
OpenShift Container Platform 4.20

etcd

Providing redundancy with etcd

Last Updated: 2025-12-17

OpenShift Container Platform 4.20 etcd

Providing redundancy with etcd

Legal Notice

Copyright © Red Hat.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides instructions for using etcd, which ensures a reliable approach to cluster
configuration and resiliency in OpenShift Container Platform.

. .

. .

. .

. .

Table of Contents

CHAPTER 1. OVERVIEW OF ETCD
1.1. HOW ETCD WORKS
1.2. UNDERSTANDING ETCD PERFORMANCE

CHAPTER 2. RECOMMENDED ETCD PRACTICES
2.1. STORAGE PRACTICES FOR ETCD
2.2. CLUSTER LATENCY REQUIREMENTS FOR ETCD
2.3. VALIDATING THE HARDWARE FOR ETCD

CHAPTER 3. ENSURING RELIABLE ETCD PERFORMANCE AND SCALABILITY
3.1. LEADER ELECTION AND LOG REPLICATION OF ETCD
3.2. NODE SCALING FOR ETCD
3.3. EFFECTS OF DISK LATENCY ON ETCD
3.4. MONITORING CONSENSUS LATENCY FOR ETCD
3.5. MOVING ETCD TO A DIFFERENT DISK
3.6. DEFRAGMENTING ETCD DATA

3.6.1. Automatic defragmentation
3.6.2. Manual defragmentation

3.7. SETTING TUNING PARAMETERS FOR ETCD
3.7.1. Changing hardware speed tolerance

3.8. OPENSHIFT CONTAINER PLATFORM TIMER TUNABLES FOR ETCD
3.9. DETERMINING THE SIZE OF THE ETCD DATABASE AND UNDERSTANDING ITS EFFECTS
3.10. INCREASING THE DATABASE SIZE FOR ETCD

3.10.1. Changing the etcd database size
3.10.2. Troubleshooting

3.10.2.1. Value is too small
3.10.2.2. Value is too large
3.10.2.3. Value is decreasing

3.11. MEASURING NETWORK JITTER BETWEEN CONTROL PLANE NODES
3.12. HOW ETCD PEER ROUND TRIP TIME AFFECTS PERFORMANCE
3.13. DETERMINING KUBERNETES API TRANSACTION RATE FOR YOUR ENVIRONMENT

CHAPTER 4. BACKING UP AND RESTORING ETCD DATA
4.1. BACKING UP AND RESTORING ETCD DATA

4.1.1. Backing up etcd data
4.1.2. Creating automated etcd backups

4.1.2.1. Creating a single automated etcd backup
4.1.2.2. Creating recurring automated etcd backups

4.2. REPLACING AN UNHEALTHY ETCD MEMBER
4.2.1. Identifying an unhealthy etcd member
4.2.2. Determining the state of the unhealthy etcd member
4.2.3. Replacing the unhealthy etcd member

4.2.3.1. Replacing an unhealthy etcd member whose machine is not running or whose node is not ready
4.2.3.2. Replacing an unhealthy etcd member whose etcd pod is crashlooping
4.2.3.3. Replacing an unhealthy bare metal etcd member whose machine is not running or whose node is not
ready

4.3. DISASTER RECOVERY
4.3.1. Quorum restoration

4.3.1.1. Restoring etcd quorum for high availability clusters
4.3.2. Restoring to a previous cluster state

4.3.2.1. About restoring to a previous cluster state
4.3.2.2. Restoring to a previous cluster state for a single node

4
4
4

9
9

10
10

12
12
12
13
14
15
18
19

20
22
22
24
25
26
27
28
28
29
29
29
32
33

35
35
35
37
38
41

46
46
47
49
49
59

63
72
72
73
76
77
77

Table of Contents

1

. .

. .

4.3.2.3. Restoring to a previous cluster state for more than one node
4.3.2.4. Restoring a cluster manually from an etcd backup
4.3.2.5. Issues and workarounds for restoring a persistent storage state

4.3.3. Recovering from expired control plane certificates
4.3.4. Testing restore procedures

CHAPTER 5. ENABLING ETCD ENCRYPTION
5.1. ABOUT ETCD ENCRYPTION
5.2. SUPPORTED ENCRYPTION TYPES
5.3. ENABLING ETCD ENCRYPTION
5.4. DISABLING ETCD ENCRYPTION

CHAPTER 6. GUIDANCE FOR CLUSTERS THAT SPAN DATA CENTERS
6.1. DEPLOYMENT CAVEATS FOR SPANNED CLUSTERS
6.2. INFRASTRUCTURE AS A SERVICE (IAAS) AND CLOUD PROVIDER CONSIDERATIONS
6.3. SITE RECOMMENDATIONS
6.4. REQUIREMENTS FOR ETCD, NETWORKING, AND STORAGE

6.4.1. etcd requirements
6.4.2. Network requirements
6.4.3. Storage requirements

6.5. WORKLOAD PLACEMENT CONSIDERATIONS

78
80
87
88
89

91
91
91
91

93

96
96
97
98
98
98
98
98
99

OpenShift Container Platform 4.20 etcd

2

Table of Contents

3

CHAPTER 1. OVERVIEW OF ETCD
etcd (pronounced et-see-dee) is a consistent, distributed key-value store that stores small amounts of
data across a cluster of machines that can fit entirely in memory. As the core component of many
projects, etcd is also the primary data store for Kubernetes, which is the standard system for container
orchestration.

By using etcd, you can benefit in several ways:

Support consistent uptime for your cloud-native applications, and keep them working even if
individual servers fail

Store and replicate all cluster states for Kubernetes

Distribute configuration data to offer redundancy and resiliency for the configuration of nodes

IMPORTANT

The default etcd configuration optimizes container orchestration. Use it as designed for
the best results.

1.1. HOW ETCD WORKS

To ensure a reliable approach to cluster configuration and management, etcd uses the etcd Operator.
The Operator simplifies the use of etcd on a Kubernetes container platform such as OpenShift
Container Platform.

Additionally, you can use the etcd Operator to deploy and manage the etcd cluster for the OpenShift
Container Platform control plane. The etcd Operator manages the cluster state in the following ways:

Observes the cluster state by using the Kubernetes API

Analyzes differences between the current state and the required state

Corrects the differences through the etcd cluster management APIs, the Kubernetes API, or
both

NOTE

etcd holds the cluster state, which is constantly updated. This state is continuously
persisted, which leads to a high number of small changes at high frequency. As a result, it
is critical to back up the etcd cluster member with fast, low-latency I/O. For more
information about best practices for etcd, see "Recommended etcd practices".

Additional resources

Recommended etcd practices

1.2. UNDERSTANDING ETCD PERFORMANCE

As a consistent distributed key-value store operating as a cluster of replicated nodes, etcd follows the
Raft algorithm by electing one node as the leader and the others as followers. The leader maintains the
current state of the system current state and ensures that the followers are up-to-date.

The leader node is responsible for log replication. It handles incoming write transactions from the client

OpenShift Container Platform 4.20 etcd

4

1

2

The leader node is responsible for log replication. It handles incoming write transactions from the client
and writes a Raft log entry that it then broadcasts to the followers.

When an etcd client such as kube-apiserver connects to an etcd member that is requesting an action
that requires a quorum, such as writing a value, if the etcd member is a follower, it returns a message
indicating that the transaction needs to go to the leader.

When the etcd client requests an action from the leader that requires a quorum, such as writing a value,
the leader maintains the client connection open while it writes the local Raft log, broadcasts the log to
the followers, and waits for the majority of the followers to acknowledge to have committed the log
without failures. The leader sends the acknowledgment to the etcd client and closes the session. If
failure notifications are received from the followers and a consensus is not met, the leader returns the
error message to the client and closes the session.

OpenShift Container Platform timer conditions for etcd

OpenShift Container Platform maintains etcd timers that are optimized for each platform. OpenShift
Container Platform has prescribed validated values that are optimized for each platform provider. The
default etcd timers parameters with platform=none or platform=metal values are as follows:

This timeout is how long a follower node waits without hearing a heartbeat before it attempts to
become the leader.

The frequency that the leader notifies followers that it is still the leader.

These parameters do not provide all of the information for the control plane or for etcd. An etcd cluster
is sensitive to disk latencies. Because etcd must persist proposals to its log, disk activity from other
processes might cause long fsync latencies. The consequence is that etcd might miss heartbeats,
causing request timeouts and temporary leader loss. During a leader loss and reelection, the Kubernetes
API cannot process any request that causes a service-affecting event and instability of the cluster.

Effects of disk latency on etcd

An etcd cluster is sensitive to disk latencies. To understand the disk latency that etcd experiences by
etcd in your control plane environment, run the Flexible I/O Tester (fio) tests or suite, to check etcd disk
performance in OpenShift Container Platform.

IMPORTANT

Use only the fio test to measure disk latency at a specific point in time. This test does not
account for long-term disk behavior and other disk workloads that occur with etcd in a
production environment.

Ensure that the final report classifies the disk as appropriate for etcd, as shown in the following example:

- name: ETCD_ELECTION_TIMEOUT 1
 value: "1000"
 ...
- name: ETCD_HEARTBEAT_INTERVAL 2
 value: "100"

...
99th percentile of fsync is 5865472 ns
99th percentile of the fsync is within the suggested threshold: - 20 ms, the disk can be used to host
etcd

CHAPTER 1. OVERVIEW OF ETCD

5

When a high latency disk is used, a message states that the disk is not suggested for etcd, as shown in
the following example:

When your cluster deployments span many data centers that are using disks for etcd that do not meet
the suggested latency, service-affecting failures can occur. In addition, the network latency that the
control plane can sustain is dramatically reduced.

Effects of network latency and jitter on etcd

Use the tools that are described in the maximum transmission unit (MTU) discovery and validation
section to obtain the average and maximum network latency.

The value of the heartbeat interval should be approximately the maximum of the average round-trip
time (RTT) between members, normally around 1.5 times the round-trip time. With the OpenShift
Container Platform default heartbeat interval of 100 ms, the suggested RTT between control plane
nodes is less than 33 ms, with a maximum of less than 66 ms (66 ms x 1.5 = 99 ms). Any network latency
that is larger might cause service-affecting events and cluster instability.

The network latency is determined by factors that include the technology of the transport networks,
such as copper, fiber, wireless, or satellite, the number and quality of the network devices in the
transport network, and other factors.

Consider network latency with network jitter for exact calculations. Network jitter is the variance in
network latency or the variation in the delay of received packets. In efficient network conditions, the
jitter should be zero. Network jitter affects the network latency calculations for etcd because the actual
network latency over time will be the RTT plus or minus Jitter.

For example, a network with a maximum latency of 80 ms and jitter of 30 ms will experience latencies of
110 ms, which means etcd will miss heartbeats. This condition results in request timeouts and temporary
leader loss. During a leader loss and re-election, the Kubernetes API cannot process any request that
causes a service-affecting event and instability of the cluster.

Effects of consensus latency on etcd

The procedure can run only on an active cluster. The disk or network test should be completed while you
plan a cluster deployment. That test validates and monitors cluster health after a deployment.

By using the etcdctl CLI, you can watch the latency for reaching consensus as experienced by etcd. You
must identify one of the etcd pods and then retrieve the endpoint health.

etcd peer round trip time impacts on performance

The etcd peer round trip time is not the same as the network round trip time. This calculation is an end-
to-end test metric about how quickly replication can occur among members.

The etcd peer round trip time is the metric that shows the latency of etcd to finish replicating a client
request among all the etcd members. The OpenShift Container Platform console provides dashboards
to visualize the various etcd metrics. In the console, click Observe → Dashboards. From the dropdown
list, select etcd.

A plot that summarizes the etcd peer round trip time is near the end of the etcd Dashboard page.

...
99th percentile of fsync is 15865472 ns
99th percentile of the fsync is greater than the suggested value which is 20 ms, faster disks are
suggested to host etcd for better performance

OpenShift Container Platform 4.20 etcd

6

Effects of database size on etcd

The etcd database size has a direct impact on the time to complete the etcd defragmentation process.
OpenShift Container Platform automatically runs the etcd defragmentation on one etcd member at a
time when it detects at least 45% fragmentation. During the defragmentation process, the etcd member
cannot process any requests. On small etcd databases, the defragmentation process happens in less
than a second. With larger etcd databases, the disk latency directly impacts the fragmentation time,
causing additional latency, as operations are blocked while defragmentation happens.

The size of the etcd database is a factor to consider when network partitions isolate a control plane node
for a period of time, and the control plane needs to sync after communication is re-established.

Minimal options exist for controlling the size of the etcd database, because it depends on the Operators
and applications in the system. When you consider the latency range where the system operates,
account for the effects of synchronization or defragmentation per size of the etcd database.

The magnitude of the effects is specific to the deployment. The time to complete a defragmentation
will cause degradation in the transaction rate, as the etcd member cannot accept updates during the
defragmentation process. Similarly, the time for the etcd re-synchronization for large databases with
high change rate affects the transaction rate and transaction latency on the system. Consider the
following two examples for the type of impacts to plan for.

The first example of the effect of etcd defragmentation based on database size is that writing an etcd
database of 1 GB to a slow 7200 RPMs disk at 80 Mb per second takes about 1 minute and 40 seconds.
In such a scenario, the defragmentation process takes at least this long, to complete the
defragmentation.

The second example of the effect of database size on etcd synchronization is that if there is a change of
10% of the etcd database during disconnection of one of the control plane nodes, the sync needs to
transfer at least 100 MB. Transferring 100 MB over a 1 Gbps link takes 800 ms. On clusters with regular
transactions with the Kubernetes API, the larger the etcd database size, the more network instabilities
will cause control plane instabilities.

In OpenShift Container Platform, the etcd dashboard has a plot that reports the size of the etcd
database. Alternatively, you can obtain the database size from the CLI by using the etcdctl tool.

