& RedHat

OpenShift Container Platform 4.18

Building applications

Creating and managing applications on OpenShift Container Platform

Last Updated: 2026-01-15

OpenShift Container Platform 4.18 Building applications

Creating and managing applications on OpenShift Container Platform

Legal Notice

Copyright © Red Hat.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides instructions for the various ways to create and manage instances of user-
provisioned applications running on OpenShift Container Platform. This includes working with
projects and provisioning applications using the Open Service Broker API.

Table of Contents

CHAPTER 1. BUILDING APPLICATIONS OVERVIEW i

11. WORKING ON A PROJECT
1.2. WORKING ON AN APPLICATION
1.2.1. Creating an application
1.2.2. Maintaining an application
1.2.3. Deploying an application
1.3. USING THE RED HAT MARKETPLACE

CHAPTER 2. PROJECTS o i i e e i

2.1. WORKING WITH PROJECTS
2.1.1. Creating a project
2.1.1.1. Creating a project by using the web console
2.1.1.2. Creating a project by using the CLI
2.1.2. Viewing a project
2.1.2.1. Viewing a project by using the web console
2.1.2.2. Viewing a project using the CLI
2.1.3. Providing access permissions to your project using the Developer perspective
2.1.4. Customizing the available cluster roles using the web console
2.1.5. Adding to a project
2.1.6. Checking the project status
2.1.6.1. Checking project status by using the web console
2.1.6.2. Checking project status by using the CLI
2.1.7. Deleting a project
2.1.7.1. Deleting a project by using the web console
2.1.7.2. Deleting a project by using the CLI
2.2. CREATING A PROJECT AS ANOTHER USER
2.2.1. APl impersonation
2.2.2. Impersonating a user when you create a project
2.3. CONFIGURING PROJECT CREATION
2.3.1. About project creation
2.3.2. Modifying the template for new projects
2.3.3. Disabling project self-provisioning
2.3.4. Customizing the project request message

CHAPTER 3. CREATING APPLICATIONS ... i

3.1. USING TEMPLATES
3.1.1. Understanding templates
3.1.2. Uploading a template
3.1.3. Creating an application by using the web console
3.1.4. Creating objects from templates by using the CLI
3.1.4.1. Adding labels
3.1.4.2. Listing parameters
3.1.4.3. Generating a list of objects
3.1.5. Modifying uploaded templates
3.1.6. Using instant app and quick start templates
3.1.6.1. Quick start templates
3.1.6.1.1. Web framework quick start templates
3.1.7. Writing templates
3.1.7.1. Writing the template description
3.1.7.2. Writing template labels
3.1.7.3. Writing template parameters

Table of Contents

0 00 0 0o 0 00

................. 24

24
24
24
24
25
25
25
26
28
28
28
29
29
30
34
35

OpenShift Container Platform 4.18 Building applications

3.1.7.4. Writing the template object list

3.1.7.5. Marking a template as bindable

3.1.7.6. Exposing template object fields

3.1.7.7. Waiting for template readiness

3.1.7.8. Creating a template from existing objects

3.2. CREATING APPLICATIONS BY USING THE DEVELOPER PERSPECTIVE

3.2.1. Prerequisites

3.2.2. Creating sample applications

3.2.3. Creating applications by using Quick Starts

3.2.4. Importing a codebase from Git to create an application
3.2.5. Creating applications by deploying container image
3.2.6. Deploying a Java application by uploading a JAR file
3.2.7. Using the Devfile registry to access devfiles

3.2.8. Using the Developer Catalog to add services or components to your application

3.2.9. Additional resources
3.3. CREATING APPLICATIONS FROM INSTALLED OPERATORS
3.3.1. Creating an etcd cluster using an Operator
3.4. CREATING APPLICATIONS BY USING THE CLI
3.4.1. Creating an application from source code
3.4.1.1. Local
3.4.1.2. Remote
3.4.1.3. Build strategy detection
3.4.1.4. Language detection
3.4.2. Creating an application from an image
3.4.2.1. Docker Hub MySQL image
3.4.2.2. Image in a private registry
3.4.2.3. Existing image stream and optional image stream tag
3.4.3. Creating an application from a template
3.4.3.1. Template parameters
3.4.4. Modifying application creation
3.4.4.1. Specifying environment variables
3.4.4.2. Specifying build environment variables
3.4.4.3. Specifying labels
3.4.4.4. Viewing the output without creation
3.4.4.5. Creating objects with different names
3.4.4.6. Creating objects in a different project
3.4.4.7. Creating multiple objects
3.4.4.8. Grouping images and source in a single pod
3.4.4.9. Searching for images, templates, and other inputs
3.4.4.10. Setting the import mode
3.5. CREATING APPLICATIONS USING RUBY ON RAILS
3.5.1. Prerequisites
3.5.2. Setting up the database
3.5.3. Writing your application
3.5.3.1. Creating a welcome page

3.5.3.2. Configuring application for OpenShift Container Platform

3.5.3.3. Storing your application in Git

3.5.4. Deploying your application to OpenShift Container Platform

3.5.4.1. Creating the database service
3.5.4.2. Creating the frontend service
3.5.4.3. Creating a route for your application

CHAPTER 4. VIEWING APPLICATION COMPOSITION BY USING THE TOPOLOGY VIEW

37
38
38
40
42
43
44
44
45
45
49
50
51
52
52
53
53
54
54
54
55
55
56
57
57
57
57
58
58
58
59
60
60
60
61
61
61
61
62
62
62
62
63
63
64
65
65
66
67
67
69

Table of Contents

4. PREREQUISITES 70
4.2. VIEWING THE TOPOLOGY OF YOUR APPLICATION 70
4.3. INTERACTING WITH APPLICATIONS AND COMPONENTS 71
4.4. SCALING APPLICATION PODS AND CHECKING BUILDS AND ROUTES 73
4.5. ADDING COMPONENTS TO AN EXISTING PROJECT 73
4.6. GROUPING MULTIPLE COMPONENTS WITHIN AN APPLICATION 74
4.7. ADDING SERVICES TO YOUR APPLICATION 75
4.8. REMOVING SERVICES FROM YOUR APPLICATION 76
4.9. LABELS AND ANNOTATIONS USED FOR THE TOPOLOGY VIEW 77
4.10. ADDITIONAL RESOURCES 78
CHAPTER 5. EXPORTING APPLICATIONS ottt et e eie et eeaeeanneeanneeaneenn 79
5.1. PREREQUISITES 79
5.2. PROCEDURE 79
CHAPTER 6. WORKING WITH HELM CHART S ..ttt ettt eeet ettt eeitenaneennneenneenns 81
6.1. UNDERSTANDING HELM 81
6.1.1. Key features 81
6.1.2. Red Hat Certification of Helm charts for OpenShift 81
6.1.3. Additional resources 81
6.2. INSTALLING HELM 81
6.2.1. On Linux 82
6.2.2. On Windows 7/8 82
6.2.3. On Windows 10 83
6.2.4. On MacOS 83
6.3. CONFIGURING CUSTOM HELM CHART REPOSITORIES 83
6.3.1. Installing a Helm chart on an OpenShift Container Platform cluster 84
6.3.2. Creating Helm releases using the Developer perspective 85
6.3.3. Using Helm in the web terminal 86
6.3.4. Creating a custom Helm chart on OpenShift Container Platform 86
6.3.5. Adding custom Helm chart repositories 87
6.3.6. Adding namespace-scoped custom Helm chart repositories 88
6.3.7. Creating credentials and CA certificates to add Helm chart repositories 90
6.3.8. Filtering Helm Charts by their certification level 92
6.3.9. Disabling Helm Chart repositories 92
6.4. WORKING WITH HELM RELEASES 93
6.4.1. Prerequisites 93
6.4.2. Upgrading a Helm release 93
6.4.3. Rolling back a Helm release 93
6.4.4. Deleting a Helm release 94
CHAPTER 7. DEPLOYMEN T S ottt ettt ettt e ettt ettt aneeeneeeaneeeaneenaneeannesaneenn 95
7.1. UNDERSTANDING DEPLOYMENTS 95
7.1.1. Building blocks of a deployment 95
7.1.1.1. Replica sets 95
7.1.1.2. Replication controllers 96
7.1.2. Deployments 98
7.1.3. DeploymentConfig objects 98
7.1.4. Comparing Deployment and DeploymentConfig objects 100
7.1.4.1. Design 100
7.1.4.2. Deployment-specific features 100
7.1.4.2.1. Rollover 101
7.1.4.2.2. Proportional scaling 101
7.1.4.2.3. Pausing mid-rollout 101

OpenShift Container Platform 4.18 Building applications

7.1.4.3. DeploymentConfig object-specific features
7.1.4.3.1. Automatic rollbacks
7.1.4.3.2. Triggers
7.1.4.3.3. Lifecycle hooks
7.1.4.3.4. Custom strategies
7.2. MANAGING DEPLOYMENT PROCESSES
7.2.1. Managing DeploymentConfig objects
7.2.1.1. Starting a deployment
7.2.1.2. Viewing a deployment
7.2.1.3. Retrying a deployment
7.2.1.4. Rolling back a deployment
7.2.1.5. Executing commands inside a container
7.2.1.6. Viewing deployment logs
7.2.1.7. Deployment triggers
7.2.1.7.1. Config change deployment triggers
7.2.1.7.2. Image change deployment triggers
7.2.1.7.3. Setting deployment triggers
7.2.1.8. Setting deployment resources
7.2.1.9. Scaling manually
7.2.1.10. Accessing private repositories from DeploymentConfig objects
7.2.1.11. Assigning pods to specific nodes
7.2.112. Running a pod with a different service account
7.3. USING DEPLOYMENT STRATEGIES
7.3.1. Choosing a deployment strategy
7.3.2. Rolling strategy
7.3.2.1. Canary deployments
7.3.2.2. Creating a rolling deployment
7.3.2.3. Editing a deployment by using the Developer perspective
7.3.2.4. Starting a rolling deployment using the Developer perspective
7.3.3. Recreate strategy
7.3.3.1. Editing a deployment by using the Developer perspective
7.3.3.2. Starting a recreate deployment using the Developer perspective
7.3.4. Custom strategy
7.3.4.1. Editing a deployment by using the Developer perspective
7.3.5. Lifecycle hooks
7.3.5.1. Pod-based lifecycle hook
7.3.5.2. Setting lifecycle hooks
7.4. USING ROUTE-BASED DEPLOYMENT STRATEGIES
7.4.1. Proxy shards and traffic splitting
7.4.2. N-1 compatibility
7.4.3. Graceful termination
7.4.4. Blue-green deployments
7.4.4.1. Setting up a blue-green deployment
7.4.5. A/B deployments
7.4.5.1. Load balancing for A/B testing
7.4.5.1.1. Managing weights of an existing route using the web console
7.4.5.1.2. Managing weights of an new route using the web console
7.4.5.1.3. Managing weights using the CLI
7.4.5.1.4. One service, multiple Deployment objects
7.4.6. Additional resources

CHAPTER 8. QUO T AS . i i e e i et aee s

8.1. RESOURCE QUOTAS PER PROJECT

101
101
101
101
101
101
102
102
102
103
103
103
104
105
105
105
106
106
108
108
108
109
110
110
110
12
12
13
14
15
116
n7
18
120
120
121
122
122
123
123
123
124
124
125
125
127
127
127
129
130

Table of Contents

8.1.1. Resources managed by quotas 131
8.1.2. Quota scopes 133
8.1.3. Quota enforcement 133
8.1.4. Requests versus limits 134
8.1.5. Sample resource quota definitions 134
8.1.6. Creating a quota 137
8.1.6.1. Creating object count quotas 138
8.1.6.2. Setting resource quota for extended resources 139
8.1.7. Viewing a quota 141
8.1.8. Configuring explicit resource quotas 142
8.2. RESOURCE QUOTAS ACROSS MULTIPLE PROJECTS 144
8.2.1. Selecting multiple projects during quota creation 145
8.2.2. Viewing applicable cluster resource quotas 146
8.2.3. Selection granularity 147
CHAPTER 9. USING CONFIG MAPS WITH APPLICATIONS ...ttt ittt ieieaieeeneennnens 148
9.1. UNDERSTANDING CONFIG MAPS 148
9.1.1. Config map restrictions 149
9.2. USE CASES: CONSUMING CONFIG MAPS IN PODS 149
9.2.1. Populating environment variables in containers by using config maps 149
9.2.2. Setting command-line arguments for container commands with config maps 151
9.2.3. Injecting content into a volume by using config maps 152

CHAPTER 10. MONITORING PROJECT AND APPLICATION METRICS USING THE DEVELOPER PERSPECTIVE

155

10.1. PREREQUISITES 155
10.2. MONITORING YOUR PROJECT METRICS 155
10.3. MONITORING YOUR APPLICATION METRICS 158
10.4. IMAGE VULNERABILITIES BREAKDOWN 159
10.5. MONITORING YOUR APPLICATION AND IMAGE VULNERABILITIES METRICS 159
CHAPTER 11. MONITORING APPLICATION HEALTH BY USING HEALTH CHECKS 161
11.1. UNDERSTANDING HEALTH CHECKS 161
11.1.1. Example probes 162

11.2. CONFIGURING HEALTH CHECKS USING THE CLI 165
11.3. MONITORING APPLICATION HEALTH USING THE DEVELOPER PERSPECTIVE 168
11.4. EDITING HEALTH CHECKS USING THE DEVELOPER PERSPECTIVE 168
11.5. MONITORING HEALTH CHECK FAILURES USING THE DEVELOPER PERSPECTIVE 169
CHAPTER 12. EDITING APPLICATIONS .. ittt ettt et e et eanneeeeeaannneeenanns 171
12.1. PREREQUISITES 171
12.2. EDITING THE SOURCE CODE OF AN APPLICATION USING THE DEVELOPER PERSPECTIVE 171
12.3. EDITING THE APPLICATION CONFIGURATION USING THE DEVELOPER PERSPECTIVE 171
CHAPTER 13. PRUNING OBJECTS TO RECLAIM RESOURCES ciiiiiiii ittt 174
13.1. BASIC PRUNING OPERATIONS 174
13.2. PRUNING GROUPS 174
13.3. PRUNING DEPLOYMENT RESOURCES 175
13.4. PRUNING BUILDS 176
13.5. AUTOMATICALLY PRUNING IMAGES 177
13.6. MANUALLY PRUNING IMAGES 179
13.6.1. Considerations when pruning images 179
13.6.2. Limitations when pruning images 179
13.6.3. Image prune conditions 179

OpenShift Container Platform 4.18 Building applications

13.6.3.1. Pruning an image by age and tag
13.6.3.2. Pruning an image by size limit
13.6.4. Running image prune operations
13.6.5. Using secure or insecure connections
13.6.6. Image pruning CLI options
13.6.6.1. Additional information about the --prune-registry flag
13.6.7. Image pruning problems
13.6.7.1. Images not being pruned
13.6.7.2. Using a secure connection against insecure registry
13.6.7.3. Using an insecure connection against a secured registry
13.6.7.4. Using the wrong certificate authority
13.7. HARD PRUNING THE REGISTRY
13.8. PRUNING CRON JOBS

CHAPTER14.IDLING APPLICATIONS e

14.1. IDLING APPLICATIONS
14.1.1. Idling a single service
14.1.2. Idling multiple services

14.2. UNIDLING APPLICATIONS

CHAPTER15. DELETING APPLICATIONS ... e

15.1. DELETING APPLICATIONS USING THE DEVELOPER PERSPECTIVE

CHAPTER16. USING THE RED HAT MARKETPLACE i

16.1. RED HAT MARKETPLACE FEATURES
16.1.1. Connect OpenShift Container Platform clusters to the Marketplace
16.1.2. Install applications
16.1.3. Deploy applications from different perspectives
16.1.3.1. The Developer perspective
16.1.3.2. The Administrator perspective

180
180

181

181
182
183
184
184
184
185
185
185
188

189
189
189
189

191
191

192
192
192
192
192
192
192

Table of Contents

OpenShift Container Platform 4.18 Building applications

CHAPTER 1. BUILDING APPLICATIONS OVERVIEW

Using OpenShift Container Platform, you can create, edit, delete, and manage applications using the
web console or command-line interface (CLI).

1.1. WORKING ON A PROJECT

Using projects, you can organize and manage applications in isolation. You can manage the entire
project lifecycle, including creating, viewing, and deleting a project in OpenShift Container Platform.

After you create the project, you can grant or revoke access to a project and manage cluster roles for
the users using the Developer perspective. You can also edit the project configuration resource while
creating a project template that is used for automatic provisioning of new projects.

Using the CLI, you can create a project as a different user by impersonating a request to the OpenShift
Container Platform API. When you make a request to create a new project, the OpenShift Container
Platform uses an endpoint to provision the project according to a customizable template. As a cluster
administrator, you can choose to prevent an authenticated user group from self-provisioning new
projects.

1.2. WORKING ON AN APPLICATION

1.2.1. Creating an application

To create applications, you must have created a project or have access to a project with the appropriate
roles and permissions. You can create an application by using either the Developer perspective in the
web console, installed Operators, or the OpenShift CLI (oc¢). You can source the applications to be
added to the project from Git, JAR files, devfiles, or the developer catalog.

You can also use components that include source or binary code, images, and templates to create an
application by using the OpenShift CLI (oc). With the OpenShift Container Platform web console, you
can create an application from an Operator installed by a cluster administrator.

1.2.2. Maintaining an application

After you create the application, you can use the web console to monitor your project or application
metrics. You can also edit or delete the application using the web console.

When the application is running, not all applications resources are used. As a cluster administrator, you
can choose to idle these scalable resources to reduce resource consumption.
1.2.3. Deploying an application

You can deploy your application using Deployment or DeploymentConfig objects and manage them
from the web console. You can create deployment strategies that help reduce downtime during a
change or an upgrade to the application.

You can also use Helm, a software package manager that simplifies deployment of applications and
services to OpenShift Container Platform clusters.

1.3. USING THE RED HAT MARKETPLACE

CHAPTER 1. BUILDING APPLICATIONS OVERVIEW

The Red Hat Marketplace is an open cloud marketplace where you can discover and access certified
software for container-based environments that run on public clouds and on-premise.

OpenShift Container Platform 4.18 Building applications

CHAPTER 2. PROJECTS

2.1. WORKING WITH PROJECTS

A project allows a community of users to organize and manage their content in isolation from other

communities.

NOTE

Projects starting with openshift- and kube- are default projects. These projects host
cluster components that run as pods and other infrastructure components. As such,
OpenShift Container Platform does not allow you to create projects starting with
openshift- or kube- using the oc new-project command. Cluster administrators can
create these projects using the oc adm new-project command.

IMPORTANT

Do not run workloads in or share access to default projects. Default projects are reserved
for running core cluster components.

The following default projects are considered highly privileged: default, kube-public,
kube-system, openshift, openshift-infra, openshift-node, and other system-created
projects that have the openshift.io/run-level label set to 0 or 1. Functionality that relies
on admission plugins, such as pod security admission, security context constraints, cluster
resource quotas, and image reference resolution, does not work in highly privileged
projects.

2.1.1. Creating a project

You can use the OpenShift Container Platform web console or the OpenShift CLI (oc¢) to create a
project in your cluster.

2.1.1.1. Creating a project by using the web console

You can use the OpenShift Container Platform web console to create a project in your cluster.

Prerequisites

NOTE

Projects starting with openshift- and kube- are considered critical by OpenShift
Container Platform. As such, OpenShift Container Platform does not allow you to create
projects starting with openshift- using the web console.

® Ensure that you have the appropriate roles and permissions to create projects, applications, and
other workloads in OpenShift Container Platform.

Procedure

® |f you are using the Administrator perspective:

a. Navigate to Home — Projects.

10

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/authentication_and_authorization/#rbac-default-projects_using-rbac

CHAPTER 2. PROJECTS

b. Click Create Project:

i. Inthe Create Project dialog box, enter a unique name, such as myproject, in the Name
field.

ii. Optional: Add the Display name and Description details for the project.

ii. Click Create.
The dashboard for your project is displayed.

c. Optional: Select the Details tab to view the project details.

d. Optional: If you have adequate permissions for a project, you can use the Project Access
tab to provide or revoke admin, edit, and view privileges for the project.

e |f you are using the Developer perspective:
a. Click the Project menu and select Create Project:

Figure 2.1. Create project

Froject: default = Application: all applications «

pelect project

Create Project

all projects imponent or
default
div

istio-operator
i. Inthe Create Project dialog box, enter a unique name, such as myproject, in the Name
field.
ii. Optional: Add the Display name and Description details for the project.
ii. Click Create.

b. Optional: Use the left navigation panel to navigate to the Project view and see the
dashboard for your project.

c. Optional: In the project dashboard, select the Details tab to view the project details.

d. Optional: If you have adequate permissions for a project, you can use the Project Access
tab of the project dashboard to provide or revoke admin, edit, and view privileges for the
project.

Additional resources

® Customizing the available cluster roles using the web console

1

OpenShift Container Platform 4.18 Building applications

2.1.1.2. Creating a project by using the CLI

If allowed by your cluster administrator, you can create a new project.

NOTE

Projects starting with openshift- and kube- are considered critical by OpenShift
Container Platform. As such, OpenShift Container Platform does not allow you to create
Projects starting with openshift- or kube- using the oc new-project command. Cluster
administrators can create these projects using the oc adm new-project command.

Procedure

® Run:

$ oc new-project <project_name> \
--description="<description>" --display-name="<display_name>"

For example:

$ oc new-project hello-openshift \
--description="This is an example project” \
--display-name="Hello OpenShift"

NOTE

The number of projects you are allowed to create might be limited by the system
administrator. After your limit is reached, you might have to delete an existing project in
order to create a new one.

2.1.2. Viewing a project

You can use the OpenShift Container Platform web console or the OpenShift CLI (oc¢) to view a project

in your cluster.

2.1.2.1. Viewing a project by using the web console

You can view the projects that you have access to by using the OpenShift Container Platform web
console.

Procedure
® |f you are using the Administrator perspective:

a. Navigate to Home — Projects in the navigation menu.

b. Select a project to view. The Overview tab includes a dashboard for your project.

(@]

. Select the Details tab to view the project details.
d. Select the YAML tab to view and update the YAML configuration for the project resource.

e. Select the Workloads tab to see workloads in the project.

12

CHAPTER 2. PROJECTS

f. Select the RoleBindings tab to view and create role bindings for your project.

e |f you are using the Developer perspective:

a. Navigate to the Project page in the navigation menu.

b. Select All Projects from the Project drop-down menu at the top of the screen to list all of
the projects in your cluster.

c. Select a project to view. The Overview tab includes a dashboard for your project.
d. Select the Details tab to view the project details.

e. If you have adequate permissions for a project, select the Project access tab view and
update the privileges for the project.

2.1.2.2. Viewing a project using the CLI

When viewing projects, you are restricted to seeing only the projects you have access to view based on
the authorization policy.

Procedure

1. To view a list of projects, run:
I $ oc get projects

2. You can change from the current project to a different project for CLI operations. The specified
project is then used in all subsequent operations that manipulate project-scoped content:

I $ oc project <project_name>

2.1.3. Providing access permissions to your project using the Developer perspective

You can use the Project view in the Developer perspective to grant or revoke access permissions to
your project.

Prerequisites

® You have created a project.

Procedure

To add users to your project and provide Admin, Edit, or View access to them:
1. In the Developer perspective, navigate to the Project page.
2. Select your project from the Project menu.
3. Select the Project Access tab.

4. Click Add accessto add a new row of permissions to the default ones.

13

OpenShift Container Platform 4.18 Building applications

Figure 2.2. Project permissions

You are logged in as a temporary administrative user. Update thj

</> Developer

Project:tw

@ tw & Active

Overview Details Project Access

Project Access allows you to add or remove a user's access to the project. More advanced management of role-based access contrc

Name Role
kube:admin Admin - =]
pipeline Edit - e
Name Select arole - =]

oA(I(\ Accesq

‘You made changes to this page.

Click Save to save changes or Reload to cancel changes.

Save Reload

5. Enter the user name, click the Select a role drop-down list, and select an appropriate role.
6. Click Save to add the new permissions.

You can also use:
® The Select a role drop-down list, to modify the access permissions of an existing user.

® The Remove Accessicon, to completely remove the access permissions of an existing user to
the project.

: ' NOTE

",

E’ * 4 Advanced role-based access control is managed in the Roles and Roles Binding views in
4 the Administrator perspective.

2.1.4. Customizing the available cluster roles using the web console

In the Developer perspective of the web console, the Project = Project access page enables a project
administrator to grant roles to users in a project. By default, the available cluster roles that can be
granted to users in a project are admin, edit, and view.

As a cluster administrator, you can define which cluster roles are available in the Project access page for
all projects cluster-wide. You can specify the available roles by customizing the

spec.customization.projectAccess.availableClusterRoles object in the Console configuration
resource.

Prerequisites

® You have access to the cluster as a user with the cluster-admin role.

14

CHAPTER 2. PROJECTS

Procedure
1. In the Administrator perspective, navigate to Administration - Cluster settings.
2. Click the Configuration tab.

3. From the Configuration resource list, select Console operator.openshift.io.

i

. Navigate to the YAML tab to view and edit the YAML code.

5. Inthe YAML code under spec, customize the list of available cluster roles for project access.
The following example specifies the default admin, edit, and view roles:

apiVersion: operator.openshift.io/v1
kind: Console
metadata:
name: cluster
#...
spec:
customization:
projectAccess:
availableClusterRoles:
- admin
- edit
- view

6. Click Save to save the changes to the Console configuration resource.

Verification

1. In the Developer perspective, navigate to the Project page.
2. Select a project from the Project menu.
3. Select the Project access tab.

4. Click the menu in the Role column and verify that the available roles match the configuration
that you applied to the Console resource configuration.

2.1.5. Adding to a project

You can add items to your project by using the +Add page in the Developer perspective.

Prerequisites

® You have created a project.

Procedure

1. In the Developer perspective, navigate to the +Add page.
2. Select your project from the Project menu.

3. Click on an item on the +Add page and then follow the workflow.

15

OpenShift Container Platform 4.18 Building applications

NOTE
You can also use the search feature in the Add* page to find additional items to add to

your project. Click * under Add at the top of the page and type the name of a
component in the search field.

2.1.6. Checking the project status

You can use the OpenShift Container Platform web console or the OpenShift CLI (o¢) to view the
status of your project.

2.1.6.1. Checking project status by using the web console

You can review the status of your project by using the web console.

Prerequisites

® You have created a project.

Procedure
® |f you are using the Administrator perspective:

a. Navigate to Home — Projects.
b. Select a project from the list.
c. Review the project status in the Overview page.

e |f you are using the Developer perspective:

a. Navigate to the Project page.
b. Select a project from the Project menu.

c. Review the project status in the Overview page.

2.1.6.2. Checking project status by using the CLI

You can review the status of your project by using the OpenShift CLI (o¢).

Prerequisites

® You have installed the OpenShift CLI (oc).

® You have created a project.

Procedure

1. Switch to your project:
I $ oc project <project_name> ﬂ

ﬂ Replace <project_name> with the name of your project.

16

CHAPTER 2. PROJECTS

2. Obtain a high-level overview of the project:

I $ oc status

2.1.7. Deleting a project

You can use the OpenShift Container Platform web console or the OpenShift CLI (o¢) to delete a
project.

When you delete a project, the server updates the project status to Terminating from Active. Then, the
server clears all content from a project that is in the Terminating state before finally removing the

project. While a project is in Terminating status, you cannot add new content to the project. Projects
can be deleted from the CLI or the web console.

2.1.7.1. Deleting a project by using the web console

You can delete a project by using the web console.

Prerequisites

® You have created a project.

® You have the required permissions to delete the project.

Procedure
® |f you are using the Administrator perspective:

a. Navigate to Home — Projects.
b. Select a project from the list.

c. Click the Actions drop-down menu for the project and select Delete Project.

NOTE

The Delete Project option is not available if you do not have the required

- permissions to delete the project.

1. In the Delete Project? pane, confirm the deletion by entering the name of your project.
2. Click Delete.

e |f you are using the Developer perspective:

a. Navigate to the Project page.
b. Select the project that you want to delete from the Project menu.

c. Click the Actions drop-down menu for the project and select Delete Project.

17

OpenShift Container Platform 4.18 Building applications

NOTE

If you do not have the required permissions to delete the project, the Delete
Project option is not available.

1. In the Delete Project? pane, confirm the deletion by entering the name of your project.

2. Click Delete.

2.1.7.2. Deleting a project by using the CLI

You can delete a project by using the OpenShift CLI (oc).

Prerequisites

® You have installed the OpenShift CLI (oc).

® You have created a project.

® You have the required permissions to delete the project.

Procedure

1. Delete your project:

I $ oc delete project <project_name> ﬂ

Replace <project_name> with the name of the project that you want to delete.

2.2. CREATING APROJECT AS ANOTHER USER

Impersonation allows you to create a project as a different user.

2.2.1. APl impersonation

You can configure a request to the OpenShift Container Platform API to act as though it originated
from another user. For more information, see User impersonation in the Kubernetes documentation.

2.2.2. Impersonating a user when you create a project

You can impersonate a different user when you create a project request. Because
system:authenticated:oauth is the only bootstrap group that can create project requests, you must
impersonate that group.

Procedure

® To create a project request on behalf of a different user:

18

$ oc new-project <project> --as=<user> \

--as-group=system:authenticated --as-group=system:authenticated:oauth

https://kubernetes.io/docs/reference/access-authn-authz/authentication/#user-impersonation

CHAPTER 2. PROJECTS

2.3. CONFIGURING PROJECT CREATION

In OpenShift Container Platform, projects are used to group and isolate related objects. When a request
is made to create a new project using the web console or oc new-project command, an endpoint in
OpenShift Container Platform is used to provision the project according to a template, which can be
customized.

As a cluster administrator, you can allow and configure how developers and service accounts can create,
or self-provision, their own projects.
2.3.1. About project creation

The OpenShift Container Platform API server automatically provisions new projects based on the

project template that is identified by the projectRequestTemplate parameter in the cluster’s project
configuration resource. If the parameter is not defined, the API server creates a default template that
creates a project with the requested name, and assigns the requesting user to the admin role for that

project.
When a project request is submitted, the API substitutes the following parameters into the template:

Table 2.1. Default project template parameters

Parameter Description

PROJECT_NAME The name of the project. Required.

PROJECT_DISPLAYNAME The display name of the project. May be empty.
PROJECT_DESCRIPTION The description of the project. May be empty.
PROJECT_ADMIN_USER The user name of the administrating user.

PROJECT_REQUESTING_U The user name of the requesting user.
SER

Access to the APl is granted to developers with the self-provisioner role and the self-provisioners
cluster role binding. This role is available to all authenticated developers by default.

2.3.2. Modifying the template for new projects

As a cluster administrator, you can modify the default project template so that new projects are created
using your custom requirements.

To create your own custom project template:

Prerequisites

® You have access to an OpenShift Container Platform cluster using an account with cluster-
admin permissions.

Procedure

19

OpenShift Container Platform 4.18 Building applications

1.

2.

6.

Login as a user with cluster-admin privileges.
Generate the default project template:

I $ oc adm create-bootstrap-project-template -o yaml > template.yami

Use a text editor to modify the generated template.yaml file by adding objects or modifying
existing objects.

The project template must be created in the openshift-config namespace. Load your modified
template:

I $ oc create -f template.yaml -n openshift-config

Edit the project configuration resource using the web console or CLI.
® Using the web console:
i. Navigate to the Administration — Cluster Settings page.
ii. Click Configuration to view all configuration resources.
ii. Find the entry for Project and click Edit YAML.

® Using the CLI:

i. Edit the project.config.openshift.io/cluster resource:

I $ oc edit project.config.openshift.io/cluster

Update the spec section to include the projectRequestTemplate and nhame parameters, and
set the name of your uploaded project template. The default name is project-request.

Project configuration resource with custom project template

apiVersion: config.openshift.io/v1
kind: Project
metadata:
#...
spec:
projectRequestTemplate:
name: <template_name>
#...

7. After you save your changes, create a new project to verify that your changes were successfully

applied.

2.3.3. Disabling project self-provisioning

You can prevent an authenticated user group from self-provisioning new projects.

Procedure

1.

20

Login as a user with cluster-admin privileges.

CHAPTER 2. PROJECTS

2. View the self-provisioners cluster role binding usage by running the following command:

I $ oc describe clusterrolebinding.rbac self-provisioners

Example output

Name: self-provisioners
Labels: <none>
Annotations: rbac.authorization.kubernetes.io/autoupdate=true
Role:
Kind: ClusterRole
Name: self-provisioner
Subjects:
Kind Name Namespace

Group system:authenticated:oauth

Review the subjects in the self-provisioners section.

3. Remove the self-provisioner cluster role from the group system:authenticated:oauth.

e |f the self-provisioners cluster role binding binds only the self-provisioner role to the
system:authenticated:oauth group, run the following command:

I $ oc patch clusterrolebinding.rbac self-provisioners -p '{"subjects": null}’

e |f the self-provisioners cluster role binding binds the self-provisioner role to more users,
groups, or service accounts than the system:authenticated:oauth group, run the following
command:

$ oc adm policy \
remove-cluster-role-from-group self-provisioner \
system:authenticated:oauth

4. Edit the self-provisioners cluster role binding to prevent automatic updates to the role.
Automatic updates reset the cluster roles to the default state.

® To update the role binding using the CLI:

i. Run the following command:

I $ oc edit clusterrolebinding.rbac self-provisioners

ii. Inthe displayed role binding, set the rbac.authorization.kubernetes.io/autoupdate
parameter value to false, as shown in the following example:

apiVersion: authorization.openshift.io/v1
kind: ClusterRoleBinding
metadata:
annotations:
rbac.authorization.kubernetes.io/autoupdate: "false"
#...

21

OpenShift Container Platform 4.18 Building applications

® To update the role binding by using a single command:

$ oc patch clusterrolebinding.rbac self-provisioners -p { "metadata”: { "annotations": {
"rbac.authorization.kubernetes.io/autoupdate": "false" } } }'

5. Login as an authenticated user and verify that it can no longer self-provision a project:

I $ oc new-project test

Example output

I Error from server (Forbidden): You may not request a new project via this API.

Consider customizing this project request message to provide more helpful instructions specific
to your organization.

2.3.4. Customizing the project request message

When a developer or a service account that is unable to self-provision projects makes a project creation
request using the web console or CLI, the following error message is returned by default:

I You may not request a new project via this API.

Cluster administrators can customize this message. Consider updating it to provide further instructions
on how to request a new project specific to your organization. For example:

® Torequest a project, contact your system administrator at projecthame@example.com.

® Torequest a new project, fill out the project request form located at
https://internal.example.com/openshift-project-request.

To customize the project request message:

Procedure
1. Edit the project configuration resource using the web console or CLI.
® Using the web console:

i. Navigate to the Administration — Cluster Settings page.
ii. Click Configuration to view all configuration resources.
ii. Find the entry for Project and click Edit YAML.

® Using the CLI:

i. Login as a user with cluster-admin privileges.

ii. Edit the project.config.openshift.io/cluster resource:

I $ oc edit project.config.openshift.io/cluster

22

CHAPTER 2. PROJECTS

2. Update the spec section to include the projectRequestMessage parameter and set the value
to your custom message:

Project configuration resource with custom project request message

apiVersion: config.openshift.io/v1
kind: Project
metadata:
#...
spec:
projectRequestMessage: <message_string>
#...

For example:

apiVersion: config.openshift.io/v1
kind: Project
metadata:
#...
spec:
projectRequestMessage: To request a project, contact your system administrator at
projectname@example.com.
#...

3. After you save your changes, attempt to create a new project as a developer or service account
that is unable to self-provision projects to verify that your changes were successfully applied.

23

OpenShift Container Platform 4.18 Building applications

CHAPTER 3. CREATING APPLICATIONS

3.1. USING TEMPLATES

The following sections provide an overview of templates, as well as how to use and create them.

3.1.1. Understanding templates

A template describes a set of objects that can be parameterized and processed to produce a list of
objects for creation by OpenShift Container Platform. A template can be processed to create anything
you have permission to create within a project, for example services, build configurations, and
deployment configurations. A template can also define a set of labels to apply to every object defined in
the template.

You can create a list of objects from a template using the CLlI or, if a template has been uploaded to
your project or the global template library, using the web console.

3.1.2. Uploading a template

If you have a JSON or YAML file that defines a template, you can upload the template to projects using
the CLI. This saves the template to the project for repeated use by any user with appropriate access to
that project. Instructions about writing your own templates are provided later in this topic.

Procedure
e Upload a template using one of the following methods:

o Upload a template to your current project’s template library, pass the JSON or YAML file
with the following command:

I $ oc create -f <filename>
o Upload a template to a different project using the -n option with the name of the project:
P P
I $ oc create -f <filename> -n <project>

The template is now available for selection using the web console or the CLI.

3.1.3. Creating an application by using the web console

You can use the web console to create an application from a template.

Procedure

1. Select Developer from the context selector at the top of the web console navigation menu.
2. While in the desired project, click +Add
3. Click All servicesin the Developer Catalog tile.

4. Click Builder Images under Type to see the available builder images.

24

CHAPTER 3. CREATING APPLICATIONS

NOTE

Only image stream tags that have the builder tag listed in their annotations
appear in this list, as demonstrated here:

kind: "ImageStream"
apiVersion: "image.openshift.io/v1"
metadata:
name: "ruby"
creationTimestamp: null
spec:
#...
tags:
- name: "2.6"
annotations:
description: "Build and run Ruby 2.6 applications
iconClass: "icon-ruby"
tags: "builder,ruby" ﬂ
supports: "ruby:2.6,ruby"
version: "2.6"

Including builder here ensures this image stream tag appears in the web console as a
builder.

5. Modify the settings in the new application screen to configure the objects to support your
application.

3.1.4. Creating objects from templates by using the CLI

You can use the CLI to process templates and use the configuration that is generated to create objects.

3.1.4.1. Adding labels

Labels are used to manage and organize generated objects, such as pods. The labels specified in the
template are applied to every object that is generated from the template.

