Nodes
Configuring and managing nodes in OpenShift Container Platform
Abstract
Chapter 1. Overview of nodes
1.1. About nodes
A node is a virtual or bare-metal machine in a Kubernetes cluster. Worker nodes host your application containers, grouped as pods. The control plane nodes run services that are required to control the Kubernetes cluster. In OpenShift Container Platform, the control plane nodes contain more than just the Kubernetes services for managing the OpenShift Container Platform cluster.
Having stable and healthy nodes in a cluster is fundamental to the smooth functioning of your hosted application. In OpenShift Container Platform, you can access, manage, and monitor a node through the Node
object representing the node. Using the OpenShift CLI (oc
) or the web console, you can perform the following operations on a node.
The following components of a node are responsible for maintaining the running of pods and providing the Kubernetes runtime environment.
- Container runtime:: The container runtime is responsible for running containers. Kubernetes offers several runtimes such as containerd, cri-o, rktlet, and Docker.
- Kubelet:: Kubelet runs on nodes and reads the container manifests. It ensures that the defined containers have started and are running. The kubelet process maintains the state of work and the node server. Kubelet manages network rules and port forwarding. The kubelet manages containers that are created by Kubernetes only.
- Kube-proxy:: Kube-proxy runs on every node in the cluster and maintains the network traffic between the Kubernetes resources. A Kube-proxy ensures that the networking environment is isolated and accessible.
- DNS:: Cluster DNS is a DNS server which serves DNS records for Kubernetes services. Containers started by Kubernetes automatically include this DNS server in their DNS searches.
Read operations
The read operations allow an administrator or a developer to get information about nodes in an OpenShift Container Platform cluster.
- List all the nodes in a cluster.
- Get information about a node, such as memory and CPU usage, health, status, and age.
- List pods running on a node.
Management operations
As an administrator, you can easily manage a node in an OpenShift Container Platform cluster through several tasks:
-
Add or update node labels. A label is a key-value pair applied to a
Node
object. You can control the scheduling of pods using labels. -
Change node configuration using a custom resource definition (CRD), or the
kubeletConfig
object. -
Configure nodes to allow or disallow the scheduling of pods. Healthy worker nodes with a
Ready
status allow pod placement by default while the control plane nodes do not; you can change this default behavior by configuring the worker nodes to be unschedulable and the control plane nodes to be schedulable. -
Allocate resources for nodes using the
system-reserved
setting. You can allow OpenShift Container Platform to automatically determine the optimalsystem-reserved
CPU and memory resources for your nodes, or you can manually determine and set the best resources for your nodes. - Configure the number of pods that can run on a node based on the number of processor cores on the node, a hard limit, or both.
- Reboot a node gracefully using pod anti-affinity.
- Delete a node from a cluster by scaling down the cluster using a machine set. To delete a node from a bare-metal cluster, you must first drain all pods on the node and then manually delete the node.
Enhancement operations
OpenShift Container Platform allows you to do more than just access and manage nodes; as an administrator, you can perform the following tasks on nodes to make the cluster more efficient, application-friendly, and to provide a better environment for your developers.
- Manage node-level tuning for high-performance applications that require some level of kernel tuning by using the Node Tuning Operator.
- Enable TLS security profiles on the node to protect communication between the kubelet and the Kubernetes API server.
- Run background tasks on nodes automatically with daemon sets. You can create and use daemon sets to create shared storage, run a logging pod on every node, or deploy a monitoring agent on all nodes.
- Free node resources using garbage collection. You can ensure that your nodes are running efficiently by removing terminated containers and the images not referenced by any running pods.
- Add kernel arguments to a set of nodes.
- Configure an OpenShift Container Platform cluster to have worker nodes at the network edge (remote worker nodes). For information on the challenges of having remote worker nodes in an OpenShift Container Platform cluster and some recommended approaches for managing pods on a remote worker node, see Using remote worker nodes at the network edge.
1.2. About pods
A pod is one or more containers deployed together on a node. As a cluster administrator, you can define a pod, assign it to run on a healthy node that is ready for scheduling, and manage. A pod runs as long as the containers are running. You cannot change a pod once it is defined and is running. Some operations you can perform when working with pods are:
Read operations
As an administrator, you can get information about pods in a project through the following tasks:
- List pods associated with a project, including information such as the number of replicas and restarts, current status, and age.
- View pod usage statistics such as CPU, memory, and storage consumption.
Management operations
The following list of tasks provides an overview of how an administrator can manage pods in an OpenShift Container Platform cluster.
Control scheduling of pods using the advanced scheduling features available in OpenShift Container Platform:
- Node-to-pod binding rules such as pod affinity, node affinity, and anti-affinity.
- Node labels and selectors.
- Taints and tolerations.
- Pod topology spread constraints.
- Secondary scheduling.
- Configure the descheduler to evict pods based on specific strategies so that the scheduler reschedules the pods to more appropriate nodes.
- Configure how pods behave after a restart using pod controllers and restart policies.
- Limit both egress and ingress traffic on a pod.
- Add and remove volumes to and from any object that has a pod template. A volume is a mounted file system available to all the containers in a pod. Container storage is ephemeral; you can use volumes to persist container data.
Enhancement operations
You can work with pods more easily and efficiently with the help of various tools and features available in OpenShift Container Platform. The following operations involve using those tools and features to better manage pods.
Operation | User | More information |
---|---|---|
Create and use a horizontal pod autoscaler. | Developer | You can use a horizontal pod autoscaler to specify the minimum and the maximum number of pods you want to run, as well as the CPU utilization or memory utilization your pods should target. Using a horizontal pod autoscaler, you can automatically scale pods. |
Administrator and developer | As an administrator, use a vertical pod autoscaler to better use cluster resources by monitoring the resources and the resource requirements of workloads. As a developer, use a vertical pod autoscaler to ensure your pods stay up during periods of high demand by scheduling pods to nodes that have enough resources for each pod. | |
Provide access to external resources using device plugins. | Administrator | A device plugin is a gRPC service running on nodes (external to the kubelet), which manages specific hardware resources. You can deploy a device plugin to provide a consistent and portable solution to consume hardware devices across clusters. |
Provide sensitive data to pods using the | Administrator |
Some applications need sensitive information, such as passwords and usernames. You can use the |
1.3. About containers
A container is the basic unit of an OpenShift Container Platform application, which comprises the application code packaged along with its dependencies, libraries, and binaries. Containers provide consistency across environments and multiple deployment targets: physical servers, virtual machines (VMs), and private or public cloud.
Linux container technologies are lightweight mechanisms for isolating running processes and limiting access to only designated resources. As an administrator, You can perform various tasks on a Linux container, such as:
OpenShift Container Platform provides specialized containers called Init containers. Init containers run before application containers and can contain utilities or setup scripts not present in an application image. You can use an Init container to perform tasks before the rest of a pod is deployed.
Apart from performing specific tasks on nodes, pods, and containers, you can work with the overall OpenShift Container Platform cluster to keep the cluster efficient and the application pods highly available.
1.4. About autoscaling pods on a node
OpenShift Container Platform offers three tools that you can use to automatically scale the number of pods on your nodes and the resources allocated to pods.
- Horizontal Pod Autoscaler
The Horizontal Pod Autoscaler (HPA) can automatically increase or decrease the scale of a replication controller or deployment configuration, based on metrics collected from the pods that belong to that replication controller or deployment configuration.
For more information, see Automatically scaling pods with the horizontal pod autoscaler.
- Custom Metrics Autoscaler
The Custom Metrics Autoscaler can automatically increase or decrease the number of pods for a deployment, stateful set, custom resource, or job based on custom metrics that are not based only on CPU or memory.
For more information, see Custom Metrics Autoscaler Operator overview.
- Vertical Pod Autoscaler
The Vertical Pod Autoscaler (VPA) can automatically review the historic and current CPU and memory resources for containers in pods and can update the resource limits and requests based on the usage values it learns.
For more information, see Automatically adjust pod resource levels with the vertical pod autoscaler.
1.5. Glossary of common terms for OpenShift Container Platform nodes
This glossary defines common terms that are used in the node content.
- Container
- It is a lightweight and executable image that comprises software and all its dependencies. Containers virtualize the operating system, as a result, you can run containers anywhere from a data center to a public or private cloud to even a developer’s laptop.
- Daemon set
- Ensures that a replica of the pod runs on eligible nodes in an OpenShift Container Platform cluster.
- egress
- The process of data sharing externally through a network’s outbound traffic from a pod.
- garbage collection
- The process of cleaning up cluster resources, such as terminated containers and images that are not referenced by any running pods.
- Horizontal Pod Autoscaler(HPA)
- Implemented as a Kubernetes API resource and a controller. You can use the HPA to specify the minimum and maximum number of pods that you want to run. You can also specify the CPU or memory utilization that your pods should target. The HPA scales out and scales in pods when a given CPU or memory threshold is crossed.
- Ingress
- Incoming traffic to a pod.
- Job
- A process that runs to completion. A job creates one or more pod objects and ensures that the specified pods are successfully completed.
- Labels
- You can use labels, which are key-value pairs, to organise and select subsets of objects, such as a pod.
- Node
- A worker machine in the OpenShift Container Platform cluster. A node can be either be a virtual machine (VM) or a physical machine.
- Node Tuning Operator
- You can use the Node Tuning Operator to manage node-level tuning by using the TuneD daemon. It ensures custom tuning specifications are passed to all containerized TuneD daemons running in the cluster in the format that the daemons understand. The daemons run on all nodes in the cluster, one per node.
- Self Node Remediation Operator
- The Operator runs on the cluster nodes and identifies and reboots nodes that are unhealthy.
- Pod
- One or more containers with shared resources, such as volume and IP addresses, running in your OpenShift Container Platform cluster. A pod is the smallest compute unit defined, deployed, and managed.
- Toleration
- Indicates that the pod is allowed (but not required) to be scheduled on nodes or node groups with matching taints. You can use tolerations to enable the scheduler to schedule pods with matching taints.
- Taint
- A core object that comprises a key,value, and effect. Taints and tolerations work together to ensure that pods are not scheduled on irrelevant nodes.
Chapter 2. Working with pods
2.1. Using pods
A pod is one or more containers deployed together on one host, and the smallest compute unit that can be defined, deployed, and managed.
2.1.1. Understanding pods
Pods are the rough equivalent of a machine instance (physical or virtual) to a Container. Each pod is allocated its own internal IP address, therefore owning its entire port space, and containers within pods can share their local storage and networking.
Pods have a lifecycle; they are defined, then they are assigned to run on a node, then they run until their container(s) exit or they are removed for some other reason. Pods, depending on policy and exit code, might be removed after exiting, or can be retained to enable access to the logs of their containers.
OpenShift Container Platform treats pods as largely immutable; changes cannot be made to a pod definition while it is running. OpenShift Container Platform implements changes by terminating an existing pod and recreating it with modified configuration, base image(s), or both. Pods are also treated as expendable, and do not maintain state when recreated. Therefore pods should usually be managed by higher-level controllers, rather than directly by users.
For the maximum number of pods per OpenShift Container Platform node host, see the Cluster Limits.
Bare pods that are not managed by a replication controller will be not rescheduled upon node disruption.
2.1.2. Example pod configurations
OpenShift Container Platform leverages the Kubernetes concept of a pod, which is one or more containers deployed together on one host, and the smallest compute unit that can be defined, deployed, and managed.
The following is an example definition of a pod from a Rails application. It demonstrates many features of pods, most of which are discussed in other topics and thus only briefly mentioned here:
Pod
object definition (YAML)
kind: Pod apiVersion: v1 metadata: name: example namespace: default selfLink: /api/v1/namespaces/default/pods/example uid: 5cc30063-0265780783bc resourceVersion: '165032' creationTimestamp: '2019-02-13T20:31:37Z' labels: app: hello-openshift 1 annotations: openshift.io/scc: anyuid spec: restartPolicy: Always 2 serviceAccountName: default imagePullSecrets: - name: default-dockercfg-5zrhb priority: 0 schedulerName: default-scheduler terminationGracePeriodSeconds: 30 nodeName: ip-10-0-140-16.us-east-2.compute.internal securityContext: 3 seLinuxOptions: level: 's0:c11,c10' containers: 4 - resources: {} terminationMessagePath: /dev/termination-log name: hello-openshift securityContext: capabilities: drop: - MKNOD procMount: Default ports: - containerPort: 8080 protocol: TCP imagePullPolicy: Always volumeMounts: 5 - name: default-token-wbqsl readOnly: true mountPath: /var/run/secrets/kubernetes.io/serviceaccount 6 terminationMessagePolicy: File image: registry.redhat.io/openshift4/ose-ogging-eventrouter:v4.3 7 serviceAccount: default 8 volumes: 9 - name: default-token-wbqsl secret: secretName: default-token-wbqsl defaultMode: 420 dnsPolicy: ClusterFirst status: phase: Pending conditions: - type: Initialized status: 'True' lastProbeTime: null lastTransitionTime: '2019-02-13T20:31:37Z' - type: Ready status: 'False' lastProbeTime: null lastTransitionTime: '2019-02-13T20:31:37Z' reason: ContainersNotReady message: 'containers with unready status: [hello-openshift]' - type: ContainersReady status: 'False' lastProbeTime: null lastTransitionTime: '2019-02-13T20:31:37Z' reason: ContainersNotReady message: 'containers with unready status: [hello-openshift]' - type: PodScheduled status: 'True' lastProbeTime: null lastTransitionTime: '2019-02-13T20:31:37Z' hostIP: 10.0.140.16 startTime: '2019-02-13T20:31:37Z' containerStatuses: - name: hello-openshift state: waiting: reason: ContainerCreating lastState: {} ready: false restartCount: 0 image: openshift/hello-openshift imageID: '' qosClass: BestEffort
- 1
- Pods can be "tagged" with one or more labels, which can then be used to select and manage groups of pods in a single operation. The labels are stored in key/value format in the
metadata
hash. - 2
- The pod restart policy with possible values
Always
,OnFailure
, andNever
. The default value isAlways
. - 3
- OpenShift Container Platform defines a security context for containers which specifies whether they are allowed to run as privileged containers, run as a user of their choice, and more. The default context is very restrictive but administrators can modify this as needed.
- 4
containers
specifies an array of one or more container definitions.- 5
- The container specifies where external storage volumes are mounted within the container. In this case, there is a volume for storing access to credentials the registry needs for making requests against the OpenShift Container Platform API.
- 6
- Specify the volumes to provide for the pod. Volumes mount at the specified path. Do not mount to the container root,
/
, or any path that is the same in the host and the container. This can corrupt your host system if the container is sufficiently privileged, such as the host/dev/pts
files. It is safe to mount the host by using/host
. - 7
- Each container in the pod is instantiated from its own container image.
- 8
- Pods making requests against the OpenShift Container Platform API is a common enough pattern that there is a
serviceAccount
field for specifying which service account user the pod should authenticate as when making the requests. This enables fine-grained access control for custom infrastructure components. - 9
- The pod defines storage volumes that are available to its container(s) to use. In this case, it provides an ephemeral volume for a
secret
volume containing the default service account tokens.If you attach persistent volumes that have high file counts to pods, those pods can fail or can take a long time to start. For more information, see When using Persistent Volumes with high file counts in OpenShift, why do pods fail to start or take an excessive amount of time to achieve "Ready" state?.
This pod definition does not include attributes that are filled by OpenShift Container Platform automatically after the pod is created and its lifecycle begins. The Kubernetes pod documentation has details about the functionality and purpose of pods.
2.1.3. Additional resources
- For more information on pods and storage see Understanding persistent storage and Understanding ephemeral storage.
2.2. Viewing pods
As an administrator, you can view the pods in your cluster and to determine the health of those pods and the cluster as a whole.
2.2.1. About pods
OpenShift Container Platform leverages the Kubernetes concept of a pod, which is one or more containers deployed together on one host, and the smallest compute unit that can be defined, deployed, and managed. Pods are the rough equivalent of a machine instance (physical or virtual) to a container.
You can view a list of pods associated with a specific project or view usage statistics about pods.
2.2.2. Viewing pods in a project
You can view a list of pods associated with the current project, including the number of replica, the current status, number or restarts and the age of the pod.
Procedure
To view the pods in a project:
Change to the project:
$ oc project <project-name>
Run the following command:
$ oc get pods
For example:
$ oc get pods
Example output
NAME READY STATUS RESTARTS AGE console-698d866b78-bnshf 1/1 Running 2 165m console-698d866b78-m87pm 1/1 Running 2 165m
Add the
-o wide
flags to view the pod IP address and the node where the pod is located.$ oc get pods -o wide
Example output
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE console-698d866b78-bnshf 1/1 Running 2 166m 10.128.0.24 ip-10-0-152-71.ec2.internal <none> console-698d866b78-m87pm 1/1 Running 2 166m 10.129.0.23 ip-10-0-173-237.ec2.internal <none>
2.2.3. Viewing pod usage statistics
You can display usage statistics about pods, which provide the runtime environments for containers. These usage statistics include CPU, memory, and storage consumption.
Prerequisites
-
You must have
cluster-reader
permission to view the usage statistics. - Metrics must be installed to view the usage statistics.
Procedure
To view the usage statistics:
Run the following command:
$ oc adm top pods
For example:
$ oc adm top pods -n openshift-console
Example output
NAME CPU(cores) MEMORY(bytes) console-7f58c69899-q8c8k 0m 22Mi console-7f58c69899-xhbgg 0m 25Mi downloads-594fcccf94-bcxk8 3m 18Mi downloads-594fcccf94-kv4p6 2m 15Mi
Run the following command to view the usage statistics for pods with labels:
$ oc adm top pod --selector=''
You must choose the selector (label query) to filter on. Supports
=
,==
, and!=
.For example:
$ oc adm top pod --selector='name=my-pod'
2.2.4. Viewing resource logs
You can view the log for various resources in the OpenShift CLI (oc
) and web console. Logs read from the tail, or end, of the log.
Prerequisites
-
Access to the OpenShift CLI (
oc
).
Procedure (UI)
In the OpenShift Container Platform console, navigate to Workloads → Pods or navigate to the pod through the resource you want to investigate.
NoteSome resources, such as builds, do not have pods to query directly. In such instances, you can locate the Logs link on the Details page for the resource.
- Select a project from the drop-down menu.
- Click the name of the pod you want to investigate.
- Click Logs.
Procedure (CLI)
View the log for a specific pod:
$ oc logs -f <pod_name> -c <container_name>
where:
-f
- Optional: Specifies that the output follows what is being written into the logs.
<pod_name>
- Specifies the name of the pod.
<container_name>
- Optional: Specifies the name of a container. When a pod has more than one container, you must specify the container name.
For example:
$ oc logs ruby-58cd97df55-mww7r
$ oc logs -f ruby-57f7f4855b-znl92 -c ruby
The contents of log files are printed out.
View the log for a specific resource:
$ oc logs <object_type>/<resource_name> 1
- 1
- Specifies the resource type and name.
For example:
$ oc logs deployment/ruby
The contents of log files are printed out.
2.3. Configuring an OpenShift Container Platform cluster for pods
As an administrator, you can create and maintain an efficient cluster for pods.
By keeping your cluster efficient, you can provide a better environment for your developers using such tools as what a pod does when it exits, ensuring that the required number of pods is always running, when to restart pods designed to run only once, limit the bandwidth available to pods, and how to keep pods running during disruptions.
2.3.1. Configuring how pods behave after restart
A pod restart policy determines how OpenShift Container Platform responds when Containers in that pod exit. The policy applies to all Containers in that pod.
The possible values are:
-
Always
- Tries restarting a successfully exited Container on the pod continuously, with an exponential back-off delay (10s, 20s, 40s) capped at 5 minutes. The default isAlways
. -
OnFailure
- Tries restarting a failed Container on the pod with an exponential back-off delay (10s, 20s, 40s) capped at 5 minutes. -
Never
- Does not try to restart exited or failed Containers on the pod. Pods immediately fail and exit.
After the pod is bound to a node, the pod will never be bound to another node. This means that a controller is necessary in order for a pod to survive node failure:
Condition | Controller Type | Restart Policy |
---|---|---|
Pods that are expected to terminate (such as batch computations) | Job |
|
Pods that are expected to not terminate (such as web servers) | Replication controller |
|
Pods that must run one-per-machine | Daemon set | Any |
If a Container on a pod fails and the restart policy is set to OnFailure
, the pod stays on the node and the Container is restarted. If you do not want the Container to restart, use a restart policy of Never
.
If an entire pod fails, OpenShift Container Platform starts a new pod. Developers must address the possibility that applications might be restarted in a new pod. In particular, applications must handle temporary files, locks, incomplete output, and so forth caused by previous runs.
Kubernetes architecture expects reliable endpoints from cloud providers. When a cloud provider is down, the kubelet prevents OpenShift Container Platform from restarting.
If the underlying cloud provider endpoints are not reliable, do not install a cluster using cloud provider integration. Install the cluster as if it was in a no-cloud environment. It is not recommended to toggle cloud provider integration on or off in an installed cluster.
For details on how OpenShift Container Platform uses restart policy with failed Containers, see the Example States in the Kubernetes documentation.
2.3.2. Limiting the bandwidth available to pods
You can apply quality-of-service traffic shaping to a pod and effectively limit its available bandwidth. Egress traffic (from the pod) is handled by policing, which simply drops packets in excess of the configured rate. Ingress traffic (to the pod) is handled by shaping queued packets to effectively handle data. The limits you place on a pod do not affect the bandwidth of other pods.
Procedure
To limit the bandwidth on a pod:
Write an object definition JSON file, and specify the data traffic speed using
kubernetes.io/ingress-bandwidth
andkubernetes.io/egress-bandwidth
annotations. For example, to limit both pod egress and ingress bandwidth to 10M/s:Limited
Pod
object definition{ "kind": "Pod", "spec": { "containers": [ { "image": "openshift/hello-openshift", "name": "hello-openshift" } ] }, "apiVersion": "v1", "metadata": { "name": "iperf-slow", "annotations": { "kubernetes.io/ingress-bandwidth": "10M", "kubernetes.io/egress-bandwidth": "10M" } } }
Create the pod using the object definition:
$ oc create -f <file_or_dir_path>
2.3.3. Understanding how to use pod disruption budgets to specify the number of pods that must be up
A pod disruption budget allows the specification of safety constraints on pods during operations, such as draining a node for maintenance.
PodDisruptionBudget
is an API object that specifies the minimum number or percentage of replicas that must be up at a time. Setting these in projects can be helpful during node maintenance (such as scaling a cluster down or a cluster upgrade) and is only honored on voluntary evictions (not on node failures).
A PodDisruptionBudget
object’s configuration consists of the following key parts:
- A label selector, which is a label query over a set of pods.
An availability level, which specifies the minimum number of pods that must be available simultaneously, either:
-
minAvailable
is the number of pods must always be available, even during a disruption. -
maxUnavailable
is the number of pods can be unavailable during a disruption.
-
Available
refers to the number of pods that has condition Ready=True
. Ready=True
refers to the pod that is able to serve requests and should be added to the load balancing pools of all matching services.
A maxUnavailable
of 0%
or 0
or a minAvailable
of 100%
or equal to the number of replicas is permitted but can block nodes from being drained.
You can check for pod disruption budgets across all projects with the following:
$ oc get poddisruptionbudget --all-namespaces
Example output
NAMESPACE NAME MIN AVAILABLE MAX UNAVAILABLE ALLOWED DISRUPTIONS AGE openshift-apiserver openshift-apiserver-pdb N/A 1 1 121m openshift-cloud-controller-manager aws-cloud-controller-manager 1 N/A 1 125m openshift-cloud-credential-operator pod-identity-webhook 1 N/A 1 117m openshift-cluster-csi-drivers aws-ebs-csi-driver-controller-pdb N/A 1 1 121m openshift-cluster-storage-operator csi-snapshot-controller-pdb N/A 1 1 122m openshift-cluster-storage-operator csi-snapshot-webhook-pdb N/A 1 1 122m openshift-console console N/A 1 1 116m #...
The PodDisruptionBudget
is considered healthy when there are at least minAvailable
pods running in the system. Every pod above that limit can be evicted.
Depending on your pod priority and preemption settings, lower-priority pods might be removed despite their pod disruption budget requirements.
2.3.3.1. Specifying the number of pods that must be up with pod disruption budgets
You can use a PodDisruptionBudget
object to specify the minimum number or percentage of replicas that must be up at a time.
Procedure
To configure a pod disruption budget:
Create a YAML file with the an object definition similar to the following:
apiVersion: policy/v1 1 kind: PodDisruptionBudget metadata: name: my-pdb spec: minAvailable: 2 2 selector: 3 matchLabels: name: my-pod
- 1
PodDisruptionBudget
is part of thepolicy/v1
API group.- 2
- The minimum number of pods that must be available simultaneously. This can be either an integer or a string specifying a percentage, for example,
20%
. - 3
- A label query over a set of resources. The result of
matchLabels
andmatchExpressions
are logically conjoined. Leave this paramter blank, for exampleselector {}
, to select all pods in the project.
Or:
apiVersion: policy/v1 1 kind: PodDisruptionBudget metadata: name: my-pdb spec: maxUnavailable: 25% 2 selector: 3 matchLabels: name: my-pod
- 1
PodDisruptionBudget
is part of thepolicy/v1
API group.- 2
- The maximum number of pods that can be unavailable simultaneously. This can be either an integer or a string specifying a percentage, for example,
20%
. - 3
- A label query over a set of resources. The result of
matchLabels
andmatchExpressions
are logically conjoined. Leave this paramter blank, for exampleselector {}
, to select all pods in the project.
Run the following command to add the object to project:
$ oc create -f </path/to/file> -n <project_name>
2.3.4. Preventing pod removal using critical pods
There are a number of core components that are critical to a fully functional cluster, but, run on a regular cluster node rather than the master. A cluster might stop working properly if a critical add-on is evicted.
Pods marked as critical are not allowed to be evicted.
Procedure
To make a pod critical:
Create a
Pod
spec or edit existing pods to include thesystem-cluster-critical
priority class:apiVersion: v1 kind: Pod metadata: name: my-pdb spec: template: metadata: name: critical-pod priorityClassName: system-cluster-critical 1
- 1
- Default priority class for pods that should never be evicted from a node.
Alternatively, you can specify
system-node-critical
for pods that are important to the cluster but can be removed if necessary.Create the pod:
$ oc create -f <file-name>.yaml
2.3.5. Reducing pod timeouts when using persistent volumes with high file counts
If a storage volume contains many files (~1,000,000 or greater), you might experience pod timeouts.
This can occur because, when volumes are mounted, OpenShift Container Platform recursively changes the ownership and permissions of the contents of each volume in order to match the fsGroup
specified in a pod’s securityContext
. For large volumes, checking and changing the ownership and permissions can be time consuming, resulting in a very slow pod startup.
You can reduce this delay by applying one of the following workarounds:
- Use a security context constraint (SCC) to skip the SELinux relabeling for a volume.
-
Use the
fsGroupChangePolicy
field inside an SCC to control the way that OpenShift Container Platform checks and manages ownership and permissions for a volume. - Use a runtime class to skip the SELinux relabeling for a volume.
For information, see When using Persistent Volumes with high file counts in OpenShift, why do pods fail to start or take an excessive amount of time to achieve "Ready" state?.
2.4. Automatically scaling pods with the horizontal pod autoscaler
As a developer, you can use a horizontal pod autoscaler (HPA) to specify how OpenShift Container Platform should automatically increase or decrease the scale of a replication controller or deployment configuration, based on metrics collected from the pods that belong to that replication controller or deployment configuration. You can create an HPA for any deployment, deployment config, replica set, replication controller, or stateful set.
For information on scaling pods based on custom metrics, see Automatically scaling pods based on custom metrics.
It is recommended to use a Deployment
object or ReplicaSet
object unless you need a specific feature or behavior provided by other objects. For more information on these objects, see Understanding Deployment and DeploymentConfig objects.
2.4.1. Understanding horizontal pod autoscalers
You can create a horizontal pod autoscaler to specify the minimum and maximum number of pods you want to run, as well as the CPU utilization or memory utilization your pods should target.
After you create a horizontal pod autoscaler, OpenShift Container Platform begins to query the CPU and/or memory resource metrics on the pods. When these metrics are available, the horizontal pod autoscaler computes the ratio of the current metric utilization with the desired metric utilization, and scales up or down accordingly. The query and scaling occurs at a regular interval, but can take one to two minutes before metrics become available.
For replication controllers, this scaling corresponds directly to the replicas of the replication controller. For deployment configurations, scaling corresponds directly to the replica count of the deployment configuration. Note that autoscaling applies only to the latest deployment in the Complete
phase.
OpenShift Container Platform automatically accounts for resources and prevents unnecessary autoscaling during resource spikes, such as during start up. Pods in the unready
state have 0 CPU
usage when scaling up and the autoscaler ignores the pods when scaling down. Pods without known metrics have 0% CPU
usage when scaling up and 100% CPU
when scaling down. This allows for more stability during the HPA decision. To use this feature, you must configure readiness checks to determine if a new pod is ready for use.
To use horizontal pod autoscalers, your cluster administrator must have properly configured cluster metrics.
2.4.1.1. Supported metrics
The following metrics are supported by horizontal pod autoscalers:
Metric | Description | API version |
---|---|---|
CPU utilization | Number of CPU cores used. Can be used to calculate a percentage of the pod’s requested CPU. |
|
Memory utilization | Amount of memory used. Can be used to calculate a percentage of the pod’s requested memory. |
|
For memory-based autoscaling, memory usage must increase and decrease proportionally to the replica count. On average:
- An increase in replica count must lead to an overall decrease in memory (working set) usage per-pod.
- A decrease in replica count must lead to an overall increase in per-pod memory usage.
Use the OpenShift Container Platform web console to check the memory behavior of your application and ensure that your application meets these requirements before using memory-based autoscaling.
The following example shows autoscaling for the image-registry
Deployment
object. The initial deployment requires 3 pods. The HPA object increases the minimum to 5. If CPU usage on the pods reaches 75%, the pods increase to 7:
$ oc autoscale deployment/image-registry --min=5 --max=7 --cpu-percent=75
Example output
horizontalpodautoscaler.autoscaling/image-registry autoscaled
Sample HPA for the image-registry
Deployment
object with minReplicas
set to 3
apiVersion: autoscaling/v1 kind: HorizontalPodAutoscaler metadata: name: image-registry namespace: default spec: maxReplicas: 7 minReplicas: 3 scaleTargetRef: apiVersion: apps/v1 kind: Deployment name: image-registry targetCPUUtilizationPercentage: 75 status: currentReplicas: 5 desiredReplicas: 0
View the new state of the deployment:
$ oc get deployment image-registry
There are now 5 pods in the deployment:
Example output
NAME REVISION DESIRED CURRENT TRIGGERED BY image-registry 1 5 5 config
2.4.2. How does the HPA work?
The horizontal pod autoscaler (HPA) extends the concept of pod auto-scaling. The HPA lets you create and manage a group of load-balanced nodes. The HPA automatically increases or decreases the number of pods when a given CPU or memory threshold is crossed.
Figure 2.1. High level workflow of the HPA
The HPA is an API resource in the Kubernetes autoscaling API group. The autoscaler works as a control loop with a default of 15 seconds for the sync period. During this period, the controller manager queries the CPU, memory utilization, or both, against what is defined in the YAML file for the HPA. The controller manager obtains the utilization metrics from the resource metrics API for per-pod resource metrics like CPU or memory, for each pod that is targeted by the HPA.
If a utilization value target is set, the controller calculates the utilization value as a percentage of the equivalent resource request on the containers in each pod. The controller then takes the average of utilization across all targeted pods and produces a ratio that is used to scale the number of desired replicas. The HPA is configured to fetch metrics from metrics.k8s.io
, which is provided by the metrics server. Because of the dynamic nature of metrics evaluation, the number of replicas can fluctuate during scaling for a group of replicas.
To implement the HPA, all targeted pods must have a resource request set on their containers.
2.4.3. About requests and limits
The scheduler uses the resource request that you specify for containers in a pod, to decide which node to place the pod on. The kubelet enforces the resource limit that you specify for a container to ensure that the container is not allowed to use more than the specified limit. The kubelet also reserves the request amount of that system resource specifically for that container to use.
How to use resource metrics?
In the pod specifications, you must specify the resource requests, such as CPU and memory. The HPA uses this specification to determine the resource utilization and then scales the target up or down.
For example, the HPA object uses the following metric source:
type: Resource resource: name: cpu target: type: Utilization averageUtilization: 60
In this example, the HPA keeps the average utilization of the pods in the scaling target at 60%. Utilization is the ratio between the current resource usage to the requested resource of the pod.
2.4.4. Best practices
All pods must have resource requests configured
The HPA makes a scaling decision based on the observed CPU or memory utilization values of pods in an OpenShift Container Platform cluster. Utilization values are calculated as a percentage of the resource requests of each pod. Missing resource request values can affect the optimal performance of the HPA.
Configure the cool down period
During horizontal pod autoscaling, there might be a rapid scaling of events without a time gap. Configure the cool down period to prevent frequent replica fluctuations. You can specify a cool down period by configuring the stabilizationWindowSeconds
field. The stabilization window is used to restrict the fluctuation of replicas count when the metrics used for scaling keep fluctuating. The autoscaling algorithm uses this window to infer a previous desired state and avoid unwanted changes to workload scale.
For example, a stabilization window is specified for the scaleDown
field:
behavior: scaleDown: stabilizationWindowSeconds: 300
In the above example, all desired states for the past 5 minutes are considered. This approximates a rolling maximum, and avoids having the scaling algorithm frequently remove pods only to trigger recreating an equivalent pod just moments later.
2.4.4.1. Scaling policies
The autoscaling/v2
API allows you to add scaling policies to a horizontal pod autoscaler. A scaling policy controls how the OpenShift Container Platform horizontal pod autoscaler (HPA) scales pods. Scaling policies allow you to restrict the rate that HPAs scale pods up or down by setting a specific number or specific percentage to scale in a specified period of time. You can also define a stabilization window, which uses previously computed desired states to control scaling if the metrics are fluctuating. You can create multiple policies for the same scaling direction, and determine which policy is used, based on the amount of change. You can also restrict the scaling by timed iterations. The HPA scales pods during an iteration, then performs scaling, as needed, in further iterations.
Sample HPA object with a scaling policy
apiVersion: autoscaling/v2 kind: HorizontalPodAutoscaler metadata: name: hpa-resource-metrics-memory namespace: default spec: behavior: scaleDown: 1 policies: 2 - type: Pods 3 value: 4 4 periodSeconds: 60 5 - type: Percent value: 10 6 periodSeconds: 60 selectPolicy: Min 7 stabilizationWindowSeconds: 300 8 scaleUp: 9 policies: - type: Pods value: 5 10 periodSeconds: 70 - type: Percent value: 12 11 periodSeconds: 80 selectPolicy: Max stabilizationWindowSeconds: 0 ...
- 1
- Specifies the direction for the scaling policy, either
scaleDown
orscaleUp
. This example creates a policy for scaling down. - 2
- Defines the scaling policy.
- 3
- Determines if the policy scales by a specific number of pods or a percentage of pods during each iteration. The default value is
pods
. - 4
- Limits the amount of scaling, either the number of pods or percentage of pods, during each iteration. There is no default value for scaling down by number of pods.
- 5
- Determines the length of a scaling iteration. The default value is
15
seconds. - 6
- The default value for scaling down by percentage is 100%.
- 7
- Determines which policy to use first, if multiple policies are defined. Specify
Max
to use the policy that allows the highest amount of change,Min
to use the policy that allows the lowest amount of change, orDisabled
to prevent the HPA from scaling in that policy direction. The default value isMax
. - 8
- Determines the time period the HPA should look back at desired states. The default value is
0
. - 9
- This example creates a policy for scaling up.
- 10
- Limits the amount of scaling up by the number of pods. The default value for scaling up the number of pods is 4%.
- 11
- Limits the amount of scaling up by the percentage of pods. The default value for scaling up by percentage is 100%.