Example output

Example output

Effects of the Kubernetes API transaction rate on etcd

oc get pods -n openshift-etcd -l app=etcd

NAME READY STATUS RESTARTS AGE
etcd-m0 4/4 Running 4 22h
etcd-m1 4/4 Running 4 22h
etcd-m2 4/4 Running 4 22h

oc exec -t etcd-m0 -- etcdctl endpoint status -w simple | cut -d, -f 1,3,4

https://198.18.111.12:2379, 3.5.6, 1.1 GB
https://198.18.111.13:2379, 3.5.6, 1.1 GB
https://198.18.111.14:2379, 3.5.6, 1.1 GB

CHAPTER 1. OVERVIEW OF ETCD

7

When you are using a stretched control plane, the Kebernetes API transaction rate depends on the
characteristics of the particular deployment. It depends on the combination of the etcd disk latency, the
etcd round trip time, and the size of objects that are written to the API. As a result, when you use
stretched control planes, the cluster administrators need to test the environment to determine the
sustained transaction rate that is possible for their environment. The kube-burner tool can be used for
this purpose.

Determining Kubernetes API transaction rate for your environment

You cannot determine the transaction rate of the Kubernetes API without measuring it. One of the tools
that is used for load testing the control plane is kube-burner. The binary provides a OpenShift
Container Platform wrapper for testing OpenShift Container Platform clusters. It is used to test cluster
or node density. For testing the control plane, kube-burner ocp has three workload profiles: cluster-
density, cluster-density-v2, and cluster-density-ms. Each workload profile creates a series of
resources designed to load the control.

OpenShift Container Platform 4.20 etcd

8

CHAPTER 2. RECOMMENDED ETCD PRACTICES
The following documentation provides information about recommended performance and scalability
practices for etcd.

2.1. STORAGE PRACTICES FOR ETCD

Because etcd writes data to disk and persists proposals on disk, its performance depends on disk
performance. Although etcd is not particularly I/O intensive, it requires a low latency block device for
optimal performance and stability. Because the consensus protocol for etcd depends on persistently
storing metadata to a log (WAL), etcd is sensitive to disk-write latency. Slow disks and disk activity from
other processes can cause long fsync latencies.

Those latencies can cause etcd to miss heartbeats, not commit new proposals to the disk on time, and
ultimately experience request timeouts and temporary leader loss. High write latencies also lead to an
OpenShift API slowness, which affects cluster performance. Because of these reasons, avoid colocating
other workloads on the control-plane nodes that are I/O sensitive or intensive and share the same
underlying I/O infrastructure.

Run etcd on a block device that can write at least 50 IOPS of 8KB sequentially, including fdatasync, in
under 10ms. For heavy loaded clusters, sequential 500 IOPS of 8000 bytes (2 ms) are recommended.
To measure those numbers, you can use a benchmarking tool, such as the fio command.

To achieve such performance, run etcd on machines that are backed by SSD or NVMe disks with low
latency and high throughput. Consider single-level cell (SLC) solid-state drives (SSDs), which provide 1
bit per memory cell, are durable and reliable, and are ideal for write-intensive workloads.

NOTE

The load on etcd arises from static factors, such as the number of nodes and pods, and
dynamic factors, including changes in endpoints due to pod autoscaling, pod restarts, job
executions, and other workload-related events. To accurately size your etcd setup, you
must analyze the specific requirements of your workload. Consider the number of nodes,
pods, and other relevant factors that impact the load on etcd.

The following hard drive practices provide optimal etcd performance:

Use dedicated etcd drives. Avoid drives that communicate over the network, such as iSCSI. Do
not place log files or other heavy workloads on etcd drives.

Prefer drives with low latency to support fast read and write operations.

Prefer high-bandwidth writes for faster compactions and defragmentation.

Prefer high-bandwidth reads for faster recovery from failures.

Use solid state drives as a minimum selection. Prefer NVMe drives for production environments.

Use server-grade hardware for increased reliability.

Avoid NAS or SAN setups and spinning drives. Ceph Rados Block Device (RBD) and other types
of network-attached storage can result in unpredictable network latency. To provide fast
storage to etcd nodes at scale, use PCI passthrough to pass NVM devices directly to the nodes.

Always benchmark by using utilities such as fio. You can use such utilities to continuously

CHAPTER 2. RECOMMENDED ETCD PRACTICES

9

Always benchmark by using utilities such as fio. You can use such utilities to continuously
monitor the cluster performance as it increases.

Avoid using the Network File System (NFS) protocol or other network based file systems.

Some key metrics to monitor on a deployed OpenShift Container Platform cluster are p99 of etcd disk
write ahead log duration and the number of etcd leader changes. Use Prometheus to track these
metrics.

NOTE

The etcd member database sizes can vary in a cluster during normal operations. This
difference does not affect cluster upgrades, even if the leader size is different from the
other members.

2.2. CLUSTER LATENCY REQUIREMENTS FOR ETCD

Two important constraints should be addressed to provide a low-latency, high-availability network for
etcd:

network I/O latency

disk I/O latency

etcd uses the Raft consensus algorithm, and every change should replicate to a majority of the cluster
members before it commits. This process is highly sensitive to network and disk performance. The
minimum time for an etcd request is the Round-Trip Time (RTT) between members, plus the time
required for data to write to permanent storage.

To achieve high availability, etcd should detect and recover from a leader failure quickly. This depends
on two key tuning parameters:

Heartbeat Interval

The frequency that the leader sends a heartbeat to followers. This value should be close to the
average RTT between members.

Election Timeout

The time a follower waits without hearing a heartbeat before it attempts to become the new leader.
This should be at least 10 times the RTT value to account for network variance.

In a healthy cluster, the round-trip time between members should be less than 50 ms to ensure stability
and avoid frequent leader elections. This is why etcd clusters are often deployed within a single data
center or availability zone to minimize physical distance and network latency.

To support a low-latency, high-availability network, especially during the leader election process, an
arbiter site should be located where it provides an RTT latency of less than 10 ms. The arbiter
component of a network maintains consistency and availability in a distributed system.

Additional resources

Setting tuning parameters for etcd

2.3. VALIDATING THE HARDWARE FOR ETCD

To validate the hardware for etcd before or after you create the OpenShift Container Platform cluster,

OpenShift Container Platform 4.20 etcd

10

To validate the hardware for etcd before or after you create the OpenShift Container Platform cluster,
you can use fio.

Prerequisites

Container runtimes such as Podman or Docker are installed on the machine that you are testing.

Data is written to the /var/lib/etcd path.

Procedure

Run fio and analyze the results:

If you use Podman, run this command:

If you use Docker, run this command:

The output reports whether the disk is fast enough to host etcd by comparing the 99th percentile of the
fsync metric captured from the run to see if it is less than 10 ms. A few of the most important etcd
metrics that might affected by I/O performance are as follows:

etcd_disk_wal_fsync_duration_seconds_bucket metric reports the etcd’s WAL fsync
duration

etcd_disk_backend_commit_duration_seconds_bucket metric reports the etcd backend
commit latency duration

etcd_server_leader_changes_seen_total metric reports the leader changes

Because etcd replicates the requests among all the members, its performance strongly depends on
network input/output (I/O) latency. High network latencies result in etcd heartbeats taking longer than
the election timeout, which results in leader elections that are disruptive to the cluster. A key metric to
monitor on a deployed OpenShift Container Platform cluster is the 99th percentile of etcd network peer
latency on each etcd cluster member. Use Prometheus to track the metric.

The histogram_quantile(0.99, rate(etcd_network_peer_round_trip_time_seconds_bucket[2m]))
metric reports the round trip time for etcd to finish replicating the client requests between the members.
Ensure that it is less than 50 ms.

Additional resources

How to use fio to check etcd disk performance in OpenShift Container Platform

etcd performance troubleshooting guide for OpenShift Container Platform

$ sudo podman run --volume /var/lib/etcd:/var/lib/etcd:Z quay.io/cloud-bulldozer/etcd-perf

$ sudo docker run --volume /var/lib/etcd:/var/lib/etcd:Z quay.io/cloud-bulldozer/etcd-perf

CHAPTER 2. RECOMMENDED ETCD PRACTICES

11

https://access.redhat.com/solutions/4885641
https://access.redhat.com/articles/6271341

CHAPTER 3. ENSURING RELIABLE ETCD PERFORMANCE AND
SCALABILITY

To ensure optimal performance with etcd, it’s important to understand the conditions that affect
performance, including node scaling, leader election, log replication, tuning, latency, network jitter, peer
round trip time, database size, and Kubernetes API transaction rates.

3.1. LEADER ELECTION AND LOG REPLICATION OF ETCD

etcd is a consistent, distributed key-value store that operates as a cluster of replicated nodes. Following
the Raft algorithm, etcd operates by electing one node as the leader and the others as followers. The
leader maintains the system’s current state and ensures that the followers are up-to-date.

The leader node is responsible for log replication. It handles incoming write transactions from the client
and writes a Raft log entry that it then broadcasts to the followers.

When an etcd client such as kube-apiserver connects to an etcd member that is requesting an action
that requires a quorum, such as writing a value, if the etcd member is a follower, it returns a message
indicating the transaction should be sent to the leader.

When the etcd client requests an action that requires a quorum from the leader, the leader keeps the
client connection open while it writes the local Raft log, broadcasts the log to the followers, and waits for
the majority of the followers to acknowledge to have committed the log without failures. Only then does
the leader send the acknowledgment to the etcd client and close the session. If failure notifications are
received from the followers and the majority fails to reach a consensus, the leader returns the error
message to the client and closes the session.

Additional resources

The etcd learner design

Failure modes

3.2. NODE SCALING FOR ETCD

In general, clusters must have 3 control plane nodes. However, if your cluster is installed on a bare metal
platform, it can have up to 5 control plane nodes. If an existing bare-metal cluster has fewer than 5
control plane nodes, you can scale the cluster up as a postinstallation task.

For example, to scale from 3 to 4 control plane nodes after installation, you can add a host and install it
as a control plane node. Then, the etcd Operator scales accordingly to account for the additional control
plane node.

Scaling a cluster to 4 or 5 control plane nodes is available only on bare metal platforms.

For more information about how to scale control plane nodes by using the Assisted Installer, see "Adding
hosts with the API" and "Replacing a control plane node in a healthy cluster".

NOTE

While adding control plane nodes can increase reliability and availability, it can decrease
throughput and increase latency, affecting performance.

OpenShift Container Platform 4.20 etcd

12

https://etcd.io/docs/v3.5/learning/design-learner/
https://etcd.io/docs/v3.5/op-guide/failures/

The following table shows failure tolerance for clusters of different sizes:

Table 3.1. Failure tolerances by cluster size

Cluster size Majority Failure tolerance

1 node 1 0

3 nodes 2 1

4 nodes 3 1

5 nodes 3 2

For more information about recovering from quorum loss, see "Restoring to a previous cluster state".

Additional resources

Adding hosts with the API

Replacing a control plane node in a healthy cluster

Expanding the cluster

Restoring to a previous cluster state

3.3. EFFECTS OF DISK LATENCY ON ETCD

An etcd cluster is sensitive to disk latencies. To understand the disk latency that is experienced by etcd
in your control plane environment, run the fio tests or suite.

Make sure that the final report classifies the disk as appropriate for etcd, as shown in the following
example:

When a high latency disk is used, a message states that the disk is not recommended for etcd, as shown
in the following example:

When you use cluster deployments that span multiple data centers that are using disks for etcd that do
not meet the recommended latency, it increases the chances of service-affecting failures and
dramatically reduces the network latency that the control plane can sustain.

...
99th percentile of fsync is 5865472 ns
99th percentile of the fsync is within the recommended threshold: - 20 ms, the disk can be used to
host etcd

...
99th percentile of fsync is 15865472 ns
99th percentile of the fsync is greater than the recommended value which is 20 ms, faster disks are
recommended to host etcd for better performance

CHAPTER 3. ENSURING RELIABLE ETCD PERFORMANCE AND SCALABILITY

13

https://docs.redhat.com/en/documentation/assisted_installer_for_openshift_container_platform/2025/html/installing_openshift_container_platform_with_the_assisted_installer/expanding-the-cluster#adding-hosts-with-the-api_expanding-the-cluster
https://docs.redhat.com/en/documentation/assisted_installer_for_openshift_container_platform/2025/html/installing_openshift_container_platform_with_the_assisted_installer/expanding-the-cluster#installing-control-plane-node-healthy-cluster_expanding-the-cluster
https://docs.redhat.com/en/documentation/assisted_installer_for_openshift_container_platform/2024/html/installing_openshift_container_platform_with_the_assisted_installer/expanding-the-cluster#installing-control-plane-node-healthy-cluster_expanding-the-cluster
https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/backup_and_restore/#dr-restoring-cluster-state

3.4. MONITORING CONSENSUS LATENCY FOR ETCD

By using the etcdctl CLI, you can monitor the latency for reaching consensus as experienced by etcd.
You must identify one of the etcd pods and then retrieve the endpoint health.

This procedure, which validates and monitors cluster health, can be run only on an active cluster.

Prerequisites

During planning for cluster deployment, you completed the disk and network tests.

Procedure

1. Enter the following command:

Example output

2. Enter the following command. To better understand the etcd latency for consensus, you can run
this command on a precise watch cycle for a few minutes to observe that the numbers remain
below the ~66 ms threshold. The closer the consensus time is to 100 ms, the more likely the
cluster will experience service-affecting events and instability.

