_name="node-config-compute" node12.example.com openshift_node_group_name="node-config-compute" node13.example.com openshift_node_group_name="node-config-compute"
NoteThe preceding steps only provide some of the options that must be added to the inventory file. Use the complete inventory file to deploy Red Hat Gluster Storage.
Run the installation playbook and provide the relative path for the inventory file as an option.
For a new OpenShift Container Platform installation:
ansible-playbook -i <path_to_inventory_file> /usr/share/ansible/openshift-ansible/playbooks/prerequisites.yml ansible-playbook -i <path_to_inventory_file> /usr/share/ansible/openshift-ansible/playbooks/deploy_cluster.yml
For an installation onto an existing OpenShift Container Platform cluster:
ansible-playbook -i <path_to_inventory_file> /usr/share/ansible/openshift-ansible/playbooks/openshift-glusterfs/config.yml
24.3.4.2.2. Example: Basic independent mode Installation
In your inventory file, include the following variables in the
[OSEv3:vars]
section, and adjust them as required for your configuration:[OSEv3:vars] ... openshift_storage_glusterfs_namespace=app-storage openshift_storage_glusterfs_storageclass=true openshift_storage_glusterfs_storageclass_default=false openshift_storage_glusterfs_block_deploy=true openshift_storage_glusterfs_block_host_vol_size=100 openshift_storage_glusterfs_block_storageclass=true openshift_storage_glusterfs_block_storageclass_default=false openshift_storage_glusterfs_is_native=false openshift_storage_glusterfs_heketi_is_native=true openshift_storage_glusterfs_heketi_executor=ssh openshift_storage_glusterfs_heketi_ssh_port=22 openshift_storage_glusterfs_heketi_ssh_user=root openshift_storage_glusterfs_heketi_ssh_sudo=false openshift_storage_glusterfs_heketi_ssh_keyfile="/root/.ssh/id_rsa"
Add
glusterfs
in the[OSEv3:children]
section to enable the[glusterfs]
group:[OSEv3:children] masters nodes glusterfs
Add a
[glusterfs]
section with entries for each storage node that will host the GlusterFS storage. For each node, setglusterfs_devices
to a list of raw block devices that will be completely managed as part of a GlusterFS cluster. There must be at least one device listed. Each device must be bare, with no partitions or LVM PVs. Also, setglusterfs_ip
to the IP address of the node. Specifying the variable takes the form:<hostname_or_ip> glusterfs_ip=<ip_address> glusterfs_devices='[ "</path/to/device1/>", "</path/to/device2>", ... ]'
For example:
[glusterfs] gluster1.example.com glusterfs_ip=192.168.10.11 glusterfs_devices='[ "/dev/xvdc", "/dev/xvdd" ]' gluster2.example.com glusterfs_ip=192.168.10.12 glusterfs_devices='[ "/dev/xvdc", "/dev/xvdd" ]' gluster3.example.com glusterfs_ip=192.168.10.13 glusterfs_devices='[ "/dev/xvdc", "/dev/xvdd" ]'
NoteThe preceding steps only provide some of the options that must be added to the inventory file. Use the complete inventory file to deploy Red Hat Gluster Storage.
Run the installation playbook and provide the relative path for the inventory file as an option.
For a new OpenShift Container Platform installation:
ansible-playbook -i <path_to_inventory_file> /usr/share/ansible/openshift-ansible/playbooks/prerequisites.yml ansible-playbook -i <path_to_inventory_file> /usr/share/ansible/openshift-ansible/playbooks/deploy_cluster.yml
For an installation onto an existing OpenShift Container Platform cluster:
ansible-playbook -i <path_to_inventory_file> /usr/share/ansible/openshift-ansible/playbooks/openshift-glusterfs/config.yml
24.3.4.2.3. Example: converged mode with an Integrated OpenShift Container Registry
In your inventory file, set the following variable under
[OSEv3:vars]
section, and adjust them as required for your configuration:[OSEv3:vars] ... openshift_hosted_registry_storage_kind=glusterfs 1 openshift_hosted_registry_storage_volume_size=5Gi openshift_hosted_registry_selector='node-role.kubernetes.io/infra=true'
- 1
- Running the integrated OpenShift Container Registry, on infrastructure nodes is recommended. Infrastructure node are nodes dedicated to running applications deployed by administrators to provide services for the OpenShift Container Platform cluster.
Add
glusterfs_registry
in the[OSEv3:children]
section to enable the[glusterfs_registry]
group:[OSEv3:children] masters nodes glusterfs_registry
Add a
[glusterfs_registry]
section with entries for each storage node that will host the GlusterFS storage. For each node, setglusterfs_devices
to a list of raw block devices that will be completely managed as part of a GlusterFS cluster. There must be at least one device listed. Each device must be bare, with no partitions or LVM PVs. Specifying the variable takes the form:<hostname_or_ip> glusterfs_devices='[ "</path/to/device1/>", "</path/to/device2>", ... ]'
For example:
[glusterfs_registry] node11.example.com glusterfs_devices='[ "/dev/xvdc", "/dev/xvdd" ]' node12.example.com glusterfs_devices='[ "/dev/xvdc", "/dev/xvdd" ]' node13.example.com glusterfs_devices='[ "/dev/xvdc", "/dev/xvdd" ]'
Add the hosts listed under
[glusterfs_registry]
to the[nodes]
group:[nodes] ... node11.example.com openshift_node_group_name="node-config-infra" node12.example.com openshift_node_group_name="node-config-infra" node13.example.com openshift_node_group_name="node-config-infra"
NoteThe preceding steps only provide some of the options that must be added to the inventory file. Use the complete inventory file to deploy Red Hat Gluster Storage.
Run the installation playbook and provide the relative path for the inventory file as an option.
For a new OpenShift Container Platform installation:
ansible-playbook -i <path_to_inventory_file> /usr/share/ansible/openshift-ansible/playbooks/prerequisites.yml ansible-playbook -i <path_to_inventory_file> /usr/share/ansible/openshift-ansible/playbooks/deploy_cluster.yml
For an installation onto an existing OpenShift Container Platform cluster:
ansible-playbook -i <path_to_inventory_file> /usr/share/ansible/openshift-ansible/playbooks/openshift-glusterfs/config.yml
24.3.4.2.4. Example: converged mode for OpenShift Logging and Metrics
In your inventory file, set the following variables under
[OSEv3:vars]
section, and adjust them as required for your configuration:[OSEv3:vars] ... openshift_metrics_install_metrics=true openshift_metrics_hawkular_nodeselector={"node-role.kubernetes.io/infra": "true"} 1 openshift_metrics_cassandra_nodeselector={"node-role.kubernetes.io/infra": "true"} 2 openshift_metrics_heapster_nodeselector={"node-role.kubernetes.io/infra": "true"} 3 openshift_metrics_storage_kind=dynamic openshift_metrics_storage_volume_size=10Gi openshift_metrics_cassandra_pvc_storage_class_name="glusterfs-registry-block" 4 openshift_logging_install_logging=true openshift_logging_kibana_nodeselector={"node-role.kubernetes.io/infra": "true"} 5 openshift_logging_curator_nodeselector={"node-role.kubernetes.io/infra": "true"} 6 openshift_logging_es_nodeselector={"node-role.kubernetes.io/infra": "true"} 7 openshift_logging_storage_kind=dynamic openshift_logging_es_pvc_size=10Gi 8 openshift_logging_elasticsearch_storage_type=pvc 9 openshift_logging_es_pvc_storage_class_name="glusterfs-registry-block" 10 openshift_storage_glusterfs_registry_namespace=infra-storage openshift_storage_glusterfs_registry_block_deploy=true openshift_storage_glusterfs_registry_block_host_vol_size=100 openshift_storage_glusterfs_registry_block_storageclass=true openshift_storage_glusterfs_registry_block_storageclass_default=false
- 1 2 3 5 6 7
- It is recommended to run the integrated OpenShift Container Registry, Logging, and Metrics on nodes dedicated to "infrastructure" applications, that is applications deployed by administrators to provide services for the OpenShift Container Platform cluster.
- 4 10
- Specify the StorageClass to be used for Logging and Metrics. This name is generated from the name of the target GlusterFS cluster (e.g.,
glusterfs-<name>-block
). In this example, this defaults toregistry
. - 8
- OpenShift Logging requires that a PVC size be specified. The supplied value is only an example, not a recommendation.
- 9
- If using Persistent Elasticsearch Storage, set the storage type to
pvc
.
NoteSee the GlusterFS role README for details on these and other variables.
Add
glusterfs_registry
in the[OSEv3:children]
section to enable the[glusterfs_registry]
group:[OSEv3:children] masters nodes glusterfs_registry
Add a
[glusterfs_registry]
section with entries for each storage node that will host the GlusterFS storage. For each node, setglusterfs_devices
to a list of raw block devices that will be completely managed as part of a GlusterFS cluster. There must be at least one device listed. Each device must be bare, with no partitions or LVM PVs. Specifying the variable takes the form:<hostname_or_ip> glusterfs_devices='[ "</path/to/device1/>", "</path/to/device2>", ... ]'
For example:
[glusterfs_registry] node11.example.com glusterfs_devices='[ "/dev/xvdc", "/dev/xvdd" ]' node12.example.com glusterfs_devices='[ "/dev/xvdc", "/dev/xvdd" ]' node13.example.com glusterfs_devices='[ "/dev/xvdc", "/dev/xvdd" ]'
Add the hosts listed under
[glusterfs_registry]
to the[nodes]
group:[nodes] ... node11.example.com openshift_node_group_name="node-config-infra" node12.example.com openshift_node_group_name="node-config-infra" node13.example.com openshift_node_group_name="node-config-infra"
NoteThe preceding steps only provide some of the options that must be added to the inventory file. Use the complete inventory file to deploy Red Hat Gluster Storage.
Run the installation playbook and provide the relative path for the inventory file as an option.
For a new OpenShift Container Platform installation:
ansible-playbook -i <path_to_inventory_file> /usr/share/ansible/openshift-ansible/playbooks/prerequisites.yml ansible-playbook -i <path_to_inventory_file> /usr/share/ansible/openshift-ansible/playbooks/deploy_cluster.yml
For an installation onto an existing OpenShift Container Platform cluster:
ansible-playbook -i <path_to_inventory_file> /usr/share/ansible/openshift-ansible/playbooks/openshift-glusterfs/config.yml
24.3.4.2.5. Example: converged mode for Applications, Registry, Logging, and Metrics
In your inventory file, set the following variables under
[OSEv3:vars]
section, and adjust them as required for your configuration:[OSEv3:vars] ... openshift_hosted_registry_storage_kind=glusterfs 1 openshift_hosted_registry_storage_volume_size=5Gi openshift_hosted_registry_selector='node-role.kubernetes.io/infra=true' openshift_metrics_install_metrics=true openshift_metrics_hawkular_nodeselector={"node-role.kubernetes.io/infra": "true"} 2 openshift_metrics_cassandra_nodeselector={"node-role.kubernetes.io/infra": "true"} 3 openshift_metrics_heapster_nodeselector={"node-role.kubernetes.io/infra": "true"} 4 openshift_metrics_storage_kind=dynamic openshift_metrics_storage_volume_size=10Gi openshift_metrics_cassandra_pvc_storage_class_name="glusterfs-registry-block" 5 openshift_logging_install_logging=true openshift_logging_kibana_nodeselector={"node-role.kubernetes.io/infra": "true"} 6 openshift_logging_curator_nodeselector={"node-role.kubernetes.io/infra": "true"} 7 openshift_logging_es_nodeselector={"node-role.kubernetes.io/infra": "true"} 8 openshift_logging_storage_kind=dynamic openshift_logging_es_pvc_size=10Gi 9 openshift_logging_elasticsearch_storage_type=pvc 10 openshift_logging_es_pvc_storage_class_name="glusterfs-registry-block" 11 openshift_storage_glusterfs_namespace=app-storage openshift_storage_glusterfs_storageclass=true openshift_storage_glusterfs_storageclass_default=false openshift_storage_glusterfs_block_deploy=true openshift_storage_glusterfs_block_host_vol_size=100 12 openshift_storage_glusterfs_block_storageclass=true openshift_storage_glusterfs_block_storageclass_default=false openshift_storage_glusterfs_registry_namespace=infra-storage openshift_storage_glusterfs_registry_block_deploy=true openshift_storage_glusterfs_registry_block_host_vol_size=100 openshift_storage_glusterfs_registry_block_storageclass=true openshift_storage_glusterfs_registry_block_storageclass_default=false
- 1 2 3 4 6 7 8
- Running the integrated OpenShift Container Registry, Logging, and Metrics on infrastructure nodes is recommended. Infrastructure node are nodes dedicated to running applications deployed by administrators to provide services for the OpenShift Container Platform cluster.
- 5 11
- Specify the StorageClass to be used for Logging and Metrics. This name is generated from the name of the target GlusterFS cluster, for example
glusterfs-<name>-block
. In this example,<name>
defaults toregistry
. - 9
- Specifying a PVC size is required for OpenShift Logging. The supplied value is only an example, not a recommendation.
- 10
- If using Persistent Elasticsearch Storage, set the storage type to
pvc
. - 12
- Size, in GB, of GlusterFS volumes that will be automatically created to host glusterblock volumes. This variable is used only if there is not enough space is available for a glusterblock volume create request. This value represents an upper limit on the size of glusterblock volumes unless you manually create larger GlusterFS block-hosting volumes.
Add
glusterfs
andglusterfs_registry
in the[OSEv3:children]
section to enable the[glusterfs]
and[glusterfs_registry]
groups:[OSEv3:children] ... glusterfs glusterfs_registry
Add
[glusterfs]
and[glusterfs_registry]
sections with entries for each storage node that will host the GlusterFS storage. For each node, setglusterfs_devices
to a list of raw block devices that will be completely managed as part of a GlusterFS cluster. There must be at least one device listed. Each device must be bare, with no partitions or LVM PVs. Specifying the variable takes the form:<hostname_or_ip> glusterfs_devices='[ "</path/to/device1/>", "</path/to/device2>", ... ]'
For example:
[glusterfs] node11.example.com glusterfs_devices='[ "/dev/xvdc", "/dev/xvdd" ]' node12.example.com glusterfs_devices='[ "/dev/xvdc", "/dev/xvdd" ]' node13.example.com glusterfs_devices='[ "/dev/xvdc", "/dev/xvdd" ]' [glusterfs_registry] node14.example.com glusterfs_devices='[ "/dev/xvdc", "/dev/xvdd" ]' node15.example.com glusterfs_devices='[ "/dev/xvdc", "/dev/xvdd" ]' node16.example.com glusterfs_devices='[ "/dev/xvdc", "/dev/xvdd" ]'
Add the hosts listed under
[glusterfs]
and[glusterfs_registry]
to the[nodes]
group:[nodes] ... node11.example.com openshift_node_group_name='node-config-compute' 1 node12.example.com openshift_node_group_name='node-config-compute' 2 node13.example.com openshift_node_group_name='node-config-compute' 3 node14.example.com openshift_node_group_name='node-config-infra'" 4 node15.example.com openshift_node_group_name='node-config-infra'" 5 node16.example.com openshift_node_group_name='node-config-infra'" 6
NoteThe preceding steps only provide some of the options that must be added to the inventory file. Use the complete inventory file to deploy Red Hat Gluster Storage.
Run the installation playbook and provide the relative path for the inventory file as an option.
For a new OpenShift Container Platform installation:
ansible-playbook -i <path_to_inventory_file> /usr/share/ansible/openshift-ansible/playbooks/prerequisites.yml ansible-playbook -i <path_to_inventory_file> /usr/share/ansible/openshift-ansible/playbooks/deploy_cluster.yml
For an installation onto an existing OpenShift Container Platform cluster:
ansible-playbook -i <path_to_inventory_file> /usr/share/ansible/openshift-ansible/playbooks/openshift-glusterfs/config.yml
24.3.4.2.6. Example: independent mode for Applications, Registry, Logging, and Metrics
In your inventory file, set the following variables under
[OSEv3:vars]
section, and adjust them as required for your configuration:[OSEv3:vars] ... openshift_hosted_registry_storage_kind=glusterfs 1 openshift_hosted_registry_storage_volume_size=5Gi openshift_hosted_registry_selector='node-role.kubernetes.io/infra=true' openshift_metrics_install_metrics=true openshift_metrics_hawkular_nodeselector={"node-role.kubernetes.io/infra": "true"} 2 openshift_metrics_cassandra_nodeselector={"node-role.kubernetes.io/infra": "true"} 3 openshift_metrics_heapster_nodeselector={"node-role.kubernetes.io/infra": "true"} 4 openshift_metrics_storage_kind=dynamic openshift_metrics_storage_volume_size=10Gi openshift_metrics_cassandra_pvc_storage_class_name="glusterfs-registry-block" 5 openshift_logging_install_logging=true openshift_logging_kibana_nodeselector={"node-role.kubernetes.io/infra": "true"} 6 openshift_logging_curator_nodeselector={"node-role.kubernetes.io/infra": "true"} 7 openshift_logging_es_nodeselector={"node-role.kubernetes.io/infra": "true"} 8 openshift_logging_storage_kind=dynamic openshift_logging_es_pvc_size=10Gi 9 openshift_logging_elasticsearch_storage_type 10 openshift_logging_es_pvc_storage_class_name="glusterfs-registry-block" 11 openshift_storage_glusterfs_namespace=app-storage openshift_storage_glusterfs_storageclass=true openshift_storage_glusterfs_storageclass_default=false openshift_storage_glusterfs_block_deploy=true openshift_storage_glusterfs_block_host_vol_size=100 12 openshift_storage_glusterfs_block_storageclass=true openshift_storage_glusterfs_block_storageclass_default=false openshift_storage_glusterfs_is_native=false openshift_storage_glusterfs_heketi_is_native=true openshift_storage_glusterfs_heketi_executor=ssh openshift_storage_glusterfs_heketi_ssh_port=22 openshift_storage_glusterfs_heketi_ssh_user=root openshift_storage_glusterfs_heketi_ssh_sudo=false openshift_storage_glusterfs_heketi_ssh_keyfile="/root/.ssh/id_rsa" openshift_storage_glusterfs_registry_namespace=infra-storage openshift_storage_glusterfs_registry_block_deploy=true openshift_storage_glusterfs_registry_block_host_vol_size=100 openshift_storage_glusterfs_registry_block_storageclass=true openshift_storage_glusterfs_registry_block_storageclass_default=false openshift_storage_glusterfs_registry_is_native=false openshift_storage_glusterfs_registry_heketi_is_native=true openshift_storage_glusterfs_registry_heketi_executor=ssh openshift_storage_glusterfs_registry_heketi_ssh_port=22 openshift_storage_glusterfs_registry_heketi_ssh_user=root openshift_storage_glusterfs_registry_heketi_ssh_sudo=false openshift_storage_glusterfs_registry_heketi_ssh_keyfile="/root/.ssh/id_rsa"
- 1 2 3 4 6 7 8
- It is recommended to run the integrated OpenShift Container Registry on nodes dedicated to "infrastructure" applications, that is applications deployed by administrators to provide services for the OpenShift Container Platform cluster. It is up to the administrator to select and label nodes for infrastructure applications.
- 5 11
- Specify the StorageClass to be used for Logging and Metrics. This name is generated from the name of the target GlusterFS cluster (e.g.,
glusterfs-<name>-block
). In this example, this defaults toregistry
. - 9
- OpenShift Logging requires that a PVC size be specified. The supplied value is only an example, not a recommendation.
- 10
- If using Persistent Elasticsearch Storage, set the storage type to
pvc
. - 12
- Size, in GB, of GlusterFS volumes that will be automatically created to host glusterblock volumes. This variable is used only if there is not enough space is available for a glusterblock volume create request. This value represents an upper limit on the size of glusterblock volumes unless you manually create larger GlusterFS block-hosting volumes.
Add
glusterfs
andglusterfs_registry
in the[OSEv3:children]
section to enable the[glusterfs]
and[glusterfs_registry]
groups:[OSEv3:children] ... glusterfs glusterfs_registry
Add
[glusterfs]
and[glusterfs_registry]
sections with entries for each storage node that will host the GlusterFS storage. For each node, setglusterfs_devices
to a list of raw block devices that will be completely managed as part of a GlusterFS cluster. There must be at least one device listed. Each device must be bare, with no partitions or LVM PVs. Also, setglusterfs_ip
to the IP address of the node. Specifying the variable takes the form:<hostname_or_ip> glusterfs_ip=<ip_address> glusterfs_devices='[ "</path/to/device1/>", "</path/to/device2>", ... ]'
For example:
[glusterfs] gluster1.example.com glusterfs_ip=192.168.10.11 glusterfs_devices='[ "/dev/xvdc", "/dev/xvdd" ]' gluster2.example.com glusterfs_ip=192.168.10.12 glusterfs_devices='[ "/dev/xvdc", "/dev/xvdd" ]' gluster3.example.com glusterfs_ip=192.168.10.13 glusterfs_devices='[ "/dev/xvdc", "/dev/xvdd" ]' [glusterfs_registry] gluster4.example.com glusterfs_ip=192.168.10.14 glusterfs_devices='[ "/dev/xvdc", "/dev/xvdd" ]' gluster5.example.com glusterfs_ip=192.168.10.15 glusterfs_devices='[ "/dev/xvdc", "/dev/xvdd" ]' gluster6.example.com glusterfs_ip=192.168.10.16 glusterfs_devices='[ "/dev/xvdc", "/dev/xvdd" ]'
NoteThe preceding steps only provide some of the options that must be added to the inventory file. Use the complete inventory file to deploy Red Hat Gluster Storage.
Run the installation playbook and provide the relative path for the inventory file as an option.
For a new OpenShift Container Platform installation:
ansible-playbook -i <path_to_inventory_file> /usr/share/ansible/openshift-ansible/playbooks/prerequisites.yml ansible-playbook -i <path_to_inventory_file> /usr/share/ansible/openshift-ansible/playbooks/deploy_cluster.yml
For an installation onto an existing OpenShift Container Platform cluster:
ansible-playbook -i <path_to_inventory_file> /usr/share/ansible/openshift-ansible/playbooks/openshift-glusterfs/config.yml
24.3.5. Uninstall converged mode
For converged mode, an OpenShift Container Platform install comes with a playbook to uninstall all resources and artifacts from the cluster. To use the playbook, provide the original inventory file that was used to install the target instance of converged mode and run the following playbook:
# ansible-playbook -i <path_to_inventory_file> /usr/share/ansible/openshift-ansible/playbooks/openshift-glusterfs/uninstall.yml
In addition, the playbook supports the use of a variable called openshift_storage_glusterfs_wipe
which, when enabled, destroys any data on the block devices that were used for Red Hat Gluster Storage backend storage. To use the openshift_storage_glusterfs_wipe
variable:
# ansible-playbook -i <path_to_inventory_file> -e "openshift_storage_glusterfs_wipe=true" /usr/share/ansible/openshift-ansible/playbooks/openshift-glusterfs/uninstall.yml
This procedure destroys data. Proceed with caution.
24.3.6. Provisioning
GlusterFS volumes can be provisioned either statically or dynamically. Static provisioning is available with all configurations. Only converged mode and independent mode support dynamic provisioning.
24.3.6.1. Static Provisioning
-
To enable static provisioning, first create a GlusterFS volume. See the Red Hat Gluster Storage Administration Guide for information on how to do this using the
gluster
command-line interface or the heketi project site for information on how to do this usingheketi-cli
. For this example, the volume will be namedmyVol1
. Define the following Service and Endpoints in
gluster-endpoints.yaml
:--- apiVersion: v1 kind: Service metadata: name: glusterfs-cluster 1 spec: ports: - port: 1 --- apiVersion: v1 kind: Endpoints metadata: name: glusterfs-cluster 2 subsets: - addresses: - ip: 192.168.122.221 3 ports: - port: 1 4 - addresses: - ip: 192.168.122.222 5 ports: - port: 1 6 - addresses: - ip: 192.168.122.223 7 ports: - port: 1 8
From the OpenShift Container Platform master host, create the Service and Endpoints:
$ oc create -f gluster-endpoints.yaml service "glusterfs-cluster" created endpoints "glusterfs-cluster" created
Verify that the Service and Endpoints were created:
$ oc get services NAME CLUSTER_IP EXTERNAL_IP PORT(S) SELECTOR AGE glusterfs-cluster 172.30.205.34 <none> 1/TCP <none> 44s $ oc get endpoints NAME ENDPOINTS AGE docker-registry 10.1.0.3:5000 4h glusterfs-cluster 192.168.122.221:1,192.168.122.222:1,192.168.122.223:1 11s kubernetes 172.16.35.3:8443 4d
NoteEndpoints are unique per project. Each project accessing the GlusterFS volume needs its own Endpoints.
In order to access the volume, the container must run with either a user ID (UID) or group ID (GID) that has access to the file system on the volume. This information can be discovered in the following manner:
$ mkdir -p /mnt/glusterfs/myVol1 $ mount -t glusterfs 192.168.122.221:/myVol1 /mnt/glusterfs/myVol1 $ ls -lnZ /mnt/glusterfs/ drwxrwx---. 592 590 system_u:object_r:fusefs_t:s0 myVol1 1 2
Define the following PersistentVolume (PV) in
gluster-pv.yaml
:apiVersion: v1 kind: PersistentVolume metadata: name: gluster-default-volume 1 annotations: pv.beta.kubernetes.io/gid: "590" 2 spec: capacity: storage: 2Gi 3 accessModes: 4 - ReadWriteMany glusterfs: endpoints: glusterfs-cluster 5 path: myVol1 6 readOnly: false persistentVolumeReclaimPolicy: Retain
- 1
- The name of the volume.
- 2
- The GID on the root of the GlusterFS volume.
- 3
- The amount of storage allocated to this volume.
- 4
accessModes
are used as labels to match a PV and a PVC. They currently do not define any form of access control.- 5
- The Endpoints resource previously created.
- 6
- The GlusterFS volume that will be accessed.
From the OpenShift Container Platform master host, create the PV:
$ oc create -f gluster-pv.yaml
Verify that the PV was created:
$ oc get pv NAME LABELS CAPACITY ACCESSMODES STATUS CLAIM REASON AGE gluster-default-volume <none> 2147483648 RWX Available 2s
Create a PersistentVolumeClaim (PVC) that will bind to the new PV in
gluster-claim.yaml
:apiVersion: v1 kind: PersistentVolumeClaim metadata: name: gluster-claim 1 spec: accessModes: - ReadWriteMany 2 resources: requests: storage: 1Gi 3
From the OpenShift Container Platform master host, create the PVC:
$ oc create -f gluster-claim.yaml
Verify that the PV and PVC are bound:
$ oc get pv NAME LABELS CAPACITY ACCESSMODES STATUS CLAIM REASON AGE gluster-pv <none> 1Gi RWX Available gluster-claim 37s $ oc get pvc NAME LABELS STATUS VOLUME CAPACITY ACCESSMODES AGE gluster-claim <none> Bound gluster-pv 1Gi RWX 24s
PVCs are unique per project. Each project accessing the GlusterFS volume needs its own PVC. PVs are not bound to a single project, so PVCs across multiple projects may refer to the same PV.
24.3.6.2. Dynamic Provisioning
To enable dynamic provisioning, first create a
StorageClass
object definition. The definition below is based on the minimum requirements needed for this example to work with OpenShift Container Platform. See Dynamic Provisioning and Creating Storage Classes for additional parameters and specification definitions.kind: StorageClass apiVersion: storage.k8s.io/v1 metadata: name: glusterfs provisioner: kubernetes.io/glusterfs parameters: resturl: "http://10.42.0.0:8080" 1 restauthenabled: "false" 2
From the OpenShift Container Platform master host, create the StorageClass:
# oc create -f gluster-storage-class.yaml storageclass "glusterfs" created
Create a PVC using the newly-created StorageClass. For example:
apiVersion: v1 kind: PersistentVolumeClaim metadata: name: gluster1 spec: accessModes: - ReadWriteMany resources: requests: storage: 30Gi storageClassName: glusterfs
From the OpenShift Container Platform master host, create the PVC:
# oc create -f glusterfs-dyn-pvc.yaml persistentvolumeclaim "gluster1" created
View the PVC to see that the volume was dynamically created and bound to the PVC:
# oc get pvc NAME STATUS VOLUME CAPACITY ACCESSMODES STORAGECLASS AGE gluster1 Bound pvc-78852230-d8e2-11e6-a3fa-0800279cf26f 30Gi RWX glusterfs 42s
24.4. Persistent Storage Using OpenStack Cinder
24.4.1. Overview
You can provision your OpenShift Container Platform cluster with persistent storage using OpenStack Cinder. Some familiarity with Kubernetes and OpenStack is assumed.
Before you create persistent volumes (PVs) using Cinder, configured OpenShift Container Platform for OpenStack.
The Kubernetes persistent volume framework allows administrators to provision a cluster with persistent storage and gives users a way to request those resources without having any knowledge of the underlying infrastructure. You can provision OpenStack Cinder volumes dynamically.
Persistent volumes are not bound to a single project or namespace; they can be shared across the OpenShift Container Platform cluster. Persistent volume claims, however, are specific to a project or namespace and can be requested by users.
High-availability of storage in the infrastructure is left to the underlying storage provider.
24.4.2. Provisioning Cinder PVs
Storage must exist in the underlying infrastructure before it can be mounted as a volume in OpenShift Container Platform. After ensuring that OpenShift Container Platform is configured for OpenStack, all that is required for Cinder is a Cinder volume ID and the PersistentVolume
API.
24.4.2.1. Creating the Persistent Volume
Cinder does not support the 'Recycle' reclaim policy.
You must define your PV in an object definition before creating it in OpenShift Container Platform:
Save your object definition to a file, for example cinder-pv.yaml:
apiVersion: "v1" kind: "PersistentVolume" metadata: name: "pv0001" 1 spec: capacity: storage: "5Gi" 2 accessModes: - "ReadWriteOnce" cinder: 3 fsType: "ext3" 4 volumeID: "f37a03aa-6212-4c62-a805-9ce139fab180" 5
ImportantDo not change the
fstype
parameter value after the volume is formatted and provisioned. Changing this value can result in data loss and pod failure.Create the persistent volume:
# oc create -f cinder-pv.yaml persistentvolume "pv0001" created
Verify that the persistent volume exists:
# oc get pv NAME LABELS CAPACITY ACCESSMODES STATUS CLAIM REASON AGE pv0001 <none> 5Gi RWO Available 2s
Users can then request storage using persistent volume claims, which can now utilize your new persistent volume.
Persistent volume claims exist only in the user’s namespace and can be referenced by a pod within that same namespace. Any attempt to access a persistent volume claim from a different namespace causes the pod to fail.
24.4.2.2. Cinder PV format
Before OpenShift Container Platform mounts the volume and passes it to a container, it checks that it contains a file system as specified by the fsType
parameter in the persistent volume definition. If the device is not formatted with the file system, all data from the device is erased and the device is automatically formatted with the given file system.
This allows using unformatted Cinder volumes as persistent volumes, because OpenShift Container Platform formats them before the first use.
24.4.2.3. Cinder volume security
If you use Cinder PVs in your application, configure security for their deployment configurations.
Review the Volume Security information before implementing Cinder volumes.
-
Create an SCC that uses the appropriate
fsGroup
strategy. Create a service account and add it to the SCC:
[source,bash] $ oc create serviceaccount <service_account> $ oc adm policy add-scc-to-user <new_scc> -z <service_account> -n <project>
In your application’s deployment configuration, provide the service account name and
securityContext
:apiVersion: v1 kind: ReplicationController metadata: name: frontend-1 spec: replicas: 1 1 selector: 2 name: frontend template: 3 metadata: labels: 4 name: frontend 5 spec: containers: - image: openshift/hello-openshift name: helloworld ports: - containerPort: 8080 protocol: TCP restartPolicy: Always serviceAccountName: <service_account> 6 securityContext: fsGroup: 7777 7
- 1
- The number of copies of the pod to run.
- 2
- The label selector of the pod to run.
- 3
- A template for the pod the controller creates.
- 4
- The labels on the pod must include labels from the label selector.
- 5
- The maximum name length after expanding any parameters is 63 characters.
- 6
- Specify the service account you created.
- 7
- Specify an
fsGroup
for the pods.
24.5. Persistent Storage Using Ceph Rados Block Device (RBD)
24.5.1. Overview
OpenShift Container Platform clusters can be provisioned with persistent storage using Ceph RBD.
Persistent volumes (PVs) and persistent volume claims (PVCs) can share volumes across a single project. While the Ceph RBD-specific information contained in a PV definition could also be defined directly in a pod definition, doing so does not create the volume as a distinct cluster resource, making the volume more susceptible to conflicts.
This topic presumes some familiarity with OpenShift Container Platform and Ceph RBD. See the Persistent Storage concept topic for details on the OpenShift Container Platform persistent volume (PV) framework in general.
Project and namespace are used interchangeably throughout this document. See Projects and Users for details on the relationship.
High-availability of storage in the infrastructure is left to the underlying storage provider.
24.5.2. Provisioning
To provision Ceph volumes, the following are required:
- An existing storage device in your underlying infrastructure.
- The Ceph key to be used in an OpenShift Container Platform secret object.
- The Ceph image name.
- The file system type on top of the block storage (e.g., ext4).
ceph-common installed on each schedulable OpenShift Container Platform node in your cluster:
# yum install ceph-common
24.5.2.1. Creating the Ceph Secret
Define the authorization key in a secret configuration, which is then converted to base64 for use by OpenShift Container Platform.
In order to use Ceph storage to back a persistent volume, the secret must be created in the same project as the PVC and pod. The secret cannot simply be in the default project.
Run
ceph auth get-key
on a Ceph MON node to display the key value for theclient.admin
user:apiVersion: v1 kind: Secret metadata: name: ceph-secret data: key: QVFBOFF2SlZheUJQRVJBQWgvS2cwT1laQUhPQno3akZwekxxdGc9PQ==
Save the secret definition to a file, for example ceph-secret.yaml, then create the secret:
$ oc create -f ceph-secret.yaml
Verify that the secret was created:
# oc get secret ceph-secret NAME TYPE DATA AGE ceph-secret Opaque 1 23d
24.5.2.2. Creating the Persistent Volume
Ceph RBD does not support the 'Recycle' reclaim policy.
Developers request Ceph RBD storage by referencing either a PVC, or the Gluster volume plug-in directly in the volumes
section of a pod specification. A PVC exists only in the user’s namespace and can be referenced only by pods within that same namespace. Any attempt to access a PV from a different namespace causes the pod to fail.
Define the PV in an object definition before creating it in OpenShift Container Platform:
Example 24.3. Persistent Volume Object Definition Using Ceph RBD
apiVersion: v1 kind: PersistentVolume metadata: name: ceph-pv 1 spec: capacity: storage: 2Gi 2 accessModes: - ReadWriteOnce 3 rbd: 4 monitors: 5 - 192.168.122.133:6789 pool: rbd image: ceph-image user: admin secretRef: name: ceph-secret 6 fsType: ext4 7 readOnly: false persistentVolumeReclaimPolicy: Retain
- 1
- The name of the PV that is referenced in pod definitions or displayed in various
oc
volume commands. - 2
- The amount of storage allocated to this volume.
- 3
accessModes
are used as labels to match a PV and a PVC. They currently do not define any form of access control. All block storage is defined to be single user (non-shared storage).- 4
- The volume type being used, in this case the rbd plug-in.
- 5
- An array of Ceph monitor IP addresses and ports.
- 6
- The Ceph secret used to create a secure connection from OpenShift Container Platform to the Ceph server.
- 7
- The file system type mounted on the Ceph RBD block device.
ImportantChanging the value of the
fstype
parameter after the volume has been formatted and provisioned can result in data loss and pod failure.Save your definition to a file, for example ceph-pv.yaml, and create the PV:
# oc create -f ceph-pv.yaml
Verify that the persistent volume was created:
# oc get pv NAME LABELS CAPACITY ACCESSMODES STATUS CLAIM REASON AGE ceph-pv <none> 2147483648 RWO Available 2s
Create a PVC that will bind to the new PV:
Example 24.4. PVC Object Definition
Save the definition to a file, for example ceph-claim.yaml, and create the PVC:
# oc create -f ceph-claim.yaml
24.5.3. Ceph Volume Security
See the full Volume Security topic before implementing Ceph RBD volumes.
A significant difference between shared volumes (NFS and GlusterFS) and block volumes (Ceph RBD, iSCSI, and most cloud storage), is that the user and group IDs defined in the pod definition or container image are applied to the target physical storage. This is referred to as managing ownership of the block device. For example, if the Ceph RBD mount has its owner set to 123 and its group ID set to 567, and if the pod defines its runAsUser
set to 222 and its fsGroup
to be 7777, then the Ceph RBD physical mount’s ownership will be changed to 222:7777.
Even if the user and group IDs are not defined in the pod specification, the resulting pod may have defaults defined for these IDs based on its matching SCC, or its project. See the full Volume Security topic which covers storage aspects of SCCs and defaults in greater detail.
A pod defines the group ownership of a Ceph RBD volume using the fsGroup
stanza under the pod’s securityContext
definition:
24.6. Persistent Storage Using AWS Elastic Block Store
24.6.1. Overview
OpenShift Container Platform supports AWS Elastic Block Store volumes (EBS). You can provision your OpenShift Container Platform cluster with persistent storage using AWS EC2. Some familiarity with Kubernetes and AWS is assumed.
Before creating persistent volumes using AWS, OpenShift Container Platform must first be properly configured for AWS ElasticBlockStore.
The Kubernetes persistent volume framework allows administrators to provision a cluster with persistent storage and gives users a way to request those resources without having any knowledge of the underlying infrastructure. AWS Elastic Block Store volumes can be provisioned dynamically. Persistent volumes are not bound to a single project or namespace; they can be shared across the OpenShift Container Platform cluster. Persistent volume claims, however, are specific to a project or namespace and can be requested by users.
High-availability of storage in the infrastructure is left to the underlying storage provider.
24.6.2. Provisioning
Storage must exist in the underlying infrastructure before it can be mounted as a volume in OpenShift Container Platform. After ensuring OpenShift is configured for AWS Elastic Block Store, all that is required for OpenShift and AWS is an AWS EBS volume ID and the PersistentVolume
API.
24.6.2.1. Creating the Persistent Volume
AWS does not support the 'Recycle' reclaim policy.
You must define your persistent volume in an object definition before creating it in OpenShift Container Platform:
Example 24.5. Persistent Volume Object Definition Using AWS
apiVersion: "v1" kind: "PersistentVolume" metadata: name: "pv0001" 1 spec: capacity: storage: "5Gi" 2 accessModes: - "ReadWriteOnce" awsElasticBlockStore: 3 fsType: "ext4" 4 volumeID: "vol-f37a03aa" 5
- 1
- The name of the volume. This will be how it is identified via persistent volume claims or from pods.
- 2
- The amount of storage allocated to this volume.
- 3
- This defines the volume type being used, in this case the awsElasticBlockStore plug-in.
- 4
- File system type to mount.
- 5
- This is the AWS volume that will be used.
Changing the value of the fstype
parameter after the volume has been formatted and provisioned can result in data loss and pod failure.
Save your definition to a file, for example aws-pv.yaml, and create the persistent volume:
# oc create -f aws-pv.yaml persistentvolume "pv0001" created
Verify that the persistent volume was created:
# oc get pv NAME LABELS CAPACITY ACCESSMODES STATUS CLAIM REASON AGE pv0001 <none> 5Gi RWO Available 2s
Users can then request storage using persistent volume claims, which can now utilize your new persistent volume.
Persistent volume claims only exist in the user’s namespace and can only be referenced by a pod within that same namespace. Any attempt to access a persistent volume from a different namespace causes the pod to fail.
24.6.2.2. Volume Format
Before OpenShift Container Platform mounts the volume and passes it to a container, it checks that it contains a file system as specified by the fsType
parameter in the persistent volume definition. If the device is not formatted with the file system, all data from the device is erased and the device is automatically formatted with the given file system.
This allows using unformatted AWS volumes as persistent volumes, because OpenShift Container Platform formats them before the first use.
24.6.2.3. Maximum Number of EBS Volumes on a Node
By default, OpenShift Container Platform supports a maximum of 39 EBS volumes attached to one node. This limit is consistent with the AWS Volume Limits.
OpenShift Container Platform can be configured to have a higher limit by setting the environment variable KUBE_MAX_PD_VOLS
. However, AWS requires a particular naming scheme (AWS Device Naming) for attached devices, which only supports a maximum of 52 volumes. This limits the number of volumes that can be attached to a node via OpenShift Container Platform to 52.
24.7. Persistent Storage Using GCE Persistent Disk
24.7.1. Overview
OpenShift Container Platform supports GCE Persistent Disk volumes (gcePD). You can provision your OpenShift Container Platform cluster with persistent storage using GCE. Some familiarity with Kubernetes and GCE is assumed.
Before creating persistent volumes using GCE, OpenShift Container Platform must first be properly configured for GCE Persistent Disk.
The Kubernetes persistent volume framework allows administrators to provision a cluster with persistent storage and gives users a way to request those resources without having any knowledge of the underlying infrastructure. GCE Persistent Disk volumes can be provisioned dynamically. Persistent volumes are not bound to a single project or namespace; they can be shared across the OpenShift Container Platform cluster. Persistent volume claims, however, are specific to a project or namespace and can be requested by users.
High-availability of storage in the infrastructure is left to the underlying storage provider.
24.7.2. Provisioning
Storage must exist in the underlying infrastructure before it can be mounted as a volume in OpenShift Container Platform. After ensuring OpenShift Container Platform is configured for GCE PersistentDisk, all that is required for OpenShift Container Platform and GCE is an GCE Persistent Disk volume ID and the PersistentVolume
API.
24.7.2.1. Creating the Persistent Volume
GCE does not support the 'Recycle' reclaim policy.
You must define your persistent volume in an object definition before creating it in OpenShift Container Platform:
Example 24.6. Persistent Volume Object Definition Using GCE
apiVersion: "v1" kind: "PersistentVolume" metadata: name: "pv0001" 1 spec: capacity: storage: "5Gi" 2 accessModes: - "ReadWriteOnce" gcePersistentDisk: 3 fsType: "ext4" 4 pdName: "pd-disk-1" 5
- 1
- The name of the volume. This will be how it is identified via persistent volume claims or from pods.
- 2
- The amount of storage allocated to this volume.
- 3
- This defines the volume type being used, in this case the gcePersistentDisk plug-in.
- 4
- File system type to mount.
- 5
- This is the GCE Persistent Disk volume that will be used.
Changing the value of the fstype
parameter after the volume has been formatted and provisioned can result in data loss and pod failure.
Save your definition to a file, for example gce-pv.yaml, and create the persistent volume:
# oc create -f gce-pv.yaml persistentvolume "pv0001" created
Verify that the persistent volume was created:
# oc get pv NAME LABELS CAPACITY ACCESSMODES STATUS CLAIM REASON AGE pv0001 <none> 5Gi RWO Available 2s
Users can then request storage using persistent volume claims, which can now utilize your new persistent volume.
Persistent volume claims only exist in the user’s namespace and can only be referenced by a pod within that same namespace. Any attempt to access a persistent volume from a different namespace causes the pod to fail.
24.7.2.2. Volume Format
Before OpenShift Container Platform mounts the volume and passes it to a container, it checks that it contains a file system as specified by the fsType
parameter in the persistent volume definition. If the device is not formatted with the file system, all data from the device is erased and the device is automatically formatted with the given file system.
This allows using unformatted GCE volumes as persistent volumes, because OpenShift Container Platform formats them before the first use.
24.8. Persistent Storage Using iSCSI
24.8.1. Overview
You can provision your OpenShift Container Platform cluster with persistent storage using iSCSI. Some familiarity with Kubernetes and iSCSI is assumed.
The Kubernetes persistent volume framework allows administrators to provision a cluster with persistent storage and gives users a way to request those resources without having any knowledge of the underlying infrastructure.
High-availability of storage in the infrastructure is left to the underlying storage provider.
24.8.2. Provisioning
Verify that the storage exists in the underlying infrastructure before mounting it as a volume in OpenShift Container Platform. All that is required for the iSCSI is the iSCSI target portal, a valid iSCSI Qualified Name (IQN), a valid LUN number, the filesystem type, and the PersistentVolume
API.
Optionally, multipath portals and Challenge Handshake Authentication Protocol (CHAP) configuration can be provided.
iSCSI does not support the 'Recycle' reclaim policy.
Example 24.7. Persistent Volume Object Definition
apiVersion: v1 kind: PersistentVolume metadata: name: iscsi-pv spec: capacity: storage: 1Gi accessModes: - ReadWriteOnce iscsi: targetPortal: 10.16.154.81:3260 portals: ['10.16.154.82:3260', '10.16.154.83:3260'] iqn: iqn.2014-12.example.server:storage.target00 lun: 0 fsType: 'ext4' readOnly: false chapAuthDiscovery: true chapAuthSession: true secretRef: name: chap-secret
24.8.2.1. Enforcing Disk Quotas
Use LUN partitions to enforce disk quotas and size constraints. Each LUN is one persistent volume. Kubernetes enforces unique names for persistent volumes.
Enforcing quotas in this way allows the end user to request persistent storage by a specific amount (e.g, 10Gi) and be matched with a corresponding volume of equal or greater capacity.
24.8.2.2. iSCSI Volume Security
Users request storage with a PersistentVolumeClaim
. This claim only lives in the user’s namespace and can only be referenced by a pod within that same namespace. Any attempt to access a persistent volume across a namespace causes the pod to fail.