Example policy for scaling down
apiVersion: autoscaling/v2 kind: HorizontalPodAutoscaler metadata: name: hpa-resource-metrics-memory namespace: default spec: ... minReplicas: 20 ... behavior: scaleDown: stabilizationWindowSeconds: 300 policies: - type: Pods value: 4 periodSeconds: 30 - type: Percent value: 10 periodSeconds: 60 selectPolicy: Max scaleUp: selectPolicy: Disabled
In this example, when the number of pods is greater than 40, the percent-based policy is used for scaling down, as that policy results in a larger change, as required by the selectPolicy
.
If there are 80 pod replicas, in the first iteration the HPA reduces the pods by 8, which is 10% of the 80 pods (based on the type: Percent
and value: 10
parameters), over one minute (periodSeconds: 60
). For the next iteration, the number of pods is 72. The HPA calculates that 10% of the remaining pods is 7.2, which it rounds up to 8 and scales down 8 pods. On each subsequent iteration, the number of pods to be scaled is re-calculated based on the number of remaining pods. When the number of pods falls below 40, the pods-based policy is applied, because the pod-based number is greater than the percent-based number. The HPA reduces 4 pods at a time (type: Pods
and value: 4
), over 30 seconds (periodSeconds: 30
), until there are 20 replicas remaining (minReplicas
).
The selectPolicy: Disabled
parameter prevents the HPA from scaling up the pods. You can manually scale up by adjusting the number of replicas in the replica set or deployment set, if needed.
If set, you can view the scaling policy by using the oc edit
command:
$ oc edit hpa hpa-resource-metrics-memory
Example output
apiVersion: autoscaling/v1 kind: HorizontalPodAutoscaler metadata: annotations: autoscaling.alpha.kubernetes.io/behavior:\ '{"ScaleUp":{"StabilizationWindowSeconds":0,"SelectPolicy":"Max","Policies":[{"Type":"Pods","Value":4,"PeriodSeconds":15},{"Type":"Percent","Value":100,"PeriodSeconds":15}]},\ "ScaleDown":{"StabilizationWindowSeconds":300,"SelectPolicy":"Min","Policies":[{"Type":"Pods","Value":4,"PeriodSeconds":60},{"Type":"Percent","Value":10,"PeriodSeconds":60}]}}' ...
2.4.5. Creating a horizontal pod autoscaler by using the web console
From the web console, you can create a horizontal pod autoscaler (HPA) that specifies the minimum and maximum number of pods you want to run on a Deployment
or DeploymentConfig
object. You can also define the amount of CPU or memory usage that your pods should target.
An HPA cannot be added to deployments that are part of an Operator-backed service, Knative service, or Helm chart.
Procedure
To create an HPA in the web console:
- In the Topology view, click the node to reveal the side pane.
From the Actions drop-down list, select Add HorizontalPodAutoscaler to open the Add HorizontalPodAutoscaler form.
Figure 2.2. Add HorizontalPodAutoscaler
From the Add HorizontalPodAutoscaler form, define the name, minimum and maximum pod limits, the CPU and memory usage, and click Save.
NoteIf any of the values for CPU and memory usage are missing, a warning is displayed.
To edit an HPA in the web console:
- In the Topology view, click the node to reveal the side pane.
- From the Actions drop-down list, select Edit HorizontalPodAutoscaler to open the Edit Horizontal Pod Autoscaler form.
- From the Edit Horizontal Pod Autoscaler form, edit the minimum and maximum pod limits and the CPU and memory usage, and click Save.
While creating or editing the horizontal pod autoscaler in the web console, you can switch from Form view to YAML view.
To remove an HPA in the web console:
- In the Topology view, click the node to reveal the side panel.
- From the Actions drop-down list, select Remove HorizontalPodAutoscaler.
- In the confirmation pop-up window, click Remove to remove the HPA.
2.4.6. Creating a horizontal pod autoscaler for CPU utilization by using the CLI
Using the OpenShift Container Platform CLI, you can create a horizontal pod autoscaler (HPA) to automatically scale an existing Deployment
, DeploymentConfig
, ReplicaSet
, ReplicationController
, or StatefulSet
object. The HPA scales the pods associated with that object to maintain the CPU usage you specify.
It is recommended to use a Deployment
object or ReplicaSet
object unless you need a specific feature or behavior provided by other objects.
The HPA increases and decreases the number of replicas between the minimum and maximum numbers to maintain the specified CPU utilization across all pods.
When autoscaling for CPU utilization, you can use the oc autoscale
command and specify the minimum and maximum number of pods you want to run at any given time and the average CPU utilization your pods should target. If you do not specify a minimum, the pods are given default values from the OpenShift Container Platform server.
To autoscale for a specific CPU value, create a HorizontalPodAutoscaler
object with the target CPU and pod limits.
Prerequisites
To use horizontal pod autoscalers, your cluster administrator must have properly configured cluster metrics. You can use the oc describe PodMetrics <pod-name>
command to determine if metrics are configured. If metrics are configured, the output appears similar to the following, with Cpu
and Memory
displayed under Usage
.
$ oc describe PodMetrics openshift-kube-scheduler-ip-10-0-135-131.ec2.internal
Example output
Name: openshift-kube-scheduler-ip-10-0-135-131.ec2.internal Namespace: openshift-kube-scheduler Labels: <none> Annotations: <none> API Version: metrics.k8s.io/v1beta1 Containers: Name: wait-for-host-port Usage: Memory: 0 Name: scheduler Usage: Cpu: 8m Memory: 45440Ki Kind: PodMetrics Metadata: Creation Timestamp: 2019-05-23T18:47:56Z Self Link: /apis/metrics.k8s.io/v1beta1/namespaces/openshift-kube-scheduler/pods/openshift-kube-scheduler-ip-10-0-135-131.ec2.internal Timestamp: 2019-05-23T18:47:56Z Window: 1m0s Events: <none>
Procedure
To create a horizontal pod autoscaler for CPU utilization:
Perform one of the following:
To scale based on the percent of CPU utilization, create a
HorizontalPodAutoscaler
object for an existing object:$ oc autoscale <object_type>/<name> \1 --min <number> \2 --max <number> \3 --cpu-percent=<percent> 4
- 1
- Specify the type and name of the object to autoscale. The object must exist and be a
Deployment
,DeploymentConfig
/dc
,ReplicaSet
/rs
,ReplicationController
/rc
, orStatefulSet
. - 2
- Optionally, specify the minimum number of replicas when scaling down.
- 3
- Specify the maximum number of replicas when scaling up.
- 4
- Specify the target average CPU utilization over all the pods, represented as a percent of requested CPU. If not specified or negative, a default autoscaling policy is used.
For example, the following command shows autoscaling for the
image-registry
Deployment
object. The initial deployment requires 3 pods. The HPA object increases the minimum to 5. If CPU usage on the pods reaches 75%, the pods will increase to 7:$ oc autoscale deployment/image-registry --min=5 --max=7 --cpu-percent=75
To scale for a specific CPU value, create a YAML file similar to the following for an existing object:
Create a YAML file similar to the following:
apiVersion: autoscaling/v2 1 kind: HorizontalPodAutoscaler metadata: name: cpu-autoscale 2 namespace: default spec: scaleTargetRef: apiVersion: apps/v1 3 kind: Deployment 4 name: example 5 minReplicas: 1 6 maxReplicas: 10 7 metrics: 8 - type: Resource resource: name: cpu 9 target: type: AverageValue 10 averageValue: 500m 11
- 1
- Use the
autoscaling/v2
API. - 2
- Specify a name for this horizontal pod autoscaler object.
- 3
- Specify the API version of the object to scale:
-
For a
Deployment
,ReplicaSet
,Statefulset
object, useapps/v1
. -
For a
ReplicationController
, usev1
. -
For a
DeploymentConfig
, useapps.openshift.io/v1
.
-
For a
- 4
- Specify the type of object. The object must be a
Deployment
,DeploymentConfig
/dc
,ReplicaSet
/rs
,ReplicationController
/rc
, orStatefulSet
. - 5
- Specify the name of the object to scale. The object must exist.
- 6
- Specify the minimum number of replicas when scaling down.
- 7
- Specify the maximum number of replicas when scaling up.
- 8
- Use the
metrics
parameter for memory utilization. - 9
- Specify
cpu
for CPU utilization. - 10
- Set to
AverageValue
. - 11
- Set to
averageValue
with the targeted CPU value.
Create the horizontal pod autoscaler:
$ oc create -f <file-name>.yaml
Verify that the horizontal pod autoscaler was created:
$ oc get hpa cpu-autoscale
Example output
NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGE cpu-autoscale Deployment/example 173m/500m 1 10 1 20m
2.4.7. Creating a horizontal pod autoscaler object for memory utilization by using the CLI
Using the OpenShift Container Platform CLI, you can create a horizontal pod autoscaler (HPA) to automatically scale an existing Deployment
, DeploymentConfig
, ReplicaSet
, ReplicationController
, or StatefulSet
object. The HPA scales the pods associated with that object to maintain the average memory utilization you specify, either a direct value or a percentage of requested memory.
It is recommended to use a Deployment
object or ReplicaSet
object unless you need a specific feature or behavior provided by other objects.
The HPA increases and decreases the number of replicas between the minimum and maximum numbers to maintain the specified memory utilization across all pods.
For memory utilization, you can specify the minimum and maximum number of pods and the average memory utilization your pods should target. If you do not specify a minimum, the pods are given default values from the OpenShift Container Platform server.
Prerequisites
To use horizontal pod autoscalers, your cluster administrator must have properly configured cluster metrics. You can use the oc describe PodMetrics <pod-name>
command to determine if metrics are configured. If metrics are configured, the output appears similar to the following, with Cpu
and Memory
displayed under Usage
.
$ oc describe PodMetrics openshift-kube-scheduler-ip-10-0-129-223.compute.internal -n openshift-kube-scheduler
Example output
Name: openshift-kube-scheduler-ip-10-0-129-223.compute.internal Namespace: openshift-kube-scheduler Labels: <none> Annotations: <none> API Version: metrics.k8s.io/v1beta1 Containers: Name: wait-for-host-port Usage: Cpu: 0 Memory: 0 Name: scheduler Usage: Cpu: 8m Memory: 45440Ki Kind: PodMetrics Metadata: Creation Timestamp: 2020-02-14T22:21:14Z Self Link: /apis/metrics.k8s.io/v1beta1/namespaces/openshift-kube-scheduler/pods/openshift-kube-scheduler-ip-10-0-129-223.compute.internal Timestamp: 2020-02-14T22:21:14Z Window: 5m0s Events: <none>
Procedure
To create a horizontal pod autoscaler for memory utilization:
Create a YAML file for one of the following:
To scale for a specific memory value, create a
HorizontalPodAutoscaler
object similar to the following for an existing object:apiVersion: autoscaling/v2 1 kind: HorizontalPodAutoscaler metadata: name: hpa-resource-metrics-memory 2 namespace: default spec: scaleTargetRef: apiVersion: apps/v1 3 kind: Deployment 4 name: example 5 minReplicas: 1 6 maxReplicas: 10 7 metrics: 8 - type: Resource resource: name: memory 9 target: type: AverageValue 10 averageValue: 500Mi 11 behavior: 12 scaleDown: stabilizationWindowSeconds: 300 policies: - type: Pods value: 4 periodSeconds: 60 - type: Percent value: 10 periodSeconds: 60 selectPolicy: Max
- 1
- Use the
autoscaling/v2
API. - 2
- Specify a name for this horizontal pod autoscaler object.
- 3
- Specify the API version of the object to scale:
-
For a
Deployment
,ReplicaSet
, orStatefulset
object, useapps/v1
. -
For a
ReplicationController
, usev1
. -
For a
DeploymentConfig
, useapps.openshift.io/v1
.
-
For a
- 4
- Specify the type of object. The object must be a
Deployment
,DeploymentConfig
,ReplicaSet
,ReplicationController
, orStatefulSet
. - 5
- Specify the name of the object to scale. The object must exist.
- 6
- Specify the minimum number of replicas when scaling down.
- 7
- Specify the maximum number of replicas when scaling up.
- 8
- Use the
metrics
parameter for memory utilization. - 9
- Specify
memory
for memory utilization. - 10
- Set the type to
AverageValue
. - 11
- Specify
averageValue
and a specific memory value. - 12
- Optional: Specify a scaling policy to control the rate of scaling up or down.
To scale for a percentage, create a
HorizontalPodAutoscaler
object similar to the following for an existing object:apiVersion: autoscaling/v2 1 kind: HorizontalPodAutoscaler metadata: name: memory-autoscale 2 namespace: default spec: scaleTargetRef: apiVersion: apps/v1 3 kind: Deployment 4 name: example 5 minReplicas: 1 6 maxReplicas: 10 7 metrics: 8 - type: Resource resource: name: memory 9 target: type: Utilization 10 averageUtilization: 50 11 behavior: 12 scaleUp: stabilizationWindowSeconds: 180 policies: - type: Pods value: 6 periodSeconds: 120 - type: Percent value: 10 periodSeconds: 120 selectPolicy: Max
- 1
- Use the
autoscaling/v2
API. - 2
- Specify a name for this horizontal pod autoscaler object.
- 3
- Specify the API version of the object to scale:
-
For a ReplicationController, use
v1
. -
For a DeploymentConfig, use
apps.openshift.io/v1
. -
For a Deployment, ReplicaSet, Statefulset object, use
apps/v1
.
-
For a ReplicationController, use
- 4
- Specify the type of object. The object must be a
Deployment
,DeploymentConfig
,ReplicaSet
,ReplicationController
, orStatefulSet
. - 5
- Specify the name of the object to scale. The object must exist.
- 6
- Specify the minimum number of replicas when scaling down.
- 7
- Specify the maximum number of replicas when scaling up.
- 8
- Use the
metrics
parameter for memory utilization. - 9
- Specify
memory
for memory utilization. - 10
- Set to
Utilization
. - 11
- Specify
averageUtilization
and a target average memory utilization over all the pods, represented as a percent of requested memory. The target pods must have memory requests configured. - 12
- Optional: Specify a scaling policy to control the rate of scaling up or down.
Create the horizontal pod autoscaler:
$ oc create -f <file-name>.yaml
For example:
$ oc create -f hpa.yaml
Example output
horizontalpodautoscaler.autoscaling/hpa-resource-metrics-memory created
Verify that the horizontal pod autoscaler was created:
$ oc get hpa hpa-resource-metrics-memory
Example output
NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGE hpa-resource-metrics-memory Deployment/example 2441216/500Mi 1 10 1 20m
$ oc describe hpa hpa-resource-metrics-memory
Example output
Name: hpa-resource-metrics-memory Namespace: default Labels: <none> Annotations: <none> CreationTimestamp: Wed, 04 Mar 2020 16:31:37 +0530 Reference: Deployment/example Metrics: ( current / target ) resource memory on pods: 2441216 / 500Mi Min replicas: 1 Max replicas: 10 ReplicationController pods: 1 current / 1 desired Conditions: Type Status Reason Message ---- ------ ------ ------- AbleToScale True ReadyForNewScale recommended size matches current size ScalingActive True ValidMetricFound the HPA was able to successfully calculate a replica count from memory resource ScalingLimited False DesiredWithinRange the desired count is within the acceptable range Events: Type Reason Age From Message ---- ------ ---- ---- ------- Normal SuccessfulRescale 6m34s horizontal-pod-autoscaler New size: 1; reason: All metrics below target
2.4.8. Understanding horizontal pod autoscaler status conditions by using the CLI
You can use the status conditions set to determine whether or not the horizontal pod autoscaler (HPA) is able to scale and whether or not it is currently restricted in any way.
The HPA status conditions are available with the v2
version of the autoscaling API.
The HPA responds with the following status conditions:
The
AbleToScale
condition indicates whether HPA is able to fetch and update metrics, as well as whether any backoff-related conditions could prevent scaling.-
A
True
condition indicates scaling is allowed. -
A
False
condition indicates scaling is not allowed for the reason specified.
-
A
The
ScalingActive
condition indicates whether the HPA is enabled (for example, the replica count of the target is not zero) and is able to calculate desired metrics.-
A
True
condition indicates metrics is working properly. -
A
False
condition generally indicates a problem with fetching metrics.
-
A
The
ScalingLimited
condition indicates that the desired scale was capped by the maximum or minimum of the horizontal pod autoscaler.-
A
True
condition indicates that you need to raise or lower the minimum or maximum replica count in order to scale. A
False
condition indicates that the requested scaling is allowed.$ oc describe hpa cm-test
Example output
Name: cm-test Namespace: prom Labels: <none> Annotations: <none> CreationTimestamp: Fri, 16 Jun 2017 18:09:22 +0000 Reference: ReplicationController/cm-test Metrics: ( current / target ) "http_requests" on pods: 66m / 500m Min replicas: 1 Max replicas: 4 ReplicationController pods: 1 current / 1 desired Conditions: 1 Type Status Reason Message ---- ------ ------ ------- AbleToScale True ReadyForNewScale the last scale time was sufficiently old as to warrant a new scale ScalingActive True ValidMetricFound the HPA was able to successfully calculate a replica count from pods metric http_request ScalingLimited False DesiredWithinRange the desired replica count is within the acceptable range Events:
- 1
- The horizontal pod autoscaler status messages.
-
A
The following is an example of a pod that is unable to scale:
Example output
Conditions: Type Status Reason Message ---- ------ ------ ------- AbleToScale False FailedGetScale the HPA controller was unable to get the target's current scale: no matches for kind "ReplicationController" in group "apps" Events: Type Reason Age From Message ---- ------ ---- ---- ------- Warning FailedGetScale 6s (x3 over 36s) horizontal-pod-autoscaler no matches for kind "ReplicationController" in group "apps"
The following is an example of a pod that could not obtain the needed metrics for scaling:
Example output
Conditions: Type Status Reason Message ---- ------ ------ ------- AbleToScale True SucceededGetScale the HPA controller was able to get the target's current scale ScalingActive False FailedGetResourceMetric the HPA was unable to compute the replica count: failed to get cpu utilization: unable to get metrics for resource cpu: no metrics returned from resource metrics API
The following is an example of a pod where the requested autoscaling was less than the required minimums:
Example output
Conditions: Type Status Reason Message ---- ------ ------ ------- AbleToScale True ReadyForNewScale the last scale time was sufficiently old as to warrant a new scale ScalingActive True ValidMetricFound the HPA was able to successfully calculate a replica count from pods metric http_request ScalingLimited False DesiredWithinRange the desired replica count is within the acceptable range
2.4.8.1. Viewing horizontal pod autoscaler status conditions by using the CLI
You can view the status conditions set on a pod by the horizontal pod autoscaler (HPA).
The horizontal pod autoscaler status conditions are available with the v2
version of the autoscaling API.
Prerequisites
To use horizontal pod autoscalers, your cluster administrator must have properly configured cluster metrics. You can use the oc describe PodMetrics <pod-name>
command to determine if metrics are configured. If metrics are configured, the output appears similar to the following, with Cpu
and Memory
displayed under Usage
.
$ oc describe PodMetrics openshift-kube-scheduler-ip-10-0-135-131.ec2.internal
Example output
Name: openshift-kube-scheduler-ip-10-0-135-131.ec2.internal Namespace: openshift-kube-scheduler Labels: <none> Annotations: <none> API Version: metrics.k8s.io/v1beta1 Containers: Name: wait-for-host-port Usage: Memory: 0 Name: scheduler Usage: Cpu: 8m Memory: 45440Ki Kind: PodMetrics Metadata: Creation Timestamp: 2019-05-23T18:47:56Z Self Link: /apis/metrics.k8s.io/v1beta1/namespaces/openshift-kube-scheduler/pods/openshift-kube-scheduler-ip-10-0-135-131.ec2.internal Timestamp: 2019-05-23T18:47:56Z Window: 1m0s Events: <none>
Procedure
To view the status conditions on a pod, use the following command with the name of the pod:
$ oc describe hpa <pod-name>
For example:
$ oc describe hpa cm-test
The conditions appear in the Conditions
field in the output.
Example output
Name: cm-test
Namespace: prom
Labels: <none>
Annotations: <none>
CreationTimestamp: Fri, 16 Jun 2017 18:09:22 +0000
Reference: ReplicationController/cm-test
Metrics: ( current / target )
"http_requests" on pods: 66m / 500m
Min replicas: 1
Max replicas: 4
ReplicationController pods: 1 current / 1 desired
Conditions: 1
Type Status Reason Message
---- ------ ------ -------
AbleToScale True ReadyForNewScale the last scale time was sufficiently old as to warrant a new scale
ScalingActive True ValidMetricFound the HPA was able to successfully calculate a replica count from pods metric http_request
ScalingLimited False DesiredWithinRange the desired replica count is within the acceptable range
2.4.9. Additional resources
- For more information on replication controllers and deployment controllers, see Understanding deployments and deployment configs.
- For an example on the usage of HPA, see Horizontal Pod Autoscaling of Quarkus Application Based on Memory Utilization.
2.5. Automatically adjust pod resource levels with the vertical pod autoscaler
The OpenShift Container Platform Vertical Pod Autoscaler Operator (VPA) automatically reviews the historic and current CPU and memory resources for containers in pods and can update the resource limits and requests based on the usage values it learns. The VPA uses individual custom resources (CR) to update all of the pods associated with a workload object, such as a Deployment
, DeploymentConfig
, StatefulSet
, Job
, DaemonSet
, ReplicaSet
, or ReplicationController
, in a project.
The VPA helps you to understand the optimal CPU and memory usage for your pods and can automatically maintain pod resources through the pod lifecycle.
2.5.1. About the Vertical Pod Autoscaler Operator
The Vertical Pod Autoscaler Operator (VPA) is implemented as an API resource and a custom resource (CR). The CR determines the actions the Vertical Pod Autoscaler Operator should take with the pods associated with a specific workload object, such as a daemon set, replication controller, and so forth, in a project.
You can use the default recommender or use your own alternative recommender to autoscale based on your own algorithms.
The default recommender automatically computes historic and current CPU and memory usage for the containers in those pods and uses this data to determine optimized resource limits and requests to ensure that these pods are operating efficiently at all times. For example, the default recommender suggests reduced resources for pods that are requesting more resources than they are using and increased resources for pods that are not requesting enough.
The VPA then automatically deletes any pods that are out of alignment with these recommendations one at a time, so that your applications can continue to serve requests with no downtime. The workload objects then re-deploy the pods with the original resource limits and requests. The VPA uses a mutating admission webhook to update the pods with optimized resource limits and requests before the pods are admitted to a node. If you do not want the VPA to delete pods, you can view the VPA resource limits and requests and manually update the pods as needed.
By default, workload objects must specify a minimum of two replicas in order for the VPA to automatically delete their pods. Workload objects that specify fewer replicas than this minimum are not deleted. If you manually delete these pods, when the workload object redeploys the pods, the VPA does update the new pods with its recommendations. You can change this minimum by modifying the VerticalPodAutoscalerController
object as shown shown in Changing the VPA minimum value.
For example, if you have a pod that uses 50% of the CPU but only requests 10%, the VPA determines that the pod is consuming more CPU than requested and deletes the pod. The workload object, such as replica set, restarts the pods and the VPA updates the new pod with its recommended resources.
For developers, you can use the VPA to help ensure your pods stay up during periods of high demand by scheduling pods onto nodes that have appropriate resources for each pod.
Administrators can use the VPA to better utilize cluster resources, such as preventing pods from reserving more CPU resources than needed. The VPA monitors the resources that workloads are actually using and adjusts the resource requirements so capacity is available to other workloads. The VPA also maintains the ratios between limits and requests that are specified in initial container configuration.
If you stop running the VPA or delete a specific VPA CR in your cluster, the resource requests for the pods already modified by the VPA do not change. Any new pods get the resources defined in the workload object, not the previous recommendations made by the VPA.
2.5.2. Installing the Vertical Pod Autoscaler Operator
You can use the OpenShift Container Platform web console to install the Vertical Pod Autoscaler Operator (VPA).
Procedure
- In the OpenShift Container Platform web console, click Operators → OperatorHub.
- Choose VerticalPodAutoscaler from the list of available Operators, and click Install.
-
On the Install Operator page, ensure that the Operator recommended namespace option is selected. This installs the Operator in the mandatory
openshift-vertical-pod-autoscaler
namespace, which is automatically created if it does not exist. - Click Install.
Verify the installation by listing the VPA Operator components:
- Navigate to Workloads → Pods.
-
Select the
openshift-vertical-pod-autoscaler
project from the drop-down menu and verify that there are four pods running. - Navigate to Workloads → Deployments to verify that there are four deployments running.
Optional. Verify the installation in the OpenShift Container Platform CLI using the following command:
$ oc get all -n openshift-vertical-pod-autoscaler
The output shows four pods and four deplyoments:
Example output
NAME READY STATUS RESTARTS AGE pod/vertical-pod-autoscaler-operator-85b4569c47-2gmhc 1/1 Running 0 3m13s pod/vpa-admission-plugin-default-67644fc87f-xq7k9 1/1 Running 0 2m56s pod/vpa-recommender-default-7c54764b59-8gckt 1/1 Running 0 2m56s pod/vpa-updater-default-7f6cc87858-47vw9 1/1 Running 0 2m56s NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE service/vpa-webhook ClusterIP 172.30.53.206 <none> 443/TCP 2m56s NAME READY UP-TO-DATE AVAILABLE AGE deployment.apps/vertical-pod-autoscaler-operator 1/1 1 1 3m13s deployment.apps/vpa-admission-plugin-default 1/1 1 1 2m56s deployment.apps/vpa-recommender-default 1/1 1 1 2m56s deployment.apps/vpa-updater-default 1/1 1 1 2m56s NAME DESIRED CURRENT READY AGE replicaset.apps/vertical-pod-autoscaler-operator-85b4569c47 1 1 1 3m13s replicaset.apps/vpa-admission-plugin-default-67644fc87f 1 1 1 2m56s replicaset.apps/vpa-recommender-default-7c54764b59 1 1 1 2m56s replicaset.apps/vpa-updater-default-7f6cc87858 1 1 1 2m56s
2.5.3. About Using the Vertical Pod Autoscaler Operator
To use the Vertical Pod Autoscaler Operator (VPA), you create a VPA custom resource (CR) for a workload object in your cluster. The VPA learns and applies the optimal CPU and memory resources for the pods associated with that workload object. You can use a VPA with a deployment, stateful set, job, daemon set, replica set, or replication controller workload object. The VPA CR must be in the same project as the pods you want to monitor.
You use the VPA CR to associate a workload object and specify which mode the VPA operates in:
-
The
Auto
andRecreate
modes automatically apply the VPA CPU and memory recommendations throughout the pod lifetime. The VPA deletes any pods in the project that are out of alignment with its recommendations. When redeployed by the workload object, the VPA updates the new pods with its recommendations. -
The
Initial
mode automatically applies VPA recommendations only at pod creation. -
The
Off
mode only provides recommended resource limits and requests, allowing you to manually apply the recommendations. Theoff
mode does not update pods.
You can also use the CR to opt-out certain containers from VPA evaluation and updates.
For example, a pod has the following limits and requests:
resources: limits: cpu: 1 memory: 500Mi requests: cpu: 500m memory: 100Mi
After creating a VPA that is set to auto
, the VPA learns the resource usage and deletes the pod. When redeployed, the pod uses the new resource limits and requests:
resources: limits: cpu: 50m memory: 1250Mi requests: cpu: 25m memory: 262144k
You can view the VPA recommendations using the following command:
$ oc get vpa <vpa-name> --output yaml
After a few minutes, the output shows the recommendations for CPU and memory requests, similar to the following:
Example output
... status: ... recommendation: containerRecommendations: - containerName: frontend lowerBound: cpu: 25m memory: 262144k target: cpu: 25m memory: 262144k uncappedTarget: cpu: 25m memory: 262144k upperBound: cpu: 262m memory: "274357142" - containerName: backend lowerBound: cpu: 12m memory: 131072k target: cpu: 12m memory: 131072k uncappedTarget: cpu: 12m memory: 131072k upperBound: cpu: 476m memory: "498558823" ...
The output shows the recommended resources, target
, the minimum recommended resources, lowerBound
, the highest recommended resources, upperBound
, and the most recent resource recommendations, uncappedTarget
.
The VPA uses the lowerBound
and upperBound
values to determine if a pod needs to be updated. If a pod has resource requests below the lowerBound
values or above the upperBound
values, the VPA terminates and recreates the pod with the target
values.
2.5.3.1. Changing the VPA minimum value
By default, workload objects must specify a minimum of two replicas in order for the VPA to automatically delete and update their pods. As a result, workload objects that specify fewer than two replicas are not automatically acted upon by the VPA. The VPA does update new pods from these workload objects if the pods are restarted by some process external to the VPA. You can change this cluster-wide minimum value by modifying the minReplicas
parameter in the VerticalPodAutoscalerController
custom resource (CR).
For example, if you set minReplicas
to 3
, the VPA does not delete and update pods for workload objects that specify fewer than three replicas.
If you set minReplicas
to 1
, the VPA can delete the only pod for a workload object that specifies only one replica. You should use this setting with one-replica objects only if your workload can tolerate downtime whenever the VPA deletes a pod to adjust its resources. To avoid unwanted downtime with one-replica objects, configure the VPA CRs with the podUpdatePolicy
set to Initial
, which automatically updates the pod only when it is restarted by some process external to the VPA, or Off
, which allows you to update the pod manually at an appropriate time for your application.
Example VerticalPodAutoscalerController
object
apiVersion: autoscaling.openshift.io/v1
kind: VerticalPodAutoscalerController
metadata:
creationTimestamp: "2021-04-21T19:29:49Z"
generation: 2
name: default
namespace: openshift-vertical-pod-autoscaler
resourceVersion: "142172"
uid: 180e17e9-03cc-427f-9955-3b4d7aeb2d59
spec:
minReplicas: 3 1
podMinCPUMillicores: 25
podMinMemoryMb: 250
recommendationOnly: false
safetyMarginFraction: 0.15
2.5.3.2. Automatically applying VPA recommendations
To use the VPA to automatically update pods, create a VPA CR for a specific workload object with updateMode
set to Auto
or Recreate
.
When the pods are created for the workload object, the VPA constantly monitors the containers to analyze their CPU and memory needs. The VPA deletes any pods that do not meet the VPA recommendations for CPU and memory. When redeployed, the pods use the new resource limits and requests based on the VPA recommendations, honoring any pod disruption budget set for your applications. The recommendations are added to the status
field of the VPA CR for reference.
By default, workload objects must specify a minimum of two replicas in order for the VPA to automatically delete their pods. Workload objects that specify fewer replicas than this minimum are not deleted. If you manually delete these pods, when the workload object redeploys the pods, the VPA does update the new pods with its recommendations. You can change this minimum by modifying the VerticalPodAutoscalerController
object as shown shown in Changing the VPA minimum value.
Example VPA CR for the Auto
mode
apiVersion: autoscaling.k8s.io/v1 kind: VerticalPodAutoscaler metadata: name: vpa-recommender spec: targetRef: apiVersion: "apps/v1" kind: Deployment 1 name: frontend 2 updatePolicy: updateMode: "Auto" 3
- 1
- The type of workload object you want this VPA CR to manage.
- 2
- The name of the workload object you want this VPA CR to manage.
- 3
- Set the mode to
Auto
orRecreate
:-
Auto
. The VPA assigns resource requests on pod creation and updates the existing pods by terminating them when the requested resources differ significantly from the new recommendation. -
Recreate
. The VPA assigns resource requests on pod creation and updates the existing pods by terminating them when the requested resources differ significantly from the new recommendation. This mode should be used rarely, only if you need to ensure that the pods are restarted whenever the resource request changes.
-
Before a VPA can determine recommendations for resources and apply the recommended resources to new pods, operating pods must exist and be running in the project.
If a workload’s resource usage, such as CPU and memory, is consistent, the VPA can determine recommendations for resources in a few minutes. If a workload’s resource usage is inconsistent, the VPA must collect metrics at various resource usage intervals for the VPA to make an accurate recommendation.
2.5.3.3. Automatically applying VPA recommendations on pod creation
To use the VPA to apply the recommended resources only when a pod is first deployed, create a VPA CR for a specific workload object with updateMode
set to Initial
.
Then, manually delete any pods associated with the workload object that you want to use the VPA recommendations. In the Initial
mode, the VPA does not delete pods and does not update the pods as it learns new resource recommendations.
Example VPA CR for the Initial
mode
apiVersion: autoscaling.k8s.io/v1 kind: VerticalPodAutoscaler metadata: name: vpa-recommender spec: targetRef: apiVersion: "apps/v1" kind: Deployment 1 name: frontend 2 updatePolicy: updateMode: "Initial" 3
Before a VPA can determine recommended resources and apply the recommendations to new pods, operating pods must exist and be running in the project.
To obtain the most accurate recommendations from the VPA, wait at least 8 days for the pods to run and for the VPA to stabilize.
2.5.3.4. Manually applying VPA recommendations
To use the VPA to only determine the recommended CPU and memory values, create a VPA CR for a specific workload object with updateMode
set to off
.
When the pods are created for that workload object, the VPA analyzes the CPU and memory needs of the containers and records those recommendations in the status
field of the VPA CR. The VPA does not update the pods as it determines new resource recommendations.
Example VPA CR for the Off
mode
apiVersion: autoscaling.k8s.io/v1 kind: VerticalPodAutoscaler metadata: name: vpa-recommender spec: targetRef: apiVersion: "apps/v1" kind: Deployment 1 name: frontend 2 updatePolicy: updateMode: "Off" 3
You can view the recommendations using the following command.
$ oc get vpa <vpa-name> --output yaml
With the recommendations, you can edit the workload object to add CPU and memory requests, then delete and redeploy the pods using the recommended resources.
Before a VPA can determine recommended resources and apply the recommendations to new pods, operating pods must exist and be running in the project.
To obtain the most accurate recommendations from the VPA, wait at least 8 days for the pods to run and for the VPA to stabilize.
2.5.3.5. Exempting containers from applying VPA recommendations
If your workload object has multiple containers and you do not want the VPA to evaluate and act on all of the containers, create a VPA CR for a specific workload object and add a resourcePolicy
to opt-out specific containers.
When the VPA updates the pods with recommended resources, any containers with a resourcePolicy
are not updated and the VPA does not present recommendations for those containers in the pod.
apiVersion: autoscaling.k8s.io/v1 kind: VerticalPodAutoscaler metadata: name: vpa-recommender spec: targetRef: apiVersion: "apps/v1" kind: Deployment 1 name: frontend 2 updatePolicy: updateMode: "Auto" 3 resourcePolicy: 4 containerPolicies: - containerName: my-opt-sidecar mode: "Off"
- 1
- The type of workload object you want this VPA CR to manage.
- 2
- The name of the workload object you want this VPA CR to manage.
- 3
- Set the mode to
Auto
,Recreate
, orOff
. TheRecreate
mode should be used rarely, only if you need to ensure that the pods are restarted whenever the resource request changes. - 4
- Specify the containers you want to opt-out and set
mode
toOff
.
For example, a pod has two containers, the same resource requests and limits:
# ... spec: containers: - name: frontend resources: limits: cpu: 1 memory: 500Mi requests: cpu: 500m memory: 100Mi - name: backend resources: limits: cpu: "1" memory: 500Mi requests: cpu: 500m memory: 100Mi # ...
After launching a VPA CR with the backend
container set to opt-out, the VPA terminates and recreates the pod with the recommended resources applied only to the frontend
container:
... spec: containers: name: frontend resources: limits: cpu: 50m memory: 1250Mi requests: cpu: 25m memory: 262144k ... name: backend resources: limits: cpu: "1" memory: 500Mi requests: cpu: 500m memory: 100Mi ...
2.5.3.6. Using an alternative recommender
You can use your own recommender to autoscale based on your own algorithms. If you do not specify an alternative recommender, OpenShift Container Platform uses the default recommender, which suggests CPU and memory requests based on historical usage. Because there is no universal recommendation policy that applies to all types of workloads, you might want to create and deploy different recommenders for specific workloads.
For example, the default recommender might not accurately predict future resource usage when containers exhibit certain resource behaviors, such as cyclical patterns that alternate between usage spikes and idling as used by monitoring applications, or recurring and repeating patterns used with deep learning applications. Using the default recommender with these usage behaviors might result in significant over-provisioning and Out of Memory (OOM) kills for your applications.
