& RedHat

OpenShift Container Platform 4.11

Authentication and authorization

Configuring user authentication and access controls for users and services

Last Updated: 2024-02-08

OpenShift Container Platform 4.11 Authentication and authorization

Configuring user authentication and access controls for users and services

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides instructions for defining identity providers in OpenShift Container
Platform. It also discusses how to configure role-based access control to secure the cluster.

Table of Contents

Table of Contents

CHAPTER 1. OVERVIEW OF AUTHENTICATION AND AUTHORIZATION ...ttt iiii e iiienneenns 8
1.1. GLOSSARY OF COMMON TERMS FOR OPENSHIFT CONTAINER PLATFORM AUTHENTICATION AND
AUTHORIZATION 8
1.2. ABOUT AUTHENTICATION IN OPENSHIFT CONTAINER PLATFORM 9
1.3. ABOUT AUTHORIZATION IN OPENSHIFT CONTAINER PLATFORM 10

CHAPTER 2. UNDERSTANDING AUTHENTICATION ...ttt ittt eieeieeraeennneennnenns 12
2.1. USERS 12
2.2. GROUPS 12
2.3. API AUTHENTICATION 13

2.3.1. OpenShift Container Platform OAuth server 13
2.3.1.1. OAuth token requests 13
2.3.1.2. APl impersonation 14
2.3.1.3. Authentication metrics for Prometheus 14

CHAPTER 3. CONFIGURING THE INTERNAL OAUTHSERVER ... ittt iii i nneenns 16
3.1. OPENSHIFT CONTAINER PLATFORM OAUTH SERVER 16
3.2. OAUTH TOKEN REQUEST FLOWS AND RESPONSES 16
3.3. OPTIONS FOR THE INTERNAL OAUTH SERVER 16

3.3.1. OAuth token duration options 17

3.3.2. OAuth grant options 17
3.4. CONFIGURING THE INTERNAL OAUTH SERVER'S TOKEN DURATION 17
3.5. CONFIGURING TOKEN INACTIVITY TIMEOUT FOR THE INTERNAL OAUTH SERVER 18
3.6. CUSTOMIZING THE INTERNAL OAUTH SERVER URL 20
3.7. OAUTH SERVER METADATA 21
3.8. TROUBLESHOOTING OAUTH API EVENTS 22

CHAPTER 4. CONFIGURING OAUTH CLIENTS .ottt ettt eiteeieeeaneennneeannenaneenn, 24
4. DEFAULT OAUTH CLIENTS 24
4.2. REGISTERING AN ADDITIONAL OAUTH CLIENT 24
4.3. CONFIGURING TOKEN INACTIVITY TIMEOUT FOR AN OAUTH CLIENT 25
4.4, ADDITIONAL RESOURCES 26

CHAPTER 5. MANAGING USER-OWNED OAUTH ACCESS TOKENS ...ttt i i nneenn, 27
5.1. LISTING USER-OWNED OAUTH ACCESS TOKENS 27
5.2. VIEWING THE DETAILS OF A USER-OWNED OAUTH ACCESS TOKEN 27
5.3. DELETING USER-OWNED OAUTH ACCESS TOKENS 28

CHAPTER 6. UNDERSTANDING IDENTITY PROVIDER CONFIGURATIONcoiiiiiiiiinnennnnnn. 30
6.1. ABOUT IDENTITY PROVIDERS IN OPENSHIFT CONTAINER PLATFORM 30
6.2. SUPPORTED IDENTITY PROVIDERS 30
6.3. REMOVING THE KUBEADMIN USER 31
6.4. IDENTITY PROVIDER PARAMETERS 31
6.5. SAMPLE IDENTITY PROVIDER CR 32

CHAPTER 7. CONFIGURING IDENTITY PROVIDERS ...\ttt e eeieeaeennnennneenn, 33
7.1. CONFIGURING AN HTPASSWD IDENTITY PROVIDER 33

7.1.1. About identity providers in OpenShift Container Platform 33

7.1.2. About htpasswd authentication 33

7.1.3. Creating the htpasswd file 33
7.1.3.1. Creating an htpasswd file using Linux 33
7.1.3.2. Creating an htpasswd file using Windows 34

7.1.4. Creating the htpasswd secret 34

OpenShift Container Platform 4.11 Authentication and authorization

7.1.5. Sample htpasswd CR

7.1.6. Adding an identity provider to your cluster

7.1.7. Updating users for an htpasswd identity provider
7.1.8. Configuring identity providers using the web console

7.2. CONFIGURING A KEYSTONE IDENTITY PROVIDER

7.2.1. About identity providers in OpenShift Container Platform
7.2.2. About Keystone authentication

7.2.3. Creating the secret

7.2.4. Creating a config map

7.2.5. Sample Keystone CR

7.2.6. Adding an identity provider to your cluster

7.3. CONFIGURING AN LDAP IDENTITY PROVIDER

7.3.1. About identity providers in OpenShift Container Platform
7.3.2. About LDAP authentication

7.3.3. Creating the LDAP secret

7.3.4. Creating a config map

7.3.5.Sample LDAP CR

7.3.6. Adding an identity provider to your cluster

7.4. CONFIGURING A BASIC AUTHENTICATION IDENTITY PROVIDER

7.4.1. About identity providers in OpenShift Container Platform

7.4.2. About basic authentication

7.4.3. Creating the secret

7.4.4. Creating a config map

7.4.5. Sample basic authentication CR

7.4.6. Adding an identity provider to your cluster

7.4.7. Example Apache HTTPD configuration for basic identity providers
7.4.71. File requirements

7.4.8. Basic authentication troubleshooting

7.5. CONFIGURING A REQUEST HEADER IDENTITY PROVIDER

7.5.1. About identity providers in OpenShift Container Platform

7.5.2. About request header authentication
7.5.2.1. SSPI connection support on Microsoft Windows

7.5.3. Creating a config map

7.5.4. Sample request header CR

7.5.5. Adding an identity provider to your cluster

7.5.6. Example Apache authentication configuration using request header
Custom proxy configuration
Configuring Apache authentication using request header

7.6. CONFIGURING A GITHUB OR GITHUB ENTERPRISE IDENTITY PROVIDER

7.6.1. About identity providers in OpenShift Container Platform
7.6.2. About GitHub authentication

7.6.3. Registering a GitHub application

7.6.4. Creating the secret

7.6.5. Creating a config map

7.6.6. Sample GitHub CR

7.6.7. Adding an identity provider to your cluster

7.7. CONFIGURING A GITLAB IDENTITY PROVIDER

7.7.1. About identity providers in OpenShift Container Platform
7.7.2. About GitLab authentication

7.7.3. Creating the secret

7.7.4. Creating a config map

7.7.5. Sample GitLab CR

7.7.6. Adding an identity provider to your cluster

35
36
36
38
38
38
39
39
39
40

41

41

41
42
43
43
44
45
46
46
46
47
48
48
49
50

51

51
52
52
52
53
53
54
55
56
56
57

61

61

61

61
62
62
63
64
65
65
65
66
66
67
68

Table of Contents

7.8. CONFIGURING A GOOGLE IDENTITY PROVIDER 68
7.8.1. About identity providers in OpenShift Container Platform 68
7.8.2. About Google authentication 69
7.8.3. Creating the secret 69
7.8.4. Sample Google CR 69
7.8.5. Adding an identity provider to your cluster 70

7.9. CONFIGURING AN OPENID CONNECT IDENTITY PROVIDER 71
7.9.1. About identity providers in OpenShift Container Platform 71
7.9.2. About OpenlID Connect authentication 71
7.9.3. Supported OIDC providers 72
7.9.4. Creating the secret 73
7.9.5. Creating a config map 73
7.9.6. Sample OpenlD Connect CRs 74
7.9.7. Adding an identity provider to your cluster 76
7.9.8. Configuring identity providers using the web console 77

CHAPTER 8. USING RBAC TO DEFINE AND APPLY PERMISSIONS ... iitiiiiiiiiiiiiiiiiennneenn, 78

8.1. RBAC OVERVIEW 78
8.1.1. Default cluster roles 79
8.1.2. Evaluating authorization 80

8.1.2.1. Cluster role aggregation 81

8.2. PROJECTS AND NAMESPACES 81

8.3. DEFAULT PROJECTS 82

8.4. VIEWING CLUSTER ROLES AND BINDINGS 83

8.5. VIEWING LOCAL ROLES AND BINDINGS 89

8.6. ADDING ROLES TO USERS 91

8.7. CREATING A LOCAL ROLE 93

8.8. CREATING A CLUSTER ROLE 94

8.9. LOCAL ROLE BINDING COMMANDS 94

8.10. CLUSTER ROLE BINDING COMMANDS 95

8.11. CREATING A CLUSTER ADMIN 95

CHAPTER 9. REMOVING THE KUBEADMIN USERttt et eeieieeanneraneennnenns 96
9.1. THE KUBEADMIN USER 96
9.2. REMOVING THE KUBEADMIN USER 96

CHAPTER 10. UNDERSTANDING AND CREATING SERVICEACCOUNTS iitiiiiiiiiiiniennnnenn, 97

10.1. SERVICE ACCOUNTS OVERVIEW 97

10.2. CREATING SERVICE ACCOUNTS 97

10.3. EXAMPLES OF GRANTING ROLES TO SERVICE ACCOUNTS 98

CHAPTER 11. USING SERVICE ACCOUNTS IN APPLICATIONS ... ittt ieieaieennnens 101
11.1. SERVICE ACCOUNTS OVERVIEW 101
11.2. DEFAULT SERVICE ACCOUNTS 101

11.2.1. Default cluster service accounts 101
11.2.2. Default project service accounts and roles 102
11.2.3. About automatically generated service account token secrets 102
11.3. CREATING SERVICE ACCOUNTS 103

CHAPTER 12. USING A SERVICE ACCOUNT AS AN OQAUTH CLIENT ...ttt iieeiiennaens 105

12.1. SERVICE ACCOUNTS AS OAUTH CLIENTS 105
12.1.1. Redirect URIs for service accounts as OAuth clients 105

CHAPTER 13. SCOPING TOKENS .. ittt ittt ettt et eat et eaeeanneeanneeaneeenneennnens 108

13.1. ABOUT SCOPING TOKENS 108

OpenShift Container Platform 4.11 Authentication and authorization

13.1.1. User scopes
13.1.2. Role scope

CHAPTER 14. USING BOUND SERVICE ACCOUNT TOKENS i
14.1. ABOUT BOUND SERVICE ACCOUNT TOKENS
14.2. CONFIGURING BOUND SERVICE ACCOUNT TOKENS USING VOLUME PROJECTION
14.3. CREATING BOUND SERVICE ACCOUNT TOKENS OUTSIDE THE POD

CHAPTER 15. MANAGING SECURITY CONTEXT CONSTRAINTS ...ttt eeiieennnns
15.1. ABOUT SECURITY CONTEXT CONSTRAINTS
15.1.1. Default security context constraints
15.1.2. Security context constraints settings
15.1.3. Security context constraints strategies
15.1.4. Controlling volumes
15.1.5. Admission control
15.1.6. Security context constraints prioritization
15.2. ABOUT PRE-ALLOCATED SECURITY CONTEXT CONSTRAINTS VALUES
15.3. EXAMPLE SECURITY CONTEXT CONSTRAINTS
15.4. CREATING SECURITY CONTEXT CONSTRAINTS
15.5. ROLE-BASED ACCESS TO SECURITY CONTEXT CONSTRAINTS
15.6. REFERENCE OF SECURITY CONTEXT CONSTRAINTS COMMANDS
15.6.1. Listing security context constraints
15.6.2. Examining security context constraints
15.6.3. Deleting security context constraints
15.6.4. Updating security context constraints

CHAPTER 16. UNDERSTANDING AND MANAGING POD SECURITY ADMISSIONccoivvvvnn..,
16.1. SECURITY CONTEXT CONSTRAINT SYNCHRONIZATION WITH POD SECURITY STANDARDS
16.2. CONTROLLING POD SECURITY ADMISSION SYNCHRONIZATION
16.3. ABOUT POD SECURITY ADMISSION ALERTS
16.3.1. Identifying pod security violations
16.4. ADDITIONAL RESOURCES

CHAPTER 17. IMPERSONATING THE SYSTEM:ADMIN USER i
17.1. API IMPERSONATION
17.2. IMPERSONATING THE SYSTEM:ADMIN USER
17.3. IMPERSONATING THE SYSTEM:ADMIN GROUP

CHAPTER 18. SYNCING LDAP GROUPS ... ittt it eate e eeatennneeaneeeaneennneenn
18.1. ABOUT CONFIGURING LDAP SYNC
18.1.1. About the RFC 2307 configuration file
18.1.2. About the Active Directory configuration file
18.1.3. About the augmented Active Directory configuration file
18.2. RUNNING LDAP SYNC
18.2.1. Syncing the LDAP server with OpenShift Container Platform
18.2.2. Syncing OpenShift Container Platform groups with the LDAP server
18.2.3. Syncing subgroups from the LDAP server with OpenShift Container Platform
18.3. RUNNING A GROUP PRUNING JOB
18.4. AUTOMATICALLY SYNCING LDAP GROUPS
18.5. LDAP GROUP SYNC EXAMPLES
18.5.1. Syncing groups using the RFC 2307 schema
18.5.2. Syncing groups using the RFC2307 schema with user-defined name mappings
18.5.3. Syncing groups using RFC 2307 with user-defined error tolerances
18.5.4. Syncing groups using the Active Directory schema

108
108

109
109
109

12

14
14
14
18
19
121
122
123
123
124
127
128
129
129
130
131
131

133
133
133
134
134
135

136
136
136
136

137
137
139
140

141
142
142
142
142
143
144
148
148
150

151
154

Table of Contents

18.5.5. Syncing groups using the augmented Active Directory schema 156
18.5.5.1. LDAP nested membership sync example 157
18.6. LDAP SYNC CONFIGURATION SPECIFICATION 161
18.6.1. vI.LDAPSyncConfig 161
18.6.2. v1.StringSource 163
18.6.3. vI.LDAPQuery 163
18.6.4. v.RFC2307Config 164
18.6.5. v1.ActiveDirectoryConfig 166
18.6.6. vI.AugmentedActiveDirectoryConfig 167
CHAPTER 19. MANAGING CLOUD PROVIDER CREDENTIALSttt ieiieeiieeneennnens 169
19.1. ABOUT THE CLOUD CREDENTIAL OPERATOR 169
19.1.1. Modes 169
19.1.2. Determining the Cloud Credential Operator mode 170
19.1.2.1. Determining the Cloud Credential Operator mode by using the web console 171
19.1.2.2. Determining the Cloud Credential Operator mode by using the CLI 174
19.1.3. Default behavior 175
19.1.4. Additional resources 176
19.2. USING MINT MODE 176
19.2.1. Mint mode permissions requirements 176
19.2.1.1. Amazon Web Services (AWS) permissions 176
19.2.1.2. Google Cloud Platform (GCP) permissions 177
19.2.2. Admin credentials root secret format 177
19.2.3. Mint mode with removal or rotation of the administrator-level credential 178
19.2.3.1. Rotating cloud provider credentials manually 178
19.2.3.2. Removing cloud provider credentials 180
19.2.4. Additional resources 181
19.3. USING PASSTHROUGH MODE 181
19.3.1. Passthrough mode permissions requirements 181
19.3.1.1. Amazon Web Services (AWS) permissions 181
19.3.1.2. Microsoft Azure permissions 181
19.3.1.3. Google Cloud Platform (GCP) permissions 182
19.3.1.4. Red Hat OpenStack Platform (RHOSP) permissions 182
19.3.1.5. Red Hat Virtualization (RHV) permissions 182
19.3.1.6. VMware vSphere permissions 182
19.3.2. Admin credentials root secret format 183
19.3.3. Passthrough mode credential maintenance 185
19.3.3.1. Rotating cloud provider credentials manually 185
19.3.4. Reducing permissions after installation 186
19.3.5. Additional resources 187
19.4. USING MANUAL MODE 187
19.4.1. Manual mode with cloud credentials created and managed outside of the cluster 187
19.4.2. Updating cloud provider resources with manually maintained credentials 188
19.4.2.1. Indicating that the cluster is ready to upgrade 188
19.4.3. Additional resources 189
19.5. USING MANUAL MODE WITH AMAZON WEB SERVICES SECURITY TOKEN SERVICE 189
19.5.1. About manual mode with AWS Security Token Service 189
19.5.1.1. AWS Security Token Service authentication process 190
19.5.1.2. Authentication flow for AWS STS 190
19.5.1.3. Token refreshing for AWS STS 191
19.5.1.4. OpenlID Connect requirements for AWS STS 191
19.5.1.5. AWS component secret formats 192
19.5.2. Installing an OpenShift Container Platform cluster configured for manual mode with STS 192

OpenShift Container Platform 4.11 Authentication and authorization

19.5.2.1. Configuring the Cloud Credential Operator utility 193
19.5.2.2. Creating AWS resources with the Cloud Credential Operator utility 197
19.5.2.2.1. Creating AWS resources individually 197
19.5.2.2.2. Creating AWS resources with a single command 200
19.5.2.3. Running the installer 202
19.5.2.4. Verifying the installation 203
19.5.3. Additional resources 203
19.6. USING MANUAL MODE WITH GCP WORKLOAD IDENTITY 203
19.6.1. About manual mode with GCP Workload Identity 203
19.6.2. Installing an OpenShift Container Platform cluster configured for manual mode with GCP Workload
Identity 205
19.6.2.1. Configuring the Cloud Credential Operator utility 206
19.6.2.2. Creating GCP resources with the Cloud Credential Operator utility 207
19.6.2.3. Running the installer 209
19.6.2.4. Verifying the installation 210
19.6.3. Additional resources 21

Table of Contents

OpenShift Container Platform 4.11 Authentication and authorization

CHAPTER 1. OVERVIEW OF AUTHENTICATION AND
AUTHORIZATION

1.1. GLOSSARY OF COMMON TERMS FOR OPENSHIFT CONTAINER
PLATFORM AUTHENTICATION AND AUTHORIZATION

This glossary defines common terms that are used in OpenShift Container Platform authentication and
authorization.

authentication

An authentication determines access to an OpenShift Container Platform cluster and ensures only
authenticated users access the OpenShift Container Platform cluster.

authorization

Authorization determines whether the identified user has permissions to perform the requested
action.

bearer token
Bearer token is used to authenticate to APl with the header Authorization: Bearer <tokens.
Cloud Credential Operator

The Cloud Credential Operator (CCO) manages cloud provider credentials as custom resource
definitions (CRDs).

config map

A config map provides a way to inject configuration data into the pods. You can reference the data
stored in a config map in a volume of type ConfigMap. Applications running in a pod can use this
data.

containers

Lightweight and executable images that consist software and all its dependencies. Because
containers virtualize the operating system, you can run containers in a data center, public or private
cloud, or your local host.

Custom Resource (CR)

A CRis an extension of the Kubernetes API.
group

A group is a set of users. A group is useful for granting permissions to multiple users one time.
HTPasswd

HTPasswd updates the files that store usernames and password for authentication of HTTP users.
Keystone

Keystone is an Red Hat OpenStack Platform (RHOSP) project that provides identity, token, catalog,
and policy services.

Lightweight directory access protocol (LDAP)

LDAP is a protocol that queries user information.
manual mode

In manual mode, a user manages cloud credentials instead of the Cloud Credential Operator (CCO).
mint mode

Mint mode is the default and recommended best practice setting for the Cloud Credential Operator
(CCO) to use on the platforms for which it is supported. In this mode, the CCO uses the provided
administrator-level cloud credential to create new credentials for components in the cluster with

CHAPTER 1. OVERVIEW OF AUTHENTICATION AND AUTHORIZATION

only the specific permissions that are required.
namespace

A namespace isolates specific system resources that are visible to all processes. Inside a namespace,
only processes that are members of that namespace can see those resources.

node

A node is a worker machine in the OpenShift Container Platform cluster. A node is either a virtual
machine (VM) or a physical machine.

OAuth client
OAuth client is used to get a bearer token.
OAuth server

The OpenShift Container Platform control plane includes a built-in OAuth server that determines the
user’s identity from the configured identity provider and creates an access token.

OpenlID Connect

The OpenlD Connect is a protocol to authenticate the users to use single sign-on (SSO) to access
sites that use OpenlD Providers.

passthrough mode

In passthrough mode, the Cloud Credential Operator (CCO) passes the provided cloud credential to
the components that request cloud credentials.

pod

A pod is the smallest logical unit in Kubernetes. A pod is comprised of one or more containers to run
in a worker node.

regular users
Users that are created automatically in the cluster upon first login or via the API.
request header

A request header is an HTTP header that is used to provide information about HTTP request context,
so that the server can track the response of the request.

role-based access control (RBAC)

A key security control to ensure that cluster users and workloads have access to only the resources
required to execute their roles.

service accounts

Service accounts are used by the cluster components or applications.
system users

Users that are created automatically when the cluster is installed.
users

Users is an entity that can make requests to API.

1.2. ABOUT AUTHENTICATION IN OPENSHIFT CONTAINER PLATFORM

To control access to an OpenShift Container Platform cluster, a cluster administrator can configure user
authentication and ensure only approved users access the cluster.

To interact with an OpenShift Container Platform cluster, users must first authenticate to the OpenShift
Container Platform APl in some way. You can authenticate by providing an OAuth access token or an
X.509 client certificate in your requests to the OpenShift Container Platform API.

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/authentication_and_authorization/#understanding-authentication
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/authentication_and_authorization/#rbac-api-authentication_understanding-authentication

OpenShift Container Platform 4.11 Authentication and authorization

NOTE

If you do not present a valid access token or certificate, your request is unauthenticated
and you receive an HTTP 401 error.

An administrator can configure authentication through the following tasks:

Configuring an identity provider: You can define any supported identity provider in OpenShift
Container Platform and add it to your cluster.

Configuring the internal OAuth server: The OpenShift Container Platform control plane includes
a built-in OAuth server that determines the user's identity from the configured identity provider

and creates an access token. You can configure the token duration and inactivity timeout, and
customize the internal OAuth server URL.

NOTE

Users can view and manage OAuth tokens owned by them .

Registering an OAuth client: OpenShift Container Platform includes several default OAuth
clients. You can register and configure additional OAuth clients.

NOTE

When users send a request for an OAuth token, they must specify either a default
or custom OAuth client that receives and uses the token.

Managing cloud provider credentials using the Cloud Credentials Operator: Cluster components
use cloud provider credentials to get permissions required to perform cluster-related tasks.

Impersonating a system admin user: You can grant cluster administrator permissions to a user
by impersonating a system admin user.

1.3. ABOUT AUTHORIZATION IN OPENSHIFT CONTAINER PLATFORM

Authorization involves determining whether the identified user has permissions to perform the
requested action.

Administrators can define permissions and assign them to users using the RBAC objects, such as rules,
roles, and bindings. To understand how authorization works in OpenShift Container Platform, see
Evaluating authorization.

You can also control access to an OpenShift Container Platform cluster through projects and
namespaces.

Along with controlling user access to a cluster, you can also control the actions a pod can perform and
the resources it can access using security context constraints (SCCs).

You can manage authorization for OpenShift Container Platform through the following tasks:

10

Viewing local and cluster roles and bindings.

Creating a local role and assigning it to a user or group.

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/authentication_and_authorization/#supported-identity-providers
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/authentication_and_authorization/#configuring-internal-oauth
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/authentication_and_authorization/#managing-oauth-access-tokens
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/authentication_and_authorization/#oauth-default-clients_configuring-oauth-clients
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/authentication_and_authorization/#oauth-register-additional-client_configuring-oauth-clients
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/authentication_and_authorization/#about-cloud-credential-operator
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/authentication_and_authorization/#impersonating-system-admin
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/authentication_and_authorization/#authorization-overview_using-rbac
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/authentication_and_authorization/#evaluating-authorization_using-rbac
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/authentication_and_authorization/#rbac-projects-namespaces_using-rbac
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/authentication_and_authorization/#managing-pod-security-policies
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/authentication_and_authorization/#viewing-local-roles_using-rbac
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/authentication_and_authorization/#viewing-cluster-roles_using-rbac
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/authentication_and_authorization/#creating-local-role_using-rbac

CHAPTER 1. OVERVIEW OF AUTHENTICATION AND AUTHORIZATION

Creating a cluster role and assigning it to a user or group: OpenShift Container Platform
includes a set of default cluster roles. You can create additional cluster roles and add them to a
user or group.

Creating a cluster-admin user: By default, your cluster has only one cluster administrator called
kubeadmin. You can create another cluster administrator. Before creating a cluster
administrator, ensure that you have configured an identity provider.

NOTE

After creating the cluster admin user, delete the existing kubeadmin user to
improve cluster security.

Creating service accounts: Service accounts provide a flexible way to control APl access without
sharing a regular user’s credentials. A user can create and use a service account in applications
and also as an OAuth client.

Scoping tokens: A scoped token is a token that identifies as a specific user who can perform
only specific operations. You can create scoped tokens to delegate some of your permissions to
another user or a service account.

Syncing LDAP groups: You can manage user groups in one place by syncing the groups stored
in an LDAP server with the OpenShift Container Platform user groups.

1

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/authentication_and_authorization/#default-roles_using-rbac
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/authentication_and_authorization/#creating-cluster-role_using-rbac
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/authentication_and_authorization/#adding-roles_using-rbac
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/authentication_and_authorization/#creating-cluster-admin_using-rbac
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/authentication_and_authorization/#removing-kubeadmin_removing-kubeadmin
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/authentication_and_authorization/#service-accounts-overview_understanding-service-accounts
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/authentication_and_authorization/#service-accounts-managing_understanding-service-accounts
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/authentication_and_authorization/#using-service-accounts-as-oauth-client
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/authentication_and_authorization/#tokens-scoping
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/authentication_and_authorization/#ldap-syncing

OpenShift Container Platform 4.11 Authentication and authorization

CHAPTER 2. UNDERSTANDING AUTHENTICATION

For users to interact with OpenShift Container Platform, they must first authenticate to the cluster. The
authentication layer identifies the user associated with requests to the OpenShift Container Platform
API. The authorization layer then uses information about the requesting user to determine if the request
is allowed.

As an administrator, you can configure authentication for OpenShift Container Platform.

2.1. USERS

A user in OpenShift Container Platform is an entity that can make requests to the OpenShift Container
Platform API. An OpenShift Container Platform User object represents an actor which can be granted
permissions in the system by adding roles to them or to their groups. Typically, this represents the
account of a developer or administrator that is interacting with OpenShift Container Platform.

Several types of users can exist:

User type Description

Regular users This is the way most interactive OpenShift Container Platform users are represented.
Regular users are created automatically in the system upon first login or can be created
via the API. Regular users are represented with the User object. Examples:joe alice

System users Many of these are created automatically when the infrastructure is defined, mainly for
the purpose of enabling the infrastructure to interact with the APl securely. They
include a cluster administrator (with access to everything), a per-node user, users for
use by routers and registries, and various others. Finally, there is an anonymous
system user that is used by default for unauthenticated requests. Examples:
system:admin system:openshift-registry system:node:nodei.example.com

Service These are special system users associated with projects; some are created

accounts automatically when the project is first created, while project administrators can create
more for the purpose of defining access to the contents of each project. Service
accounts are represented with the ServiceAccount object. Examples:
system:serviceaccount:default:deployer
system:serviceaccount:foo:builder

Each user must authenticate in some way to access OpenShift Container Platform. API requests with no
authentication or invalid authentication are authenticated as requests by the anonymous system user.
After authentication, policy determines what the user is authorized to do.

2.2. GROUPS
A user can be assigned to one or more groups, each of which represent a certain set of users. Groups are
useful when managing authorization policies to grant permissions to multiple users at once, for example

allowing access to objects within a project, versus granting them to users individually.

In addition to explicitly defined groups, there are also system groups, or virtual groups, that are
automatically provisioned by the cluster.

The following default virtual groups are most important:

12

CHAPTER 2. UNDERSTANDING AUTHENTICATION

Virtual group Description

system:authenticated Automatically associated with all authenticated users.

system:authenticated:oa Automatically associated with all users authenticated with an OAuth access
uth token.

system:unauthenticated Automatically associated with all unauthenticated users.

2.3. APIAUTHENTICATION
Requests to the OpenShift Container Platform API are authenticated using the following methods:

OAuth access tokens

® Obtained from the OpenShift Container Platform OAuth server using the
<namespace_routes/oauth/authorize and <namespace_routes/oauth/token endpoints.

® Sent as an Authorization: Bearer... header.
® Sentas a websocket subprotocol header in the form

base64url.bearer.authorization.k8s.io.<base64url-encoded-token> for websocket
requests.

X.509 client certificates

® Requires an HTTPS connection to the APl server.

e Verified by the APl server against a trusted certificate authority bundle.

® The APl server creates and distributes certificates to controllers to authenticate themselves.
Any request with an invalid access token or an invalid certificate is rejected by the authentication layer
with a 401 error.
If no access token or certificate is presented, the authentication layer assigns the system:anonymous

virtual user and the system:unauthenticated virtual group to the request. This allows the authorization
layer to determine which requests, if any, an anonymous user is allowed to make.

2.3.1. OpenShift Container Platform OAuth server

The OpenShift Container Platform master includes a built-in OAuth server. Users obtain OAuth access
tokens to authenticate themselves to the API.

When a person requests a new OAuth token, the OAuth server uses the configured identity provider to
determine the identity of the person making the request.

It then determines what user that identity maps to, creates an access token for that user, and returns
the token for use.

2.3.1.1. OAuth token requests

13

OpenShift Container Platform 4.11 Authentication and authorization

Every request for an OAuth token must specify the OAuth client that will receive and use the token. The
following OAuth clients are automatically created when starting the OpenShift Container Platform API:

OAuth client Usage

openshift-browser-client Requests tokens at
<hamespace_route>/oauth/token/request with

a user-agent that can handle interactive logins. [']

openshift-challenging-client Requests tokens with a user-agent that can handle
WWW-Authenticate challenges.

1. <namespace_routes refers to the namespace route. This is found by running the following
command:

I $ oc get route oauth-openshift -n openshift-authentication -o json | jg .spec.host

All requests for OAuth tokens involve a request to <namespace_route>/oauth/authorize. Most
authentication integrations place an authenticating proxy in front of this endpoint, or configure
OpenShift Container Platform to validate credentials against a backing identity provider. Requests to
<hamespace_routes>/oauth/authorize can come from user-agents that cannot display interactive login
pages, such as the CLI. Therefore, OpenShift Container Platform supports authenticating using a
WWW-Authenticate challenge in addition to interactive login flows.

If an authenticating proxy is placed in front of the <namespace_route>/oauth/authorize endpoint, it
sends unauthenticated, non-browser user-agents WWW-Authenticate challenges rather than
displaying an interactive login page or redirecting to an interactive login flow.

NOTE

To prevent cross-site request forgery (CSRF) attacks against browser clients, only send
Basic authentication challenges with if a X-CSRF-Token header is on the request. Clients
that expect to receive Basic WWW-Authenticate challenges must set this header to a
non-empty value.

If the authenticating proxy cannot support WWW-Authenticate challenges, or if
OpenShift Container Platform is configured to use an identity provider that does not
support WWW-Authenticate challenges, you must use a browser to manually obtain a
token from <hamespace_route>/oauth/token/request.

2.3.1.2. APl impersonation

You can configure a request to the OpenShift Container Platform API to act as though it originated
from another user. For more information, see User impersonation in the Kubernetes documentation.

2.3.1.3. Authentication metrics for Prometheus

OpenShift Container Platform captures the following Prometheus system metrics during authentication
attempts:

e openshift_auth_basic_password_count counts the number of oc login user name and
password attempts.

14

https://kubernetes.io/docs/reference/access-authn-authz/authentication/#user-impersonation

CHAPTER 2. UNDERSTANDING AUTHENTICATION

openshift_auth_basic_password_count_result counts the number of oc login user name
and password attempts by result, success or error.

openshift_auth_form_password_count counts the number of web console login attempts.

openshift_auth_form_password_count_result counts the number of web console login
attempts by result, success or error.

openshift_auth_password_total counts the total number of oc login and web console login
attempts.

15

OpenShift Container Platform 4.11 Authentication and authorization

CHAPTER 3. CONFIGURING THE INTERNAL OAUTH SERVER

3.1. OPENSHIFT CONTAINER PLATFORM OAUTH SERVER

The OpenShift Container Platform master includes a built-in OAuth server. Users obtain OAuth access
tokens to authenticate themselves to the API.

When a person requests a new OAuth token, the OAuth server uses the configured identity provider to
determine the identity of the person making the request.

It then determines what user that identity maps to, creates an access token for that user, and returns
the token for use.

3.2. OAUTH TOKEN REQUEST FLOWS AND RESPONSES

The OAuth server supports standard authorization code grant and the implicit grant OAuth
authorization flows.

When requesting an OAuth token using the implicit grant flow (response_type=token) with a client_id
configured to request WWW-Authenticate challenges (like openshift-challenging-client), these are
the possible server responses from /oauth/authorize, and how they should be handled:

Status Content Client response
302 Location header containing an Use the access_token value as the OAuth
access_token parameter in the URL token.

fragment (RFC 6749 section 4.2.2)

302 Location header containing anerror query Fail, optionally surfacing the error (and
parameter (RFC 6749 section 4.1.2.1) optional error_description) query values to
the user.
302 Other Location header Follow the redirect, and process the result

using these rules.

401 WWW-Authenticate header present Respond to challenge if type is recognized
(e.g. Basic, Negotiate, etc), resubmit
request, and process the result using these
rules.

401 WWW-Authenticate header missing No challenge authentication is possible. Fail
and show response body (which might contain
links or details on alternate methods to obtain
an OAuth token).

Other Other Fail, optionally surfacing response body to the
user.

3.3. OPTIONS FOR THE INTERNAL OAUTH SERVER

Several configuration options are available for the internal OAuth server.

16

https://tools.ietf.org/html/rfc6749#section-4.1
https://tools.ietf.org/html/rfc6749#section-4.2
https://tools.ietf.org/html/rfc6749#section-4.2.2
https://tools.ietf.org/html/rfc6749#section-4.1.2.1

CHAPTER 3. CONFIGURING THE INTERNAL OAUTH SERVER

3.3.1. OAuth token duration options

The internal OAuth server generates two kinds of tokens:

Token Description

Access tokens Longer-lived tokens that grant access to the API.
Authorize codes Short-lived tokens whose only use is to be exchanged for an access
token.

You can configure the default duration for both types of token. If necessary, you can override the
duration of the access token by using an OAuthClient object definition.

3.3.2. OAuth grant options

When the OAuth server receives token requests for a client to which the user has not previously granted
permission, the action that the OAuth server takes is dependent on the OAuth client’s grant strategy.

The OAuth client requesting token must provide its own grant strategy.

You can apply the following default methods:

Grant option Description

auto Auto-approve the grant and retry the request.

prompt Prompt the user to approve or deny the grant.

3.4. CONFIGURING THE INTERNAL OAUTH SERVER’S TOKEN
DURATION

You can configure default options for the internal OAuth server’s token duration.

IMPORTANT

By default, tokens are only valid for 24 hours. Existing sessions expire after this time
elapses.

If the default time is insufficient, then this can be modified using the following procedure.

Procedure

1. Create a configuration file that contains the token duration options. The following file sets this
to 48 hours, twice the default.

apiVersion: config.openshift.io/v1
kind: OAuth
metadata:

name: cluster

17

OpenShift Container Platform 4.11 Authentication and authorization

spec:
tokenConfig:
accessTokenMaxAgeSeconds: 172800 ﬂ

Set accessTokenMaxAgeSeconds to control the lifetime of access tokens. The default
lifetime is 24 hours, or 86400 seconds. This attribute cannot be negative. If set to zero, the
default lifetime is used.

2. Apply the new configuration file:

NOTE

Because you update the existing OAuth server, you must use the oc apply
command to apply the change.

I $ oc apply -f </path/to/file.yaml>
3. Confirm that the changes are in effect:

I $ oc describe oauth.config.openshift.io/cluster

Example output

Spec:
Token Config:
Access Token Max Age Seconds: 172800

3.5. CONFIGURING TOKEN INACTIVITY TIMEOUT FOR THE INTERNAL
OAUTH SERVER

You can configure OAuth tokens to expire after a set period of inactivity. By default, no token inactivity
timeout is set.

NOTE

If the token inactivity timeout is also configured in your OAuth client, that value overrides
the timeout that is set in the internal OAuth server configuration.

Prerequisites
® You have access to the cluster as a user with the cluster-admin role.

® You have configured an identity provider (IDP).

Procedure
1. Update the OAuth configuration to set a token inactivity timeout.

a. Edit the OAuth object:

18

CHAPTER 3. CONFIGURING THE INTERNAL OAUTH SERVER

I $ oc edit oauth cluster

Add the spec.tokenConfig.accessTokenlnactivityTimeout field and set your timeout
value:

apiVersion: config.openshift.io/v1
kind: OAuth
metadata:
spec:
tokenConfig:
accessTokenlnactivityTimeout: 400s ﬂ

Set a value with the appropriate units, for example 400s for 400 seconds, or 30m for
30 minutes. The minimum allowed timeout value is 300s.

b. Save the file to apply the changes.

2. Check that the OAuth server pods have restarted:
I $ oc get clusteroperators authentication

Do not continue to the next step until PROGRESSING is listed as False, as shown in the
following output:

Example output

NAME VERSION AVAILABLE PROGRESSING DEGRADED SINCE
authentication 4.11.0 True False False 145m

3. Check that a new revision of the Kubernetes APl server pods has rolled out. This will take several
minutes.

I $ oc get clusteroperators kube-apiserver

Do not continue to the next step until PROGRESSING is listed as False, as shown in the
following output:

Example output

NAME VERSION AVAILABLE PROGRESSING DEGRADED SINCE
kube-apiserver 4.11.0 True False False 145m

If PROGRESSING is showing True, wait a few minutes and try again.

Verification

1. Login to the cluster with an identity from your IDP.
2. Execute a command and verify that it was successful.

3. Wait longer than the configured timeout without using the identity. In this procedure’s example,
wait longer than 400 seconds.

19

OpenShift Container Platform 4.11 Authentication and authorization

4. Try to execute a command from the same identity’s session.

This command should fail because the token should have expired due to inactivity longer than

the configured timeout.

Example output

I error: You must be logged in to the server (Unauthorized)

3.6. CUSTOMIZING THE INTERNAL OAUTH SERVER URL

You can customize the internal OAuth server URL by setting the custom hostname and TLS certificate

in the spec.componentRoutes field of the cluster Ingress configuration.

Prerequisites

WARNING

If you update the internal OAuth server URL, you might break trust from
components in the cluster that need to communicate with the OpenShift OAuth
server to retrieve OAuth access tokens. Components that need to trust the OAuth
server will need to include the proper CA bundle when calling OAuth endpoints. For
example:

$ oc login -u <username> -p <password> --certificate-authority=<path_to_ca.crt>

For self-signed certificates, the ca.crt file must contain the custom CA
certificate, otherwise the login will not succeed.

The Cluster Authentication Operator publishes the OAuth server's serving
certificate in the oauth-serving-cert config map in the openshift-config-managed
namespace. You can find the certificate in the data.ca-bundle.crt key of the config
map.

® You have logged in to the cluster as a user with administrative privileges.

® You have created a secret in the openshift-config namespace containing the TLS certificate
and key. This is required if the domain for the custom hostname suffix does not match the
cluster domain suffix. The secret is optional if the suffix matches.

TIP

You can create a TLS secret by using the oc create secret tls command.

Procedure

1. Edit the cluster Ingress configuration:

I $ oc edit ingress.config.openshift.io cluster

20

CHAPTER 3. CONFIGURING THE INTERNAL OAUTH SERVER

2. Set the custom hostname and optionally the serving certificate and key:

apiVersion: config.openshift.io/v1
kind: Ingress
metadata:
name: cluster
spec:
componentRoutes:
- name: oauth-openshift
namespace: openshift-authentication
hostname: <custom_hostname> ﬂ
servingCertKeyPairSecret:
name: <secret_name> g

ﬂ The custom hostname.

9 Reference to a secret in the openshift-config namespace that contains a TLS certificate
(tls.crt) and key (tls.key). This is required if the domain for the custom hostname suffix
does not match the cluster domain suffix. The secret is optional if the suffix matches.

3. Save the file to apply the changes.

3.7.OAUTH SERVER METADATA

Applications running in OpenShift Container Platform might have to discover information about the
built-in OAuth server. For example, they might have to discover what the address of the
<hamespace_routes is without manual configuration. To aid in this, OpenShift Container Platform
implements the IETF OAuth 2.0 Authorization Server Metadata draft specification.

Thus, any application running inside the cluster can issue a GET request to
https://openshift.default.svc/.well-known/oauth-authorization-server to fetch the following
information:

"issuer": "https://<namespace_route>", ﬂ
"authorization_endpoint": "https://<namespace_route>/oauth/authorize", 9
"token_endpoint": "https://<namespace_route>/oauth/token", 6
"scopes_supported”: [ﬂ

"user:full",

"user:info",

"user:check-access",

"user:list-scoped-projects”,

"user:list-projects”
1,
"response_types_supported”: [6

"code",

"token"
1,
"grant_types_supported": [G

"authorization_code",

"implicit"

1,

21

https://tools.ietf.org/html/draft-ietf-oauth-discovery-10

OpenShift Container Platform 4.11 Authentication and authorization

"code_challenge_methods_supported": | ﬂ
"plain”,
"S256"
]
}

The authorization server’s issuer identifier, which is a URL that uses the https scheme and has no
query or fragment components. This is the location where .well-known RF C 5785 resources
containing information about the authorization server are published.

URL of the authorization server’s authorization endpoint. See RFC 6749.
URL of the authorization server’s token endpoint. See RFC 6749,

JSON array containing a list of the OAuth 2.0 RFC 6749 scope values that this authorization server
supports. Note that not all supported scope values are advertised.

JSON array containing a list of the OAuth 2.0 response_type values that this authorization server
supports. The array values used are the same as those used with the response_types parameter
defined by "OAuth 2.0 Dynamic Client Registration Protocol" in RFC 7591.

JSON array containing a list of the OAuth 2.0 grant type values that this authorization server
supports. The array values used are the same as those used with the grant_types parameter
defined by OAuth 2.0 Dynamic Client Registration Protocol in RFC 7591.

o O ® 660 O

JSON array containing a list of PKCE RFC 7636 code challenge methods supported by this
authorization server. Code challenge method values are used in the code_challenge_method
parameter defined in Section 4.3 of RFC 7636 . The valid code challenge method values are those
registered in the IANA PKCE Code Challenge Methods registry. See IANA OAuth Parameters.

3.8. TROUBLESHOOTING OAUTH API EVENTS

In some cases the API server returns an unexpected condition error message that is difficult to debug
without direct access to the APl master log. The underlying reason for the error is purposely obscured in
order to avoid providing an unauthenticated user with information about the server’s state.

A subset of these errors is related to service account OAuth configuration issues. These issues are
captured in events that can be viewed by non-administrator users. When encountering an unexpected

condition server error during OAuth, run oc get events to view these events under ServiceAccount.

The following example warns of a service account that is missing a proper OAuth redirect URI:
I $ oc get events | grep ServiceAccount
Example output

im im 1 proxy ServiceAccount Warning
NoSAOAuthRedirectURIs service-account-oauth-client-getter
system:serviceaccount:myproject:proxy has no redirectURIs; set serviceaccounts.openshift.io/oauth-
redirecturi.<some-value>=<redirect> or create a dynamic URI using
serviceaccounts.openshift.io/oauth-redirectreference.<some-value>=<reference>

Running oc describe sa/<service_account_names reports any OAuth events associated with the
given service account name.

22

https://tools.ietf.org/html/rfc5785
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc7591
https://tools.ietf.org/html/rfc7591
https://tools.ietf.org/html/rfc7636
https://tools.ietf.org/html/rfc7636#section-4.3
http://www.iana.org/assignments/oauth-parameters

CHAPTER 3. CONFIGURING THE INTERNAL OAUTH SERVER

I $ oc describe sa/proxy | grep -A5 Events

Example output

Events:

FirstSeen LastSeen Count From SubObjectPath Type Reason
Message

3m 3m 1 service-account-oauth-client-getter Warning

NoSAOAuthRedirectURIs system:serviceaccount:myproject:proxy has no redirectURIs; set
serviceaccounts.openshift.io/oauth-redirecturi.<some-value>=<redirect> or create a dynamic URI
using serviceaccounts.openshift.io/oauth-redirectreference.<some-value>=<reference>

The following is a list of the possible event errors:

No redirect URI annotations or an invalid URI is specified

Reason Message

NoSAOAuthRedirectURIs system:serviceaccount:myproject:proxy has no redirectURIs; set
serviceaccounts.openshift.io/oauth-redirecturi.<some-value>=<redirect> or create a dynamic URI
using serviceaccounts.openshift.io/oauth-redirectreference.<some-value>=<reference>

Invalid route specified

Reason Message

NoSAOAuthRedirectURIs [routes.route.openshift.io "<name>" not found,
system:serviceaccount:myproject:proxy has no redirectURIs; set serviceaccounts.openshift.io/oauth-
redirecturi.<some-value>=<redirect> or create a dynamic URI using
serviceaccounts.openshift.io/oauth-redirectreference.<some-value>=<reference>]

Invalid reference type specified

Reason Message

NoSAOAuthRedirectURIs [no kind "<name>" is registered for version "v1",
system:serviceaccount:myproject:proxy has no redirectURIs; set serviceaccounts.openshift.io/oauth-
redirecturi.<some-value>=<redirect> or create a dynamic URI using
serviceaccounts.openshift.io/oauth-redirectreference.<some-value>=<reference>]

Missing SA tokens

Reason Message
NoSAOAuthTokens system:serviceaccount:myproject:proxy has no tokens

23

OpenShift Container Platform 4.11 Authentication and authorization

CHAPTER 4. CONFIGURING OAUTH CLIENTS

Several OAuth clients are created by default in OpenShift Container Platform. You can also register and
configure additional OAuth clients.