Procedure

® Add labels in the template from the command line:

I $ oc process -f <filename> -| name=otherLabel

3.1.4.2. Listing parameters

The list of parameters that you can override are listed in the parameters section of the template.

Procedure

1. You can list parameters with the CLI by using the following command and specifying the file to
be used:

25

OpenShift Container Platform 4.18 Building applications

I $ oc process --parameters -f <filename>
Alternatively, if the template is already uploaded:
I $ oc process --parameters -n <project> <template_name>

For example, the following shows the output when listing the parameters for one of the quick
start templates in the default openshift project:

I $ oc process --parameters -n openshift rails-postgresql-example

Example output

NAME DESCRIPTION

GENERATOR VALUE

SOURCE_REPOSITORY_URL The URL of the repository with your application source
code https://github.com/sclorg/rails-ex.git

SOURCE_REPOSITORY_REF Set this to a branch name, tag or other ref of your
repository if you are not using the default branch

CONTEXT_DIR Set this to the relative path to your project if it is not in the root of
your repository
APPLICATION_DOMAIN The exposed hostname that will route to the Rails service

rails-postgresql-example.openshiftapps.com
GITHUB_WEBHOOK_SECRET A secret string used to configure the GitHub webhook
expression [a-zA-Z0-9]{40}

SECRET_KEY_BASE Your secret key for verifying the integrity of signed cookies
expression [a-z0-9]{127}

APPLICATION_USER The application user that is used within the sample application
to authorize access on pages openshift

APPLICATION_PASSWORD The application password that is used within the sample
application to authorize access on pages secret
DATABASE_SERVICE_NAME Database service name

postgresql

POSTGRESQL_USER database username

expression user[A-Z0-9]{3}
POSTGRESQL_PASSWORD database password
expression [a-zA-Z0-9]{8}

POSTGRESQL _DATABASE database name

root

POSTGRESQL _MAX CONNECTIONS database max connections
10

POSTGRESQL _SHARED BUFFERS database shared buffers
12MB

The output identifies several parameters that are generated with a regular expression-like
generator when the template is processed.

3.1.4.3. Generating a list of objects

Using the CLI, you can process a file defining a template to return the list of objects to standard output.

Procedure

26

CHAPTER 3. CREATING APPLICATIONS

1. Process a file defining a template to return the list of objects to standard output:

I $ oc process -f <filename>
Alternatively, if the template has already been uploaded to the current project:

I $ oc process <template_name>

2. Create objects from a template by processing the template and piping the output to oc create:
I $ oc process -f <filename> | oc create -f -
Alternatively, if the template has already been uploaded to the current project:

I $ oc process <template> | oc create -f -

3. You can override any parameter values defined in the file by adding the -p option for each
<hame>=<value> pair you want to override. A parameter reference appears in any text field
inside the template items.

For example, in the following the POSTGRESQL_USER and POSTGRESQL_DATABASE
parameters of a template are overridden to output a configuration with customized
environment variables:

a. Creating a List of objects from a template

$ oc process -f my-rails-postgresqgl \
-p POSTGRESQL_USER=bob \
-p POSTGRESQL_DATABASE=mydatabase

b. The JSON file can either be redirected to a file or applied directly without uploading the
template by piping the processed output to the oc create command:

$ oc process -f my-rails-postgresqgl \
-p POSTGRESQL_USER=bob \
-p POSTGRESQL_DATABASE=mydatabase \
| oc create -f -

c. If you have large number of parameters, you can store them in a file and then pass this file to
oc process:

$ cat postgres.env
POSTGRESQL_USER=bob
POSTGRESQL_DATABASE=mydatabase

I $ oc process -f my-rails-postgresql --param-file=postgres.env

d. You can also read the environment from standard input by using
param-file:

as the argument to --

I $ sed s/bob/alice/ postgres.env | oc process -f my-rails-postgresql --param-file=-

27

OpenShift Container Platform 4.18 Building applications

3.1.5. Modifying uploaded templates

You can edit a template that has already been uploaded to your project.

Procedure

® Modify a template that has already been uploaded:

I $ oc edit template <template>

3.1.6. Using instant app and quick start templates

OpenShift Container Platform provides a number of default instant app and quick start templates to
make it easy to quickly get started creating a new application for different languages. Templates are
provided for Rails (Ruby), Django (Python), Node.js, CakePHP (PHP), and Dancer (Perl). Your cluster
administrator must create these templates in the default, global openshift project so you have access
to them.

By default, the templates build using a public source repository on GitHub that contains the necessary
application code.

Procedure

1. You can list the available default instant app and quick start templates with:

I $ oc get templates -n openshift

2. To modify the source and build your own version of the application:

a. Fork the repository referenced by the template’s default SOURCE_REPOSITORY_URL
parameter.

b. Override the value of the SOURCE_REPOSITORY_URL parameter when creating from the
template, specifying your fork instead of the default value.
By doing this, the build configuration created by the template now points to your fork of the
application code, and you can modify the code and rebuild the application at will.

NOTE

Some of the instant app and quick start templates define a database deployment
configuration. The configuration they define uses ephemeral storage for the database
content. These templates should be used for demonstration purposes only as all
database data is lost if the database pod restarts for any reason.

3.1.6.1. Quick start templates

A quick start template is a basic example of an application running on OpenShift Container Platform.
Quick starts come in a variety of languages and frameworks, and are defined in a template, which is
constructed from a set of services, build configurations, and deployment configurations. This template
references the necessary images and source repositories to build and deploy the application.

To explore a quick start, create an application from a template. Your administrator must have already

installed these templates in your OpenShift Container Platform cluster, in which case you can simply
select it from the web console.

28

CHAPTER 3. CREATING APPLICATIONS

Quick starts refer to a source repository that contains the application source code. To customize the
quick start, fork the repository and, when creating an application from the template, substitute the
default source repository name with your forked repository. This results in builds that are performed
using your source code instead of the provided example source. You can then update the code in your
source repository and launch a new build to see the changes reflected in the deployed application.

3.1.6.1.1. Web framework quick start templates

These quick start templates provide a basic application of the indicated framework and language:
® CakePHP: a PHP web framework that includes a MySQL database
® Dancer: a Perl web framework that includes a MySQL database
® Django: a Python web framework that includes a PostgreSQL database
® NodeJS: a NodeJS web application that includes a MongoDB database

® Rails: a Ruby web framework that includes a PostgreSQL database

3.1.7. Writing templates

You can define new templates to make it easy to recreate all the objects of your application. The
template defines the objects it creates along with some metadata to guide the creation of those
objects.

The following is an example of a simple template object definition (YAML):

apiVersion: template.openshift.io/v1
kind: Template
metadata:
name: redis-template
annotations:
description: "Description”
iconClass: "icon-redis"
tags: "database,nosql"
objects:
- apiVersion: vi1
kind: Pod
metadata:
name: redis-master
spec:
containers:
- env:
- name: REDIS_PASSWORD
value: ${REDIS_PASSWORD}
image: dockerfile/redis
name: master
ports:
- containerPort: 6379
protocol: TCP
parameters:
- description: Password used for Redis authentication
from: 'TA-Z0-9]{8}'
generate: expression

29

OpenShift Container Platform 4.18 Building applications

name: REDIS PASSWORD
labels:
redis: master

3.1.7.1. Writing the template description

The template description informs you what the template does and helps you find it when searching in
the web console. Additional metadata beyond the template name is optional, but useful to have. In
addition to general descriptive information, the metadata also includes a set of tags. Useful tags include
the name of the language the template is related to for example, Java, PHP, Ruby, and so on.

The following is an example of template description metadata:

kind: Template
apiVersion: template.openshift.io/v1
metadata:
name: cakephp-mysqgl-example ﬂ
annotations:
openshift.io/display-name: "CakePHP MySQL Example (Ephemeral)" 9
description: >-
An example CakePHP application with a MySQL database. For more information
about using this template, including OpenShift considerations, see
https://github.com/sclorg/cakephp-ex/blob/master/README.md.

WARNING: Any data stored will be lost upon pod destruction. Only use this

template for testing." 6

openshift.io/long-description: >-
This template defines resources needed to develop a CakePHP application,
including a build configuration, application DeploymentConfig, and
database DeploymentConfig. The database is stored in
non-persistent storage, so this configuration should be used for

experimental purposes only. ﬂ
tags: "quickstart,php,cakephp” 6
iconClass: icon-php
openshift.io/provider-display-name: "Red Hat, Inc."
openshift.io/documentation-url: "https://github.com/sclorg/cakephp-ex" 6
openshift.io/support-url: "https://access.redhat.com”
message: "Your admin credentials are ${ADMIN_USERNAME}:${ADMIN_PASSWORD}" @

The unique name of the template.

A brief, user-friendly name, which can be employed by user interfaces.

and any caveats they must know before deploying. It should also provide links to additional
information, such as a README file. Newlines can be included to create paragraphs.

9 A description of the template. Include enough detail that users understand what is being deployed
Q Additional template description. This may be displayed by the service catalog, for example.

Tags to be associated with the template for searching and grouping. Add tags that include it into
one of the provided catalog categories. Refer to the id and categoryAliases in
CATALOG_CATEGORIES in the console constants file. The categories can also be customized for
the whole cluster.

CHAPTER 3. CREATING APPLICATIONS

6 Anicon to be displayed with your template in the web console.
Example 3.1. Available icons
® jcon-3scale
® jcon-aerogear
® jcon-amq
® jcon-angularjs
® jcon-ansible
® jcon-apache
® jcon-beaker
® jcon-camel
® jcon-capedwarf
® jcon-cassandra
® jcon-catalog-icon
® jcon-clojure
® jcon-codeigniter
® jcon-cordova
e jcon-datagrid
e jcon-datavirt
® jcon-debian
® jcon-decisionserver
® jcon-django
e jcon-dotnet
® jcon-drupal
® jcon-eap
e jcon-elastic
® jcon-erlang
e jcon-fedora

® jcon-freebsd

31

OpenShift Container Platform 4.18 Building applications

32

icon-git
icon-github
icon-gitlab
icon-glassfish
icon-go-gopher
icon-golang
icon-grails
icon-hadoop
icon-haproxy
icon-helm
icon-infinispan
icon-jboss
icon-jenkins
icon-jetty
icon-joomla
icon-jruby
icon-js
icon-knative
icon-kubevirt
icon-laravel
icon-load-balancer
icon-mariadb
icon-mediawiki
icon-memcached
icon-mongodb
icon-mssql
icon-mysql-database

icon-nginx

icon-nodejs
icon-openjdk
icon-openliberty
icon-openshift
icon-openstack
icon-other-linux
icon-other-unknown
icon-perl
icon-phalcon
icon-php

icon-play
iconpostgresql
icon-processserver
icon-python
icon-quarkus
icon-rabbitmq
icon-rails
icon-redhat
icon-redis
icon-rh-integration
icon-rh-spring-boot
icon-rh-tomcat
icon-ruby
icon-scala
icon-serverlessfx
icon-shadowman
icon-spring-boot

icon-spring

CHAPTER 3. CREATING APPLICATIONS

33

OpenShift Container Platform 4.18 Building applications

® jcon-sso

® jcon-stackoverflow
® jcon-suse

® jcon-symfony

® jcon-tomcat

® jcon-ubuntu

® jicon-vertx

e jcon-wildfly

® jcon-windows

® jcon-wordpress
® jicon-xamarin

® jcon-zend

The name of the person or organization providing the template.
A URL referencing further documentation for the template.

A URL where support can be obtained for the template.

9009

An instructional message that is displayed when this template is instantiated. This field should
inform the user how to use the newly created resources. Parameter substitution is performed on
the message before being displayed so that generated credentials and other parameters can be
included in the output. Include links to any next-steps documentation that users should follow.

3.1.7.2. Writing template labels

Templates can include a set of labels. These labels are added to each object created when the template
is instantiated. Defining a label in this way makes it easy for users to find and manage all the objects
created from a particular template.

The following is an example of template object labels:

kind: "Template"
apiVersion: "v1"

labels:
template: "cakephp-mysql-example” ﬂ
app: "${NAME}" @

ﬂ A label that is applied to all objects created from this template.

9 A parameterized label that is also applied to all objects created from this template. Parameter
exnansion is carried ottt on hoth lahel kevs and valiies

34

CHAPTER 3. CREATING APPLICATIONS

3.1.7.3. Writing template parameters

Parameters allow a value to be supplied by you or generated when the template is instantiated. Then,
that value is substituted wherever the parameter is referenced. References can be defined in any field in
the objects list field. This is useful for generating random passwords or allowing you to supply a
hostname or other user-specific value that is required to customize the template. Parameters can be
referenced in two ways:

® As astring value by placing values in the form ${PARAMETER_NAME} in any string field in the
template.

® Asa JSON or YAML value by placing values in the form ${{PARAMETER_NAME}} in place of
any field in the template.

When using the ${PARAMETER_NAME} syntax, multiple parameter references can be combinedin a
single field and the reference can be embedded within fixed data, such as
"http://${PARAMETER_1}${PARAMETER_2}". Both parameter values are substituted and the

resulting value is a quoted string.

When using the ${{PARAMETER_NAME}} syntax only a single parameter reference is allowed and
leading and trailing characters are not permitted. The resulting value is unquoted unless, after
substitution is performed, the result is not a valid JSON object. If the result is not a valid JSON value, the
resulting value is quoted and treated as a standard string.

A single parameter can be referenced multiple times within a template and it can be referenced using
both substitution syntaxes within a single template.

A default value can be provided, which is used if you do not supply a different value:

The following is an example of setting an explicit value as the default value:

parameters:
- name: USERNAME
description: "The user name for Joe"
value: joe

Parameter values can also be generated based on rules specified in the parameter definition, for
example generating a parameter value:

parameters:
- name: PASSWORD
description: "The random user password"
generate: expression
from: "[a-zA-Z0-9]{12}"

In the previous example, processing generates a random password 12 characters long consisting of all
upper and lowercase alphabet letters and numbers.

The syntax available is not a full regular expression syntax. However, you can use \w, \d, \a, and \A
modifiers:

o [\w]{10} produces 10 alphabet characters, numbers, and underscores. This follows the PCRE
standard and is equal to [a-zA-Z0-9_]{10}.

35

OpenShift Container Platform 4.18 Building applications

® [\d]{10} produces 10 numbers. This is equal to [0-9]{10}.
® [\a]{10} produces 10 alphabetical characters. This is equal to [a-zA-Z]{10}.

e [\A]{10} produces 10 punctuation or symbol characters. This is equal to [~!@#$%*&*()\-_+={}
DM\I<,>.2/";" {10}

NOTE

Depending on if the template is written in YAML or JSON, and the type of string that the
modifier is embedded within, you might need to escape the backslash with a second
backslash. The following examples are equivalent:

Example YAML template with a modifier

parameters:

- name: singlequoted_example
generate: expression
from: \AJ{10}'

- name: doublequoted_example
generate: expression
from: "[WA]{10}"

Example JSON template with a modifier

{

"parameters":
{
"name": "json_example",
"generate": "expression”,
"from": "[\A]{10}"
}

]

}

Here is an example of a full template with parameter definitions and references:

kind: Template
apiVersion: template.openshift.io/v1
metadata:
name: my-template
objects:
- kind: BuildConfig
apiVersion: build.openshift.io/v1
metadata:
name: cakephp-mysqgl-example
annotations:
description: Defines how to build the application
spec:
source:
type: Git
git:
uri: "${SOURCE_REPOSITORY_URL}" ﬂ
ref: "${SOURCE_REPOSITORY_REF}"

36

90 & o ®©6060 O 9O

o

CHAPTER 3. CREATING APPLICATIONS

contextDir: "${CONTEXT_DIR}"

- kind: DeploymentConfig
apiVersion: apps.openshift.io/v1
metadata:

name: frontend
spec:
replicas: "${{REPLICA_COUNT}}" @
parameters:

- name: SOURCE_REPOSITORY_URLQ
displayName: Source Repository URLQ
description: The URL of the repository with your application source code 6
value: https://github.com/sclorg/cakephp-ex.git

required: true a
- name: GITHUB_WEBHOOK_SECRET
description: A secret string used to configure the GitHub webhook
generate: expression G
from: "[a-zA-Z0-9]{40}" €)
- name: REPLICA_COUNT
description: Number of replicas to run
value: "2"
required: true

message: "... The GitHub webhook secret is ${GITHUB_WEBHOOK_SECRET} ..." {{)

This value is replaced with the value of the SOURCE_REPOSITORY_URL parameter when the
template is instantiated.

This value is replaced with the unquoted value of the REPLICA_COUNT parameter when the
template is instantiated.

The name of the parameter. This value is used to reference the parameter within the template.
The user-friendly name for the parameter. This is displayed to users.

A description of the parameter. Provide more detailed information for the purpose of the
parameter, including any constraints on the expected value. Descriptions should use complete
sentences to follow the console’s text standards. Do not make this a duplicate of the display name.
A default value for the parameter which is used if you do not override the value when instantiating
the template. Avoid using default values for things like passwords, instead use generated

parameters in combination with secrets.

Indicates this parameter is required, meaning you cannot override it with an empty value. If the
parameter does not provide a default or generated value, you must supply a value.

A parameter which has its value generated.

The input to the generator. In this case, the generator produces a 40 character alphanumeric value
including upper and lowercase characters.

Parameters can be included in the template message. This informs you about generated values.

3.1.7.4. Writing the template object list

The main portion of the template is the list of objects which is created when the template is instantiated.

37

OpenShift Container Platform 4.18 Building applications

This can be any valid API object, such as a build configuration, deployment configuration, or service. The
object is created exactly as defined here, with any parameter values substituted in prior to creation. The
definition of these objects can reference parameters defined earlier.

The following is an example of an object list:

kind: "Template"
apiVersion: "v1"
metadata:
name: my-template
objects:
- kind: "Service"
apiVersion: "vi"
metadata:
name: "cakephp-mysqgl-example"
annotations:
description: "Exposes and load balances the application pods"
spec:
ports:
- name: "web"
port: 8080
targetPort: 8080
selector:
name: "cakephp-mysqgl-example"

ﬂ The definition of a service, which is created by this template.

NOTE

If an object definition metadata includes a fixed namespace field value, the field is
stripped out of the definition during template instantiation. If the namespace field
contains a parameter reference, normal parameter substitution is performed and the
object is created in whatever namespace the parameter substitution resolved the value
to, assuming the user has permission to create objects in that namespace.

3.1.7.5. Marking a template as bindable

The Template Service Broker advertises one service in its catalog for each template object of which it is
aware. By default, each of these services is advertised as being bindable, meaning an end user is
permitted to bind against the provisioned service.

Procedure

Template authors can prevent end users from binding against services provisioned from a given
template.

® Prevent end user from binding against services provisioned from a given template by adding the
annotation template.openshift.io/bindable: "false" to the template.
3.1.7.6. Exposing template object fields

Template authors can indicate that fields of particular objects in a template should be exposed. The
Template Service Broker recognizes exposed fields on ConfigMap, Secret, Service, and Route objects,
and returns the values of the exposed fields when a user binds a service backed by the broker.

38

CHAPTER 3. CREATING APPLICATIONS

To expose one or more fields of an object, add annotations prefixed by template.openshift.io/expose-
or template.openshift.io/base64-expose- to the object in the template.

Each annotation key, with its prefix removed, is passed through to become a key in a bind response.

Each annotation value is a Kubernetes JSONPath expression, which is resolved at bind time to indicate
the object field whose value should be returned in the bind response.

NOTE

Bind response key-value pairs can be used in other parts of the system as environment
variables. Therefore, it is recommended that every annotation key with its prefix removed
should be a valid environment variable name — beginning with a character A-Z, a-z, or _,
and being followed by zero or more characters A-Z, a-z, 0-9, or _.

NOTE
: Unless escaped with a backslash, Kubernetes' JSSONPath implementation interprets

characters such as ., @, and others as metacharacters, regardless of their position in the
expression. Therefore, for example, to refer to a ConfigMap datum named my.key, the
required JSONPath expression would be {.data['my\.key']}. Depending on how the
JSONPath expression is then written in YAML, an additional backslash might be required,
for example "{.data['my\\.key']}".

The following is an example of different objects' fields being exposed:

kind: Template
apiVersion: template.openshift.io/v1
metadata:
name: my-template
objects:
- kind: ConfigMap
apiVersion: vi
metadata:
name: my-template-config
annotations:
template.openshift.io/expose-username: "{.data['my\\.username']}"
data:
my.username: foo
- kind: Secret
apiVersion: vi
metadata:
name: my-template-config-secret
annotations:
template.openshift.io/base64-expose-password: "{.data['password']}"
stringData:
password: <password>
- kind: Service
apiVersion: vi
metadata:
name: my-template-service
annotations:
template.openshift.io/expose-service_ip_port: "{.spec.cluster|P}:{.spec.ports[?
(.name==\"web\")].port}"

39

OpenShift Container Platform 4.18 Building applications

spec:
ports:
- name: "web"
port: 8080
- kind: Route
apiVersion: route.openshift.io/v1
metadata:
name: my-template-route
annotations:
template.openshift.io/expose-uri: "http://{.spec.host}{.spec.path}"
spec:
path: mypath

An example response to a bind operation given the above partial template follows:

{

"credentials": {
"username": "foo",
"password": "YmFy",
"service_ip_port": "172.30.12.34:8080",
"uri": "http://route-test.router.default.svc.cluster.local/mypath”

Procedure

e Use the template.openshift.io/expose- annotation to return the field value as a string. This is
convenient, although it does not handle arbitrary binary data.

e |f you want to return binary data, use the template.openshift.io/base64-expose- annotation
instead to base64 encode the data before it is returned.
3.1.7.7. Waiting for template readiness

Template authors can indicate that certain objects within a template should be waited for before a
template instantiation by the service catalog, Template Service Broker, or Templatelnstance APl is
considered complete.

Before starting the procedure, read the following considerations:

® Set memory, CPU, and storage default sizes to make sure your application is given enough
resources to run smoothly.

e Avoid referencing the latest tag from images if that tag is used across major versions. This can
cause running applications to break when new images are pushed to that tag.

® A good template builds and deploys cleanly without requiring modifications after the template is
deployed.

Procedure

® To use the template feature, mark one or more objects of kind Build, BuildConfig,
Deployment, DeploymentConfig, Job, or StatefulSet in a template with the following
annotation:

40

CHAPTER 3. CREATING APPLICATIONS

I "template.alpha.openshift.io/wait-for-ready": "true"

Template instantiation is not complete until all objects marked with the annotation report ready.
Similarly, if any of the annotated objects report failed, or if the template fails to become ready
within a fixed timeout of one hour, the template instantiation fails.

For the purposes of instantiation, readiness and failure of each object kind are defined as
follows:

Kind Readiness Failure
Build Object reports phase complete. Object reports phase canceled, error,
or failed.
BuildConfig Latest associated build object reports Latest associated build object reports
phase complete. phase canceled, error, or failed.
Deployment Object reports new replica set and Object reports progressing condition
deployment available. This honors as false.
readiness probes defined on the
object.
DeploymentC Object reports new replication Object reports progressing condition
onfig controller and deployment available. as false.

This honors readiness probes defined
on the object.

Job Object reports completion. Object reports that one or more
failures have occurred.

StatefulSet Object reports all replicas ready. This Not applicable.
honors readiness probes defined on
the object.

The following is an example template extract, which uses the wait-for-ready annotation. Further
examples can be found in the OpenShift Container Platform quick start templates.

kind: Template
apiVersion: template.openshift.io/v1
metadata:
name: my-template
objects:
- kind: BuildConfig
apiVersion: build.openshift.io/v1
metadata:
name: ...
annotations:
wait-for-ready used on BuildConfig ensures that template instantiation
will fail immediately if build fails
template.alpha.openshift.io/wait-for-ready: "true"
spec:

41

OpenShift Container Platform 4.18 Building applications

- kind: DeploymentConfig
apiVersion: apps.openshift.io/v1
metadata:
name: ...
annotations:
template.alpha.openshift.io/wait-for-ready: "true"
spec:

- kind: Service
apiVersion: vi
metadata:

name: ...
spec:

3.1.7.8. Creating a template from existing objects

Rather than writing an entire template from scratch, you can export existing objects from your project in
YAML form, and then modify the YAML from there by adding parameters and other customizations as
template form.

Procedure

® Export objects in a project in YAML form:

I $ oc get -0 yaml all > <yaml_filename>

You can also substitute a particular resource type or multiple resources instead of all. Run oc
get -h for more examples.

The object types included in oc get -o yaml all are:
o BuildConfig
o Build
o DeploymentConfig
o ImageStream
o Pod
o ReplicationController
o Route

o Service

NOTE

Using the all alias is not recommended because the contents might vary across different
clusters and versions. Instead, specify all required resources.

42

CHAPTER 3. CREATING APPLICATIONS

3.2. CREATING APPLICATIONS BY USING THE DEVELOPER
PERSPECTIVE

The Developer perspective in the web console provides you the following options from the +Add view
to create applications and associated services and deploy them on OpenShift Container Platform:

® Getting started resources: Use these resources to help you get started with Developer

Console. You can choose to hide the header using the Options menu

o Creating applications using samples: Use existing code samples to get started with
creating applications on the OpenShift Container Platform.

o Build with guided documentation: Follow the guided documentation to build applications
and familiarize yourself with key concepts and terminologies.

o Explore new developer features: Explore the new features and resources within the
Developer perspective.

® Developer catalog Explore the Developer Catalog to select the required applications, services,
or source to image builders, and then add it to your project.

o All Services: Browse the catalog to discover services across OpenShift Container Platform.
o Database: Select the required database service and add it to your application.
o Operator Backed: Select and deploy the required Operator-managed service.

o Helm chart: Select the required Helm chart to simplify deployment of applications and
services.

o Devfile: Select a devfile from the Devfile registry to declaratively define a development
environment.

o Event Source: Select an event source to register interest in a class of events from a
particular system.

NOTE

The Managed services option is also available if the RHOAS Operator is
installed.

® Git repository: Import an existing codebase, Devfile, or Dockerfile from your Git repository
using the From Git, From Devfile, or From Dockerfile options respectively, to build and deploy
an application on OpenShift Container Platform.

® Container images: Use existing images from an image stream or registry to deploy it on to the
OpenShift Container Platform.

® Pipelines: Use Tekton pipeline to create Cl/CD pipelines for your software delivery process on
the OpenShift Container Platform.

® Serverless: Explore the Serverless options to create, build, and deploy stateless and serverless
applications on the OpenShift Container Platform.

43

OpenShift Container Platform 4.18 Building applications

o Channel: Create a Knative channel to create an event forwarding and persistence layer with
in-memory and reliable implementations.

® Samples: Explore the available sample applications to create, build, and deploy an application
quickly.

® Quick Starts: Explore the quick start options to create, import, and run applications with step-
by-step instructions and tasks.

® From Local Machine Explore the From Local Machinetile to import or upload files on your
local machine for building and deploying applications easily.

o Import YAML: Upload a YAML file to create and define resources for building and
deploying applications.

o Upload JAR file: Upload a JAR file to build and deploy Java applications.

® Share my Project: Use this option to add or remove users to a project and provide accessibility
options to them.

® Helm Chart repositories: Use this option to add Helm Chart repositories in a namespace.
® Re-ordering of resources Use these resources to re-order pinned resources added to your
navigation pane. The drag-and-drop icon is displayed on the left side of the pinned resource
when you hover over it in the navigation pane. The dragged resource can be dropped only in the
section where it resides.
Note that certain options, such as Pipelines, Event Source, and Import Virtual Machines, are displayed

only when the OpenShift Pipelines Operator, OpenShift Serverless Operator, and OpenShift
Virtualization Operator are installed, respectively.

3.2.1. Prerequisites

To create applications using the Developer perspective ensure that:
® You have logged in to the web console .

® You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

To create serverless applications, in addition to the preceding prerequisites, ensure that:
® You have installed the OpenShift Serverless Operator.

® You have created a KnativeServing resource in the knative-serving namespace.

3.2.2. Creating sample applications

You can use the sample applications in the +Add flow of the Developer perspective to create, build, and
deploy applications quickly.

Prerequisites

® You have logged in to the OpenShift Container Platform web console and are in the Developer
perspective.

44

https://docs.openshift.com/pipelines/latest/install_config/installing-pipelines.html#op-installing-pipelines-operator-in-web-console_installing-pipelines
https://docs.openshift.com/serverless/1.28/install/install-serverless-operator.html#serverless-install-web-console_install-serverless-operator
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/virtualization/#virt-subscribing-cli_installing-virt
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/web_console/#web-console
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/authentication_and_authorization/#default-roles_using-rbac
https://docs.openshift.com/serverless/1.28/install/install-serverless-operator.html#install-serverless-operator
https://docs.openshift.com/serverless/1.28/install/installing-knative-serving.html#installing-knative-serving

CHAPTER 3. CREATING APPLICATIONS

Procedure

1. In the +Add view, click the Samples tile to see the Samples page.

2. On the Samples page, select one of the available sample applications to see the Create
Sample Application form.

3. Inthe Create Sample Application Form

® |n the Name field, the deployment name is displayed by default. You can modify this name
as required.

® |n the Builder Image Version, a builder image is selected by default. You can modify this
image version by using the Builder Image Version drop-down list.

® A sample Git repository URL is added by default.

4. Click Create to create the sample application. The build status of the sample application is
displayed on the Topology view. After the sample application is created, you can see the
deployment added to the application.

3.2.3. Creating applications by using Quick Starts

The Quick Starts page shows you how to create, import, and run applications on OpenShift Container
Platform, with step-by-step instructions and tasks.

Prerequisites

® You have logged in to the OpenShift Container Platform web console and are in the Developer
perspective.

Procedure

1. In the +Add view, click the Getting Started resources— Build with guided documentation -
View all quick starts link to view the Quick Starts page.

2. Inthe Quick Starts page, click the tile for the quick start that you want to use.
3. Click Start to begin the quick start.

4. Perform the steps that are displayed.

3.2.4. Importing a codebase from Git to create an application

You can use the Developer perspective to create, build, and deploy an application on OpenShift
Container Platform using an existing codebase in GitHub.

The following procedure walks you through the From Git option in the Developer perspective to create
an application.

Procedure

1. In the +Add view, click From Gitin the Git Repository tile to see the Import from git form.

45

OpenShift Container Platform 4.18 Building applications

2. In the Git section, enter the Git repository URL for the codebase you want to use to create an
application. For example, enter the URL of this sample Node.js application
https://github.com/sclorg/nodejs-ex. The URL is then validated.

3. Optional: You can click Show Advanced Git Optionsto add details such as:

Git Reference to point to code in a specific branch, tag, or commit to be used to build the
application.

Context Dir to specify the subdirectory for the application source code you want to use to
build the application.

Source Secretto create a Secret Name with credentials for pulling your source code from
a private repository.

4. Optional: You can import a Devfile, a Dockerfile, Builder Image, or a Serverless Function
through your Git repository to further customize your deployment.

If your Git repository contains a Devfile, a Dockerfile, a Builder Image, or a func.yami, it is
automatically detected and populated on the respective path fields.

If a Devfile, a Dockerfile, or a Builder Image are detected in the same repository, the
Devfile is selected by default.

If func.yaml is detected in the Git repository, the Import Strategy changes to Serverless
Function.

Alternatively, you can create a serverless function by clicking Create Serverless functionin
the +Add view using the Git repository URL.

To edit the file import type and select a different strategy, click Edit import strategy
option.

If multiple Devfiles, a Dockerfiles, or a Builder Images are detected, to import a specific
instance, specify the respective paths relative to the context directory.

5. After the Git URL is validated, the recommended builder image is selected and marked with a
star. If the builder image is not auto-detected, select a builder image. For the
https://github.com/sclorg/nodejs-ex Git URL, by default the Node.js builder image is selected.

a.

b.

Optional: Use the Builder Image Version drop-down to specify a version.
Optional: Use the Edit import strategy to select a different strategy.

Optional: For the Node.js builder image, use the Run command field to override the
command to run the application.

6. In the General section:

a.

b.

46

In the Application field, enter a unique name for the application grouping, for example,
myapp. Ensure that the application name is unique in a namespace.

The Name field to identify the resources created for this application is automatically
populated based on the Git repository URL if there are no existing applications. If there are
existing applications, you can choose to deploy the component within an existing
application, create a new application, or keep the component unassigned.

https://github.com/sclorg/nodejs-ex

CHAPTER 3. CREATING APPLICATIONS

NOTE

The resource name must be unique in a namespace. Modify the resource
name if you get an error.

7. In the Resources section, select:

® Deployment, to create an application in plain Kubernetes style.
® Deployment Config, to create an OpenShift Container Platform style application.

® Serverless Deployment, to create a Knative service.

NOTE

To set the default resource preference for importing an application, go to
User Preferences = Applications = Resource type field. The Serverless
Deployment option is displayed in the Import from Git form only if the
OpenShift Serverless Operator is installed in your cluster. The Resources
section is not available while creating a serverless function. For further
details, refer to the OpenShift Serverless documentation.

8. In the Pipelines section, select Add Pipeline, and then click Show Pipeline Visualizationto see
the pipeline for the application. A default pipeline is selected, but you can choose the pipeline
you want from the list of available pipelines for the application.

NOTE

The Add pipeline checkbox is checked and Configure PAC is selected by default
if the following criterias are fulfilled:

® Pipeline operator is installed

® pipelines-as-code is enabled

e _tekton directory is detected in the Git repository

9. Add a webhook to your repository. If Configure PAC is checked and the GitHub App is set up,
you can see the Use GitHub App and Setup a webhook options. If GitHub App is not set up,
you can only see the Setup a webhook option:

a. Go to Settings » Webhooks and click Add webhook.
b. Set the Payload URL to the Pipelines as Code controller public URL.
c. Select the content type as application/json.

d. Add a webhook secret and note it in an alternate location. With openssl installed on your
local machine, generate a random secret.

e. Click Let me select individual eventsand select these events: Commit comments, Issue
comments, Pull request, and Pushes.

f. Click Add webhook.

47

OpenShift Container Platform 4.18 Building applications

48

10.

1.

Optional: In the Advanced Options section, the Target port and the Create a route to the
application is selected by default so that you can access your application using a publicly
available URL.

If your application does not expose its data on the default public port, 80, clear the check box,
and set the target port number you want to expose.

Optional: You can use the following advanced options to further customize your application:

Routing

By clicking the Routing link, you can perform the following actions:

® Customize the hostname for the route.
® Specify the path the router watches.
® Select the target port for the traffic from the drop-down list.

® Secure your route by selecting the Secure Route check box. Select the required TLS
termination type and set a policy for insecure traffic from the respective drop-down
lists.

NOTE

For serverless applications, the Knative service manages all the routing
options above. However, you can customize the target port for traffic, if
required. If the target port is not specified, the default port of 8080 is
used.

Domain mapping

If you are creating a Serverless Deployment, you can add a custom domain mapping to the
Knative service during creation.

® |nthe Advanced options section, click Show advanced Routing options.

o If the domain mapping CR that you want to map to the service already exists, you
can select it from the Domain mapping drop-down menu.

o If you want to create a new domain mapping CR, type the domain name into the box,
and select the Create option. For example, if you type in example.com, the Create
option is Create "example.com".

Health Checks

Click the Health Checks link to add Readiness, Liveness, and Startup probes to your
application. All the probes have prepopulated default data; you can add the probes with the
default data or customize it as required.

To customize the health probes:

e Click Add Readiness Probe if required, modify the parameters to check if the container
is ready to handle requests, and select the check mark to add the probe.

e Click Add Liveness Probe, if required, modify the parameters to check if a container is
still running, and select the check mark to add the probe.

CHAPTER 3. CREATING APPLICATIONS

e Click Add Startup Probe, if required, modify the parameters to check if the application
within the container has started, and select the check mark to add the probe.
For each of the probes, you can specify the request type - HTTP GET, Container
Command, or TCP Socket, from the drop-down list. The form changes as per the
selected request type. You can then modify the default values for the other parameters,
such as the success and failure thresholds for the probe, number of seconds before
performing the first probe after the container starts, frequency of the probe, and the
timeout value.

Build Configuration and Deployment

Click the Build Configuration and Deployment links to see the respective configuration
options. Some options are selected by default; you can customize them further by adding the
necessary triggers and environment variables.

For serverless applications, the Deployment option is not displayed as the Knative
configuration resource maintains the desired state for your deployment instead of a
DeploymentConfig resource.

Scaling

Click the Scaling link to define the number of pods or instances of the application you want
to deploy initially.
If you are creating a serverless deployment, you can also configure the following settings:

® Min Pods determines the lower limit for the number of pods that must be running at any
given time for a Knative service. This is also known as the minScale setting.

® Max Pods determines the upper limit for the number of pods that can be running at any
given time for a Knative service. This is also known as the maxScale setting.

® Concurrency target determines the number of concurrent requests desired for each
instance of the application at a given time.

® Concurrency limit determines the limit for the number of concurrent requests allowed
for each instance of the application at a given time.

® Concurrency utilization determines the percentage of the concurrent requests limit
that must be met before Knative scales up additional pods to handle additional traffic.

® Autoscale window defines the time window over which metrics are averaged to provide
input for scaling decisions when the autoscaler is not in panic mode. A service is scaled-
to-zero if no requests are received during this window. The default duration for the
autoscale window is 60s. This is also known as the stable window.

Resource Limit

Click the Resource Limit link to set the amount of CPU and Memory resources a container
is guaranteed or allowed to use when running.

Labels

Click the Labels link to add custom labels to your application.

12. Click Create to create the application and a success notification is displayed. You can see the
build status of the application in the Topology view.

3.2.5. Creating applications by deploying container image

49

OpenShift Container Platform 4.18 Building applications

You can use an external image registry or an image stream tag from an internal registry to deploy an
application on your cluster.

Prerequisites

® You have logged in to the OpenShift Container Platform web console and are in the Developer
perspective.

Procedure
1. In the +Add view, click Container images to view the Deploy Images page.
2. In the Image section:

a. Select Image name from external registryto deploy an image from a public or a private
registry, or select Image stream tag from internal registryto deploy an image from an
internal registry.

b. Select anicon for your image in the Runtime icontab.

3. Inthe General section:

a. Inthe Application name field, enter a unique name for the application grouping.

b. In the Name field, enter a unique name to identify the resources created for this
component.