Example output

3. Enter the following command:

Example output

oc get pods -n openshift-etcd -l app=etcd

NAME READY STATUS RESTARTS AGE
etcd-m0 4/4 Running 4 8h
etcd-m1 4/4 Running 4 8h
etcd-m2 4/4 Running 4 8h

oc exec -ti etcd-m0 -- etcdctl endpoint health -w table

+----------------------------+--------+-------------+-------+
| ENDPOINT | HEALTH | TOOK | ERROR |
+----------------------------+--------+-------------+-------+
https://198.18.111.12:2379	true	3.798349ms	
https://198.18.111.14:2379	true	7.389608ms	
https://198.18.111.13:2379	true	6.263117ms	
+----------------------------+--------+-------------+-------+

oc exec -ti etcd-m0 -- watch -dp -c etcdctl endpoint health -w table

+----------------------------+--------+-------------+-------+
| ENDPOINT | HEALTH | TOOK | ERROR |
+----------------------------+--------+-------------+-------+
| https://198.18.111.12:2379 | true | 9.533405ms | |

OpenShift Container Platform 4.20 etcd

14

3.5. MOVING ETCD TO A DIFFERENT DISK

You can move etcd from a shared disk to a separate disk to prevent or resolve performance issues.

The Machine Config Operator (MCO) is responsible for mounting a secondary disk for OpenShift
Container Platform 4.20 container storage.

NOTE

This encoded script only supports device names for the following device types:

SCSI or SATA

/dev/sd*

Virtual device

/dev/vd*

NVMe

/dev/nvme*[0-9]*n*

Limitations

When the new disk is attached to the cluster, the etcd database is part of the root mount. It is
not part of the secondary disk or the intended disk when the primary node is recreated. As a
result, the primary node will not create a separate /var/lib/etcd mount.

Prerequisites

You have a backup of your cluster’s etcd data.

You have installed the OpenShift CLI (oc).

You have access to the cluster with cluster-admin privileges.

Add additional disks before uploading the machine configuration.

The MachineConfigPool must match
metadata.labels[machineconfiguration.openshift.io/role]. This applies to a controller, worker,
or a custom pool.

NOTE

This procedure does not move parts of the root file system, such as /var/, to another disk
or partition on an installed node.

IMPORTANT

This procedure is not supported when using control plane machine sets.

| https://198.18.111.13:2379 | true | 4.628054ms | |
| https://198.18.111.14:2379 | true | 5.803378ms | |
+----------------------------+--------+-------------+-------+

CHAPTER 3. ENSURING RELIABLE ETCD PERFORMANCE AND SCALABILITY

15

1

Procedure

1. Attach the new disk to the cluster and verify that the disk is detected in the node by running the
lsblk command in a debug shell:

Note the device name of the new disk reported by the lsblk command.

2. Create the following script and name it etcd-find-secondary-device.sh:

Replace <device_type_glob> with a shell glob for your block device type. For SCSI or
SATA drives, use /dev/sd*; for virtual drives, use /dev/vd*; for NVMe drives, use
/dev/nvme*[0-9]*n*.

3. Create a base64-encoded string from the etcd-find-secondary-device.sh script and note its
contents:

4. Create a MachineConfig YAML file named etcd-mc.yml with contents such as the following:

$ oc debug node/<node_name>

lsblk

#!/bin/bash
set -uo pipefail

for device in <device_type_glob>; do 1
/usr/sbin/blkid "${device}" &> /dev/null
 if [$? == 2]; then
 echo "secondary device found ${device}"
 echo "creating filesystem for etcd mount"
 mkfs.xfs -L var-lib-etcd -f "${device}" &> /dev/null
 udevadm settle
 touch /etc/var-lib-etcd-mount
 exit
 fi
done
echo "Couldn't find secondary block device!" >&2
exit 77

$ base64 -w0 etcd-find-secondary-device.sh

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
 labels:
 machineconfiguration.openshift.io/role: master
 name: 98-var-lib-etcd
spec:
 config:
 ignition:
 version: 3.5.0
 storage:
 files:

OpenShift Container Platform 4.20 etcd

16

 - path: /etc/find-secondary-device
 mode: 0755
 contents:
 source: data:text/plain;charset=utf-8;base64,
<encoded_etcd_find_secondary_device_script> 1
 systemd:
 units:
 - name: find-secondary-device.service
 enabled: true
 contents: |
 [Unit]
 Description=Find secondary device
 DefaultDependencies=false
 After=systemd-udev-settle.service
 Before=local-fs-pre.target
 ConditionPathExists=!/etc/var-lib-etcd-mount

 [Service]
 RemainAfterExit=yes
 ExecStart=/etc/find-secondary-device

 RestartForceExitStatus=77

 [Install]
 WantedBy=multi-user.target
 - name: var-lib-etcd.mount
 enabled: true
 contents: |
 [Unit]
 Before=local-fs.target

 [Mount]
 What=/dev/disk/by-label/var-lib-etcd
 Where=/var/lib/etcd
 Type=xfs
 TimeoutSec=120s

 [Install]
 RequiredBy=local-fs.target
 - name: sync-var-lib-etcd-to-etcd.service
 enabled: true
 contents: |
 [Unit]
 Description=Sync etcd data if new mount is empty
 DefaultDependencies=no
 After=var-lib-etcd.mount var.mount
 Before=crio.service

 [Service]
 Type=oneshot
 RemainAfterExit=yes
 ExecCondition=/usr/bin/test ! -d /var/lib/etcd/member
 ExecStart=/usr/sbin/setsebool -P rsync_full_access 1
 ExecStart=/bin/rsync -ar /sysroot/ostree/deploy/rhcos/var/lib/etcd/ /var/lib/etcd/
 ExecStart=/usr/sbin/semanage fcontext -a -t container_var_lib_t '/var/lib/etcd(/.*)?'
 ExecStart=/usr/sbin/setsebool -P rsync_full_access 0

CHAPTER 3. ENSURING RELIABLE ETCD PERFORMANCE AND SCALABILITY

17

1 Replace <encoded_etcd_find_secondary_device_script> with the encoded script
contents that you noted.

5. Apply the created MachineConfig YAML file:

Verification steps

Run the grep /var/lib/etcd /proc/mounts command in a debug shell for the node to ensure that
the disk is mounted:

Example output

Additional resources

Red Hat Enterprise Linux CoreOS (RHCOS)

3.6. DEFRAGMENTING ETCD DATA

For large and dense clusters, etcd can suffer from poor performance if the keyspace grows too large
and exceeds the space quota. Periodically maintain and defragment etcd to free up space in the data
store. Monitor Prometheus for etcd metrics and defragment it when required; otherwise, etcd can raise

 TimeoutSec=0

 [Install]
 WantedBy=multi-user.target graphical.target
 - name: restorecon-var-lib-etcd.service
 enabled: true
 contents: |
 [Unit]
 Description=Restore recursive SELinux security contexts
 DefaultDependencies=no
 After=var-lib-etcd.mount
 Before=crio.service

 [Service]
 Type=oneshot
 RemainAfterExit=yes
 ExecStart=/sbin/restorecon -R /var/lib/etcd/
 TimeoutSec=0

 [Install]
 WantedBy=multi-user.target graphical.target

$ oc create -f etcd-mc.yml

$ oc debug node/<node_name>

grep -w "/var/lib/etcd" /proc/mounts

/dev/sdb /var/lib/etcd xfs rw,seclabel,relatime,attr2,inode64,logbufs=8,logbsize=32k,noquota
0 0

OpenShift Container Platform 4.20 etcd

18

https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/architecture/#architecture-rhcos

a cluster-wide alarm that puts the cluster into a maintenance mode that accepts only key reads and
deletes.

Monitor these key metrics:

etcd_server_quota_backend_bytes, which is the current quota limit

etcd_mvcc_db_total_size_in_use_in_bytes, which indicates the actual database usage after a
history compaction

etcd_mvcc_db_total_size_in_bytes, which shows the database size, including free space
waiting for defragmentation

Defragment etcd data to reclaim disk space after events that cause disk fragmentation, such as etcd
history compaction.

History compaction is performed automatically every five minutes and leaves gaps in the back-end
database. This fragmented space is available for use by etcd, but is not available to the host file system.
You must defragment etcd to make this space available to the host file system.

Defragmentation occurs automatically, but you can also trigger it manually.

NOTE

Automatic defragmentation is good for most cases, because the etcd operator uses
cluster information to determine the most efficient operation for the user.

3.6.1. Automatic defragmentation

The etcd Operator automatically defragments disks. No manual intervention is needed.

Verify that the defragmentation process is successful by viewing one of these logs:

etcd logs

cluster-etcd-operator pod

operator status error log

WARNING

Automatic defragmentation can cause leader election failure in various OpenShift
core components, such as the Kubernetes controller manager, which triggers a
restart of the failing component. The restart is harmless and either triggers failover
to the next running instance or the component resumes work again after the
restart.

Example log output for successful defragmentation



etcd member has been defragmented: <member_name>, memberID: <member_id>

CHAPTER 3. ENSURING RELIABLE ETCD PERFORMANCE AND SCALABILITY

19

Example log output for unsuccessful defragmentation

3.6.2. Manual defragmentation

A Prometheus alert indicates when you need to use manual defragmentation. The alert is displayed in
two cases:

When etcd uses more than 50% of its available space for more than 10 minutes

When etcd is actively using less than 50% of its total database size for more than 10 minutes

You can also determine whether defragmentation is needed by checking the etcd database size in MB
that will be freed by defragmentation with the PromQL expression:
(etcd_mvcc_db_total_size_in_bytes - etcd_mvcc_db_total_size_in_use_in_bytes)/1024/1024

WARNING

Defragmenting etcd is a blocking action. The etcd member will not respond until
defragmentation is complete. For this reason, wait at least one minute between
defragmentation actions on each of the pods to allow the cluster to recover.

Follow this procedure to defragment etcd data on each etcd member.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

Procedure

1. Determine which etcd member is the leader, because the leader should be defragmented last.

a. Get the list of etcd pods:

Example output

b. Choose a pod and run the following command to determine which etcd member is the
leader:

failed defrag on member: <member_name>, memberID: <member_id>: <error_message>



$ oc -n openshift-etcd get pods -l k8s-app=etcd -o wide

etcd-ip-10-0-159-225.example.redhat.com 3/3 Running 0 175m
10.0.159.225 ip-10-0-159-225.example.redhat.com <none> <none>
etcd-ip-10-0-191-37.example.redhat.com 3/3 Running 0 173m
10.0.191.37 ip-10-0-191-37.example.redhat.com <none> <none>
etcd-ip-10-0-199-170.example.redhat.com 3/3 Running 0 176m
10.0.199.170 ip-10-0-199-170.example.redhat.com <none> <none>

OpenShift Container Platform 4.20 etcd

20

Example output

Based on the IS LEADER column of this output, the https://10.0.199.170:2379 endpoint is
the leader. Matching this endpoint with the output of the previous step, the pod name of
the leader is etcd-ip-10-0-199-170.example.redhat.com.

2. Defragment an etcd member.

a. Connect to the running etcd container, passing in the name of a pod that is not the leader:

b. Unset the ETCDCTL_ENDPOINTS environment variable:

c. Defragment the etcd member:

Example output

If a timeout error occurs, increase the value for --command-timeout until the command
succeeds.

d. Verify that the database size was reduced:

Example output

$ oc rsh -n openshift-etcd etcd-ip-10-0-159-225.example.redhat.com etcdctl endpoint
status --cluster -w table

Defaulting container name to etcdctl.
Use 'oc describe pod/etcd-ip-10-0-159-225.example.redhat.com -n openshift-etcd' to see
all of the containers in this pod.
+---------------------------+------------------+---------+---------+-----------+------------+-----------
+------------+--------------------+--------+
| ENDPOINT | ID | VERSION | DB SIZE | IS LEADER | IS LEARNER |
RAFT TERM | RAFT INDEX | RAFT APPLIED INDEX | ERRORS |
+---------------------------+------------------+---------+---------+-----------+------------+-----------
+------------+--------------------+--------+
| https://10.0.191.37:2379 | 251cd44483d811c3 | 3.5.9 | 104 MB | false | false |
7 | 91624 | 91624 | |
| https://10.0.159.225:2379 | 264c7c58ecbdabee | 3.5.9 | 104 MB | false | false |
7 | 91624 | 91624 | |
| https://10.0.199.170:2379 | 9ac311f93915cc79 | 3.5.9 | 104 MB | true | false |
7 | 91624 | 91624 | |
+---------------------------+------------------+---------+---------+-----------+------------+-----------
+------------+--------------------+--------+

$ oc rsh -n openshift-etcd etcd-ip-10-0-159-225.example.redhat.com

sh-4.4# unset ETCDCTL_ENDPOINTS

sh-4.4# etcdctl --command-timeout=30s --endpoints=https://localhost:2379 defrag

Finished defragmenting etcd member[https://localhost:2379]

sh-4.4# etcdctl endpoint status -w table --cluster

CHAPTER 3. ENSURING RELIABLE ETCD PERFORMANCE AND SCALABILITY

21

This example shows that the database size for this etcd member is now 41 MB as opposed
to the starting size of 104 MB.

e. Repeat these steps to connect to each of the other etcd members and defragment them.
Always defragment the leader last.
Wait at least one minute between defragmentation actions to allow the etcd pod to recover.
Until the etcd pod recovers, the etcd member will not respond.

3. If any NOSPACE alarms were triggered due to the space quota being exceeded, clear them.

a. Check if there are any NOSPACE alarms:

Example output

b. Clear the alarms:

3.7. SETTING TUNING PARAMETERS FOR ETCD

You can set the control plane hardware speed to "Standard", "Slower", or the default, which is "".

The default setting allows the system to decide which speed to use. This value enables upgrades from
versions where this feature does not exist, as the system can select values from previous versions.

By selecting one of the other values, you are overriding the default. If you see many leader elections due
to timeouts or missed heartbeats and your system is set to "" or "Standard", set the hardware speed to
"Slower" to make the system more tolerant to the increased latency.

3.7.1. Changing hardware speed tolerance

To change the hardware speed tolerance for etcd, complete the following steps.