4.1. DEFAULT OAUTH CLIENTS

The following OAuth clients are automatically created when starting the OpenShift Container Platform
API:

OAuth client Usage

openshift-browser-client Requests tokens at
<namespace_route>/oauth/token/request with a user-

agent that can handle interactive logins. [']

openshift-challenging-client Requests tokens with a user-agent that can handle WWW-
Authenticate challenges.

1. <namespace_routes refers to the namespace route. This is found by running the following
command:

I $ oc get route oauth-openshift -n openshift-authentication -o json | jq .spec.host

4.2. REGISTERING AN ADDITIONAL OAUTH CLIENT

If you need an additional OAuth client to manage authentication for your OpenShift Container Platform
cluster, you can register one.

Procedure

® To register additional OAuth clients:

$ oc create -f <(echo'

kind: OAuthClient

apiVersion: oauth.openshift.io/v1
metadata:

name: demo ﬂ

secret: "..." 9

redirectURls:

- "http://www.example.com/" 6
grantMethod: prompt ﬂ

)

The name of the OAuth client is used as the client_id parameter when making requests to
<namespace_route>/oauth/authorize and <namespace_route>/oauth/token.

® o

The secret is used as the client_secret parameter when making requests to
<hamespace_route>/oauth/token.

24

CHAPTER 4. CONFIGURING OAUTH CLIENTS

9 The redirect_uri parameter specified in requests to
<namespace_route>/oauth/authorize and <namespace_route>/oauth/token must be
equal to or prefixed by one of the URIs listed in the redirectURIs parameter value.

Q The grantMethod is used to determine what action to take when this client requests
tokens and has not yet been granted access by the user. Specify auto to automatically

approve the grant and retry the request, or prompt to prompt the user to approve or deny
the grant.

4.3. CONFIGURING TOKEN INACTIVITY TIMEOUT FOR AN OAUTH
CLIENT

You can configure OAuth clients to expire OAuth tokens after a set period of inactivity. By default, no
token inactivity timeout is set.

NOTE

If the token inactivity timeout is also configured in the internal OAuth server
configuration, the timeout that is set in the OAuth client overrides that value.

Prerequisites

® You have access to the cluster as a user with the cluster-admin role.

® You have configured an identity provider (IDP).

Procedure
e Update the OAuthClient configuration to set a token inactivity timeout.

a. Edit the OAuthClient object:
I $ oc edit oauthclient <oauth_client> ﬂ

ﬂ Replace <oauth_client> with the OAuth client to configure, for example, console.

Add the accessTokenlnactivityTimeoutSeconds field and set your timeout value:

apiVersion: oauth.openshift.io/v1
grantMethod: auto

kind: OAuthClient

metadata:

accessTokenlnactivityTimeoutSeconds: 600 ﬂ

ﬂ The minimum allowed timeout value in seconds is 300.

b. Save the file to apply the changes.

Verification

25

OpenShift Container Platform 4.11 Authentication and authorization

1. Login to the cluster with an identity from your IDP. Be sure to use the OAuth client that you just
configured.

2. Perform an action and verify that it was successful.

3. Wait longer than the configured timeout without using the identity. In this procedure’s example,
wait longer than 600 seconds.

4. Try to perform an action from the same identity’s session.
This attempt should fail because the token should have expired due to inactivity longer than the
configured timeout.

4.4. ADDITIONAL RESOURCES

® OAuthClient [oauth.openshift.io/v1]

26

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/api_reference/#oauthclient-oauth-openshift-io-v1

CHAPTER 5. MANAGING USER-OWNED OAUTH ACCESS TOKE

CHAPTER 5. MANAGING USER-OWNED OAUTH ACCESS

TOKENS

Users can review their own OAuth access tokens and delete any that are no longer needed.

5.1. LISTING USER-OWNED OAUTH ACCESS TOKENS

You can list your user-owned OAuth access tokens. Token names are not sensitive and cannot be used

to login.

Procedure

® [istall user-owned OAuth access tokens:

$ oc get useroauthaccesstokens

Example output

NAME CLIENT NAME CREATED EXPIRES

REDIRECT URI SCOPES

<token1> openshift-challenging-client 2021-01-11T19:25:35Z 2021-01-12 19:25:35
+0000 UTC https://oauth-openshift.apps.example.com/oauth/token/implicit ~ user:full
<token2> openshift-browser-client 2021-01-11T19:27:06Z 2021-01-12 19:27:06 +0000
UTC https://oauth-openshift.apps.example.com/oauth/token/display user:full

<token3> console 2021-01-11T19:26:29Z 2021-01-12 19:26:29 +0000 UTC
https://console-openshift-console.apps.example.com/auth/callback user:full

® |ist user-owned OAuth access tokens for a particular OAuth client:

$ oc get useroauthaccesstokens --field-selector=clientName="console"

Example output

NAME CLIENT NAME CREATED EXPIRES
REDIRECT URI SCOPES
<token3> console 2021-01-11T19:26:29Z 2021-01-12 19:26:29 +0000 UTC

https://console-openshift-console.apps.example.com/auth/callback user:full

5.2. VIEWING THE DETAILS OF A USER-OWNED OAUTH ACCESS

TOKEN

You can view the details of a user-owned OAuth access token.

Procedure

® Describe the details of a user-owned OAuth access token:

$ oc describe useroauthaccesstokens <token_name>

Example output

NS

27

OpenShift Container Platform 4.11 Authentication and authorization

Name: <token_name> 0
Namespace:

Labels: <none>

Annotations: <none>

API Version: oauth.openshift.io/v1
Authorize Token: sha256~Ksckkug-9Fg RWn_AUysPolg-_HgmFI9zUL_CgD8wr8
Client Name: openshift-browser-client
Expires In: 86400 €)

Inactivity Timeout Seconds: 317 ﬂ

Kind: UserOAuthAccessToken
Metadata:

Creation Timestamp: 2021-01-11T19:27:06Z
Managed Fields:

APl Version: oauth.openshift.io/v1

Fields Type: FieldsV1

fieldsV1:
f:authorizeToken:
f:clientName:
f:expiresin:
f:redirectURI:
fiscopes:
f:userName:
f:userUID:
Manager: oauth-server
Operation: Update
Time: 2021-01-11T19:27:06Z
Resource Version: 30535
Self Link: /apis/oauth.openshift.io/v1/useroauthaccesstokens/<token_name>
UlID: f9d00b67-ab65-489b-8080-e427fal3c6181
Redirect URI: https://oauth-openshift.apps.example.com/oauth/token/display
Scopes:

user:full @

User Name: <user _name> G
User UID: 82356ab0-95f9-4fb3-9bc0-10f1d6a6a345
Events: <none>

The token name, which is the sha256 hash of the token. Token names are not sensitive and
cannot be used to log in.

The client name, which describes where the token originated from.
The value in seconds from the creation time before this token expires.

If there is a token inactivity timeout set for the OAuth server, this is the value in seconds
from the creation time before this token can no longer be used.

The scopes for this token.

Q® 00600 9

The user name associated with this token.

5.3. DELETING USER-OWNED OAUTH ACCESS TOKENS

The oc logout command only invalidates the OAuth token for the active session. You can use the
following procedure to delete any user-owned OAuth tokens that are no longer needed.

28

CHAPTER 5. MANAGING USER-OWNED OAUTH ACCESS TOKENS

Deleting an OAuth access token logs out the user from all sessions that use the token.

Procedure

® Delete the user-owned OAuth access token:

I $ oc delete useroauthaccesstokens <token_name>
Example output

I useroauthaccesstoken.oauth.openshift.io "<token_name>" deleted

29

OpenShift Container Platform 4.11 Authentication and authorization

CHAPTER 6. UNDERSTANDING IDENTITY PROVIDER
CONFIGURATION

The OpenShift Container Platform master includes a built-in OAuth server. Developers and
administrators obtain OAuth access tokens to authenticate themselves to the API.

As an administrator, you can configure OAuth to specify an identity provider after you install your
cluster.

6.1. ABOUT IDENTITY PROVIDERS IN OPENSHIFT CONTAINER
PLATFORM

By default, only a kubeadmin user exists on your cluster. To specify an identity provider, you must
create a custom resource (CR) that describes that identity provider and add it to the cluster.

NOTE

OpenShift Container Platform user names containing/, :, and % are not supported.

6.2. SUPPORTED IDENTITY PROVIDERS

You can configure the following types of identity providers:

Identity provider Description

htpasswd Configure the htpasswd identity provider to validate user names and passwords
against a flat file generated using htpasswd.

Keystone Configure the keystone identity provider to integrate your OpenShift Container
Platform cluster with Keystone to enable shared authentication with an OpenStack
Keystone v3 server configured to store users in an internal database.

LDAP Configure the Idap identity provider to validate user names and passwords against an
LDAPV3 server, using simple bind authentication.

Basic Configure a basic-authentication identity provider for users to log in to OpenShift
authentication Container Platform with credentials validated against a remote identity provider. Basic
authentication is a generic backend integration mechanism.

Request header Configure a request-header identity provider to identify users from request header
values, such as X-Remote-User. It is typically used in combination with an
authenticating proxy, which sets the request header value.

GitHub or GitHub Configure a github identity provider to validate user names and passwords against
Enterprise GitHub or GitHub Enterprise’'s OAuth authentication server.

GitLab Configure a gitlab identity provider to use GitLab.com or any other GitLab instance as
an identity provider.

30

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/authentication_and_authorization/#configuring-htpasswd-identity-provider
http://httpd.apache.org/docs/2.4/programs/htpasswd.html
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/authentication_and_authorization/#configuring-keystone-identity-provider
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/authentication_and_authorization/#configuring-ldap-identity-provider
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/authentication_and_authorization/#configuring-basic-authentication-identity-provider
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/authentication_and_authorization/#configuring-request-header-identity-provider
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/authentication_and_authorization/#configuring-github-identity-provider
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/authentication_and_authorization/#configuring-gitlab-identity-provider
https://gitlab.com/

CHAPTER 6. UNDERSTANDING IDENTITY PROVIDER CONFIGURATION

Identity provider Description

Google Configure a google identity provider using Google's OpenlD Connect integration.

OpenlID Connect Configure an oidc¢ identity provider to integrate with an OpenID Connect identity
provider using an Authorization Code Flow.

Once an identity provider has been defined, you can use RBAC to define and apply permissions .

6.3. REMOVING THE KUBEADMIN USER

After you define an identity provider and create a new cluster-admin user, you can remove the
kubeadmin to improve cluster security.

' WARNING
A If you follow this procedure before another user is a cluster-admin, then OpenShift

Container Platform must be reinstalled. It is not possible to undo this command.

Prerequisites

® You must have configured at least one identity provider.
® You must have added the cluster-admin role to a user.

® You must be logged in as an administrator.

Procedure

® Remove the kubeadmin secrets:

I $ oc delete secrets kubeadmin -n kube-system

6.4. IDENTITY PROVIDER PARAMETERS

The following parameters are common to all identity providers:

Parameter Description

hame The provider name is prefixed to provider user names to form an identity name.

31

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/authentication_and_authorization/#configuring-google-identity-provider
https://developers.google.com/identity/protocols/OpenIDConnect
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/authentication_and_authorization/#configuring-oidc-identity-provider
http://openid.net/specs/openid-connect-core-1_0.html#CodeFlowAuth
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/authentication_and_authorization/#authorization-overview_using-rbac

OpenShift Container Platform 4.11 Authentication and authorization

Parameter Description

mappingMethod Defines how new identities are mapped to users when they log in. Enter one of the
following values:

claim

The default value. Provisions a user with the identity’s preferred user name. Fails if a
user with that user name is already mapped to another identity.

lookup

Looks up an existing identity, user identity mapping, and user, but does not
automatically provision users or identities. This allows cluster administrators to set
up identities and users manually, or using an external process. Using this method
requires you to manually provision users.

add

Provisions a user with the identity’s preferred user name. If a user with that user
name already exists, the identity is mapped to the existing user, adding to any
existing identity mappings for the user. Required when multiple identity providers
are configured that identify the same set of users and map to the same user names.

NOTE

When adding or changing identity providers, you can map identities from the new
provider to existing users by setting the mappingMethod parameter to add.

6.5. SAMPLE IDENTITY PROVIDER CR

The following custom resource (CR) shows the parameters and default values that you use to configure
an identity provider. This example uses the htpasswd identity provider.

Sample identity provider CR

apiVersion: config.openshift.io/v1
kind: OAuth
metadata:
name: cluster
spec:
identityProviders:
- name: my_identity_provider ﬂ
mappingMethod: claim
type: HTPasswd
htpasswd:
fileData:
name: htpass-secret 6

ﬂ This provider name is prefixed to provider user names to form an identity name.
9 Controls how mappings are established between this provider's identities and User objects.

9 An existing secret containing a file generated using htpasswd.

32

http://httpd.apache.org/docs/2.4/programs/htpasswd.html

CHAPTER 7. CONFIGURING IDENTITY PROVIDERS

CHAPTER 7. CONFIGURING IDENTITY PROVIDERS

7.1. CONFIGURING AN HTPASSWD IDENTITY PROVIDER

Configure the htpasswd identity provider to allow users to log in to OpenShift Container Platform with
credentials from an htpasswd file.

To define an htpasswd identity provider, perform the following tasks:
1. Create an htpasswd file to store the user and password information.
2. Create a secret to represent the htpasswd file.
3. Define an htpasswd identity provider resource that references the secret.

4. Apply the resource to the default OAuth configuration to add the identity provider.

7.1.1. About identity providers in OpenShift Container Platform

By default, only a kubeadmin user exists on your cluster. To specify an identity provider, you must
create a custom resource (CR) that describes that identity provider and add it to the cluster.

NOTE

OpenShift Container Platform user names containing/, :, and % are not supported.

7.1.2. About htpasswd authentication

Using htpasswd authentication in OpenShift Container Platform allows you to identify users based on an
htpasswd file. An htpasswd file is a flat file that contains the user name and hashed password for each
user. You can use the htpasswd utility to create this file.

7.1.3. Creating the htpasswd file
See one of the following sections for instructions about how to create the htpasswd file:
® Creating an htpasswd file using Linux

® Creating an htpasswd file using Windows

7.1.3.1. Creating an htpasswd file using Linux

To use the htpasswd identity provider, you must generate a flat file that contains the user names and
passwords for your cluster by using htpasswd.

Prerequisites

® Have access to the htpasswd utility. On Red Hat Enterprise Linux this is available by installing
the httpd-tools package.

Procedure

1. Create or update your flat file with a user name and hashed password:

33

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/authentication_and_authorization/#creating-htpasswd-file
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/authentication_and_authorization/#identity-provider-creating-htpasswd-file-linux_configuring-htpasswd-identity-provider
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/authentication_and_authorization/#identity-provider-creating-htpasswd-file-windows_configuring-htpasswd-identity-provider
http://httpd.apache.org/docs/2.4/programs/htpasswd.html

OpenShift Container Platform 4.11 Authentication and authorization

I $ htpasswd -c -B -b </path/to/users.htpasswd> <username> <password>

The command generates a hashed version of the password.

For example:

I $ htpasswd -c -B -b users.htpasswd <username> <password>
Example output

I Adding password for user useri

2. Continue to add or update credentials to the file:

I $ htpasswd -B -b </path/to/users.htpasswd> <user_name> <password>

7.1.3.2. Creating an htpasswd file using Windows

To use the htpasswd identity provider, you must generate a flat file that contains the user names and
passwords for your cluster by using htpasswd.

Prerequisites

® Have access to htpasswd.exe. This file is included in the \bin directory of many Apache httpd
distributions.

Procedure

1. Create or update your flat file with a user name and hashed password:
I > htpasswd.exe -c -B -b <\path\to\users.htpasswd> <username> <password>

The command generates a hashed version of the password.

For example:

I > htpasswd.exe -c -B -b users.htpasswd <username> <password>
Example output

I Adding password for user useri

2. Continue to add or update credentials to the file:

I > htpasswd.exe -b <\path\to\users.htpasswd> <username> <password>

7.1.4. Creating the htpasswd secret

To use the htpasswd identity provider, you must define a secret that contains the htpasswd user file.

Prerequisites

34

http://httpd.apache.org/docs/2.4/programs/htpasswd.html

CHAPTER 7. CONFIGURING IDENTITY PROVIDERS
® Create an htpasswd file.

Procedure

e Create a Secret object that contains the htpasswd users file:

$ oc create secret generic htpass-secret --from-file=htpasswd=<path_to_users.htpasswd> -n
openshift-config ﬂ

The secret key containing the users file for the --from-file argument must be named
htpasswd, as shown in the above command.

TIP

You can alternatively apply the following YAML to create the secret:

apiVersion: vi
kind: Secret
metadata:
name: htpass-secret
namespace: openshift-config
type: Opaque
data:
htpasswd: <base64_encoded_htpasswd_file_contents>

7.1.5. Sample htpasswd CR

The following custom resource (CR) shows the parameters and acceptable values for an htpasswd
identity provider.

htpasswd CR

apiVersion: config.openshift.io/v1
kind: OAuth
metadata:
name: cluster
spec:
identityProviders:
- name: my_htpasswd_provider ﬂ
mappingMethod: claim
type: HTPasswd
htpasswd:
fileData:
name: htpass-secret 6

This provider name is prefixed to provider user names to form an identity name.

Controls how mappings are established between this provider’s identities and User objects.

909

An existing secret containing a file generated using htpasswd.

ANAdlltinmal vamaiivan~

35

http://httpd.apache.org/docs/2.4/programs/htpasswd.html

OpenShift Container Platform 4.11 Authentication and authorization

AUUILIVIIAI TESVUILED

® See |Identity provider parameters for information on parameters, such as mappingMethod, that
are common to all identity providers.

7.1.6. Adding an identity provider to your cluster

After you install your cluster, add an identity provider to it so your users can authenticate.

Prerequisites
® Create an OpenShift Container Platform cluster.
® Create the custom resource (CR) for your identity providers.

® You must be logged in as an administrator.

Procedure

1. Apply the defined CR:

I $ oc apply -f </path/to/CR>

NOTE
If a CR does not exist, oc apply creates a new CR and might trigger the following
warning: Warning: oc apply should be used on resources created by either

oc create --save-config or oc apply. In this case you can safely ignore this
warning.

2. Login to the cluster as a user from your identity provider, entering the password when
prompted.

I $ oc login -u <username>

3. Confirm that the user logged in successfully, and display the user name.

I $ oc whoami

7.1.7. Updating users for an htpasswd identity provider

You can add or remove users from an existing htpasswd identity provider.

Prerequisites

® You have created a Secret object that contains the htpasswd user file. This procedure assumes
that it is named htpass-secret.

® You have configured an htpasswd identity provider. This procedure assumes that it is named
my_htpasswd_provider.

® You have access to the htpasswd utility. On Red Hat Enterprise Linux this is available by
installing the httpd-tools package.

36

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/authentication_and_authorization/#identity-provider-parameters_understanding-identity-provider

CHAPTER 7. CONFIGURING IDENTITY PROVIDERS

® You have cluster administrator privileges.

Procedure

1. Retrieve the htpasswd file from the htpass-secret Secret object and save the file to your file
system:

$ oc get secret htpass-secret -ojsonpath={.data.htpasswd} -n openshift-config | base64 --
decode > users.htpasswd

2. Add or remove users from the users.htpasswd file.

® To addanew user:

I $ htpasswd -bB users.htpasswd <username> <password>
Example output
I Adding password for user <username>

® Toremove an existing user:

I $ htpasswd -D users.htpasswd <username>
Example output
I Deleting password for user <username>

3. Replace the htpass-secret Secret object with the updated users in the users.htpasswd file:

$ oc create secret generic htpass-secret --from-file=htpasswd=users.htpasswd --dry-
run=client -o yaml -n openshift-config | oc replace -f -

TIP

You can alternatively apply the following YAML to replace the secret:

apiVersion: vi
kind: Secret
metadata:
name: htpass-secret
namespace: openshift-config
type: Opaque
data:
htpasswd: <base64_encoded_htpasswd_file_contents>

4. If you removed one or more users, you must additionally remove existing resources for each
user.

a. Delete the User object:

I $ oc delete user <username>

37

OpenShift Container Platform 4.11 Authentication and authorization

Example output
I user.user.openshift.io "<username>" deleted

Be sure to remove the user, otherwise the user can continue using their token as long as it
has not expired.

b. Delete the Identity object for the user:

I $ oc delete identity my_htpasswd_provider:<username>
Example output

I identity.user.openshift.io "my_htpasswd_provider:<username>" deleted

7.1.8. Configuring identity providers using the web console

Configure your identity provider (IDP) through the web console instead of the CLI.

Prerequisites

® You must be logged in to the web console as a cluster administrator.

Procedure
1. Navigate to Administration - Cluster Settings.
2. Under the Configuration tab, click OAuth.

3. Under the Identity Providers section, select your identity provider from the Add drop-down
menu.

NOTE

You can specify multiple IDPs through the web console without overwriting existing IDPs.

7.2. CONFIGURING A KEYSTONE IDENTITY PROVIDER

Configure the keystone identity provider to integrate your OpenShift Container Platform cluster with
Keystone to enable shared authentication with an OpenStack Keystone v3 server configured to store
users in an internal database. This configuration allows users to log in to OpenShift Container Platform
with their Keystone credentials.

7.2.1. About identity providers in OpenShift Container Platform

By default, only a kubeadmin user exists on your cluster. To specify an identity provider, you must
create a custom resource (CR) that describes that identity provider and add it to the cluster.

NOTE

OpenShift Container Platform user names containing/, :, and % are not supported.

38

CHAPTER 7. CONFIGURING IDENTITY PROVIDERS

7.2.2. About Keystone authentication

Keystone is an OpenStack project that provides identity, token, catalog, and policy services.

You can configure the integration with Keystone so that the new OpenShift Container Platform users
are based on either the Keystone user names or unique Keystone IDs. With both methods, users log in
by entering their Keystone user name and password. Basing the OpenShift Container Platform users on
the Keystone ID is more secure because if you delete a Keystone user and create a new Keystone user
with that user name, the new user might have access to the old user’s resources.

7.2.3. Creating the secret

Identity providers use OpenShift Container Platform Secret objects in the openshift-config
namespace to contain the client secret, client certificates, and keys.

Procedure

e Create a Secret object that contains the key and certificate by using the following command:

I $ oc create secret tls <secret_name> --key=key.pem --cert=cert.pem -n openshift-config

TIP

You can alternatively apply the following YAML to create the secret:

apiVersion: vi
kind: Secret
metadata:
name: <secret_name>
namespace: openshift-config
type: kubernetes.io/tls
data:
tls.crt: <base64 encoded cert>
tls.key: <base64_encoded_key>

7.2.4. Creating a config map

Identity providers use OpenShift Container Platform ConfigMap objects in the openshift-config
namespace to contain the certificate authority bundle. These are primarily used to contain certificate
bundles needed by the identity provider.

Procedure

e Define an OpenShift Container Platform ConfigMap object containing the certificate authority
by using the following command. The certificate authority must be stored in the ca.crt key of
the ConfigMap object.

I $ oc create configmap ca-config-map --from-file=ca.crt=/path/to/ca -n openshift-config

39

http://docs.openstack.org/developer/keystone/

OpenShift Container Platform 4.11 Authentication and authorization

TIP

You can alternatively apply the following YAML to create the config map:

apiVersion: vi
kind: ConfigMap
metadata:
name: ca-config-map
namespace: openshift-config
data:
ca.cri: |
<CA _certificate PEM>

7.2.5. Sample Keystone CR

The following custom resource (CR) shows the parameters and acceptable values for a Keystone
identity provider.

Keystone CR

apiVersion: config.openshift.io/v1
kind: OAuth
metadata:
name: cluster
spec:

identityProviders:

- name: keystoneidp ﬂ
mappingMethod: claim g
type: Keystone
keystone:

domainName: default 6
url: https:/keystone.example.com:5000 ﬂ
ca: 6
name: ca-config-map
tisClientCert: @)
name: client-cert-secret
tisClientkey: @)
name: client-key-secret

This provider name is prefixed to provider user names to form an identity name.
Controls how mappings are established between this provider’s identities and User objects.

Keystone domain name. In Keystone, usernames are domain-specific. Only a single domain is
supported.

The URL to use to connect to the Keystone server (required). This must use https.

Optional: Reference to an OpenShift Container Platform ConfigMap object containing the PEM-
encoded certificate authority bundle to use in validating server certificates for the configured URL.

@ 0 609

Optional: Reference to an OpenShift Container Platform Secret object containing the client
certificate to present when making requests to the configured URL.

40

CHAPTER 7. CONFIGURING IDENTITY PROVIDERS

Reference to an OpenShift Container Platform Secret object containing the key for the client
certificate. Required if tiIsClientCert is specified.

Additional resources

® See |Identity provider parameters for information on parameters, such as mappingMethod, that
are common to all identity providers.

7.2.6. Adding an identity provider to your cluster

After you install your cluster, add an identity provider to it so your users can authenticate.

Prerequisites

® Create an OpenShift Container Platform cluster.
® Create the custom resource (CR) for your identity providers.

® You must be logged in as an administrator.

Procedure

1. Apply the defined CR:

I $ oc apply -f </path/to/CR>

NOTE

If a CR does not exist, oc apply creates a new CR and might trigger the following
warning: Warning: oc apply should be used on resources created by either
oc create --save-config or oc apply. In this case you can safely ignore this
warning.

2. Login to the cluster as a user from your identity provider, entering the password when
prompted.

I $ oc login -u <username>
3. Confirm that the user logged in successfully, and display the user name.

I $ oc whoami

7.3. CONFIGURING AN LDAP IDENTITY PROVIDER

Configure the Idap identity provider to validate user names and passwords against an LDAPV3 server,
using simple bind authentication.

7.3.1. About identity providers in OpenShift Container Platform

By default, only a kubeadmin user exists on your cluster. To specify an identity provider, you must
create a custom resource (CR) that describes that identity provider and add it to the cluster.

41

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/authentication_and_authorization/#identity-provider-parameters_understanding-identity-provider

OpenShift Container Platform 4.11 Authentication and authorization

NOTE

OpenShift Container Platform user names containing/, :, and % are not supported.

7.3.2. About LDAP authentication

During authentication, the LDAP directory is searched for an entry that matches the provided user
name. If a single unique match is found, a simple bind is attempted using the distinguished name (DN) of
the entry plus the provided password.

These are the steps taken:

1. Generate a search filter by combining the attribute and filter in the configured url with the
user-provided user name.

2. Search the directory using the generated filter. If the search does not return exactly one entry,
deny access.

3. Attempt to bind to the LDAP server using the DN of the entry retrieved from the search, and
the user-provided password.

4. If the bind is unsuccessful, deny access.

5. If the bind is successful, build an identity using the configured attributes as the identity, email
address, display name, and preferred user name.

The configured url is an RFC 2255 URL, which specifies the LDAP host and search parameters to use.
The syntax of the URL is:

Idap://host:port/basedn?attribute ?scope ?filter

For this URL:

URL component Description

42

Idap For regular LDAP, use the string ldap. For secure LDAP (LDAPS), useldaps instead.

host:port The name and port of the LDAP server. Defaults to localhost:389 for Idap and
localhost:636 for LDAPS.

basedn The DN of the branch of the directory where all searches should start from. At the very
least, this must be the top of your directory tree, but it could also specify a subtree in
the directory.

attribute The attribute to search for. Although RFC 2255 allows a comma-separated list of
attributes, only the first attribute will be used, no matter how many are provided. If no
attributes are provided, the default is to use Uid. It is recommended to choose an
attribute that will be unique across all entries in the subtree you will be using.

scope The scope of the search. Can be either one orsub. If the scope is not provided, the
default is to use a scope of sub.

filter A valid LDAP search filter. If not provided, defaults to (objectClass=")

CHAPTER 7. CONFIGURING IDENTITY PROVIDERS

When doing searches, the attribute, filter, and provided user name are combined to create a search filter
that looks like:

I (&(<filter>)(<attribute>=<usernames))

For example, consider a URL of:

I Idap://Idap.example.com/o=Acme?cn?sub?(enabled=true)

When a client attempts to connect using a user name of bob, the resulting search filter will be (&
(enabled=true)(cn=bob)).

If the LDAP directory requires authentication to search, specify a bindDN and bindPassword to use to
perform the entry search.

7.3.3. Creating the LDAP secret

To use the identity provider, you must define an OpenShift Container Platform Secret object that
contains the bindPassword field.

Procedure

® C(Create a Secret object that contains the bindPassword field:

$ oc create secret generic Idap-secret --from-literal=bindPassword=<secret> -n openshift-
config

The secret key containing the bindPassword for the --from-literal argument must be called
bindPassword.

TIP

You can alternatively apply the following YAML to create the secret:

apiVersion: vi
kind: Secret
metadata:
name: Idap-secret
namespace: openshift-config
type: Opaque
data:
bindPassword: <base64_encoded_bind_password>

7.3.4. Creating a config map

Identity providers use OpenShift Container Platform ConfigMap objects in the openshift-config
namespace to contain the certificate authority bundle. These are primarily used to contain certificate
bundles needed by the identity provider.

Procedure

43

OpenShift Container Platform 4.11 Authentication and authorization

® Define an OpenShift Container Platform ConfigMap object containing the certificate authority
by using the following command. The certificate authority must be stored in the ca.crt key of
the ConfigMap object.

I $ oc create configmap ca-config-map --from-file=ca.crt=/path/to/ca -n openshift-config

TIP

You can alternatively apply the following YAML to create the config map:

apiVersion: vi
kind: ConfigMap
metadata:
name: ca-config-map
namespace: openshift-config
data:
ca.cri: |
<CA _certificate PEM>

7.3.5.Sample LDAP CR

The following custom resource (CR) shows the parameters and acceptable values for an LDAP identity
provider.

LDAP CR

apiVersion: config.openshift.io/v1
kind: OAuth
metadata:
name: cluster
spec:

identityProviders:

- name: ldapidp ﬂ
mappingMethod: claim
type: LDAP
l[dap:

attributes:

id: €
-dn

-cn
preferredUsername: G
- uid
bindDN: "
bindPassword: @)
name: ldap-secret
ca: Q
name: ca-config-map
insecure: false @
url: "ldaps://Idaps.example.com/ou=users,dc=acme,dc=com?uid" m

44

O O O 09 96060 600609

CHAPTER 7. CONFIGURING IDENTITY PROVIDERS

This provider name is prefixed to the returned user ID to form an identity name.

Controls how mappings are established between this provider's identities and User objects.

List of attributes to use as the identity. First non-empty attribute is used. At least one attribute is
required. If none of the listed attribute have a value, authentication fails. Defined attributes are
retrieved as raw, allowing for binary values to be used.

List of attributes to use as the email address. First non-empty attribute is used.

List of attributes to use as the display name. First non-empty attribute is used.

List of attributes to use as the preferred user name when provisioning a user for this identity. First
non-empty attribute is used.

Optional DN to use to bind during the search phase. Must be set if bindPassword is defined.

Optional reference to an OpenShift Container Platform Secret object containing the bind
password. Must be set if bindDN is defined.

Optional: Reference to an OpenShift Container Platform ConfigMap object containing the PEM-
encoded certificate authority bundle to use in validating server certificates for the configured URL.
Only used when insecure is false.

When true, no TLS connection is made to the server. When false, Idaps:// URLs connect using TLS,
and ldap:// URLs are upgraded to TLS. This must be set to false when ldaps:// URLs are in use, as
these URLs always attempt to connect using TLS.

An RFC 2255 URL which specifies the LDAP host and search parameters to use.

NOTE

To whitelist users for an LDAP integration, use the lookup mapping method. Before a
login from LDAP would be allowed, a cluster administrator must create an ldentity object
and a User object for each LDAP user.

Additional resources

® See |Identity provider parameters for information on parameters, such as mappingMethod, that
are common to all identity providers.

7.3.6. Adding an identity provider to your cluster

After you install your cluster, add an identity provider to it so your users can authenticate.

Prerequisites

® Create an OpenShift Container Platform cluster.
® Create the custom resource (CR) for your identity providers.

® You must be logged in as an administrator.

Procedure

45

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/authentication_and_authorization/#identity-provider-parameters_understanding-identity-provider

OpenShift Container Platform 4.11 Authentication and authorization

1. Apply the defined CR:

I $ oc apply -f </path/to/CR>

NOTE

If a CR does not exist, oc apply creates a new CR and might trigger the following
warning: Warning: oc apply should be used on resources created by either
oc create --save-config or oc apply. In this case you can safely ignore this
warning.

2. Login to the cluster as a user from your identity provider, entering the password when
prompted.

I $ oc login -u <username>
3. Confirm that the user logged in successfully, and display the user name.

I $ oc whoami

7.4. CONFIGURING A BASIC AUTHENTICATION IDENTITY PROVIDER

Configure the basic-authentication identity provider for users to log in to OpenShift Container
Platform with credentials validated against a remote identity provider. Basic authentication is a generic
back-end integration mechanism.

7.4.1. About identity providers in OpenShift Container Platform

By default, only a kubeadmin user exists on your cluster. To specify an identity provider, you must
create a custom resource (CR) that describes that identity provider and add it to the cluster.

NOTE

OpenShift Container Platform user names containing/, :, and % are not supported.

7.4.2. About basic authentication

Basic authentication is a generic back-end integration mechanism that allows users to log in to
OpenShift Container Platform with credentials validated against a remote identity provider.

Because basic authentication is generic, you can use this identity provider for advanced authentication
configurations.

IMPORTANT

Basic authentication must use an HTTPS connection to the remote server to prevent
potential snooping of the user ID and password and man-in-the-middle attacks.

With basic authentication configured, users send their user name and password to OpenShift Container
Platform, which then validates those credentials against a remote server by making a server-to-server
request, passing the credentials as a basic authentication header. This requires users to send their
credentials to OpenShift Container Platform during login.

46

CHAPTER 7. CONFIGURING IDENTITY PROVIDERS

NOTE

This only works for user name/password login mechanisms, and OpenShift Container
Platform must be able to make network requests to the remote authentication server.

User names and passwords are validated against a remote URL that is protected by basic authentication
and returns JSON.

A 401 response indicates failed authentication.
A non-200 status, or the presence of a non-empty "error” key, indicates an error:
I {"error":"Error message"}

A 200 status with a sub (subject) key indicates success:

I {"sub":"userid"}ﬂ

ﬂ The subject must be unique to the authenticated user and must not be able to be modified.

A successful response can optionally provide additional data, such as:

® Adisplay name using the name key. For example:

I {"sub":"userid", "name": "User Name", ...}

® Anemail address using the email key. For example:

I {"sub™:"userid", "email":"user@example.com", ...}

® A preferred user name using the preferred_username key. This is useful when the unique,
unchangeable subject is a database key or UID, and a more human-readable name exists. This is
used as a hint when provisioning the OpenShift Container Platform user for the authenticated
identity. For example:

I {"sub":"014fbff9a07c", "preferred_username":"bob", ...}

7.4.3. Creating the secret

Identity providers use OpenShift Container Platform Secret objects in the openshift-config
namespace to contain the client secret, client certificates, and keys.

Procedure

e Create a Secret object that contains the key and certificate by using the following command:

I $ oc create secret tls <secret_name> --key=key.pem --cert=cert.pem -n openshift-config

47

OpenShift Container Platform 4.11 Authentication and authorization

TIP

You can alternatively apply the following YAML to create the secret:

apiVersion: vi
kind: Secret
metadata:
name: <secret_name>
namespace: openshift-config
type: kubernetes.io/tls
data:
tls.crt: <base64 encoded cert>
tls.key: <base64_encoded_key>

7.4.4. Creating a config map

Identity providers use OpenShift Container Platform ConfigMap objects in the openshift-config
namespace to contain the certificate authority bundle. These are primarily used to contain certificate

bundles needed by the identity provider.

Procedure

e Define an OpenShift Container Platform ConfigMap object containing the certificate authority
by using the following command. The certificate authority must be stored in the ca.crt key of

the ConfigMap object.

I $ oc create configmap ca-config-map --from-file=ca.crt=/path/to/ca -n openshift-config

TIP

You can alternatively apply the following YAML to create the config map:

apiVersion: vi
kind: ConfigMap
metadata:
name: ca-config-map
namespace: openshift-config
data:
ca.cri: |
<CA _certificate PEM>

7.4.5. Sample basic authentication CR

The following custom resource (CR) shows the parameters and acceptable values for a basic

authentication identity provider.

Basic authentication CR

apiVersion: config.openshift.io/v1
kind: OAuth
metadata:
name: cluster
spec:

48

CHAPTER 7. CONFIGURING IDENTITY PROVIDERS

identityProviders:
- name: basicidp
mappingMethod: claim 9
type: BasicAuth
basicAuth:
url: https://www.example.com/remote-idp 6

ca: @

name: ca-config-map
tisClientCert: 6
name: client-cert-secret

tisClientkey: @
name: client-key-secret

This provider name is prefixed to the returned user ID to form an identity name.
Controls how mappings are established between this provider's identities and User objects.
URL accepting credentials in Basic authentication headers.

Optional: Reference to an OpenShift Container Platform ConfigMap object containing the PEM-
encoded certificate authority bundle to use in validating server certificates for the configured URL.

Optional: Reference to an OpenShift Container Platform Secret object containing the client
certificate to present when making requests to the configured URL.

@ ® 0009

Reference to an OpenShift Container Platform Secret object containing the key for the client
certificate. Required if tiIsClientCert is specified.

Additional resources

® See |Identity provider parameters for information on parameters, such as mappingMethod, that
are common to all identity providers.

7.4.6. Adding an identity provider to your cluster

After you install your cluster, add an identity provider to it so your users can authenticate.

Prerequisites

® Create an OpenShift Container Platform cluster.
® Create the custom resource (CR) for your identity providers.

® You must be logged in as an administrator.

Procedure

1. Apply the defined CR:

I $ oc apply -f </path/to/CR>

49

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/authentication_and_authorization/#identity-provider-parameters_understanding-identity-provider

OpenShift Container Platform 4.11 Authentication and authorization

NOTE

If a CR does not exist, oc apply creates a new CR and might trigger the following
warning: Warning: oc apply should be used on resources created by either
oc create --save-config or oc apply. In this case you can safely ignore this
warning.

2. Login to the cluster as a user from your identity provider, entering the password when
prompted.

I $ oc login -u <username>

3. Confirm that the user logged in successfully, and display the user name.

I $ oc whoami

7.4.7. Example Apache HTTPD configuration for basic identity providers

The basic identify provider (IDP) configuration in OpenShift Container Platform 4 requires that the IDP
server respond with JSON for success and failures. You can use CGl scripting in Apache HTTPD to
accomplish this. This section provides examples.

Example /etc/httpd/conf.d/login.conf

<VirtualHost *:443>
CGl Scripts in here
DocumentRoot /var/www/cgi-bin

SSL Directives

SSLEngine on

SSLCipherSuite PROFILE=SYSTEM
SSLProxyCipherSuite PROFILE=SYSTEM

SSL CertificateFile /etc/pki/tls/certs/localhost.crt

SSL CertificateKeyFile /etc/pki/tls/private/localhost.key

Configure HTTPD to execute scripts
ScriptAlias /basic /var/www/cgi-bin

Handles a failed login attempt
ErrorDocument 401 /basic/fail.cgi

Handles authentication

<Location /basic/login.cgi>
AuthType Basic
AuthName "Please Log In"
AuthBasicProvider file
AuthUserFile /etc/httpd/conf/passwords
Require valid-user

</Location>

</VirtualHost>

Example /var/www/cgi-bin/login.cgi

50

CHAPTER 7. CONFIGURING IDENTITY PROVIDERS

#!/bin/bash

echo "Content-Type: application/json"

echo ™

echo '{"sub":"userid", "name":"$REMOTE_USER"}'
exit 0

Example /var/www/cgi-bin/fail.cgi

#!/bin/bash

echo "Content-Type: application/json"
echo ™

echo '{"error": "Login failure"}'

exit 0

7.4.7 1. File requirements

These are the requirements for the files you create on an Apache HTTPD web server:
® Jogin.cgi and fail.cgi must be executable (chmod +Xx).

® login.cgi and fail.cgi must have proper SELinux contexts if SELinux is enabled: restorecon -
RFv /var/www/cgi-bin, or ensure that the context is httpd_sys_script_exec_t using Is -laZ.

® Jogin.cgiis only executed if your user successfully logs in per Require and Auth directives.

e fail.cgi is executed if the user fails to log in, resultinginan HTTP 401 response.

7.4.8. Basic authentication troubleshooting

The most common issue relates to network connectivity to the backend server. For simple debugging,
run curl commands on the master. To test for a successful login, replace the <users and <passwords in
the following example command with valid credentials. To test an invalid login, replace them with false
credentials.

$ curl --cacert /path/to/ca.crt --cert /path/to/client.crt --key /path/to/client.key -u <user>:<password> -v
https://www.example.com/remote-idp

Successful responses

A 200 status with a sub (subject) key indicates success:
I {"sub":"userid"}
The subject must be unique to the authenticated user, and must not be able to be modified.

A successful response can optionally provide additional data, such as:

® Adisplay name using the name key:

I {"sub":"userid", "name": "User Name", ...}

® Anemail address using the email key:

51

OpenShift Container Platform 4.11 Authentication and authorization

I {"sub":"userid", "email":"user@example.com", ...}

e A preferred user name using the preferred_username key:
I {"sub":"014fbff9a07c", "preferred_username":"bob", ...}

The preferred_username key is useful when the unique, unchangeable subject is a database
key or UID, and a more human-readable name exists. This is used as a hint when provisioning the
OpenShift Container Platform user for the authenticated identity.

Failed responses
® A 401 response indicates failed authentication.

® A non-200 status or the presence of a non-empty "error" key indicates an error: {"error":"Error
message"}

7.5. CONFIGURING A REQUEST HEADER IDENTITY PROVIDER

Configure the request-header identity provider to identify users from request header values, such as X-
Remote-User. It is typically used in combination with an authenticating proxy, which sets the request
header value.

7.5.1. About identity providers in OpenShift Container Platform

By default, only a kubeadmin user exists on your cluster. To specify an identity provider, you must
create a custom resource (CR) that describes that identity provider and add it to the cluster.

NOTE

OpenShift Container Platform user names containing/, :, and % are not supported.

-

7.5.2. About request header authentication

A request header identity provider identifies users from request header values, such as X-Remote-User.
It is typically used in combination with an authenticating proxy, which sets the request header value. The
request header identity provider cannot be combined with other identity providers that use direct
password logins, such as htpasswd, Keystone, LDAP or basic authentication.

NOTE

You can also use the request header identity provider for advanced configurations such
as the community-supported SAML authentication. Note that this solution is not
supported by Red Hat.

For users to authenticate using this identity provider, they must access
https://<namespace_routes/oauth/authorize (and subpaths) via an authenticating proxy. To
accomplish this, configure the OAuth server to redirect unauthenticated requests for OAuth tokens to
the proxy endpoint that proxies to https://<namespace_routes/oauth/authorize.

To redirect unauthenticated requests from clients expecting browser-based login flows:

52

https://github.com/openshift/request-header-saml-service-provider

CHAPTER 7. CONFIGURING IDENTITY PROVIDERS

® Set the provider.loginURL parameter to the authenticating proxy URL that will authenticate
interactive clients and then proxy the request to https://<namespace_routes/oauth/authorize.

To redirect unauthenticated requests from clients expecting WWW-Authenticate challenges:
® Set the provider.challengeURL parameter to the authenticating proxy URL that will
authenticate clients expecting WWW-Authenticate challenges and then proxy the request to

https://<namespace_routes/oauth/authorize.

The provider.challengeURL and provider.loginURL parameters can include the following tokens in
the query portion of the URL:

o ${url}is replaced with the current URL, escaped to be safe in a query parameter.
For example: hitps://www.example.com/sso-login?then=${url}

e ${query} is replaced with the current query string, unescaped.
For example: hitps://www.example.com/auth-proxy/oauth/authorize?${query}

IMPORTANT

As of OpenShift Container Platform 4.1, your proxy must support mutual TLS.