4. In the Resource typesection, select the resource type to generate:

a. Select Deployment to enable declarative updates for Pod and ReplicaSet objects.

b. Select DeploymentConfig to define the template for a Pod object, and manage deploying
new images and configuration sources.

c. Select Serverless Deployment to enable scaling to zero when idle.

5. Click Create. You can view the build status of the application in the Topology view.

3.2.6. Deploying a Java application by uploading a JAR file

You can use the web console Developer perspective to upload a JAR file by using the following options:
e Navigate to the +Add view of the Developer perspective, and click Upload JAR filein the From
Local Machine tile. Browse and select your JAR file, or drag a JAR file to deploy your

application.

e Navigate to the Topology view and use the Upload JAR file option, or drag a JAR file to deploy
your application.

® Use the in-context menu in the Topology view, and then use the Upload JAR file option to
upload your JAR file to deploy your application.

Prerequisites

® The Cluster Samples Operator must be installed by a cluster administrator.

50

CHAPTER 3. CREATING APPLICATIONS

You have access to the OpenShift Container Platform web console and are in the Developer
perspective.

Procedure

1.

2.

In the Topology view, right-click anywhere to view the Add to Project menu.

Hover over the Add to Project menu to see the menu options, and then select the Upload JAR
file option to see the Upload JAR file form. Alternatively, you can drag the JAR file into the
Topology view.

In the JAR file field, browse for the required JAR file on your local machine and upload it.
Alternatively, you can drag the JAR file on to the field. A toast alert is displayed at the top right
if an incompatible file type is dragged into the Topology view. A field error is displayed if an
incompatible file type is dropped on the field in the upload form.

The runtime icon and builder image are selected by default. If a builder image is not auto-
detected, select a builder image. If required, you can change the version using the Builder
Image Version drop-down list.

Optional: In the Application Name field, enter a unique name for your application to use for
resource labelling.

In the Name field, enter a unique component name for the associated resources.
Optional: Use the Resource type drop-down list to change the resource type.

In the Advanced options menu, click Create a Route to the Applicationto configure a public
URL for your deployed application.

Click Create to deploy the application. A toast notification is shown to notify you that the JAR
file is being uploaded. The toast notification also includes a link to view the build logs.

NOTE

If you attempt to close the browser tab while the build is running, a web alert is displayed.

After the JAR file is uploaded and the application is deployed, you can view the application in the
Topology view.

3.2.7. Using the Devfile registry to access devfiles

You can use the devfiles in the +Add flow of the Developer perspective to create an application. The
+Add flow provides a complete integration with the devfile community registry. A devfile is a portable
YAML file that describes your development environment without needing to configure it from scratch.
Using the Devfile registry, you can use a preconfigured devfile to create an application.

Procedure

1.

2.

Navigate to Developer Perspective - +Add — Developer Catalog — All Services. A list of all
the available services in the Developer Catalog is displayed.

Under Type, click Devfiles to browse for devfiles that support a particular language or

framework. Alternatively, you can use the keyword filter to search for a particular devfile using
their name, tag, or description.

51

https://registry.devfile.io/viewer

OpenShift Container Platform 4.18 Building applications

3. Click the devfile you want to use to create an application. The devfile tile displays the details of
the devfile, including the name, description, provider, and the documentation of the devfile.

4. Click Create to create an application and view the application in the Topology view.

3.2.8. Using the Developer Catalog to add services or components to your
application

You use the Developer Catalog to deploy applications and services based on Operator backed services
such as Databases, Builder Images, and Helm Charts. The Developer Catalog contains a collection of
application components, services, event sources, or source-to-image builders that you can add to your
project. Cluster administrators can customize the content made available in the catalog.

Procedure

1. In the Developer perspective, navigate to the +Add view and from the Developer Catalog tile,
click All Services to view all the available services in the Developer Catalog.

2. Under All Services, select the kind of service or the component you need to add to your project.
For this example, select Databases to list all the database services and then click MariaDB to
see the details for the service.

3. Click Instantiate Template to see an automatically populated template with details for the
MariaDB service, and then click Create to create and view the MariaDB service in the Topology
view.

Figure 3.1. MariaDB in Topology

RedHat
OpenShift
Container Platform

You are logged in as a temporary administrative user. Uy
<> Developer

Project: test = Application: all applications =

+Add I!FJ_ Display options = Filter by resource Find by name... / [i]

Topology
Monitoring
Search
Builds

[EIES

ED mariadb

Environments

Helm

Project @ java-sample

A sample-app
ConfigMaps

Secrets

3.2.9. Additional resources

® For more information about Knative routing settings for OpenShift Serverless, see Routing.

52

https://docs.openshift.com/serverless/1.28/knative-serving/external-ingress-routing/routing-overview.html#routing-overview

CHAPTER 3. CREATING APPLICATIONS

® For more information about domain mapping settings for OpenShift Serverless, see Configuring
a custom domain for a Knative service.

® For more information about Knative autoscaling settings for OpenShift Serverless, see
Autoscaling.

® For more information about adding a new user to a project, see Working with projects.

® For more information about creating a Helm Chart repository, see Creating Helm Chart
repositories.

3.3. CREATING APPLICATIONS FROM INSTALLED OPERATORS

Operators are a method of packaging, deploying, and managing a Kubernetes application. You can
create applications on OpenShift Container Platform using Operators that have been installed by a
cluster administrator.

This guide walks developers through an example of creating applications from an installed Operator
using the OpenShift Container Platform web console.

Additional resources

® Sece the Operators guide for more on how Operators work and how the Operator Lifecycle
Manager is integrated in OpenShift Container Platform.

3.3.1. Creating an etcd cluster using an Operator

This procedure walks through creating a new etcd cluster using the etcd Operator, managed by
Operator Lifecycle Manager (OLM).

Prerequisites

® Access to an OpenShift Container Platform 4.18 cluster.

® The etcd Operator already installed cluster-wide by an administrator.

Procedure

1. Create a new project in the OpenShift Container Platform web console for this procedure. This
example uses a project called my-etcd.

2. Navigate to the Operators = Installed Operatorspage. The Operators that have been installed
to the cluster by the cluster administrator and are available for use are shown here as a list of

cluster service versions (CSVs). CSVs are used to launch and manage the software provided by
the Operator.

TIP

You can get this list from the CLI using:

I $ oc get csv

3. On the Installed Operators page, click the etcd Operator to view more details and available
actions.

53

https://docs.openshift.com/serverless/1.28/knative-serving/config-custom-domains/serverless-custom-domains.html#serverless-custom-domains
https://docs.openshift.com/serverless/1.28/knative-serving/autoscaling/serverless-autoscaling-developer.html#serverless-autoscaling-developer
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/operators/#olm-what-operators-are

OpenShift Container Platform 4.18 Building applications

As shown under Provided APls, this Operator makes available three new resource types,
including one for an etcd Cluster (the EtcdCluster resource). These objects work similar to the
built-in native Kubernetes ones, such as Deployment or ReplicaSet, but contain logic specific
to managing etcd.

4. Create a new etcd cluster:

a. Inthe etcd Cluster API box, click Create instance

b. The next page allows you to make any modifications to the minimal starting template of an
EtcdCluster object, such as the size of the cluster. For now, click Create to finalize. This
triggers the Operator to start up the pods, services, and other components of the new etcd
cluster.

5. Click the example etcd cluster, then click the Resources tab to see that your project now
contains a number of resources created and configured automatically by the Operator.
Verify that a Kubernetes service has been created that allows you to access the database from
other pods in your project.

6. All users with the edit role in a given project can create, manage, and delete application
instances (an etcd cluster, in this example) managed by Operators that have already been
created in the project, in a self-service manner, just like a cloud service. If you want to enable
additional users with this ability, project administrators can add the role using the following
command:

I $ oc policy add-role-to-user edit <user> -n <target_project>

You now have an etcd cluster that will react to failures and rebalance data as pods become unhealthy or
are migrated between nodes in the cluster. Most importantly, cluster administrators or developers with
proper access can now easily use the database with their applications.

3.4. CREATING APPLICATIONS BY USING THE CLI

You can create an OpenShift Container Platform application from components that include source or
binary code, images, and templates by using the OpenShift Container Platform CLI.

The set of objects created by new-app depends on the artifacts passed as input: source repositories,
images, or templates.
3.4.1. Creating an application from source code

With the new-app command you can create applications from source code in a local or remote Git
repository.

The new-app command creates a build configuration, which itself creates a new application image from
your source code. The new-app command typically also creates a Deployment object to deploy the
new image, and a service to provide load-balanced access to the deployment running your image.

OpenShift Container Platform automatically detects whether the pipeline, source, or docker build
strategy should be used, and in the case of source build, detects an appropriate language builder image.

3.4.1.1. Local

To create an application from a Git repository in a local directory:

54

CHAPTER 3. CREATING APPLICATIONS

I $ oc new-app /<path to source code>

NOTE

If you use a local Git repository, the repository must have a remote named origin that
points to a URL that is accessible by the OpenShift Container Platform cluster. If there is
no recognized remote, running the new-app command will create a binary build.

3.4.1.2. Remote

To create an application from a remote Git repository:

I $ oc new-app https://github.com/sclorg/cakephp-ex

To create an application from a private remote Git repository:

I $ oc new-app https://github.com/youruser/yourprivaterepo --source-secret=yoursecret

NOTE

If you use a private remote Git repository, you can use the --source-secret flag to
specify an existing source clone secret that will get injected into your build config to
access the repository.

You can use a subdirectory of your source code repository by specifying a --context-dir flag. To create
an application from a remote Git repository and a context subdirectory:

$ oc new-app https://github.com/sclorg/s2i-ruby-container.git \
--context-dir=2.0/test/puma-test-app

Also, when specifying a remote URL, you can specify a Git branch to use by appending #
<branch_names to the end of the URL:

I $ oc new-app https://github.com/openshift/ruby-hello-world.git#betad

3.4.1.3. Build strategy detection

OpenShift Container Platform automatically determines which build strategy to use by detecting certain
files:

e |f a Jenkins file exists in the root or specified context directory of the source repository when
creating a new application, OpenShift Container Platform generates a pipeline build strategy.

NOTE

The pipeline build strategy is deprecated; consider using Red Hat OpenShift
Pipelines instead.

e |f a Dockerfile exists in the root or specified context directory of the source repository when
creating a new application, OpenShift Container Platform generates a docker build strategy.

55

OpenShift Container Platform 4.18 Building applications

e |f neither a Jenkins file nor a Dockerfile is detected, OpenShift Container Platform generates a
source build strategy.

Override the automatically detected build strategy by setting the --strategy flag to docker, pipeline, or
source.

I $ oc new-app /home/user/code/myapp --strategy=docker

NOTE

The oc command requires that files containing build sources are available in a remote Git
repository. For all source builds, you must use git remote -v.

3.4.1.4. Language detection

If you use the source build strategy, new-app attempts to determine the language builder to use by the
presence of certain files in the root or specified context directory of the repository:

Table 3.1. Languages detected by nhew-app

Language Files

dotnet project.json, *.csproj

jee pom.xml

nodejs app.json, package.json
perl cpanfile, index.pl

php composer.json,index.php
python requirements.txt, setup.py
ruby Gemfile, Rakefile, config.ru
scala build.sbt

golang Godeps, main.go

After a language is detected, new-app searches the OpenShift Container Platform server forimage
stream tags that have a supports annotation matching the detected language, or an image stream that
matches the name of the detected language. If a match is not found, new-app searches the Docker Hub
registry for an image that matches the detected language based on name.

You can override the image the builder uses for a particular source repository by specifying the image,
either an image stream or container specification, and the repository with a ~ as a separator. Note that if
this is done, build strategy detection and language detection are not carried out.

56

https://registry.hub.docker.com

CHAPTER 3. CREATING APPLICATIONS

For example, to use the myproject/my-ruby imagestream with the source in a remote repository:
I $ oc new-app myproject/my-ruby~https:/github.com/openshift/ruby-hello-world.git

To use the openshift/ruby-20-centos7:latest container image stream with the source in a local
repository:

I $ oc new-app openshift/ruby-20-centos7:latest~/home/user/code/my-ruby-app

NOTE

Language detection requires the Git client to be locally installed so that your repository
can be cloned and inspected. If Git is not available, you can avoid the language detection
step by specifying the builder image to use with your repository with the <image>~
<repository> syntax.

The -i <image> <repository> invocation requires that new-app attempt to clone
repository to determine what type of artifact it is, so this will fail if Git is not available.

The -i <image> --code <repository> invocation requires new-app clone repository to
determine whether image should be used as a builder for the source code, or deployed
separately, as in the case of a database image.

3.4.2. Creating an application from an image

You can deploy an application from an existing image. Images can come from image streams in the
OpenShift Container Platform server, images in a specific registry, or images in the local Docker server.

The new-app command attempts to determine the type of image specified in the arguments passed to
it. However, you can explicitly tell new-app whether the image is a container image using the --docker-
image argument or an image stream using the -i|--image-stream argument.

NOTE

If you specify an image from your local Docker repository, you must ensure that the same
image is available to the OpenShift Container Platform cluster nodes.

3.4.2.1. Docker Hub MySQL image

Create an application from the Docker Hub MySQL image, for example:

I $ oc new-app mysq|

3.4.2.2. Image in a private registry

Create an application using an image in a private registry, specify the full container image specification:

I $ oc new-app myregistry:5000/example/myimage

3.4.2.3. Existing image stream and optional image stream tag

57

OpenShift Container Platform 4.18 Building applications

Create an application from an existing image stream and optional image stream tag:

I $ oc new-app my-stream:v1

3.4.3. Creating an application from a template

You can create an application from a previously stored template or from a template file, by specifying
the name of the template as an argument. For example, you can store a sample application template and
use it to create an application.

Upload an application template to your current project’s template library. The following example uploads
an application template from a file called examples/sample-app/application-template-stibuild.json:

I $ oc create -f examples/sample-app/application-template-stibuild.json

Then create a new application by referencing the application template. In this example, the template
name is ruby-helloworld-sample:

I $ oc new-app ruby-helloworld-sample

To create a new application by referencing a template file in your local file system, without first storing it
in OpenShift Container Platform, use the -f|--file argument. For example:

I $ oc new-app -f examples/sample-app/application-template-stibuild.json

3.4.3.1. Template parameters

When creating an application based on a template, use the -p|--param argument to set parameter values
that are defined by the template:

$ oc new-app ruby-helloworld-sample \
-p ADMIN_USERNAME=admin -p ADMIN_PASSWORD=mypassword

You can store your parameters in a file, then use that file with --param-file when instantiating a
template. If you want to read the parameters from standard input, use --param-file=-. The following is an
example file called helloworld.params:

ADMIN_USERNAME=admin
ADMIN_PASSWORD=mypassword

Reference the parameters in the file when instantiating a template:

I $ oc new-app ruby-helloworld-sample --param-file=helloworld.params

3.4.4. Modifying application creation

The new-app command generates OpenShift Container Platform objects that build, deploy, and run the
application that is created. Normally, these objects are created in the current project and assigned
names that are derived from the input source repositories or the input images. However, with new-app
you can modify this behavior.

58

CHAPTER 3. CREATING APPLICATIONS

Table 3.2. new-app output objects

Object Description

BuildConfig A BuildConfig object is created for each source repository that is specified in the
command line. The BuildConfig object specifies the strategy to use, the source

location, and the build output location.

ImageStreams For the BuildConfig object, two image streams are usually created. One represents
the input image. With source builds, this is the builder image. With Docker builds, this is
the FROM image. The second one represents the output image. If a container image
was specified as input to new-app, then an image stream is created for that image as
well.

DeploymentCon A DeploymentConfig object is created either to deploy the output of a build, or a

fig specified image. The new-app command createsemptyDir volumes for all Docker
volumes that are specified in containers included in the resulting DeploymentConfig
object.

Service The new-app command attempts to detect exposed ports in input images. It uses the

lowest numeric exposed port to generate a service that exposes that port. To expose a
different port, after new-app has completed, simply use theoC expose command to
generate additional services.

Other Other objects can be generated when instantiating templates, according to the
template.

3.4.4.1. Specifying environment variables

When generating applications from a template, source, or an image, you can use the -e|--env argument
to pass environment variables to the application container at run time:

$ oc new-app openshift/postgresql-92-centos7 \
-e POSTGRESQL_USER=user \
-e POSTGRESQL_DATABASE=db \
-e POSTGRESQL_PASSWORD=password

The variables can also be read from file using the --env-file argument. The following is an example file
called postgresql.env:

POSTGRESQL_USER=user
POSTGRESQL_DATABASE=db
POSTGRESQL_PASSWORD=password

Read the variables from the file:
I $ oc new-app openshift/postgresql-92-centos? --env-file=postgresgl.env
Additionally, environment variables can be given on standard input by using --env-file=-:

I $ cat postgresgl.env | oc new-app openshift/postgresql-92-centos7 --env-file=-

59

OpenShift Container Platform 4.18 Building applications

NOTE

Any BuildConfig objects created as part of hew-app processing are not updated with
environment variables passed with the -e|--env or --env-file argument.

3.4.4.2. Specifying build environment variables

When generating applications from a template, source, or an image, you can use the --build-env
argument to pass environment variables to the build container at run time:

$ oc new-app openshift/ruby-23-centos7 \
--build-env HTTP_PROXY=http://myproxy.net:1337/\
--build-env GEM_HOME=~/.gem

The variables can also be read from a file using the --build-env-file argument. The following is an
example file called ruby.env:

HTTP_PROXY=http://myproxy.net:1337/
GEM_HOME=~/.gem

Read the variables from the file:
I $ oc new-app openshift/ruby-23-centos? --build-env-file=ruby.env
Additionally, environment variables can be given on standard input by using --build-env-file=-:

I $ cat ruby.env | oc new-app openshift/ruby-23-centos7 --build-env-file=-

3.4.4.3. Specifying labels

When generating applications from source, images, or templates, you can use the -l|--label argument to
add labels to the created objects. Labels make it easy to collectively select, configure, and delete
objects associated with the application.

I $ oc new-app https://github.com/openshift/ruby-hello-world -| name=hello-world

3.4.4.4. Viewing the output without creation

To see a dry-run of running the new-app command, you can use the -o|--output argument with a yaml
or json value. You can then use the output to preview the objects that are created or redirect it to a file
that you can edit. After you are satisfied, you can use oc create to create the OpenShift Container
Platform objects.

To output new-app artifacts to a file, run the following:

$ oc new-app https://github.com/openshift/ruby-hello-world \
-0 yaml > myapp.yaml|

Edit the file:

60

CHAPTER 3. CREATING APPLICATIONS

I $ vi myapp.yaml
Create a new application by referencing the file:

I $ oc create -f myapp.yaml

3.4.4.5. Creating objects with different names

Objects created by new-app are normally named after the source repository, or the image used to
generate them. You can set the name of the objects produced by adding a --name flag to the
command:

I $ oc new-app https://github.com/openshift/ruby-hello-world --name=myapp

3.4.4.6. Creating objects in a different project

Normally, new-app creates objects in the current project. However, you can create objects in a different
project by using the -n|--namespace argument:

I $ oc new-app https://github.com/openshift/ruby-hello-world -n myproject

3.4.4.7. Creating multiple objects

The new-app command allows creating multiple applications specifying multiple parameters to new-
app. Labels specified in the command line apply to all objects created by the single command.
Environment variables apply to all components created from source or images.

To create an application from a source repository and a Docker Hub image:

I $ oc new-app https://github.com/openshift/ruby-hello-world mysql

NOTE

If a source code repository and a builder image are specified as separate arguments,
new-app uses the builder image as the builder for the source code repository. If this is
not the intent, specify the required builder image for the source using the ~ separator.

3.4.4.8. Grouping images and source in a single pod

The new-app command allows deploying multiple images together in a single pod. To specify which
images to group together, use the + separator. The --group command-line argument can also be used
to specify the images that should be grouped together. To group the image built from a source
repository with other images, specify its builder image in the group:

I $ oc new-app ruby+mysql
To deploy an image built from source and an external image together:

$ oc new-app \
ruby~https://github.com/openshift/ruby-hello-world \

61

OpenShift Container Platform 4.18 Building applications

mysql \
--group=ruby+mysq|l

3.4.4.9. Searching for images, templates, and other inputs

To search for images, templates, and other inputs for the oc new-app command, add the --search and
--list flags. For example, to find all of the images or templates that include PHP:

I $ oc new-app --search php

3.4.4.10. Setting the import mode

To set the import mode when using oc new-app, add the --import-mode flag. This flag can be
appended with Legacy or PreserveOriginal, which provides users the option to create image streams
using a single sub-manifest, or all manifests, respectively.

I $ oc new-app --image=registry.redhat.io/ubi8/httpd-24:latest --import-mode=Legacy --name=test

$ oc new-app --image=registry.redhat.io/ubi8/httpd-24:latest --import-mode=PreserveOriginal --
name=test

3.5. CREATING APPLICATIONS USING RUBY ON RAILS

Ruby on Rails is a web framework written in Ruby. This guide covers using Rails 4 on OpenShift Container
Platform.

WARNING
Go through the whole tutorial to have an overview of all the steps necessary to run

your application on the OpenShift Container Platform. If you experience a problem
try reading through the entire tutorial and then going back to your issue. It can also
be useful to review your previous steps to ensure that all the steps were run
correctly.

3.5.1. Prerequisites

® Basic Ruby and Rails knowledge.

® | ocally installed version of Ruby 2.0.0+, Rubygems, Bundler.
® Basic Git knowledge.

® Running instance of OpenShift Container Platform 4.

® Make sure that an instance of OpenShift Container Platform is running and is available. Also
make sure that your oc CLlI client is installed and the command is accessible from your
command shell, so you can use it to log in using your email address and password.

62

CHAPTER 3. CREATING APPLICATIONS

3.5.2. Setting up the database

Rails applications are almost always used with a database. For local development use the PostgreSQL
database.

Procedure

1. Install the database:

I $ sudo yum install -y postgresqgl postgresql-server postgresql-devel
2. Initialize the database:

I $ sudo postgresqgl-setup initdb

This command creates the /var/lib/pgsql/data directory, in which the data is stored.
3. Start the database:

I $ sudo systemctl start postgresql.service
4. When the database is running, create your rails user:
I $ sudo -u postgres createuser -s rails

Note that the user created has no password.

3.5.3. Writing your application

If you are starting your Rails application from scratch, you must install the Rails gem first. Then you can
proceed with writing your application.

Procedure

1. Install the Rails gem:
I $ gem install rails
Example output

Successfully installed rails-4.3.0
1 gem installed

2. After you install the Rails gem, create a new application with PostgreSQL as your database:

I $ rails new rails-app --database=postgresq|

3. Change into your new application directory:

I $ cd rails-app

63

OpenShift Container Platform 4.18 Building applications

4. If you already have an application, make sure the pg (postgresql) gem is present in your Gemfile.
If not, edit your Gemfile by adding the gem:

I gem 'pg’
5. Generate a new Gemfile.lock with all your dependencies:

I $ bundle install

6. In addition to using the postgresql database with the pg gem, you also must ensure that the
config/database.yml is using the postgresql adapter.
Make sure you updated default section in the config/database.yml file, so it looks like this:

default: &default
adapter: postgresq|l
encoding: unicode
pool: 5
host: localhost
username: rails
password: <password>

7. Create your application’s development and test databases:

I $ rake db:create

This creates development and test database in your PostgreSQL server.

3.5.3.1. Creating a welcome page

Since Rails 4 no longer serves a static public/index.html page in production, you must create a new root
page.

To have a custom welcome page must do following steps:
® Create a controller with an index action.
® Create aview page for the welcome controller index action.
® Create aroute that serves applications root page with the created controller and view.

Rails offers a generator that completes all necessary steps for you.

Procedure

1. Run Rails generator:

I $ rails generate controller welcome index

All the necessary files are created.

2. editline 2 in config/routes.rb file as follows:

I root 'welcome#index’

64

CHAPTER 3. CREATING APPLICATIONS

3. Run the rails server to verify the page is available:

I $ rails server

You should see your page by visiting http://localhost:3000 in your browser. If you do not see the
page, check the logs that are output to your server to debug.

3.5.3.2. Configuring application for OpenShift Container Platform

To have your application communicate with the PostgreSQL database service running in OpenShift
Container Platform you must edit the default section in your config/database.yml to use environment
variables, which you must define later, upon the database service creation.

Procedure

e Edit the default section in your config/database.yml with pre-defined variables as follows:

Sample config/database YAML file

<% user = ENV.key?("POSTGRESQL_ADMIN_PASSWORD") ? "root" :
ENV['POSTGRESQL_USER"] %>

<% password = ENV.key?("POSTGRESQL_ADMIN_PASSWORD") ?
ENV["POSTGRESQL_ADMIN_PASSWORD'] : ENV["POSTGRESQL_PASSWORD"] %>
<% db_service = ENV.fetch("DATABASE_SERVICE_NAME",").upcase %>

default: &default
adapter: postgresq|
encoding: unicode
For details on connection pooling, see rails configuration guide
http://guides.rubyonrails.org/configuring.html#database-pooling
pool: <%= ENV["POSTGRESQL_MAX_CONNECTIONS"] || 5 %>
username: <%= user %>
password: <%= password %>
host: <%= ENV["#{db_service}_SERVICE_HOST"] %>
port: <%= ENV["#{db_service}_SERVICE_PORT"] %>
database: <%= ENV["POSTGRESQL_DATABASE"] %>

3.5.3.3. Storing your application in Git

Building an application in OpenShift Container Platform usually requires that the source code be stored
in a git repository, so you must install git if you do not already have it.

Prerequisites

® |[nstall git.

Procedure

1. Make sure you are in your Rails application directory by running the Is -1 command. The output
of the command should look like:

I $ls -1

65

http://localhost:3000

OpenShift Container Platform 4.18 Building applications

Example output

app

bin

config
config.ru

db

Gemfile
Gemfile.lock
lib

log

public
Rakefile
README.rdoc
test

tmp

vendor

2. Run the following commands in your Rails app directory to initialize and commit your code to git:
I $ git init
I $ git add .
I $ git commit -m "initial commit"

After your application is committed you must push it to a remote repository. GitHub account, in
which you create a new repository.

3. Set the remote that points to your git repository:

I $ git remote add origin git@github.com:<namespace/repository-name>.git

4. Push your application to your remote git repository.

I $ git push

3.5.4. Deploying your application to OpenShift Container Platform

You can deploy you application to OpenShift Container Platform.
After creating the rails-app project, you are automatically switched to the new project namespace.
Deploying your application in OpenShift Container Platform involves three steps:

® Creating a database service from OpenShift Container Platform’s PostgreSQL image.

® Creating a frontend service from OpenShift Container Platform’s Ruby 2.0 builder image and
your Ruby on Rails source code, which are wired with the database service.

® Creating a route for your application.

Procedure

66

CHAPTER 3. CREATING APPLICATIONS

® To deploy your Ruby on Rails application, create a new project for the application:

$ oc new-project rails-app --description="My Rails application" --display-name="Rails
Application”

3.5.4.1. Creating the database service

Your Rails application expects a running database service. For this service use PostgreSQL database
image.

To create the database service, use the oc nhew-app command. To this command you must pass some
necessary environment variables which are used inside the database container. These environment
variables are required to set the username, password, and name of the database. You can change the
values of these environment variables to anything you would like. The variables are as follows:

e POSTGRESQL_DATABASE

e POSTGRESQL_USER

e POSTGRESQL_PASSWORD
Setting these variables ensures:

® A database exists with the specified name.

® A user exists with the specified name.

® The user can access the specified database with the specified password.
Procedure
1. Create the database service:

$ oc new-app postgresql -e POSTGRESQL_DATABASE=db_name -e
POSTGRESQL_USER=username -e POSTGRESQL_PASSWORD=password

To also set the password for the database administrator, append to the previous command with:
I -e POSTGRESQL_ADMIN_PASSWORD=admin_pw

2. Watch the progress:

I $ oc get pods --watch

3.5.4.2. Creating the frontend service

To bring your application to OpenShift Container Platform, you must specify a repository in which your
application lives.

Procedure

1. Create the frontend service and specify database related environment variables that were
setup when creating the database service:

67

OpenShift Container Platform 4.18 Building applications

$ oc new-app path/to/source/code --name=rails-app -e POSTGRESQL_USER=username -e
POSTGRESQL_PASSWORD=password -e POSTGRESQL_DATABASE=db_name -e
DATABASE_SERVICE_NAME=postgresq|l

With this command, OpenShift Container Platform fetches the source code, sets up the builder,
builds your application image, and deploys the newly created image together with the specified
environment variables. The application is named rails-app.

2. Verify the environment variables have been added by viewing the JSON document of the rails-
app deployment config:

I $ oc get dc rails-app -0 json
You should see the following section:

Example output

env": [
{
"name": "POSTGRESQL_USER",
"value": "username"

—_—

"name": "POSTGRESQL_PASSWORD",
"value": "password"

—_—

"name": "POSTGRESQL_DATABASE",
"value": "db_name"

—_—

"name": "DATABASE_SERVICE_NAME",
"value": "postgresql"

3. Check the build process:
I $ oc logs -f build/rails-app-1

4. After the build is complete, look at the running pods in OpenShift Container Platform:
I $ oc get pods

You should see a line starting with myapp-<number>-<hash>, and that is your application
running in OpenShift Container Platform.

5. Before your application is functional, you must initialize the database by running the database
migration script. There are two ways you can do this:

® Manually from the running frontend container:

o Execinto frontend container with rsh command:

68

CHAPTER 3. CREATING APPLICATIONS

I $ oc rsh <frontend_pod_id>

o Run the migration from inside the container:

I $ RAILS_ENV=production bundle exec rake db:migrate

If you are running your Rails application in a development or test environment you do
not have to specify the RAILS_ENV environment variable.

® By adding pre-deployment lifecycle hooks in your template.

3.5.4.3. Creating a route for your application

You can expose a service to create a route for your application.

Procedure

® To expose a service by giving it an externally-reachable hostname like www.example.com use
OpenShift Container Platform route. In your case you need to expose the frontend service by
typing:

I $ oc expose service rails-app --hostname=www.example.com

WARNING
Ensure the hostname you specify resolves into the IP address of the router.

69

OpenShift Container Platform 4.18 Building applications

CHAPTER 4. VIEWING APPLICATION COMPOSITION BY
USING THE TOPOLOGY VIEW

The Topology view in the Developer perspective of the web console provides a visual representation of
all the applications within a project, their build status, and the components and services associated with
them.

4.1. PREREQUISITES

To view your applications in the Topology view and interact with them, ensure that:
® You have logged in to the web console .

® You have the appropriate roles and permissions in a project to create applications and other
workloads in OpenShift Container Platform.

® You are in the Developer perspective.

4.2. VIEWING THE TOPOLOGY OF YOUR APPLICATION

You can navigate to the Topology view using the left navigation panel in the Developer perspective.
After you deploy an application, you are directed automatically to the Graph view where you can see the
status of the application pods, quickly access the application on a public URL, access the source code to
modify it, and see the status of your last build. You can zoom in and out to see more details for a
particular application.

The Topology view provides you the option to monitor your applications using the List view. Use the

— &,

List viewicon ("™) to see alist of all your applications and use the Graph viewicon (°) to
switch back to the graph view.

You can customize the views as required using the following:

e Use the Find by name field to find the required components. Search results may appear outside
of the visible areg; click Fit to Screen from the lower-left toolbar to resize the Topology view to
show all components.

® Use the Display Options drop-down list to configure the Topology view of the various
application groupings. The options are available depending on the types of components
deployed in the project:

o Expand group
® Virtual Machines: Toggle to show or hide the virtual machines.

®m Application Groupings: Clear to condense the application groups into cards with an
overview of an application group and alerts associated with it.

B Helm Releases: Clear to condense the components deployed as Helm Release into
cards with an overview of a given release.

m Knative Services: Clear to condense the Knative Service components into cards with an
overview of a given component.

70

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/web_console/#web-console
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/authentication_and_authorization/#default-roles_using-rbac
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/web_console/#about-developer-perspective_web-console-overview

CHAPTER 4. VIEWING APPLICATION COMPOSITION BY USING THE TOPOLOGY VIEW

® Operator Groupings: Clear to condense the components deployed with an Operator
into cards with an overview of the given group.

o Show elements based on Pod Count or Labels

B Pod Count: Select to show the number of pods of a component in the component icon.

® | abels: Toggle to show or hide the component labels.

The Topology view also provides you the Export application option to download your application in the
ZIP file format. You can then import the downloaded application to another project or cluster. For more
details, see Exporting an application to another project or cluster in the Additional resources section.

4.3. INTERACTING WITH APPLICATIONS AND COMPONENTS

In the Topology view in the Developer perspective of the web console, the Graph view provides the
following options to interact with applications and components:

® Click Open URL (o]) to see your application exposed by the route on a public URL.

® Click Edit Source codeto access your source code and modify it.

NOTE

This feature is available only when you create applications using the From Git,
From Catalog, and the From Dockerfile options.

® Hover your cursor over the lower left icon on the pod to see the name of the latest build and its
status. The status of the application build is indicated as New (E), Pending (E), Running (

ﬂ), Completed (@), Failed (ﬁ), and Canceled ('@').

® The status or phase of the pod is indicated by different colors and tooltips as:

(o}

Running (|): The pod is bound to a node and all of the containers are created. At least
one container is still running or is in the process of starting or restarting.

Not Ready (|): The pods which are running multiple containers, not all containers are
ready.

Warning(.r .): Containers in pods are being terminated, however termination did not
succeed. Some containers may be other states.

Failed(]): All containers in the pod terminated but least one container has terminated in
failure. That is, the container either exited with non-zero status or was terminated by the
system.

Pending(B): The pod is accepted by the Kubernetes cluster, but one or more of the
containers has not been set up and made ready to run. This includes time a pod spends
waiting to be scheduled as well as the time spent downloading container images over the
network.

Succeeded(|): All containers in the pod terminated successfully and will not be restarted.

71

OpenShift Container Platform 4.18 Building applications

(o}

(o}

® After you create an application and an image is deployed, the status is shown as Pending. After
the application is built, it is displayed as Running.

Terminating(|): When a pod is being deleted, it is shown as Terminating by some
kubectl commands. Terminating status is not one of the pod phases. A pod is granted a
graceful termination period, which defaults to 30 seconds.

Unknown(|): The state of the pod could not be obtained. This phase typically occurs due
to an error in communicating with the node where the pod should be running.

Figure 4.1. Application topology

The application resource name is appended with indicators for the different types of resource

G ruby-ex-git

objects as follows:

(o}

o

72

CJ: Crondob

D: Deployment

DC: DeploymentConfig
DS: DaemonSet

J:Job

P: Pod

SS: StatefulSet

ﬁ (Knative): A serverless application

CHAPTER 4. VIEWING APPLICATION COMPOSITION BY USING THE TOPOLOGY VIEW

NOTE

Serverless applications take some time to load and display on the Graph
view. When you deploy a serverless application, it first creates a service
resource and then a revision. After that, it is deployed and displayed on the
Graph view. If it is the only workload, you might be redirected to the Add
page. After the revision is deployed, the serverless application is displayed on
the Graph view.

4.4. SCALING APPLICATION PODS AND CHECKING BUILDS AND
ROUTES

The Topology view provides the details of the deployed components in the Overview panel. You can
use the Overview and Details tabs to scale the application pods, check build status, services, and routes
as follows:

® Click on the component node to see the Overview panel to the right. Use the Details tab to:

o Scale your pods using the up and down arrows to increase or decrease the number of
instances of the application manually. For serverless applications, the pods are
automatically scaled down to zero when idle and scaled up depending on the channel traffic.

o Check the Labels, Annotations, and Status of the application.

® C(Click the Resources tab to:

o See the list of all the pods, view their status, access logs, and click on the pod to see the pod
details.

o See the builds, their status, access logs, and start a new build if needed.
o See the services and routes used by the component.

For serverless applications, the Resources tab provides information on the revision, routes, and
the configurations used for that component.

4.5. ADDING COMPONENTS TO AN EXISTING PROJECT

You can add components to a project.

Procedure

1. Navigate to the +Add view.

2. Click Add to Project (-) next to left navigation pane or press Ctrl+Space

3. Search for the component and click the Start/Create/Install button or click Enter to add the
component to the project and see it in the topology Graph view.

73

OpenShift Container Platform 4.18 Building applications

Figure 4.2. Adding component via quick search

Lg

Ruby

Rails + PostgreSQL
Templates = Red Hat, Inc.

Rails + PostgreSQL (Ephemeral)
Templates Red Hat, Inc.

Red Hat Ruby imagestreams on UBI ..

Helm Charts Red Hat

Ruby

Builder Images

Ruby

Builder Images

View all developer catalog items (4)
View all samples (1)

Ruby

Build and run Ruby 3.0 applications on UBI 7. For more information
about using this builder image, including OpenShift considerations,
see https://github.com/sclorg/s2i-ruby-container/blob/master
/3.0/README.md.

Alternatively, you can also use the available options in the context menu, such as Import from Git,
Container Image, Database, From Catalog, Operator Backed, Helm Charts, Samples, or Upload JAR
file, by right-clicking in the topology Graph view to add a component to your project.

Figure 4.3. Context menu to add services

Add to Project »

- i =E @ ¢ B

F

Samples

Import from Git
Container Image
From Catalog
Database
Operator Backed
Helm Charts

Upload JAR file

4.6. GROUPING MULTIPLE COMPONENTS WITHIN AN APPLICATION

74

CHAPTER 4. VIEWING APPLICATION COMPOSITION BY USING THE TOPOLOGY VIEW

You can use the +Add view to add multiple components or services to your project and use the
topology Graph view to group applications and resources within an application group.

Prerequisites

® You have created and deployed minimum two or more components on OpenShift Container
Platform using the Developer perspective.

Procedure

® To add a service to the existing application group, press Shift+ drag it to the existing application
group. Dragging a component and adding it to an application group adds the required labels to
the component.