Instructions for how to create a recommender are beyond the scope of this documentation,
Procedure
To use an alternative recommender for your pods:
Create a service account for the alternative recommender and bind that service account to the required cluster role:
apiVersion: v1 1 kind: ServiceAccount metadata: name: alt-vpa-recommender-sa namespace: <namespace_name> --- apiVersion: rbac.authorization.k8s.io/v1 2 kind: ClusterRoleBinding metadata: name: system:example-metrics-reader roleRef: apiGroup: rbac.authorization.k8s.io kind: ClusterRole name: system:metrics-reader subjects: - kind: ServiceAccount name: alt-vpa-recommender-sa namespace: <namespace_name> --- apiVersion: rbac.authorization.k8s.io/v1 3 kind: ClusterRoleBinding metadata: name: system:example-vpa-actor roleRef: apiGroup: rbac.authorization.k8s.io kind: ClusterRole name: system:vpa-actor subjects: - kind: ServiceAccount name: alt-vpa-recommender-sa namespace: <namespace_name> --- apiVersion: rbac.authorization.k8s.io/v1 4 kind: ClusterRoleBinding metadata: name: system:example-vpa-target-reader-binding roleRef: apiGroup: rbac.authorization.k8s.io kind: ClusterRole name: system:vpa-target-reader subjects: - kind: ServiceAccount name: alt-vpa-recommender-sa namespace: <namespace_name>
- 1
- Creates a service accocunt for the recommender in the namespace where the recommender is deployed.
- 2
- Binds the recommender service account to the
metrics-reader
role. Specify the namespace where the recommender is to be deployed. - 3
- Binds the recommender service account to the
vpa-actor
role. Specify the namespace where the recommender is to be deployed. - 4
- Binds the recommender service account to the
vpa-target-reader
role. Specify the namespace where the recommender is to be deployed.
To add the alternative recommender to the cluster, create a Deployment object similar to the following:
apiVersion: apps/v1 kind: Deployment metadata: name: alt-vpa-recommender namespace: <namespace_name> spec: replicas: 1 selector: matchLabels: app: alt-vpa-recommender template: metadata: labels: app: alt-vpa-recommender spec: containers: 1 - name: recommender image: quay.io/example/alt-recommender:latest 2 imagePullPolicy: Always resources: limits: cpu: 200m memory: 1000Mi requests: cpu: 50m memory: 500Mi ports: - name: prometheus containerPort: 8942 securityContext: allowPrivilegeEscalation: false capabilities: drop: - ALL seccompProfile: type: RuntimeDefault serviceAccountName: alt-vpa-recommender-sa 3 securityContext: runAsNonRoot: true
A new pod is created for the alternative recommender in the same namespace.
$ oc get pods
Example output
NAME READY STATUS RESTARTS AGE frontend-845d5478d-558zf 1/1 Running 0 4m25s frontend-845d5478d-7z9gx 1/1 Running 0 4m25s frontend-845d5478d-b7l4j 1/1 Running 0 4m25s vpa-alt-recommender-55878867f9-6tp5v 1/1 Running 0 9s
Configure a VPA CR that includes the name of the alternative recommender
Deployment
object.Example VPA CR to include the alternative recommender
apiVersion: autoscaling.k8s.io/v1 kind: VerticalPodAutoscaler metadata: name: vpa-recommender namespace: <namespace_name> spec: recommenders: - name: alt-vpa-recommender 1 targetRef: apiVersion: "apps/v1" kind: Deployment 2 name: frontend
2.5.4. Using the Vertical Pod Autoscaler Operator
You can use the Vertical Pod Autoscaler Operator (VPA) by creating a VPA custom resource (CR). The CR indicates which pods it should analyze and determines the actions the VPA should take with those pods.
Prerequisites
- The workload object that you want to autoscale must exist.
- If you want to use an alternative recommender, a deployment including that recommender must exist.
Procedure
To create a VPA CR for a specific workload object:
Change to the project where the workload object you want to scale is located.
Create a VPA CR YAML file:
apiVersion: autoscaling.k8s.io/v1 kind: VerticalPodAutoscaler metadata: name: vpa-recommender spec: targetRef: apiVersion: "apps/v1" kind: Deployment 1 name: frontend 2 updatePolicy: updateMode: "Auto" 3 resourcePolicy: 4 containerPolicies: - containerName: my-opt-sidecar mode: "Off" recommenders: 5 - name: my-recommender
- 1
- Specify the type of workload object you want this VPA to manage:
Deployment
,StatefulSet
,Job
,DaemonSet
,ReplicaSet
, orReplicationController
. - 2
- Specify the name of an existing workload object you want this VPA to manage.
- 3
- Specify the VPA mode:
-
auto
to automatically apply the recommended resources on pods associated with the controller. The VPA terminates existing pods and creates new pods with the recommended resource limits and requests. -
recreate
to automatically apply the recommended resources on pods associated with the workload object. The VPA terminates existing pods and creates new pods with the recommended resource limits and requests. Therecreate
mode should be used rarely, only if you need to ensure that the pods are restarted whenever the resource request changes. -
initial
to automatically apply the recommended resources when pods associated with the workload object are created. The VPA does not update the pods as it learns new resource recommendations. -
off
to only generate resource recommendations for the pods associated with the workload object. The VPA does not update the pods as it learns new resource recommendations and does not apply the recommendations to new pods.
-
- 4
- Optional. Specify the containers you want to opt-out and set the mode to
Off
. - 5
- Optional. Specify an alternative recommender.
Create the VPA CR:
$ oc create -f <file-name>.yaml
After a few moments, the VPA learns the resource usage of the containers in the pods associated with the workload object.
You can view the VPA recommendations using the following command:
$ oc get vpa <vpa-name> --output yaml
The output shows the recommendations for CPU and memory requests, similar to the following:
Example output
... status: ... recommendation: containerRecommendations: - containerName: frontend lowerBound: 1 cpu: 25m memory: 262144k target: 2 cpu: 25m memory: 262144k uncappedTarget: 3 cpu: 25m memory: 262144k upperBound: 4 cpu: 262m memory: "274357142" - containerName: backend lowerBound: cpu: 12m memory: 131072k target: cpu: 12m memory: 131072k uncappedTarget: cpu: 12m memory: 131072k upperBound: cpu: 476m memory: "498558823" ...
2.5.5. Uninstalling the Vertical Pod Autoscaler Operator
You can remove the Vertical Pod Autoscaler Operator (VPA) from your OpenShift Container Platform cluster. After uninstalling, the resource requests for the pods already modified by an existing VPA CR do not change. Any new pods get the resources defined in the workload object, not the previous recommendations made by the Vertical Pod Autoscaler Operator.
You can remove a specific VPA CR by using the oc delete vpa <vpa-name>
command. The same actions apply for resource requests as uninstalling the vertical pod autoscaler.
After removing the VPA Operator, it is recommended that you remove the other components associated with the Operator to avoid potential issues.
Prerequisites
- The Vertical Pod Autoscaler Operator must be installed.
Procedure
- In the OpenShift Container Platform web console, click Operators → Installed Operators.
- Switch to the openshift-vertical-pod-autoscaler project.
- For the VerticalPodAutoscaler Operator, click the Options menu and select Uninstall Operator.
- Optional: To remove all operands associated with the Operator, in the dialog box, select Delete all operand instances for this operator checkbox.
- Click Uninstall.
Optional: Use the OpenShift CLI to remove the VPA components:
Delete the VPA namespace:
$ oc delete namespace openshift-vertical-pod-autoscaler
Delete the VPA custom resource definition (CRD) objects:
$ oc delete crd verticalpodautoscalercheckpoints.autoscaling.k8s.io
$ oc delete crd verticalpodautoscalercontrollers.autoscaling.openshift.io
$ oc delete crd verticalpodautoscalers.autoscaling.k8s.io
Deleting the CRDs removes the associated roles, cluster roles, and role bindings.
NoteThis action removes from the cluster all user-created VPA CRs. If you re-install the VPA, you must create these objects again.
Delete the VPA Operator:
$ oc delete operator/vertical-pod-autoscaler.openshift-vertical-pod-autoscaler
2.6. Providing sensitive data to pods
Some applications need sensitive information, such as passwords and user names, that you do not want developers to have.
As an administrator, you can use Secret
objects to provide this information without exposing that information in clear text.
2.6.1. Understanding secrets
The Secret
object type provides a mechanism to hold sensitive information such as passwords, OpenShift Container Platform client configuration files, private source repository credentials, and so on. Secrets decouple sensitive content from the pods. You can mount secrets into containers using a volume plugin or the system can use secrets to perform actions on behalf of a pod.
Key properties include:
- Secret data can be referenced independently from its definition.
- Secret data volumes are backed by temporary file-storage facilities (tmpfs) and never come to rest on a node.
- Secret data can be shared within a namespace.
YAML Secret
object definition
apiVersion: v1 kind: Secret metadata: name: test-secret namespace: my-namespace type: Opaque 1 data: 2 username: <username> 3 password: <password> stringData: 4 hostname: myapp.mydomain.com 5
- 1
- Indicates the structure of the secret’s key names and values.
- 2
- The allowable format for the keys in the
data
field must meet the guidelines in the DNS_SUBDOMAIN value in the Kubernetes identifiers glossary. - 3
- The value associated with keys in the
data
map must be base64 encoded. - 4
- Entries in the
stringData
map are converted to base64 and the entry will then be moved to thedata
map automatically. This field is write-only; the value will only be returned via thedata
field. - 5
- The value associated with keys in the
stringData
map is made up of plain text strings.
You must create a secret before creating the pods that depend on that secret.
When creating secrets:
- Create a secret object with secret data.
- Update the pod’s service account to allow the reference to the secret.
-
Create a pod, which consumes the secret as an environment variable or as a file (using a
secret
volume).
2.6.1.1. Types of secrets
The value in the type
field indicates the structure of the secret’s key names and values. The type can be used to enforce the presence of user names and keys in the secret object. If you do not want validation, use the opaque
type, which is the default.
Specify one of the following types to trigger minimal server-side validation to ensure the presence of specific key names in the secret data:
-
kubernetes.io/service-account-token
. Uses a service account token. -
kubernetes.io/basic-auth
. Use with Basic Authentication. -
kubernetes.io/ssh-auth
. Use with SSH Key Authentication. -
kubernetes.io/tls
. Use with TLS certificate authorities.
Specify type: Opaque
if you do not want validation, which means the secret does not claim to conform to any convention for key names or values. An opaque secret, allows for unstructured key:value
pairs that can contain arbitrary values.
You can specify other arbitrary types, such as example.com/my-secret-type
. These types are not enforced server-side, but indicate that the creator of the secret intended to conform to the key/value requirements of that type.
For examples of different secret types, see the code samples in Using Secrets.
2.6.1.2. Secret data keys
Secret keys must be in a DNS subdomain.
2.6.1.3. About automatically generated service account token secrets
When a service account is created, a service account token secret is automatically generated for it. This service account token secret, along with an automatically generated docker configuration secret, is used to authenticate to the internal OpenShift Container Platform registry. Do not rely on these automatically generated secrets for your own use; they might be removed in a future OpenShift Container Platform release.
Prior to OpenShift Container Platform 4.11, a second service account token secret was generated when a service account was created. This service account token secret was used to access the Kubernetes API.
Starting with OpenShift Container Platform 4.11, this second service account token secret is no longer created. This is because the LegacyServiceAccountTokenNoAutoGeneration
upstream Kubernetes feature gate was enabled, which stops the automatic generation of secret-based service account tokens to access the Kubernetes API.
After upgrading to 4.11, any existing service account token secrets are not deleted and continue to function.
Workloads are automatically injected with a projected volume to obtain a bound service account token. If your workload needs an additional service account token, add an additional projected volume in your workload manifest. Bound service account tokens are more secure than service account token secrets for the following reasons:
- Bound service account tokens have a bounded lifetime.
- Bound service account tokens contain audiences.
- Bound service account tokens can be bound to pods or secrets and the bound tokens are invalidated when the bound object is removed.
For more information, see Configuring bound service account tokens using volume projection.
You can also manually create a service account token secret to obtain a token, if the security exposure of a non-expiring token in a readable API object is acceptable to you. For more information, see Creating a service account token secret.
Additional resources
- For information about requesting bound service account tokens, see Using bound service account tokens
- For information about creating a service account token secret, see Creating a service account token secret.
2.6.2. Understanding how to create secrets
As an administrator you must create a secret before developers can create the pods that depend on that secret.
When creating secrets:
Create a secret object that contains the data you want to keep secret. The specific data required for each secret type is descibed in the following sections.
Example YAML object that creates an opaque secret
apiVersion: v1 kind: Secret metadata: name: test-secret type: Opaque 1 data: 2 username: <username> password: <password> stringData: 3 hostname: myapp.mydomain.com secret.properties: | property1=valueA property2=valueB
Use either the
data
orstringdata
fields, not both.Update the pod’s service account to reference the secret:
YAML of a service account that uses a secret
apiVersion: v1 kind: ServiceAccount ... secrets: - name: test-secret
Create a pod, which consumes the secret as an environment variable or as a file (using a
secret
volume):YAML of a pod populating files in a volume with secret data
apiVersion: v1 kind: Pod metadata: name: secret-example-pod spec: containers: - name: secret-test-container image: busybox command: [ "/bin/sh", "-c", "cat /etc/secret-volume/*" ] volumeMounts: 1 - name: secret-volume mountPath: /etc/secret-volume 2 readOnly: true 3 volumes: - name: secret-volume secret: secretName: test-secret 4 restartPolicy: Never
- 1
- Add a
volumeMounts
field to each container that needs the secret. - 2
- Specifies an unused directory name where you would like the secret to appear. Each key in the secret data map becomes the filename under
mountPath
. - 3
- Set to
true
. If true, this instructs the driver to provide a read-only volume. - 4
- Specifies the name of the secret.
YAML of a pod populating environment variables with secret data
apiVersion: v1 kind: Pod metadata: name: secret-example-pod spec: containers: - name: secret-test-container image: busybox command: [ "/bin/sh", "-c", "export" ] env: - name: TEST_SECRET_USERNAME_ENV_VAR valueFrom: secretKeyRef: 1 name: test-secret key: username restartPolicy: Never
- 1
- Specifies the environment variable that consumes the secret key.
YAML of a build config populating environment variables with secret data
apiVersion: build.openshift.io/v1 kind: BuildConfig metadata: name: secret-example-bc spec: strategy: sourceStrategy: env: - name: TEST_SECRET_USERNAME_ENV_VAR valueFrom: secretKeyRef: 1 name: test-secret key: username from: kind: ImageStreamTag namespace: openshift name: 'cli:latest'
- 1
- Specifies the environment variable that consumes the secret key.
2.6.2.1. Secret creation restrictions
To use a secret, a pod needs to reference the secret. A secret can be used with a pod in three ways:
- To populate environment variables for containers.
- As files in a volume mounted on one or more of its containers.
- By kubelet when pulling images for the pod.
Volume type secrets write data into the container as a file using the volume mechanism. Image pull secrets use service accounts for the automatic injection of the secret into all pods in a namespace.
When a template contains a secret definition, the only way for the template to use the provided secret is to ensure that the secret volume sources are validated and that the specified object reference actually points to a Secret
object. Therefore, a secret needs to be created before any pods that depend on it. The most effective way to ensure this is to have it get injected automatically through the use of a service account.
Secret API objects reside in a namespace. They can only be referenced by pods in that same namespace.
Individual secrets are limited to 1MB in size. This is to discourage the creation of large secrets that could exhaust apiserver and kubelet memory. However, creation of a number of smaller secrets could also exhaust memory.
2.6.2.2. Creating an opaque secret
As an administrator, you can create an opaque secret, which allows you to store unstructured key:value
pairs that can contain arbitrary values.
Procedure
Create a
Secret
object in a YAML file on a control plane node.For example:
apiVersion: v1 kind: Secret metadata: name: mysecret type: Opaque 1 data: username: <username> password: <password>
- 1
- Specifies an opaque secret.
Use the following command to create a
Secret
object:$ oc create -f <filename>.yaml
To use the secret in a pod:
- Update the pod’s service account to reference the secret, as shown in the "Understanding how to create secrets" section.
-
Create the pod, which consumes the secret as an environment variable or as a file (using a
secret
volume), as shown in the "Understanding how to create secrets" section.
Additional resources
- For more information on using secrets in pods, see Understanding how to create secrets.
2.6.2.3. Creating a service account token secret
As an administrator, you can create a service account token secret, which allows you to distribute a service account token to applications that must authenticate to the API.
It is recommended to obtain bound service account tokens using the TokenRequest API instead of using service account token secrets. The tokens obtained from the TokenRequest API are more secure than the tokens stored in secrets, because they have a bounded lifetime and are not readable by other API clients.
You should create a service account token secret only if you cannot use the TokenRequest API and if the security exposure of a non-expiring token in a readable API object is acceptable to you.
See the Additional resources section that follows for information on creating bound service account tokens.
Procedure
Create a
Secret
object in a YAML file on a control plane node:Example
secret
object:apiVersion: v1 kind: Secret metadata: name: secret-sa-sample annotations: kubernetes.io/service-account.name: "sa-name" 1 type: kubernetes.io/service-account-token 2
Use the following command to create the
Secret
object:$ oc create -f <filename>.yaml
To use the secret in a pod:
- Update the pod’s service account to reference the secret, as shown in the "Understanding how to create secrets" section.
-
Create the pod, which consumes the secret as an environment variable or as a file (using a
secret
volume), as shown in the "Understanding how to create secrets" section.
Additional resources
- For more information on using secrets in pods, see Understanding how to create secrets.
- For information on requesting bound service account tokens, see Using bound service account tokens
- For information on creating service accounts, see Understanding and creating service accounts.
2.6.2.4. Creating a basic authentication secret
As an administrator, you can create a basic authentication secret, which allows you to store the credentials needed for basic authentication. When using this secret type, the data
parameter of the Secret
object must contain the following keys encoded in the base64 format:
-
username
: the user name for authentication -
password
: the password or token for authentication
You can use the stringData
parameter to use clear text content.
Procedure
Create a
Secret
object in a YAML file on a control plane node:Example
secret
objectapiVersion: v1 kind: Secret metadata: name: secret-basic-auth type: kubernetes.io/basic-auth 1 data: stringData: 2 username: admin password: <password>
Use the following command to create the
Secret
object:$ oc create -f <filename>.yaml
To use the secret in a pod:
- Update the pod’s service account to reference the secret, as shown in the "Understanding how to create secrets" section.
-
Create the pod, which consumes the secret as an environment variable or as a file (using a
secret
volume), as shown in the "Understanding how to create secrets" section.
Additional resources
- For more information on using secrets in pods, see Understanding how to create secrets.
2.6.2.5. Creating an SSH authentication secret
As an administrator, you can create an SSH authentication secret, which allows you to store data used for SSH authentication. When using this secret type, the data
parameter of the Secret
object must contain the SSH credential to use.
Procedure
Create a
Secret
object in a YAML file on a control plane node:Example
secret
object:apiVersion: v1 kind: Secret metadata: name: secret-ssh-auth type: kubernetes.io/ssh-auth 1 data: ssh-privatekey: | 2 MIIEpQIBAAKCAQEAulqb/Y ...
Use the following command to create the
Secret
object:$ oc create -f <filename>.yaml
To use the secret in a pod:
- Update the pod’s service account to reference the secret, as shown in the "Understanding how to create secrets" section.
-
Create the pod, which consumes the secret as an environment variable or as a file (using a
secret
volume), as shown in the "Understanding how to create secrets" section.
Additional resources
2.6.2.6. Creating a Docker configuration secret
As an administrator, you can create a Docker configuration secret, which allows you to store the credentials for accessing a container image registry.
-
kubernetes.io/dockercfg
. Use this secret type to store your local Docker configuration file. Thedata
parameter of thesecret
object must contain the contents of a.dockercfg
file encoded in the base64 format. -
kubernetes.io/dockerconfigjson
. Use this secret type to store your local Docker configuration JSON file. Thedata
parameter of thesecret
object must contain the contents of a.docker/config.json
file encoded in the base64 format.
Procedure
Create a
Secret
object in a YAML file on a control plane node.Example Docker configuration
secret
objectapiVersion: v1 kind: Secret metadata: name: secret-docker-cfg namespace: my-project type: kubernetes.io/dockerconfig 1 data: .dockerconfig:bm5ubm5ubm5ubm5ubm5ubm5ubm5ubmdnZ2dnZ2dnZ2dnZ2dnZ2dnZ2cgYXV0aCBrZXlzCg== 2
Example Docker configuration JSON
secret
objectapiVersion: v1 kind: Secret metadata: name: secret-docker-json namespace: my-project type: kubernetes.io/dockerconfig 1 data: .dockerconfigjson:bm5ubm5ubm5ubm5ubm5ubm5ubm5ubmdnZ2dnZ2dnZ2dnZ2dnZ2dnZ2cgYXV0aCBrZXlzCg== 2
Use the following command to create the
Secret
object$ oc create -f <filename>.yaml
To use the secret in a pod:
- Update the pod’s service account to reference the secret, as shown in the "Understanding how to create secrets" section.
-
Create the pod, which consumes the secret as an environment variable or as a file (using a
secret
volume), as shown in the "Understanding how to create secrets" section.
Additional resources
- For more information on using secrets in pods, see Understanding how to create secrets.
2.6.2.7. Creating a secret using the web console
You can create secrets using the web console.
Procedure
- Navigate to Workloads → Secrets.
Click Create → From YAML.
Edit the YAML manually to your specifications, or drag and drop a file into the YAML editor. For example:
apiVersion: v1 kind: Secret metadata: name: example namespace: <namespace> type: Opaque 1 data: username: <base64 encoded username> password: <base64 encoded password> stringData: 2 hostname: myapp.mydomain.com
- 1
- This example specifies an opaque secret; however, you may see other secret types such as service account token secret, basic authentication secret, SSH authentication secret, or a secret that uses Docker configuration.
- 2
- Entries in the
stringData
map are converted to base64 and the entry will then be moved to thedata
map automatically. This field is write-only; the value will only be returned via thedata
field.
- Click Create.
Click Add Secret to workload.
- From the drop-down menu, select the workload to add.
- Click Save.
2.6.3. Understanding how to update secrets
When you modify the value of a secret, the value (used by an already running pod) will not dynamically change. To change a secret, you must delete the original pod and create a new pod (perhaps with an identical PodSpec).
Updating a secret follows the same workflow as deploying a new Container image. You can use the kubectl rolling-update
command.
The resourceVersion
value in a secret is not specified when it is referenced. Therefore, if a secret is updated at the same time as pods are starting, the version of the secret that is used for the pod is not defined.
Currently, it is not possible to check the resource version of a secret object that was used when a pod was created. It is planned that pods will report this information, so that a controller could restart ones using an old resourceVersion
. In the interim, do not update the data of existing secrets, but create new ones with distinct names.
2.6.4. Creating and using secrets
As an administrator, you can create a service account token secret. This allows you to distribute a service account token to applications that must authenticate to the API.
Procedure
Create a service account in your namespace by running the following command:
$ oc create sa <service_account_name> -n <your_namespace>
Save the following YAML example to a file named
service-account-token-secret.yaml
. The example includes aSecret
object configuration that you can use to generate a service account token:apiVersion: v1 kind: Secret metadata: name: <secret_name> 1 annotations: kubernetes.io/service-account.name: "sa-name" 2 type: kubernetes.io/service-account-token 3
Generate the service account token by applying the file:
$ oc apply -f service-account-token-secret.yaml
Get the service account token from the secret by running the following command:
$ oc get secret <sa_token_secret> -o jsonpath='{.data.token}' | base64 --decode 1
Example output
ayJhbGciOiJSUzI1NiIsImtpZCI6IklOb2dtck1qZ3hCSWpoNnh5YnZhSE9QMkk3YnRZMVZoclFfQTZfRFp1YlUifQ.eyJpc3MiOiJrdWJlcm5ldGVzL3NlcnZpY2VhY2NvdW50Iiwia3ViZXJuZXRlcy5pby9zZXJ2aWNlYWNjb3VudC9uYW1lc3BhY2UiOiJkZWZhdWx0Iiwia3ViZXJuZXRlcy5pby9zZXJ2aWNlYWNjb3VudC9zZWNyZXQubmFtZSI6ImJ1aWxkZXItdG9rZW4tdHZrbnIiLCJrdWJlcm5ldGVzLmlvL3NlcnZpY2VhY2NvdW50L3NlcnZpY2UtYWNjb3VudC5uYW1lIjoiYnVpbGRlciIsImt1YmVybmV0ZXMuaW8vc2VydmljZWFjY291bnQvc2VydmljZS1hY2NvdW50LnVpZCI6IjNmZGU2MGZmLTA1NGYtNDkyZi04YzhjLTNlZjE0NDk3MmFmNyIsInN1YiI6InN5c3RlbTpzZXJ2aWNlYWNjb3VudDpkZWZhdWx0OmJ1aWxkZXIifQ.OmqFTDuMHC_lYvvEUrjr1x453hlEEHYcxS9VKSzmRkP1SiVZWPNPkTWlfNRp6bIUZD3U6aN3N7dMSN0eI5hu36xPgpKTdvuckKLTCnelMx6cxOdAbrcw1mCmOClNscwjS1KO1kzMtYnnq8rXHiMJELsNlhnRyyIXRTtNBsy4t64T3283s3SLsancyx0gy0ujx-Ch3uKAKdZi5iT-I8jnnQ-ds5THDs2h65RJhgglQEmSxpHrLGZFmyHAQI-_SjvmHZPXEc482x3SkaQHNLqpmrpJorNqh1M8ZHKzlujhZgVooMvJmWPXTb2vnvi3DGn2XI-hZxl1yD2yGH1RBpYUHA
- 1
- Replace <sa_token_secret> with the name of your service token secret.
Use your service account token to authenticate with the API of your cluster:
$ curl -X GET <openshift_cluster_api> --header "Authorization: Bearer <token>" 1 2
2.6.5. About using signed certificates with secrets
To secure communication to your service, you can configure OpenShift Container Platform to generate a signed serving certificate/key pair that you can add into a secret in a project.
A service serving certificate secret is intended to support complex middleware applications that need out-of-the-box certificates. It has the same settings as the server certificates generated by the administrator tooling for nodes and masters.
Service Pod
spec configured for a service serving certificates secret.
apiVersion: v1
kind: Service
metadata:
name: registry
annotations:
service.beta.openshift.io/serving-cert-secret-name: registry-cert1
# ...
- 1
- Specify the name for the certificate
Other pods can trust cluster-created certificates (which are only signed for internal DNS names), by using the CA bundle in the /var/run/secrets/kubernetes.io/serviceaccount/service-ca.crt file that is automatically mounted in their pod.
The signature algorithm for this feature is x509.SHA256WithRSA
. To manually rotate, delete the generated secret. A new certificate is created.
2.6.5.1. Generating signed certificates for use with secrets
To use a signed serving certificate/key pair with a pod, create or edit the service to add the service.beta.openshift.io/serving-cert-secret-name
annotation, then add the secret to the pod.
Procedure
To create a service serving certificate secret:
-
Edit the
Pod
spec for your service. Add the
service.beta.openshift.io/serving-cert-secret-name
annotation with the name you want to use for your secret.kind: Service apiVersion: v1 metadata: name: my-service annotations: service.beta.openshift.io/serving-cert-secret-name: my-cert 1 spec: selector: app: MyApp ports: - protocol: TCP port: 80 targetPort: 9376
The certificate and key are in PEM format, stored in
tls.crt
andtls.key
respectively.Create the service:
$ oc create -f <file-name>.yaml
View the secret to make sure it was created:
View a list of all secrets:
$ oc get secrets
Example output
NAME TYPE DATA AGE my-cert kubernetes.io/tls 2 9m
View details on your secret:
$ oc describe secret my-cert
Example output
Name: my-cert Namespace: openshift-console Labels: <none> Annotations: service.beta.openshift.io/expiry: 2023-03-08T23:22:40Z service.beta.openshift.io/originating-service-name: my-service service.beta.openshift.io/originating-service-uid: 640f0ec3-afc2-4380-bf31-a8c784846a11 service.beta.openshift.io/expiry: 2023-03-08T23:22:40Z Type: kubernetes.io/tls Data ==== tls.key: 1679 bytes tls.crt: 2595 bytes
Edit your
Pod
spec with that secret.apiVersion: v1 kind: Pod metadata: name: my-service-pod spec: containers: - name: mypod image: redis volumeMounts: - name: my-container mountPath: "/etc/my-path" volumes: - name: my-volume secret: secretName: my-cert items: - key: username path: my-group/my-username mode: 511
When it is available, your pod will run. The certificate will be good for the internal service DNS name,
<service.name>.<service.namespace>.svc
.The certificate/key pair is automatically replaced when it gets close to expiration. View the expiration date in the
service.beta.openshift.io/expiry
annotation on the secret, which is in RFC3339 format.NoteIn most cases, the service DNS name
<service.name>.<service.namespace>.svc
is not externally routable. The primary use of<service.name>.<service.namespace>.svc
is for intracluster or intraservice communication, and with re-encrypt routes.
2.6.6. Troubleshooting secrets
If a service certificate generation fails with (service’s service.beta.openshift.io/serving-cert-generation-error
annotation contains):
secret/ssl-key references serviceUID 62ad25ca-d703-11e6-9d6f-0e9c0057b608, which does not match 77b6dd80-d716-11e6-9d6f-0e9c0057b60
The service that generated the certificate no longer exists, or has a different serviceUID
. You must force certificates regeneration by removing the old secret, and clearing the following annotations on the service service.beta.openshift.io/serving-cert-generation-error
, service.beta.openshift.io/serving-cert-generation-error-num
:
Delete the secret:
$ oc delete secret <secret_name>
Clear the annotations:
$ oc annotate service <service_name> service.beta.openshift.io/serving-cert-generation-error-
$ oc annotate service <service_name> service.beta.openshift.io/serving-cert-generation-error-num-
The command removing annotation has a -
after the annotation name to be removed.
2.7. Creating and using config maps
The following sections define config maps and how to create and use them.
2.7.1. Understanding config maps
Many applications require configuration by using some combination of configuration files, command line arguments, and environment variables. In OpenShift Container Platform, these configuration artifacts are decoupled from image content to keep containerized applications portable.
The ConfigMap
object provides mechanisms to inject containers with configuration data while keeping containers agnostic of OpenShift Container Platform. A config map can be used to store fine-grained information like individual properties or coarse-grained information like entire configuration files or JSON blobs.
The ConfigMap
object holds key-value pairs of configuration data that can be consumed in pods or used to store configuration data for system components such as controllers. For example:
ConfigMap
Object Definition
kind: ConfigMap apiVersion: v1 metadata: creationTimestamp: 2016-02-18T19:14:38Z name: example-config namespace: my-namespace data: 1 example.property.1: hello example.property.2: world example.property.file: |- property.1=value-1 property.2=value-2 property.3=value-3 binaryData: bar: L3Jvb3QvMTAw 2
You can use the binaryData
field when you create a config map from a binary file, such as an image.
Configuration data can be consumed in pods in a variety of ways. A config map can be used to:
- Populate environment variable values in containers
- Set command-line arguments in a container
- Populate configuration files in a volume
Users and system components can store configuration data in a config map.
A config map is similar to a secret, but designed to more conveniently support working with strings that do not contain sensitive information.
Config map restrictions
A config map must be created before its contents can be consumed in pods.
Controllers can be written to tolerate missing configuration data. Consult individual components configured by using config maps on a case-by-case basis.
ConfigMap
objects reside in a project.
They can only be referenced by pods in the same project.
The Kubelet only supports the use of a config map for pods it gets from the API server.
This includes any pods created by using the CLI, or indirectly from a replication controller. It does not include pods created by using the OpenShift Container Platform node’s --manifest-url
flag, its --config
flag, or its REST API because these are not common ways to create pods.
2.7.2. Creating a config map in the OpenShift Container Platform web console
You can create a config map in the OpenShift Container Platform web console.
Procedure
To create a config map as a cluster administrator:
-
In the Administrator perspective, select
Workloads
→Config Maps
. - At the top right side of the page, select Create Config Map.
- Enter the contents of your config map.
- Select Create.
-
In the Administrator perspective, select
To create a config map as a developer:
-
In the Developer perspective, select
Config Maps
. - At the top right side of the page, select Create Config Map.
- Enter the contents of your config map.
- Select Create.
-
In the Developer perspective, select
2.7.3. Creating a config map by using the CLI
You can use the following command to create a config map from directories, specific files, or literal values.
Procedure
Create a config map:
$ oc create configmap <configmap_name> [options]
2.7.3.1. Creating a config map from a directory
You can create a config map from a directory by using the --from-file
flag. This method allows you to use multiple files within a directory to create a config map.
Each file in the directory is used to populate a key in the config map, where the name of the key is the file name, and the value of the key is the content of the file.
For example, the following command creates a config map with the contents of the example-files
directory:
$ oc create configmap game-config --from-file=example-files/
View the keys in the config map:
$ oc describe configmaps game-config
Example output
Name: game-config Namespace: default Labels: <none> Annotations: <none> Data game.properties: 158 bytes ui.properties: 83 bytes
You can see that the two keys in the map are created from the file names in the directory specified in the command. The content of those keys might be large, so the output of oc describe
only shows the names of the keys and their sizes.
Prerequisite
You must have a directory with files that contain the data you want to populate a config map with.
The following procedure uses these example files:
game.properties
andui.properties
:$ cat example-files/game.properties
Example output
enemies=aliens lives=3 enemies.cheat=true enemies.cheat.level=noGoodRotten secret.code.passphrase=UUDDLRLRBABAS secret.code.allowed=true secret.code.lives=30
$ cat example-files/ui.properties
Example output
color.good=purple color.bad=yellow allow.textmode=true how.nice.to.look=fairlyNice
Procedure
Create a config map holding the content of each file in this directory by entering the following command:
$ oc create configmap game-config \ --from-file=example-files/
Verification
Enter the
oc get
command for the object with the-o
option to see the values of the keys:$ oc get configmaps game-config -o yaml
Example output
apiVersion: v1 data: game.properties: |- enemies=aliens lives=3 enemies.cheat=true enemies.cheat.level=noGoodRotten secret.code.passphrase=UUDDLRLRBABAS secret.code.allowed=true secret.code.lives=30 ui.properties: | color.good=purple color.bad=yellow allow.textmode=true how.nice.to.look=fairlyNice kind: ConfigMap metadata: creationTimestamp: 2016-02-18T18:34:05Z name: game-config namespace: default resourceVersion: "407" selflink: /api/v1/namespaces/default/configmaps/game-config uid: 30944725-d66e-11e5-8cd0-68f728db1985
2.7.3.2. Creating a config map from a file
You can create a config map from a file by using the --from-file
flag. You can pass the --from-file
option multiple times to the CLI.
You can also specify the key to set in a config map for content imported from a file by passing a key=value
expression to the --from-file
option. For example:
$ oc create configmap game-config-3 --from-file=game-special-key=example-files/game.properties
If you create a config map from a file, you can include files containing non-UTF8 data that are placed in this field without corrupting the non-UTF8 data. OpenShift Container Platform detects binary files and transparently encodes the file as MIME
. On the server, the MIME
payload is decoded and stored without corrupting the data.
Prerequisite
You must have a directory with files that contain the data you want to populate a config map with.