7.5.2.1. SSPI connection support on Microsoft Windows

IMPORTANT

Using SSPI connection support on Microsoft Windows is a Technology Preview feature
only. Technology Preview features are not supported with Red Hat production service
level agreements (SLAs) and might not be functionally complete. Red Hat does not
recommend using them in production. These features provide early access to upcoming
product features, enabling customers to test functionality and provide feedback during
the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope.

The OpenShift CLI (oc) supports the Security Support Provider Interface (SSPI) to allow for SSO flows
on Microsft Windows. If you use the request header identity provider with a GSSAPI-enabled proxy to
connect an Active Directory server to OpenShift Container Platform, users can automatically
authenticate to OpenShift Container Platform by using the oc command line interface from a domain-
joined Microsoft Windows computer.

7.5.3. Creating a config map

Identity providers use OpenShift Container Platform ConfigMap objects in the openshift-config
namespace to contain the certificate authority bundle. These are primarily used to contain certificate
bundles needed by the identity provider.

Procedure

e Define an OpenShift Container Platform ConfigMap object containing the certificate authority
by using the following command. The certificate authority must be stored in the ca.crt key of
the ConfigMap object.

53

https://access.redhat.com/support/offerings/techpreview/

OpenShift Container Platform 4.11 Authentication and authorization

I $ oc create configmap ca-config-map --from-file=ca.crt=/path/to/ca -n openshift-config

TIP

You can alternatively apply the following YAML to create the config map:

apiVersion: vi
kind: ConfigMap
metadata:
name: ca-config-map
namespace: openshift-config
data:
ca.cri: |
<CA _certificate PEM>

7.5.4. Sample request header CR

The following custom resource (CR) shows the parameters and acceptable values for a request header
identity provider.

Request header CR

apiVersion: config.openshift.io/v1
kind: OAuth
metadata:
name: cluster
spec:
identityProviders:
- name: requestheaderidp ﬂ
mappingMethod: claim g
type: RequestHeader
requestHeader:
challengeURL: "https://www.example.com/challenging-proxy/oauth/authorize ?${query}" e
loginURL: "https://www.example.com/login-proxy/oauth/authorize ?${query}" ﬂ
ca:
name: ca-config-map
clientCommonNames:
- my-auth-proxy
headers:
- X-Remote-User
- SSO-User
emailHeaders: G
- X-Remote-User-Email
nameHeaders: Q
- X-Remote-User-Display-Name
preferredUsernameHeaders: @
- X-Remote-User-Login

ﬂ This provider name is prefixed to the user name in the request header to form an identity name.

9 Controls how mappings are established between this provider's identities and User objects.

54

CHAPTER 7. CONFIGURING IDENTITY PROVIDERS

o

Optional: URL to redirect unauthenticated /oauth/authorize requests to, that will authenticate
browser-based clients and then proxy their request to

Q Optional: URL to redirect unauthenticated /oauth/authorize requests to, that will authenticate
clients which expect WWW-Authenticate challenges, and then proxy them to
https://<namespace_routes/oauth/authorize. ${url} is replaced with the current URL, escaped to
be safe in a query parameter. ${query} is replaced with the current query string. If this attribute is
not defined, then challengeURL must be used.

9 Reference to an OpenShift Container Platform ConfigMap object containing a PEM-encoded
certificate bundle. Used as a trust anchor to validate the TLS certificates presented by the remote

server.

IMPORTANT

As of OpenShift Container Platform 4.1, the ca field is required for this identity
provider. This means that your proxy must support mutual TLS.

Optional: list of common names (en). If set, a valid client certificate with a Common Name (¢n) in
the specified list must be presented before the request headers are checked for user names. If
empty, any Common Name is allowed. Can only be used in combination with ca.

Header names to check, in order, for the user identity. The first header containing a value is used as
the identity. Required, case-insensitive.

Header names to check, in order, for an email address. The first header containing a value is used as
the email address. Optional, case-insensitive.

Header names to check, in order, for a display name. The first header containing a value is used as
the display name. Optional, case-insensitive.

Header names to check, in order, for a preferred user name, if different than the immutable
identity determined from the headers specified in headers. The first header containing a value is
used as the preferred user name when provisioning. Optional, case-insensitive.

@ 9 9 & o

Additional resources

® See |dentity provider parameters for information on parameters, such as mappingMethod, that
are common to all identity providers.

7.5.5. Adding an identity provider to your cluster

After you install your cluster, add an identity provider to it so your users can authenticate.

Prerequisites

® Create an OpenShift Container Platform cluster.
® Create the custom resource (CR) for your identity providers.

® You must be logged in as an administrator.

Procedure

55

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/authentication_and_authorization/#identity-provider-parameters_understanding-identity-provider

OpenShift Container Platform 4.11 Authentication and authorization

1. Apply the defined CR:

I $ oc apply -f </path/to/CR>

NOTE

If a CR does not exist, oc apply creates a new CR and might trigger the following
warning: Warning: oc apply should be used on resources created by either
oc create --save-config or oc apply. In this case you can safely ignore this
warning.

2. Login to the cluster as a user from your identity provider, entering the password when
prompted.

I $ oc login -u <username>
3. Confirm that the user logged in successfully, and display the user name.

I $ oc whoami

7.5.6. Example Apache authentication configuration using request header

This example configures an Apache authentication proxy for the OpenShift Container Platform using
the request header identity provider.

Custom proxy configuration

Using the mod_auth_gssapi module is a popular way to configure the Apache authentication proxy
using the request header identity provider; however, it is not required. Other proxies can easily be used if
the following requirements are met:

e Block the X-Remote-User header from client requests to prevent spoofing.
e Enforce client certificate authentication in the RequestHeaderldentityProvider configuration.

® Require the X-Csrf-Token header be set for all authentication requests using the challenge
flow.

® Make sure only the /oauth/authorize endpoint and its subpaths are proxied; redirects must be
rewritten to allow the backend server to send the client to the correct location.

® The URL that proxies to https://<namespace_route>/oauth/authorize must end with
/authorize with no trailing slash. For example, https://proxy.example.com/login-
proxy/authorize?... must proxy to https://<namespace_route>/oauth/authorize?....

® Subpaths of the URL that proxies to https://<namespace_route>/oauth/authorize must proxy
to subpaths of hitps://<namespace_routes>/oauth/authorize. For example,
https://proxy.example.com/login-proxy/authorize/approve?... must proxy to
https://<namespace_route>/oauth/authorize/approve?....

NOTE

The https://<namespace_route> address is the route to the OAuth server and can be
obtained by running oc get route -n openshift-authentication.

56

CHAPTER 7. CONFIGURING IDENTITY PROVIDERS

Configuring Apache authentication using request header
This example uses the mod_auth_gssapi module to configure an Apache authentication proxy using
the request header identity provider.

Prerequisites

e Obtain the mod_auth_gssapi module from the Optional channel. You must have the following
packages installed on your local machine:

o httpd

o mod_ssl

o mod_session

o apr-util-openssl

o mod_auth_gssapi

® Generate a CA for validating requests that submit the trusted header. Define an OpenShift
Container Platform ConfigMap object containing the CA. This is done by running:

I $ oc create configmap ca-config-map --from-file=ca.crt=/path/to/ca -n openshift-config ﬂ

ﬂ The CA must be stored in the ca.crt key of the ConfigMap object.

TIP

You can alternatively apply the following YAML to create the config map:

apiVersion: vi
kind: ConfigMap
metadata:
name: ca-config-map
namespace: openshift-config
data:
ca.cri: |
<CA _certificate PEM>

® Generate a client certificate for the proxy. You can generate this certificate by using any x509
certificate tooling. The client certificate must be signed by the CA you generated for validating
requests that submit the trusted header.

® Create the custom resource (CR) for your identity providers.

Procedure

This proxy uses a client certificate to connect to the OAuth server, which is configured to trust the X-
Remote-User header.

1. Create the certificate for the Apache configuration. The certificate that you specify as the
SSLProxyMachineCertificateFile parameter value is the proxy’s client certificate that is used
to authenticate the proxy to the server. It must use TLS Web Client Authentication as the
extended key type.

57

https://access.redhat.com/solutions/392003

OpenShift Container Platform 4.11 Authentication and authorization

2. Create the Apache configuration. Use the following template to provide your required settings
and values:

IMPORTANT

Carefully review the template and customize its contents to fit your environment.

LoadModule request_module modules/mod_request.so
LoadModule auth_gssapi_module modules/mod_auth_gssapi.so
Some Apache configurations might require these modules.

LoadModule auth_form_module modules/mod_auth_form.so

LoadModule session_module modules/mod_session.so

Nothing needs to be served over HTTP. This virtual host simply redirects to
#HTTPS.
<VirtualHost *:80>
DocumentRoot /var/www/html
RewriteEngine On
RewriteRule 7(.*)$ https://%{HTTP_HOST}$1 [R,L]
</VirtualHost>

<VirtualHost *:443>
This needs to match the certificates you generated. See the CN and X509v3
Subject Alternative Name in the output of:
openssl x509 -text -in /etc/pki/tls/certs/localhost.crt
ServerName www.example.com

DocumentRoot /var/www/html

SSLEngine on

SSL CertificateFile /etc/pki/tls/certs/localhost.crt
SSLCertificateKeyFile /etc/pki/tls/private/localhost.key
SSLCACertificateFile /etc/pki/CA/certs/ca.crt

SSLProxyEngine on

SSLProxyCACertificateFile /etc/pki/CA/certs/ca.crt

It is critical to enforce client certificates. Otherwise, requests can

spoof the X-Remote-User header by accessing the /oauth/authorize endpoint
directly.

SSLProxyMachineCertificateFile /etc/pki/tls/certs/authproxy.pem

To use the challenging-proxy, an X-Csrf-Token must be present.
RewriteCond %{REQUEST_URI} */challenging-proxy
RewriteCond %{HTTP:X-Csrf-Token} *$ [NC]

RewriteRule *.* - [F,L]

<Location /challenging-proxy/oauth/authorize>
Insert your backend server name/ip here.
ProxyPass https://<namespace_route>/oauth/authorize
AuthName "SSO Login"
For Kerberos
AuthType GSSAPI
Require valid-user
RequestHeader set X-Remote-User %{REMOTE_USER]}s

GssapiCredStore keytab:/etc/httpd/protected/auth-proxy.keytab

58

CHAPTER 7. CONFIGURING IDENTITY PROVIDERS

Enable the following if you want to allow users to fallback

to password based authentication when they do not have a client
configured to perform kerberos authentication.

GssapiBasicAuth On

For Idap:
AuthBasicProvider Idap
AuthLDAPURL "ldap://Idap.example.com:389/ou=People,dc=my-domain,dc=com?uid?
sub?(objectClass=")"
</Location>

<Location /login-proxy/oauth/authorize>
Insert your backend server name/ip here.
ProxyPass https://<namespace_route>/oauth/authorize

AuthName "SSO Login"

AuthType GSSAPI

Require valid-user

RequestHeader set X-Remote-User %{REMOTE_USER}s env=REMOTE_USER

GssapiCredStore keytab:/etc/httpd/protected/auth-proxy.keytab

Enable the following if you want to allow users to fallback

to password based authentication when they do not have a client
configured to perform kerberos authentication.

GssapiBasicAuth On

ErrorDocument 401 /login.html
</Location>

</VirtualHost>

RequestHeader unset X-Remote-User

NOTE

The https://<namespace_route> address is the route to the OAuth server and
can be obtained by running oc get route -n openshift-authentication.

3. Update the identityProviders stanza in the custom resource (CR):

identityProviders:
- name: requestheaderidp
type: RequestHeader
requestHeader:
challengeURL: "https://<namespace_route>/challenging-proxy/oauth/authorize ?${query}"
loginURL: "https://<namespace_route>/login-proxy/oauth/authorize ?${query}"
ca:
name: ca-config-map
clientCommonNames:
- my-auth-proxy
headers:
- X-Remote-User

4. Verify the configuration.

59

OpenShift Container Platform 4.11 Authentication and authorization

a. Confirm that you can bypass the proxy by requesting a token by supplying the correct client
certificate and header:

curl -L -k -H "X-Remote-User: joe" \

--cert /etc/pki/tls/certs/authproxy.pem \
https://<namespace_route>/oauth/token/request

b. Confirm that requests that do not supply the client certificate fail by requesting a token
without the certificate:

curl -L -k -H "X-Remote-User: joe" \
https://<namespace_route>/oauth/token/request
c. Confirm that the challengeURL redirect is active:
curl -k -v -H 'X-Csrf-Token: 1"\
https://<namespace_route>/oauth/authorize?client_id=openshift-challenging-
client&response_type=token

Copy the challengeURL redirect to use in the next step.

d. Run this command to show a 401 response with a WWW-Authenticate basic challenge, a
negotiate challenge, or both challenges:

curl -k -v -H 'X-Csrf-Token: 1"\
<challengeURL_redirect + query>

e. Testloggingin to the OpenShift CLI (oc) with and without using a Kerberos ticket:

i. If you generated a Kerberos ticket by using Kinit, destroy it:
I # kdestroy -c cache_name ﬂ

ﬂ Make sure to provide the name of your Kerberos cache.

ii. Login to the oc tool by using your Kerberos credentials:
I # oc login -u <username>

Enter your Kerberos password at the prompt.

ii. Log out of the oc tool:
I # oc logout
iv. Use your Kerberos credentials to get a ticket:
I # Kinit
Enter your Kerberos user name and password at the prompt.

v. Confirm that you can login to the oc tool:

60

CHAPTER 7. CONFIGURING IDENTITY PROVIDERS

I # oc login

If your configuration is correct, you are logged in without entering separate credentials.

7.6. CONFIGURING A GITHUB OR GITHUB ENTERPRISE IDENTITY
PROVIDER

Configure the github identity provider to validate user names and passwords against GitHub or GitHub
Enterprise’s OAuth authentication server. OAuth facilitates a token exchange flow between OpenShift
Container Platform and GitHub or GitHub Enterprise.

You can use the GitHub integration to connect to either GitHub or GitHub Enterprise. For GitHub
Enterprise integrations, you must provide the hostname of your instance and can optionally provide a
ca certificate bundle to use in requests to the server.

NOTE

The following steps apply to both GitHub and GitHub Enterprise unless noted.

7.6.1. About identity providers in OpenShift Container Platform

By default, only a kubeadmin user exists on your cluster. To specify an identity provider, you must
create a custom resource (CR) that describes that identity provider and add it to the cluster.

NOTE

OpenShift Container Platform user names containing/, :, and % are not supported.

7.6.2. About GitHub authentication

Configuring GitHub authentication allows users to log in to OpenShift Container Platform with their
GitHub credentials. To prevent anyone with any GitHub user ID from logging in to your OpenShift
Container Platform cluster, you can restrict access to only those in specific GitHub organizations.

7.6.3. Registering a GitHub application

To use GitHub or GitHub Enterprise as an identity provider, you must register an application to use.

Procedure
1. Register an application on GitHub:

® For GitHub, click Settings — Developer settings = OAuth Apps — Register a new OAuth
application.

® For GitHub Enterprise, go to your GitHub Enterprise home page and then click Settings =
Developer settings = Register a new application.

2. Enter an application name, for example My OpenShift Install.

3. Enter a homepage URL, such as https://oauth-openshift.apps.<cluster-names.<cluster-
domains.

61

https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/authorizing-oauth-apps
https://github.com/settings/profile
https://github.com/settings/apps
https://github.com/settings/developers
https://github.com/settings/applications/new

OpenShift Container Platform 4.11 Authentication and authorization

4. Optional: Enter an application description.

5. Enter the authorization callback URL, where the end of the URL contains the identity provider
name:

I https://oauth-openshift.apps.<cluster-name>.<cluster-domain>/oauth2callback/<idp-provider-
name>

For example:
I https://oauth-openshift.apps.openshift-cluster.example.com/oauth2callback/github

6. Click Register application. GitHub provides a client ID and a client secret. You need these
values to complete the identity provider configuration.

7.6.4. Creating the secret

Identity providers use OpenShift Container Platform Secret objects in the openshift-config
namespace to contain the client secret, client certificates, and keys.

Procedure

e Create a Secret object containing a string by using the following command:

I $ oc create secret generic <secret_name> --from-literal=clientSecret=<secret> -n openshift-
config

TIP

You can alternatively apply the following YAML to create the secret:

apiVersion: v1i
kind: Secret
metadata:
name: <secret_name>
namespace: openshift-config
type: Opaque
data:
clientSecret: <base64 _encoded_client_secret>

® You can define a Secret object containing the contents of a file, such as a certificate file, by
using the following command:

I $ oc create secret generic <secret_name> --from-file=<path_to_file> -n openshift-config

7.6.5. Creating a config map

Identity providers use OpenShift Container Platform ConfigMap objects in the openshift-config
namespace to contain the certificate authority bundle. These are primarily used to contain certificate
bundles needed by the identity provider.

62

CHAPTER 7. CONFIGURING IDENTITY PROVIDERS

NOTE

This procedure is only required for GitHub Enterprise.

Procedure

e Define an OpenShift Container Platform ConfigMap object containing the certificate authority
by using the following command. The certificate authority must be stored in the ca.crt key of
the ConfigMap object.

I $ oc create configmap ca-config-map --from-file=ca.crt=/path/to/ca -n openshift-config

TIP

You can alternatively apply the following YAML to create the config map:

apiVersion: vi
kind: ConfigMap
metadata:
name: ca-config-map
namespace: openshift-config
data:
ca.crt: |
<CA _certificate PEM>

7.6.6. Sample GitHub CR

The following custom resource (CR) shows the parameters and acceptable values for a GitHub identity
provider.

GitHub CR

apiVersion: config.openshift.io/v1
kind: OAuth
metadata:
name: cluster
spec:

identityProviders:

- name: githubidp 0
mappingMethod: claim g
type: GitHub
github:

ca: ©

name: ca-config-map
clientlD: {...}
clientSecret:

name: github-secret

hostname: ... G

organizations: ﬂ
- myorganization1
- myorganization2

63

OpenShift Container Platform 4.11 Authentication and authorization

@ ® o 0600 9o

o

o

teams: G

- myorganization1/team-a
- myorganization2/team-b

This provider name is prefixed to the GitHub numeric user ID to form an identity name. It is also
used to build the callback URL.

Controls how mappings are established between this provider's identities and User objects.

Optional: Reference to an OpenShift Container Platform ConfigMap object containing the PEM-
encoded certificate authority bundle to use in validating server certificates for the configured URL.
Only for use in GitHub Enterprise with a non-publicly trusted root certificate.

The client ID of a registered GitHub OAuth application. The application must be configured with a
callback URL of https://oauth-openshift.apps.<cluster-names>.<cluster-
domain>/oauth2callback/<idp-provider-names.

Reference to an OpenShift Container Platform Secret object containing the client secret issued by
GitHub.

For GitHub Enterprise, you must provide the hostname of your instance, such as example.com.
This value must match the GitHub Enterprise hostname value in in the /setup/settings file and
cannot include a port number. If this value is not set, then either teams or organizations must be
defined. For GitHub, omit this parameter.

The list of organizations. Either the organizations or teams field must be set unless the hostname
field is set, or if mappingMethod is set to lookup. Cannot be used in combination with the teams
field.

The list of teams. Either the teams or organizations field must be set unless the hostname field is
set, or if mappingMethod is set to lookup. Cannot be used in combination with the organizations
field.

NOTE

If organizations or teams is specified, only GitHub users that are members of at least
one of the listed organizations will be allowed to log in. If the GitHub OAuth application
configured in clientID is not owned by the organization, an organization owner must grant
third-party access to use this option. This can be done during the first GitHub login by
the organization’s administrator, or from the GitHub organization settings.

Additional resources

® See |dentity provider parameters for information on parameters, such as mappingMethod, that
are common to all identity providers.

7.6.7. Adding an identity provider to your cluster

After you install your cluster, add an identity provider to it so your users can authenticate.

Prerequisites

64

® Create an OpenShift Container Platform cluster.

https://github.com/settings/applications/new
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/authentication_and_authorization/#identity-provider-parameters_understanding-identity-provider

CHAPTER 7. CONFIGURING IDENTITY PROVIDERS

® Create the custom resource (CR) for your identity providers.

® You must be logged in as an administrator.

Procedure

1. Apply the defined CR:

I $ oc apply -f </path/to/CR>

-

NOTE

If a CR does not exist, oc apply creates a new CR and might trigger the following
warning: Warning: oc apply should be used on resources created by either
oc create --save-config or oc apply. In this case you can safely ignore this
warning.

2. Obtain a token from the OAuth server.
As long as the kubeadmin user has been removed, the oc login command provides instructions
on how to access a web page where you can retrieve the token.

You can also access this page from the web console by navigating to (?) Help - Command
Line Tools —» Copy Login Command.

3. Login to the cluster, passing in the token to authenticate.

I $ oc login --token=<token>
NOTE
This identity provider does not support logging in with a user name and password.

4. Confirm that the user logged in successfully, and display the user name.

I $ oc whoami

7.7. CONFIGURING A GITLAB IDENTITY PROVIDER

Configure the gitlab identity provider using GitLab.com or any other GitLab instance as an identity
provider.

7.7.1. About identity providers in OpenShift Container Platform

By default, only a kubeadmin user exists on your cluster. To specify an identity provider, you must
create a custom resource (CR) that describes that identity provider and add it to the cluster.

NOTE

OpenShift Container Platform user names containing/, :, and % are not supported.

7.7.2. About GitLab authentication

65

https://gitlab.com/

OpenShift Container Platform 4.11 Authentication and authorization

Configuring GitLab authentication allows users to log in to OpenShift Container Platform with their
GitLab credentials.

If you use GitLab version 7.7.0 to 11.0, you connect using the OAuth integration. If you use GitLab
version 11.1 or later, you can use OpenlD Connect (OIDC) to connect instead of OAuth.
7.7.3. Creating the secret

Identity providers use OpenShift Container Platform Secret objects in the openshift-config
namespace to contain the client secret, client certificates, and keys.

Procedure

e C(Create a Secret object containing a string by using the following command:

I $ oc create secret generic <secret_name> --from-literal=clientSecret=<secret> -n openshift-
config

TIP

You can alternatively apply the following YAML to create the secret:

apiVersion: vi
kind: Secret
metadata:
name: <secret_name>
namespace: openshift-config
type: Opaque
data:
clientSecret: <base64 _encoded_client_secret>

® You can define a Secret object containing the contents of a file, such as a certificate file, by
using the following command:

I $ oc create secret generic <secret_name> --from-file=<path_to_file> -n openshift-config

7.7.4. Creating a config map

Identity providers use OpenShift Container Platform ConfigMap objects in the openshift-config
namespace to contain the certificate authority bundle. These are primarily used to contain certificate
bundles needed by the identity provider.

NOTE

This procedure is only required for GitHub Enterprise.

Procedure

e Define an OpenShift Container Platform ConfigMap object containing the certificate authority
by using the following command. The certificate authority must be stored in the ca.crt key of
the ConfigMap object.

66

http://doc.gitlab.com/ce/integration/oauth_provider.html
https://docs.gitlab.com/ce/integration/openid_connect_provider.html

CHAPTER 7. CONFIGURING IDENTITY PROVIDERS

I $ oc create configmap ca-config-map --from-file=ca.crt=/path/to/ca -n openshift-config

TIP

You can alternatively apply the following YAML to create the config map:

apiVersion: vi
kind: ConfigMap
metadata:
name: ca-config-map
namespace: openshift-config
data:
ca.cri: |
<CA _certificate PEM>

7.7.5. Sample GitLab CR

The following custom resource (CR) shows the parameters and acceptable values for a GitLab identity
provider.

GitLab CR

apiVersion: config.openshift.io/v1
kind: OAuth
metadata:
name: cluster
spec:

identityProviders:

- name: gitlabidp ﬂ
mappingMethod: claim g
type: GitLab
gitlab:

clientlD: {...}
clientSecret:

name: gitlab-secret
url: https:/gitlab.com 6
ca:

name: ca-config-map

This provider name is prefixed to the GitLab numeric user ID to form an identity name. It is also
used to build the callback URL.

Controls how mappings are established between this provider’s identities and User objects.
The client ID of a registered GitLab OAuth application. The application must be configured with a
callback URL of https://oauth-openshift.apps.<cluster-names.<cluster-

domain>/oauth2callback/<idp-provider-names.

Reference to an OpenShift Container Platform Secret object containing the client secret issued by
GitLab.

® 6 00 9o

The host URL of a GitLab provider. This could either be https://gitlab.com/ or any other self
hosted instance of GitLab.

67

https://docs.gitlab.com/ce/api/oauth2.html

OpenShift Container Platform 4.11 Authentication and authorization

6 Optional: Reference to an OpenShift Container Platform ConfigMap object containing the PEM-
encoded certificate authority bundle to use in validating server certificates for the configured URL.

Additional resources

® See |Identity provider parameters for information on parameters, such as mappingMethod, that
are common to all identity providers.

7.7.6. Adding an identity provider to your cluster

After you install your cluster, add an identity provider to it so your users can authenticate.

Prerequisites

® Create an OpenShift Container Platform cluster.
® Create the custom resource (CR) for your identity providers.

® You must be logged in as an administrator.

Procedure

1. Apply the defined CR:

I $ oc apply -f </path/to/CR>

NOTE

If a CR does not exist, oc apply creates a new CR and might trigger the following
warning: Warning: oc apply should be used on resources created by either
oc create --save-config or oc apply. In this case you can safely ignore this
warning.

2. Login to the cluster as a user from your identity provider, entering the password when
prompted.

I $ oc login -u <username>
3. Confirm that the user logged in successfully, and display the user name.

I $ oc whoami
7.8. CONFIGURING A GOOGLE IDENTITY PROVIDER
Configure the google identity provider using the Google OpenlD Connect integration.

7.8.1. About identity providers in OpenShift Container Platform

By default, only a kubeadmin user exists on your cluster. To specify an identity provider, you must
create a custom resource (CR) that describes that identity provider and add it to the cluster.

68

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/authentication_and_authorization/#identity-provider-parameters_understanding-identity-provider
https://developers.google.com/identity/protocols/OpenIDConnect

CHAPTER 7. CONFIGURING IDENTITY PROVIDERS

NOTE

OpenShift Container Platform user names containing/, :, and % are not supported.

7.8.2. About Google authentication

Using Google as an identity provider allows any Google user to authenticate to your server. You can limit
authentication to members of a specific hosted domain with the hostedDomain configuration attribute.

NOTE

Using Google as an identity provider requires users to get a token using

<namespace_route>/oauth/token/request to use with command-line tools.
7.8.3. Creating the secret

Identity providers use OpenShift Container Platform Secret objects in the openshift-config
namespace to contain the client secret, client certificates, and keys.

Procedure

e C(Create a Secret object containing a string by using the following command:

I $ oc create secret generic <secret_name> --from-literal=clientSecret=<secret> -n openshift-
config

TIP

You can alternatively apply the following YAML to create the secret:

apiVersion: vi
kind: Secret
metadata:
name: <secret_name>
namespace: openshift-config
type: Opaque
data:
clientSecret: <base64 _encoded_client_secret>

® You can define a Secret object containing the contents of a file, such as a certificate file, by
using the following command:

I $ oc create secret generic <secret_name> --from-file=<path_to_file> -n openshift-config

7.8.4. Sample Google CR

The following custom resource (CR) shows the parameters and acceptable values for a Google identity
provider.

Google CR

I apiVersion: config.openshift.io/v1

69

OpenShift Container Platform 4.11 Authentication and authorization

kind: OAuth
metadata:

name: cluster
spec:

identityProviders:

- name: googleidp ﬂ
mappingMethod: claim
type: Google
google:

clientlD: {...}
clientSecret:

name: google-secret
hostedDomain: "example.com" 6

This provider name is prefixed to the Google numeric user ID to form an identity name. It is also
used to build the redirect URL.

Controls how mappings are established between this provider’s identities and User objects.
The client ID of a registered Google project. The project must be configured with a redirect URI of
https://oauth-openshift.apps.<cluster-names>.<cluster-domain>/oauth2callback/<idp-

provider-names.

Reference to an OpenShift Container Platform Secret object containing the client secret issued by
Google.

A hosted domain used to restrict sign-in accounts. Optional if the lookup mappingMethod is
used. If empty, any Google account is allowed to authenticate.

® 6 00 9o

Additional resources

® See |Identity provider parameters for information on parameters, such as mappingMethod, that
are common to all identity providers.

7.8.5. Adding an identity provider to your cluster

After you install your cluster, add an identity provider to it so your users can authenticate.

Prerequisites

® Create an OpenShift Container Platform cluster.
® Create the custom resource (CR) for your identity providers.

® You must be logged in as an administrator.

Procedure

1. Apply the defined CR:

I $ oc apply -f </path/to/CR>

70

https://console.developers.google.com/
https://developers.google.com/identity/protocols/OpenIDConnect#hd-param
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/authentication_and_authorization/#identity-provider-parameters_understanding-identity-provider

CHAPTER 7. CONFIGURING IDENTITY PROVIDERS

NOTE
If a CR does not exist, oc apply creates a new CR and might trigger the following
warning: Warning: oc apply should be used on resources created by either

oc create --save-config or oc apply. In this case you can safely ignore this
warning.

2. Obtain a token from the OAuth server.
As long as the kubeadmin user has been removed, the oc login command provides instructions
on how to access a web page where you can retrieve the token.

You can also access this page from the web console by navigating to (?) Help - Command
Line Tools —» Copy Login Command.

3. Login to the cluster, passing in the token to authenticate.

I $ oc login --token=<token>

i

NOTE
This identity provider does not support logging in with a user name and password.
4. Confirm that the user logged in successfully, and display the user name.

I $ oc whoami

7.9. CONFIGURING AN OPENID CONNECT IDENTITY PROVIDER

Configure the oidc identity provider to integrate with an OpenlD Connect identity provider using an
Authorization Code Flow.

7.9.1. About identity providers in OpenShift Container Platform

By default, only a kubeadmin user exists on your cluster. To specify an identity provider, you must
create a custom resource (CR) that describes that identity provider and add it to the cluster.

NOTE

OpenShift Container Platform user names containing/, :, and % are not supported.

7.9.2. About OpenlD Connect authentication

The Authentication Operator in OpenShift Container Platform requires that the configured OpenlD
Connect identity provider implements the OpenID Connect Discovery specification.

NOTE

ID Token and UserInfo decryptions are not supported.

By default, the openid scope is requested. If required, extra scopes can be specified in the extraScopes
field.

71

http://openid.net/specs/openid-connect-core-1_0.html#CodeFlowAuth
https://openid.net/specs/openid-connect-discovery-1_0.html

OpenShift Container Platform 4.11 Authentication and authorization

Claims are read from the JWT id_token returned from the OpenlID identity provider and, if specified,
from the JSON returned by the Userinfo URL.

At least one claim must be configured to use as the user’s identity. The standard identity claim is sub.
You can also indicate which claims to use as the user’s preferred user name, display name, and email

address. If multiple claims are specified, the first one with a non-empty value is used. The following table
lists the standard claims:

Claim Description

sub Short for "subject identifier." The remote identity for the user at the
issuer.
referred_username The preferred user name when provisioning a user. A shorthand name
p P g

that the user wants to be referred to as, such as janedoe. Typically a
value that corresponding to the user’s login or username in the
authentication system, such as username or email.

email Email address.

hame Display name.

See the OpenlD claims documentation for more information.

NOTE
Unless your OpenlD Connect identity provider supports the resource owner password

credentials (ROPC) grant flow, users must get a token from
<namespace_route>/oauth/token/request to use with command-line tools.

7.9.3. Supported OIDC providers

Red Hat tests and supports specific OpenlD Connect (OIDC) providers with OpenShift Container
Platform. The following OpenlD Connect (OIDC) providers are tested and supported with OpenShift
Container Platform. Using an OIDC provider that is not on the following list might work with OpenShift
Container Platform, but the provider was not tested by Red Hat and therefore is not supported by Red
Hat.

e Active Directory Federation Services for Windows Server

NOTE

Currently, it is not supported to use Active Directory Federation Services for
Windows Server with OpenShift Container Platform when custom claims are
used.

e GitLab
® Google

® Keycloak

72

http://openid.net/specs/openid-connect-core-1_0.html#StandardClaims

CHAPTER 7. CONFIGURING IDENTITY PROVIDERS

® Microsoft identity platform (Azure Active Directory v2.0)

NOTE
Currently, it is not supported to use Microsoft identity platform when group
- names are required to be synced.
e Okta

® Ping Identity

® Red Hat Single Sign-On

7.9.4. Creating the secret

Identity providers use OpenShift Container Platform Secret objects in the openshift-config
namespace to contain the client secret, client certificates, and keys.

Procedure

e Create a Secret object containing a string by using the following command:

I $ oc create secret generic <secret_name> --from-literal=clientSecret=<secret> -n openshift-
config

TIP

You can alternatively apply the following YAML to create the secret:

apiVersion: vi
kind: Secret
metadata:
name: <secret_name>
namespace: openshift-config
type: Opaque
data:
clientSecret: <base64 _encoded_client_secret>

® You can define a Secret object containing the contents of a file, such as a certificate file, by
using the following command:

I $ oc create secret generic <secret_name> --from-file=<path_to_file> -n openshift-config

7.9.5. Creating a config map

Identity providers use OpenShift Container Platform ConfigMap objects in the openshift-config
namespace to contain the certificate authority bundle. These are primarily used to contain certificate
bundles needed by the identity provider.

NOTE

" This procedure is only required for GitHub Enterprise.

73

OpenShift Container Platform 4.11 Authentication and authorization

Procedure

e Define an OpenShift Container Platform ConfigMap object containing the certificate authority
by using the following command. The certificate authority must be stored in the ca.crt key of
the ConfigMap object.

I $ oc create configmap ca-config-map --from-file=ca.crt=/path/to/ca -n openshift-config

TIP

You can alternatively apply the following YAML to create the config map:

apiVersion: vi
kind: ConfigMap
metadata:
name: ca-config-map
namespace: openshift-config
data:
ca.cri: |
<CA_certificate PEM>

7.9.6. Sample OpenID Connect CRs

The following custom resources (CRs) show the parameters and acceptable values for an OpenlID
Connect identity provider.

If you must specify a custom certificate bundle, extra scopes, extra authorization request parameters, or
a userinfo URL, use the full OpenlD Connect CR.

Standard OpenID Connect CR

apiVersion: config.openshift.io/v1
kind: OAuth
metadata:
name: cluster
spec:

identityProviders:

- name: oidcidp
mappingMethod: claim g
type: OpenID
openliD:

clientlD: ... €

clientSecret: ﬂ
name: idp-secret
claims: 6
preferredUsername:
- preferred_username
name:
- name
email:
- emalil

74

CHAPTER 7. CONFIGURING IDENTITY PROVIDERS

groups:
- groups
issuer: https://www.idp-issuer.com G

This provider name is prefixed to the value of the identity claim to form an identity name. It is also
used to build the redirect URL.

Controls how mappings are established between this provider's identities and User objects.

The client ID of a client registered with the OpenlID provider. The client must be allowed to redirect
to https://oauth-openshift.apps.<cluster_names.
<cluster_domain>/oauth2callback/<idp_provider_names.

A reference to an OpenShift Container Platform Secret object containing the client secret.

The list of claims to use as the identity. The first non-empty claim is used.

Q®6 660 9o —

The Issuer Identifier described in the OpenlID spec. Must use https without query or fragment
component.

Full OpenID Connect CR

apiVersion: config.openshift.io/v1
kind: OAuth
metadata:
name: cluster
spec:
identityProviders:
- name: oidcidp
mappingMethod: claim
type: OpenlD
openliD:
clientlD: ...
clientSecret:
name: idp-secret
ca: ﬂ
name: ca-config-map
extraScopes:
- email
- profile
extraAuthorizeParameters: 6
include_granted_scopes: "true"
claims:
preferredUsername: ﬂ
- preferred_username

- nickname

- given_name

- name

email: G

- custom_email_claim
- email

75

https://openid.net/specs/openid-connect-core-1_0.html#IssuerIdentifier

OpenShift Container Platform 4.11 Authentication and authorization

groups: ﬂ
- groups
issuer: https://www.idp-issuer.com

Optional: Reference to an OpenShift Container Platform config map containing the PEM-encoded
certificate authority bundle to use in validating server certificates for the configured URL.

Optional: The list of scopes to request, in addition to the openid scope, during the authorization
token request.

Optional: A map of extra parameters to add to the authorization token request.

The list of claims to use as the preferred user name when provisioning a user for this identity. The
first non-empty claim is used.

The list of claims to use as the display name. The first non-empty claim is used.

The list of claims to use as the email address. The first non-empty claim is used.

S0 006 ® O

The list of claims to use to synchronize groups from the OpenID Connect provider to OpenShift
Container Platform upon user login. The first non-empty claim is used.

Additional resources

® See |Identity provider parameters for information on parameters, such as mappingMethod, that
are common to all identity providers.

7.9.7. Adding an identity provider to your cluster

After you install your cluster, add an identity provider to it so your users can authenticate.

Prerequisites

® Create an OpenShift Container Platform cluster.
® Create the custom resource (CR) for your identity providers.

® You must be logged in as an administrator.

Procedure

1. Apply the defined CR:

I $ oc apply -f </path/to/CR>

NOTE
If a CR does not exist, oc apply creates a new CR and might trigger the following
warning: Warning: oc apply should be used on resources created by either

oc create --save-config or oc apply. In this case you can safely ignore this
warning.

2. Obtain a token from the OAuth server.

76

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/authentication_and_authorization/#identity-provider-parameters_understanding-identity-provider

CHAPTER 7. CONFIGURING IDENTITY PROVIDERS

As long as the kubeadmin user has been removed, the oc login command provides instructions
on how to access a web page where you can retrieve the token.

You can also access this page from the web console by navigating to (?) Help - Command
Line Tools -» Copy Login Command.

3. Login to the cluster, passing in the token to authenticate.

I $ oc login --token=<token>

NOTE

If your OpenlD Connect identity provider supports the resource owner password
credentials (ROPC) grant flow, you can log in with a user name and password.
You might need to take steps to enable the ROPC grant flow for your identity
provider.

After the OIDC identity provider is configured in OpenShift Container Platform,

you can log in by using the following command, which prompts for your user
name and password:

<api_server_url_and_port>

I $ oc login -u <identity _provider_username> --server=

4. Confirm that the user logged in successfully, and display the user name.

I $ oc whoami

7.9.8. Configuring identity providers using the web console

Configure your identity provider (IDP) through the web console instead of the CLI.

Prerequisites

® You must be logged in to the web console as a cluster administrator.

Procedure

1. Navigate to Administration - Cluster Settings.
2. Under the Configuration tab, click OAuth.

3. Under the Identity Providers section, select your identity provider from the Add drop-down
menu.

NOTE

You can specify multiple IDPs through the web console without overwriting existing IDPs.

77

OpenShift Container Platform 4.11 Authentication and authorization

CHAPTER 8. USING RBAC TO DEFINE AND APPLY
PERMISSIONS

8.1. RBAC OVERVIEW

Role-based access control (RBAC) objects determine whether a user is allowed to perform a given
action within a project.

Cluster administrators can use the cluster roles and bindings to control who has various access levels to
the OpenShift Container Platform platform itself and all projects.

Developers can use local roles and bindings to control who has access to their projects. Note that
authorization is a separate step from authentication, which is more about determining the identity of

who is taking the action.

Authorization is managed using:

Authorization Description

object

Rules Sets of permitted verbs on a set of objects. For example, whether a user or service
account can create pods.

Roles Collections of rules. You can associate, or bind, users and groups to multiple roles.

Bindings Associations between users and/or groups with a role.

There are two levels of RBAC roles and bindings that control authorization:

RBAC level Description

Cluster RBAC Roles and bindings that are applicable across all projects. Cluster roles exist cluster-
wide, and cluster role bindings can reference only cluster roles.

Local RBAC Roles and bindings that are scoped to a given project. While /ocal roles exist only in a
single project, local role bindings can reference both cluster and local roles.

A cluster role binding is a binding that exists at the cluster level. A role binding exists at the project level.
The cluster role view must be bound to a user using a local role binding for that user to view the project.
Create local roles only if a cluster role does not provide the set of permissions needed for a particular
situation.

This two-level hierarchy allows reuse across multiple projects through the cluster roles while allowing
customization inside of individual projects through local roles.

During evaluation, both the cluster role bindings and the local role bindings are used. For example:
1. Cluster-wide "allow" rules are checked.

2. Locally-bound "allow" rules are checked.

78

CHAPTER 8. USING RBAC TO DEFINE AND APPLY PERMISSIONS

3. Deny by default.

8.1.1. Default cluster roles

OpenShift Container Platform includes a set of default cluster roles that you can bind to users and
groups cluster-wide or locally.

IMPORTANT

It is not recommended to manually modify the default cluster roles. Modifications to
these system roles can prevent a cluster from functioning properly.

Default cluster Description

role

admin A project manager. If used in a local binding, an admin has rights to view any resource
in the project and modify any resource in the project except for quota.

basic-user A user that can get basic information about projects and users.

cluster-admin A super-user that can perform any action in any project. When bound to a user with a
local binding, they have full control over quota and every action on every resource in the
project.

cluster-status A user that can get basic cluster status information.

cluster-reader A user that can get or view most of the objects but cannot modify them.

edit A user that can modify most objects in a project but does not have the power to view or

modify roles or bindings.
self-provisioner A user that can create their own projects.

view A user who cannot make any modifications, but can see most objects in a project. They
cannot view or modify roles or bindings.

Be mindful of the difference between local and cluster bindings. For example, if you bind the cluster-
admin role to a user by using a local role binding, it might appear that this user has the privileges of a
cluster administrator. This is not the case. Binding the cluster-admin to a user in a project grants super
administrator privileges for only that project to the user. That user has the permissions of the cluster
role admin, plus a few additional permissions like the ability to edit rate limits, for that project. This
binding can be confusing via the web console Ul, which does not list cluster role bindings that are bound
to true cluster administrators. However, it does list local role bindings that you can use to locally bind
cluster-admin.

The relationships between cluster roles, local roles, cluster role bindings, local role bindings, users,
groups and service accounts are illustrated below.

79

OpenShift Container Platform 4.11 Authentication and authorization

— O O O

i ST T

T O

@)

Service Account (Bot) Group 1 User1 User 2 User 3
LOCAL ROLE LOCAL ROLE LOCAL ROLE LOCAL ROLE CLUSTER ROLE
BINDING BINDING BINDING BINDING BINDING
Bot caninteract with Group 1 can view User 1 can edit User 2 can admin User 3 can cluster
specific resources in project in project in project admin in all projects
LOCAL ROLE
(Bot)

Rule Rule

PROJECT

i

H CLUSTER ROLE CLUSTER ROLE CLUSTER ROLE CLUSTER ROLE
i (View) (Edit) (Admin) (Cluster Admin)

1

i Rule Rule Rule Rule Rule Rule Rule Rule
1

1

1

WARNING

A The get pods/exec, get pods/*, and get * rules grant execution privileges when they
are applied to a role. Apply the principle of least privilege and assign only the
minimal RBAC rights required for users and agents. For more information, see
RBAC rules allow execution privileges.

8.1.2. Evaluating authorization

OpenShift Container Platform evaluates authorization by using:

Identity

The user name and list of groups that the user belongs to.

Action

The action you perform. In most cases, this consists of:

® Project: The project you access. A project is a Kubernetes namespace with additional
annotations that allows a community of users to organize and manage their content in

isolation from other communities.

e Verb:The action itself: get, list, create, update, delete, deletecollection, or watch.

80

https://access.redhat.com/solutions/6989997

CHAPTER 8. USING RBAC TO DEFINE AND APPLY PERMISSIONS

® Resource name The APl endpoint that you access.
Bindings
The full list of bindings, the associations between users or groups with a role.
OpenShift Container Platform evaluates authorization by using the following steps:

1. The identity and the project-scoped action is used to find all bindings that apply to the user or
their groups.

2. Bindings are used to locate all the roles that apply.
3. Roles are used to find all the rules that apply.
4. The action is checked against each rule to find a match.

5. If no matching rule is found, the action is then denied by default.

TIP

Remember that users and groups can be associated with, or bound to, multiple roles at the same time.

Project administrators can use the CLI to view local roles and bindings, including a matrix of the verbs
and resources each are associated with.

IMPORTANT

The cluster role bound to the project administrator is limited in a project through a local
binding. It is not bound cluster-wide like the cluster roles granted to the cluster-admin or
system:admin.

Cluster roles are roles defined at the cluster level but can be bound either at the cluster
level or at the project level.

8.1.2.1. Cluster role aggregation

The default admin, edit, view, and cluster-reader cluster roles support cluster role aggregation, where
the cluster rules for each role are dynamically updated as new rules are created. This feature is relevant
only if you extend the Kubernetes API by creating custom resources.

8.2. PROJECTS AND NAMESPACES

A Kubernetes namespace provides a mechanism to scope resources in a cluster. The Kubernetes
documentation has more information on namespaces.

Namespaces provide a unique scope for:
® Named resources to avoid basic naming collisions.
® Delegated management authority to trusted users.

® The ability to limit community resource consumption.