Figure 4.4. Application grouping

@® django-ex-git Actions v

‘ Health checks x

Container django-ex-git does not have health checks to ensure your
Application is running correctly. Add health checks

“

) Details Resources Monitoring
Q . ()
django-ex-git ~
- © django-ex-g
v
] Name
django-ex-git
€& httpd-example
Namespace
A django..it-app @ test 25% of 1 pod
Labels Edit #* Max surge

. 25% greater than 1 pod
app=django-ex-git

app.kubernetesio/c... =django-... Progress deadline seconds

app.kubernetes.iofi... =django-e. 600 seconds
app.kubernetes.io/.. =django-ex

app.openshiftio/runtime=python Min ready seconds

app.openshiftio/runtim... =3.8-... Not configured

Alternatively, you can also add the component to an application as follows:
1. Click the service pod to see the Overview panel to the right.
2. Click the Actions drop-down menu and select Edit Application Grouping.

3. In the Edit Application Grouping dialog box, click the Application drop-down list, and select an
appropriate application group.

4. Click Save to add the service to the application group.

You can remove a component from an application group by selecting the component and using Shift+
drag to drag it out of the application group.

4.7. ADDING SERVICES TO YOUR APPLICATION

75

OpenShift Container Platform 4.18 Building applications

To add a service to your application use the +Add actions using the context menu in the topology Graph
view.

NOTE

In addition to the context menu, you can add services by using the sidebar or hovering
and dragging the dangling arrow from the application group.

Procedure
1. Right-click an application group in the topology Graph view to display the context menu.

Figure 4.5. Add resource context menu

Qﬁ’ \

@ rodejs-ex-git Delete Application

O

i / <] Add to Application » Erom Git

Container Image

From Devfile

14
=
& From Dockerfile
-
@ django-ex-git @ cakephp-ex-git .

Upload JAR file

A cakeph..it-app

& Event Source
e Channel

ima Broker

2. Use Add to Application to select a method for adding a service to the application group, such
as From Git, Container Image, From Dockerfile, From Devfile, Upload JAR file, Event
Source, Channel, or Broker.

3. Complete the form for the method you choose and click Create. For example, to add a service
based on the source code in your Git repository, choose the From Git method, fill in the Import
from Git form, and click Create.

4.8. REMOVING SERVICES FROM YOUR APPLICATION

76

CHAPTER 4. VIEWING APPLICATION COMPOSITION BY USING THE TOPOLOGY VIEW

In the topology Graph view remove a service from your application using the context menu.

Procedure

1. Right-click on a service in an application group in the topology Graph view to display the
context menu.

2. Select Delete Deploymentto delete the service.

Figure 4.6. Deleting deployment option

Edit Application grouping
Edit Pod count
Pause rollouts
Add Health Checks
Add HorizontalPodAutoscaler
Add storage
Edit update strateqy
oA Edit resource limits
Edit cakephp-ex-git

Edit labels

e O
/ \

&) nodejs-ex-qit

/ \L Edit Deployment

Edit annotations

N
4 Delete Deployment

I :..- @

& O < 0

L

@ diango-ex-git © cakephp-ex-git

A cakeph..it-app

4.9. LABELS AND ANNOTATIONS USED FOR THE TOPOLOGY VIEW

77

OpenShift Container Platform 4.18 Building applications

The Topology view uses the following labels and annotations:

Icon displayed in the node

Icons in the node are defined by looking for matching icons using the app.openshift.io/runtime label,
followed by the app.kubernetes.io/name label. This matching is done using a predefined set of
icons.

Link to the source code editor or the source

The app.openshift.io/ves-uri annotation is used to create links to the source code editor.
Node Connector

The app.openshift.io/connects-to annotation is used to connect the nodes.
App grouping

The app.kubernetes.io/part-of=<appnames label is used to group the applications, services, and
components.

For detailed information on the labels and annotations OpenShift Container Platform applications must
use, see Guidelines for labels and annotations for OpenShift applications.

4.10. ADDITIONAL RESOURCES

® See Importing a codebase from Git to create an application for more information on creating an
application from Git.

® See Exporting applications.

78

https://github.com/redhat-developer/app-labels/blob/master/labels-annotation-for-openshift.adoc

CHAPTER 5. EXPORTING APPLICATIONS

CHAPTER 5. EXPORTING APPLICATIONS

As a developer, you can export your application in the ZIP file format. Based on your needs, import the
exported application to another project in the same cluster or a different cluster by using the Import
YAML option in the +Add view. Exporting your application helps you to reuse your application resources
and saves your time.

5.1. PREREQUISITES

® You have installed the gitops-primer Operator from the OperatorHub.

NOTE

The Export application option is disabled in the Topology view even after
installing the gitops-primer Operator.

® You have created an application in the Topology view to enable Export application.

5.2. PROCEDURE

1. In the developer perspective, perform one of the following steps:
a. Navigate to the +Add view and click Export applicationin the Application portability tile.
b. Navigate to the Topology view and click Export application.

2. Click OKin the Export Application dialog box. A notification opens to confirm that the export
of resources from your project has started.

3. Optional steps that you might need to perform in the following scenarios:

e |f you have started exporting an incorrect application, click Export application = Cancel
Export.

e |f your export is already in progress and you want to start a fresh export, click Export
application —» Restart Export

e |f you want to view logs associated with exporting an application, click Export application
and the View Logs link.

Export Application

Application export in gitops-primer-system is in progress. Started at Aug 23, 2022,
12:06 PM.

Cancel Export ‘ ‘ Restart Export View Logs Ok

79

OpenShift Container Platform 4.18 Building applications

4. After a successful export, click Download in the dialog box to download application resources in
ZIP format onto your machine.

80

CHAPTER 6. WORKING WITH HELM CHARTS

CHAPTER 6. WORKING WITH HELM CHARTS

6.1. UNDERSTANDING HELM

Helm is a software package manager that simplifies deployment of applications and services to
OpenShift Container Platform clusters.

Helm uses a packaging format called charts. A Helm chart is a collection of files that describes the
OpenShift Container Platform resources.

Creating a chart in a cluster creates a running instance of the chart known as a release.

Each time a chart is created, or a release is upgraded or rolled back, an incremental revision is created.

6.1.1. Key features

Helm provides the ability to:
® Search through a large collection of charts stored in the chart repository.
® Modify existing charts.
® Create your own charts with OpenShift Container Platform or Kubernetes resources.

® Package and share your applications as charts.

6.1.2. Red Hat Certification of Helm charts for OpenShift

You can choose to verify and certify your Helm charts by Red Hat for all the components you will be
deploying on the Red Hat OpenShift Container Platform. Charts go through an automated Red Hat
OpenShift certification workflow that guarantees security compliance as well as best integration and
experience with the platform. Certification assures the integrity of the chart and ensures that the Helm
chart works seamlessly on Red Hat OpenShift clusters.

6.1.3. Additional resources

® For more information on how to certify your Helm charts as a Red Hat partner, see Red Hat
Certification of Helm charts for OpenShift.

® For more information on OpenShift and Container certification guides for Red Hat partners, see
Partner Guide for OpenShift and Container Certification.

® Foralist of the charts, see the Red Hat Helm index file.

® You can view the available charts at the Red Hat Marketplace. For more information, see Using
the Red Hat Marketplace.

6.2. INSTALLING HELM
The following section describes how to install Helm on different platforms using the CLI.

You can also find the URL to the latest binaries from the OpenShift Container Platform web console by
clicking the ? icon in the upper-right corner and selecting Command Line Tools.

81

https://redhat-connect.gitbook.io/partner-guide-for-red-hat-openshift-and-container/helm-chart-certification/overview
https://access.redhat.com/documentation/en-us/red_hat_software_certification/8.51/html-single/red_hat_software_certification_workflow_guide/index#con_container-certification_openshift-sw-cert-workflow-introduction-to-redhat-openshift-operator-certification
https://charts.openshift.io/index.yaml
https://marketplace.redhat.com/en-us/documentation/access-red-hat-marketplace

OpenShift Container Platform 4.18 Building applications

Prerequisites

® You have installed Go, version 1.13 or higher.

6.2.1. On Linux
1. Download the Helm binary and add it to your path:

® Linux (x86_64, amd64)

curl -L https://mirror.openshift.com/pub/openshift-v4/clients/helm/latest/helm-linux-
amd64 -o /usr/local/bin/helm

® Linux on IBM Z® and IBM® LinuxONE (s390x)

curl -L https://mirror.openshift.com/pub/openshift-v4/clients/helm/latest/helm-linux-
s390x -0 /usr/local/bin/helm

® Linux on IBM Power® (ppc64le)

curl -L https://mirror.openshift.com/pub/openshift-v4/clients/helm/latest/helm-linux-
ppc64le -o /usr/local/bin/helm

2. Make the binary file executable:

I # chmod +x /usr/local/bin/helm

3. Check the installed version:

I $ helm version

Example output

version.BuildInfo{Version:"v3.0",
GitCommit:"b31719aab7963acf4887a1c1e6d5e53378e34d93", GitTreeState:"clean”,
GoVersion:"go1.13.4"}

6.2.2. On Windows 7/8
1. Download the latest .exe file and put in a directory of your preference.
2. Right click Start and click Control Panel.
3. Select System and Security and then click System.

4. From the menu on the left, select Advanced systems settings and click Environment
Variables at the bottom.

5. Select Path from the Variable section and click Edit.

6. Click New and type the path to the folder with the .exe file into the field or click Browse and
select the directory, and click OK.

82

https://mirror.openshift.com/pub/openshift-v4/clients/helm/latest/helm-windows-amd64.exe

CHAPTER 6. WORKING WITH HELM CHARTS

6.2.3. On Windows 10

1. Download the latest .exe file and put in a directory of your preference.
2. Click Search and type env or environment.

3. Select Edit environment variables for your account
4. Select Path from the Variable section and click Edit.

5. Click New and type the path to the directory with the exe file into the field or click Browse and
select the directory, and click OK.

6.2.4. On MacOS

1. Download the Helm binary and add it to your path:

curl -L https://mirror.openshift.com/pub/openshift-v4/clients/helm/latest/helm-darwin-amd64
-0 /usr/local/bin/helm

2. Make the binary file executable:

I # chmod +x /usr/local/bin/helm

3. Check the installed version:

I $ helm version

Example output

version.BuildInfo{Version:"v3.0",
GitCommit:"b31719aab7963acf4887a1c1e6d5e53378e34d93", GitTreeState:"clean",
GoVersion:"go1.13.4"}

6.3. CONFIGURING CUSTOM HELM CHART REPOSITORIES

You can create Helm releases on an OpenShift Container Platform cluster using the following methods:
® TheCLI
® The Developer perspective of the web console.

The Developer Catalog, in the Developer perspective of the web console, displays the Helm charts
available in the cluster. By default, it lists the Helm charts from the Red Hat OpenShift Helm chart
repository. For a list of the charts, see the Red Hat Helm index file.

As a cluster administrator, you can add multiple cluster-scoped and namespace-scoped Helm chart
repositories, separate from the default cluster-scoped Helm repository, and display the Helm charts
from these repositories in the Developer Catalog.

As a regular user or project member with the appropriate role-based access control (RBAC)
permissions, you can add multiple namespace-scoped Helm chart repositories, apart from the default
cluster-scoped Helm repository, and display the Helm charts from these repositories in the Developer
Catalog.

83

https://mirror.openshift.com/pub/openshift-v4/clients/helm/latest/helm-windows-amd64.exe
https://charts.openshift.io/index.yaml

OpenShift Container Platform 4.18 Building applications

In the Developer perspective of the web console, you can use the Helm page to:
® Create Helm Releases and Repositories using the Create button.
® Create, update, or delete a cluster-scoped or namespace-scoped Helm chart repository.

® View the list of the existing Helm chart repositories in the Repositories tab, which can also be
easily distinguished as either cluster scoped or namespace scoped.

6.3.1. Installing a Helm chart on an OpenShift Container Platform cluster

Prerequisites

® You have a running OpenShift Container Platform cluster and you have logged into it.

® You have installed Helm.
Procedure
1. Create a new project:

I $ oc new-project vault

2. Add a repository of Helm charts to your local Helm client:

I $ helm repo add openshift-helm-charts https://charts.openshift.io/

Example output

I "openshift-helm-charts" has been added to your repositories

3. Update the repository:

I $ helm repo update

4. Install an example HashiCorp Vault:

I $ helm install example-vault openshift-helm-charts/hashicorp-vault

Example output

NAME: example-vault

LAST DEPLOYED: Fri Mar 11 12:02:12 2022
NAMESPACE: vault

STATUS: deployed

REVISION: 1

NOTES:

Thank you for installing HashiCorp Vault!

5. Verify that the chart has installed successfully:

I $ helm list

84

CHAPTER 6. WORKING WITH HELM CHARTS

Example output

NAME NAMESPACE REVISION UPDATED STATUS CHART
APP VERSION

example-vault vault 1 2022-03-11 12:02:12.296226673 +0530 IST deployed vault-
0.19.01.9.2

6.3.2. Creating Helm releases using the Developer perspective

You can use either the Developer perspective in the web console or the CLI to select and create a
release from the Helm charts listed in the Developer Catalog. You can create Helm releases by installing
Helm charts and see them in the Developer perspective of the web console.

Prerequisites

® You have logged in to the web console and have switched to the Developer perspective.

Procedure

To create Helm releases from the Helm charts provided in the Developer Catalog:

1. In the Developer perspective, navigate to the +Add view and select a project. Then click Helm
Chart option to see all the Helm Charts in the Developer Catalog.

2. Select a chart and read the description, README, and other details about the chart.

3. Click Create.

Figure 6.1. Helm charts in developer catalog

i x
v NET
la) Provided by Red Hat
Latest Chart version DeSCriptiOn
o001
AHelm chart to build and deploy NET applications
Product version
N/A README
Source
) .NET Helm Chart
Communi ity
A Helm chart for building and deploying a NET application on OpenShift
Provider
Red Hat Prerequisites
Below are prerequisites that may apply to your use case.
Home page
N/A Pull Secret
You will need to create a pull secret if you pull an 521 builder from an external registry. Use the
Repository " yeup gy
following command as a reference to create your pull secret:
OpenShift Helm Charts
o oc create secret docker-registry my-pull-secret --docker-
Maintainers = =
server=$SERVER_URL --docker -username=$USERNAME --docker-
N/A password=$PASSWORD - -docker-email=3EMAIL
Created at
You can use this secret by passing --set build.pullSecret=my-pull-secret to helm
@ Jan1,1,5:53 AM install, or you can configure this in a values file:
Support
PO build:
N/A pullsecret: my-pull-secret

4. Inthe Create Helm Releasepage:

a. Enter a unique name for the release in the Release Name field.

b. Select the required chart version from the Chart Version drop-down list.

85

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/web_console/#about-developer-perspective_web-console-overview

OpenShift Container Platform 4.18 Building applications

c. Configure your Helm chart by using the Form View or the YAML View.

NOTE

Where available, you can switch between the YAML View and Form View.
The data is persisted when switching between the views.

d. Click Create to create a Helm release. The web console displays the new release in the
Topology view.
If a Helm chart has release notes, the web console displays them.
If a Helm chart creates workloads, the web console displays them on the Topology or Helm
release details page. The workloads are DaemonSet, CronJob, Pod, Deployment, and
DeploymentConfig.

e. View the newly created Helm release in the Helm Releases page.

You can upgrade, rollback, or delete a Helm release by using the Actions button on the side panel or by
right-clicking a Helm release.

6.3.3. Using Helm in the web terminal

You can use Helm by Accessing the web terminal in the Developer perspective of the web console.

6.3.4. Creating a custom Helm chart on OpenShift Container Platform
Procedure
1. Create a new project:
I $ oc new-project nodejs-ex-k
2. Download an example Node.js chart that contains OpenShift Container Platform objects:

I $ git clone https://github.com/redhat-developer/redhat-helm-charts

3. Go to the directory with the sample chart:

I $ cd redhat-helm-charts/alpha/nodejs-ex-k/
4. Edit the Chart.yaml file and add a description of your chart:

apiVersion: v2 ﬂ

name: nodejs-ex-k g

description: A Helm chart for OpenShift @)

icon: https://static.redhat.com/libs/redhat/brand-assets/latest/corp/logo.svg ﬂ
version: 0.2.1 9

ﬂ The chart API version. It should be v2 for Helm charts that require at least Helm 3.

9 The name of your chart.

86

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/web_console/#odc-access-web-terminal_odc-using-web-terminal

CHAPTER 6. WORKING WITH HELM CHARTS

9 The description of your chart.
Q The URL to an image to be used as an icon.

a The Version of your chart as per the Semantic Versioning (SemVer) 2.0.0 Specification.

5. Verify that the chart is formatted properly:

I $ helm lint

Example output

[INFO] Chart.yaml: icon is recommended

1 chart(s) linted, 0 chart(s) failed

6. Navigate to the previous directory level:
I $cd..

7. Install the chart:

I $ helm install nodejs-chart nodejs-ex-k

8. Verify that the chart has installed successfully:

I $ helm list

Example output

NAME NAMESPACE REVISION UPDATED STATUS CHART APP VERSION
nodejs-chart nodejs-ex-k 1 2019-12-05 15:06:51.379134163 -0500 EST deployed nodejs-
0.1.0 1.16.0

6.3.5. Adding custom Helm chart repositories

As a cluster administrator, you can add custom Helm chart repositories to your cluster and enable
access to the Helm charts from these repositories in the Developer Catalog.

Procedure

1. To add a new Helm Chart Repository, you must add the Helm Chart Repository custom resource
(CR) to your cluster.

Sample Helm Chart Repository CR

apiVersion: helm.openshift.io/vibetat
kind: HelmChartRepository
metadata:
name: <name>
spec:
optional name that might be used by console

87

OpenShift Container Platform 4.18 Building applications

name: <chart-display-name>
connectionConfig:
url: <helm-chart-repository-url>

For example, to add an Azure sample chart repository, run:

$ cat <<EOF | oc apply -f -
apiVersion: helm.openshift.io/vibetal
kind: HelmChartRepository
metadata:

name: azure-sample-repo
spec:

name: azure-sample-repo

connectionConfig:

url: https://raw.githubusercontent.com/Azure-Samples/helm-charts/master/docs

EOF

2. Navigate to the Developer Catalogin the web console to verify that the Helm charts from the
chart repository are displayed.
For example, use the Chart repositories filter to search for a Helm chart from the repository.

Figure 6.2. Chart repositories filter

RedHat

OpenShift
Container Platfor:

strative user. Update the cluster OAuth configuration to allow others to log in.

You are logged in as a temporary admini
<> Developer

Project:test w

+Add
Developer Cataleg > Helm Charts

T Helm Charts

R Browse for charts that help manage complex installations and upgrades. Cluster administrators can customize the content made available in the catalog.
Search | Atitems All ltems

cyco
Builds Databases

Middleware

Helm
Other
e Helm Charts Helm Charts Helm Charts Helm Charts
Project e l l l
Chart Repositories < L L L
() azure-sample-repo (14)

Aks Helloworld vO.11 Aqua Enforcer v2.0.0 Aqua Scanner v2.0.0 Aqua Server v2.0.0

() ibm-helm-repo (25) ‘

O redhat-helm-repo (6;
po(© AHelm chart for Kubernetes AHelm chart for the Aqua AHelm chart for the aqua AHelm chart for the Aqua

Enforcer scanner cli component Console Componants

NOTE

If a cluster administrator removes all of the chart repositories, then you cannot
view the Helm option in the +Add view, Developer Catalog, and left navigation
panel.

6.3.6. Adding namespace-scoped custom Helm chart repositories

The cluster-scoped HelmChartRepository custom resource definition (CRD) for Helm repository
provides the ability for administrators to add Helm repositories as custom resources. The namespace-
scoped ProjectHelmChartRepository CRD allows project members with the appropriate role-based
access control (RBAC) permissions to create Helm repository resources of their choice but scoped to
their namespace. Such project members can see charts from both cluster-scoped and namespace-
scoped Helm repository resources.

88

NOTE

CHAPTER 6. WORKING WITH HELM CHARTS

® Administrators can limit users from creating namespace-scoped Helm repository

resources. By limiting users, administrators have the flexibility to control the
RBAC through a namespace role instead of a cluster role. This avoids
unnecessary permission elevation for the user and prevents access to
unauthorized services or applications.

® The addition of the namespace-scoped Helm repository does not impact the

behavior of the existing cluster-scoped Helm repository.

As a regular user or project member with the appropriate RBAC permissions, you can add custom
namespace-scoped Helm chart repositories to your cluster and enable access to the Helm charts from
these repositories in the Developer Catalog.

Procedure

1. To add a new namespace-scoped Helm Chart Repository, you must add the Helm Chart
Repository custom resource (CR) to your namespace.

Sample Namespace-scoped Helm Chart Repository CR

apiVersion: helm.openshift.io/vibetat
kind: ProjectHelmChartRepository

metadata:

name: <name>

spec:

url: https://my.chart-repo.org/stable

optional name that might be used by console
name: <chart-repo-display-name>

optional and only needed for Ul purposes
description: <My private chart repo>

required: chart repository URL
connectionConfig:
url: <helm-chart-repository-url>

For example, to add an Azure sample chart repository scoped to your my-namespace
namespace, run:

$ cat <<EOF | oc apply --namespace my-namespace -f -

apiVersion:

helm.openshift.io/vibetal

kind: ProjectHelmChartRepository

metadata:

name: azure-sample-repo

spec:

name: azure-sample-repo
connectionConfig:
url: https://raw.githubusercontent.com/Azure-Samples/helm-charts/master/docs

EOF

The output verifies that the namespace-scoped Helm Chart Repository CR is created:

89

OpenShift Container Platform 4.18 Building applications

Example output

I projecthelmchartrepository.helm.openshift.io/azure-sample-repo created

2. Navigate to the Developer Catalogin the web console to verify that the Helm charts from the
chart repository are displayed in your my-namespace namespace.

For example, use the Chart repositories filter to search for a Helm chart from the repository.

Figure 6.3. Chart repositories filter in your namespace

RedHat
Openshift = A3 © © kubezadmin v
Cont

You are logged in as a temporary administrative user. Update the cluster OAuth configuration to allow others to log in.

<> Developer
Project: my-namespace v

Developer Catalog > Helm Charts

Helm Charts
Browse for charts that help manage complex installations and upgrades. Cluster administrators can customize the content made available in the catalog. Alternatively, developers can try this quick start to configure their own custom Helm Chart
pository.
| Atitems Allitems
cree Q Filter by keyword AZ - 33items
Languages
Other
Chart Repositories s Helm Charts s Helm Charts s Helm Charts s Helm Charts
etk HeLw HeLw Hetw
() OpenShift Helm ~ '~ .~ .~
ConfigMaps Charts (19)
() Azure Sample Repo (14) NET Aks Helloworld Azure Vote Azure Vote Osba
Source. A Helm chart for Kubernetes A Helm chart for Kubernetes A Helm chart for Kubernetes
() Community (9)
O Partner (10)
iy Helm Charts iy Helm Charts s Helm Charts @ Helm Charts
W WEL e S
land lanl >
Burst Scheduler Eap Xp3 Eap74 Ibm Object Storage Plugin &
/A Helm chart for Kubernetes
Build and Deploy EAP XP3 Build and Deploy EAP 7.4
applications on OpenShift applications on OpenShift

Alternatively, run:

I $ oc get projecthelmchartrepositories --namespace my-namespace

Example output

NAME AGE
azure-sample-repo im
[]

NOTE

If a cluster administrator or a regular user with appropriate RBAC permissions
removes all of the chart repositories in a specific namespace, then you cannot
view the Helm option in the +Add view, Developer Catalog, and left navigation
panel for that specific namespace.

6.3.7. Creating credentials and CA certificates to add Helm chart repositories

Some Helm chart repositories need credentials and custom certificate authority (CA) certificates to
connect to it. You can use the web console as well as the CLI to add credentials and certificates.

Procedure

To configure the credentials and certificates, and then add a Helm chart repository using the CLI:

1. In the openshift-config namespace, create a ConfigMap object with a custom CA certificate in
PEM encoded format, and store it under the ca-bundle.crt key within the config map:

90

CHAPTER 6. WORKING WITH HELM CHARTS

$ oc create configmap helm-ca-cert \
--from-file=ca-bundle.crt=/path/to/certs/ca.crt \
-n openshift-config

2. In the openshift-config namespace, create a Secret object to add the client TLS
configurations:

$ oc create secret tls helm-tls-configs \
--cert=/path/to/certs/client.crt \
--key=/path/to/certs/client.key \

-n openshift-config

Note that the client certificate and key must be in PEM encoded format and stored under the
keys tls.crt and tls.key, respectively.

3. Add the Helm repository as follows:

$ cat <<EOF | oc apply -f -
apiVersion: helm.openshift.io/vibetal
kind: HelmChartRepository
metadata:
name: <helm-repository>
spec:
name: <helm-repository>
connectionConfig:
url: <URL for the Helm repository>
tisConfig:
name: helm-tls-configs
ca:
name: helm-ca-cert
EOF

The ConfigMap and Secret are consumed in the HelmChartRepository CR using the tlsConfig
and ca fields. These certificates are used to connect to the Helm repository URL.

4. By default, all authenticated users have access to all configured charts. However, for chart
repositories where certificates are needed, you must provide users with read access to the
helm-ca-cert config map and helm-tls-configs secret in the openshift-config namespace, as
follows:

$ cat <<EOF | kubectl apply -f -
apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
namespace: openshift-config
name: helm-chartrepos-tls-conf-viewer
rules:
- apiGroups: [™]
resources: ["configmaps"]
resourceNames: ["helm-ca-cert"]
verbs: ["get"]
- apiGroups: [™]
resources: ["secrets"]
resourceNames: ["helm-tls-configs"]
verbs: ["get"]

o1

OpenShift Container Platform 4.18 Building applications

kind: RoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
namespace: openshift-config
name: helm-chartrepos-tls-conf-viewer
subjects:
- kind: Group
apiGroup: rbac.authorization.k8s.io
name: 'system:authenticated'
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: Role
name: helm-chartrepos-tls-conf-viewer
EOF

6.3.8. Filtering Helm Charts by their certification level

You can filter Helm charts based on their certification level in the Developer Catalog.

Procedure

1. In the Developer perspective, navigate to the +Add view and select a project.

2. From the Developer Catalog tile, select the Helm Chart option to see all the Helm charts in the
Developer Catalog.

3. Use the filters to the left of the list of Helm charts to filter the required charts:

e Use the Chart Repositories filter to filter charts provided by Red Hat Certification Charts
or OpenShift Helm Charts.

® Use the Source filter to filter charts sourced from Partners, Community, or Red Hat.
Certified charts are indicated with the (e) icon.

NOTE

The Source filter will not be visible when there is only one provider type.

You can now select the required chart and install it.

6.3.9. Disabling Helm Chart repositories

You can disable Helm Charts from a particular Helm Chart Repository in the catalog by setting the
disabled property in the HelmChartRepository custom resource to true.

Procedure

® To disable a Helm Chart repository by using CLI, add the disabled: true flag to the custom
resource. For example, to remove an Azure sample chart repository, run:

$ cat <<EOF | oc apply -f -

apiVersion: helm.openshift.io/vibetal
kind: HelmChartRepository

92

CHAPTER 6. WORKING WITH HELM CHARTS

metadata:
name: azure-sample-repo

spec:
connectionConfig:
url:https://raw.githubusercontent.com/Azure-Samples/helm-charts/master/docs
disabled: true

EOF

® To disable a recently added Helm Chart repository by using Web Console:

1. Go to Custom Resource Definitionsand search for the HelmChartRepository custom
resource.

2. Go to Instances, find the repository you want to disable, and click its name.

3. Goto the YAML tab, add the disabled: true flag in the spec section, and click Save.

Example

spec:
connectionConfig:
url: <url-of-the-repositoru-to-be-disabled>
disabled: true

The repository is now disabled and will not appear in the catalog.

6.4. WORKING WITH HELM RELEASES

You can use the Developer perspective in the web console to update, rollback, or delete a Helm release.

6.4.1. Prerequisites

® You have logged in to the web console and have switched to the Developer perspective.

6.4.2. Upgrading a Helm release

You can upgrade a Helm release to upgrade to a new chart version or update your release configuration.

Procedure

1. In the Topology view, select the Helm release to see the side panel.
2. Click Actions = Upgrade Helm Release.
3. Inthe Upgrade Helm Release page, select the Chart Versionyou want to upgrade to, and then

click Upgrade to create another Helm release. The Helm Releases page displays the two
revisions.

6.4.3. Rolling back a Helm release

If a release fails, you can rollback the Helm release to a previous version.

Procedure

93

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/web_console/#about-developer-perspective_web-console-overview

OpenShift Container Platform 4.18 Building applications

To rollback a release using the Helm view:

1. In the Developer perspective, navigate to the Helm view to see the Helm Releases in the
namespace.

2. Click the Options menu adjoining the listed release, and select Rollback.

3. Inthe Rollback Helm Release page, select the Revision you want to rollback to and click
Rollback.

4. In the Helm Releases page, click on the chart to see the details and resources for that release.
5. Go to the Revision History tab to see all the revisions for the chart.

Figure 6.4. Helm revision history

Helm Releases > Helm Release Details

@D elasticsearch oepioyed Actions =

Details Resources Revision History = Release Notes

Revision T Updated Status Chart Name Chart Version App Version Description
1 @ 4 minutes ago Superseded elasticsearch 760 760 Install complete
2 @ 3 minutes ago Superseded elasticsearch 762 762 Upgrade complete

3 @ less than a minute ago Deployed elasticsearch 762 762 Rollback to 2

6. If required, you can further use the Options menu adjoining a particular revision and select
the revision to rollback to.

6.4.4. Deleting a Helm release

Procedure

1. In the Topology view, right-click the Helm release and select Delete Helm Release

2. In the confirmation prompt, enter the name of the chart and click Delete.

94

CHAPTER 7. DEPLOYMENTS

CHAPTER 7. DEPLOYMENTS

7.1. UNDERSTANDING DEPLOYMENTS

The Deployment and DeploymentConfig API objects in OpenShift Container Platform provide two
similar but different methods for fine-grained management over common user applications. They are
composed of the following separate API objects:

e A Deployment or DeploymentConfig object, either of which describes the desired state of a
particular component of the application as a pod template.

e Deployment objects involve one or more replica sets, which contain a point-in-time record of
the state of a deployment as a pod template. Similarly, DeploymentConfig objects involve one
or more replication controllers, which preceded replica sets.

® One or more pods, which represent an instance of a particular version of an application.

Use Deployment objects unless you need a specific feature or behavior provided by
DeploymentConfig objects.

IMPORTANT

As of OpenShift Container Platform 4.14, DeploymentConfig objects are deprecated.
DeploymentConfig objects are still supported, but are not recommended for new
installations. Only security-related and critical issues will be fixed.

Instead, use Deployment objects or another alternative to provide declarative updates
for pods.

7.1.1. Building blocks of a deployment

Deployments and deployment configs are enabled by the use of native Kubernetes API objects
ReplicaSet and ReplicationController, respectively, as their building blocks.

Users do not have to manipulate replica sets, replication controllers, or pods owned by Deployment or
DeploymentConfig objects. The deployment systems ensure changes are propagated appropriately.

TIP
If the existing deployment strategies are not suited for your use case and you must run manual steps

during the lifecycle of your deployment, then you should consider creating a custom deployment
strategy.

The following sections provide further details on these objects.

7.1.1.1. Replica sets

A ReplicaSet is a native Kubernetes API object that ensures a specified number of pod replicas are
running at any given time.

95

OpenShift Container Platform 4.18 Building applications

NOTE

Only use replica sets if you require custom update orchestration or do not require updates
at all. Otherwise, use deployments. Replica sets can be used independently, but are used
by deployments to orchestrate pod creation, deletion, and updates. Deployments

manage their replica sets automatically, provide declarative updates to pods, and do not
have to manually manage the replica sets that they create.

The following is an example ReplicaSet definition:

apiVersion: apps/v1
kind: ReplicaSet
metadata:
name: frontend-1
labels:
tier: frontend
spec:
replicas: 3
selector: ﬂ
matchLabels: 9
tier: frontend

matchExpressions: 6
- {key: tier, operator: In, values: [frontend]}
template:
metadata:
labels:
tier: frontend
spec:
containers:
- image: openshift/hello-openshift
name: helloworld
ports:
- containerPort: 8080
protocol: TCP
restartPolicy: Always

A label query over a set of resources. The result of matchLabels and matchExpressions are
logically conjoined.

Equality-based selector to specify resources with labels that match the selector.

Set-based selector to filter keys. This selects all resources with key equal to tier and value equal to
frontend.

2]
o

7.1.1.2. Replication controllers

Similar to a replica set, a replication controller ensures that a specified number of replicas of a pod are
running at all times. If pods exit or are deleted, the replication controller instantiates more up to the
defined number. Likewise, if there are more running than desired, it deletes as many as necessary to
match the defined amount. The difference between a replica set and a replication controller is that a
replica set supports set-based selector requirements whereas a replication controller only supports
equality-based selector requirements.

A replication controller configuration consists of:

96

CHAPTER 7. DEPLOYMENTS

® The number of replicas desired, which can be adjusted at run time.
® A Pod definition to use when creating a replicated pod.
® A selector for identifying managed pods.

A selector is a set of labels assigned to the pods that are managed by the replication controller. These
labels are included in the Pod definition that the replication controller instantiates. The replication
controller uses the selector to determine how many instances of the pod are already running in order to
adjust as needed.

The replication controller does not perform auto-scaling based on load or traffic, as it does not track
either. Rather, this requires its replica count to be adjusted by an external auto-scaler.

NOTE

Use a DeploymentConfig to create a replication controller instead of creating replication
controllers directly.

If you require custom orchestration or do not require updates, use replica sets instead of
replication controllers.

The following is an example definition of a replication controller:

apiVersion: vi
kind: ReplicationController
metadata:

name: frontend-1
spec:

replicas: 1 0

selector:

name: frontend

template: 6

metadata:

labels: ﬂ
name: frontend 6
spec:
containers:
- image: openshift/hello-openshift
name: helloworld
ports:
- containerPort: 8080
protocol: TCP
restartPolicy: Always

The number of copies of the pod to run.

The label selector of the pod to run.

A template for the pod the controller creates.

Labels on the pod should include those from the label selector.

The maximum name length after expanding any parameters is 63 characters.

0009

97

OpenShift Container Platform 4.18 Building applications

7.1.2. Deployments

Kubernetes provides a first-class, native APl object type in OpenShift Container Platform called
Deployment. Deployment objects describe the desired state of a particular component of an
application as a pod template. Deployments create replica sets, which orchestrate pod lifecycles.

For example, the following deployment definition creates a replica set to bring up one hello-openshift
pod:

Deployment definition

apiVersion: apps/v1
kind: Deployment
metadata:

name: hello-openshift
spec:

replicas: 1

selector:

matchLabels:
app: hello-openshift
template:
metadata:

labels:
app: hello-openshift

spec:

containers:

- name: hello-openshift
image: openshift/nello-openshift:latest
ports:

- containerPort: 80

7.1.3. DeploymentConfig objects

IMPORTANT

As of OpenShift Container Platform 4.14, DeploymentConfig objects are deprecated.
DeploymentConfig objects are still supported, but are not recommended for new
installations. Only security-related and critical issues will be fixed.

Instead, use Deployment objects or another alternative to provide declarative updates
for pods.

Building on replication controllers, OpenShift Container Platform adds expanded support for the
software development and deployment lifecycle with the concept of DeploymentConfig objects. In the
simplest case, a DeploymentConfig object creates a new replication controller and lets it start up pods.

However, OpenShift Container Platform deployments from DeploymentConfig objects also provide
the ability to transition from an existing deployment of an image to a new one and also define hooks to
be run before or after creating the replication controller.

The DeploymentConfig deployment system provides the following capabilities:

e A DeploymentConfig object, which is a template for running applications.

98

CHAPTER 7. DEPLOYMENTS

® Triggers that drive automated deployments in response to events.

e User-customizable deployment strategies to transition from the previous version to the new
version. A strategy runs inside a pod commonly referred as the deployment process.

e Aset of hooks (lifecycle hooks) for executing custom behavior in different points during the
lifecycle of a deployment.

® \ersioning of your application to support rollbacks either manually or automatically in case of
deployment failure.

® Manual replication scaling and autoscaling.

When you create a DeploymentConfig object, a replication controller is created representing the
DeploymentConfig object’s pod template. If the deployment changes, a new replication controller is
created with the latest pod template, and a deployment process runs to scale down the old replication
controller and scale up the new one.

Instances of your application are automatically added and removed from both service load balancers
and routers as they are created. As long as your application supports graceful shutdown when it receives
the TERM signal, you can ensure that running user connections are given a chance to complete
normally.

The OpenShift Container Platform DeploymentConfig object defines the following details:
1. The elements of a ReplicationController definition.
2. Triggers for creating a new deployment automatically.
3. The strategy for transitioning between deployments.
4. Lifecycle hooks.

Each time a deployment is triggered, whether manually or automatically, a deployer pod manages the
deployment (including scaling down the old replication controller, scaling up the new one, and running
hooks). The deployment pod remains for an indefinite amount of time after it completes the
deployment to retain its logs of the deployment. When a deployment is superseded by another, the
previous replication controller is retained to enable easy rollback if needed.

Example DeploymentConfig definition

apiVersion: apps.openshift.io/v1
kind: DeploymentConfig
metadata:
name: frontend
spec:
replicas: 5
selector:
name: frontend
template: { ... }
triggers:
- type: ConfigChange ﬂ
- imageChangeParams:
automatic: true
containerNames:
- helloworld

99

OpenShift Container Platform 4.18 Building applications

from:
kind: ImageStreamTag
name: hello-openshift:latest
type: ImageChange 9
strategy:
type: Rolling

ﬂ A configuration change trigger results in a new replication controller whenever changes are
detected in the pod template of the deployment configuration.

9 An image change trigger causes a new deployment to be created each time a new version of the
backing image is available in the named image stream.

9 The default Rolling strategy makes a downtime-free transition between deployments.

7.1.4. Comparing Deployment and DeploymentConfig objects

Both Kubernetes Deployment objects and OpenShift Container Platform-provided
DeploymentConfig objects are supported in OpenShift Container Platform; however, it is
recommended to use Deployment objects unless you need a specific feature or behavior provided by
DeploymentConfig objects.