Procedure

+---------------------------+------------------+---------+---------+-----------+------------+-----------
+------------+--------------------+--------+
| ENDPOINT | ID | VERSION | DB SIZE | IS LEADER | IS LEARNER |
RAFT TERM | RAFT INDEX | RAFT APPLIED INDEX | ERRORS |
+---------------------------+------------------+---------+---------+-----------+------------+-----------
+------------+--------------------+--------+
| https://10.0.191.37:2379 | 251cd44483d811c3 | 3.5.9 | 104 MB | false | false |
7 | 91624 | 91624 | |
| https://10.0.159.225:2379 | 264c7c58ecbdabee | 3.5.9 | 41 MB | false | false |
7 | 91624 | 91624 | | 1
| https://10.0.199.170:2379 | 9ac311f93915cc79 | 3.5.9 | 104 MB | true | false |
7 | 91624 | 91624 | |
+---------------------------+------------------+---------+---------+-----------+------------+-----------
+------------+--------------------+--------+

sh-4.4# etcdctl alarm list

memberID:12345678912345678912 alarm:NOSPACE

sh-4.4# etcdctl alarm disarm

OpenShift Container Platform 4.20 etcd

22

1. Check to see what the current value is by entering the following command:

Example output

NOTE

If the output is empty, the field has not been set and should be considered as the
default ("").

2. Change the value by entering the following command. Replace <value> with one of the valid
values: "", "Standard", or "Slower":

The following table indicates the heartbeat interval and leader election timeout for each profile.
These values are subject to change.

Profile ETCD_HEARTBEAT_INTERVA
L

ETCD_LEADER_ELECTION_TI
MEOUT

"" Varies depending on platform Varies depending on platform

Standard 100 1000

Slower 500 2500

3. Review the output:

Example output

If you enter any value besides the valid values, error output is displayed. For example, if you
entered "Faster" as the value, the output is as follows:

Example output

4. Verify that the value was changed by entering the following command:

Example output

$ oc describe etcd/cluster | grep "Control Plane Hardware Speed"

Control Plane Hardware Speed: <VALUE>

$ oc patch etcd/cluster --type=merge -p '{"spec": {"controlPlaneHardwareSpeed": "<value>"}}'

etcd.operator.openshift.io/cluster patched

The Etcd "cluster" is invalid: spec.controlPlaneHardwareSpeed: Unsupported value: "Faster":
supported values: "", "Standard", "Slower"

$ oc describe etcd/cluster | grep "Control Plane Hardware Speed"

CHAPTER 3. ENSURING RELIABLE ETCD PERFORMANCE AND SCALABILITY

23

5. Wait for etcd pods to roll out:

The following output shows the expected entries for master-0. Before you continue, wait until
all masters show a status of 4/4 Running.

Example output

6. Enter the following command to review to the values:

NOTE

These values might not have changed from the default.

Additional resources

Understanding feature gates

3.8. OPENSHIFT CONTAINER PLATFORM TIMER TUNABLES FOR
ETCD

OpenShift Container Platform maintains etcd timers that are optimized for each platform. OpenShift
Container Platform has prescribed validated values that are optimized for each platform provider. The
default etcd timers with platform=none or platform=metal are as follows:

Control Plane Hardware Speed: ""

$ oc get pods -n openshift-etcd -w

installer-9-ci-ln-qkgs94t-72292-9clnd-master-0 0/1 Pending 0 0s
installer-9-ci-ln-qkgs94t-72292-9clnd-master-0 0/1 Pending 0 0s
installer-9-ci-ln-qkgs94t-72292-9clnd-master-0 0/1 ContainerCreating 0 0s
installer-9-ci-ln-qkgs94t-72292-9clnd-master-0 0/1 ContainerCreating 0 1s
installer-9-ci-ln-qkgs94t-72292-9clnd-master-0 1/1 Running 0 2s
installer-9-ci-ln-qkgs94t-72292-9clnd-master-0 0/1 Completed 0 34s
installer-9-ci-ln-qkgs94t-72292-9clnd-master-0 0/1 Completed 0 36s
installer-9-ci-ln-qkgs94t-72292-9clnd-master-0 0/1 Completed 0 36s
etcd-guard-ci-ln-qkgs94t-72292-9clnd-master-0 0/1 Running 0 26m
etcd-ci-ln-qkgs94t-72292-9clnd-master-0 4/4 Terminating 0 11m
etcd-ci-ln-qkgs94t-72292-9clnd-master-0 4/4 Terminating 0 11m
etcd-ci-ln-qkgs94t-72292-9clnd-master-0 0/4 Pending 0 0s
etcd-ci-ln-qkgs94t-72292-9clnd-master-0 0/4 Init:1/3 0 1s
etcd-ci-ln-qkgs94t-72292-9clnd-master-0 0/4 Init:2/3 0 2s
etcd-ci-ln-qkgs94t-72292-9clnd-master-0 0/4 PodInitializing 0 3s
etcd-ci-ln-qkgs94t-72292-9clnd-master-0 3/4 Running 0 4s
etcd-guard-ci-ln-qkgs94t-72292-9clnd-master-0 1/1 Running 0 26m
etcd-ci-ln-qkgs94t-72292-9clnd-master-0 3/4 Running 0 20s
etcd-ci-ln-qkgs94t-72292-9clnd-master-0 4/4 Running 0 20s

$ oc describe -n openshift-etcd pod/<ETCD_PODNAME> | grep -e HEARTBEAT_INTERVAL
-e ELECTION_TIMEOUT

- name: ETCD_ELECTION_TIMEOUT

OpenShift Container Platform 4.20 etcd

24

https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/nodes/#nodes-cluster-enabling-features-about_nodes-cluster-enabling-features

From an etcd perspective, the two key values are election timeout and heartbeat interval:

Heartbeat interval

The frequency with which the leader notifies followers that it is still the leader.

Election timeout

This timeout is how long a follower node will go without hearing a heartbeat before it attempts to
become leader itself.

These values do not provide the whole story for the control plane or even etcd. An etcd cluster is
sensitive to disk latencies. Because etcd must persist proposals to its log, disk activity from other
processes might cause long fsync latencies. The consequence is that etcd might miss heartbeats,
causing request timeouts and temporary leader loss. During a leader loss and reelection, the Kubernetes
API cannot process any request that causes a service-affecting event and instability of the cluster.

3.9. DETERMINING THE SIZE OF THE ETCD DATABASE AND
UNDERSTANDING ITS EFFECTS

The size of the etcd database has a direct impact on the time to complete the etcd defragmentation
process. OpenShift Container Platform automatically runs the etcd defragmentation on one etcd
member at a time when it detects at least 45% fragmentation. During the defragmentation process, the
etcd member cannot process any requests. On small etcd databases, the defragmentation process
happens in less than a second. With larger etcd databases, the disk latency directly impacts the
fragmentation time, causing additional latency, as operations are blocked while defragmentation
happens.

The size of the etcd database is a factor to consider when network partitions isolate a control plane node
for a period and the control plane needs to resync after communication is re-established.

Minimal options exist for controlling the size of the etcd database, as it depends on the operators and
applications in the system. When you consider the latency range under which the system will operate,
account for the effects of synchronization or defragmentation per size of the etcd database.

The magnitude of the effects is specific to the deployment. The time to complete a defragmentation
will cause degradation in the transaction rate, as the etcd member cannot accept updates during the
defragmentation process. Similarly, the time for the etcd re-synchronization for large databases with
high change rate affects the transaction rate and transaction latency on the system.

Consider the following two examples for the type of impacts to plan for.

Example of the effect of etcd defragementation based on database size

Writing an etcd database of 1 GB to a slow 7200 RPMs disk at 80 Mbit/s takes about 1 minute and 40
seconds. In such a scenario, the defragmentation process takes at least this long, if not longer, to
complete the defragmentation.

Example of the effect of database size on etcd synchronization

If there is a change of 10% of the etcd database during the disconnection of one of the control plane
nodes, the resync needs to transfer at least 100 MB. Transferring 100 MB over a 1 Gbps link takes
800 ms. On clusters with regular transactions with the Kubernetes API, the larger the etcd database
size, the more network instabilities will cause control plane instabilities.

 value: "1000"
 ...
- name: ETCD_HEARTBEAT_INTERVAL
 value: "100"

CHAPTER 3. ENSURING RELIABLE ETCD PERFORMANCE AND SCALABILITY

25

You can determine the size of an etcd database by using the OpenShift Container Platform console or
by running commands in the etcdctl tool.

Procedure

To find the database size in the OpenShift Container Platform console, go to the etcd
dashboard to view a plot that reports the size of the etcd database.

To find the database size by using the etcdctl tool, you can enter two commands:

a. Enter the following command to list the pods:

Example output

b. Enter the following command and view the database size in the output:

Example output

3.10. INCREASING THE DATABASE SIZE FOR ETCD

You can set the disk quota in gibibytes (GiB) for each etcd instance. If you set a disk quota for your etcd
instance, you can specify integer values from 8 to 32. The default value is 8. You can specify only
increasing values.

You might want to increase the disk quota if you encounter a low space alert. This alert indicates that
the cluster is too large to fit in etcd despite automatic compaction and defragmentation. If you see this
alert, you need to increase the disk quota immediately because after etcd runs out of space, writes fail.

Another scenario where you might want to increase the disk quota is if you encounter an excessive
database growth alert. This alert is a warning that the database might grow too large in the next four
hours. In this scenario, consider increasing the disk quota so that you do not eventually encounter a low
space alert and possible write fails.

If you increase the disk quota, the disk space that you specify is not immediately reserved. Instead, etcd
can grow to that size if needed. Ensure that etcd is running on a dedicated disk that is larger than the
value that you specify for the disk quota.

For large etcd databases, the control plane nodes must have additional memory and storage. Because
you must account for the API server cache, the minimum memory required is at least three times the
configured size of the etcd database.

oc get pods -n openshift-etcd -l app=etcd

NAME READY STATUS RESTARTS AGE
etcd-m0 4/4 Running 4 22h
etcd-m1 4/4 Running 4 22h
etcd-m2 4/4 Running 4 22h

oc exec -t etcd-m0 -- etcdctl endpoint status -w simple | cut -d, -f 1,3,4

https://198.18.111.12:2379, 3.5.6, 1.1 GB
https://198.18.111.13:2379, 3.5.6, 1.1 GB
https://198.18.111.14:2379, 3.5.6, 1.1 GB

OpenShift Container Platform 4.20 etcd

26

IMPORTANT

Increasing the database size for etcd is a Technology Preview feature only. Technology
Preview features are not supported with Red Hat production service level agreements
(SLAs) and might not be functionally complete. Red Hat does not recommend using
them in production. These features provide early access to upcoming product features,
enabling customers to test functionality and provide feedback during the development
process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

3.10.1. Changing the etcd database size

To change the database size for etcd, complete the following steps.

Procedure

1. Check the current value of the disk quota for each etcd instance by entering the following
command:

Example output

2. Change the value of the disk quota by entering the following command:

Example output

Verification

1. Verify that the new value for the disk quota is set by entering the following command:

The etcd Operator automatically rolls out the etcd instances with the new values.

2. Verify that the etcd pods are up and running by entering the following command:

The following output shows the expected entries.

Example output

$ oc describe etcd/cluster | grep "Backend Quota"

Backend Quota Gi B: <value>

$ oc patch etcd/cluster --type=merge -p '{"spec": {"backendQuotaGiB": <value>}}'

etcd.operator.openshift.io/cluster patched

$ oc describe etcd/cluster | grep "Backend Quota"

$ oc get pods -n openshift-etcd

NAME READY STATUS RESTARTS AGE
etcd-ci-ln-b6kfsw2-72292-mzwbq-master-0 4/4 Running 0 39m

CHAPTER 3. ENSURING RELIABLE ETCD PERFORMANCE AND SCALABILITY

27

https://access.redhat.com/support/offerings/techpreview/

3. Verify that the disk quota value is updated for the etcd pod by entering the following command:

The value might not have changed from the default value of 8.

Example output

NOTE

While the value that you set is an integer in GiB, the value shown in the output is
converted to bytes.

3.10.2. Troubleshooting

If you encounter issues when you try to increase the database size for etcd, the following
troubleshooting steps might help.

3.10.2.1. Value is too small

If the value that you specify is less than 8, you see the following error message:

Example error message

etcd-ci-ln-b6kfsw2-72292-mzwbq-master-1 4/4 Running 0 37m
etcd-ci-ln-b6kfsw2-72292-mzwbq-master-2 4/4 Running 0 41m
etcd-guard-ci-ln-b6kfsw2-72292-mzwbq-master-0 1/1 Running 0 51m
etcd-guard-ci-ln-b6kfsw2-72292-mzwbq-master-1 1/1 Running 0 49m
etcd-guard-ci-ln-b6kfsw2-72292-mzwbq-master-2 1/1 Running 0 54m
installer-5-ci-ln-b6kfsw2-72292-mzwbq-master-1 0/1 Completed 0 51m
installer-7-ci-ln-b6kfsw2-72292-mzwbq-master-0 0/1 Completed 0 46m
installer-7-ci-ln-b6kfsw2-72292-mzwbq-master-1 0/1 Completed 0 44m
installer-7-ci-ln-b6kfsw2-72292-mzwbq-master-2 0/1 Completed 0 49m
installer-8-ci-ln-b6kfsw2-72292-mzwbq-master-0 0/1 Completed 0 40m
installer-8-ci-ln-b6kfsw2-72292-mzwbq-master-1 0/1 Completed 0 38m
installer-8-ci-ln-b6kfsw2-72292-mzwbq-master-2 0/1 Completed 0 42m
revision-pruner-7-ci-ln-b6kfsw2-72292-mzwbq-master-0 0/1 Completed 0 43m
revision-pruner-7-ci-ln-b6kfsw2-72292-mzwbq-master-1 0/1 Completed 0 43m
revision-pruner-7-ci-ln-b6kfsw2-72292-mzwbq-master-2 0/1 Completed 0 43m
revision-pruner-8-ci-ln-b6kfsw2-72292-mzwbq-master-0 0/1 Completed 0 42m
revision-pruner-8-ci-ln-b6kfsw2-72292-mzwbq-master-1 0/1 Completed 0 42m
revision-pruner-8-ci-ln-b6kfsw2-72292-mzwbq-master-2 0/1 Completed 0 42m

$ oc describe -n openshift-etcd pod/<etcd_podname> | grep
"ETCD_QUOTA_BACKEND_BYTES"

ETCD_QUOTA_BACKEND_BYTES: 8589934592

$ oc patch etcd/cluster --type=merge -p '{"spec": {"backendQuotaGiB": 5}}'

The Etcd "cluster" is invalid:
* spec.backendQuotaGiB: Invalid value: 5: spec.backendQuotaGiB in body should be greater than or
equal to 8
* spec.backendQuotaGiB: Invalid value: "integer": etcd backendQuotaGiB may not be decreased

OpenShift Container Platform 4.20 etcd

28

To resolve this issue, specify an integer between 8 and 32.