81

https://kubernetes.io/docs/reference/access-authn-authz/rbac/#aggregated-clusterroles
https://kubernetes.io/docs/tasks/administer-cluster/namespaces/

OpenShift Container Platform 4.11 Authentication and authorization

Most objects in the system are scoped by namespace, but some are excepted and have no namespace,
including nodes and users.

A projectis a Kubernetes namespace with additional annotations and is the central vehicle by which
access to resources for regular users is managed. A project allows a community of users to organize and
manage their content in isolation from other communities. Users must be given access to projects by
administrators, or if allowed to create projects, automatically have access to their own projects.

Projects can have a separate name, displayName, and description.

® The mandatory name is a unique identifier for the project and is most visible when using the CLI
tools or API. The maximum name length is 63 characters.

® The optional displayName is how the project is displayed in the web console (defaults to
name).

® The optional description can be a more detailed description of the project and is also visible in
the web console.

Each project scopes its own set of:

Object Description

Objects Pods, services, replication controllers, etc.

Policies Rules for which users can or cannot perform actions on objects.

Constraints Quotas for each kind of object that can be limited.

Service Service accounts act automatically with designated access to objects in the project.
accounts

Cluster administrators can create projects and delegate administrative rights for the project to any
member of the user community. Cluster administrators can also allow developers to create their own
projects.

Developers and administrators can interact with projects by using the CLI or the web console.

8.3. DEFAULT PROJECTS

OpenShift Container Platform comes with a number of default projects, and projects starting with
openshift- are the most essential to users. These projects host master components that run as pods
and other infrastructure components. The pods created in these namespaces that have a critical pod
annotation are considered critical, and the have guaranteed admission by kubelet. Pods created for
master components in these namespaces are already marked as critical.

NOTE
You cannot assign an SCC to pods created in one of the default namespaces: default,

kube-system, kube-public, openshift-node, openshift-infra, and openshift. You cannot
use these namespaces for running pods or services.

82

https://kubernetes.io/docs/tasks/administer-cluster/guaranteed-scheduling-critical-addon-pods/#rescheduler-guaranteed-scheduling-of-critical-add-ons

CHAPTER 8. USING RBAC TO DEFINE AND APPLY PERMISSIONS

8.4. VIEWING CLUSTER ROLES AND BINDINGS

You can use the oc CLI to view cluster roles and bindings by using the oc describe command.

Prerequisites

® |[nstall the oc CLI.
® Obtain permission to view the cluster roles and bindings.

Users with the cluster-admin default cluster role bound cluster-wide can perform any action on any
resource, including viewing cluster roles and bindings.

Procedure

1. To view the cluster roles and their associated rule sets:

I $ oc describe clusterrole.rbac
Example output

Name: admin
Labels: kubernetes.io/bootstrapping=rbac-defaults
Annotations: rbac.authorization.kubernetes.io/autoupdate: true

PolicyRule:

Resources Non-Resource URLs Resource Names Verbs

.packages.apps.redhat.com 1 [[* create update
patch delete get list watch]

imagestreams [1 [create delete
deletecollection get list patch update watch create get list watch]

imagestreams.image.openshift.io 1 1 [create delete
deletecollection get list patch update watch create get list watch]

secrets 1 1 [create delete deletecollection
get list patch update watch get list watch create delete deletecollection patch update]

buildconfigs/webhooks 1 1 [create delete
deletecollection get list patch update watch get list watch]

buildconfigs 1] I [create delete
deletecollection get list patch update watch get list watch]

buildlogs [1 [create delete deletecollection
get list patch update watch get list watch]

deploymentconfigs/scale 1 1 [create delete
deletecollection get list patch update watch get list watch]

deploymentconfigs i [[create delete
deletecollection get list patch update watch get list watch]

imagestreamimages 1 1 [create delete
deletecollection get list patch update watch get list watch]

imagestreammappings 1 1] [create delete
deletecollection get list patch update watch get list watch]

imagestreamtags [[[create delete
deletecollection get list patch update watch get list watch]

processedtemplates [1 [create delete
deletecollection get list patch update watch get list watch]

routes 1 [[create delete deletecollection

get list patch update watch get list watch]

83

OpenShift Container Platform 4.11 Authentication and authorization

84

templateconfigs 1 1 [create delete
deletecollection get list patch update watch get list watch]

templateinstances 1 1 [create delete
deletecollection get list patch update watch get list watch]

templates 1 1 [create delete
deletecollection get list patch update watch get list watch]

deploymentconfigs.apps.openshift.io/scale [i [create delete
deletecollection get list patch update watch get list watch]

deploymentconfigs.apps.openshift.io 1 [[create delete
deletecollection get list patch update watch get list watch]

buildconfigs.build.openshift.io/webhooks 1 1 [create delete
deletecollection get list patch update watch get list watch]

buildconfigs.build.openshift.io 1 [[create delete
deletecollection get list patch update watch get list watch]

buildlogs.build.openshift.io 1 [[create delete
deletecollection get list patch update watch get list watch]

imagestreamimages.image.openshift.io [i [create delete
deletecollection get list patch update watch get list watch]

imagestreammappings.image.openshift.io 1 10 [create delete
deletecollection get list patch update watch get list watch]

imagestreamtags.image.openshift.io 1 1 [create delete
deletecollection get list patch update watch get list watch]

routes.route.openshift.io [i [create delete
deletecollection get list patch update watch get list watch]

processedtemplates.template.openshift.io i [[create delete
deletecollection get list patch update watch get list watch]

templateconfigs.template.openshift.io [1 [create delete
deletecollection get list patch update watch get list watch]

templateinstances.template.openshift.io 1 1 [create delete
deletecollection get list patch update watch get list watch]

templates.template.openshift.io [[[create delete
deletecollection get list patch update watch get list watch]

serviceaccounts 1 1 [create delete

deletecollection get list patch update watch impersonate create delete deletecollection patch
update get list watch]

imagestreams/secrets 1 1 [create delete
deletecollection get list patch update watch]

rolebindings [1 [create delete
deletecollection get list patch update watch]

roles 1 1 [create delete deletecollection
get list patch update watch]

rolebindings.authorization.openshift.io i [[create delete
deletecollection get list patch update watch]

roles.authorization.openshift.io 1 1 [create delete
deletecollection get list patch update watch]

imagestreams.image.openshift.io/secrets 1 [[create delete
deletecollection get list patch update watch]

rolebindings.rbac.authorization.k8s.io 1 [[create delete
deletecollection get list patch update watch]

roles.rbac.authorization.k8s.io 1 [[create delete
deletecollection get list patch update watch]

networkpolicies.extensions [i [create delete
deletecollection patch update create delete deletecollection get list patch update watch get
list watch]

networkpolicies.networking.k8s.io 1 [[create delete

deletecollection patch update create delete deletecollection get list patch update watch get

CHAPTER 8. USING RBAC TO DEFINE AND APPLY PERMISSIONS

list watch]

configmaps 1 1 [create delete
deletecollection patch update get list watch]

endpoints 1 1 [create delete
deletecollection patch update get list watch]

persistentvolumeclaims 1 1 [create delete
deletecollection patch update get list watch]

pods [i [create delete deletecollection
patch update get list watch]

replicationcontrollers/scale 1 1 [create delete
deletecollection patch update get list watch]

replicationcontrollers [1 [create delete
deletecollection patch update get list watch]

services [i [create delete deletecollection
patch update get list watch]

daemonsets.apps 1 [[create delete
deletecollection patch update get list watch]

deployments.apps/scale i [[create delete
deletecollection patch update get list watch]

deployments.apps [i [create delete
deletecollection patch update get list watch]

replicasets.apps/scale 1 [[create delete
deletecollection patch update get list watch]

replicasets.apps 1 1 [create delete
deletecollection patch update get list watch]

statefulsets.apps/scale 1 [[create delete
deletecollection patch update get list watch]

statefulsets.apps 1 1 [create delete
deletecollection patch update get list watch]

horizontalpodautoscalers.autoscaling 1 [[create delete
deletecollection patch update get list watch]

cronjobs.batch 1 1 [create delete
deletecollection patch update get list watch]

jobs.batch 1 1 [create delete
deletecollection patch update get list watch]

daemonsets.extensions [i [create delete
deletecollection patch update get list watch]

deployments.extensions/scale 1 1 [create delete
deletecollection patch update get list watch]

deployments.extensions i [[create delete
deletecollection patch update get list watch]

ingresses.extensions 1 1 [create delete
deletecollection patch update get list watch]

replicasets.extensions/scale [1 [create delete
deletecollection patch update get list watch]

replicasets.extensions 1 [[create delete
deletecollection patch update get list watch]

replicationcontrollers.extensions/scale 1 1 [create delete
deletecollection patch update get list watch]

poddisruptionbudgets.policy [1 [create delete
deletecollection patch update get list watch]

deployments.apps/rollback 1 1 [create delete
deletecollection patch update]

deployments.extensions/rollback 1 [[create delete
deletecollection patch update]

catalogsources.operators.coreos.com 1 1 [create update

85

OpenShift Container Platform 4.11 Authentication and authorization

patch delete get list watch]
clusterserviceversions.operators.coreos.com 1]
patch delete get list watch]
installplans.operators.coreos.com 1
patch delete get list watch]
packagemanifests.operators.coreos.com 1
patch delete get list watch]
subscriptions.operators.coreos.com 1]
patch delete get list watch]
buildconfigs/instantiate 1
buildconfigs/instantiatebinary I
builds/clone 0 I
deploymentconfigrollbacks 1
deploymentconfigs/instantiate 1
deploymentconfigs/rollback 0
imagestreamimports I
localresourceaccessreviews 1
localsubjectaccessreviews 1
podsecuritypolicyreviews 1
podsecuritypolicyselfsubjectreviews 1
podsecuritypolicysubjectreviews 1
resourceaccessreviews [
routes/custom-host i
subjectaccessreviews 1
subjectrulesreviews [
deploymentconfigrollbacks.apps.openshift.io 1
deploymentconfigs.apps.openshift.io/instantiate i
deploymentconfigs.apps.openshift.io/rollback 1]
localsubjectaccessreviews.authorization.k8s.io 1
localresourceaccessreviews.authorization.openshift.io
localsubjectaccessreviews.authorization.openshift.io

I

f]

I

1 [create update
1 [create update
1 [create update
1 [create update

[create]

1 [create]

I

[create]
[[create]
1 [create]
[[create]
[create]
1 [create]
1 [create]

1 [create]

[[create]
1 [create]

1 [create]

f]

I

(]

resourceaccessreviews.authorization.openshift.io 1

subjectaccessreviews.authorization.openshift.io 1
subjectrulesreviews.authorization.openshift.io i
buildconfigs.build.openshift.io/instantiate I
buildconfigs.build.openshift.io/instantiatebinary 1]
builds.build.openshift.io/clone 1
imagestreamimports.image.openshift.io [
routes.route.openshift.io/custom-host [
podsecuritypolicyreviews.security.openshift.io 1

[create]
[create]
[create]
1 [create]
[[create]
1 [create]
[[create]
1 [create]
1 [create]
[[create]
1 [create]
[[create]
[[create]
[[create]

[[create]

podsecuritypolicyselfsubjectreviews.security.openshift.io []

podsecuritypolicysubjectreviews.security.openshift.io
jenkins.build.openshift.io 1]
edit view]
builds 1 I
deletecollection get list patch update watch get list watch]
builds.build.openshift.io 1
deletecollection get list patch update watch get list watch]
projects I I
update]
projects.project.openshift.io I
get patch update]
namespaces I 1]
pods/attach 1 1
deletecollection patch update]
pods/exec 1 I

86

I

I

f]

(]

1 [create]
1 [create]
1 [create]
1 [create]
[[create]
[edit view view admin
[get create delete
[get create delete
[get delete get delete get patch
[get delete get delete

[get get list watch]
[get list watch create delete

[get list watch create delete

CHAPTER 8. USING RBAC TO DEFINE AND APPLY PERMISSIONS

deletecollection patch update]

pods/portforward [1 [get list watch create
delete deletecollection patch update]
pods/proxy 1 [[get list watch create delete
deletecollection patch update]
services/proxy 1 [[get list watch create delete
deletecollection patch update]
routes/status 1 [[get list watch update]
routes.route.openshift.io/status [i [get list watch update]
appliedclusterresourcequotas [i [get list watch]
bindings [[[get list watch]
builds/log [1 [get list watch]
deploymentconfigs/log [[[get list watch]
deploymentconfigs/status I 1] [get list watch]
events 1 1 [get list watch]
imagestreams/status 1 1 [get list watch]
limitranges 1 1 [get list watch]
namespaces/status [1 [get list watch]
pods/log 1 [[get list watch]
pods/status [i [get list watch]
replicationcontrollers/status 1] I [get list watch]
resourcequotas/status [[[get list watch]
resourcequotas [[[get list watch]
resourcequotausages 1 [[get list watch]
rolebindingrestrictions 1 1] [get list watch]
deploymentconfigs.apps.openshift.io/log 1 1] [get list watch]
deploymentconfigs.apps.openshift.io/status 1 [[get list watch]
controllerrevisions.apps 1 [[get list watch]
rolebindingrestrictions.authorization.openshift.io 1 1 [get list watch]
builds.build.openshift.io/log 1 1 [get list watch]
imagestreams.image.openshift.io/status 1 1 [get list watch]
appliedclusterresourcequotas.quota.openshift.io 1 [[get list watch]
imagestreams/layers 1 1 [get update get]
imagestreams.image.openshift.io/layers 1 1 [get update get]
builds/details 1 1 [update]
builds.build.openshift.io/details [i [update]
Name: basic-user
Labels: <none>

Annotations: openshift.io/description: A user that can get basic information about projects.
rbac.authorization.kubernetes.io/autoupdate: true

PolicyRule:

Resources Non-Resource URLs Resource Names Verbs
selfsubjectrulesreviews i [[create]
selfsubjectaccessreviews.authorization.k8s.io 1 [[create]
selfsubjectrulesreviews.authorization.openshift.io [] i [create]
clusterroles.rbac.authorization.k8s.io 1] 1 [get list watch]
clusterroles I [0 [get list]
clusterroles.authorization.openshift.io 1 [[get list]
storageclasses.storage.k8s.io 1 [[get list]
users I [~] [get]
users.user.openshift.io [[~] [get]
projects [[[list watch]
projects.project.openshift.io 1 1 [list watch]

87

OpenShift Container Platform 4.11 Authentication and authorization

projectrequests 1 1 [list]
projectrequests.project.openshift.io 1 1 [list]

Name: cluster-admin

Labels: kubernetes.io/bootstrapping=rbac-defaults
Annotations: rbac.authorization.kubernetes.io/autoupdate: true
PolicyRule:

Resources Non-Resource URLs Resource Names Verbs

I (] (']
['] I [']

2. To view the current set of cluster role bindings, which shows the users and groups that are
bound to various roles:

I $ oc describe clusterrolebinding.rbac

Example output

Name: alertmanager-main
Labels: <none>
Annotations: <none>

Role:

Kind: ClusterRole
Name: alertmanager-main
Subjects:
Kind Name Namespace

ServiceAccount alertmanager-main openshift-monitoring

Name: basic-users

Labels: <none>

Annotations: rbac.authorization.kubernetes.io/autoupdate: true
Role:

Kind: ClusterRole

Name: basic-user

Subjects:

Kind Name Namespace

Group system:authenticated

Name: cloud-credential-operator-rolebinding
Labels: <none>

Annotations: <none>

Role:

Kind: ClusterRole

Name: cloud-credential-operator-role
Subjects:

Kind Name Namespace

ServiceAccount default openshift-cloud-credential-operator

88

CHAPTER 8. USING RBAC TO DEFINE AND APPLY PERMISSIONS

Name: cluster-admin

Labels: kubernetes.io/bootstrapping=rbac-defaults
Annotations: rbac.authorization.kubernetes.io/autoupdate: true
Role:

Kind: ClusterRole

Name: cluster-admin

Subjects:

Kind Name Namespace

Group system:masters

Name: cluster-admins

Labels: <none>

Annotations: rbac.authorization.kubernetes.io/autoupdate: true
Role:

Kind: ClusterRole

Name: cluster-admin

Subjects:

Kind Name Namespace
Group system:cluster-admins

User system:admin

Name: cluster-api-manager-rolebinding
Labels: <none>

Annotations: <none>

Role:

Kind: ClusterRole

Name: cluster-api-manager-role
Subjects:

Kind Name Namespace

ServiceAccount default openshift-machine-api

8.5. VIEWING LOCAL ROLES AND BINDINGS

You can use the oc CLI to view local roles and bindings by using the oc describe command.

Prerequisites

e |nstall the oc CLI.

® Obtain permission to view the local roles and bindings:

o Users with the cluster-admin default cluster role bound cluster-wide can perform any
action on any resource, including viewing local roles and bindings.

o Users with the admin default cluster role bound locally can view and manage roles and
bindings in that project.

89

OpenShift Container Platform 4.11 Authentication and authorization

Procedure

1. To view the current set of local role bindings, which show the users and groups that are bound to
various roles for the current project:

I $ oc describe rolebinding.rbac
2. To view the local role bindings for a different project, add the -n flag to the command:

I $ oc describe rolebinding.rbac -n joe-project
Example output

Name: admin

Labels: <none>
Annotations: <none>

Role:

Kind: ClusterRole

Name: admin

Subjects:

Kind Name Namespace

User kube:admin

Name: system:deployers
Labels: <none>
Annotations: openshift.io/description:
Allows deploymentconfigs in this namespace to rollout pods in
this namespace. It is auto-managed by a controller; remove
subjects to disa...
Role:
Kind: ClusterRole
Name: system:deployer
Subjects:
Kind Name Namespace

ServiceAccount deployer joe-project

Name: system:image-builders
Labels: <none>
Annotations: openshift.io/description:
Allows builds in this namespace to push images to this
namespace. It is auto-managed by a controller; remove subjects
to disable.
Role:
Kind: ClusterRole
Name: system:image-builder
Subjects:
Kind Name Namespace

ServiceAccount builder joe-project

90

CHAPTER 8. USING RBAC TO DEFINE AND APPLY PERMISSIONS

Name: system:image-pullers
Labels: <none>
Annotations: openshift.io/description:
Allows all pods in this namespace to pull images from this
namespace. It is auto-managed by a controller; remove subjects
to disable.
Role:
Kind: ClusterRole
Name: system:image-puller
Subjects:
Kind Name Namespace

Group system:serviceaccounts:joe-project

8.6. ADDING ROLES TO USERS
You can use the oc adm administrator CLI to manage the roles and bindings.

Binding, or adding, a role to users or groups gives the user or group the access that is granted by the
role. You can add and remove roles to and from users and groups using oc adm policy commands.

You can bind any of the default cluster roles to local users or groups in your project.

Procedure

1. Add arole to a user in a specific project:
I $ oc adm policy add-role-to-user <role> <user> -n <project>

For example, you can add the admin role to the alice user in joe project by running:

I $ oc adm policy add-role-to-user admin alice -n joe

TIP

You can alternatively apply the following YAML to add the role to the user:

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
name: admin-0
namespace: joe
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: admin
subjects:
- apiGroup: rbac.authorization.k8s.io
kind: User
name: alice

2. View the local role bindings and verify the addition in the output:

o1

OpenShift Container Platform 4.11 Authentication and authorization

I $ oc describe rolebinding.rbac -n <project>

For example, to view the local role bindings for the joe project:
I $ oc describe rolebinding.rbac -n joe

Example output

Name: admin
Labels: <none>
Annotations: <none>
Role:

Kind: ClusterRole

Name: admin

Subjects:

Kind Name Namespace

User kube:admin

Name: admin-0
Labels: <none>
Annotations: <none>
Role:

Kind: ClusterRole
Name: admin

Subjects:

Kind Name Namespace

Name: system:deployers
Labels: <none>
Annotations: openshift.io/description:

Allows deploymentconfigs in this namespace to rollout pods in
this namespace. It is auto-managed by a controller; remove

subjects to disa...
Role:
Kind: ClusterRole
Name: system:deployer
Subjects:
Kind Name Namespace

ServiceAccount deployer joe

Name: system:image-builders
Labels: <none>
Annotations: openshift.io/description:

Allows builds in this namespace to push images to this
namespace. It is auto-managed by a controller; remove subjects

to disable.
Role:
Kind: ClusterRole

92

CHAPTER 8. USING RBAC TO DEFINE AND APPLY PERMISSIONS

Name: system:image-builder
Subjects:
Kind Name Namespace

ServiceAccount builder joe

Name: system:image-pullers
Labels: <none>
Annotations: openshift.io/description:
Allows all pods in this namespace to pull images from this
namespace. It is auto-managed by a controller; remove subjects
to disable.
Role:
Kind: ClusterRole
Name: system:image-puller
Subjects:
Kind Name Namespace

Group system:serviceaccounts:joe

ﬂ The alice user has been added to the admins RoleBinding.

8.7. CREATING A LOCAL ROLE

You can create a local role for a project and then bind it to a user.
Procedure
1. To create a local role for a project, run the following command:
I $ oc create role <name> --verb=<verb> --resource=<resource> -n <project>

In this command, specify:
® <names>, the local role’s name
® <verb>, a comma-separated list of the verbs to apply to the role
® <resource>, the resources that the role applies to
® <project>, the project name

For example, to create a local role that allows a user to view pods in the blue project, run the
following command:

I $ oc create role podview --verb=get --resource=pod -n blue

2. To bind the new role to a user, run the following command:

I $ oc adm policy add-role-to-user podview user2 --role-namespace=blue -n blue

93

OpenShift Container Platform 4.11 Authentication and authorization

8.8. CREATING A CLUSTER ROLE

You can create a cluster role.

Procedure

1. To create a cluster role, run the following command:
I $ oc create clusterrole <name> --verb=<verb> --resource=<resource>

In this command, specify:

® <names>, the local role’s name

® <verb>, a comma-separated list of the verbs to apply to the role
® <resource>, the resources that the role applies to

For example, to create a cluster role that allows a user to view pods, run the following command:

I $ oc create clusterrole podviewonly --verb=get --resource=pod

8.9. LOCAL ROLE BINDING COMMANDS

When you manage a user or group'’s associated roles for local role bindings using the following
operations, a project may be specified with the -n flag. If it is not specified, then the current project is
used.

You can use the following commands for local RBAC management.

Table 8.1. Local role binding operations

Command Description

$ oc adm policy who-can <verbs <resource> Indicates which users can perform an action on a
resource.

$ oc adm policy add-role-to-user <role> Binds a specified role to specified users in the

<username> current project.

$ oc adm policy remove-role-from-user Removes a given role from specified users in the

<role> <usernames current project.

$ oc adm policy remove-user <usernames Removes specified users and all of their roles in the

current project.

$ oc adm policy add-role-to-group <role> Binds a given role to specified groups in the current
<groupname> project.

$ oc adm policy remove-role-from-group Removes a given role from specified groups in the
<role> <groupname> current project.

94

CHAPTER 8. USING RBAC TO DEFINE AND APPLY PERMISSIONS

Command Description

$ oc adm policy remove-group <groupname> Removes specified groups and all of their roles in the
current project.

8.10. CLUSTER ROLE BINDING COMMANDS

You can also manage cluster role bindings using the following operations. The -n flag is not used for
these operations because cluster role bindings use non-namespaced resources.

Table 8.2. Cluster role binding operations

Command Description

$ oc adm policy add-cluster-role-to-user Binds a given role to specified users for all projects in
<role> <username> the cluster.

$ oc adm policy remove-cluster-role-from- Removes a given role from specified users for all
user <role> <username> projects in the cluster.

$ oc adm policy add-cluster-role-to-group Binds a given role to specified groups for all projects
<role> <groupname> in the cluster.

$ oc adm policy remove-cluster-role-from- Removes a given role from specified groups for all
group <role> <groupnames projects in the cluster.

8.11. CREATING A CLUSTER ADMIN

The cluster-admin role is required to perform administrator level tasks on the OpenShift Container
Platform cluster, such as modifying cluster resources.

Prerequisites

® You must have created a user to define as the cluster admin.

Procedure

® Define the user as a cluster admin:

I $ oc adm policy add-cluster-role-to-user cluster-admin <user>

OpenShift Container Platform 4.11 Authentication and authorization

CHAPTER 9. REMOVING THE KUBEADMIN USER

9.1. THE KUBEADMIN USER

OpenShift Container Platform creates a cluster administrator, kubeadmin, after the installation process
completes.

This user has the cluster-admin role automatically applied and is treated as the root user for the cluster.
The password is dynamically generated and unique to your OpenShift Container Platform environment.
After installation completes the password is provided in the installation program’s output. For example:

INFO Install complete!

INFO Run 'export KUBECONFIG=<your working directory>/auth/kubeconfig' to manage the cluster
with 'oc’, the OpenShift CLI.

INFO The cluster is ready when 'oc login -u kubeadmin -p <provided>' succeeds (wait a few minutes).
INFO Access the OpenShift web-console here: https://console-openshift-
console.apps.demo.openshift4-beta-abcorp.com

INFO Login to the console with user: kubeadmin, password: <provided>

9.2. REMOVING THE KUBEADMIN USER

After you define an identity provider and create a new cluster-admin user, you can remove the
kubeadmin to improve cluster security.

' WARNING
A If you follow this procedure before another user is a cluster-admin, then OpenShift

Container Platform must be reinstalled. It is not possible to undo this command.

Prerequisites

® You must have configured at least one identity provider.
® You must have added the cluster-admin role to a user.

® You must be logged in as an administrator.

Procedure

® Remove the kubeadmin secrets:

I $ oc delete secrets kubeadmin -n kube-system

96

CHAPTER 10. UNDERSTANDING AND CREATING SERVICE ACCOUNTS

CHAPTER 10. UNDERSTANDING AND CREATING SERVICE
ACCOUNTS

10.1. SERVICE ACCOUNTS OVERVIEW
A service account is an OpenShift Container Platform account that allows a component to directly
access the API. Service accounts are AP objects that exist within each project. Service accounts provide
a flexible way to control APl access without sharing a regular user’s credentials.
When you use the OpenShift Container Platform CLI or web console, your API token authenticates you
to the API. You can associate a component with a service account so that they can access the API
without using a regular user’s credentials. For example, service accounts can allow:

® Replication controllers to make API calls to create or delete pods.

® Applications inside containers to make API calls for discovery purposes.

® External applications to make API calls for monitoring or integration purposes.

Each service account’s user name is derived from its project and name:

I system:serviceaccount:<project>:<name>

Every service account is also a member of two groups:

Group Description

system:serviceaccounts Includes all service accounts in the system.

system:serviceaccounts:<project> Includes all service accounts in the specified project.

Each service account automatically contains two secrets:
® An API token
e Credentials for the OpenShift Container Registry

The generated API token and registry credentials do not expire, but you can revoke them by deleting
the secret. When you delete the secret, a new one is automatically generated to take its place.

10.2. CREATING SERVICE ACCOUNTS

You can create a service account in a project and grant it permissions by binding it to a role.

Procedure

1. Optional: To view the service accounts in the current project:
I $ oc get sa

Example output

97

OpenShift Container Platform 4.11 Authentication and authorization

NAME SECRETS AGE
builder 2 2d

default 2 2d

deployer 2 2d

2. To create a new service account in the current project:
I $ oc create sa <service_account_name> 0

ﬂ To create a service account in a different project, specify -n <project_names.

Example output

I serviceaccount "robot" created

TIP

You can alternatively apply the following YAML to create the service account:

apiVersion: v1i

kind: ServiceAccount

metadata:
name: <service_account_name>
namespace: <current_project>

3. Optional: View the secrets for the service account:

I $ oc describe sa robot

Example output

Name: robot
Namespace: projectt
Labels: <none>

Annotations: <none>

Image pull secrets: robot-dockercfg-gzbhb
Mountable secrets: robot-dockercfg-qzbhb
Tokens: robot-token-f4khf

Events: <none>

10.3. EXAMPLES OF GRANTING ROLES TO SERVICE ACCOUNTS

You can grant roles to service accounts in the same way that you grant roles to a regular user account.

® You can modify the service accounts for the current project. For example, to add the view role
to the robot service account in the top-secret project:

I $ oc policy add-role-to-user view system:serviceaccount:top-secret:robot

98

CHAPTER 10. UNDERSTANDING AND CREATING SERVICE ACCOUNTS

TIP

You can alternatively apply the following YAML to add the role:

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
name: view
namespace: top-secret
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: view
subjects:
- kind: ServiceAccount
name: robot
namespace: top-secret

® You can also grant access to a specific service account in a project. For example, from the
project to which the service account belongs, use the -z flag and specify the
<service_account_name>

I $ oc policy add-role-to-user <role_name> -z <service_account_name>

IMPORTANT

If you want to grant access to a specific service account in a project, use the -z
flag. Using this flag helps prevent typos and ensures that access is granted to
only the specified service account.

TIP

You can alternatively apply the following YAML to add the role:

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
name: <rolebinding_name>
namespace: <current_project_name>
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: <role_name>
subjects:
- kind: ServiceAccount
name: <service_account_name>
namespace: <current_project_name>

® To modify a different namespace, you can use the -n option to indicate the project namespace
it applies to, as shown in the following examples.

o For example, to allow all service accounts in all projects to view resources in the my-project
project:

99

OpenShift Container Platform 4.11 Authentication and authorization
I $ oc policy add-role-to-group view system:serviceaccounts -n my-project

TIP

You can alternatively apply the following YAML to add the role:

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
name: view
namespace: my-project
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: view
subjects:
- apiGroup: rbac.authorization.k8s.io
kind: Group
name: system:serviceaccounts

o To allow all service accounts in the managers project to edit resources in the my-project
project:

I $ oc policy add-role-to-group edit system:serviceaccounts:managers -n my-project

TIP

You can alternatively apply the following YAML to add the role:

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
name: edit
namespace: my-project
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: edit
subjects:
- apiGroup: rbac.authorization.k8s.io
kind: Group
name: system:serviceaccounts:managers

100

CHAPTER 11. USING SERVICE ACCOUNTS IN APPLICATIONS

CHAPTER 11. USING SERVICE ACCOUNTS IN APPLICATIONS

11.1. SERVICE ACCOUNTS OVERVIEW
A service account is an OpenShift Container Platform account that allows a component to directly
access the API. Service accounts are AP objects that exist within each project. Service accounts provide
a flexible way to control APl access without sharing a regular user’s credentials.
When you use the OpenShift Container Platform CLI or web console, your API token authenticates you
to the API. You can associate a component with a service account so that they can access the API
without using a regular user’s credentials. For example, service accounts can allow:

® Replication controllers to make API calls to create or delete pods.

® Applications inside containers to make API calls for discovery purposes.

® External applications to make API calls for monitoring or integration purposes.

Each service account’s user name is derived from its project and name:

I system:serviceaccount:<project>:<name>

Every service account is also a member of two groups:

Group Description

system:serviceaccounts Includes all service accounts in the system.

system:serviceaccounts:<project> Includes all service accounts in the specified project.

Each service account automatically contains two secrets:
® An API token
e Credentials for the OpenShift Container Registry

The generated API token and registry credentials do not expire, but you can revoke them by deleting
the secret. When you delete the secret, a new one is automatically generated to take its place.

11.2. DEFAULT SERVICE ACCOUNTS

Your OpenShift Container Platform cluster contains default service accounts for cluster management
and generates more service accounts for each project.
11.2.1. Default cluster service accounts

Several infrastructure controllers run using service account credentials. The following service accounts
are created in the OpenShift Container Platform infrastructure project (openshift-infra) at server start,
and given the following roles cluster-wide:

101

OpenShift Container Platform 4.11 Authentication and authorization

Service Account Description

replication-controller Assigned the system:replication-controller role

deployment- Assigned the system:deployment-controller role
controller
build-controller Assigned the system:build-controller role. Additionally, the build-controller

service account is included in the privileged security context constraint to create
privileged build pods.

11.2.2. Default project service accounts and roles

Three service accounts are automatically created in each project:

Service Account Usage

builder Used by build pods. It is given the system:image-builder role, which allows
pushing images to any imagestream in the project using the internal Docker
registry.

deployer Used by deployment pods and given the system:deployer role, which allows

viewing and modifying replication controllers and pods in the project.

default Used to run all other pods unless they specify a different service account.

All service accounts in a project are given the system:image-puller role, which allows pulling images
from any imagestream in the project using the internal container image registry.

11.2.3. About automatically generated service account token secrets

When a service account is created, a service account token secret is automatically generated for it. This
service account token secret, along with an automatically generated docker configuration secret, is used
to authenticate to the internal OpenShift Container Platform registry. Do not rely on these automatically
generated secrets for your own use; they might be removed in a future OpenShift Container Platform
release.

102

CHAPTER 11. USING SERVICE ACCOUNTS IN APPLICATIONS

NOTE

Prior to OpenShift Container Platform 4.11, a second service account token secret was
generated when a service account was created. This service account token secret was
used to access the Kubernetes API.

Starting with OpenShift Container Platform 4.11, this second service account token secret
is no longer created. This is because the
LegacyServiceAccountTokenNoAutoGeneration upstream Kubernetes feature gate
was enabled, which stops the automatic generation of secret-based service account
tokens to access the Kubernetes API.

After upgrading to 4.11, any existing service account token secrets are not deleted and
continue to function.

Workloads are automatically injected with a projected volume to obtain a bound service account token. If
your workload needs an additional service account token, add an additional projected volume in your
workload manifest. Bound service account tokens are more secure than service account token secrets
for the following reasons:

® Bound service account tokens have a bounded lifetime.

® Bound service account tokens contain audiences.

® Bound service account tokens can be bound to pods or secrets and the bound tokens are
invalidated when the bound object is removed.

For more information, see Configuring bound service account tokens using volume projection .
You can also manually create a service account token secret to obtain a token, if the security exposure

of a non-expiring token in a readable API object is acceptable to you. For more information, see
Creating a service account token secret .

Additional resources

® Forinformation about requesting bound service account tokens, see Configuring bound service
account tokens using volume projection.

e Forinformation about creating a service account token secret, see Creating a service account
token secret.

11.3. CREATING SERVICE ACCOUNTS

You can create a service account in a project and grant it permissions by binding it to a role.

Procedure

1. Optional: To view the service accounts in the current project:
I $ oc get sa

Example output

NAME SECRETS AGE
builder 2 2d

103

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/authentication_and_authorization/#bound-sa-tokens-configuring_bound-service-account-tokens
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/nodes/#nodes-pods-secrets-creating-sa_nodes-pods-secrets

OpenShift Container Platform 4.11 Authentication and authorization

default 2 2d
deployer 2 2d
2. To create a new service account in the current project:

I $ oc create sa <service_account_name> 0

ﬂ To create a service account in a different project, specify -n <project_names.

Example output

I serviceaccount "robot" created

TIP

You can alternatively apply the following YAML to create the service account:

apiVersion: vi

kind: ServiceAccount

metadata:
name: <service_account_name>
namespace: <current_project>

3. Optional: View the secrets for the service account:

I $ oc describe sa robot

Example output

Name: robot
Namespace: projectt
Labels: <none>

Annotations: <none>

Image pull secrets: robot-dockercfg-gzbhb
Mountable secrets: robot-dockercfg-gzbhb
Tokens: robot-token-f4khf

Events: <none>

104

CHAPTER 12. USING A SERVICE ACCOUNT AS AN OAUTH CLIENT

CHAPTER 12. USING A SERVICE ACCOUNT AS AN OAUTH
CLIENT

12.1. SERVICE ACCOUNTS AS OAUTH CLIENTS
You can use a service account as a constrained form of OAuth client. Service accounts can request only
a subset of scopes that allow access to some basic user information and role-based power inside of the
service account’s own namespace:

e user:info

e user:check-access

® role:<any_role>:<service_account_namespace>

® role:<any_role>:<service_account_namespace>:!

When using a service account as an OAuth client:

e client_id is system:serviceaccount:<service_account_namespace>:
<service_account_name>.

e client_secret can be any of the API tokens for that service account. For example:

I $ oc sa get-token <service_account_name>

® To get WWW-Authenticate challenges, set an serviceaccounts.openshift.io/oauth-want-
challenges annotation on the service account to true.

® redirect_uri must match an annotation on the service account.

12.1.1. Redirect URIs for service accounts as OAuth clients

Annotation keys must have the prefix serviceaccounts.openshift.io/oauth-redirecturi. or
serviceaccounts.openshift.io/oauth-redirectreference. such as:

I serviceaccounts.openshift.io/oauth-redirecturi.<name>

In its simplest form, the annotation can be used to directly specify valid redirect URIs. For example:

"serviceaccounts.openshift.io/oauth-redirecturi.first": "https://example.com"”
"serviceaccounts.openshift.io/oauth-redirecturi.second": "https://other.com”

The first and second postfixes in the above example are used to separate the two valid redirect URIs.
In more complex configurations, static redirect URIs may not be enough. For example, perhaps you want
all Ingresses for a route to be considered valid. This is where dynamic redirect URIs via the

serviceaccounts.openshift.io/oauth-redirectreference. prefix come into play.

For example:

105

OpenShift Container Platform 4.11 Authentication and authorization

"serviceaccounts.openshift.io/oauth-redirectreference.first": "
{\"kind\"\"OAuthRedirectReference\" \"apiVersion\":\"vi\" \"reference\":
{\"kind\":\"Route\",\"name\":\"jenkins\"}}"

Since the value for this annotation contains serialized JSON data, it is easier to see in an expanded
format:

{
"kind": "OAuthRedirectReference",

"apiVersion": "v1",

"reference": {
"kind": "Route",
"name": "jenkins"

}
}

Now you can see that an OAuthRedirectReference allows us to reference the route named jenkins.
Thus, all Ingresses for that route will now be considered valid. The full specification for an
OAuthRedirectReference is:

{
"kind": "OAuthRedirectReference",

"apiVersion": "v1",

"reference” {0
"kind": ...,
"name": ..., 9
"group”: ... 6

}

ﬂ kind refers to the type of the object being referenced. Currently, only route is supported.

9 name refers to the name of the object. The object must be in the same namespace as the service
account.

9 group refers to the group of the object. Leave this blank, as the group for a route is the empty
string.

Both annotation prefixes can be combined to override the data provided by the reference object. For
example:

"serviceaccounts.openshift.io/oauth-redirecturi.first": "custompath”
"serviceaccounts.openshift.io/oauth-redirectreference.first": "
{\"kind\":\"OAuthRedirectReference\" \"apiVersion\":\"vi\" \"reference\":
{\"kind\":\"Route\",\"name\":\"jenkins\"}}"

The first postfix is used to tie the annotations together. Assuming that the jenkins route had an Ingress
of https://example.com, now https://example.com/custompath is considered valid, but
https://example.com is not. The format for partially supplying override data is as follows:

106

CHAPTER 12. USING A SERVICE ACCOUNT AS AN OAUTH CLIENT

Type Syntax

Scheme "https:;//"

Hostname "//website.com”

Port "//:8000"

Path "examplepath”
NOTE

Specifying a hostname override will replace the hostname data from the referenced
object, which is not likely to be desired behavior.

Any combination of the above syntax can be combined using the following format:
<scheme:>//<hosthame><:port>/<path>

The same object can be referenced more than once for more flexibility:

"serviceaccounts.openshift.io/oauth-redirecturi.first": "custompath”
"serviceaccounts.openshift.io/oauth-redirectreference.first": "
{\"kind\":\"OAuthRedirectReference\" \"apiVersion\":\"vi\" \"reference\":
{\"kind\":\"Route\",\"name\":\"jenkins\"}}"
"serviceaccounts.openshift.io/oauth-redirecturi.second": "//:8000"
"serviceaccounts.openshift.io/oauth-redirectreference.second": "
{\"kind\":\"OAuthRedirectReference\" \"apiVersion\":\"vi\" \"reference\":
{\"kind\":\"Route\",\"name\":\"jenkins\"}}"

Assuming that the route named jenkins has an Ingress of https://example.com, then both
https://example.com:8000 and https://example.com/custompath are considered valid.

Static and dynamic annotations can be used at the same time to achieve the desired behavior:

"serviceaccounts.openshift.io/oauth-redirectreference.first": "
{\"kind\":\"OAuthRedirectReference\" \"apiVersion\":\"vi\" \"reference\":
{\"kind\":\"Route\",\"name\":\"jenkins\"}}"
"serviceaccounts.openshift.io/oauth-redirecturi.second": "https://other.com”

107

OpenShift Container Platform 4.11 Authentication and authorization

CHAPTER 13. SCOPING TOKENS

13.1. ABOUT SCOPING TOKENS

You can create scoped tokens to delegate some of your permissions to another user or service account.
For example, a project administrator might want to delegate the power to create pods.

A scoped token is a token that identifies as a given user but is limited to certain actions by its scope.
Only a user with the cluster-admin role can create scoped tokens.

Scopes are evaluated by converting the set of scopes for a token into a set of PolicyRules. Then, the

request is matched against those rules. The request attributes must match at least one of the scope
rules to be passed to the "normal" authorizer for further authorization checks.

13.1.1. User scopes

User scopes are focused on getting information about a given user. They are intent-based, so the rules
are automatically created for you:

e user:full - Allows full read/write access to the API with all of the user’s permissions.

e user:info - Allows read-only access to information about the user, such as name and groups.

e user:check-access - Allows access to self-localsubjectaccessreviews and self-
subjectaccessreviews. These are the variables where you pass an empty user and groups in

your request object.

e user:list-projects - Allows read-only access to list the projects the user has access to.

13.1.2. Role scope

The role scope allows you to have the same level of access as a given role filtered by namespace.

e role:<cluster-role name>:<namespace or * for all> - Limits the scope to the rules specified
by the cluster-role, but only in the specified namespace .

NOTE

Caveat: This prevents escalating access. Even if the role allows access to
resources like secrets, rolebindings, and roles, this scope will deny access to
those resources. This helps prevent unexpected escalations. Many people do not
think of a role like edit as being an escalating role, but with access to a secret it is.

® role:<cluster-role name>:<namespace or * for all>:! - This is similar to the example above,
except that including the bang causes this scope to allow escalating access.

108

CHAPTER 14. USING BOUND SERVICE ACCOUNT TOKENS

CHAPTER 14. USING BOUND SERVICE ACCOUNT TOKENS

You can use bound service account tokens, which improves the ability to integrate with cloud provider
identity access management (IAM) services, such as AWS IAM.

14.1. ABOUT BOUND SERVICE ACCOUNT TOKENS

You can use bound service account tokens to limit the scope of permissions for a given service account
token. These tokens are audience and time-bound. This facilitates the authentication of a service
account to an IAM role and the generation of temporary credentials mounted to a pod. You can request
bound service account tokens by using volume projection and the TokenRequest API.

14.2. CONFIGURING BOUND SERVICE ACCOUNT TOKENS USING
VOLUME PROJECTION

You can configure pods to request bound service account tokens by using volume projection.

Prerequisites
® You have access to the cluster as a user with the cluster-admin role.

® You have created a service account. This procedure assumes that the service account is named
build-robot.

Procedure

1. Optional: Set the service account issuer.
This step is typically not required if the bound tokens are used only within the cluster.

IMPORTANT

If you change the service account issuer to a custom one, the previous service
account issuer is still trusted for the next 24 hours.

You can force all holders to request a new bound token either by manually
restarting all pods in the cluster or by performing a rolling node restart. Before
performing either action, wait for a new revision of the Kubernetes APl server
pods to roll out with your service account issuer changes.

a. Edit the cluster Authentication object:

I $ oc edit authentications cluster

b. Set the spec.serviceAccountlssuer field to the desired service account issuer value:

spec:
serviceAccountlssuer: https://test.default.svc ﬂ

This value should be a URL from which the recipient of a bound token can source the
public keys necessary to verify the signature of the token. The default is
https://kubernetes.default.svc.

109

OpenShift Container Platform 4.11 Authentication and authorization

c. Save the file to apply the changes.

d. Wait for a new revision of the Kubernetes APl server pods to roll out. It can take several
minutes for all nodes to update to the new revision. Run the following command:

$ oc get kubeapiserver -o=jsonpath="'{range .items[0].status.conditions[?
(@.type=="NodelnstallerProgressing")]}{.reason}{"\n"}{.message}{"\n"}'

Review the NodelnstallerProgressing status condition for the Kubernetes APl server to
verify that all nodes are at the latest revision. The output shows
AlINodesAtLatestRevision upon successful update:

AlINodesAtLatestRevision
3 nodes are at revision 12 ﬂ

ﬂ In this example, the latest revision number is 12.

If the output shows a message similar to one of the following messages, the update is still in
progress. Wait a few minutes and try again.

e 3 nodes are at revision 11; 0 nodes have achieved new revision 12
® 2 nodes are at revision 11; 1 nodes are at revision 12

e. Optional: Force the holder to request a new bound token either by performing a rolling node
restart or by manually restarting all pods in the cluster.

® Perform arolling node restart:

' WARNING
A It is not recommended to perform a rolling node restart if you have

custom workloads running on your cluster, because it can cause a
service interruption. Instead, manually restart all pods in the cluster.

Restart nodes sequentially. Wait for the node to become fully available before
restarting the next node. See Rebooting a node gracefully for instructions on how to
drain, restart, and mark a node as schedulable again.