The following procedure uses these example files:
game.properties
andui.properties
:$ cat example-files/game.properties
Example output
enemies=aliens lives=3 enemies.cheat=true enemies.cheat.level=noGoodRotten secret.code.passphrase=UUDDLRLRBABAS secret.code.allowed=true secret.code.lives=30
$ cat example-files/ui.properties
Example output
color.good=purple color.bad=yellow allow.textmode=true how.nice.to.look=fairlyNice
Procedure
Create a config map by specifying a specific file:
$ oc create configmap game-config-2 \ --from-file=example-files/game.properties \ --from-file=example-files/ui.properties
Create a config map by specifying a key-value pair:
$ oc create configmap game-config-3 \ --from-file=game-special-key=example-files/game.properties
Verification
Enter the
oc get
command for the object with the-o
option to see the values of the keys from the file:$ oc get configmaps game-config-2 -o yaml
Example output
apiVersion: v1 data: game.properties: |- enemies=aliens lives=3 enemies.cheat=true enemies.cheat.level=noGoodRotten secret.code.passphrase=UUDDLRLRBABAS secret.code.allowed=true secret.code.lives=30 ui.properties: | color.good=purple color.bad=yellow allow.textmode=true how.nice.to.look=fairlyNice kind: ConfigMap metadata: creationTimestamp: 2016-02-18T18:52:05Z name: game-config-2 namespace: default resourceVersion: "516" selflink: /api/v1/namespaces/default/configmaps/game-config-2 uid: b4952dc3-d670-11e5-8cd0-68f728db1985
Enter the
oc get
command for the object with the-o
option to see the values of the keys from the key-value pair:$ oc get configmaps game-config-3 -o yaml
Example output
apiVersion: v1 data: game-special-key: |- 1 enemies=aliens lives=3 enemies.cheat=true enemies.cheat.level=noGoodRotten secret.code.passphrase=UUDDLRLRBABAS secret.code.allowed=true secret.code.lives=30 kind: ConfigMap metadata: creationTimestamp: 2016-02-18T18:54:22Z name: game-config-3 namespace: default resourceVersion: "530" selflink: /api/v1/namespaces/default/configmaps/game-config-3 uid: 05f8da22-d671-11e5-8cd0-68f728db1985
- 1
- This is the key that you set in the preceding step.
2.7.3.3. Creating a config map from literal values
You can supply literal values for a config map.
The --from-literal
option takes a key=value
syntax, which allows literal values to be supplied directly on the command line.
Procedure
Create a config map by specifying a literal value:
$ oc create configmap special-config \ --from-literal=special.how=very \ --from-literal=special.type=charm
Verification
Enter the
oc get
command for the object with the-o
option to see the values of the keys:$ oc get configmaps special-config -o yaml
Example output
apiVersion: v1 data: special.how: very special.type: charm kind: ConfigMap metadata: creationTimestamp: 2016-02-18T19:14:38Z name: special-config namespace: default resourceVersion: "651" selflink: /api/v1/namespaces/default/configmaps/special-config uid: dadce046-d673-11e5-8cd0-68f728db1985
2.7.4. Use cases: Consuming config maps in pods
The following sections describe some uses cases when consuming ConfigMap
objects in pods.
2.7.4.1. Populating environment variables in containers by using config maps
You can use config maps to populate individual environment variables in containers or to populate environment variables in containers from all keys that form valid environment variable names.
As an example, consider the following config map:
ConfigMap
with two environment variables
apiVersion: v1 kind: ConfigMap metadata: name: special-config 1 namespace: default 2 data: special.how: very 3 special.type: charm 4
ConfigMap
with one environment variable
apiVersion: v1 kind: ConfigMap metadata: name: env-config 1 namespace: default data: log_level: INFO 2
Procedure
You can consume the keys of this
ConfigMap
in a pod usingconfigMapKeyRef
sections.Sample
Pod
specification configured to inject specific environment variablesapiVersion: v1 kind: Pod metadata: name: dapi-test-pod spec: containers: - name: test-container image: gcr.io/google_containers/busybox command: [ "/bin/sh", "-c", "env" ] env: 1 - name: SPECIAL_LEVEL_KEY 2 valueFrom: configMapKeyRef: name: special-config 3 key: special.how 4 - name: SPECIAL_TYPE_KEY valueFrom: configMapKeyRef: name: special-config 5 key: special.type 6 optional: true 7 envFrom: 8 - configMapRef: name: env-config 9 restartPolicy: Never
- 1
- Stanza to pull the specified environment variables from a
ConfigMap
. - 2
- Name of a pod environment variable that you are injecting a key’s value into.
- 3 5
- Name of the
ConfigMap
to pull specific environment variables from. - 4 6
- Environment variable to pull from the
ConfigMap
. - 7
- Makes the environment variable optional. As optional, the pod will be started even if the specified
ConfigMap
and keys do not exist. - 8
- Stanza to pull all environment variables from a
ConfigMap
. - 9
- Name of the
ConfigMap
to pull all environment variables from.
When this pod is run, the pod logs will include the following output:
SPECIAL_LEVEL_KEY=very log_level=INFO
SPECIAL_TYPE_KEY=charm
is not listed in the example output because optional: true
is set.
2.7.4.2. Setting command-line arguments for container commands with config maps
You can use a config map to set the value of the commands or arguments in a container by using the Kubernetes substitution syntax $(VAR_NAME)
.
As an example, consider the following config map:
apiVersion: v1 kind: ConfigMap metadata: name: special-config namespace: default data: special.how: very special.type: charm
Procedure
To inject values into a command in a container, you must consume the keys you want to use as environment variables. Then you can refer to them in a container’s command using the
$(VAR_NAME)
syntax.Sample pod specification configured to inject specific environment variables
apiVersion: v1 kind: Pod metadata: name: dapi-test-pod spec: containers: - name: test-container image: gcr.io/google_containers/busybox command: [ "/bin/sh", "-c", "echo $(SPECIAL_LEVEL_KEY) $(SPECIAL_TYPE_KEY)" ] 1 env: - name: SPECIAL_LEVEL_KEY valueFrom: configMapKeyRef: name: special-config key: special.how - name: SPECIAL_TYPE_KEY valueFrom: configMapKeyRef: name: special-config key: special.type restartPolicy: Never
- 1
- Inject the values into a command in a container using the keys you want to use as environment variables.
When this pod is run, the output from the echo command run in the test-container container is as follows:
very charm
2.7.4.3. Injecting content into a volume by using config maps
You can inject content into a volume by using config maps.
Example ConfigMap
custom resource (CR)
apiVersion: v1 kind: ConfigMap metadata: name: special-config namespace: default data: special.how: very special.type: charm
Procedure
You have a couple different options for injecting content into a volume by using config maps.
The most basic way to inject content into a volume by using a config map is to populate the volume with files where the key is the file name and the content of the file is the value of the key:
apiVersion: v1 kind: Pod metadata: name: dapi-test-pod spec: containers: - name: test-container image: gcr.io/google_containers/busybox command: [ "/bin/sh", "-c", "cat", "/etc/config/special.how" ] volumeMounts: - name: config-volume mountPath: /etc/config volumes: - name: config-volume configMap: name: special-config 1 restartPolicy: Never
- 1
- File containing key.
When this pod is run, the output of the cat command will be:
very
You can also control the paths within the volume where config map keys are projected:
apiVersion: v1 kind: Pod metadata: name: dapi-test-pod spec: containers: - name: test-container image: gcr.io/google_containers/busybox command: [ "/bin/sh", "-c", "cat", "/etc/config/path/to/special-key" ] volumeMounts: - name: config-volume mountPath: /etc/config volumes: - name: config-volume configMap: name: special-config items: - key: special.how path: path/to/special-key 1 restartPolicy: Never
- 1
- Path to config map key.
When this pod is run, the output of the cat command will be:
very
2.8. Using device plugins to access external resources with pods
Device plugins allow you to use a particular device type (GPU, InfiniBand, or other similar computing resources that require vendor-specific initialization and setup) in your OpenShift Container Platform pod without needing to write custom code.
2.8.1. Understanding device plugins
The device plugin provides a consistent and portable solution to consume hardware devices across clusters. The device plugin provides support for these devices through an extension mechanism, which makes these devices available to Containers, provides health checks of these devices, and securely shares them.
OpenShift Container Platform supports the device plugin API, but the device plugin Containers are supported by individual vendors.
A device plugin is a gRPC service running on the nodes (external to the kubelet
) that is responsible for managing specific hardware resources. Any device plugin must support following remote procedure calls (RPCs):
service DevicePlugin { // GetDevicePluginOptions returns options to be communicated with Device // Manager rpc GetDevicePluginOptions(Empty) returns (DevicePluginOptions) {} // ListAndWatch returns a stream of List of Devices // Whenever a Device state change or a Device disappears, ListAndWatch // returns the new list rpc ListAndWatch(Empty) returns (stream ListAndWatchResponse) {} // Allocate is called during container creation so that the Device // Plug-in can run device specific operations and instruct Kubelet // of the steps to make the Device available in the container rpc Allocate(AllocateRequest) returns (AllocateResponse) {} // PreStartcontainer is called, if indicated by Device Plug-in during // registration phase, before each container start. Device plug-in // can run device specific operations such as resetting the device // before making devices available to the container rpc PreStartcontainer(PreStartcontainerRequest) returns (PreStartcontainerResponse) {} }
Example device plugins
For easy device plugin reference implementation, there is a stub device plugin in the Device Manager code: vendor/k8s.io/kubernetes/pkg/kubelet/cm/deviceplugin/device_plugin_stub.go.
2.8.1.1. Methods for deploying a device plugin
- Daemon sets are the recommended approach for device plugin deployments.
- Upon start, the device plugin will try to create a UNIX domain socket at /var/lib/kubelet/device-plugin/ on the node to serve RPCs from Device Manager.
- Since device plugins must manage hardware resources, access to the host file system, as well as socket creation, they must be run in a privileged security context.
- More specific details regarding deployment steps can be found with each device plugin implementation.
2.8.2. Understanding the Device Manager
Device Manager provides a mechanism for advertising specialized node hardware resources with the help of plugins known as device plugins.
You can advertise specialized hardware without requiring any upstream code changes.
OpenShift Container Platform supports the device plugin API, but the device plugin Containers are supported by individual vendors.
Device Manager advertises devices as Extended Resources. User pods can consume devices, advertised by Device Manager, using the same Limit/Request mechanism, which is used for requesting any other Extended Resource.
Upon start, the device plugin registers itself with Device Manager invoking Register
on the /var/lib/kubelet/device-plugins/kubelet.sock and starts a gRPC service at /var/lib/kubelet/device-plugins/<plugin>.sock for serving Device Manager requests.
Device Manager, while processing a new registration request, invokes ListAndWatch
remote procedure call (RPC) at the device plugin service. In response, Device Manager gets a list of Device objects from the plugin over a gRPC stream. Device Manager will keep watching on the stream for new updates from the plugin. On the plugin side, the plugin will also keep the stream open and whenever there is a change in the state of any of the devices, a new device list is sent to the Device Manager over the same streaming connection.
While handling a new pod admission request, Kubelet passes requested Extended Resources
to the Device Manager for device allocation. Device Manager checks in its database to verify if a corresponding plugin exists or not. If the plugin exists and there are free allocatable devices as well as per local cache, Allocate
RPC is invoked at that particular device plugin.
Additionally, device plugins can also perform several other device-specific operations, such as driver installation, device initialization, and device resets. These functionalities vary from implementation to implementation.
2.8.3. Enabling Device Manager
Enable Device Manager to implement a device plugin to advertise specialized hardware without any upstream code changes.
Device Manager provides a mechanism for advertising specialized node hardware resources with the help of plugins known as device plugins.
Obtain the label associated with the static
MachineConfigPool
CRD for the type of node you want to configure by entering the following command. Perform one of the following steps:View the machine config:
# oc describe machineconfig <name>
For example:
# oc describe machineconfig 00-worker
Example output
Name: 00-worker Namespace: Labels: machineconfiguration.openshift.io/role=worker 1
- 1
- Label required for the Device Manager.
Procedure
Create a custom resource (CR) for your configuration change.
Sample configuration for a Device Manager CR
apiVersion: machineconfiguration.openshift.io/v1 kind: KubeletConfig metadata: name: devicemgr 1 spec: machineConfigPoolSelector: matchLabels: machineconfiguration.openshift.io: devicemgr 2 kubeletConfig: feature-gates: - DevicePlugins=true 3
Create the Device Manager:
$ oc create -f devicemgr.yaml
Example output
kubeletconfig.machineconfiguration.openshift.io/devicemgr created
- Ensure that Device Manager was actually enabled by confirming that /var/lib/kubelet/device-plugins/kubelet.sock is created on the node. This is the UNIX domain socket on which the Device Manager gRPC server listens for new plugin registrations. This sock file is created when the Kubelet is started only if Device Manager is enabled.
2.9. Including pod priority in pod scheduling decisions
You can enable pod priority and preemption in your cluster. Pod priority indicates the importance of a pod relative to other pods and queues the pods based on that priority. pod preemption allows the cluster to evict, or preempt, lower-priority pods so that higher-priority pods can be scheduled if there is no available space on a suitable node pod priority also affects the scheduling order of pods and out-of-resource eviction ordering on the node.
To use priority and preemption, you create priority classes that define the relative weight of your pods. Then, reference a priority class in the pod specification to apply that weight for scheduling.
2.9.1. Understanding pod priority
When you use the Pod Priority and Preemption feature, the scheduler orders pending pods by their priority, and a pending pod is placed ahead of other pending pods with lower priority in the scheduling queue. As a result, the higher priority pod might be scheduled sooner than pods with lower priority if its scheduling requirements are met. If a pod cannot be scheduled, scheduler continues to schedule other lower priority pods.
2.9.1.1. Pod priority classes
You can assign pods a priority class, which is a non-namespaced object that defines a mapping from a name to the integer value of the priority. The higher the value, the higher the priority.
A priority class object can take any 32-bit integer value smaller than or equal to 1000000000 (one billion). Reserve numbers larger than or equal to one billion for critical pods that must not be preempted or evicted. By default, OpenShift Container Platform has two reserved priority classes for critical system pods to have guaranteed scheduling.
$ oc get priorityclasses
Example output
NAME VALUE GLOBAL-DEFAULT AGE system-node-critical 2000001000 false 72m system-cluster-critical 2000000000 false 72m openshift-user-critical 1000000000 false 3d13h cluster-logging 1000000 false 29s
system-node-critical - This priority class has a value of 2000001000 and is used for all pods that should never be evicted from a node. Examples of pods that have this priority class are
sdn-ovs
,sdn
, and so forth. A number of critical components include thesystem-node-critical
priority class by default, for example:- master-api
- master-controller
- master-etcd
- sdn
- sdn-ovs
- sync
system-cluster-critical - This priority class has a value of 2000000000 (two billion) and is used with pods that are important for the cluster. Pods with this priority class can be evicted from a node in certain circumstances. For example, pods configured with the
system-node-critical
priority class can take priority. However, this priority class does ensure guaranteed scheduling. Examples of pods that can have this priority class are fluentd, add-on components like descheduler, and so forth. A number of critical components include thesystem-cluster-critical
priority class by default, for example:- fluentd
- metrics-server
- descheduler
-
openshift-user-critical - You can use the
priorityClassName
field with important pods that cannot bind their resource consumption and do not have predictable resource consumption behavior. Prometheus pods under theopenshift-monitoring
andopenshift-user-workload-monitoring
namespaces use theopenshift-user-critical
priorityClassName
. Monitoring workloads usesystem-critical
as their firstpriorityClass
, but this causes problems when monitoring uses excessive memory and the nodes cannot evict them. As a result, monitoring drops priority to give the scheduler flexibility, moving heavy workloads around to keep critical nodes operating. - cluster-logging - This priority is used by Fluentd to make sure Fluentd pods are scheduled to nodes over other apps.
2.9.1.2. Pod priority names
After you have one or more priority classes, you can create pods that specify a priority class name in a Pod
spec. The priority admission controller uses the priority class name field to populate the integer value of the priority. If the named priority class is not found, the pod is rejected.
2.9.2. Understanding pod preemption
When a developer creates a pod, the pod goes into a queue. If the developer configured the pod for pod priority or preemption, the scheduler picks a pod from the queue and tries to schedule the pod on a node. If the scheduler cannot find space on an appropriate node that satisfies all the specified requirements of the pod, preemption logic is triggered for the pending pod.
When the scheduler preempts one or more pods on a node, the nominatedNodeName
field of higher-priority Pod
spec is set to the name of the node, along with the nodename
field. The scheduler uses the nominatedNodeName
field to keep track of the resources reserved for pods and also provides information to the user about preemptions in the clusters.
After the scheduler preempts a lower-priority pod, the scheduler honors the graceful termination period of the pod. If another node becomes available while scheduler is waiting for the lower-priority pod to terminate, the scheduler can schedule the higher-priority pod on that node. As a result, the nominatedNodeName
field and nodeName
field of the Pod
spec might be different.
Also, if the scheduler preempts pods on a node and is waiting for termination, and a pod with a higher-priority pod than the pending pod needs to be scheduled, the scheduler can schedule the higher-priority pod instead. In such a case, the scheduler clears the nominatedNodeName
of the pending pod, making the pod eligible for another node.
Preemption does not necessarily remove all lower-priority pods from a node. The scheduler can schedule a pending pod by removing a portion of the lower-priority pods.
The scheduler considers a node for pod preemption only if the pending pod can be scheduled on the node.
2.9.2.1. Non-preempting priority classes
Pods with the preemption policy set to Never
are placed in the scheduling queue ahead of lower-priority pods, but they cannot preempt other pods. A non-preempting pod waiting to be scheduled stays in the scheduling queue until sufficient resources are free and it can be scheduled. Non-preempting pods, like other pods, are subject to scheduler back-off. This means that if the scheduler tries unsuccessfully to schedule these pods, they are retried with lower frequency, allowing other pods with lower priority to be scheduled before them.
Non-preempting pods can still be preempted by other, high-priority pods.
2.9.2.2. Pod preemption and other scheduler settings
If you enable pod priority and preemption, consider your other scheduler settings:
- Pod priority and pod disruption budget
- A pod disruption budget specifies the minimum number or percentage of replicas that must be up at a time. If you specify pod disruption budgets, OpenShift Container Platform respects them when preempting pods at a best effort level. The scheduler attempts to preempt pods without violating the pod disruption budget. If no such pods are found, lower-priority pods might be preempted despite their pod disruption budget requirements.
- Pod priority and pod affinity
- Pod affinity requires a new pod to be scheduled on the same node as other pods with the same label.
If a pending pod has inter-pod affinity with one or more of the lower-priority pods on a node, the scheduler cannot preempt the lower-priority pods without violating the affinity requirements. In this case, the scheduler looks for another node to schedule the pending pod. However, there is no guarantee that the scheduler can find an appropriate node and pending pod might not be scheduled.
To prevent this situation, carefully configure pod affinity with equal-priority pods.
2.9.2.3. Graceful termination of preempted pods
When preempting a pod, the scheduler waits for the pod graceful termination period to expire, allowing the pod to finish working and exit. If the pod does not exit after the period, the scheduler kills the pod. This graceful termination period creates a time gap between the point that the scheduler preempts the pod and the time when the pending pod can be scheduled on the node.
To minimize this gap, configure a small graceful termination period for lower-priority pods.
2.9.3. Configuring priority and preemption
You apply pod priority and preemption by creating a priority class object and associating pods to the priority by using the priorityClassName
in your pod specs.
You cannot add a priority class directly to an existing scheduled pod.
Procedure
To configure your cluster to use priority and preemption:
Create one or more priority classes:
Create a YAML file similar to the following:
apiVersion: scheduling.k8s.io/v1 kind: PriorityClass metadata: name: high-priority 1 value: 1000000 2 preemptionPolicy: PreemptLowerPriority 3 globalDefault: false 4 description: "This priority class should be used for XYZ service pods only." 5
- 1
- The name of the priority class object.
- 2
- The priority value of the object.
- 3
- Optional. Specifies whether this priority class is preempting or non-preempting. The preemption policy defaults to
PreemptLowerPriority
, which allows pods of that priority class to preempt lower-priority pods. If the preemption policy is set toNever
, pods in that priority class are non-preempting. - 4
- Optional. Specifies whether this priority class should be used for pods without a priority class name specified. This field is
false
by default. Only one priority class withglobalDefault
set totrue
can exist in the cluster. If there is no priority class withglobalDefault:true
, the priority of pods with no priority class name is zero. Adding a priority class withglobalDefault:true
affects only pods created after the priority class is added and does not change the priorities of existing pods. - 5
- Optional. Describes which pods developers should use with this priority class. Enter an arbitrary text string.
Create the priority class:
$ oc create -f <file-name>.yaml
Create a pod spec to include the name of a priority class:
Create a YAML file similar to the following:
apiVersion: v1 kind: Pod metadata: name: nginx labels: env: test spec: containers: - name: nginx image: nginx imagePullPolicy: IfNotPresent priorityClassName: high-priority 1
- 1
- Specify the priority class to use with this pod.
Create the pod:
$ oc create -f <file-name>.yaml
You can add the priority name directly to the pod configuration or to a pod template.
2.10. Placing pods on specific nodes using node selectors
A node selector specifies a map of key-value pairs. The rules are defined using custom labels on nodes and selectors specified in pods.
For the pod to be eligible to run on a node, the pod must have the indicated key-value pairs as the label on the node.
If you are using node affinity and node selectors in the same pod configuration, see the important considerations below.
2.10.1. Using node selectors to control pod placement
You can use node selectors on pods and labels on nodes to control where the pod is scheduled. With node selectors, OpenShift Container Platform schedules the pods on nodes that contain matching labels.
You add labels to a node, a machine set, or a machine config. Adding the label to the machine set ensures that if the node or machine goes down, new nodes have the label. Labels added to a node or machine config do not persist if the node or machine goes down.
To add node selectors to an existing pod, add a node selector to the controlling object for that pod, such as a ReplicaSet
object, DaemonSet
object, StatefulSet
object, Deployment
object, or DeploymentConfig
object. Any existing pods under that controlling object are recreated on a node with a matching label. If you are creating a new pod, you can add the node selector directly to the pod spec. If the pod does not have a controlling object, you must delete the pod, edit the pod spec, and recreate the pod.
You cannot add a node selector directly to an existing scheduled pod.
Prerequisites
To add a node selector to existing pods, determine the controlling object for that pod. For example, the router-default-66d5cf9464-m2g75
pod is controlled by the router-default-66d5cf9464
replica set:
$ oc describe pod router-default-66d5cf9464-7pwkc
Example output
kind: Pod apiVersion: v1 metadata: #... Name: router-default-66d5cf9464-7pwkc Namespace: openshift-ingress # ... Controlled By: ReplicaSet/router-default-66d5cf9464 # ...
The web console lists the controlling object under ownerReferences
in the pod YAML:
apiVersion: v1 kind: Pod metadata: name: router-default-66d5cf9464-7pwkc # ... ownerReferences: - apiVersion: apps/v1 kind: ReplicaSet name: router-default-66d5cf9464 uid: d81dd094-da26-11e9-a48a-128e7edf0312 controller: true blockOwnerDeletion: true # ...
Procedure
Add labels to a node by using a machine set or editing the node directly:
Use a
MachineSet
object to add labels to nodes managed by the machine set when a node is created:Run the following command to add labels to a
MachineSet
object:$ oc patch MachineSet <name> --type='json' -p='[{"op":"add","path":"/spec/template/spec/metadata/labels", "value":{"<key>"="<value>","<key>"="<value>"}}]' -n openshift-machine-api
For example:
$ oc patch MachineSet abc612-msrtw-worker-us-east-1c --type='json' -p='[{"op":"add","path":"/spec/template/spec/metadata/labels", "value":{"type":"user-node","region":"east"}}]' -n openshift-machine-api
TipYou can alternatively apply the following YAML to add labels to a machine set:
apiVersion: machine.openshift.io/v1beta1 kind: MachineSet metadata: name: xf2bd-infra-us-east-2a namespace: openshift-machine-api spec: template: spec: metadata: labels: region: "east" type: "user-node" #...
Verify that the labels are added to the
MachineSet
object by using theoc edit
command:For example:
$ oc edit MachineSet abc612-msrtw-worker-us-east-1c -n openshift-machine-api
Example
MachineSet
objectapiVersion: machine.openshift.io/v1beta1 kind: MachineSet # ... spec: # ... template: metadata: # ... spec: metadata: labels: region: east type: user-node # ...
Add labels directly to a node:
Edit the
Node
object for the node:$ oc label nodes <name> <key>=<value>
For example, to label a node:
$ oc label nodes ip-10-0-142-25.ec2.internal type=user-node region=east
TipYou can alternatively apply the following YAML to add labels to a node:
kind: Node apiVersion: v1 metadata: name: hello-node-6fbccf8d9 labels: type: "user-node" region: "east" #...
Verify that the labels are added to the node:
$ oc get nodes -l type=user-node,region=east
Example output
NAME STATUS ROLES AGE VERSION ip-10-0-142-25.ec2.internal Ready worker 17m v1.24.0
Add the matching node selector to a pod:
To add a node selector to existing and future pods, add a node selector to the controlling object for the pods:
Example
ReplicaSet
object with labelskind: ReplicaSet apiVersion: apps/v1 metadata: name: hello-node-6fbccf8d9 # ... spec: # ... template: metadata: creationTimestamp: null labels: ingresscontroller.operator.openshift.io/deployment-ingresscontroller: default pod-template-hash: 66d5cf9464 spec: nodeSelector: kubernetes.io/os: linux node-role.kubernetes.io/worker: '' type: user-node 1 #...
- 1
- Add the node selector.
To add a node selector to a specific, new pod, add the selector to the
Pod
object directly:Example
Pod
object with a node selectorapiVersion: v1 kind: Pod metadata: name: hello-node-6fbccf8d9 #... spec: nodeSelector: region: east type: user-node #...
NoteYou cannot add a node selector directly to an existing scheduled pod.
Chapter 3. Automatically scaling pods with the Custom Metrics Autoscaler Operator
3.1. Custom Metrics Autoscaler Operator overview
As a developer, you can use Custom Metrics Autoscaler Operator for Red Hat OpenShift to specify how OpenShift Container Platform should automatically increase or decrease the number of pods for a deployment, stateful set, custom resource, or job based on custom metrics that are not based only on CPU or memory.
The Custom Metrics Autoscaler Operator is an optional operator, based on the Kubernetes Event Driven Autoscaler (KEDA), that allows workloads to be scaled using additional metrics sources other than pod metrics.
The custom metrics autoscaler currently supports only the Prometheus, CPU, memory, and Apache Kafka metrics.
The Custom Metrics Autoscaler Operator scales your pods up and down based on custom, external metrics from specific applications. Your other applications continue to use other scaling methods. You configure triggers, also known as scalers, which are the source of events and metrics that the custom metrics autoscaler uses to determine how to scale. The custom metrics autoscaler uses a metrics API to convert the external metrics to a form that OpenShift Container Platform can use. The custom metrics autoscaler creates a horizontal pod autoscaler (HPA) that performs the actual scaling.
To use the custom metrics autoscaler, you create a ScaledObject
or ScaledJob
object, which is a custom resource (CR) that defines the scaling metadata. You specify the deployment or job to scale, the source of the metrics to scale on (trigger), and other parameters such as the minimum and maximum replica counts allowed.
You can create only one scaled object or scaled job for each workload that you want to scale. Also, you cannot use a scaled object or scaled job and the horizontal pod autoscaler (HPA) on the same workload.
The custom metrics autoscaler, unlike the HPA, can scale to zero. If you set the minReplicaCount
value in the custom metrics autoscaler CR to 0
, the custom metrics autoscaler scales the workload down from 1 to 0 replicas to or up from 0 replicas to 1. This is known as the activation phase. After scaling up to 1 replica, the HPA takes control of the scaling. This is known as the scaling phase.
Some triggers allow you to change the number of replicas that are scaled by the cluster metrics autoscaler. In all cases, the parameter to configure the activation phase always uses the same phrase, prefixed with activation. For example, if the threshold
parameter configures scaling, activationThreshold
would configure activation. Configuring the activation and scaling phases allows you more flexibility with your scaling policies. For example, you can configure a higher activation phase to prevent scaling up or down if the metric is particularly low.
The activation value has more priority than the scaling value in case of different decisions for each. For example, if the threshold
is set to 10
, and the activationThreshold
is 50
, if the metric reports 40
, the scaler is not active and the pods are scaled to zero even if the HPA requires 4 instances.
You can verify that the autoscaling has taken place by reviewing the number of pods in your custom resource or by reviewing the Custom Metrics Autoscaler Operator logs for messages similar to the following:
Successfully set ScaleTarget replica count
Successfully updated ScaleTarget
You can temporarily pause the autoscaling of a workload object, if needed. For example, you could pause autoscaling before performing cluster maintenance.
3.2. Custom Metrics Autoscaler Operator release notes
The release notes for the Custom Metrics Autoscaler Operator for Red Hat OpenShift describe new features and enhancements, deprecated features, and known issues.
The Custom Metrics Autoscaler Operator uses the Kubernetes-based Event Driven Autoscaler (KEDA) and is built on top of the OpenShift Container Platform horizontal pod autoscaler (HPA).
The Custom Metrics Autoscaler Operator for Red Hat OpenShift is provided as an installable component, with a distinct release cycle from the core OpenShift Container Platform. The Red Hat OpenShift Container Platform Life Cycle Policy outlines release compatibility.
3.2.1. Supported versions
The following table defines the Custom Metrics Autoscaler Operator versions for each OpenShift Container Platform version.
Version | OpenShift Container Platform version | General availability |
---|---|---|
2.11.2 | 4.13 | General availability |
2.11.2 | 4.12 | General availability |
2.11.2 | 4.11 | General availability |
2.11.2 | 4.10 | General availability |
3.2.2. Custom Metrics Autoscaler Operator 2.11.2-311 release notes
This release of the Custom Metrics Autoscaler Operator 2.11.2-311 provides new features and bug fixes for running the Operator in an OpenShift Container Platform cluster. The components of the Custom Metrics Autoscaler Operator 2.11.2-311 were released in RHBA-2023:5981.
Before installing this version of the Custom Metrics Autoscaler Operator, remove any previously installed Technology Preview versions or the community-supported version of KEDA.
3.2.2.1. New features and enhancements
3.2.2.1.1. Red Hat OpenShift Service on AWS (ROSA) and OpenShift Dedicated are now supported
The Custom Metrics Autoscaler Operator 2.11.2-311 can be installed on OpenShift ROSA and OpenShift Dedicated managed clusters. Previous versions of the Custom Metrics Autoscaler Operator could be installed only in the openshift-keda
namespace. This prevented the Operator from being installed on OpenShift ROSA and OpenShift Dedicated clusters. This version of Custom Metrics Autoscaler allows installation to other namespaces such as openshift-operators
or keda
, enabling installation into ROSA and Dedicated clusters.
3.2.2.2. Bug fixes
-
Previously, if the Custom Metrics Autoscaler Operator was installed and configured, but not in use, the OpenShift CLI reported the
couldn’t get resource list for external.metrics.k8s.io/v1beta1: Got empty response for: external.metrics.k8s.io/v1beta1
error after anyoc
command was entered. The message, although harmless, could have caused confusion. With this fix, theGot empty response for: external.metrics…
error no longer appears inappropriately. (OCPBUGS-15779) - Previously, any annotation or label change to objects managed by the Custom Metrics Autoscaler were reverted by Custom Metrics Autoscaler Operator any time the Keda Controller was modified, for example after a configuration change. This caused continuous changing of labels in your objects. The Custom Metrics Autoscaler now uses its own annotation to manage labels and annotations, and annotation or label are no longer inappropriately reverted. (OCPBUGS-15590)
3.2.3. Custom Metrics Autoscaler Operator 2.10.1-267 release notes
This release of the Custom Metrics Autoscaler Operator 2.10.1-267 provides new features and bug fixes for running the Operator in an OpenShift Container Platform cluster. The components of the Custom Metrics Autoscaler Operator 2.10.1-267 were released in RHBA-2023:4089.
Before installing this version of the Custom Metrics Autoscaler Operator, remove any previously installed Technology Preview versions or the community-supported version of KEDA.
3.2.3.1. Bug fixes
-
Previously, the
custom-metrics-autoscaler
andcustom-metrics-autoscaler-adapter
images did not contain time zone information. Because of this, scaled objects with cron triggers failed to work because the controllers were unable to find time zone information. With this fix, the image builds now include time zone information. As a result, scaled objects containing cron triggers now function properly. (OCPBUGS-15264) -
Previously, the Custom Metrics Autoscaler Operator would attempt to take ownership of all managed objects, including objects in other namespaces and cluster-scoped objects. Because of this, the Custom Metrics Autoscaler Operator was unable to create the role binding for reading the credentials necessary to be an API server. This caused errors in the
kube-system
namespace. With this fix, the Custom Metrics Autoscaler Operator skips adding theownerReference
field to any object in another namespace or any cluster-scoped object. As a result, the role binding is now created without any errors. (OCPBUGS-15038) -
Previously, the Custom Metrics Autoscaler Operator added an
ownerReferences
field to theopenshift-keda
namespace. While this did not cause functionality problems, the presence of this field could have caused confusion for cluster administrators. With this fix, the Custom Metrics Autoscaler Operator does not add theownerReference
field to theopenshift-keda
namespace. As a result, theopenshift-keda
namespace no longer has a superfluousownerReference
field. (OCPBUGS-15293) -
Previously, if you used a Prometheus trigger configured with authentication method other than pod identity, and the
podIdentity
parameter was set tonone
, the trigger would fail to scale. With this fix, the Custom Metrics Autoscaler for OpenShift now properly handles thenone
pod identity provider type. As a result, a Prometheus trigger configured with authentication method other than pod identity, and thepodIdentity
parameter sset tonone
now properly scales. (OCPBUGS-15274)
3.2.4. Custom Metrics Autoscaler Operator 2.10.1 release notes
This release of the Custom Metrics Autoscaler Operator 2.10.1 provides new features and bug fixes for running the Operator in an OpenShift Container Platform cluster. The components of the Custom Metrics Autoscaler Operator 2.10.1 were released in RHEA-2023:3199.
Before installing this version of the Custom Metrics Autoscaler Operator, remove any previously installed Technology Preview versions or the community-supported version of KEDA.
3.2.4.1. New features and enhancements
3.2.4.1.1. Custom Metrics Autoscaler Operator general availability
The Custom Metrics Autoscaler Operator is now generally available as of Custom Metrics Autoscaler Operator version 2.10.1.
Scaling by using a scaled job is a Technology Preview feature only. Technology Preview features are not supported with Red Hat production service level agreements (SLAs) and might not be functionally complete. Red Hat does not recommend using them in production. These features provide early access to upcoming product features, enabling customers to test functionality and provide feedback during the development process.
For more information about the support scope of Red Hat Technology Preview features, see Technology Preview Features Support Scope.
3.2.4.1.2. Performance metrics
You can now use the Prometheus Query Language (PromQL) to query metrics on the Custom Metrics Autoscaler Operator.
3.2.4.1.3. Pausing the custom metrics autoscaling for scaled objects
You can now pause the autoscaling of a scaled object, as needed, and resume autoscaling when ready.
3.2.4.1.4. Replica fall back for scaled objects
You can now specify the number of replicas to fall back to if a scaled object fails to get metrics from the source.
3.2.4.1.5. Customizable HPA naming for scaled objects
You can now specify a custom name for the horizontal pod autoscaler in scaled objects.
3.2.4.1.6. Activation and scaling thresholds
Because the horizontal pod autoscaler (HPA) cannot scale to or from 0 replicas, the Custom Metrics Autoscaler Operator does that scaling, after which the HPA performs the scaling. You can now specify when the HPA takes over autoscaling, based on the number of replicas. This allows for more flexibility with your scaling policies.
3.2.5. Custom Metrics Autoscaler Operator 2.8.2-174 release notes
This release of the Custom Metrics Autoscaler Operator 2.8.2-174 provides new features and bug fixes for running the Operator in an OpenShift Container Platform cluster. The components of the Custom Metrics Autoscaler Operator 2.8.2-174 were released in RHEA-2023:1683.
The Custom Metrics Autoscaler Operator version 2.8.2-174 is a Technology Preview feature.
3.2.5.1. New features and enhancements
3.2.5.1.1. Operator upgrade support
You can now upgrade from a prior version of the Custom Metrics Autoscaler Operator. See "Changing the update channel for an Operator" in the "Additional resources" for information on upgrading an Operator.
3.2.5.1.2. must-gather support
You can now collect data about the Custom Metrics Autoscaler Operator and its components by using the OpenShift Container Platform must-gather
tool. Currently, the process for using the must-gather
tool with the Custom Metrics Autoscaler is different than for other operators. See "Gathering debugging data in the "Additional resources" for more information.