Each iSCSI LUN must be accessible by all nodes in the cluster.
24.8.2.3. iSCSI Multipathing
For iSCSI-based storage, you can configure multiple paths by using the same IQN for more than one target portal IP address. Multipathing ensures access to the persistent volume when one or more of the components in a path fail.
To specify multi-paths in pod specification use the portals
field. For example:
apiVersion: v1
kind: PersistentVolume
metadata:
name: iscsi_pv
spec:
capacity:
storage: 1Gi
accessModes:
- ReadWriteOnce
iscsi:
targetPortal: 10.0.0.1:3260
portals: ['10.0.2.16:3260', '10.0.2.17:3260', '10.0.2.18:3260'] 1
iqn: iqn.2016-04.test.com:storage.target00
lun: 0
fsType: ext4
readOnly: false
- 1
- Add additional target portals using the
portals
field.
24.8.2.4. iSCSI Custom Initiator IQN
Configure the custom initiator iSCSI Qualified Name (IQN) if the iSCSI targets are restricted to certain IQNs, but the nodes that the iSCSI PVs are attached to are not guaranteed to have these IQNs.
To specify custom initiator IQN, use initiatorName
field.
apiVersion: v1
kind: PersistentVolume
metadata:
name: iscsi_pv
spec:
capacity:
storage: 1Gi
accessModes:
- ReadWriteOnce
iscsi:
targetPortal: 10.0.0.1:3260
portals: ['10.0.2.16:3260', '10.0.2.17:3260', '10.0.2.18:3260']
iqn: iqn.2016-04.test.com:storage.target00
lun: 0
initiatorName: iqn.2016-04.test.com:custom.iqn 1
fsType: ext4
readOnly: false
- 1
- To add an additional custom initiator IQN, use
initiatorName
field.
24.9. Persistent Storage Using Fibre Channel
24.9.1. Overview
You can provision your OpenShift Container Platform cluster with persistent storage using Fibre Channel. Some familiarity with Kubernetes and Fibre Channel is assumed.
The Kubernetes persistent volume framework allows administrators to provision a cluster with persistent storage and gives users a way to request those resources without having any knowledge of the underlying infrastructure.
High-availability of storage in the infrastructure is left to the underlying storage provider.
24.9.2. Provisioning
Storage must exist in the underlying infrastructure before it can be mounted as a volume in OpenShift Container Platform. All that is required for Fibre Channel persistent storage is the targetWWNs (array of Fibre Channel target’s World Wide Names), a valid LUN number, filesystem type, and the PersistentVolume
API. Persistent volume and a LUN have one-to-one mapping between them.
Fibre Channel does not support the 'Recycle' reclaim policy.
Persistent Volumes Object Definition
apiVersion: v1
kind: PersistentVolume
metadata:
name: pv0001
spec:
capacity:
storage: 1Gi
accessModes:
- ReadWriteOnce
fc:
targetWWNs: ['500a0981891b8dc5', '500a0981991b8dc5'] 1
lun: 2
fsType: ext4
- 1
- Fibre Channel WWNs are identified as
/dev/disk/by-path/pci-<IDENTIFIER>-fc-0x<WWN>-lun-<LUN#>
, but you do not need to provide any part of the path leading up to theWWN
, including the0x
, and anything after, including the-
(hyphen).
Changing the value of the fstype
parameter after the volume has been formatted and provisioned can result in data loss and pod failure.
24.9.2.1. Enforcing Disk Quotas
Use LUN partitions to enforce disk quotas and size constraints. Each LUN is one persistent volume. Kubernetes enforces unique names for persistent volumes.
Enforcing quotas in this way allows the end user to request persistent storage by a specific amount (e.g, 10Gi) and be matched with a corresponding volume of equal or greater capacity.
24.9.2.2. Fibre Channel Volume Security
Users request storage with a PersistentVolumeClaim
. This claim only lives in the user’s namespace and can only be referenced by a pod within that same namespace. Any attempt to access a persistent volume across a namespace causes the pod to fail.
Each Fibre Channel LUN must be accessible by all nodes in the cluster.
24.10. Persistent Storage Using Azure Disk
24.10.1. Overview
OpenShift Container Platform supports Microsoft Azure Disk volumes. You can provision your OpenShift Container Platform cluster with persistent storage using Azure. Some familiarity with Kubernetes and Azure is assumed.
The Kubernetes persistent volume framework allows administrators to provision a cluster with persistent storage and gives users a way to request those resources without having any knowledge of the underlying infrastructure.
Azure Disk volumes can be provisioned dynamically. Persistent volumes are not bound to a single project or namespace; they can be shared across the OpenShift Container Platform cluster. Persistent volume claims, however, are specific to a project or namespace and can be requested by users.
High availability of storage in the infrastructure is left to the underlying storage provider.
24.10.2. Prerequisites
Before creating persistent volumes using Azure, ensure your OpenShift Container Platform cluster meets the following requirements:
- OpenShift Container Platform must first be configured for Azure Disk.
- Each node host in the infrastructure must match the Azure virtual machine name.
- Each node host must be in the same resource group.
24.10.3. Provisioning
Storage must exist in the underlying infrastructure before it can be mounted as a volume in OpenShift Container Platform. After ensuring OpenShift Container Platform is configured for Azure Disk, all that is required for OpenShift Container Platform and Azure is an Azure Disk Name and Disk URI and the PersistentVolume
API.
24.10.4. Configuring Azure Disk for regional cloud
Azure has multiple regions on which to deploy an instance. To specify a desired region, add the following to the azure.conf file:
cloud: <region>
The region can be any of the following:
-
German cloud:
AZUREGERMANCLOUD
-
China cloud:
AZURECHINACLOUD
-
Public cloud:
AZUREPUBLICCLOUD
-
US cloud:
AZUREUSGOVERNMENTCLOUD
24.10.4.1. Creating the Persistent Volume
Azure does not support the Recycle reclaim policy.
You must define your persistent volume in an object definition before creating it in OpenShift Container Platform:
Example 24.8. Persistent Volume Object Definition Using Azure
apiVersion: "v1" kind: "PersistentVolume" metadata: name: "pv0001" 1 spec: capacity: storage: "5Gi" 2 accessModes: - "ReadWriteOnce" azureDisk: 3 diskName: test2.vhd 4 diskURI: https://someacount.blob.core.windows.net/vhds/test2.vhd 5 cachingMode: ReadWrite 6 fsType: ext4 7 readOnly: false 8
- 1
- The name of the volume. This will be how it is identified via persistent volume claims or from pods.
- 2
- The amount of storage allocated to this volume.
- 3
- This defines the volume type being used (azureDisk plug-in, in this example).
- 4
- The name of the data disk in the blob storage.
- 5
- The URI of the data disk in the blob storage.
- 6
- Host caching mode: None, ReadOnly, or ReadWrite.
- 7
- File system type to mount (for example,
ext4
,xfs
, and so on). - 8
- Defaults to
false
(read/write).ReadOnly
here will force theReadOnly
setting inVolumeMounts
.
Changing the value of the fsType
parameter after the volume is formatted and provisioned can result in data loss and pod failure.
Save your definition to a file, for example azure-pv.yaml, and create the persistent volume:
# oc create -f azure-pv.yaml persistentvolume "pv0001" created
Verify that the persistent volume was created:
# oc get pv NAME LABELS CAPACITY ACCESSMODES STATUS CLAIM REASON AGE pv0001 <none> 5Gi RWO Available 2s
Now you can request storage using persistent volume claims, which can now use your new persistent volume.
For a pod that has a mounted volume through an Azure disk PVC, scheduling the pod to a new node takes a few minutes. Wait for two to three minutes to complete the Disk Detach operation, and then start a new deployment. If a new pod creation request is started before completing the Disk Detach operation, the Disk Attach operation initiated by the pod creation fails, resulting in pod creation failure.
Persistent volume claims only exist in the user’s namespace and can only be referenced by a pod within that same namespace. Any attempt to access a persistent volume from a different namespace causes the pod to fail.
24.10.4.2. Volume Format
Before OpenShift Container Platform mounts the volume and passes it to a container, it checks that it contains a file system as specified by the fsType
parameter in the persistent volume definition. If the device is not formatted with the file system, all data from the device is erased and the device is automatically formatted with the given file system.
This allows unformatted Azure volumes to be used as persistent volumes because OpenShift Container Platform formats them before the first use.
24.11. Persistent Storage Using Azure File
24.11.1. Overview
OpenShift Container Platform supports Microsoft Azure File volumes. You can provision your OpenShift Container Platform cluster with persistent storage using Azure. Some familiarity with Kubernetes and Azure is assumed.
High availability of storage in the infrastructure is left to the underlying storage provider.
24.11.2. Before you begin
Install
samba-client
,samba-common
, andcifs-utils
on all nodes:$ sudo yum install samba-client samba-common cifs-utils
Enable SELinux booleans on all nodes:
$ /usr/sbin/setsebool -P virt_use_samba on $ /usr/sbin/setsebool -P virt_sandbox_use_samba on
Run the
mount
command to checkdir_mode
andfile_mode
permissions, for example:$ mount
If the dir_mode
and file_mode
permissions are set to 0755
, change the default value 0755
to 0777
or 0775
. This manual step is required because the default dir_mode
and file_mode
permissions changed from 0777
to 0755
in OpenShift Container Platform 3.9. The following examples show configuration files with the changed values.
Considerations when using Azure File
The following file system features are not supported by Azure File:
- Symlinks
- Hard links
- Extended attributes
- Sparse files
- Named pipes
Additionally, the owner user identifier (UID) of the Azure File mounted directory is different from the process UID of the container.
You might experience instability in your environment if you use any container images that use unsupported file system features. Containers for PostgreSQL and MySQL are known to have issues when used with Azure File.
Workaround for using MySQL with Azure File
If you use MySQL containers, you must modify the PV configuration as a workaround to a file ownership mismatch between the mounted directory UID and the container process UID. Make the following changes to your PV configuration file:
Specify the Azure File mounted directory UID in the
runAsUser
variable in the PV configuration file:spec: containers: ... securityContext: runAsUser: <mounted_dir_uid>
Specify the container process UID under
mountOptions
in the PV configuration file:mountOptions: - dir_mode=0700 - file_mode=0600 - uid=<container_process_uid> - gid=0
24.11.3. Example configuration files
The following example configuration file displays a PV configuration using Azure File:
PV configuration file example
apiVersion: "v1" kind: "PersistentVolume" metadata: name: "azpv" spec: capacity: storage: "1Gi" accessModes: - "ReadWriteMany" azureFile: secretName: azure-secret shareName: azftest readOnly: false mountOptions: - dir_mode=0777 - file_mode=0777
The following example configuration file displays a storage class using Azure File:
Storage class configuration file example
kind: StorageClass apiVersion: storage.k8s.io/v1 metadata: name: azurefile provisioner: kubernetes.io/azure-file mountOptions: - dir_mode=0777 - file_mode=0777 parameters: storageAccount: ocp39str location: centralus
24.11.4. Configuring Azure File for regional cloud
While Azure Disk is compatible with multiple regional clouds, Azure File supports only the Azure public cloud, because the endpoint is hard-coded.
24.11.5. Creating the PV
Azure File does not support the Recycle reclaim policy.
24.11.6. Creating the Azure Storage Account secret
Define the Azure Storage Account name and key in a secret configuration, which is then converted to base64 for use by OpenShift Container Platform.
Obtain an Azure Storage Account name and key and encode to base64:
apiVersion: v1 kind: Secret metadata: name: azure-secret type: Opaque data: azurestorageaccountname: azhzdGVzdA== azurestorageaccountkey: eElGMXpKYm5ub2pGTE1Ta0JwNTBteDAyckhzTUsyc2pVN21GdDRMMTNob0I3ZHJBYUo4akQ2K0E0NDNqSm9nVjd5MkZVT2hRQ1dQbU02WWFOSHk3cWc9PQ==
Save the secret definition to a file, for example azure-secret.yaml, then create the secret:
$ oc create -f azure-secret.yaml
Verify that the secret was created:
$ oc get secret azure-secret NAME TYPE DATA AGE azure-secret Opaque 1 23d
Define the PV in an object definition before creating it in OpenShift Container Platform:
PV object definition using Azure File example
apiVersion: "v1" kind: "PersistentVolume" metadata: name: "pv0001" 1 spec: capacity: storage: "5Gi" 2 accessModes: - "ReadWriteMany" azureFile: 3 secretName: azure-secret 4 shareName: example 5 readOnly: false 6
- 1
- The name of the volume. This is how it is identified via PV claims or from pods.
- 2
- The amount of storage allocated to this volume.
- 3
- This defines the volume type being used: azureFile plug-in.
- 4
- The name of the secret used.
- 5
- The name of the file share.
- 6
- Defaults to
false
(read/write).ReadOnly
here forces theReadOnly
setting inVolumeMounts
.
Save your definition to a file, for example azure-file-pv.yaml, and create the PV:
$ oc create -f azure-file-pv.yaml persistentvolume "pv0001" created
Verify that the PV was created:
$ oc get pv NAME LABELS CAPACITY ACCESSMODES STATUS CLAIM REASON AGE pv0001 <none> 5Gi RWM Available 2s
You can now request storage using PV claims, which can now use your new PV.
PV claims only exist in the user’s namespace and can only be referenced by a pod within that same namespace. Any attempt to access a PV from a different namespace causes the pod to fail.
24.12. Persistent Storage Using FlexVolume Plug-ins
24.12.1. Overview
OpenShift Container Platform has built-in volume plug-ins to use different storage technologies. To use storage from a back-end that does not have a built-in plug-in, you can extend OpenShift Container Platform through FlexVolume drivers and provide persistent storage to applications.
24.12.2. FlexVolume drivers
A FlexVolume driver is an executable file that resides in a well-defined directory on all machines in the cluster, both masters and nodes. OpenShift Container Platform calls the FlexVolume driver whenever it needs to attach, detach, mount, or unmount a volume represented by a PersistentVolume
with flexVolume
as the source.
The first command-line argument of the driver is always an operation name. Other parameters are specific to each operation. Most of the operations take a JavaScript Object Notation (JSON) string as a parameter. This parameter is a complete JSON string, and not the name of a file with the JSON data.
The FlexVolume driver contains:
-
All
flexVolume.options
. -
Some options from
flexVolume
prefixed bykubernetes.io/
, such asfsType
andreadwrite
. -
The content of the referenced secret, if specified, prefixed by
kubernetes.io/secret/
.
FlexVolume driver JSON input example
{ "fooServer": "192.168.0.1:1234", 1 "fooVolumeName": "bar", "kubernetes.io/fsType": "ext4", 2 "kubernetes.io/readwrite": "ro", 3 "kubernetes.io/secret/<key name>": "<key value>", 4 "kubernetes.io/secret/<another key name>": "<another key value>", }
OpenShift Container Platform expects JSON data on standard output of the driver. When not specified, the output describes the result of the operation.
FlexVolume Driver Default Output
{ "status": "<Success/Failure/Not supported>", "message": "<Reason for success/failure>" }
Exit code of the driver should be 0
for success and 1
for error.
Operations should be idempotent, which means that the attachment of an already attached volume or the mounting of an already mounted volume should result in a successful operation.
The FlexVolume driver can work in two modes:
- with the master-initated attach/detach operation, or
- without the master-initated attach/detach operation.
The attach/detach
operation is used by the OpenShift Container Platform master to attach a volume to a node and to detach it from a node. This is useful when a node becomes unresponsive for any reason. Then, the master can kill all pods on the node, detach all volumes from it, and attach the volumes to other nodes to resume the applications while the original node is still not reachable.
Not all storage back-end supports master-initiated detachment of a volume from another machine.
24.12.2.1. FlexVolume drivers with master-initiated attach/detach
A FlexVolume driver that supports master-controlled attach/detach must implement the following operations:
init
Initializes the driver. It is called during initialization of masters and nodes.
- Arguments: none
- Executed on: master, node
- Expected output: default JSON
getvolumename
Returns the unique name of the volume. This name must be consistent among all masters and nodes, because it is used in subsequent
detach
call as<volume-name>
. Any/
characters in the<volume-name>
are automatically replaced by~
.-
Arguments:
<json>
- Executed on: master, node
Expected output: default JSON +
volumeName
:{ "status": "Success", "message": "", "volumeName": "foo-volume-bar" 1 }
- 1
- The unique name of the volume in storage back-end
foo
.
-
Arguments:
attach
Attaches a volume represented by the JSON to a given node. This operation should return the name of the device on the node if it is known, that is, if it has been assigned by the storage back-end before it runs. If the device is not known, the device must be found on the node by the subsequent
waitforattach
operation.-
Arguments:
<json>
<node-name>
- Executed on: master
Expected output: default JSON +
device
, if known:{ "status": "Success", "message": "", "device": "/dev/xvda" 1 }
- 1
- The name of the device on the node, if known.
-
Arguments:
waitforattach
Waits until a volume is fully attached to a node and its device emerges. If the previous
attach
operation has returned<device-name>
, it is provided as an input parameter. Otherwise,<device-name>
is empty and the operation must find the device on the node.-
Arguments:
<device-name>
<json>
- Executed on: node
Expected output: default JSON +
device
{ "status": "Success", "message": "", "device": "/dev/xvda" 1 }
- 1
- The name of the device on the node.
-
Arguments:
detach
Detaches the given volume from a node.
<volume-name>
is the name of the device returned by thegetvolumename
operation. Any/
characters in the<volume-name>
are automatically replaced by~
.-
Arguments:
<volume-name>
<node-name>
- Executed on: master
- Expected output: default JSON
-
Arguments:
isattached
Checks that a volume is attached to a node.
-
Arguments:
<json>
<node-name>
- Executed on: master
Expected output: default JSON +
attached
{ "status": "Success", "message": "", "attached": true 1 }
- 1
- The status of attachment of the volume to the node.
-
Arguments:
mountdevice
Mounts a volume’s device to a directory.
<device-name>
is name of the device as returned by the previouswaitforattach
operation.-
Arguments:
<mount-dir>
<device-name>
<json>
- Executed on: node
- Expected output: default JSON
-
Arguments:
unmountdevice
Unmounts a volume’s device from a directory.
-
Arguments:
<mount-dir>
- Executed on: node
-
Arguments:
All other operations should return JSON with {"status": "Not supported"}
and exit code 1
.
Master-initiated attach/detach operations are enabled by default in OpenShift Container Platform 3.6. They may work in older versions, but must be explicitly enabled. See Enabling Controller-managed Attachment and Detachment. When not enabled, the attach/detach operations are initiated by a node where the volume should be attached to or detached from. Syntax and all parameters of FlexVolume driver invocations are the same in both cases.
24.12.2.2. FlexVolume drivers without master-initiated attach/detach
FlexVolume drivers that do not support master-controlled attach/detach are executed only on the node and must implement these operations:
init
Initializes the driver. It is called during initialization of all nodes.
- Arguments: none
- Executed on: node
- Expected output: default JSON
mount
Mounts a volume to directory. This can include anything that is necessary to mount the volume, including attaching the volume to the node, finding the its device, and then mounting the device.
-
Arguments:
<mount-dir>
<json>
- Executed on: node
- Expected output: default JSON
-
Arguments:
unmount
Unmounts a volume from a directory. This can include anything that is necessary to clean up the volume after unmounting, such as detaching the volume from the node.
-
Arguments:
<mount-dir>
- Executed on: node
- Expected output: default JSON
-
Arguments:
All other operations should return JSON with {"status": "Not supported"}
and exit code 1
.
24.12.3. Installing FlexVolume drivers
To install the FlexVolume driver:
- Ensure that the executable file exists on all masters and nodes in the cluster.
- Place the executable file at the volume plug-in path: /usr/libexec/kubernetes/kubelet-plugins/volume/exec/<vendor>~<driver>/<driver>.
For example, to install the FlexVolume driver for the storage foo
, place the executable file at: /usr/libexec/kubernetes/kubelet-plugins/volume/exec/openshift.com~foo/foo.
In OpenShift Container Platform 3.10, since controller-manager runs as a static pod, the FlexVolume binary file that performs the attach and detach operations must be a self-contained executable file with no external dependencies.
On Atomic hosts, the default location of the FlexVolume plug-in directory is /etc/origin/kubelet-plugins/. You must place the FlexVolume executable file in the /etc/origin/kubelet-plugins/volume/exec/<vendor>~<driver>/<driver> directory on all master and nodes in the cluster.
24.12.4. Consuming storage using FlexVolume drivers
Use the PersistentVolume
object to reference the installed storage. Each PersistentVolume
object in OpenShift Container Platform represents one storage asset, typically a volume, in the storage back-end.
Persistent volume object definition using FlexVolume drivers example
apiVersion: v1 kind: PersistentVolume metadata: name: pv0001 1 spec: capacity: storage: 1Gi 2 accessModes: - ReadWriteOnce flexVolume: driver: openshift.com/foo 3 fsType: "ext4" 4 secretRef: foo-secret 5 readOnly: true 6 options: 7 fooServer: 192.168.0.1:1234 fooVolumeName: bar
- 1
- The name of the volume. This is how it is identified through persistent volume claims or from pods. This name can be different from the name of the volume on back-end storage.
- 2
- The amount of storage allocated to this volume.
- 3
- The name of the driver. This field is mandatory.
- 4
- The file system that is present on the volume. This field is optional.
- 5
- The reference to a secret. Keys and values from this secret are provided to the FlexVolume driver on invocation. This field is optional.
- 6
- The read-only flag. This field is optional.
- 7
- The additional options for the FlexVolume driver. In addition to the flags specified by the user in the
options
field, the following flags are also passed to the executable:
"fsType":"<FS type>", "readwrite":"<rw>", "secret/key1":"<secret1>" ... "secret/keyN":"<secretN>"
Secrets are passed only to mount/unmount call-outs.
24.13. Using VMware vSphere volumes for persistent storage
24.13.1. Overview
OpenShift Container Platform supports VMware vSphere’s Virtual Machine Disk (VMDK) volumes. You can provision your OpenShift Container Platform cluster with persistent storage using VMware vSphere. Some familiarity with Kubernetes and VMware vSphere is assumed.
The OpenShift Container Platform persistent volume (PV) framework allows administrators to provision a cluster with persistent storage and gives users a way to request those resources without having any knowledge of the underlying infrastructure. vSphere VMDK volumes can be provisioned dynamically.
PVs are not bound to a single project or namespace; they can be shared across the OpenShift Container Platform cluster. PV claims, however, are specific to a project or namespace and can be requested by users.
High availability of storage in the infrastructure is left to the underlying storage provider.
Prerequisites
Before creating PVs using vSphere, ensure your OpenShift Container Platform cluster meets the following requirements:
- OpenShift Container Platform must first be configured for vSphere.
- Each node host in the infrastructure must match the vSphere VM name.
- Each node host must be in the same resource group.
Create VMDK using one of the following methods before using them.
Create using
vmkfstools
:Access ESX through Secure Shell (SSH) and then use following command to create a VMDK volume:
vmkfstools -c 2G /vmfs/volumes/DatastoreName/volumes/myDisk.vmdk
Create using
vmware-vdiskmanager
:shell vmware-vdiskmanager -c -t 0 -s 40GB -a lsilogic myDisk.vmdk
24.13.2. Provisioning VMware vSphere volumes
Storage must exist in the underlying infrastructure before it can be mounted as a volume in OpenShift Container Platform. After ensuring OpenShift Container Platform is configured for vSphere, all that is required for OpenShift Container Platform and vSphere is a VM folder path, file system type, and the PersistentVolume
API.
24.13.2.1. Creating persistent volumes
You must define your PV in an object definition before creating it in OpenShift Container Platform:
PV object definition using VMware vSphere example
apiVersion: v1 kind: PersistentVolume metadata: name: pv0001 1 spec: capacity: storage: 2Gi 2 accessModes: - ReadWriteOnce persistentVolumeReclaimPolicy: Retain vsphereVolume: 3 volumePath: "[datastore1] volumes/myDisk" 4 fsType: ext4 5
- 1
- The name of the volume. This must be how it is identified by PV claims or from pods.
- 2
- The amount of storage allocated to this volume.
- 3
- This defines the volume type being used (vsphereVolume plug-in, in this example). The
vsphereVolume
label is used to mount a vSphere VMDK volume into pods. The contents of a volume are preserved when it is unmounted. The volume type supports VMFS and VSAN datastore. - 4
- This VMDK volume must exist, and you must include brackets ([]) in the volume definition.
- 5
- The file system type to mount (for example,
ext4
,xfs
, and other file-systems).
Changing the value of the fsType
parameter after the volume is formatted and provisioned can result in data loss and pod failure.
To create persistent volumes:
Save your definition to a file, for example vsphere-pv.yaml, and create the PV:
$ oc create -f vsphere-pv.yaml persistentvolume "pv0001" created
Verify that the PV was created:
$ oc get pv NAME LABELS CAPACITY ACCESSMODES STATUS CLAIM REASON AGE pv0001 <none> 2Gi RWO Available 2s
Now you can request storage using PV claims, which can now use your PV.
PV claims only exist in the user’s namespace and can only be referenced by a pod within that same namespace. Any attempt to access a PV from a different namespace causes the pod to fail.
24.13.2.2. Formatting VMware vSphere volumes
Before OpenShift Container Platform mounts the volume and passes it to a container, it checks that the volume contains a file system as specified by the fsType
parameter in the PV definition. If the device is not formatted with the file system, all data from the device is erased and the device is automatically formatted with the given file system.
This allows unformatted vSphere volumes to be used as PVs, because OpenShift Container Platform formats them before the first use.
24.14. Persistent Storage Using Local Volume
24.14.1. Overview
OpenShift Container Platform clusters can be provisioned with persistent storage by using local volumes. Local persistent volume allows you to access local storage devices such as a disk, partition or directory by using the standard PVC interface.
Local volumes can be used without manually scheduling pods to nodes, because the system is aware of the volume’s node constraints. However, local volumes are still subject to the availability of the underlying node and are not suitable for all applications.
Local volumes is an alpha feature and may change in a future release of OpenShift Container Platform. See Feature Status(Local Volume) section for details on known issues and workarounds.
Local volumes can only be used as a statically created Persistent Volume.
24.14.2. Provisioning
Storage must exist in the underlying infrastructure before it can be mounted as a volume in OpenShift Container Platform. Ensure that OpenShift Container Platform is configured for Local Volumes, before using the PersistentVolume
API.
24.14.3. Creating Local Persistent Volume Claim
Define the persistent volume claim in an object definition.
kind: PersistentVolumeClaim apiVersion: v1 metadata: name: example-local-claim spec: accessModes: - ReadWriteOnce resources: requests: storage: 5Gi 1 storageClassName: local-storage 2
24.14.4. Feature Status
What Works:
- Creating a PV by specifying a directory with node affinity.
- A Pod using the PVC that is bound to the previously mentioned PV always get scheduled to that node.
- External static provisioner daemonset that discovers local directories, creates, cleans up and deletes PVs.
What does not work:
- Multiple local PVCs in a single pod.
PVC binding does not consider pod scheduling requirements and may make sub-optimal or incorrect decisions.
Workarounds:
- Run those pods first, which requires local volume.
- Give the pods high priority.
- Run a workaround controller that unbinds PVCs for pods that are stuck pending.
If mounts are added after the external provisioner is started, then external provisioner cannot detect the correct capcity of mounts.
Workarounds:
- Before adding any new mount points, first stop the daemonset, add the new mount points, and then start the daemonset.
-
fsgroup
conflict occurs if multiple pods using the same PVC specify differentfsgroup
's.
24.15. Persistent Storage Using Container Storage Interface (CSI)
24.15.1. Overview
Container Storage Interface (CSI) allows OpenShift Container Platform to consume storage from storage backends that implement the CSI interface as persistent storage.
CSI volumes are currently in Technology Preview and not for production workloads. CSI volumes may change in a future release of OpenShift Container Platform. Technology Preview features are not supported with Red Hat production service level agreements (SLAs), might not be functionally complete, and Red Hat does not recommend to use them for production. These features provide early access to upcoming product features, enabling customers to test functionality and provide feedback during the development process.
See the Red Hat Technology Preview features support scope for more information.
OpenShift Container Platform does not ship with any CSI drivers. It is recommended to use the CSI drivers provided by community or storage vendors.
OpenShift Container Platform 3.10 supports version 0.2.0 of the CSI specification.
24.15.2. Architecture
CSI drivers are typically shipped as container images. These containers are not aware of OpenShift Container Platform where they run. To use CSI-compatible storage backend in OpenShift Container Platform, the cluster administrator must deploy several components that serve as a bridge between OpenShift Container Platform and the storage driver.
The following diagram provides a high-level overview about the components running in pods in the OpenShift Container Platform cluster.
It is possible to run multiple CSI drivers for different storage backends. Each driver needs its own external controllers' deployment and DaemonSet with the driver and CSI registrar.
24.15.2.1. External CSI Controllers
External CSI Controllers is a deployment that deploys one or more pods with three containers:
-
External CSI attacher container that translates
attach
anddetach
calls from OpenShift Container Platform to respectiveControllerPublish
andControllerUnpublish
calls to CSI driver -
External CSI provisioner container that translates
provision
anddelete
calls from OpenShift Container Platform to respectiveCreateVolume
andDeleteVolume
calls to CSI driver - CSI driver container
The CSI attacher and CSI provisioner containers talk to the CSI driver container using UNIX Domain Sockets, ensuring that no CSI communication leaves the pod. The CSI driver is not accessible from outside of the pod.
attach
, detach
, provision
, and delete
operations typically require the CSI driver to use credentials to the storage backend. Run the CSI controller pods on infrastructure nodes so the credentials never leak to user processes, even in the event of a catastrophic security breach on a compute node.
The external attacher must also run for CSI drivers that do not support third-party attach/detach operations. The external attacher will not issue any ControllerPublish
or ControllerUnpublish
operations to the CSI driver. However, it still must run to implement the necessary OpenShift Container Platform attachment API.
24.15.2.2. CSI Driver DaemonSet
Finally, the CSI driver DaemonSet runs a pod on every node that allows OpenShift Container Platform to mount storage provided by the CSI driver to the node and use it in user workloads (pods) as persistent volumes (PVs). The pod with the CSI driver installed contains the following containers:
-
CSI driver registrar, which registers the CSI driver into the
openshift-node
service running on the node. Theopenshift-node
process running on the node then directly connects with the CSI driver using the UNIX Domain Socket available on the node. - CSI driver.
The CSI driver deployed on the node should have as few credentials to the storage backend as possible. OpenShift Container Platform will only use the node plug-in set of CSI calls such as NodePublish
/NodeUnpublish
and NodeStage
/NodeUnstage
(if implemented).
24.15.3. Example Deployment
Since OpenShift Container Platform does not ship with any CSI driver installed, this example shows how to deploy a community driver for OpenStack Cinder in OpenShift Container Platform.
Create a new project where the CSI components will run and a new service account that will run the components. Explicit node selector is used to run the Daemonset with the CSI driver also on master nodes.
# oc adm new-project csi --node-selector="" Now using project "csi" on server "https://example.com:8443". # oc create serviceaccount cinder-csi serviceaccount "cinder-csi" created # oc adm policy add-scc-to-user privileged system:serviceaccount:csi:cinder-csi scc "privileged" added to: ["system:serviceaccount:csi:cinder-csi"]
Apply this YAML file to create the deployment with the external CSI attacher and provisioner and DaemonSet with the CSI driver.
# This YAML file contains all API objects that are necessary to run Cinder CSI # driver. # # In production, this needs to be in separate files, e.g. service account and # role and role binding needs to be created once. # # It server as an example how to use external attacher and external provisioner # images shipped with {product-title} with a community CSI driver. kind: ClusterRole apiVersion: rbac.authorization.k8s.io/v1 metadata: name: cinder-csi-role rules: - apiGroups: [""] resources: ["persistentvolumes"] verbs: ["create", "delete", "get", "list", "watch", "update", "patch"] - apiGroups: [""] resources: ["events"] verbs: ["create", "get", "list", "watch", "update", "patch"] - apiGroups: [""] resources: ["persistentvolumeclaims"] verbs: ["get", "list", "watch", "update", "patch"] - apiGroups: [""] resources: ["nodes"] verbs: ["get", "list", "watch", "update", "patch"] - apiGroups: ["storage.k8s.io"] resources: ["storageclasses"] verbs: ["get", "list", "watch"] - apiGroups: ["storage.k8s.io"] resources: ["volumeattachments"] verbs: ["get", "list", "watch", "update", "patch"] - apiGroups: [""] resources: ["configmaps"] verbs: ["get", "list", "watch", "create", "update", "patch"] --- kind: ClusterRoleBinding apiVersion: rbac.authorization.k8s.io/v1 metadata: name: cinder-csi-role subjects: - kind: ServiceAccount name: cinder-csi namespace: csi roleRef: kind: ClusterRole name: cinder-csi-role apiGroup: rbac.authorization.k8s.io --- apiVersion: v1 data: cloud.conf: W0dsb2JhbF0KYXV0aC11cmwgPSBodHRwczovL2V4YW1wbGUuY29tOjEzMDAwL3YyLjAvCnVzZXJuYW1lID0gYWxhZGRpbgpwYXNzd29yZCA9IG9wZW5zZXNhbWUKdGVuYW50LWlkID0gZTBmYTg1YjZhMDY0NDM5NTlkMmQzYjQ5NzE3NGJlZDYKcmVnaW9uID0gcmVnaW9uT25lCg== 1 kind: Secret metadata: creationTimestamp: null name: cloudconfig --- kind: Deployment apiVersion: apps/v1 metadata: name: cinder-csi-controller spec: replicas: 2 selector: matchLabels: app: cinder-csi-controllers template: metadata: labels: app: cinder-csi-controllers spec: serviceAccount: cinder-csi containers: - name: csi-attacher image: registry.access.redhat.com/openshift3/csi-attacher:v3.10 args: - "--v=5" - "--csi-address=$(ADDRESS)" - "--leader-election" - "--leader-election-namespace=$(MY_NAMESPACE)" - "--leader-election-identity=$(MY_NAME)" env: - name: MY_NAME valueFrom: fieldRef: fieldPath: metadata.name - name: MY_NAMESPACE valueFrom: fieldRef: fieldPath: metadata.namespace - name: ADDRESS value: /csi/csi.sock volumeMounts: - name: socket-dir mountPath: /csi - name: csi-provisioner image: registry.access.redhat.com/openshift3/csi-provisioner:v3.10 args: - "--v=5" - "--provisioner=csi-cinderplugin" - "--csi-address=$(ADDRESS)" env: - name: ADDRESS value: /csi/csi.sock volumeMounts: - name: socket-dir mountPath: /csi - name: cinder-driver image: quay.io/jsafrane/cinder-csi-plugin command: [ "/bin/cinder-csi-plugin" ] args: - "--nodeid=$(NODEID)" - "--endpoint=unix://$(ADDRESS)" - "--cloud-config=/etc/cloudconfig/cloud.conf" env: - name: NODEID valueFrom: fieldRef: fieldPath: spec.nodeName - name: ADDRESS value: /csi/csi.sock volumeMounts: - name: socket-dir mountPath: /csi - name: cloudconfig mountPath: /etc/cloudconfig volumes: - name: socket-dir emptyDir: - name: cloudconfig secret: secretName: cloudconfig --- kind: DaemonSet apiVersion: apps/v1 metadata: name: cinder-csi-ds spec: selector: matchLabels: app: cinder-csi-driver template: metadata: labels: app: cinder-csi-driver spec: nodeSelector: role: node serviceAccount: cinder-csi containers: - name: csi-driver-registrar image: registry.access.redhat.com/openshift3/csi-driver-registrar:v3.10 securityContext: privileged: true args: - "--v=5" - "--csi-address=$(ADDRESS)" env: - name: ADDRESS value: /csi/csi.sock - name: KUBE_NODE_NAME valueFrom: fieldRef: fieldPath: spec.nodeName volumeMounts: - name: socket-dir mountPath: /csi - name: cinder-driver securityContext: privileged: true capabilities: add: ["SYS_ADMIN"] allowPrivilegeEscalation: true image: quay.io/jsafrane/cinder-csi-plugin command: [ "/bin/cinder-csi-plugin" ] args: - "--nodeid=$(NODEID)" - "--endpoint=unix://$(ADDRESS)" - "--cloud-config=/etc/cloudconfig/cloud.conf" env: - name: NODEID valueFrom: fieldRef: fieldPath: spec.nodeName - name: ADDRESS value: /csi/csi.sock volumeMounts: - name: socket-dir mountPath: /csi - name: cloudconfig mountPath: /etc/cloudconfig - name: mountpoint-dir mountPath: /var/lib/origin/openshift.local.volumes/pods/ mountPropagation: "Bidirectional" - name: cloud-metadata mountPath: /var/lib/cloud/data/ - name: dev mountPath: /dev volumes: - name: cloud-metadata hostPath: path: /var/lib/cloud/data/ - name: socket-dir hostPath: path: /var/lib/kubelet/plugins/csi-cinderplugin type: DirectoryOrCreate - name: mountpoint-dir hostPath: path: /var/lib/origin/openshift.local.volumes/pods/ type: Directory - name: cloudconfig secret: secretName: cloudconfig - name: dev hostPath: path: /dev
- 1
- Replace with
cloud.conf
for your OpenStack deployment, as described in OpenStack configuration. For example, the Secret can be generated using theoc create secret generic cloudconfig --from-file cloud.conf --dry-run -o yaml
.
24.15.4. Dynamic Provisioning
Dynamic provisioning of persistent storage depends on the capabilities of the CSI driver and underlying storage backend. The provider of the CSI driver should document how to create a StorageClass in OpenShift Container Platform and the parameters available for configuration.
As seen in the OpenStack Cinder example, you can deploy this StorageClass to enable dynamic provisioning. The following example creates a new default storage class that ensures that all PVCs that do not require any special storage class are provisioned by the installed CSI driver:
# oc create -f - << EOF apiVersion: storage.k8s.io/v1 kind: StorageClass metadata: name: cinder annotations: storageclass.kubernetes.io/is-default-class: "true" provisioner: csi-cinderplugin parameters: EOF
24.15.5. Usage
Once the CSI driver is deployed and the StorageClass for dynamic provisioning is created, OpenShift Container Platform is ready to use CSI. The following example installs a default MySQL template without any changes to the template:
# oc new-app mysql-persistent --> Deploying template "openshift/mysql-persistent" to project default ... # oc get pvc NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE mysql Bound kubernetes-dynamic-pv-3271ffcb4e1811e8 1Gi RWO cinder 3s
24.16. Persistent Storage Using OpenStack Manila
24.16.1. Overview
Persistent volume (PV) provisioning using OpenStack Manila is a Technology Preview feature only. Technology Preview features are not supported with Red Hat production service level agreements (SLAs), might not be functionally complete, and Red Hat does not recommend to use them for production. These features provide early access to upcoming product features, enabling customers to test functionality and provide feedback during the development process.
For more information on Red Hat Technology Preview features support scope, see https://access.redhat.com/support/offerings/techpreview/.
OpenShift Container Platform is capable of provisioning PVs using the OpenStack Manila shared file system service.
It is assumed the OpenStack Manila service has been correctly set up and is accessible from the OpenShift Container Platform cluster. Only the NFS share types can be provisioned.
Familiarity with PVs, persistent volume claims (PVCs), dynamic provisioning, and RBAC authorization is recommended.
24.16.2. Installation and Setup
The feature is provided by an external provisioner. You must install and configure it in the OpenShift Container Platform cluster.
24.16.2.1. Starting the External Provisioner
The external provisioner service is distributed as a container image and can be run in the OpenShift Container Platform cluster as usual.
To allow the containers managing the API objects, configure the required role-based access control (RBAC) rules as a cluster administrator:
Create a
ServiceAccount
:apiVersion: v1 kind: ServiceAccount metadata: name: manila-provisioner-runner
Create a
ClusterRole
:kind: ClusterRole apiVersion: rbac.authorization.k8s.io/v1 metadata: name: manila-provisioner-role rules: - apiGroups: [""] resources: ["persistentvolumes"] verbs: ["get", "list", "watch", "create", "delete"] - apiGroups: [""] resources: ["persistentvolumeclaims"] verbs: ["get", "list", "watch", "update"] - apiGroups: ["storage.k8s.io"] resources: ["storageclasses"] verbs: ["get", "list", "watch"] - apiGroups: [""] resources: ["events"] verbs: ["list", "watch", "create", "update", "patch"]
Bind the rules via
ClusterRoleBinding
:apiVersion: rbac.authorization.k8s.io/v1 kind: ClusterRoleBinding metadata: name: manila-provisioner roleRef: apiGroup: rbac.authorization.k8s.io kind: ClusterRole name: manila-provisioner-role subjects: - kind: ServiceAccount name: manila-provisioner-runner namespace: default
Create a new
StorageClass
:apiVersion: storage.k8s.io/v1 kind: StorageClass metadata: name: "manila-share" provisioner: "externalstorage.k8s.io/manila" parameters: type: "default" 1 zones: "nova" 2
- 1
- The Manila share type the provisioner will create for the volume.
- 2
- Set of Manila availability zones that the volume might be created in.
Configure the provisioner to connect, authenticate, and authorize to the Manila servic using environment variables. Select the appropriate combination of environment variables for your installation from the following list:
OS_USERNAME OS_PASSWORD OS_AUTH_URL OS_DOMAIN_NAME OS_TENANT_NAME
OS_USERID OS_PASSWORD OS_AUTH_URL OS_TENANT_ID
OS_USERNAME OS_PASSWORD OS_AUTH_URL OS_DOMAIN_ID OS_TENANT_NAME
OS_USERNAME OS_PASSWORD OS_AUTH_URL OS_DOMAIN_ID OS_TENANT_ID
To pass the variables to the provisioner, use a Secret
. The following example shows a Secret
configured for the first variables combination
apiVersion: v1 kind: Secret metadata: name: manila-provisioner-env type: Opaque data: os_username: <base64 encoded Manila username> os_password: <base64 encoded password> os_auth_url: <base64 encoded OpenStack Keystone URL> os_domain_name: <base64 encoded Manila service Domain> os_tenant_name: <base64 encoded Manila service Tenant/Project name>
Newer OpenStack versions use "project" instead of "tenant." However, the environment variables used by the provisioner must use TENANT
in their names.
The last step is to start the provisioner itself, for example, using a deployment:
kind: Deployment apiVersion: extensions/v1beta1 metadata: name: manila-provisioner spec: replicas: 1 strategy: type: Recreate template: metadata: labels: app: manila-provisioner spec: serviceAccountName: manila-provisioner-runner containers: - image: "registry.access.redhat.com/openshift3/manila-provisioner:latest" imagePullPolicy: "IfNotPresent" name: manila-provisioner env: - name: "OS_USERNAME" valueFrom: secretKeyRef: name: manila-provisioner-env key: os_username - name: "OS_PASSWORD" valueFrom: secretKeyRef: name: manila-provisioner-env key: os_password - name: "OS_AUTH_URL" valueFrom: secretKeyRef: name: manila-provisioner-env key: os_auth_url - name: "OS_DOMAIN_NAME" valueFrom: secretKeyRef: name: manila-provisioner-env key: os_domain_name - name: "OS_TENANT_NAME" valueFrom: secretKeyRef: name: manila-provisioner-env key: os_tenant_name
24.16.3. Usage
After the provisioner is running, you can provision PVs using a PVC and the corresponding StorageClass:
kind: PersistentVolumeClaim apiVersion: v1 metadata: name: manila-nfs-pvc spec: accessModes: - ReadWriteOnce resources: requests: storage: 2G storageClassName: manila-share
The PersistentVolumeClaim
is then bound to a PersistentVolume
backed by the newly provisioned Manila share. When the PersistentVolumeClaim
and subsequently the PersistentVolume
are deleted, the provisioner deletes and unexports the Manila share.
24.17. Dynamic provisioning and creating storage classes
24.17.1. Overview
The StorageClass resource object describes and classifies storage that can be requested, as well as provides a means for passing parameters for dynamically provisioned storage on demand. StorageClass objects can also serve as a management mechanism for controlling different levels of storage and access to the storage. Cluster Administrators (cluster-admin
) or Storage Administrators (storage-admin
) define and create the StorageClass objects that users can request without needing any intimate knowledge about the underlying storage volume sources.
The OpenShift Container Platform persistent volume framework enables this functionality and allows administrators to provision a cluster with persistent storage. The framework also gives users a way to request those resources without having any knowledge of the underlying infrastructure.
Many storage types are available for use as persistent volumes in OpenShift Container Platform. While all of them can be statically provisioned by an administrator, some types of storage are created dynamically using the built-in provider and plug-in APIs.
To enable dynamic provisioning, add the openshift_master_dynamic_provisioning_enabled
variable to the [OSEv3:vars]
section of the Ansible inventory file and set its value to True
.
[OSEv3:vars] openshift_master_dynamic_provisioning_enabled=True
24.17.2. Available dynamically provisioned plug-ins
OpenShift Container Platform provides the following provisioner plug-ins, which have generic implementations for dynamic provisioning that use the cluster’s configured provider’s API to create new storage resources:
Storage Type | Provisioner Plug-in Name | Required Configuration | Notes |
---|---|---|---|
OpenStack Cinder |
| ||
AWS Elastic Block Store (EBS) |
|
For dynamic provisioning when using multiple clusters in different zones, tag each node with | |
GCE Persistent Disk (gcePD) |
| In multi-zone configurations, it is advisable to run one Openshift cluster per GCE project to avoid PVs from getting created in zones where no node from current cluster exists. | |
GlusterFS |
| ||
Ceph RBD |
| ||
Trident from NetApp |
| Storage orchestrator for NetApp ONTAP, SolidFire, and E-Series storage. | |
| |||
Azure Disk |
|
Any chosen provisioner plug-in also requires configuration for the relevant cloud, host, or third-party provider as per the relevant documentation.