® Manually restart all pods in the cluster:

110

CHAPTER 14. USING BOUND SERVICE ACCOUNT TOKENS

' WARNING
A Be aware that running this command causes a service interruption,

because it deletes every running pod in every namespace. These
pods will automatically restart after they are deleted.

Run the following command:

$ for I in $(oc get ns -0 jsonpath='{range .items[*]} {. metadata.name}{"\n"} {end}'); \
do oc delete pods --all -n $I; \
sleep 1;\
done

2. Configure a pod to use a bound service account token by using volume projection.

a. Create a file called pod-projected-sve-token.yaml with the following contents:

apiVersion: vi
kind: Pod
metadata:
name: nginx
spec:
containers:
- image: nginx
name: nginx
volumeMounts:
- mountPath: /var/run/secrets/tokens
name: vault-token
serviceAccountName: build-robot ﬂ
volumes:
- name: vault-token
projected:
sources:
- serviceAccountToken:
path: vault-token 9
expirationSeconds: 7200 6
audience: vault

A reference to an existing service account.

The path relative to the mount point of the file to project the token into.

-

Optionally set the expiration of the service account token, in seconds. The default is
3600 seconds (1 hour) and must be at least 600 seconds (10 minutes). The kubelet will
start trying to rotate the token if the token is older than 80 percent of its time to live
or if the token is older than 24 hours.

Q Optionally set the intended audience of the token. The recipient of a token should

verify that the recipient identity matches the audience claim of the token, and should
otherwise reject the token. The audience defaults to the identifier of the APl server.

m

OpenShift Container Platform 4.11 Authentication and authorization

NOTE
In order to prevent unexpected failure, OpenShift Container Platform
overrides the expirationSeconds value to be one year from the initial token

generation with the --service-account-extend-token-expiration default of
true. You cannot change this setting.

b. Create the pod:
I $ oc create -f pod-projected-svc-token.yaml

The kubelet requests and stores the token on behalf of the pod, makes the token available
to the pod at a configurable file path, and refreshes the token as it approaches expiration.

3. The application that uses the bound token must handle reloading the token when it rotates.
The kubelet rotates the token if it is older than 80 percent of its time to live, or if the token is

older than 24 hours.

14.3. CREATING BOUND SERVICE ACCOUNT TOKENS OUTSIDE THE

POD

Prerequisites

® You have access to the cluster as a user with the cluster-admin role.

® You have created a service account. This procedure assumes that the service account is named

build-robot.

Procedure

12

® Create the bound service account token outside the pod by running the following command:

I $ oc create token build-robot

Example output

eyJhbGciOidSUzI1NilsImtpZCl6lkY2M1N4MHRve2xFNnFSQIA4eGOGYzVPANN3NKhIVOtRW

mFrUDRNcWx4S0kifQ.eyJhdWQiOlsiaHROcHM6Ly9pc3N1ZXlyLnRIc3QuY29tliwiaHROcCHM6L

y9pc3N1ZXIxLnRIc3QuY29tliwiaHROcHM6Ly9rdWJlcmSIdGVzLmRIZmF1bHQuc3Zjll0sImV4c

CI6MTY30TUOMzgzMCwiaWFO0ljoxNjcSNTQwMjMwLCJpc3MiOiJodHRwczovL21zc3VIcjludGV

zdC5jb20iLCJrdWJlcm5IldGVzLmivljp7Im5hbWVzcGFjZSI6ImRIZmF1bHQILCJzZXJ2aWNIYW
Njb3VudCleeyJuYW1lljoidGVzdC1zYSIsInVpZCI6ImM3ZjA4MjkwLWIzOTUINGM4NCO4N;jl4L
TMzMTM1NTVhNWY10SJ9fSwibmJmljoxNjcSNTQwWMjMwLCJzdWIiOiJze XNOZWO06c2Vydmlj
ZWFjY291bnQ6ZGVmYXVsdDp0ZXNOLXNhIn0.WyAOPvh1BFMUI3LNhBCrQeaB5wSynbnCf
0jWuUNNPSIIT4YvFnKibxwREwmzHpV4LO1xOFZHSi6bXBOMG_o-
MOXNDYL3FrGHd65mymiFyluztxa2lgHVxjw5relV5ZLgNSol3Y8bJgQgmNg3rtQQWRML2kpJB
XdDHNwwOE5XOypmffYkfkadli8INSQQD-
MhsCbiAF8waCYs8bj6V6Y7uUKTcxee8sCjiRMViXKjQtooERKm-
CH_p57wxCljIBeM89VdaR51NJGued4hVV5IxvVrYZFu89IBEAq4oyQN_d6N1vBWGXQMyoihn
t_fQjn-NfnlJWk-3NSZDIluDJAv7e-MTEk3geDrHVQKNEzDei2-Un64hSzb-
n1g1M0Vn0885wQBQAePCOUIZm8YZIMNk1tqgewlUKQTMv3HPfiSHtBRqVc2eVsOEfMX4-x-
PHhPCasJ6qLJWyj6DvyQ08dP4DW_TWZVGvKImIdOhzwpg59TTcLROICKISEJgAVEEd13Aa_
MO-

CHAPTER 14. USING BOUND SERVICE ACCOUNT TOKENS

faD11L3MhUGxw0gxgOsPczdXUsolSISbefs70KymzFSIKkTAnN9sDQ8PHMOsuyxsK8vzfrR-
EO0z7MAeguZ2kalY7cZgbN6WFy0caWgx46hrkKem9vCKALefEIRYbCg3hcBmowBcRTOgaFHL
NnHghhU1LaRpoFzH70UargX9SGQ

Additional resources

® Rebooting a node gracefully

® Creating service accounts

13

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/nodes/#nodes-nodes-rebooting-gracefully_nodes-nodes-rebooting
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/authentication_and_authorization/#service-accounts-managing_understanding-service-accounts

OpenShift Container Platform 4.11 Authentication and authorization

CHAPTER 15. MANAGING SECURITY CONTEXT CONSTRAINTS

15.1. ABOUT SECURITY CONTEXT CONSTRAINTS
Similar to the way that RBAC resources control user access, administrators can use security context
constraints (SCCs) to control permissions for pods. These permissions include actions that a pod can
perform and what resources it can access. You can use SCCs to define a set of conditions that a pod
must run with to be accepted into the system.
Security context constraints allow an administrator to control:

® Whether a pod can run privileged containers with the allowPrivilegedContainer flag.

® Whether a pod is constrained with the allowPrivilegeEscalation flag.

® The capabilities that a container can request

® The use of host directories as volumes

® The SELinux context of the container

® The container user ID

® The use of host namespaces and networking

® The allocation of an FSGroup that owns the pod volumes

® The configuration of allowable supplemental groups

® Whether a container requires write access to its root file system

® The usage of volume types

® The configuration of allowable seccomp profiles

IMPORTANT

Do not set the openshift.io/run-level label on any namespaces in OpenShift Container
Platform. This label is for use by internal OpenShift Container Platform components to
manage the startup of major API groups, such as the Kubernetes APl server and
OpenShift APl server. If the openshift.io/run-level label is set, no SCCs are applied to
pods in that namespace, causing any workloads running in that namespace to be highly
privileged.

15.1.1. Default security context constraints

The cluster contains several default security context constraints (SCCs) as described in the table below.
Additional SCCs might be installed when you install Operators or other components to OpenShift
Container Platform.

14

CHAPTER 15. MANAGING SECURITY CONTEXT CONSTRAINTS

IMPORTANT

Do not modify the default SCCs. Customizing the default SCCs can lead to issues when
some of the platform pods deploy or OpenShift Container Platform is upgraded. During
upgrades between some versions of OpenShift Container Platform, the values of the
default SCCs are reset to the default values, which discards all customizations to those
SCCs.

Instead, create new SCCs as needed.

Table 15.1. Default security context constraints

Security context Description

constraint

anyuid Provides all features of the restricted SCC, but allows users to run with any UID
and any GID.
hostaccess Allows access to all host namespaces but still requires pods to be run with a UID

and SELinux context that are allocated to the namespace.

' WARNING
A This SCC allows host access to namespaces, file systems,

and PIDs. It should only be used by trusted pods. Grant with
caution.

hostmount-anyuid Provides all the features of the restricted SCC, but allows host mounts and
running as any UID and any GID on the system.

' WARNING
A This SCC allows host file system access as any UID,

including UID 0. Grant with caution.

115

OpenShift Container Platform 4.11 Authentication and authorization

Security context Description

constraint

hostnetwork Allows using host networking and host ports but still requires pods to be run with a
UID and SELinux context that are allocated to the namespace.

WARNING
A If additional workloads are run on control plane hosts, use

caution when providing access to hostnetwork. A
workload that runs hostnetwork on a control plane host is
effectively root on the cluster and must be trusted
accordingly.

hostnetwork-v2 Like the hostnetwork SCC, but with the following differences:
® ALL capabilities are dropped from containers.
e The NET_BIND_SERVICE capability can be added explicitly.
e seccompProfile is set to runtime/default by default.

e allowPrivilegeEscalation must be unset or set tofalse in security
contexts.

node-exporter Used for the Prometheus node exporter.

' WARNING
A This SCC allows host file system access as any UID,

including UID O. Grant with caution.

nonroot Provides all features of the restricted SCC, but allows users to run with any non-
root UID. The user must specify the UID or it must be specified in the manifest of
the container runtime.

16

Security context

constraint

CHAPTER 15. MANAGING SECURITY CONTEXT CONSTRAINTS

Description

nonroot-v2

privileged

Like the nonroot SCC, but with the following differences:

ALL capabilities are dropped from containers.
The NET_BIND_SERVICE capability can be added explicitly.
seccompProfile is set to runtime/default by default.

allowPrivilegeEscalation must be unset or set tofalse in security
contexts.

Allows access to all privileged and host features and the ability to run as any user,
any group, any FSGroup, and with any SELinux context.

' WARNING
A This is the most relaxed SCC and should be used only for

cluster administration. Grant with caution.

The privileged SCC allows:

Users to run privileged pods

Pods to mount host directories as volumes
Pods to run as any user

Pods to run with any MCS label

Pods to use the host's IPC namespace
Pods to use the host’'s PID namespace
Pods to use any FSGroup

Pods to use any supplemental group

Pods to use any seccomp profiles

Pods to request any capabilities

NOTE

Setting privileged: true in the pod specification does not
necessarily select the privileged SCC. The SCC that has
allowPrivilegedContainer: true and has the highest
prioritization will be chosen if the user has the permissions to use
it.

17

OpenShift Container Platform 4.11 Authentication and authorization

Security context

constraint

Description

restricted

restricted-v2

Denies access to all host features and requires pods to be run with a UID, and
SELinux context that are allocated to the namespace.

The restricted SCC:
® Ensures that pods cannot run as privileged
® Ensures that pods cannot mount host directory volumes
® Requires that a pod is run as a user in a pre-allocated range of UIDs
® Requires that a pod is run with a pre-allocated MCS label
® Allows pods to use any FSGroup
® Allows pods to use any supplemental group

In clusters that were upgraded from OpenShift Container Platform 4.10 or earlier,
this SCC is available for use by any authenticated user. The restricted SCCis no
longer available to users of new OpenShift Container Platform 4.11 installations,
unless the access is explicitly granted.

Like the restricted SCC, but with the following differences:
® ALL capabilities are dropped from containers.
e The NET_BIND_SERVICE capability can be added explicitly.

e seccompProfile is set to runtime/default by default.

e allowPrivilegeEscalation must be unset or set tofalse in security
contexts.

This is the most restrictive SCC provided by a new installation and will be used by
default for authenticated users.

4 NOTE

The restricted-v2 SCC is the most restrictive of the SCCs that
’ is included by default with the system. However, you can create a
custom SCC that is even more restrictive. For example, you can
create an SCC that restricts readOnlyRootFilesystem to
» true.

15.1.2. Security context constraints settings

Security context constraints (SCCs) are composed of settings and strategies that control the security
features a pod has access to. These settings fall into three categories:

Category Description

18

CHAPTER 15. MANAGING SECURITY CONTEXT CONSTRAINTS

Category Description

Controlled by a boolean Fields of this type default to the most restrictive value. For example,
AllowPrivilegedContainer is always set tofalse if unspecified.

Controlled by an Fields of this type are checked against the set to ensure their value is allowed.
allowable set

Controlled by a strategy Items that have a strategy to generate a value provide:
® A mechanism to generate the value, and

® A mechanism to ensure that a specified value falls into the set of
allowable values.

CRI-O has the following default list of capabilities that are allowed for each container of a pod:

e CHOWN

e DAC_OVERRIDE

e FSETID

e FOWNER

e SETGID

e SETUID

e SETPCAP

e NET_BIND_SERVICE

e KILL
The containers use the capabilities from this default list, but pod manifest authors can alter the list by
requesting additional capabilities or removing some of the default behaviors. Use the
allowedCapabilities, defaultAddCapabilities, and requiredDropCapabilities parameters to control
such requests from the pods. With these parameters you can specify which capabilities can be

requested, which ones must be added to each container, and which ones must be forbidden, or dropped,
from each container.

NOTE

You can drop all capabilites from containers by setting the requiredDropCapabilities
parameter to ALL. This is what the restricted-v2 SCC does.

15.1.3. Security context constraints strategies

RunAsUser

o MustRunAs - Requires a runAsUser to be configured. Uses the configured runAsUser as the
default. Validates against the configured runAsUser.

19

OpenShift Container Platform 4.11 Authentication and authorization

Example MustRunAs snhippet

runAsUser:
type: MustRunAs
uid: <id>

e MustRunAsRange - Requires minimum and maximum values to be defined if not using pre-

allocated values. Uses the minimum as the default. Validates against the entire allowable range.

Example MustRunAsRange snippet

runAsUser:
type: MustRunAsRange
uidRangeMax: <maxvalue>
uidRangeMin: <minvalue>

® MustRunAsNonRoot - Requires that the pod be submitted with a non-zero runAsUser or have
the USER directive defined in the image. No default provided.

Example MustRunAsNonRoot shippet

runAsUser:
type: MustRunAsNonRoot

® RunAsAny - No default provided. Allows any runAsUser to be specified.

Example RunAsAny snippet

runAsUser:
type: RunAsAny

SELinuxContext

o MustRunAs - Requires seLinuxOptions to be configured if not using pre-allocated values.
Uses seLinuxOptions as the default. Validates against seLinuxOptions.

® RunAsAny - No default provided. Allows any seLinuxOptions to be specified.

SupplementalGroups

o MustRunAs - Requires at least one range to be specified if not using pre-allocated values. Uses
the minimum value of the first range as the default. Validates against all ranges.

® RunAsAny - No default provided. Allows any supplementalGroups to be specified.

120

CHAPTER 15. MANAGING SECURITY CONTEXT CONSTRAINTS

FSGroup

o MustRunAs - Requires at least one range to be specified if not using pre-allocated values. Uses
the minimum value of the first range as the default. Validates against the first ID in the first
range.

® RunAsAny - No default provided. Allows any fsGroup ID to be specified.

15.1.4. Controlling volumes

The usage of specific volume types can be controlled by setting the volumes field of the SCC. The
allowable values of this field correspond to the volume sources that are defined when creating a volume:

e awsElasticBlockStore
e azureDisk

e azureFile

o cephFS

e cinder

e configMap

e downwardAPI

e emptyDir

e fc

o flexVolume

e flocker

® gcePersistentDisk

o ephemeral

e gitRepo

e glusterfs

® hostPath

® jscsi

® nfs

e persistentVolumeClaim
e photonPersistentDisk
e portworxVolume

® projected

e quobyte

121

https://kubernetes.io/docs/concepts/storage/volumes/#awselasticblockstore
https://kubernetes.io/docs/concepts/storage/volumes/#azuredisk
https://kubernetes.io/docs/concepts/storage/volumes/#azurefile
https://kubernetes.io/docs/concepts/storage/volumes/#cephfs
https://kubernetes.io/docs/concepts/storage/volumes/#cinder
https://kubernetes.io/docs/concepts/storage/volumes/#configmap
https://kubernetes.io/docs/concepts/storage/volumes/#downwardapi
https://kubernetes.io/docs/concepts/storage/volumes/#emptydir
https://kubernetes.io/docs/concepts/storage/volumes/#fc
https://kubernetes.io/docs/concepts/storage/volumes/#flexvolume
https://kubernetes.io/docs/concepts/storage/volumes/#flocker
https://kubernetes.io/docs/concepts/storage/volumes/#gcepersistentdisk
https://kubernetes.io/docs/concepts/storage/ephemeral-volumes/#generic-ephemeral-volumes
https://kubernetes.io/docs/concepts/storage/volumes/#gitrepo
https://kubernetes.io/docs/concepts/storage/volumes/#glusterfs
https://kubernetes.io/docs/concepts/storage/volumes/#hostpath
https://kubernetes.io/docs/concepts/storage/volumes/#iscsi
https://kubernetes.io/docs/concepts/storage/volumes/#nfs
https://kubernetes.io/docs/concepts/storage/volumes/#persistentvolumeclaim
https://kubernetes.io/docs/concepts/storage/volumes/#portworxvolume
https://kubernetes.io/docs/concepts/storage/volumes/#projected
https://kubernetes.io/docs/concepts/storage/volumes/#quobyte

OpenShift Container Platform 4.11 Authentication and authorization

e rbd

e scalelO

e secret

e storageos

e vsphereVolume

® *(Aspecial value to allow the use of all volume types.)

® none (A special value to disallow the use of all volumes types. Exists only for backwards
compatibility.)

The recommended minimum set of allowed volumes for new SCCs are configMap, downwardAPI,
emptyDir, persistentVolumeClaim, secret, and projected.

NOTE

This list of allowable volume types is not exhaustive because new types are added with
each release of OpenShift Container Platform.

NOTE

For backwards compatibility, the usage of allowHostDirVolumePlugin overrides settings
in the volumes field. For example, if allowHostDirVolumePlugin is set to false but
allowed in the volumes field, then the hostPath value will be removed from volumes.

15.1.5. Admission control

Admission control with SCCs allows for control over the creation of resources based on the capabilities
granted to a user.

In terms of the SCCs, this means that an admission controller can inspect the user information made
available in the context to retrieve an appropriate set of SCCs. Doing so ensures the pod is authorized
to make requests about its operating environment or to generate a set of constraints to apply to the
pod.

The set of SCCs that admission uses to authorize a pod are determined by the user identity and groups

that the user belongs to. Additionally, if the pod specifies a service account, the set of allowable SCCs
includes any constraints accessible to the service account.

NOTE

When you create a workload resource, such as deployment, only the service account is
used to find the SCCs and admit the pods when they are created.

Admission uses the following approach to create the final security context for the pod:
1. Retrieve all SCCs available for use.
2. Generate field values for security context settings that were not specified on the request.

3. Validate the final settings against the available constraints.

122

https://kubernetes.io/docs/concepts/storage/volumes/#rbd
https://kubernetes.io/docs/concepts/storage/volumes/#scaleio
https://kubernetes.io/docs/concepts/storage/volumes/#secret
https://kubernetes.io/docs/concepts/storage/volumes/#storageos
https://kubernetes.io/docs/concepts/storage/volumes/#vspherevolume

CHAPTER 15. MANAGING SECURITY CONTEXT CONSTRAINTS

If a matching set of constraints is found, then the pod is accepted. If the request cannot be matched to
an SCC, the pod is rejected.

A pod must validate every field against the SCC. The following are examples for just two of the fields
that must be validated:

NOTE

These examples are in the context of a strategy using the pre-allocated values.

An FSGroup SCC strategy of MustRunAs

If the pod defines a fsGroup ID, then that ID must equal the default fsGroup ID. Otherwise, the pod is
not validated by that SCC and the next SCC is evaluated.

If the SecurityContextConstraints.fsGroup field has value RunAsAny and the pod specification omits
the Pod.spec.securityContext.fsGroup, then this field is considered valid. Note that it is possible that
during validation, other SCC settings will reject other pod fields and thus cause the pod to fail.

A SupplementalGroups SCC strategy of MustRunAs

If the pod specification defines one or more supplementalGroups IDs, then the pod’s IDs must equal
one of the IDs in the namespace’s openshift.io/sa.scc.supplemental-groups annotation. Otherwise,
the pod is not validated by that SCC and the next SCC is evaluated.

If the SecurityContextConstraints.supplementalGroups field has value RunAsAny and the pod
specification omits the Pod.spec.securityContext.supplementalGroups, then this field is considered

valid. Note that it is possible that during validation, other SCC settings will reject other pod fields and
thus cause the pod to fail.

15.1.6. Security context constraints prioritization

Security context constraints (SCCs) have a priority field that affects the ordering when attempting to
validate a request by the admission controller.

A priority value of 0 is the lowest possible priority. A nil priority is considered a 0, or lowest, priority.
Higher priority SCCs are moved to the front of the set when sorting.

When the complete set of available SCCs is determined, the SCCs are ordered in the following manner:
1. The highest priority SCCs are ordered first.
2. If the priorities are equal, the SCCs are sorted from most restrictive to least restrictive.
3. If both the priorities and restrictions are equal, the SCCs are sorted by name.

By default, the anyuid SCC granted to cluster administrators is given priority in their SCC set. This

allows cluster administrators to run pods as any user by specifying RunAsUser in the pod’s
SecurityContext.

15.2. ABOUT PRE-ALLOCATED SECURITY CONTEXT CONSTRAINTS
VALUES

The admission controller is aware of certain conditions in the security context constraints (SCCs) that
trigger it to look up pre-allocated values from a namespace and populate the SCC before processing

123

OpenShift Container Platform 4.11 Authentication and authorization

the pod. Each SCC strategy is evaluated independently of other strategies, with the pre-allocated
values, where allowed, for each policy aggregated with pod specification values to make the final values
for the various IDs defined in the running pod.

The following SCCs cause the admission controller to look for pre-allocated values when no ranges are
defined in the pod specification:

1.

A RunAsUser strategy of MustRunAsRange with no minimum or maximum set. Admission
looks for the openshift.io/sa.scc.uid-range annotation to populate range fields.

An SELinuxContext strategy of MustRunAs with no level set. Admission looks for the
openshift.io/sa.scc.mcs annotation to populate the level.

A FSGroup strategy of MustRunAs. Admission looks for the
openshift.io/sa.scc.supplemental-groups annotation.

A SupplementalGroups strategy of MustRunAs. Admission looks for the
openshift.io/sa.scc.supplemental-groups annotation.

During the generation phase, the security context provider uses default values for any parameter values
that are not specifically set in the pod. Default values are based on the selected strategy:

1.

RunAsAny and MustRunAsNonRoot strategies do not provide default values. If the pod needs
a parameter value, such as a group ID, you must define the value in the pod specification.

MustRunAs (single value) strategies provide a default value that is always used. For example,
for group IDs, even if the pod specification defines its own ID value, the namespace’s default
parameter value also appears in the pod's groups.

MustRunAsRange and MustRunAs (range-based) strategies provide the minimum value of
the range. As with a single value MustRunAs strategy, the namespace’s default parameter value
appears in the running pod. If a range-based strategy is configurable with multiple ranges, it
provides the minimum value of the first configured range.

NOTE

FSGroup and SupplementalGroups strategies fall back to the openshift.io/sa.scc.uid-
range annotation if the openshift.io/sa.scc.supplemental-groups annotation does not
exist on the namespace. If neither exists, the SCC is not created.

NOTE

By default, the annotation-based FSGroup strategy configures itself with a single range
based on the minimum value for the annotation. For example, if your annotation reads
1/3, the FSGroup strategy configures itself with a minimum and maximum value of 1.If
you want to allow more groups to be accepted for the FSGroup field, you can configure a
custom SCC that does not use the annotation.

NOTE

The openshift.io/sa.scc.supplemental-groups annotation accepts a comma-delimited
list of blocks in the format of <start>/<length or <start>-<end>. The
openshift.io/sa.scc.uid-range annotation accepts only a single block.

15.3. EXAMPLE SECURITY CONTEXT CONSTRAINTS

124

CHAPTER 15. MANAGING SECURITY CONTEXT CONSTRAINTS

The following examples show the security context constraints (SCC) format and annotations:

Annotated privileged SCC

allowHostDirVolumePlugin: true
allowHostIPC: true
allowHostNetwork: true
allowHostPID: true
allowHostPorts: true
allowPrivilegedContainer: true
allowedCapabilities:

%

apiVersion: security.openshift.io/v1
defaultAddCapabilities: [] €3
fsGroup: 6
type: RunAsAny
groups:
- system:cluster-admins
- system:nodes
kind: SecurityContextConstraints
metadata:
annotations:
kubernetes.io/description: 'privileged allows access to all privileged and host
features and the ability to run as any user, any group, any fsGroup, and with
any SELinux context. WARNING: this is the most relaxed SCC and should be used
only for cluster administration. Grant with caution.’
creationTimestamp: null
name: privileged
priority: null
readOnlyRootFilesystem: false
requiredDropCapabilities: 6
- KILL
- MKNOD
- SETUID
- SETGID
runAsUser: G
type: RunAsAny
seLinuxContext:
type: RunAsAny
seccompProfiles:
supplementalGroups: 6
type: RunAsAny
users:
- system:serviceaccount:default:registry
- system:serviceaccount:default:router
- system:serviceaccount:openshift-infra:build-controller
volumes:

%1

A list of capabilities that a pod can request. An empty list means that none of capabilities can be
requested while the special symbol * allows any capabilities.

9 A list of additional capabilities that are added to any pod.

125

OpenShift Container Platform 4.11 Authentication and authorization

O 990060600

The FSGroup strategy, which dictates the allowable values for the security context.

The groups that can access this SCC.

A list of capabilities to drop from a pod. Or, specify ALL to drop all capabilities.

The runAsUser strategy type, which dictates the allowable values for the Security Context.

The seLinuxContext strategy type, which dictates the allowable values for the Security Context.

The supplementalGroups strategy, which dictates the allowable supplemental groups for the
Security Context.

The users who can access this SCC.

The users and groups fields on the SCC control which users can access the SCC. By default, cluster
administrators, nodes, and the build controller are granted access to the privileged SCC. All
authenticated users are granted access to the restricted-v2 SCC.

Without explicit runAsUser setting

apiVersion: vi
kind: Pod
metadata:

name: security-context-demo

spec:

securityContext: ﬂ
containers:
- name: sec-ctx-demo
image: gcr.io/google-samples/node-hello:1.0

When a container or pod does not request a user ID under which it should be run, the effective UID
depends on the SCC that emits this pod. Because the restricted-v2 SCC is granted to all
authenticated users by default, it will be available to all users and service accounts and used in most
cases. The restricted-v2 SCC uses MustRunAsRange strategy for constraining and defaulting the
possible values of the securityContext.runAsUser field. The admission plugin will look for the
openshift.io/sa.scc.uid-range annotation on the current project to populate range fields, as it
does not provide this range. In the end, a container will have runAsUser equal to the first value of
the range that is hard to predict because every project has different ranges.

With explicit runAsUser setting

126

apiVersion: vi
kind: Pod
metadata:

name: security-context-demo

spec:

securityContext:
runAsUser: 1000 @)
containers:
- name: sec-ctx-demo
image: gcr.io/google-samples/node-hello:1.0

CHAPTER 15. MANAGING SECURITY CONTEXT CONSTRAINTS

A container or pod that requests a specific user ID will be accepted by OpenShift Container
Platform only when a service account or a user is granted access to a SCC that allows such a user

This configuration is valid for SELinux, fsGroup, and Supplemental Groups.

15.4. CREATING SECURITY CONTEXT CONSTRAINTS

You can create security context constraints (SCCs) by using the OpenShift CLI (o¢).

Prerequisites

e Install the OpenShift CLI (oc).

® | ogin to the cluster as a user with the cluster-admin role.

Procedure

1. Define the SCCin a YAML file named scc_admin.yaml:

SecurityContextConstraints object definition

kind: SecurityContextConstraints
apiVersion: security.openshift.io/v1
metadata:

name: scc-admin
allowPrivilegedContainer: true
runAsUser:

type: RunAsAny
seLinuxContext:

type: RunAsAny
fsGroup:

type: RunAsAny
supplementalGroups:

type: RunAsAny
users:
- my-admin-user
groups:
- my-admin-group

Optionally, you can drop specific capabilities for an SCC by setting the
requiredDropCapabilities field with the desired values. Any specified capabilities are dropped
from the container. To drop all capabilities, specify ALL. For example, to create an SCC that
drops the KILL, MKNOD, and SYS_CHROOT capabilities, add the following to the SCC object:

requiredDropCapabilities:
- KILL

- MKNOD

- SYS_CHROOT

NOTE

You cannot list a capability in both allowedCapabilities and
requiredDropCapabilities.

127

OpenShift Container Platform 4.11 Authentication and authorization

CRI-O supports the same list of capability values that are found in the Docker documentation.

2. Create the SCC by passing in the file:

I $ oc create -f scc_admin.yaml
Example output

I securitycontextconstraints "scc-admin” created

Verification

e Verify that the SCC was created:

I $ oc get scc scc-admin

Example output

NAME PRIV ~ CAPS SELINUX RUNASUSER FSGROUP SUPGROUP
PRIORITY READONLYROOTFS VOLUMES

scc-admin true] RunAsAny RunAsAny RunAsAny RunAsAny <none> false
[awsElasticBlockStore azureDisk azureFile cephFS cinder configMap downwardAPI
emptyDir fc flexVolume flocker gcePersistentDisk gitRepo glusterfs iscsi nfs
persistentVolumeClaim photonPersistentDisk quobyte rbd secret vsphere]

15.5. ROLE-BASED ACCESS TO SECURITY CONTEXT CONSTRAINTS

You can specify SCCs as resources that are handled by RBAC. This allows you to scope access to your
SCCs to a certain project or to the entire cluster. Assigning users, groups, or service accounts directly to
an SCC retains cluster-wide scope.

NOTE

You cannot assign a SCC to pods created in one of the default namespaces: default,
kube-system, kube-public, openshift-node, openshift-infra, openshift. These
namespaces should not be used for running pods or services.

To include access to SCCs for your role, specify the scc resource when creating a role.

$ oc create role <role-name> --verb=use --resource=scc --resource-name=<scc-name> -n
<hamespace>

This results in the following role definition:

128

apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:

name: role-name ﬂ
namespace: namespace 9

https://docs.docker.com/engine/reference/run/#runtime-privilege-and-linux-capabilities

CHAPTER 15. MANAGING SECURITY CONTEXT CONSTRAINTS

rules:

- apiGroups:
- security.openshift.io 6
resourceNames:

- scc-name @

resources:

- securitycontextconstraints 6
verbs:

- use

The role’s name.

Namespace of the defined role. Defaults to default if not specified.

g The API group that includes the SecurityContextConstraints resource. Automatically defined
when scc is specified as a resource.

Q An example name for an SCC you want to have access.

a Name of the resource group that allows users to specify SCC names in the resourceNames field.

A list of verbs to apply to the role.

o

A local or cluster role with such a rule allows the subjects that are bound to it with a role binding or a
cluster role binding to use the user-defined SCC called scc-name.

NOTE

Because RBAC is designed to prevent escalation, even project administrators are unable
to grant access to an SCC. By default, they are not allowed to use the verb use on SCC
resources, including the restricted-v2 SCC.

15.6. REFERENCE OF SECURITY CONTEXT CONSTRAINTS
COMMANDS

You can manage security context constraints (SCCs) in your instance as normal API objects using the
OpenShift CLI (oc).

NOTE

You must have cluster-admin privileges to manage SCCs.

15.6.1. Listing security context constraints

To get a current list of SCCs:
I $ oc get scc
Example output

NAME PRIV CAPS SELINUX RUNASUSER FSGROUP
SUPGROUP PRIORITY READONLYROOTFS VOLUMES

129

OpenShift Container Platform 4.11 Authentication and authorization

anyuid false <no value> MustRunAs RunAsAny RunAsAny
RunAsAny 10 false
["configMap","downwardAPI","emptyDir","persistentVolumeClaim","projected","secret"]
hostaccess false <no value> MustRunAs MustRunAsRange MustRunAs

RunAsAny <no value> false
["configMap","downwardAPI","emptyDir","hostPath","persistentVolumeClaim","projected","secret"]
hostmount-anyuid false <no value> MustRunAs RunAsAny RunAsAny
RunAsAny <no value> false

["configMap","downwardAPI","emptyDir","hostPath","nfs","persistentVolumeClaim","projected","secret"]

hostnetwork false <no value> MustRunAs MustRunAsRange MustRunAs
MustRunAs <no value> false
["configMap","downwardAPI","emptyDir","persistentVolumeClaim","projected","secret"]
hostnetwork-v2 false ['NET_BIND_SERVICE"] MustRunAs MustRunAsRange
MustRunAs MustRunAs <no value> false
["configMap","downwardAPI","emptyDir","persistentVolumeClaim","projected","secret"]

node-exporter true <no value> RunAsAny RunAsAny RunAsAny
RunAsAny <no value> false ["™"]
nonroot false <no value> MustRunAs MustRunAsNonRoot RunAsAny

RunAsAny <no value> false
["configMap","downwardAPI","emptyDir","persistentVolumeClaim","projected","secret"]
nonroot-v2 false ['NET_BIND_SERVICE"] MustRunAs MustRunAsNonRoot
RunAsAny RunAsAny <no value> false
["configMap","downwardAPI","emptyDir","persistentVolumeClaim","projected","secret"]

privileged true [RunAsAny RunAsAny RunAsAny RunAsAny
<no value> false ™"
restricted false <no value> MustRunAs MustRunAsRange MustRunAs

RunAsAny <no value> false
["configMap","downwardAPI","emptyDir","persistentVolumeClaim","projected","secret"]
restricted-v2 false ['NET_BIND_SERVICE"] MustRunAs MustRunAsRange
MustRunAs RunAsAny <no value> false
["configMap","downwardAPI","emptyDir","persistentVolumeClaim","projected","secret"]

15.6.2. Examining security context constraints

You can view information about a particular SCC, including which users, service accounts, and groups
the SCC is applied to.

For example, to examine the restricted SCC:
I $ oc describe scc restricted

Example output

Name: restricted
Priority: <none>
Access:
Users: <none> ﬂ
Groups: <none> 9
Settings:
Allow Privileged: false
Allow Privilege Escalation: true
Default Add Capabilities: <none>
Required Drop Capabilities: KILL,MKNOD,SETUID,SETGID

130

CHAPTER 15. MANAGING SECURITY CONTEXT CONSTRAINTS

Allowed Capabilities: <none>
Allowed Seccomp Profiles: <none>
Allowed Volume Types:

configMap,downwardAPIl,emptyDir,persistentVolumeClaim,projected,secret

Allowed Flexvolumes: <all>
Allowed Unsafe Sysctls: <none>
Forbidden Sysctls: <none>
Allow Host Network: false
Allow Host Ports: false
Allow Host PID: false
Allow Host IPC: false
Read Only Root Filesystem: false
Run As User Strategy: MustRunAsRange
ulD: <none>
UID Range Min: <none>
UID Range Max: <none>
SELinux Context Strategy: MustRunAs
User: <none>
Role: <none>
Type: <none>
Level: <none>
FSGroup Strategy: MustRunAs
Ranges: <none>
Supplemental Groups Strategy: RunAsAny
Ranges: <none>

ﬂ Lists which users and service accounts the SCC is applied to.

9 Lists which groups the SCC is applied to.

NOTE

To preserve customized SCCs during upgrades, do not edit settings on the default SCCs.

15.6.3. Deleting security context constraints

To delete an SCC:

I $ oc delete scc <scc_name>

NOTE

If you delete a default SCC, it will regenerate when you restart the cluster.

15.6.4. Updating security context constraints

To update an existing SCC:

I $ oc edit scc <scc_name>

131

OpenShift Container Platform 4.11 Authentication and authorization

e NOTE

To preserve customized SCCs during upgrades, do not edit settings on the default SCCs.

132

CHAPTER 16. UNDERSTANDING AND MANAGING POD SECURITY ADMISSION

CHAPTER 16. UNDERSTANDING AND MANAGING POD
SECURITY ADMISSION

Pod security admission is an implementation of the Kubernetes pod security standards. Use pod security
admission to restrict the behavior of pods.

16.1. SECURITY CONTEXT CONSTRAINT SYNCHRONIZATION WITH
POD SECURITY STANDARDS

OpenShift Container Platform includes Kubernetes pod security admission . Globally, the privileged
profile is enforced, and the restricted profile is used for warnings and audits.

In addition to the global pod security admission control configuration, a controller exists that applies pod
security admission control warn and audit labels to namespaces according to the SCC permissions of
the service accounts that are in a given namespace.

IMPORTANT

Namespaces that are defined as part of the cluster payload have pod security admission
synchronization disabled permanently. You can enable pod security admission
synchronization on other namespaces as necessary.

The controller examines ServiceAccount object permissions to use security context constraints in each
namespace. Security context constraints (SCCs) are mapped to pod security profiles based on their
field values; the controller uses these translated profiles. Pod security admission warn and audit labels
are set to the most privileged pod security profile found in the namespace to prevent warnings and
audit logging as pods are created.

Namespace labeling is based on consideration of namespace-local service account privileges.

Applying pods directly might use the SCC privileges of the user who runs the pod. However, user
privileges are not considered during automatic labeling.

16.2. CONTROLLING POD SECURITY ADMISSION SYNCHRONIZATION

You can enable or disable automatic pod security admission synchronization for most namespaces.

133

https://kubernetes.io/docs/concepts/security/pod-security-standards/
https://kubernetes.io/docs/concepts/security/pod-security-admission

OpenShift Container Platform 4.11 Authentication and authorization

IMPORTANT

Namespaces that are defined as part of the cluster payload have pod security admission
synchronization disabled permanently. These namespaces include:

o default

e kube-node-lease
e kube-system

e kube-public

e openshift

® All system-created namespaces that are prefixed with openshift-, except for
openshift-operators

By default, all namespaces that have an openshift- prefix are not synchronized. You can
enable synchronization for any user-created openshift-* namespaces. You cannot enable
synchronization for any system-created openshift-* namespaces, except for openshift-
operators.

Procedure

® For each namespace that you want to configure, set a value for the
security.openshift.io/scc.podSecurityLabelSync label:

o To disable pod security admission label sychronization in a namespace, set the value of the
security.openshift.io/scc.podSecurityLabelSync label to false.
Run the following command:

$ oc label namespace <namespace>
security.openshift.io/scc.podSecurityLabelSync=false

o To enable pod security admission label sychronization in a namespace, set the value of the
security.openshift.io/scc.podSecurityLabelSync label to true.
Run the following command:

$ oc label namespace <namespace>
security.openshift.io/scc.podSecurityLabelSync=true

16.3. ABOUT POD SECURITY ADMISSION ALERTS

A PodSecurityViolation alert is triggered when the Kubernetes APl server reports that there is a pod
denial on the audit level of the pod security admission controller. This alert persists for one day.

View the Kubernetes APl server audit logs to investigate alerts that were triggered. As an example, a
workload is likely to fail admission if global enforcement is set to the restricted pod security level.

For assistance in identifying pod security admission violation audit events, see Audit annotations in the
Kubernetes documentation.

16.3.1. Identifying pod security violations

134

https://kubernetes.io/docs/reference/labels-annotations-taints/audit-annotations/#pod-security-kubernetes-io-audit-violations

CHAPTER 16. UNDERSTANDING AND MANAGING POD SECURITY ADMISSION

The PodSecurityViolation alert does not provide details on which workloads are causing pod security
violations. You can identify the affected workloads by reviewing the Kubernetes API server audit logs.
This procedure uses the must-gather tool to gather the audit logs and then searches for the pod-
security.kubernetes.io/audit-violations annotation.

Prerequisites

® You have installed jq.

® You have access to the cluster as a user with the cluster-admin role.

Procedure

1. To gather the audit logs, enter the following command:

I $ oc adm must-gather -- /usr/bin/gather_audit_logs

2. To output the affected workload details, enter the following command:

$ zgrep -h pod-security.kubernetes.io/audit-violations must-gather.local.
<archive_id>/quay*/audit_logs/kube-apiserver/*log.gz \

| jq -r 'select((.annotations["pod-security.kubernetes.io/audit-violations"] != null) and
(.objectRef.resource=="pods")) | .objectRef.namespace + " " + .objectRef.name + " " +
.objectRef.resource’ \

| sort | uniq -c

Replace must-gather.local.<archive_id> with the actual directory name.

Example output

15 ci namespace-ttl-controller deployments
1 ci-op-k5whzrsh rpm-repo-546f98d8b replicasets
1 ci-op-kbwhzrsh rpm-repo deployments

16.4. ADDITIONAL RESOURCES
® Viewing audit logs

® Managing security context constraints

135

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/security_and_compliance/#nodes-nodes-audit-log-basic-viewing_audit-log-view
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/authentication_and_authorization/#managing-pod-security-policies

OpenShift Container Platform 4.11 Authentication and authorization

CHAPTER 17. IMPERSONATING THE SYSTEM:ADMIN USER

17.1. API IMPERSONATION

You can configure a request to the OpenShift Container Platform API to act as though it originated
from another user. For more information, see User impersonation in the Kubernetes documentation.

17.2. IMPERSONATING THE SYSTEM:ADMIN USER

You can grant a user permission to impersonate system:admin, which grants them cluster administrator
permissions.

Procedure

® To grant a user permission to impersonate system:admin, run the following command:

I $ oc create clusterrolebinding <any_valid_name> --clusterrole=sudoer --user=<username>

TIP

You can alternatively apply the following YAML to grant permission to impersonate
system:admin:

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
name: <any_valid_name>
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: sudoer
subjects:
- apiGroup: rbac.authorization.k8s.io
kind: User
name: <username>

17.3. IMPERSONATING THE SYSTEM:ADMIN GROUP

When a system:admin user is granted cluster administration permissions through a group, you must
include the --as=<users --as-group=<groupi> --as-group=<group2> parameters in the command to
impersonate the associated groups.

Procedure

® To grant a user permission to impersonate a system:admin by impersonating the associated
cluster administration groups, run the following command:

$ oc create clusterrolebinding <any_valid_name> --clusterrole=sudoer --as=<user> \
--as-group=<group1> --as-group=<group2>

136

https://kubernetes.io/docs/reference/access-authn-authz/authentication/#user-impersonation

CHAPTER 18. SYNCING LDAP GROUPS

CHAPTER 18. SYNCING LDAP GROUPS

As an administrator, you can use groups to manage users, change their permissions, and enhance
collaboration. Your organization may have already created user groups and stored them in an LDAP
server. OpenShift Container Platform can sync those LDAP records with internal OpenShift Container
Platform records, enabling you to manage your groups in one place. OpenShift Container Platform
currently supports group sync with LDAP servers using three common schemas for defining group
membership: RFC 2307, Active Directory, and augmented Active Directory.

For more information on configuring LDAP, see Configuring an LDAP identity provider.

NOTE

You must have cluster-admin privileges to sync groups.

18.1. ABOUT CONFIGURING LDAP SYNC

Before you can run LDAP sync, you need a sync configuration file. This file contains the following LDAP
client configuration details:

e Configuration for connecting to your LDAP server.
® Sync configuration options that are dependent on the schema used in your LDAP server.

® An administrator-defined list of name mappings that maps OpenShift Container Platform group
names to groups in your LDAP server.

The format of the configuration file depends upon the schema you are using: RFC 2307, Active
Directory, or augmented Active Directory.

LDAP client configuration

The LDAP client configuration section of the configuration defines the connections to your LDAP
server.

The LDAP client configuration section of the configuration defines the connections to your LDAP
server.

LDAP client configuration

url: Idap://10.0.0.0:389)

bindDN: cn=admin,dc=example,dc=com 9
bindPassword: <password>

insecure: false ﬂ

ca: my-ldap-ca-bundle.crt 9

The connection protocol, IP address of the LDAP server hosting your database, and the port to
connect to, formatted as scheme://host:port.

Optional distinguished name (DN) to use as the Bind DN. OpenShift Container Platform uses this if
elevated privilege is required to retrieve entries for the sync operation.

o

Optional password to use to bind. OpenShift Container Platform uses this if elevated privilege is
necessary to retrieve entries for the sync operation. This value may also be provided in an
environment variable, external file, or encrypted file.

o

137

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/authentication_and_authorization/#configuring-ldap-identity-provider

OpenShift Container Platform 4.11 Authentication and authorization

Q When false, secure LDAP (ldaps://) URLs connect using TLS, and insecure LDAP (Idap://) URLs
are upgraded to TLS. When true, no TLS connection is made to the server and you cannot use

a The certificate bundle to use for validating server certificates for the configured URL. If empty,
OpenShift Container Platform uses system-trusted roots. This only applies if insecure is set to
false.

LDAP query definition

Sync configurations consist of LDAP query definitions for the entries that are required for
synchronization. The specific definition of an LDAP query depends on the schema used to store
membership information in the LDAP server.

LDAP query definition

baseDN: ou=users,dc=example,dc=com ﬂ

scope: sub 9

derefAliases: never 6
timeout: 0 ﬂ

filter: (objectClass=person) 9
pageSize: 0 G

The distinguished name (DN) of the branch of the directory where all searches will start from. It is
required that you specify the top of your directory tree, but you can also specify a subtree in the
directory.