3.10.2.2. Value is too large

If the value that you specify is greater than 32, you see the following error message:

Example error message

To resolve this issue, specify an integer between 8 and 32.

3.10.2.3. Value is decreasing

If the value is set to a valid value between 8 and 32, you cannot decrease the value. Otherwise, you see
an error message.

1. Check to see the current value by entering the following command:

Example output

2. Decrease the disk quota value by entering the following command:

Example error message

3. To resolve this issue, specify an integer greater than 10.

3.11. MEASURING NETWORK JITTER BETWEEN CONTROL PLANE
NODES

The value of the heartbeat interval should be around the maximum of the average round-trip time (RTT)
between members, normally around 1.5 times the round-trip time. With the OpenShift Container
Platform default heartbeat interval of 100 ms, the recommended RTT between control plane nodes is
less than approximately 33 ms with a maximum of less than 66 ms (66 ms multiplied by 1.5 equals 99
ms). For more information, see "Setting tuning parameters for etcd". Any network latency that is higher
might cause service-affecting events and cluster instability.

The network latency is influenced by many factors, including but not limited to the following factors:

$ oc patch etcd/cluster --type=merge -p '{"spec": {"backendQuotaGiB": 64}}'

The Etcd "cluster" is invalid: spec.backendQuotaGiB: Invalid value: 64: spec.backendQuotaGiB in
body should be less than or equal to 32

$ oc describe etcd/cluster | grep "Backend Quota"

Backend Quota Gi B: 10

$ oc patch etcd/cluster --type=merge -p '{"spec": {"backendQuotaGiB": 8}}'

The Etcd "cluster" is invalid: spec.backendQuotaGiB: Invalid value: "integer": etcd
backendQuotaGiB may not be decreased

CHAPTER 3. ENSURING RELIABLE ETCD PERFORMANCE AND SCALABILITY

29

The technology of the transport networks, such as copper, fiber, wireless, or satellite

The number and quality of the network devices in the transport network

A good evaluation reference is the comparison of the network latency in the organization with the
commercial latencies that are published by telecommunications providers, such as monthly IP latency
statistics.

Consider network latency with network jitter for more accurate calculations. Network jitter is the
variance in network latency or, more specifically, the variation in the delay of received packets. On ideal
network conditions, the jitter is as close to zero as possible. Network jitter affects the network latency
calculations for etcd because the actual network latency over time will be the RTT plus or minus jitter.
For example, a network with a maximum latency of 80 ms and jitter of 30 ms will experience latencies of
110 ms, which means etcd is missing heartbeats, causing request timeouts and temporary leader loss.
During a leader loss and reelection, the Kubernetes API cannot process any request that causes a
service-affecting event and instability of the cluster.

It’s important to measure the network jitter among all control plane nodes. To do so, you can use the
iPerf3 tool in UDP mode.

Prerequisite

You built your own iPerf image. For more information, see the following Red Hat
Knowledgebase articles

Testing Network Bandwidth in OpenShift using iPerf Container

How to run iPerf network performance test in OpenShift 4

Procedure

1. Connect to one of the control plane nodes and run the iPerf container as iPerf server in host
network mode. When you are running in server mode, the tool accepts TCP and UDP tests.
Enter the following command, being careful to replace <iperf_image> with your iPerf image:

2. Connect to another control plane node and run the iPerf in UDP client mode by entering the
following command:

The default test runs for 10 seconds, and at the end, the client output shows the average jitter
from the client perspective.

3. Run the debug node mode by entering the following command:

Example output

podman run -ti --rm --net host <iperf_image> iperf3 -s

podman run -ti --rm --net host <iperf_image> iperf3 -u -c <node_iperf_server> -t 300

oc debug node/m1

Starting pod/m1-debug ...
To use host binaries, run `chroot /host`
Pod IP: 198.18.111.13
If you don't see a command prompt, try pressing enter.

OpenShift Container Platform 4.20 etcd

30

https://access.redhat.com/articles/5233541
https://access.redhat.com/solutions/6129701

4. Enter the following commands:

Example output

5. On the iPerf server, the output shows the jitter on every second interval. The average is shown
at the end. For the purpose of this test, you want to identify the maximum jitter that is
experienced during the test, ignoring the output of the first second as it might contain an invalid
measurement. Enter the following command:

Example output

6. Enter the following commands:

Example output

sh-4.4# chroot /host

sh-4.4# podman run -ti --rm --net host <iperf_image> iperf3 -u -c m0

Connecting to host m0, port 5201
[5] local 198.18.111.13 port 60878 connected to 198.18.111.12 port 5201
[ID] Interval Transfer Bitrate Total Datagrams
[5] 0.00-1.00 sec 129 KBytes 1.05 Mbits/sec 91
[5] 1.00-2.00 sec 127 KBytes 1.04 Mbits/sec 90
[5] 2.00-3.00 sec 129 KBytes 1.05 Mbits/sec 91
[5] 3.00-4.00 sec 129 KBytes 1.05 Mbits/sec 91
[5] 4.00-5.00 sec 127 KBytes 1.04 Mbits/sec 90
[5] 5.00-6.00 sec 129 KBytes 1.05 Mbits/sec 91
[5] 6.00-7.00 sec 127 KBytes 1.04 Mbits/sec 90
[5] 7.00-8.00 sec 129 KBytes 1.05 Mbits/sec 91
[5] 8.00-9.00 sec 127 KBytes 1.04 Mbits/sec 90
[5] 9.00-10.00 sec 129 KBytes 1.05 Mbits/sec 91
- -
[ID] Interval Transfer Bitrate Jitter Lost/Total Datagrams
[5] 0.00-10.00 sec 1.25 MBytes 1.05 Mbits/sec 0.000 ms 0/906 (0%) sender
[5] 0.00-10.04 sec 1.25 MBytes 1.05 Mbits/sec 1.074 ms 0/906 (0%) receiver

iperf Done.

oc debug node/m0

Starting pod/m0-debug ...
To use host binaries, run `chroot /host`
Pod IP: 198.18.111.12
If you don't see a command prompt, try pressing enter.

sh-4.4# chroot /host

sh-4.4# podman run -ti --rm --net host <iperf_image> iperf3 -s

CHAPTER 3. ENSURING RELIABLE ETCD PERFORMANCE AND SCALABILITY

31

7. Add the calculated jitter as a penalty to the network latency. For example, if the network latency
is 80 ms and the jitter is 30 ms, consider an effective network latency of 110 ms for the purposes
of the control plane. In this example, that value goes above the 100 ms threshold, and the
system will miss heartbeats.

8. When you calculate the network latency for etcd, use the effective network latency, which is the
sum of the following equation:
RTT + jitter

You might be able to use the average jitter value to calculate the penalty, but the cluster can
sporadically miss heartbeats if the etcd heartbeat timer is lower than the sum of the following
equation:

RTT + max(jitter)

Instead, consider using the 99th percentile or max jitter value for a more resilient deployment:

Effective Network Latency = RTT + max(jitter)

3.12. HOW ETCD PEER ROUND TRIP TIME AFFECTS PERFORMANCE

The etcd peer round trip time is an end-to-end test metric on how quickly something can be replicated
among members. It shows the latency of etcd to finish replicating a client request among all the etcd
members. The etcd peer round trip time is not the same thing as the network round trip time.

You can monitor various etcd metrics on dashboards in the OpenShift Container Platform console. In
the console, click Observe → Dashboards and from the dropdown list, select etcd.

Near the end of the etcd dashboard, you can find a plot that summarizes the etcd peer round trip time.

NOTE

Server listening on 5201

Accepted connection from 198.18.111.13, port 44136
[5] local 198.18.111.12 port 5201 connected to 198.18.111.13 port 60878
[ID] Interval Transfer Bitrate Jitter Lost/Total Datagrams
[5] 0.00-1.00 sec 124 KBytes 1.02 Mbits/sec 4.763 ms 0/88 (0%)
[5] 1.00-2.00 sec 127 KBytes 1.04 Mbits/sec 4.735 ms 0/90 (0%)
[5] 2.00-3.00 sec 129 KBytes 1.05 Mbits/sec 0.568 ms 0/91 (0%)
[5] 3.00-4.00 sec 127 KBytes 1.04 Mbits/sec 2.443 ms 0/90 (0%)
[5] 4.00-5.00 sec 129 KBytes 1.05 Mbits/sec 1.372 ms 0/91 (0%)
[5] 5.00-6.00 sec 127 KBytes 1.04 Mbits/sec 2.769 ms 0/90 (0%)
[5] 6.00-7.00 sec 129 KBytes 1.05 Mbits/sec 2.393 ms 0/91 (0%)
[5] 7.00-8.00 sec 127 KBytes 1.04 Mbits/sec 0.883 ms 0/90 (0%)
[5] 8.00-9.00 sec 129 KBytes 1.05 Mbits/sec 0.594 ms 0/91 (0%)
[5] 9.00-10.00 sec 127 KBytes 1.04 Mbits/sec 0.953 ms 0/90 (0%)
[5] 10.00-10.04 sec 5.66 KBytes 1.30 Mbits/sec 1.074 ms 0/4 (0%)
- -
[ID] Interval Transfer Bitrate Jitter Lost/Total Datagrams
[5] 0.00-10.04 sec 1.25 MBytes 1.05 Mbits/sec 1.074 ms 0/906 (0%) receiver

Server listening on 5201

OpenShift Container Platform 4.20 etcd

32

NOTE

These etcd metrics are collected by the OpenShift metrics system in Prometheus. You
can access them from the CLI by following the Red Hat Knowledgebase solution, How to
query from the command line Prometheus statistics.

Queries must be URL-encoded. The following example shows how to retrieve the metrics that are
reporting the round trip time (in seconds) for etcd to finish replicating the client requests among the
members:

The following metrics are also relevant to understanding etcd performance:

etcd_disk_wal_fsync_duration_seconds_bucket

Reports the etcd WAL fsync duration.

etcd_disk_backend_commit_duration_seconds_bucket

Reports the etcd backend commit latency duration.

etcd_server_leader_changes_seen_total

Reports the leader changes.

3.13. DETERMINING KUBERNETES API TRANSACTION RATE FOR
YOUR ENVIRONMENT

When you are using stretched control planes, the Kubernetes API transaction rate depends on the
characteristics of the particular deployment. Specifically, it depends on the following combined factors:

The etcd disk latency

Get token to connect to Prometheus
SECRET=$(oc get secret -n openshift-user-workload-monitoring | grep prometheus-user-workload-
token | head -n 1 | awk '{print $1 }')
export TOKEN=$(oc get secret $SECRET -n openshift-user-workload-monitoring -o json | jq -r
'.data.token' | base64 -d)
export THANOS_QUERIER_HOST=$(oc get route thanos-querier -n openshift-monitoring -o json | jq
-r '.spec.host')

prometheus query
query="histogram_quantile(0.99, rate(etcd_network_peer_round_trip_time_seconds_bucket[5m]))"

urlencoded query
encoded_query=$(printf "%s" $query |jq -sRr @uri)

querying the OpenShift metrics service
curl -s -X GET -k -H "Authorization: Bearer $TOKEN"
"https://$THANOS_QUERIER_HOST/api/v1/query?query=$encoded_query" | jq '.data.result[] |
.metric.pod,.value[1]'

"etcd-m2"
"0.09318400000000004" # example ~93ms
"etcd-m0"
"0.050688" # example ~51ms
"etcd-m1"
"0.050688" # example ~51ms

CHAPTER 3. ENSURING RELIABLE ETCD PERFORMANCE AND SCALABILITY

33

https://access.redhat.com/solutions/5151831

The etcd round trip time

The size of objects that are being written to the API

As a result, when you use stretched control planes, cluster administrators must test the environment to
determine the sustained transaction rate that is possible for the environment. The kube-burner tool is
useful for that purpose. The binary includes a wrapper for testing OpenShift clusters: kube-burner-ocp.
You can use kube-burner-ocp to test cluster or node density. To test the control plane, kube-burner-
ocp has three workload profiles: cluster-density, cluster-density-v2, and cluster-density-ms. Each
workload profile creates a series of resources that are designed to load the control plane. For more
information about each profile, see the kube-burner-ocp workload documentation.

Procedure

1. Enter a command to create and delete resources. The following example shows a command that
creates and deletes resources within 20 minutes:

2. The OpenShift Container Platform console provides a dashboard with all the relevant API
performance information. To access API performance information, click Observe →
Dashboards, and from the Dashboards menu, click API Performance.

3. During the run, observe the API performance dashboard in the OpenShift Container Platform
console by clicking Observe → Dashboards, and from the Dashboards menu, click API
Performance.
On the dashboard, notice how the control plane responds during load and the 99th percentile
transaction rate it can achieve for the execution of various verbs and request rates by read and
write. Use this information and the knowledge of your organization’s workload to determine the
load that the organization can put in the clusters for the specific stretched control plane
deployment.

Additional resources

kube-burner-ocp documentation

kube-burner ocp cluster-density-ms --churn-duration 20m --churn-delay 0s --iterations 10 --
timeout 30m

OpenShift Container Platform 4.20 etcd

34

https://kube-burner.github.io/kube-burner-ocp/latest/

CHAPTER 4. BACKING UP AND RESTORING ETCD DATA

4.1. BACKING UP AND RESTORING ETCD DATA

As the key-value store for OpenShift Container Platform, etcd persists the state of all resource objects.