24.17.3. Defining a StorageClass
StorageClass objects are currently a globally scoped object and need to be created by cluster-admin
or storage-admin
users.
For GCE and AWS, a default StorageClass is created during OpenShift Container Platform installation. You can change the default StorageClass or delete it.
There are currently six plug-ins that are supported. The following sections describe the basic object definition for a StorageClass and specific examples for each of the supported plug-in types.
24.17.3.1. Basic StorageClass object definition
StorageClass Basic object definition
kind: StorageClass 1 apiVersion: storage.k8s.io/v1 2 metadata: name: foo 3 annotations: 4 ... provisioner: kubernetes.io/plug-in-type 5 parameters: 6 param1: value ... paramN: value
- 1
- (required) The API object type.
- 2
- (required) The current apiVersion.
- 3
- (required) The name of the StorageClass.
- 4
- (optional) Annotations for the StorageClass
- 5
- (required) The type of provisioner associated with this storage class.
- 6
- (optional) The parameters required for the specific provisioner, this will change from plug-in to plug-in.
24.17.3.2. StorageClass annotations
To set a StorageClass as the cluster-wide default:
storageclass.kubernetes.io/is-default-class: "true"
This enables any Persistent Volume Claim (PVC) that does not specify a specific volume to automatically be provisioned through the default StorageClass
Beta annotation storageclass.beta.kubernetes.io/is-default-class
is still working. However it will be removed in a future release.
To set a StorageClass description:
kubernetes.io/description: My StorageClass Description
24.17.3.3. OpenStack Cinder object definition
cinder-storageclass.yaml
kind: StorageClass apiVersion: storage.k8s.io/v1 metadata: name: gold provisioner: kubernetes.io/cinder parameters: type: fast 1 availability: nova 2 fsType: ext4 3
- 1
- Volume type created in Cinder. Default is empty.
- 2
- Availability Zone. If not specified, volumes are generally round-robined across all active zones where the OpenShift Container Platform cluster has a node.
- 3
- File system that is created on dynamically provisioned volumes. This value is copied to the
fsType
field of dynamically provisioned persistent volumes and the file system is created when the volume is mounted for the first time. The default value isext4
.
24.17.3.4. AWS ElasticBlockStore (EBS) object definition
aws-ebs-storageclass.yaml
kind: StorageClass apiVersion: storage.k8s.io/v1 metadata: name: slow provisioner: kubernetes.io/aws-ebs parameters: type: io1 1 zone: us-east-1d 2 iopsPerGB: "10" 3 encrypted: "true" 4 kmsKeyId: keyvalue 5 fsType: ext4 6
- 1
- Select from
io1
,gp2
,sc1
,st1
. The default isgp2
. See AWS documentation for valid Amazon Resource Name (ARN) values. - 2
- AWS zone. If no zone is specified, volumes are generally round-robined across all active zones where the OpenShift Container Platform cluster has a node. Zone and zones parameters must not be used at the same time.
- 3
- Only for io1 volumes. I/O operations per second per GiB. The AWS volume plug-in multiplies this with the size of the requested volume to compute IOPS of the volume. The value cap is 20,000 IOPS, which is the maximum supported by AWS. See AWS documentation for further details.
- 4
- Denotes whether to encrypt the EBS volume. Valid values are
true
orfalse
. - 5
- Optional. The full ARN of the key to use when encrypting the volume. If none is supplied, but
encypted
is set totrue
, then AWS generates a key. See AWS documentation for a valid ARN value. - 6
- File system that is created on dynamically provisioned volumes. This value is copied to the
fsType
field of dynamically provisioned persistent volumes and the file system is created when the volume is mounted for the first time. The default value isext4
.
24.17.3.5. GCE PersistentDisk (gcePD) object definition
gce-pd-storageclass.yaml
kind: StorageClass apiVersion: storage.k8s.io/v1 metadata: name: slow provisioner: kubernetes.io/gce-pd parameters: type: pd-standard 1 zone: us-central1-a 2 zones: us-central1-a, us-central1-b, us-east1-b 3 fsType: ext4 4
- 1
- Select either
pd-standard
orpd-ssd
. The default ispd-ssd
. - 2
- GCE zone. If no zone is specified, volumes are generally round-robined across all active zones where the OpenShift Container Platform cluster has a node. Zone and zones parameters must not be used at the same time.
- 3
- A comma-separated list of GCE zone(s). If no zone is specified, volumes are generally round-robined across all active zones where the OpenShift Container Platform cluster has a node. Zone and zones parameters must not be used at the same time.
- 4
- File system that is created on dynamically provisioned volumes. This value is copied to the
fsType
field of dynamically provisioned persistent volumes and the file system is created when the volume is mounted for the first time. The default value isext4
.
24.17.3.6. GlusterFS object definition
glusterfs-storageclass.yaml
kind: StorageClass apiVersion: storage.k8s.io/v1 metadata: name: slow provisioner: kubernetes.io/glusterfs parameters: 1 resturl: http://127.0.0.1:8081 2 restuser: admin 3 secretName: heketi-secret 4 secretNamespace: default 5 gidMin: "40000" 6 gidMax: "50000" 7 volumeoptions: group metadata-cache, nl-cache on 8 volumetype: replicate:3 9 volumenameprefix: custom 10
- 1
- Listed are mandatory and a few optional parameters. Please refer to Registering a Storage Class for additional parameters.
- 2
- heketi (volume management REST service for Gluster) URL that provisions GlusterFS volumes on demand. The general format should be
{http/https}://{IPaddress}:{Port}
. This is a mandatory parameter for the GlusterFS dynamic provisioner. If the heketi service is exposed as a routable service in the OpenShift Container Platform, it will have a resolvable fully qualified domain name (FQDN) and heketi service URL. - 3
- heketi user who has access to create volumes. Usually "admin".
- 4
- Identification of a Secret that contains a user password to use when talking to heketi. Optional; an empty password will be used when both
secretNamespace
andsecretName
are omitted. The provided secret must be of type"kubernetes.io/glusterfs"
. - 5
- The namespace of mentioned
secretName
. Optional; an empty password will be used when bothsecretNamespace
andsecretName
are omitted. The provided secret must be of type"kubernetes.io/glusterfs"
. - 6
- Optional. The minimum value of the GID range for volumes of this StorageClass.
- 7
- Optional. The maximum value of the GID range for volumes of this StorageClass.
- 8
- Optional. Options for newly created volumes. It allows for performance tuning. See Tuning Volume Options for more GlusterFS volume options.
- 9
- Optional. The type of volume to use.
- 10
- Optional. Enables custom volume name support using the following format:
<volumenameprefix>_<namespace>_<claimname>_UUID
. If you create a new PVC calledmyclaim
in your projectproject1
using this storageClass, the volume name will becustom-project1-myclaim-UUID
.
When the gidMin
and gidMax
values are not specified, their defaults are 2000 and 2147483647, respectively. Each dynamically provisioned volume will be given a GID in this range (gidMin-gidMax
). This GID is released from the pool when the respective volume is deleted. The GID pool is per StorageClass. If two or more storage classes have GID ranges that overlap there may be duplicate GIDs dispatched by the provisioner.
When heketi authentication is used, a Secret containing the admin key should also exist:
heketi-secret.yaml
apiVersion: v1
kind: Secret
metadata:
name: heketi-secret
namespace: default
data:
key: bXlwYXNzd29yZA== 1
type: kubernetes.io/glusterfs
- 1
- base64 encoded password, for example:
echo -n "mypassword" | base64
When the PVs are dynamically provisioned, the GlusterFS plug-in automatically creates an Endpoints and a headless Service named gluster-dynamic-<claimname>
. When the PVC is deleted, these dynamic resources are deleted automatically.
24.17.3.7. Ceph RBD object definition
ceph-storageclass.yaml
apiVersion: storage.k8s.io/v1 kind: StorageClass metadata: name: fast provisioner: kubernetes.io/rbd parameters: monitors: 10.16.153.105:6789 1 adminId: admin 2 adminSecretName: ceph-secret 3 adminSecretNamespace: kube-system 4 pool: kube 5 userId: kube 6 userSecretName: ceph-secret-user 7 fsType: ext4 8
- 1
- Ceph monitors, comma-delimited. It is required.
- 2
- Ceph client ID that is capable of creating images in the pool. Default is "admin".
- 3
- Secret Name for
adminId
. It is required. The provided secret must have type "kubernetes.io/rbd". - 4
- The namespace for
adminSecret
. Default is "default". - 5
- Ceph RBD pool. Default is "rbd".
- 6
- Ceph client ID that is used to map the Ceph RBD image. Default is the same as
adminId
. - 7
- The name of Ceph Secret for
userId
to map Ceph RBD image. It must exist in the same namespace as PVCs. It is required. - 8
- File system that is created on dynamically provisioned volumes. This value is copied to the
fsType
field of dynamically provisioned persistent volumes and the file system is created when the volume is mounted for the first time. The default value isext4
.
24.17.3.8. Trident object definition
trident.yaml
apiVersion: storage.k8s.io/v1 kind: StorageClass metadata: name: gold provisioner: netapp.io/trident 1 parameters: 2 media: "ssd" provisioningType: "thin" snapshots: "true"
Trident uses the parameters as selection criteria for the different pools of storage that are registered with it. Trident itself is configured separately.
- 1
- For more information about installing Trident with OpenShift Container Platform, see the Trident documentation.
- 2
- For more information about supported parameters, see the storage attributes section of the Trident documentation.
24.17.3.9. VMware vSphere object definition
vsphere-storageclass.yaml
kind: StorageClass apiVersion: storage.k8s.io/v1beta1 metadata: name: slow provisioner: kubernetes.io/vsphere-volume 1 parameters: diskformat: thin 2
- 1
- For more information about using VMWare vSphere with OpenShift Container Platform, see the VMWare vSphere documentation.
- 2
diskformat
:thin
,zeroedthick
andeagerzeroedthick
. See vSphere docs for details. Default:thin
24.17.3.10. Azure File object definition
To configure Azure file dynamic provisioning:
Create the role in the user’s project:
$ cat azf-role.yaml apiVersion: rbac.authorization.k8s.io/v1 kind: Role metadata: name: system:controller:persistent-volume-binder namespace: <user's project name> rules: - apiGroups: [""] resources: ["secrets"] verbs: ["create", "get", "delete"]
Create the role binding to the
persistent-volume-binder
service account in thekube-system
project:$ cat azf-rolebind.yaml apiVersion: rbac.authorization.k8s.io/v1 kind: RoleBinding metadata: name: system:controller:persistent-volume-binder namespace: <user's project> roleRef: apiGroup: rbac.authorization.k8s.io kind: Role name: system:controller:persistent-volume-binder subjects: - kind: ServiceAccount name: persistent-volume-binder namespace: kube-system
Add the service account as
admin
to the user’s project:$ oc policy add-role-to-user admin system:serviceaccount:kube-system:persistent-volume-binder -n <user's project>
Create a storage class for the Azure file:
$ cat azfsc.yaml | oc create -f - kind: StorageClass apiVersion: storage.k8s.io/v1 metadata: name: azfsc provisioner: kubernetes.io/azure-file mountOptions: - dir_mode=0777 - file_mode=0777
The user can now create a PVC that uses this storage class.
24.17.3.11. Azure Disk object definition
azure-advanced-disk-storageclass.yaml
kind: StorageClass apiVersion: storage.k8s.io/v1 metadata: name: slow provisioner: kubernetes.io/azure-disk parameters: storageAccount: azure_storage_account_name 1 storageaccounttype: Standard_LRS 2 kind: Dedicated 3
- 1
- Azure storage account name. This must reside in the same resource group as the cluster. If a storage account is specified, the
location
is ignored. If a storage account is not specified, a new storage account gets created in the same resource group as the cluster. If you are specifying astorageAccount
, the value forkind
must beDedicated
. - 2
- Azure storage account SKU tier. Default is empty. Note: Premium VM can attach both Standard_LRS and Premium_LRS disks, Standard VM can only attach Standard_LRS disks, Managed VM can only attach managed disks, and unmanaged VM can only attach unmanaged disks.
- 3
- Possible values are
Shared
(default),Dedicated
, andManaged
.-
If
kind
is set toShared
, Azure creates all unmanaged disks in a few shared storage accounts in the same resource group as the cluster. -
If
kind
is set toManaged
, Azure creates new managed disks. If
kind
is set toDedicated
and astorageAccount
is specified, Azure uses the specified storage account for the new unmanaged disk in the same resource group as the cluster. For this to work:- The specified storage account must be in the same region.
- Azure Cloud Provider must have a write access to the storage account.
-
If
kind
is set toDedicated
and astorageAccount
is not specified, Azure creates a new dedicated storage account for the new unmanaged disk in the same resource group as the cluster.
-
If
Azure StorageClass is revised in OpenShift Container Platform version 3.7. If you upgraded from a previous version, either:
-
specify the property
kind: dedicated
to continue using the Azure StorageClass created before the upgrade. Or, -
add the location parameter (for example,
"location": "southcentralus",
) in the azure.conf file to use the default propertykind: shared
. Doing this creates new storage accounts for future use.
24.17.4. Changing the default StorageClass
If you are using GCE and AWS, use the following process to change the default StorageClass:
List the StorageClass:
$ oc get storageclass NAME TYPE gp2 (default) kubernetes.io/aws-ebs 1 standard kubernetes.io/gce-pd
- 1
(default)
denotes the default StorageClass.
Change the value of the annotation
storageclass.kubernetes.io/is-default-class
tofalse
for the default StorageClass:$ oc patch storageclass gp2 -p '{"metadata": {"annotations": \ {"storageclass.kubernetes.io/is-default-class": "false"}}}'
Make another StorageClass the default by adding or modifying the annotation as
storageclass.kubernetes.io/is-default-class=true
.$ oc patch storageclass standard -p '{"metadata": {"annotations": \ {"storageclass.kubernetes.io/is-default-class": "true"}}}'
If more than one StorageClass is marked as default, a PVC can only be created if the storageClassName
is explicitly specified. Therefore, only one StorageClass should be set as the default.
Verify the changes:
$ oc get storageclass NAME TYPE gp2 kubernetes.io/aws-ebs standard (default) kubernetes.io/gce-pd
24.17.5. Additional information and examples
24.18. Volume Security
24.18.1. Overview
This topic provides a general guide on pod security as it relates to volume security. For information on pod-level security in general, see Managing Security Context Constraints (SCC) and the Security Context Constraint concept topic. For information on the OpenShift Container Platform persistent volume (PV) framework in general, see the Persistent Storage concept topic.
Accessing persistent storage requires coordination between the cluster and/or storage administrator and the end developer. The cluster administrator creates PVs, which abstract the underlying physical storage. The developer creates pods and, optionally, PVCs, which bind to PVs, based on matching criteria, such as capacity.
Multiple persistent volume claims (PVCs) within the same project can bind to the same PV. However, once a PVC binds to a PV, that PV cannot be bound by a claim outside of the first claim’s project. If the underlying storage needs to be accessed by multiple projects, then each project needs its own PV, which can point to the same physical storage. In this sense, a bound PV is tied to a project. For a detailed PV and PVC example, see the guide for WordPress and MySQL using NFS.
For the cluster administrator, granting pods access to PVs involves:
- knowing the group ID and/or user ID assigned to the actual storage,
- understanding SELinux considerations, and
- ensuring that these IDs are allowed in the range of legal IDs defined for the project and/or the SCC that matches the requirements of the pod.
Group IDs, the user ID, and SELinux values are defined in the SecurityContext
section in a pod definition. Group IDs are global to the pod and apply to all containers defined in the pod. User IDs can also be global, or specific to each container. Four sections control access to volumes:
24.18.2. SCCs, Defaults, and Allowed Ranges
SCCs influence whether or not a pod is given a default user ID, fsGroup
ID, supplemental group ID, and SELinux label. They also influence whether or not IDs supplied in the pod definition (or in the image) will be validated against a range of allowable IDs. If validation is required and fails, then the pod will also fail.
SCCs define strategies, such as runAsUser
, supplementalGroups
, and fsGroup
. These strategies help decide whether the pod is authorized. Strategy values set to RunAsAny are essentially stating that the pod can do what it wants regarding that strategy. Authorization is skipped for that strategy and no OpenShift Container Platform default is produced based on that strategy. Therefore, IDs and SELinux labels in the resulting container are based on container defaults instead of OpenShift Container Platform policies.
For a quick summary of RunAsAny:
- Any ID defined in the pod definition (or image) is allowed.
- Absence of an ID in the pod definition (and in the image) results in the container assigning an ID, which is root (0) for Docker.
- No SELinux labels are defined, so Docker will assign a unique label.
For these reasons, SCCs with RunAsAny for ID-related strategies should be protected so that ordinary developers do not have access to the SCC. On the other hand, SCC strategies set to MustRunAs or MustRunAsRange trigger ID validation (for ID-related strategies), and cause default values to be supplied by OpenShift Container Platform to the container when those values are not supplied directly in the pod definition or image.
Allowing access to SCCs with a RunAsAny FSGroup
strategy can also prevent users from accessing their block devices. Pods need to specify an fsGroup
in order to take over their block devices. Normally, this is done when the SCC FSGroup
strategy is set to MustRunAs. If a user’s pod is assigned an SCC with a RunAsAny FSGroup
strategy, then the user may face permission denied errors until they discover that they need to specify an fsGroup
themselves.
SCCs may define the range of allowed IDs (user or groups). If range checking is required (for example, using MustRunAs) and the allowable range is not defined in the SCC, then the project determines the ID range. Therefore, projects support ranges of allowable ID. However, unlike SCCs, projects do not define strategies, such as runAsUser
.
Allowable ranges are helpful not only because they define the boundaries for container IDs, but also because the minimum value in the range becomes the default value for the ID in question. For example, if the SCC ID strategy value is MustRunAs, the minimum value of an ID range is 100, and the ID is absent from the pod definition, then 100 is provided as the default for this ID.
As part of pod admission, the SCCs available to a pod are examined (roughly, in priority order followed by most restrictive) to best match the requests of the pod. Setting a SCC’s strategy type to RunAsAny is less restrictive, whereas a type of MustRunAs is more restrictive. All of these strategies are evaluated. To see which SCC was assigned to a pod, use the oc get pod
command:
# oc get pod <pod_name> -o yaml ... metadata: annotations: openshift.io/scc: nfs-scc 1 name: nfs-pod1 2 namespace: default 3 ...
- 1
- Name of the SCC that the pod used (in this case, a custom SCC).
- 2
- Name of the pod.
- 3
- Name of the project. "Namespace" is interchangeable with "project" in OpenShift Container Platform. See Projects and Users for details.
It may not be immediately obvious which SCC was matched by a pod, so the command above can be very useful in understanding the UID, supplemental groups, and SELinux relabeling in a live container.
Any SCC with a strategy set to RunAsAny allows specific values for that strategy to be defined in the pod definition (and/or image). When this applies to the user ID (runAsUser
) it is prudent to restrict access to the SCC to prevent a container from being able to run as root.
Because pods often match the restricted SCC, it is worth knowing the security this entails. The restricted SCC has the following characteristics:
-
User IDs are constrained due to the
runAsUser
strategy being set to MustRunAsRange. This forces user ID validation. -
Because a range of allowable user IDs is not defined in the SCC (see oc get -o yaml --export scc restricted` for more details), the project’s
openshift.io/sa.scc.uid-range
range will be used for range checking and for a default ID, if needed. -
A default user ID is produced when a user ID is not specified in the pod definition and the matching SCC’s
runAsUser
is set to MustRunAsRange. -
An SELinux label is required (
seLinuxContext
set to MustRunAs), which uses the project’s default MCS label. -
fsGroup
IDs are constrained to a single value due to theFSGroup
strategy being set to MustRunAs, which dictates that the value to use is the minimum value of the first range specified. -
Because a range of allowable
fsGroup
IDs is not defined in the SCC, the minimum value of the project’sopenshift.io/sa.scc.supplemental-groups
range (or the same range used for user IDs) will be used for validation and for a default ID, if needed. -
A default
fsGroup
ID is produced when afsGroup
ID is not specified in the pod and the matching SCC’sFSGroup
is set to MustRunAs. -
Arbitrary supplemental group IDs are allowed because no range checking is required. This is a result of the
supplementalGroups
strategy being set to RunAsAny. - Default supplemental groups are not produced for the running pod due to RunAsAny for the two group strategies above. Therefore, if no groups are defined in the pod definition (or in the image), the container(s) will have no supplemental groups predefined.
The following shows the default project and a custom SCC (my-custom-scc), which summarizes the interactions of the SCC and the project:
$ oc get project default -o yaml 1 ... metadata: annotations: 2 openshift.io/sa.scc.mcs: s0:c1,c0 3 openshift.io/sa.scc.supplemental-groups: 1000000000/10000 4 openshift.io/sa.scc.uid-range: 1000000000/10000 5 $ oc get scc my-custom-scc -o yaml ... fsGroup: type: MustRunAs 6 ranges: - min: 5000 max: 6000 runAsUser: type: MustRunAsRange 7 uidRangeMin: 1000100000 uidRangeMax: 1000100999 seLinuxContext: 8 type: MustRunAs SELinuxOptions: 9 user: <selinux-user-name> role: ... type: ... level: ... supplementalGroups: type: MustRunAs 10 ranges: - min: 5000 max: 6000
- 1
- default is the name of the project.
- 2
- Default values are only produced when the corresponding SCC strategy is not RunAsAny.
- 3
- SELinux default when not defined in the pod definition or in the SCC.
- 4
- Range of allowable group IDs. ID validation only occurs when the SCC strategy is RunAsAny. There can be more than one range specified, separated by commas. See below for supported formats.
- 5
- Same as <4> but for user IDs. Also, only a single range of user IDs is supported.
- 6 10
- MustRunAs enforces group ID range checking and provides the container’s groups default. Based on this SCC definition, the default is 5000 (the minimum ID value). If the range was omitted from the SCC, then the default would be 1000000000 (derived from the project). The other supported type, RunAsAny, does not perform range checking, thus allowing any group ID, and produces no default groups.
- 7
- MustRunAsRange enforces user ID range checking and provides a UID default. Based on this SCC, the default UID is 1000100000 (the minimum value). If the minimum and maximum range were omitted from the SCC, the default user ID would be 1000000000 (derived from the project). MustRunAsNonRoot and RunAsAny are the other supported types. The range of allowed IDs can be defined to include any user IDs required for the target storage.
- 8
- When set to MustRunAs, the container is created with the SCC’s SELinux options, or the MCS default defined in the project. A type of RunAsAny indicates that SELinux context is not required, and, if not defined in the pod, is not set in the container.
- 9
- The SELinux user name, role name, type, and labels can be defined here.
Two formats are supported for allowed ranges:
-
M/N
, whereM
is the starting ID andN
is the count, so the range becomesM
through (and including)M+N-1
. -
M-N
, whereM
is again the starting ID andN
is the ending ID. The default group ID is the starting ID in the first range, which is1000000000
in this project. If the SCC did not define a minimum group ID, then the project’s default ID is applied.
24.18.3. Supplemental Groups
Read SCCs, Defaults, and Allowed Ranges before working with supplemental groups.
Supplemental groups are regular Linux groups. When a process runs in Linux, it has a UID, a GID, and one or more supplemental groups. These attributes can be set for a container’s main process. The supplementalGroups
IDs are typically used for controlling access to shared storage, such as NFS and GlusterFS, whereas fsGroup is used for controlling access to block storage, such as Ceph RBD and iSCSI.
The OpenShift Container Platform shared storage plug-ins mount volumes such that the POSIX permissions on the mount match the permissions on the target storage. For example, if the target storage’s owner ID is 1234 and its group ID is 5678, then the mount on the host node and in the container will have those same IDs. Therefore, the container’s main process must match one or both of those IDs in order to access the volume.
For example, consider the following NFS export.
On an OpenShift Container Platform node:
showmount
requires access to the ports used by rpcbind
and rpc.mount
on the NFS server
# showmount -e <nfs-server-ip-or-hostname> Export list for f21-nfs.vm: /opt/nfs *
On the NFS server:
# cat /etc/exports /opt/nfs *(rw,sync,root_squash) ... # ls -lZ /opt/nfs -d drwx------. 1000100001 5555 unconfined_u:object_r:usr_t:s0 /opt/nfs
The /opt/nfs/ export is accessible by UID 1000100001 and the group 5555. In general, containers should not run as root. So, in this NFS example, containers which are not run as UID 1000100001 and are not members the group 5555 will not have access to the NFS export.
Often, the SCC matching the pod does not allow a specific user ID to be specified, thus using supplemental groups is a more flexible way to grant storage access to a pod. For example, to grant NFS access to the export above, the group 5555 can be defined in the pod definition:
apiVersion: v1 kind: Pod ... spec: containers: - name: ... volumeMounts: - name: nfs 1 mountPath: /usr/share/... 2 securityContext: 3 supplementalGroups: [5555] 4 volumes: - name: nfs 5 nfs: server: <nfs_server_ip_or_host> path: /opt/nfs 6
- 1
- Name of the volume mount. Must match the name in the
volumes
section. - 2
- NFS export path as seen in the container.
- 3
- Pod global security context. Applies to all containers inside the pod. Each container can also define its
securityContext
, however group IDs are global to the pod and cannot be defined for individual containers. - 4
- Supplemental groups, which is an array of IDs, is set to 5555. This grants group access to the export.
- 5
- Name of the volume. Must match the name in the
volumeMounts
section. - 6
- Actual NFS export path on the NFS server.
All containers in the above pod (assuming the matching SCC or project allows the group 5555) will be members of the group 5555 and have access to the volume, regardless of the container’s user ID. However, the assumption above is critical. Sometimes, the SCC does not define a range of allowable group IDs but instead requires group ID validation (a result of supplementalGroups
set to MustRunAs). Note that this is not the case for the restricted SCC. The project will not likely allow a group ID of 5555, unless the project has been customized to access this NFS export. So, in this scenario, the above pod will fail because its group ID of 5555 is not within the SCC’s or the project’s range of allowed group IDs.
Supplemental Groups and Custom SCCs
To remedy the situation in the previous example, a custom SCC can be created such that:
- a minimum and max group ID are defined,
- ID range checking is enforced, and
- the group ID of 5555 is allowed.
It is often better to create a new SCC rather than modifying a predefined SCC, or changing the range of allowed IDs in the predefined projects.
The easiest way to create a new SCC is to export an existing SCC and customize the YAML file to meet the requirements of the new SCC. For example:
Use the restricted SCC as a template for the new SCC:
$ oc get -o yaml --export scc restricted > new-scc.yaml
- Edit the new-scc.yaml file to your desired specifications.
Create the new SCC:
$ oc create -f new-scc.yaml
The oc edit scc
command can be used to modify an instantiated SCC.
Here is a fragment of a new SCC named nfs-scc:
$ oc get -o yaml --export scc nfs-scc allowHostDirVolumePlugin: false 1 ... kind: SecurityContextConstraints metadata: ... name: nfs-scc 2 priority: 9 3 ... supplementalGroups: type: MustRunAs 4 ranges: - min: 5000 5 max: 6000 ...
- 1
- The
allow
booleans are the same as for the restricted SCC. - 2
- Name of the new SCC.
- 3
- Numerically larger numbers have greater priority. Nil or omitted is the lowest priority. Higher priority SCCs sort before lower priority SCCs and thus have a better chance of matching a new pod.
- 4
supplementalGroups
is a strategy and it is set to MustRunAs, which means group ID checking is required.- 5
- Multiple ranges are supported. The allowed group ID range here is 5000 through 5999, with the default supplemental group being 5000.
When the same pod shown earlier runs against this new SCC (assuming, of course, the pod matches the new SCC), it will start because the group 5555, supplied in the pod definition, is now allowed by the custom SCC.
24.18.4. fsGroup
Read SCCs, Defaults, and Allowed Ranges before working with supplemental groups.
It is generally preferable to use group IDs (supplemental or fsGroup
) to gain access to persistent storage versus using user IDs.
fsGroup
defines a pod’s "file system group" ID, which is added to the container’s supplemental groups. The supplementalGroups
ID applies to shared storage, whereas the fsGroup
ID is used for block storage.
Block storage, such as Ceph RBD, iSCSI, and various cloud storage, is typically dedicated to a single pod which has requested the block storage volume, either directly or using a PVC. Unlike shared storage, block storage is taken over by a pod, meaning that user and group IDs supplied in the pod definition (or image) are applied to the actual, physical block device. Typically, block storage is not shared.
A fsGroup
definition is shown below in the following pod definition fragment:
kind: Pod ... spec: containers: - name: ... securityContext: 1 fsGroup: 5555 2 ...
As with supplementalGroups
, all containers in the above pod (assuming the matching SCC or project allows the group 5555) will be members of the group 5555, and will have access to the block volume, regardless of the container’s user ID. If the pod matches the restricted SCC, whose fsGroup
strategy is MustRunAs, then the pod will fail to run. However, if the SCC has its fsGroup
strategy set to RunAsAny, then any fsGroup
ID (including 5555) will be accepted. Note that if the SCC has its fsGroup
strategy set to RunAsAny and no fsGroup
ID is specified, the "taking over" of the block storage does not occur and permissions may be denied to the pod.
fsGroups and Custom SCCs
To remedy the situation in the previous example, a custom SCC can be created such that:
- a minimum and maximum group ID are defined,
- ID range checking is enforced, and
- the group ID of 5555 is allowed.
It is better to create new SCCs versus modifying a predefined SCC, or changing the range of allowed IDs in the predefined projects.
Consider the following fragment of a new SCC definition:
# oc get -o yaml --export scc new-scc ... kind: SecurityContextConstraints ... fsGroup: type: MustRunAs 1 ranges: 2 - max: 6000 min: 5000 3 ...
- 1
- MustRunAs triggers group ID range checking, whereas RunAsAny does not require range checking.
- 2
- The range of allowed group IDs is 5000 through, and including, 5999. Multiple ranges are supported but not used. The allowed group ID range here is 5000 through 5999, with the default
fsGroup
being 5000. - 3
- The minimum value (or the entire range) can be omitted from the SCC, and thus range checking and generating a default value will defer to the project’s
openshift.io/sa.scc.supplemental-groups
range.fsGroup
andsupplementalGroups
use the same group field in the project; there is not a separate range forfsGroup
.
When the pod shown above runs against this new SCC (assuming, of course, the pod matches the new SCC), it will start because the group 5555, supplied in the pod definition, is allowed by the custom SCC. Additionally, the pod will "take over" the block device, so when the block storage is viewed by a process outside of the pod, it will actually have 5555 as its group ID.
A list of volumes supporting block ownership include:
- AWS Elastic Block Store
- OpenStack Cinder
- Ceph RBD
- GCE Persistent Disk
- iSCSI
- emptyDir
- gitRepo
This list is potentially incomplete.
24.18.5. User IDs
Read SCCs, Defaults, and Allowed Ranges before working with supplemental groups.
It is generally preferable to use group IDs (supplemental or fsGroup) to gain access to persistent storage versus using user IDs.
User IDs can be defined in the container image or in the pod definition. In the pod definition, a single user ID can be defined globally to all containers, or specific to individual containers (or both). A user ID is supplied as shown in the pod definition fragment below:
spec: containers: - name: ... securityContext: runAsUser: 1000100001
ID 1000100001 in the above is container-specific and matches the owner ID on the export. If the NFS export’s owner ID was 54321, then that number would be used in the pod definition. Specifying securityContext
outside of the container definition makes the ID global to all containers in the pod.
Similar to group IDs, user IDs may be validated according to policies set in the SCC and/or project. If the SCC’s runAsUser
strategy is set to RunAsAny, then any user ID defined in the pod definition or in the image is allowed.
This means even a UID of 0 (root) is allowed.
If, instead, the runAsUser
strategy is set to MustRunAsRange, then a supplied user ID will be validated against a range of allowed IDs. If the pod supplies no user ID, then the default ID is set to the minimum value of the range of allowable user IDs.
Returning to the earlier NFS example, the container needs its UID set to 1000100001, which is shown in the pod fragment above. Assuming the default project and the restricted SCC, the pod’s requested user ID of 1000100001 will not be allowed, and therefore the pod will fail. The pod fails because:
- it requests 1000100001 as its user ID,
-
all available SCCs use MustRunAsRange for their
runAsUser
strategy, so UID range checking is required, and - 1000100001 is not included in the SCC or in the project’s user ID range.
To remedy this situation, a new SCC can be created with the appropriate user ID range. A new project could also be created with the appropriate user ID range defined. There are also other, less-preferred options:
- The restricted SCC could be modified to include 1000100001 within its minimum and maximum user ID range. This is not recommended as you should avoid modifying the predefined SCCs if possible.
-
The restricted SCC could be modified to use RunAsAny for the
runAsUser
value, thus eliminating ID range checking. This is strongly not recommended, as containers could run as root. - The default project’s UID range could be changed to allow a user ID of 1000100001. This is not generally advisable because only a single range of user IDs can be specified, and thus other pods may not run if the range is altered.
User IDs and Custom SCCs
It is good practice to avoid modifying the predefined SCCs if possible. The preferred approach is to create a custom SCC that better fits an organization’s security needs, or create a new project that supports the desired user IDs.
To remedy the situation in the previous example, a custom SCC can be created such that:
- a minimum and maximum user ID is defined,
- UID range checking is still enforced, and
- the UID of 1000100001 is allowed.
For example:
$ oc get -o yaml --export scc nfs-scc allowHostDirVolumePlugin: false 1 ... kind: SecurityContextConstraints metadata: ... name: nfs-scc 2 priority: 9 3 requiredDropCapabilities: null runAsUser: type: MustRunAsRange 4 uidRangeMax: 1000100001 5 uidRangeMin: 1000100001 ...
- 1
- The
allowXX
bools are the same as for the restricted SCC. - 2
- The name of this new SCC is nfs-scc.
- 3
- Numerically larger numbers have greater priority. Nil or omitted is the lowest priority. Higher priority SCCs sort before lower priority SCCs, and thus have a better chance of matching a new pod.
- 4
- The
runAsUser
strategy is set to MustRunAsRange, which means UID range checking is enforced. - 5
- The UID range is 1000100001 through 1000100001 (a range of one value).
Now, with runAsUser: 1000100001
shown in the previous pod definition fragment, the pod matches the new nfs-scc and is able to run with a UID of 1000100001.
24.18.6. SELinux Options
All predefined SCCs, except for the privileged SCC, set the seLinuxContext
to MustRunAs. So the SCCs most likely to match a pod’s requirements will force the pod to use an SELinux policy. The SELinux policy used by the pod can be defined in the pod itself, in the image, in the SCC, or in the project (which provides the default).
SELinux labels can be defined in a pod’s securityContext.seLinuxOptions
section, and supports user
, role
, type
, and level
:
Level and MCS label are used interchangeably in this topic.
... securityContext: 1 seLinuxOptions: level: "s0:c123,c456" 2 ...
Here are fragments from an SCC and from the default project:
$ oc get -o yaml --export scc scc-name ... seLinuxContext: type: MustRunAs 1 # oc get -o yaml --export namespace default ... metadata: annotations: openshift.io/sa.scc.mcs: s0:c1,c0 2 ...
All predefined SCCs, except for the privileged SCC, set the seLinuxContext
to MustRunAs. This forces pods to use MCS labels, which can be defined in the pod definition, the image, or provided as a default.
The SCC determines whether or not to require an SELinux label and can provide a default label. If the seLinuxContext
strategy is set to MustRunAs and the pod (or image) does not define a label, OpenShift Container Platform defaults to a label chosen from the SCC itself or from the project.
If seLinuxContext
is set to RunAsAny, then no default labels are provided, and the container determines the final label. In the case of Docker, the container will use a unique MCS label, which will not likely match the labeling on existing storage mounts. Volumes which support SELinux management will be relabeled so that they are accessible by the specified label and, depending on how exclusionary the label is, only that label.
This means two things for unprivileged containers:
-
The volume is given a type that is accessible by unprivileged containers. This type is usually
container_file_t
in Red Hat Enterprise Linux (RHEL) version 7.5 and later. This type treats volumes as container content. In previous RHEL versions, RHEL 7.4, 7.3, and so forth, the volume is given thesvirt_sandbox_file_t
type. -
If a
level
is specified, the volume is labeled with the given MCS label.
For a volume to be accessible by a pod, the pod must have both categories of the volume. So a pod with s0:c1,c2 will be able to access a volume with s0:c1,c2. A volume with s0 will be accessible by all pods.
If pods fail authorization, or if the storage mount is failing due to permissions errors, then there is a possibility that SELinux enforcement is interfering. One way to check for this is to run:
# ausearch -m avc --start recent
This examines the log file for AVC (Access Vector Cache) errors.
24.19. Selector-Label Volume Binding
24.19.1. Overview
This guide provides the steps necessary to enable binding of persistent volume claims (PVCs) to persistent volumes (PVs) via selector and label attributes. By implementing selectors and labels, regular users are able to target provisioned storage by identifiers defined by a cluster administrator.
24.19.2. Motivation
In cases of statically provisioned storage, developers seeking persistent storage are required to know a handful identifying attributes of a PV in order to deploy and bind a PVC. This creates several problematic situations. Regular users might have to contact a cluster administrator to either deploy the PVC or provide the PV values. PV attributes alone do not convey the intended use of the storage volumes, nor do they provide methods by which volumes can be grouped.
Selector and label attributes can be used to abstract away PV details from the user while providing cluster administrators a way of identifying volumes by a descriptive and customizable tag. Through the selector-label method of binding, users are only required to know which labels are defined by the administrator.
The selector-label feature is currently only available for statically provisioned storage and is currently not implemented for storage provisioned dynamically.
24.19.3. Deployment
This section reviews how to define and deploy PVCs.
24.19.3.1. Prerequisites
- A running OpenShift Container Platform 3.3+ cluster
- A volume provided by a supported storage provider
- A user with a cluster-admin role binding
24.19.3.2. Define the Persistent Volume and Claim
As the cluser-admin user, define the PV. For this example, we will be using a GlusterFS volume. See the appropriate storage provider for your provider’s configuration.
Example 24.9. Persistent Volume with Labels
apiVersion: v1 kind: PersistentVolume metadata: name: gluster-volume labels: 1 volume-type: ssd aws-availability-zone: us-east-1 spec: capacity: storage: 2Gi accessModes: - ReadWriteMany glusterfs: endpoints: glusterfs-cluster path: myVol1 readOnly: false persistentVolumeReclaimPolicy: Recycle
- 1
- A PVC whose selectors match all of a PV’s labels will be bound, assuming a PV is available.
Define the PVC:
Example 24.10. Persistent Volume Claim with Selectors
apiVersion: v1 kind: PersistentVolumeClaim metadata: name: gluster-claim spec: accessModes: - ReadWriteMany resources: requests: storage: 1Gi selector: 1 matchLabels: 2 volume-type: ssd aws-availability-zone: us-east-1
24.19.3.3. Deploy the Persistent Volume and Claim
As the cluster-admin user, create the persistent volume:
Example 24.11. Create the Persistent Volume
# oc create -f gluster-pv.yaml persistentVolume "gluster-volume" created # oc get pv NAME LABELS CAPACITY ACCESSMODES STATUS CLAIM REASON AGE gluster-volume map[] 2147483648 RWX Available 2s
Once the PV is created, any user whose selectors match all its labels can create their PVC.
Example 24.12. Create the Persistent Volume Claim
# oc create -f gluster-pvc.yaml persistentVolumeClaim "gluster-claim" created # oc get pvc NAME LABELS STATUS VOLUME gluster-claim Bound gluster-volume
24.20. Enabling Controller-managed Attachment and Detachment
24.20.1. Overview
As of OpenShift Container Platform 3.4, administrators can enable the controller running on the cluster’s master to manage volume attach and detach operations on behalf of a set of nodes, as opposed to letting them manage their own volume attach and detach operations.
Enabling controller-managed attachment and detachment has the following benefits:
- If a node is lost, volumes that were attached to it can be detached by the controller and reattached elsewhere.
- Credentials for attaching and detaching do not need to be made present on every node, improving security.
As of OpenShift Container Platform 3.6, controller-managed attachment and detachment is the default setting.
24.20.2. Determining What Is Managing Attachment and Detachment
If a node has set the annotation volumes.kubernetes.io/controller-managed-attach-detach
on itself, then its attach and detach operations are being managed by the controller. The controller will automatically inspect all nodes for this annotation and act according to whether it is present or not. Therefore, you may inspect the node for this annotation to determine if it has enabled controller-managed attach and detach.
To further ensure that the node is opting for controller-managed attachment and detachment, its logs can be searched for the following line:
Setting node annotation to enable volume controller attach/detach
If the above line is not found, the logs should instead contain:
Controller attach/detach is disabled for this node; Kubelet will attach and detach volumes
To check from the controller’s end that it is managing a particular node’s attach and detach operations, the logging level must first be set to at least 4
. Then, the following line should be found:
processVolumesInUse for node <node_hostname>
For information on how to view logs and configure logging levels, see Configuring Logging Levels.
24.20.3. Configuring Nodes to Enable Controller-managed Attachment and Detachment
Enabling controller-managed attachment and detachment is done by configuring individual nodes to opt in and disable their own node-level attachment and detachment management. See Node Configuration Files for information on what node configuration file to edit and add the following:
kubeletArguments: enable-controller-attach-detach: - "true"
Once a node is configured, it must be restarted for the setting to take effect.
24.21. Persistent Volume Snapshots
24.21.1. Overview
Persistent Volume Snapshots are a Technology Preview feature. Technology Preview features are not supported with Red Hat production service level agreements (SLAs), might not be functionally complete, and Red Hat does not recommend to use them for production. These features provide early access to upcoming product features, enabling customers to test functionality and provide feedback during the development process.
For more information on Red Hat Technology Preview features support scope, see https://access.redhat.com/support/offerings/techpreview/.
Many storage systems provide the ability to create "snapshots" of a persistent volume (PV) to protect against data loss. The external snapshot controller and provisioner provide means to use the feature in the OpenShift Container Platform cluster and handle volume snapshots through the OpenShift Container Platform API.
This document describes the current state of volume snapshot support in OpenShift Container Platform. Familiarity with PVs, persistent volume claims (PVCs), and dynamic provisioning is recommended.
24.21.2. Features
-
Create snapshot of a
PersistentVolume
bound to aPersistentVolumeClaim
-
List existing
VolumeSnapshots
-
Delete existing
VolumeSnapshot
-
Create a new
PersistentVolume
from an existingVolumeSnapshot
Supported
PersistentVolume
types:- AWS Elastic Block Store (EBS)
- Google Compute Engine (GCE) Persistent Disk (PD)
24.21.3. Installation and Setup
The external controller and provisioner are the external components that provide volume snapshotting. These external components run in the cluster. The controller is responsible for creating, deleting, and reporting events on volume snapshots. The provisioner creates new PersistentVolumes
from the volume snapshots. See Create Snapshot and Restore Snapshot for more information.
24.21.3.1. Starting the External Controller and Provisioner
The external controller and provisioner services are distributed as container images and can be run in the OpenShift Container Platform cluster as usual. There are also RPM versions for the controller and provisioner.