3.2.6. Custom Metrics Autoscaler Operator 2.8.2 release notes
This release of the Custom Metrics Autoscaler Operator 2.8.2 provides new features and bug fixes for running the Operator in an OpenShift Container Platform cluster. The components of the Custom Metrics Autoscaler Operator 2.8.2 were released in RHSA-2023:1042.
The Custom Metrics Autoscaler Operator version 2.8.2 is a Technology Preview feature.
3.2.6.1. New features and enhancements
3.2.6.1.1. Audit Logging
You can now gather and view audit logs for the Custom Metrics Autoscaler Operator and its associated components. Audit logs are security-relevant chronological sets of records that document the sequence of activities that have affected the system by individual users, administrators, or other components of the system.
3.2.6.1.2. Scale applications based on Apache Kafka metrics
You can now use the KEDA Apache kafka trigger/scaler to scale deployments based on an Apache Kafka topic.
3.2.6.1.3. Scale applications based on CPU metrics
You can now use the KEDA CPU trigger/scaler to scale deployments based on CPU metrics.
3.2.6.1.4. Scale applications based on memory metrics
You can now use the KEDA memory trigger/scaler to scale deployments based on memory metrics.
3.3. Installing the custom metrics autoscaler
You can use the OpenShift Container Platform web console to install the Custom Metrics Autoscaler Operator.
The installation creates the following five CRDs:
-
ClusterTriggerAuthentication
-
KedaController
-
ScaledJob
-
ScaledObject
-
TriggerAuthentication
3.3.1. Installing the custom metrics autoscaler
You can use the following procedure to install the Custom Metrics Autoscaler Operator.
Prerequisites
- Remove any previously-installed Technology Preview versions of the Cluster Metrics Autoscaler Operator.
Remove any versions of the community-based KEDA.
Also, remove the KEDA 1.x custom resource definitions by running the following commands:
$ oc delete crd scaledobjects.keda.k8s.io
$ oc delete crd triggerauthentications.keda.k8s.io
Procedure
- In the OpenShift Container Platform web console, click Operators → OperatorHub.
- Choose Custom Metrics Autoscaler from the list of available Operators, and click Install.
- On the Install Operator page, ensure that the All namespaces on the cluster (default) option is selected for Installation Mode. This installs the Operator in all namespaces.
- Ensure that the openshift-keda namespace is selected for Installed Namespace. OpenShift Container Platform creates the namespace, if not present in your cluster.
- Click Install.
Verify the installation by listing the Custom Metrics Autoscaler Operator components:
- Navigate to Workloads → Pods.
-
Select the
openshift-keda
project from the drop-down menu and verify that thecustom-metrics-autoscaler-operator-*
pod is running. -
Navigate to Workloads → Deployments to verify that the
custom-metrics-autoscaler-operator
deployment is running.
Optional: Verify the installation in the OpenShift CLI using the following commands:
$ oc get all -n openshift-keda
The output appears similar to the following:
Example output
NAME READY STATUS RESTARTS AGE pod/custom-metrics-autoscaler-operator-5fd8d9ffd8-xt4xp 1/1 Running 0 18m NAME READY UP-TO-DATE AVAILABLE AGE deployment.apps/custom-metrics-autoscaler-operator 1/1 1 1 18m NAME DESIRED CURRENT READY AGE replicaset.apps/custom-metrics-autoscaler-operator-5fd8d9ffd8 1 1 1 18m
Install the
KedaController
custom resource, which creates the required CRDs:- In the OpenShift Container Platform web console, click Operators → Installed Operators.
- Click Custom Metrics Autoscaler.
- On the Operator Details page, click the KedaController tab.
On the KedaController tab, click Create KedaController and edit the file.
kind: KedaController apiVersion: keda.sh/v1alpha1 metadata: name: keda namespace: openshift-keda spec: watchNamespace: '' 1 operator: logLevel: info 2 logEncoder: console 3 metricsServer: logLevel: '0' 4 auditConfig: 5 logFormat: "json" logOutputVolumeClaim: "persistentVolumeClaimName" policy: rules: - level: Metadata omitStages: "RequestReceived" omitManagedFields: false lifetime: maxAge: "2" maxBackup: "1" maxSize: "50" serviceAccount: {}
- 1
- Specifies the namespaces that the custom autoscaler should watch. Enter names in a comma-separated list. Omit or set empty to watch all namespaces. The default is empty.
- 2
- Specifies the level of verbosity for the Custom Metrics Autoscaler Operator log messages. The allowed values are
debug
,info
,error
. The default isinfo
. - 3
- Specifies the logging format for the Custom Metrics Autoscaler Operator log messages. The allowed values are
console
orjson
. The default isconsole
. - 4
- Specifies the logging level for the Custom Metrics Autoscaler Metrics Server. The allowed values are
0
forinfo
and4
ordebug
. The default is0
. - 5
- Activates audit logging for the Custom Metrics Autoscaler Operator and specifies the audit policy to use, as described in the "Configuring audit logging" section.
- Click Create to create the KEDA controller.
3.4. Understanding custom metrics autoscaler triggers
Triggers, also known as scalers, provide the metrics that the Custom Metrics Autoscaler Operator uses to scale your pods.
The custom metrics autoscaler currently supports only the Prometheus, CPU, memory, and Apache Kafka triggers.
You use a ScaledObject
or ScaledJob
custom resource to configure triggers for specific objects, as described in the sections that follow.
3.4.1. Understanding the Prometheus trigger
You can scale pods based on Prometheus metrics, which can use the installed OpenShift Container Platform monitoring or an external Prometheus server as the metrics source. See "Additional resources" for information on the configurations required to use the OpenShift Container Platform monitoring as a source for metrics.
If Prometheus is collecting metrics from the application that the custom metrics autoscaler is scaling, do not set the minimum replicas to 0
in the custom resource. If there are no application pods, the custom metrics autoscaler does not have any metrics to scale on.
Example scaled object with a Prometheus target
apiVersion: keda.sh/v1alpha1 kind: ScaledObject metadata: name: prom-scaledobject namespace: my-namespace spec: # ... triggers: - type: prometheus 1 metadata: serverAddress: https://thanos-querier.openshift-monitoring.svc.cluster.local:9092 2 namespace: kedatest 3 metricName: http_requests_total 4 threshold: '5' 5 query: sum(rate(http_requests_total{job="test-app"}[1m])) 6 authModes: basic 7 cortexOrgID: my-org 8 ignoreNullValues: false 9 unsafeSsl: false 10
- 1
- Specifies Prometheus as the trigger type.
- 2
- Specifies the address of the Prometheus server. This example uses OpenShift Container Platform monitoring.
- 3
- Optional: Specifies the namespace of the object you want to scale. This parameter is mandatory if using OpenShift Container Platform monitoring as a source for the metrics.
- 4
- Specifies the name to identify the metric in the
external.metrics.k8s.io
API. If you are using more than one trigger, all metric names must be unique. - 5
- Specifies the value that triggers scaling. Must be specified as a quoted string value.
- 6
- Specifies the Prometheus query to use.
- 7
- Specifies the authentication method to use. Prometheus scalers support bearer authentication (
bearer
), basic authentication (basic
), or TLS authentication (tls
). You configure the specific authentication parameters in a trigger authentication, as discussed in a following section. As needed, you can also use a secret. - 8
- 9
- Optional: Specifies how the trigger should proceed if the Prometheus target is lost.
-
If
true
, the trigger continues to operate if the Prometheus target is lost. This is the default behavior. -
If
false
, the trigger returns an error if the Prometheus target is lost.
-
If
- 10
- Optional: Specifies whether the certificate check should be skipped. For example, you might skip the check if you use self-signed certificates at the Prometheus endpoint.
-
If
true
, the certificate check is performed. -
If
false
, the certificate check is not performed. This is the default behavior.
-
If
3.4.1.1. Configuring the custom metrics autoscaler to use OpenShift Container Platform monitoring
You can use the installed OpenShift Container Platform Prometheus monitoring as a source for the metrics used by the custom metrics autoscaler. However, there are some additional configurations you must perform.
These steps are not required for an external Prometheus source.
You must perform the following tasks, as described in this section:
- Create a service account to get a token.
- Create a role.
- Add that role to the service account.
- Reference the token in the trigger authentication object used by Prometheus.
Prerequisites
- OpenShift Container Platform monitoring must be installed.
- Monitoring of user-defined workloads must be enabled in OpenShift Container Platform monitoring, as described in the Creating a user-defined workload monitoring config map section.
- The Custom Metrics Autoscaler Operator must be installed.
Procedure
Change to the project with the object you want to scale:
$ oc project my-project
Use the following command to create a service account, if your cluster does not have one:
$ oc create serviceaccount <service_account>
where:
- <service_account>
- Specifies the name of the service account.
Use the following command to locate the token assigned to the service account:
$ oc describe serviceaccount <service_account>
where:
- <service_account>
- Specifies the name of the service account.
Example output
Name: thanos Namespace: my-project Labels: <none> Annotations: <none> Image pull secrets: thanos-dockercfg-nnwgj Mountable secrets: thanos-dockercfg-nnwgj Tokens: thanos-token-9g4n5 1 Events: <none>
- 1
- Use this token in the trigger authentication.
Create a trigger authentication with the service account token:
Create a YAML file similar to the following:
apiVersion: keda.sh/v1alpha1 kind: TriggerAuthentication metadata: name: keda-trigger-auth-prometheus spec: secretTargetRef: 1 - parameter: bearerToken 2 name: thanos-token-9g4n5 3 key: token 4 - parameter: ca name: thanos-token-9g4n5 key: ca.crt
Create the CR object:
$ oc create -f <file-name>.yaml
Create a role for reading Thanos metrics:
Create a YAML file with the following parameters:
apiVersion: rbac.authorization.k8s.io/v1 kind: Role metadata: name: thanos-metrics-reader rules: - apiGroups: - "" resources: - pods verbs: - get - apiGroups: - metrics.k8s.io resources: - pods - nodes verbs: - get - list - watch
Create the CR object:
$ oc create -f <file-name>.yaml
Create a role binding for reading Thanos metrics:
Create a YAML file similar to the following:
apiVersion: rbac.authorization.k8s.io/v1 kind: RoleBinding metadata: name: thanos-metrics-reader 1 namespace: my-project 2 roleRef: apiGroup: rbac.authorization.k8s.io kind: Role name: thanos-metrics-reader subjects: - kind: ServiceAccount name: thanos 3 namespace: my-project 4
Create the CR object:
$ oc create -f <file-name>.yaml
You can now deploy a scaled object or scaled job to enable autoscaling for your application, as described in "Understanding how to add custom metrics autoscalers". To use OpenShift Container Platform monitoring as the source, in the trigger, or scaler, you must include the following parameters:
-
triggers.type
must beprometheus
-
triggers.metadata.serverAddress
must behttps://thanos-querier.openshift-monitoring.svc.cluster.local:9092
-
triggers.metadata.authModes
must bebearer
-
triggers.metadata.namespace
must be set to the namespace of the object to scale -
triggers.authenticationRef
must point to the trigger authentication resource specified in the previous step
3.4.2. Understanding the CPU trigger
You can scale pods based on CPU metrics. This trigger uses cluster metrics as the source for metrics.
The custom metrics autoscaler scales the pods associated with an object to maintain the CPU usage that you specify. The autoscaler increases or decreases the number of replicas between the minimum and maximum numbers to maintain the specified CPU utilization across all pods. The memory trigger considers the memory utilization of the entire pod. If the pod has multiple containers, the memory trigger considers the total memory utilization of all containers in the pod.
-
This trigger cannot be used with the
ScaledJob
custom resource. -
When using a memory trigger to scale an object, the object does not scale to
0
, even if you are using multiple triggers.
Example scaled object with a CPU target
apiVersion: keda.sh/v1alpha1 kind: ScaledObject metadata: name: cpu-scaledobject namespace: my-namespace spec: # ... triggers: - type: cpu 1 metricType: Utilization 2 metadata: value: '60' 3 minReplicaCount: 1 4
- 1
- Specifies CPU as the trigger type.
- 2
- Specifies the type of metric to use, either
Utilization
orAverageValue
. - 3
- Specifies the value that triggers scaling. Must be specified as a quoted string value.
-
When using
Utilization
, the target value is the average of the resource metrics across all relevant pods, represented as a percentage of the requested value of the resource for the pods. -
When using
AverageValue
, the target value is the average of the metrics across all relevant pods.
-
When using
- 4
- Specifies the minimum number of replicas when scaling down. For a CPU trigger, enter a value of
1
or greater, because the HPA cannot scale to zero if you are using only CPU metrics.
3.4.3. Understanding the memory trigger
You can scale pods based on memory metrics. This trigger uses cluster metrics as the source for metrics.
The custom metrics autoscaler scales the pods associated with an object to maintain the average memory usage that you specify. The autoscaler increases and decreases the number of replicas between the minimum and maximum numbers to maintain the specified memory utilization across all pods. The memory trigger considers the memory utilization of entire pod. If the pod has multiple containers, the memory utilization is the sum of all of the containers.
-
This trigger cannot be used with the
ScaledJob
custom resource. -
When using a memory trigger to scale an object, the object does not scale to
0
, even if you are using multiple triggers.
Example scaled object with a memory target
apiVersion: keda.sh/v1alpha1 kind: ScaledObject metadata: name: memory-scaledobject namespace: my-namespace spec: # ... triggers: - type: memory 1 metricType: Utilization 2 metadata: value: '60' 3 containerName: api 4
- 1
- Specifies memory as the trigger type.
- 2
- Specifies the type of metric to use, either
Utilization
orAverageValue
. - 3
- Specifies the value that triggers scaling. Must be specified as a quoted string value.
-
When using
Utilization
, the target value is the average of the resource metrics across all relevant pods, represented as a percentage of the requested value of the resource for the pods. -
When using
AverageValue
, the target value is the average of the metrics across all relevant pods.
-
When using
- 4
- Optional: Specifies an individual container to scale, based on the memory utilization of only that container, rather than the entire pod. In this example, only the container named
api
is to be scaled.
3.4.4. Understanding the Kafka trigger
You can scale pods based on an Apache Kafka topic or other services that support the Kafka protocol. The custom metrics autoscaler does not scale higher than the number of Kafka partitions, unless you set the allowIdleConsumers
parameter to true
in the scaled object or scaled job.
If the number of consumer groups exceeds the number of partitions in a topic, the extra consumer groups remain idle. To avoid this, by default the number of replicas does not exceed:
- The number of partitions on a topic, if a topic is specified
- The number of partitions of all topics in the consumer group, if no topic is specified
-
The
maxReplicaCount
specified in scaled object or scaled job CR
You can use the allowIdleConsumers
parameter to disable these default behaviors.
Example scaled object with a Kafka target
apiVersion: keda.sh/v1alpha1 kind: ScaledObject metadata: name: kafka-scaledobject namespace: my-namespace spec: # ... triggers: - type: kafka 1 metadata: topic: my-topic 2 bootstrapServers: my-cluster-kafka-bootstrap.openshift-operators.svc:9092 3 consumerGroup: my-group 4 lagThreshold: '10' 5 activationLagThreshold: '5' 6 offsetResetPolicy: latest 7 allowIdleConsumers: true 8 scaleToZeroOnInvalidOffset: false 9 excludePersistentLag: false 10 version: '1.0.0' 11 partitionLimitation: '1,2,10-20,31' 12
- 1
- Specifies Kafka as the trigger type.
- 2
- Specifies the name of the Kafka topic on which Kafka is processing the offset lag.
- 3
- Specifies a comma-separated list of Kafka brokers to connect to.
- 4
- Specifies the name of the Kafka consumer group used for checking the offset on the topic and processing the related lag.
- 5
- Optional: Specifies the average target value that triggers scaling. Must be specified as a quoted string value. The default is
5
. - 6
- Optional: Specifies the target value for the activation phase. Must be specified as a quoted string value.
- 7
- Optional: Specifies the Kafka offset reset policy for the Kafka consumer. The available values are:
latest
andearliest
. The default islatest
. - 8
- Optional: Specifies whether the number of Kafka replicas can exceed the number of partitions on a topic.
-
If
true
, the number of Kafka replicas can exceed the number of partitions on a topic. This allows for idle Kafka consumers. -
If
false
, the number of Kafka replicas cannot exceed the number of partitions on a topic. This is the default.
-
If
- 9
- Specifies how the trigger behaves when a Kafka partition does not have a valid offset.
-
If
true
, the consumers are scaled to zero for that partition. -
If
false
, the scaler keeps a single consumer for that partition. This is the default.
-
If
- 10
- Optional: Specifies whether the trigger includes or excludes partition lag for partitions whose current offset is the same as the current offset of the previous polling cycle.
-
If
true
, the scaler excludes partition lag in these partitions. -
If
false
, the trigger includes all consumer lag in all partitions. This is the default.
-
If
- 11
- Optional: Specifies the version of your Kafka brokers. Must be specified as a quoted string value. The default is
1.0.0
. - 12
- Optional: Specifies a comma-separated list of partition IDs to scope the scaling on. If set, only the listed IDs are considered when calculating lag. Must be specified as a quoted string value. The default is to consider all partitions.
3.5. Understanding custom metrics autoscaler trigger authentications
A trigger authentication allows you to include authentication information in a scaled object or a scaled job that can be used by the associated containers. You can use trigger authentications to pass OpenShift Container Platform secrets, platform-native pod authentication mechanisms, environment variables, and so on.
You define a TriggerAuthentication
object in the same namespace as the object that you want to scale. That trigger authentication can be used only by objects in that namespace.
Alternatively, to share credentials between objects in multiple namespaces, you can create a ClusterTriggerAuthentication
object that can be used across all namespaces.
Trigger authentications and cluster trigger authentication use the same configuration. However, a cluster trigger authentication requires an additional kind
parameter in the authentication reference of the scaled object.
Example trigger authentication with a secret
kind: TriggerAuthentication apiVersion: keda.sh/v1alpha1 metadata: name: secret-triggerauthentication namespace: my-namespace 1 spec: secretTargetRef: 2 - parameter: user-name 3 name: my-secret 4 key: USER_NAME 5 - parameter: password name: my-secret key: USER_PASSWORD
- 1
- Specifies the namespace of the object you want to scale.
- 2
- Specifies that this trigger authentication uses a secret for authorization.
- 3
- Specifies the authentication parameter to supply by using the secret.
- 4
- Specifies the name of the secret to use.
- 5
- Specifies the key in the secret to use with the specified parameter.
Example cluster trigger authentication with a secret
kind: ClusterTriggerAuthentication apiVersion: keda.sh/v1alpha1 metadata: 1 name: secret-cluster-triggerauthentication spec: secretTargetRef: 2 - parameter: user-name 3 name: secret-name 4 key: USER_NAME 5 - parameter: user-password name: secret-name key: USER_PASSWORD
- 1
- Note that no namespace is used with a cluster trigger authentication.
- 2
- Specifies that this trigger authentication uses a secret for authorization.
- 3
- Specifies the authentication parameter to supply by using the secret.
- 4
- Specifies the name of the secret to use.
- 5
- Specifies the key in the secret to use with the specified parameter.
Example trigger authentication with a token
kind: TriggerAuthentication apiVersion: keda.sh/v1alpha1 metadata: name: token-triggerauthentication namespace: my-namespace 1 spec: secretTargetRef: 2 - parameter: bearerToken 3 name: my-token-2vzfq 4 key: token 5 - parameter: ca name: my-token-2vzfq key: ca.crt
- 1
- Specifies the namespace of the object you want to scale.
- 2
- Specifies that this trigger authentication uses a secret for authorization.
- 3
- Specifies the authentication parameter to supply by using the token.
- 4
- Specifies the name of the token to use.
- 5
- Specifies the key in the token to use with the specified parameter.
Example trigger authentication with an environment variable
kind: TriggerAuthentication apiVersion: keda.sh/v1alpha1 metadata: name: env-var-triggerauthentication namespace: my-namespace 1 spec: env: 2 - parameter: access_key 3 name: ACCESS_KEY 4 containerName: my-container 5
- 1
- Specifies the namespace of the object you want to scale.
- 2
- Specifies that this trigger authentication uses environment variables for authorization.
- 3
- Specify the parameter to set with this variable.
- 4
- Specify the name of the environment variable.
- 5
- Optional: Specify a container that requires authentication. The container must be in the same resource as referenced by
scaleTargetRef
in the scaled object.
Example trigger authentication with pod authentication providers
kind: TriggerAuthentication apiVersion: keda.sh/v1alpha1 metadata: name: pod-id-triggerauthentication namespace: my-namespace 1 spec: podIdentity: 2 provider: aws-eks 3
Additional resources
- For information about OpenShift Container Platform secrets, see Providing sensitive data to pods.
3.5.1. Using trigger authentications
You use trigger authentications and cluster trigger authentications by using a custom resource to create the authentication, then add a reference to a scaled object or scaled job.
Prerequisites
- The Custom Metrics Autoscaler Operator must be installed.
If you are using a secret, the
Secret
object must exist, for example:Example secret
apiVersion: v1 kind: Secret metadata: name: my-secret data: user-name: <base64_USER_NAME> password: <base64_USER_PASSWORD>
Procedure
Create the
TriggerAuthentication
orClusterTriggerAuthentication
object.Create a YAML file that defines the object:
Example trigger authentication with a secret
kind: TriggerAuthentication apiVersion: keda.sh/v1alpha1 metadata: name: prom-triggerauthentication namespace: my-namespace spec: secretTargetRef: - parameter: user-name name: my-secret key: USER_NAME - parameter: password name: my-secret key: USER_PASSWORD
Create the
TriggerAuthentication
object:$ oc create -f <filename>.yaml
Create or edit a
ScaledObject
YAML file that uses the trigger authentication:Create a YAML file that defines the object by running the following command:
Example scaled object with a trigger authentication
apiVersion: keda.sh/v1alpha1 kind: ScaledObject metadata: name: scaledobject namespace: my-namespace spec: scaleTargetRef: name: example-deployment maxReplicaCount: 100 minReplicaCount: 0 pollingInterval: 30 triggers: - type: prometheus metadata: serverAddress: https://thanos-querier.openshift-monitoring.svc.cluster.local:9092 namespace: kedatest # replace <NAMESPACE> metricName: http_requests_total threshold: '5' query: sum(rate(http_requests_total{job="test-app"}[1m])) authModes: "basic" authenticationRef: name: prom-triggerauthentication 1 kind: TriggerAuthentication 2
Example scaled object with a cluster trigger authentication
apiVersion: keda.sh/v1alpha1 kind: ScaledObject metadata: name: scaledobject namespace: my-namespace spec: scaleTargetRef: name: example-deployment maxReplicaCount: 100 minReplicaCount: 0 pollingInterval: 30 triggers: - type: prometheus metadata: serverAddress: https://thanos-querier.openshift-monitoring.svc.cluster.local:9092 namespace: kedatest # replace <NAMESPACE> metricName: http_requests_total threshold: '5' query: sum(rate(http_requests_total{job="test-app"}[1m])) authModes: "basic" authenticationRef: name: prom-cluster-triggerauthentication 1 kind: ClusterTriggerAuthentication 2
Create the scaled object by running the following command:
$ oc apply -f <filename>
3.6. Pausing the custom metrics autoscaler for a scaled object
You can pause and restart the autoscaling of a workload, as needed.
For example, you might want to pause autoscaling before performing cluster maintenance or to avoid resource starvation by removing non-mission-critical workloads.
3.6.1. Pausing a custom metrics autoscaler
You can pause the autoscaling of a scaled object by adding the autoscaling.keda.sh/paused-replicas
annotation to the custom metrics autoscaler for that scaled object. The custom metrics autoscaler scales the replicas for that workload to the specified value and pauses autoscaling until the annotation is removed.
apiVersion: keda.sh/v1alpha1 kind: ScaledObject metadata: annotations: autoscaling.keda.sh/paused-replicas: "4" # ...
Procedure
Use the following command to edit the
ScaledObject
CR for your workload:$ oc edit ScaledObject scaledobject
Add the
autoscaling.keda.sh/paused-replicas
annotation with any value:apiVersion: keda.sh/v1alpha1 kind: ScaledObject metadata: annotations: autoscaling.keda.sh/paused-replicas: "4" 1 creationTimestamp: "2023-02-08T14:41:01Z" generation: 1 name: scaledobject namespace: my-project resourceVersion: '65729' uid: f5aec682-acdf-4232-a783-58b5b82f5dd0
- 1
- Specifies that the Custom Metrics Autoscaler Operator is to scale the replicas to the specified value and stop autoscaling.
3.6.2. Restarting the custom metrics autoscaler for a scaled object
You can restart a paused custom metrics autoscaler by removing the autoscaling.keda.sh/paused-replicas
annotation for that ScaledObject
.
apiVersion: keda.sh/v1alpha1 kind: ScaledObject metadata: annotations: autoscaling.keda.sh/paused-replicas: "4" # ...
Procedure
Use the following command to edit the
ScaledObject
CR for your workload:$ oc edit ScaledObject scaledobject
Remove the
autoscaling.keda.sh/paused-replicas
annotation.apiVersion: keda.sh/v1alpha1 kind: ScaledObject metadata: annotations: autoscaling.keda.sh/paused-replicas: "4" 1 creationTimestamp: "2023-02-08T14:41:01Z" generation: 1 name: scaledobject namespace: my-project resourceVersion: '65729' uid: f5aec682-acdf-4232-a783-58b5b82f5dd0
- 1
- Remove this annotation to restart a paused custom metrics autoscaler.
3.7. Gathering audit logs
You can gather audit logs, which are a security-relevant chronological set of records documenting the sequence of activities that have affected the system by individual users, administrators, or other components of the system.
For example, audit logs can help you understand where an autoscaling request is coming from. This is key information when backends are getting overloaded by autoscaling requests made by user applications and you need to determine which is the troublesome application.
3.7.1. Configuring audit logging
You can configure auditing for the Custom Metrics Autoscaler Operator by editing the KedaController
custom resource. The logs are sent to an audit log file on a volume that is secured by using a persistent volume claim in the KedaController
CR.
Prerequisites
- The Custom Metrics Autoscaler Operator must be installed.
Procedure
Edit the
KedaController
custom resource to add theauditConfig
stanza:kind: KedaController apiVersion: keda.sh/v1alpha1 metadata: name: keda namespace: openshift-keda spec: # ... metricsServer: # ... auditConfig: logFormat: "json" 1 logOutputVolumeClaim: "pvc-audit-log" 2 policy: rules: 3 - level: Metadata omitStages: "RequestReceived" 4 omitManagedFields: false 5 lifetime: 6 maxAge: "2" maxBackup: "1" maxSize: "50"
- 1
- Specifies the output format of the audit log, either
legacy
orjson
. - 2
- Specifies an existing persistent volume claim for storing the log data. All requests coming to the API server are logged to this persistent volume claim. If you leave this field empty, the log data is sent to stdout.
- 3
- Specifies which events should be recorded and what data they should include:
-
None
: Do not log events. -
Metadata
: Log only the metadata for the request, such as user, timestamp, and so forth. Do not log the request text and the response text. This is the default. -
Request
: Log only the metadata and the request text but not the response text. This option does not apply for non-resource requests. -
RequestResponse
: Log event metadata, request text, and response text. This option does not apply for non-resource requests.
-
- 4
- Specifies stages for which no event is created.
- 5
- Specifies whether to omit the managed fields of the request and response bodies from being written to the API audit log, either
true
to omit the fields orfalse
to include the fields. - 6
- Specifies the size and lifespan of the audit logs.
-
maxAge
: The maximum number of days to retain audit log files, based on the timestamp encoded in their filename. -
maxBackup
: The maximum number of audit log files to retain. Set to0
to retain all audit log files. -
maxSize
: The maximum size in megabytes of an audit log file before it gets rotated.
-
Verification
View the audit log file directly:
Obtain the name of the
keda-metrics-apiserver-*
pod:oc get pod -n openshift-keda
Example output
NAME READY STATUS RESTARTS AGE custom-metrics-autoscaler-operator-5cb44cd75d-9v4lv 1/1 Running 0 8m20s keda-metrics-apiserver-65c7cc44fd-rrl4r 1/1 Running 0 2m55s keda-operator-776cbb6768-zpj5b 1/1 Running 0 2m55s
View the log data by using a command similar to the following:
$ oc logs keda-metrics-apiserver-<hash>|grep -i metadata 1
- 1
- Optional: You can use the
grep
command to specify the log level to display:Metadata
,Request
,RequestResponse
.
For example:
$ oc logs keda-metrics-apiserver-65c7cc44fd-rrl4r|grep -i metadata
Example output
... {"kind":"Event","apiVersion":"audit.k8s.io/v1","level":"Metadata","auditID":"4c81d41b-3dab-4675-90ce-20b87ce24013","stage":"ResponseComplete","requestURI":"/healthz","verb":"get","user":{"username":"system:anonymous","groups":["system:unauthenticated"]},"sourceIPs":["10.131.0.1"],"userAgent":"kube-probe/1.26","responseStatus":{"metadata":{},"code":200},"requestReceivedTimestamp":"2023-02-16T13:00:03.554567Z","stageTimestamp":"2023-02-16T13:00:03.555032Z","annotations":{"authorization.k8s.io/decision":"allow","authorization.k8s.io/reason":""}} ...
Alternatively, you can view a specific log:
Use a command similar to the following to log into the
keda-metrics-apiserver-*
pod:$ oc rsh pod/keda-metrics-apiserver-<hash> -n openshift-keda
For example:
$ oc rsh pod/keda-metrics-apiserver-65c7cc44fd-rrl4r -n openshift-keda
Change to the
/var/audit-policy/
directory:sh-4.4$ cd /var/audit-policy/
List the available logs:
sh-4.4$ ls
Example output
log-2023.02.17-14:50 policy.yaml
View the log, as needed:
sh-4.4$ cat <log_name>/<pvc_name>|grep -i <log_level> 1
- 1
- Optional: You can use the
grep
command to specify the log level to display:Metadata
,Request
,RequestResponse
.
For example:
sh-4.4$ cat log-2023.02.17-14:50/pvc-audit-log|grep -i Request
Example output
... {"kind":"Event","apiVersion":"audit.k8s.io/v1","level":"Request","auditID":"63e7f68c-04ec-4f4d-8749-bf1656572a41","stage":"ResponseComplete","requestURI":"/openapi/v2","verb":"get","user":{"username":"system:aggregator","groups":["system:authenticated"]},"sourceIPs":["10.128.0.1"],"responseStatus":{"metadata":{},"code":304},"requestReceivedTimestamp":"2023-02-17T13:12:55.035478Z","stageTimestamp":"2023-02-17T13:12:55.038346Z","annotations":{"authorization.k8s.io/decision":"allow","authorization.k8s.io/reason":"RBAC: allowed by ClusterRoleBinding \"system:discovery\" of ClusterRole \"system:discovery\" to Group \"system:authenticated\""}} ...
3.8. Gathering debugging data
When opening a support case, it is helpful to provide debugging information about your cluster to Red Hat Support.
To help troubleshoot your issue, provide the following information:
-
Data gathered using the
must-gather
tool. - The unique cluster ID.
You can use the must-gather
tool to collect data about the Custom Metrics Autoscaler Operator and its components, including the following items:
-
The
openshift-keda
namespace and its child objects. - The Custom Metric Autoscaler Operator installation objects.
- The Custom Metric Autoscaler Operator CRD objects.
3.8.1. Gathering debugging data
The following command runs the must-gather
tool for the Custom Metrics Autoscaler Operator:
$ oc adm must-gather --image="$(oc get packagemanifests openshift-custom-metrics-autoscaler-operator \ -n openshift-marketplace \ -o jsonpath='{.status.channels[?(@.name=="stable")].currentCSVDesc.annotations.containerImage}')"
The standard OpenShift Container Platform must-gather
command, oc adm must-gather
, does not collect Custom Metrics Autoscaler Operator data.
Prerequisites
-
Access to the cluster as a user with the
cluster-admin
role. -
The OpenShift Container Platform CLI (
oc
) installed.
Procedure
Navigate to the directory where you want to store the
must-gather
data.NoteIf your cluster is using a restricted network, you must take additional steps. If your mirror registry has a trusted CA, you must first add the trusted CA to the cluster. For all clusters on restricted networks, you must import the default
must-gather
image as an image stream by running the following command.$ oc import-image is/must-gather -n openshift
Perform one of the following:
To get only the Custom Metrics Autoscaler Operator
must-gather
data, use the following command:$ oc adm must-gather --image="$(oc get packagemanifests openshift-custom-metrics-autoscaler-operator \ -n openshift-marketplace \ -o jsonpath='{.status.channels[?(@.name=="stable")].currentCSVDesc.annotations.containerImage}')"
The custom image for the
must-gather
command is pulled directly from the Operator package manifests, so that it works on any cluster where the Custom Metric Autoscaler Operator is available.To gather the default
must-gather
data in addition to the Custom Metric Autoscaler Operator information:Use the following command to obtain the Custom Metrics Autoscaler Operator image and set it as an environment variable:
$ IMAGE="$(oc get packagemanifests openshift-custom-metrics-autoscaler-operator \ -n openshift-marketplace \ -o jsonpath='{.status.channels[?(@.name=="stable")].currentCSVDesc.annotations.containerImage}')"
Use the
oc adm must-gather
with the Custom Metrics Autoscaler Operator image:$ oc adm must-gather --image-stream=openshift/must-gather --image=${IMAGE}
Example 3.1. Example must-gather output for the Custom Metric Autoscaler:
└── openshift-keda ├── apps │ ├── daemonsets.yaml │ ├── deployments.yaml │ ├── replicasets.yaml │ └── statefulsets.yaml ├── apps.openshift.io │ └── deploymentconfigs.yaml ├── autoscaling │ └── horizontalpodautoscalers.yaml ├── batch │ ├── cronjobs.yaml │ └── jobs.yaml ├── build.openshift.io │ ├── buildconfigs.yaml │ └── builds.yaml ├── core │ ├── configmaps.yaml │ ├── endpoints.yaml │ ├── events.yaml │ ├── persistentvolumeclaims.yaml │ ├── pods.yaml │ ├── replicationcontrollers.yaml │ ├── secrets.yaml │ └── services.yaml ├── discovery.k8s.io │ └── endpointslices.yaml ├── image.openshift.io │ └── imagestreams.yaml ├── k8s.ovn.org │ ├── egressfirewalls.yaml │ └── egressqoses.yaml ├── keda.sh │ ├── kedacontrollers │ │ └── keda.yaml │ ├── scaledobjects │ │ └── example-scaledobject.yaml │ └── triggerauthentications │ └── example-triggerauthentication.yaml ├── monitoring.coreos.com │ └── servicemonitors.yaml ├── networking.k8s.io │ └── networkpolicies.yaml ├── openshift-keda.yaml ├── pods │ ├── custom-metrics-autoscaler-operator-58bd9f458-ptgwx │ │ ├── custom-metrics-autoscaler-operator │ │ │ └── custom-metrics-autoscaler-operator │ │ │ └── logs │ │ │ ├── current.log │ │ │ ├── previous.insecure.log │ │ │ └── previous.log │ │ └── custom-metrics-autoscaler-operator-58bd9f458-ptgwx.yaml │ ├── custom-metrics-autoscaler-operator-58bd9f458-thbsh │ │ └── custom-metrics-autoscaler-operator │ │ └── custom-metrics-autoscaler-operator │ │ └── logs │ ├── keda-metrics-apiserver-65c7cc44fd-6wq4g │ │ ├── keda-metrics-apiserver │ │ │ └── keda-metrics-apiserver │ │ │ └── logs │ │ │ ├── current.log │ │ │ ├── previous.insecure.log │ │ │ └── previous.log │ │ └── keda-metrics-apiserver-65c7cc44fd-6wq4g.yaml │ └── keda-operator-776cbb6768-fb6m5 │ ├── keda-operator │ │ └── keda-operator │ │ └── logs │ │ ├── current.log │ │ ├── previous.insecure.log │ │ └── previous.log │ └── keda-operator-776cbb6768-fb6m5.yaml ├── policy │ └── poddisruptionbudgets.yaml └── route.openshift.io └── routes.yaml
Create a compressed file from the
must-gather
directory that was created in your working directory. For example, on a computer that uses a Linux operating system, run the following command:$ tar cvaf must-gather.tar.gz must-gather.local.5421342344627712289/ 1
- 1
- Replace
must-gather-local.5421342344627712289/
with the actual directory name.