Back up the etcd data for your cluster regularly and store it in a secure location, ideally outside the
OpenShift Container Platform environment. Do not take an etcd backup before the first certificate
rotation completes, which occurs 24 hours after installation, otherwise the backup will contain expired
certificates. It is also recommended to take etcd backups during non-peak usage hours because the
etcd snapshot has a high I/O cost.

Be sure to take an etcd backup before you update your cluster. Taking a backup before you update is
important because when you restore your cluster, you must use an etcd backup that was taken from the
same z-stream release. For example, an OpenShift Container Platform 4.17.5 cluster must use an etcd
backup that was taken from 4.17.5.

IMPORTANT

Back up your cluster’s etcd data by performing a single invocation of the backup script on
a control plane host. Do not take a backup for each control plane host.

After you have an etcd backup, you can restore to a previous cluster state .

4.1.1. Backing up etcd data

Follow these steps to back up etcd data by creating an etcd snapshot and backing up the resources for
the static pods. This backup can be saved and used at a later time if you need to restore etcd.

IMPORTANT

Only save a backup from a single control plane host. Do not take a backup from each
control plane host in the cluster.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

You have checked whether the cluster-wide proxy is enabled.

TIP

You can check whether the proxy is enabled by reviewing the output of oc get proxy cluster -o
yaml. The proxy is enabled if the httpProxy, httpsProxy, and noProxy fields have values set.

Procedure

1. Start a debug session as root for a control plane node:

2. Change your root directory to /host in the debug shell:

$ oc debug --as-root node/<node_name>

CHAPTER 4. BACKING UP AND RESTORING ETCD DATA

35

https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/backup_and_restore/#dr-restoring-cluster-state

3. If the cluster-wide proxy is enabled, export the NO_PROXY, HTTP_PROXY, and
HTTPS_PROXY environment variables by running the following commands:

4. Run the cluster-backup.sh script in the debug shell and pass in the location to save the backup
to.

TIP

The cluster-backup.sh script is maintained as a component of the etcd Cluster Operator and is
a wrapper around the etcdctl snapshot save command.

Example script output

In this example, two files are created in the /home/core/assets/backup/ directory on the control
plane host:

sh-4.4# chroot /host

$ export HTTP_PROXY=http://<your_proxy.example.com>:8080

$ export HTTPS_PROXY=https://<your_proxy.example.com>:8080

$ export NO_PROXY=<example.com>

sh-4.4# /usr/local/bin/cluster-backup.sh /home/core/assets/backup

found latest kube-apiserver: /etc/kubernetes/static-pod-resources/kube-apiserver-pod-6
found latest kube-controller-manager: /etc/kubernetes/static-pod-resources/kube-controller-
manager-pod-7
found latest kube-scheduler: /etc/kubernetes/static-pod-resources/kube-scheduler-pod-6
found latest etcd: /etc/kubernetes/static-pod-resources/etcd-pod-3
ede95fe6b88b87ba86a03c15e669fb4aa5bf0991c180d3c6895ce72eaade54a1
etcdctl version: 3.4.14
API version: 3.4
{"level":"info","ts":1624647639.0188997,"caller":"snapshot/v3_snapshot.go:119","msg":"created
temporary db file","path":"/home/core/assets/backup/snapshot_2021-06-25_190035.db.part"}
{"level":"info","ts":"2021-06-
25T19:00:39.030Z","caller":"clientv3/maintenance.go:200","msg":"opened snapshot stream;
downloading"}
{"level":"info","ts":1624647639.0301006,"caller":"snapshot/v3_snapshot.go:127","msg":"fetching
snapshot","endpoint":"https://10.0.0.5:2379"}
{"level":"info","ts":"2021-06-
25T19:00:40.215Z","caller":"clientv3/maintenance.go:208","msg":"completed snapshot read;
closing"}
{"level":"info","ts":1624647640.6032252,"caller":"snapshot/v3_snapshot.go:142","msg":"fetched
snapshot","endpoint":"https://10.0.0.5:2379","size":"114 MB","took":1.584090459}
{"level":"info","ts":1624647640.6047094,"caller":"snapshot/v3_snapshot.go:152","msg":"saved",
"path":"/home/core/assets/backup/snapshot_2021-06-25_190035.db"}
Snapshot saved at /home/core/assets/backup/snapshot_2021-06-25_190035.db
{"hash":3866667823,"revision":31407,"totalKey":12828,"totalSize":114446336}
snapshot db and kube resources are successfully saved to /home/core/assets/backup

OpenShift Container Platform 4.20 etcd

36

snapshot_<datetimestamp>.db: This file is the etcd snapshot. The cluster-backup.sh
script confirms its validity.

static_kuberesources_<datetimestamp>.tar.gz: This file contains the resources for the
static pods. If etcd encryption is enabled, it also contains the encryption keys for the etcd
snapshot.

NOTE

If etcd encryption is enabled, it is recommended to store this second file
separately from the etcd snapshot for security reasons. However, this file is
required to restore from the etcd snapshot.

Keep in mind that etcd encryption only encrypts values, not keys. This means
that resource types, namespaces, and object names are unencrypted.

Additional resources

Recovering an unhealthy etcd cluster

4.1.2. Creating automated etcd backups

The automated backup feature for etcd supports both recurring and single backups. Recurring backups
create a cron job that starts a single backup each time the job triggers.

IMPORTANT

Automating etcd backups is a Technology Preview feature only. Technology Preview
features are not supported with Red Hat production service level agreements (SLAs) and
might not be functionally complete. Red Hat does not recommend using them in
production. These features provide early access to upcoming product features, enabling
customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

Follow these steps to enable automated backups for etcd.

WARNING

Enabling the TechPreviewNoUpgrade feature set on your cluster prevents minor
version updates. The TechPreviewNoUpgrade feature set cannot be disabled. Do
not enable this feature set on production clusters.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

You have access to the OpenShift CLI (oc).



CHAPTER 4. BACKING UP AND RESTORING ETCD DATA

37

https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/hosted_control_planes/#hcp-recovering-etcd-cluster
https://access.redhat.com/support/offerings/techpreview/

Procedure

1. Create a FeatureGate custom resource (CR) file named enable-tech-preview-no-
upgrade.yaml with the following contents:

2. Apply the CR and enable automated backups:

3. It takes time to enable the related APIs. Verify the creation of the custom resource definition
(CRD) by running the following command:

Example output

4.1.2.1. Creating a single automated etcd backup

Follow these steps to create a single etcd backup by creating and applying a custom resource (CR).

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

You have access to the OpenShift CLI (oc).

Procedure

If dynamically-provisioned storage is available, complete the following steps to create a single
automated etcd backup:

a. Create a persistent volume claim (PVC) named etcd-backup-pvc.yaml with contents such
as the following example:

apiVersion: config.openshift.io/v1
kind: FeatureGate
metadata:
 name: cluster
spec:
 featureSet: TechPreviewNoUpgrade

$ oc apply -f enable-tech-preview-no-upgrade.yaml

$ oc get crd | grep backup

backups.config.openshift.io 2023-10-25T13:32:43Z
etcdbackups.operator.openshift.io 2023-10-25T13:32:04Z

kind: PersistentVolumeClaim
apiVersion: v1
metadata:
 name: etcd-backup-pvc
 namespace: openshift-etcd
spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:

OpenShift Container Platform 4.20 etcd

38

1 1

1

The amount of storage available to the PVC. Adjust this value for your requirements.

b. Apply the PVC by running the following command:

c. Verify the creation of the PVC by running the following command:

Example output

NOTE

Dynamic PVCs stay in the Pending state until they are mounted.

d. Create a CR file named etcd-single-backup.yaml with contents such as the following
example:

The name of the PVC to save the backup to. Adjust this value according to your
environment.

e. Apply the CR to start a single backup:

If dynamically-provisioned storage is not available, complete the following steps to create a
single automated etcd backup:

a. Create a StorageClass CR file named etcd-backup-local-storage.yaml with the following
contents:

 storage: 200Gi 1
 volumeMode: Filesystem

$ oc apply -f etcd-backup-pvc.yaml

$ oc get pvc

NAME STATUS VOLUME CAPACITY ACCESS MODES
STORAGECLASS AGE
etcd-backup-pvc Bound 51s

apiVersion: operator.openshift.io/v1alpha1
kind: EtcdBackup
metadata:
 name: etcd-single-backup
 namespace: openshift-etcd
spec:
 pvcName: etcd-backup-pvc 1

$ oc apply -f etcd-single-backup.yaml

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:

CHAPTER 4. BACKING UP AND RESTORING ETCD DATA

39

1

2

b. Apply the StorageClass CR by running the following command:

c. Create a PV named etcd-backup-pv-fs.yaml with contents such as the following example:

The amount of storage available to the PV. Adjust this value for your requirements.

Replace this value with the node to attach this PV to.

d. Verify the creation of the PV by running the following command:

Example output

e. Create a PVC named etcd-backup-pvc.yaml with contents such as the following example:

 name: etcd-backup-local-storage
provisioner: kubernetes.io/no-provisioner
volumeBindingMode: Immediate

$ oc apply -f etcd-backup-local-storage.yaml

apiVersion: v1
kind: PersistentVolume
metadata:
 name: etcd-backup-pv-fs
spec:
 capacity:
 storage: 100Gi 1
 volumeMode: Filesystem
 accessModes:
 - ReadWriteOnce
 persistentVolumeReclaimPolicy: Retain
 storageClassName: etcd-backup-local-storage
 local:
 path: /mnt
 nodeAffinity:
 required:
 nodeSelectorTerms:
 - matchExpressions:
 - key: kubernetes.io/hostname
 operator: In
 values:
 - <example_master_node> 2

$ oc get pv

NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS
CLAIM STORAGECLASS REASON AGE
etcd-backup-pv-fs 100Gi RWO Retain Available etcd-backup-
local-storage 10s

kind: PersistentVolumeClaim
apiVersion: v1
metadata:

OpenShift Container Platform 4.20 etcd

40

1

1

The amount of storage available to the PVC. Adjust this value for your requirements.

f. Apply the PVC by running the following command:

g. Create a CR file named etcd-single-backup.yaml with contents such as the following
example:

The name of the persistent volume claim (PVC) to save the backup to. Adjust this
value according to your environment.

h. Apply the CR to start a single backup:

4.1.2.2. Creating recurring automated etcd backups

Follow these steps to create automated recurring backups of etcd.

Use dynamically-provisioned storage to keep the created etcd backup data in a safe, external location if
possible. If dynamically-provisioned storage is not available, consider storing the backup data on an NFS
share to make backup recovery more accessible.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

You have access to the OpenShift CLI (oc).

Procedure

1. If dynamically-provisioned storage is available, complete the following steps to create
automated recurring backups:

 name: etcd-backup-pvc
 namespace: openshift-etcd
spec:
 accessModes:
 - ReadWriteOnce
 volumeMode: Filesystem
 resources:
 requests:
 storage: 10Gi 1

$ oc apply -f etcd-backup-pvc.yaml

apiVersion: operator.openshift.io/v1alpha1
kind: EtcdBackup
metadata:
 name: etcd-single-backup
 namespace: openshift-etcd
spec:
 pvcName: etcd-backup-pvc 1

$ oc apply -f etcd-single-backup.yaml

CHAPTER 4. BACKING UP AND RESTORING ETCD DATA

41

1

a. Create a persistent volume claim (PVC) named etcd-backup-pvc.yaml with contents such
as the following example:

The amount of storage available to the PVC. Adjust this value for your requirements.

NOTE

Each of the following providers require changes to the accessModes and
storageClassName keys:

Provider accessModes value storageClassName
value

AWS with the
versioned-installer-
efc_operator-ci
profile

- ReadWriteMany efs-sc

Google Cloud - ReadWriteMany filestore-csi

Microsoft Azure - ReadWriteMany azurefile-csi

b. Apply the PVC by running the following command:

c. Verify the creation of the PVC by running the following command:

Example output

NOTE

kind: PersistentVolumeClaim
apiVersion: v1
metadata:
 name: etcd-backup-pvc
 namespace: openshift-etcd
spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 200Gi 1
 volumeMode: Filesystem
 storageClassName: etcd-backup-local-storage

$ oc apply -f etcd-backup-pvc.yaml

$ oc get pvc

NAME STATUS VOLUME CAPACITY ACCESS MODES
STORAGECLASS AGE
etcd-backup-pvc Bound 51s

OpenShift Container Platform 4.20 etcd

42

NOTE

Dynamic PVCs stay in the Pending state until they are mounted.

2. If dynamically-provisioned storage is unavailable, create a local storage PVC by completing the
following steps:

WARNING

If you delete or otherwise lose access to the node that contains the stored
backup data, you can lose data.

a. Create a StorageClass CR file named etcd-backup-local-storage.yaml with the following
contents:

b. Apply the StorageClass CR by running the following command:

c. Create a PV named etcd-backup-pv-fs.yaml from the applied StorageClass with contents
such as the following example:



apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 name: etcd-backup-local-storage
provisioner: kubernetes.io/no-provisioner
volumeBindingMode: Immediate

$ oc apply -f etcd-backup-local-storage.yaml

apiVersion: v1
kind: PersistentVolume
metadata:
 name: etcd-backup-pv-fs
spec:
 capacity:
 storage: 100Gi 1
 volumeMode: Filesystem
 accessModes:
 - ReadWriteMany
 persistentVolumeReclaimPolicy: Delete
 storageClassName: etcd-backup-local-storage
 local:
 path: /mnt/
 nodeAffinity:
 required:
 nodeSelectorTerms:
 - matchExpressions:
 - key: kubernetes.io/hostname

CHAPTER 4. BACKING UP AND RESTORING ETCD DATA

43

1

2

1

The amount of storage available to the PV. Adjust this value for your requirements.

Replace this value with the master node to attach this PV to.