To allow the containers managing the API objects, the necessary role-based access control (RBAC) rules need to be configured by the administrator:
Create a
ServiceAccount
andClusterRole
:apiVersion: v1 kind: ServiceAccount metadata: name: snapshot-controller-runner kind: ClusterRole apiVersion: rbac.authorization.k8s.io/v1 metadata: name: snapshot-controller-role rules: - apiGroups: [""] resources: ["persistentvolumes"] verbs: ["get", "list", "watch", "create", "delete"] - apiGroups: [""] resources: ["persistentvolumeclaims"] verbs: ["get", "list", "watch", "update"] - apiGroups: ["storage.k8s.io"] resources: ["storageclasses"] verbs: ["get", "list", "watch"] - apiGroups: [""] resources: ["events"] verbs: ["list", "watch", "create", "update", "patch"] - apiGroups: ["apiextensions.k8s.io"] resources: ["customresourcedefinitions"] verbs: ["create", "list", "watch", "delete"] - apiGroups: ["volumesnapshot.external-storage.k8s.io"] resources: ["volumesnapshots"] verbs: ["get", "list", "watch", "create", "update", "patch", "delete"] - apiGroups: ["volumesnapshot.external-storage.k8s.io"] resources: ["volumesnapshotdatas"] verbs: ["get", "list", "watch", "create", "update", "patch", "delete"]
Bind the rules via
ClusterRoleBinding
:apiVersion: rbac.authorization.k8s.io/v1beta1 kind: ClusterRoleBinding metadata: name: snapshot-controller roleRef: apiGroup: rbac.authorization.k8s.io kind: ClusterRole name: snapshot-controller-role subjects: - kind: ServiceAccount name: snapshot-controller-runner namespace: default
If the external controller and provisioner are deployed in Amazon Web Services (AWS), they must be able to authenticate using the access key. To provide the credential to the pod, the administrator creates a new secret:
apiVersion: v1 kind: Secret metadata: name: awskeys type: Opaque data: access-key-id: <base64 encoded AWS_ACCESS_KEY_ID> secret-access-key: <base64 encoded AWS_SECRET_ACCESS_KEY>
The AWS deployment of the external controller and provisioner containers (note that both pod containers use the secret to access the AWS cloud provider API):
kind: Deployment apiVersion: extensions/v1beta1 metadata: name: snapshot-controller spec: replicas: 1 strategy: type: Recreate template: metadata: labels: app: snapshot-controller spec: serviceAccountName: snapshot-controller-runner containers: - name: snapshot-controller image: "registry.access.redhat.com/openshift3/snapshot-controller:latest" imagePullPolicy: "IfNotPresent" args: ["-cloudprovider", "aws"] env: - name: AWS_ACCESS_KEY_ID valueFrom: secretKeyRef: name: awskeys key: access-key-id - name: AWS_SECRET_ACCESS_KEY valueFrom: secretKeyRef: name: awskeys key: secret-access-key - name: snapshot-provisioner image: "registry.access.redhat.com/openshift3/snapshot-provisioner:latest" imagePullPolicy: "IfNotPresent" args: ["-cloudprovider", "aws"] env: - name: AWS_ACCESS_KEY_ID valueFrom: secretKeyRef: name: awskeys key: access-key-id - name: AWS_SECRET_ACCESS_KEY valueFrom: secretKeyRef: name: awskeys key: secret-access-key
For GCE, there is no need to use secrets to access the GCE cloud provider API. The administrator can proceed with the deployment:
kind: Deployment apiVersion: extensions/v1beta1 metadata: name: snapshot-controller spec: replicas: 1 strategy: type: Recreate template: metadata: labels: app: snapshot-controller spec: serviceAccountName: snapshot-controller-runner containers: - name: snapshot-controller image: "registry.access.redhat.com/openshift3/snapshot-controller:latest" imagePullPolicy: "IfNotPresent" args: ["-cloudprovider", "gce"] - name: snapshot-provisioner image: "registry.access.redhat.com/openshift3/snapshot-provisioner:latest" imagePullPolicy: "IfNotPresent" args: ["-cloudprovider", "gce"]
24.21.3.2. Managing Snapshot Users
Depending on the cluster configuration, it might be necessary to allow non-administrator users to manipulate the VolumeSnapshot
objects on the API server. This can be done by creating a ClusterRole
bound to a particular user or group.
For example, assume the user 'alice' needs to work with snapshots in the cluster. The cluster administrator completes the following steps:
Define a new
ClusterRole
:apiVersion: v1 kind: ClusterRole metadata: name: volumesnapshot-admin rules: - apiGroups: - "volumesnapshot.external-storage.k8s.io" attributeRestrictions: null resources: - volumesnapshots verbs: - create - delete - deletecollection - get - list - patch - update - watch
Bind the cluster role to the user 'alice' by creating a
ClusterRoleBinding
object:apiVersion: rbac.authorization.k8s.io/v1beta1 kind: ClusterRoleBinding metadata: name: volumesnapshot-admin roleRef: apiGroup: rbac.authorization.k8s.io kind: ClusterRole name: volumesnapshot-admin subjects: - kind: User name: alice
This is only an example of API access configuration. The VolumeSnapshot
objects behave similar to other OpenShift Container Platform API objects. See the API access control documentation for more information on managing the API RBAC.
24.21.4. Lifecycle of a Volume Snapshot and Volume Snapshot Data
24.21.4.1. Persistent Volume Claim and Persistent Volume
The PersistentVolumeClaim
is bound to a PersistentVolume
. The PersistentVolume
type must be one of the snapshot supported persistent volume types.
24.21.4.1.1. Snapshot Promoter
To create a StorageClass
:
kind: StorageClass apiVersion: storage.k8s.io/v1 metadata: name: snapshot-promoter provisioner: volumesnapshot.external-storage.k8s.io/snapshot-promoter
This StorageClass
is necessary to restore a PersistentVolume
from a VolumeSnapshot
that was previously created.
24.21.4.2. Create Snapshot
To take a snapshot of a PV, create a new VolumeSnapshot
object:
apiVersion: volumesnapshot.external-storage.k8s.io/v1 kind: VolumeSnapshot metadata: name: snapshot-demo spec: persistentVolumeClaimName: ebs-pvc
persistentVolumeClaimName
is the name of the PersistentVolumeClaim
bound to a PersistentVolume
. This particular PV is snapshotted.
A VolumeSnapshotData
object is then automatically created based on the VolumeSnapshot
. The relationship between VolumeSnapshot
and VolumeSnapshotData
is similar to the relationship between PersistentVolumeClaim
and PersistentVolume
.
Depending on the PV type, the operation might go through several phases, which are reflected by the VolumeSnapshot
status:
-
The new
VolumeSnapshot
object is created. -
The controller starts the snapshot operation. The snapshotted
PersistentVolume
might need to be frozen and the applications paused. -
The storage system finishes creating the snapshot (the snapshot is "cut") and the snapshotted
PersistentVolume
might return to normal operation. The snapshot itself is not yet ready. The last status condition is ofPending
type with status valueTrue
. A newVolumeSnapshotData
object is created to represent the actual snapshot. -
The newly created snapshot is complete and ready to use. The last status condition is of
Ready
type with status valueTrue
.
It is the user’s responsibility to ensure data consistency (stop the pod/application, flush caches, freeze the file system, and so on).
In case of error, the VolumeSnapshot
status is appended with an Error
condition.
To display the VolumeSnapshot
status:
$ oc get volumesnapshot -o yaml
The status is displayed.
apiVersion: volumesnapshot.external-storage.k8s.io/v1 kind: VolumeSnapshot metadata: clusterName: "" creationTimestamp: 2017-09-19T13:58:28Z generation: 0 labels: Timestamp: "1505829508178510973" name: snapshot-demo namespace: default resourceVersion: "780" selfLink: /apis/volumesnapshot.external-storage.k8s.io/v1/namespaces/default/volumesnapshots/snapshot-demo uid: 9cc5da57-9d42-11e7-9b25-90b11c132b3f spec: persistentVolumeClaimName: ebs-pvc snapshotDataName: k8s-volume-snapshot-9cc8813e-9d42-11e7-8bed-90b11c132b3f status: conditions: - lastTransitionTime: null message: Snapshot created successfully reason: "" status: "True" type: Ready creationTimestamp: null
24.21.4.3. Restore Snapshot
To restore a PV from a VolumeSnapshot
, create a PVC:
apiVersion: v1 kind: PersistentVolumeClaim metadata: name: snapshot-pv-provisioning-demo annotations: snapshot.alpha.kubernetes.io/snapshot: snapshot-demo spec: storageClassName: snapshot-promoter
annotations
: snapshot.alpha.kubernetes.io/snapshot
is the name of the VolumeSnapshot
to be restored. storageClassName
: StorageClass
is created by the administrator for restoring VolumeSnapshots
.
A new PersistentVolume
is created and bound to the PersistentVolumeClaim
. The process may take several minutes depending on the PV type.
24.21.4.4. Delete Snapshot
To delete a snapshot-demo
:
$ oc delete volumesnapshot/snapshot-demo
The VolumeSnapshotData
bound to the VolumeSnapshot
is automatically deleted.
Chapter 25. Persistent Storage Examples
25.1. Overview
The following sections provide detailed, comprehensive instructions on setting up and configuring common storage use cases. These examples cover both the administration of persistent volumes and their security, and how to claim against the volumes as a user of the system.
- Sharing an NFS PV Across Two Pods
- Ceph-RBD Block Storage Volume
- Shared Storage Using a GlusterFS Volume
- Dynamic Provisioning Storage Using GlusterFS
- Mounting a PV to Privileged Pods
- Backing Docker Registry with GlusterFS Storage
- Binding Persistent Volumes by Labels
- Using StorageClasses for Dynamic Provisioning
- Using StorageClasses for Existing Legacy Storage
- Configuring Azure Blob Storage for Integrated Docker Registry
25.3. Complete Example Using Ceph RBD
25.3.1. Overview
This topic provides an end-to-end example of using an existing Ceph cluster as an OpenShift Container Platform persistent store. It is assumed that a working Ceph cluster is already set up. If not, consult the Overview of Red Hat Ceph Storage.
Persistent Storage Using Ceph Rados Block Device provides an explanation of persistent volumes (PVs), persistent volume claims (PVCs), and using Ceph RBD as persistent storage.
All oc …
commands are executed on the OpenShift Container Platform master host.
25.3.2. Installing the ceph-common Package
The ceph-common library must be installed on all schedulable OpenShift Container Platform nodes:
The OpenShift Container Platform all-in-one host is not often used to run pod workloads and, thus, is not included as a schedulable node.
# yum install -y ceph-common
25.3.3. Creating the Ceph Secret
The ceph auth get-key
command is run on a Ceph MON node to display the key value for the client.admin user:
Example 25.5. Ceph Secret Definition
apiVersion: v1
kind: Secret
metadata:
name: ceph-secret
data:
key: QVFBOFF2SlZheUJQRVJBQWgvS2cwT1laQUhPQno3akZwekxxdGc9PQ== 1
- 1
- This base64 key is generated on one of the Ceph MON nodes using the
ceph auth get-key client.admin | base64
command, then copying the output and pasting it as the secret key’s value.
Save the secret definition to a file, for example ceph-secret.yaml, then create the secret:
$ oc create -f ceph-secret.yaml secret "ceph-secret" created
Verify that the secret was created:
# oc get secret ceph-secret NAME TYPE DATA AGE ceph-secret Opaque 1 23d
25.3.4. Creating the Persistent Volume
Next, before creating the PV object in OpenShift Container Platform, define the persistent volume file:
Example 25.6. Persistent Volume Object Definition Using Ceph RBD
apiVersion: v1 kind: PersistentVolume metadata: name: ceph-pv 1 spec: capacity: storage: 2Gi 2 accessModes: - ReadWriteOnce 3 rbd: 4 monitors: 5 - 192.168.122.133:6789 pool: rbd image: ceph-image user: admin secretRef: name: ceph-secret 6 fsType: ext4 7 readOnly: false persistentVolumeReclaimPolicy: Recycle
- 1
- The name of the PV, which is referenced in pod definitions or displayed in various
oc
volume commands. - 2
- The amount of storage allocated to this volume.
- 3
accessModes
are used as labels to match a PV and a PVC. They currently do not define any form of access control. All block storage is defined to be single user (non-shared storage).- 4
- This defines the volume type being used. In this case, the rbd plug-in is defined.
- 5
- This is an array of Ceph monitor IP addresses and ports.
- 6
- This is the Ceph secret, defined above. It is used to create a secure connection from OpenShift Container Platform to the Ceph server.
- 7
- This is the file system type mounted on the Ceph RBD block device.
Save the PV definition to a file, for example ceph-pv.yaml, and create the persistent volume:
# oc create -f ceph-pv.yaml persistentvolume "ceph-pv" created
Verify that the persistent volume was created:
# oc get pv NAME LABELS CAPACITY ACCESSMODES STATUS CLAIM REASON AGE ceph-pv <none> 2147483648 RWO Available 2s
25.3.5. Creating the Persistent Volume Claim
A persistent volume claim (PVC) specifies the desired access mode and storage capacity. Currently, based on only these two attributes, a PVC is bound to a single PV. Once a PV is bound to a PVC, that PV is essentially tied to the PVC’s project and cannot be bound to by another PVC. There is a one-to-one mapping of PVs and PVCs. However, multiple pods in the same project can use the same PVC.
Example 25.7. PVC Object Definition
kind: PersistentVolumeClaim apiVersion: v1 metadata: name: ceph-claim spec: accessModes: 1 - ReadWriteOnce resources: requests: storage: 2Gi 2
Save the PVC definition to a file, for example ceph-claim.yaml, and create the PVC:
# oc create -f ceph-claim.yaml
persistentvolumeclaim "ceph-claim" created
#and verify the PVC was created and bound to the expected PV:
# oc get pvc
NAME LABELS STATUS VOLUME CAPACITY ACCESSMODES AGE
ceph-claim <none> Bound ceph-pv 1Gi RWX 21s
1
- 1
- the claim was bound to the ceph-pv PV.
25.3.6. Creating the Pod
A pod definition file or a template file can be used to define a pod. Below is a pod specification that creates a single container and mounts the Ceph RBD volume for read-write access:
Example 25.8. Pod Object Definition
apiVersion: v1 kind: Pod metadata: name: ceph-pod1 1 spec: containers: - name: ceph-busybox image: busybox 2 command: ["sleep", "60000"] volumeMounts: - name: ceph-vol1 3 mountPath: /usr/share/busybox 4 readOnly: false volumes: - name: ceph-vol1 5 persistentVolumeClaim: claimName: ceph-claim 6
- 1
- The name of this pod as displayed by
oc get pod
. - 2
- The image run by this pod. In this case, we are telling busybox to sleep.
- 3 5
- The name of the volume. This name must be the same in both the
containers
andvolumes
sections. - 4
- The mount path as seen in the container.
- 6
- The PVC that is bound to the Ceph RBD cluster.
Save the pod definition to a file, for example ceph-pod1.yaml, and create the pod:
# oc create -f ceph-pod1.yaml
pod "ceph-pod1" created
#verify pod was created
# oc get pod
NAME READY STATUS RESTARTS AGE
ceph-pod1 1/1 Running 0 2m
1
- 1
- After a minute or so, the pod will be in the Running state.
25.3.7. Defining Group and Owner IDs (Optional)
When using block storage, such as Ceph RBD, the physical block storage is managed by the pod. The group ID defined in the pod becomes the group ID of both the Ceph RBD mount inside the container, and the group ID of the actual storage itself. Thus, it is usually unnecessary to define a group ID in the pod specifiation. However, if a group ID is desired, it can be defined using fsGroup
, as shown in the following pod definition fragment:
25.3.8. Setting ceph-user-secret as Default for Projects
If you would like to make the persistent storage available to every project you have to modify the default project template. You can read more on modifying the default project template. Read more on modifying the default project template. Adding this to your default project template allows every user who has access to create a project access to the Ceph cluster.
Example 25.10. Default Project Example
...
apiVersion: v1
kind: Template
metadata:
creationTimestamp: null
name: project-request
objects:
- apiVersion: v1
kind: Project
metadata:
annotations:
openshift.io/description: ${PROJECT_DESCRIPTION}
openshift.io/display-name: ${PROJECT_DISPLAYNAME}
openshift.io/requester: ${PROJECT_REQUESTING_USER}
creationTimestamp: null
name: ${PROJECT_NAME}
spec: {}
status: {}
- apiVersion: v1
kind: Secret
metadata:
name: ceph-user-secret
data:
key: yoursupersecretbase64keygoeshere 1
type:
kubernetes.io/rbd
...
- 1
- Place your super secret Ceph user key here in base64 format. See Creating the Ceph Secret.
25.4. Using Ceph RBD for dynamic provisioning
25.4.1. Overview
This topic provides a complete example of using an existing Ceph cluster for OpenShift Container Platform persistent storage. It is assumed that a working Ceph cluster is already set up. If not, consult the Overview of Red Hat Ceph Storage.
Persistent Storage Using Ceph Rados Block Device provides an explanation of persistent volumes (PVs), persistent volume claims (PVCs), and how to use Ceph Rados Block Device (RBD) as persistent storage.
-
Run all
oc
commands on the OpenShift Container Platform master host. - The OpenShift Container Platform all-in-one host is not often used to run pod workloads and, thus, is not included as a schedulable node.
25.4.2. Creating a pool for dynamic volumes
Install the latest ceph-common package:
yum install -y ceph-common
NoteThe
ceph-common
library must be installed onall schedulable
OpenShift Container Platform nodes.From an administrator or MON node, create a new pool for dynamic volumes, for example:
$ ceph osd pool create kube 1024 $ ceph auth get-or-create client.kube mon 'allow r, allow command "osd blacklist"' osd 'allow class-read object_prefix rbd_children, allow rwx pool=kube' -o ceph.client.kube.keyring
NoteUsing the default pool of RBD is an option, but not recommended.
25.4.3. Using an existing Ceph cluster for dynamic persistent storage
To use an existing Ceph cluster for dynamic persistent storage:
Generate the client.admin base64-encoded key:
$ ceph auth get client.admin
Ceph secret definition example
apiVersion: v1 kind: Secret metadata: name: ceph-secret namespace: kube-system data: key: QVFBOFF2SlZheUJQRVJBQWgvS2cwT1laQUhPQno3akZwekxxdGc9PQ== 1 type: kubernetes.io/rbd 2
Create the Ceph secret for the client.admin:
$ oc create -f ceph-secret.yaml secret "ceph-secret" created
Verify that the secret was created:
$ oc get secret ceph-secret NAME TYPE DATA AGE ceph-secret kubernetes.io/rbd 1 5d
Create the storage class:
$ oc create -f ceph-storageclass.yaml storageclass "dynamic" created
Ceph storage class example
apiVersion: storage.k8s.io/v1beta1 kind: StorageClass metadata: name: dynamic annotations: storageclass.kubernetes.io/is-default-class: "true" provisioner: kubernetes.io/rbd parameters: monitors: 192.168.1.11:6789,192.168.1.12:6789,192.168.1.13:6789 1 adminId: admin 2 adminSecretName: ceph-secret 3 adminSecretNamespace: kube-system 4 pool: kube 5 userId: kube 6 userSecretName: ceph-user-secret 7
- 1
- A comma-delimited list of IP addresses Ceph monitors. This value is required.
- 2
- The Ceph client ID that is capable of creating images in the pool. The default is
admin
. - 3
- The secret name for
adminId
. This value is required. The secret that you provide must havekubernetes.io/rbd
. - 4
- The namespace for
adminSecret
. The default isdefault
. - 5
- The Ceph RBD pool. The default is
rbd
, but this value is not recommended. - 6
- The Ceph client ID used to map the Ceph RBD image. The default is the same as the secret name for
adminId
. - 7
- The name of the Ceph secret for
userId
to map the Ceph RBD image. It must exist in the same namespace as the PVCs. Unless you set the Ceph secret as the default in new projects, you must provide this parameter value.
Verify that the storage class was created:
$ oc get storageclasses NAME TYPE dynamic (default) kubernetes.io/rbd
Create the PVC object definition:
PVC object definition example
kind: PersistentVolumeClaim apiVersion: v1 metadata: name: ceph-claim-dynamic spec: accessModes: 1 - ReadWriteOnce resources: requests: storage: 2Gi 2
Create the PVC:
$ oc create -f ceph-pvc.yaml persistentvolumeclaim "ceph-claim-dynamic" created
Verify that the PVC was created and bound to the expected PV:
$ oc get pvc NAME STATUS VOLUME CAPACITY ACCESSMODES AGE ceph-claim Bound pvc-f548d663-3cac-11e7-9937-0024e8650c7a 2Gi RWO 1m
Create the pod object definition:
Pod object definition example
apiVersion: v1 kind: Pod metadata: name: ceph-pod1 1 spec: containers: - name: ceph-busybox image: busybox 2 command: ["sleep", "60000"] volumeMounts: - name: ceph-vol1 3 mountPath: /usr/share/busybox 4 readOnly: false volumes: - name: ceph-vol1 persistentVolumeClaim: claimName: ceph-claim-dynamic 5
- 1
- The name of this pod as displayed by
oc get pod
. - 2
- The image run by this pod. In this case,
busybox
is set tosleep
. - 3
- The name of the volume. This name must be the same in both the
containers
andvolumes
sections. - 4
- The mount path in the container.
- 5
- The PVC that is bound to the Ceph RBD cluster.
Create the pod:
$ oc create -f ceph-pod1.yaml pod "ceph-pod1" created
Verify that the pod was created:
$ oc get pod NAME READY STATUS RESTARTS AGE ceph-pod1 1/1 Running 0 2m
After a minute or so, the pod status changes to Running
.
25.4.4. Setting ceph-user-secret as the default for projects
To make persistent storage available to every project, you must modify the default project template. Adding this to your default project template allows every user who has access to create a project access to the Ceph cluster. See modifying the default project template for more information.
Default project example
...
apiVersion: v1
kind: Template
metadata:
creationTimestamp: null
name: project-request
objects:
- apiVersion: v1
kind: Project
metadata:
annotations:
openshift.io/description: ${PROJECT_DESCRIPTION}
openshift.io/display-name: ${PROJECT_DISPLAYNAME}
openshift.io/requester: ${PROJECT_REQUESTING_USER}
creationTimestamp: null
name: ${PROJECT_NAME}
spec: {}
status: {}
- apiVersion: v1
kind: Secret
metadata:
name: ceph-user-secret
data:
key: QVFCbEV4OVpmaGJtQ0JBQW55d2Z0NHZtcS96cE42SW1JVUQvekE9PQ== 1
type:
kubernetes.io/rbd
...
- 1
- Place your Ceph user key here in base64 format.
25.5. Complete Example Using GlusterFS
25.5.1. Overview
This topic provides an end-to-end example of how to use an existing converged mode, independent mode, or standalone Red Hat Gluster Storage cluster as persistent storage for OpenShift Container Platform. It is assumed that a working Red Hat Gluster Storage cluster is already set up. For help installing converged mode or independent mode, see Persistent Storage Using Red Hat Gluster Storage. For standalone Red Hat Gluster Storage, consult the Red Hat Gluster Storage Administration Guide.
For an end-to-end example of how to dynamically provision GlusterFS volumes, see Complete Example Using GlusterFS for Dynamic Provisioning.
All oc
commands are executed on the OpenShift Container Platform master host.
25.5.2. Prerequisites
To access GlusterFS volumes, the mount.glusterfs
command must be available on all schedulable nodes. For RPM-based systems, the glusterfs-fuse package must be installed:
# yum install glusterfs-fuse
This package comes installed on every RHEL system. However, it is recommended to update to the latest available version from Red Hat Gluster Storage if your servers use x86_64 architecture. To do this, the following RPM repository must be enabled:
# subscription-manager repos --enable=rh-gluster-3-client-for-rhel-7-server-rpms
If glusterfs-fuse is already installed on the nodes, ensure that the latest version is installed:
# yum update glusterfs-fuse
By default, SELinux does not allow writing from a pod to a remote Red Hat Gluster Storage server. To enable writing to Red Hat Gluster Storage volumes with SELinux on, run the following on each node running GlusterFS:
$ sudo setsebool -P virt_sandbox_use_fusefs on 1
$ sudo setsebool -P virt_use_fusefs on
- 1
- The
-P
option makes the boolean persistent between reboots.
The virt_sandbox_use_fusefs
boolean is defined by the docker-selinux package. If you get an error saying it is not defined, ensure that this package is installed.
If you use Atomic Host, the SELinux booleans are cleared when you upgrade Atomic Host. When you upgrade Atomic Host, you must set these boolean values again.
25.5.3. Static Provisioning
-
To enable static provisioning, first create a GlusterFS volume. See the Red Hat Gluster Storage Administration Guide for information on how to do this using the
gluster
command-line interface or the heketi project site for information on how to do this usingheketi-cli
. For this example, the volume will be namedmyVol1
. Define the following Service and Endpoints in
gluster-endpoints.yaml
:--- apiVersion: v1 kind: Service metadata: name: glusterfs-cluster 1 spec: ports: - port: 1 --- apiVersion: v1 kind: Endpoints metadata: name: glusterfs-cluster 2 subsets: - addresses: - ip: 192.168.122.221 3 ports: - port: 1 4 - addresses: - ip: 192.168.122.222 5 ports: - port: 1 6 - addresses: - ip: 192.168.122.223 7 ports: - port: 1 8
From the OpenShift Container Platform master host, create the Service and Endpoints:
$ oc create -f gluster-endpoints.yaml service "glusterfs-cluster" created endpoints "glusterfs-cluster" created
Verify that the Service and Endpoints were created:
$ oc get services NAME CLUSTER_IP EXTERNAL_IP PORT(S) SELECTOR AGE glusterfs-cluster 172.30.205.34 <none> 1/TCP <none> 44s $ oc get endpoints NAME ENDPOINTS AGE docker-registry 10.1.0.3:5000 4h glusterfs-cluster 192.168.122.221:1,192.168.122.222:1,192.168.122.223:1 11s kubernetes 172.16.35.3:8443 4d
NoteEndpoints are unique per project. Each project accessing the GlusterFS volume needs its own Endpoints.
In order to access the volume, the container must run with either a user ID (UID) or group ID (GID) that has access to the file system on the volume. This information can be discovered in the following manner:
$ mkdir -p /mnt/glusterfs/myVol1 $ mount -t glusterfs 192.168.122.221:/myVol1 /mnt/glusterfs/myVol1 $ ls -lnZ /mnt/glusterfs/ drwxrwx---. 592 590 system_u:object_r:fusefs_t:s0 myVol1 1 2
Define the following PersistentVolume (PV) in
gluster-pv.yaml
:apiVersion: v1 kind: PersistentVolume metadata: name: gluster-default-volume 1 annotations: pv.beta.kubernetes.io/gid: "590" 2 spec: capacity: storage: 2Gi 3 accessModes: 4 - ReadWriteMany glusterfs: endpoints: glusterfs-cluster 5 path: myVol1 6 readOnly: false persistentVolumeReclaimPolicy: Retain
- 1
- The name of the volume.
- 2
- The GID on the root of the GlusterFS volume.
- 3
- The amount of storage allocated to this volume.
- 4
accessModes
are used as labels to match a PV and a PVC. They currently do not define any form of access control.- 5
- The Endpoints resource previously created.
- 6
- The GlusterFS volume that will be accessed.
From the OpenShift Container Platform master host, create the PV:
$ oc create -f gluster-pv.yaml
Verify that the PV was created:
$ oc get pv NAME LABELS CAPACITY ACCESSMODES STATUS CLAIM REASON AGE gluster-default-volume <none> 2147483648 RWX Available 2s
Create a PersistentVolumeClaim (PVC) that will bind to the new PV in
gluster-claim.yaml
:apiVersion: v1 kind: PersistentVolumeClaim metadata: name: gluster-claim 1 spec: accessModes: - ReadWriteMany 2 resources: requests: storage: 1Gi 3
From the OpenShift Container Platform master host, create the PVC:
$ oc create -f gluster-claim.yaml
Verify that the PV and PVC are bound:
$ oc get pv NAME LABELS CAPACITY ACCESSMODES STATUS CLAIM REASON AGE gluster-pv <none> 1Gi RWX Available gluster-claim 37s $ oc get pvc NAME LABELS STATUS VOLUME CAPACITY ACCESSMODES AGE gluster-claim <none> Bound gluster-pv 1Gi RWX 24s
PVCs are unique per project. Each project accessing the GlusterFS volume needs its own PVC. PVs are not bound to a single project, so PVCs across multiple projects may refer to the same PV.
25.5.4. Using the Storage
At this point, you have a dynamically created GlusterFS volume bound to a PVC. You can now utilize this PVC in a pod.
Create the pod object definition:
apiVersion: v1 kind: Pod metadata: name: hello-openshift-pod labels: name: hello-openshift-pod spec: containers: - name: hello-openshift-pod image: openshift/hello-openshift ports: - name: web containerPort: 80 volumeMounts: - name: gluster-vol1 mountPath: /usr/share/nginx/html readOnly: false volumes: - name: gluster-vol1 persistentVolumeClaim: claimName: gluster1 1
- 1
- The name of the PVC created in the previous step.
From the OpenShift Container Platform master host, create the pod:
# oc create -f hello-openshift-pod.yaml pod "hello-openshift-pod" created
View the pod. Give it a few minutes, as it might need to download the image if it does not already exist:
# oc get pods -o wide NAME READY STATUS RESTARTS AGE IP NODE hello-openshift-pod 1/1 Running 0 9m 10.38.0.0 node1
oc exec
into the container and create an index.html file in themountPath
definition of the pod:$ oc exec -ti hello-openshift-pod /bin/sh $ cd /usr/share/nginx/html $ echo 'Hello OpenShift!!!' > index.html $ ls index.html $ exit
Now
curl
the URL of the pod:# curl http://10.38.0.0 Hello OpenShift!!!
Delete the pod, recreate it, and wait for it to come up:
# oc delete pod hello-openshift-pod pod "hello-openshift-pod" deleted # oc create -f hello-openshift-pod.yaml pod "hello-openshift-pod" created # oc get pods -o wide NAME READY STATUS RESTARTS AGE IP NODE hello-openshift-pod 1/1 Running 0 9m 10.37.0.0 node1
Now
curl
the pod again and it should still have the same data as before. Note that its IP address may have changed:# curl http://10.37.0.0 Hello OpenShift!!!
Check that the index.html file was written to GlusterFS storage by doing the following on any of the nodes:
$ mount | grep heketi /dev/mapper/VolGroup00-LogVol00 on /var/lib/heketi type xfs (rw,relatime,seclabel,attr2,inode64,noquota) /dev/mapper/vg_f92e09091f6b20ab12b02a2513e4ed90-brick_1e730a5462c352835055018e1874e578 on /var/lib/heketi/mounts/vg_f92e09091f6b20ab12b02a2513e4ed90/brick_1e730a5462c352835055018e1874e578 type xfs (rw,noatime,seclabel,nouuid,attr2,inode64,logbsize=256k,sunit=512,swidth=512,noquota) /dev/mapper/vg_f92e09091f6b20ab12b02a2513e4ed90-brick_d8c06e606ff4cc29ccb9d018c73ee292 on /var/lib/heketi/mounts/vg_f92e09091f6b20ab12b02a2513e4ed90/brick_d8c06e606ff4cc29ccb9d018c73ee292 type xfs (rw,noatime,seclabel,nouuid,attr2,inode64,logbsize=256k,sunit=512,swidth=512,noquota) $ cd /var/lib/heketi/mounts/vg_f92e09091f6b20ab12b02a2513e4ed90/brick_d8c06e606ff4cc29ccb9d018c73ee292/brick $ ls index.html $ cat index.html Hello OpenShift!!!
25.6. Complete Example Using GlusterFS for Dynamic Provisioning
25.6.1. Overview
This topic provides an end-to-end example of how to use an existing converged mode, independent mode, or standalone Red Hat Gluster Storage cluster as dynamic persistent storage for OpenShift Container Platform. It is assumed that a working Red Hat Gluster Storage cluster is already set up. For help installing converged mode or independent mode, see Persistent Storage Using Red Hat Gluster Storage. For standalone Red Hat Gluster Storage, consult the Red Hat Gluster Storage Administration Guide.
All oc
commands are executed on the OpenShift Container Platform master host.
25.6.2. Prerequisites
To access GlusterFS volumes, the mount.glusterfs
command must be available on all schedulable nodes. For RPM-based systems, the glusterfs-fuse package must be installed:
# yum install glusterfs-fuse
This package comes installed on every RHEL system. However, it is recommended to update to the latest available version from Red Hat Gluster Storage if your servers use x86_64 architecture. To do this, the following RPM repository must be enabled:
# subscription-manager repos --enable=rh-gluster-3-client-for-rhel-7-server-rpms
If glusterfs-fuse is already installed on the nodes, ensure that the latest version is installed:
# yum update glusterfs-fuse
By default, SELinux does not allow writing from a pod to a remote Red Hat Gluster Storage server. To enable writing to Red Hat Gluster Storage volumes with SELinux on, run the following on each node running GlusterFS:
$ sudo setsebool -P virt_sandbox_use_fusefs on 1
$ sudo setsebool -P virt_use_fusefs on
- 1
- The
-P
option makes the boolean persistent between reboots.
The virt_sandbox_use_fusefs
boolean is defined by the docker-selinux package. If you get an error saying it is not defined, ensure that this package is installed.
If you use Atomic Host, the SELinux booleans are cleared when you upgrade Atomic Host. When you upgrade Atomic Host, you must set these boolean values again.
25.6.3. Dynamic Provisioning
To enable dynamic provisioning, first create a
StorageClass
object definition. The definition below is based on the minimum requirements needed for this example to work with OpenShift Container Platform. See Dynamic Provisioning and Creating Storage Classes for additional parameters and specification definitions.kind: StorageClass apiVersion: storage.k8s.io/v1 metadata: name: glusterfs provisioner: kubernetes.io/glusterfs parameters: resturl: "http://10.42.0.0:8080" 1 restauthenabled: "false" 2
From the OpenShift Container Platform master host, create the StorageClass:
# oc create -f gluster-storage-class.yaml storageclass "glusterfs" created
Create a PVC using the newly-created StorageClass. For example:
apiVersion: v1 kind: PersistentVolumeClaim metadata: name: gluster1 spec: accessModes: - ReadWriteMany resources: requests: storage: 30Gi storageClassName: glusterfs
From the OpenShift Container Platform master host, create the PVC:
# oc create -f glusterfs-dyn-pvc.yaml persistentvolumeclaim "gluster1" created
View the PVC to see that the volume was dynamically created and bound to the PVC:
# oc get pvc NAME STATUS VOLUME CAPACITY ACCESSMODES STORAGECLASS AGE gluster1 Bound pvc-78852230-d8e2-11e6-a3fa-0800279cf26f 30Gi RWX glusterfs 42s
25.6.4. Using the Storage
At this point, you have a dynamically created GlusterFS volume bound to a PVC. You can now utilize this PVC in a pod.
Create the pod object definition:
apiVersion: v1 kind: Pod metadata: name: hello-openshift-pod labels: name: hello-openshift-pod spec: containers: - name: hello-openshift-pod image: openshift/hello-openshift ports: - name: web containerPort: 80 volumeMounts: - name: gluster-vol1 mountPath: /usr/share/nginx/html readOnly: false volumes: - name: gluster-vol1 persistentVolumeClaim: claimName: gluster1 1
- 1
- The name of the PVC created in the previous step.
From the OpenShift Container Platform master host, create the pod:
# oc create -f hello-openshift-pod.yaml pod "hello-openshift-pod" created
View the pod. Give it a few minutes, as it might need to download the image if it does not already exist:
# oc get pods -o wide NAME READY STATUS RESTARTS AGE IP NODE hello-openshift-pod 1/1 Running 0 9m 10.38.0.0 node1
oc exec
into the container and create an index.html file in themountPath
definition of the pod:$ oc exec -ti hello-openshift-pod /bin/sh $ cd /usr/share/nginx/html $ echo 'Hello OpenShift!!!' > index.html $ ls index.html $ exit
Now
curl
the URL of the pod:# curl http://10.38.0.0 Hello OpenShift!!!
Delete the pod, recreate it, and wait for it to come up:
# oc delete pod hello-openshift-pod pod "hello-openshift-pod" deleted # oc create -f hello-openshift-pod.yaml pod "hello-openshift-pod" created # oc get pods -o wide NAME READY STATUS RESTARTS AGE IP NODE hello-openshift-pod 1/1 Running 0 9m 10.37.0.0 node1
Now
curl
the pod again and it should still have the same data as before. Note that its IP address may have changed:# curl http://10.37.0.0 Hello OpenShift!!!
Check that the index.html file was written to GlusterFS storage by doing the following on any of the nodes:
$ mount | grep heketi /dev/mapper/VolGroup00-LogVol00 on /var/lib/heketi type xfs (rw,relatime,seclabel,attr2,inode64,noquota) /dev/mapper/vg_f92e09091f6b20ab12b02a2513e4ed90-brick_1e730a5462c352835055018e1874e578 on /var/lib/heketi/mounts/vg_f92e09091f6b20ab12b02a2513e4ed90/brick_1e730a5462c352835055018e1874e578 type xfs (rw,noatime,seclabel,nouuid,attr2,inode64,logbsize=256k,sunit=512,swidth=512,noquota) /dev/mapper/vg_f92e09091f6b20ab12b02a2513e4ed90-brick_d8c06e606ff4cc29ccb9d018c73ee292 on /var/lib/heketi/mounts/vg_f92e09091f6b20ab12b02a2513e4ed90/brick_d8c06e606ff4cc29ccb9d018c73ee292 type xfs (rw,noatime,seclabel,nouuid,attr2,inode64,logbsize=256k,sunit=512,swidth=512,noquota) $ cd /var/lib/heketi/mounts/vg_f92e09091f6b20ab12b02a2513e4ed90/brick_d8c06e606ff4cc29ccb9d018c73ee292/brick $ ls index.html $ cat index.html Hello OpenShift!!!
25.7. Mounting Volumes on Privileged Pods
25.7.1. Overview
Persistent volumes can be mounted to pods with the privileged security context constraint (SCC) attached.
While this topic uses GlusterFS as a sample use-case for mounting volumes onto privileged pods, it can be adapted to use any supported storage plug-in.
25.7.2. Prerequisites
- An existing Gluster volume.
- glusterfs-fuse installed on all hosts.
Definitions for GlusterFS:
- Endpoints and services: gluster-endpoints-service.yaml and gluster-endpoints.yaml
- Persistent volumes: gluster-pv.yaml
- Persistent volume claims: gluster-pvc.yaml
- Privileged pods: gluster-S3-pod.yaml
-
A user with the cluster-admin role binding. For this guide, that user is called
admin
.
25.7.3. Creating the Persistent Volume
Creating the PersistentVolume makes the storage accessible to users, regardless of projects.
As the admin, create the service, endpoint object, and persistent volume:
$ oc create -f gluster-endpoints-service.yaml $ oc create -f gluster-endpoints.yaml $ oc create -f gluster-pv.yaml
Verify that the objects were created:
$ oc get svc NAME CLUSTER_IP EXTERNAL_IP PORT(S) SELECTOR AGE gluster-cluster 172.30.151.58 <none> 1/TCP <none> 24s
$ oc get ep NAME ENDPOINTS AGE gluster-cluster 192.168.59.102:1,192.168.59.103:1 2m
$ oc get pv NAME LABELS CAPACITY ACCESSMODES STATUS CLAIM REASON AGE gluster-default-volume <none> 2Gi RWX Available 2d
25.7.4. Creating a Regular User
Adding a regular user to the privileged SCC (or to a group given access to the SCC) allows them to run privileged pods:
As the admin, add a user to the SCC:
$ oc adm policy add-scc-to-user privileged <username>
Log in as the regular user:
$ oc login -u <username> -p <password>
Then, create a new project:
$ oc new-project <project_name>
25.7.5. Creating the Persistent Volume Claim
As a regular user, create the PersistentVolumeClaim to access the volume:
$ oc create -f gluster-pvc.yaml -n <project_name>
Define your pod to access the claim:
Example 25.11. Pod Definition
apiVersion: v1 id: gluster-S3-pvc kind: Pod metadata: name: gluster-nginx-priv spec: containers: - name: gluster-nginx-priv image: fedora/nginx volumeMounts: - mountPath: /mnt/gluster 1 name: gluster-volume-claim securityContext: privileged: true volumes: - name: gluster-volume-claim persistentVolumeClaim: claimName: gluster-claim 2
Upon pod creation, the mount directory is created and the volume is attached to that mount point.
As regular user, create a pod from the definition:
$ oc create -f gluster-S3-pod.yaml
Verify that the pod created successfully:
$ oc get pods NAME READY STATUS RESTARTS AGE gluster-S3-pod 1/1 Running 0 36m
It can take several minutes for the pod to create.
25.7.6. Verifying the Setup
25.7.6.1. Checking the Pod SCC
Export the pod configuration:
$ oc get -o yaml --export pod <pod_name>
Examine the output. Check that
openshift.io/scc
has the value ofprivileged
:Example 25.12. Export Snippet
metadata: annotations: openshift.io/scc: privileged
25.7.6.2. Verifying the Mount
Access the pod and check that the volume is mounted:
$ oc rsh <pod_name> [root@gluster-S3-pvc /]# mount
Examine the output for the Gluster volume:
Example 25.13. Volume Mount
192.168.59.102:gv0 on /mnt/gluster type fuse.gluster (rw,relatime,user_id=0,group_id=0,default_permissions,allow_other,max_read=131072)
25.8. Switching an Integrated OpenShift Container Registry to GlusterFS
25.8.1. Overview
This topic reviews how to attach a GlusterFS volume to an integrated OpenShift Container Registry. This can be done with any of converged mode, independent mode, or standalone Red Hat Gluster Storage. It is assumed that the registry has already been started and a volume has been created.
25.8.2. Prerequisites
- An existing registry deployed without configuring storage.
- An existing GlusterFS volume
- glusterfs-fuse installed on all schedulable nodes.
A user with the cluster-admin role binding.
- For this guide, that user is admin.
All oc
commands are executed on the master node as the admin user.
25.8.3. Manually Provision the GlusterFS PersistentVolumeClaim
-
To enable static provisioning, first create a GlusterFS volume. See the Red Hat Gluster Storage Administration Guide for information on how to do this using the
gluster
command-line interface or the heketi project site for information on how to do this usingheketi-cli
. For this example, the volume will be namedmyVol1
. Define the following Service and Endpoints in
gluster-endpoints.yaml
:--- apiVersion: v1 kind: Service metadata: name: glusterfs-cluster 1 spec: ports: - port: 1 --- apiVersion: v1 kind: Endpoints metadata: name: glusterfs-cluster 2 subsets: - addresses: - ip: 192.168.122.221 3 ports: - port: 1 4 - addresses: - ip: 192.168.122.222 5 ports: - port: 1 6 - addresses: - ip: 192.168.122.223 7 ports: - port: 1 8
From the OpenShift Container Platform master host, create the Service and Endpoints:
$ oc create -f gluster-endpoints.yaml service "glusterfs-cluster" created endpoints "glusterfs-cluster" created
Verify that the Service and Endpoints were created:
$ oc get services NAME CLUSTER_IP EXTERNAL_IP PORT(S) SELECTOR AGE glusterfs-cluster 172.30.205.34 <none> 1/TCP <none> 44s $ oc get endpoints NAME ENDPOINTS AGE docker-registry 10.1.0.3:5000 4h glusterfs-cluster 192.168.122.221:1,192.168.122.222:1,192.168.122.223:1 11s kubernetes 172.16.35.3:8443 4d
NoteEndpoints are unique per project. Each project accessing the GlusterFS volume needs its own Endpoints.
In order to access the volume, the container must run with either a user ID (UID) or group ID (GID) that has access to the file system on the volume. This information can be discovered in the following manner:
$ mkdir -p /mnt/glusterfs/myVol1 $ mount -t glusterfs 192.168.122.221:/myVol1 /mnt/glusterfs/myVol1 $ ls -lnZ /mnt/glusterfs/ drwxrwx---. 592 590 system_u:object_r:fusefs_t:s0 myVol1 1 2
Define the following PersistentVolume (PV) in
gluster-pv.yaml
:apiVersion: v1 kind: PersistentVolume metadata: name: gluster-default-volume 1 annotations: pv.beta.kubernetes.io/gid: "590" 2 spec: capacity: storage: 2Gi 3 accessModes: 4 - ReadWriteMany glusterfs: endpoints: glusterfs-cluster 5 path: myVol1 6 readOnly: false persistentVolumeReclaimPolicy: Retain
- 1
- The name of the volume.
- 2
- The GID on the root of the GlusterFS volume.
- 3
- The amount of storage allocated to this volume.
- 4
accessModes
are used as labels to match a PV and a PVC. They currently do not define any form of access control.- 5
- The Endpoints resource previously created.
- 6
- The GlusterFS volume that will be accessed.
From the OpenShift Container Platform master host, create the PV:
$ oc create -f gluster-pv.yaml
Verify that the PV was created:
$ oc get pv NAME LABELS CAPACITY ACCESSMODES STATUS CLAIM REASON AGE gluster-default-volume <none> 2147483648 RWX Available 2s
Create a PersistentVolumeClaim (PVC) that will bind to the new PV in
gluster-claim.yaml
:apiVersion: v1 kind: PersistentVolumeClaim metadata: name: gluster-claim 1 spec: accessModes: - ReadWriteMany 2 resources: requests: storage: 1Gi 3
From the OpenShift Container Platform master host, create the PVC:
$ oc create -f gluster-claim.yaml
Verify that the PV and PVC are bound:
$ oc get pv NAME LABELS CAPACITY ACCESSMODES STATUS CLAIM REASON AGE gluster-pv <none> 1Gi RWX Available gluster-claim 37s $ oc get pvc NAME LABELS STATUS VOLUME CAPACITY ACCESSMODES AGE gluster-claim <none> Bound gluster-pv 1Gi RWX 24s
PVCs are unique per project. Each project accessing the GlusterFS volume needs its own PVC. PVs are not bound to a single project, so PVCs across multiple projects may refer to the same PV.
25.8.4. Attach the PersistentVolumeClaim to the Registry
Before moving forward, ensure that the docker-registry service is running.
$ oc get svc NAME CLUSTER_IP EXTERNAL_IP PORT(S) SELECTOR AGE docker-registry 172.30.167.194 <none> 5000/TCP docker-registry=default 18m
If either the docker-registry service or its associated pod is not running, refer back to the registry setup instructions for troubleshooting before continuing.
Then, attach the PVC:
$ oc volume deploymentconfigs/docker-registry --add --name=registry-storage -t pvc \ --claim-name=gluster-claim --overwrite
Setting up the Registry provides more information on using an OpenShift Container Registry.
25.9. Binding Persistent Volumes by Labels
25.9.1. Overview
This topic provides an end-to-end example for binding persistent volume claims (PVCs) to persistent volumes (PVs), by defining labels in the PV and matching selectors in the PVC. This feature is available for all storage options. It is assumed that a OpenShift Container Platform cluster contains persistent storage resources which are available for binding by PVCs.
A Note on Labels and Selectors
Labels are an OpenShift Container Platform feature that support user-defined tags (key-value pairs) as part of an object’s specification. Their primary purpose is to enable the arbitrary grouping of objects by defining identical labels among them. These labels can then be targeted by selectors to match all objects with specified label values. It is this functionality we will take advantage of to enable our PVC to bind to our PV. For a more in-depth look at labels, see Pods and Services.