- Attach the compressed file to your support case on the Red Hat Customer Portal.
3.9. Viewing Operator metrics
The Custom Metrics Autoscaler Operator exposes ready-to-use metrics that it pulls from the on-cluster monitoring component. You can query the metrics by using the Prometheus Query Language (PromQL) to analyze and diagnose issues. All metrics are reset when the controller pod restarts.
3.9.1. Accessing performance metrics
You can access the metrics and run queries by using the OpenShift Container Platform web console.
Procedure
- Select the Administrator perspective in the OpenShift Container Platform web console.
- Select Observe → Metrics.
- To create a custom query, add your PromQL query to the Expression field.
- To add multiple queries, select Add Query.
3.9.1.1. Provided Operator metrics
The Custom Metrics Autoscaler Operator exposes the following metrics, which you can view by using the OpenShift Container Platform web console.
Metric name | Description |
---|---|
|
Whether the particular scaler is active or inactive. A value of |
| The current value for each scaler’s metric, which is used by the Horizontal Pod Autoscaler (HPA) in computing the target average. |
| The latency of retrieving the current metric from each scaler. |
| The number of errors that have occurred for each scaler. |
| The total number of errors encountered for all scalers. |
| The number of errors that have occurred for each scaled obejct. |
| The total number of Custom Metrics Autoscaler custom resources in each namespace for each custom resource type. |
| The total number of triggers by trigger type. |
Custom Metrics Autoscaler Admission webhook metrics
The Custom Metrics Autoscaler Admission webhook also exposes the following Prometheus metrics.
Metric name | Description |
---|---|
| The number of scaled object validations. |
| The number of validation errors. |
3.10. Understanding how to add custom metrics autoscalers
To add a custom metrics autoscaler, create a ScaledObject
custom resource for a deployment, stateful set, or custom resource. Create a ScaledJob
custom resource for a job.
You can create only one scaled object for each workload that you want to scale. Also, you cannot use a scaled object and the horizontal pod autoscaler (HPA) on the same workload.
3.10.1. Adding a custom metrics autoscaler to a workload
You can create a custom metrics autoscaler for a workload that is created by a Deployment
, StatefulSet
, or custom resource
object.
Prerequisites
- The Custom Metrics Autoscaler Operator must be installed.
If you use a custom metrics autoscaler for scaling based on CPU or memory:
Your cluster administrator must have properly configured cluster metrics. You can use the
oc describe PodMetrics <pod-name>
command to determine if metrics are configured. If metrics are configured, the output appears similar to the following, with CPU and Memory displayed under Usage.$ oc describe PodMetrics openshift-kube-scheduler-ip-10-0-135-131.ec2.internal
Example output
Name: openshift-kube-scheduler-ip-10-0-135-131.ec2.internal Namespace: openshift-kube-scheduler Labels: <none> Annotations: <none> API Version: metrics.k8s.io/v1beta1 Containers: Name: wait-for-host-port Usage: Memory: 0 Name: scheduler Usage: Cpu: 8m Memory: 45440Ki Kind: PodMetrics Metadata: Creation Timestamp: 2019-05-23T18:47:56Z Self Link: /apis/metrics.k8s.io/v1beta1/namespaces/openshift-kube-scheduler/pods/openshift-kube-scheduler-ip-10-0-135-131.ec2.internal Timestamp: 2019-05-23T18:47:56Z Window: 1m0s Events: <none>
The pods associated with the object you want to scale must include specified memory and CPU limits. For example:
Example pod spec
apiVersion: v1 kind: Pod # ... spec: containers: - name: app image: images.my-company.example/app:v4 resources: limits: memory: "128Mi" cpu: "500m" # ...
Procedure
Create a YAML file similar to the following. Only the name
<2>
, object name<4>
, and object kind<5>
are required:Example scaled object
apiVersion: keda.sh/v1alpha1 kind: ScaledObject metadata: annotations: autoscaling.keda.sh/paused-replicas: "0" 1 name: scaledobject 2 namespace: my-namespace spec: scaleTargetRef: apiVersion: apps/v1 3 name: example-deployment 4 kind: Deployment 5 envSourceContainerName: .spec.template.spec.containers[0] 6 cooldownPeriod: 200 7 maxReplicaCount: 100 8 minReplicaCount: 0 9 metricsServer: 10 auditConfig: logFormat: "json" logOutputVolumeClaim: "persistentVolumeClaimName" policy: rules: - level: Metadata omitStages: "RequestReceived" omitManagedFields: false lifetime: maxAge: "2" maxBackup: "1" maxSize: "50" fallback: 11 failureThreshold: 3 replicas: 6 pollingInterval: 30 12 advanced: restoreToOriginalReplicaCount: false 13 horizontalPodAutoscalerConfig: name: keda-hpa-scale-down 14 behavior: 15 scaleDown: stabilizationWindowSeconds: 300 policies: - type: Percent value: 100 periodSeconds: 15 triggers: - type: prometheus 16 metadata: serverAddress: https://thanos-querier.openshift-monitoring.svc.cluster.local:9092 namespace: kedatest metricName: http_requests_total threshold: '5' query: sum(rate(http_requests_total{job="test-app"}[1m])) authModes: basic authenticationRef: 17 name: prom-triggerauthentication kind: TriggerAuthentication
- 1
- Optional: Specifies that the Custom Metrics Autoscaler Operator is to scale the replicas to the specified value and stop autoscaling, as described in the "Pausing the custom metrics autoscaler for a workload" section.
- 2
- Specifies a name for this custom metrics autoscaler.
- 3
- Optional: Specifies the API version of the target resource. The default is
apps/v1
. - 4
- Specifies the name of the object that you want to scale.
- 5
- Specifies the
kind
asDeployment
,StatefulSet
orCustomResource
. - 6
- Optional: Specifies the name of the container in the target resource, from which the custom metrics autoscaler gets environment variables holding secrets and so forth. The default is
.spec.template.spec.containers[0]
. - 7
- Optional. Specifies the period in seconds to wait after the last trigger is reported before scaling the deployment back to
0
if theminReplicaCount
is set to0
. The default is300
. - 8
- Optional: Specifies the maximum number of replicas when scaling up. The default is
100
. - 9
- Optional: Specifies the minimum number of replicas when scaling down.
- 10
- Optional: Specifies the parameters for audit logs. as described in the "Configuring audit logging" section.
- 11
- Optional: Specifies the number of replicas to fall back to if a scaler fails to get metrics from the source for the number of times defined by the
failureThreshold
parameter. For more information on fallback behavior, see the KEDA documentation. - 12
- Optional: Specifies the interval in seconds to check each trigger on. The default is
30
. - 13
- Optional: Specifies whether to scale back the target resource to the original replica count after the scaled object is deleted. The default is
false
, which keeps the replica count as it is when the scaled object is deleted. - 14
- Optional: Specifies a name for the horizontal pod autoscaler. The default is
keda-hpa-{scaled-object-name}
. - 15
- Optional: Specifies a scaling policy to use to control the rate to scale pods up or down, as described in the "Scaling policies" section.
- 16
- Specifies the trigger to use as the basis for scaling, as described in the "Understanding the custom metrics autoscaler triggers" section. This example uses OpenShift Container Platform monitoring.
- 17
- Optional: Specifies a trigger authentication or a cluster trigger authentication. For more information, see Understanding the custom metrics autoscaler trigger authentication in the Additional resources section.
-
Enter
TriggerAuthentication
to use a trigger authentication. This is the default. -
Enter
ClusterTriggerAuthentication
to use a cluster trigger authentication.
-
Enter
Create the custom metrics autoscaler by running the following command:
$ oc create -f <filename>.yaml
Verification
View the command output to verify that the custom metrics autoscaler was created:
$ oc get scaledobject <scaled_object_name>
Example output
NAME SCALETARGETKIND SCALETARGETNAME MIN MAX TRIGGERS AUTHENTICATION READY ACTIVE FALLBACK AGE scaledobject apps/v1.Deployment example-deployment 0 50 prometheus prom-triggerauthentication True True True 17s
Note the following fields in the output:
-
TRIGGERS
: Indicates the trigger, or scaler, that is being used. -
AUTHENTICATION
: Indicates the name of any trigger authentication being used. READY
: Indicates whether the scaled object is ready to start scaling:-
If
True
, the scaled object is ready. -
If
False
, the scaled object is not ready because of a problem in one or more of the objects you created.
-
If
ACTIVE
: Indicates whether scaling is taking place:-
If
True
, scaling is taking place. -
If
False
, scaling is not taking place because there are no metrics or there is a problem in one or more of the objects you created.
-
If
FALLBACK
: Indicates whether the custom metrics autoscaler is able to get metrics from the source-
If
False
, the custom metrics autoscaler is getting metrics. -
If
True
, the custom metrics autoscaler is getting metrics because there are no metrics or there is a problem in one or more of the objects you created.
-
If
-
3.10.2. Adding a custom metrics autoscaler to a job
You can create a custom metrics autoscaler for any Job
object.
Scaling by using a scaled job is a Technology Preview feature only. Technology Preview features are not supported with Red Hat production service level agreements (SLAs) and might not be functionally complete. Red Hat does not recommend using them in production. These features provide early access to upcoming product features, enabling customers to test functionality and provide feedback during the development process.
For more information about the support scope of Red Hat Technology Preview features, see Technology Preview Features Support Scope.
Prerequisites
- The Custom Metrics Autoscaler Operator must be installed.
Procedure
Create a YAML file similar to the following:
kind: ScaledJob apiVersion: keda.sh/v1alpha1 metadata: name: scaledjob namespace: my-namespace spec: failedJobsHistoryLimit: 5 jobTargetRef: activeDeadlineSeconds: 600 1 backoffLimit: 6 2 parallelism: 1 3 completions: 1 4 template: 5 metadata: name: pi spec: containers: - name: pi image: perl command: ["perl", "-Mbignum=bpi", "-wle", "print bpi(2000)"] maxReplicaCount: 100 6 pollingInterval: 30 7 successfulJobsHistoryLimit: 5 8 failedJobsHistoryLimit: 5 9 envSourceContainerName: 10 rolloutStrategy: gradual 11 scalingStrategy: 12 strategy: "custom" customScalingQueueLengthDeduction: 1 customScalingRunningJobPercentage: "0.5" pendingPodConditions: - "Ready" - "PodScheduled" - "AnyOtherCustomPodCondition" multipleScalersCalculation : "max" triggers: - type: prometheus 13 metadata: serverAddress: https://thanos-querier.openshift-monitoring.svc.cluster.local:9092 namespace: kedatest metricName: http_requests_total threshold: '5' query: sum(rate(http_requests_total{job="test-app"}[1m])) authModes: "bearer" authenticationRef: 14 name: prom-cluster-triggerauthentication
- 1
- Specifies the maximum duration the job can run.
- 2
- Specifies the number of retries for a job. The default is
6
. - 3
- Optional: Specifies how many pod replicas a job should run in parallel; defaults to
1
.-
For non-parallel jobs, leave unset. When unset, the default is
1
.
-
For non-parallel jobs, leave unset. When unset, the default is
- 4
- Optional: Specifies how many successful pod completions are needed to mark a job completed.
-
For non-parallel jobs, leave unset. When unset, the default is
1
. - For parallel jobs with a fixed completion count, specify the number of completions.
-
For parallel jobs with a work queue, leave unset. When unset the default is the value of the
parallelism
parameter.
-
For non-parallel jobs, leave unset. When unset, the default is
- 5
- Specifies the template for the pod the controller creates.
- 6
- Optional: Specifies the maximum number of replicas when scaling up. The default is
100
. - 7
- Optional: Specifies the interval in seconds to check each trigger on. The default is
30
. - 8
- Optional: Specifies the number of successful finished jobs should be kept. The default is
100
. - 9
- Optional: Specifies how many failed jobs should be kept. The default is
100
. - 10
- Optional: Specifies the name of the container in the target resource, from which the custom autoscaler gets environment variables holding secrets and so forth. The default is
.spec.template.spec.containers[0]
. - 11
- Optional: Specifies whether existing jobs are terminated whenever a scaled job is being updated:
-
default
: The autoscaler terminates an existing job if its associated scaled job is updated. The autoscaler recreates the job with the latest specs. -
gradual
: The autoscaler does not terminate an existing job if its associated scaled job is updated. The autoscaler creates new jobs with the latest specs.
-
- 12
- Optional: Specifies a scaling strategy:
default
,custom
, oraccurate
. The default isdefault
. For more information, see the link in the "Additional resources" section that follows. - 13
- Specifies the trigger to use as the basis for scaling, as described in the "Understanding the custom metrics autoscaler triggers" section.
- 14
- Optional: Specifies a trigger authentication or a cluster trigger authentication. For more information, see Understanding the custom metrics autoscaler trigger authentication in the Additional resources section.
-
Enter
TriggerAuthentication
to use a trigger authentication. This is the default. -
Enter
ClusterTriggerAuthentication
to use a cluster trigger authentication.
-
Enter
Create the custom metrics autoscaler by running the following command:
$ oc create -f <filename>.yaml
Verification
View the command output to verify that the custom metrics autoscaler was created:
$ oc get scaledjob <scaled_job_name>
Example output
NAME MAX TRIGGERS AUTHENTICATION READY ACTIVE AGE scaledjob 100 prometheus prom-triggerauthentication True True 8s
Note the following fields in the output:
-
TRIGGERS
: Indicates the trigger, or scaler, that is being used. -
AUTHENTICATION
: Indicates the name of any trigger authentication being used. READY
: Indicates whether the scaled object is ready to start scaling:-
If
True
, the scaled object is ready. -
If
False
, the scaled object is not ready because of a problem in one or more of the objects you created.
-
If
ACTIVE
: Indicates whether scaling is taking place:-
If
True
, scaling is taking place. -
If
False
, scaling is not taking place because there are no metrics or there is a problem in one or more of the objects you created.
-
If
-
3.10.3. Additional resources
3.11. Removing the Custom Metrics Autoscaler Operator
You can remove the custom metrics autoscaler from your OpenShift Container Platform cluster. After removing the Custom Metrics Autoscaler Operator, remove other components associated with the Operator to avoid potential issues.
Delete the KedaController
custom resource (CR) first. If you do not delete the KedaController
CR, OpenShift Container Platform can hang when you delete the openshift-keda
project. If you delete the Custom Metrics Autoscaler Operator before deleting the CR, you are not able to delete the CR.
3.11.1. Uninstalling the Custom Metrics Autoscaler Operator
Use the following procedure to remove the custom metrics autoscaler from your OpenShift Container Platform cluster.
Prerequisites
- The Custom Metrics Autoscaler Operator must be installed.
Procedure
- In the OpenShift Container Platform web console, click Operators → Installed Operators.
- Switch to the openshift-keda project.
Remove the
KedaController
custom resource.- Find the CustomMetricsAutoscaler Operator and click the KedaController tab.
- Find the custom resource, and then click Delete KedaController.
- Click Uninstall.
Remove the Custom Metrics Autoscaler Operator:
- Click Operators → Installed Operators.
- Find the CustomMetricsAutoscaler Operator and click the Options menu and select Uninstall Operator.
- Click Uninstall.
Optional: Use the OpenShift CLI to remove the custom metrics autoscaler components:
Delete the custom metrics autoscaler CRDs:
-
clustertriggerauthentications.keda.sh
-
kedacontrollers.keda.sh
-
scaledjobs.keda.sh
-
scaledobjects.keda.sh
-
triggerauthentications.keda.sh
$ oc delete crd clustertriggerauthentications.keda.sh kedacontrollers.keda.sh scaledjobs.keda.sh scaledobjects.keda.sh triggerauthentications.keda.sh
Deleting the CRDs removes the associated roles, cluster roles, and role bindings. However, there might be a few cluster roles that must be manually deleted.
-
List any custom metrics autoscaler cluster roles:
$ oc get clusterrole | grep keda.sh
Delete the listed custom metrics autoscaler cluster roles. For example:
$ oc delete clusterrole.keda.sh-v1alpha1-admin
List any custom metrics autoscaler cluster role bindings:
$ oc get clusterrolebinding | grep keda.sh
Delete the listed custom metrics autoscaler cluster role bindings. For example:
$ oc delete clusterrolebinding.keda.sh-v1alpha1-admin
Delete the custom metrics autoscaler project:
$ oc delete project openshift-keda
Delete the Cluster Metric Autoscaler Operator:
$ oc delete operator/openshift-custom-metrics-autoscaler-operator.openshift-keda
Chapter 4. Controlling pod placement onto nodes (scheduling)
4.1. Controlling pod placement using the scheduler
Pod scheduling is an internal process that determines placement of new pods onto nodes within the cluster.
The scheduler code has a clean separation that watches new pods as they get created and identifies the most suitable node to host them. It then creates bindings (pod to node bindings) for the pods using the master API.
- Default pod scheduling
- OpenShift Container Platform comes with a default scheduler that serves the needs of most users. The default scheduler uses both inherent and customization tools to determine the best fit for a pod.
- Advanced pod scheduling
In situations where you might want more control over where new pods are placed, the OpenShift Container Platform advanced scheduling features allow you to configure a pod so that the pod is required or has a preference to run on a particular node or alongside a specific pod.
You can control pod placement by using the following scheduling features:
4.1.1. About the default scheduler
The default OpenShift Container Platform pod scheduler is responsible for determining the placement of new pods onto nodes within the cluster. It reads data from the pod and finds a node that is a good fit based on configured profiles. It is completely independent and exists as a standalone solution. It does not modify the pod; it creates a binding for the pod that ties the pod to the particular node.
4.1.1.1. Understanding default scheduling
The existing generic scheduler is the default platform-provided scheduler engine that selects a node to host the pod in a three-step operation:
- Filters the nodes
- The available nodes are filtered based on the constraints or requirements specified. This is done by running each node through the list of filter functions called predicates, or filters.
- Prioritizes the filtered list of nodes
- This is achieved by passing each node through a series of priority, or scoring, functions that assign it a score between 0 - 10, with 0 indicating a bad fit and 10 indicating a good fit to host the pod. The scheduler configuration can also take in a simple weight (positive numeric value) for each scoring function. The node score provided by each scoring function is multiplied by the weight (default weight for most scores is 1) and then combined by adding the scores for each node provided by all the scores. This weight attribute can be used by administrators to give higher importance to some scores.
- Selects the best fit node
- The nodes are sorted based on their scores and the node with the highest score is selected to host the pod. If multiple nodes have the same high score, then one of them is selected at random.
4.1.2. Scheduler use cases
One of the important use cases for scheduling within OpenShift Container Platform is to support flexible affinity and anti-affinity policies.
4.1.2.1. Infrastructure topological levels
Administrators can define multiple topological levels for their infrastructure (nodes) by specifying labels on nodes. For example: region=r1
, zone=z1
, rack=s1
.
These label names have no particular meaning and administrators are free to name their infrastructure levels anything, such as city/building/room. Also, administrators can define any number of levels for their infrastructure topology, with three levels usually being adequate (such as: regions
→ zones
→ racks
). Administrators can specify affinity and anti-affinity rules at each of these levels in any combination.
4.1.2.2. Affinity
Administrators should be able to configure the scheduler to specify affinity at any topological level, or even at multiple levels. Affinity at a particular level indicates that all pods that belong to the same service are scheduled onto nodes that belong to the same level. This handles any latency requirements of applications by allowing administrators to ensure that peer pods do not end up being too geographically separated. If no node is available within the same affinity group to host the pod, then the pod is not scheduled.
If you need greater control over where the pods are scheduled, see Controlling pod placement on nodes using node affinity rules and Placing pods relative to other pods using affinity and anti-affinity rules.
These advanced scheduling features allow administrators to specify which node a pod can be scheduled on and to force or reject scheduling relative to other pods.
4.1.2.3. Anti-affinity
Administrators should be able to configure the scheduler to specify anti-affinity at any topological level, or even at multiple levels. Anti-affinity (or 'spread') at a particular level indicates that all pods that belong to the same service are spread across nodes that belong to that level. This ensures that the application is well spread for high availability purposes. The scheduler tries to balance the service pods across all applicable nodes as evenly as possible.
If you need greater control over where the pods are scheduled, see Controlling pod placement on nodes using node affinity rules and Placing pods relative to other pods using affinity and anti-affinity rules.
These advanced scheduling features allow administrators to specify which node a pod can be scheduled on and to force or reject scheduling relative to other pods.
4.2. Scheduling pods using a scheduler profile
You can configure OpenShift Container Platform to use a scheduling profile to schedule pods onto nodes within the cluster.
4.2.1. About scheduler profiles
You can specify a scheduler profile to control how pods are scheduled onto nodes.
The following scheduler profiles are available:
LowNodeUtilization
- This profile attempts to spread pods evenly across nodes to get low resource usage per node. This profile provides the default scheduler behavior.
HighNodeUtilization
- This profile attempts to place as many pods as possible on to as few nodes as possible. This minimizes node count and has high resource usage per node.
NoScoring
- This is a low-latency profile that strives for the quickest scheduling cycle by disabling all score plugins. This might sacrifice better scheduling decisions for faster ones.
4.2.2. Configuring a scheduler profile
You can configure the scheduler to use a scheduler profile.
Prerequisites
-
Access to the cluster as a user with the
cluster-admin
role.
Procedure
Edit the
Scheduler
object:$ oc edit scheduler cluster
Specify the profile to use in the
spec.profile
field:apiVersion: config.openshift.io/v1 kind: Scheduler metadata: name: cluster #... spec: mastersSchedulable: false profile: HighNodeUtilization 1 #...
- 1
- Set to
LowNodeUtilization
,HighNodeUtilization
, orNoScoring
.
- Save the file to apply the changes.
4.3. Placing pods relative to other pods using affinity and anti-affinity rules
Affinity is a property of pods that controls the nodes on which they prefer to be scheduled. Anti-affinity is a property of pods that prevents a pod from being scheduled on a node.
In OpenShift Container Platform, pod affinity and pod anti-affinity allow you to constrain which nodes your pod is eligible to be scheduled on based on the key-value labels on other pods.
4.3.1. Understanding pod affinity
Pod affinity and pod anti-affinity allow you to constrain which nodes your pod is eligible to be scheduled on based on the key/value labels on other pods.
- Pod affinity can tell the scheduler to locate a new pod on the same node as other pods if the label selector on the new pod matches the label on the current pod.
- Pod anti-affinity can prevent the scheduler from locating a new pod on the same node as pods with the same labels if the label selector on the new pod matches the label on the current pod.
For example, using affinity rules, you could spread or pack pods within a service or relative to pods in other services. Anti-affinity rules allow you to prevent pods of a particular service from scheduling on the same nodes as pods of another service that are known to interfere with the performance of the pods of the first service. Or, you could spread the pods of a service across nodes, availability zones, or availability sets to reduce correlated failures.
A label selector might match pods with multiple pod deployments. Use unique combinations of labels when configuring anti-affinity rules to avoid matching pods.
There are two types of pod affinity rules: required and preferred.
Required rules must be met before a pod can be scheduled on a node. Preferred rules specify that, if the rule is met, the scheduler tries to enforce the rules, but does not guarantee enforcement.
Depending on your pod priority and preemption settings, the scheduler might not be able to find an appropriate node for a pod without violating affinity requirements. If so, a pod might not be scheduled.
To prevent this situation, carefully configure pod affinity with equal-priority pods.
You configure pod affinity/anti-affinity through the Pod
spec files. You can specify a required rule, a preferred rule, or both. If you specify both, the node must first meet the required rule, then attempts to meet the preferred rule.
The following example shows a Pod
spec configured for pod affinity and anti-affinity.
In this example, the pod affinity rule indicates that the pod can schedule onto a node only if that node has at least one already-running pod with a label that has the key security
and value S1
. The pod anti-affinity rule says that the pod prefers to not schedule onto a node if that node is already running a pod with label having key security
and value S2
.
Sample Pod
config file with pod affinity
apiVersion: v1 kind: Pod metadata: name: with-pod-affinity spec: affinity: podAffinity: 1 requiredDuringSchedulingIgnoredDuringExecution: 2 - labelSelector: matchExpressions: - key: security 3 operator: In 4 values: - S1 5 topologyKey: failure-domain.beta.kubernetes.io/zone containers: - name: with-pod-affinity image: docker.io/ocpqe/hello-pod
- 1
- Stanza to configure pod affinity.
- 2
- Defines a required rule.
- 3 5
- The key and value (label) that must be matched to apply the rule.
- 4
- The operator represents the relationship between the label on the existing pod and the set of values in the
matchExpression
parameters in the specification for the new pod. Can beIn
,NotIn
,Exists
, orDoesNotExist
.
Sample Pod
config file with pod anti-affinity
apiVersion: v1 kind: Pod metadata: name: with-pod-antiaffinity spec: affinity: podAntiAffinity: 1 preferredDuringSchedulingIgnoredDuringExecution: 2 - weight: 100 3 podAffinityTerm: labelSelector: matchExpressions: - key: security 4 operator: In 5 values: - S2 topologyKey: kubernetes.io/hostname containers: - name: with-pod-affinity image: docker.io/ocpqe/hello-pod
- 1
- Stanza to configure pod anti-affinity.
- 2
- Defines a preferred rule.
- 3
- Specifies a weight for a preferred rule. The node with the highest weight is preferred.
- 4
- Description of the pod label that determines when the anti-affinity rule applies. Specify a key and value for the label.
- 5
- The operator represents the relationship between the label on the existing pod and the set of values in the
matchExpression
parameters in the specification for the new pod. Can beIn
,NotIn
,Exists
, orDoesNotExist
.
If labels on a node change at runtime such that the affinity rules on a pod are no longer met, the pod continues to run on the node.
4.3.2. Configuring a pod affinity rule
The following steps demonstrate a simple two-pod configuration that creates pod with a label and a pod that uses affinity to allow scheduling with that pod.
You cannot add an affinity directly to a scheduled pod.
Procedure
Create a pod with a specific label in the pod spec:
Create a YAML file with the following content:
apiVersion: v1 kind: Pod metadata: name: security-s1 labels: security: S1 spec: containers: - name: security-s1 image: docker.io/ocpqe/hello-pod
Create the pod.
$ oc create -f <pod-spec>.yaml
When creating other pods, configure the following parameters to add the affinity:
Create a YAML file with the following content:
apiVersion: v1 kind: Pod metadata: name: security-s1-east #... spec affinity 1 podAffinity: requiredDuringSchedulingIgnoredDuringExecution: 2 - labelSelector: matchExpressions: - key: security 3 values: - S1 operator: In 4 topologyKey: topology.kubernetes.io/zone 5 #...
- 1
- Adds a pod affinity.
- 2
- Configures the
requiredDuringSchedulingIgnoredDuringExecution
parameter or thepreferredDuringSchedulingIgnoredDuringExecution
parameter. - 3
- Specifies the
key
andvalues
that must be met. If you want the new pod to be scheduled with the other pod, use the samekey
andvalues
parameters as the label on the first pod. - 4
- Specifies an
operator
. The operator can beIn
,NotIn
,Exists
, orDoesNotExist
. For example, use the operatorIn
to require the label to be in the node. - 5
- Specify a
topologyKey
, which is a prepopulated Kubernetes label that the system uses to denote such a topology domain.
Create the pod.
$ oc create -f <pod-spec>.yaml
4.3.3. Configuring a pod anti-affinity rule
The following steps demonstrate a simple two-pod configuration that creates pod with a label and a pod that uses an anti-affinity preferred rule to attempt to prevent scheduling with that pod.
You cannot add an affinity directly to a scheduled pod.
Procedure
Create a pod with a specific label in the pod spec:
Create a YAML file with the following content:
apiVersion: v1 kind: Pod metadata: name: security-s1 labels: security: S1 spec: containers: - name: security-s1 image: docker.io/ocpqe/hello-pod
Create the pod.
$ oc create -f <pod-spec>.yaml
When creating other pods, configure the following parameters:
Create a YAML file with the following content:
apiVersion: v1 kind: Pod metadata: name: security-s2-east #... spec affinity 1 podAntiAffinity: preferredDuringSchedulingIgnoredDuringExecution: 2 - weight: 100 3 podAffinityTerm: labelSelector: matchExpressions: - key: security 4 values: - S1 operator: In 5 topologyKey: kubernetes.io/hostname 6 #...
- 1
- Adds a pod anti-affinity.
- 2
- Configures the
requiredDuringSchedulingIgnoredDuringExecution
parameter or thepreferredDuringSchedulingIgnoredDuringExecution
parameter. - 3
- For a preferred rule, specifies a weight for the node, 1-100. The node that with highest weight is preferred.
- 4
- Specifies the
key
andvalues
that must be met. If you want the new pod to not be scheduled with the other pod, use the samekey
andvalues
parameters as the label on the first pod. - 5
- Specifies an
operator
. The operator can beIn
,NotIn
,Exists
, orDoesNotExist
. For example, use the operatorIn
to require the label to be in the node. - 6
- Specifies a
topologyKey
, which is a prepopulated Kubernetes label that the system uses to denote such a topology domain.
Create the pod.
$ oc create -f <pod-spec>.yaml
4.3.4. Sample pod affinity and anti-affinity rules
The following examples demonstrate pod affinity and pod anti-affinity.
4.3.4.1. Pod Affinity
The following example demonstrates pod affinity for pods with matching labels and label selectors.
The pod team4 has the label
team:4
.apiVersion: v1 kind: Pod metadata: name: team4 labels: team: "4" #... spec: containers: - name: ocp image: docker.io/ocpqe/hello-pod #...
The pod team4a has the label selector
team:4
underpodAffinity
.apiVersion: v1 kind: Pod metadata: name: team4a #... spec: affinity: podAffinity: requiredDuringSchedulingIgnoredDuringExecution: - labelSelector: matchExpressions: - key: team operator: In values: - "4" topologyKey: kubernetes.io/hostname containers: - name: pod-affinity image: docker.io/ocpqe/hello-pod #...
- The team4a pod is scheduled on the same node as the team4 pod.
4.3.4.2. Pod Anti-affinity
The following example demonstrates pod anti-affinity for pods with matching labels and label selectors.
The pod pod-s1 has the label
security:s1
.apiVersion: v1 kind: Pod metadata: name: pod-s1 labels: security: s1 #... spec: containers: - name: ocp image: docker.io/ocpqe/hello-pod #...
The pod pod-s2 has the label selector
security:s1
underpodAntiAffinity
.apiVersion: v1 kind: Pod metadata: name: pod-s2 #... spec: affinity: podAntiAffinity: requiredDuringSchedulingIgnoredDuringExecution: - labelSelector: matchExpressions: - key: security operator: In values: - s1 topologyKey: kubernetes.io/hostname containers: - name: pod-antiaffinity image: docker.io/ocpqe/hello-pod #...
-
The pod pod-s2 cannot be scheduled on the same node as
pod-s1
.
4.3.4.3. Pod Affinity with no Matching Labels
The following example demonstrates pod affinity for pods without matching labels and label selectors.
The pod pod-s1 has the label
security:s1
.apiVersion: v1 kind: Pod metadata: name: pod-s1 labels: security: s1 #... spec: containers: - name: ocp image: docker.io/ocpqe/hello-pod #...
The pod pod-s2 has the label selector
security:s2
.apiVersion: v1 kind: Pod metadata: name: pod-s2 #... spec: affinity: podAffinity: requiredDuringSchedulingIgnoredDuringExecution: - labelSelector: matchExpressions: - key: security operator: In values: - s2 topologyKey: kubernetes.io/hostname containers: - name: pod-affinity image: docker.io/ocpqe/hello-pod #...
The pod pod-s2 is not scheduled unless there is a node with a pod that has the
security:s2
label. If there is no other pod with that label, the new pod remains in a pending state:Example output
NAME READY STATUS RESTARTS AGE IP NODE pod-s2 0/1 Pending 0 32s <none>
4.4. Controlling pod placement on nodes using node affinity rules
Affinity is a property of pods that controls the nodes on which they prefer to be scheduled.
In OpenShift Container Platform node affinity is a set of rules used by the scheduler to determine where a pod can be placed. The rules are defined using custom labels on the nodes and label selectors specified in pods.
4.4.1. Understanding node affinity
Node affinity allows a pod to specify an affinity towards a group of nodes it can be placed on. The node does not have control over the placement.
For example, you could configure a pod to only run on a node with a specific CPU or in a specific availability zone.
There are two types of node affinity rules: required and preferred.
Required rules must be met before a pod can be scheduled on a node. Preferred rules specify that, if the rule is met, the scheduler tries to enforce the rules, but does not guarantee enforcement.
If labels on a node change at runtime that results in an node affinity rule on a pod no longer being met, the pod continues to run on the node.
You configure node affinity through the Pod
spec file. You can specify a required rule, a preferred rule, or both. If you specify both, the node must first meet the required rule, then attempts to meet the preferred rule.
The following example is a Pod
spec with a rule that requires the pod be placed on a node with a label whose key is e2e-az-NorthSouth
and whose value is either e2e-az-North
or e2e-az-South
:
Example pod configuration file with a node affinity required rule
apiVersion: v1 kind: Pod metadata: name: with-node-affinity spec: affinity: nodeAffinity: 1 requiredDuringSchedulingIgnoredDuringExecution: 2 nodeSelectorTerms: - matchExpressions: - key: e2e-az-NorthSouth 3 operator: In 4 values: - e2e-az-North 5 - e2e-az-South 6 containers: - name: with-node-affinity image: docker.io/ocpqe/hello-pod #...
- 1
- The stanza to configure node affinity.
- 2
- Defines a required rule.
- 3 5 6
- The key/value pair (label) that must be matched to apply the rule.
- 4
- The operator represents the relationship between the label on the node and the set of values in the
matchExpression
parameters in thePod
spec. This value can beIn
,NotIn
,Exists
, orDoesNotExist
,Lt
, orGt
.
The following example is a node specification with a preferred rule that a node with a label whose key is e2e-az-EastWest
and whose value is either e2e-az-East
or e2e-az-West
is preferred for the pod:
Example pod configuration file with a node affinity preferred rule
apiVersion: v1 kind: Pod metadata: name: with-node-affinity spec: affinity: nodeAffinity: 1 preferredDuringSchedulingIgnoredDuringExecution: 2 - weight: 1 3 preference: matchExpressions: - key: e2e-az-EastWest 4 operator: In 5 values: - e2e-az-East 6 - e2e-az-West 7 containers: - name: with-node-affinity image: docker.io/ocpqe/hello-pod #...
- 1
- The stanza to configure node affinity.
- 2
- Defines a preferred rule.
- 3
- Specifies a weight for a preferred rule. The node with highest weight is preferred.
- 4 6 7
- The key/value pair (label) that must be matched to apply the rule.
- 5
- The operator represents the relationship between the label on the node and the set of values in the
matchExpression
parameters in thePod
spec. This value can beIn
,NotIn
,Exists
, orDoesNotExist
,Lt
, orGt
.
There is no explicit node anti-affinity concept, but using the NotIn
or DoesNotExist
operator replicates that behavior.
If you are using node affinity and node selectors in the same pod configuration, note the following:
-
If you configure both
nodeSelector
andnodeAffinity
, both conditions must be satisfied for the pod to be scheduled onto a candidate node. -
If you specify multiple
nodeSelectorTerms
associated withnodeAffinity
types, then the pod can be scheduled onto a node if one of thenodeSelectorTerms
is satisfied. -
If you specify multiple
matchExpressions
associated withnodeSelectorTerms
, then the pod can be scheduled onto a node only if allmatchExpressions
are satisfied.
4.4.2. Configuring a required node affinity rule
Required rules must be met before a pod can be scheduled on a node.
Procedure
The following steps demonstrate a simple configuration that creates a node and a pod that the scheduler is required to place on the node.