The following sections go into more detail on the differences between the two object types to further
help you decide which type to use.

IMPORTANT

As of OpenShift Container Platform 4.14, DeploymentConfig objects are deprecated.
DeploymentConfig objects are still supported, but are not recommended for new
installations. Only security-related and critical issues will be fixed.

Instead, use Deployment objects or another alternative to provide declarative updates
for pods.

7.1.4.1. Design

One important difference between Deployment and DeploymentConfig objects is the properties of
the CAP theorem that each design has chosen for the rollout process. DeploymentConfig objects
prefer consistency, whereas Deployments objects take availability over consistency.

For DeploymentConfig objects, if a node running a deployer pod goes down, it will not get replaced.
The process waits until the node comes back online or is manually deleted. Manually deleting the node
also deletes the corresponding pod. This means that you can not delete the pod to unstick the rollout,
as the kubelet is responsible for deleting the associated pod.

However, deployment rollouts are driven from a controller manager. The controller manager runs in high
availability mode on masters and uses leader election algorithms to value availability over consistency.

During a failure it is possible for other masters to act on the same deployment at the same time, but this
issue will be reconciled shortly after the failure occurs.

7.1.4.2. Deployment-specific features

100

https://en.wikipedia.org/wiki/CAP_theorem

CHAPTER 7. DEPLOYMENTS

7.1.4.2.1. Rollover

The deployment process for Deployment objects is driven by a controller loop, in contrast to
DeploymentConfig objects that use deployer pods for every new rollout. This means that the
Deployment object can have as many active replica sets as possible, and eventually the deployment
controller will scale down all old replica sets and scale up the newest one.

DeploymentConfig objects can have at most one deployer pod running, otherwise multiple deployers
might conflict when trying to scale up what they think should be the newest replication controller.
Because of this, only two replication controllers can be active at any point in time. Ultimately, this results
in faster rapid rollouts for Deployment objects.

7.1.4.2.2. Proportional scaling

Because the deployment controller is the sole source of truth for the sizes of new and old replica sets
owned by a Deployment object, it can scale ongoing rollouts. Additional replicas are distributed
proportionally based on the size of each replica set.

DeploymentConfig objects cannot be scaled when a rollout is ongoing because the controller will have
issues with the deployer process about the size of the new replication controller.

7.1.4.2.3. Pausing mid-rollout

Deployments can be paused at any point in time, meaning you can also pause ongoing rollouts.
However, you currently cannot pause deployer pods; if you try to pause a deployment in the middle of a
rollout, the deployer process is not affected and continues until it finishes.

7.1.4.3. DeploymentConfig object-specific features

7.1.4.3.1. Automatic rollbacks

Currently, deployments do not support automatically rolling back to the last successfully deployed
replica set in case of a failure.

7.1.4.3.2. Triggers

Deployments have an implicit config change trigger in that every change in the pod template of a
deployment automatically triggers a new rollout. If you do not want new rollouts on pod template
changes, pause the deployment:

I $ oc rollout pause deployments/<name>

7.1.4.3.3. Lifecycle hooks

Deployments do not yet support any lifecycle hooks.

7.1.4.3.4. Custom strategies

Deployments do not support user-specified custom deployment strategies.

7.2. MANAGING DEPLOYMENT PROCESSES

101

OpenShift Container Platform 4.18 Building applications

7.2.1. Managing DeploymentConfig objects

IMPORTANT

As of OpenShift Container Platform 4.14, DeploymentConfig objects are deprecated.
DeploymentConfig objects are still supported, but are not recommended for new
installations. Only security-related and critical issues will be fixed.

Instead, use Deployment objects or another alternative to provide declarative updates
for pods.

DeploymentConfig objects can be managed from the OpenShift Container Platform web console’s
Workloads page or using the oc CLI. The following procedures show CLI usage unless otherwise stated.

7.2.1.1. Starting a deployment

You can start a rollout to begin the deployment process of your application.

Procedure

1. To start a new deployment process from an existing DeploymentConfig object, run the
following command:

I $ oc rollout latest dc/<name>

NOTE

If a deployment process is already in progress, the command displays a message
and a new replication controller will not be deployed.

7.2.1.2. Viewing a deployment

You can view a deployment to get basic information about all the available revisions of your application.

Procedure

1. To show details about all recently created replication controllers for the provided
DeploymentConfig object, including any currently running deployment process, run the
following command:

I $ oc rollout history dc/<name>

2. To view details specific to a revision, add the --revision flag:

I $ oc rollout history dc/<name> --revision=1

3. For more detailed information about a DeploymentConfig object and its latest revision, use the
oc describe command:

I $ oc describe dc <name>

102

CHAPTER 7. DEPLOYMENTS

7.2.1.3. Retrying a deployment

If the current revision of your DeploymentConfig object failed to deploy, you can restart the
deployment process.

Procedure

1. Torestart a failed deployment process:

I $ oc rollout retry dc/<name>

If the latest revision of it was deployed successfully, the command displays a message and the
deployment process is not retried.

NOTE

Retrying a deployment restarts the deployment process and does not create a
new deployment revision. The restarted replication controller has the same
configuration it had when it failed.

7.2.1.4. Rolling back a deployment

Rollbacks revert an application back to a previous revision and can be performed using the REST API, the
CLI, or the web console.

Procedure

1. To rollback to the last successful deployed revision of your configuration:

I $ oc rollout undo dc/<name>

The DeploymentConfig object’s template is reverted to match the deployment revision
specified in the undo command, and a new replication controller is started. If no revision is
specified with --to-revision, then the last successfully deployed revision is used.

2. Image change triggers on the DeploymentConfig object are disabled as part of the rollback to
prevent accidentally starting a new deployment process soon after the rollback is complete.
To re-enable the image change triggers:

I $ oc set triggers dc/<name> --auto

NOTE

Deployment configs also support automatically rolling back to the last successful revision
of the configuration in case the latest deployment process fails. In that case, the latest
template that failed to deploy stays intact by the system and it is up to users to fix their
configurations.

7.2.1.5. Executing commands inside a container

You can add a command to a container, which modifies the container’s startup behavior by overruling
the image's ENTRYPOINT. This is different from a lifecycle hook, which instead can be run once per
deployment at a specified time.

103

OpenShift Container Platform 4.18 Building applications

Procedure

1. Add the command parameters to the spec field of the DeploymentConfig object. You can
also add an args field, which modifies the command (or the ENTRYPOINT if command does
not exist).

kind: DeploymentConfig
apiVersion: apps.openshift.io/v1
metadata:
name: example-dc
#...
spec:
template:
#...
spec:
containers:
- name: <container_name>
image: 'image’
command:
- '<command>'
args:
- '<argument_1>'
- '<argument_2>'
- '<argument_3>'

For example, to execute the java command with the -jar and /opt/app-
root/springboots2idemo.jar arguments:

kind: DeploymentConfig
apiVersion: apps.openshift.io/v1
metadata:
name: example-dc
#...
spec:
template:
#...
spec:
containers:
- name: example-spring-boot
image: 'image’
command:
- java
args:
- '-jar'
- /opt/app-root/springboots2idemo.jar

7.2.1.6. Viewing deployment logs

Procedure

1. To stream the logs of the latest revision for a given DeploymentConfig object:

I $ oc logs -f dc/<name>

104

CHAPTER 7. DEPLOYMENTS

If the latest revision is running or failed, the command returns the logs of the process that is
responsible for deploying your pods. If it is successful, it returns the logs from a pod of your
application.

2. You can also view logs from older failed deployment processes, if and only if these processes
(old replication controllers and their deployer pods) exist and have not been pruned or deleted
manually:

I $ oc logs --version=1 dc/<name>

7.2.1.7. Deployment triggers

A DeploymentConfig object can contain triggers, which drive the creation of new deployment
processes in response to events inside the cluster.

WARNING
If no triggers are defined on a DeploymentConfig object, a config change trigger is

added by default. If triggers are defined as an empty field, deployments must be
started manually.

7.2.1.7.1. Config change deployment triggers

The config change trigger results in a new replication controller whenever configuration changes are
detected in the pod template of the DeploymentConfig object.

NOTE

If a config change trigger is defined on a DeploymentConfig object, the first replication
controller is automatically created soon after the DeploymentConfig object itself is
created and it is not paused.

Config change deployment trigger

kind: DeploymentConfig
apiVersion: apps.openshift.io/v1
metadata:

name: example-dc
#...
spec:
#...

triggers:

- type: "ConfigChange"

7.2.1.7.2. Image change deployment triggers

The image change trigger results in a new replication controller whenever the content of an image
stream tag changes (when a new version of the image is pushed).

105

OpenShift Container Platform 4.18 Building applications

Image change deployment trigger

kind: DeploymentConfig
apiVersion: apps.openshift.io/v1
metadata:
name: example-dc
#...
spec:
#...
triggers:
- type: "ImageChange”
imageChangeParams:
automatic: true
from:
kind: "ImageStreamTag"
name: "origin-ruby-sample:latest"
namespace: "myproject”
containerNames:
- "helloworld"

Q If the imageChangeParams.automatic field is set to false, the trigger is disabled.

With the above example, when the latest tag value of the origin-ruby-sample image stream changes
and the new image value differs from the current image specified in the DeploymentConfig object’s
helloworld container, a new replication controller is created using the new image for the helloworld
container.

NOTE

If an image change trigger is defined on a DeploymentConfig object (with a config
change trigger and automatic=false, or with automatic=true) and the image stream tag
pointed by the image change trigger does not exist yet, the initial deployment process
will automatically start as soon as an image is imported or pushed by a build to the image
stream tag.

7.2.1.7.3. Setting deployment triggers

Procedure

1. You can set deployment triggers for a DeploymentConfig object using the oc set triggers
command. For example, to set aimage change trigger, use the following command:

$ oc set triggers dc/<dc_name> \
--from-image=<project>/<image>:<tag> -c¢ <container_name>

7.2.1.8. Setting deployment resources

A deployment is completed by a pod that consumes resources (memory, CPU, and ephemeral storage)
on a node. By default, pods consume unbounded node resources. However, if a project specifies default
container limits, then pods consume resources up to those limits.

106

CHAPTER 7. DEPLOYMENTS

NOTE

The minimum memory limit for a deployment is 12 MB. If a container fails to start due to a
Cannot allocate memory pod event, the memory limit is too low. Either increase or
remove the memory limit. Removing the limit allows pods to consume unbounded node
resources.

You can also limit resource use by specifying resource limits as part of the deployment strategy.
Deployment resources can be used with the recreate, rolling, or custom deployment strategies.

Procedure

1. In the following example, each of resources, cpu, memory, and ephemeral-storage is optional:

kind: Deployment
apiVersion: apps/v1
metadata:
name: hello-openshift
#...
spec:
#...
type: "Recreate”
resources:
limits:
cpu: "100m"
memory: "256Mi" g
ephemeral-storage: "1Gi" 6

ﬂ cpu is in CPU units: 100m represents 0.1 CPU units (100 * 1e-3).
9 memory is in bytes: 256Mi represents 268435456 bytes (256 * 2 * 20).

9 ephemeral-storage is in bytes: 1Gi represents 1073741824 bytes (2 * 30).

However, if a quota has been defined for your project, one of the following two items is required:

® A resources section set with an explicit requests:

kind: Deployment
apiVersion: apps/v1
metadata:
name: hello-openshift
#...
spec:
#...
type: "Recreate”
resources:
requests: ﬂ
cpu: "100m"
memory: "256Mi"
ephemeral-storage: "1Gi"

107

OpenShift Container Platform 4.18 Building applications

o The requests object contains the list of resources that correspond to the list of
resources in the quota.

® Alimit range defined in your project, where the defaults from the LimitRange object apply
to pods created during the deployment process.

To set deployment resources, choose one of the above options. Otherwise, deploy pod creation
fails, citing a failure to satisfy quota.

Additional resources

For more information about resource limits and requests, see Understanding managing
application memory.

7.2.1.9. Scaling manually

In addition to rollbacks, you can exercise fine-grained control over the number of replicas by manually
scaling them.

NOTE

Pods can also be auto-scaled using the oc autoscale command.

Procedure

1.

To manually scale a DeploymentConfig object, use the oc scale command. For example, the
following command sets the replicas in the frontend DeploymentConfig object to 3.

I $ oc scale dc frontend --replicas=3

The number of replicas eventually propagates to the desired and current state of the
deployment configured by the DeploymentConfig object frontend.

7.2.1.10. Accessing private repositories from DeploymentConfig objects

You can add a secret to your DeploymentConfig object so that it can access images from a private
repository. This procedure shows the OpenShift Container Platform web console method.

Procedure

1.

2.

3.

Create a new project.

Navigate to Workloads — Secrets.

Create a secret that contains credentials for accessing a private image repository.
Navigate to Workloads = DeploymentConfigs.

Create a DeploymentConfig object.

On the DeploymentConfig object editor page, set the Pull Secretand save your changes.

7.2.1.11. Assigning pods to specific nodes

108

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/nodes/#nodes-cluster-resource-configure-about_nodes-cluster-resource-configure

CHAPTER 7. DEPLOYMENTS

You can use node selectors in conjunction with labeled nodes to control pod placement.

Cluster administrators can set the default node selector for a project in order to restrict pod placement
to specific nodes. As a developer, you can set a node selector on a Pod configuration to restrict nodes
even further.

Procedure

1. To add a node selector when creating a pod, edit the Pod configuration, and add the
nodeSelector value. This can be added to a single Pod configuration, orin a Pod template:

apiVersion: vi

kind: Pod

metadata:
name: my-pod

#...

spec:
nodeSelector:

disktype: ssd
#...

Pods created when the node selector is in place are assigned to nodes with the specified labels.
The labels specified here are used in conjunction with the labels added by a cluster
administrator.

For example, if a project has the type=user-node and region=east labels added to a project by
the cluster administrator, and you add the above disktype: ssd label to a pod, the pod is only
ever scheduled on nodes that have all three labels.

NOTE

Labels can only be set to one value, so setting a node selector of region=west in
a Pod configuration that has region=east as the administrator-set default,
results in a pod that will never be scheduled.

7.2.1.12. Running a pod with a different service account

You can run a pod with a service account other than the default.

Procedure

1. Edit the DeploymentConfig object:

I $ oc edit dc/<deployment_config>

2. Add the serviceAccount and serviceAccountName parameters to the spec field, and specify
the service account you want to use:

apiVersion: apps.openshift.io/v1
kind: DeploymentConfig
metadata:

name: example-dc
#...
spec:

109

OpenShift Container Platform 4.18 Building applications

#...
securityContext: {}
serviceAccount: <service_account>
serviceAccountName: <service_account>

7.3. USING DEPLOYMENT STRATEGIES

Deployment strategies are used to change or upgrade applications without downtime so that users
barely notice a change.

Because users generally access applications through a route handled by a router, deployment strategies
can focus on DeploymentConfig object features or routing features. Strategies that focus on
DeploymentConfig object features impact all routes that use the application. Strategies that use router
features target individual routes.

Most deployment strategies are supported through the DeploymentConfig object, and some additional
strategies are supported through router features.

7.3.1. Choosing a deployment strategy

Consider the following when choosing a deployment strategy:
® | ong-running connections must be handled gracefully.

® Database conversions can be complex and must be done and rolled back along with the
application.

e |f the application is a hybrid of microservices and traditional components, downtime might be
required to complete the transition.

® You must have the infrastructure to do this.
e |f you have a non-isolated test environment, you can break both new and old versions.

A deployment strategy uses readiness checks to determine if a new pod is ready for use. If a readiness
check fails, the DeploymentConfig object retries to run the pod until it times out. The default timeout
is 10m, a value set in TimeoutSeconds in dc.spec.strategy.*params.

7.3.2. Rolling strategy

A rolling deployment slowly replaces instances of the previous version of an application with instances of
the new version of the application. The rolling strategy is the default deployment strategy used if no
strategy is specified on a DeploymentConfig object.

A rolling deployment typically waits for new pods to become ready via a readiness check before scaling
down the old components. If a significant issue occurs, the rolling deployment can be aborted.

When to use a rolling deployment:
® When you want to take no downtime during an application update.
® When your application supports having old code and new code running at the same time.
A rolling deployment means you have both old and new versions of your code running at the same time.

This typically requires that your application handle N-1 compatibility.

110

CHAPTER 7. DEPLOYMENTS

Example rolling strategy definition

kind: DeploymentConfig
apiVersion: apps.openshift.io/v1
metadata:
name: example-dc
#...
spec:
#...
strategy:
type: Rolling
rollingParams:
updatePeriodSeconds: 1 ﬂ
intervalSeconds: 1 9
timeoutSeconds: 120 6
maxSurge: "20%" ﬂ
maxUnavailable: "10%" 9
pre: {} G

post: {}

The time to wait between individual pod updates. If unspecified, this value defaults to 1.

The time to wait between polling the deployment status after update. If unspecified, this value
defaults to 1.

The time to wait for a scaling event before giving up. Optional; the default is 600. Here, giving up
means automatically rolling back to the previous complete deployment.

maxSurge is optional and defaults to 25% if not specified. See the information below the following
procedure.

maxUnavailable is optional and defaults to 25% if not specified. See the information below the
following procedure.

pre and post are both lifecycle hooks.

@ & 0 0 09

The rolling strategy:
1. Executes any pre lifecycle hook.
2. Scales up the new replication controller based on the surge count.
3. Scales down the old replication controller based on the max unavailable count.

4. Repeats this scaling until the new replication controller has reached the desired replica count
and the old replication controller has been scaled to zero.

5. Executes any post lifecycle hook.

IMPORTANT

When scaling down, the rolling strategy waits for pods to become ready so it can decide
whether further scaling would affect availability. If scaled up pods never become ready,
the deployment process will eventually time out and result in a deployment failure.

m

OpenShift Container Platform 4.18 Building applications

The maxUnavailable parameter is the maximum number of pods that can be unavailable during the
update. The maxSurge parameter is the maximum number of pods that can be scheduled above the
original number of pods. Both parameters can be set to either a percentage (e.g., 10%) or an absolute
value (e.g., 2). The default value for both is 25%.

These parameters allow the deployment to be tuned for availability and speed. For example:

e maxUnavailable*=0 and maxSurge*=20% ensures full capacity is maintained during the
update and rapid scale up.

e maxUnavailable*=10% and maxSurge*=0 performs an update using no extra capacity (an in-
place update).

¢ maxUnavailable*=10% and maxSurge*=10% scales up and down quickly with some potential
for capacity loss.

Generally, if you want fast rollouts, use maxSurge. If you have to take into account resource quota and
can accept partial unavailability, use maxUnavailable.

WARNING
The default setting for maxUnavailable is 1 for all the machine config pools in

OpenShift Container Platform. It is recommended to not change this value and
update one control plane node at a time. Do not change this value to 3 for the
control plane pool.

7.3.2.1. Canary deployments

All rolling deployments in OpenShift Container Platform are canary deployments; a new version (the
canary) is tested before all of the old instances are replaced. If the readiness check never succeeds, the
canary instance is removed and the DeploymentConfig object will be automatically rolled back.

The readiness check is part of the application code and can be as sophisticated as necessary to ensure
the new instance is ready to be used. If you must implement more complex checks of the application

(such as sending real user workloads to the new instance), consider implementing a custom deployment
or using a blue-green deployment strategy.

7.3.2.2. Creating a rolling deployment

Rolling deployments are the default type in OpenShift Container Platform. You can create a rolling
deployment using the CLI.

Procedure

1. Create an application based on the example deployment images found in Quay.io:

I $ oc new-app quay.io/openshifttest/deployment-example:latest

12

https://quay.io/repository/openshifttest/deployment-example

CHAPTER 7. DEPLOYMENTS

NOTE

This image does not expose any ports. If you want to expose your applications
over an external LoadBalancer service or enable access to the application over
the public internet, create a service by using the oc expose dc/deployment-
example --port=<port> command after completing this procedure.

2. If you have the router installed, make the application available via a route or use the service IP
directly.

I $ oc expose svc/deployment-example

3. Browse to the application at deployment-example.<project>.<router_domains to verify you
see the vl image.

4. Scale the DeploymentConfig object up to three replicas:

I $ oc scale dc/deployment-example --replicas=3

5. Trigger a new deployment automatically by tagging a new version of the example as the latest
tag:

I $ oc tag deployment-example:v2 deployment-example:latest

6. Inyour browser, refresh the page until you see the v2 image.
7. When using the CLI, the following command shows how many pods are on version 1and how

many are on version 2. In the web console, the pods are progressively added to v2 and removed
from v1:

I $ oc describe dc deployment-example

During the deployment process, the new replication controller is incrementally scaled up. After the new
pods are marked as ready (by passing their readiness check), the deployment process continues.

If the pods do not become ready, the process aborts, and the deployment rolls back to its previous
version.

7.3.2.3. Editing a deployment by using the Developer perspective

You can edit the deployment strategy, image settings, environment variables, and advanced options for
your deployment by using the Developer perspective.

Prerequisites

® You are in the Developer perspective of the web console.

® You have created an application.

Procedure

1. Navigate to the Topology view.

13

OpenShift Container Platform 4.18 Building applications

2. Click your application to see the Details panel.
3. Inthe Actions drop-down menu, select Edit Deploymentto view the Edit Deployment page.

4. You can edit the following Advanced options for your deployment:

a. Optional: You can pause rollouts by clicking Pause rollouts, and then selecting the Pause
rollouts for this deployment checkbox.

By pausing rollouts, you can make changes to your application without triggering a rollout.
You can resume rollouts at any time.

b. Optional: Click Scaling to change the number of instances of your image by modifying the
number of Replicas.

5. Click Save.

7.3.2.4. Starting a rolling deployment using the Developer perspective

You can upgrade an application by starting a rolling deployment.

Prerequisites
® You are in the Developer perspective of the web console.

® You have created an application.

Procedure

1. In the Topology view, click the application node to see the Overview tab in the side panel. Note
that the Update Strategyis set to the default Rolling strategy.

2. In the Actions drop-down menu, select Start Rollout to start a rolling update. The rolling
deployment spins up the new version of the application and then terminates the old one.

14

CHAPTER 7. DEPLOYMENTS

Figure 7.1. Rolling update

nodejs-ex1 Actions

Qverview Resources

=
Name Latest Version
- a4 2
€D nodejs-ex Message
@ test-project manual change
Labels Update Strategy
app=nodejs-ex] Rolling
app.kubernetes.iofcom... =nodejs...
app.kubernetes.ig/inst... =nodejs-... Min Ready Seconds
app.kubernetes.io/name=nodejs Not Configured
app.openshiftiofruntime=nodejs
Triggers

app.openshiftio/fruntime-... =10-5.. =500
ImageChange, ConfigChange
Pod Selector

Q, app=nodejs-ex],

deploymentconfig=nodejs-ex]

Additional resources

® Creating and deploying applications on OpenShift Container Platform using the Developer
perspective

® \Viewing the applications in your project

7.3.3. Recreate strategy

The recreate strategy has basic rollout behavior and supports lifecycle hooks for injecting code into the
deployment process.

Example recreate strategy definition

kind: Deployment
apiVersion: apps/v1
metadata:
name: hello-openshift
#...
spec:
#...
strategy:
type: Recreate
recreateParams: ﬂ

115

OpenShift Container Platform 4.18 Building applications

pre: {} 9
mid: {}
post: {}

Q recreateParams are optional.

9 pre, mid, and post are lifecycle hooks.

The recreate strategy:
1. Executes any pre lifecycle hook.
2. Scales down the previous deployment to zero.
3. Executes any mid lifecycle hook.
4. Scales up the new deployment.

5. Executes any post lifecycle hook.

IMPORTANT

During scale up, if the replica count of the deployment is greater than one, the first
replica of the deployment will be validated for readiness before fully scaling up the
deployment. If the validation of the first replica fails, the deployment will be considered a
failure.

When to use a recreate deployment:
® When you must run migrations or other data transformations before your new code starts.

® When you do not support having new and old versions of your application code running at the
same time.

® When you want to use a RWO volume, which is not supported being shared between multiple
replicas.

A recreate deployment incurs downtime because, for a brief period, no instances of your application are
running. However, your old code and new code do not run at the same time.

7.3.3.1. Editing a deployment by using the Developer perspective

You can edit the deployment strategy, image settings, environment variables, and advanced options for
your deployment by using the Developer perspective.

Prerequisites

® You are in the Developer perspective of the web console.

® You have created an application.

Procedure

1. Navigate to the Topology view.

16

CHAPTER 7. DEPLOYMENTS

2. Click your application to see the Details panel.
3. Inthe Actions drop-down menu, select Edit Deploymentto view the Edit Deployment page.

4. You can edit the following Advanced options for your deployment:

a. Optional: You can pause rollouts by clicking Pause rollouts, and then selecting the Pause
rollouts for this deployment checkbox.
By pausing rollouts, you can make changes to your application without triggering a rollout.
You can resume rollouts at any time.

b. Optional: Click Scaling to change the number of instances of your image by modifying the
number of Replicas.

5. Click Save.

7.3.3.2. Starting a recreate deployment using the Developer perspective

You can switch the deployment strategy from the default rolling update to a recreate update using the
Developer perspective in the web console.

Prerequisites

® Ensure that you are in the Developer perspective of the web console.

® Ensure that you have created an application using the Add view and see it deployed in the
Topology view.

Procedure

To switch to a recreate update strategy and to upgrade an application:
1. Click your application to see the Details panel.

2. Inthe Actions drop-down menu, select Edit Deployment Configto see the deployment
configuration details of the application.

3. Inthe YAML editor, change the spec.strategy.type to Recreate and click Save.

4. In the Topology view, select the node to see the Overview tab in the side panel. The Update
Strategy is now set to Recreate.

5. Use the Actions drop-down menu to select Start Rolloutto start an update using the recreate

strategy. The recreate strategy first terminates pods for the older version of the application and
then spins up pods for the new version.

17

OpenShift Container Platform 4.18 Building applications

Figure 7.2. Recreate update

nodejs-ex] Actions

Overview Resources

/ — [
/s \!
© ()
nodejs-ex|
Name Latest Version
nodejs-ex] 3
Namespace Message
@ test-project manual change
Labels Update Strategy
app=nodejs-exl Recreate

app.kubernetes.io/com... =nodejs...
Min Ready Seconds

app.kubernetes.ic/inst... =nodejs-...
app.kubernetesio/name=nodejs Not Configured
app.openshiftio/runtime=nodejs

app.openshiftio/runtime-... =10-5... Triggers

ImageChange, ConfigChange

Pod Selector

Q, app=nodejs-ex],

deploymentconfig=nodejs-ex]

Additional resources

® Creating and deploying applications on OpenShift Container Platform using the Developer
perspective

® Viewing the applications in your project

7.3.4. Custom strategy

The custom strategy allows you to provide your own deployment behavior.

Example custom strategy definition

kind: DeploymentConfig
apiVersion: apps.openshift.io/v1
metadata:

name: example-dc
#...
spec:

18

CHAPTER 7. DEPLOYMENTS

#...
strategy:

type: Custom

customParams:
image: organization/strategy
command: ["command", "arg1"]
environment:

- name: ENV_1
value: VALUE_1

In the above example, the organization/strategy container image provides the deployment behavior.
The optional command array overrides any CMD directive specified in the image’s Dockerfile. The
optional environment variables provided are added to the execution environment of the strategy
process.

Additionally, OpenShift Container Platform provides the following environment variables to the
deployment process:

Environment variable Description

OPENSHIFT_DEPLOYMENT_ The name of the new deployment, a replication controller.
NAME

OPENSHIFT_DEPLOYMENT_ The name space of the new deployment.
NAMESPACE

The replica count of the new deployment will initially be zero. The responsibility of the strategy is to
make the new deployment active using the logic that best serves the needs of the user.

Alternatively, use the customParams object to inject the custom deployment logic into the existing
deployment strategies. Provide a custom shell script logic and call the openshift-deploy binary. Users
do not have to supply their custom deployer container image; in this case, the default OpenShift
Container Platform deployer image is used instead:

kind: DeploymentConfig
apiVersion: apps.openshift.io/v1
metadata:
name: example-dc
#...
spec:
#...
strategy:
type: Rolling
customParams:
command:
- /bin/sh
--C
- |
set -e
openshift-deploy --until=50%
echo Halfway there
openshift-deploy
echo Complete

19

OpenShift Container Platform 4.18 Building applications

This results in following deployment:

Started deployment #2
--> Scaling up custom-deployment-2 from 0 to 2, scaling down custom-deployment-1 from 2 to 0
(keep 2 pods available, don't exceed 3 pods)
Scaling custom-deployment-2 up to 1
--> Reached 50% (currently 50%)
Halfway there
--> Scaling up custom-deployment-2 from 1 to 2, scaling down custom-deployment-1 from 2 to 0
(keep 2 pods available, don't exceed 3 pods)
Scaling custom-deployment-1 down to 1
Scaling custom-deployment-2 up to 2
Scaling custom-deployment-1 down to 0
--> Success
Complete

If the custom deployment strategy process requires access to the OpenShift Container Platform APl or
the Kubernetes API the container that executes the strategy can use the service account token available
inside the container for authentication.

7.3.4.1. Editing a deployment by using the Developer perspective

You can edit the deployment strategy, image settings, environment variables, and advanced options for
your deployment by using the Developer perspective.

Prerequisites

® You are in the Developer perspective of the web console.

® You have created an application.

Procedure
1. Navigate to the Topology view.
2. Click your application to see the Details panel.
3. Inthe Actions drop-down menu, select Edit Deploymentto view the Edit Deployment page.
4. You can edit the following Advanced options for your deployment:

a. Optional: You can pause rollouts by clicking Pause rollouts, and then selecting the Pause
rollouts for this deployment checkbox.
By pausing rollouts, you can make changes to your application without triggering a rollout.
You can resume rollouts at any time.

b. Optional: Click Scaling to change the number of instances of your image by modifying the
number of Replicas.

5. Click Save.

7.3.5. Lifecycle hooks

The rolling and recreate strategies support lifecycle hooks, or deployment hooks, which allow behavior to
be injected into the deployment process at predefined points within the strategy:

120

CHAPTER 7. DEPLOYMENTS

Example pre lifecycle hook

pre:
failurePolicy: Abort
execNewPod: {} ﬂ

ﬂ execNewPod is a pod-based lifecycle hook.

Every hook has a failure policy, which defines the action the strategy should take when a hook failure is
encountered:

Abort The deployment process will be considered a failure if the hook fails.
Retry The hook execution should be retried until it succeeds.
Ignore Any hook failure should be ignored and the deployment should proceed.

Hooks have a type-specific field that describes how to execute the hook. Currently, pod-based hooks
are the only supported hook type, specified by the execNewPod field.

7.3.5.1. Pod-based lifecycle hook

Pod-based lifecycle hooks execute hook code in a new pod derived from the template in a
DeploymentConfig object.

The following simplified example deployment uses the rolling strategy. Triggers and some other minor
details are omitted for brevity:

kind: DeploymentConfig
apiVersion: apps.openshift.io/v1
metadata:
name: frontend
spec:
template:
metadata:
labels:
name: frontend
spec:
containers:
- name: helloworld
image: openshift/origin-ruby-sample
replicas: 5
selector:
name: frontend
strategy:
type: Rolling
rollingParams:
pre:
failurePolicy: Abort
execNewPod:

containerName: helloworld ﬂ

121

OpenShift Container Platform 4.18 Building applications

command: ["/usr/bin/command”, "arg1", "arg2"] 9

env: G
- name: CUSTOM_VAR1
value: custom_value1
volumes:

- data ﬂ

The helloworld name refers to spec.template.spec.containers[0].name.
This command overrides any ENTRYPOINT defined by the openshift/origin-ruby-sample image.

env is an optional set of environment variables for the hook container.

- N

volumes is an optional set of volume references for the hook container.

In this example, the pre hook will be executed in a new pod using the openshift/origin-ruby-sample
image from the helloworld container. The hook pod has the following properties:

® The hook command is /ust/bin/command arg1 arg2.

® The hook container has the CUSTOM_VAR1=custom_valuel environment variable.

® The hook failure policy is Abort, meaning the deployment process fails if the hook fails.

® The hook pod inherits the data volume from the DeploymentConfig object pod.

7.3.5.2. Setting lifecycle hooks

You can set lifecycle hooks, or deployment hooks, for a deployment using the CLI.

Procedure

1. Use the oc set deployment-hook command to set the type of hook you want: --pre, --mid, or --
post. For example, to set a pre-deployment hook:

$ oc set deployment-hook dc/frontend \
--pre -c helloworld -e CUSTOM_VAR1=custom_value1 \
--volumes data --failure-policy=abort -- /usr/bin/command arg1 arg2

7.4. USING ROUTE-BASED DEPLOYMENT STRATEGIES

Deployment strategies provide a way for the application to evolve. Some strategies use Deployment
objects to make changes that are seen by users of all routes that resolve to the application. Other
advanced strategies, such as the ones described in this section, use router features in conjunction with
Deployment objects to impact specific routes.

The most common route-based strategy is to use a blue-green deployment. The new version (the green
version) is brought up for testing and evaluation, while the users still use the stable version (the blue
version). When ready, the users are switched to the green version. If a problem arises, you can switch
back to the blue version.

Alternatively, you can use an A/B versions strategy in which both versions are active at the same time.
With this strategy, some users can use version A, and other users can use version B. You can use this

122

CHAPTER 7. DEPLOYMENTS

strategy to experiment with user interface changes or other features in order to get user feedback. You
can also use it to verify proper operation in a production context where problems impact a limited
number of users.

A canary deployment tests the new version but when a problem is detected it quickly falls back to the
previous version. This can be done with both of the above strategies.

The route-based deployment strategies do not scale the number of pods in the services. To maintain
desired performance characteristics the deployment configurations might have to be scaled.

7.4.1. Proxy shards and traffic splitting

In production environments, you can precisely control the distribution of traffic that lands on a particular
shard. When dealing with large numbers of instances, you can use the relative scale of individual shards
to implement percentage based traffic. That combines well with a proxy shard, which forwards or splits
the traffic it receives to a separate service or application running elsewhere.

In the simplest configuration, the proxy forwards requests unchanged. In more complex setups, you can
duplicate the incoming requests and send to both a separate cluster as well as to a local instance of the
application, and compare the result. Other patterns include keeping the caches of a DR installation
warm, or sampling incoming traffic for analysis purposes.

Any TCP (or UDP) proxy could be run under the desired shard. Use the oc scale command to alter the
relative number of instances serving requests under the proxy shard. For more complex traffic
management, consider customizing the OpenShift Container Platform router with proportional
balancing capabilities.

7.4.2. N-1 compatibility

Applications that have new code and old code running at the same time must be careful to ensure that
data written by the new code can be read and handled (or gracefully ignored) by the old version of the
code. This is sometimes called schema evolution and is a complex problem.

This can take many forms: data stored on disk, in a database, in a temporary cache, or that is part of a
user’s browser session. While most web applications can support rolling deployments, it is important to
test and design your application to handle it.

For some applications, the period of time that old code and new code is running side by side is short, so
bugs or some failed user transactions are acceptable. For others, the failure pattern may result in the
entire application becoming non-functional.

One way to validate N-1 compatibility is to use an A/B deployment: run the old code and new code at the
same time in a controlled way in a test environment, and verify that traffic that flows to the new
deployment does not cause failures in the old deployment.

7.4.3. Graceful termination

OpenShift Container Platform and Kubernetes give application instances time to shut down before
removing them from load balancing rotations. However, applications must ensure they cleanly terminate
user connections as well before they exit.

On shutdown, OpenShift Container Platform sends a TERM signal to the processes in the container.
Application code, on receiving SIGTERM, stop accepting new connections. This ensures that load
balancers route traffic to other active instances. The application code then waits until all open

123

OpenShift Container Platform 4.18 Building applications
connections are closed, or gracefully terminate individual connections at the next opportunity, before
exiting.

After the graceful termination period expires, a process that has not exited is sent the KILL signal, which
immediately ends the process. The terminationGracePeriodSeconds attribute of a pod or pod
template controls the graceful termination period (default 30 seconds) and can be customized per
application as necessary.

7.4.4. Blue-green deployments

Blue-green deployments involve running two versions of an application at the same time and moving
traffic from the in-production version (the blue version) to the newer version (the green version). You
can use a rolling strategy or switch services in a route.

Because many applications depend on persistent data, you must have an application that supports N-1
compatibility, which means it shares data and implements live migration between the database, store, or
disk by creating two copies of the data layer.

Consider the data used in testing the new version. If it is the production data, a bug in the new version
can break the production version.

7.4.4.1. Setting up a blue-green deployment

Blue-green deployments use two Deployment objects. Both are running, and the one in production
depends on the service the route specifies, with each Deployment object exposed to a different service.

NOTE

Routes are intended for web (HTTP and HTTPS) traffic, so this technique is best suited

A for web applications.

You can create a new route to the new version and test it. When ready, change the service in the
production route to point to the new service and the new (green) version is live.

If necessary, you can roll back to the older (blue) version by switching the service back to the previous
version.

Procedure
1. Create two independent application components.

a. Create a copy of the example application running the v1 image under the example-blue
service:

I $ oc new-app openshift/deployment-example:v1 --name=example-blue

b. Create a second copy that uses the v2 image under the example-green service:

I $ oc new-app openshift/deployment-example:v2 --name=example-green

2. Create aroute that points to the old service:

I $ oc expose svc/example-blue --name=bluegreen-example

124

CHAPTER 7. DEPLOYMENTS

3. Browse to the application at bluegreen-example-<project>.<router_domain> to verify you
see the vl image.

4. Edit the route and change the service name to example-green:

I $ oc patch route/bluegreen-example -p {"spec":{"to":{"name":"example-green"}}}'

5. To verify that the route has changed, refresh the browser until you see the v2 image.

7.4.5. A/B deployments

The A/B deployment strategy lets you try a new version of the application in a limited way in the
production environment. You can specify that the production version gets most of the user requests
while a limited fraction of requests go to the new version.

Because you control the portion of requests to each version, as testing progresses you can increase the
fraction of requests to the new version and ultimately stop using the previous version. As you adjust the
request load on each version, the number of pods in each service might have to be scaled as well to
provide the expected performance.