For this example, we will be using modified GlusterFS PV and PVC specifications. However, implementation of selectors and labels is generic across for all storage options. See the relevant storage option for your volume provider to learn more about its unique configuration.
25.9.1.1. Assumptions
It is assumed that you have:
- An existing OpenShift Container Platform cluster with at least one master and one node
- At least one supported storage volume
- A user with cluster-admin privileges
25.9.2. Defining Specifications
These specifications are tailored to GlusterFS. Consult the relevant storage option for your volume provider to learn more about its unique configuration.
25.9.2.1. Persistent Volume with Labels
Example 25.14. glusterfs-pv.yaml
apiVersion: v1 kind: PersistentVolume metadata: name: gluster-volume labels: 1 storage-tier: gold aws-availability-zone: us-east-1 spec: capacity: storage: 2Gi accessModes: - ReadWriteMany glusterfs: endpoints: glusterfs-cluster 2 path: myVol1 readOnly: false persistentVolumeReclaimPolicy: Retain
- 1
- Use labels to identify common attributes or characteristics shared among volumes. In this case, we defined the Gluster volume to have a custom attribute (key) named storage-tier with a value of gold assigned. A claim will be able to select a PV with
storage-tier=gold
to match this PV. - 2
- Endpoints define the Gluster trusted pool and are discussed below.
25.9.2.2. Persistent Volume Claim with Selectors
A claim with a selector stanza (see example below) attempts to match existing, unclaimed, and non-prebound PVs. The existence of a PVC selector ignores a PV’s capacity. However, accessModes are still considered in the matching criteria.
It is important to note that a claim must match all of the key-value pairs included in its selector stanza. If no PV matches the claim, then the PVC will remain unbound (Pending). A PV can subsequently be created and the claim will automatically check for a label match.
Example 25.15. glusterfs-pvc.yaml
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
name: gluster-claim
spec:
accessModes:
- ReadWriteMany
resources:
requests:
storage: 1Gi
selector: 1
matchLabels:
storage-tier: gold
aws-availability-zone: us-east-1
- 1
- The selector stanza defines all labels necessary in a PV in order to match this claim.
25.9.2.3. Volume Endpoints
To attach the PV to the Gluster volume, endpoints should be configured before creating our objects.
Example 25.16. glusterfs-ep.yaml
apiVersion: v1 kind: Endpoints metadata: name: glusterfs-cluster subsets: - addresses: - ip: 192.168.122.221 ports: - port: 1 - addresses: - ip: 192.168.122.222 ports: - port: 1
25.9.2.4. Deploy the PV, PVC, and Endpoints
For this example, run the oc
commands as a cluster-admin privileged user. In a production environment, cluster clients might be expected to define and create the PVC.
# oc create -f glusterfs-ep.yaml endpoints "glusterfs-cluster" created # oc create -f glusterfs-pv.yaml persistentvolume "gluster-volume" created # oc create -f glusterfs-pvc.yaml persistentvolumeclaim "gluster-claim" created
Lastly, confirm that the PV and PVC bound successfully.
# oc get pv,pvc NAME CAPACITY ACCESSMODES STATUS CLAIM REASON AGE gluster-volume 2Gi RWX Bound gfs-trial/gluster-claim 7s NAME STATUS VOLUME CAPACITY ACCESSMODES AGE gluster-claim Bound gluster-volume 2Gi RWX 7s
PVCs are local to a project, whereas PVs are a cluster-wide, global resource. Developers and non-administrator users may not have access to see all (or any) of the available PVs.
25.10. Using Storage Classes for Dynamic Provisioning
25.10.1. Overview
In these examples we will walk through a few scenarios of various configuratons of StorageClasses and Dynamic Provisioning using Google Cloud Platform Compute Engine (GCE). These examples assume some familiarity with Kubernetes, GCE and Persistent Disks and OpenShift Container Platform is installed and properly configured to use GCE.
25.10.2. Scenario 1: Basic Dynamic Provisioning with Two Types of StorageClasses
StorageClasses can be used to differentiate and delineate storage levels and usages. In this case, the cluster-admin
or storage-admin
sets up two distinct classes of storage in GCE.
-
slow
: Cheap, efficient, and optimized for sequential data operations (slower reading and writing) -
fast
: Optimized for higher rates of random IOPS and sustained throughput (faster reading and writing)
By creating these StorageClasses, the cluster-admin
or storage-admin
allows users to create claims requesting a particular level or service of StorageClass.
Example 25.17. StorageClass Slow Object Definitions
kind: StorageClass apiVersion: storage.k8s.io/v1 metadata: name: slow 1 provisioner: kubernetes.io/gce-pd 2 parameters: type: pd-standard 3 zone: us-east1-d 4
- 1
- Name of the StorageClass.
- 2
- The provisioner plug-in to be used. This is a required field for StorageClasses.
- 3
- PD type. This example uses
pd-standard
, which has a slightly lower cost, rate of sustained IOPS, and throughput versuspd-ssd
, which carries more sustained IOPS and throughput. - 4
- The zone is required.
Example 25.18. StorageClass Fast Object Definition
kind: StorageClass apiVersion: storage.k8s.io/v1 metadata: name: fast provisioner: kubernetes.io/gce-pd parameters: type: pd-ssd zone: us-east1-d
As a cluster-admin
or storage-admin
, save both definitions as YAML files. For example, slow-gce.yaml
and fast-gce.yaml
. Then create the StorageClasses.
# oc create -f slow-gce.yaml storageclass "slow" created # oc create -f fast-gce.yaml storageclass "fast" created # oc get storageclass NAME TYPE fast kubernetes.io/gce-pd slow kubernetes.io/gce-pd
cluster-admin
or storage-admin
users are responsible for relaying the correct StorageClass name to the correct users, groups, and projects.
As a regular user, create a new project:
# oc new-project rh-eng
Create the claim YAML definition, save it to a file (pvc-fast.yaml
):
apiVersion: v1 kind: PersistentVolumeClaim metadata: name: pvc-engineering spec: accessModes: - ReadWriteMany resources: requests: storage: 10Gi storageClassName: fast
Add the claim with the oc create
command:
# oc create -f pvc-fast.yaml persistentvolumeclaim "pvc-engineering" created
Check to see if your claim is bound:
# oc get pvc NAME STATUS VOLUME CAPACITY ACCESSMODES AGE pvc-engineering Bound pvc-e9b4fef7-8bf7-11e6-9962-42010af00004 10Gi RWX 2m
Since this claim was created and bound in the rh-eng project, it can be shared by any user in the same project.
As a cluster-admin
or storage-admin
user, view the recent dynamically provisioned Persistent Volume (PV).
# oc get pv NAME CAPACITY ACCESSMODES RECLAIMPOLICY STATUS CLAIM REASON AGE pvc-e9b4fef7-8bf7-11e6-9962-42010af00004 10Gi RWX Delete Bound rh-eng/pvc-engineering 5m
Notice the RECLAIMPOLICY is Delete by default for all dynamically provisioned volumes. This means the volume only lasts as long as the claim still exists in the system. If you delete the claim, the volume is also deleted and all data on the volume is lost.
Finally, check the GCE console. The new disk has been created and is ready for use.
kubernetes-dynamic-pvc-e9b4fef7-8bf7-11e6-9962-42010af00004 SSD persistent disk 10 GB us-east1-d
Pods can now reference the persistent volume claim and start using the volume.
25.10.3. Scenario 2: How to enable Default StorageClass behavior for a Cluster
In this example, a cluster-admin
or storage-admin
enables a default storage class for all other users and projects that do not implicitly specify a StorageClass in their claim. This is useful for a cluster-admin
or storage-admin
to provide easy management of a storage volume without having to set up or communicate specialized StorageClasses across the cluster.
This example builds upon Section 25.10.2, “Scenario 1: Basic Dynamic Provisioning with Two Types of StorageClasses”. The cluster-admin
or storage-admin
will create another StorageClass for designation as the defaultStorageClass.
Example 25.19. Default StorageClass Object Definition
kind: StorageClass apiVersion: storage.k8s.io/v1 metadata: name: generic 1 annotations: storageclass.kubernetes.io/is-default-class: "true" 2 provisioner: kubernetes.io/gce-pd parameters: type: pd-standard zone: us-east1-d
As a cluster-admin
or storage-admin
save the definition to a YAML file (generic-gce.yaml
), then create the StorageClasses:
# oc create -f generic-gce.yaml storageclass "generic" created # oc get storageclass NAME TYPE generic kubernetes.io/gce-pd fast kubernetes.io/gce-pd slow kubernetes.io/gce-pd
As a regular user, create a new claim definition without any StorageClass requirement and save it to a file (generic-pvc.yaml
).
Example 25.20. default Storage Claim Object Definition
apiVersion: v1 kind: PersistentVolumeClaim metadata: name: pvc-engineering2 spec: accessModes: - ReadWriteMany resources: requests: storage: 5Gi
Execute it and check the claim is bound:
# oc create -f generic-pvc.yaml
persistentvolumeclaim "pvc-engineering2" created
3s
# oc get pvc
NAME STATUS VOLUME CAPACITY ACCESSMODES AGE
pvc-engineering Bound pvc-e9b4fef7-8bf7-11e6-9962-42010af00004 10Gi RWX 41m
pvc-engineering2 Bound pvc-a9f70544-8bfd-11e6-9962-42010af00004 5Gi RWX 7s 1
- 1
pvc-engineering2
is bound to a dynamically provisioned Volume by default.
As a cluster-admin
or storage-admin
, view the Persistent Volumes defined so far:
# oc get pv NAME CAPACITY ACCESSMODES RECLAIMPOLICY STATUS CLAIM REASON AGE pvc-a9f70544-8bfd-11e6-9962-42010af00004 5Gi RWX Delete Bound rh-eng/pvc-engineering2 5m 1 pvc-ba4612ce-8b4d-11e6-9962-42010af00004 5Gi RWO Delete Bound mytest/gce-dyn-claim1 21h pvc-e9b4fef7-8bf7-11e6-9962-42010af00004 10Gi RWX Delete Bound rh-eng/pvc-engineering 46m 2
- 1
- This PV was bound to our default dynamic volume from the default StorageClass.
- 2
- This PV was bound to our first PVC from Section 25.10.2, “Scenario 1: Basic Dynamic Provisioning with Two Types of StorageClasses” with our fast StorageClass.
Create a manually provisioned disk using GCE (not dynamically provisioned). Then create a Persistent Volume that connects to the new GCE disk (pv-manual-gce.yaml
).
Example 25.21. Manual PV Object Defition
apiVersion: v1 kind: PersistentVolume metadata: name: pv-manual-gce spec: capacity: storage: 35Gi accessModes: - ReadWriteMany gcePersistentDisk: readOnly: false pdName: the-newly-created-gce-PD fsType: ext4
Execute the object definition file:
# oc create -f pv-manual-gce.yaml
Now view the PVs again. Notice that a pv-manual-gce
volume is Available.
# oc get pv NAME CAPACITY ACCESSMODES RECLAIMPOLICY STATUS CLAIM REASON AGE pv-manual-gce 35Gi RWX Retain Available 4s pvc-a9f70544-8bfd-11e6-9962-42010af00004 5Gi RWX Delete Bound rh-eng/pvc-engineering2 12m pvc-ba4612ce-8b4d-11e6-9962-42010af00004 5Gi RWO Delete Bound mytest/gce-dyn-claim1 21h pvc-e9b4fef7-8bf7-11e6-9962-42010af00004 10Gi RWX Delete Bound rh-eng/pvc-engineering 53m
Now create another claim identical to the generic-pvc.yaml
PVC definition but change the name and do not set a storage class name.
Example 25.22. Claim Object Definition
apiVersion: v1 kind: PersistentVolumeClaim metadata: name: pvc-engineering3 spec: accessModes: - ReadWriteMany resources: requests: storage: 15Gi
Because default StorageClass is enabled in this instance, the manually created PV does not satisfy the claim request. The user receives a new dynamically provisioned Persistent Volume.
# oc get pvc NAME STATUS VOLUME CAPACITY ACCESSMODES AGE pvc-engineering Bound pvc-e9b4fef7-8bf7-11e6-9962-42010af00004 10Gi RWX 1h pvc-engineering2 Bound pvc-a9f70544-8bfd-11e6-9962-42010af00004 5Gi RWX 19m pvc-engineering3 Bound pvc-6fa8e73b-8c00-11e6-9962-42010af00004 15Gi RWX 6s
Since the default StorageClass is enabled on this system, for the manually created Persistent Volume to get bound by the above claim and not have a new dynamic provisioned volume be bound, the PV would need to have been created in the default StorageClass.
Since the default StorageClass is enabled on this system, you would need to create the PV in the default StorageClass for the manually created Persistent Volume to get bound to the above claim and not have a new dynamic provisioned volume bound to the claim.
To fix this, the cluster-admin
or storage-admin
user simply needs to create another GCE disk or delete the first manual PV and use a PV object definition that assigns a StorageClass name (pv-manual-gce2.yaml
) if necessary:
Example 25.23. Manual PV Spec with default StorageClass name
apiVersion: v1
kind: PersistentVolume
metadata:
name: pv-manual-gce2
spec:
capacity:
storage: 35Gi
accessModes:
- ReadWriteMany
gcePersistentDisk:
readOnly: false
pdName: the-newly-created-gce-PD
fsType: ext4
storageClassName: generic 1
- 1
- The name for previously created generic StorageClass.
Execute the object definition file:
# oc create -f pv-manual-gce2.yaml
List the PVs:
# oc get pv NAME CAPACITY ACCESSMODES RECLAIMPOLICY STATUS CLAIM REASON AGE pv-manual-gce 35Gi RWX Retain Available 4s 1 pv-manual-gce2 35Gi RWX Retain Bound rh-eng/pvc-engineering3 4s 2 pvc-a9f70544-8bfd-11e6-9962-42010af00004 5Gi RWX Delete Bound rh-eng/pvc-engineering2 12m pvc-ba4612ce-8b4d-11e6-9962-42010af00004 5Gi RWO Delete Bound mytest/gce-dyn-claim1 21h pvc-e9b4fef7-8bf7-11e6-9962-42010af00004 10Gi RWX Delete Bound rh-eng/pvc-engineering 53m
Notice that all dynamically provisioned volumes by default have a RECLAIMPOLICY of Delete. Once the PVC dynamically bound to the PV is deleted, the GCE volume is deleted and all data is lost. However, the manually created PV has a default RECLAIMPOLICY of Retain.
25.11. Using Storage Classes for Existing Legacy Storage
25.11.1. Overview
In this example, a legacy data volume exists and a cluster-admin
or storage-admin
needs to make it available for consumption in a particular project. Using StorageClasses decreases the likelihood of other users and projects gaining access to this volume from a claim because the claim would have to have an exact matching value for the StorageClass name. This example also disables dynamic provisioning. This example assumes:
- Some familiarity with OpenShift Container Platform, GCE, and Persistent Disks
- OpenShift Container Platform is properly configured to use GCE.
25.11.1.1. Scenario 1: Link StorageClass to existing Persistent Volume with Legacy Data
As a cluster-admin
or storage-admin
, define and create the StorageClass for historical financial data.
Example 25.24. StorageClass finance-history Object Definitions
kind: StorageClass apiVersion: storage.k8s.io/v1 metadata: name: finance-history 1 provisioner: no-provisioning 2 parameters: 3
Save the definitions to a YAML file (finance-history-storageclass.yaml
) and create the StorageClass.
# oc create -f finance-history-storageclass.yaml storageclass "finance-history" created # oc get storageclass NAME TYPE finance-history no-provisioning
cluster-admin
or storage-admin
users are responsible for relaying the correct StorageClass name to the correct users, groups, and projects.
The StorageClass exists. A cluster-admin
or storage-admin
can create the Persistent Volume (PV) for use with the StorageClass. Create a manually provisioned disk using GCE (not dynamically provisioned) and a Persistent Volume that connects to the new GCE disk (gce-pv.yaml
).
Example 25.25. Finance History PV Object
apiVersion: v1 kind: PersistentVolume metadata: name: pv-finance-history spec: capacity: storage: 35Gi accessModes: - ReadWriteMany gcePersistentDisk: readOnly: false pdName: the-existing-PD-volume-name-that-contains-the-valuable-data 1 fsType: ext4 storageClassName: finance-history 2
As a cluster-admin
or storage-admin
, create and view the PV.
# oc create -f gce-pv.yaml persistentvolume "pv-finance-history" created # oc get pv NAME CAPACITY ACCESSMODES RECLAIMPOLICY STATUS CLAIM REASON AGE pv-finance-history 35Gi RWX Retain Available 2d
Notice you have a pv-finance-history
Available and ready for consumption.
As a user, create a Persistent Volume Claim (PVC) as a YAML file and specify the correct StorageClass name:
Example 25.26. Claim for finance-history Object Definition
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
name: pvc-finance-history
spec:
accessModes:
- ReadWriteMany
resources:
requests:
storage: 20Gi
storageClassName: finance-history 1
- 1
- The StorageClass name, that must match exactly or the claim will go unbound until it is deleted or another StorageClass is created that matches the name.
Create and view the PVC and PV to see if it is bound.
# oc create -f pvc-finance-history.yaml persistentvolumeclaim "pvc-finance-history" created # oc get pvc NAME STATUS VOLUME CAPACITY ACCESSMODES AGE pvc-finance-history Bound pv-finance-history 35Gi RWX 9m # oc get pv (cluster/storage-admin) NAME CAPACITY ACCESSMODES RECLAIMPOLICY STATUS CLAIM REASON AGE pv-finance-history 35Gi RWX Retain Bound default/pvc-finance-history 5m
You can use StorageClasses in the same cluster for both legacy data (no dynamic provisioning) and with dynamic provisioning.
25.12. Configuring Azure Blob Storage for Integrated Docker Registry
25.12.1. Overview
This topic reviews how to configure Microsoft Azure Blob Storage for OpenShift integrated Docker registry.
25.12.2. Before You Begin
- Create a storage container using Microsoft Azure Portal, Microsoft Azure CLI, or Microsoft Azure Storage Explorer. Keep a note of the storage account name, storage account key and container name.
- Deploy the integrated Docker registry if it is not deployed.
25.12.3. Overriding Registry Configuration
To create a new registry pod and replace the old pod automatically:
Create a new registry configuration file called registryconfig.yaml and add the following information:
version: 0.1 log: level: debug http: addr: :5000 storage: cache: blobdescriptor: inmemory delete: enabled: true azure: 1 accountname: azureblobacc accountkey: azureblobacckey container: azureblobname realm: core.windows.net 2 auth: openshift: realm: openshift middleware: registry: - name: openshift repository: - name: openshift options: acceptschema2: false pullthrough: true enforcequota: false projectcachettl: 1m blobrepositorycachettl: 10m storage: - name: openshift
Create a new registry configuration:
$ oc create secret generic registry-config --from-file=config.yaml=registryconfig.yaml
Add the secret:
$ oc volume dc/docker-registry --add --type=secret \ --secret-name=registry-config -m /etc/docker/registry/
Set the
REGISTRY_CONFIGURATION_PATH
environment variable:$ oc set env dc/docker-registry \ REGISTRY_CONFIGURATION_PATH=/etc/docker/registry/config.yaml
If you already created a registry configuration:
Delete the secret:
$ oc delete secret registry-config
Create a new registry configuration:
$ oc create secret generic registry-config --from-file=config.yaml=registryconfig.yaml
Update the configuration by starting a new rollout:
$ oc rollout latest docker-registry
Chapter 26. Configuring ephemeral storage
26.1. Overview
OpenShift Container Platform can be configured to allow management of ephemeral storage of pod and container working data. While containers have been able to utilize writable layers, logs directories, and EmptyDir volumes, this storage has been subject to a number of limitations, as discussed here.
Ephemeral storage management permits administrators to limit the resources consumed by individual pods and containers, and for pods and containers to specify requests and limits on their use of such ephemeral storage. This is a technology preview for OpenShift Container Platform 3.10 and is disabled by default.
This technology preview does not change any of the mechanisms for making local storage available in OpenShift Container Platform; the existing mechanisms, root directory or runtime directory, still apply. This technology preview only provides a mechanism for managing the use of this resource.
26.2. Enabling ephemeral storage
To enable ephemeral storage:
Edit or create the master configuration file on all masters, /etc/origin/master/master-config.yaml by default, and add
LocalStorageCapacityIsolation=true
in theapiServerArguments
andcontrollerArguments
sections:apiServerArguments: feature-gates: - LocalStorageCapacityIsolation=true ... controllerArguments: feature-gates: - LocalStorageCapacityIsolation=true ...
Edit the ConfigMap for all nodes to enable the LocalStorageCapacityIsolation on the command line. You can identify the ConfigMaps that need to be edited as follows:
$ oc get cm -n openshift-node NAME DATA AGE node-config-compute 1 52m node-config-infra 1 52m node-config-master 1 52m
For each of these maps,
node-config-compute
,node-config-infra
, andnode-config-master
, you need to add the feature gate:oc edit cm node-config-master -n openshift-node
If there is already a
feature-gates:
declaration, add the following text to the list of feature gates:,LocalStorageCapacityIsolation=true
If there is no
feature-gates:
declaration, add the following section:feature-gates: - LocalStorageCapacityIsolation=true
-
Repeat for
node-config-compute
,node-config-infra
, and any other ConfigMaps. - Restart OpenShift Container Platform and delete the container running the apiserver.
Omitting any of these steps may result in ephemeral storage management not being enabled.
Chapter 27. Working with HTTP Proxies
27.1. Overview
Production environments can deny direct access to the Internet and instead have an HTTP or HTTPS proxy available. Configuring OpenShift Container Platform to use these proxies can be as simple as setting standard environment variables in configuration or JSON files. This can be done during an cluster installation or configured after installation.
The proxy configuration must be the same on each host in the cluster. Therefore, when setting up the proxy or modifying it, you must update the files on each OpenShift Container Platform host to the same values. Then, you must restart OpenShift Container Platform services on each host in the cluster.
The NO_PROXY
, HTTP_PROXY
, and HTTPS_PROXY
environment variables are found in each host’s /etc/origin/master/master.env and /etc/sysconfig/atomic-openshift-node files.
27.2. Configuring NO_PROXY
The NO_PROXY
environment variable lists all of the OpenShift Container Platform components and all IP addresses that are managed by OpenShift Container Platform.
On the OpenShift service accepting the CIDR, NO_PROXY
accepts a comma-separated list of hosts, IP addresses, or IP ranges in CIDR format:
- For master hosts
- Node host name
- Master IP or host name
- IP address of etcd hosts
- For node hosts
- Master IP or host name
- For the Docker service
- Registry service IP and host name
-
Registry service URL
docker-registry.default.svc.cluster.local
- Registry route host name (if created)
When using Docker, Docker accepts a comma-separated list of hosts, domain extensions, or IP addresses, but does not accept IP ranges in CIDR format, which are only accepted by OpenShift services. The `no_proxy' variable should contain a comma-separated list of domain extensions that the proxy should not be used for.
For example, if no_proxy
is set to .school.edu
, the proxy will not be used to retrieve documents from the specific school.
NO_PROXY
also includes the SDN network and service IP addresses as found in the master-config.yaml file.
/etc/origin/master/master-config.yaml
networkConfig: clusterNetworks: - cidr: 10.1.0.0/16 hostSubnetLength: 9 serviceNetworkCIDR: 172.30.0.0/16
OpenShift Container Platform does not accept *
as a wildcard attached to a domain suffix. For example, the following would be accepted:
NO_PROXY=.example.com
However, the following would not be:
NO_PROXY=*.example.com
The only wildcard NO_PROXY
accepts is a single *
character, which matches all hosts, and effectively disables the proxy.
Each name in this list is matched as either a domain which contains the host name as a suffix, or the host name itself.
When scaling up nodes, use a domain name rather than a list of hostnames.
For instance, example.com would match example.com, example.com:80, and www.example.com.
27.3. Configuring Hosts for Proxies
Edit the proxy environment variables in the OpenShift Container Platform control files. Ensure all of the files in the cluster are correct.
HTTP_PROXY=http://<user>:<password>@<ip_addr>:<port>/ HTTPS_PROXY=https://<user>:<password>@<ip_addr>:<port>/ NO_PROXY=master.hostname.example.com,10.1.0.0/16,172.30.0.0/16 1
- 1
- Supports host names and CIDRs. Must include the SDN network and service IP ranges
10.1.0.0/16,172.30.0.0/16
by default.
Restart the master or node host:
# master-restart api # master-restart controllers # systemctl restart atomic-openshift-node
27.4. Configuring Hosts for Proxies Using Ansible
During cluster installations, the NO_PROXY
, HTTP_PROXY
, and HTTPS_PROXY
environment variables can be configured using the openshift_no_proxy
, openshift_http_proxy
, and openshift_https_proxy
parameters, which are configurable in the inventory file.
Example Proxy Configuration with Ansible
# Global Proxy Configuration # These options configure HTTP_PROXY, HTTPS_PROXY, and NOPROXY environment # variables for docker and master services. openshift_http_proxy=http://<user>:<password>@<ip_addr>:<port> openshift_https_proxy=https://<user>:<password>@<ip_addr>:<port> openshift_no_proxy='.hosts.example.com,some-host.com' # # Most environments do not require a proxy between OpenShift masters, nodes, and # etcd hosts. So automatically add those host names to the openshift_no_proxy list. # If all of your hosts share a common domain you may wish to disable this and # specify that domain above. # openshift_generate_no_proxy_hosts=True
There are additional proxy settings that can be configured for builds using Ansible parameters. For example:
The openshift_builddefaults_git_http_proxy
and openshift_builddefaults_git_https_proxy
parameters allow you to use a proxy for Git cloning
The openshift_builddefaults_http_proxy
and openshift_builddefaults_https_proxy
parameters can make environment variables available to the Docker build strategy and Custom build strategy processes.
27.5. Proxying Docker Pull
OpenShift Container Platform node hosts need to perform push and pull operations to Docker registries. If you have a registry that does not need a proxy for nodes to access, include the NO_PROXY
parameter with:
- the registry’s host name,
- the registry service’s IP address, and
- the service name.
This blacklists that registry, leaving the external HTTP proxy as the only option.
Retrieve the registry service’s IP address
docker_registy_ip
by running:$ oc describe svc/docker-registry -n default Name: docker-registry Namespace: default Labels: docker-registry=default Selector: docker-registry=default Type: ClusterIP IP: 172.30.163.183 1 Port: 5000-tcp 5000/TCP Endpoints: 10.1.0.40:5000 Session Affinity: ClientIP No events.
- 1
- Registry service IP.
Edit the /etc/sysconfig/docker file and add the
NO_PROXY
variables in shell format, replacing<docker_registry_ip>
with the IP address from the previous step.HTTP_PROXY=http://<user>:<password>@<ip_addr>:<port>/ HTTPS_PROXY=https://<user>:<password>@<ip_addr>:<port>/ NO_PROXY=master.hostname.example.com,<docker_registry_ip>,docker-registry.default.svc.cluster.local
Restart the Docker service:
# systemctl restart docker
27.6. Using Maven Behind a Proxy
Using Maven with proxies requires using the HTTP_PROXY_NONPROXYHOSTS
variable.
See the Red Hat JBoss Enterprise Application Platform for OpenShift documentation for information about configuring your OpenShift Container Platform environment for Red Hat JBoss Enterprise Application Platform, including the step for setting up Maven behind a proxy.
27.7. Configuring S2I Builds for Proxies
S2I builds fetch dependencies from various locations. You can use a .s2i/environment file to specify simple shell variables and OpenShift Container Platform will react accordingly when seeing build images.
The following are the supported proxy environment variables with example values:
HTTP_PROXY=http://USERNAME:PASSWORD@10.0.1.1:8080/ HTTPS_PROXY=https://USERNAME:PASSWORD@10.0.0.1:8080/ NO_PROXY=master.hostname.example.com
27.8. Configuring Default Templates for Proxies
The example templates available in OpenShift Container Platform by default do not include settings for HTTP proxies. For existing applications based on these templates, modify the source
section of the application’s build configuration and add proxy settings:
... source: type: Git git: uri: https://github.com/openshift/ruby-hello-world httpProxy: http://proxy.example.com httpsProxy: https://proxy.example.com noProxy: somedomain.com, otherdomain.com ...
This is similar to the process for using proxies for Git cloning.
27.9. Setting Proxy Environment Variables in Pods
You can set the NO_PROXY
, HTTP_PROXY
, and HTTPS_PROXY
environment variables in the templates.spec.containers
stanza in a deployment configuration to pass proxy connection information. The same can be done for configuring a Pod’s proxy at runtime:
... containers: - env: - name: "HTTP_PROXY" value: "http://<user>:<password>@<ip_addr>:<port>" ...
You can also use the oc set env
command to update an existing deployment configuration with a new environment variable:
$ oc set env dc/frontend HTTP_PROXY=http://<user>:<password>@<ip_addr>:<port>
If you have a ConfigChange trigger set up in your OpenShift Container Platform instance, the changes happen automatically. Otherwise, manually redeploy your application for the changes to take effect.
27.10. Git Repository Access
If your Git repository can only be accessed using a proxy, you can define the proxy to use in the source
section of the BuildConfig
. You can configure both a HTTP and HTTPS proxy to use. Both fields are optional. Domains for which no proxying should be performed can also be specified via the NoProxy field.
Your source URI must use the HTTP or HTTPS protocol for this to work.
source: git: uri: "https://github.com/openshift/ruby-hello-world" httpProxy: http://proxy.example.com httpsProxy: https://proxy.example.com noProxy: somedomain.com, otherdomain.com
Chapter 28. Configuring Global Build Defaults and Overrides
28.1. Overview
Developers can define settings in specific build configurations within their projects, such as configuring a proxy for Git cloning. Rather than requiring developers to define certain settings in each build configuration, administrators can use admission control plug-ins to configure global build defaults and overrides that automatically use these settings in any build.
The settings from these plug-ins are used only during the build process but are not set in the build configurations or builds themselves. Configuring the settings through the plug-ins allows administrators to change the global configuration at any time, and any builds that are re-run from existing build configurations or builds are assigned the new settings.
-
The
BuildDefaults
admission control plug-in allows administrators to set global defaults for settings such as the Git HTTP and HTTPS proxy, as well as default environment variables. These defaults do not overwrite values that have been configured for a specific build. However, if those values are not present on the build definition, they are set to the default value. The
BuildOverrides
admission control plug-in allows administrators to override a setting in a build, regardless of the value stored in the build. The plug-in currently supports overriding theforcePull
flag on a build strategy to force refreshing the local image from the registry during a build. Refreshing ensures that users can build only with images that they are allowed to pull. The plug-in can also be configured to apply a set of image labels to every built image.For information on configuring the
BuildOverrides
admission control plug-in and the values you can override, see Manually Setting Global Build Overrides.
The default node selectors and the BuildDefaults
or BuildOverride
admission plug-ins work together as follows:
-
The default project node selector, defined in the
projectConfig.defaultNodeSelector
field in the master configuration file, is applied to the pods created in all projects without a specifiednodeSelector
value. These settings are applied to builds withnodeSelector="null"
on clusters where theBuildDefaults
orBuildOverride
nodeselector is not set. -
The cluster-wide default build node selector,
admissionConfig.pluginConfig.BuildDefaults.configuration.nodeSelector
, is applied only if thenodeSelector="null"
parameter is set in the build configuration.nodeSelector=null
is the default setting. With a default project or cluster-wide node selector, the default setting is added as an AND to the build node selector, which is set by the
BuildDefaults
orBuildOverride
admission plug-ins. These settings mean that the build will be scheduled only to nodes that satisfy theBuildOverrides
node selector AND the project default node selector.NoteYou can define a hard limit on how long build pods can run by using the RunOnceDuration plugin.
28.2. Setting Global Build Defaults
You can set global build defaults two ways:
28.2.1. Configuring Global Build Defaults with Ansible
During cluster installations, the BuildDefaults
plug-in can be configured using the following parameters, which are configurable in the inventory file:
-
openshift_builddefaults_http_proxy
-
openshift_builddefaults_https_proxy
-
openshift_builddefaults_no_proxy
-
openshift_builddefaults_git_http_proxy
-
openshift_builddefaults_git_https_proxy
-
openshift_builddefaults_git_no_proxy
-
openshift_builddefaults_image_labels
-
openshift_builddefaults_nodeselectors
-
openshift_builddefaults_annotations
-
openshift_builddefaults_resources_requests_cpu
-
openshift_builddefaults_resources_requests_memory
-
openshift_builddefaults_resources_limits_cpu
-
openshift_builddefaults_resources_limits_memory
Example 28.1. Example Build Defaults Configuration with Ansible
# These options configure the BuildDefaults admission controller which injects # configuration into Builds. Proxy related values will default to the global proxy # config values. You only need to set these if they differ from the global proxy settings. openshift_builddefaults_http_proxy=http://USER:PASSWORD@HOST:PORT openshift_builddefaults_https_proxy=https://USER:PASSWORD@HOST:PORT openshift_builddefaults_no_proxy=mycorp.com openshift_builddefaults_git_http_proxy=http://USER:PASSWORD@HOST:PORT openshift_builddefaults_git_https_proxy=https://USER:PASSWORD@HOST:PORT openshift_builddefaults_git_no_proxy=mycorp.com openshift_builddefaults_image_labels=[{'name':'imagelabelname1','value':'imagelabelvalue1'}] openshift_builddefaults_nodeselectors={'nodelabel1':'nodelabelvalue1'} openshift_builddefaults_annotations={'annotationkey1':'annotationvalue1'} openshift_builddefaults_resources_requests_cpu=100m openshift_builddefaults_resources_requests_memory=256Mi openshift_builddefaults_resources_limits_cpu=1000m openshift_builddefaults_resources_limits_memory=512Mi # Or you may optionally define your own build defaults configuration serialized as json #openshift_builddefaults_json='{"BuildDefaults":{"configuration":{"apiVersion":"v1","env":[{"name":"HTTP_PROXY","value":"http://proxy.example.com.redhat.com:3128"},{"name":"NO_PROXY","value":"ose3-master.example.com"}],"gitHTTPProxy":"http://proxy.example.com:3128","gitNoProxy":"ose3-master.example.com","kind":"BuildDefaultsConfig"}}}'
28.2.2. Manually Setting Global Build Defaults
To configure the BuildDefaults
plug-in:
Add a configuration for it in the /etc/origin/master/master-config.yaml file on the master nodes:
admissionConfig: pluginConfig: BuildDefaults: configuration: apiVersion: v1 kind: BuildDefaultsConfig gitHTTPProxy: http://my.proxy:8080 1 gitHTTPSProxy: https://my.proxy:8443 2 gitNoProxy: somedomain.com, otherdomain.com 3 env: - name: HTTP_PROXY 4 value: http://my.proxy:8080 - name: HTTPS_PROXY 5 value: https://my.proxy:8443 - name: BUILD_LOGLEVEL 6 value: 4 - name: CUSTOM_VAR 7 value: custom_value imageLabels: - name: url 8 value: https://containers.example.org - name: vendor value: ExampleCorp Ltd. nodeSelector: 9 key1: value1 key2: value2 annotations: 10 key1: value1 key2: value2 resources: 11 requests: cpu: "100m" memory: "256Mi" limits: cpu: "100m" memory: "256Mi"
- 1
- Sets the HTTP proxy to use when cloning source code from a Git repository.
- 2
- Sets the HTTPS proxy to use when cloning source code from a Git repository.
- 3
- Sets the list of domains for which proxying should not be performed.
- 4
- Default environment variable that sets the HTTP proxy to use during the build. This can be used for downloading dependencies during the assemble and build phases.
- 5
- Default environment variable that sets the HTTPS proxy to use during the build. This can be used for downloading dependencies during the assemble and build phases.
- 6
- Default environment variable that sets the build log level during the build.
- 7
- Additional default environment variable that will be added to every build.
- 8
- Labels to be applied to every image built. Users can override these in their
BuildConfig
. - 9
- Build pods will only run on nodes with the
key1=value2
andkey2=value2
labels. Users can define a different set ofnodeSelectors
for their builds in which case these values will be ignored. - 10
- Build pods will have these annotations added to them.
- 11
- Sets the default resources to the build pod if the
BuildConfig
does not have related resource defined.
Restart the master services for the changes to take effect:
# master-restart api # master-restart controllers
28.3. Setting Global Build Overrides
You can set global build overrides two ways:
28.3.1. Configuring Global Build Overrides with Ansible
During cluster installations, the BuildOverrides
plug-in can be configured using the following parameters, which are configurable in the inventory file:
-
openshift_buildoverrides_force_pull
-
openshift_buildoverrides_image_labels
-
openshift_buildoverrides_nodeselectors
-
openshift_buildoverrides_annotations
-
openshift_buildoverrides_tolerations
Example 28.2. Example Build Overrides Configuration with Ansible
# These options configure the BuildOverrides admission controller which injects # configuration into Builds. openshift_buildoverrides_force_pull=true openshift_buildoverrides_image_labels=[{'name':'imagelabelname1','value':'imagelabelvalue1'}] openshift_buildoverrides_nodeselectors={'nodelabel1':'nodelabelvalue1'} openshift_buildoverrides_annotations={'annotationkey1':'annotationvalue1'} openshift_buildoverrides_tolerations=[{'key':'mykey1','value':'myvalue1','effect':'NoSchedule','operator':'Equal'}] # Or you may optionally define your own build overrides configuration serialized as json #openshift_buildoverrides_json='{"BuildOverrides":{"configuration":{"apiVersion":"v1","kind":"BuildOverridesConfig","forcePull":"true","tolerations":[{'key':'mykey1','value':'myvalue1','effect':'NoSchedule','operator':'Equal'}]}}}'
28.3.2. Manually Setting Global Build Overrides
To configure the BuildOverrides
plug-in:
Add a configuration for it in the /etc/origin/master/master-config.yaml file on masters:
admissionConfig: pluginConfig: BuildOverrides: configuration: apiVersion: v1 kind: BuildOverridesConfig forcePull: true 1 imageLabels: - name: distribution-scope 2 value: private nodeSelector: 3 key1: value1 key2: value2 annotations: 4 key1: value1 key2: value2 tolerations: 5 - key: mykey1 value: myvalue1 effect: NoSchedule operator: Equal - key: mykey2 value: myvalue2 effect: NoExecute operator: Equal
- 1
- Force all builds to pull their builder image and any source images before starting the build.
- 2
- Additional labels to be applied to every image built. Labels defined here take precedence over labels defined in
BuildConfig
. - 3
- Build pods will only run on nodes with the
key1=value2
andkey2=value2
labels. Users can define additional key/value labels to further constrain the set of nodes a build runs on, but the node must have at least these labels. - 4
- Build pods will have these annotations added to them.
- 5
- Build pods will have any existing tolerations overridden by those listed here.
Restart the master services for the changes to take effect:
# master-restart api # master-restart controllers
Chapter 29. Configuring Pipeline Execution
29.1. Overview
The first time a user creates a build configuration using the Pipeline build strategy, OpenShift Container Platform looks for a template named jenkins-ephemeral
in the openshift
namespace and instantiates it within the user’s project. The jenkins-ephemeral
template that ships with OpenShift Container Platform creates, upon instantiation:
- a deployment configuration for Jenkins using the official OpenShift Container Platform Jenkins image
- a service and route for accessing the Jenkins deployment
- a new Jenkins service account
- rolebindings to grant the service account edit access to the project
Cluster administrators can control what is created by either modifying the content of the built-in template, or by editing the cluster configuration to direct the cluster to a different template location.
To modify the content of the default template:
$ oc edit template jenkins-ephemeral -n openshift
To use a different template, such as the jenkins-persistent
template which uses persistent storage for Jenkins, add the following to your master configuration file:
jenkinsPipelineConfig: autoProvisionEnabled: true 1 templateNamespace: openshift 2 templateName: jenkins-persistent 3 serviceName: jenkins-persistent-svc 4 parameters: 5 key1: value1 key2: value2
- 1
- Defaults to
true
if unspecified. Iffalse
, then no template will be instantiated. - 2
- Namespace containing the template to be instantiated.
- 3
- Name of the template to be instantiated.
- 4
- Name of the service to be created by the template upon instantiation.
- 5
- Optional values to pass to the template during instantiation.
When a Pipeline build configuration is created, OpenShift Container Platform looks for a Service matching serviceName
. This means serviceName
must be chosen such that it is unique in the project. If no Service is found, OpenShift Container Platform instantiates the jenkinsPipelineConfig
template. If this is not desirable (if you would like to use a Jenkins server external to OpenShift Container Platform, for example), there are a few things you can do, depending on who you are.
-
If you are a cluster administrator, simply set
autoProvisionEnabled
tofalse
. This will disable autoprovisioning across the cluster. -
If you are an unpriviledged user, a Service must be created for OpenShift Container Platform to use. The service name must match the cluster configuration value of
serviceName
in thejenkinsPipelineConfig
. The default value isjenkins
. If you are disabling autoprovisioning because you are running a Jenkins server outside your project, it is recommended that you point this new service to your existing Jenkins server. See: Integrating External Services
The latter option could also be used to disable autoprovisioning in select projects only.
29.2. OpenShift Jenkins Client Plugin
The OpenShift Jenkins Client Plugin is a Jenkins plugin which aims to provide a readable, concise, comprehensive, and fluent Jenkins Pipeline syntax for rich interactions with an OpenShift API Server. The plugin leverages the OpenShift command line tool (oc
) which must be available on the nodes executing the script.
For more information about installing and configuring the plugin, use the links provided below that reference the official documentation.
Are you a developer looking for information about using this plugin? If so, see OpenShift Pipeline Overview.
29.3. OpenShift Jenkins Sync Plugin
This Jenkins plugin keeps OpenShift BuildConfig and Build objects in sync with Jenkins Jobs and Builds.
The OpenShift jenkins Sync Plugin provides the following:
- Dynamic job/run creation in Jenkins.
- Dynamic creation of slave pod templates from ImageStreams, ImageStreamTags, or ConfigMaps.
- Injecting of environment variables.
- Pipeline visualization in the OpenShift web console.
- Integration with the Jenkins git plugin, which passes commit information from OpenShift builds to the Jenkins git plugin.
For more information about this plugin, see:
Chapter 30. Configuring Route Timeouts
After installing OpenShift Container Platform and deploying a router, you can configure the default timeouts for an existing route when you have services in need of a low timeout, as required for Service Level Availability (SLA) purposes, or a high timeout, for cases with a slow back end.
Using the oc annotate
command, add the timeout to the route:
# oc annotate route <route_name> \ --overwrite haproxy.router.openshift.io/timeout=<timeout><time_unit>
For example, to set a route named myroute
to a timeout of two seconds:
# oc annotate route myroute --overwrite haproxy.router.openshift.io/timeout=2s
Supported time units are microseconds (us), milliseconds (ms), seconds (s), minutes (m), hours (h), or days (d).
Chapter 31. Configuring Native Container Routing
31.1. Network Overview
The following describes a general network setup:
- 11.11.0.0/16 is the container network.
- The 11.11.x.0/24 subnet is reserved for each node and assigned to the Docker Linux bridge.
- Each node has a route to the router for reaching anything in the 11.11.0.0/16 range, except the local subnet.
- The router has routes for each node, so it can be directed to the right node.
- Existing nodes do not need any changes when new nodes are added, unless the network topology is modified.
- IP forwarding is enabled on each node.
The following diagram shows the container networking setup described in this topic. It uses one Linux node with two network interface cards serving as a router, two switches, and three nodes connected to these switches.
31.2. Configure Native Container Routing
You can set up container networking using existing switches and routers, and the kernel networking stack in Linux.
As a network administrator, you must modify, or create a script to modify, the router or routers when new nodes are added to the cluster.
You can adapt this process to use with any type of router.
31.3. Setting up a Node for Container Networking
Assign an unused 11.11.x.0/24 subnet IP address to the Linux bridge on the node:
# brctl addbr lbr0 # ip addr add 11.11.1.1/24 dev lbr0 # ip link set dev lbr0 up
Modify the Docker startup script to use the new bridge. By default, the startup script is the
/etc/sysconfig/docker
file:# docker -d -b lbr0 --other-options
Add a route to the router for the 11.11.0.0/16 network:
# ip route add 11.11.0.0/16 via 192.168.2.2 dev p3p1
Enable IP forwarding on the node:
# sysctl -w net.ipv4.ip_forward=1
31.4. Setting up a Router for Container Networking
The following procedure assumes a Linux box with multiple NICs is used as a router. Modify the steps as required to use the syntax for a particular router:
Enable IP forwarding on the router:
# sysctl -w net.ipv4.ip_forward=1
Add a route for each node added to the cluster:
# ip route add <node_subnet> via <node_ip_address> dev <interface through which node is L2 accessible> # ip route add 11.11.1.0/24 via 192.168.2.1 dev p3p1 # ip route add 11.11.2.0/24 via 192.168.3.3 dev p3p2 # ip route add 11.11.3.0/24 via 192.168.3.4 dev p3p2
Chapter 32. Routing from Edge Load Balancers
32.1. Overview
Pods inside of an OpenShift Container Platform cluster are only reachable via their IP addresses on the cluster network. An edge load balancer can be used to accept traffic from outside networks and proxy the traffic to pods inside the OpenShift Container Platform cluster. In cases where the load balancer is not part of the cluster network, routing becomes a hurdle as the internal cluster network is not accessible to the edge load balancer.
To solve this problem where the OpenShift Container Platform cluster is using OpenShift Container Platform SDN as the cluster networking solution, there are two ways to achieve network access to the pods.