The scope of the search. Valid values are base, one, or sub. If this is left undefined, then a scope of
sub is assumed. Descriptions of the scope options can be found in the table below.

The behavior of the search with respect to aliases in the LDAP tree. Valid values are never, search,
base, or always. If this is left undefined, then the defaultis to always dereference aliases.
Descriptions of the dereferencing behaviors can be found in the table below.

The time limit allowed for the search by the client, in seconds. A value of 0 imposes no client-side
limit.

A valid LDAP search filter. If this is left undefined, then the default is (objectClass="*).

Q® 6 o o 9O

The optional maximum size of response pages from the server, measured in LDAP entries. If set to
0, no size restrictions will be made on pages of responses. Setting paging sizes is necessary when
queries return more entries than the client or server allow by default.

Table 18.1. LDAP search scope options

LDAP search Description

scope

base Only consider the object specified by the base DN given for the query.
one Consider all of the objects on the same level in the tree as the base DN for the query.
sub Consider the entire subtree rooted at the base DN given for the query.

138

CHAPTER 18. SYNCING LDAP GROUPS

Table 18.2. LDAP dereferencing behaviors

Dereferencing Description

behavior

hever Never dereference any aliases found in the LDAP tree.
search Only dereference aliases found while searching.

base Only dereference aliases while finding the base object.
always Always dereference all aliases found in the LDAP tree.

User-defined name mapping

A user-defined name mapping explicitly maps the names of OpenShift Container Platform groups to
unique identifiers that find groups on your LDAP server. The mapping uses normal YAML syntax. A
user-defined mapping can contain an entry for every group in your LDAP server or only a subset of
those groups. If there are groups on the LDAP server that do not have a user-defined name
mapping, the default behavior during sync is to use the attribute specified as the OpenShift
Container Platform group’s name.

User-defined name mapping

groupUIDNameMapping:
"cn=group1,ou=groups,dc=example,dc=com": firstgroup
"cn=group2,ou=groups,dc=example,dc=com": secondgroup
"cn=group3,ou=groups,dc=example,dc=com": thirdgroup

18.1.1. About the RFC 2307 configuration file

The RFC 2307 schema requires you to provide an LDAP query definition for both user and group
entries, as well as the attributes with which to represent them in the internal OpenShift Container
Platform records.

For clarity, the group you create in OpenShift Container Platform should use attributes other than the
distinguished name whenever possible for user- or administrator-facing fields. For example, identify the
users of an OpenShift Container Platform group by their e-mail, and use the name of the group as the
common name. The following configuration file creates these relationships:

NOTE

If using user-defined name mappings, your configuration file will differ.

LDAP sync configuration that uses RFC 2307 schema: rfc2307_config.yaml

kind: LDAPSyncConfig
apiVersion: vi
url: Idap://LDAP_SERVICE_IP:389 ﬂ
insecure: false
rfc2307:
groupsQuery:

139

OpenShift Container Platform 4.11 Authentication and authorization

baseDN: "ou=groups,dc=example,dc=com"

scope: sub

derefAliases: never

pageSize: 0
groupUIDAttribute: dn 6
groupNameAttributes: [cn] ﬂ
groupMembershipAttributes: [member] 9
usersQuery:

baseDN: "ou=users,dc=example,dc=com"

scope: sub

derefAliases: never

pageSize: 0
userUIDAttribute: dn)
userNameAttributes: [mail]ﬂ
tolerateMemberNotFoundErrors: false
tolerateMemberOutOfScopeErrors: false

The IP address and host of the LDAP server where this group’s record is stored.

When false, secure LDAP (ldaps://) URLs connect using TLS, and insecure LDAP (Idap://) URLs
are upgraded to TLS. When true, no TLS connection is made to the server and you cannot use
Idaps:// URL schemes.

The attribute that uniquely identifies a group on the LDAP server. You cannot specify
groupsQuery filters when using DN for groupUIDAttribute. For fine-grained filtering, use the
whitelist / blacklist method.

The attribute to use as the name of the group.

The attribute on the group that stores the membership information.

Q®6 o6 09

The attribute that uniquely identifies a user on the LDAP server. You cannot specify usersQuery
filters when using DN for userUIDAttribute. For fine-grained filtering, use the whitelist / blacklist
method.

Q The attribute to use as the name of the user in the OpenShift Container Platform group record.

18.1.2. About the Active Directory configuration file

The Active Directory schema requires you to provide an LDAP query definition for user entries, as well as
the attributes to represent them with in the internal OpenShift Container Platform group records.

For clarity, the group you create in OpenShift Container Platform should use attributes other than the
distinguished name whenever possible for user- or administrator-facing fields. For example, identify the
users of an OpenShift Container Platform group by their e-mail, but define the name of the group by
the name of the group on the LDAP server. The following configuration file creates these relationships:

LDAP sync configuration that uses Active Directory schema: active_directory_config.yaml

kind: LDAPSyncConfig
apiVersion: vi
url: Idap://LDAP_SERVICE_IP:389
activeDirectory:
usersQuery:

140

CHAPTER 18. SYNCING LDAP GROUPS

baseDN: "ou=users,dc=example,dc=com"
scope: sub
derefAliases: never
filter: (objectclass=person)
pageSize: 0
userNameAttributes: [mail]ﬂ
groupMembershipAttributes: [memberOf | 9

ﬂ The attribute to use as the name of the user in the OpenShift Container Platform group record.

9 The attribute on the user that stores the membership information.

18.1.3. About the augmented Active Directory configuration file

The augmented Active Directory schema requires you to provide an LDAP query definition for both user
entries and group entries, as well as the attributes with which to represent them in the internal
OpenShift Container Platform group records.

For clarity, the group you create in OpenShift Container Platform should use attributes other than the
distinguished name whenever possible for user- or administrator-facing fields. For example, identify the
users of an OpenShift Container Platform group by their e-mail, and use the name of the group as the
common name. The following configuration file creates these relationships.

LDAP sync configuration that uses augmented Active Directory schema:
augmented_active_directory_config.yaml

kind: LDAPSyncConfig
apiVersion: vi
url: [dap://LDAP_SERVICE_IP:389
augmentedActiveDirectory:
groupsQuery:
baseDN: "ou=groups,dc=example,dc=com"
scope: sub
derefAliases: never
pageSize: 0
groupUIDAttribute: dn ﬂ
groupNameAttributes: [cn] 9
usersQuery:
baseDN: "ou=users,dc=example,dc=com"
scope: sub
derefAliases: never
filter: (objectclass=person)
pageSize: 0
userNameAttributes: [mail]6
groupMembershipAttributes: [memberOf | ﬂ

ﬂ The attribute that uniquely identifies a group on the LDAP server. You cannot specify
groupsQuery filters when using DN for groupUIDAttribute. For fine-grained filtering, use the
whitelist / blacklist method.

The attribute to use as the name of the group.

o

The attribute to use as the name of the user in the OpenShift Container Platform group record.

141

OpenShift Container Platform 4.11 Authentication and authorization

Q The attribute on the user that stores the membership information.

18.2. RUNNING LDAP SYNC

Once you have created a sync configuration file, you can begin to sync. OpenShift Container Platform
allows administrators to perform a number of different sync types with the same server.

18.2.1. Syncing the LDAP server with OpenShift Container Platform

You can sync all groups from the LDAP server with OpenShift Container Platform.

Prerequisites

e Create a sync configuration file.
Procedure
® Tosync all groups from the LDAP server with OpenShift Container Platform:

I $ oc adm groups sync --sync-config=config.yaml --confirm

NOTE

By default, all group synchronization operations are dry-run, so you must set the -
-confirm flag on the oc adm groups sync command to make changes to
OpenShift Container Platform group records.

18.2.2. Syncing OpenShift Container Platform groups with the LDAP server

You can sync all groups already in OpenShift Container Platform that correspond to groups in the LDAP
server specified in the configuration file.

Prerequisites

e Create a sync configuration file.

Procedure

® To sync OpenShift Container Platform groups with the LDAP server:

I $ oc adm groups sync --type=openshift --sync-config=config.yaml --confirm

NOTE

By default, all group synchronization operations are dry-run, so you must set the -
-confirm flag on the oc adm groups sync command to make changes to
OpenShift Container Platform group records.

18.2.3. Syncing subgroups from the LDAP server with OpenShift Container Platform

142

CHAPTER 18. SYNCING LDAP GROUPS

You can sync a subset of LDAP groups with OpenShift Container Platform using whitelist files, blacklist
files, or both.

NOTE

You can use any combination of blacklist files, whitelist files, or whitelist literals. Whitelist
and blacklist files must contain one unique group identifier per line, and you can include
whitelist literals directly in the command itself. These guidelines apply to groups found on
LDAP servers as well as groups already present in OpenShift Container Platform.

Prerequisites

e Create a sync configuration file.

Procedure

® Tosyncasubset of LDAP groups with OpenShift Container Platform, use any the following
commands:

$ oc adm groups sync --whitelist=<whitelist_file> \
--sync-config=config.yaml \
--confirm

$ oc adm groups sync --blacklist=<blacklist_file> \
--sync-config=config.yaml \
--confirm

--sync-config=config.yaml \
--confirm

$ oc adm groups sync <group_unique_identifier> \
--whitelist=<whitelist_file> \
--blacklist=<blacklist_file>\
--sync-config=config.yaml \
--confirm

$ oc adm groups sync --type=openshift \
--whitelist=<whitelist_file> \
--sync-config=config.yaml \
--confirm

| $ oc adm groups sync <group_unique_identifier> \

NOTE

By default, all group synchronization operations are dry-run, so you must set the -
-confirm flag on the oc adm groups sync command to make changes to
OpenShift Container Platform group records.

18.3. RUNNING A GROUP PRUNING JOB

143

OpenShift Container Platform 4.11 Authentication and authorization

An administrator can also choose to remove groups from OpenShift Container Platform records if the
records on the LDAP server that created them are no longer present. The prune job will accept the
same sync configuration file and whitelists or blacklists as used for the sync job.

For example:

I $ oc adm prune groups --sync-config=/path/to/ldap-sync-config.yaml --confirm

I $ oc adm prune groups --whitelist=/path/to/whitelist.txt --sync-config=/path/to/ldap-sync-config.yaml --
confirm

I $ oc adm prune groups --blacklist=/path/to/blacklist.txt --sync-config=/path/to/Idap-sync-config.yaml --
confirm

18.4. AUTOMATICALLY SYNCING LDAP GROUPS

You can automatically sync LDAP groups on a periodic basis by configuring a cron job.

Prerequisites
® You have access to the cluster as a user with the cluster-admin role.

® You have configured an LDAP identity provider (IDP).
This procedure assumes that you created an LDAP secret named Idap-secret and a config map
named ca-config-map.

Procedure

1. Create a project where the cron job will run:

I $ oc new-project Idap-sync ﬂ
ﬂ This procedure uses a project called Idap-sync.

2. Locate the secret and config map that you created when configuring the LDAP identity
provider and copy them to this new project.

The secret and config map exist in the openshift-config project and must be copied to the new
Idap-sync project.

3. Define a service account:

Example Idap-sync-service-account.yaml

kind: ServiceAccount
apiVersion: vi
metadata:
name: Idap-group-syncer
namespace: ldap-sync

4. Create the service account:

I $ oc create -f Idap-sync-service-account.yaml

144

CHAPTER 18. SYNCING LDAP GROUPS

5. Define a cluster role:

Example Idap-sync-cluster-role.yaml

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
name: Idap-group-syncer
rules:
- apiGroups:

- user.openshift.io
resources:

- groups
verbs:

- get

- list

- create

- update

6. Create the cluster role:

I $ oc create -f Idap-sync-cluster-role.yaml

7. Define a cluster role binding to bind the cluster role to the service account:

Example Idap-sync-cluster-role-binding.yaml

kind: ClusterRoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
name: Idap-group-syncer
subjects:
- kind: ServiceAccount
name: Idap-group-syncer ﬂ
namespace: ldap-sync
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: Idap-group-syncer 9

ﬂ Reference to the service account created earlier in this procedure.

9 Reference to the cluster role created earlier in this procedure.

8. Create the cluster role binding:
I $ oc create -f I[dap-sync-cluster-role-binding.yaml
9. Define a config map that specifies the sync configuration file:

Example Idap-sync-config-map.yaml

145

OpenShift Container Platform 4.11 Authentication and authorization

kind: ConfigMap
apiVersion: v1i
metadata:
name: Idap-group-syncer
namespace: ldap-sync
data:
sync.yaml: | ﬂ
kind: LDAPSyncConfig
apiVersion: v1
url: ldaps://10.0.0.0:389 (2]
insecure: false
bindDN: cn=admin,dc=example,dc=com 6
bindPassword:
file: "/etc/secrets/bindPassword"
ca: /etc/ldap-ca/ca.crt
rfc2307: (4]
groupsQuery:
baseDN: "ou=groups,dc=example,dc=com" 6
scope: sub
filter: "(objectClass=groupOfMembers)"
derefAliases: never
pageSize: 0
groupUIDAttribute: dn
groupNameAttributes: [cn]
groupMembershipAttributes: [member]
usersQuery:
baseDN: "ou=users,dc=example,dc=com" G
scope: sub
derefAliases: never
pageSize: 0
userUIDAttribute: dn
userNameAttributes: [uid]
tolerateMemberNotFoundErrors: false
tolerateMemberOutOfScopeErrors: false

Define the sync configuration file.
Specify the URL.
Specify the bindDN.

This example uses the RFC2307 schema; adjust values as necessary. You can also use a
different schema.

Specify the baseDN for groupsQuery.

Specify the baseDN for usersQuery.

Q® 0009

10. Create the config map:
I $ oc create -f [dap-sync-config-map.yaml

1. Define a cron job:

146

CHAPTER 18. SYNCING LDAP GROUPS
Example Idap-sync-cron-job.yaml

kind: CronJob
apiVersion: batch/v1
metadata:
name: ldap-group-syncer
namespace: ldap-sync
spec: ﬂ
schedule: /30 * * * *" g
concurrencyPolicy: Forbid
jobTemplate:
spec:
backoffLimit: 0
ttiSecondsAfterFinished: 1800 (3]
template:
spec:
containers:
- hame: ldap-group-sync
image: "registry.redhat.io/openshift4/ose-cli:latest"
command:
- "/bin/bash”
- "_C"
- "oc adm groups sync --sync-config=/etc/config/sync.yaml --confirm"
volumeMounts:
- mountPath: "/etc/config"
name: "ldap-sync-volume"
- mountPath: "/etc/secrets”
name: "ldap-bind-password"
- mountPath: "/etc/Idap-ca”
name: "ldap-ca"

volumes:
- name: "ldap-sync-volume"
configMap:

name: "ldap-group-syncer"
- name: "ldap-bind-password"

secret:
secretName: "ldap-secret” 9
- name: "ldap-ca"
configMap:
name: "ca-config-map" G

restartPolicy: "Never"
terminationGracePeriodSeconds: 30
activeDeadlineSeconds: 500

dnsPolicy: "ClusterFirst"
serviceAccountName: "ldap-group-syncer”

Configure the settings for the cron job. See "Creating cron jobs" for more information on
cron job settings.

The schedule for the job specified in cron format. This example cron job runs every 30
minutes. Adjust the frequency as necessary, making sure to take into account how long the
sync takes to run.

o

9 How long, in seconds, to keep finished jobs. This should match the period of the job
schedule in order to clean old failed jobs and prevent unnecessary alerts. For more

infAarmatinn cAan TTIl _aftar_finichad CAantrallar in tha KithAarnatace AAaciimAantatinn

147

https://en.wikipedia.org/wiki/Cron
https://kubernetes.io/docs/concepts/workloads/controllers/ttlafterfinished

OpenShift Container Platform 4.11 Authentication and authorization

MNrvIIauuvll, DT 1 1 L7 ailTl T 1HHHDTITU AN UTITLTUIHITT 11T LT NUTIHHITLTD buLsuliiciitacivi i,

Q The LDAP sync command for the cron job to run. Passes in the sync configuration file that
was defined in the config map.

a This secret was created when the LDAP IDP was configured.

6 This config map was created when the LDAP IDP was configured.

12. Create the cron job:

I $ oc create -f I[dap-sync-cron-job.yaml

Additional resources

® Configuring an LDAP identity provider

® Creating cron jobs

18.5. LDAP GROUP SYNC EXAMPLES

This section contains examples for the RFC 2307, Active Directory, and augmented Active Directory
schemas.

NOTE
These examples assume that all users are direct members of their respective groups.

Specifically, no groups have other groups as members. See the Nested Membership Sync
Example for information on how to sync nested groups.

18.5.1. Syncing groups using the RFC 2307 schema

For the RFC 2307 schema, the following examples synchronize a group named admins that has two
members: Jane and Jim. The examples explain:

® How the group and users are added to the LDAP server.

® What the resulting group record in OpenShift Container Platform will be after synchronization.

NOTE

These examples assume that all users are direct members of their respective groups.
Specifically, no groups have other groups as members. See the Nested Membership Sync
Example for information on how to sync nested groups.

In the RFC 2307 schema, both users (Jane and Jim) and groups exist on the LDAP server as first-class
entries, and group membership is stored in attributes on the group. The following snippet of Idif defines
the users and group for this schema:

LDAP entries that use RFC 2307 schema: rfc2307.ldif

dn: ou=users,dc=example,dc=com
objectClass: organizationalUnit

148

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/authentication_and_authorization/#configuring-ldap-identity-provider
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/nodes/#nodes-nodes-jobs-creating-cron_nodes-nodes-jobs

CHAPTER 18. SYNCING LDAP GROUPS

ou: users

dn: cn=Jane,ou=users,dc=example,dc=com
objectClass: person

objectClass: organizationalPerson

objectClass: inetOrgPerson

cn: Jane

sn: Smith

displayName: Jane Smith

mail: jane.smith@example.com

dn: cn=Jim,ou=users,dc=example,dc=com
objectClass: person

objectClass: organizationalPerson

objectClass: inetOrgPerson

cn:Jim

sn: Adams

displayName: Jim Adams

mail: jim.adams@example.com

dn: ou=groups,dc=example,dc=com
objectClass: organizationalUnit

ou: groups

dn: cn=admins,ou=groups,dc=example,dc=com ﬂ
objectClass: groupOfNames

cn: admins

owner: cn=admin,dc=example,dc=com
description: System Administrators

member: cn=Jane,ou=users,dc=example,dc=com 9
member: cn=Jim,ou=users,dc=example,dc=com

ﬂ The group is a first-class entry in the LDAP server.

9 Members of a group are listed with an identifying reference as attributes on the group.

Prerequisites

® Create the configuration file.

Procedure

® Run the sync with the rfc2307_config.yaml file:
I $ oc adm groups sync --sync-config=rfc2307_config.yaml --confirm

OpenShift Container Platform creates the following group record as a result of the above sync
operation:

OpenShift Container Platform group created by using the rfc2307_config.yaml file

apiVersion: user.openshift.io/v1
kind: Group
metadata:
annotations:
openshift.io/ldap.sync-time: 2015-10-13T10:08:38-0400 0

openshift.io/ldap.uid: cn=admins,ou=groups,dc=example,dc=com 9

149

OpenShift Container Platform 4.11 Authentication and authorization

openshift.io/ldap.url: LDAP_SERVER_IP:389 9
creationTimestamp:
name: admins ﬂ
users: 6
- jane.smith@example.com
- jim.adams@example.com

ﬂ The last time this OpenShift Container Platform group was synchronized with the LDAP
server, in ISO 6801 format.

9 The unique identifier for the group on the LDAP server.
9 The IP address and host of the LDAP server where this group’s record is stored.
Q The name of the group as specified by the sync file.

a The users that are members of the group, named as specified by the sync file.

18.5.2. Syncing groups using the RFC2307 schema with user-defined name
mappings

When syncing groups with user-defined name mappings, the configuration file changes to contain these
mappings as shown below.

LDAP sync configuration that uses RFC 2307 schema with user-defined name mappings:
rfc2307_config_user_defined.yaml

kind: LDAPSyncConfig
apiVersion: v1i
groupUIDNameMapping:
"cn=admins,ou=groups,dc=example,dc=com": Administrators ﬂ
rfc2307:
groupsQuery:
baseDN: "ou=groups,dc=example,dc=com"
scope: sub
derefAliases: never
pageSize: 0
groupUIDAttribute: dn 9
groupNameAttributes: [cn] 6
groupMembershipAttributes: [member]
usersQuery:
baseDN: "ou=users,dc=example,dc=com"
scope: sub
derefAliases: never
pageSize: 0
userUIDAttribute: dn @)
userNameAttributes: [mail]
tolerateMemberNotFoundErrors: false
tolerateMemberOutOfScopeErrors: false

The user-defined name mapping.

The unique identifier attribute that is used for the keys in the user-defined name mapping. You
rannnt enarcifv arniineDiiarv filtare whan ricina DN far Aarannl IINAttrikinte FAar fina-Arainad

®9

150

o
4]

CHAPTER 18. SYNCING LDAP GROUPS

U IV L O e e PV MM ORI Y LT O YV IC T UDI I LY IV Y VU AL UL e, U T [RSTTRTORS)
~ AR} ~ y S) ~ J

filtering, use the whitelist / blacklist method.

The attribute to name OpenShift Container Platform groups with if their unique identifier is not in
the user-defined name mapping.

The attribute that uniquely identifies a user on the LDAP server. You cannot specify usersQuery
filters when using DN for userUIDAttribute. For fine-grained filtering, use the whitelist / blacklist
method.

Prerequisites

® Create the configuration file.

Procedure

® Run the sync with the rfc2307_config_user_defined.yaml file:
I $ oc adm groups sync --sync-config=rfc2307_config_user_defined.yaml --confirm

OpenShift Container Platform creates the following group record as a result of the above sync
operation:

OpenShift Container Platform group created by using the
rfc2307_config_user_defined.yaml file

apiVersion: user.openshift.io/v1
kind: Group
metadata:
annotations:
openshift.io/ldap.sync-time: 2015-10-13T10:08:38-0400
openshift.io/ldap.uid: cn=admins,ou=groups,dc=example,dc=com
openshift.io/ldap.url: LDAP_SERVER_IP:389
creationTimestamp:
name: Administrators
users:
- jane.smith@example.com
- jim.adams@example.com

ﬂ The name of the group as specified by the user-defined name mapping.

18.5.3. Syncing groups using RFC 2307 with user-defined error tolerances

By default, if the groups being synced contain members whose entries are outside of the scope defined
in the member query, the group sync fails with an error:

Error determining LDAP group membership for "<group>": membership lookup for user "<user>" in
group "<group>" failed because of "search for entry with dn="<user-dn>" would search outside of the
base dn specified (dn="<base-dn>")".

This often indicates a misconfigured baseDN in the usersQuery field. However, in cases where the
baseDN intentionally does not contain some of the members of the group, setting
tolerateMemberOutOfScopeErrors: true allows the group sync to continue. Out of scope members

151

OpenShift Container Platform 4.11 Authentication and authorization

will be ignored.

Similarly, when the group sync process fails to locate a member for a group, it fails outright with errors:

Error determining LDAP group membership for "<group>": membership lookup for user "<user>" in
group "<group>" failed because of "search for entry with base dn="<user-dn>" refers to a non-
existent entry".

Error determining LDAP group membership for "<group>": membership lookup for user "<user>" in
group "<group>" failed because of "search for entry with base dn="<user-dn>" and filter "<filter>" did
not return any results".

This often indicates a misconfigured usersQuery field. However, in cases where the group contains
member entries that are known to be missing, setting tolerateMemberNotFoundErrors: true allows the
group sync to continue. Problematic members will be ignored.

' WARNING
A Enabling error tolerances for the LDAP group sync causes the sync process to

ignore problematic member entries. If the LDAP group sync is not configured
correctly, this could result in synced OpenShift Container Platform groups missing
members.

LDAP entries that use RFC 2307 schema with problematic group membership:
rfc2307_problematic_users.ldif

dn: ou=users,dc=example,dc=com
objectClass: organizationalUnit

ou: users

dn: cn=Jane,ou=users,dc=example,dc=com
objectClass: person

objectClass: organizationalPerson
objectClass: inetOrgPerson

cn: Jane

sn: Smith

displayName: Jane Smith

mail: jane.smith@example.com

dn: cn=Jim,ou=users,dc=example,dc=com
objectClass: person

objectClass: organizationalPerson
objectClass: inetOrgPerson

cn:Jim

sn: Adams

displayName: Jim Adams

mail: jim.adams@example.com

dn: ou=groups,dc=example,dc=com
objectClass: organizationalUnit

ou: groups

dn: cn=admins,ou=groups,dc=example,dc=com
objectClass: groupOfNames

cn: admins

152

CHAPTER 18. SYNCING LDAP GROUPS

owner: cn=admin,dc=example,dc=com

description: System Administrators

member: cn=Jane,ou=users,dc=example,dc=com

member: cn=Jim,ou=users,dc=example,dc=com

member: cn=INVALID,ou=users,dc=example,dc=com ﬂ
member: cn=Jim,ou=OUTOFSCOPE,dc=example,dc=com 9

ﬂ A member that does not exist on the LDAP server.

9 A member that may exist, but is not under the baseDN in the user query for the sync job.

To tolerate the errors in the above example, the following additions to your sync configuration file must
be made:

LDAP sync configuration that uses RFC 2307 schema tolerating errors:
rfc2307_config_tolerating.yaml

kind: LDAPSyncConfig
apiVersion: vi
url: Idap://LDAP_SERVICE_IP:389
rfc2307:
groupsQuery:
baseDN: "ou=groups,dc=example,dc=com"
scope: sub
derefAliases: never
groupUIDAttribute: dn
groupNameAttributes: [cn]
groupMembershipAttributes: [member]
usersQuery:
baseDN: "ou=users,dc=example,dc=com"
scope: sub
derefAliases: never
userUIDAttribute: dn)
userNameAttributes: [mail]
tolerateMemberNotFoundErrors: true

tolerateMemberOutOfScopekErrors: true 6

The attribute that uniquely identifies a user on the LDAP server. You cannot specify usersQuery
filters when using DN for userUIDAttribute. For fine-grained filtering, use the whitelist / blacklist
method.

9 When true, the sync job tolerates groups for which some members were not found, and members
whose LDAP entries are not found are ignored. The default behavior for the sync job is to fail if a
member of a group is not found.

9 When true, the sync job tolerates groups for which some members are outside the user scope

given in the usersQuery base DN, and members outside the member query scope are ignored.
The default behavior for the sync job is to fail if a member of a group is out of scope.

Prerequisites

® Create the configuration file.

153

OpenShift Container Platform 4.11 Authentication and authorization

Procedure

® Run the sync with the rfc2307_config_tolerating.yaml file:

$ oc adm groups sync --sync-config=rfc2307_config_tolerating.yaml --confirm

OpenShift Container Platform creates the following group record as a result of the above sync
operation:

OpenShift Container Platform group created by using the rfc2307_config.yaml file

apiVersion: user.openshift.io/v1
kind: Group
metadata:
annotations:
openshift.io/ldap.sync-time: 2015-10-13T10:08:38-0400
openshift.io/ldap.uid: cn=admins,ou=groups,dc=example,dc=com
openshift.io/ldap.url: LDAP_SERVER_IP:389
creationTimestamp:
name: admins
users: ﬂ
- jane.smith@example.com
- jim.adams@example.com

The users that are members of the group, as specified by the sync file. Members for which
lookup encountered tolerated errors are absent.

18.5.4. Syncing groups using the Active Directory schema

In the Active Directory schema, both users (Jane and Jim) exist in the LDAP server as first-class
entries, and group membership is stored in attributes on the user. The following snippet of Idif defines
the users and group for this schema:

LDAP entries that use Active Directory schema: active_directory.ldif

dn: ou=users,dc=example,dc=com
objectClass: organizationalUnit
ou: users

dn: cn=Jane,ou=users,dc=example,dc=com
objectClass: person

objectClass: organizationalPerson
objectClass: inetOrgPerson

objectClass: testPerson

cn: Jane

sn: Smith

displayName: Jane Smith

mail: jane.smith@example.com

memberOf: admins ﬂ

dn: cn=Jim,ou=users,dc=example,dc=com
objectClass: person
objectClass: organizationalPerson

154

CHAPTER 18. SYNCING LDAP GROUPS

objectClass: inetOrgPerson
objectClass: testPerson

cn: dJim

sn: Adams

displayName: Jim Adams

mail: jim.adams@example.com
memberOf: admins

ﬂ The user’s group memberships are listed as attributes on the user, and the group does not exist as
an entry on the server. The memberOf attribute does not have to be a literal attribute on the user;
in some LDAP servers, it is created during search and returned to the client, but not committed to
the database.

Prerequisites

® Create the configuration file.

Procedure

® Run the sync with the active_directory_config.yaml file:
I $ oc adm groups sync --sync-config=active_directory_config.yaml --confirm

OpenShift Container Platform creates the following group record as a result of the above sync
operation:

OpenShift Container Platform group created by using the
active_directory_config.yaml file

apiVersion: user.openshift.io/v1
kind: Group
metadata:
annotations:
openshift.io/ldap.sync-time: 2015-10-13T10:08:38-0400 0
openshift.io/ldap.uid: admins @)
openshift.io/ldap.url: LDAP_SERVER_IP:389 6
creationTimestamp:
name: admins
users: 9
- jane.smith@example.com
- jim.adams@example.com

The last time this OpenShift Container Platform group was synchronized with the LDAP
server, in ISO 6801 format.

The unique identifier for the group on the LDAP server.
The IP address and host of the LDAP server where this group’s record is stored.

The name of the group as listed in the LDAP server.

000 O

The users that are members of the group, named as specified by the sync file.

155

OpenShift Container Platform 4.11 Authentication and authorization

18.5.5. Syncing groups using the augmented Active Directory schema

In the augmented Active Directory schema, both users (Jane and Jim) and groups exist in the LDAP
server as first-class entries, and group membership is stored in attributes on the user. The following
snippet of Idif defines the users and group for this schema:

LDAP entries that use augmented Active Directory schema: augmented_active_directory.ldif

dn: ou=users,dc=example,dc=com
objectClass: organizationalUnit
ou: users

dn: cn=Jane,ou=users,dc=example,dc=com

objectClass: person

objectClass: organizationalPerson

objectClass: inetOrgPerson

objectClass: testPerson

cn: Jane

sn: Smith

displayName: Jane Smith

mail: jane.smith@example.com

memberOf: cn=admins,ou=groups,dc=example,dc=com ﬂ

dn: cn=Jim,ou=users,dc=example,dc=com

objectClass: person

objectClass: organizationalPerson

objectClass: inetOrgPerson

objectClass: testPerson

cn: Jim

sn: Adams

displayName: Jim Adams

mail: jim.adams@example.com

memberOf: cn=admins,ou=groups,dc=example,dc=com

dn: ou=groups,dc=example,dc=com
objectClass: organizationalUnit
ou: groups

dn: cn=admins,ou=groups,dc=example,dc=com 9
objectClass: groupOfNames

cn: admins

owner: cn=admin,dc=example,dc=com

description: System Administrators

member: cn=Jane,ou=users,dc=example,dc=com
member: cn=Jim,ou=users,dc=example,dc=com

ﬂ The user’s group memberships are listed as attributes on the user.

9 The group is a first-class entry on the LDAP server.

Prerequisites

® Create the configuration file.

156

CHAPTER 18. SYNCING LDAP GROUPS

Procedure

® Run the sync with the augmented_active_directory_config.yaml file:
I $ oc adm groups sync --sync-config=augmented_active_directory_config.yaml --confirm

OpenShift Container Platform creates the following group record as a result of the above sync
operation:

OpenShift Container Platform group created by using the
augmented_active_directory_config.yaml file

apiVersion: user.openshift.io/v1
kind: Group
metadata:
annotations:
openshift.io/ldap.sync-time: 2015-10-13T10:08:38-0400 0
openshift.io/ldap.uid: cn=admins,ou=groups,dc=example,dc=com 9
openshift.io/ldap.url: LDAP_SERVER_IP:389 e
creationTimestamp:
name: admins ﬂ
users: 9
- jane.smith@example.com
- jim.adams@example.com

The last time this OpenShift Container Platform group was synchronized with the LDAP
server, in ISO 6801 format.

The unique identifier for the group on the LDAP server.
The IP address and host of the LDAP server where this group’s record is stored.

The name of the group as specified by the sync file.

000 O

The users that are members of the group, named as specified by the sync file.

18.5.5.1. LDAP nested membership sync example

Groups in OpenShift Container Platform do not nest. The LDAP server must flatten group membership
before the data can be consumed. Microsoft's Active Directory Server supports this feature via the
LDAP_MATCHING_RULE_IN_CHAIN rule, which has the OID 1.2.840.113556.1.4.1941. Furthermore,
only explicitly whitelisted groups can be synced when using this matching rule.

This section has an example for the augmented Active Directory schema, which synchronizes a group
named admins that has one user Jane and one group otheradmins as members. The otheradmins
group has one user member: Jim. This example explains:

® How the group and users are added to the LDAP server.

® What the LDAP sync configuration file looks like.

® What the resulting group record in OpenShift Container Platform will be after synchronization.

157

https://msdn.microsoft.com/en-us/library/aa746475(v=vs.85).aspx

OpenShift Container Platform 4.11 Authentication and authorization

In the augmented Active Directory schema, both users (Jane and Jim) and groups exist in the LDAP
server as first-class entries, and group membership is stored in attributes on the user or the group. The
following snippet of Idif defines the users and groups for this schema:

LDAP entries that use augmented Active Directory schema with nested members:
augmented_active_directory_nested.ldif

dn: ou=users,dc=example,dc=com
objectClass: organizationalUnit
ou: users

dn: cn=Jane,ou=users,dc=example,dc=com

objectClass: person

objectClass: organizationalPerson

objectClass: inetOrgPerson

objectClass: testPerson

cn: Jane

sn: Smith

displayName: Jane Smith

mail: jane.smith@example.com

memberOf: cn=admins,ou=groups,dc=example,dc=com ﬂ

dn: cn=Jim,ou=users,dc=example,dc=com

objectClass: person

objectClass: organizationalPerson

objectClass: inetOrgPerson

objectClass: testPerson

cn: Jim

sn: Adams

displayName: Jim Adams

mail: jim.adams@example.com

memberOf: cn=otheradmins,ou=groups,dc=example,dc=com 9

dn: ou=groups,dc=example,dc=com
objectClass: organizationalUnit
ou: groups

dn: cn=admins,ou=groups,dc=example,dc=com 6
objectClass: group

cn: admins

owner: cn=admin,dc=example,dc=com

description: System Administrators

member: ch=Jane,ou=users,dc=example,dc=com
member: cn=otheradmins,ou=groups,dc=example,dc=com

dn: cn=otheradmins,ou=groups,dc=example,dc=com ﬂ
objectClass: group

cn: otheradmins

owner: cn=admin,dc=example,dc=com

description: Other System Administrators

memberOf: cn=admins,ou=groups,dc=example,dc=com 9 G
member: cn=Jim,ou=users,dc=example,dc=com

MThe user’s and group’s memberships are listed as attributes on the object.

158

CHAPTER 18. SYNCING LDAP GROUPS

wThe groups are first-class entries on the LDAP server.

6 The otheradmins group is a member of the admins group.

When syncing nested groups with Active Directory, you must provide an LDAP query definition for both
user entries and group entries, as well as the attributes with which to represent them in the internal
OpenShift Container Platform group records. Furthermore, certain changes are required in this
configuration:

® The oc adm groups sync command must explicitly whitelist groups.

® The user's groupMembershipAttributes must include "member0Of:1.2.840.113556.1.4.1941:"
to comply with the LDAP_MATCHING_RULE_IN_CHAIN rule.

® The groupUIDAttribute must be set to dn.

® The groupsQuery:

o Must not set filter.

o Must set a valid derefAliases.

o Should not set baseDN as that value is ignored.
o Should not set scope as that value is ignored.

For clarity, the group you create in OpenShift Container Platform should use attributes other than the
distinguished name whenever possible for user- or administrator-facing fields. For example, identify the
users of an OpenShift Container Platform group by their e-mail, and use the name of the group as the
common name. The following configuration file creates these relationships:

LDAP sync configuration that uses augmented Active Directory schema with nested
members: augmented_active_directory_config_nested.yaml

kind: LDAPSyncConfig
apiVersion: v1i
url: Idap://LDAP_SERVICE_IP:389
augmentedActiveDirectory:
groupsQuery: ﬂ
derefAliases: never
pageSize: 0
groupUIDAttribute: dn 9
groupNameAttributes: [cn] 6
usersQuery:
baseDN: "ou=users,dc=example,dc=com"
scope: sub
derefAliases: never
filter: (objectclass=person)
pageSize: 0
userNameAttributes: [mail]ﬂ
groupMembershipAttributes: ["memberOf:1.2.840.113556.1.4.1941:"] 9

ﬂ groupsQuery filters cannot be specified. The groupsQuery base DN and scope values are
ignored. groupsQuery must set a valid derefAliases.

159

https://msdn.microsoft.com/en-us/library/aa746475(v=vs.85).aspx

OpenShift Container Platform 4.11 Authentication and authorization

Q The attribute that uniquely identifies a group on the LDAP server. It must be set to dn.
9 The attribute to use as the name of the group.

Q The attribute to use as the name of the user in the OpenShift Container Platform group record.
mail or sAMAccountName are preferred choices in most installations.

a The attribute on the user that stores the membership information. Note the use of
LDAP_MATCHING_RULE_IN_CHAIN.

Prerequisites

® Create the configuration file.

Procedure

® Run the sync with the augmented_active_directory_config_nested.yaml file:

$ oc adm groups sync \
'cn=admins,ou=groups,dc=example,dc=com' \
--sync-config=augmented_active_directory_config_nested.yaml \
--confirm

NOTE

You must explicitly whitelist the cn=admins,ou=groups,dc=example,dc=com
group.

OpenShift Container Platform creates the following group record as a result of the above sync
operation:

OpenShift Container Platform group created by using the
augmented_active_directory_config_nested.yaml file

apiVersion: user.openshift.io/v1
kind: Group
metadata:
annotations:
openshift.io/ldap.sync-time: 2015-10-13T10:08:38-0400 0
openshift.io/ldap.uid: cn=admins,ou=groups,dc=example,dc=com 9
openshift.io/ldap.url: LDAP_SERVER_IP:389 e
creationTimestamp:
name: admins
users: 6
- jane.smith@example.com
- jim.adams@example.com

The last time this OpenShift Container Platform group was synchronized with the LDAP
server, in ISO 6801 format.

9 The unique identifier for the group on the LDAP server.

160

https://msdn.microsoft.com/en-us/library/aa746475(v=vs.85).aspx

CHAPTER 18. SYNCING LDAP GROUPS

The IP address and host of the LDAP server where this group’s record is stored.

The name of the group as specified by the sync file.

®00

The users that are members of the group, named as specified by the sync file. Note that
members of nested groups are included since the group membership was flattened by the
Microsoft Active Directory Server.

18.6. LDAP SYNC CONFIGURATION SPECIFICATION

The object specification for the configuration file is below. Note that the different schema objects have
different fields. For example, v1.ActiveDirectoryConfig has no groupsQuery field whereas
vI.RFC2307Config and vI.AugmentedActiveDirectoryConfig both do.

IMPORTANT

There is no support for binary attributes. All attribute data coming from the LDAP server
must be in the format of a UTF-8 encoded string. For example, never use a binary
attribute, such as objectGUID, as an ID attribute. You must use string attributes, such as
sAMAccountName or userPrincipalName, instead.

18.6.1. v1.LDAPSyncConfig

LDAPSyncConfig holds the necessary configuration options to define an LDAP group sync.

Name Description Schema

kind String value representing the string
REST resource this object
represents. Servers may infer this
from the endpoint the client
submits requests to. Cannot be
updated. In CamelCase. More
info:
https://github.com/kubernetes/c
ommunity/blob/master/contribut
ors/devel/sig-architecture/api-
conventions.md#types-kinds

apiVersion Defines the versioned schema of string
this representation of an object.
Servers should convert
recognized schemas to the latest
internal value, and may reject
unrecognized values. More info:
https://github.com/kubernetes/c
ommunity/blob/master/contribut
ors/devel/sig-architecture/api-
conventions.md#resources

161

https://github.com/kubernetes/community/blob/master/contributors/devel/sig-architecture/api-conventions.md#types-kinds
https://github.com/kubernetes/community/blob/master/contributors/devel/sig-architecture/api-conventions.md#resources

OpenShift Container Platform 4.11 Authentication and authorization

Name

url

bindDN

bindPassword

insecure

ca

groupUIDNameMapping

rfc2307

activeDirectory

162

Description

Host is the scheme, host and port
of the LDAP server to connect to:
scheme://host:port

Optional DN to bind to the LDAP
server with.

Optional password to bind with
during the search phase.

If true, indicates the connection
should not use TLS. If false,
Idaps:// URLs connect using TLS,
and ldap:// URLs are upgraded to
a TLS connection using StartTLS
as specified in
https://tools.ietf.org/html/rfc283
0. If you setinsecure to true,
you cannot use ldaps:// URL
schemes.

Optional trusted certificate
authority bundle to use when
making requests to the server. If
empty, the default system roots
are used.

Optional direct mapping of LDAP
group UIDs to OpenShift
Container Platform group names.

Holds the configuration for
extracting data from an LDAP
server set up in a fashion similar
to RFC2307: first-class group
and user entries, with group
membership determined by a
multi-valued attribute on the
group entry listing its members.

Holds the configuration for
extracting data from an LDAP
server set up in a fashion similar
to that used in Active Directory:
first-class user entries, with group
membership determined by a
multi-valued attribute on
members listing groups they are a
member of.

Schema

string

string

v1.StringSource

boolean

string

object

vI.RFC2307Config

v1.ActiveDirectoryConfig

https://tools.ietf.org/html/rfc2830

CHAPTER 18. SYNCING LDAP GROUPS

Name Description Schema
augmentedActiveDirectory Holds the configuration for vl AugmentedActiveDirectoryCon
extracting data from an LDAP fig

server set up in a fashion similar
to that used in Active Directory as
described above, with one
addition: first-class group entries
exist and are used to hold
metadata but not group
membership.

18.6.2. v1.StringSource

StringSource allows specifying a string inline, or externally via environment variable or file. When it
contains only a string value, it marshals to a simple JSON string.

Name Description Schema
value Specifies the cleartext value, or string
an encrypted value if keyFile is
specified.
env Specifies an environment variable string

containing the cleartext value, or
an encrypted value if the keyFile
is specified.

file References a file containing the string
cleartext value, or an encrypted
value if a KeyFile is specified.

keyFile References a file containing the string
key to use to decrypt the value.

18.6.3. v.LDAPQuery

LDAPQuery holds the options necessary to build an LDAP query.

Name Description Schema
baseDN DN of the branch of the directory string
where all searches should start
from.

163

OpenShift Container Platform 4.11 Authentication and authorization

Name Description Schema

scope The optional scope of the search. string
Can be base: only the base
object, one: all objects on the
base level, sub: the entire
subtree. Defaults to sub if not
set.

derefAliases The optional behavior of the string
search with regards to aliases. Can
be never: never dereference
aliases, search: only dereference
in searching, base: only
dereference in finding the base
object, always: always
dereference. Defaults to always
if not set.

timeout Holds the limit of time in seconds integer
that any request to the server can
remain outstanding before the
wait for a response is given up. If
this is 0, no client-side limit is
imposed.

filter A valid LDAP search filter that string
retrieves all relevant entries from
the LDAP server with the base
DN.

pageSize Maximum preferred page size, integer
measured in LDAP entries. A page
size of 0 means no paging will be
done.

18.6.4. v.RFC2307Config

RFC2307Config holds the necessary configuration options to define how an LDAP group sync interacts
with an LDAP server using the RFC2307 schema.

Name Description Schema

groupsQuery Holds the template for an LDAP v1.LDAPQuery
query that returns group entries.

groupUIDAttribute Defines which attribute on an string
LDAP group entry will be
interpreted as its unique
identifier. (IdapGroupUID)

164

CHAPTER 18. SYNCING LDAP GROUPS

Name Description Schema

groupNameAttributes Defines which attributes on an string array
LDAP group entry will be
interpreted as its name to use for
an OpenShift Container Platform

group.

groupMembershipAttributes Defines which attributes on an string array
LDAP group entry will be
interpreted as its members. The
values contained in those
attributes must be queryable by
your UserUIDAttribute.

usersQuery Holds the template for an LDAP v1.LDAPQuery
query that returns user entries.

userUIDAttribute Defines which attribute on an string
LDAP user entry will be
interpreted as its unique
identifier. It must correspond to
values that will be found from the
GroupMembershipAttributes.

userNameAttributes Defines which attributes on an string array
LDAP user entry will be used, in
order, as its OpenShift Container
Platform user name. The first
attribute with a non-empty value
is used. This should match your
PreferredUsername setting for
your
LDAPPasswordldentityProvi
der. The attribute to use as the
name of the user in the OpenShift
Container Platform group record.
mail orsAMAccountName are
preferred choices in most
installations.