TIP

Run the following command to list the available nodes:

d. Verify the creation of the PV by running the following command:

Example output

e. Create a PVC named etcd-backup-pvc.yaml with contents such as the following example:

The amount of storage available to the PVC. Adjust this value for your requirements.

f. Apply the PVC by running the following command:

3. Create a custom resource definition (CRD) file named etcd-recurring-backups.yaml. The
contents of the created CRD define the schedule and retention type of automated backups.

For the default retention type of RetentionNumber with 15 retained backups, use contents
such as the following example:

 operator: In
 values:
 - <example_master_node> 2

$ oc get nodes

$ oc get pv

NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS
CLAIM STORAGECLASS REASON AGE
etcd-backup-pv-fs 100Gi RWX Delete Available etcd-backup-
local-storage 10s

kind: PersistentVolumeClaim
apiVersion: v1
metadata:
 name: etcd-backup-pvc
spec:
 accessModes:
 - ReadWriteMany
 volumeMode: Filesystem
 resources:
 requests:
 storage: 10Gi 1
 storageClassName: etcd-backup-local-storage

$ oc apply -f etcd-backup-pvc.yaml

OpenShift Container Platform 4.20 etcd

44

1

1

2

1

The CronTab schedule for recurring backups. Adjust this value for your needs.

To use retention based on the maximum number of backups, add the following key-value
pairs to the etcd key:

The retention type. Defaults to RetentionNumber if unspecified.

The maximum number of backups to retain. Adjust this value for your needs. Defaults
to 15 backups if unspecified.

WARNING

A known issue causes the number of retained backups to be one
greater than the configured value.

For retention based on the file size of backups, use the following:

The maximum file size of the retained backups in gigabytes. Adjust this value for your
needs. Defaults to 10 GB if unspecified.

apiVersion: config.openshift.io/v1alpha1
kind: Backup
metadata:
 name: etcd-recurring-backup
spec:
 etcd:
 schedule: "20 4 * * *" 1
 timeZone: "UTC"
 pvcName: etcd-backup-pvc

spec:
 etcd:
 retentionPolicy:
 retentionType: RetentionNumber 1
 retentionNumber:
 maxNumberOfBackups: 5 2



spec:
 etcd:
 retentionPolicy:
 retentionType: RetentionSize
 retentionSize:
 maxSizeOfBackupsGb: 20 1

CHAPTER 4. BACKING UP AND RESTORING ETCD DATA

45

WARNING

A known issue causes the maximum size of retained backups to be up to
10 GB greater than the configured value.

4. Create the cron job defined by the CRD by running the following command:

5. To find the created cron job, run the following command:

4.2. REPLACING AN UNHEALTHY ETCD MEMBER

The process to replace a single unhealthy etcd member depends on whether the etcd member is
unhealthy because the machine is not running or the node is not ready, or because the etcd pod is
crashlooping.

NOTE

If you have lost the majority of your control plane hosts, follow the disaster recovery
procedure to restore to a previous cluster state instead of this procedure.

If the control plane certificates are not valid on the member being replaced, then you
must follow the procedure to recover from expired control plane certificates instead of
this procedure.

If a control plane node is lost and a new one is created, the etcd cluster Operator handles
generating the new TLS certificates and adding the node as an etcd member.

4.2.1. Identifying an unhealthy etcd member

You can identify if your cluster has an unhealthy etcd member.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

You have taken an etcd backup. For more information, see "Backing up etcd data".

Procedure

1. Check the status of the EtcdMembersAvailable status condition using the following command:



$ oc create -f etcd-recurring-backup.yaml

$ oc get cronjob -n openshift-etcd

$ oc get etcd -o=jsonpath='{range .items[0].status.conditions[?
(@.type=="EtcdMembersAvailable")]}{.message}{"\n"}{end}'

OpenShift Container Platform 4.20 etcd

46

https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/backup_and_restore/#dr-restoring-cluster-state
https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/backup_and_restore/#dr-recovering-expired-certs

1

2. Review the output:

This example output shows that the ip-10-0-131-183.ec2.internal etcd member is unhealthy.

4.2.2. Determining the state of the unhealthy etcd member

The steps to replace an unhealthy etcd member depend on which of the following states your etcd
member is in:

The machine is not running or the node is not ready

The etcd pod is crashlooping

This procedure determines which state your etcd member is in. This enables you to know which
procedure to follow to replace the unhealthy etcd member.

NOTE

If you are aware that the machine is not running or the node is not ready, but you expect
it to return to a healthy state soon, then you do not need to perform a procedure to
replace the etcd member. The etcd cluster Operator will automatically sync when the
machine or node returns to a healthy state.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

You have identified an unhealthy etcd member.

Procedure

1. Determine if the machine is not running:

Example output

This output lists the node and the status of the node’s machine. If the status is anything
other than running, then the machine is not running.

If the machine is not running, then follow the Replacing an unhealthy etcd member whose
machine is not running or whose node is not ready procedure.

2. Determine if the node is not ready.
If either of the following scenarios are true, then the node is not ready.

If the machine is running, then check whether the node is unreachable:

2 of 3 members are available, ip-10-0-131-183.ec2.internal is unhealthy

$ oc get machines -A -ojsonpath='{range .items[*]}{@.status.nodeRef.name}{"\t"}
{@.status.providerStatus.instanceState}{"\n"}' | grep -v running

ip-10-0-131-183.ec2.internal stopped 1

CHAPTER 4. BACKING UP AND RESTORING ETCD DATA

47

1

1

1

Example output

If the node is listed with an unreachable taint, then the node is not ready.

If the node is still reachable, then check whether the node is listed as NotReady:

Example output

If the node is listed as NotReady, then the node is not ready.

If the node is not ready, then follow the Replacing an unhealthy etcd member whose machine is
not running or whose node is not ready procedure.

3. Determine if the etcd pod is crashlooping.
If the machine is running and the node is ready, then check whether the etcd pod is
crashlooping.

a. Verify that all control plane nodes are listed as Ready:

Example output

b. Check whether the status of an etcd pod is either Error or CrashloopBackoff:

Example output

Since this status of this pod is Error, then the etcd pod is crashlooping.

If the etcd pod is crashlooping, then follow the Replacing an unhealthy etcd member whose

$ oc get nodes -o jsonpath='{range .items[*]}{"\n"}{.metadata.name}{"\t"}{range
.spec.taints[*]}{.key}{" "}' | grep unreachable

ip-10-0-131-183.ec2.internal node-role.kubernetes.io/master
node.kubernetes.io/unreachable node.kubernetes.io/unreachable 1

$ oc get nodes -l node-role.kubernetes.io/master | grep "NotReady"

ip-10-0-131-183.ec2.internal NotReady master 122m v1.33.4 1

$ oc get nodes -l node-role.kubernetes.io/master

NAME STATUS ROLES AGE VERSION
ip-10-0-131-183.ec2.internal Ready master 6h13m v1.33.4
ip-10-0-164-97.ec2.internal Ready master 6h13m v1.33.4
ip-10-0-154-204.ec2.internal Ready master 6h13m v1.33.4

$ oc -n openshift-etcd get pods -l k8s-app=etcd

etcd-ip-10-0-131-183.ec2.internal 2/3 Error 7 6h9m 1
etcd-ip-10-0-164-97.ec2.internal 3/3 Running 0 6h6m
etcd-ip-10-0-154-204.ec2.internal 3/3 Running 0 6h6m

OpenShift Container Platform 4.20 etcd

48

If the etcd pod is crashlooping, then follow the Replacing an unhealthy etcd member whose
etcd pod is crashlooping procedure.

4.2.3. Replacing the unhealthy etcd member

Depending on the state of your unhealthy etcd member, use one of the following procedures:

Replacing an unhealthy etcd member whose machine is not running or whose node is not ready

Installing a primary control plane node on an unhealthy cluster

Replacing an unhealthy etcd member whose etcd pod is crashlooping

Replacing an unhealthy stopped baremetal etcd member

4.2.3.1. Replacing an unhealthy etcd member whose machine is not running or whose node is
not ready

This procedure details the steps to replace an etcd member that is unhealthy either because the
machine is not running or because the node is not ready.

NOTE

If your cluster uses a control plane machine set, see "Recovering a degraded etcd
Operator" in "Troubleshooting the control plane machine set" for an etcd recovery
procedure.

Prerequisites

You have identified the unhealthy etcd member.

You have verified that either the machine is not running or the node is not ready.

IMPORTANT

You must wait if you power off other control plane nodes. The control plane
nodes must remain powered off until the replacement of an unhealthy etcd
member is complete.

You have access to the cluster as a user with the cluster-admin role.

You have taken an etcd backup.

IMPORTANT

Before you perform this procedure, take an etcd backup so that you can restore
your cluster if you experience any issues.

Procedure

1. Remove the unhealthy member.

a. Choose a pod that is not on the affected node:

In a terminal that has access to the cluster as a cluster-admin user, run the following

CHAPTER 4. BACKING UP AND RESTORING ETCD DATA

49

In a terminal that has access to the cluster as a cluster-admin user, run the following
command:

Example output

b. Connect to the running etcd container, passing in the name of a pod that is not on the
affected node:
In a terminal that has access to the cluster as a cluster-admin user, run the following
command:

c. View the member list:

Example output

Take note of the ID and the name of the unhealthy etcd member because these values are
needed later in the procedure. The $ etcdctl endpoint health command will list the
removed member until the procedure of replacement is finished and a new member is
added.

d. Remove the unhealthy etcd member by providing the ID to the etcdctl member remove
command:

Example output

$ oc -n openshift-etcd get pods -l k8s-app=etcd

etcd-ip-10-0-131-183.ec2.internal 3/3 Running 0 123m
etcd-ip-10-0-164-97.ec2.internal 3/3 Running 0 123m
etcd-ip-10-0-154-204.ec2.internal 3/3 Running 0 124m

$ oc rsh -n openshift-etcd etcd-ip-10-0-154-204.ec2.internal

sh-4.2# etcdctl member list -w table

+------------------+---------+------------------------------+---------------------------+----------------
-----------+
| ID | STATUS | NAME | PEER ADDRS | CLIENT
ADDRS |
+------------------+---------+------------------------------+---------------------------+----------------
-----------+
| 6fc1e7c9db35841d | started | ip-10-0-131-183.ec2.internal | https://10.0.131.183:2380 |
https://10.0.131.183:2379 |
| 757b6793e2408b6c | started | ip-10-0-164-97.ec2.internal | https://10.0.164.97:2380 |
https://10.0.164.97:2379 |
| ca8c2990a0aa29d1 | started | ip-10-0-154-204.ec2.internal | https://10.0.154.204:2380 |
https://10.0.154.204:2379 |
+------------------+---------+------------------------------+---------------------------+----------------
-----------+

sh-4.2# etcdctl member remove 6fc1e7c9db35841d

Member 6fc1e7c9db35841d removed from cluster ead669ce1fbfb346

OpenShift Container Platform 4.20 etcd

50

e. View the member list again and verify that the member was removed:

Example output

You can now exit the node shell.

2. Turn off the quorum guard by entering the following command:

This command ensures that you can successfully re-create secrets and roll out the static pods.

IMPORTANT

After you turn off the quorum guard, the cluster might be unreachable for a short
time while the remaining etcd instances reboot to reflect the configuration
change.

NOTE

etcd cannot tolerate any additional member failure when running with two
members. Restarting either remaining member breaks the quorum and causes
downtime in your cluster. The quorum guard protects etcd from restarts due to
configuration changes that could cause downtime, so it must be disabled to
complete this procedure.

3. Delete the affected node by running the following command:

Example command

4. Remove the old secrets for the unhealthy etcd member that was removed.

a. List the secrets for the unhealthy etcd member that was removed.

sh-4.2# etcdctl member list -w table

+------------------+---------+------------------------------+---------------------------+----------------
-----------+
| ID | STATUS | NAME | PEER ADDRS | CLIENT
ADDRS |
+------------------+---------+------------------------------+---------------------------+----------------
-----------+
| 757b6793e2408b6c | started | ip-10-0-164-97.ec2.internal | https://10.0.164.97:2380 |
https://10.0.164.97:2379 |
| ca8c2990a0aa29d1 | started | ip-10-0-154-204.ec2.internal | https://10.0.154.204:2380 |
https://10.0.154.204:2379 |
+------------------+---------+------------------------------+---------------------------+----------------
-----------+

$ oc patch etcd/cluster --type=merge -p '{"spec": {"unsupportedConfigOverrides":
{"useUnsupportedUnsafeNonHANonProductionUnstableEtcd": true}}}'

$ oc delete node <node_name>

$ oc delete node ip-10-0-131-183.ec2.internal

CHAPTER 4. BACKING UP AND RESTORING ETCD DATA

51

1 Pass in the name of the unhealthy etcd member that you took note of earlier in this
procedure.

There is a peer, serving, and metrics secret as shown in the following output:

Example output

b. Delete the secrets for the unhealthy etcd member that was removed.

i. Delete the peer secret:

ii. Delete the serving secret:

iii. Delete the metrics secret:

5. Check whether a control plane machine set exists by entering the following command:

If the control plane machine set exists, delete and re-create the control plane machine.
After this machine is re-created, a new revision is forced and etcd scales up automatically.
For more information, see "Replacing an unhealthy etcd member whose machine is not
running or whose node is not ready".
If you are running installer-provisioned infrastructure, or you used the Machine API to create
your machines, follow these steps. Otherwise, you must create the new control plane by
using the same method that was used to originally create it.

a. Obtain the machine for the unhealthy member.
In a terminal that has access to the cluster as a cluster-admin user, run the following
command:

Example output

$ oc get secrets -n openshift-etcd | grep ip-10-0-131-183.ec2.internal 1

etcd-peer-ip-10-0-131-183.ec2.internal kubernetes.io/tls 2 47m
etcd-serving-ip-10-0-131-183.ec2.internal kubernetes.io/tls 2 47m
etcd-serving-metrics-ip-10-0-131-183.ec2.internal kubernetes.io/tls 2
47m

$ oc delete secret -n openshift-etcd etcd-peer-ip-10-0-131-183.ec2.internal

$ oc delete secret -n openshift-etcd etcd-serving-ip-10-0-131-183.ec2.internal

$ oc delete secret -n openshift-etcd etcd-serving-metrics-ip-10-0-131-
183.ec2.internal

$ oc -n openshift-machine-api get controlplanemachineset

$ oc get machines -n openshift-machine-api -o wide

NAME PHASE TYPE REGION ZONE AGE
NODE PROVIDERID STATE
clustername-8qw5l-master-0 Running m4.xlarge us-east-1 us-east-1a

OpenShift Container Platform 4.20 etcd

52

1

1

This is the control plane machine for the unhealthy node, ip-10-0-131-
183.ec2.internal.

b. Delete the machine of the unhealthy member:

Specify the name of the control plane machine for the unhealthy node.