32.2. Including the Load Balancer in the SDN
If possible, run an OpenShift Container Platform node instance on the load balancer itself that uses OpenShift SDN as the networking plug-in. This way, the edge machine gets its own Open vSwitch bridge that the SDN automatically configures to provide access to the pods and nodes that reside in the cluster. The routing table is dynamically configured by the SDN as pods are created and deleted, and thus the routing software is able to reach the pods.
Mark the load balancer machine as an unschedulable node so that no pods end up on the load balancer itself:
$ oc adm manage-node <load_balancer_hostname> --schedulable=false
If the load balancer comes packaged as a container, then it is even easier to integrate with OpenShift Container Platform: Simply run the load balancer as a pod with the host port exposed. The pre-packaged HAProxy router in OpenShift Container Platform runs in precisely this fashion.
32.3. Establishing a Tunnel Using a Ramp Node
In some cases, the previous solution is not possible. For example, an F5 BIG-IP® host cannot run an OpenShift Container Platform node instance or the OpenShift Container Platform SDN because F5® uses a custom, incompatible Linux kernel and distribution.
Instead, to enable F5 BIG-IP® to reach pods, you can choose an existing node within the cluster network as a ramp node and establish a tunnel between the F5 BIG-IP® host and the designated ramp node. Because it is otherwise an ordinary OpenShift Container Platform node, the ramp node has the necessary configuration to route traffic to any pod on any node in the cluster network. The ramp node thus assumes the role of a gateway through which the F5 BIG-IP® host has access to the entire cluster network.
Following is an example of establishing an ipip tunnel between an F5 BIG-IP® host and a designated ramp node.
On the F5 BIG-IP® host:
Set the following variables:
# F5_IP=10.3.89.66 1 # RAMP_IP=10.3.89.89 2 # TUNNEL_IP1=10.3.91.216 3 # CLUSTER_NETWORK=10.128.0.0/14 4
- 1 2
- The
F5_IP
andRAMP_IP
variables refer to the F5 BIG-IP® host’s and the ramp node’s IP addresses, respectively, on a shared, internal network. - 3
- An arbitrary, non-conflicting IP address for the F5® host’s end of the ipip tunnel.
- 4
- The overlay network CIDR range that the OpenShift SDN uses to assign addresses to pods.
Delete any old route, self, tunnel and SNAT pool:
# tmsh delete net route $CLUSTER_NETWORK || true # tmsh delete net self SDN || true # tmsh delete net tunnels tunnel SDN || true # tmsh delete ltm snatpool SDN_snatpool || true
Create the new tunnel, self, route and SNAT pool and use the SNAT pool in the virtual servers:
# tmsh create net tunnels tunnel SDN \ \{ description "OpenShift SDN" local-address \ $F5_IP profile ipip remote-address $RAMP_IP \} # tmsh create net self SDN \{ address \ ${TUNNEL_IP1}/24 allow-service all vlan SDN \} # tmsh create net route $CLUSTER_NETWORK interface SDN # tmsh create ltm snatpool SDN_snatpool members add { $TUNNEL_IP1 } # tmsh modify ltm virtual ose-vserver source-address-translation { type snat pool SDN_snatpool } # tmsh modify ltm virtual https-ose-vserver source-address-translation { type snat pool SDN_snatpool }
On the ramp node:
The following creates a configuration that is not persistent, meaning that when the ramp node or the openvswitch service is restarted, the settings disappear.
Set the following variables:
# F5_IP=10.3.89.66 # TUNNEL_IP1=10.3.91.216 # TUNNEL_IP2=10.3.91.217 1 # CLUSTER_NETWORK=10.128.0.0/14 2
Delete any old tunnel:
# ip tunnel del tun1 || true
Create the ipip tunnel on the ramp node, using a suitable L2-connected interface (e.g., eth0):
# ip tunnel add tun1 mode ipip \ remote $F5_IP dev eth0 # ip addr add $TUNNEL_IP2 dev tun1 # ip link set tun1 up # ip route add $TUNNEL_IP1 dev tun1 # ping -c 5 $TUNNEL_IP1
SNAT the tunnel IP with an unused IP from the SDN subnet:
# source /run/openshift-sdn/config.env # tap1=$(ip -o -4 addr list tun0 | awk '{print $4}' | cut -d/ -f1 | head -n 1) # subaddr=$(echo ${OPENSHIFT_SDN_TAP1_ADDR:-"$tap1"} | cut -d "." -f 1,2,3) # export RAMP_SDN_IP=${subaddr}.254
Assign this
RAMP_SDN_IP
as an additional address to tun0 (the local SDN’s gateway):# ip addr add ${RAMP_SDN_IP} dev tun0
Modify the OVS rules for SNAT:
# ipflowopts="cookie=0x999,ip" # arpflowopts="cookie=0x999, table=0, arp" # # ovs-ofctl -O OpenFlow13 add-flow br0 \ "${ipflowopts},nw_src=${TUNNEL_IP1},actions=mod_nw_src:${RAMP_SDN_IP},resubmit(,0)" # ovs-ofctl -O OpenFlow13 add-flow br0 \ "${ipflowopts},nw_dst=${RAMP_SDN_IP},actions=mod_nw_dst:${TUNNEL_IP1},resubmit(,0)" # ovs-ofctl -O OpenFlow13 add-flow br0 \ "${arpflowopts}, arp_tpa=${RAMP_SDN_IP}, actions=output:2" # ovs-ofctl -O OpenFlow13 add-flow br0 \ "${arpflowopts}, priority=200, in_port=2, arp_spa=${RAMP_SDN_IP}, arp_tpa=${CLUSTER_NETWORK}, actions=goto_table:30" # ovs-ofctl -O OpenFlow13 add-flow br0 \ "arp, table=5, priority=300, arp_tpa=${RAMP_SDN_IP}, actions=output:2" # ovs-ofctl -O OpenFlow13 add-flow br0 \ "ip,table=5,priority=300,nw_dst=${RAMP_SDN_IP},actions=output:2" # ovs-ofctl -O OpenFlow13 add-flow br0 "${ipflowopts},nw_dst=${TUNNEL_IP1},actions=output:2"
Optionally, if you do not plan on configuring the ramp node to be highly available, mark the ramp node as unschedulable. Skip this step if you do plan to follow the next section and plan on creating a highly available ramp node.
$ oc adm manage-node <ramp_node_hostname> --schedulable=false
The F5 router plug-in integrates with F5 BIG-IP®.
32.3.1. Configuring a Highly-Available Ramp Node
You can use OpenShift Container Platform’s ipfailover feature, which uses keepalived internally, to make the ramp node highly available from F5 BIG-IP®'s point of view. To do so, first bring up two nodes, for example called ramp-node-1 and ramp-node-2, on the same L2 subnet.
Then, choose some unassigned IP address from within the same subnet to use for your virtual IP, or VIP. This will be set as the RAMP_IP
variable with which you will configure your tunnel on F5 BIG-IP®.
For example, suppose you are using the 10.20.30.0/24 subnet for your ramp nodes, and you have assigned 10.20.30.2 to ramp-node-1 and 10.20.30.3 to ramp-node-2. For your VIP, choose some unassigned address from the same 10.20.30.0/24 subnet, for example 10.20.30.4. Then, to configure ipfailover, mark both nodes with a label, such as f5rampnode:
$ oc label node ramp-node-1 f5rampnode=true $ oc label node ramp-node-2 f5rampnode=true
Similar to instructions from the ipfailover documentation, you must now create a service account and add it to the privileged SCC. First, create the f5ipfailover service account:
$ oc create serviceaccount f5ipfailover -n default
Next, you can add the f5ipfailover service to the privileged SCC. To add the f5ipfailover in the default namespace to the privileged SCC, run:
$ oc adm policy add-scc-to-user privileged system:serviceaccount:default:f5ipfailover
Finally, configure ipfailover using your chosen VIP (the RAMP_IP
variable) and the f5ipfailover service account, assigning the VIP to your two nodes using the f5rampnode label you set earlier:
# RAMP_IP=10.20.30.4
# IFNAME=eth0 1
# oc adm ipfailover <name-tag> \
--virtual-ips=$RAMP_IP \
--interface=$IFNAME \
--watch-port=0 \
--replicas=2 \
--service-account=f5ipfailover \
--selector='f5rampnode=true'
- 1
- The interface where
RAMP_IP
should be configured.
With the above setup, the VIP (the RAMP_IP
variable) is automatically re-assigned when the ramp node host that currently has it assigned fails.
Chapter 33. Aggregating Container Logs
33.1. Overview
As an OpenShift Container Platform cluster administrator, you can deploy the EFK stack to aggregate logs for a range of OpenShift Container Platform services. Application developers can view the logs of the projects for which they have view access. The EFK stack aggregates logs from hosts and applications, whether coming from multiple containers or even deleted pods.
The EFK stack is a modified version of the ELK stack and is comprised of:
- Elasticsearch (ES): An object store where all logs are stored.
- Fluentd: Gathers logs from nodes and feeds them to Elasticsearch.
- Kibana: A web UI for Elasticsearch.
After deployment in a cluster, the stack aggregates logs from all nodes and projects into Elasticsearch, and provides a Kibana UI to view any logs. Cluster administrators can view all logs, but application developers can only view logs for projects they have permission to view. The stack components communicate securely.
Managing Docker Container Logs discusses the use of json-file
logging driver options to manage container logs and prevent filling node disks.
33.2. Pre-deployment Configuration
- An Ansible playbook is available to deploy and upgrade aggregated logging. You should familiarize yourself with the Installing Clusters guide. This provides information for preparing to use Ansible and includes information about configuration. Parameters are added to the Ansible inventory file to configure various areas of the EFK stack.
- Review the sizing guidelines to determine how best to configure your deployment.
- Ensure that you have deployed a router for the cluster.
- Ensure that you have the necessary storage for Elasticsearch. Note that each Elasticsearch replica requires its own storage volume. See Elasticsearch for more information.
-
Determine if you need highly-available Elasticsearch. A highly-available environment requires multiple replicas of each shard. By default, OpenShift Container Platform creates one shard for each index and zero replicas of those shards. To create high availability, set the
openshift_logging_es_number_of_replicas
Ansible variable to a value higher than1
. High availability also requires at least three Elasticsearch nodes, each on a different host. See Elasticsearch for more information. Choose a project. Once deployed, the EFK stack collects logs for every project within your OpenShift Container Platform cluster. The examples in this section use the default project openshift-logging. The Ansible playbook creates the project for you if it does not already exist. You will only need to create a project if you want to specify a node-selector on it. Otherwise, the
openshift-logging
role will create a project.$ oc adm new-project openshift-logging --node-selector="" $ oc project openshift-logging
NoteSpecifying an empty node selector on the project is recommended, as Fluentd should be deployed throughout the cluster and any selector would restrict where it is deployed. To control component placement, specify node selectors per component to be applied to their deployment configurations.
33.3. Specifying Logging Ansible Variables
You can override the default parameter values by specifying parameters for the EFK deployment in the inventory host file.
Read the Elasticsearch and the Fluentd sections before choosing parameters:
By default, the Elasticsearch service uses port 9300 for TCP communication between nodes in a cluster.
Parameter | Description |
---|---|
|
If set to |
| The URL for the Kubernetes master, this does not need to be public facing but should be accessible from within the cluster. For example, https://<PRIVATE-MASTER-URL>:8443. |
| The public facing URL for the Kubernetes master. This is used for Authentication redirection by the Kibana proxy. For example, https://<CONSOLE-PUBLIC-URL-MASTER>:8443. |
|
Set to |
|
The common uninstall keeps PVC to prevent unwanted data loss during reinstalls. To ensure that the Ansible playbook completely and irreversibly removes all logging persistent data including PVC, set |
|
Coupled with |
| The prefix for the eventrouter logging image. |
| The image version for the logging eventrouter. |
|
Select a sink for eventrouter, supported |
|
A map of labels, such as |
|
The default is set to |
|
The minimum amount of CPU to allocate to eventrouter. The default is set to |
|
The memory limit for eventrouter pods. The default is set to |
|
The project where eventrouter is deployed. The default is set to Important
Do not set the project to anything other than |
| Specify the name of an existing pull secret to be used for pulling component images from an authenticated registry. |
| The default minimum age (in days) Curator uses for deleting log records. |
| The hour of the day Curator will run. |
| The minute of the hour Curator will run. |
|
The timezone Curator uses for figuring out its run time. Provide the timezone as a string in the tzselect(8) or timedatectl(1) "Region/Locality" format, for example |
| The script log level for Curator. |
| The log level for the Curator process. |
| The amount of CPU to allocate to Curator. |
| The amount of memory to allocate to Curator. |
| A node selector that specifies which nodes are eligible targets for deploying Curator instances. |
|
Equivalent to |
|
Equivalent to |
| The external host name for web clients to reach Kibana. |
| The amount of CPU to allocate to Kibana. |
| The amount of memory to allocate to Kibana. |
|
When |
| The amount of CPU to allocate to Kibana proxy. |
| The amount of memory to allocate to Kibana proxy. |
| The number of replicas to which Kibana should be scaled up. |
| A node selector that specifies which nodes are eligible targets for deploying Kibana instances. |
| A map of environment variables to add to the Kibana deployment configuration. For example, {"ELASTICSEARCH_REQUESTTIMEOUT":"30000"}. |
| The public facing key to use when creating the Kibana route. |
| The cert that matches the key when creating the Kibana route. |
| Optional. The CA to goes with the key and cert used when creating the Kibana route. |
|
Equivalent to |
|
Equivalent to |
|
Equivalent to |
|
Equivalent to |
|
Equivalent to |
|
Equivalent to |
|
Equivalent to |
|
Set to |
|
The external-facing hostname to use for the route and the TLS server certificate. The default is set to
For example, if |
| The location of the certificate Elasticsearch uses for the external TLS server cert. The default is a generated cert. |
| The location of the key Elasticsearch uses for the external TLS server cert. The default is a generated key. |
| The location of the CA cert Elasticsearch uses for the external TLS server cert. The default is the internal CA. |
|
Set to |
|
The external-facing hostname to use for the route and the TLS server certificate. The default is set to
For example, if |
| The location of the certificate Elasticsearch uses for the external TLS server cert. The default is a generated cert. |
| The location of the key Elasticsearch uses for the external TLS server cert. The default is a generated key. |
| The location of the CA cert Elasticsearch uses for the external TLS server cert. The default is the internal CA. |
| A node selector that specifies which nodes are eligible targets for deploying Fluentd instances. Any node where Fluentd should run (typically, all) must have this label before Fluentd is able to run and collect logs.
When scaling up the Aggregated Logging cluster after installation, the As part of the installation, it is recommended that you add the Fluentd node selector label to the list of persisted node labels. |
| The CPU limit for Fluentd pods. |
| The memory limit for Fluentd pods. |
|
Set to |
|
List of nodes that should be labeled for Fluentd to be deployed. The default is to label all nodes with ['--all']. The null value is |
|
When |
|
Location of audit log file. The default is |
|
Location of the Fluentd |
| The name of the Elasticsearch service where Fluentd should send logs. |
| The port for the Elasticsearch service where Fluentd should send logs. |
|
The location of the CA Fluentd uses to communicate with |
|
The location of the client certificate Fluentd uses for |
|
The location of the client key Fluentd uses for |
| Elasticsearch nodes to deploy. High availability requires at least three or more. |
| The amount of CPU limit for the Elasticsearch cluster. |
| Amount of RAM to reserve per Elasticsearch instance. It must be at least 512M. Possible suffixes are G,g,M,m. |
|
The number of replicas per primary shard for each new index. Defaults to '0'. A minimum of |
|
The number of primary shards for every new index created in ES. Defaults to |
| A key/value map added to a PVC in order to select specific PVs. |
|
To dynamically provision the backing storage, set the parameter value to
If you set a value for the |
|
To use a non-default storage class, specify the storage class name, such as |
|
Size of the persistent volume claim to create per Elasticsearch instance. For example, 100G. If omitted, no PVCs are created, and ephemeral volumes are used instead. If you set this parameter, the logging installer sets
If the |
|
Sets the Elasticsearch storage type. If you are using Persistent Elasticsearch Storage, the logging installer sets this to |
|
Prefix for the names of persistent volume claims to be used as storage for Elasticsearch nodes. A number is appended per node, such as logging-es-1. If they do not already exist, they are created with size
When
|
| The amount of time Elasticsearch will wait before it tries to recover. |
| Number of a supplemental group ID for access to Elasticsearch storage volumes. Backing volumes should allow access by this group ID. |
|
A node selector specified as a map that determines which nodes are eligible targets for deploying Elasticsearch nodes. Use this map to place these instances on nodes that are reserved or optimized for running them. For example, the selector could be |
|
Equivalent to |
|
Equivalent to |
|
Equivalent to |
|
Equivalent to |
|
Equivalent to |
|
Equivalent to |
|
Equivalent to |
|
Equivalent to |
|
Equivalent to |
|
Equivalent to |
|
Equivalent to |
|
Equivalent to |
|
Equivalent to |
|
Equivalent to |
|
A node selector that specifies which nodes are eligible targets for deploying Elasticsearch nodes. This can be used to place these instances on nodes reserved or optimized for running them. For example, the selector could be |
|
The default value,
You may also set the value #oc auth can-i view pod/logs -n default yes If you do not have appropriate access, contact your cluster administrator. |
|
Adjusts the time that the Ansible playbook waits for the Elasticsearch cluster to enter a green state after upgrading a given Elasticsearch node. Large shards, 50 GB or more, can take more than 60 minutes to initialize, causing the Ansible playbook to abort the upgrade procedure. The default is |
| A node selector that specifies which nodes are eligible targets for deploying Kibana instances. |
| A node selector that specifies which nodes are eligible targets for deploying Curator instances. |
Custom Certificates
You can specify custom certificates using the following inventory variables instead of relying on those generated during the deployment process. These certificates are used to encrypt and secure communication between a user’s browser and Kibana. The security-related files will be generated if they are not supplied.
File Name | Description |
---|---|
| A browser-facing certificate for the Kibana server. |
| A key to be used with the browser-facing Kibana certificate. |
| The absolute path on the control node to the CA file to use for the browser facing Kibana certs. |
| A browser-facing certificate for the Ops Kibana server. |
| A key to be used with the browser-facing Ops Kibana certificate. |
| The absolute path on the control node to the CA file to use for the browser facing ops Kibana certs. |
If you need to redeploy these certificates, see Redeploy EFK Certificates.
33.4. Deploying the EFK Stack
The EFK stack is deployed using an Ansible playbook to the EFK components. Run the playbook from the default OpenShift Ansible location using the default inventory file.
$ ansible-playbook [-i </path/to/inventory>] \ /usr/share/ansible/openshift-ansible/playbooks/openshift-logging/config.yml
Running the playbook deploys all resources needed to support the stack; such as Secrets, ServiceAccounts, DeploymentConfigs, deployed to the project openshift-logging
. The playbook waits to deploy the component pods until the stack is running. If the wait steps fail, the deployment could still be successful; it may be retrieving the component images from the registry which can take up to a few minutes. You can watch the process with:
$ oc get pods -w logging-curator-1541129400-l5h77 0/1 Running 0 11h 1 logging-es-data-master-ecu30lr4-1-deploy 0/1 Running 0 11h 2 logging-fluentd-2lgwn 1/1 Running 0 11h 3 logging-fluentd-lmvms 1/1 Running 0 11h logging-fluentd-p9nd7 1/1 Running 0 11h logging-kibana-1-zk94k 2/2 Running 0 11h 4
You can use the `oc get pods -o wide command to see the nodes where the Fluentd pod are deployed:
oc get pods -o wide NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE logging-es-data-master-5av030lk-1-2x494 2/2 Running 0 38m 154.128.0.80 ip-153-12-8-6.wef.internal <none> logging-fluentd-lqdxg 1/1 Running 0 2m 154.128.0.85 ip-153-12-8-6.wef.internal <none> logging-kibana-1-gj5kc 2/2 Running 0 39m 154.128.0.77 ip-153-12-8-6.wef.internal <none>
They will eventually enter Running status. For additional details about the status of the pods during deployment by retrieving associated events:
$ oc describe pods/<pod_name>
Check the logs if the pods do not run successfully:
$ oc logs -f <pod_name>
33.5. Understanding and Adjusting the Deployment
This section describes adjustments that you can make to deployed components.
33.5.1. Ops Cluster
The logs for the default, openshift, and openshift-infra projects are automatically aggregated and grouped into the .operations item in the Kibana interface.
The project where you have deployed the EFK stack (logging, as documented here) is not aggregated into .operations and is found under its ID.
If you set openshift_logging_use_ops
to true in your inventory file, Fluentd is configured to split logs between the main Elasticsearch cluster and another cluster reserved for operations logs, which are defined as node system logs and the projects default, openshift, and openshift-infra. Therefore, a separate Elasticsearch cluster, a separate Kibana, and a separate Curator are deployed to index, access, and manage operations logs. These deployments are set apart with names that include -ops
. Keep these separate deployments in mind if you enable this option. Most of the following discussion also applies to the operations cluster if present, just with the names changed to include -ops
.
33.5.2. Elasticsearch
Elasticsearch (ES) is an object store where all logs are stored.
Elasticsearch organizes the log data into datastores, each called an index. Elasticsearch subdivides each index into multiple pieces called shards, which it spreads across a set of Elasticsearch nodes in your cluster. You can configure Elasticsearch to make copies of the shards, called replicas. Elasticsearch also spreads replicas across the Elactisearch nodes. The combination of shards and replicas is intended to provide redundancy and resilience to failure. For example, if you configure three shards for the index with one replica, Elasticsearch generates a total of six shards for that index: three primary shards and three replicas as a backup.
The OpenShift Container Platform logging installer ensures each Elasticsearch node is deployed using a unique deployment configuration that includes its own storage volume. You can create an additional deployment configuration for each Elasticsearch node you add to the logging system. During installation, you can use the openshift_logging_es_cluster_size
Ansible variable to specify the number of Elasticsearch nodes.
Alternatively, you can scale up your existing cluster by modifying the openshift_logging_es_cluster_size
in the inventory file and re-running the logging playbook. Additional clustering parameters can be modified and are described in Specifying Logging Ansible Variables.
Refer to Elastic’s documentation for considerations involved in choosing storage and network location as directed below.
A highly-available Elasticsearch environment requires at least three Elasticsearch nodes, each on a different host, and setting the openshift_logging_es_number_of_replicas
Ansible variable to a value of 1
, 3
, or higher to create replicas. A value of 2
causes split-brain issues.
Viewing all Elasticsearch Deployments
To view all current Elasticsearch deployments:
$ oc get dc --selector logging-infra=elasticsearch
Configuring Elasticsearch for High Availability
A highly-available Elasticsearch environment requires at least three Elasticsearch nodes, each on a different host, and setting the openshift_logging_es_number_of_replicas
Ansible variable to a value of 1
or higher to create replicas.
Use the following scenarios as a guide for an OpenShift Container Platform cluster with three Elasticsearch nodes:
-
If you can tolerate one Elasticsearch node going down, set
openshift_logging_es_number_of_replicas
to1
. This ensures that two nodes have a copy of all of the Elasticsearch data in the cluster. -
If you must tolerate two Elasticsearch nodes going down, set
openshift_logging_es_number_of_replicas
to2
. This ensures that every node has a copy of all of the Elasticsearch data in the cluster.
Note that there is a trade-off between high availability and performance. For example, having openshift_logging_es_number_of_replicas=2
and openshift_logging_es_number_of_shards=3
requires Elasticsearch to spend significant resources replicating the shard data among the nodes in the cluster. Also, using a higher number of replicas requires doubling or tripling the data storage requirements on each node, so you must take that into account when planning persistent storage for Elasticsearch.
Considerations when Configuring the Number of Shards
For the openshift_logging_es_number_of_shards
parameter, consider:
-
For higher performance, increase the number of shards. For example, in a three node cluster, set
openshift_logging_es_number_of_shards=3
. This will cause each index to be split into three parts (shards), and the load for processing the index will be spread out over all 3 nodes. - If you have a large number of projects, you might see performance degradation if you have more than a few thousand shards in the cluster. Either reduce the number of shards or reduce the curation time.
-
If you have a small number of very large indices, you might want to configure
openshift_logging_es_number_of_shards=3
or higher. Elasticsearch recommends using a maximum shard size of less than 50 GB.
Node Selector
Because Elasticsearch can use a lot of resources, all members of a cluster should have low latency network connections to each other and to any remote storage. Ensure this by directing the instances to dedicated nodes, or a dedicated region within your cluster, using a node selector.
To configure a node selector, specify the openshift_logging_es_nodeselector
configuration option in the inventory file. This applies to all Elasticsearch deployments; if you need to individualize the node selectors, you must manually edit each deployment configuration after deployment. The node selector is specified as a python compatible dict. For example, {"node-type":"infra", "region":"east"}
.
33.5.2.1. Persistent Elasticsearch Storage
By default, the openshift_logging
Ansible role creates an ephemeral deployment in which all data in a pod is lost upon pod restart.
For production environments, each Elasticsearch deployment configuration requires a persistent storage volume. You can specify an existing persistent volume claim or allow OpenShift Container Platform to create one.
Use existing PVCs. If you create your own PVCs for the deployment, OpenShift Container Platform uses those PVCs.
Name the PVCs to match the
openshift_logging_es_pvc_prefix
setting, which defaults tologging-es
. Assign each PVC a name with a sequence number added to it:logging-es-0
,logging-es-1
,logging-es-2
, and so on.Allow OpenShift Container Platform to create a PVC. If a PVC for Elsaticsearch does not exist, OpenShift Container Platform creates the PVC based on parameters in the Ansible inventory file.
Parameter Description openshift_logging_es_pvc_size
Specify the size of the PVC request.
openshift_logging_elasticsearch_storage_type
Specify the storage type as
pvc
.NoteThis is an optional parameter. If you set the
openshift_logging_es_pvc_size
parameter to a value greater than 0, the logging installer automatically sets this parameter topvc
by default.openshift_logging_es_pvc_prefix
Optionally, specify a custom prefix for the PVC.
For example:
openshift_logging_elasticsearch_storage_type=pvc openshift_logging_es_pvc_size=104802308Ki openshift_logging_es_pvc_prefix=es-logging
If using dynamically provisioned PVs, the OpenShift Container Platform logging installer creates PVCs that use the default storage class or the PVC specified with the openshift_logging_elasticsearch_pvc_storage_class_name
parameter.
If using NFS storage, the OpenShift Container Platform installer creates the persistent volumes, based on the openshift_logging_storage_*
parameters and the OpenShift Container Platform logging installer creates PVCs, using the openshift_logging_es_pvc_*
parameters.
Make sure you specify the correct parameters in order to use persistent volumes with EFK. Also set the openshift_enable_unsupported_configurations=true
parameter in the Ansible inventory file, as the logging installer blocks the installation of NFS with core infrastructure by default.
Using NFS storage as a volume or a persistent volume, or using NAS such as Gluster, is not supported for Elasticsearch storage, as Lucene relies on file system behavior that NFS does not supply. Data corruption and other problems can occur.
If your environment requires NFS storage, use one of the following methods:
33.5.2.1.1. Using NFS as a persistent volume
You can deploy NFS as an automatically provisioned persistent volume or using a predefined NFS volume.
For more information, see Sharing an NFS mount across two persistent volume claims to leverage shared storage for use by two separate containers.
Using automatically provisioned NFS
To use NFS as a persistent volume where NFS is automatically provisioned:
Add the following lines to the Ansible inventory file to create an NFS auto-provisioned storage class and dynamically provision the backing storage:
openshift_logging_es_pvc_storage_class_name=$nfsclass openshift_logging_es_pvc_dynamic=true
Use the following command to deploy the NFS volume using the logging playbook:
ansible-playbook /usr/share/ansible/openshift-ansible/playbooks/openshift-logging/config.yml
Use the following steps to create a PVC:
Edit the Ansible inventory file to set the PVC size:
openshift_logging_es_pvc_size=50Gi
NoteThe logging playbook selects a volume based on size and might use an unexpected volume if any other persistent volume has same size.
Use the following command to rerun the Ansible deploy_cluster.yml playbook:
ansible-playbook /usr/share/ansible/openshift-ansible/playbooks/deploy_cluster.yml
The installer playbook creates the NFS volume based on the
openshift_logging_storage
variables.
Using a predefined NFS volume
To deploy logging alongside the OpenShift Container Platform cluster using an existing NFS volume:
Edit the Ansible inventory file to configure the NFS volume and set the PVC size:
openshift_logging_storage_kind=nfs openshift_enable_unsupported_configurations=true openshift_logging_storage_access_modes=["ReadWriteOnce"] openshift_logging_storage_nfs_directory=/srv/nfs openshift_logging_storage_nfs_options=*(rw,root_squash) openshift_logging_storage_volume_name=logging openshift_logging_storage_volume_size=100Gi openshift_logging_storage_labels={:storage=>"logging"} openshift_logging_install_logging=true
Use the following command to redeploy the EFK stack:
ansible-playbook /usr/share/ansible/openshift-ansible/playbooks/deploy_cluster.yml
33.5.2.1.2. Using NFS as local storage
You can allocate a large file on an NFS server and mount the file to the nodes. You can then use the file as a host path device.
$ mount -F nfs nfserver:/nfs/storage/elasticsearch-1 /usr/local/es-storage $ chown 1000:1000 /usr/local/es-storage
Then, use /usr/local/es-storage as a host-mount as described below. Use a different backing file as storage for each Elasticsearch replica.
This loopback must be maintained manually outside of OpenShift Container Platform, on the node. You must not maintain it from inside a container.
It is possible to use a local disk volume (if available) on each node host as storage for an Elasticsearch replica. Doing so requires some preparation as follows.
The relevant service account must be given the privilege to mount and edit a local volume:
$ oc adm policy add-scc-to-user privileged \ system:serviceaccount:openshift-logging:aggregated-logging-elasticsearch 1
- 1
- Use the project you created earlier (for example, logging) when running the logging playbook.
Each Elasticsearch replica definition must be patched to claim that privilege, for example (change to
--selector component=es-ops
for Ops cluster):$ for dc in $(oc get deploymentconfig --selector component=es -o name); do oc scale $dc --replicas=0 oc patch $dc \ -p '{"spec":{"template":{"spec":{"containers":[{"name":"elasticsearch","securityContext":{"privileged": true}}]}}}}' done
The Elasticsearch replicas must be located on the correct nodes to use the local storage, and must not move around, even if those nodes are taken down for a period of time. This requires giving each Elasticsearch replica a node selector that is unique to a node where an administrator has allocated storage for it. To configure a node selector, edit each Elasticsearch deployment configuration, adding or editing the nodeSelector section to specify a unique label that you have applied for each desired node:
apiVersion: v1 kind: DeploymentConfig spec: template: spec: nodeSelector: logging-es-node: "1" 1
- 1
- This label must uniquely identify a replica with a single node that bears that label, in this case
logging-es-node=1
.
- Create a node selector for each required node.
-
Use the
oc label
command to apply labels to as many nodes as needed.
For example, if your deployment has three infrastructure nodes, you could add labels for those nodes as follows:
$ oc label node <nodename1> logging-es-node=1 $ oc label node <nodename2> logging-es-node=2 $ oc label node <nodename3> logging-es-node=3
For information about adding a label to a node, see Updating Labels on Nodes.
To automate applying the node selector, you can instead use the oc patch
command:
$ oc patch dc/logging-es-<suffix> \ -p '{"spec":{"template":{"spec":{"nodeSelector":{"logging-es-node":"1"}}}}}'
Once you have completed these steps, you can apply a local host mount to each replica. The following example assumes storage is mounted at the same path on each node.
$ for dc in $(oc get deploymentconfig --selector component=es -o name); do oc set volume $dc \ --add --overwrite --name=elasticsearch-storage \ --type=hostPath --path=/usr/local/es-storage oc rollout latest $dc oc scale $dc --replicas=1 done
33.5.2.1.3. Configuring hostPath storage for Elasticsearch
You can provision OpenShift Container Platform clusters using hostPath storage for Elasticsearch.
To use a local disk volume on each node host as storage for an Elasticsearch replica:
Create a local mount point on each infrastructure node for the local Elasticsearch storage:
$ mkdir /usr/local/es-storage
Create a filesystem on the Elasticsearch volume:
$ mkfs.ext4 /dev/xxx
Mount the elasticsearch volume:
$ mount /dev/xxx /usr/local/es-storage
Add the following line to
/etc/fstab
:$ /dev/xxx /usr/local/es-storage ext4
Change ownership for the mount point:
$ chown 1000:1000 /usr/local/es-storage
Give the privilege to mount and edit a local volume to the relevant service account:
$ oc adm policy add-scc-to-user privileged \ system:serviceaccount:logging:aggregated-logging-elasticsearch
Use the project you created earlier (for example, logging) when running the logging playbook.
To claim that privilege, patch each Elasticsearch replica definition, as shown in the example, which specifies
--selector component=es-ops
for an Ops cluster:$ for dc in $(oc get deploymentconfig --selector component=es -o name); do oc scale $dc --replicas=0 oc patch $dc \ -p '{"spec":{"template":{"spec":{"containers":[{"name":"elasticsearch","securityContext":{"privileged": true}}]}}}}' done
Locate the Elasticsearch replicas on the correct nodes to use the local storage, and do not move them around, even if those nodes are taken down for a period of time. To specify the node location, give each Elasticsearch replica a node selector that is unique to a node where an administrator has allocated storage for it.
To configure a node selector, edit each Elasticsearch deployment configuration, adding or editing the
nodeSelector
section to specify a unique label that you have applied for each node you desire:apiVersion: v1 kind: DeploymentConfig spec: template: spec: nodeSelector: logging-es-node: "1"
The label must uniquely identify a replica with a single node that bears that label, in this case
logging-es-node=1
.Create a node selector for each required node. Use the
oc label
command to apply labels to as many nodes as needed.For example, if your deployment has three infrastructure nodes, you could add labels for those nodes as follows:
$ oc label node <nodename1> logging-es-node=1 $ oc label node <nodename2> logging-es-node=2 $ oc label node <nodename3> logging-es-node=3
To automate application of the node selector, use the
oc patch
command instead of theoc label
command, as follows:$ oc patch dc/logging-es-<suffix> \ -p '{"spec":{"template":{"spec":{"nodeSelector":{"logging-es-node":"1"}}}}}'
Once you have completed these steps, you can apply a local host mount to each replica. The following example assumes storage is mounted at the same path on each node, and specifies
--selector component=es-ops
for an Ops cluster.$ for dc in $(oc get deploymentconfig --selector component=es -o name); do oc set volume $dc \ --add --overwrite --name=elasticsearch-storage \ --type=hostPath --path=/usr/local/es-storage oc rollout latest $dc oc scale $dc --replicas=1 done
33.5.2.1.4. Changing the Scale of Elasticsearch
If you need to scale up the number of Elasticsearch nodes in your cluster, you can create a deployment configuration for each Elasticsearch node you want to add.
Due to the nature of persistent volumes and how Elasticsearch is configured to store its data and recover the cluster, you cannot simply increase the replicas in an Elasticsearch deployment configuration.
The simplest way to change the scale of Elasticsearch is to modify the inventory host file and re-run the logging playbook as described previously. If you have supplied persistent storage for the deployment, this should not be disruptive.
Resizing an Elasticsearch cluster using the logging playbook is only possible when the new openshift_logging_es_cluster_size
value is higher than the current number of Elasticsearch nodes (scaled up) in the cluster.
33.5.2.1.5. Expose Elasticsearch as a Route
By default, Elasticsearch deployed with OpenShift aggregated logging is not accessible from outside the logging cluster. You can enable a route for external access to Elasticsearch for those tools that want to access its data.
You have access to Elasticsearch using your OpenShift token, and you can provide the external Elasticsearch and Elasticsearch Ops hostnames when creating the server certificate (similar to Kibana).
To access Elasticsearch as a reencrypt route, define the following variables:
openshift_logging_es_allow_external=True openshift_logging_es_hostname=elasticsearch.example.com
Run the following Ansible playbook:
$ ansible-playbook [-i </path/to/inventory>] \ /usr/share/ansible/openshift-ansible/playbooks/openshift-logging/config.yml
To log in to Elasticsearch remotely, the request must contain three HTTP headers:
Authorization: Bearer $token X-Proxy-Remote-User: $username X-Forwarded-For: $ip_address
You must have access to the project in order to be able to access to the logs. For example:
$ oc login <user1> $ oc new-project <user1project> $ oc new-app <httpd-example>
You need to get the token of this ServiceAccount to be used in the request:
$ token=$(oc whoami -t)
Using the token previously configured, you should be able access Elasticsearch through the exposed route:
$ curl -k -H "Authorization: Bearer $token" -H "X-Proxy-Remote-User: $(oc whoami)" -H "X-Forwarded-For: 127.0.0.1" https://es.example.test/project.my-project.*/_search?q=level:err | python -mjson.tool
33.5.3. Fluentd
Fluentd is deployed as a DaemonSet that deploys replicas according to a node label selector, which you can specify with the inventory parameter openshift_logging_fluentd_nodeselector
and the default is logging-infra-fluentd
. As part of the OpenShift cluster installation, it is recommended that you add the Fluentd node selector to the list of persisted node labels.
Fluentd uses journald
as the system log source. These are log messages from the operating system, the container runtime, and OpenShift.
The available container runtimes provide minimal information to identify the source of log messages. Log collection and normalization of logs can occur after a pod is deleted and additional metadata cannot be retrieved from the API server, such as labels or annotations.
If a pod with a given name and namespace is deleted before the log collector finishes processing logs, there might not be a way to distinguish the log messages from a similarly named pod and namespace. This can cause logs to be indexed and annotated to an index that is not owned by the user who deployed the pod.
The available container runtimes provide minimal information to identify the source of log messages and do not guarantee unique individual log messages or that these messages can be traced to their source.
Clean installations of OpenShift Container Platform 3.9 use json-file
as the default log driver, but environments upgraded from OpenShift Container Platform 3.7 will maintain their existing journald
log driver configuration. It is recommended to use the json-file
log driver. See Changing the Aggregated Logging Driver for instructions to change your existing log driver configuration to json-file
.
Viewing Fluentd Logs
How you view logs depends upon the LOGGING_FILE_PATH
setting.
If
LOGGING_FILE_PATH
points to a file, use the logs utility to print out the contents of Fluentd log files:oc exec <pod> logs 1
- 1
- Specify the name of the Fluentd pod.
For example:
oc exec logging-fluentd-lmvms logs
The contents of log files are printed out, starting with the oldest log. Use
-f
option to follow what is being written into the logs.If you are using
LOGGING_FILE_PATH=console
, fluentd to write logs to STDOUT. You can retrieve the logs with theoc logs -f <pod_name>
command.For example
oc logs -f /var/log/fluentd/fluentd.log
Configuring Fluentd Log Location
Fluentd writes logs to a specified file, by default /var/log/fluentd/fluentd.log
, or to the console, based on the LOGGING_FILE_PATH
environment variable.
To change the default output location for the Fluentd logs, use the LOGGING_FILE_PATH
parameter in the default inventory file. You can specify a particular file or to STDOUT:
LOGGING_FILE_PATH=console 1 LOGGING_FILE_PATH=<path-to-log/fluentd.log> 2
After changing these parameters, re-run the logging installer playbook:
$ cd /usr/share/ansible/openshift-ansible $ ansible-playbook [-i </path/to/inventory>] \ playbooks/openshift-logging/config.yml
How you view log data depends on the LOGGING_FILE_PATH
setting, either`console` or file.
Configuring Fluentd Log Rotation
When the current Fluentd log file reaches a specified size, OpenShift Container Platform automatically renames the fluentd.log log file so that new logging data can be collected. Log rotation is enabled by default.
The following example shows logs in a cluster where the maximum log size is 1Mb and four logs should be retained. When the fluentd.log reaches 1Mb, OpenShift Container Platform deletes the current fluentd.log.4, renames the each of the Fluentd logs in turn, and creates a new fluentd.log.
fluentd.log 0b fluentd.log.1 1Mb fluentd.log.2 1Mb fluentd.log.3 1Mb fluentd.log.4 1Mb
You can control the size of the Fluentd log files and how many of the renamed files that OpenShift Container Platform retains using environment variables.
Parameter | Description |
---|---|
| The maximum size of a single Fluentd log file in Bytes. If the size of the flientd.log file exceeds this value, OpenShift Container Platform renames the fluentd.log.* files and creates a new fluentd.log. The default is 1024000 (1MB). |
|
The number of logs that Fluentd retains before deleting. The default value is |
For example:
$ oc set env ds/logging-fluentd LOGGING_FILE_AGE=30 LOGGING_FILE_SIZE=1024000"
Turn off log rotation by setting LOGGING_FILE_PATH=console. This causes Fluentd to write logs to STDOUT where they can be retrieved using the oc logs -f <pod_name>
command.
Disabling JSON parsing of logs with MERGE_JSON_LOG
By default, Fluentd determines if a log message is in JSON format and merges the message into the JSON payload document posted to Elasticsearch.
When using JSON parsing you might experience:
- log loss due to Elasticsearch rejecting documents due to inconsistent type mappings;
- buffer storage leaks caused by rejected message cycling;
- overwritten data for fields with same names.
For information on how to mitigate some of these problems, see Configuring how the log collector normalizes logs.
You can disable JSON parsing to avoid these problems or if you do not need to parse JSON from your logs.
To disable JSON parsing:
Run the following command:
oc set env ds/logging-fluentd MERGE_JSON_LOG=false 1
- 1
- Set this to
false
to disable this feature ortrue
to enable this feature.
To ensure this setting is applied each time you run Ansible, add
openshift_logging_fluentd_merge_json_log="false"
to your Ansible inventory.
Configuring how the log collector normalizes logs
Cluster Logging uses a specific data model, like a database schema, to store log records and their metadata in the logging store. There are some restrictions on the data:
-
There must be a
"message"
field containing the actual log message. -
There must be a
"@timestamp"
field containing the log record timestamp in RFC 3339 format, preferably millisecond or better resolution. -
There must be a
"level"
field with the log level, such aserr
,info
,unknown
, and so forth.
For more information on the data model, see Exported Fields.
Because of these requirements, conflicts and inconsistencies can arise with log data collected from different subsystems.
For example, if you use the MERGE_JSON_LOG
feature (MERGE_JSON_LOG=true
), it can be extremely useful to have your applications log their output in JSON, and have the log collector automatically parse and index the data in Elasticsearch. However, this leads to several problems, including:
- field names can be empty, or contain characters that are illegal in Elasticsearch;
- different applications in the same namespace might output the same field name with a different value data type;
- applications might emit too many fields;
- fields may conflict with the cluster logging built-in fields.
You can configure how cluster logging treats fields from disparate sources by editing the Fluentd log collector daemonset and setting environment variables in the table below.
Undefined fields. Fields unknown to the ViaQ data model are called undefined. Log data from disparate systems can contain undefined fields. The data model requires all top-level fields to be defined and described.
Use the parameters to configure how OpenShift Container Platform moves any undefined fields under a top-level field called
undefined
to avoid conflicting with the well known top-level fields. You can add undefined fields to the top-level fields and move others to anundefined
container.You can also replace special characters in undefined fields and convert undefined fields to their JSON string representation. Converting to JSON string preserves the structure of the value, so that you can retrieve the value later and convert it back to a map or an array.
-
Simple scalar values like numbers and booleans are changed to a quoted string. For example:
10
becomes"10"
,3.1415
becomes"3.1415"
,false
becomes"false"
. -
Map/dict values and array values are converted to their JSON string representation:
"mapfield":{"key":"value"}
becomes"mapfield":"{\"key\":\"value\"}"
and"arrayfield":[1,2,"three"]
becomes"arrayfield":"[1,2,\"three\"]"
.
-
Simple scalar values like numbers and booleans are changed to a quoted string. For example:
Defined fields. Defined fields appear in the top levels of the logs. You can configure which fields are considered defined fields.
The default top-level fields, defined through the
CDM_DEFAULT_KEEP_FIELDS
parameter, areCEE
,time
,@timestamp
,aushape
,ci_job
,collectd
,docker
,fedora-ci
,file
,foreman
,geoip
,hostname
,ipaddr4
,ipaddr6
,kubernetes
,level
,message
,namespace_name
,namespace_uuid
,offset
,openstack
,ovirt
,pid
,pipeline_metadata
,service
,systemd
,tags
,testcase
,tlog
,viaq_msg_id
.Any fields not included in
${CDM_DEFAULT_KEEP_FIELDS}
or${CDM_EXTRA_KEEP_FIELDS}
are moved to${CDM_UNDEFINED_NAME}
ifCDM_USE_UNDEFINED
istrue
. See the table below for more information on these parameters.NoteThe
CDM_DEFAULT_KEEP_FIELDS
parameter is for only advanced users, or if you are instructed to do so by Red Hat support.- Empty fields. Empty fields have no data. You can determine which empty fields to retain from logs.