165

OpenShift Container Platform 4.11 Authentication and authorization

Name Description Schema
tolerateMemberNotFoundErr Determines the behavior of the boolean
ors LDAP sync job when missing user

entries are encountered. If true,
an LDAP query for users that
does not find any will be tolerated
and an only and error will be
logged. If false, the LDAP sync
job will fail if a query for users
doesn't find any. The default
value is false. Misconfigured
LDAP sync jobs with this flag set
to true can cause group
membership to be removed, so it
is recommended to use this flag

with caution.
tolerateMemberOutOfScopeE Determines the behavior of the boolean
rrors LDAP sync job when out-of-

scope user entries are
encountered. If true, an LDAP
query for a user that falls outside
of the base DN given for the all
user query will be tolerated and
only an error will be logged. If
false, the LDAP sync job will fail if
a user query would search outside
of the base DN specified by the all
user query. Misconfigured LDAP
sync jobs with this flag set to true
can result in groups missing users,
so it is recommended to use this
flag with caution.

18.6.5. v1.ActiveDirectoryConfig

ActiveDirectoryConfig holds the necessary configuration options to define how an LDAP group sync
interacts with an LDAP server using the Active Directory schema.

Name Description Schema

usersQuery Holds the template for an LDAP v1.LDAPQuery
query that returns user entries.

166

CHAPTER 18. SYNCING LDAP GROUPS

Name Description Schema

userNameAttributes Defines which attributes on an string array
LDAP user entry will be
interpreted as its OpenShift
Container Platform user name.
The attribute to use as the name
of the user in the OpenShift
Container Platform group record.
mail orsAMAccountName are
preferred choices in most
installations.

groupMembershipAttributes Defines which attributes on an string array
LDAP user entry will be
interpreted as the groupsiitis a
member of.

18.6.6. v.AugmentedActiveDirectoryConfig

AugmentedActiveDirectoryConfig holds the necessary configuration options to define how an LDAP
group sync interacts with an LDAP server using the augmented Active Directory schema.

Name Description Schema

usersQuery Holds the template for an LDAP v1.LDAPQuery
query that returns user entries.

userNameAttributes Defines which attributes on an string array
LDAP user entry will be
interpreted as its OpenShift
Container Platform user name.
The attribute to use as the name
of the user in the OpenShift
Container Platform group record.
mail orsAMAccountName are
preferred choices in most
installations.

groupMembershipAttributes Defines which attributes on an string array
LDAP user entry will be
interpreted as the groupsiitis a
member of.

groupsQuery Holds the template for an LDAP v1.LDAPQuery
query that returns group entries.

167

OpenShift Container Platform 4.11 Authentication and authorization

Name Description Schema

groupUIDAttribute Defines which attribute on an string
LDAP group entry will be
interpreted as its unique
identifier. (IdapGroupUID)

groupNameAttributes Defines which attributes on an string array
LDAP group entry will be
interpreted as its name to use for
an OpenShift Container Platform

group.

168

CHAPTER 19. MANAGING CLOUD PROVIDER CREDENTIALS

CHAPTER 19. MANAGING CLOUD PROVIDER CREDENTIALS

19.1. ABOUT THE CLOUD CREDENTIAL OPERATOR

The Cloud Credential Operator (CCO) manages cloud provider credentials as custom resource
definitions (CRDs). The CCO syncs on CredentialsRequest custom resources (CRs) to allow OpenShift
Container Platform components to request cloud provider credentials with the specific permissions that
are required for the cluster to run.

By setting different values for the credentialsMode parameter in the install-config.yaml file, the CCO
can be configured to operate in several different modes. If no mode is specified, or the
credentialsMode parameter is set to an empty string ("), the CCO operates in its default mode.

19.1.1. Modes

By setting different values for the credentialsMode parameter in the install-config.yaml file, the CCO
can be configured to operate in mint, passthrough, or manual mode. These options provide transparency
and flexibility in how the CCO uses cloud credentials to process CredentialsRequest CRs in the cluster,
and allow the CCO to be configured to suit the security requirements of your organization. Not all CCO
modes are supported for all cloud providers.

® Mint: In mint mode, the CCO uses the provided admin-level cloud credential to create new
credentials for components in the cluster with only the specific permissions that are required.

® Passthrough: In passthrough mode, the CCO passes the provided cloud credential to the
components that request cloud credentials.

® Manual: In manual mode, a user manages cloud credentials instead of the CCO.

o Manual with AWS Security Token Service In manual mode, you can configure an AWS
cluster to use Amazon Web Services Security Token Service (AWS STS). With this
configuration, the CCO uses temporary credentials for different components.

o Manual with GCP Workload Identity In manual mode, you can configure a GCP cluster to
use GCP Workload Identity. With this configuration, the CCO uses temporary credentials

for different components.

Table 19.1. CCO mode support matrix

Cloud provider Mint Passthrough Manual
Alibaba Cloud X
Amazon Web Services (AWS) X X X
Microsoft Azure x [X
Google Cloud Platform (GCP) X X X
IBM Cloud X
Nutanix X

169

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/authentication_and_authorization/#cco-mode-mint
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/authentication_and_authorization/#cco-mode-passthrough
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/authentication_and_authorization/#cco-mode-manual
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/authentication_and_authorization/#cco-mode-sts
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/authentication_and_authorization/#cco-mode-gcp-workload-identity

OpenShift Container Platform 4.11 Authentication and authorization

Cloud provider Mint Passthrough Manual
Red Hat OpenStack Platform (RHOSP) X
Red Hat Virtualization (RHV) X
VMware vSphere X

1. Manual mode is the only supported CCO configuration for Microsoft Azure Stack Hub.

19.1.2. Determining the Cloud Credential Operator mode

For platforms that support using the CCO in multiple modes, you can determine what mode the CCO is
configured to use by using the web console or the CLI.

170

CHAPTER 19. MANAGING CLOUD PROVIDER CREDENTIALS

Figure 19.1. Determining the CCO configuration

Determine

platform type

v v v v

Red Hat Amazon
olflg??:ra;sk Web Services Alibaba Cloud
global Microsoft
Bl Red Hat Microsoft Azure 1BM Cloud Stgczll(":ub
Virtualization .
Nutanix

Google
Cloud Platform

Get value of
“spec.credentialsMode’

|
v v v v

Tt “Mint® “Manual®

VMware vSphere

*Passthrough’

| |

Determine if root secret is present

| |
v v

Yes No

v

Cluster
uses CCO in
mint mode with
the root secret

f

f

removed
Get value of Get value of
*.metadata.annotations” *.spec.serviceAccountIssuer’
in cluster root secret in cluster ~Authentication” object
“"cloud- “"cloud-
credential. credential. .
openshift. openshift. [blank] Cloud provider
1o/mode" 1io/mode"
:"passthrough"” "mint"”
Cloud credentials
Cluster Cluster Cluster managed from
uses CCO in uses CCO in has long-term outside the
e el mint mode with manually cluster, which
P 9 the root secret maintained was configured
mode q P
present credentials using the

“ccoctl’ utility

19.1.2.1. Determining the Cloud Credential Operator mode by using the web console

You can determine what mode the Cloud Credential Operator (CCO) is configured to use by using the

web console.

OpenShift Container Platform 4.11 Authentication and authorization

NOTE

Only Amazon Web Services (AWS), global Microsoft Azure, and Google Cloud Platform
(GCP) clusters support multiple CCO modes.

Prerequisites

® You have access to an OpenShift Container Platform account with cluster administrator
permissions.

Procedure

1. Login to the OpenShift Container Platform web console as a user with the cluster-admin role.
2. Navigate to Administration — Cluster Settings.
3. On the Cluster Settings page, select the Configuration tab.
4. Under Configuration resource, select CloudCredential.
5. On the CloudCredential detailspage, select the YAML tab.

6. Inthe YAML block, check the value of spec.credentialsMode. The following values are possible,
though not all are supported on all platforms:

® " The CCO is operating in the default mode. In this configuration, the CCO operates in mint
or passthrough mode, depending on the credentials provided during installation.

® Mint: The CCO is operating in mint mode.
® Passthrough: The CCO is operating in passthrough mode.

® Manual: The CCO is operating in manual mode.

IMPORTANT

To determine the specific configuration of an AWS or GCP cluster that has a
spec.credentialsMode of ", Mint, or Manual, you must investigate further.

AWS and GCP clusters support using mint mode with the root secret deleted.

An AWS or GCP cluster that uses manual mode might be configured to create
and manage cloud credentials from outside of the cluster using the AWS Security
Token Service (STS) or GCP Workload Identity. You can determine whether your
cluster uses this strategy by examining the cluster Authentication object.

7. AWS or GCP clusters that use the default (") only: To determine whether the cluster is
operating in mint or passthrough mode, inspect the annotations on the cluster root secret:

a. Navigate to Workloads — Secrets and look for the root secret for your cloud provider.

NOTE

Ensure that the Project dropdown is set to All Projects.

172

CHAPTER 19. MANAGING CLOUD PROVIDER CREDENTIALS

Platform Secret name

AWS aws-creds

GCP gcp-credentials

b. To view the CCO mode that the cluster is using, click 1 annotation under Annotations, and
check the value field. The following values are possible:

® Mint: The CCO is operating in mint mode.
® Passthrough: The CCO is operating in passthrough mode.

If your cluster uses mint mode, you can also determine whether the cluster is operating
without the root secret.

8. AWS or GCP clusters that use mint mode only: To determine whether the cluster is operating

without the root secret, navigate to Workloads = Secrets and look for the root secret for your
cloud provider.

NOTE

Ensure that the Project dropdown is set to All Projects.

Platform Secret name

AWS aws-creds

GCP gcp-credentials
® |f you see one of these values, your cluster is using mint or passthrough mode with the root
secret present.

® |f you do not see these values, your cluster is using the CCO in mint mode with the root
secret removed.

9. AWS or GCP clusters that use manual mode only: To determine whether the cluster is

configured to create and manage cloud credentials from outside of the cluster, you must check
the cluster Authentication object YAML values.

a. Navigate to Administration — Cluster Settings.

b. On the Cluster Settings page, select the Configuration tab.
c. Under Configuration resource, select Authentication.

d. On the Authentication details page, select the YAML tab.

e. Inthe YAML block, check the value of the .spec.serviceAccountlssuer parameter.

® Avalue that contains a URL that is associated with your cloud provider indicates that
the CCO is using manual mode with AWS STS or GCP Workload Identity to create and

173

OpenShift Container Platform 4.11 Authentication and authorization

manage cloud credentials from outside of the cluster. These clusters are configured
using the ccoctl utility.

® Anempty value (") indicates that the cluster is using the CCO in manual mode but was
not configured using the ccoctl utility.

19.1.2.2. Determining the Cloud Credential Operator mode by using the CLI

You can determine what mode the Cloud Credential Operator (CCO) is configured to use by using the
CLlI.

S NOTE

Only Amazon Web Services (AWS), global Microsoft Azure, and Google Cloud Platform
(GCP) clusters support multiple CCO modes.

Prerequisites

® You have access to an OpenShift Container Platform account with cluster administrator
permissions.

® You have installed the OpenShift CLI (oc).

Procedure

1. Login to oc on the cluster as a user with the cluster-admin role.

2. To determine the mode that the CCO is configured to use, enter the following command:

$ oc get cloudcredentials cluster \
-o=jsonpath={.spec.credentialsMode}

The following output values are possible, though not all are supported on all platforms:

® " The CCO is operating in the default mode. In this configuration, the CCO operates in mint
or passthrough mode, depending on the credentials provided during installation.

® Mint: The CCO is operating in mint mode.
® Passthrough: The CCO is operating in passthrough mode.

® Manual: The CCO is operating in manual mode.

IMPORTANT

To determine the specific configuration of an AWS or GCP cluster that has a
spec.credentialsMode of ", Mint, or Manual, you must investigate further.

AWS and GCP clusters support using mint mode with the root secret deleted.

An AWS or GCP cluster that uses manual mode might be configured to create
and manage cloud credentials from outside of the cluster using the AWS Security
Token Service (STS) or GCP Workload Identity. You can determine whether your
cluster uses this strategy by examining the cluster Authentication object.

174

CHAPTER 19. MANAGING CLOUD PROVIDER CREDENTIALS

3. AWS or GCP clusters that use the default (") only: To determine whether the cluster is
operating in mint or passthrough mode, run the following command:

$ oc get secret <secret_name> \
-n kube-system \
-0 jsonpath \
--template '{ .metadata.annotations }'

where <secret_name> is aws-creds for AWS or gcp-credentials for GCP.

This command displays the value of the .metadata.annotations parameter in the cluster root
secret object. The following output values are possible:

® Mint: The CCO is operating in mint mode.
® Passthrough: The CCO is operating in passthrough mode.

If your cluster uses mint mode, you can also determine whether the cluster is operating without
the root secret.

4. AWS or GCP clusters that use mint mode only: To determine whether the cluster is operating
without the root secret, run the following command:

$ oc get secret <secret_name> \
-n=kube-system

where <secret_name> is aws-creds for AWS or gcp-credentials for GCP.

If the root secret is present, the output of this command returns information about the secret.
An error indicates that the root secret is not present on the cluster.

5. AWS or GCP clusters that use manual mode only: To determine whether the cluster is
configured to create and manage cloud credentials from outside of the cluster, run the following
command:

$ oc get authentication cluster \
-0 jsonpath \
--template="{ .spec.serviceAccountlssuer }'

This command displays the value of the .spec.serviceAccountlssuer parameter in the cluster
Authentication object.

® Anoutput of a URL that is associated with your cloud provider indicates that the CCO is
using manual mode with AWS STS or GCP Workload Identity to create and manage cloud
credentials from outside of the cluster. These clusters are configured using the ccoctl
utility.

® Anempty output indicates that the cluster is using the CCO in manual mode but was not
configured using the ccoctl utility.

19.1.3. Default behavior

For platforms on which multiple modes are supported (AWS, Azure, and GCP), when the CCO operates
in its default mode, it checks the provided credentials dynamically to determine for which mode they are
sufficient to process CredentialsRequest CRs.

175

OpenShift Container Platform 4.11 Authentication and authorization

By default, the CCO determines whether the credentials are sufficient for mint mode, which is the
preferred mode of operation, and uses those credentials to create appropriate credentials for
components in the cluster. If the credentials are not sufficient for mint mode, it determines whether they
are sufficient for passthrough mode. If the credentials are not sufficient for passthrough mode, the

CCO cannot adequately process CredentialsRequest CRs.

If the provided credentials are determined to be insufficient during installation, the installation fails. For
AWS, the installer fails early in the process and indicates which required permissions are missing. Other
providers might not provide specific information about the cause of the error until errors are
encountered.

If the credentials are changed after a successful installation and the CCO determines that the new
credentials are insufficient, the CCO puts conditions on any new CredentialsRequest CRs to indicate
that it cannot process them because of the insufficient credentials.

To resolve insufficient credentials issues, provide a credential with sufficient permissions. If an error
occurred during installation, try installing again. For issues with new CredentialsRequest CRs, wait for
the CCO to try to process the CR again. As an alternative, you can manually create IAM for AWS, Azure,
and GCP.

19.1.4. Additional resources

® Cluster Operators reference page for the Cloud Credential Operator

19.2. USING MINT MODE
Mint mode is supported for Amazon Web Services (AWS) and Google Cloud Platform (GCP).

Mint mode is the default mode on the platforms for which it is supported. In this mode, the Cloud
Credential Operator (CCO) uses the provided administrator-level cloud credential to create new
credentials for components in the cluster with only the specific permissions that are required.

If the credential is not removed after installation, it is stored and used by the CCO to process
CredentialsRequest CRs for components in the cluster and create new credentials for each with only
the specific permissions that are required. The continuous reconciliation of cloud credentials in mint
mode allows actions that require additional credentials or permissions, such as upgrading, to proceed.

Mint mode stores the administrator-level credential in the cluster kube-system namespace. If this

approach does not meet the security requirements of your organization, see Alternatives to storing
administrator-level secrets in the kube-system project for AWS or GCP.

19.2.1. Mint mode permissions requirements

When using the CCO in mint mode, ensure that the credential you provide meets the requirements of
the cloud on which you are running or installing OpenShift Container Platform. If the provided
credentials are not sufficient for mint mode, the CCO cannot create an IAM user.

19.2.1.1. Amazon Web Services (AWS) permissions

The credential you provide for mint mode in AWS must have the following permissions:
e jam:CreateAccessKey

e jam:CreateUser

176

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/installing/#manually-creating-iam-aws
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/installing/#manually-creating-iam-azure
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/installing/#manually-creating-iam-gcp
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#cloud-credential-operator_cluster-operators-ref
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/installing/#alternatives-to-storing-admin-secrets-in-kube-system_manually-creating-iam-aws
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/installing/#alternatives-to-storing-admin-secrets-in-kube-system_manually-creating-iam-gcp

CHAPTER 19. MANAGING CLOUD PROVIDER CREDENTIALS

iam:DeleteAccessKey
iam:DeleteUser
iam:DeleteUserPolicy
iam:GetUser
iam:GetUserPolicy
iam:ListAccessKeys
iam:PutUserPolicy
iam:TagUser

iam:SimulatePrincipalPolicy

19.2.1.2. Google Cloud Platform (GCP) permissions

The credential you provide for mint mode in GCP must have the following permissions:

resourcemanager.projects.get
serviceusage.services.list
iam.serviceAccountKeys.create
iam.serviceAccountKeys.delete
iam.serviceAccounts.create
iam.serviceAccounts.delete
iam.serviceAccounts.get

iam.roles.get
resourcemanager.projects.getlamPolicy

resourcemanager.projects.setlamPolicy

19.2.2. Admin credentials root secret format

Each cloud provider uses a credentials root secret in the kube-system namespace by convention, which
is then used to satisfy all credentials requests and create their respective secrets. This is done either by
minting new credentials with mint mode, or by copying the credentials root secret with passthrough

mode.

The format for the secret varies by cloud, and is also used for each CredentialsRequest secret.

Amazon Web Services (AWS) secret format

apiVersion: v1i
kind: Secret
metadata:
namespace: kube-system

177

OpenShift Container Platform 4.11 Authentication and authorization

name: aws-creds

stringData:
aws_access_key_id: <base64-encoded_access_key_id>
aws_secret_access_key: <base64-encoded_secret_access_key>

Google Cloud Platform (GCP) secret format

apiVersion: v1i
kind: Secret
metadata:
namespace: kube-system
name: gcp-credentials
stringData:
service_account.json: <base64-encoded_service_account>

19.2.3. Mint mode with removal or rotation of the administrator-level credential

Currently, this mode is only supported on AWS and GCP.

In this mode, a user installs OpenShift Container Platform with an administrator-level credential just like
the normal mint mode. However, this process removes the administrator-level credential secret from
the cluster post-installation.

The administrator can have the Cloud Credential Operator make its own request for a read-only
credential that allows it to verify if all CredentialsRequest objects have their required permissions, thus
the administrator-level credential is not required unless something needs to be changed. After the
associated credential is removed, it can be deleted or deactivated on the underlying cloud, if desired.

NOTE

Prior to a non z-stream upgrade, you must reinstate the credential secret with the
administrator-level credential. If the credential is not present, the upgrade might be
blocked.

The administrator-level credential is not stored in the cluster permanently.

Following these steps still requires the administrator-level credential in the cluster for brief periods of
time. It also requires manually re-instating the secret with administrator-level credentials for each
upgrade.

19.2.3.1. Rotating cloud provider credentials manually

If your cloud provider credentials are changed for any reason, you must manually update the secret that
the Cloud Credential Operator (CCO) uses to manage cloud provider credentials.

The process for rotating cloud credentials depends on the mode that the CCO is configured to use.
After you rotate credentials for a cluster that is using mint mode, you must manually remove the
component credentials that were created by the removed credential.

Prerequisites

® Your cluster is installed on a platform that supports rotating cloud credentials manually with the
CCO mode that you are using:

178

CHAPTER 19. MANAGING CLOUD PROVIDER CREDENTIALS

o For mint mode, Amazon Web Services (AWS) and Google Cloud Platform (GCP) are
supported.

® You have changed the credentials that are used to interface with your cloud provider.

® The new credentials have sufficient permissions for the mode CCO is configured to use in your
cluster.

Procedure

1. In the Administrator perspective of the web console, navigate to Workloads — Secrets.

2. Inthe table on the Secrets page, find the root secret for your cloud provider.

Platform Secret name

AWS aws-creds
GCP gcp-credentials
]
.
3. Click the Options menu in the same row as the secret and select Edit Secret

4. Record the contents of the Value field or fields. You can use this information to verify that the
value is different after updating the credentials.

5. Update the text in the Value field or fields with the new authentication information for your
cloud provider, and then click Save.

6. Delete each component secret that is referenced by the individual CredentialsRequest
objects.

a. Login to the OpenShift Container Platform CLI as a user with the cluster-admin role.

b. Get the names and namespaces of all referenced component secrets:

$ oc -n openshift-cloud-credential-operator get CredentialsRequest \
-0 json | jq -r ".items]] | select (.spec.providerSpec.kind=="<provider_spec>") |
.spec.secretRef’

where <provider_specs is the corresponding value for your cloud provider:
o AWS: AWSProviderSpec

® GCP: GCPProviderSpec

Partial example output for AWS

{

"name": "ebs-cloud-credentials”,
"namespace”: "openshift-cluster-csi-drivers"

}
{

179

OpenShift Container Platform 4.11 Authentication and authorization

"name": "cloud-credential-operator-iam-ro-creds",
"namespace”: "openshift-cloud-credential-operator"”

}

c. Delete each of the referenced component secrets:

$ oc delete secret <secret_name> \ﬂ
-n <secret_namespace> 9

ﬂ Specify the name of a secret.

9 Specify the namespace that contains the secret.

Example deletion of an AWS secret
I $ oc delete secret ebs-cloud-credentials -n openshift-cluster-csi-drivers

You do not need to manually delete the credentials from your provider console. Deleting
the referenced component secrets will cause the CCO to delete the existing credentials
from the platform and create new ones.

Verification

To verify that the credentials have changed:
1. In the Administrator perspective of the web console, navigate to Workloads — Secrets.

2. Verify that the contents of the Value field or fields have changed.

19.2.3.2. Removing cloud provider credentials

After installing an OpenShift Container Platform cluster with the Cloud Credential Operator (CCQO) in
mint mode, you can remove the administrator-level credential secret from the kube-system namespace
in the cluster. The administrator-level credential is required only during changes that require its

elevated permissions, such as upgrades.

NOTE
Prior to a non z-stream upgrade, you must reinstate the credential secret with the

administrator-level credential. If the credential is not present, the upgrade might be
blocked.

Prerequisites

® Your cluster is installed on a platform that supports removing cloud credentials from the CCO.
Supported platforms are AWS and GCP.

Procedure
1. In the Administrator perspective of the web console, navigate to Workloads — Secrets.

2. Inthe table on the Secrets page, find the root secret for your cloud provider.

180

CHAPTER 19. MANAGING CLOUD PROVIDER CREDENTIALS

Platform Secret name

AWS aws-creds
GCP gcp-credentials
]
.
3. Click the Options menu in the same row as the secret and select Delete Secret

19.2.4. Additional resources

® Alternatives to storing administrator-level secrets in the kube-system project for AWS

® Alternatives to storing administrator-level secrets in the kube-system project for GCP

19.3. USING PASSTHROUGH MODE

Passthrough mode is supported for Amazon Web Services (AWS), Microsoft Azure, Google Cloud
Platform (GCP), Red Hat OpenStack Platform (RHOSP), Red Hat Virtualization (RHV), and VMware
vSphere.

In passthrough mode, the Cloud Credential Operator (CCO) passes the provided cloud credential to the
components that request cloud credentials. The credential must have permissions to perform the
installation and complete the operations that are required by components in the cluster, but does not
need to be able to create new credentials. The CCO does not attempt to create additional limited-
scoped credentials in passthrough mode.

NOTE

Manual mode is the only supported CCO configuration for Microsoft Azure Stack Hub.

19.3.1. Passthrough mode permissions requirements

When using the CCO in passthrough mode, ensure that the credential you provide meets the
requirements of the cloud on which you are running or installing OpenShift Container Platform. If the
provided credentials the CCO passes to a component that creates a CredentialsRequest CR are not
sufficient, that component will report an error when it tries to call an API that it does not have
permissions for.

19.3.1.1. Amazon Web Services (AWS) permissions

The credential you provide for passthrough mode in AWS must have all the requested permissions for all
CredentialsRequest CRs that are required by the version of OpenShift Container Platform you are
running or installing.

To locate the CredentialsRequest CRs that are required, see Manually creating IAM for AWS.

19.3.1.2. Microsoft Azure permissions

181

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/installing/#alternatives-to-storing-admin-secrets-in-kube-system_manually-creating-iam-aws
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/installing/#alternatives-to-storing-admin-secrets-in-kube-system_manually-creating-iam-gcp
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/authentication_and_authorization/#cco-mode-manual
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/installing/#manually-creating-iam-aws

OpenShift Container Platform 4.11 Authentication and authorization

The credential you provide for passthrough mode in Azure must have all the requested permissions for
all CredentialsRequest CRs that are required by the version of OpenShift Container Platform you are
running or installing.

To locate the CredentialsRequest CRs that are required, see Manually creating IAM for Azure.

19.3.1.3. Google Cloud Platform (GCP) permissions

The credential you provide for passthrough mode in GCP must have all the requested permissions for all
CredentialsRequest CRs that are required by the version of OpenShift Container Platform you are
running or installing.

To locate the CredentialsRequest CRs that are required, see Manually creating IAM for GCP.

19.3.1.4. Red Hat OpenStack Platform (RHOSP) permissions

To install an OpenShift Container Platform cluster on RHOSP, the CCO requires a credential with the
permissions of a member user role.

19.3.1.5. Red Hat Virtualization (RHV) permissions

To install an OpenShift Container Platform cluster on RHV, the CCO requires a credential with the
following privileges:

e DiskOperator

e DiskCreator

o UserTemplateBasedVm
e TemplateOwner

e TemplateCreator

e ClusterAdmin on the specific cluster that is targeted for OpenShift Container Platform
deployment

19.3.1.6. VMware vSphere permissions

To install an OpenShift Container Platform cluster on VMware vSphere, the CCO requires a credential
with the following vSphere privileges:

Table 19.2. Required vSphere privileges

Category Privileges

Datastore Allocate space

Folder Create folder, Delete folder
vSphere Tagging All privileges

Network Assign network

182

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/installing/#manually-creating-iam-azure
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/installing/#manually-creating-iam-gcp

CHAPTER 19. MANAGING CLOUD PROVIDER CREDENTIALS

Category Privileges

Resource Assign virtual machine to resource pool
Profile-driven storage All privileges
VvApp All privileges
Virtual machine All privileges

19.3.2. Admin credentials root secret format

Each cloud provider uses a credentials root secret in the kube-system namespace by convention, which
is then used to satisfy all credentials requests and create their respective secrets. This is done either by
minting new credentials with mint mode, or by copying the credentials root secret with passthrough
mode.

The format for the secret varies by cloud, and is also used for each CredentialsRequest secret.

Amazon Web Services (AWS) secret format

apiVersion: vi
kind: Secret
metadata:
namespace: kube-system
name: aws-creds
stringData:
aws_access_key_id: <base64-encoded_access_key_id>
aws_secret_access_key: <base64-encoded_secret_access_key>

Microsoft Azure secret format

apiVersion: vi

kind: Secret

metadata:
namespace: kube-system
name: azure-credentials

stringData:
azure_subscription_id: <base64-encoded_subscription_id>
azure_client_id: <base64-encoded_client_id>
azure client_secret: <base64-encoded client_secret>
azure_tenant_id: <base64-encoded_tenant_id>
azure_resource_prefix: <base64-encoded_resource_prefix>
azure_resourcegroup: <base64-encoded_resource_group>
azure_region: <base64-encoded_region>

On Microsoft Azure, the credentials secret format includes two properties that must contain the
cluster’s infrastructure ID, generated randomly for each cluster installation. This value can be found
after running create manifests:

LILIE S

I $ cat .openshift_install_state.json | jq '."*installconfig.ClusterID".InfralD" -r

183

OpenShift Container Platform 4.11 Authentication and authorization

Example output
I mycluster-2mpcn
This value would be used in the secret data as follows:

azure_resource_prefix: mycluster-2mpcn
azure_resourcegroup: mycluster-2mpcn-rg

Google Cloud Platform (GCP) secret format

apiVersion: v1i
kind: Secret
metadata:
namespace: kube-system
name: gcp-credentials
stringData:
service_account.json: <base64-encoded_service_account>

Red Hat OpenStack Platform (RHOSP) secret format

apiVersion: vi
kind: Secret
metadata:
namespace: kube-system
name: openstack-credentials
data:
clouds.yaml: <base64-encoded_cloud_creds>
clouds.conf: <base64-encoded cloud_creds_init>

Red Hat Virtualization (RHV) secret format

apiVersion: vi

kind: Secret

metadata:
namespace: kube-system
name: ovirt-credentials

data:
ovirt_url: <base64-encoded_url>
ovirt_username: <base64-encoded_username>
ovirt_password: <base64-encoded_password>
ovirt_insecure: <base64-encoded_insecure>
ovirt_ca_bundle: <base64-encoded ca bundle>

VMware vSphere secret format

apiVersion: vi

kind: Secret

metadata:
namespace: kube-system
name: vsphere-creds

184

CHAPTER 19. MANAGING CLOUD PROVIDER CREDENTIALS

data:
vsphere.openshift.example.com.username: <base64-encoded_username>
vsphere.openshift.example.com.password: <base64-encoded_password>

19.3.3. Passthrough mode credential maintenance

If CredentialsRequest CRs change over time as the cluster is upgraded, you must manually update the
passthrough mode credential to meet the requirements. To avoid credentials issues during an upgrade,
check the CredentialsRequest CRs in the release image for the new version of OpenShift Container
Platform before upgrading. To locate the CredentialsRequest CRs that are required for your cloud
provider, see Manually creating IAM for AWS, Azure, or GCP.

19.3.3.1. Rotating cloud provider credentials manually

If your cloud provider credentials are changed for any reason, you must manually update the secret that
the Cloud Credential Operator (CCO) uses to manage cloud provider credentials.

The process for rotating cloud credentials depends on the mode that the CCO is configured to use.
After you rotate credentials for a cluster that is using mint mode, you must manually remove the
component credentials that were created by the removed credential.

Prerequisites

® Your cluster is installed on a platform that supports rotating cloud credentials manually with the
CCO mode that you are using:

o For passthrough mode, Amazon Web Services (AWS), Microsoft Azure, Google Cloud
Platform (GCP), Red Hat OpenStack Platform (RHOSP), Red Hat Virtualization (RHV), and
VMware vSphere are supported.

® You have changed the credentials that are used to interface with your cloud provider.

® The new credentials have sufficient permissions for the mode CCO is configured to use in your
cluster.

Procedure

1. In the Administrator perspective of the web console, navigate to Workloads — Secrets.

2. Inthe table on the Secrets page, find the root secret for your cloud provider.

Platform Secret name

AWS aws-creds

Azure azure-credentials

GCP gcp-credentials
RHOSP openstack-credentials
RHV ovirt-credentials

185

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/installing/#manually-creating-iam-aws
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/installing/#manually-creating-iam-azure
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/installing/#manually-creating-iam-gcp

OpenShift Container Platform 4.11 Authentication and authorization

Platform Secret name

VMware vSphere vsphere-creds

3. Click the Options menu in the same row as the secret and select Edit Secret.

4. Record the contents of the Value field or fields. You can use this information to verify that the

value is different after updating the credentials.

5. Update the text in the Value field or fields with the new authentication information for your

cloud provider, and then click Save.

6. If you are updating the credentials for a vSphere cluster that does not have the vSphere CSI

Driver Operator enabled, you must force a rollout of the Kubernetes controller manager to apply
the updated credentials.

NOTE

If the vSphere CSI Driver Operator is enabled, this step is not required.

To apply the updated vSphere credentials, log in to the OpenShift Container Platform CLI as a
user with the cluster-admin role and run the following command:

$ oc patch kubecontrollermanager cluster \
-p="{"spec": {"forceRedeploymentReason": "recovery-"$(date)""}}'\
--type=merge

While the credentials are rolling out, the status of the Kubernetes Controller Manager Operator
reports Progressing=true. To view the status, run the following command:

I $ oc get co kube-controller-manager

Verification

To verify that the credentials have changed:

1. In the Administrator perspective of the web console, navigate to Workloads — Secrets.

2. Verify that the contents of the Value field or fields have changed.

Additional resources

® vSphere CSI Driver Operator

19.3.4. Reducing permissions after installation

When using passthrough mode, each component has the same permissions used by all other
components. If you do not reduce the permissions after installing, all components have the broad
permissions that are required to run the installer.

186

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/storage/#vmware-vsphere-csi-driver-operator

CHAPTER 19. MANAGING CLOUD PROVIDER CREDENTIALS

After installation, you can reduce the permissions on your credential to only those that are required to
run the cluster, as defined by the CredentialsRequest CRs in the release image for the version of
OpenShift Container Platform that you are using.

To locate the CredentialsRequest CRs that are required for AWS, Azure, or GCP and learn how to
change the permissions the CCO uses, see Manually creating IAM for AWS, Azure, or GCP.

19.3.5. Additional resources
® Manually creating IAM for AWS
® Manually creating IAM for Azure

® Manually creating IAM for GCP

19.4. USING MANUAL MODE

Manual mode is supported for Alibaba Cloud, Amazon Web Services (AWS), Microsoft Azure, IBM Cloud,
and Google Cloud Platform (GCP).

In manual mode, a user manages cloud credentials instead of the Cloud Credential Operator (CCO). To
use this mode, you must examine the CredentialsRequest CRs in the release image for the version of
OpenShift Container Platform that you are running or installing, create corresponding credentials in the
underlying cloud provider, and create Kubernetes Secrets in the correct namespaces to satisfy all
CredentialsRequest CRs for the cluster’s cloud provider.

Using manual mode allows each cluster component to have only the permissions it requires, without
storing an administrator-level credential in the cluster. This mode also does not require connectivity to
the AWS public IAM endpoint. However, you must manually reconcile permissions with new release
images for every upgrade.

For information about configuring your cloud provider to use manual mode, see the manual credentials
management options for your cloud provider:

® Manually creating RAM resources for Alibaba Cloud

® Manually creating IAM for AWS

® Manually creating IAM for Azure

® Manually creating IAM for GCP

e Configuring IAM for IBM Cloud

e Configuring IAM for Nutanix
19.4.1. Manual mode with cloud credentials created and managed outside of the
cluster

An AWS or GCP cluster that uses manual mode might be configured to create and manage cloud
credentials from outside of the cluster using the AWS Security Token Service (STS) or GCP Workload
Identity. With this configuration, the CCO uses temporary credentials for different components.

For more information, see Using manual mode with Amazon Web Services Security Token Service or
Using manual mode with GCP Workload Identity .

187

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/installing/#manually-creating-iam-aws
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/installing/#manually-creating-iam-azure
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/installing/#manually-creating-iam-gcp
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/installing/#manually-creating-iam-aws
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/installing/#manually-creating-iam-azure
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/installing/#manually-creating-iam-gcp
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/installing/#manually-creating-alibaba-ram
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/installing/#manually-creating-iam-aws
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/installing/#manually-creating-iam-azure
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/installing/#manually-creating-iam-gcp
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/installing/#configuring-iam-ibm-cloud
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/installing/#manually-create-iam-nutanix_installing-nutanix-installer-provisioned
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/authentication_and_authorization/#cco-mode-sts
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/authentication_and_authorization/#cco-mode-gcp-workload-identity

OpenShift Container Platform 4.11 Authentication and authorization

19.4.2. Updating cloud provider resources with manually maintained credentials

Before upgrading a cluster with manually maintained credentials, you must create any new credentials
for the release image that you are upgrading to. You must also review the required permissions for
existing credentials and accommodate any new permissions requirements in the new release for those
components.

Procedure

1. Extract and examine the CredentialsRequest custom resource for the new release.
The "Manually creating IAM" section of the installation content for your cloud provider explains
how to obtain and use the credentials required for your cloud.

2. Update the manually maintained credentials on your cluster:

e Create new secrets for any CredentialsRequest custom resources that are added by the
new release image.

e |f the CredentialsRequest custom resources for any existing credentials that are stored in
secrets have changed permissions requirements, update the permissions as required.

Next steps

® Update the upgradeable-to annotation to indicate that the cluster is ready to upgrade.

19.4.2.1. Indicating that the cluster is ready to upgrade

The Cloud Credential Operator (CCO) Upgradable status for a cluster with manually maintained
credentials is False by default.

Prerequisites

® For the release image that you are upgrading to, you have processed any new credentials
manually or by using the Cloud Credential Operator utility (ccoctl).

® You have installed the OpenShift CLI (oc).

Procedure

1. Login to oc on the cluster as a user with the cluster-admin role.

2. Edit the CloudCredential resource to add an upgradeable-to annotation within the metadata
field by running the following command:

I $ oc edit cloudcredential cluster

Text to add

metadata:
annotations:
cloudcredential.openshift.io/upgradeable-to: <version_number>

188

CHAPTER 19. MANAGING CLOUD PROVIDER CREDENTIALS

Where <version_numbers is the version that you are upgrading to, in the format x.y.z. For
example, use 4.12.2 for OpenShift Container Platform 4.12.2.

It may take several minutes after adding the annotation for the upgradeable status to change.

Verification

1.

In the Administrator perspective of the web console, navigate to Administration - Cluster
Settings.

. To view the CCO status details, click cloud-credential in the Cluster Operators list.

e |f the Upgradeable status in the Conditions section is False, verify that the upgradeable-
to annotation is free of typographical errors.

When the Upgradeable status in the Conditions section is True, begin the OpenShift
Container Platform upgrade.

19.4.3. Additional resources

Manually creating RAM resources for Alibaba Cloud

Manually creating IAM for AWS

Using manual mode with Amazon Web Services Security Token Service
Manually creating IAM for Azure

Manually creating IAM for GCP

Using manual mode with GCP Workload Identity

Configuring IAM for IBM Cloud

Configuring IAM for Nutanix

19.5. USING MANUAL MODE WITH AMAZON WEB SERVICES SECURITY
TOKEN SERVICE

Manual mode with STS is supported for Amazon Web Services (AWS).

NOTE

This credentials strategy is supported for only new OpenShift Container Platform clusters
and must be configured during installation. You cannot reconfigure an existing cluster
that uses a different credentials strategy to use this feature.

19.5.1. About manual mode with AWS Security Token Service

In manual mode with STS, the individual OpenShift Container Platform cluster components use AWS
Security Token Service (STS) to assign components |AM roles that provide short-term, limited-privilege
security credentials. These credentials are associated with IAM roles that are specific to each
component that makes AWS API calls.

189

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/installing/#manually-creating-alibaba-ram
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/installing/#manually-creating-iam-aws
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/authentication_and_authorization/#cco-mode-sts
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/installing/#manually-creating-iam-azure
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/installing/#manually-creating-iam-gcp
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/authentication_and_authorization/#cco-mode-gcp-workload-identity
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/installing/#configuring-iam-ibm-cloud
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/installing/#manually-create-iam-nutanix_installing-nutanix-installer-provisioned

OpenShift Container Platform 4.11 Authentication and authorization

19.5.1.1. AWS Security Token Service authentication process

The AWS Security Token Service (STS) and the AssumeRole API action allow pods to retrieve access
keys that are defined by an IAM role policy.

The OpenShift Container Platform cluster includes a Kubernetes service account signing service. This
service uses a private key to sign service account JSON web tokens (JWT). A pod that requires a
service account token requests one through the pod specification. When the pod is created and
assigned to a node, the node retrieves a signed service account from the service account signing service
and mounts it onto the pod.

Clusters that use STS contain an IAM role ID in their Kubernetes configuration secrets. Workloads
assume the identity of this IAM role ID. The signed service account token issued to the workload aligns
with the configuration in AWS, which allows AWS STS to grant access keys for the specified IAM role to
the workload.

AWS STS grants access keys only for requests that include service account tokens that meet the
following conditions:

® The token name and namespace match the service account name and namespace.
® The token is signed by a key that matches the public key. The public key pair for the service
account signing key used by the cluster is stored in an AWS S3 bucket. AWS STS federation

validates that the service account token signature aligns with the public key stored in the S3
bucket.

19.5.1.2. Authentication flow for AWS STS

The following diagram illustrates the authentication flow between AWS and the OpenShift Container
Platform cluster when using AWS STS.

® Token signing is the Kubernetes service account signing service on the OpenShift Container
Platform cluster.

® The Kubernetes service account in the pod is the signed service account token.

190

https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html

CHAPTER 19. MANAGING CLOUD PROVIDER CREDENTIALS

Figure 19.2. AWS Security Token Service authentication flow

Amazon Web Services

S3 bucket

> with OIDC configuration <4— Trust tokens signed — IAM Identity Provider
Public key
AWS services <} > IAM Role for pod
e
Kubernetes Vol
service account -
OpenShift | |
i : Pod
[
Private key P
e P PR » AWS config file
B e e s e e e »
L Kubernetes
Ll

Token signing

v

service account

Requests for new and refreshed credentials are automated by using an appropriately configured AWS
IAM OpenlID Connect (OIDC) identity provider combined with AWS IAM roles. Service account tokens
that are trusted by AWS IAM are signed by OpenShift Container Platform and can be projected into a
pod and used for authentication.

19.5.1.3. Token refreshing for AWS STS

The signed service account token that a pod uses expires after a period of time. For clusters that use
AWS STS, this time period is 3600 seconds, or one hour.

The kubelet on the node that the pod is assigned to ensures that the token is refreshed. The kubelet
attempts to rotate a token when it is older than 80 percent of its time to live.

19.5.1.4. OpenlID Connect requirements for AWS STS

You can store the public portion of the encryption keys for your OIDC configuration in a public or private
S3 bucket.

The OIDC spec requires the use of HTTPS. AWS services require a public endpoint to expose the OIDC
documents in the form of JSON web key set (JWKS) public keys. This allows AWS services to validate
the bound tokens signed by Kubernetes and determine whether to trust certificates. As a result, both S3
bucket options require a public HTTPS endpoint and private endpoints are not supported.

To use AWS STS, the public AWS backbone for the AWS STS service must be able to communicate with
a public S3 bucket or a private S3 bucket with a public CloudFront endpoint. You can choose which type
of bucket to use when you process CredentialsRequest objects during installation:

e By default, the CCO utility (ccoctl) stores the OIDC configuration files in a public S3 bucket and
uses the S3 URL as the public OIDC endpoint.

191

OpenShift Container Platform 4.11 Authentication and authorization

® As an alternative, you can have the ccoctl utility store the OIDC configuration in a private S3
bucket that is accessed by the IAM identity provider through a public CloudFront distribution
URL.

19.5.1.5. AWS component secret formats

Using manual mode with STS changes the content of the AWS credentials that are provided to
individual OpenShift Container Platform components. Compare the following secret formats:

AWS secret format using long-lived credentials

apiVersion: v1
kind: Secret
metadata:
namespace: <target-namespace> ﬂ
name: <target-secret-name>
data:
aws_access_key_id: <base64-encoded-access-key-id>
aws_secret_access_key: <base64-encoded-secret-access-key>

ﬂ The namespace for the component.

9 The name of the component secret.

AWS secret format with STS

apiVersion: vi
kind: Secret
metadata:
namespace: <target-namespace> ﬂ
name: <target-secret-name>
stringData:
credentials: |-
[default]
sts_regional_endpoints = regional
role_name: <operator-role-name>
web_identity_token_file: <path-to-token> ﬂ

The namespace for the component.
The name of the component secret.

The IAM role for the component.

- -

The path to the service account token inside the pod. By convention, this is
/var/run/secrets/openshift/serviceaccount/token for OpenShift Container Platform components.

19.5.2. Installing an OpenShift Container Platform cluster configured for manual
mode with STS

To install a cluster that is configured to use the Cloud Credential Operator (CCO) in manual mode with
STS:

192

CHAPTER 19. MANAGING CLOUD PROVIDER CREDENTIALS

1. Configure the Cloud Credential Operator utility.
2. Create the required AWS resources individually, or with a single command.
3. Run the OpenShift Container Platform installer.

4. Verify that the cluster is using short-lived credentials.

NOTE

Because the cluster is operating in manual mode when using STS, it is not able to create
new credentials for components with the permissions that they require. When upgrading
to a different minor version of OpenShift Container Platform, there are often new AWS
permission requirements. Before upgrading a cluster that is using STS, the cluster
administrator must manually ensure that the AWS permissions are sufficient for existing
components and available to any new components.

Additional resources

e Configuring the Cloud Credential Operator utility for a cluster update

19.5.2.1. Configuring the Cloud Credential Operator utility

To create and manage cloud credentials from outside of the cluster when the Cloud Credential
Operator (CCO) is operating in manual mode, extract and prepare the CCO utility (ccoctl) binary.

NOTE

The ccoctl utility is a Linux binary that must run in a Linux environment.