Add a label to a node using the
oc label node
command:$ oc label node node1 e2e-az-name=e2e-az1
TipYou can alternatively apply the following YAML to add the label:
kind: Node apiVersion: v1 metadata: name: <node_name> labels: e2e-az-name: e2e-az1 #...
Create a pod with a specific label in the pod spec:
Create a YAML file with the following content:
NoteYou cannot add an affinity directly to a scheduled pod.
Example output
apiVersion: v1 kind: Pod metadata: name: s1 spec: affinity: 1 nodeAffinity: requiredDuringSchedulingIgnoredDuringExecution: 2 nodeSelectorTerms: - matchExpressions: - key: e2e-az-name 3 values: - e2e-az1 - e2e-az2 operator: In 4 #...
- 1
- Adds a pod affinity.
- 2
- Configures the
requiredDuringSchedulingIgnoredDuringExecution
parameter. - 3
- Specifies the
key
andvalues
that must be met. If you want the new pod to be scheduled on the node you edited, use the samekey
andvalues
parameters as the label in the node. - 4
- Specifies an
operator
. The operator can beIn
,NotIn
,Exists
, orDoesNotExist
. For example, use the operatorIn
to require the label to be in the node.
Create the pod:
$ oc create -f <file-name>.yaml
4.4.3. Configuring a preferred node affinity rule
Preferred rules specify that, if the rule is met, the scheduler tries to enforce the rules, but does not guarantee enforcement.
Procedure
The following steps demonstrate a simple configuration that creates a node and a pod that the scheduler tries to place on the node.
Add a label to a node using the
oc label node
command:$ oc label node node1 e2e-az-name=e2e-az3
Create a pod with a specific label:
Create a YAML file with the following content:
NoteYou cannot add an affinity directly to a scheduled pod.
apiVersion: v1 kind: Pod metadata: name: s1 spec: affinity: 1 nodeAffinity: preferredDuringSchedulingIgnoredDuringExecution: 2 - weight: 3 preference: matchExpressions: - key: e2e-az-name 4 values: - e2e-az3 operator: In 5 #...
- 1
- Adds a pod affinity.
- 2
- Configures the
preferredDuringSchedulingIgnoredDuringExecution
parameter. - 3
- Specifies a weight for the node, as a number 1-100. The node with highest weight is preferred.
- 4
- Specifies the
key
andvalues
that must be met. If you want the new pod to be scheduled on the node you edited, use the samekey
andvalues
parameters as the label in the node. - 5
- Specifies an
operator
. The operator can beIn
,NotIn
,Exists
, orDoesNotExist
. For example, use the operatorIn
to require the label to be in the node.
Create the pod.
$ oc create -f <file-name>.yaml
4.4.4. Sample node affinity rules
The following examples demonstrate node affinity.
4.4.4.1. Node affinity with matching labels
The following example demonstrates node affinity for a node and pod with matching labels:
The Node1 node has the label
zone:us
:$ oc label node node1 zone=us
TipYou can alternatively apply the following YAML to add the label:
kind: Node apiVersion: v1 metadata: name: <node_name> labels: zone: us #...
The pod-s1 pod has the
zone
andus
key/value pair under a required node affinity rule:$ cat pod-s1.yaml
Example output
apiVersion: v1 kind: Pod metadata: name: pod-s1 spec: containers: - image: "docker.io/ocpqe/hello-pod" name: hello-pod affinity: nodeAffinity: requiredDuringSchedulingIgnoredDuringExecution: nodeSelectorTerms: - matchExpressions: - key: "zone" operator: In values: - us #...
The pod-s1 pod can be scheduled on Node1:
$ oc get pod -o wide
Example output
NAME READY STATUS RESTARTS AGE IP NODE pod-s1 1/1 Running 0 4m IP1 node1
4.4.4.2. Node affinity with no matching labels
The following example demonstrates node affinity for a node and pod without matching labels:
The Node1 node has the label
zone:emea
:$ oc label node node1 zone=emea
TipYou can alternatively apply the following YAML to add the label:
kind: Node apiVersion: v1 metadata: name: <node_name> labels: zone: emea #...
The pod-s1 pod has the
zone
andus
key/value pair under a required node affinity rule:$ cat pod-s1.yaml
Example output
apiVersion: v1 kind: Pod metadata: name: pod-s1 spec: containers: - image: "docker.io/ocpqe/hello-pod" name: hello-pod affinity: nodeAffinity: requiredDuringSchedulingIgnoredDuringExecution: nodeSelectorTerms: - matchExpressions: - key: "zone" operator: In values: - us #...
The pod-s1 pod cannot be scheduled on Node1:
$ oc describe pod pod-s1
Example output
... Events: FirstSeen LastSeen Count From SubObjectPath Type Reason --------- -------- ----- ---- ------------- -------- ------ 1m 33s 8 default-scheduler Warning FailedScheduling No nodes are available that match all of the following predicates:: MatchNodeSelector (1).
4.4.5. Additional resources
4.5. Placing pods onto overcommited nodes
In an overcommited state, the sum of the container compute resource requests and limits exceeds the resources available on the system. Overcommitment might be desirable in development environments where a trade-off of guaranteed performance for capacity is acceptable.
Requests and limits enable administrators to allow and manage the overcommitment of resources on a node. The scheduler uses requests for scheduling your container and providing a minimum service guarantee. Limits constrain the amount of compute resource that may be consumed on your node.
4.5.1. Understanding overcommitment
Requests and limits enable administrators to allow and manage the overcommitment of resources on a node. The scheduler uses requests for scheduling your container and providing a minimum service guarantee. Limits constrain the amount of compute resource that may be consumed on your node.
OpenShift Container Platform administrators can control the level of overcommit and manage container density on nodes by configuring masters to override the ratio between request and limit set on developer containers. In conjunction with a per-project LimitRange
object specifying limits and defaults, this adjusts the container limit and request to achieve the desired level of overcommit.
That these overrides have no effect if no limits have been set on containers. Create a LimitRange
object with default limits, per individual project, or in the project template, to ensure that the overrides apply.
After these overrides, the container limits and requests must still be validated by any LimitRange
object in the project. It is possible, for example, for developers to specify a limit close to the minimum limit, and have the request then be overridden below the minimum limit, causing the pod to be forbidden. This unfortunate user experience should be addressed with future work, but for now, configure this capability and LimitRange
objects with caution.
4.5.2. Understanding nodes overcommitment
In an overcommitted environment, it is important to properly configure your node to provide best system behavior.
When the node starts, it ensures that the kernel tunable flags for memory management are set properly. The kernel should never fail memory allocations unless it runs out of physical memory.
To ensure this behavior, OpenShift Container Platform configures the kernel to always overcommit memory by setting the vm.overcommit_memory
parameter to 1
, overriding the default operating system setting.
OpenShift Container Platform also configures the kernel not to panic when it runs out of memory by setting the vm.panic_on_oom
parameter to 0
. A setting of 0 instructs the kernel to call oom_killer in an Out of Memory (OOM) condition, which kills processes based on priority
You can view the current setting by running the following commands on your nodes:
$ sysctl -a |grep commit
Example output
#... vm.overcommit_memory = 0 #...
$ sysctl -a |grep panic
Example output
#... vm.panic_on_oom = 0 #...
The above flags should already be set on nodes, and no further action is required.
You can also perform the following configurations for each node:
- Disable or enforce CPU limits using CPU CFS quotas
- Reserve resources for system processes
- Reserve memory across quality of service tiers
4.6. Controlling pod placement using node taints
Taints and tolerations allow the node to control which pods should (or should not) be scheduled on them.
4.6.1. Understanding taints and tolerations
A taint allows a node to refuse a pod to be scheduled unless that pod has a matching toleration.
You apply taints to a node through the Node
specification (NodeSpec
) and apply tolerations to a pod through the Pod
specification (PodSpec
). When you apply a taint a node, the scheduler cannot place a pod on that node unless the pod can tolerate the taint.
Example taint in a node specification
apiVersion: v1 kind: Node metadata: name: my-node #... spec: taints: - effect: NoExecute key: key1 value: value1 #...
Example toleration in a Pod
spec
apiVersion: v1 kind: Pod metadata: name: my-pod #... spec: tolerations: - key: "key1" operator: "Equal" value: "value1" effect: "NoExecute" tolerationSeconds: 3600 #...
Taints and tolerations consist of a key, value, and effect.
Parameter | Description | ||||||
---|---|---|---|---|---|---|---|
|
The | ||||||
|
The | ||||||
| The effect is one of the following:
| ||||||
|
|
If you add a
NoSchedule
taint to a control plane node, the node must have thenode-role.kubernetes.io/master=:NoSchedule
taint, which is added by default.For example:
apiVersion: v1 kind: Node metadata: annotations: machine.openshift.io/machine: openshift-machine-api/ci-ln-62s7gtb-f76d1-v8jxv-master-0 machineconfiguration.openshift.io/currentConfig: rendered-master-cdc1ab7da414629332cc4c3926e6e59c name: my-node #... spec: taints: - effect: NoSchedule key: node-role.kubernetes.io/master #...
A toleration matches a taint:
If the
operator
parameter is set toEqual
:-
the
key
parameters are the same; -
the
value
parameters are the same; -
the
effect
parameters are the same.
-
the
If the
operator
parameter is set toExists
:-
the
key
parameters are the same; -
the
effect
parameters are the same.
-
the
The following taints are built into OpenShift Container Platform:
-
node.kubernetes.io/not-ready
: The node is not ready. This corresponds to the node conditionReady=False
. -
node.kubernetes.io/unreachable
: The node is unreachable from the node controller. This corresponds to the node conditionReady=Unknown
. -
node.kubernetes.io/memory-pressure
: The node has memory pressure issues. This corresponds to the node conditionMemoryPressure=True
. -
node.kubernetes.io/disk-pressure
: The node has disk pressure issues. This corresponds to the node conditionDiskPressure=True
. -
node.kubernetes.io/network-unavailable
: The node network is unavailable. -
node.kubernetes.io/unschedulable
: The node is unschedulable. -
node.cloudprovider.kubernetes.io/uninitialized
: When the node controller is started with an external cloud provider, this taint is set on a node to mark it as unusable. After a controller from the cloud-controller-manager initializes this node, the kubelet removes this taint. node.kubernetes.io/pid-pressure
: The node has pid pressure. This corresponds to the node conditionPIDPressure=True
.ImportantOpenShift Container Platform does not set a default pid.available
evictionHard
.
4.6.1.1. Understanding how to use toleration seconds to delay pod evictions
You can specify how long a pod can remain bound to a node before being evicted by specifying the tolerationSeconds
parameter in the Pod
specification or MachineSet
object. If a taint with the NoExecute
effect is added to a node, a pod that does tolerate the taint, which has the tolerationSeconds
parameter, the pod is not evicted until that time period expires.
Example output
apiVersion: v1 kind: Pod metadata: name: my-pod #... spec: tolerations: - key: "key1" operator: "Equal" value: "value1" effect: "NoExecute" tolerationSeconds: 3600 #...
Here, if this pod is running but does not have a matching toleration, the pod stays bound to the node for 3,600 seconds and then be evicted. If the taint is removed before that time, the pod is not evicted.
4.6.1.2. Understanding how to use multiple taints
You can put multiple taints on the same node and multiple tolerations on the same pod. OpenShift Container Platform processes multiple taints and tolerations as follows:
- Process the taints for which the pod has a matching toleration.
The remaining unmatched taints have the indicated effects on the pod:
-
If there is at least one unmatched taint with effect
NoSchedule
, OpenShift Container Platform cannot schedule a pod onto that node. -
If there is no unmatched taint with effect
NoSchedule
but there is at least one unmatched taint with effectPreferNoSchedule
, OpenShift Container Platform tries to not schedule the pod onto the node. If there is at least one unmatched taint with effect
NoExecute
, OpenShift Container Platform evicts the pod from the node if it is already running on the node, or the pod is not scheduled onto the node if it is not yet running on the node.- Pods that do not tolerate the taint are evicted immediately.
-
Pods that tolerate the taint without specifying
tolerationSeconds
in theirPod
specification remain bound forever. -
Pods that tolerate the taint with a specified
tolerationSeconds
remain bound for the specified amount of time.
-
If there is at least one unmatched taint with effect
For example:
Add the following taints to the node:
$ oc adm taint nodes node1 key1=value1:NoSchedule
$ oc adm taint nodes node1 key1=value1:NoExecute
$ oc adm taint nodes node1 key2=value2:NoSchedule
The pod has the following tolerations:
apiVersion: v1 kind: Pod metadata: name: my-pod #... spec: tolerations: - key: "key1" operator: "Equal" value: "value1" effect: "NoSchedule" - key: "key1" operator: "Equal" value: "value1" effect: "NoExecute" #...
In this case, the pod cannot be scheduled onto the node, because there is no toleration matching the third taint. The pod continues running if it is already running on the node when the taint is added, because the third taint is the only one of the three that is not tolerated by the pod.
4.6.1.3. Understanding pod scheduling and node conditions (taint node by condition)
The Taint Nodes By Condition feature, which is enabled by default, automatically taints nodes that report conditions such as memory pressure and disk pressure. If a node reports a condition, a taint is added until the condition clears. The taints have the NoSchedule
effect, which means no pod can be scheduled on the node unless the pod has a matching toleration.
The scheduler checks for these taints on nodes before scheduling pods. If the taint is present, the pod is scheduled on a different node. Because the scheduler checks for taints and not the actual node conditions, you configure the scheduler to ignore some of these node conditions by adding appropriate pod tolerations.
To ensure backward compatibility, the daemon set controller automatically adds the following tolerations to all daemons:
- node.kubernetes.io/memory-pressure
- node.kubernetes.io/disk-pressure
- node.kubernetes.io/unschedulable (1.10 or later)
- node.kubernetes.io/network-unavailable (host network only)
You can also add arbitrary tolerations to daemon sets.
The control plane also adds the node.kubernetes.io/memory-pressure
toleration on pods that have a QoS class. This is because Kubernetes manages pods in the Guaranteed
or Burstable
QoS classes. The new BestEffort
pods do not get scheduled onto the affected node.
4.6.1.4. Understanding evicting pods by condition (taint-based evictions)
The Taint-Based Evictions feature, which is enabled by default, evicts pods from a node that experiences specific conditions, such as not-ready
and unreachable
. When a node experiences one of these conditions, OpenShift Container Platform automatically adds taints to the node, and starts evicting and rescheduling the pods on different nodes.
Taint Based Evictions have a NoExecute
effect, where any pod that does not tolerate the taint is evicted immediately and any pod that does tolerate the taint will never be evicted, unless the pod uses the tolerationSeconds
parameter.
The tolerationSeconds
parameter allows you to specify how long a pod stays bound to a node that has a node condition. If the condition still exists after the tolerationSeconds
period, the taint remains on the node and the pods with a matching toleration are evicted. If the condition clears before the tolerationSeconds
period, pods with matching tolerations are not removed.
If you use the tolerationSeconds
parameter with no value, pods are never evicted because of the not ready and unreachable node conditions.
OpenShift Container Platform evicts pods in a rate-limited way to prevent massive pod evictions in scenarios such as the master becoming partitioned from the nodes.
By default, if more than 55% of nodes in a given zone are unhealthy, the node lifecycle controller changes that zone’s state to PartialDisruption
and the rate of pod evictions is reduced. For small clusters (by default, 50 nodes or less) in this state, nodes in this zone are not tainted and evictions are stopped.
For more information, see Rate limits on eviction in the Kubernetes documentation.
OpenShift Container Platform automatically adds a toleration for node.kubernetes.io/not-ready
and node.kubernetes.io/unreachable
with tolerationSeconds=300
, unless the Pod
configuration specifies either toleration.
apiVersion: v1
kind: Pod
metadata:
name: my-pod
#...
spec:
tolerations:
- key: node.kubernetes.io/not-ready
operator: Exists
effect: NoExecute
tolerationSeconds: 300 1
- key: node.kubernetes.io/unreachable
operator: Exists
effect: NoExecute
tolerationSeconds: 300
#...
- 1
- These tolerations ensure that the default pod behavior is to remain bound for five minutes after one of these node conditions problems is detected.
You can configure these tolerations as needed. For example, if you have an application with a lot of local state, you might want to keep the pods bound to node for a longer time in the event of network partition, allowing for the partition to recover and avoiding pod eviction.
Pods spawned by a daemon set are created with NoExecute
tolerations for the following taints with no tolerationSeconds
:
-
node.kubernetes.io/unreachable
-
node.kubernetes.io/not-ready
As a result, daemon set pods are never evicted because of these node conditions.
4.6.1.5. Tolerating all taints
You can configure a pod to tolerate all taints by adding an operator: "Exists"
toleration with no key
and values
parameters. Pods with this toleration are not removed from a node that has taints.
Pod
spec for tolerating all taints
apiVersion: v1 kind: Pod metadata: name: my-pod #... spec: tolerations: - operator: "Exists" #...
4.6.2. Adding taints and tolerations
You add tolerations to pods and taints to nodes to allow the node to control which pods should or should not be scheduled on them. For existing pods and nodes, you should add the toleration to the pod first, then add the taint to the node to avoid pods being removed from the node before you can add the toleration.
Procedure
Add a toleration to a pod by editing the
Pod
spec to include atolerations
stanza:Sample pod configuration file with an Equal operator
apiVersion: v1 kind: Pod metadata: name: my-pod #... spec: tolerations: - key: "key1" 1 value: "value1" operator: "Equal" effect: "NoExecute" tolerationSeconds: 3600 2 #...
For example:
Sample pod configuration file with an Exists operator
apiVersion: v1 kind: Pod metadata: name: my-pod #... spec: tolerations: - key: "key1" operator: "Exists" 1 effect: "NoExecute" tolerationSeconds: 3600 #...
- 1
- The
Exists
operator does not take avalue
.
This example places a taint on
node1
that has keykey1
, valuevalue1
, and taint effectNoExecute
.Add a taint to a node by using the following command with the parameters described in the Taint and toleration components table:
$ oc adm taint nodes <node_name> <key>=<value>:<effect>
For example:
$ oc adm taint nodes node1 key1=value1:NoExecute
This command places a taint on
node1
that has keykey1
, valuevalue1
, and effectNoExecute
.NoteIf you add a
NoSchedule
taint to a control plane node, the node must have thenode-role.kubernetes.io/master=:NoSchedule
taint, which is added by default.For example:
apiVersion: v1 kind: Node metadata: annotations: machine.openshift.io/machine: openshift-machine-api/ci-ln-62s7gtb-f76d1-v8jxv-master-0 machineconfiguration.openshift.io/currentConfig: rendered-master-cdc1ab7da414629332cc4c3926e6e59c name: my-node #... spec: taints: - effect: NoSchedule key: node-role.kubernetes.io/master #...
The tolerations on the pod match the taint on the node. A pod with either toleration can be scheduled onto
node1
.
4.6.2.1. Adding taints and tolerations using a machine set
You can add taints to nodes using a machine set. All nodes associated with the MachineSet
object are updated with the taint. Tolerations respond to taints added by a machine set in the same manner as taints added directly to the nodes.
Procedure
Add a toleration to a pod by editing the
Pod
spec to include atolerations
stanza:Sample pod configuration file with
Equal
operatorapiVersion: v1 kind: Pod metadata: name: my-pod #... spec: tolerations: - key: "key1" 1 value: "value1" operator: "Equal" effect: "NoExecute" tolerationSeconds: 3600 2 #...
For example:
Sample pod configuration file with
Exists
operatorapiVersion: v1 kind: Pod metadata: name: my-pod #... spec: tolerations: - key: "key1" operator: "Exists" effect: "NoExecute" tolerationSeconds: 3600 #...
Add the taint to the
MachineSet
object:Edit the
MachineSet
YAML for the nodes you want to taint or you can create a newMachineSet
object:$ oc edit machineset <machineset>
Add the taint to the
spec.template.spec
section:Example taint in a machine set specification
apiVersion: machine.openshift.io/v1beta1 kind: MachineSet metadata: name: my-machineset #... spec: #... template: #... spec: taints: - effect: NoExecute key: key1 value: value1 #...
This example places a taint that has the key
key1
, valuevalue1
, and taint effectNoExecute
on the nodes.Scale down the machine set to 0:
$ oc scale --replicas=0 machineset <machineset> -n openshift-machine-api
TipYou can alternatively apply the following YAML to scale the machine set:
apiVersion: machine.openshift.io/v1beta1 kind: MachineSet metadata: name: <machineset> namespace: openshift-machine-api spec: replicas: 0
Wait for the machines to be removed.
Scale up the machine set as needed:
$ oc scale --replicas=2 machineset <machineset> -n openshift-machine-api
Or:
$ oc edit machineset <machineset> -n openshift-machine-api
Wait for the machines to start. The taint is added to the nodes associated with the
MachineSet
object.
4.6.2.2. Binding a user to a node using taints and tolerations
If you want to dedicate a set of nodes for exclusive use by a particular set of users, add a toleration to their pods. Then, add a corresponding taint to those nodes. The pods with the tolerations are allowed to use the tainted nodes or any other nodes in the cluster.
If you want ensure the pods are scheduled to only those tainted nodes, also add a label to the same set of nodes and add a node affinity to the pods so that the pods can only be scheduled onto nodes with that label.
Procedure
To configure a node so that users can use only that node:
Add a corresponding taint to those nodes:
For example:
$ oc adm taint nodes node1 dedicated=groupName:NoSchedule
TipYou can alternatively apply the following YAML to add the taint:
kind: Node apiVersion: v1 metadata: name: my-node #... spec: taints: - key: dedicated value: groupName effect: NoSchedule #...
- Add a toleration to the pods by writing a custom admission controller.
4.6.2.3. Creating a project with a node selector and toleration
You can create a project that uses a node selector and toleration, which are set as annotations, to control the placement of pods onto specific nodes. Any subsequent resources created in the project are then scheduled on nodes that have a taint matching the toleration.
Prerequisites
- A label for node selection has been added to one or more nodes by using a machine set or editing the node directly.
- A taint has been added to one or more nodes by using a machine set or editing the node directly.
Procedure
Create a
Project
resource definition, specifying a node selector and toleration in themetadata.annotations
section:Example
project.yaml
filekind: Project apiVersion: project.openshift.io/v1 metadata: name: <project_name> 1 annotations: openshift.io/node-selector: '<label>' 2 scheduler.alpha.kubernetes.io/defaultTolerations: >- [{"operator": "Exists", "effect": "NoSchedule", "key": "<key_name>"} 3 ]
Use the
oc apply
command to create the project:$ oc apply -f project.yaml
Any subsequent resources created in the <project_name>
namespace should now be scheduled on the specified nodes.
Additional resources
- Adding taints and tolerations manually to nodes or with machine sets
- Creating project-wide node selectors
- Pod placement of Operator workloads
4.6.2.4. Controlling nodes with special hardware using taints and tolerations
In a cluster where a small subset of nodes have specialized hardware, you can use taints and tolerations to keep pods that do not need the specialized hardware off of those nodes, leaving the nodes for pods that do need the specialized hardware. You can also require pods that need specialized hardware to use specific nodes.
You can achieve this by adding a toleration to pods that need the special hardware and tainting the nodes that have the specialized hardware.
Procedure
To ensure nodes with specialized hardware are reserved for specific pods:
Add a toleration to pods that need the special hardware.
For example:
apiVersion: v1 kind: Pod metadata: name: my-pod #... spec: tolerations: - key: "disktype" value: "ssd" operator: "Equal" effect: "NoSchedule" tolerationSeconds: 3600 #...
Taint the nodes that have the specialized hardware using one of the following commands:
$ oc adm taint nodes <node-name> disktype=ssd:NoSchedule
Or:
$ oc adm taint nodes <node-name> disktype=ssd:PreferNoSchedule
TipYou can alternatively apply the following YAML to add the taint:
kind: Node apiVersion: v1 metadata: name: my_node #... spec: taints: - key: disktype value: ssd effect: PreferNoSchedule #...
4.6.3. Removing taints and tolerations
You can remove taints from nodes and tolerations from pods as needed. You should add the toleration to the pod first, then add the taint to the node to avoid pods being removed from the node before you can add the toleration.
Procedure
To remove taints and tolerations:
To remove a taint from a node:
$ oc adm taint nodes <node-name> <key>-
For example:
$ oc adm taint nodes ip-10-0-132-248.ec2.internal key1-
Example output
node/ip-10-0-132-248.ec2.internal untainted
To remove a toleration from a pod, edit the
Pod
spec to remove the toleration:apiVersion: v1 kind: Pod metadata: name: my-pod #... spec: tolerations: - key: "key2" operator: "Exists" effect: "NoExecute" tolerationSeconds: 3600 #...
4.7. Placing pods on specific nodes using node selectors
A node selector specifies a map of key/value pairs that are defined using custom labels on nodes and selectors specified in pods.
For the pod to be eligible to run on a node, the pod must have the same key/value node selector as the label on the node.
4.7.1. About node selectors
You can use node selectors on pods and labels on nodes to control where the pod is scheduled. With node selectors, OpenShift Container Platform schedules the pods on nodes that contain matching labels.
You can use a node selector to place specific pods on specific nodes, cluster-wide node selectors to place new pods on specific nodes anywhere in the cluster, and project node selectors to place new pods in a project on specific nodes.
For example, as a cluster administrator, you can create an infrastructure where application developers can deploy pods only onto the nodes closest to their geographical location by including a node selector in every pod they create. In this example, the cluster consists of five data centers spread across two regions. In the U.S., label the nodes as us-east
, us-central
, or us-west
. In the Asia-Pacific region (APAC), label the nodes as apac-east
or apac-west
. The developers can add a node selector to the pods they create to ensure the pods get scheduled on those nodes.
A pod is not scheduled if the Pod
object contains a node selector, but no node has a matching label.
If you are using node selectors and node affinity in the same pod configuration, the following rules control pod placement onto nodes:
-
If you configure both
nodeSelector
andnodeAffinity
, both conditions must be satisfied for the pod to be scheduled onto a candidate node. -
If you specify multiple
nodeSelectorTerms
associated withnodeAffinity
types, then the pod can be scheduled onto a node if one of thenodeSelectorTerms
is satisfied. -
If you specify multiple
matchExpressions
associated withnodeSelectorTerms
, then the pod can be scheduled onto a node only if allmatchExpressions
are satisfied.
- Node selectors on specific pods and nodes
You can control which node a specific pod is scheduled on by using node selectors and labels.
To use node selectors and labels, first label the node to avoid pods being descheduled, then add the node selector to the pod.
NoteYou cannot add a node selector directly to an existing scheduled pod. You must label the object that controls the pod, such as deployment config.
For example, the following
Node
object has theregion: east
label:Sample
Node
object with a labelkind: Node apiVersion: v1 metadata: name: ip-10-0-131-14.ec2.internal selfLink: /api/v1/nodes/ip-10-0-131-14.ec2.internal uid: 7bc2580a-8b8e-11e9-8e01-021ab4174c74 resourceVersion: '478704' creationTimestamp: '2019-06-10T14:46:08Z' labels: kubernetes.io/os: linux failure-domain.beta.kubernetes.io/zone: us-east-1a node.openshift.io/os_version: '4.5' node-role.kubernetes.io/worker: '' failure-domain.beta.kubernetes.io/region: us-east-1 node.openshift.io/os_id: rhcos beta.kubernetes.io/instance-type: m4.large kubernetes.io/hostname: ip-10-0-131-14 beta.kubernetes.io/arch: amd64 region: east 1 type: user-node #...
- 1
- Labels to match the pod node selector.
A pod has the
type: user-node,region: east
node selector:Sample
Pod
object with node selectorsapiVersion: v1 kind: Pod metadata: name: s1 #... spec: nodeSelector: 1 region: east type: user-node #...
- 1
- Node selectors to match the node label. The node must have a label for each node selector.
When you create the pod using the example pod spec, it can be scheduled on the example node.
- Default cluster-wide node selectors
With default cluster-wide node selectors, when you create a pod in that cluster, OpenShift Container Platform adds the default node selectors to the pod and schedules the pod on nodes with matching labels.
For example, the following
Scheduler
object has the default cluster-wideregion=east
andtype=user-node
node selectors:Example Scheduler Operator Custom Resource
apiVersion: config.openshift.io/v1 kind: Scheduler metadata: name: cluster #... spec: defaultNodeSelector: type=user-node,region=east #...
A node in that cluster has the
type=user-node,region=east
labels:Example
Node
objectapiVersion: v1 kind: Node metadata: name: ci-ln-qg1il3k-f76d1-hlmhl-worker-b-df2s4 #... labels: region: east type: user-node #...
Example
Pod
object with a node selectorapiVersion: v1 kind: Pod metadata: name: s1 #... spec: nodeSelector: region: east #...
When you create the pod using the example pod spec in the example cluster, the pod is created with the cluster-wide node selector and is scheduled on the labeled node:
Example pod list with the pod on the labeled node
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES pod-s1 1/1 Running 0 20s 10.131.2.6 ci-ln-qg1il3k-f76d1-hlmhl-worker-b-df2s4 <none> <none>
NoteIf the project where you create the pod has a project node selector, that selector takes preference over a cluster-wide node selector. Your pod is not created or scheduled if the pod does not have the project node selector.
- Project node selectors
With project node selectors, when you create a pod in this project, OpenShift Container Platform adds the node selectors to the pod and schedules the pods on a node with matching labels. If there is a cluster-wide default node selector, a project node selector takes preference.
For example, the following project has the
region=east
node selector:Example
Namespace
objectapiVersion: v1 kind: Namespace metadata: name: east-region annotations: openshift.io/node-selector: "region=east" #...
The following node has the
type=user-node,region=east
labels:Example
Node
objectapiVersion: v1 kind: Node metadata: name: ci-ln-qg1il3k-f76d1-hlmhl-worker-b-df2s4 #... labels: region: east type: user-node #...
When you create the pod using the example pod spec in this example project, the pod is created with the project node selectors and is scheduled on the labeled node:
Example
Pod
objectapiVersion: v1 kind: Pod metadata: namespace: east-region #... spec: nodeSelector: region: east type: user-node #...
Example pod list with the pod on the labeled node
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES pod-s1 1/1 Running 0 20s 10.131.2.6 ci-ln-qg1il3k-f76d1-hlmhl-worker-b-df2s4 <none> <none>
A pod in the project is not created or scheduled if the pod contains different node selectors. For example, if you deploy the following pod into the example project, it is not be created:
Example
Pod
object with an invalid node selectorapiVersion: v1 kind: Pod metadata: name: west-region #... spec: nodeSelector: region: west #...
4.7.2. Using node selectors to control pod placement
You can use node selectors on pods and labels on nodes to control where the pod is scheduled. With node selectors, OpenShift Container Platform schedules the pods on nodes that contain matching labels.
You add labels to a node, a machine set, or a machine config. Adding the label to the machine set ensures that if the node or machine goes down, new nodes have the label. Labels added to a node or machine config do not persist if the node or machine goes down.
To add node selectors to an existing pod, add a node selector to the controlling object for that pod, such as a ReplicaSet
object, DaemonSet
object, StatefulSet
object, Deployment
object, or DeploymentConfig
object. Any existing pods under that controlling object are recreated on a node with a matching label. If you are creating a new pod, you can add the node selector directly to the pod spec. If the pod does not have a controlling object, you must delete the pod, edit the pod spec, and recreate the pod.
You cannot add a node selector directly to an existing scheduled pod.
Prerequisites
To add a node selector to existing pods, determine the controlling object for that pod. For example, the router-default-66d5cf9464-m2g75
pod is controlled by the router-default-66d5cf9464
replica set:
$ oc describe pod router-default-66d5cf9464-7pwkc
Example output
kind: Pod apiVersion: v1 metadata: #... Name: router-default-66d5cf9464-7pwkc Namespace: openshift-ingress # ... Controlled By: ReplicaSet/router-default-66d5cf9464 # ...
The web console lists the controlling object under ownerReferences
in the pod YAML:
apiVersion: v1 kind: Pod metadata: name: router-default-66d5cf9464-7pwkc # ... ownerReferences: - apiVersion: apps/v1 kind: ReplicaSet name: router-default-66d5cf9464 uid: d81dd094-da26-11e9-a48a-128e7edf0312 controller: true blockOwnerDeletion: true # ...
Procedure
Add labels to a node by using a machine set or editing the node directly:
Use a
MachineSet
object to add labels to nodes managed by the machine set when a node is created:Run the following command to add labels to a
MachineSet
object:$ oc patch MachineSet <name> --type='json' -p='[{"op":"add","path":"/spec/template/spec/metadata/labels", "value":{"<key>"="<value>","<key>"="<value>"}}]' -n openshift-machine-api
For example:
$ oc patch MachineSet abc612-msrtw-worker-us-east-1c --type='json' -p='[{"op":"add","path":"/spec/template/spec/metadata/labels", "value":{"type":"user-node","region":"east"}}]' -n openshift-machine-api
TipYou can alternatively apply the following YAML to add labels to a machine set:
apiVersion: machine.openshift.io/v1beta1 kind: MachineSet metadata: name: xf2bd-infra-us-east-2a namespace: openshift-machine-api spec: template: spec: metadata: labels: region: "east" type: "user-node" #...
Verify that the labels are added to the
MachineSet
object by using theoc edit
command:For example:
$ oc edit MachineSet abc612-msrtw-worker-us-east-1c -n openshift-machine-api
Example
MachineSet
objectapiVersion: machine.openshift.io/v1beta1 kind: MachineSet # ... spec: # ... template: metadata: # ... spec: metadata: labels: region: east type: user-node # ...
Add labels directly to a node:
Edit the
Node
object for the node:$ oc label nodes <name> <key>=<value>
For example, to label a node:
$ oc label nodes ip-10-0-142-25.ec2.internal type=user-node region=east
TipYou can alternatively apply the following YAML to add labels to a node:
kind: Node apiVersion: v1 metadata: name: hello-node-6fbccf8d9 labels: type: "user-node" region: "east" #...
Verify that the labels are added to the node:
$ oc get nodes -l type=user-node,region=east
Example output
NAME STATUS ROLES AGE VERSION ip-10-0-142-25.ec2.internal Ready worker 17m v1.24.0
Add the matching node selector to a pod:
To add a node selector to existing and future pods, add a node selector to the controlling object for the pods:
Example
ReplicaSet
object with labelskind: ReplicaSet apiVersion: apps/v1 metadata: name: hello-node-6fbccf8d9 # ... spec: # ... template: metadata: creationTimestamp: null labels: ingresscontroller.operator.openshift.io/deployment-ingresscontroller: default pod-template-hash: 66d5cf9464 spec: nodeSelector: kubernetes.io/os: linux node-role.kubernetes.io/worker: '' type: user-node 1 #...
- 1
- Add the node selector.
To add a node selector to a specific, new pod, add the selector to the
Pod
object directly:Example
Pod
object with a node selectorapiVersion: v1 kind: Pod metadata: name: hello-node-6fbccf8d9 #... spec: nodeSelector: region: east type: user-node #...
NoteYou cannot add a node selector directly to an existing scheduled pod.
4.7.3. Creating default cluster-wide node selectors
You can use default cluster-wide node selectors on pods together with labels on nodes to constrain all pods created in a cluster to specific nodes.
With cluster-wide node selectors, when you create a pod in that cluster, OpenShift Container Platform adds the default node selectors to the pod and schedules the pod on nodes with matching labels.
You configure cluster-wide node selectors by editing the Scheduler Operator custom resource (CR). You add labels to a node, a machine set, or a machine config. Adding the label to the machine set ensures that if the node or machine goes down, new nodes have the label. Labels added to a node or machine config do not persist if the node or machine goes down.
You can add additional key/value pairs to a pod. But you cannot add a different value for a default key.
Procedure
To add a default cluster-wide node selector:
Edit the Scheduler Operator CR to add the default cluster-wide node selectors:
$ oc edit scheduler cluster
Example Scheduler Operator CR with a node selector
apiVersion: config.openshift.io/v1 kind: Scheduler metadata: name: cluster ... spec: defaultNodeSelector: type=user-node,region=east 1 mastersSchedulable: false
- 1
- Add a node selector with the appropriate
<key>:<value>
pairs.