In addition to upgrading software, you can use this feature to experiment with versions of the user
interface. Since some users get the old version and some the new, you can evaluate the user’s reaction
to the different versions to inform design decisions.

For this to be effective, both the old and new versions must be similar enough that both can run at the
same time. This is common with bug fix releases and when new features do not interfere with the old.
The versions require N-1 compatibility to properly work together.

OpenShift Container Platform supports N-1 compatibility through the web console as well as the CLI.

7.4.5.1. Load balancing for A/B testing

The user sets up a route with multiple services. Each service handles a version of the application.

Each service is assigned a weight and the portion of requests to each service is the service_weight
divided by the sum_of_weights. The weight for each service is distributed to the service’s endpoints so
that the sum of the endpoint weights is the service weight.

The route can have up to four services. The weight for the service can be between 0and 256. When the
weight is 0, the service does not participate in load balancing but continues to serve existing persistent
connections. When the service weight is not 0, each endpoint has a minimum weight of 1. Because of
this, a service with a lot of endpoints can end up with higher weight than intended. In this case, reduce
the number of pods to get the expected load balance weight.

Procedure

To set up the A/B environment:

1. Create the two applications and give them different names. Each creates a Deployment object.
The applications are versions of the same program; one is usually the current production version
and the other the proposed new version.

a. Create the first application. The following example creates an application called ab-
example-a:

125

OpenShift Container Platform 4.18 Building applications

I $ oc new-app openshift/deployment-example --name=ab-example-a

b. Create the second application:

I $ oc new-app openshift/deployment-example:v2 --name=ab-example-b

Both applications are deployed and services are created.

2. Make the application available externally via a route. At this point, you can expose either. It can
be convenient to expose the current production version first and later modify the route to add
the new version.

I $ oc expose svc/ab-example-a

Browse to the application at ab-example-a.<project>.<router_domains to verify that you see
the expected version.

3. When you deploy the route, the router balances the traffic according to the weights specified
for the services. At this point, there is a single service with default weight=1 so all requests go to
it. Adding the other service as an alternateBackends and adjusting the weights brings the A/B
setup to life. This can be done by the oc set route-backends command or by editing the route.

NOTE

When using alternateBackends, also use the roundrobin load balancing
strategy to ensure requests are distributed as expected to the services based on
weight. roundrobin can be set for a route by using a route annotation. See the
Additional resources section for more information about route annotations.

Setting the oc set route-backend to 0 means the service does not participate in load
balancing, but continues to serve existing persistent connections.

NOTE

Changes to the route just change the portion of traffic to the various services.
You might have to scale the deployment to adjust the number of pods to handle
the anticipated loads.

To edit the route, run:

I $ oc edit route <route_name>

Example output

apiVersion: route.openshift.io/v1
kind: Route
metadata:
name: route-alternate-service
annotations:
haproxy.router.openshift.io/balance: roundrobin
#...
spec:

126

CHAPTER 7. DEPLOYMENTS

host: ab-example.my-project.my-domain
to:
kind: Service
name: ab-example-a
weight: 10
alternateBackends:
- kind: Service
name: ab-example-b
weight: 15
#...

7.4.5.1.1. Managing weights of an existing route using the web console

Procedure

1. Navigate to the Networking = Routes page.

2. Click the Options menu next to the route you want to edit and select Edit Route.

3. Edit the YAML file. Update the weight to be an integer between 0 and 256 that specifies the
relative weight of the target against other target reference objects. The value 0 suppresses
requests to this back end. The default is 100. Run oc explain routes.spec.alternateBackends
for more information about the options.

4. Click Save.

7.4.5.1.2. Managing weights of an new route using the web console

1. Navigate to the Networking = Routes page.
2. Click Create Route.

3. Enter the route Name.

4. Select the Service.

5. Click Add Alternate Service.

6. Enter avalue for Weight and Alternate Service Weight Enter a number between 0 and 255
that depicts relative weight compared with other targets. The default is 100.

7. Select the Target Port.

8. Click Create.

7.4.5.1.3. Managing weights using the CLI

Procedure

1. To manage the services and corresponding weights load balanced by the route, use the oc set
route-backends command:

127

OpenShift Container Platform 4.18 Building applications

128

$ oc set route-backends ROUTENAME \
[--zero|--equal] [--adjust] SERVICE=WEIGHT[%] [...] [options]

For example, the following sets ab-example-a as the primary service with weight=198 and ab-
example-b as the first alternate service with a weight=2:

I $ oc set route-backends ab-example ab-example-a=198 ab-example-b=2

This means 99% of traffic is sent to service ab-example-a and 1% to service ab-example-b.

This command does not scale the deployment. You might be required to do so to have enough
pods to handle the request load.

. Run the command with no flags to verify the current configuration:

I $ oc set route-backends ab-example

Example output

NAME KIND TO WEIGHT
routes/ab-example Service ab-example-a 198 (99%)
routes/ab-example Service ab-example-b2 (1%)

. To override the default values for the load balancing algorithm, adjust the annotation on the

route by setting the algorithm to roundrobin. For a route on OpenShift Container Platform, the
default load balancing algorithm is set to random or source values.
To set the algorithm to roundrobin, run the command:

I $ oc annotate routes/<route-name> haproxy.router.openshift.io/balance=roundrobin

For Transport Layer Security (TLS) passthrough routes, the default value is source. For all
other routes, the default is random.

. To alter the weight of an individual service relative to itself or to the primary service, use the --

adjust flag. Specifying a percentage adjusts the service relative to either the primary or the first
alternate (if you specify the primary). If there are other backends, their weights are kept
proportional to the changed.

The following example alters the weight of ab-example-a and ab-example-b services:

I $ oc set route-backends ab-example --adjust ab-example-a=200 ab-example-b=10
Alternatively, alter the weight of a service by specifying a percentage:
I $ oc set route-backends ab-example --adjust ab-example-b=5%

By specifying + before the percentage declaration, you can adjust a weighting relative to the
current setting. For example:

I $ oc set route-backends ab-example --adjust ab-example-b=+15%

The --equal flag sets the weight of all services to 100:

CHAPTER 7. DEPLOYMENTS

I $ oc set route-backends ab-example --equal

The --zero flag sets the weight of all services to 0. All requests then return with a 503 error.

NOTE

Not all routers may support multiple or weighted backends.
7.4.5.1.4. One service, multipleDeployment objects

Procedure

1. Create a new application, adding a label ab-example=true that will be common to all shards:

$ oc new-app openshift/deployment-example --name=ab-example-a --as-deployment-
config=true --labels=ab-example=true --env=SUBTITLE\=shardA

I $ oc delete svc/ab-example-a
The application is deployed and a service is created. This is the first shard.
2. Make the application available via a route, or use the service IP directly:

I $ oc expose deployment ab-example-a --name=ab-example --selector=ab-example\=true
I $ oc expose service ab-example

3. Browse to the application at ab-example-<project_names.<router_domains to verify you see
the v1 image.

4. Create a second shard based on the same source image and label as the first shard, but with a
different tagged version and unique environment variables:

$ oc new-app openshift/deployment-example:v2 \

--name=ab-example-b --labels=ab-example=true \
SUBTITLE="shard B" COLOR="red" --as-deployment-config=true

I $ oc delete svc/ab-example-b

5. At this point, both sets of pods are being served under the route. However, because both
browsers (by leaving a connection open) and the router (by default, through a cookie) attempt
to preserve your connection to a back-end server, you might not see both shards being
returned to you.

To force your browser to one or the other shard:

a. Use the oc scale command to reduce replicas of ab-example-a to 0.
I $ oc scale dc/ab-example-a --replicas=0

Refresh your browser to show v2 and shard B (in red).

b. Scale ab-example-a to 1 replica and ab-example-b to 0:

129

OpenShift Container Platform 4.18 Building applications

I $ oc scale dc/ab-example-a --replicas=1; oc scale dc/ab-example-b --replicas=0

Refresh your browser to show v1 and shard A (in blue).
6. If you trigger a deployment on either shard, only the pods in that shard are affected. You can
trigger a deployment by changing the SUBTITLE environment variable in either Deployment

object:

I $ oc edit dc/ab-example-a
or

I $ oc edit dc/ab-example-b

7.4.6. Additional resources

® Route-specific annotations

130

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/ingress_and_load_balancing/#nw-route-specific-annotations

CHAPTER 8. QUOTAS

CHAPTER 8. QUOTAS

8.1. RESOURCE QUOTAS PER PROJECT

A resource quota, defined by a ResourceQuota object, provides constraints that limit aggregate
resource consumption per project. It can limit the quantity of objects that can be created in a project by
type, as well as the total amount of compute resources and storage that might be consumed by
resources in that project.

This guide describes how resource quotas work, how cluster administrators can set and manage
resource quotas on a per project basis, and how developers and cluster administrators can view them.

8.1.1. Resources managed by quotas

The following describes the set of compute resources and object types that can be managed by a
quota.

NOTE

A podisin a terminal state if status.phase in (Failed, Succeeded) is true.

Table 8.1. Compute resources managed by quota

Resource Name Description

cpu The sum of CPU requests across all pods in a non-terminal state cannot exceed
this value. cpu and requests.cpu are the same value and can be used
interchangeably.

memory The sum of memory requests across all pods in a non-terminal state cannot
exceed this value. memory and requests.memory are the same value and
can be used interchangeably.

requests.cpu The sum of CPU requests across all pods in a non-terminal state cannot exceed
this value. cpu and requests.cpu are the same value and can be used
interchangeably.

requests.memory The sum of memory requests across all pods in a non-terminal state cannot
exceed this value. memory and requests.memory are the same value and
can be used interchangeably.

limits.cpu The sum of CPU limits across all pods in a non-terminal state cannot exceed
this value.

limits.memory The sum of memory limits across all pods in a non-terminal state cannot exceed
this value.

Table 8.2. Storage resources managed by quota

131

OpenShift Container Platform 4.18 Building applications

Resource Name Description

requests.storage

persistentvolumeclaim
s

<storage-class-
name>.storageclass.st
orage.k8s.io/requests.
storage

<storage-class-
name>.storageclass.st
orage.k8s.io/persistent
volumeclaims

ephemeral-storage

requests.ephemeral-
storage

limits.ephemeral-
storage

The sum of storage requests across all persistent volume claims in any state
cannot exceed this value.

The total number of persistent volume claims that can exist in the project.

The sum of storage requests across all persistent volume claims in any state
that have a matching storage class, cannot exceed this value.

The total number of persistent volume claims with a matching storage class
that can exist in the project.

The sum of local ephemeral storage requests across all pods in a non-terminal
state cannot exceed this value. ephemeral-storage and
requests.ephemeral-storage are the same value and can be used
interchangeably.

The sum of ephemeral storage requests across all pods in a non-terminal state
cannot exceed this value. ephemeral-storage and requests.ephemeral-
storage are the same value and can be used interchangeably.

The sum of ephemeral storage limits across all pods in a non-terminal state
cannot exceed this value.

Table 8.3. Object counts managed by quota

Resource Name Description

pods

replicationcontrollers

resourcequotas

services

services.loadbalancers

services.nodeports

132

The total number of pods in a non-terminal state that can exist in the project.

The total number of ReplicationControllers that can exist in the project.

The total number of resource quotas that can exist in the project.

The total number of services that can exist in the project.

The total number of services of type LoadBalancer that can exist in the
project.

The total number of services of type NodePort that can exist in the project.

CHAPTER 8. QUOTAS

Resource Name Description

secrets The total number of secrets that can exist in the project.
configmaps The total number of ConfigMap objects that can exist in the project.

persistentvolumeclaim The total number of persistent volume claims that can exist in the project.
S

openshift.io/imagestre The total number of imagestreams that can exist in the project.
ams

8.1.2. Quota scopes

Each quota can have an associated set of scopes. A quota only measures usage for a resource if it
matches the intersection of enumerated scopes.

Adding a scope to a quota restricts the set of resources to which that quota can apply. Specifying a
resource outside of the allowed set results in a validation error.

Scope Description

BestEffort Match pods that have best effort quality of service
for either cpu ormemory.

NotBestEffort Match pods that do not have best effort quality of
service for cpu and memory.
A BestEffort scope restricts a quota to limiting the following resources:
® pods
A NotBestEffort scope restricts a quota to tracking the following resources:
® pods
® memory
® requests.memory
® [imits.memory
® cpu
® requests.cpu

e [imits.cpu

8.1.3. Quota enforcement

133

OpenShift Container Platform 4.18 Building applications

After a resource quota for a project is first created, the project restricts the ability to create any new
resources that may violate a quota constraint until it has calculated updated usage statistics.

After a quota is created and usage statistics are updated, the project accepts the creation of new
content. When you create or modify resources, your quota usage is incremented immediately upon the
request to create or modify the resource.

When you delete a resource, your quota use is decremented during the next full recalculation of quota
statistics for the project. A configurable amount of time determines how long it takes to reduce quota
usage statistics to their current observed system value.

If project modifications exceed a quota usage limit, the server denies the action, and an appropriate
error message is returned to the user explaining the quota constraint violated, and what their currently
observed usage statistics are in the system.

8.1.4. Requests versus limits

When allocating compute resources, each container might specify a request and a limit value each for
CPU, memory, and ephemeral storage. Quotas can restrict any of these values.

If the quota has a value specified for requests.cpu or requests.memory, then it requires that every
incoming container make an explicit request for those resources. If the quota has a value specified for
limits.cpu or limits.memory, then it requires that every incoming container specify an explicit limit for
those resources.

8.1.5. Sample resource quota definitions

core-object-counts.yami

apiVersion: vi
kind: ResourceQuota
metadata:
name: core-object-counts
spec:
hard:
configmaps: "10" 0
persistentvolumeclaims: "4" 9
replicationcontrollers: "20" 6
secrets: "10" ﬂ
services: "10" 9
services.loadbalancers: "2" G

The total number of ConfigMap objects that can exist in the project.

The total number of persistent volume claims (PVCs) that can exist in the project.
The total number of replication controllers that can exist in the project.

The total number of secrets that can exist in the project.

The total number of services that can exist in the project.

The total number of services of type LoadBalancer that can exist in the project.

QD000

134

CHAPTER 8. QUOTAS

openshift-object-counts.yaml

apiVersion: vi
kind: ResourceQuota
metadata:
name: openshift-object-counts
spec:
hard:
openshift.io/imagestreams: "10" ﬂ

ﬂ The total number of image streams that can exist in the project.

compute-resources.yaml

apiVersion: vi
kind: ResourceQuota
metadata:

name: compute-resources
spec:

hard:

pods: "4" ﬂ
requests.cpu: "1" 9
requests.memory: 1Gi 6
limits.cpu: "2"
limits.memory: 2Gi

The total number of pods in a non-terminal state that can exist in the project.
Across all pods in a non-terminal state, the sum of CPU requests cannot exceed 1 core.
Across all pods in a non-terminal state, the sum of memory requests cannot exceed 1Gi.

Across all pods in a non-terminal state, the sum of CPU limits cannot exceed 2 cores.

0009

Across all pods in a non-terminal state, the sum of memory limits cannot exceed 2Gi.

besteffort.yaml

apiVersion: vi
kind: ResourceQuota
metadata:

name: besteffort
spec:

hard:

pods: "1" ﬂ
scopes:
- BestEffort 9

The total number of pods in a non-terminal state with BestEffort quality of service that can exist in
the project.

135

OpenShift Container Platform 4.18 Building applications

e Restricts the quota to only matching pods that have BestEffort quality of service for either
memory or CPU.

compute-resources-long-running.yami

apiVersion: vi
kind: ResourceQuota
metadata:
name: compute-resources-long-running
spec:
hard:

pods: "4" ﬂ

limits.cpu: "4" 9

limits.memory: "2Gi" e
scopes:

- NotTerminating ﬂ

The total number of pods in a non-terminal state.
Across all pods in a non-terminal state, the sum of CPU limits cannot exceed this value.
Across all pods in a non-terminal state, the sum of memory limits cannot exceed this value.

Restricts the quota to only matching pods where spec.activeDeadlineSeconds is set to nil. Build
pods fall under NotTerminating unless the RestartNever policy is applied.

0009

compute-resources-time-bound.yaml

apiVersion: vi
kind: ResourceQuota
metadata:
name: compute-resources-time-bound
spec:
hard:

pods: "2" ﬂ
limits.cpu: "1" 9

limits.memory: "1Gi" e
scopes:

- Terminating ﬂ

The total number of pods in a terminating state.
Across all pods in a terminating state, the sum of CPU limits cannot exceed this value.

Across all pods in a terminating state, the sum of memory limits cannot exceed this value.

0009

Restricts the quota to only matching pods where spec.activeDeadlineSeconds >=0. For example,

this quota charges for build or deployer pods, but not long running pods like a web server or
database.

storage-consumption.yaml

136

0 O o© ® 0 o o9

CHAPTER 8. QUOTAS

apiVersion: vi
kind: ResourceQuota
metadata:
name: storage-consumption
spec:
hard:
persistentvolumeclaims: "10" ﬂ
requests.storage: "50Gi" 9
gold.storageclass.storage.k8s.io/requests.storage: "10Gi" 6
silver.storageclass.storage.k8s.io/requests.storage: "20Gi"
silver.storageclass.storage.k8s.io/persistentvolumeclaims: "5" 9
bronze.storageclass.storage.k8s.io/requests.storage: "0" G
bronze.storageclass.storage.k8s.io/persistentvolumeclaims: "0" ﬂ
requests.ephemeral-storage: 2Gi 6
limits.ephemeral-storage: 4Gi Q

The total number of persistent volume claims in a project

Across all persistent volume claims in a project, the sum of storage requested cannot exceed this
value.

Across all persistent volume claims in a project, the sum of storage requested in the gold storage
class cannot exceed this value.

Across all persistent volume claims in a project, the sum of storage requested in the silver storage
class cannot exceed this value.

Across all persistent volume claims in a project, the total number of claims in the silver storage class
cannot exceed this value.

Across all persistent volume claims in a project, the sum of storage requested in the bronze storage
class cannot exceed this value. When this is set to 0, it means bronze storage class cannot request
storage.

Across all persistent volume claims in a project, the sum of storage requested in the bronze storage
class cannot exceed this value. When this is set to 0, it means bronze storage class cannot create
claims.

Across all pods in a non-terminal state, the sum of ephemeral storage requests cannot exceed 2Gi.

Across all pods in a non-terminal state, the sum of ephemeral storage limits cannot exceed 4Gi.

8.1.6. Creating a quota

You can create a quota to constrain resource usage in a given project.

Procedure

1. Define the quotain a file.

2. Use the file to create the quota and apply it to a project:

I $ oc create -f <file> [-n <project_name>]

137

OpenShift Container Platform 4.18 Building applications

For example:

I $ oc create -f core-object-counts.yaml -n demoproject

8.1.6.1. Creating object count quotas

You can create an object count quota for all standard namespaced resource types on OpenShift
Container Platform, such as BuildConfig and DeploymentConfig objects. An object quota count places
a defined quota on all standard namespaced resource types.

When using a resource quota, an object is charged against the quota upon creation. These types of
quotas are useful to protect against exhaustion of resources. The quota can only be created if there are

enough spare resources within the project.

Procedure

To configure an object count quota for a resource:

1. Run the following command:

$ oc create quota <name> \
--hard=count/<resource>.<group>=<quota>,count/<resource>.<group>=<quota> ﬂ

The <resources variable is the name of the resource, and <groups is the API group, if

applicable. Use the oc api-resources command for a list of resources and their associated
APl groups.

For example:

$ oc create quota test \

hard=count/deployments.apps=2,count/replicasets.apps=4,count/pods=3,count/secrets=4

Example output

I resourcequota "test" created

This example limits the listed resources to the hard limit in each project in the cluster.

2. Verify that the quota was created:

I $ oc describe quota test

Example output

Name: test
Namespace: quota
Resource Used Hard

count/deployments.apps 0 2

count/pods 0 3
count/replicasets.apps 0 4
count/secrets 0 4

138

CHAPTER 8. QUOTAS

8.1.6.2. Setting resource quota for extended resources

Overcommitment of resources is not allowed for extended resources, so you must specify requests and
limits for the same extended resource in a quota. Currently, only quota items with the prefix requests.
is allowed for extended resources. The following is an example scenario of how to set resource quota for
the GPU resource nvidia.com/gpu.

Procedure

1. Determine how many GPUs are available on a node in your cluster. For example:

oc describe node ip-172-31-27-209.us-west-2.compute.internal | egrep
'Capacity|Allocatable|gpu!’

Example output

openshift.com/gpu-accelerator=true
Capacity:
nvidia.com/gpu: 2
Allocatable:
nvidia.com/gpu: 2
nvidia.com/gpu 0 0

In this example, 2 GPUs are available.

2. Create a ResourceQuota object to set a quota in the namespace nvidia. In this example, the
quotais 1:

Example output

apiVersion: v1
kind: ResourceQuota
metadata:
name: gpu-quota
namespace: nvidia
spec:
hard:
requests.nvidia.com/gpu: 1

3. Create the quota:

I # oc create -f gpu-quota.yaml

Example output

I resourcequota/gpu-quota created

4. Verify that the namespace has the correct quota set:

I # oc describe quota gpu-quota -n nvidia

139

OpenShift Container Platform 4.18 Building applications

Example output

Name: gpu-quota
Namespace: nvidia
Resource Used Hard

requests.nvidia.com/gpu 0 1

5. Define a pod that asks for a single GPU. The following example definition file is called gpu-
pod.yaml:

apiVersion: vi
kind: Pod
metadata:
generateName: gpu-pod-
namespace: nvidia
spec:
restartPolicy: OnFailure
containers:
- name: rhel7-gpu-pod
image: rhel7
env:
- name: NVIDIA_VISIBLE_DEVICES
value: all
- name: NVIDIA_DRIVER_CAPABILITIES
value: "compute,utility"
- name: NVIDIA_ REQUIRE_CUDA
value: "cuda>=5.0"
command: ["sleep”]
args: ["infinity"]
resources:
limits:
nvidia.com/gpu: 1

6. Create the pod:
I # oc create -f gpu-pod.yaml
7. Verify that the pod is running:
I # oc get pods
Example output

NAME READY STATUS RESTARTS AGE
gpu-pod-s46h7 1/1 Running 0 im

8. Verify that the quota Used counter is correct:

I # oc describe quota gpu-quota -n nvidia

Example output

140

CHAPTER 8. QUOTAS

Name: gpu-quota
Namespace: nvidia
Resource Used Hard

requests.nvidia.com/gpu 1 1

9. Attempt to create a second GPU pod in the nvidia namespace. This is technically available on
the node because it has 2 GPUs:

I # oc create -f gpu-pod.yam|

Example output

Error from server (Forbidden): error when creating "gpu-pod.yaml": pods "gpu-pod-f7z2w" is
forbidden: exceeded quota: gpu-quota, requested: requests.nvidia.com/gpu=1, used:
requests.nvidia.com/gpu=1, limited: requests.nvidia.com/gpu=1

This Forbidden error message is expected because you have a quota of 1 GPU and this pod
tried to allocate a second GPU, which exceeds its quota.

8.1.7. Viewing a quota

You can view usage statistics related to any hard limits defined in a quota for a project by navigating in
the web console to the project’s Quota page.

You can also use the CLI to view quota details.

Procedure

1. Get the list of quotas defined in the project. For example, for a project called demoproject:

I $ oc get quota -n demoproject

Example output

NAME AGE REQUEST
LIMIT
besteffort 4s pods: 1/2

compute-resources-time-bound 10m pods: 0/2

limits.cpu: 0/1, limits.memory: 0/1Gi

core-object-counts 109s configmaps: 2/10, persistentvolumeclaims: 1/4,
replicationcontrollers: 1/20, secrets: 9/10, services: 2/10

2. Describe the quota you are interested in, for example the core-object-counts quota:
I $ oc describe guota core-object-counts -n demoproject
Example output

Name: core-object-counts
Namespace: demoproject
Resource Used Hard

141

OpenShift Container Platform 4.18 Building applications

configmaps 3 10
persistentvolumeclaims 0 4
replicationcontrollers 3 20
secrets 910

services 2 10

8.1.8. Configuring explicit resource quotas

Configure explicit resource quotas in a project request template to apply specific resource quotas in
new projects.

Prerequisites

® Access to the cluster as a user with the cluster-admin role.

e Install the OpenShift CLI (oc).

Procedure
1. Add aresource quota definition to a project request template:
e |f a project request template does not exist in a cluster:

a. Create a bootstrap project template and output it to a file called template.yamil:

I $ oc adm create-bootstrap-project-template -o yaml > template.yami

b. Add a resource quota definition to template.yaml. The following example defines a
resource quota named 'storage-consumption’. The definition must be added before the
parameters: section in the template:

- apiVersion: v1
kind: ResourceQuota
metadata:
name: storage-consumption
namespace: ${PROJECT_NAME}
spec:
hard:
persistentvolumeclaims: "10" ﬂ
requests.storage: "50Gi" 9
gold.storageclass.storage.k8s.io/requests.storage: "10Gi" 6
silver.storageclass.storage.k8s.io/requests.storage: "20Gi"
silver.storageclass.storage.k8s.io/persistentvolumeclaims: "5" 6
bronze.storageclass.storage.k8s.io/requests.storage: "0" G
bronze.storageclass.storage.k8s.io/persistentvolumeclaims: "0" ﬂ

The total number of persistent volume claims in a project.

®9

Across all persistent volume claims in a project, the sum of storage requested
cannot exceed this value.

o

Across all persistent volume claims in a project, the sum of storage requested in
the gold storage class cannot exceed this value.

142

CHAPTER 8. QUOTAS

Across all persistent volume claims in a project, the sum of storage requested in
the silver storage class cannot exceed this value.

Across all persistent volume claims in a project, the total number of claims in the
silver storage class cannot exceed this value.

Across all persistent volume claims in a project, the sum of storage requested in
the bronze storage class cannot exceed this value. When this value is set to 0, the

bronze storage class cannot request storage.

Across all persistent volume claims in a project, the sum of storage requested in
the bronze storage class cannot exceed this value. When this value is set to 0, the

bronze storage class cannot create claims.

O O ® o

c. Create a project request template from the modified template.yaml file in the
openshift-config namespace:

I $ oc create -f template.yaml -n openshift-config

NOTE

To include the configuration as a kubectl.kubernetes.io/last-applied-
configuration annotation, add the --save-config option to the oc create
command.

By default, the template is called project-request.

e |f a project request template already exists within a cluster:

NOTE

If you declaratively or imperatively manage objects within your cluster by
using configuration files, edit the existing project request template through
those files instead.

a. List templates in the openshift-config namespace:

I $ oc get templates -n openshift-config

b. Edit an existing project request template:

I $ oc edit template <project_request_template> -n openshift-config

c. Add a resource quota definition, such as the preceding storage-consumption example,
into the existing template. The definition must be added before the parameters:
section in the template.

2. If you created a project request template, reference it in the cluster’s project configuration
resource:

a. Access the project configuration resource for editing:

143

OpenShift Container Platform 4.18 Building applications

® By using the web console:
i. Navigate to the Administration — Cluster Settings page.
ii. Click Configuration to view all configuration resources.
ii. Find the entry for Project and click Edit YAML.
® By using the CLI:

i. Edit the project.config.openshift.io/cluster resource:

I $ oc edit project.config.openshift.io/cluster

b. Update the spec section of the project configuration resource to include the
projectRequestTemplate and name parameters. The following example references the
default project request template name project-request:

apiVersion: config.openshift.io/v1
kind: Project
metadata:
..
spec:
projectRequestTemplate:
name: project-request

3. Verify that the resource quota is applied when projects are created:
a. Create a project:

I $ oc new-project <project_name>

b. List the project’s resource quotas:

I $ oc get resourcequotas

c. Describe the resource quota in detail:

I $ oc describe resourcequotas <resource_quota_name>

8.2. RESOURCE QUOTAS ACROSS MULTIPLE PROJECTS
A multi-project quota, defined by a ClusterResourceQuota object, allows quotas to be shared across
multiple projects. Resources used in each selected project are aggregated and that aggregate is used to

limit resources across all the selected projects.

This guide describes how cluster administrators can set and manage resource quotas across multiple
projects.

144

CHAPTER 8. QUOTAS

IMPORTANT

Do not run workloads in or share access to default projects. Default projects are reserved
for running core cluster components.

The following default projects are considered highly privileged: default, kube-public,
kube-system, openshift, openshift-infra, openshift-node, and other system-created
projects that have the openshift.io/run-level label set to 0 or 1. Functionality that relies
on admission plugins, such as pod security admission, security context constraints, cluster
resource quotas, and image reference resolution, does not work in highly privileged
projects.

8.2.1. Selecting multiple projects during quota creation

When creating quotas, you can select multiple projects based on annotation selection, label selection, or
both.

Procedure

1. To select projects based on annotations, run the following command:

$ oc create clusterquota for-user \
--project-annotation-selector openshift.io/requester=<user_name> \
--hard pods=10\
--hard secrets=20

This creates the following ClusterResourceQuota object:

apiVersion: quota.openshift.io/v1
kind: ClusterResourceQuota
metadata:
name: for-user
spec:
quota: ﬂ
hard:
pods: "10"
secrets: "20"
selector:

annotations: 9
openshift.io/requester: <user_name>

labels: null 9

status:

namespaces: ﬂ
- namespace: ns-one
status:
hard:
pods: "10"
secrets: "20"
used:
pods: "1"
secrets: "9"
total: 9
hard:
pods: "10"

145

OpenShift Container Platform 4.18 Building applications

secrets: "20"
used:

pods: "1"

secrets: "9"

The ResourceQuotaSpec object that will be enforced over the selected projects.
A simple key-value selector for annotations.
A label selector that can be used to select projects.

A per-namespace map that describes current quota usage in each selected project.

00009

The aggregate usage across all selected projects.

This multi-project quota document controls all projects requested by <user_names using the
default project request endpoint. You are limited to 10 pods and 20 secrets.

2. Similarly, to select projects based on labels, run this command:

$ oc create clusterresourcequota for-name \ﬂ

--project-label-selector=name=frontend \9
--hard=pods=10 --hard=secrets=20

Q Both clusterresourcequota and clusterquota are aliases of the same command. for-
name is the name of the ClusterResourceQuota object.

9 To select projects by label, provide a key-value pair by using the format --project-label-
selector=key=value.

This creates the following ClusterResourceQuota object definition:

apiVersion: quota.openshift.io/v1
kind: ClusterResourceQuota
metadata:
creationTimestamp: null
name: for-name
spec:
quota:
hard:
pods: "10"
secrets: "20"
selector:
annotations: null
labels:
matchLabels:
name: frontend

8.2.2. Viewing applicable cluster resource quotas

A project administrator is not allowed to create or modify the multi-project quota that limits his or her
project, but the administrator is allowed to view the multi-project quota documents that are applied to
his or her project. The project administrator can do this via the AppliedClusterResourceQuota

146

CHAPTER 8. QUOTAS

resource.

Procedure

1. To view quotas applied to a project, run:

I $ oc describe AppliedClusterResourceQuota

Example output

Name: for-user

Namespace: <none>

Created: 19 hours ago

Labels: <none>

Annotations: <none>

Label Selector: <null>

AnnotationSelector: map[openshift.io/requester:<user-name>]
Resource Used Hard

pods 1 10

secrets 9 20

8.2.3. Selection granularity

Because of the locking consideration when claiming quota allocations, the number of active projects
selected by a multi-project quota is an important consideration. Selecting more than 100 projects under
a single multi-project quota can have detrimental effects on APl server responsiveness in those
projects.

147

OpenShift Container Platform 4.18 Building applications

CHAPTER 9. USING CONFIG MAPS WITH APPLICATIONS

Config maps allow you to decouple configuration artifacts from image content to keep containerized
applications portable.

The following sections define config maps and how to create and use them.

9.1. UNDERSTANDING CONFIG MAPS

Many applications require configuration by using some combination of configuration files, command-line
arguments, and environment variables. In OpenShift Container Platform, these configuration artifacts
are decoupled from image content to keep containerized applications portable.

The ConfigMap object provides mechanisms to inject containers with configuration data while keeping
containers agnostic of OpenShift Container Platform. A config map can be used to store fine-grained
information like individual properties or coarse-grained information like entire configuration files or
JSON blobs.

The ConfigMap object holds key-value pairs of configuration data that can be consumed in pods or
used to store configuration data for system components such as controllers. For example:

ConfigMap Object Definition

kind: ConfigMap
apiVersion: vi
metadata:
creationTimestamp: 2016-02-18T19:14:38Z
name: example-config
namespace: my-namespace
data: ﬂ
example.property.1: hello
example.property.2: world
example.property.file: |-
property.1=value-1
property.2=value-2
property.3=value-3
binaryData:
bar: L3Jvb3QvMTAw @)

ﬂ Contains the configuration data.

Points to a file that contains non-UTF8 data, for example, a binary Java keystore file. Enter the file
data in Base 64.

NOTE

You can use the binaryData field when you create a config map from a binary file, such as
an image.

Configuration data can be consumed in pods in a variety of ways. A config map can be used to:

® Populate environment variable values in containers

148

CHAPTER 9. USING CONFIG MAPS WITH APPLICATIONS

® Set command-line arguments in a container
® Populate configuration files in a volume
Users and system components can store configuration data in a config map.

A config map is similar to a secret, but designed to more conveniently support working with strings that
do not contain sensitive information.

9.1.1. Config map restrictions

A config map must be created before its contents can be consumed in pods.

Controllers can be written to tolerate missing configuration data. Consult individual components
configured by using config maps on a case-by-case basis.

ConfigMap objects reside in a project.
They can only be referenced by pods in the same project.
The Kubelet only supports the use of a config map for pods it gets from the APl server.

This includes any pods created by using the CLI, or indirectly from a replication controller. It does not
include pods created by using the OpenShift Container Platform node’s --manifest-url flag, its --config
flag, orits REST API because these are not common ways to create pods.

Additional resources

® Creating and using config maps

9.2. USE CASES: CONSUMING CONFIG MAPS IN PODS

The following sections describe some uses cases when consuming ConfigMap objects in pods.

9.2.1. Populating environment variables in containers by using config maps

You can use config maps to populate individual environment variables in containers or to populate
environment variables in containers from all keys that form valid environment variable names.

As an example, consider the following config map:

ConfigMap with two environment variables

apiVersion: vi
kind: ConfigMap
metadata:
name: special-config ﬂ
namespace: default 9
data:

special.how: very 6
special.type: charm

ﬂ Name of the config map.

149

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/nodes/#creating-and-using-config-maps

OpenShift Container Platform 4.18 Building applications

9 The project in which the config map resides. Config maps can only be referenced by pods in the
same project.

wnvironment variables to inject.

ConfigMap with one environment variable

apiVersion: vi
kind: ConfigMap
metadata:
name: env-config 0
namespace: default
data:

log_level: INFO @)

ﬂ Name of the config map.

9 Environment variable to inject.

Procedure

® You can consume the keys of this ConfigMap in a pod using configMapKeyRef sections.

Sample Pod specification configured to inject specific environment variables

apiVersion: vi
kind: Pod
metadata:
name: dapi-test-pod
spec:
securityContext:
runAsNonRoot: true
seccompProfile:
type: RuntimeDefault
containers:
- name: test-container
image: gcr.io/google_containers/busybox
command: ["/bin/sh", "-c", "env"]

env: ﬂ
- name: SPECIAL_LEVEL_KEY 9
valueFrom:
configMapKeyRef:
name: special-config G
key: special.how
- name: SPECIAL_TYPE_KEY
valueFrom:
configMapKeyRef:
name: special-config 6
key: special.type G
optional: true
envFrom:
- configMapRef:

150

CHAPTER 9. USING CONFIG MAPS WITH APPLICATIONS

name: env-config g
securityContext:
allowPrivilegeEscalation: false
capabilities:
drop: [ALL]
restartPolicy: Never

ﬂ Stanza to pull the specified environment variables from a ConfigMap.

9 Name of a pod environment variable that you are injecting a key's value into.
%Name of the ConfigMap to pull specific environment variables from.
%Environment variable to pull from the ConfigMap.

Q Makes the environment variable optional. As optional, the pod will be started even if the
specified ConfigMap and keys do not exist.

@ Stanza to pull all environment variables from a ConfigMap.

@ Name of the ConfigMap to pull all environment variables from.

When this pod is run, the pod logs will include the following output:

SPECIAL_LEVEL_KEY=very
log_level=INFO

NOTE

SPECIAL_TYPE_KEY=charm is not listed in the example output because optional: true
is set.

9.2.2. Setting command-line arguments for container commands with config maps

You can use a config map to set the value of the commands or arguments in a container by using the
Kubernetes substitution syntax $(VAR_NAME).

As an example, consider the following config map:

apiVersion: vi
kind: ConfigMap
metadata:
name: special-config
namespace: default
data:
special.how: very
special.type: charm

Procedure

® Toinject values into a command in a container, you must consume the keys you want to use as
environment variables. Then you can refer to them in a container's command using the
$(VAR_NAME) syntax.

151

OpenShift Container Platform 4.18 Building applications

Sample pod specification configured to inject specific environment variables

apiVersion: vi
kind: Pod
metadata:
name: dapi-test-pod
spec:
securityContext:
runAsNonRoot: true
seccompProfile:
type: RuntimeDefault
containers:
- name: test-container
image: gcr.io/google_containers/busybox
command: ["/bin/sh", "-c", "echo $(SPECIAL_LEVEL_KEY) $(SPECIAL_TYPE_KEY)"]

env:
- name: SPECIAL_LEVEL_KEY
valueFrom:
configMapKeyRef:
name: special-config
key: special.how
- name: SPECIAL_TYPE_KEY
valueFrom:
configMapKeyRef:
name: special-config
key: special.type
securityContext:
allowPrivilegeEscalation: false
capabilities:
drop: [ALL]
restartPolicy: Never

ﬂ Inject the values into a command in a container using the keys you want to use as
environment variables.

When this pod is run, the output from the echo command run in the test-container container is
as follows:

I very charm

9.2.3. Injecting content into a volume by using config maps

You can inject content into a volume by using config maps.