Prerequisites
® You have access to an OpenShift Container Platform account with cluster administrator access.
® You have installed the OpenShift CLI (oc).
® You have created an AWS account for the ecoctl utility to use with the following permissions:

Table 19.3. Required AWS permissions

Permission type Required permissions

193

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/authentication_and_authorization/#cco-ccoctl-configuring_cco-mode-sts
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/authentication_and_authorization/#cco-ccoctl-creating-individually_cco-mode-sts
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/authentication_and_authorization/#cco-ccoctl-creating-at-once_cco-mode-sts
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/authentication_and_authorization/#sts-mode-installing-manual-run-installer_cco-mode-sts
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/authentication_and_authorization/#sts-mode-installing-verifying_cco-mode-sts
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/updating_clusters/#cco-ccoctl-configuring_preparing-manual-creds-update

OpenShift Container Platform 4.11 Authentication and authorization

Permission type Required permissions

iam permissions . .
permiss! o iam:CreateOpenlDConnectProvider

o iam:CreateRole

o iam:DeleteOpeniDConnectProvider
o iam:DeleteRole

o iam:DeleteRolePolicy

o iam:GetOpenlDConnectProvider
o iam:GetRole

o iam:GetUser

o iam:ListOpenIiDConnectProviders
o iam:ListRolePolicies

o iam:ListRoles

o iam:PutRolePolicy

o iam:TagOpenIDConnectProvider

o iam:TagRole

194

CHAPTER 19. MANAGING CLOUD PROVIDER CREDENTIALS

Permission type Required permissions

s3 permissions

cloudfront permissions

s3:CreateBucket
s3:DeleteBucket
s3:DeleteObject
s3:GetBucketAcl
s3:GetBucketTagging
s3:GetObject
s3:GetObjectAcl
s3:GetObjectTagging
s3:ListBucket
s3:PutBucketAcl
s3:PutBucketPolicy
s3:PutBucketPublicAccessBlock
s3:PutBucketTagging
s3:PutObject
s3:PutObjectAcl

s3:PutObjectTagging

cloudfront:ListCloudFrontOriginAcce
ssldentities

cloudfront:ListDistributions

cloudfront:ListTagsForResource

If you plan to store the OIDC configuration in a private S3 bucket that is accessed by the IAM
identity provider through a public CloudFront distribution URL, the AWS account that runs the
ccoctl utility requires the following additional permissions:

o cloudfront:CreateCloudFrontOriginAccessldentity

o cloudfront:CreateDistribution

o cloudfront:DeleteCloudFrontOriginAccessldentity

o cloudfront:DeleteDistribution

o cloudfront:GetCloudFrontOriginAccessldentity

o cloudfront:GetCloudFrontOriginAccessldentityConfig

195

OpenShift Container Platform 4.11 Authentication and authorization

o cloudfront:GetDistribution
o cloudfront:TagResource

o cloudfront:UpdateDistribution

NOTE

These additional permissions support the use of the --create-private-s3-bucket
option when processing credentials requests with the ccoctl aws create-all
command.

Procedure
1. Obtain the OpenShift Container Platform release image by running the following command:

I $ RELEASE_IMAGE=$(./openshift-install version | awk '/release image/ {print $3})

2. Obtain the CCO container image from the OpenShift Container Platform release image by
running the following command:

$ CCO_IMAGE=$(oc adm release info --image-for="cloud-credential-operator'
$RELEASE_IMAGE -a ~/.pull-secret)

NOTE

Ensure that the architecture of the SRELEASE_IMAGE matches the
architecture of the environment in which you will use the ccoctl tool.

3. Extract the ccoctl binary from the CCO container image within the OpenShift Container
Platform release image by running the following command:

I $ oc image extract $CCO_IMAGE --file="/usr/bin/ccoctl" -a ~/.pull-secret
4. Change the permissions to make ccoctl executable by running the following command:

I $ chmod 775 ccoctl

Verification

® To verify that ccoctl is ready to use, display the help file by running the following command:

I $ ccoctl --help
Output of ccoctl --help

OpenShift credentials provisioning tool

Usage:
ccoctl [command]

Available Commands:

196

CHAPTER 19. MANAGING CLOUD PROVIDER CREDENTIALS

alibabacloud Manage credentials objects for alibaba cloud

aws Manage credentials objects for AWS cloud
gcp Manage credentials objects for Google cloud
help Help about any command

ibmcloud Manage credentials objects for IBM Cloud
nutanix ~ Manage credentials objects for Nutanix

Flags:
-h, --help help for ccoctl

Use "ccoctl [command] --help" for more information about a command.

19.5.2.2. Creating AWS resources with the Cloud Credential Operator utility

You can use the CCO utility (ccoctl) to create the required AWS resources individually, or with a single
command.

19.5.2.2.1. Creating AWS resources individually

If you need to review the JSON files that the ecoctl tool creates before modifying AWS resources, or if
the process the ccoctl tool uses to create AWS resources automatically does not meet the
requirements of your organization, you can create the AWS resources individually. For example, this
option might be useful for an organization that shares the responsibility for creating these resources
among different users or departments.

Otherwise, you can use the ccoctl aws create-all command to create the AWS resources automatically.

NOTE

By default, ccoctl creates objects in the directory in which the commands are run. To
create the objects in a different directory, use the --output-dir flag. This procedure uses
<path_to_ccoctl_output_dir> to refer to this directory.

Some ccoctl commands make AWS API calls to create or modify AWS resources. You
can use the --dry-run flag to avoid making API calls. Using this flag creates JSON files on
the local file system instead. You can review and modify the JSON files and then apply
them with the AWS CLI tool using the --cli-input-json parameters.

Prerequisites

® [Extract and prepare the ccoctl binary.

Procedure

1. Generate the public and private RSA key files that are used to set up the OpenlID Connect
provider for the cluster:

I $ ccoctl aws create-key-pair
Example output:

2021/04/13 11:01:02 Generating RSA keypair
2021/04/13 11:01:03 Writing private key to /<path_to_ccoctl_output_dir>/serviceaccount-
signer.private

197

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/authentication_and_authorization/#cco-ccoctl-creating-individually_cco-mode-sts
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/authentication_and_authorization/#cco-ccoctl-creating-at-once_cco-mode-sts

OpenShift Container Platform 4.11 Authentication and authorization

198

2021/04/13 11:01:03 Writing public key to /<path_to_ccoctl_output_dir>/serviceaccount-
signer.public
2021/04/13 11:01:03 Copying signing key for use by installer

where serviceaccount-signer.private and serviceaccount-signer.public are the generated
key files.

This command also creates a private key that the cluster requires during installation in
/<path_to_ccoctl_output_dir>/tls/bound-service-account-signing-key.key.

. Create an OpenlD Connect identity provider and S3 bucket on AWS:

$ ccoctl aws create-identity-provider \

--name=<name> \

--region=<aws_region> \
--public-key-file=<path_to_ccoctl_output_dir>/serviceaccount-signer.public

where:
® <names> is the name used to tag any cloud resources that are created for tracking.
® <aws-regions is the AWS region in which cloud resources will be created.

e <path_to_ccoctl_output_dirs is the path to the public key file that the ccoctl aws create-
key-pair command generated.

Example output:

2021/04/13 11:16:09 Bucket <name>-oidc created
2021/04/13 11:16:10 OpenlD Connect discovery document in the S3 bucket <name>-oidc at
.well-known/openid-configuration updated

2021/04/13 11:16:10 Reading public key

2021/04/13 11:16:10 JSON web key set (JWKS) in the S3 bucket <name>-oidc at keys.json
updated

2021/04/13 11:16:18 Identity Provider created with ARN: arn:aws:iam::
<aws_account_id>:oidc-provider/<name>-oidc.s3.<aws_region>.amazonaws.com

where openid-configuration is a discovery document and keys.json is a JSON web key set file.

This command also creates a YAML configuration file in
/<path_to_ccoctl_output_dir>/manifests/cluster-authentication-02-config.yaml. This file
sets the issuer URL field for the service account tokens that the cluster generates, so that the
AWS IAM identity provider trusts the tokens.

3. Create IAM roles for each component in the cluster.

a. Extract the list of CredentialsRequest objects from the OpenShift Container Platform
release image:

$ oc adm release extract --credentials-requests \

--cloud=aws \
--to=<path_to_directory_with_list_of_credentials_requests>/credrequests ﬂ
--from=quay.io/<path_to>/ocp-release:<version>

CHAPTER 19. MANAGING CLOUD PROVIDER CREDENTIALS

credrequests is the directory where the list of CredentialsRequest objects is stored.
This command creates the directory if it does not exist.

b. Use the ccoctl tool to process all CredentialsRequest objects in the credrequests
directory:

$ ccoctl aws create-iam-roles \

--name=<name>\

--region=<aws_region> \

--credentials-requests-dir=
<path_to_directory_with_list_of_credentials_requests>/credrequests \
--identity-provider-arn=arn:aws:iam::<aws_account_id>:oidc-provider/<name>-oidc.s3.
<aws_region>.amazonaws.com

NOTE

For AWS environments that use alternative IAM APl endpoints, such as
GovCloud, you must also specify your region with the --region parameter.

If your cluster uses Technology Preview features that are enabled by the
TechPreviewNoUpgrade feature set, you must include the --enable-tech-
preview parameter.

For each CredentialsRequest object, ccoctl creates an IAM role with a trust policy that is
tied to the specified OIDC identity provider, and a permissions policy as defined in each
CredentialsRequest object from the OpenShift Container Platform release image.

Verification

® To verify that the OpenShift Container Platform secrets are created, list the files in the
<path_to_ccoctl_output_dirs/manifests directory:

I $ Il <path_to_ccoctl_output_dir>/manifests
Example output:

total 24

-rW------- . 1 <user> <user> 161 Apr 13 11:42 cluster-authentication-02-config.yaml|
-rW------- . 1 <user> <user> 379 Apr 13 11:59 openshift-cloud-credential-operator-cloud-
credential-operator-iam-ro-creds-credentials.yaml

-W------- . 1 <user> <user> 353 Apr 13 11:59 openshift-cluster-csi-drivers-ebs-cloud-
credentials-credentials.yaml

-rW------- . 1 <user> <user> 355 Apr 13 11:59 openshift-image-registry-installer-cloud-
credentials-credentials.yaml

-rW------- . 1 <user> <user> 339 Apr 13 11:59 openshift-ingress-operator-cloud-credentials-
credentials.yaml

-W------- . 1 <user> <user> 337 Apr 13 11:59 openshift-machine-api-aws-cloud-credentials-
credentials.yaml

You can verify that the IAM roles are created by querying AWS. For more information, refer to AWS
documentation on listing IAM roles.

199

OpenShift Container Platform 4.11 Authentication and authorization

19.5.2.2.2. Creating AWS resources with a single command

If you do not need to review the JSON files that the ccoctl tool creates before modifying AWS
resources, and if the process the ccoctl tool uses to create AWS resources automatically meets the
requirements of your organization, you can use the ccoctl aws create-all command to automate the
creation of AWS resources.

Otherwise, you can create the AWS resources individually.

NOTE

By default, ccoctl creates objects in the directory in which the commands are run. To
create the objects in a different directory, use the --output-dir flag. This procedure uses
<path_to_ccoctl_output_dir> to refer to this directory.

Prerequisites

You must have:

® FExtracted and prepared the ccoctl binary.

Procedure

1. Extract the list of CredentialsRequest objects from the OpenShift Container Platform release
image by running the following command:

$ oc adm release extract \

--credentials-requests \

--cloud=aws \
--to=<path_to_directory_with_list_of_credentials_requests>/credrequests \ ﬂ
--from=quay.io/<path_to>/ocp-release:<version>

ﬂ credrequests is the directory where the list of CredentialsRequest objects is stored. This
command creates the directory if it does not exist.

NOTE

This command can take a few moments to run.

2. If your cluster uses cluster capabilities to disable one or more optional components, delete the
CredentialsRequest custom resources for any disabled components.

Example credrequests directory contents for OpenShift Container Platform 4.12 on
AWS

0000_30_machine-api-operator_00_credentials-request.yaml 0
0000_50_cloud-credential-operator_05-iam-ro-credentialsrequest.yaml g
0000_50_cluster-image-registry-operator_01-registry-credentials-request.yaml 6
0000_50_cluster-ingress-operator_00-ingress-credentials-request.yaml
0000_50_cluster-network-operator_02-cncc-credentials.yaml 9
0000_50_cluster-storage-operator_03_credentials_request_aws.yaml G

200

CHAPTER 19. MANAGING CLOUD PROVIDER CREDENTIALS

The Machine API Operator CR is required.
The Cloud Credential Operator CR is required.
The Image Registry Operator CR is required.
The Ingress Operator CR is required.

The Network Operator CR is required.

QD000

The Storage Operator CR is an optional component and might be disabled in your cluster.

3. Use the ccoctl tool to process all CredentialsRequest objects in the credrequests directory:

$ ccoctl aws create-all \
--name=<name> \0
--region=<aws_region> \9
--credentials-requests-dir=
<path_to_directory_with_list_of_credentials_requests>/credrequests \G
--output-dir=<path_to_ccoctl_output_dir> \ﬂ
--create-private-s3-bucket 9

Specify the name used to tag any cloud resources that are created for tracking.
Specify the AWS region in which cloud resources will be created.
Specify the directory containing the files for the component CredentialsRequest objects.

Optional: Specify the directory in which you want the ccoctl utility to create objects. By
default, the utility creates objects in the directory in which the commands are run.

® 0009

Optional: By default, the ccoctl utility stores the OpenlD Connect (OIDC) configuration
files in a public S3 bucket and uses the S3 URL as the public OIDC endpoint. To store the
OIDC configuration in a private S3 bucket that is accessed by the IAM identity provider
through a public CloudFront distribution URL instead, use the --create-private-s3-bucket
parameter.

NOTE

If your cluster uses Technology Preview features that are enabled by the
TechPreviewNoUpgrade feature set, you must include the --enable-tech-
preview parameter.

Verification

® To verify that the OpenShift Container Platform secrets are created, list the files in the
<path_to_ccoctl_output_dirs/manifests directory:

I $ Is <path_to_ccoctl_output_dir>/manifests
Example output:

I cluster-authentication-02-config.yaml

201

OpenShift Container Platform 4.11 Authentication and authorization

openshift-cloud-credential-operator-cloud-credential-operator-iam-ro-creds-credentials.yaml
openshift-cluster-csi-drivers-ebs-cloud-credentials-credentials.yaml
openshift-image-registry-installer-cloud-credentials-credentials.yaml
openshift-ingress-operator-cloud-credentials-credentials.yaml
openshift-machine-api-aws-cloud-credentials-credentials.yaml

You can verify that the IAM roles are created by querying AWS. For more information, refer to AWS
documentation on listing IAM roles.

19.5.2.3. Running the installer

Prerequisites
e Configure an account with the cloud platform that hosts your cluster.

® Obtain the OpenShift Container Platform release image.

Procedure

1. Change to the directory that contains the installation program and create the install-
config.yaml file:

I $ openshift-install create install-config --dir <installation_directory>

where <installation_directorys is the directory in which the installation program creates files.

2. Edit the install-config.yaml configuration file so that it contains the credentialsMode
parameter set to Manual.

Example install-config.yaml configuration file

apiVersion: vi

baseDomain: clusteri.example.com

credentialsMode: Manual ﬂ

compute:

- architecture: amd64
hyperthreading: Enabled

ﬂ This line is added to set the credentialsMode parameter to Manual.

3. Create the required OpenShift Container Platform installation manifests:

I $ openshift-install create manifests

4. Copy the manifests that ccoctl generated to the manifests directory that the installation
program created:

I $ cp /<path_to_ccoctl_output_dir>/manifests/* ./manifests/

5. Copy the private key that the ccoctl generated in the tls directory to the installation directory:

I $ cp -a /<path_to_ccoctl_output_dir>/tls .

202

CHAPTER 19. MANAGING CLOUD PROVIDER CREDENTIALS

6. Run the OpenShift Container Platform installer:

I $./openshift-install create cluster

19.5.2.4. Verifying the installation

1. Connect to the OpenShift Container Platform cluster.
2. Verify that the cluster does not have root credentials:
I $ oc get secrets -n kube-system aws-creds

The output should look similar to:
I Error from server (NotFound): secrets "aws-creds" not found

3. Verify that the components are assuming the IAM roles that are specified in the secret
manifests, instead of using credentials that are created by the CCO:

Example command with the Image Registry Operator

$ oc get secrets -n openshift-image-registry installer-cloud-credentials -o json | jq -r
.data.credentials | base64 --decode

The output should show the role and web identity token that are used by the component and
look similar to:

Example output with the Image Registry Operator

[default]
role_arn = arn:aws:iam::123456789:role/openshift-image-registry-installer-cloud-credentials
web_identity_token_file = /var/run/secrets/openshift/serviceaccount/token

19.5.3. Additional resources

® Preparing to update a cluster with manually maintained credentials

19.6. USING MANUAL MODE WITH GCP WORKLOAD IDENTITY

Manual mode with GCP Workload Identity is supported for Google Cloud Platform (GCP).

NOTE
This credentials strategy is supported for only new OpenShift Container Platform clusters

and must be configured during installation. You cannot reconfigure an existing cluster
that uses a different credentials strategy to use this feature.

19.6.1. About manual mode with GCP Workload Identity

In manual mode with GCP Workload Identity, the individual OpenShift Container Platform cluster
components can impersonate IAM service accounts using short-term, limited-privilege credentials.

203

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/updating_clusters/#preparing-manual-creds-update

OpenShift Container Platform 4.11 Authentication and authorization

Requests for new and refreshed credentials are automated by using an appropriately configured OpenlD
Connect (OIDC) identity provider combined with IAM service accounts. Service account tokens that are
trusted by GCP are signed by OpenShift Container Platform and can be projected into a pod and used
for authentication. Tokens are refreshed after one hour.

Figure 19.3. Workload Identity authentication flow

Google Could Platform Workload identity pool

Cloud storage bucket : Workload

.

L with OIDC configuration 4— Trust tokens signed identity provider

GCP service account I Policy binding
«
Public key ¢
Google Cloud resources Security token service
A !
I [
H H
Kubernetes GCP Kubernetes Access
service account service account service account token
] 1
: i
' [
: v
nShif
OpenShift Pod
Private key GCP credentials config
Kubernetes

Token signing

v

v

service account

Using manual mode with GCP Workload Identity changes the content of the GCP credentials that are
provided to individual OpenShift Container Platform components.

GCP secret format

apiVersion: vi
kind: Secret
metadata:
namespace: <target namespace> ﬂ
name: <target_secret_name>
data:
service_account.json: <service_account> G

ﬂ The namespace for the component.
9 The name of the component secret.

9 The Base64 encoded service account.

204

CHAPTER 19. MANAGING CLOUD PROVIDER CREDENTIALS

Content of the Base64 encoded service_account.json file using long-lived credentials

"type": "service_account",

"project_id": "<project_id>",

"private_key_id": "<private_key_id>",

"private_key": "<private_key>", 9

"client_email": "<client_email_address>",

"client_id": "<client_id>",

"auth_uri": "https://accounts.google.com/o/oauth2/auth”,

"token_uri": "https://oauth2.googleapis.com/token",

"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",

"client_x509_cert_url":
"https://www.googleapis.com/robot/vi/metadata/x509/<client_email_address>"

}

Q The credential type is service_account.

The private RSA key that is used to authenticate to GCP. This key must be kept secure and is not
rotated.

Content of the Base64 encoded service_account.json file using GCP Workload Identity

{
"type": "external_account”,
"audience": "//iam.googleapis.com/projects/123456789/locations/global/workloadldentityPools/test-
pool/providers/test-provider”,
"subject_token_type": "urn:ietf:params:oauth:token-type:jwt",
"token_url": "https://sts.googleapis.com/v1/token”,
"service_account_impersonation_url": "https://iamcredentials.googleapis.com/v1/projects/-
/serviceAccounts/<client_email_address>:generateAccessToken",
"credential_source": {
"file": "<path_to_token>", ﬂ
"format": {
"type": "text"
}
}
}

The credential type is external_account.
The target audience is the GCP Workload Identity provider.

The resource URL of the service account that can be impersonated with these credentials.

0009

The path to the service account token inside the pod. By convention, this is
/var/run/secrets/openshift/serviceaccount/token for OpenShift Container Platform components.

19.6.2. Installing an OpenShift Container Platform cluster configured for manual
mode with GCP Workload Identity

205

OpenShift Container Platform 4.11 Authentication and authorization

To install a cluster that is configured to use the Cloud Credential Operator (CCO) in manual mode with
GCP Workload Identity:

1. Configure the Cloud Credential Operator utility.
2. Create the required GCP resources.
3. Run the OpenShift Container Platform installer.

4. Verify that the cluster is using short-lived credentials.

NOTE

Because the cluster is operating in manual mode when using GCP Workload Identity, it is
not able to create new credentials for components with the permissions that they require.
When upgrading to a different minor version of OpenShift Container Platform, there are
often new GCP permission requirements. Before upgrading a cluster that is using GCP
Workload Identity, the cluster administrator must manually ensure that the GCP
permissions are sufficient for existing components and available to any new components.

Additional resources

® Configuring the Cloud Credential Operator utility for a cluster update

19.6.2.1. Configuring the Cloud Credential Operator utility

To create and manage cloud credentials from outside of the cluster when the Cloud Credential
Operator (CCO) is operating in manual mode, extract and prepare the CCO utility (ccoctl) binary.

NOTE

The ccoctl utility is a Linux binary that must run in a Linux environment.

Prerequisites

® You have access to an OpenShift Container Platform account with cluster administrator access.

® You have installed the OpenShift CLI (oc).
Procedure
1. Obtain the OpenShift Container Platform release image by running the following command:

I $ RELEASE_IMAGE=$(./openshift-install version | awk '/release image/ {print $3})

2. Obtain the CCO container image from the OpenShift Container Platform release image by
running the following command:

$ CCO_IMAGE=$(oc adm release info --image-for="cloud-credential-operator'
$RELEASE_IMAGE -a ~/.pull-secret)

206

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/authentication_and_authorization/#cco-ccoctl-configuring_cco-mode-gcp-workload-identity
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/authentication_and_authorization/#cco-ccoctl-creating-at-once_cco-mode-gcp-workload-identity
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/authentication_and_authorization/#sts-mode-installing-manual-run-installer_cco-mode-gcp-workload-identity
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/authentication_and_authorization/#sts-mode-installing-verifying_cco-mode-gcp-workload-identity
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/updating_clusters/#cco-ccoctl-configuring_preparing-manual-creds-update

CHAPTER 19. MANAGING CLOUD PROVIDER CREDENTIALS

NOTE

Ensure that the architecture of the SRELEASE_IMAGE matches the
architecture of the environment in which you will use the ccoctl tool.

3. Extract the ccoctl binary from the CCO container image within the OpenShift Container
Platform release image by running the following command:

I $ oc image extract $CCO_IMAGE --file="/usr/bin/ccoctl" -a ~/.pull-secret
4. Change the permissions to make ccoctl executable by running the following command:

I $ chmod 775 ccoctl

Verification

e To verify that ccoctl is ready to use, display the help file by running the following command:

I $ ccoctl --help

Output of ccoctl --help

OpenShift credentials provisioning tool

Usage:
ccoctl [command]

Available Commands:
alibabacloud Manage credentials objects for alibaba cloud

aws Manage credentials objects for AWS cloud
gcp Manage credentials objects for Google cloud
help Help about any command

ibomcloud Manage credentials objects for IBM Cloud
nutanix ~ Manage credentials objects for Nutanix

Flags:
-h, --help help for ccoctl

Use "ccoctl [command] --help" for more information about a command.

19.6.2.2. Creating GCP resources with the Cloud Credential Operator utility

You can use the ccoctl gep create-all command to automate the creation of GCP resources.

ol

NOTE

By default, ccoctl creates objects in the directory in which the commands are run. To
create the objects in a different directory, use the --output-dir flag. This procedure uses
<path_to_ccoctl_output_dir> to refer to this directory.

Prerequisites

You must have:

207

OpenShift Container Platform 4.11 Authentication and authorization

® Extracted and prepared the ccoctl binary.

Procedure

1. Extract the list of CredentialsRequest objects from the OpenShift Container Platform release
image by running the following command:

$ oc adm release extract \

--credentials-requests \

--cloud=gcp \
--to=<path_to_directory_with_list_of_credentials_requests>/credrequests \ 0
quay.io/<path_to>/ocp-release:<version>

ﬂ credrequests is the directory where the list of CredentialsRequest objects is stored. This
command creates the directory if it does not exist.

NOTE

This command can take a few moments to run.

2. If your cluster uses cluster capabilities to disable one or more optional components, delete the
CredentialsRequest custom resources for any disabled components.

Example credrequests directory contents for OpenShift Container Platform 4.12 on
GCP

0000_26_cloud-controller-manager-operator_16_credentialsrequest-gcp.yaml ﬂ
0000_30_machine-api-operator_00_credentials-request.yaml
0000_50_cloud-credential-operator_05-gcp-ro-credentialsrequest.yaml 6
0000_50_cluster-image-registry-operator_01-registry-credentials-request-gcs.yaml ﬂ
0000_50_cluster-ingress-operator_00-ingress-credentials-request.yaml
0000_50_cluster-network-operator_02-cncc-credentials.yaml G
0000_50_cluster-storage-operator_03_credentials_request_gcp.yaml ﬂ

The Cloud Controller Manager Operator CR is required.
The Machine API Operator CR is required.

The Cloud Credential Operator CR is required.

The Image Registry Operator CR is required.

The Ingress Operator CR is required.

The Network Operator CR is required.

9090009

The Storage Operator CR is an optional component and might be disabled in your cluster.

3. Use the ccoctl tool to process all CredentialsRequest objects in the credrequests directory:

I $ ccoctl gcp create-all \

208

CHAPTER 19. MANAGING CLOUD PROVIDER CREDENTIALS

--name=<name> \

--region=<gcp_region> \

--project=<gcp_project_id> \

--credentials-requests-dir=
<path_to_directory_with_list_of_credentials_requests>/credrequests

where:

® <names> is the user-defined name for all created GCP resources used for tracking.
® <gcp_regions is the GCP region in which cloud resources will be created.

® <gcp_project_id> is the GCP project ID in which cloud resources will be created.

o <path_to_directory_with_list_of_credentials_requests>/credrequests is the directory
containing the files of CredentialsRequest manifests to create GCP service accounts.

NOTE

If your cluster uses Technology Preview features that are enabled by the
TechPreviewNoUpgrade feature set, you must include the --enable-tech-
preview parameter.

Verification

® To verify that the OpenShift Container Platform secrets are created, list the files in the
<path_to_ccoctl_output_dirs/manifests directory:

I $ Is <path_to_ccoctl_output_dir>/manifests

You can verify that the IAM service accounts are created by querying GCP. For more information, refer
to GCP documentation on listing IAM service accounts.

19.6.2.3. Running the installer

Prerequisites
e Configure an account with the cloud platform that hosts your cluster.

® Obtain the OpenShift Container Platform release image.

Procedure

1. Change to the directory that contains the installation program and create the install-
config.yaml file:

I $ openshift-install create install-config --dir <installation_directory>

where <installation_directorys is the directory in which the installation program creates files.

2. Edit the install-config.yaml configuration file so that it contains the credentialsMode
parameter set to Manual.

Example install-config.yaml configuration file

209

OpenShift Container Platform 4.11 Authentication and authorization

apiVersion: vi

baseDomain: clusteri.example.com

credentialsMode: Manual ﬂ

compute:

- architecture: amd64
hyperthreading: Enabled

ﬂ This line is added to set the credentialsMode parameter to Manual.

3. Create the required OpenShift Container Platform installation manifests:

I $ openshift-install create manifests

4. Copy the manifests that ccoctl generated to the manifests directory that the installation
program created:

I $ cp /<path_to_ccoctl_output_dir>/manifests/* ./manifests/

5. Copy the private key that the ccoctl generated in the tls directory to the installation directory:
I $ cp -a /<path_to_ccoctl_output_dir>/tls .

6. Run the OpenShift Container Platform installer:

I $./openshift-install create cluster

19.6.2.4. Verifying the installation

1. Connect to the OpenShift Container Platform cluster.

2. Verify that the cluster does not have root credentials:
I $ oc get secrets -n kube-system gcp-credentials

The output should look similar to:
I Error from server (NotFound): secrets "gcp-credentials” not found

3. Verify that the components are assuming the service accounts that are specified in the secret
manifests, instead of using credentials that are created by the CCO:

Example command with the Image Registry Operator

$ oc get secrets -n openshift-image-registry installer-cloud-credentials -o json | jq -r
".data."service_account.json" | base64 -d

The output should show the role and web identity token that are used by the component and
look similar to:

Example output with the Image Registry Operator

210

CHAPTER 19. MANAGING CLOUD PROVIDER CREDENTIALS

{

"type": "external_account”,

"audience":
"/liam.googleapis.com/projects/123456789/locations/global/workloadldentityPools/test-
pool/providers/test-provider”,

"subject_token_type": "urn:ietf:params:oauth:token-type:jwt",

"token_url": "https://sts.googleapis.com/v1/token",

"service_account_impersonation_url": "https://iamcredentials.googleapis.com/v1/projects/-
/serviceAccounts/<client-email-address>:generateAccessToken",

"credential_source": {

"file": "/var/run/secrets/openshift/serviceaccount/token”,
"format": {
"type": "text"
}
}
}

Q The credential type is external_account.

Q The resource URL of the service account used by the Image Registry Operator.

19.6.3. Additional resources

® Preparing to update a cluster with manually maintained credentials

21

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/updating_clusters/#preparing-manual-creds-update

	Table of Contents
	CHAPTER 1. OVERVIEW OF AUTHENTICATION AND AUTHORIZATION
	1.1. GLOSSARY OF COMMON TERMS FOR OPENSHIFT CONTAINER PLATFORM AUTHENTICATION AND AUTHORIZATION
	1.2. ABOUT AUTHENTICATION IN OPENSHIFT CONTAINER PLATFORM
	1.3. ABOUT AUTHORIZATION IN OPENSHIFT CONTAINER PLATFORM

	CHAPTER 2. UNDERSTANDING AUTHENTICATION
	2.1. USERS
	2.2. GROUPS
	2.3. API AUTHENTICATION
	2.3.1. OpenShift Container Platform OAuth server
	2.3.1.1. OAuth token requests
	2.3.1.2. API impersonation
	2.3.1.3. Authentication metrics for Prometheus

	CHAPTER 3. CONFIGURING THE INTERNAL OAUTH SERVER
	3.1. OPENSHIFT CONTAINER PLATFORM OAUTH SERVER
	3.2. OAUTH TOKEN REQUEST FLOWS AND RESPONSES
	3.3. OPTIONS FOR THE INTERNAL OAUTH SERVER
	3.3.1. OAuth token duration options
	3.3.2. OAuth grant options

	3.4. CONFIGURING THE INTERNAL OAUTH SERVER’S TOKEN DURATION
	3.5. CONFIGURING TOKEN INACTIVITY TIMEOUT FOR THE INTERNAL OAUTH SERVER
	3.6. CUSTOMIZING THE INTERNAL OAUTH SERVER URL
	3.7. OAUTH SERVER METADATA
	3.8. TROUBLESHOOTING OAUTH API EVENTS

	CHAPTER 4. CONFIGURING OAUTH CLIENTS
	4.1. DEFAULT OAUTH CLIENTS
	4.2. REGISTERING AN ADDITIONAL OAUTH CLIENT
	4.3. CONFIGURING TOKEN INACTIVITY TIMEOUT FOR AN OAUTH CLIENT
	4.4. ADDITIONAL RESOURCES

	CHAPTER 5. MANAGING USER-OWNED OAUTH ACCESS TOKENS
	5.1. LISTING USER-OWNED OAUTH ACCESS TOKENS
	5.2. VIEWING THE DETAILS OF A USER-OWNED OAUTH ACCESS TOKEN
	5.3. DELETING USER-OWNED OAUTH ACCESS TOKENS

	CHAPTER 6. UNDERSTANDING IDENTITY PROVIDER CONFIGURATION
	6.1. ABOUT IDENTITY PROVIDERS IN OPENSHIFT CONTAINER PLATFORM
	6.2. SUPPORTED IDENTITY PROVIDERS
	6.3. REMOVING THE KUBEADMIN USER
	6.4. IDENTITY PROVIDER PARAMETERS
	6.5. SAMPLE IDENTITY PROVIDER CR

	CHAPTER 7. CONFIGURING IDENTITY PROVIDERS
	7.1. CONFIGURING AN HTPASSWD IDENTITY PROVIDER
	7.1.1. About identity providers in OpenShift Container Platform
	7.1.2. About htpasswd authentication
	7.1.3. Creating the htpasswd file
	7.1.3.1. Creating an htpasswd file using Linux
	7.1.3.2. Creating an htpasswd file using Windows

	7.1.4. Creating the htpasswd secret
	7.1.5. Sample htpasswd CR
	7.1.6. Adding an identity provider to your cluster
	7.1.7. Updating users for an htpasswd identity provider
	7.1.8. Configuring identity providers using the web console

	7.2. CONFIGURING A KEYSTONE IDENTITY PROVIDER
	7.2.1. About identity providers in OpenShift Container Platform
	7.2.2. About Keystone authentication
	7.2.3. Creating the secret
	7.2.4. Creating a config map
	7.2.5. Sample Keystone CR
	7.2.6. Adding an identity provider to your cluster

	7.3. CONFIGURING AN LDAP IDENTITY PROVIDER
	7.3.1. About identity providers in OpenShift Container Platform
	7.3.2. About LDAP authentication
	7.3.3. Creating the LDAP secret
	7.3.4. Creating a config map
	7.3.5. Sample LDAP CR
	7.3.6. Adding an identity provider to your cluster

	7.4. CONFIGURING A BASIC AUTHENTICATION IDENTITY PROVIDER
	7.4.1. About identity providers in OpenShift Container Platform
	7.4.2. About basic authentication
	7.4.3. Creating the secret
	7.4.4. Creating a config map
	7.4.5. Sample basic authentication CR
	7.4.6. Adding an identity provider to your cluster
	7.4.7. Example Apache HTTPD configuration for basic identity providers
	7.4.7.1. File requirements

	7.4.8. Basic authentication troubleshooting

	7.5. CONFIGURING A REQUEST HEADER IDENTITY PROVIDER
	7.5.1. About identity providers in OpenShift Container Platform
	7.5.2. About request header authentication
	7.5.2.1. SSPI connection support on Microsoft Windows

	7.5.3. Creating a config map
	7.5.4. Sample request header CR
	7.5.5. Adding an identity provider to your cluster
	7.5.6. Example Apache authentication configuration using request header
	Custom proxy configuration
	Configuring Apache authentication using request header

	7.6. CONFIGURING A GITHUB OR GITHUB ENTERPRISE IDENTITY PROVIDER
	7.6.1. About identity providers in OpenShift Container Platform
	7.6.2. About GitHub authentication
	7.6.3. Registering a GitHub application
	7.6.4. Creating the secret
	7.6.5. Creating a config map
	7.6.6. Sample GitHub CR
	7.6.7. Adding an identity provider to your cluster

	7.7. CONFIGURING A GITLAB IDENTITY PROVIDER
	7.7.1. About identity providers in OpenShift Container Platform
	7.7.2. About GitLab authentication
	7.7.3. Creating the secret
	7.7.4. Creating a config map
	7.7.5. Sample GitLab CR
	7.7.6. Adding an identity provider to your cluster

	7.8. CONFIGURING A GOOGLE IDENTITY PROVIDER
	7.8.1. About identity providers in OpenShift Container Platform
	7.8.2. About Google authentication
	7.8.3. Creating the secret
	7.8.4. Sample Google CR
	7.8.5. Adding an identity provider to your cluster

	7.9. CONFIGURING AN OPENID CONNECT IDENTITY PROVIDER
	7.9.1. About identity providers in OpenShift Container Platform
	7.9.2. About OpenID Connect authentication
	7.9.3. Supported OIDC providers
	7.9.4. Creating the secret
	7.9.5. Creating a config map
	7.9.6. Sample OpenID Connect CRs
	7.9.7. Adding an identity provider to your cluster
	7.9.8. Configuring identity providers using the web console

	CHAPTER 8. USING RBAC TO DEFINE AND APPLY PERMISSIONS
	8.1. RBAC OVERVIEW
	8.1.1. Default cluster roles
	8.1.2. Evaluating authorization
	8.1.2.1. Cluster role aggregation

	8.2. PROJECTS AND NAMESPACES
	8.3. DEFAULT PROJECTS
	8.4. VIEWING CLUSTER ROLES AND BINDINGS
	8.5. VIEWING LOCAL ROLES AND BINDINGS
	8.6. ADDING ROLES TO USERS
	8.7. CREATING A LOCAL ROLE
	8.8. CREATING A CLUSTER ROLE
	8.9. LOCAL ROLE BINDING COMMANDS
	8.10. CLUSTER ROLE BINDING COMMANDS
	8.11. CREATING A CLUSTER ADMIN

	CHAPTER 9. REMOVING THE KUBEADMIN USER
	9.1. THE KUBEADMIN USER
	9.2. REMOVING THE KUBEADMIN USER

	CHAPTER 10. UNDERSTANDING AND CREATING SERVICE ACCOUNTS
	10.1. SERVICE ACCOUNTS OVERVIEW
	10.2. CREATING SERVICE ACCOUNTS
	10.3. EXAMPLES OF GRANTING ROLES TO SERVICE ACCOUNTS

	CHAPTER 11. USING SERVICE ACCOUNTS IN APPLICATIONS
	11.1. SERVICE ACCOUNTS OVERVIEW
	11.2. DEFAULT SERVICE ACCOUNTS
	11.2.1. Default cluster service accounts
	11.2.2. Default project service accounts and roles
	11.2.3. About automatically generated service account token secrets

	11.3. CREATING SERVICE ACCOUNTS

	CHAPTER 12. USING A SERVICE ACCOUNT AS AN OAUTH CLIENT
	12.1. SERVICE ACCOUNTS AS OAUTH CLIENTS
	12.1.1. Redirect URIs for service accounts as OAuth clients

	CHAPTER 13. SCOPING TOKENS
	13.1. ABOUT SCOPING TOKENS
	13.1.1. User scopes
	13.1.2. Role scope

	CHAPTER 14. USING BOUND SERVICE ACCOUNT TOKENS
	14.1. ABOUT BOUND SERVICE ACCOUNT TOKENS
	14.2. CONFIGURING BOUND SERVICE ACCOUNT TOKENS USING VOLUME PROJECTION
	14.3. CREATING BOUND SERVICE ACCOUNT TOKENS OUTSIDE THE POD

	CHAPTER 15. MANAGING SECURITY CONTEXT CONSTRAINTS
	15.1. ABOUT SECURITY CONTEXT CONSTRAINTS
	15.1.1. Default security context constraints
	15.1.2. Security context constraints settings
	15.1.3. Security context constraints strategies
	15.1.4. Controlling volumes
	15.1.5. Admission control
	15.1.6. Security context constraints prioritization

	15.2. ABOUT PRE-ALLOCATED SECURITY CONTEXT CONSTRAINTS VALUES
	15.3. EXAMPLE SECURITY CONTEXT CONSTRAINTS
	15.4. CREATING SECURITY CONTEXT CONSTRAINTS
	15.5. ROLE-BASED ACCESS TO SECURITY CONTEXT CONSTRAINTS
	15.6. REFERENCE OF SECURITY CONTEXT CONSTRAINTS COMMANDS
	15.6.1. Listing security context constraints
	15.6.2. Examining security context constraints
	15.6.3. Deleting security context constraints
	15.6.4. Updating security context constraints

	CHAPTER 16. UNDERSTANDING AND MANAGING POD SECURITY ADMISSION
	16.1. SECURITY CONTEXT CONSTRAINT SYNCHRONIZATION WITH POD SECURITY STANDARDS
	16.2. CONTROLLING POD SECURITY ADMISSION SYNCHRONIZATION
	16.3. ABOUT POD SECURITY ADMISSION ALERTS
	16.3.1. Identifying pod security violations

	16.4. ADDITIONAL RESOURCES

	CHAPTER 17. IMPERSONATING THE SYSTEM:ADMIN USER
	17.1. API IMPERSONATION
	17.2. IMPERSONATING THE SYSTEM:ADMIN USER
	17.3. IMPERSONATING THE SYSTEM:ADMIN GROUP

	CHAPTER 18. SYNCING LDAP GROUPS
	18.1. ABOUT CONFIGURING LDAP SYNC
	18.1.1. About the RFC 2307 configuration file
	18.1.2. About the Active Directory configuration file
	18.1.3. About the augmented Active Directory configuration file

	18.2. RUNNING LDAP SYNC
	18.2.1. Syncing the LDAP server with OpenShift Container Platform
	18.2.2. Syncing OpenShift Container Platform groups with the LDAP server
	18.2.3. Syncing subgroups from the LDAP server with OpenShift Container Platform

	18.3. RUNNING A GROUP PRUNING JOB
	18.4. AUTOMATICALLY SYNCING LDAP GROUPS
	18.5. LDAP GROUP SYNC EXAMPLES
	18.5.1. Syncing groups using the RFC 2307 schema
	18.5.2. Syncing groups using the RFC2307 schema with user-defined name mappings
	18.5.3. Syncing groups using RFC 2307 with user-defined error tolerances
	18.5.4. Syncing groups using the Active Directory schema
	18.5.5. Syncing groups using the augmented Active Directory schema
	18.5.5.1. LDAP nested membership sync example

	18.6. LDAP SYNC CONFIGURATION SPECIFICATION
	18.6.1. v1.LDAPSyncConfig
	18.6.2. v1.StringSource
	18.6.3. v1.LDAPQuery
	18.6.4. v1.RFC2307Config
	18.6.5. v1.ActiveDirectoryConfig
	18.6.6. v1.AugmentedActiveDirectoryConfig

	CHAPTER 19. MANAGING CLOUD PROVIDER CREDENTIALS
	19.1. ABOUT THE CLOUD CREDENTIAL OPERATOR
	19.1.1. Modes
	19.1.2. Determining the Cloud Credential Operator mode
	19.1.2.1. Determining the Cloud Credential Operator mode by using the web console
	19.1.2.2. Determining the Cloud Credential Operator mode by using the CLI

	19.1.3. Default behavior
	19.1.4. Additional resources

	19.2. USING MINT MODE
	19.2.1. Mint mode permissions requirements
	19.2.1.1. Amazon Web Services (AWS) permissions
	19.2.1.2. Google Cloud Platform (GCP) permissions

	19.2.2. Admin credentials root secret format
	19.2.3. Mint mode with removal or rotation of the administrator-level credential
	19.2.3.1. Rotating cloud provider credentials manually
	19.2.3.2. Removing cloud provider credentials

	19.2.4. Additional resources

	19.3. USING PASSTHROUGH MODE
	19.3.1. Passthrough mode permissions requirements
	19.3.1.1. Amazon Web Services (AWS) permissions
	19.3.1.2. Microsoft Azure permissions
	19.3.1.3. Google Cloud Platform (GCP) permissions
	19.3.1.4. Red Hat OpenStack Platform (RHOSP) permissions
	19.3.1.5. Red Hat Virtualization (RHV) permissions
	19.3.1.6. VMware vSphere permissions

	19.3.2. Admin credentials root secret format
	19.3.3. Passthrough mode credential maintenance
	19.3.3.1. Rotating cloud provider credentials manually

	19.3.4. Reducing permissions after installation
	19.3.5. Additional resources

	19.4. USING MANUAL MODE
	19.4.1. Manual mode with cloud credentials created and managed outside of the cluster
	19.4.2. Updating cloud provider resources with manually maintained credentials
	19.4.2.1. Indicating that the cluster is ready to upgrade

	19.4.3. Additional resources

	19.5. USING MANUAL MODE WITH AMAZON WEB SERVICES SECURITY TOKEN SERVICE
	19.5.1. About manual mode with AWS Security Token Service
	19.5.1.1. AWS Security Token Service authentication process
	19.5.1.2. Authentication flow for AWS STS
	19.5.1.3. Token refreshing for AWS STS
	19.5.1.4. OpenID Connect requirements for AWS STS
	19.5.1.5. AWS component secret formats

	19.5.2. Installing an OpenShift Container Platform cluster configured for manual mode with STS
	19.5.2.1. Configuring the Cloud Credential Operator utility
	19.5.2.2. Creating AWS resources with the Cloud Credential Operator utility
	19.5.2.3. Running the installer
	19.5.2.4. Verifying the installation

	19.5.3. Additional resources

	19.6. USING MANUAL MODE WITH GCP WORKLOAD IDENTITY
	19.6.1. About manual mode with GCP Workload Identity
	19.6.2. Installing an OpenShift Container Platform cluster configured for manual mode with GCP Workload Identity
	19.6.2.1. Configuring the Cloud Credential Operator utility
	19.6.2.2. Creating GCP resources with the Cloud Credential Operator utility
	19.6.2.3. Running the installer
	19.6.2.4. Verifying the installation

	19.6.3. Additional resources