Parameters | Definition | Example |
---|---|---|
|
Specify an extra set of defined fields to be kept at the top level of the logs in addition to the |
|
| Specify fields to retain in CSV format even if empty. Empty defined fields not specified are dropped. The default is "message", keep empty messages. |
|
|
Set to |
|
|
Specify a name for the undefined top level field if using |
|
|
If the number of undefined fields is greater than this number, all undefined fields are converted to their JSON string representation and stored in the
NOTE: This parameter is honored even if |
|
|
Set to |
|
|
Specify a character to use in place of a dot character '.' in an undefined field. |
|
If you set the MERGE_JSON_LOG
parameter in the Fluentd log collector daemonset and CDM_UNDEFINED_TO_STRING
environment variables to true, you might receive an Elasticsearch 400 error. When MERGE_JSON_LOG=true
, the log collector adds fields with data types other than string. If you set CDM_UNDEFINED_TO_STRING=true
, the log collector attempts to add those fields as a string value resulting in the Elasticsearch 400 error. The error clears when the log collector rolls over the indices for the next day’s logs
When the log collector rolls over the indices, it creates a brand new index. The field definitions are updated and you will not get the 400 error. For more information, see Setting MERGE_JSON_LOG and CDM_UNDEFINED_TO_STRING.
To configure undefined and empty field processing, edit the logging-fluentd
daemonset:
Configure how to process fields, as needed:
-
Specify the fields to move using
CDM_EXTRA_KEEP_FIELDS
. -
Specify any empty fields to retain in the
CDM_KEEP_EMPTY_FIELDS
parameter in CSV format.
-
Specify the fields to move using
Configure how to process undefined fields, as needed:
-
Set
CDM_USE_UNDEFINED
totrue
to move undefined fields to the top-levelundefined
field: -
Specify a name for the undefined fields using the
CDM_UNDEFINED_NAME
parameter. -
Set
CDM_UNDEFINED_MAX_NUM_FIELDS
to a value other than the default-1
, to set an upper bound on the number of undefined fields in a single record.
-
Set
-
Specify
CDM_UNDEFINED_DOT_REPLACE_CHAR
to change any dot.
characters in an undefined field name to another character. For example, ifCDM_UNDEFINED_DOT_REPLACE_CHAR=@@@
and there is a field namedfoo.bar.baz
the field is transformed intofoo@@@bar@@@baz
. -
Set
UNDEFINED_TO_STRING
totrue
to convert undefined fields to their JSON string representation.
If you configure the CDM_UNDEFINED_TO_STRING
or CDM_UNDEFINED_MAX_NUM_FIELDS
parameters, you use the CDM_UNDEFINED_NAME
to change the undefined field name. This field is needed because CDM_UNDEFINED_TO_STRING
or CDM_UNDEFINED_MAX_NUM_FIELDS
could change the value type of the undefined field. When CDM_UNDEFINED_TO_STRING
or CDM_UNDEFINED_MAX_NUM_FIELDS
is set to true and there are more undefined fields in a log, the value type becomes string
. Elasticsearch stops accepting records if the value type is changed, for example, from JSON to JSON string.
For example, when CDM_UNDEFINED_TO_STRING
is false
or CDM_UNDEFINED_MAX_NUM_FIELDS
is the default, -1
, the value type of the undefined field is json
. If you change CDM_UNDEFINED_MAX_NUM_FIELDS
to a value other than default and there are more undefined fields in a log, the value type becomes string
(JSON string). Elasticsearch stops accepting records if the value type is changed.
Setting MERGE_JSON_LOG and CDM_UNDEFINED_TO_STRING
If you set the MERGE_JSON_LOG
and CDM_UNDEFINED_TO_STRING
enviroment variables to true
, you might receive an Elasticsearch 400 error. When MERGE_JSON_LOG=true
, the log collector adds fields with data types other than string. If you set CDM_UNDEFINED_TO_STRING=true
, Fluentd attempts to add those fields as a string value resulting in the Elasticsearch 400 error. The error clears when the indices roll over for the next day.
When Fluentd rolls over the indices for the next day’s logs, it will create a brand new index. The field definitions are updated and you will not get the 400 error.
Records that have hard errors, such as schema violations, corrupted data, and so forth, cannot be retried. The log collector sends the records for error handling. If you add a <label @ERROR>
section to your Fluentd config, as the last <label>
, you can handle these records as needed.
For example:
data: fluent.conf: .... <label @ERROR> <match **> @type file path /var/log/fluent/dlq time_slice_format %Y%m%d time_slice_wait 10m time_format %Y%m%dT%H%M%S%z compress gzip </match> </label>
This section writes error records to the Elasticsearch dead letter queue (DLQ) file. See the fluentd documentation for more information about the file output.
Then you can edit the file to clean up the records manually, edit the file to use with the Elasticsearch /_bulk index
API and use cURL to add those records. For more information on Elasticsearch Bulk API, see the Elasticsearch documentation.
Configuring Fluentd to Send Logs to an External Log Aggregator
You can configure Fluentd to send a copy of its logs to an external log aggregator, and not the default Elasticsearch, using the secure-forward
plug-in. From there, you can further process log records after the locally hosted Fluentd has processed them.
The logging deployment provides a secure-forward.conf
section in the Fluentd configmap for configuring the external aggregator:
<store> @type secure_forward self_hostname pod-${HOSTNAME} shared_key thisisasharedkey secure yes enable_strict_verification yes ca_cert_path /etc/fluent/keys/your_ca_cert ca_private_key_path /etc/fluent/keys/your_private_key ca_private_key_passphrase passphrase <server> host ose1.example.com port 24284 </server> <server> host ose2.example.com port 24284 standby </server> <server> host ose3.example.com port 24284 standby </server> </store>
This can be updated using the oc edit
command:
$ oc edit configmap/logging-fluentd
Certificates to be used in secure-forward.conf
can be added to the existing secret that is mounted on the Fluentd pods. The your_ca_cert
and your_private_key
values must match what is specified in secure-forward.conf
in configmap/logging-fluentd
:
$ oc patch secrets/logging-fluentd --type=json \ --patch "[{'op':'add','path':'/data/your_ca_cert','value':'$(base64 /path/to/your_ca_cert.pem)'}]" $ oc patch secrets/logging-fluentd --type=json \ --patch "[{'op':'add','path':'/data/your_private_key','value':'$(base64 /path/to/your_private_key.pem)'}]"
Replace your_private_key
with a generic name. This is a link to the JSON path, not a path on your host system.
When configuring the external aggregator, it must be able to accept messages securely from Fluentd.
If the external aggregator is another Fluentd server, it must have the fluent-plugin-secure-forward
plug-in installed and make use of the input plug-in it provides:
<source> @type secure_forward self_hostname ${HOSTNAME} bind 0.0.0.0 port 24284 shared_key thisisasharedkey secure yes cert_path /path/for/certificate/cert.pem private_key_path /path/for/certificate/key.pem private_key_passphrase secret_foo_bar_baz </source>
You can find further explanation of how to set up the fluent-plugin-secure-forward
plug-in in the fluent-plugin-secure-forward
repository.
Reducing the Number of Connections from Fluentd to the API Server
mux
is a Technology Preview feature only. Technology Preview features are not supported with Red Hat production service level agreements (SLAs), might not be functionally complete, and Red Hat does not recommend to use them for production. These features provide early access to upcoming product features, enabling customers to test functionality and provide feedback during the development process.
For more information on Red Hat Technology Preview features support scope, see https://access.redhat.com/support/offerings/techpreview/.
mux
is a Secure Forward listener service.
Parameter | Description |
---|---|
|
The default is set to |
|
Values for |
|
The default is set to |
|
The default is |
| 24284 |
| 500M |
| 1Gi |
|
The default is |
|
The default value is empty, allowing for additional namespaces to create for external |
Throttling logs in Fluentd
For projects that are especially verbose, an administrator can throttle down the rate at which the logs are read in by Fluentd before being processed.
Throttling can contribute to log aggregation falling behind for the configured projects; log entries can be lost if a pod is deleted before Fluentd catches up.
Throttling does not work when using the systemd journal as the log source. The throttling implementation depends on being able to throttle the reading of the individual log files for each project. When reading from the journal, there is only a single log source, no log files, so no file-based throttling is available. There is not a method of restricting the log entries that are read into the Fluentd process.
To tell Fluentd which projects it should be restricting, edit the throttle configuration in its ConfigMap after deployment:
$ oc edit configmap/logging-fluentd
The format of the throttle-config.yaml key is a YAML file that contains project names and the desired rate at which logs are read in on each node. The default is 1000 lines at a time per node. For example:
- Projects
project-name: read_lines_limit: 50 second-project-name: read_lines_limit: 100
- Logging
logging: read_lines_limit: 500 test-project: read_lines_limit: 10 .operations: read_lines_limit: 100
When you make changes to any part of the EFK stack, specifically Elasticsearch or Fluentd, you should first scale Elasticsearch down to zero and scale Fluentd so it does not match any other nodes. Then, make the changes and scale Elasticsearch and Fluentd back.
To scale Elasticsearch to zero:
$ oc scale --replicas=0 dc/<ELASTICSEARCH_DC>
Change nodeSelector in the daemonset configuration to match zero:
Get the Fluentd node selector:
$ oc get ds logging-fluentd -o yaml |grep -A 1 Selector nodeSelector: logging-infra-fluentd: "true"
Use the oc patch
command to modify the daemonset nodeSelector:
$ oc patch ds logging-fluentd -p '{"spec":{"template":{"spec":{"nodeSelector":{"nonexistlabel":"true"}}}}}'
Get the Fluentd node selector:
$ oc get ds logging-fluentd -o yaml |grep -A 1 Selector nodeSelector: "nonexistlabel: "true"
Scale Elasticsearch back up from zero:
$ oc scale --replicas=# dc/<ELASTICSEARCH_DC>
Change nodeSelector in the daemonset configuration back to logging-infra-fluentd: "true".
Use the oc patch
command to modify the daemonset nodeSelector:
oc patch ds logging-fluentd -p '{"spec":{"template":{"spec":{"nodeSelector":{"logging-infra-fluentd":"true"}}}}}'
33.5.4. Kibana
To access the Kibana console from the OpenShift Container Platform web console, add the loggingPublicURL
parameter in the master webconsole-config configmap file, with the URL of the Kibana console (the kibana-hostname
parameter). The value must be an HTTPS URL:
... clusterInfo: ... loggingPublicURL: "https://kibana.example.com" ...
Setting the loggingPublicURL
parameter creates a View Archive button on the OpenShift Container Platform web console under the Browse → Pods → <pod_name> → Logs tab. This links to the Kibana console.
You can scale the Kibana deployment as usual for redundancy:
$ oc scale dc/logging-kibana --replicas=2
To ensure the scale persists across multiple executions of the logging playbook, make sure to update the openshift_logging_kibana_replica_count
in the inventory file.
You can see the user interface by visiting the site specified by the openshift_logging_kibana_hostname
variable.
See the Kibana documentation for more information on Kibana.
Kibana Visualize
Kibana Visualize enables you to create visualizations and dashboards for monitoring container and pod logs allows administrator users (cluster-admin
or cluster-reader
) to view logs by deployment, namespace, pod, and container.
Kibana Visualize exists inside the Elasticsearch and ES-OPS pod, and must be run inside those pods. To load dashboards and other Kibana UI objects, you must first log into Kibana as the user you want to add the dashboards to, then log out. This will create the necessary per-user configuration that the next step relies on. Then, run:
$ oc exec <$espod> -- es_load_kibana_ui_objects <user-name>
Where $espod
is the name of any one of your Elasticsearch pods.
33.5.5. Curator
Curator allows administrators to configure scheduled Elasticsearch maintenance operations to be performed automatically on a per-project basis. It is scheduled to perform actions daily based on its configuration. Only one Curator pod is recommended per Elasticsearch cluster. Curator is configured via a YAML configuration file with the following structure:
$PROJECT_NAME: $ACTION: $UNIT: $VALUE $PROJECT_NAME: $ACTION: $UNIT: $VALUE ...
The available parameters are:
Variable Name | Description |
---|---|
|
The actual name of a project, such as myapp-devel. For OpenShift Container Platform operations logs, use the name |
|
The action to take, currently only |
|
One of |
| An integer for the number of units. |
|
Use |
|
(Number) the hour of the day in 24-hour format at which to run the Curator jobs. For use with |
|
(Number) the minute of the hour at which to run the Curator jobs. For use with |
| (String) the tring in tzselect(8) or timedatectl(1) format. The default timezone is UTC. |
| The list of regular expressions that match project names. |
| The valid and properly escaped regular expression pattern enclosed by single quotation marks. |
For example, to configure Curator to:
-
delete indices in the myapp-dev project older than
1 day
-
delete indices in the myapp-qe project older than
1 week
-
delete operations logs older than
8 weeks
-
delete all other projects indices after they are
31 days
old - run the Curator jobs at midnight every day
Use:
config.yaml: | # uncomment and use this to override the defaults from env vars #.defaults: 1 # delete: # days: 31 # runhour: 0 # runminute: 0 myapp-dev: 2 delete: days: 1 myapp-qe: 3 delete: weeks: 1 .operations: 4 delete: weeks: 8 .defaults: 5 delete: days: 31 runhour: 0 runminute: 0 timezone: America/New_York .regex: - pattern: '^project\..+\-dev\..*$' 6 delete: days: 1 - pattern: '^project\..+\-test\..*$' 7 delete: days: 2
- 1
- Optionally, change the default number of days between run and the run hour and run minute.
- 2
- Delete indices in the myapp-dev project older than
1 day
- 3
- Delete indices in the myapp-qe project older than
1 week
- 4
- Delete operations logs older than
8 weeks
- 5
- Delete all other projects indices after they are
31 days
old - 6
- Delete indices older than 1 day that are matched by the '^project\..+\-dev.*$' regex
- 7
- Delete indices older than 2 days that are matched by the '^project\..+\-test.*$' regex
When you use month
as the $UNIT
for an operation, Curator starts counting at the first day of the current month, not the current day of the current month. For example, if today is April 15, and you want to delete indices that are 2 months older than today (delete: months: 2), Curator does not delete indices that are dated older than February 15; it deletes indices older than February 1. That is, it goes back to the first day of the current month, then goes back two whole months from that date. If you want to be exact with Curator, it is best to use days (for example, delete: days: 30
).
33.5.5.1. Creating the Curator Configuration
The openshift_logging
Ansible role provides a ConfigMap from which Curator reads its configuration. You may edit or replace this ConfigMap to reconfigure Curator. Currently the logging-curator
ConfigMap is used to configure both your ops and non-ops Curator instances. Any .operations
configurations are in the same location as your application logs configurations.
To edit the provided ConfigMap to configure your Curator instances:
$ oc edit configmap/logging-curator
To replace the provided ConfigMap instead:
$ create /path/to/mycuratorconfig.yaml $ oc create configmap logging-curator -o yaml \ --from-file=config.yaml=/path/to/mycuratorconfig.yaml | \ oc replace -f -
After you make your changes, redeploy Curator:
$ oc rollout latest dc/logging-curator $ oc rollout latest dc/logging-curator-ops
33.6. Cleanup
Remove everything generated during the deployment.
$ ansible-playbook [-i </path/to/inventory>] \ /usr/share/ansible/openshift-ansible/playbooks/openshift-logging/config.yml \ -e openshift_logging_install_logging=False
33.7. Troubleshooting Kibana
Using the Kibana console with OpenShift Container Platform can cause problems that are easily solved, but are not accompanied with useful error messages. Check the following troubleshooting sections if you are experiencing any problems when deploying Kibana on OpenShift Container Platform:
Login Loop
The OAuth2 proxy on the Kibana console must share a secret with the master host’s OAuth2 server. If the secret is not identical on both servers, it can cause a login loop where you are continuously redirected back to the Kibana login page.
To fix this issue, delete the current OAuthClient, and use openshift-ansible
to re-run the openshift_logging
role:
$ oc delete oauthclient/kibana-proxy $ ansible-playbook [-i </path/to/inventory>] \ /usr/share/ansible/openshift-ansible/playbooks/openshift-logging/config.yml
Cryptic Error When Viewing the Console
When attempting to visit the Kibana console, you may receive a browser error instead:
{"error":"invalid_request","error_description":"The request is missing a required parameter, includes an invalid parameter value, includes a parameter more than once, or is otherwise malformed."}
This can be caused by a mismatch between the OAuth2 client and server. The return address for the client must be in a whitelist so the server can securely redirect back after logging in.
Fix this issue by replacing the OAuthClient entry:
$ oc delete oauthclient/kibana-proxy $ ansible-playbook [-i </path/to/inventory>] \ /usr/share/ansible/openshift-ansible/playbooks/openshift-logging/config.yml
If the problem persists, check that you are accessing Kibana at a URL listed in the OAuth client. This issue can be caused by accessing the URL at a forwarded port, such as 1443 instead of the standard 443 HTTPS port. You can adjust the server whitelist by editing the OAuth client:
$ oc edit oauthclient/kibana-proxy
503 Error When Viewing the Console
If you receive a proxy error when viewing the Kibana console, it could be caused by one of two issues.
First, Kibana may not be recognizing pods. If Elasticsearch is slow in starting up, Kibana may timeout trying to reach it. Check whether the relevant service has any endpoints:
$ oc describe service logging-kibana Name: logging-kibana [...] Endpoints: <none>
If any Kibana pods are live, endpoints are listed. If they are not, check the state of the Kibana pods and deployment. You may need to scale the deployment down and back up again.
The second possible issue may be caused if the route for accessing the Kibana service is masked. This can happen if you perform a test deployment in one project, then deploy in a different project without completely removing the first deployment. When multiple routes are sent to the same destination, the default router will only route to the first created. Check the problematic route to see if it is defined in multiple places:
$ oc get route --all-namespaces --selector logging-infra=support
F-5 Load Balancer and X-Forwarded-For Enabled
If you are attempting to use a F-5 load balancer in front of Kibana with X-Forwarded-For
enabled, this can cause an issue in which the Elasticsearch Searchguard
plug-in is unable to correctly accept connections from Kibana.
Example Kibana Error Message
Kibana: Unknown error while connecting to Elasticsearch Error: Unknown error while connecting to Elasticsearch Error: UnknownHostException[No trusted proxies]
To configure Searchguard to ignore the extra header:
- Scale down all Fluentd pods.
- Scale down Elasticsearch after the Fluentd pods have terminated.
Add
searchguard.http.xforwardedfor.header: DUMMY
to the Elasticsearch configuration section.$ oc edit configmap/logging-elasticsearch 1
- 1
- This approach requires that Elasticsearch’s configurations are within a ConfigMap.
- Scale Elasticsearch back up.
- Scale up all Fluentd pods.
33.8. Sending Logs to an External Elasticsearch Instance
Fluentd sends logs to the value of the ES_HOST
, ES_PORT
, OPS_HOST
, and OPS_PORT
environment variables of the Elasticsearch deployment configuration. The application logs are directed to the ES_HOST
destination, and operations logs to OPS_HOST
.
Sending logs directly to an AWS Elasticsearch instance is not supported. Use Fluentd Secure Forward to direct logs to an instance of Fluentd that you control and that is configured with the fluent-plugin-aws-elasticsearch-service
plug-in.
To direct logs to a specific Elasticsearch instance, edit the deployment configuration and replace the value of the above variables with the desired instance:
$ oc edit ds/<daemon_set>
For an external Elasticsearch instance to contain both application and operations logs, you can set ES_HOST
and OPS_HOST
to the same destination, while ensuring that ES_PORT
and OPS_PORT
also have the same value.
If your externally hosted Elasticsearch instance does not use TLS, update the _CLIENT_CERT
, _CLIENT_KEY
, and _CA
variables to be empty. If it does use TLS, but not mutual TLS, update the _CLIENT_CERT
and _CLIENT_KEY
variables to be empty and patch or recreate the logging-fluentd secret with the appropriate _CA
value for communicating with your Elasticsearch instance. If it uses Mutual TLS as the provided Elasticsearch instance does, patch or recreate the logging-fluentd secret with your client key, client cert, and CA.
If you are not using the provided Kibana and Elasticsearch images, you will not have the same multi-tenant capabilities and your data will not be restricted by user access to a particular project.
33.9. Sending Logs to an External Syslog Server
Use the fluent-plugin-remote-syslog
plug-in on the host to send logs to an external syslog server.
Set environment variables in the logging-fluentd
or logging-mux
deployment configurations:
- name: REMOTE_SYSLOG_HOST 1
value: host1
- name: REMOTE_SYSLOG_HOST_BACKUP
value: host2
- name: REMOTE_SYSLOG_PORT_BACKUP
value: 5555
- 1
- The desired remote syslog host. Required for each host.
This will build two destinations. The syslog server on host1
will be receiving messages on the default port of 514
, while host2
will be receiving the same messages on port 5555
.
Alternatively, you can configure your own custom fluent.conf in the logging-fluentd
or logging-mux
ConfigMaps.
Fluentd Environment Variables
Parameter | Description |
---|---|
|
Defaults to |
| (Required) Hostname or IP address of the remote syslog server. |
|
Port number to connect on. Defaults to |
|
Set the syslog severity level. Defaults to |
|
Set the syslog facility. Defaults to |
|
Defaults to |
|
Removes the prefix from the tag, defaults to |
| If specified, uses this field as the key to look on the record, to set the tag on the syslog message. |
| If specified, uses this field as the key to look on the record, to set the payload on the syslog message. |
This implementation is insecure, and should only be used in environments where you can guarantee no snooping on the connection.
Fluentd Logging Ansible Variables
Parameter | Description |
---|---|
|
The default is set to |
| Hostname or IP address of the remote syslog server, this is mandatory. |
|
Port number to connect on, defaults to |
|
Set the syslog severity level, defaults to |
|
Set the syslog facility, defaults to |
|
The default is set to |
|
Removes the prefix from the tag, defaults to |
| If string is specified, uses this field as the key to look on the record, to set the tag on the syslog message. |
| If string is specified, uses this field as the key to look on the record, to set the payload on the syslog message. |
Mux Logging Ansible Variables
Parameter | Description |
---|---|
|
The default is set to |
| Hostname or IP address of the remote syslog server, this is mandatory. |
|
Port number to connect on, defaults to |
|
Set the syslog severity level, defaults to |
|
Set the syslog facility, defaults to |
|
The default is set to |
|
Removes the prefix from the tag, defaults to |
| If string is specified, uses this field as the key to look on the record, to set the tag on the syslog message. |
| If string is specified, uses this field as the key to look on the record, to set the payload on the syslog message. |
33.10. Performing Administrative Elasticsearch Operations
As of logging version 3.2.0, an administrator certificate, key, and CA that can be used to communicate with and perform administrative operations on Elasticsearch are provided within the logging-elasticsearch secret.
To confirm whether or not your EFK installation provides these, run:
$ oc describe secret logging-elasticsearch
- Connect to an Elasticsearch pod that is in the cluster on which you are attempting to perform maintenance.
To find a pod in a cluster use either:
$ oc get pods -l component=es -o name | head -1 $ oc get pods -l component=es-ops -o name | head -1
Connect to a pod:
$ oc rsh <your_Elasticsearch_pod>
Once connected to an Elasticsearch container, you can use the certificates mounted from the secret to communicate with Elasticsearch per its Indices APIs documentation.
Fluentd sends its logs to Elasticsearch using the index format project.{project_name}.{project_uuid}.YYYY.MM.DD where YYYY.MM.DD is the date of the log record.
For example, to delete all logs for the openshift-logging project with uuid 3b3594fa-2ccd-11e6-acb7-0eb6b35eaee3 from June 15, 2016, we can run:
$ curl --key /etc/elasticsearch/secret/admin-key \ --cert /etc/elasticsearch/secret/admin-cert \ --cacert /etc/elasticsearch/secret/admin-ca -XDELETE \ "https://localhost:9200/project.logging.3b3594fa-2ccd-11e6-acb7-0eb6b35eaee3.2016.06.15"
33.11. Redeploying EFK Certificates
You can redeploy EFK certificates, if needed.
To redeploy EFK certificates:
Run the following command to delete the all certificate files:
$ rm -r /etc/origin/logging
- Verify that the Custom Certificate parameters are set in your inventory host file.
Use the Ansible playbook to redeploy the EFK stack:
$ cd /usr/share/ansible/openshift-ansible $ ansible-playbook [-i </path/to/inventory>] \ playbooks/openshift-logging/config.yml
The command fails with an error message similar to the following:
RUNNING HANDLER [openshift_logging_elasticsearch : Checking current health for {{ _es_node }} cluster] *** Friday 14 December 2018 07:53:44 +0000 (0:00:01.571) 0:05:01.710 ******* [WARNING]: Consider using the get_url or uri module rather than running curl. If you need to use command because get_url or uri is insufficient you can add warn=False to this command task or set command_warnings=False in ansible.cfg to get rid of this message. fatal: [ec2-34-207-171-49.compute-1.amazonaws.com]: FAILED! => {"changed": true, "cmd": ["curl", "-s", "-k", "--cert", "/tmp/openshift-logging-ansible-3v1NOI/admin-cert", "--key", "/tmp/openshift-logging-ansible-3v1NOI/admin-key", "https://logging-es.openshift-logging.svc:9200/_cluster/health?pretty"], "delta": "0:00:01.024054", "end": "2018-12-14 02:53:33.467642", "msg": "non-zero return code", "rc": 7, "start": "2018-12-14 02:53:32.443588", "stderr": "", "stderr_lines": [], "stdout": "", "stdout_lines": []} RUNNING HANDLER [openshift_logging_elasticsearch : Set Logging message to manually restart] *** Friday 14 December 2018 07:53:46 +0000 (0:00:01.557) 0:05:03.268 *******
Run the following command to delete all pods to refresh the secret:
$ oc delete pod --all -n openshift-logging
33.12. Changing the Aggregated Logging Driver
For aggregated logging, it is recommended to use the json-file
log driver.
When using the json-file
driver, ensure that you are using Docker version docker-1.12.6-55.gitc4618fb.el7_4 now or later.
Fluentd determines the driver Docker is using by checking the /etc/docker/daemon.json and /etc/sysconfig/docker files.
You can determine which driver Docker is using with the docker info
command:
# docker info | grep Logging Logging Driver: journald
To change to json-file
:
Modify either the /etc/sysconfig/docker or /etc/docker/daemon.json files.
For example:
# cat /etc/sysconfig/docker OPTIONS=' --selinux-enabled --log-driver=json-file --log-opt max-size=1M --log-opt max-file=3 --signature-verification=False' cat /etc/docker/daemon.json { "log-driver": "json-file", "log-opts": { "max-size": "1M", "max-file": "1" } }
Restart the Docker service:
systemctl restart docker
Restart Fluentd.
WarningRestarting Fluentd on more than a dozen nodes at once will create a large load on the Kubernetes scheduler. Exercise caution when using the following the directions to restart Fluentd.
There are two methods for restarting Fluentd. You can restart the Fluentd on one node or a set of nodes, or on all nodes.
The following steps demonstrate how to restart Fluentd on one node or a set of nodes.
List the nodes where Fluentd is running:
$ oc get nodes -l logging-infra-fluentd=true
For each node, remove the label and turn off Fluentd:
$ oc label node $node logging-infra-fluentd-
Verify Fluentd is off:
$ oc get pods -l component=fluentd
For each node, restart Fluentd:
$ oc label node $node logging-infra-fluentd=true
The following steps demonstrate how to restart the Fluentd all nodes.
Turn off Fluentd on all nodes:
$ oc label node -l logging-infra-fluentd=true --overwrite logging-infra-fluentd=false
Verify Fluentd is off:
$ oc get pods -l component=fluentd
Restart Fluentd on all nodes:
$ oc label node -l logging-infra-fluentd=false --overwrite logging-infra-fluentd=true
Verify Fluentd is on:
$ oc get pods -l component=fluentd
33.13. Manual Elasticsearch Rollouts
As of OpenShift Container Platform 3.7 the Aggregated Logging stack updated the Elasticsearch Deployment Config object so that it no longer has a Config Change Trigger, meaning any changes to the dc
will not result in an automatic rollout. This was to prevent unintended restarts happening in the Elasticsearch cluster, which could create excessive shard rebalancing as cluster members restart.
This section presents two restart procedures: rolling-restart and full-restart. Where a rolling restart applies appropriate changes to the Elasticsearch cluster without down time (provided three masters are configured) and a full restart safely applies major changes without risk to existing data.
33.13.1. Performing an Elasticsearch Rolling Cluster Restart
A rolling restart is recommended, when any of the following changes are made:
- nodes on which Elasticsearch pods run require a reboot
- logging-elasticsearch configmap
- logging-es-* deployment configuration
- new image deployment, or upgrade
This will be the recommended restart policy going forward.
Any action you do for an Elasticsearch cluster will need to be repeated for the ops cluster if openshift_logging_use_ops
was configured to be True
.
Prevent shard balancing when purposely bringing down nodes:
$ oc exec -c elasticsearch <any_es_pod_in_the_cluster> -- \ curl -s \ --cacert /etc/elasticsearch/secret/admin-ca \ --cert /etc/elasticsearch/secret/admin-cert \ --key /etc/elasticsearch/secret/admin-key \ -XPUT 'https://localhost:9200/_cluster/settings' \ -d '{ "transient": { "cluster.routing.allocation.enable" : "none" } }'
Once complete, for each
dc
you have for an Elasticsearch cluster, runoc rollout latest
to deploy the latest version of thedc
object:$ oc rollout latest <dc_name>
You will see a new pod deployed. Once the pod has two ready containers, you can move on to the next
dc
.Once all `dc`s for the cluster have been rolled out, re-enable shard balancing:
$ oc exec -c elasticsearch <any_es_pod_in_the_cluster> -- \ curl -s \ --cacert /etc/elasticsearch/secret/admin-ca \ --cert /etc/elasticsearch/secret/admin-cert \ --key /etc/elasticsearch/secret/admin-key \ -XPUT 'https://localhost:9200/_cluster/settings' \ -d '{ "transient": { "cluster.routing.allocation.enable" : "all" } }'
33.13.2. Performing an Elasticsearch Full Cluster Restart
A full restart is recommended when changing major versions of Elasticsearch or other changes which might put data integrity a risk during the change process.
Any action you do for an Elasticsearch cluster will need to be repeated for the ops cluster if openshift_logging_use_ops
was configured to be True
.
When making changes to the logging-es-ops
service use components "es-ops-blocked" and "es-ops" instead in the patch
Disable all external communications to the Elasticsearch cluster while it is down. Edit your non-cluster logging service (for example,
logging-es
,logging-es-ops
) to no longer match the Elasticsearch pods running:$ oc patch svc/logging-es -p '{"spec":{"selector":{"component":"es-blocked","provider":"openshift"}}}'
Perform a shard synced flush to ensure there are no pending operations waiting to be written to disk prior to shutting down:
$ oc exec -c elasticsearch <any_es_pod_in_the_cluster> -- \ curl -s \ --cacert /etc/elasticsearch/secret/admin-ca \ --cert /etc/elasticsearch/secret/admin-cert \ --key /etc/elasticsearch/secret/admin-key \ -XPOST 'https://localhost:9200/_flush/synced'
Prevent shard balancing when purposely bringing down nodes:
$ oc exec -c elasticsearch <any_es_pod_in_the_cluster> -- \ curl -s \ --cacert /etc/elasticsearch/secret/admin-ca \ --cert /etc/elasticsearch/secret/admin-cert \ --key /etc/elasticsearch/secret/admin-key \ -XPUT 'https://localhost:9200/_cluster/settings' \ -d '{ "transient": { "cluster.routing.allocation.enable" : "none" } }'
Once complete, for each
dc
you have for an Elasticsearch cluster, scale down all replicas:$ oc scale dc <dc_name> --replicas=0
Once scale down is complete, for each
dc
you have for an Elasticsearch cluster, runoc rollout latest
to deploy the latest version of thedc
object:$ oc rollout latest <dc_name>
You will see a new pod deployed. Once the pod has two ready containers, you can move on to the next
dc
.Once deployment is complete, for each
dc
you have for an Elasticsearch cluster, scale up replicas:$ oc scale dc <dc_name> --replicas=1
Once the scale up is complete, enable all external communications to the ES cluster. Edit your non-cluster logging service (for example,
logging-es
,logging-es-ops
) to match the Elasticsearch pods running again:$ oc patch svc/logging-es -p '{"spec":{"selector":{"component":"es","provider":"openshift"}}}'
Chapter 34. Aggregate Logging Sizing Guidelines
34.1. Overview
The Elasticsearch, Fluentd, and Kibana (EFK) stack aggregates logs from nodes and applications running inside your OpenShift Container Platform installation. Once deployed it uses Fluentd to aggregate logs from all nodes, and pods into Elasticsearch (ES). It also provides a centralized Kibana web UI where users and administrators can create rich visualizations and dashboards with the aggregated data.
34.2. Installation
The general procedure for installing an aggregate logging stack in OpenShift Container Platform is described in Aggregating Container Logs. There are some important things to keep in mind while going through the installation guide:
In order for the logging pods to spread evenly across your cluster, an empty node selector should be used when creating the project.
$ oc adm new-project logging --node-selector=""
In conjunction with node labeling, which is done later, this controls pod placement across the logging project.
Elasticsearch (ES) should be deployed with a cluster size of at least three for resiliency to node failures. This is specified by setting the openshift_logging_es_cluster_size
parameter in the inventory host file.
Refer to Ansible Variables for a full list of parameters.
Kibana requires a hostname that can be resolved from wherever the browser will be used to access it. For example, you might need to add a DNS alias for Kibana to your corporate name service in order to access Kibana from the web browser running on your laptop. Logging deployment creates a Route to Kibana on one of your "infra" nodes or wherever the OpenShift router is running. The Kibana hostname alias should point to this machine. This hostname is specified as the Ansible openshift_logging_kibana_hostname
variable.
Installation can take some time depending on whether the images were already retrieved from the registry or not, and on the size of your cluster.
Inside the openshift-logging project, you can check your deployment with oc get all
.
$ oc get all NAME REVISION REPLICAS TRIGGERED BY logging-curator 1 1 logging-es-6cvk237t 1 1 logging-es-e5x4t4ai 1 1 logging-es-xmwvnorv 1 1 logging-kibana 1 1 NAME DESIRED CURRENT AGE logging-curator-1 1 1 3d logging-es-6cvk237t-1 1 1 3d logging-es-e5x4t4ai-1 1 1 3d logging-es-xmwvnorv-1 1 1 3d logging-kibana-1 1 1 3d NAME HOST/PORT PATH SERVICE TERMINATION LABELS logging-kibana kibana.example.com logging-kibana reencrypt component=support,logging-infra=support,provider=openshift logging-kibana-ops kibana-ops.example.com logging-kibana-ops reencrypt component=support,logging-infra=support,provider=openshift NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE logging-es 172.24.155.177 <none> 9200/TCP 3d logging-es-cluster None <none> 9300/TCP 3d logging-es-ops 172.27.197.57 <none> 9200/TCP 3d logging-es-ops-cluster None <none> 9300/TCP 3d logging-kibana 172.27.224.55 <none> 443/TCP 3d logging-kibana-ops 172.25.117.77 <none> 443/TCP 3d NAME READY STATUS RESTARTS AGE logging-curator-1-6s7wy 1/1 Running 0 3d logging-deployer-un6ut 0/1 Completed 0 3d logging-es-6cvk237t-1-cnpw3 1/1 Running 0 3d logging-es-e5x4t4ai-1-v933h 1/1 Running 0 3d logging-es-xmwvnorv-1-adr5x 1/1 Running 0 3d logging-fluentd-156xn 1/1 Running 0 3d logging-fluentd-40biz 1/1 Running 0 3d logging-fluentd-8k847 1/1 Running 0 3d
You should end up with a similar setup to the following.
$ oc get pods -o wide NAME READY STATUS RESTARTS AGE NODE logging-curator-1-6s7wy 1/1 Running 0 3d ip-172-31-24-239.us-west-2.compute.internal logging-deployer-un6ut 0/1 Completed 0 3d ip-172-31-6-152.us-west-2.compute.internal logging-es-6cvk237t-1-cnpw3 1/1 Running 0 3d ip-172-31-24-238.us-west-2.compute.internal logging-es-e5x4t4ai-1-v933h 1/1 Running 0 3d ip-172-31-24-235.us-west-2.compute.internal logging-es-xmwvnorv-1-adr5x 1/1 Running 0 3d ip-172-31-24-233.us-west-2.compute.internal logging-fluentd-156xn 1/1 Running 0 3d ip-172-31-24-241.us-west-2.compute.internal logging-fluentd-40biz 1/1 Running 0 3d ip-172-31-24-236.us-west-2.compute.internal logging-fluentd-8k847 1/1 Running 0 3d ip-172-31-24-237.us-west-2.compute.internal logging-fluentd-9a3qx 1/1 Running 0 3d ip-172-31-24-231.us-west-2.compute.internal logging-fluentd-abvgj 1/1 Running 0 3d ip-172-31-24-228.us-west-2.compute.internal logging-fluentd-bh74n 1/1 Running 0 3d ip-172-31-24-238.us-west-2.compute.internal ... ...
By default the amount of RAM allocated to each ES instance is 16GB. openshift_logging_es_memory_limit
is the parameter used in the openshift-ansible host inventory file. Keep in mind that half of this value will be passed to the individual elasticsearch pods java processes heap size.
Learn more about installing EFK.
34.2.1. Large Clusters
At 100 nodes or more, it is recommended to first pre-pull the logging images from docker pull registry.access.redhat.com/openshift3/logging-fluentd:v3.10
. After deploying the logging infrastructure pods (Elasticsearch, Kibana, and Curator), node labeling should be done in steps of 20 nodes at a time. For example:
Using a simple loop:
$ while read node; do oc label nodes $node logging-infra-fluentd=true; done < 20_fluentd.lst
The following also works:
$ oc label nodes 10.10.0.{100..119} logging-infra-fluentd=true
Labeling nodes in groups paces the DaemonSets used by OpenShift logging, helping to avoid contention on shared resources such as the image registry.
Check for the occurence of any "CrashLoopBackOff | ImagePullFailed | Error" issues. oc logs <pod>
, oc describe pod <pod>
and oc get event
are helpful diagnostic commands.
34.3. Systemd-journald and rsyslog
In Red Hat Enterprise Linux (RHEL) 7 the systemd-journald.socket unit creates /dev/log during the boot process, and then passes input to systemd-journald.service. Every syslog() call goes to the journal.
The default rate limiting for systemd-journald causes some system logs to be dropped before Fluentd can read them. To prevent this add the following to the /etc/systemd/journald.conf file:
# Disable rate limiting RateLimitInterval=1s RateLimitBurst=10000 Storage=volatile Compress=no MaxRetentionSec=30s
Then restart the services.
$ systemctl restart systemd-journald.service $ systemctl restart rsyslog.service
These settings account for the bursty nature of uploading in bulk.
After removing the rate limit, you may see increased CPU utilization on the system logging daemons as it processes any messages that would have previously been throttled.
34.4. Scaling up EFK Logging
If you do not indicate the desired scale at first deployment, the least disruptive way of adjusting your cluster is by re-running the Ansible logging playbook after updating the inventory file with an updated openshift_logging_es_cluster_size
value. parameter. Refer to the Performing Administrative Elasticsearch Operations section for more in-depth information.
A highly-available Elasticsearch environment requires at least three Elasticsearch nodes, each on a different host, and setting the openshift_logging_es_number_of_replicas
Ansible variable to a value of 1
, 3
, or higher to create replicas. A value of 2
causes split-brain issues.
34.5. Storage Considerations
An Elasticsearch index is a collection of shards and their corresponding replicas. This is how ES implements high availability internally, so there is little need to use hardware based mirroring RAID variants. RAID 0 can still be used to increase overall disk performance.
A persistent volume is added to each Elasticsearch deployment configuration. On OpenShift Container Platform this is usually achieved through Persistent Volume Claims.
The PVCs is named based on the openshift_logging_es_pvc_prefix setting. Refer to Persistent Elasticsearch Storage for more details.
Below are capacity planning guidelines for OpenShift Container Platform aggregate logging. Example scenario
Assumptions:
- Which application: Apache
- Bytes per line: 256
- Lines per second load on application: 1
- Raw text data → JSON
Baseline (256 characters per second → 15KB/min)
Logging Infra Pods | Storage Throughput |
---|---|
3 es 1 kibana 1 curator 1 fluentd | 6 pods total: 90000 x 1440 = 128,6 MB/day |
3 es 1 kibana 1 curator 11 fluentd | 16 pods total: 240000 x 1440 = 345,6 MB/day |
3 es 1 kibana 1 curator 20 fluentd | 25 pods total: 375000 x 1440 = 540 MB/day |
Calculating total logging throughput and disk space required for your logging environment requires knowledge of your applications. For example, if one of your applications on average logs 10 lines-per-second, each 256 bytes-per-line, calculate per-application throughput and disk space as follows:
(bytes-per-line * (lines-per-second) = 2560 bytes per app per second (2560) * (number-of-pods-per-node,100) = 256,000 bytes per second per node 256k * (number-of-nodes) = total logging throughput per cluster per second
Fluentd ships any logs from systemd journal and /var/lib/docker/containers/*.log to Elasticsearch. Learn more.
Local SSD drives are recommended in order to achieve the best performance. In Red Hat Enterprise Linux (RHEL) 7, the deadline IO scheduler is the default for all block devices except SATA disks. For SATA disks, the default IO scheduler is cfq.
Sizing storage for ES is greatly dependent on how you optimize your indices. Therefore, consider how much data you need in advance and that you are aggregating application log data. Some Elasticsearch users have found that it is necessary to keep absolute storage consumption around 50% and below 70% at all times. This helps to avoid Elasticsearch becoming unresponsive during large merge operations.
Chapter 35. Enabling Cluster Metrics
35.1. Overview
The kubelet exposes metrics that can be collected and stored in back-ends by Heapster.
As an OpenShift Container Platform administrator, you can view a cluster’s metrics from all containers and components in one user interface. These metrics are also used by horizontal pod autoscalers in order to determine when and how to scale.
This topic describes using Hawkular Metrics as a metrics engine which stores the data persistently in a Cassandra database. When this is configured, CPU, memory and network-based metrics are viewable from the OpenShift Container Platform web console and are available for use by horizontal pod autoscalers.
Heapster retrieves a list of all nodes from the master server, then contacts each node individually through the /stats
endpoint. From there, Heapster scrapes the metrics for CPU, memory and network usage, then exports them into Hawkular Metrics.
The storage volume metrics available on the kubelet are not available through the /stats
endpoint, but are available through the /metrics
endpoint. See OpenShift Container Platform via Prometheus for detailed information.
Browsing individual pods in the web console displays separate sparkline charts for memory and CPU. The time range displayed is selectable, and these charts automatically update every 30 seconds. If there are multiple containers on the pod, then you can select a specific container to display its metrics.
If resource limits are defined for your project, then you can also see a donut chart for each pod. The donut chart displays usage against the resource limit. For example: 145 Available of 200 MiB
, with the donut chart showing 55 MiB Used
.
35.2. Before You Begin
An Ansible playbook is available to deploy and upgrade cluster metrics. You should familiarize yourself with the Installing Clusters guide. This provides information for preparing to use Ansible and includes information about configuration. Parameters are added to the Ansible inventory file to configure various areas of cluster metrics.
The following describe the various areas and the parameters that can be added to the Ansible inventory file in order to modify the defaults:
35.3. Metrics Project
The components for cluster metrics must be deployed to the openshift-infra project in order for autoscaling to work. Horizontal pod autoscalers specifically use this project to discover the Heapster service and use it to retrieve metrics. The metrics project can be changed by adding openshift_metrics_project
to the inventory file.
35.4. Metrics Data Storage
You can store the metrics data to either persistent storage or to a temporary pod volume.
35.4.1. Persistent Storage
Running OpenShift Container Platform cluster metrics with persistent storage means that your metrics are stored to a persistent volume and are able to survive a pod being restarted or recreated. This is ideal if you require your metrics data to be guarded from data loss. For production environments it is highly recommended to configure persistent storage for your metrics pods.
The size requirement of the Cassandra storage is dependent on the number of pods. It is the administrator’s responsibility to ensure that the size requirements are sufficient for their setup and to monitor usage to ensure that the disk does not become full. The size of the persisted volume claim is specified with the openshift_metrics_cassandra_pvc_size
ansible variable which is set to 10 GB by default.
If you would like to use dynamically provisioned persistent volumes set the openshift_metrics_cassandra_storage_type
variable to dynamic
in the inventory file.
35.4.2. Capacity Planning for Cluster Metrics
After running the openshift_metrics
Ansible role, the output of oc get pods
should resemble the following:
# oc get pods -n openshift-infra NAME READY STATUS RESTARTS AGE hawkular-cassandra-1-l5y4g 1/1 Running 0 17h hawkular-metrics-1t9so 1/1 Running 0 17h heapster-febru 1/1 Running 0 17h
OpenShift Container Platform metrics are stored using the Cassandra database, which is deployed with settings of openshift_metrics_cassandra_limits_memory: 2G
; this value could be adjusted further based upon the available memory as determined by the Cassandra start script. This value should cover most OpenShift Container Platform metrics installations, but using environment variables you can modify the MAX_HEAP_SIZE
along with heap new generation size, HEAP_NEWSIZE
, in the Cassandra Dockerfile prior to deploying cluster metrics.
By default, metrics data is stored for seven days. After seven days, Cassandra begins to purge the oldest metrics data. Metrics data for deleted pods and projects is not automatically purged; it is only removed once the data is more than seven days old.
Example 35.1. Data Accumulated by 10 Nodes and 1000 Pods
In a test scenario including 10 nodes and 1000 pods, a 24 hour period accumulated 2.5 GB of metrics data. Therefore, the capacity planning formula for metrics data in this scenario is:
(((2.5 × 109) ÷ 1000) ÷ 24) ÷ 106 = ~0.125 MB/hour per pod.