Example ConfigMap custom resource (CR)

apiVersion: vi
kind: ConfigMap
metadata:
name: special-config
namespace: default

152

CHAPTER 9. USING CONFIG MAPS WITH APPLICATIONS

data:
special.how: very
special.type: charm

Procedure

You have a couple different options for injecting content into a volume by using config maps.

® The most basic way to inject content into a volume by using a config map is to populate the
volume with files where the key is the file name and the content of the file is the value of the
key:

apiVersion: vi
kind: Pod
metadata:
name: dapi-test-pod
spec:
securityContext:
runAsNonRoot: true
seccompProfile:
type: RuntimeDefault
containers:
- name: test-container
image: gcr.io/google_containers/busybox
command: ["/bin/sh", "-c", "cat", "/etc/config/special.how"]
volumeMounts:
- name: config-volume
mountPath: /etc/config
securityContext:
allowPrivilegeEscalation: false
capabilities:
drop: [ALL]
volumes:
- name: config-volume
configMap:
name: special-config ﬂ
restartPolicy: Never

ﬂ File containing key.

When this pod is run, the output of the cat command will be:

I very

® You can also control the paths within the volume where config map keys are projected:

apiVersion: vi
kind: Pod
metadata:
name: dapi-test-pod
spec:
securityContext:
runAsNonRoot: true
seccompProfile:
type: RuntimeDefault

153

OpenShift Container Platform 4.18 Building applications

154

containers:
- name: test-container
image: gcr.io/google_containers/busybox
command: ["/bin/sh", "-c", "cat", "/etc/config/path/to/special-key"]
volumeMounts:
- name: config-volume
mountPath: /etc/config
securityContext:
allowPrivilegeEscalation: false
capabilities:
drop: [ALL]
volumes:
- name: config-volume
configMap:
name: special-config
items:
- key: special.how
path: path/to/special-key ﬂ
restartPolicy: Never

ﬂ Path to config map key.

When this pod is run, the output of the cat command will be:

I very

CHAPTER 10. MONITORING PROJECT AND APPLICATION METRICS USING THE DEVELOPER PERSPECTIVE

CHAPTER 10. MONITORING PROJECT AND APPLICATION
METRICS USING THE DEVELOPER PERSPECTIVE

The Observe view in the Developer perspective provides options to monitor your project or application
metrics, such as CPU, memory, and bandwidth usage, and network related information.

10.1. PREREQUISITES

® You have created and deployed applications on OpenShift Container Platform .

® You have logged in to the web console and have switched to the Developer perspective.

10.2. MONITORING YOUR PROJECT METRICS

After you create applications in your project and deploy them, you can use the Developer perspective in
the web console to see the metrics for your project.

Procedure

1. Go to Observe to see the Dashboard, Metrics, Alerts, and Events for your project.

2. Optional: Use the Dashboard tab to see graphs depicting the following application metrics:

® CPU usage
® Memory usage
® Bandwidth consumption

® Network-related information such as the rate of transmitted and received packets and the
rate of dropped packets.

In the Dashboard tab, you can access the Kubernetes compute resources dashboards.

NOTE

In the Dashboard list, the Kubernetes / Compute Resources / Namespace
(Pods) dashboard is selected by default.

-

Use the following options to see further details:

® Select a dashboard from the Dashboard list to see the filtered metrics. All dashboards
produce additional sub-menus when selected, except Kubernetes / Compute Resources /
Namespace (Pods).

® Select an option from the Time Range list to determine the time frame for the data being
captured.

® Setacustom time range by selecting Custom time range from the Time Range list. You
can input or select the From and To dates and times. Click Save to save the custom time

range.

® Select an option from the Refresh Intervallist to determine the time period after which the
data is refreshed.

155

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/web_console/#web-console
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/web_console/#about-developer-perspective_web-console-overview

OpenShift Container Platform 4.18 Building applications

® Hover your cursor over the graphs to see specific details for your pod.

® Click Inspect located in the upper-right corner of every graph to see any particular graph
details. The graph details appear in the Metrics tab.

3. Optional: Use the Metrics tab to query for the required project metric.

Figure 10.1. Monitoring metrics

Monitoring

Dashboard ~ Metrics Alerts Events

Memory Usage - Show Prom@L.

17:50 17:55 18:00 18:05 1810 1815

nnnnn pace pod Value
@ test-monitoring mongodb-1-frmx6 1138143232
I test-monitoring ruby-ex-git-5674b9dc5b-52dI8 39239680

B test-monitoring nodejs-ex-6d89c77bBe-g75rt 29904896

a. Inthe Select Query list, select an option to filter the required details for your project. The
filtered metrics for all the application pods in your project are displayed in the graph. The
pods in your project are also listed below.

b. From the list of pods, clear the colored square boxes to remove the metrics for specific
pods to further filter your query result.

c. Click Show PromQL to see the Prometheus query. You can further modify this query with
the help of prompts to customize the query and filter the metrics you want to see for that

namespace.

d. Use the drop-down list to set a time range for the data being displayed. You can click Reset
Zoom to reset it to the default time range.

e. Optional: In the Select Query list, select Custom Query to create a custom Prometheus
query and filter relevant metrics.

4. Optional: Use the Alerts tab to do the following tasks:
® See the rules that trigger alerts for the applications in your project.
® |dentify the alerts firing in the project.

® Silence such alerts if required.

156

CHAPTER 10. MONITORING PROJECT AND APPLICATION METRICS USING THE DEVELOPER PERSPECTIVE

Figure 10.2. Monitoring alerts

Monitoring

Dashboard ~ Metrics ~ Alerts Events

Y Filter = Search by name. /
Name Severity AlertState Notifications
~ HighErrors © Critical A 1Firing o
HighErrors & Firing
v VersionAlert Warning A IFiring c
VersionAlert A Firing

Use the following options to see further details:
e Use the Filter list to filter the alerts by their Alert State and Severity.

e Click on an alert to go to the details page for that alert. In the Alerts Details page, you can
click View Metrics to see the metrics for the alert.

e Use the Notifications toggle adjoining an alert rule to silence all the alerts for that rule, and
then select the duration for which the alerts will be silenced from the Silence forlist. You
must have the permissions to edit alerts to see the Notifications toggle.

® Use the Options menu adjoining an alert rule to see the details of the alerting rule.
5. Optional: Use the Events tab to see the events for your project.

Figure 10.3. Monitoring events

Monitoring

Dashboard Metrics Alerts Events

Resources Al w Al Types = Filter Events by name or message.

e [0 0]

@D ruby-ex-git-57466¢h9f @ testproj @ 6 minutes ago
Generated from replicaset-controller

Showing 74 events

Deleted pod: ruby-ex-git-57466chSf-jsd6f

@ ruby-ex-git-57559b66 dc-1x29b @ testproj D 6 minutes ago
Generated from kubelet on ip-10-0-149-154.ec2.internal

fully pulled image "im: tryopenshift g 5000/testproj/ruby-ex-git@sha256:6afl50a40caedfaec69573c08eeb08604e2705362b85cef92561d3b2c478a041"
@ ruby-ex-git-57559b66dc-1xz9b @ testproj @ 6 minutes ago
Generated from kubelet on ip-10-0-149-154.ec2.internal

Created container ruby-ex-git

@ ruby-ex-git-57559b66dc-1xz29b @ testproj @ 6 minutes ago
Generated from kubelet on ip-10-0-149-154.ec2 internal

Started container ruby-ex-git

You can filter the displayed events using the following options:

® |n the Resources list, select a resource to see events for that resource.

e |nthe All Typeslist, select a type of event to see events relevant to that type.

® Search for specific events using the Filter events by names or messages field.

157

OpenShift Container Platform 4.18 Building applications

10.3. MONITORING YOUR APPLICATION METRICS
After you create applications in your project and deploy them, you can use the Topology view in the
Developer perspective to see the alerts and metrics for your application. Critical and warning alerts for

your application are indicated on the workload node in the Topology view.

Procedure

To see the alerts for your workload:
1. In the Topology view, click the workload to see the workload details in the right panel.

2. Click the Observe tab to see the critical and warning alerts for the application; graphs for
metrics, such as CPU, memory, and bandwidth usage; and all the events for the application.

NOTE

Only critical and warning alerts in the Firing state are displayed in the Topology
view. Alerts in the Silenced, Pending and Not Firing states are not displayed.

Figure 10.4. Monitoring application metrics

@ prometheus-example-app Actions =

g Health Checks b4

Container prometheus-example-app does not have health checks to ensure
your application is running correctly. Add Health Checks

Details Resources Monitoring

Alerts a v

0 HighErrors

an hour ago

© promet.le-app VersionAlert
2 hours ago
Metrics v
View manitering dashboard
CPU Usage

5.0e-5 F\/\/_\ N W/\m J

a. Click the alert listed in the right panel to see the alert details in the Alert Details page.

b. Click any of the charts to go to the Metrics tab to see the detailed metrics for the
application.

c. Click View monitoring dashboard to see the monitoring dashboard for that application.

158

CHAPTER 10. MONITORING PROJECT AND APPLICATION METRICS USING THE DEVELOPER PERSPECTIVE

10.4. IMAGE VULNERABILITIES BREAKDOWN
In the Developer perspective, the project dashboard shows the Image Vulnerabilities link in the Status
section. Using this link, you can view the Image Vulnerabilities breakdown window, which includes
details regarding vulnerable container images and fixable container images. The icon color indicates
severity:

® Red: High priority. Fix immediately.

® Orange: Medium priority. Can be fixed after high-priority vulnerabilities.

® Yellow: Low priority. Can be fixed after high and medium-priority vulnerabilities.

Based on the severity level, you can prioritize vulnerabilities and fix them in an organized manner.

Figure 10.5. Viewing image vulnerabilities

Image Vulnerabilities x

BT
breakdown
This propect’s conlalner images Irom Duay
Project Access Vulnerabilities e Bnamyzed Lo KIENAITY 3DR SEpENdEACY
d S DAte Qe ViArEr DI iied. M es

from cifer registres are not scanned
Vulnershle Cordarmer Images

Wiew 3 Status ik 4 High
dlk 2 Bl Loy o

E iz by ﬂ. maq @ ¥ulrarababtios & Lom

Fizable Coslaner images [P bakal)

Imie Vulrserabilities
lization
Luliza i Fpbmapaeratod Mol 33 faasls &
ol s 2 s 3 of & fizabls
i =i zFe-00 2 of & fiza -
& drumsfeperato 17 of 14 Fisalle OF
i
F ik Blpchduch/lcea y of & fizable &
7Y e Bl
ol q l':: ik P L 1 of £ limable & a
v iew all 1o
TRy T B R e ﬂ 150 Sk
I -

10.5. MONITORING YOUR APPLICATION AND IMAGE
VULNERABILITIES METRICS

After you create applications in your project and deploy them, use the Developer perspective in the web
console to see the metrics for your application dependency vulnerabilities across your cluster. The
metrics help you to analyze the following image vulnerabilities in detail:

® Total count of vulnerable images in a selected project

® Severity-based counts of all vulnerable images in a selected project

e Drilldown into severity to obtain the details, such as count of vulnerabilities, count of fixable
vulnerabilities, and number of affected pods for each vulnerable image

Prerequisites

159

OpenShift Container Platform 4.18 Building applications

® You have installed the Red Hat Quay Container Security operator from the Operator Hub.

NOTE

The Red Hat Quay Container Security operator detects vulnerabilities by
scanning the images that are in the quay registry.

-

Procedure

1. For a general overview of the image vulnerabilities, on the navigation panel of the Developer
perspective, click Project to see the project dashboard.

2. Click Image Vulnerabilities in the Status section. The window that opens displays details such
as Vulnerable Container Images and Fixable Container Images

3. For a detailed vulnerabilities overview, click the Vulnerabilities tab on the project dashboard.

a. To get more detail about an image, click its name.
b. View the default graph with all types of vulnerabilities in the Details tab.

c. Optional: Click the toggle button to view a specific type of vulnerability. For example,
click App dependency to see vulnerabilities specific to application dependency.

d. Optional: You can filter the list of vulnerabilities based on their Severity and Type or sort
them by Severity, Package, Type, Source, Current Version, and Fixed in Version.

e. Click a Vulnerability to get its associated details:

® Base image vulnerabilities display information from a Red Hat Security Advisory
(RHSA).

® App dependency vulnerabilities display information from the Snyk security application.

® About OpenShift Container Platform monitoring

160

https://docs.redhat.com/en/documentation/monitoring_stack_for_red_hat_openshift/4.18/html/about_monitoring/about-ocp-monitoring

CHAPTER 11. MONITORING APPLICATION HEALTH BY USING HEALTH CHECKS

CHAPTER 11. MONITORING APPLICATION HEALTH BY USING
HEALTH CHECKS

In software systems, components can become unhealthy due to transient issues such as temporary
connectivity loss, configuration errors, or problems with external dependencies. OpenShift Container
Platform applications have a number of options to detect and handle unhealthy containers.

11.1. UNDERSTANDING HEALTH CHECKS

A health check periodically performs diagnostics on a running container using any combination of the
readiness, liveness, and startup health checks.

You can include one or more probes in the specification for the pod that contains the container which
you want to perform the health checks.

NOTE

If you want to add or edit health checks in an existing pod, you must edit the pod
DeploymentConfig object or use the Developer perspective in the web console. You
cannot use the CLI to add or edit health checks for an existing pod.

Readiness probe

A readiness probe determines if a container is ready to accept service requests. If the readiness
probe fails for a container, the kubelet removes the pod from the list of available service endpoints.
After a failure, the probe continues to examine the pod. If the pod becomes available, the kubelet
adds the pod to the list of available service endpoints.

Liveness health check

A liveness probe determines if a container is still running. If the liveness probe fails due to a condition

such as a deadlock, the kubelet kills the container. The pod then responds based on its restart policy.

For example, a liveness probe on a pod with a restartPolicy of Always or OnFailure kills and restarts
the container.

Startup probe

A startup probe indicates whether the application within a container is started. All other probes are
disabled until the startup succeeds. If the startup probe does not succeed within a specified time
period, the kubelet kills the container, and the container is subject to the pod restartPolicy.

Some applications can require additional startup time on their first initialization. You can use a
startup probe with a liveness or readiness probe to delay that probe long enough to handle lengthy
start-up time using the failureThreshold and periodSeconds parameters.

For example, you can add a startup probe, with a failureThreshold of 30 failures and a
periodSeconds of 10 seconds (30 * 10s = 300s) for a maximum of 5 minutes, to a liveness probe.
After the startup probe succeeds the first time, the liveness probe takes over.

You can configure liveness, readiness, and startup probes with any of the following types of tests:

e HTTP GET: When using an HTTP GET test, the test determines the healthiness of the container
by using a web hook. The test is successful if the HTTP response code is between 200 and 399.
You can use an HTTP GET test with applications that return HTTP status codes when
completely initialized.

161

OpenShift Container Platform 4.18 Building applications

® Container Command: When using a container command test, the probe executes a command
inside the container. The probe is successful if the test exits with a 0 status.

® TCP socket: When using a TCP socket test, the probe attempts to open a socket to the
container. The container is only considered healthy if the probe can establish a connection. You
can use a TCP socket test with applications that do not start listening until initialization is
complete.

You can configure several fields to control the behavior of a probe:

initialDelaySeconds: The time, in seconds, after the container starts before the probe can be
scheduled. The defaultis O.

e periodSeconds: The delay, in seconds, between performing probes. The defaultis 10. This value
must be greater than timeoutSeconds.

e timeoutSeconds: The number of seconds of inactivity after which the probe times out and the
container is assumed to have failed. The default is 1. This value must be lower than
periodSeconds.

e successThreshold: The number of times that the probe must report success after a failure to
reset the container status to successful. The value must be 1 for a liveness probe. The default is
1.

e failureThreshold: The number of times that the probe is allowed to fail. The default is 3. After
the specified attempts:

o for aliveness probe, the container is restarted
o forareadiness probe, the pod is marked Unready

o forastartup probe, the container is killed and is subject to the pod’s restartPolicy

11.1.1. Example probes

The following are samples of different probes as they would appear in an object specification.

Sample readiness probe with a container command readiness probe in a pod spec

apiVersion: vi
kind: Pod
metadata:
labels:
test: health-check
name: my-application
#...
spec:
containers:
- name: goproxy-app ﬂ
args:
image: registry.k8s.io/goproxy:0.1 9
readinessProbe:

exec. a

command: 9

162

CHAPTER 11. MONITORING APPLICATION HEALTH BY USING HEALTH CHECKS

- cat
- /tmp/healthy
#...

The container name.
The container image to deploy.
A readiness probe.

A container command test.

000990 —

The commands to execute on the container.

Sample container command startup probe and liveness probe with container command
tests in a pod spec

apiVersion: vi
kind: Pod
metadata:
labels:
test: health-check
name: my-application
#...
spec:
containers:
- name: goproxy-app ﬂ
args:
image: registry.k8s.io/goproxy:0.1 9
livenessProbe:
httpGet: @)
scheme: HTTPS @
path: /healthz
port: 8080 @
httpHeaders:
- name: X-Custom-Header
value: Awesome
startupProbe: ﬂ
httpGet: @
path: /healthz

port: 8080 €)
failureThreshold: 30 @

periodSeconds: 10 m
#...

ﬂ The container name.
9 Specify the container image to deploy.
9 A liveness probe.

Q An HTTP GET test.

163

OpenShift Container Platform 4.18 Building applications

a The internet scheme: HTTP or HTTPS. The default value is HTTP.
The port on which the container is listening.

A startup probe.

An HTTP GET test.

The port on which the container is listening.

The number of times to try the probe after a failure.

0900099

The number of seconds to perform the probe.

Sample liveness probe with a container command test that uses a timeout in a pod spec

apiVersion: vi
kind: Pod
metadata:
labels:
test: health-check
name: my-application

#...
spec:
containers:
- name: goproxy-app ﬂ
args:
image: registry.k8s.io/goproxy:0.1 9
livenessProbe:
exec: ﬂ

command: 6

- /bin/bash

- '_C'

- timeout 60 /opt/eap/bin/livenessProbe.sh
periodSeconds: 10 G
successThreshold: 1 ﬂ
failureThreshold: 3 6

#...

The container name.

Specify the container image to deploy.

The liveness probe.

The type of probe, here a container command probe.
The command line to execute inside the container.
How often in seconds to perform the probe.

The number of consecutive successes needed to show success after a failure.

Q99909000

The number of times to try the probe after a failure.

o
N

CHAPTER 11. MONITORING APPLICATION HEALTH BY USING HEALTH CHECKS

Sample readiness probe and liveness probe with a TCP socket test in a deployment

kind: Deployment
apiVersion: apps/v1
metadata:
labels:
test: health-check
name: my-application
spec:
#...
template:
spec:
containers:
- resources: {}
readinessProbe: ﬂ
tcpSocket:
port: 8080
timeoutSeconds: 1
periodSeconds: 10
successThreshold: 1
failureThreshold: 3
terminationMessagePath: /dev/termination-log
name: ruby-ex
livenessProbe: 9
tcpSocket:
port: 8080
initialDelaySeconds: 15
timeoutSeconds: 1
periodSeconds: 10
successThreshold: 1
failureThreshold: 3
#...

ﬂ The readiness probe.

9 The liveness probe.

11.2. CONFIGURING HEALTH CHECKS USING THE CLI

To configure readiness, liveness, and startup probes, add one or more probes to the specification for
the pod that contains the container which you want to perform the health checks

NOTE

If you want to add or edit health checks in an existing pod, you must edit the pod
DeploymentConfig object or use the Developer perspective in the web console. You
cannot use the CLI to add or edit health checks for an existing pod.

Procedure

To add probes for a container:

1. Create a Pod object to add one or more probes:

165

OpenShift Container Platform 4.18 Building applications

apiVersion: vi
kind: Pod
metadata:
labels:
test: health-check
name: my-application
spec:
containers:
- name: my-container 0
args:
image: registry.k8s.io/goproxy:0.1 g
livenessProbe:
tcpSocket:
port: 8080
initialDelaySeconds: 15 ()
periodSeconds: 20 ﬂ
timeoutSeconds: 10 9
readinessProbe: Q
httpGet: ()
host: my-host
scheme: HTTPS (B
path: /healthz
port: 8080 (B)
startupProbe:
exec:

command: @
- cat
- /tmp/healthy

failureThreshold: 30 m
periodSeconds: 20 @
timeoutSeconds: 10 @

Specify the container name.

Specify the container image to deploy.

Optional: Create a Liveness probe.

Specify a test to perform, here a TCP Socket test.

Specify the port on which the container is listening.

Specify the time, in seconds, after the container starts before the probe can be scheduled.

Specify the number of seconds to perform the probe. The default is 10. This value must be
greater than timeoutSeconds.

Specify the number of seconds of inactivity after which the probe is assumed to have
failed. The default is 1. This value must be lower than periodSeconds.

Optional: Create a Readiness probe.

00 O 9990000

Specify the type of test to perform, here an HTTP test.

166

CHAPTER 11. MONITORING APPLICATION HEALTH BY USING HEALTH CHECKS

Specify a host IP address. When host is not defined, the PodIP is used.

Specify HTTP or HTTPS. When scheme is not defined, the HTTP scheme is used.
Specify the port on which the container is listening.

Optional: Create a Startup probe.

Specify the type of test to perform, here an Container Execution probe.

Specify the commands to execute on the container.

Specify the number of times to try the probe after a failure.

Specify the number of seconds to perform the probe. The default is 10. This value must be
greater than timeoutSeconds.

® 909000909009

Specify the number of seconds of inactivity after which the probe is assumed to have
failed. The default is 1. This value must be lower than periodSeconds.

NOTE

If the initialDelaySeconds value is lower than the periodSeconds value, the
first Readiness probe occurs at some point between the two periods due to an
issue with timers.

The timeoutSeconds value must be lower than the periodSeconds value.

2. Create the Pod object:

I $ oc create -f <file-name>.yaml

3. Verify the state of the health check pod:

I $ oc describe pod my-application

Example output

Events:
Type Reason Age From Message
Normal Scheduled 9s default-scheduler Successfully assigned openshift-

logging/liveness-exec to ip-10-0-143-40.ec2.internal

Normal Pulling 2s kubelet, ip-10-0-143-40.ec2.internal pulling image
"registry.k8s.io/liveness"

Normal Pulled 1s kubelet, ip-10-0-143-40.ec2.internal Successfully pulled image
"registry.k8s.io/liveness"

Normal Created 1s kubelet, ip-10-0-143-40.ec2.internal Created container

Normal Started 1s kubelet, ip-10-0-143-40.ec2.internal Started container

The following is the output of a failed probe that restarted a container:

Sample Liveness check output with unhealthy container

167

OpenShift Container Platform 4.18 Building applications

I $ oc describe pod pod1

Example output

Events:

Type Reason Age From Message
Normal Scheduled <unknown> Successfully
assigned aaa/liveness-http to ci-In-37hz77b-f76d1-wdpjv-worker-b-snzrj

Normal Addedinterface 47s multus Add eth0
[10.129.2.11/23]

Normal Pulled 46s kubelet, ci-In-37hz77b-f76d1-wdpjv-worker-b-snzrj
Successfully pulled image "registry.k8s.io/liveness" in 773.406244ms

Normal Pulled 28s kubelet, ci-In-37hz77b-f76d1-wdpjv-worker-b-snzrj

Successfully pulled image "registry.k8s.io/liveness" in 233.328564ms

Normal Created 10s (x3 over 46s) kubelet, ci-In-37hz77b-f76d1-wdpjv-worker-b-snzr;
Created container liveness

Normal Started 10s (x3 over 46s) kubelet, ci-In-37hz77b-f76d1-wdpjv-worker-b-snzrj
Started container liveness

Warning Unhealthy 10s (x6 over 34s) kubelet, ci-In-37hz77b-f76d1-wdpjv-worker-b-
snzrj Liveness probe failed: HTTP probe failed with statuscode: 500

Normal Killing 10s (x2 over 28s) kubelet, ci-In-37hz77b-f76d1-wdpjv-worker-b-snzrj
Container liveness failed liveness probe, will be restarted

Normal Pulling 10s (x3 over 47s) kubelet, ci-In-37hz77b-f76d1-wdpjv-worker-b-snzrj
Pulling image "registry.k8s.io/liveness"

Normal Pulled 10s kubelet, ci-In-37hz77b-f76d1-wdpjv-worker-b-snzrj
Successfully pulled image "registry.k8s.io/liveness" in 244.116568ms

11.3. MONITORING APPLICATION HEALTH USING THE DEVELOPER
PERSPECTIVE

You can use the Developer perspective to add three types of health probes to your container to ensure
that your application is healthy:

® Use the Readiness probe to check if the container is ready to handle requests.
® Use the Liveness probe to check if the container is running.
® Use the Startup probe to check if the application within the container has started.

You can add health checks either while creating and deploying an application, or after you have
deployed an application.

11.4. EDITING HEALTH CHECKS USING THE DEVELOPER
PERSPECTIVE

You can use the Topology view to edit health checks added to your application, modify them, or add
more health checks.

Prerequisites

168

CHAPTER 11. MONITORING APPLICATION HEALTH BY USING HEALTH CHECKS

® You have switched to the Developer perspective in the web console.

® You have created and deployed an application on OpenShift Container Platform using the
Developer perspective.

® You have added health checks to your application.

Procedure

1. In the Topology view, right-click your application and select Edit Health Checks. Alternatively,
in the side panel, click the Actions drop-down list and select Edit Health Checks.

2. In the Edit Health Checks page:
® Toremove a previously added health probe, click the Remove icon adjoining it.
® To edit the parameters of an existing probe:

a. Click the Edit Probe link next to a previously added probe to see the parameters for
the probe.

b. Modify the parameters as required, and click the check mark to save your changes.

® To add a new health probe, in addition to existing health checks, click the add probe links.
For example, to add a Liveness probe that checks if your container is running:

a. Click Add Liveness Probe, to see a form containing the parameters for the probe.
b. Edit the probe parameters as required.

9’ NOTE

The Timeout value must be lower than the Period value. The Timeout
default value is 1. The Period default value is 10.

c. Click the check mark at the bottom of the form. The Liveness Probe Added message
is displayed.

3. Click Save to save your modifications and add the additional probes to your container. You are
redirected to the Topology view.

4. In the side panel, verify that the probes have been added by clicking on the deployed pod under
the Pods section.

5. In the Pod Details page, click the listed container in the Containers section.

6. In the Container Details page, verify that the Liveness probe - HTTP Get 10.129.4.65:8080/
has been added to the container, in addition to the earlier existing probes.

11.5. MONITORING HEALTH CHECK FAILURES USING THE DEVELOPER
PERSPECTIVE

In case an application health check fails, you can use the Topology view to monitor these health check
violations.

169

OpenShift Container Platform 4.18 Building applications
rrerecyuisites
® You have switched to the Developer perspective in the web console.

® You have created and deployed an application on OpenShift Container Platform using the
Developer perspective.

® You have added health checks to your application.

Procedure

1. In the Topology view, click on the application node to see the side panel.
2. Click the Observe tab to see the health check failures in the Events (Warning) section.

3. Click the down arrow adjoining Events (Warning) to see the details of the health check failure.

Additional resources

® For details on switching to the Developer perspective in the web console, see About the
Developer perspective.

® For details on adding health checks while creating and deploying an application, see Advanced
Options in the Creating applications using the Developer perspective section.

170

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/web_console/#about-developer-perspective_web-console-overview

CHAPTER 12. EDITING APPLICATIONS

CHAPTER 12. EDITING APPLICATIONS

You can edit the configuration and the source code of the application you create using the Topology
view.

12.1. PREREQUISITES

® You have the appropriate roles and permissions in a project to create and modify applications in
OpenShift Container Platform.

® You have created and deployed an application on OpenShift Container Platform using the
Developer perspective.

® You have logged in to the web console and have switched to the Developer perspective.

12.2. EDITING THE SOURCE CODE OF AN APPLICATION USING THE
DEVELOPER PERSPECTIVE

You can use the Topology view in the Developer perspective to edit the source code of your
application.

Procedure

® |nthe Topology view, click the Edit Source codeicon, displayed at the bottom-right of the
deployed application, to access your source code and modify it.

NOTE

This feature is available only when you create applications using the From Git,
From Catalog, and the From Dockerfile options.

If the Eclipse Che Operator is installed in your cluster, a Che workspace ("™) is created and
you are directed to the workspace to edit your source code. If it is not installed, you will be

directed to the Git repository (O) your source code is hosted in.
12.3. EDITING THE APPLICATION CONFIGURATION USING THE
DEVELOPER PERSPECTIVE

You can use the Topology view in the Developer perspective to edit the configuration of your
application.

NOTE

Currently, only configurations of applications created by using the From Git, Container
Image, From Catalog, or From Dockerfile options in the Add workflow of the Developer
perspective can be edited. Configurations of applications created by using the CLI or the
YAML option from the Add workflow cannot be edited.

Prerequisites

171

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/authentication_and_authorization/#default-roles_using-rbac
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/web_console/#web-console
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/web_console/#about-developer-perspective_web-console-overview

OpenShift Container Platform 4.18 Building applications

Ensure that you have created an application using the From Git, Container Image, From Catalog, or
From Dockerfile options in the Add workflow.

Procedure

1. After you have created an application and it is displayed in the Topology view, right-click the
application to see the edit options available.

Figure 12.1. Edit application

1€ Edit Count

.i"’
“r_' Pause Rollouts
. Add Storage
0 0 Edit Update Strategy

django..-jwspg Edit Application Grouping

O @ django-exg Editnodejs-ex-git

Edit Labels -

Edit Annotations
Edit Deployment

Delete Deployment

&) nodejs-ex-git

2. Click Edit application-name to see the Add workflow you used to create the application. The
form is pre-populated with the values you had added while creating the application.

3. Edit the necessary values for the application.

172

NOTE

CHAPTER 12. EDITING APPLICATIONS

You cannot edit the Name field in the General section, the Cl/CD pipelines, or
the Create a route to the applicationfield in the Advanced Options section.

4. Click Save to restart the build and deploy a new image.

Figure 12.2. Edit and redeploy application

django..-jwspq

O GED django-ex-git

i)

€@ nodejs-ex-git

@ nodejs-ex-git

Actions -

Details Resources Monitoring

Pods
e nodejs-ex-git-57fd9cc6d8- % Running View logs

snzsf

Builds
@ nodejs-ex-git Start Build
@ Build #2 is complete (a few seconds ago) View logs
@ Build #1is complete (5 hours ago) View logs

Services

6 nodejs-ex-git
Service port: 8080-tcp = Pod Port: 8080

173

OpenShift Container Platform 4.18 Building applications

CHAPTER 13. PRUNING OBJECTS TO RECLAIM RESOURCES

Over time, API objects created in OpenShift Container Platform can accumulate in the cluster’s etcd
data store through normal user operations, such as when building and deploying applications.

Cluster administrators can periodically prune older versions of objects from the cluster that are no
longer required. For example, by pruning images you can delete older images and layers that are no
longer in use, but are still taking up disk space.

13.1. BASIC PRUNING OPERATIONS

The CLI groups prune operations under a common parent command:
I $ oc adm prune <object_type> <options>

This specifies:
® The <object_types to perform the action on, such as groups, builds, deployments, or images.

® The <options> supported to prune that object type.
13.2. PRUNING GROUPS
To prune groups records from an external provider, administrators can run the following command:

$ oc adm prune groups \
--sync-config=path/to/sync/config [<options>]

Table 13.1. oc adm prune groups flags

Options Description

--confirm Indicate that pruning should occur, instead of performing a dry-run.
--blacklist Path to the group blacklist file.
--whitelist Path to the group whitelist file.
--sync-config Path to the synchronization configuration file.
Procedure

1. To see the groups that the prune command deletes, run the following command:

I $ oc adm prune groups --sync-config=ldap-sync-config.yami
2. To perform the prune operation, add the --confirm flag:

I $ oc adm prune groups --sync-config=ldap-sync-config.yaml --confirm

174

CHAPTER 13. PRUNING OBJECTS TO RECLAIM RESOURCES

13.3. PRUNING DEPLOYMENT RESOURCES

You can prune resources associated with deployments that are no longer required by the system, due to

age and status.

The following command prunes replication controllers associated with DeploymentConfig objects:

I $ oc adm prune deployments [<options>]

NOTE

To also prune replica sets associated with Deployment objects, use the --replica-sets

-

flag. This flag is currently a Technology Preview feature.

Table 13.2. oc adm prune deployments flags

Option Description

--confirm

--keep-complete=<N>

--keep-failed=<N>

--keep-younger-than=
<duration>

--orphans

--replica-sets=true|false

Procedure

Indicate that pruning should occur, instead of performing a dry-run.

Per the DeploymentConfig object, keep the lastN replication
controllers that have a status of Complete and replica count of zero.
The defaultis 5.

Per the DeploymentConfig object, keep the lastN replication
controllers that have a status of Failed and replica count of zero. The
defaultis 1.

Do not prune any replication controller that is younger than <duration>
relative to the current time. Valid units of measurement include
nanoseconds (NS), microseconds (US), milliseconds (MS), seconds (S),
minutes (M), and hours (h). The default is60m.

Prune all replication controllers that no longer have a
DeploymentConfig object, has status ofComplete or Failed, and
has a replica count of zero.

If true, replica sets are included in the pruning process. The default is
false.

W IMPORTANT
XY
&&)ﬂ This flag is a Technology Preview feature.

1. To see what a pruning operation would delete, run the following command:

175

OpenShift Container Platform 4.18 Building applications

$ oc adm prune deployments --orphans --keep-complete=5 --keep-failed=1\
--keep-younger-than=60m

2. To actually perform the prune operation, add the --confirm flag:

$ oc adm prune deployments --orphans --keep-complete=5 --keep-failed=1\
--keep-younger-than=60m --confirm

13.4. PRUNING BUILDS

To prune builds that are no longer required by the system due to age and status, administrators can run
the following command:

I $ oc adm prune builds [<options>]
Table 13.3. oc adm prune builds flags

Option Description

--confirm Indicate that pruning should occur, instead of performing a dry-run.

--orphans Prune all builds whose build configuration no longer exists, status is
complete, failed, error, or canceled.

--keep-complete=<N> Per build configuration, keep the last N builds whose status is complete.
The defaultis 5.

--keep-failed=<N> Per build configuration, keep the last N builds whose status is failed,
error, or canceled. The defaultis 1.

--keep-younger-than= Do not prune any object that is younger than <duration> relative to the
<duration> current time. The default is 60m.
Procedure

1. To see what a pruning operation would delete, run the following command:

$ oc adm prune builds --orphans --keep-complete=5 --keep-failed=1\
--keep-younger-than=60m

2. To actually perform the prune operation, add the --confirm flag:

$ oc adm prune builds --orphans --keep-complete=5 --keep-failed=1\
--keep-younger-than=60m --confirm

NOTE

Developers can enable automatic build pruning by modifying their build configuration.

176

CHAPTER 13. PRUNING OBJECTS TO RECLAIM RESOURCES

Additional resources

® Performing advanced builds = Pruning builds

13.5. AUTOMATICALLY PRUNING IMAGES

Images from the OpenShift image registry that are no longer required by the system because of age,
status, or exceed limits being automatically pruned. As a cluster administrator, can configure or suspend
the pruning Custom Resource (CR).

Prerequisites

® You have access to an OpenShift Container Platform cluster using an account with cluster
administrator permissions.

® |nstall the oc CLI.

IMPORTANT

The behavior of the Image Registry Operator for managing the pruner is independent to
the managementState specified on the ClusterOperator object of the Image Registry

Operator. If the Image Registry Operator is not in the Managed state, the image pruner
can still be configured and managed by the Pruning Custom Resource.

However, the managementState of the Image Registry Operator alters the behavior of
the deployed image pruner job:

e Managed: the --prune-registry flag for the image pruner is set to true.

e Removed: the --prune-registry flag for the image pruner is set to false, meaning
it only prunes image metadata in etcd.

Procedure

e Verify that the object named imagepruners.imageregistry.operator.openshift.io/cluster
contains the following spec and status fields:

spec:
schedule: 00 * * *
suspend: false
keepTagRevisions: 3
keepYoungerThanDuration: 60m
keepYoungerThan: 3600000000000
resources: {}
affinity: {}
nodeSelector: {}
tolerations: []
successfuldobsHistoryLimit: 3
failedJobsHistoryLimit: 3
status:
observedGeneration: 2
conditions:
- type: Available
status: "True"
lastTransitionTime: 2019-10-09T03:13:45

177

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/builds_using_buildconfig/#builds-build-pruning-advanced-build-operations

OpenShift Container Platform 4.18 Building applications

178

reason: Ready

message: "Periodic image pruner has been created.”
- type: Scheduled

status: "True"

lastTransitionTime: 2019-10-09T03:13:45

reason: Scheduled

message: "Image pruner job has been scheduled.”
- type: Failed

staus: "False"

lastTransitionTime: 2019-10-09T03:13:45

reason: Succeeded

message: "Most recent image pruning job succeeded."

schedule: CronJob formatted schedule. This is an optional field, default is daily at midnight.

suspend: If set to true, the CronJob running pruning is suspended. This is an optional field,
default is false. The initial value on new clusters is false.

keepTagRevisions: The number of revisions per tag to keep. This is an optional field, default is
3. The initial value is 3.

keepYoungerThanDuration: Retain images younger than this duration. This is an optional field.
If a value is not specified, either keepYoungerThan or the default value 60m (60 minutes) is
used.

keepYoungerThan: Deprecated. The same as keepYoungerThanDuration, but the duration is
specified as an integer in nanoseconds. This is an optional field. When
keepYoungerThanDuration is set, this field is ignored.

resources: Standard pod resource requests and limits. This is an optional field.

affinity: Standard pod affinity. This is an optional field.

nodeSelector: Standard pod node selector. This is an optional field.

tolerations: Standard pod tolerations. This is an optional field.

successfuldobsHistoryLimit: The maximum number of successful jobs to retain. Must be
greater than or equal to 1 to ensure metrics are reported. This is an optional field, defaultis 3.
The initial value is 3.

failedJobsHistoryLimit: The maximum number of failed jobs to retain. Must be greater than or
equal 1 to ensure metrics are reported. This is an optional field, defaultis 3. The initial value is 3.

observedGeneration: The generation observed by the Operator.

conditions: The standard condition objects with the following types:

o Available: Indicates if the pruning job has been created. Reasons can be Ready or Error.

o Scheduled: Indicates if the next pruning job has been scheduled. Reasons can be
Scheduled, Suspended, or Error.

o Failed: Indicates if the most recent pruning job failed.