After making this change, wait for the pods in the
openshift-kube-apiserver
project to redeploy. This can take several minutes. The default cluster-wide node selector does not take effect until the pods redeploy.Add labels to a node by using a machine set or editing the node directly:
Use a machine set to add labels to nodes managed by the machine set when a node is created:
Run the following command to add labels to a
MachineSet
object:$ oc patch MachineSet <name> --type='json' -p='[{"op":"add","path":"/spec/template/spec/metadata/labels", "value":{"<key>"="<value>","<key>"="<value>"}}]' -n openshift-machine-api 1
- 1
- Add a
<key>/<value>
pair for each label.
For example:
$ oc patch MachineSet ci-ln-l8nry52-f76d1-hl7m7-worker-c --type='json' -p='[{"op":"add","path":"/spec/template/spec/metadata/labels", "value":{"type":"user-node","region":"east"}}]' -n openshift-machine-api
TipYou can alternatively apply the following YAML to add labels to a machine set:
apiVersion: machine.openshift.io/v1beta1 kind: MachineSet metadata: name: <machineset> namespace: openshift-machine-api spec: template: spec: metadata: labels: region: "east" type: "user-node"
Verify that the labels are added to the
MachineSet
object by using theoc edit
command:For example:
$ oc edit MachineSet abc612-msrtw-worker-us-east-1c -n openshift-machine-api
Example
MachineSet
objectapiVersion: machine.openshift.io/v1beta1 kind: MachineSet ... spec: ... template: metadata: ... spec: metadata: labels: region: east type: user-node ...
Redeploy the nodes associated with that machine set by scaling down to
0
and scaling up the nodes:For example:
$ oc scale --replicas=0 MachineSet ci-ln-l8nry52-f76d1-hl7m7-worker-c -n openshift-machine-api
$ oc scale --replicas=1 MachineSet ci-ln-l8nry52-f76d1-hl7m7-worker-c -n openshift-machine-api
When the nodes are ready and available, verify that the label is added to the nodes by using the
oc get
command:$ oc get nodes -l <key>=<value>
For example:
$ oc get nodes -l type=user-node
Example output
NAME STATUS ROLES AGE VERSION ci-ln-l8nry52-f76d1-hl7m7-worker-c-vmqzp Ready worker 61s v1.24.0
Add labels directly to a node:
Edit the
Node
object for the node:$ oc label nodes <name> <key>=<value>
For example, to label a node:
$ oc label nodes ci-ln-l8nry52-f76d1-hl7m7-worker-b-tgq49 type=user-node region=east
TipYou can alternatively apply the following YAML to add labels to a node:
kind: Node apiVersion: v1 metadata: name: <node_name> labels: type: "user-node" region: "east"
Verify that the labels are added to the node using the
oc get
command:$ oc get nodes -l <key>=<value>,<key>=<value>
For example:
$ oc get nodes -l type=user-node,region=east
Example output
NAME STATUS ROLES AGE VERSION ci-ln-l8nry52-f76d1-hl7m7-worker-b-tgq49 Ready worker 17m v1.24.0
4.7.4. Creating project-wide node selectors
You can use node selectors in a project together with labels on nodes to constrain all pods created in that project to the labeled nodes.
When you create a pod in this project, OpenShift Container Platform adds the node selectors to the pods in the project and schedules the pods on a node with matching labels in the project. If there is a cluster-wide default node selector, a project node selector takes preference.
You add node selectors to a project by editing the Namespace
object to add the openshift.io/node-selector
parameter. You add labels to a node, a machine set, or a machine config. Adding the label to the machine set ensures that if the node or machine goes down, new nodes have the label. Labels added to a node or machine config do not persist if the node or machine goes down.
A pod is not scheduled if the Pod
object contains a node selector, but no project has a matching node selector. When you create a pod from that spec, you receive an error similar to the following message:
Example error message
Error from server (Forbidden): error when creating "pod.yaml": pods "pod-4" is forbidden: pod node label selector conflicts with its project node label selector
You can add additional key/value pairs to a pod. But you cannot add a different value for a project key.
Procedure
To add a default project node selector:
Create a namespace or edit an existing namespace to add the
openshift.io/node-selector
parameter:$ oc edit namespace <name>
Example output
apiVersion: v1 kind: Namespace metadata: annotations: openshift.io/node-selector: "type=user-node,region=east" 1 openshift.io/description: "" openshift.io/display-name: "" openshift.io/requester: kube:admin openshift.io/sa.scc.mcs: s0:c30,c5 openshift.io/sa.scc.supplemental-groups: 1000880000/10000 openshift.io/sa.scc.uid-range: 1000880000/10000 creationTimestamp: "2021-05-10T12:35:04Z" labels: kubernetes.io/metadata.name: demo name: demo resourceVersion: "145537" uid: 3f8786e3-1fcb-42e3-a0e3-e2ac54d15001 spec: finalizers: - kubernetes
- 1
- Add the
openshift.io/node-selector
with the appropriate<key>:<value>
pairs.
Add labels to a node by using a machine set or editing the node directly:
Use a
MachineSet
object to add labels to nodes managed by the machine set when a node is created:Run the following command to add labels to a
MachineSet
object:$ oc patch MachineSet <name> --type='json' -p='[{"op":"add","path":"/spec/template/spec/metadata/labels", "value":{"<key>"="<value>","<key>"="<value>"}}]' -n openshift-machine-api
For example:
$ oc patch MachineSet ci-ln-l8nry52-f76d1-hl7m7-worker-c --type='json' -p='[{"op":"add","path":"/spec/template/spec/metadata/labels", "value":{"type":"user-node","region":"east"}}]' -n openshift-machine-api
TipYou can alternatively apply the following YAML to add labels to a machine set:
apiVersion: machine.openshift.io/v1beta1 kind: MachineSet metadata: name: <machineset> namespace: openshift-machine-api spec: template: spec: metadata: labels: region: "east" type: "user-node"
Verify that the labels are added to the
MachineSet
object by using theoc edit
command:For example:
$ oc edit MachineSet ci-ln-l8nry52-f76d1-hl7m7-worker-c -n openshift-machine-api
Example output
apiVersion: machine.openshift.io/v1beta1 kind: MachineSet metadata: ... spec: ... template: metadata: ... spec: metadata: labels: region: east type: user-node
Redeploy the nodes associated with that machine set:
For example:
$ oc scale --replicas=0 MachineSet ci-ln-l8nry52-f76d1-hl7m7-worker-c -n openshift-machine-api
$ oc scale --replicas=1 MachineSet ci-ln-l8nry52-f76d1-hl7m7-worker-c -n openshift-machine-api
When the nodes are ready and available, verify that the label is added to the nodes by using the
oc get
command:$ oc get nodes -l <key>=<value>
For example:
$ oc get nodes -l type=user-node,region=east
Example output
NAME STATUS ROLES AGE VERSION ci-ln-l8nry52-f76d1-hl7m7-worker-c-vmqzp Ready worker 61s v1.24.0
Add labels directly to a node:
Edit the
Node
object to add labels:$ oc label <resource> <name> <key>=<value>
For example, to label a node:
$ oc label nodes ci-ln-l8nry52-f76d1-hl7m7-worker-c-tgq49 type=user-node region=east
TipYou can alternatively apply the following YAML to add labels to a node:
kind: Node apiVersion: v1 metadata: name: <node_name> labels: type: "user-node" region: "east"
Verify that the labels are added to the
Node
object using theoc get
command:$ oc get nodes -l <key>=<value>
For example:
$ oc get nodes -l type=user-node,region=east
Example output
NAME STATUS ROLES AGE VERSION ci-ln-l8nry52-f76d1-hl7m7-worker-b-tgq49 Ready worker 17m v1.24.0
Additional resources
4.8. Controlling pod placement by using pod topology spread constraints
You can use pod topology spread constraints to control the placement of your pods across nodes, zones, regions, or other user-defined topology domains.
4.8.1. About pod topology spread constraints
By using a pod topology spread constraint, you provide fine-grained control over the distribution of pods across failure domains to help achieve high availability and more efficient resource utilization.
OpenShift Container Platform administrators can label nodes to provide topology information, such as regions, zones, nodes, or other user-defined domains. After these labels are set on nodes, users can then define pod topology spread constraints to control the placement of pods across these topology domains.
You specify which pods to group together, which topology domains they are spread among, and the acceptable skew. Only pods within the same namespace are matched and grouped together when spreading due to a constraint.
4.8.2. Configuring pod topology spread constraints
The following steps demonstrate how to configure pod topology spread constraints to distribute pods that match the specified labels based on their zone.
You can specify multiple pod topology spread constraints, but you must ensure that they do not conflict with each other. All pod topology spread constraints must be satisfied for a pod to be placed.
Prerequisites
- A cluster administrator has added the required labels to nodes.
Procedure
Create a
Pod
spec and specify a pod topology spread constraint:Example
pod-spec.yaml
fileapiVersion: v1 kind: Pod metadata: name: my-pod labels: region: us-east spec: topologySpreadConstraints: - maxSkew: 1 1 topologyKey: topology.kubernetes.io/zone 2 whenUnsatisfiable: DoNotSchedule 3 labelSelector: 4 matchLabels: region: us-east 5 containers: - image: "docker.io/ocpqe/hello-pod" name: hello-pod
- 1
- The maximum difference in number of pods between any two topology domains. The default is
1
, and you cannot specify a value of0
. - 2
- The key of a node label. Nodes with this key and identical value are considered to be in the same topology.
- 3
- How to handle a pod if it does not satisfy the spread constraint. The default is
DoNotSchedule
, which tells the scheduler not to schedule the pod. Set toScheduleAnyway
to still schedule the pod, but the scheduler prioritizes honoring the skew to not make the cluster more imbalanced. - 4
- Pods that match this label selector are counted and recognized as a group when spreading to satisfy the constraint. Be sure to specify a label selector, otherwise no pods can be matched.
- 5
- Be sure that this
Pod
spec also sets its labels to match this label selector if you want it to be counted properly in the future.
Create the pod:
$ oc create -f pod-spec.yaml
4.8.3. Example pod topology spread constraints
The following examples demonstrate pod topology spread constraint configurations.
4.8.3.1. Single pod topology spread constraint example
This example Pod
spec defines one pod topology spread constraint. It matches on pods labeled region: us-east
, distributes among zones, specifies a skew of 1
, and does not schedule the pod if it does not meet these requirements.
kind: Pod apiVersion: v1 metadata: name: my-pod labels: region: us-east spec: topologySpreadConstraints: - maxSkew: 1 topologyKey: topology.kubernetes.io/zone whenUnsatisfiable: DoNotSchedule labelSelector: matchLabels: region: us-east containers: - image: "docker.io/ocpqe/hello-pod" name: hello-pod
4.8.3.2. Multiple pod topology spread constraints example
This example Pod
spec defines two pod topology spread constraints. Both match on pods labeled region: us-east
, specify a skew of 1
, and do not schedule the pod if it does not meet these requirements.
The first constraint distributes pods based on a user-defined label node
, and the second constraint distributes pods based on a user-defined label rack
. Both constraints must be met for the pod to be scheduled.
kind: Pod apiVersion: v1 metadata: name: my-pod-2 labels: region: us-east spec: topologySpreadConstraints: - maxSkew: 1 topologyKey: node whenUnsatisfiable: DoNotSchedule labelSelector: matchLabels: region: us-east - maxSkew: 1 topologyKey: rack whenUnsatisfiable: DoNotSchedule labelSelector: matchLabels: region: us-east containers: - image: "docker.io/ocpqe/hello-pod" name: hello-pod
4.8.4. Additional resources
4.9. Evicting pods using the descheduler
While the scheduler is used to determine the most suitable node to host a new pod, the descheduler can be used to evict a running pod so that the pod can be rescheduled onto a more suitable node.
4.9.1. About the descheduler
You can use the descheduler to evict pods based on specific strategies so that the pods can be rescheduled onto more appropriate nodes.
You can benefit from descheduling running pods in situations such as the following:
- Nodes are underutilized or overutilized.
- Pod and node affinity requirements, such as taints or labels, have changed and the original scheduling decisions are no longer appropriate for certain nodes.
- Node failure requires pods to be moved.
- New nodes are added to clusters.
- Pods have been restarted too many times.
The descheduler does not schedule replacement of evicted pods. The scheduler automatically performs this task for the evicted pods.
When the descheduler decides to evict pods from a node, it employs the following general mechanism:
-
Pods in the
openshift-*
andkube-system
namespaces are never evicted. -
Critical pods with
priorityClassName
set tosystem-cluster-critical
orsystem-node-critical
are never evicted. - Static, mirrored, or stand-alone pods that are not part of a replication controller, replica set, deployment, or job are never evicted because these pods will not be recreated.
- Pods associated with daemon sets are never evicted.
- Pods with local storage are never evicted.
- Best effort pods are evicted before burstable and guaranteed pods.
-
All types of pods with the
descheduler.alpha.kubernetes.io/evict
annotation are eligible for eviction. This annotation is used to override checks that prevent eviction, and the user can select which pod is evicted. Users should know how and if the pod will be recreated. - Pods subject to pod disruption budget (PDB) are not evicted if descheduling violates its pod disruption budget (PDB). The pods are evicted by using eviction subresource to handle PDB.
4.9.2. Descheduler profiles
The following descheduler profiles are available:
AffinityAndTaints
This profile evicts pods that violate inter-pod anti-affinity, node affinity, and node taints.
It enables the following strategies:
-
RemovePodsViolatingInterPodAntiAffinity
: removes pods that are violating inter-pod anti-affinity. -
RemovePodsViolatingNodeAffinity
: removes pods that are violating node affinity. RemovePodsViolatingNodeTaints
: removes pods that are violatingNoSchedule
taints on nodes.Pods with a node affinity type of
requiredDuringSchedulingIgnoredDuringExecution
are removed.
-
TopologyAndDuplicates
This profile evicts pods in an effort to evenly spread similar pods, or pods of the same topology domain, among nodes.
It enables the following strategies:
-
RemovePodsViolatingTopologySpreadConstraint
: finds unbalanced topology domains and tries to evict pods from larger ones whenDoNotSchedule
constraints are violated. -
RemoveDuplicates
: ensures that there is only one pod associated with a replica set, replication controller, deployment, or job running on same node. If there are more, those duplicate pods are evicted for better pod distribution in a cluster.
-
LifecycleAndUtilization
This profile evicts long-running pods and balances resource usage between nodes.
It enables the following strategies:
RemovePodsHavingTooManyRestarts
: removes pods whose containers have been restarted too many times.Pods where the sum of restarts over all containers (including Init Containers) is more than 100.
LowNodeUtilization
: finds nodes that are underutilized and evicts pods, if possible, from overutilized nodes in the hope that recreation of evicted pods will be scheduled on these underutilized nodes.A node is considered underutilized if its usage is below 20% for all thresholds (CPU, memory, and number of pods).
A node is considered overutilized if its usage is above 50% for any of the thresholds (CPU, memory, and number of pods).
PodLifeTime
: evicts pods that are too old.By default, pods that are older than 24 hours are removed. You can customize the pod lifetime value.
SoftTopologyAndDuplicates
This profile is the same as
TopologyAndDuplicates
, except that pods with soft topology constraints, such aswhenUnsatisfiable: ScheduleAnyway
, are also considered for eviction.NoteDo not enable both
SoftTopologyAndDuplicates
andTopologyAndDuplicates
. Enabling both results in a conflict.EvictPodsWithLocalStorage
- This profile allows pods with local storage to be eligible for eviction.
EvictPodsWithPVC
- This profile allows pods with persistent volume claims to be eligible for eviction.
4.9.3. Installing the descheduler
The descheduler is not available by default. To enable the descheduler, you must install the Kube Descheduler Operator from OperatorHub and enable one or more descheduler profiles.
By default, the descheduler runs in predictive mode, which means that it only simulates pod evictions. You must change the mode to automatic for the descheduler to perform the pod evictions.
If you have enabled hosted control planes in your cluster, set a custom priority threshold to lower the chance that pods in the hosted control plane namespaces are evicted. Set the priority threshold class name to hypershift-control-plane
, because it has the lowest priority value (100000000
) of the hosted control plane priority classes.
Prerequisites
- Cluster administrator privileges.
- Access to the OpenShift Container Platform web console.
Procedure
- Log in to the OpenShift Container Platform web console.
Create the required namespace for the Kube Descheduler Operator.
- Navigate to Administration → Namespaces and click Create Namespace.
-
Enter
openshift-kube-descheduler-operator
in the Name field, enteropenshift.io/cluster-monitoring=true
in the Labels field to enable descheduler metrics, and click Create.
Install the Kube Descheduler Operator.
- Navigate to Operators → OperatorHub.
- Type Kube Descheduler Operator into the filter box.
- Select the Kube Descheduler Operator and click Install.
- On the Install Operator page, select A specific namespace on the cluster. Select openshift-kube-descheduler-operator from the drop-down menu.
- Adjust the values for the Update Channel and Approval Strategy to the desired values.
- Click Install.
Create a descheduler instance.
- From the Operators → Installed Operators page, click the Kube Descheduler Operator.
- Select the Kube Descheduler tab and click Create KubeDescheduler.
Edit the settings as necessary.
- To evict pods instead of simulating the evictions, change the Mode field to Automatic.
Expand the Profiles section to select one or more profiles to enable. The
AffinityAndTaints
profile is enabled by default. Click Add Profile to select additional profiles.NoteDo not enable both
TopologyAndDuplicates
andSoftTopologyAndDuplicates
. Enabling both results in a conflict.Optional: Expand the Profile Customizations section to set optional configurations for the descheduler.
-
Set a custom pod lifetime value for the
LifecycleAndUtilization
profile. Use the podLifetime field to set a numerical value and a valid unit (s
,m
, orh
). The default pod lifetime is 24 hours (24h
). Set a custom priority threshold to consider pods for eviction only if their priority is lower than a specified priority level. Use the thresholdPriority field to set a numerical priority threshold or use the thresholdPriorityClassName field to specify a certain priority class name.
NoteDo not specify both thresholdPriority and thresholdPriorityClassName for the descheduler.
Set specific namespaces to exclude or include from descheduler operations. Expand the namespaces field and add namespaces to the excluded or included list. You can only either set a list of namespaces to exclude or a list of namespaces to include. Note that protected namespaces (
openshift-*
,kube-system
,hypershift
) are excluded by default.ImportantThe
LowNodeUtilization
strategy does not support namespace exclusion. If theLifecycleAndUtilization
profile is set, which enables theLowNodeUtilization
strategy, then no namespaces are excluded, even the protected namespaces. To avoid evictions from the protected namespaces while theLowNodeUtilization
strategy is enabled, set the priority class name tosystem-cluster-critical
orsystem-node-critical
.Experimental: Set thresholds for underutilization and overutilization for the
LowNodeUtilization
strategy. Use the devLowNodeUtilizationThresholds field to set one of the following values:-
Low
: 10% underutilized and 30% overutilized -
Medium
: 20% underutilized and 50% overutilized (Default) -
High
: 40% underutilized and 70% overutilized
NoteThis setting is experimental and should not be used in a production environment.
-
-
Set a custom pod lifetime value for the
-
Optional: Use the Descheduling Interval Seconds field to change the number of seconds between descheduler runs. The default is
3600
seconds.
- Click Create.
You can also configure the profiles and settings for the descheduler later using the OpenShift CLI (oc
). If you did not adjust the profiles when creating the descheduler instance from the web console, the AffinityAndTaints
profile is enabled by default.
4.9.4. Configuring descheduler profiles
You can configure which profiles the descheduler uses to evict pods.
Prerequisites
- Cluster administrator privileges
Procedure
Edit the
KubeDescheduler
object:$ oc edit kubedeschedulers.operator.openshift.io cluster -n openshift-kube-descheduler-operator
Specify one or more profiles in the
spec.profiles
section.apiVersion: operator.openshift.io/v1 kind: KubeDescheduler metadata: name: cluster namespace: openshift-kube-descheduler-operator spec: deschedulingIntervalSeconds: 3600 logLevel: Normal managementState: Managed operatorLogLevel: Normal mode: Predictive 1 profileCustomizations: namespaces: 2 excluded: - my-namespace podLifetime: 48h 3 thresholdPriorityClassName: my-priority-class-name 4 profiles: 5 - AffinityAndTaints - TopologyAndDuplicates 6 - LifecycleAndUtilization - EvictPodsWithLocalStorage - EvictPodsWithPVC
- 1
- Optional: By default, the descheduler does not evict pods. To evict pods, set
mode
toAutomatic
. - 2
- Optional: Set a list of user-created namespaces to include or exclude from descheduler operations. Use
excluded
to set a list of namespaces to exclude or useincluded
to set a list of namespaces to include. Note that protected namespaces (openshift-*
,kube-system
,hypershift
) are excluded by default.ImportantThe
LowNodeUtilization
strategy does not support namespace exclusion. If theLifecycleAndUtilization
profile is set, which enables theLowNodeUtilization
strategy, then no namespaces are excluded, even the protected namespaces. To avoid evictions from the protected namespaces while theLowNodeUtilization
strategy is enabled, set the priority class name tosystem-cluster-critical
orsystem-node-critical
. - 3
- Optional: Enable a custom pod lifetime value for the
LifecycleAndUtilization
profile. Valid units ares
,m
, orh
. The default pod lifetime is 24 hours. - 4
- Optional: Specify a priority threshold to consider pods for eviction only if their priority is lower than the specified level. Use the
thresholdPriority
field to set a numerical priority threshold (for example,10000
) or use thethresholdPriorityClassName
field to specify a certain priority class name (for example,my-priority-class-name
). If you specify a priority class name, it must already exist or the descheduler will throw an error. Do not set boththresholdPriority
andthresholdPriorityClassName
. - 5
- Add one or more profiles to enable. Available profiles:
AffinityAndTaints
,TopologyAndDuplicates
,LifecycleAndUtilization
,SoftTopologyAndDuplicates
,EvictPodsWithLocalStorage
, andEvictPodsWithPVC
. - 6
- Do not enable both
TopologyAndDuplicates
andSoftTopologyAndDuplicates
. Enabling both results in a conflict.
You can enable multiple profiles; the order that the profiles are specified in is not important.
- Save the file to apply the changes.
4.9.5. Configuring the descheduler interval
You can configure the amount of time between descheduler runs. The default is 3600 seconds (one hour).
Prerequisites
- Cluster administrator privileges
Procedure
Edit the
KubeDescheduler
object:$ oc edit kubedeschedulers.operator.openshift.io cluster -n openshift-kube-descheduler-operator
Update the
deschedulingIntervalSeconds
field to the desired value:apiVersion: operator.openshift.io/v1 kind: KubeDescheduler metadata: name: cluster namespace: openshift-kube-descheduler-operator spec: deschedulingIntervalSeconds: 3600 1 ...
- 1
- Set the number of seconds between descheduler runs. A value of
0
in this field runs the descheduler once and exits.
- Save the file to apply the changes.
4.9.6. Uninstalling the descheduler
You can remove the descheduler from your cluster by removing the descheduler instance and uninstalling the Kube Descheduler Operator. This procedure also cleans up the KubeDescheduler
CRD and openshift-kube-descheduler-operator
namespace.
Prerequisites
- Cluster administrator privileges.
- Access to the OpenShift Container Platform web console.
Procedure
- Log in to the OpenShift Container Platform web console.
Delete the descheduler instance.
- From the Operators → Installed Operators page, click Kube Descheduler Operator.
- Select the Kube Descheduler tab.
- Click the Options menu next to the cluster entry and select Delete KubeDescheduler.
- In the confirmation dialog, click Delete.
Uninstall the Kube Descheduler Operator.
- Navigate to Operators → Installed Operators.
- Click the Options menu next to the Kube Descheduler Operator entry and select Uninstall Operator.
- In the confirmation dialog, click Uninstall.
Delete the
openshift-kube-descheduler-operator
namespace.- Navigate to Administration → Namespaces.
-
Enter
openshift-kube-descheduler-operator
into the filter box. - Click the Options menu next to the openshift-kube-descheduler-operator entry and select Delete Namespace.
-
In the confirmation dialog, enter
openshift-kube-descheduler-operator
and click Delete.
Delete the
KubeDescheduler
CRD.- Navigate to Administration → Custom Resource Definitions.
-
Enter
KubeDescheduler
into the filter box. - Click the Options menu next to the KubeDescheduler entry and select Delete CustomResourceDefinition.
- In the confirmation dialog, click Delete.
4.10. Secondary scheduler
4.10.1. Secondary scheduler overview
You can install the Secondary Scheduler Operator to run a custom secondary scheduler alongside the default scheduler to schedule pods.
4.10.1.1. About the Secondary Scheduler Operator
The Secondary Scheduler Operator for Red Hat OpenShift provides a way to deploy a custom secondary scheduler in OpenShift Container Platform. The secondary scheduler runs alongside the default scheduler to schedule pods. Pod configurations can specify which scheduler to use.
The custom scheduler must have the /bin/kube-scheduler
binary and be based on the Kubernetes scheduling framework.
You can use the Secondary Scheduler Operator to deploy a custom secondary scheduler in OpenShift Container Platform, but Red Hat does not directly support the functionality of the custom secondary scheduler.
The Secondary Scheduler Operator creates the default roles and role bindings required by the secondary scheduler. You can specify which scheduling plugins to enable or disable by configuring the KubeSchedulerConfiguration
resource for the secondary scheduler.
4.10.2. Secondary Scheduler Operator for Red Hat OpenShift release notes
The Secondary Scheduler Operator for Red Hat OpenShift allows you to deploy a custom secondary scheduler in your OpenShift Container Platform cluster.
These release notes track the development of the Secondary Scheduler Operator for Red Hat OpenShift.
For more information, see About the Secondary Scheduler Operator.
4.10.2.1. Release notes for Secondary Scheduler Operator for Red Hat OpenShift 1.1.0
Issued: 2022-9-1
The following advisory is available for the Secondary Scheduler Operator for Red Hat OpenShift 1.1.0:
4.10.2.1.1. New features and enhancements
- The Secondary Scheduler Operator security context configuration has been updated to comply with pod security admission enforcement.
4.10.2.1.2. Known issues
- Currently, you cannot deploy additional resources, such as config maps, CRDs, or RBAC policies through the Secondary Scheduler Operator. Any resources other than roles and role bindings that are required by your custom secondary scheduler must be applied externally. (BZ#2071684)
4.10.2.2. Release notes for Secondary Scheduler Operator for Red Hat OpenShift 1.0.1
Issued: 2022-07-28
The following advisory is available for the Secondary Scheduler Operator for Red Hat OpenShift 1.0.1:
4.10.2.2.1. New features and enhancements
- The maximum OpenShift Container Platform version for Secondary Scheduler Operator for Red Hat OpenShift 1.0.1 is 4.11.
4.10.2.2.2. Bug fixes
- Previously, the secondary scheduler deployment was not deleted after the secondary scheduler custom resource (CR) was deleted, which prevented the Secondary Scheduler Operator and operand from being fully uninstalled. The secondary scheduler deployment is now deleted when the secondary scheduler CR is deleted, so that the Secondary Scheduler Operator can now be fully uninstalled. (BZ#2100923)
4.10.2.2.3. Known issues
- Currently, you cannot deploy additional resources, such as config maps, CRDs, or RBAC policies through the Secondary Scheduler Operator. Any resources other than roles and role bindings that are required by your custom secondary scheduler must be applied externally. (BZ#2071684)
4.10.2.3. Release notes for Secondary Scheduler Operator for Red Hat OpenShift 1.0.0
Issued: 2022-04-18
The following advisory is available for the Secondary Scheduler Operator for Red Hat OpenShift 1.0.0:
4.10.2.3.1. New features and enhancements
- This is the initial release of the Secondary Scheduler Operator for Red Hat OpenShift.
4.10.2.3.2. Known issues
- Currently, you cannot deploy additional resources, such as config maps, CRDs, or RBAC policies through the Secondary Scheduler Operator. Any resources other than roles and role bindings that are required by your custom secondary scheduler must be applied externally. (BZ#2071684)
4.10.3. Scheduling pods using a secondary scheduler
You can run a custom secondary scheduler in OpenShift Container Platform by installing the Secondary Scheduler Operator, deploying the secondary scheduler, and setting the secondary scheduler in the pod definition.
4.10.3.1. Installing the Secondary Scheduler Operator
You can use the web console to install the Secondary Scheduler Operator for Red Hat OpenShift.
Prerequisites
-
You have access to the cluster with
cluster-admin
privileges. - You have access to the OpenShift Container Platform web console.
Procedure
- Log in to the OpenShift Container Platform web console.
Create the required namespace for the Secondary Scheduler Operator for Red Hat OpenShift.
- Navigate to Administration → Namespaces and click Create Namespace.
-
Enter
openshift-secondary-scheduler-operator
in the Name field and click Create.
Install the Secondary Scheduler Operator for Red Hat OpenShift.
- Navigate to Operators → OperatorHub.
- Enter Secondary Scheduler Operator for Red Hat OpenShift into the filter box.
- Select the Secondary Scheduler Operator for Red Hat OpenShift and click Install.
On the Install Operator page:
- The Update channel is set to stable, which installs the latest stable release of the Secondary Scheduler Operator for Red Hat OpenShift.
- Select A specific namespace on the cluster and select openshift-secondary-scheduler-operator from the drop-down menu.
Select an Update approval strategy.
- The Automatic strategy allows Operator Lifecycle Manager (OLM) to automatically update the Operator when a new version is available.
- The Manual strategy requires a user with appropriate credentials to approve the Operator update.
- Click Install.
Verification
- Navigate to Operators → Installed Operators.
- Verify that Secondary Scheduler Operator for Red Hat OpenShift is listed with a Status of Succeeded.
4.10.3.2. Deploying a secondary scheduler
After you have installed the Secondary Scheduler Operator, you can deploy a secondary scheduler.
Prerequisities
-
You have access to the cluster with
cluster-admin
privileges. - You have access to the OpenShift Container Platform web console.
- The Secondary Scheduler Operator for Red Hat OpenShift is installed.
Procedure
- Log in to the OpenShift Container Platform web console.
Create config map to hold the configuration for the secondary scheduler.
- Navigate to Workloads → ConfigMaps.
- Click Create ConfigMap.
In the YAML editor, enter the config map definition that contains the necessary
KubeSchedulerConfiguration
configuration. For example:apiVersion: v1 kind: ConfigMap metadata: name: "secondary-scheduler-config" 1 namespace: "openshift-secondary-scheduler-operator" 2 data: "config.yaml": | apiVersion: kubescheduler.config.k8s.io/v1beta3 kind: KubeSchedulerConfiguration 3 leaderElection: leaderElect: false profiles: - schedulerName: secondary-scheduler 4 plugins: 5 score: disabled: - name: NodeResourcesBalancedAllocation - name: NodeResourcesLeastAllocated
- 1
- The name of the config map. This is used in the Scheduler Config field when creating the
SecondaryScheduler
CR. - 2
- The config map must be created in the
openshift-secondary-scheduler-operator
namespace. - 3
- The
KubeSchedulerConfiguration
resource for the secondary scheduler. For more information, seeKubeSchedulerConfiguration
in the Kubernetes API documentation. - 4
- The name of the secondary scheduler. Pods that set their
spec.schedulerName
field to this value are scheduled with this secondary scheduler. - 5
- The plugins to enable or disable for the secondary scheduler. For a list default scheduling plugins, see Scheduling plugins in the Kubernetes documentation.
- Click Create.
Create the
SecondaryScheduler
CR:- Navigate to Operators → Installed Operators.
- Select Secondary Scheduler Operator for Red Hat OpenShift.
- Select the Secondary Scheduler tab and click Create SecondaryScheduler.
-
The Name field defaults to
cluster
; do not change this name. -
The Scheduler Config field defaults to
secondary-scheduler-config
. Ensure that this value matches the name of the config map created earlier in this procedure. In the Scheduler Image field, enter the image name for your custom scheduler.
ImportantRed Hat does not directly support the functionality of your custom secondary scheduler.
- Click Create.
4.10.3.3. Scheduling a pod using the secondary scheduler
To schedule a pod using the secondary scheduler, set the schedulerName
field in the pod definition.
Prerequisities
-
You have access to the cluster with
cluster-admin
privileges. - You have access to the OpenShift Container Platform web console.
- The Secondary Scheduler Operator for Red Hat OpenShift is installed.
- A secondary scheduler is configured.
Procedure
- Log in to the OpenShift Container Platform web console.
- Navigate to Workloads → Pods.
- Click Create Pod.
In the YAML editor, enter the desired pod configuration and add the
schedulerName
field:apiVersion: v1 kind: Pod metadata: name: nginx namespace: default spec: containers: - name: nginx image: nginx:1.14.2 ports: - containerPort: 80 schedulerName: secondary-scheduler 1
- 1
- The
schedulerName
field must match the name that is defined in the config map when you configured the secondary scheduler.
- Click Create.
Verification
- Log in to the OpenShift CLI.
Describe the pod using the following command:
$ oc describe pod nginx -n default
Example output
Name: nginx Namespace: default Priority: 0 Node: ci-ln-t0w4r1k-72292-xkqs4-worker-b-xqkxp/10.0.128.3 ... Events: Type Reason Age From Message ---- ------ ---- ---- ------- Normal Scheduled 12s secondary-scheduler Successfully assigned default/nginx to ci-ln-t0w4r1k-72292-xkqs4-worker-b-xqkxp ...
-
In the events table, find the event with a message similar to
Successfully assigned <namespace>/<pod_name> to <node_name>
. In the "From" column, verify that the event was generated from the secondary scheduler and not the default scheduler.
NoteYou can also check the
secondary-scheduler-*
pod logs in theopenshift-secondary-scheduler-namespace
to verify that the pod was scheduled by the secondary scheduler.
4.10.4. Uninstalling the Secondary Scheduler Operator
You can remove the Secondary Scheduler Operator for Red Hat OpenShift from OpenShift Container Platform by uninstalling the Operator and removing its related resources.
4.10.4.1. Uninstalling the Secondary Scheduler Operator
You can uninstall the Secondary Scheduler Operator for Red Hat OpenShift by using the web console.
Prerequisites
-
You have access to the cluster with
cluster-admin
privileges. - You have access to the OpenShift Container Platform web console.
- The Secondary Scheduler Operator for Red Hat OpenShift is installed.
Procedure
- Log in to the OpenShift Container Platform web console.
Uninstall the Secondary Scheduler Operator for Red Hat OpenShift Operator.
- Navigate to Operators → Installed Operators.
- Click the Options menu next to the Secondary Scheduler Operator entry and click Uninstall Operator.
- In the confirmation dialog, click Uninstall.
4.10.4.2. Removing Secondary Scheduler Operator resources
Optionally, after uninstalling the Secondary Scheduler Operator for Red Hat OpenShift, you can remove its related resources from your cluster.
Prerequisites
-
You have access to the cluster with
cluster-admin
privileges. - You have access to the OpenShift Container Platform web console.
Procedure
- Log in to the OpenShift Container Platform web console.
Remove CRDs that were installed by the Secondary Scheduler Operator:
- Navigate to Administration → CustomResourceDefinitions.
-
Enter
SecondaryScheduler
in the Name field to filter the CRDs. - Click the Options menu next to the SecondaryScheduler CRD and select Delete Custom Resource Definition:
Remove the
openshift-secondary-scheduler-operator
namespace.- Navigate to Administration → Namespaces.
- Click the Options menu next to the openshift-secondary-scheduler-operator and select Delete Namespace.
-
In the confirmation dialog, enter
openshift-secondary-scheduler-operator
in the field and click Delete.
Chapter 5. Using Jobs and DaemonSets
5.1. Running background tasks on nodes automatically with daemon sets
As an administrator, you can create and use daemon sets to run replicas of a pod on specific or all nodes in an OpenShift Container Platform cluster.
A daemon set ensures that all (or some) nodes run a copy of a pod. As nodes are added to the cluster, pods are added to the cluster. As nodes are removed from the cluster, those pods are removed through garbage collection. Deleting a daemon set will clean up the pods it created.
You can use daemon sets to create shared storage, run a logging pod on every node in your cluster, or deploy a monitoring agent on every node.
For security reasons, the cluster administrators and the project administrators can create daemon sets.