Example 35.2. Data Accumulated by 120 Nodes and 10000 Pods
In a test scenario including 120 nodes and 10000 pods, a 24 hour period accumulated 25 GB of metrics data. Therefore, the capacity planning formula for metrics data in this scenario is:
(((11.410 × 109) ÷ 1000) ÷ 24) ÷ 106 = 0.475 MB/hour
1000 pods | 10000 pods | |
---|---|---|
Cassandra storage data accumulated over 24 hours (default metrics parameters) | 2.5 GB | 11.4 GB |
If the default value of 7 days for openshift_metrics_duration
and 30 seconds for openshift_metrics_resolution
are preserved, then weekly storage requirements for the Cassandra pod would be:
1000 pods | 10000 pods | |
---|---|---|
Cassandra storage data accumulated over seven days (default metrics parameters) | 20 GB | 90 GB |
In the previous table, an additional 10 percent was added to the expected storage space as a buffer for unexpected monitored pod usage.
If the Cassandra persisted volume runs out of sufficient space, then data loss occurs.
For cluster metrics to work with persistent storage, ensure that the persistent volume has the ReadWriteOnce access mode. If this mode is not active, then the persistent volume claim cannot locate the persistent volume, and Cassandra fails to start.
To use persistent storage with the metric components, ensure that a persistent volume of sufficient size is available. The creation of persistent volume claims is handled by the OpenShift Ansible openshift_metrics
role.
OpenShift Container Platform metrics also supports dynamically-provisioned persistent volumes. To use this feature with OpenShift Container Platform metrics, it is necessary to set the value of openshift_metrics_cassandra_storage_type
to dynamic
. You can use EBS, GCE, and Cinder storage back-ends to dynamically provision persistent volumes.
For information on configuring the performance and scaling the cluster metrics pods, see the Scaling Cluster Metrics topic.
Number of Nodes | Number of Pods | Cassandra Storage growth speed | Cassandra storage growth per day | Cassandra storage growth per week |
---|---|---|---|---|
210 | 10500 | 500 MB per hour | 15 GB | 75 GB |
990 | 11000 | 1 GB per hour | 30 GB | 210 GB |
In the above calculation, approximately 20 percent of the expected size was added as overhead to ensure that the storage requirements do not exceed calculated value.
If the METRICS_DURATION
and METRICS_RESOLUTION
values are kept at the default (7
days and 15
seconds respectively), it is safe to plan Cassandra storage size requrements for week, as in the values above.
Because OpenShift Container Platform metrics uses the Cassandra database as a datastore for metrics data, if USE_PERSISTANT_STORAGE=true
is set during the metrics set up process, PV
will be on top in the network storage, with NFS as the default. However, using network storage in combination with Cassandra is not recommended, as per the Cassandra documentation.
Known Issues and Limitations
Testing found that the heapster
metrics component is capable of handling up to 25,000 pods. If the amount of pods exceed that number, Heapster begins to fall behind in metrics processing, resulting in the possibility of metrics graphs no longer appearing. Work is ongoing to increase the number of pods that Heapster can gather metrics on, as well as upstream development of alternate metrics-gathering solutions.
35.4.3. Non-Persistent Storage
Running OpenShift Container Platform cluster metrics with non-persistent storage means that any stored metrics are deleted when the pod is deleted. While it is much easier to run cluster metrics with non-persistent data, running with non-persistent data does come with the risk of permanent data loss. However, metrics can still survive a container being restarted.
In order to use non-persistent storage, you must set the openshift_metrics_cassandra_storage_type
variable to emptydir
in the inventory file.
When using non-persistent storage, metrics data is written to /var/lib/origin/openshift.local.volumes/pods on the node where the Cassandra pod runs Ensure /var has enough free space to accommodate metrics storage.
35.5. Metrics Ansible Role
The OpenShift Container Platform Ansible openshift_metrics
role configures and deploys all of the metrics components using the variables from the Configuring Ansible inventory file.
35.5.1. Specifying Metrics Ansible Variables
The openshift_metrics
role included with OpenShift Ansible defines the tasks to deploy cluster metrics. The following is a list of role variables that can be added to your inventory file if it is necessary to override them.
Variable | Description |
---|---|
|
Deploy metrics if |
| Start the metrics cluster after deploying the components. |
| The time, in seconds, to wait until Hawkular Metrics and Heapster start up before attempting a restart. |
| The number of days to store metrics before they are purged. |
| The frequency that metrics are gathered. Defined as a number and time identifier: seconds (s), minutes (m), hours (h). |
| The persistent volume claim prefix created for Cassandra. A serial number is appended to the prefix starting from 1. |
| The persistent volume claim size for each of the Cassandra nodes. |
|
If you want to explicitly set the storage class, you must not set |
|
Use |
| The number of Cassandra nodes for the metrics stack. This value dictates the number of Cassandra replication controllers. |
|
The memory limit for the Cassandra pod. For example, a value of |
|
The CPU limit for the Cassandra pod. For example, a value of |
|
The amount of memory to request for Cassandra pod. For example, a value of |
|
The CPU request for the Cassandra pod. For example, a value of |
| The supplemental storage group to use for Cassandra. |
|
Set to the desired, existing node selector to ensure that pods are placed onto nodes with specific labels. For example, |
| An optional certificate authority (CA) file used to sign the Hawkular certificate. |
| The certificate file used for re-encrypting the route to Hawkular metrics. The certificate must contain the host name used by the route. If unspecified, the default router certificate is used. |
| The key file used with the Hawkular certificate. |
|
The amount of memory to limit the Hawkular pod. For example, a value of |
|
The CPU limit for the Hawkular pod. For example, a value of |
| The number of replicas for Hawkular metrics. |
|
The amount of memory to request for the Hawkular pod. For example, a value of |
|
The CPU request for the Hawkular pod. For example, a value of |
|
Set to the desired, existing node selector to ensure that pods are placed onto nodes with specific labels. For example, |
|
A comma-separated list of CN to accept. By default, this is set to allow the OpenShift service proxy to connect. Add |
|
The amount of memory to limit the Heapster pod. For example, a value of |
|
The CPU limit for the Heapster pod. For example, a value of |
|
The amount of memory to request for Heapster pod. For example, a value of |
|
The CPU request for the Heapster pod. For example, a value of |
| Deploy only Heapster, without the Hawkular Metrics and Cassandra components. |
|
Set to the desired, existing node selector to ensure that pods are placed onto nodes with specific labels. For example, |
|
Set when executing the |
See Compute Resources for further discussion on how to specify requests and limits.
If you are using persistent storage with Cassandra, it is the administrator’s responsibility to set a sufficient disk size for the cluster using the openshift_metrics_cassandra_pvc_size
variable. It is also the administrator’s responsibility to monitor disk usage to make sure that it does not become full.
Data loss results if the Cassandra persisted volume runs out of sufficient space.
All of the other variables are optional and allow for greater customization. For instance, if you have a custom install in which the Kubernetes master is not available under https://kubernetes.default.svc:443
you can specify the value to use instead with the openshift_metrics_master_url
parameter.
35.5.2. Using Secrets
The OpenShift Container Platform Ansible openshift_metrics
role auto-generates self-signed certificates for use between its components and generates a re-encrypting route to expose the Hawkular Metrics service. This route is what allows the web console to access the Hawkular Metrics service.
In order for the browser running the web console to trust the connection through this route, it must trust the route’s certificate. This can be accomplished by providing your own certificates signed by a trusted Certificate Authority. The openshift_metrics
role allows you to specify your own certificates, which it then uses when creating the route.
The router’s default certificate are used if you do not provide your own.
35.5.2.1. Providing Your Own Certificates
To provide your own certificate, which is used by the re-encrypting route, you can set the openshift_metrics_hawkular_cert
, openshift_metrics_hawkular_key
, and openshift_metrics_hawkular_ca
variables in your inventory file.
The hawkular-metrics.pem
value needs to contain the certificate in its .pem format. You may also need to provide the certificate for the Certificate Authority which signed this pem file via the hawkular-metrics-ca.cert
secret.
For more information, see the re-encryption route documentation.
35.6. Deploying the Metric Components
Because deploying and configuring all the metric components is handled with OpenShift Container Platform Ansible, you can deploy everything in one step.
The following examples show you how to deploy metrics with and without persistent storage using the default parameters.
The host that you run the Ansible playbook on must have at least 75MiB of free memory per host in the inventory.
In accordance with upstream Kubernetes rules, metrics can be collected only on the default interface of eth0
.
Example 35.3. Deploying with Persistent Storage
The following command sets the Hawkular Metrics route to use hawkular-metrics.example.com and is deployed using persistent storage.
You must have a persistent volume of sufficient size available.
$ ansible-playbook [-i </path/to/inventory>] <OPENSHIFT_ANSIBLE_DIR>/playbooks/openshift-metrics/config.yml \ -e openshift_metrics_install_metrics=True \ -e openshift_metrics_hawkular_hostname=hawkular-metrics.example.com \ -e openshift_metrics_cassandra_storage_type=pv
Example 35.4. Deploying without Persistent Storage
The following command sets the Hawkular Metrics route to use hawkular-metrics.example.com and deploy without persistent storage.
$ ansible-playbook [-i </path/to/inventory>] <OPENSHIFT_ANSIBLE_DIR>/playbooks/openshift-metrics/config.yml \ -e openshift_metrics_install_metrics=True \ -e openshift_metrics_hawkular_hostname=hawkular-metrics.example.com
Because this is being deployed without persistent storage, metric data loss can occur.
35.6.1. Metrics Diagnostics
The are some diagnostics for metrics to assist in evaluating the state of the metrics stack. To execute diagnostics for metrics:
$ oc adm diagnostics MetricsApiProxy
35.7. Setting the Metrics Public URL
The OpenShift Container Platform web console uses the data coming from the Hawkular Metrics service to display its graphs. The URL for accessing the Hawkular Metrics service must be configured with the metricsPublicURL
option in the master webconsole-config configmap file. This URL corresponds to the route created with the openshift_metrics_hawkular_hostname
inventory variable used during the deployment of the metrics components.
You must be able to resolve the openshift_metrics_hawkular_hostname
from the browser accessing the console.
For example, if your openshift_metrics_hawkular_hostname
corresponds to hawkular-metrics.example.com
, then you must make the following change in the webconsole-config configmap file:
clusterInfo: ... metricsPublicURL: "https://hawkular-metrics.example.com/hawkular/metrics"
Once you have updated and saved the webconsole-config configmap file, you must restart your OpenShift Container Platform instance.
When your OpenShift Container Platform server is back up and running, metrics are displayed on the pod overview pages.
If you are using self-signed certificates, remember that the Hawkular Metrics service is hosted under a different host name and uses different certificates than the console. You may need to explicitly open a browser tab to the value specified in metricsPublicURL
and accept that certificate.
To avoid this issue, use certificates which are configured to be acceptable by your browser.
35.8. Accessing Hawkular Metrics Directly
To access and manage metrics more directly, use the Hawkular Metrics API.
When accessing Hawkular Metrics from the API, you are only able to perform reads. Writing metrics is disabled by default. If you want individual users to also be able to write metrics, you must set the openshift_metrics_hawkular_user_write_access
variable to true.
However, it is recommended to use the default configuration and only have metrics enter the system via Heapster. If write access is enabled, any user can write metrics to the system, which can affect performance and cause Cassandra disk usage to unpredictably increase.
The Hawkular Metrics documentation covers how to use the API, but there are a few differences when dealing with the version of Hawkular Metrics configured for use on OpenShift Container Platform:
35.8.1. OpenShift Container Platform Projects and Hawkular Tenants
Hawkular Metrics is a multi-tenanted application. It is configured so that a project in OpenShift Container Platform corresponds to a tenant in Hawkular Metrics.
As such, when accessing metrics for a project named MyProject you must set the Hawkular-Tenant header to MyProject.
There is also a special tenant named _system which contains system level metrics. This requires either a cluster-reader or cluster-admin level privileges to access.
35.8.2. Authorization
The Hawkular Metrics service authenticates the user against OpenShift Container Platform to determine if the user has access to the project it is trying to access.
Hawkular Metrics accepts a bearer token from the client and verifies that token with the OpenShift Container Platform server using a SubjectAccessReview. If the user has proper read privileges for the project, they are allowed to read the metrics for that project. For the _system tenant, the user requesting to read from this tenant must have cluster-reader permission.
When accessing the Hawkular Metrics API, you must pass a bearer token in the Authorization header.
35.9. Scaling OpenShift Container Platform Cluster Metrics Pods
Information about scaling cluster metrics capabilities is available in the Scaling and Performance Guide.
35.10. Cleanup
You can remove everything deployed by the OpenShift Container Platform Ansible openshift_metrics
role by performing the following steps:
$ ansible-playbook [-i </path/to/inventory>] <OPENSHIFT_ANSIBLE_DIR>/playbooks/openshift-metrics/config.yml \ -e openshift_metrics_install_metrics=False
35.11. Prometheus on OpenShift Container Platform
Prometheus is a stand-alone, open source systems monitoring and alerting toolkit. You can use Prometheus to visualize metrics and alerts for OpenShift Container Platform system resources.
Prometheus on OpenShift Container Platform is a Technology Preview feature only. Technology Preview features are not supported with Red Hat production service level agreements (SLAs), might not be functionally complete, and Red Hat does not recommend to use them for production. These features provide early access to upcoming product features, enabling customers to test functionality and provide feedback during the development process.
For more information on Red Hat Technology Preview features support scope, see https://access.redhat.com/support/offerings/techpreview/.
35.11.1. Setting Prometheus Role Variables
The Prometheus role creates:
-
The
openshift-metrics
namespace. -
Prometheus
clusterrolebinding
and service account. - Prometheus pod with Prometheus behind OAuth proxy, Alertmanager, and Alert Buffer as a stateful set.
-
Prometheus and
prometheus-alerts
ConfigMaps. - Prometheus and Prometheus Alerts services and direct routes.
Prometheus deployment is enabled by default, uninstall it by setting openshift_prometheus_state
to absent
. For example:
# openshift_prometheus_state=absent
Set the following role variables to install and configure Prometheus.
Variable | Description |
---|---|
|
The default value is |
|
Project namespace where the components are deployed. Default set to |
|
Selector for the nodes on which Prometheus is deployed. Default set to |
|
Set to create PV for Prometheus. For example, |
|
Set to create PV for Alertmanager. For example, |
|
Set to create PV for Alert Buffer. For example, |
|
Set to create PVC for Prometheus. For example, |
|
Set to create PVC for Alertmanager. For example, |
|
Set to create PVC for Alert Buffer. For example, |
|
Additional Prometheus rules file. Set to |
35.11.2. Deploying Prometheus Using Ansible Installer
The host that you run the Ansible playbook on must have at least 75MiB of free memory per host in the inventory.
The Ansible Installer is the default method of deploying Prometheus.
Run the playbook:
$ ansible-playbook -vvv -i ${INVENTORY_FILE} playbooks/openshift-prometheus/config.yml
Make sure you have nodes labeled with node-role.kubernetes.io/infra=true
, which is the default value for openshift_prometheus_node_selector
. If you want to use other node selectors, please see Deploy Using Node-Selector.
35.11.2.1. Additional Methods for Deploying Prometheus
Deploy Using Node-Selector
Label the node on which you want to deploy Prometheus:
# oc adm label node/$NODE ${KEY}=${VALUE}
Deploy Prometheus with Ansible and container resources:
# Set node selector for prometheus openshift_prometheus_node_selector={"${KEY}":"${VALUE}"}
Run the playbook:
$ ansible-playbook -vvv -i ${INVENTORY_FILE} playbooks/openshift-prometheus/config.yml
Deploy Using a Non-default Namespace
Identify your namespace:
# Set non-default openshift_prometheus_namespace openshift_prometheus_namespace=${USER_PROJECT}
Run the playbook:
$ ansible-playbook -vvv -i ${INVENTORY_FILE} playbooks/openshift-prometheus/config.yml
35.11.2.2. Accessing the Prometheus Web UI
The Prometheus server automatically exposes a Web UI at localhost:9090
. You can access the Prometheus Web UI with the view
role.
35.11.2.3. Configuring Prometheus for OpenShift Container Platform
Prometheus Storage Related Variables
With each Prometheus component (including Prometheus, Alertmanager, Alert Buffer, and OAuth proxy) you can set the PV claim by setting corresponding role variable, for example:
openshift_prometheus_storage_type: pvc openshift_prometheus_alertmanager_pvc_name: alertmanager openshift_prometheus_alertbuffer_pvc_size: 10G openshift_prometheus_pvc_access_modes: [ReadWriteOnce]
Prometheus Alert Rules File Variable
You can add an external file with alert rules by setting the path to an additional rules variable:
openshift_prometheus_additional_rules_file: <PATH>
The file must follow the Prometheus Alert rules format. The following example sets a rule to send an alert when one of the cluster nodes is down:
groups:
- name: example-rules
interval: 30s # defaults to global interval
rules:
- alert: Node Down
expr: up{job="kubernetes-nodes"} == 0
for: 10m 1
annotations:
miqTarget: "ContainerNode"
severity: "HIGH"
message: "{{ '{{' }}{{ '$labels.instance' }}{{ '}}' }} is down"
- 1
- The optional
for
value specifies the amount of time Prometheus waits before it sends an alert for this element. For example, if you set10m
, Prometheus waits 10 minutes after it encounters this issue before sending an alert.
Prometheus Variables to Control Resource Limits
With each Prometheus component (including Prometheus, Alertmanager, Alert Buffer, and OAuth proxy) you can specify CPU, memory limits, and requests by setting the corresponding role variable, for example:
openshift_prometheus_alertmanager_limits_memory: 1Gi openshift_prometheus_oauth_proxy_cpu_requests: 100m
Once openshift_metrics_project: openshift-infra
is installed, metrics can be gathered from the http://${POD_IP}:7575/metrics
endpoint.
35.11.3. OpenShift Container Platform Metrics via Prometheus
The state of a system can be gauged by the metrics that it emits. This section describes current and proposed metrics that identify the health of the storage subsystem and cluster.
35.11.3.1. Current Metrics
This section describes the metrics currently emitted from Kubernetes’s storage subsystem.
Cloud Provider API Call Metrics
This metric reports the time and count of success and failures of all cloudprovider API calls. These metrics include aws_attach_time
and aws_detach_time
. The type of emitted metrics is a histogram, and hence, Prometheus also generates sum, count, and bucket metrics for these metrics.
Example summary of cloudprovider metrics from GCE:
cloudprovider_gce_api_request_duration_seconds { request = "instance_list"} cloudprovider_gce_api_request_duration_seconds { request = "disk_insert"} cloudprovider_gce_api_request_duration_seconds { request = "disk_delete"} cloudprovider_gce_api_request_duration_seconds { request = "attach_disk"} cloudprovider_gce_api_request_duration_seconds { request = "detach_disk"} cloudprovider_gce_api_request_duration_seconds { request = "list_disk"}
Example summary of cloudprovider metrics from AWS:
cloudprovider_aws_api_request_duration_seconds { request = "attach_volume"} cloudprovider_aws_api_request_duration_seconds { request = "detach_volume"} cloudprovider_aws_api_request_duration_seconds { request = "create_tags"} cloudprovider_aws_api_request_duration_seconds { request = "create_volume"} cloudprovider_aws_api_request_duration_seconds { request = "delete_volume"} cloudprovider_aws_api_request_duration_seconds { request = "describe_instance"} cloudprovider_aws_api_request_duration_seconds { request = "describe_volume"}
See Cloud Provider (specifically GCE and AWS) metrics for Storage API calls for more information.
Volume Operation Metrics
These metrics report time taken by a storage operation once started. These metrics keep track of operation time at the plug-in level, but do not include time taken by goroutine
to run or operation to be picked up from the internal queue. These metrics are a type of histogram.
Example summary of available volume operation metrics
storage_operation_duration_seconds { volume_plugin = "aws-ebs", operation_name = "volume_attach" } storage_operation_duration_seconds { volume_plugin = "aws-ebs", operation_name = "volume_detach" } storage_operation_duration_seconds { volume_plugin = "glusterfs", operation_name = "volume_provision" } storage_operation_duration_seconds { volume_plugin = "gce-pd", operation_name = "volume_delete" } storage_operation_duration_seconds { volume_plugin = "vsphere", operation_name = "volume_mount" } storage_operation_duration_seconds { volume_plugin = "iscsi" , operation_name = "volume_unmount" } storage_operation_duration_seconds { volume_plugin = "aws-ebs", operation_name = "unmount_device" } storage_operation_duration_seconds { volume_plugin = "cinder" , operation_name = "verify_volumes_are_attached" } storage_operation_duration_seconds { volume_plugin = "<n/a>" , operation_name = "verify_volumes_are_attached_per_node" }
See Volume operation metrics for more information.
Volume Stats Metrics
These metrics typically report usage stats of PVC (such as used space versus available space). The type of metrics emitted is gauge.
Metric | Type | Labels/tags |
---|---|---|
volume_stats_capacityBytes | Gauge | namespace,persistentvolumeclaim,persistentvolume= |
volume_stats_usedBytes | Gauge | namespace=<persistentvolumeclaim-namespace> persistentvolumeclaim=<persistentvolumeclaim-name> persistentvolume=<persistentvolume-name> |
volume_stats_availableBytes | Gauge | namespace=<persistentvolumeclaim-namespace> persistentvolumeclaim=<persistentvolumeclaim-name> persistentvolume= |
volume_stats_InodesFree | Gauge | namespace=<persistentvolumeclaim-namespace> persistentvolumeclaim=<persistentvolumeclaim-name> persistentvolume=<persistentvolume-name> |
volume_stats_Inodes | Gauge | namespace=<persistentvolumeclaim-namespace> persistentvolumeclaim=<persistentvolumeclaim-name> persistentvolume=<persistentvolume-name> |
volume_stats_InodesUsed | Gauge | namespace=<persistentvolumeclaim-namespace> persistentvolumeclaim=<persistentvolumeclaim-name> persistentvolume=<persistentvolume-name> |
35.11.4. Undeploying Prometheus
To undeploy Prometheus, run:
$ ansible-playbook -vvv -i ${INVENTORY_FILE} playbooks/openshift-prometheus/config.yml -e openshift_prometheus_state=absent
Chapter 36. Customizing the Web Console
36.1. Overview
Administrators can customize the web console using extensions, which let you run scripts and load custom stylesheets when the web console loads. Extension scripts allow you to override the default behavior of the web console and customize it for your needs.
For example, extension scripts can be used to add your own company’s branding or to add company-specific capabilities. A common use case for this is rebranding or white-labeling for different environments. You can use the same extension code, but provide settings that change the web console.
Take caution making extensive changes to the web console styles or behavior that are not documented below. While you add any scripts or stylesheets, significant customizations might need to be reworked on upgrades as the web console markup and behavior change in future versions.
36.2. Loading Extension Scripts and Stylesheets
As of OpenShift Container Platform 3.9, extension scripts and stylesheets can be hosted at any https://
URL as long as the URL is accessible from the browser. The files might be hosted from a pod on the platform using a publicly accessible route, or on another server outside of OpenShift Container Platform.
To add scripts and stylesheets, edit the webconsole-config
ConfigMap in the openshift-web-console
namespace. The web console configuration is available in the webconsole-config.yaml
key of the ConfigMap.
$ oc edit configmap/webconsole-config -n openshift-web-console
To add scripts, update the extensions.scriptURLs
property. The value is an array of URLs.
To add stylesheets, update the extensions.stylesheetURLs
property. The value is an array of URLs.
Example extensions.stylesheetURLs
Setting
apiVersion: v1 kind: ConfigMap data: webconsole-config.yaml: | apiVersion: webconsole.config.openshift.io/v1 extensions: scriptURLs: - https://example.com/scripts/menu-customization.js - https://example.com/scripts/nav-customization.js stylesheetURLs: - https://example.com/styles/logo.css - https://example.com/styles/custom-styles.css [...]
After saving the ConfigMap, the web console containers will be updated automatically for the new extension files within a few minutes.
Scripts and stylesheets must be served with the correct content type or they will not be run by the browser. Scripts must be served with Content-Type: application/javascript
and stylesheets with Content-Type: text/css
.
It is a best practice to wrap extension scripts in an Immediately Invoked Function Expression (IIFE). This ensures that you do not create global variables that conflict with the names used by the web console or by other extensions. For example:
(function() { // Put your extension code here... }());
The examples in the following sections show common ways you can customize the web console.
Additional extension examples are available in the OpenShift Origin repository on GitHub.
36.2.1. Setting Extension Properties
If you have a specific extension, but want to use different text in it for each of the environments, you can define the environment in the web console configuration, and use the same extension script across environments.
To add extension properties, edit the webconsole-config
ConfigMap in the openshift-web-console
namespace. The web console configuration is available in the webconsole-config.yaml
key of the ConfigMap.
$ oc edit configmap/webconsole-config -n openshift-web-console
Update the extensions.properties
value, which is a map of key-value pairs.
apiVersion: v1 kind: ConfigMap data: webconsole-config.yaml: | apiVersion: webconsole.config.openshift.io/v1 extensions: [...] properties: doc_url: https://docs.openshift.com key1: value1 key2: value2 [...]
This results in a global variable that can be accessed by the extension, as if the following code was executed:
window.OPENSHIFT_EXTENSION_PROPERTIES = { doc_url: "https://docs.openshift.com", key1: "value1", key2: "value2" }
36.3. Extension Option for External Logging Solutions
As of OpenShift Container Platform 3.6, there is an extension option to link to external logging solutions instead of using OpenShift Container Platform’s EFK logging stack:
'use strict'; angular.module("mylinkextensions", ['openshiftConsole']) .run(function(extensionRegistry) { extensionRegistry.add('log-links', _.spread(function(resource, options) { return { type: 'dom', node: '<span><a href="https://extension-point.example.com">' + resource.metadata.name + '</a><span class="action-divider">|</span></span>' }; })); }); hawtioPluginLoader.addModule("mylinkextensions");
Add the script as described in Loading Extension Scripts and Stylesheets.
36.4. Customizing and Disabling the Guided Tour
A guided tour will pop up the first time a user logs in on a particular browser. You can enable the auto_launch
for new users:
window.OPENSHIFT_CONSTANTS.GUIDED_TOURS.landing_page_tour.auto_launch = true;
Add the script as described in Loading Extension Scripts and Stylesheets.
36.5. Customizing Documentation Links
Documentation links on the landing page are customizable. window.OPENSHIFT_CONSTANTS.CATALOG_HELP_RESOURCES
is an array of objects containing a title and an href
. These will be turned into links. You can completely override the array, push or pop additional links, or modify the attributes of existing links. For example:
window.OPENSHIFT_CONSTANTS.CATALOG_HELP_RESOURCES.links.push({ title: 'Blog', href: 'https://blog.openshift.com' });
Add the script as described in Loading Extension Scripts and Stylesheets.
36.6. Customizing the Logo
The following style changes the logo in the web console header:
#header-logo { background-image: url("https://www.example.com/images/logo.png"); width: 190px; height: 20px; }
Replace the example.com URL with a URL to an actual image, and adjust the width and height. The ideal height is 20px.
Add the stylesheet as described in Loading Extension Scripts and Stylesheets.
36.7. Customizing the Membership Whitelist
The default whitelist in the membership page shows a subset of cluster roles, such as admin
, basic-user
, edit
, and so on. It also shows custom roles defined within a project.
For example, to add your own set of custom cluster roles to the whitelist:
window.OPENSHIFT_CONSTANTS.MEMBERSHIP_WHITELIST = [ "admin", "basic-user", "edit", "system:deployer", "system:image-builder", "system:image-puller", "system:image-pusher", "view", "custom-role-1", "custom-role-2" ];
Add the script as described in Loading Extension Scripts and Stylesheets.
36.8. Changing Links to Documentation
Links to external documentation are shown in various sections of the web console. The following example changes the URL for two given links to the documentation:
window.OPENSHIFT_CONSTANTS.HELP['get_started_cli'] = "https://example.com/doc1.html"; window.OPENSHIFT_CONSTANTS.HELP['basic_cli_operations'] = "https://example.com/doc2.html";
Alternatively, you can change the base URL for all documentation links.
This example would result in the default help URL https://example.com/docs/welcome/index.html
:
window.OPENSHIFT_CONSTANTS.HELP_BASE_URL = "https://example.com/docs/"; 1
- 1
- The path must end in a
/
.
Add the script as described in Loading Extension Scripts and Stylesheets.
36.9. Adding or Changing Links to Download the CLI
The About page in the web console provides download links for the command line interface (CLI) tools. These links can be configured by providing both the link text and URL, so that you can choose to point them directly to file packages, or to an external page that points to the actual packages.
For example, to point directly to packages that can be downloaded, where the link text is the package platform:
window.OPENSHIFT_CONSTANTS.CLI = { "Linux (32 bits)": "https://<cdn>/openshift-client-tools-linux-32bit.tar.gz", "Linux (64 bits)": "https://<cdn>/openshift-client-tools-linux-64bit.tar.gz", "Windows": "https://<cdn>/openshift-client-tools-windows.zip", "Mac OS X": "https://<cdn>/openshift-client-tools-mac.zip" };
Alternatively, to point to a page that links the actual download packages, with the Latest Release link text:
window.OPENSHIFT_CONSTANTS.CLI = { "Latest Release": "https://<cdn>/openshift-client-tools/latest.html" };
Add the script as described in Loading Extension Scripts and Stylesheets.
36.9.1. Customizing the About Page
To provide a custom About page for the web console:
Write an extension that looks like:
angular .module('aboutPageExtension', ['openshiftConsole']) .config(function($routeProvider) { $routeProvider .when('/about', { templateUrl: 'https://example.com/extensions/about/about.html', controller: 'AboutController' }); } ); hawtioPluginLoader.addModule('aboutPageExtension');
Write a customized template.
Start from the version of about.html from the OpenShift Container Platform release you are using. Within the template, there are two angular scope variables available:
version.master.openshift
andversion.master.kubernetes
.Host the template at a URL with the correct Cross-Origin Resource Sharing (CORS) response headers for the web console.
-
Set
Access-Control-Allow-Origin
response to allow requests from the web console domain. -
Set
Access-Control-Allow-Methods
to includeGET
. -
Set
Access-Control-Allow-Headers
to includeContent-Type
.
-
Set
Alternatively, you can include the template directly in your JavaScript using AngularJS $templateCache.
Add the script as described in Loading Extension Scripts and Stylesheets.
36.11. Configuring Featured Applications
The web console has an optional list of featured application links in its landing page catalog. These appear near the top of the page and can have an icon, a title, a short description, and a link.
// Add featured applications to the top of the catalog. window.OPENSHIFT_CONSTANTS.SAAS_OFFERINGS = [{ title: "Dashboard", // The text label icon: "fa fa-dashboard", // The icon you want to appear url: "http://example.com/dashboard", // Where to go when this item is clicked description: "Open application dashboard." // Short description }, { title: "System Status", icon: "fa fa-heartbeat", url: "http://example.com/status", description: "View system alerts and outages." }, { title: "Manage Account", icon: "pficon pficon-user", url: "http://example.com/account", description: "Update email address or password." }];
Add the script as described in Loading Extension Scripts and Stylesheets.
36.12. Configuring Catalog Categories
Catalog categories organize the display of items in the web console catalog landing page. Each category has one or more subcategories. A builder image, template, or service is grouped in a subcategory if it includes a tag listed in the matching subcategory tags, and an item can appear in more than one subcategory. Categories and subcategories only display if they contain at least one item.
Significant customizations to the catalog categories may affect the user experience and should be done with careful consideration. You may need to update this customization in future upgrades if you modify existing category items.
// Find the Languages category. var category = _.find(window.OPENSHIFT_CONSTANTS.SERVICE_CATALOG_CATEGORIES, { id: 'languages' }); // Add Go as a new subcategory under Languages. category.subCategories.splice(2,0,{ // Insert at the third spot. // Required. Must be unique. id: "go", // Required. label: "Go", // Optional. If specified, defines a unique icon for this item. icon: "icon-go-gopher", // Required. Items matching any tag will appear in this subcategory. tags: [ "go", "golang" ] }); // Add a Featured category as the first category tab. window.OPENSHIFT_CONSTANTS.SERVICE_CATALOG_CATEGORIES.unshift({ // Required. Must be unique. id: "featured", // Required label: "Featured", subCategories: [ { // Required. Must be unique. id: "go", // Required. label: "Go", // Optional. If specified, defines a unique icon for this item. icon: "icon-go-gopher", // Required. Items matching any tag will appear in this subcategory. tags: [ "go", "golang" ] }, { // Required. Must be unique. id: "jenkins", // Required. label: "Jenkins", // Optional. If specified, defines a unique icon for this item. icon: "icon-jenkins", // Required. Items matching any tag will appear in this subcategory. tags: [ "jenkins" ] } ] });
Add the script as described in Loading Extension Scripts and Stylesheets.
36.13. Configuring Quota Notification Messages
Whenever a user reaches a quota, a quota notification is put into the notification drawer. A custom quota notification message, per quota resource type, can be added to the notification. For example:
Your project is over quota. It is using 200% of 2 cores CPU (Limit). Upgrade to <a href='https://www.openshift.com'>OpenShift Online Pro</a> if you need additional resources.
The "Upgrade to…" part of the notification is the custom message and may contain HTML such as links to additional resources.
Since the quota message is HTML markup, any special characters need to be properly escaped for HTML.
Set the window.OPENSHIFT_CONSTANTS.QUOTA_NOTIFICATION_MESSAGE
property in an extension script to customize the message for each resource.
// Set custom notification messages per quota type/key window.OPENSHIFT_CONSTANTS.QUOTA_NOTIFICATION_MESSAGE = { 'pods': 'Upgrade to <a href="https://www.openshift.com">OpenShift Online Pro</a> if you need additional resources.', 'limits.memory': 'Upgrade to <a href="https://www.openshift.com">OpenShift Online Pro</a> if you need additional resources.' };
Add the script as described in Loading Extension Scripts and Stylesheets.
36.14. Configuring the Create From URL Namespace Whitelist
Create from URL only works with image streams or templates from namespaces that have been explicitly specified in OPENSHIFT_CONSTANTS.CREATE_FROM_URL_WHITELIST
. To add namespaces to the whitelist, follow these steps:
openshift
is included in the whitelist by default. Do not remove it.
// Add a namespace containing the image streams and/or templates window.OPENSHIFT_CONSTANTS.CREATE_FROM_URL_WHITELIST.push( 'shared-stuff' );
Add the script as described in Loading Extension Scripts and Stylesheets.
36.15. Disabling the Copy Login Command
The web console allows users to copy a login command, including the current access token, to the clipboard from the user menu and the Command Line Tools page. This function can be changed so that the user’s access token is not included in the copied command.
// Do not copy the user's access token in the copy login command. window.OPENSHIFT_CONSTANTS.DISABLE_COPY_LOGIN_COMMAND = true;
Add the script as described in Loading Extension Scripts and Stylesheets.
36.15.1. Enabling Wildcard Routes
If you enabled wildcard routes for a router, you can also enable wildcard routes in the web console. This lets users enter hostnames starting with an asterisk like *.example.com
when creating a route. To enable wildcard routes:
window.OPENSHIFT_CONSTANTS.DISABLE_WILDCARD_ROUTES = false;
Add the script as described in Loading Extension Scripts and Stylesheets.
Learn how to configure HAProxy routers to allow wildcard routes.
36.16. Customizing the Login Page
You can also change the login page, and the login provider selection page for the web console. Run the following commands to create templates you can modify:
$ oc adm create-login-template > login-template.html $ oc adm create-provider-selection-template > provider-selection-template.html
Edit the file to change the styles or add content, but be careful not to remove any required parameters inside the curly brackets.
To use your custom login page or provider selection page, set the following options in the master configuration file:
oauthConfig: ... templates: login: /path/to/login-template.html providerSelection: /path/to/provider-selection-template.html
Relative paths are resolved relative to the master configuration file. You must restart the server after changing this configuration.
When there are multiple login providers configured or when the alwaysShowProviderSelection
option in the master-config.yaml file is set to true, each time a user’s token to OpenShift Container Platform expires, the user is presented with this custom page before they can proceed with other tasks.
36.16.1. Example Usage
Custom login pages can be used to create Terms of Service information. They can also be helpful if you use a third-party login provider, like GitHub or Google, to show users a branded page that they trust and expect before being redirected to the authentication provider.
36.17. Customizing the OAuth Error Page
When errors occur during authentication, you can change the page shown.
Run the following command to create a template you can modify:
$ oc adm create-error-template > error-template.html
Edit the file to change the styles or add content.
You can use the
Error
andErrorCode
variables in the template. To use your custom error page, set the following option in the master configuration file:oauthConfig: ... templates: error: /path/to/error-template.html
Relative paths are resolved relative to the master configuration file.
- You must restart the server after changing this configuration.
36.18. Changing the Logout URL
You can change the location a console user is sent to when logging out of the console by modifying the clusterInfo.logoutPublicURL
parameter in the webconsole-config
ConfigMap.
$ oc edit configmap/webconsole-config -n openshift-web-console
Here is an example that changes the logout URL to https://www.example.com/logout
:
apiVersion: v1 kind: ConfigMap data: webconsole-config.yaml: | apiVersion: webconsole.config.openshift.io/v1 clusterInfo: [...] logoutPublicURL: "https://www.example.com/logout" [...]
This can be useful when authenticating with Request Header and OAuth or OpenID identity providers, which require visiting an external URL to destroy single sign-on sessions.
36.19. Configuring Web Console Customizations with Ansible
During cluster installations, many modifications to the web console can be configured using the following parameters, which are configurable in the inventory file:
Example Web Console Customization with Ansible
# Configure `clusterInfo.logoutPublicURL` in the web console configuration # See: https://docs.openshift.com/enterprise/latest/install_config/web_console_customization.html#changing-the-logout-url #openshift_master_logout_url=https://example.com/logout # Configure extension scripts for web console customization # See: https://docs.openshift.com/enterprise/latest/install_config/web_console_customization.html#loading-custom-scripts-and-stylesheets #openshift_web_console_extension_script_urls=['https://example.com/scripts/menu-customization.js','https://example.com/scripts/nav-customization.js'] # Configure extension stylesheets for web console customization # See: https://docs.openshift.com/enterprise/latest/install_config/web_console_customization.html#loading-custom-scripts-and-stylesheets #openshift_web_console_extension_stylesheet_urls=['https://example.com/styles/logo.css','https://example.com/styles/custom-styles.css'] # Configure a custom login template in the master config # See: https://docs.openshift.com/enterprise/latest/install_config/web_console_customization.html#customizing-the-login-page #openshift_master_oauth_templates={'login': '/path/to/login-template.html'} # Configure `clusterInfo.metricsPublicURL` in the web console configuration for cluster metrics. Ansible is also able to configure metrics for you. # See: https://docs.openshift.com/enterprise/latest/install_config/cluster_metrics.html #openshift_master_metrics_public_url=https://hawkular-metrics.example.com/hawkular/metrics # Configure `clusterInfo.loggingPublicURL` in the web console configuration for aggregate logging. Ansible is also able to install logging for you. # See: https://docs.openshift.com/enterprise/latest/install_config/aggregate_logging.html #openshift_master_logging_public_url=https://kibana.example.com
36.20. Changing the Web Console URL Port and Certificates
To ensure your custom certificate is served when users access the web console URL, add the certificate and URL to the namedCertificates
section of the master-config.yaml file. See Configuring Custom Certificates for the Web Console or CLI for more information.
To set or modify the redirect URL for the web console, modify the openshift-web-console oauthclient
:
$ oc edit oauthclient openshift-web-console
To ensure users are correctly redirected, update the PublicUrls
for the openshift-web-console configmap
:
$ oc edit configmap/webconsole-config -n openshift-web-console
Then, update the value for consolePublicURL
.
Chapter 37. Deploying External Persistent Volume Provisioners
37.1. Overview
The external provisioner for AWS EFS on OpenShift Container Platform is a Technology Preview feature. Technology Preview features are not supported with Red Hat production service-level agreements (SLAs) and might not be functionally complete, and Red Hat does not recommend using them for production. These features provide early access to upcoming product features, enabling customers to test functionality and provide feedback during the development process. For more information, see Red Hat Technology Preview Features Support Scope.
An external provisioner is an application that enables dynamic provisioning for a particular storage provider. External provisioners can run alongside the provisioner plug-ins provided by OpenShift Container Platform and are configured in a similar way as the StorageClass objects are configured, as described in the Dynamic Provisioning and Creating Storage Classes section. Since these provisioners are external, you can deploy and update them independently of OpenShift Container Platform.
37.2. Before You Begin
An Ansible Playbook is also available to deploy and upgrade external provisioners.
Before proceeding, familiarize yourself with the Configuring Cluster Metrics and the Configuring Cluster Logging sections.
37.2.1. External Provisioners Ansible Role
The OpenShift Ansible openshift_provisioners
role configures and deploys external provisioners using the variables from the Ansible inventory file. You must specify which provisioners to install by overriding their respective install
variables to true
.
37.2.2. External Provisioners Ansible Variables
Following is a list of role variables that apply to all provisioners for which the install
variable is true
.
Variable | Description |
---|---|
|
If |
|
The prefix for the component images. For example, with |
|
The version for the component images. For example, with |
|
The project to deploy provisioners in. Defaults to |
37.2.3. AWS EFS Provisioner Ansible Variables
The AWS EFS provisioner dynamically provisions NFS PVs backed by dynamically created directories in a given EFS file system’s directory. You must satisfy the following requirements before the AWS EFS Provisioner Ansible variables can be configured:
- An IAM user assigned with the AmazonElasticFileSystemReadOnlyAccess policy (or better).
- An EFS file system in your cluster’s region.
- Mount targets and security groups such that any node (in any zone in the cluster’s region) can mount the EFS file system by its File system DNS name.
Variable | Description |
---|---|
|
The File system ID of the EFS file system, for example: |
| The Amazon EC2 region for the EFS file system. |
| The AWS access key of the IAM user (to check that the specified EFS file system exists). |
| The AWS secret access key of the IAM user (to check that the specified EFS file system exists). |
Variable | Description |
---|---|
|
If |
|
The path of the directory in the EFS file system, in which the EFS provisioner will create a directory to back each PV it creates. It must exist and be mountable by the EFS provisioner. Defaults to |
|
The |
|
A map of labels to select the nodes where the pod will land. For example: |
|
The supplemental group to give the pod, in case it is needed for permission to write to the EFS file system. Defaults to |
37.3. Deploying the Provisioners
You can deploy all provisioners at once or one provisioner at a time according to the configuration specified in the OpenShift Ansible variables. The following example shows you how to deploy a given provisioner and then create and configure a corresponding StorageClass.
37.3.1. Deploying the AWS EFS Provisioner
The following command sets the directory in the EFS volume to /data/persistentvolumes
. This directory must exist in the file system and must be mountable and writeable by the provisioner pod.
$ ansible-playbook -v -i <inventory_file> \ /usr/share/ansible/openshift-ansible/playbooks/openshift-provisioners/config.yml \ -e openshift_provisioners_install_provisioners=True \ -e openshift_provisioners_efs=True \ -e openshift_provisioners_efs_fsid=fs-47a2c22e \ -e openshift_provisioners_efs_region=us-west-2 \ -e openshift_provisioners_efs_aws_access_key_id=AKIAIOSFODNN7EXAMPLE \ -e openshift_provisioners_efs_aws_secret_access_key=wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY \ -e openshift_provisioners_efs_path=/data/persistentvolumes
37.3.1.1. AWS EFS Object Definition
aws-efs-storageclass.yaml
kind: StorageClass apiVersion: storage.k8s.io/v1beta1 metadata: name: slow provisioner: openshift.org/aws-efs 1 parameters: gidMin: "40000" 2 gidMax: "50000" 3
Each dynamically provisioned volume’s corresponding NFS directory is assigned a unique GID owner from the range gidMin
-gidMax
. If it is not specified, gidMin
defaults to 2000
and gidMax
defaults to 2147483647
. Any pod that consumes a provisioned volume via a claim automatically runs with the needed GID as a supplemental group and is able to read & write to the volume. Other mounters that do not have the supplemental group (and are not running as root) will not be able to read or write to the volume. For more information on using the supplemental groups to manage NFS access, see the Group IDs section of NFS Volume Security topic.
37.4. Cleanup
You can remove everything deployed by the OpenShift Ansible openshift_provisioners
role by running the following command:
$ ansible-playbook -v -i <inventory_file> \ /usr/share/ansible/openshift-ansible/playbooks/openshift-provisioners/config.yml \ -e openshift_provisioners_install_provisioners=False
Legal Notice
Copyright © 2024 Red Hat, Inc.
OpenShift documentation is licensed under the Apache License 2.0 (https://www.apache.org/licenses/LICENSE-2.0).
Modified versions must remove all Red Hat trademarks.
Portions adapted from https://github.com/kubernetes-incubator/service-catalog/ with modifications by Red Hat.
Red Hat, Red Hat Enterprise Linux, the Red Hat logo, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other countries.
Linux® is the registered trademark of Linus Torvalds in the United States and other countries.
Java® is a registered trademark of Oracle and/or its affiliates.
XFS® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States and/or other countries.
MySQL® is a registered trademark of MySQL AB in the United States, the European Union and other countries.
Node.js® is an official trademark of Joyent. Red Hat Software Collections is not formally related to or endorsed by the official Joyent Node.js open source or commercial project.
The OpenStack® Word Mark and OpenStack logo are either registered trademarks/service marks or trademarks/service marks of the OpenStack Foundation, in the United States and other countries and are used with the OpenStack Foundation’s permission. We are not affiliated with, endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.
All other trademarks are the property of their respective owners.