CHAPTER 13. PRUNING OBJECTS TO RECLAIM RESOURCES

13.6. MANUALLY PRUNING IMAGES

The pruning custom resource enables automatic image pruning for the images from the OpenShift
image registry. Administrators can manually prune images with the oc adm prune images
<image_prune_option> command. For example:

I $ oc adm prune images <image_prune_option> ﬂ

For more information about available pruning options, see "Manual image pruning command
options".
This command removes images that are no longer required by the system.

Depending on your needs, you can prune images based on their age and tag history, or prune images
that cause a project to exceed its defined storage limits.

13.6.1. Considerations when pruning images

Consider the following information before manually pruning images:

® Pruning with the --namespace flag does not remove images. It only removes image streams,
because images are cluster-scoped resources. Limiting pruning to a particular namespace
makes it impossible to calculate current usage.

e By default, the integrated registry caches metadata of blobs to reduce the number of requests
to storage, and to increase request-processing speed. Pruning does not update the integrated
registry cache. Images that still contain pruned layers after pruning will be broken because the

pruned layers that have metadata in the cache will not be pushed. Therefore, you must redeploy
the registry to clear the cache after pruning:

I $ oc rollout restart deployment/image-registry -n openshift-image-registry

e |f the integrated registry uses a Redis cache, you must clean the database manually.

e |f redeploying the registry after pruning is not an option, then you must permanently disable the
cache.

e oc adm prune images operations require a route for your registry. Registry routes are not
created by default.

13.6.2. Limitations when pruning images

The following limitations apply when pruning an image:
® Pruning images from external registries is unsupported.

® When animage is pruned, all references to the image are removed from all image streams that
contain the image in status.tags.

® |mage layers that are no longer referenced by any images are removed.

13.6.3. Image prune conditions

179

OpenShift Container Platform 4.18 Building applications

OpenShift Container Platform supports two methodologies for pruning images:

1. Pruning by age and tag

2. Pruning by size limit
These methodologies are mutually exclusive. You must choose whether to prune by age and tag, or by
size limit. Regardless of the method that you choose, the image pruner checks to ensure that images in

use are not removed.

An image is only pruned if it meets the primary condition and is not actively referenced by a system
component.

13.6.3.1. Pruning an image by age and tag

Pruning an image by age and tag is the default pruning strategy. It identifies images for removal by using
the --keep-younger-than and --keep-tag-revisions flags. To prune an image by age and tag, the image
must be older than the --keep-younger-than threshold, not one of the most recent tag revisions, and
cannot be in use by an active workload.

For animage to be pruned by age and tag, all of the following conditions must be met:

1. The image is managed by OpenShift Container Platform or has the
openshift.io/image.managed annotation.

2. Theimage is older than the time specified by the --keep-younger-than flag.

3. Theimage is not one of the most recent images for its tag, as specified by the --keep-tag-
revisions flag.

4. The image is not currently referenced by any of the following active or recent API objects:
® Pods orimage streams created more recently than the --keep-younger-than duration.
® Running or pending pods
® Deployments, replication controllers, replica sets, or stateful sets.
® Builds, build configurations, jobs, or cronjobs.

An image is only removed if it is old, not a recent tag revision, and is confirmed to have no active
references by system components.

13.6.3.2. Pruning an image by size limit

Pruning an image by size limit uses the --prune-over-size-limit flag. This method is used to bring a
project back under its defined image storage limit.

/, NOTE

The --prune-over-size-limit flag cannot be combined with the --keep-tag-revisions flag
nor the --keep-younger-than flags. Doing so returns information that this operation is
not allowed.

For an image to be pruned using this method, all of the following conditions must be true:

180

CHAPTER 13. PRUNING OBJECTS TO RECLAIM RESOURCES

1. The image is part of a project that is currently exceeding its smallest defined size limit.
2. Theimage is selected by the pruner as a candidate for deletion to reduce the total size.
3. Theimage is not currently referenced by any of the following active API objects:

® Pods that are in a running or pending state.
® Deployments, replication controllers, replica sets, or stateful sets.
® Builds, build configurations, jobs, or cronjobs.

With this method, the primary trigger is the project’s size, but the safety check to ensure that the image
is not actively in use is still performed.

13.6.4. Running image prune operations

Use the following procedure to run an image prune operation

Prerequisites
® You must be logged into the CLI with an access token.
® You must have the system:image-pruner cluster role or greater (for example, cluster-admin).
® The image registry must be exposed.

® You have reviewed the "Considerations when manually pruning images" section of this
document.

Procedure

1. Optional: To preview which images would be pruned, enter the following command. This
command prints a list of the images, image streams, and pods that would be removed. Note
that nothing is deleted until you add the --confirm flag.

I $ oc adm prune images <image_prune_option_one> <image_prune_option_two> ﬂ

For more information about available pruning options, see "Manual image pruning
command options".
2. Review the output to confirm the list of images, image streams, and pods to be removed.

3. Run the oc adm prune images command with the appropriate options for your cluster. Add the
--confirm flag to confirm deletion. For example:

I $ oc adm prune images <image_prune_option_one> <image_prune_option_two> --confirm

13.6.5. Using secure or insecure connections

The secure connection is the preferred and recommended approach. It is done over HTTPS protocol
with a mandatory certificate verification. The prune command always attempts to use it if possible. If it
is not possible, in some cases it can fall-back to insecure connection, which is dangerous. In this case,
either certificate verification is skipped or plain HTTP protocol is used.

181

OpenShift Container Platform 4.18 Building applications

The fall-back to insecure connection is allowed in the following cases unless --certificate-authority is
specified:

1. The prune command is run with the --force-insecure option.
2. The provided registry-url is prefixed with the http:// scheme.
3. The provided registry-url is a local-link address or localhost.

4. The configuration of the current user allows for an insecure connection. This can be caused by
the user either logging in using --insecure-skip-tls-verify or choosing the insecure connection
when prompted.

IMPORTANT

If the registry is secured by a certificate authority different from the one used by
OpenShift Container Platform, it must be specified using the --certificate-authority flag.
Otherwise, the prune command fails with an error.

13.6.6. Image pruning CLI options

The following table describes the options you can use with the oc adm prune images
<image_prune_option> command.

Table 13.4. Manual image pruning command options

Option Description

--all Include images that were not pushed to the registry, but have been
mirrored by pullthrough. This is on by default. To limit the pruning to
images that were pushed to the integrated registry, pass --all=false.

--certificate-authority The path to a certificate authority file to use when communicating with
the OpenShift Container Platform-managed registries. Defaults to the
certificate authority data from the current user’s configuration file. If
provided, a secure connection is initiated.

--confirm Indicate that pruning should occur, instead of performing a test-run.
This requires a valid route to the integrated container image registry. If
this command is run outside of the cluster network, the route must be
provided using =-registry-url.

--force-insecure Use caution with this option. Allow an insecure connection to the
container registry that is hosted via HTTP or has an invalid HTTPS
certificate.

--keep-tag-revisions=<N> For each imagestream, keep up to at most N image revisions per tag
(default 3).

182

CHAPTER 13. PRUNING OBJECTS TO RECLAIM RESOURCES

Option Description

--keep-younger-than= Do not prune any image that is younger than <duration> relative to the

<duration> current time. Alternately, do not prune any image that is referenced by
any other object that is younger than <durations relative to the current
time (default 60m).

--prune-over-size-limit Prune each image that exceeds the smallest limit defined in the same
project. This flag cannot be combined with --keep-tag-revisions nor --
keep-younger-than.

--registry-url The address to use when contacting the registry. The command
attempts to use a cluster-internal URL determined from managed
images and image streams. In case it fails (the registry cannot be
resolved or reached), an alternative route that works needs to be
provided using this flag. The registry hostname can be prefixed by
https:// orhttp://, which enforces particular connection protocol.

--prune-registry In conjunction with the conditions stipulated by the other options, this
option controls whether the data in the registry corresponding to the
OpenShift Container Platform image API object is pruned. By default,
image pruning processes both the image API objects and corresponding
data in the registry.

This option is useful when you are only concerned with removing etcd
content, to reduce the number of image objects but are not concerned
with cleaning up registry storage, or if you intend to do that separately
by hard pruning the registry during an appropriate maintenance window
for the registry.

13.6.6.1. Additional information about the --prune-registry flag

You can separate the removal of OpenShift Container Platform image API objects from the removal of
image data in the registry by passing in the --prune-registry=false flag. For example, the following
command prunes only the APl objects, leaving the registry storage untouched:

$ oc adm prune images --keep-tag-revisions=3 --keep-younger-than=60m --confirm --prune-
registry=false

Then, you can perform a hard prune of the registry to remove the associated image data. This approach
can narrow the timing window for race conditions compared to pruning both in a single command.

However, timing windows are not completely eliminated. For example, a pod might still be created that
references an image while that image is being identified for pruning. You should track any API objects
created during pruning to ensure that they do not reference deleted content.

Re-running the pruning without the --prune-registry option, or with --prune-registry=true, does not
remove the associated registry storage for images previously pruned with --prune-registry=false.
Those images can only be removed from registry storage by performing a hard prune of the registry. For
more information, see "Hard pruning the registry".

183

OpenShift Container Platform 4.18 Building applications

13.6.7. Image pruning problems

13.6.7.1. Images not being pruned

If your images keep accumulating and the prune command removes just a small portion of what you
expect, ensure that you understand the image prune conditions that must apply for an image to be
considered a candidate for pruning.

Ensure that images you want removed occur at higher positions in each tag history than your chosen tag
revisions threshold. For example, consider an old and obsolete image named sha256:abz. By running
the following command in your namespace, where the image is tagged, the image is tagged three times
in a single image stream named myapp:

$ oc get is -n <namespace> -0 go-template="{{range $isi, $is := .items}}{{range $ti, $tag :=
$is.status.tags}}\

"{{range $ii, Sitem := $tag.items}}{{if eq Sitem.image "sha256:<hash>"}}{{$is.metadata.name}}:
{{$tag.tag}} at position {{$ii}} out of {{len $tag.items}}\n"\

{{end}}{{end}}{{end}}{{end}}’

Example output

myapp:v2 at position 4 out of 5
myapp:v2.1 at position 2 out of 2
myapp:v2.1-may-2016 at position 0 out of 1

When default options are used, the image is never pruned because it occurs at position 0 in a history of
myapp:v2.1-may-2016 tag. For an image to be considered for pruning, the administrator must either:

® Specify --keep-tag-revisions=0 with the oc adm prune images command.

WARNING
This action removes all the tags from all the namespaces with underlying

images, unless they are younger or they are referenced by objects younger
than the specified threshold.

® Delete all the istags where the position is below the revision threshold, which means
myapp:v2.1 and myapp:v2.1-may-2016.

® Move the image further in the history, either by running new builds pushing to the same istag, or
by tagging other image. This is not always desirable for old release tags.

Tags having a date or time of a particular image’s build in their names should be avoided, unless the
image must be preserved for an undefined amount of time. Such tags tend to have just one image in
their history, which prevents them from ever being pruned.

13.6.7.2. Using a secure connection against insecure registry

184

CHAPTER 13. PRUNING OBJECTS TO RECLAIM RESOURCES

If you see a message similar to the following in the output of the oc adm prune images command, then
your registry is not secured and the oc adm prune images client attempts to use a secure connection:

error: error communicating with registry: Get https://172.30.30.30:5000/healthz: http: server gave
HTTP response to HTTPS client

® The recommended solution is to secure the registry. Otherwise, you can force the client to use
an insecure connection by appending --force-insecure to the command; however, this is not
recommended.

13.6.7.3. Using an insecure connection against a secured registry

If you see one of the following errors in the output of the oc adm prune images command, it means
that your registry is secured using a certificate signed by a certificate authority other than the one used
by oc adm prune images client for connection verification:

error: error communicating with registry: Get http://172.30.30.30:5000/healthz: malformed HTTP
response "\x15\x03\x01\x00\x02\x02"

error: error communicating with registry: [Get https://172.30.30.30:5000/healthz: x509: certificate
signed by unknown authority, Get http://172.30.30.30:5000/healthz: malformed HTTP response
"\x15\x03\x01\x00\x02\x02"]

By default, the certificate authority data stored in the user’s configuration files is used; the same is true
for communication with the master API.

Use the --certificate-authority option to provide the right certificate authority for the container image
registry server.

13.6.7.4. Using the wrong certificate authority

The following error means that the certificate authority used to sign the certificate of the secured
container image registry is different from the authority used by the client:

error: error communicating with registry: Get https://172.30.30.30:5000/: x509: certificate signed by
unknown authority

Make sure to provide the right one with the flag --certificate-authority.

As a workaround, the --force-insecure flag can be added instead. However, this is not recommended.

Additional resources

® Accessing the registry
® [Exposing the registry

® See Image Registry Operator in OpenShift Container Platform for information on how to create
a registry route.

13.7. HARD PRUNING THE REGISTRY

185

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/registry/#accessing-the-registry
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/registry/#securing-exposing-registry
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/registry/#configuring-registry-operator

OpenShift Container Platform 4.18 Building applications

The OpenShift Container Registry can accumulate blobs that are not referenced by the OpenShift
Container Platform cluster’s etcd. The basic pruning images procedure, therefore, is unable to operate
on them. These are called orphaned blobs.

Orphaned blobs can occur from the following scenarios:

® Manually deleting an image with oc delete image <sha256:image-id> command, which only
removes the image from etcd, but not from the registry’s storage.

® Pushing to the registry initiated by daemon failures, which causes some blobs to get uploaded,
but the image manifest (which is uploaded as the very last component) does not. All unique
image blobs become orphans.

® OpenShift Container Platform refusing an image because of quota restrictions.

® The standard image pruner deleting an image manifest, but is interrupted before it deletes the
related blobs.

® Abugin the registry pruner, which fails to remove the intended blobs, causing the image objects
referencing them to be removed and the blobs becoming orphans.

Hard pruning the registry, a separate procedure from basic image pruning, allows cluster administrators
to remove orphaned blobs. You should hard prune if you are running out of storage space in your
OpenShift Container Registry and believe you have orphaned blobs.

This should be an infrequent operation and is necessary only when you have evidence that significant
numbers of new orphans have been created. Otherwise, you can perform standard image pruning at
regular intervals, for example, once a day (depending on the number of images being created).
Procedure
To hard prune orphaned blobs from the registry:

1. Login.

Log in to the cluster with the CLI as kubeadmin or another privileged user that has access to
the openshift-image-registry namespace.

2. Run a basic image prune
Basic image pruning removes additional images that are no longer needed. The hard prune does
not remove images on its own. It only removes blobs stored in the registry storage. Therefore,
you should run this just before the hard prune.

3. Switch the registry to read-only mode.
If the registry is not running in read-only mode, any pushes happening at the same time as the
prune will either:

e fail and cause new orphans, or

® succeed although the images cannot be pulled (because some of the referenced blobs were
deleted).

Pushes will not succeed until the registry is switched back to read-write mode. Therefore, the
hard prune must be carefully scheduled.

To switch the registry to read-only mode:

a. In configs.imageregistry.operator.openshift.io/cluster, set spec.readOnly to true:

186

CHAPTER 13. PRUNING OBJECTS TO RECLAIM RESOURCES

$ oc patch configs.imageregistry.operator.openshift.io/cluster -p {"spec":
{"readOnly":true}}' --type=merge

4. Add the system:image-pruner role.

The service account used to run the registry instances requires additional permissions to list
some resources.

a. Get the service account name:

$ service_account=$(oc get -n openshift-image-registry \
-0 jsonpath='{.spec.template.spec.serviceAccountName}' deploy/image-registry)

b. Add the system:image-pruner cluster role to the service account:

$ oc adm policy add-cluster-role-to-user \
system:image-pruner -z \
${service_account} -n openshift-image-registry

5. Optional: Run the pruner in dry-run mode.
To see how many blobs would be removed, run the hard pruner in dry-run mode. No changes
are actually made. The following example references an image registry pod called image-
registry-3-vhndw:

$ oc -n openshift-image-registry exec pod/image-registry-3-vhndw -- /bin/sh -¢
'Jusr/bin/dockerregistry -prune=check'’

Alternatively, to get the exact paths for the prune candidates, increase the logging level:

$ oc -n openshift-image-registry exec pod/image-registry-3-vhndw -- /bin/sh -c
'REGISTRY_LOG_LEVEL=info /usr/bin/dockerregistry -prune=check'’

Example output

time="2017-06-22T11:50:25.066156047Z" level=info msg="start prune (dry-run mode)"
distribution_version="v2.4.1+unknown" kubernetes_version=v1.6.1+$Format:%h$
openshift_version=unknown

time="2017-06-22T11:50:25.092257421Z" level=info msg="Would delete blob:
sha256:00043a2a5e384f6b59ab17e2¢c3d3a3d0a7de01b2cabeb606243e468acc663fas”
go.version=go1.7.5 instance.id=b097121c-a864-4e0c-ad6c-cc25f8fdf5a6
time="2017-06-22T11:50:25.092395621Z" level=info msg="Would delete blob:
sha256:0022d49612807cb348cabc562c072ef34d756adfe0100a61952cbcb87ee6578a"
go.version=go1.7.5 instance.id=b097121c-a864-4e0c-ad6c-cc25f8fdf5a6
time="2017-06-22T11:50:25.092492183Z" level=info msg="Would delete blob:
sha256:0029dd4228961086707e53b881e25eba0564fa80033fbbb2e27847a28d16a37c"
go.version=go1.7.5 instance.id=b097121c-a864-4e0c-ad6c-cc25f8fdf5a6
time="2017-06-22T11:50:26.673946639Z" level=info msg="Would delete blob:
sha256:ff7664dfc213d6cc60fd5c5f5bb00a7bf4a687e18e1df12d349a1d07b2cf7663"
go.version=go1.7.5 instance.id=b097121c-a864-4e0c-ad6c-cc25f8fdf5a6
time="2017-06-22T11:50:26.674024531Z" level=info msg="Would delete blob:
sha256:ff7a933178ccd931f4b5f40f9f19a65be5eeeec207e4fad2a5bafd28afbef57e"
go.version=go1.7.5 instance.id=b097121c-a864-4e0c-ad6c-cc25f8fdf5a6
time="2017-06-22T11:50:26.674675469Z" level=info msg="Would delete blob:
sha256:ff9b8956794b426cc80bb49a604a0b24a1553aae96b930c6919a6675db3d5e06"

187

OpenShift Container Platform 4.18 Building applications

go.version=go1.7.5 instance.id=b097121c-a864-4e0c-ad6c-cc25f8fdf5a6

Would delete 13374 blobs
Would free up 2.835 GiB of disk space
Use -prune=delete to actually delete the data

6. Run the hard prune.

Execute the following command inside one running instance of a image-registry pod to run the
hard prune. The following example references an image registry pod called image-registry-3-
vhndw:

$ oc -n openshift-image-registry exec pod/image-registry-3-vhndw -- /bin/sh -c
'/usr/bin/dockerregistry -prune=delete’

Example output

Deleted 13374 blobs
Freed up 2.835 GiB of disk space

. Switch the registry back to read-write mode.

After the prune is finished, the registry can be switched back to read-write mode. In
configs.imageregistry.operator.openshift.io/cluster, set spec.readOnly to false:

$ oc patch configs.imageregistry.operator.openshift.io/cluster -p {"spec":{"readOnly":false}}' -
-type=merge

13.8. PRUNING CRON JOBS

Cron jobs can perform pruning of successful jobs, but might not properly handle failed jobs. Therefore,
the cluster administrator should perform regular cleanup of jobs manually. They should also restrict the
access to cron jobs to a small group of trusted users and set appropriate quota to prevent the cron job
from creating too many jobs and pods.

Additional resources

188

® Running tasks in pods using jobs
® Resource quotas across multiple projects

® Using RBAC to define and apply permissions

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/nodes/#nodes-nodes-jobs_nodes-nodes-jobs
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/authentication_and_authorization/#using-rbac

CHAPTER 14. IDLING APPLICATIONS

CHAPTER 14. IDLING APPLICATIONS

Cluster administrators can idle applications to reduce resource consumption. This is useful when the
cluster is deployed on a public cloud where cost is related to resource consumption.

If any scalable resources are not in use, OpenShift Container Platform discovers and idles them by
scaling their replicas to 0. The next time network traffic is directed to the resources, the resources are
unidled by scaling up the replicas, and normal operation continues.

Applications are made of services, as well as other scalable resources, such as deployment configs. The
action of idling an application involves idling all associated resources.

14.1. IDLING APPLICATIONS
Idling an application involves finding the scalable resources (deployment configurations, replication
controllers, and others) associated with a service. Idling an application finds the service and marks it as

idled, scaling down the resources to zero replicas.

You can use the oc idle command to idle a single service, or use the --resource-names-file option to
idle multiple services.

14.1.1. Idling a single service
Procedure
1. Toidle a single service, run:

I $ oc idle <service>

14.1.2. Idling multiple services
Idling multiple services is helpful if an application spans across a set of services within a project, or when

idling multiple services in conjunction with a script to idle multiple applications in bulk within the same
project.

Procedure

1. Create a file containing a list of the services, each on their own line.

2. Idle the services using the --resource-names-file option:

I $ oc idle --resource-names-file <filename>

9’ NOTE

The idle command is limited to a single project. For idling applications across a cluster,
run the idle command for each project individually.

14.2. UNIDLING APPLICATIONS

Application services become active again when they receive network traffic and are scaled back up their
previous state. This includes both traffic to the services and traffic passing through routes.

189

OpenShift Container Platform 4.18 Building applications

Applications can also be manually unidled by scaling up the resources.

Procedure

1. To scale up a DeploymentConfig, run:

I $ oc scale --replicas=1 dc <dc_name>

NOTE

Automatic unidling by a router is currently only supported by the default HAProxy router.

190

CHAPTER 15. DELETING APPLICATIONS

CHAPTER 15. DELETING APPLICATIONS

You can delete applications created in your project.

15.1. DELETING APPLICATIONS USING THE DEVELOPER
PERSPECTIVE

You can delete an application and all of its associated components using the Topology view in the
Developer perspective:

1. Click the application you want to delete to see the side panel with the resource details of the
application.

2. Click the Actions drop-down menu displayed on the upper right of the panel, and select Delete
Application to see a confirmation dialog box.

3. Enter the name of the application and click Delete to delete it.

You can also right-click the application you want to delete and click Delete Application to delete it.

191

OpenShift Container Platform 4.18 Building applications

CHAPTER 16. USING THE RED HAT MARKETPLACE

The Red Hat Marketplace is an open cloud marketplace that makes it easy to discover and access
certified software for container-based environments that run on public clouds and on-premise.

16.1. RED HAT MARKETPLACE FEATURES

Cluster administrators can use the Red Hat Marketplace to manage software on OpenShift Container
Platform, give developers self-service access to deploy application instances, and correlate application
usage against a quota.

16.1.1. Connect OpenShift Container Platform clusters to the Marketplace

Cluster administrators can install a common set of applications on OpenShift Container Platform
clusters that connect to the Marketplace. They can also use the Marketplace to track cluster usage
against subscriptions or quotas. Users that they add by using the Marketplace have their product usage
tracked and billed to their organization.

During the cluster connection process, a Marketplace Operator is installed that updates the image
registry secret, manages the catalog, and reports application usage.

16.1.2. Install applications

Cluster administrators can install Marketplace applications from within OperatorHub in OpenShift
Container Platform, or from the Marketplace web application.

You can access installed applications from the web console by clicking Operators > Installed Operators

16.1.3. Deploy applications from different perspectives

You can deploy Marketplace applications from the web console’s Administrator and Developer
perspectives.

16.1.3.1. The Developer perspective

Developers can access newly installed capabilities by using the Developer perspective.

For example, after a database Operator is installed, a developer can create an instance from the catalog
within their project. Database usage is aggregated and reported to the cluster administrator.

This perspective does not include Operator installation and application usage tracking.

16.1.3.2. The Administrator perspective

Cluster administrators can access Operator installation and application usage information from the
Administrator perspective.

They can also launch application instances by browsing custom resource definitions (CRDs) in the
Installed Operators list.

192

https://marketplace.redhat.com
https://marketplace.redhat.com/en-us/documentation/getting-started
https://marketplace.redhat.com/en-us/documentation/clusters
https://marketplace.redhat.com/en-us/documentation/operators
https://marketplace.redhat.com

	Table of Contents
	CHAPTER 1. BUILDING APPLICATIONS OVERVIEW
	1.1. WORKING ON A PROJECT
	1.2. WORKING ON AN APPLICATION
	1.2.1. Creating an application
	1.2.2. Maintaining an application
	1.2.3. Deploying an application

	1.3. USING THE RED HAT MARKETPLACE

	CHAPTER 2. PROJECTS
	2.1. WORKING WITH PROJECTS
	2.1.1. Creating a project
	2.1.1.1. Creating a project by using the web console
	2.1.1.2. Creating a project by using the CLI

	2.1.2. Viewing a project
	2.1.2.1. Viewing a project by using the web console
	2.1.2.2. Viewing a project using the CLI

	2.1.3. Providing access permissions to your project using the Developer perspective
	2.1.4. Customizing the available cluster roles using the web console
	2.1.5. Adding to a project
	2.1.6. Checking the project status
	2.1.6.1. Checking project status by using the web console
	2.1.6.2. Checking project status by using the CLI

	2.1.7. Deleting a project
	2.1.7.1. Deleting a project by using the web console
	2.1.7.2. Deleting a project by using the CLI

	2.2. CREATING A PROJECT AS ANOTHER USER
	2.2.1. API impersonation
	2.2.2. Impersonating a user when you create a project

	2.3. CONFIGURING PROJECT CREATION
	2.3.1. About project creation
	2.3.2. Modifying the template for new projects
	2.3.3. Disabling project self-provisioning
	2.3.4. Customizing the project request message

	CHAPTER 3. CREATING APPLICATIONS
	3.1. USING TEMPLATES
	3.1.1. Understanding templates
	3.1.2. Uploading a template
	3.1.3. Creating an application by using the web console
	3.1.4. Creating objects from templates by using the CLI
	3.1.4.1. Adding labels
	3.1.4.2. Listing parameters
	3.1.4.3. Generating a list of objects

	3.1.5. Modifying uploaded templates
	3.1.6. Using instant app and quick start templates
	3.1.6.1. Quick start templates

	3.1.7. Writing templates
	3.1.7.1. Writing the template description
	3.1.7.2. Writing template labels
	3.1.7.3. Writing template parameters
	3.1.7.4. Writing the template object list
	3.1.7.5. Marking a template as bindable
	3.1.7.6. Exposing template object fields
	3.1.7.7. Waiting for template readiness
	3.1.7.8. Creating a template from existing objects

	3.2. CREATING APPLICATIONS BY USING THE DEVELOPER PERSPECTIVE
	3.2.1. Prerequisites
	3.2.2. Creating sample applications
	3.2.3. Creating applications by using Quick Starts
	3.2.4. Importing a codebase from Git to create an application
	3.2.5. Creating applications by deploying container image
	3.2.6. Deploying a Java application by uploading a JAR file
	3.2.7. Using the Devfile registry to access devfiles
	3.2.8. Using the Developer Catalog to add services or components to your application
	3.2.9. Additional resources

	3.3. CREATING APPLICATIONS FROM INSTALLED OPERATORS
	3.3.1. Creating an etcd cluster using an Operator

	3.4. CREATING APPLICATIONS BY USING THE CLI
	3.4.1. Creating an application from source code
	3.4.1.1. Local
	3.4.1.2. Remote
	3.4.1.3. Build strategy detection
	3.4.1.4. Language detection

	3.4.2. Creating an application from an image
	3.4.2.1. Docker Hub MySQL image
	3.4.2.2. Image in a private registry
	3.4.2.3. Existing image stream and optional image stream tag

	3.4.3. Creating an application from a template
	3.4.3.1. Template parameters

	3.4.4. Modifying application creation
	3.4.4.1. Specifying environment variables
	3.4.4.2. Specifying build environment variables
	3.4.4.3. Specifying labels
	3.4.4.4. Viewing the output without creation
	3.4.4.5. Creating objects with different names
	3.4.4.6. Creating objects in a different project
	3.4.4.7. Creating multiple objects
	3.4.4.8. Grouping images and source in a single pod
	3.4.4.9. Searching for images, templates, and other inputs
	3.4.4.10. Setting the import mode

	3.5. CREATING APPLICATIONS USING RUBY ON RAILS
	3.5.1. Prerequisites
	3.5.2. Setting up the database
	3.5.3. Writing your application
	3.5.3.1. Creating a welcome page
	3.5.3.2. Configuring application for OpenShift Container Platform
	3.5.3.3. Storing your application in Git

	3.5.4. Deploying your application to OpenShift Container Platform
	3.5.4.1. Creating the database service
	3.5.4.2. Creating the frontend service
	3.5.4.3. Creating a route for your application

	CHAPTER 4. VIEWING APPLICATION COMPOSITION BY USING THE TOPOLOGY VIEW
	4.1. PREREQUISITES
	4.2. VIEWING THE TOPOLOGY OF YOUR APPLICATION
	4.3. INTERACTING WITH APPLICATIONS AND COMPONENTS
	4.4. SCALING APPLICATION PODS AND CHECKING BUILDS AND ROUTES
	4.5. ADDING COMPONENTS TO AN EXISTING PROJECT
	4.6. GROUPING MULTIPLE COMPONENTS WITHIN AN APPLICATION
	4.7. ADDING SERVICES TO YOUR APPLICATION
	4.8. REMOVING SERVICES FROM YOUR APPLICATION
	4.9. LABELS AND ANNOTATIONS USED FOR THE TOPOLOGY VIEW
	4.10. ADDITIONAL RESOURCES

	CHAPTER 5. EXPORTING APPLICATIONS
	5.1. PREREQUISITES
	5.2. PROCEDURE

	CHAPTER 6. WORKING WITH HELM CHARTS
	6.1. UNDERSTANDING HELM
	6.1.1. Key features
	6.1.2. Red Hat Certification of Helm charts for OpenShift
	6.1.3. Additional resources

	6.2. INSTALLING HELM
	6.2.1. On Linux
	6.2.2. On Windows 7/8
	6.2.3. On Windows 10
	6.2.4. On MacOS

	6.3. CONFIGURING CUSTOM HELM CHART REPOSITORIES
	6.3.1. Installing a Helm chart on an OpenShift Container Platform cluster
	6.3.2. Creating Helm releases using the Developer perspective
	6.3.3. Using Helm in the web terminal
	6.3.4. Creating a custom Helm chart on OpenShift Container Platform
	6.3.5. Adding custom Helm chart repositories
	6.3.6. Adding namespace-scoped custom Helm chart repositories
	6.3.7. Creating credentials and CA certificates to add Helm chart repositories
	6.3.8. Filtering Helm Charts by their certification level
	6.3.9. Disabling Helm Chart repositories

	6.4. WORKING WITH HELM RELEASES
	6.4.1. Prerequisites
	6.4.2. Upgrading a Helm release
	6.4.3. Rolling back a Helm release
	6.4.4. Deleting a Helm release

	CHAPTER 7. DEPLOYMENTS
	7.1. UNDERSTANDING DEPLOYMENTS
	7.1.1. Building blocks of a deployment
	7.1.1.1. Replica sets
	7.1.1.2. Replication controllers

	7.1.2. Deployments
	7.1.3. DeploymentConfig objects
	7.1.4. Comparing Deployment and DeploymentConfig objects
	7.1.4.1. Design
	7.1.4.2. Deployment-specific features
	7.1.4.3. DeploymentConfig object-specific features

	7.2. MANAGING DEPLOYMENT PROCESSES
	7.2.1. Managing DeploymentConfig objects
	7.2.1.1. Starting a deployment
	7.2.1.2. Viewing a deployment
	7.2.1.3. Retrying a deployment
	7.2.1.4. Rolling back a deployment
	7.2.1.5. Executing commands inside a container
	7.2.1.6. Viewing deployment logs
	7.2.1.7. Deployment triggers
	7.2.1.8. Setting deployment resources
	7.2.1.9. Scaling manually
	7.2.1.10. Accessing private repositories from DeploymentConfig objects
	7.2.1.11. Assigning pods to specific nodes
	7.2.1.12. Running a pod with a different service account

	7.3. USING DEPLOYMENT STRATEGIES
	7.3.1. Choosing a deployment strategy
	7.3.2. Rolling strategy
	7.3.2.1. Canary deployments
	7.3.2.2. Creating a rolling deployment
	7.3.2.3. Editing a deployment by using the Developer perspective
	7.3.2.4. Starting a rolling deployment using the Developer perspective

	7.3.3. Recreate strategy
	7.3.3.1. Editing a deployment by using the Developer perspective
	7.3.3.2. Starting a recreate deployment using the Developer perspective

	7.3.4. Custom strategy
	7.3.4.1. Editing a deployment by using the Developer perspective

	7.3.5. Lifecycle hooks
	7.3.5.1. Pod-based lifecycle hook
	7.3.5.2. Setting lifecycle hooks

	7.4. USING ROUTE-BASED DEPLOYMENT STRATEGIES
	7.4.1. Proxy shards and traffic splitting
	7.4.2. N-1 compatibility
	7.4.3. Graceful termination
	7.4.4. Blue-green deployments
	7.4.4.1. Setting up a blue-green deployment

	7.4.5. A/B deployments
	7.4.5.1. Load balancing for A/B testing

	7.4.6. Additional resources

	CHAPTER 8. QUOTAS
	8.1. RESOURCE QUOTAS PER PROJECT
	8.1.1. Resources managed by quotas
	8.1.2. Quota scopes
	8.1.3. Quota enforcement
	8.1.4. Requests versus limits
	8.1.5. Sample resource quota definitions
	8.1.6. Creating a quota
	8.1.6.1. Creating object count quotas
	8.1.6.2. Setting resource quota for extended resources

	8.1.7. Viewing a quota
	8.1.8. Configuring explicit resource quotas

	8.2. RESOURCE QUOTAS ACROSS MULTIPLE PROJECTS
	8.2.1. Selecting multiple projects during quota creation
	8.2.2. Viewing applicable cluster resource quotas
	8.2.3. Selection granularity

	CHAPTER 9. USING CONFIG MAPS WITH APPLICATIONS
	9.1. UNDERSTANDING CONFIG MAPS
	9.1.1. Config map restrictions

	9.2. USE CASES: CONSUMING CONFIG MAPS IN PODS
	9.2.1. Populating environment variables in containers by using config maps
	9.2.2. Setting command-line arguments for container commands with config maps
	9.2.3. Injecting content into a volume by using config maps

	CHAPTER 10. MONITORING PROJECT AND APPLICATION METRICS USING THE DEVELOPER PERSPECTIVE
	10.1. PREREQUISITES
	10.2. MONITORING YOUR PROJECT METRICS
	10.3. MONITORING YOUR APPLICATION METRICS
	10.4. IMAGE VULNERABILITIES BREAKDOWN
	10.5. MONITORING YOUR APPLICATION AND IMAGE VULNERABILITIES METRICS

	CHAPTER 11. MONITORING APPLICATION HEALTH BY USING HEALTH CHECKS
	11.1. UNDERSTANDING HEALTH CHECKS
	11.1.1. Example probes

	11.2. CONFIGURING HEALTH CHECKS USING THE CLI
	11.3. MONITORING APPLICATION HEALTH USING THE DEVELOPER PERSPECTIVE
	11.4. EDITING HEALTH CHECKS USING THE DEVELOPER PERSPECTIVE
	11.5. MONITORING HEALTH CHECK FAILURES USING THE DEVELOPER PERSPECTIVE

	CHAPTER 12. EDITING APPLICATIONS
	12.1. PREREQUISITES
	12.2. EDITING THE SOURCE CODE OF AN APPLICATION USING THE DEVELOPER PERSPECTIVE
	12.3. EDITING THE APPLICATION CONFIGURATION USING THE DEVELOPER PERSPECTIVE

	CHAPTER 13. PRUNING OBJECTS TO RECLAIM RESOURCES
	13.1. BASIC PRUNING OPERATIONS
	13.2. PRUNING GROUPS
	13.3. PRUNING DEPLOYMENT RESOURCES
	13.4. PRUNING BUILDS
	13.5. AUTOMATICALLY PRUNING IMAGES
	13.6. MANUALLY PRUNING IMAGES
	13.6.1. Considerations when pruning images
	13.6.2. Limitations when pruning images
	13.6.3. Image prune conditions
	13.6.3.1. Pruning an image by age and tag
	13.6.3.2. Pruning an image by size limit

	13.6.4. Running image prune operations
	13.6.5. Using secure or insecure connections
	13.6.6. Image pruning CLI options
	13.6.6.1. Additional information about the --prune-registry flag

	13.6.7. Image pruning problems
	13.6.7.1. Images not being pruned
	13.6.7.2. Using a secure connection against insecure registry
	13.6.7.3. Using an insecure connection against a secured registry
	13.6.7.4. Using the wrong certificate authority

	13.7. HARD PRUNING THE REGISTRY
	13.8. PRUNING CRON JOBS

	CHAPTER 14. IDLING APPLICATIONS
	14.1. IDLING APPLICATIONS
	14.1.1. Idling a single service
	14.1.2. Idling multiple services

	14.2. UNIDLING APPLICATIONS

	CHAPTER 15. DELETING APPLICATIONS
	15.1. DELETING APPLICATIONS USING THE DEVELOPER PERSPECTIVE

	CHAPTER 16. USING THE RED HAT MARKETPLACE
	16.1. RED HAT MARKETPLACE FEATURES
	16.1.1. Connect OpenShift Container Platform clusters to the Marketplace
	16.1.2. Install applications
	16.1.3. Deploy applications from different perspectives
	16.1.3.1. The Developer perspective
	16.1.3.2. The Administrator perspective