A new machine is automatically provisioned after deleting the machine of the unhealthy
member.

c. Verify that a new machine was created:

Example output

3h37m ip-10-0-131-183.ec2.internal aws:///us-east-1a/i-0ec2782f8287dfb7e
stopped 1
clustername-8qw5l-master-1 Running m4.xlarge us-east-1 us-east-1b
3h37m ip-10-0-154-204.ec2.internal aws:///us-east-1b/i-096c349b700a19631
running
clustername-8qw5l-master-2 Running m4.xlarge us-east-1 us-east-1c
3h37m ip-10-0-164-97.ec2.internal aws:///us-east-1c/i-02626f1dba9ed5bba
running
clustername-8qw5l-worker-us-east-1a-wbtgd Running m4.large us-east-1 us-
east-1a 3h28m ip-10-0-129-226.ec2.internal aws:///us-east-1a/i-
010ef6279b4662ced running
clustername-8qw5l-worker-us-east-1b-lrdxb Running m4.large us-east-1 us-
east-1b 3h28m ip-10-0-144-248.ec2.internal aws:///us-east-1b/i-
0cb45ac45a166173b running
clustername-8qw5l-worker-us-east-1c-pkg26 Running m4.large us-east-1 us-
east-1c 3h28m ip-10-0-170-181.ec2.internal aws:///us-east-1c/i-
06861c00007751b0a running

$ oc delete machine -n openshift-machine-api clustername-8qw5l-master-0 1

$ oc get machines -n openshift-machine-api -o wide

NAME PHASE TYPE REGION ZONE
AGE NODE PROVIDERID STATE
clustername-8qw5l-master-1 Running m4.xlarge us-east-1 us-east-
1b 3h37m ip-10-0-154-204.ec2.internal aws:///us-east-1b/i-096c349b700a19631
running
clustername-8qw5l-master-2 Running m4.xlarge us-east-1 us-east-
1c 3h37m ip-10-0-164-97.ec2.internal aws:///us-east-1c/i-02626f1dba9ed5bba
running
clustername-8qw5l-master-3 Provisioning m4.xlarge us-east-1 us-east-
1a 85s ip-10-0-133-53.ec2.internal aws:///us-east-1a/i-015b0888fe17bc2c8
running 1
clustername-8qw5l-worker-us-east-1a-wbtgd Running m4.large us-east-1
us-east-1a 3h28m ip-10-0-129-226.ec2.internal aws:///us-east-1a/i-
010ef6279b4662ced running
clustername-8qw5l-worker-us-east-1b-lrdxb Running m4.large us-east-1 us-
east-1b 3h28m ip-10-0-144-248.ec2.internal aws:///us-east-1b/i-
0cb45ac45a166173b running

CHAPTER 4. BACKING UP AND RESTORING ETCD DATA

53

1

1

The new machine, clustername-8qw5l-master-3 is being created and is ready
once the phase changes from Provisioning to Running.

It might take a few minutes for the new machine to be created. The etcd cluster
Operator automatically syncs when the machine or node returns to a healthy state.

NOTE

Verify the subnet IDs that you are using for your machine sets to ensure
that they end up in the correct availability zone.

If the control plane machine set does not exist, delete and re-create the control plane
machine. After this machine is re-created, a new revision is forced and etcd scales up
automatically.
If you are running installer-provisioned infrastructure, or you used the Machine API to create
your machines, follow these steps. Otherwise, you must create the new control plane by
using the same method that was used to originally create it.

a. Obtain the machine for the unhealthy member.
In a terminal that has access to the cluster as a cluster-admin user, run the following
command:

Example output

This is the control plane machine for the unhealthy node, ip-10-0-131-
183.ec2.internal.

clustername-8qw5l-worker-us-east-1c-pkg26 Running m4.large us-east-1
us-east-1c 3h28m ip-10-0-170-181.ec2.internal aws:///us-east-1c/i-
06861c00007751b0a running

$ oc get machines -n openshift-machine-api -o wide

NAME PHASE TYPE REGION ZONE AGE
NODE PROVIDERID STATE
clustername-8qw5l-master-0 Running m4.xlarge us-east-1 us-east-1a
3h37m ip-10-0-131-183.ec2.internal aws:///us-east-1a/i-0ec2782f8287dfb7e
stopped 1
clustername-8qw5l-master-1 Running m4.xlarge us-east-1 us-east-1b
3h37m ip-10-0-154-204.ec2.internal aws:///us-east-1b/i-096c349b700a19631
running
clustername-8qw5l-master-2 Running m4.xlarge us-east-1 us-east-1c
3h37m ip-10-0-164-97.ec2.internal aws:///us-east-1c/i-02626f1dba9ed5bba
running
clustername-8qw5l-worker-us-east-1a-wbtgd Running m4.large us-east-1 us-
east-1a 3h28m ip-10-0-129-226.ec2.internal aws:///us-east-1a/i-
010ef6279b4662ced running
clustername-8qw5l-worker-us-east-1b-lrdxb Running m4.large us-east-1 us-
east-1b 3h28m ip-10-0-144-248.ec2.internal aws:///us-east-1b/i-
0cb45ac45a166173b running
clustername-8qw5l-worker-us-east-1c-pkg26 Running m4.large us-east-1 us-
east-1c 3h28m ip-10-0-170-181.ec2.internal aws:///us-east-1c/i-
06861c00007751b0a running

OpenShift Container Platform 4.20 etcd

54

1

b. Save the machine configuration to a file on your file system:

Specify the name of the control plane machine for the unhealthy node.

c. Edit the new-master-machine.yaml file that was created in the previous step to assign
a new name and remove unnecessary fields.

i. Remove the entire status section:

ii. Change the metadata.name field to a new name.
Keep the same base name as the old machine and change the ending number to
the next available number. In this example, clustername-8qw5l-master-0 is
changed to clustername-8qw5l-master-3.

For example:

$ oc get machine clustername-8qw5l-master-0 \ 1
 -n openshift-machine-api \
 -o yaml \
 > new-master-machine.yaml

status:
 addresses:
 - address: 10.0.131.183
 type: InternalIP
 - address: ip-10-0-131-183.ec2.internal
 type: InternalDNS
 - address: ip-10-0-131-183.ec2.internal
 type: Hostname
 lastUpdated: "2020-04-20T17:44:29Z"
 nodeRef:
 kind: Node
 name: ip-10-0-131-183.ec2.internal
 uid: acca4411-af0d-4387-b73e-52b2484295ad
 phase: Running
 providerStatus:
 apiVersion: awsproviderconfig.openshift.io/v1beta1
 conditions:
 - lastProbeTime: "2020-04-20T16:53:50Z"
 lastTransitionTime: "2020-04-20T16:53:50Z"
 message: machine successfully created
 reason: MachineCreationSucceeded
 status: "True"
 type: MachineCreation
 instanceId: i-0fdb85790d76d0c3f
 instanceState: stopped
 kind: AWSMachineProviderStatus

apiVersion: machine.openshift.io/v1beta1
kind: Machine
metadata:
 ...
 name: clustername-8qw5l-master-3
 ...

CHAPTER 4. BACKING UP AND RESTORING ETCD DATA

55

1

iii. Remove the spec.providerID field:

d. Delete the machine of the unhealthy member:

Specify the name of the control plane machine for the unhealthy node.

e. Verify that the machine was deleted:

Example output

f. Create the new machine by using the new-master-machine.yaml file:

g. Verify that the new machine was created:

Example output

 providerID: aws:///us-east-1a/i-0fdb85790d76d0c3f

$ oc delete machine -n openshift-machine-api clustername-8qw5l-master-0 1

$ oc get machines -n openshift-machine-api -o wide

NAME PHASE TYPE REGION ZONE AGE
NODE PROVIDERID STATE
clustername-8qw5l-master-1 Running m4.xlarge us-east-1 us-east-1b
3h37m ip-10-0-154-204.ec2.internal aws:///us-east-1b/i-096c349b700a19631
running
clustername-8qw5l-master-2 Running m4.xlarge us-east-1 us-east-1c
3h37m ip-10-0-164-97.ec2.internal aws:///us-east-1c/i-02626f1dba9ed5bba
running
clustername-8qw5l-worker-us-east-1a-wbtgd Running m4.large us-east-1 us-
east-1a 3h28m ip-10-0-129-226.ec2.internal aws:///us-east-1a/i-
010ef6279b4662ced running
clustername-8qw5l-worker-us-east-1b-lrdxb Running m4.large us-east-1 us-
east-1b 3h28m ip-10-0-144-248.ec2.internal aws:///us-east-1b/i-
0cb45ac45a166173b running
clustername-8qw5l-worker-us-east-1c-pkg26 Running m4.large us-east-1 us-
east-1c 3h28m ip-10-0-170-181.ec2.internal aws:///us-east-1c/i-
06861c00007751b0a running

$ oc apply -f new-master-machine.yaml

$ oc get machines -n openshift-machine-api -o wide

NAME PHASE TYPE REGION ZONE
AGE NODE PROVIDERID STATE
clustername-8qw5l-master-1 Running m4.xlarge us-east-1 us-east-
1b 3h37m ip-10-0-154-204.ec2.internal aws:///us-east-1b/i-096c349b700a19631
running
clustername-8qw5l-master-2 Running m4.xlarge us-east-1 us-east-
1c 3h37m ip-10-0-164-97.ec2.internal aws:///us-east-1c/i-02626f1dba9ed5bba
running

OpenShift Container Platform 4.20 etcd

56

1 The new machine, clustername-8qw5l-master-3 is being created and is ready
once the phase changes from Provisioning to Running.

It might take a few minutes for the new machine to be created. The etcd cluster
Operator automatically syncs when the machine or node returns to a healthy state.

6. Turn the quorum guard back on by entering the following command:

7. You can verify that the unsupportedConfigOverrides section is removed from the object by
entering this command:

8. If you are using single-node OpenShift, restart the node. Otherwise, you might experience the
following error in the etcd cluster Operator:

Example output

Verification

1. Verify that all etcd pods are running properly.
In a terminal that has access to the cluster as a cluster-admin user, run the following command:

Example output

clustername-8qw5l-master-3 Provisioning m4.xlarge us-east-1 us-east-
1a 85s ip-10-0-133-53.ec2.internal aws:///us-east-1a/i-015b0888fe17bc2c8
running 1
clustername-8qw5l-worker-us-east-1a-wbtgd Running m4.large us-east-1
us-east-1a 3h28m ip-10-0-129-226.ec2.internal aws:///us-east-1a/i-
010ef6279b4662ced running
clustername-8qw5l-worker-us-east-1b-lrdxb Running m4.large us-east-1 us-
east-1b 3h28m ip-10-0-144-248.ec2.internal aws:///us-east-1b/i-
0cb45ac45a166173b running
clustername-8qw5l-worker-us-east-1c-pkg26 Running m4.large us-east-1
us-east-1c 3h28m ip-10-0-170-181.ec2.internal aws:///us-east-1c/i-
06861c00007751b0a running

$ oc patch etcd/cluster --type=merge -p '{"spec": {"unsupportedConfigOverrides": null}}'

$ oc get etcd/cluster -oyaml

EtcdCertSignerControllerDegraded: [Operation cannot be fulfilled on secrets "etcd-peer-sno-
0": the object has been modified; please apply your changes to the latest version and try
again, Operation cannot be fulfilled on secrets "etcd-serving-sno-0": the object has been
modified; please apply your changes to the latest version and try again, Operation cannot be
fulfilled on secrets "etcd-serving-metrics-sno-0": the object has been modified; please apply
your changes to the latest version and try again]

$ oc -n openshift-etcd get pods -l k8s-app=etcd

etcd-ip-10-0-133-53.ec2.internal 3/3 Running 0 7m49s
etcd-ip-10-0-164-97.ec2.internal 3/3 Running 0 123m
etcd-ip-10-0-154-204.ec2.internal 3/3 Running 0 124m

CHAPTER 4. BACKING UP AND RESTORING ETCD DATA

57

1

If the output from the previous command only lists two pods, you can manually force an etcd
redeployment. In a terminal that has access to the cluster as a cluster-admin user, run the
following command:

The forceRedeploymentReason value must be unique, which is why a timestamp is
appended.

2. Verify that there are exactly three etcd members.

a. Connect to the running etcd container, passing in the name of a pod that was not on the
affected node:
In a terminal that has access to the cluster as a cluster-admin user, run the following
command:

b. View the member list:

Example output

If the output from the previous command lists more than three etcd members, you must
carefully remove the unwanted member.

WARNING

Be sure to remove the correct etcd member; removing a good etcd
member might lead to quorum loss.

$ oc patch etcd cluster -p='{"spec": {"forceRedeploymentReason": "recovery-'"$(date --rfc-
3339=ns)"'"}}' --type=merge 1

$ oc rsh -n openshift-etcd etcd-ip-10-0-154-204.ec2.internal

sh-4.2# etcdctl member list -w table

+------------------+---------+------------------------------+---------------------------+----------------
-----------+
| ID | STATUS | NAME | PEER ADDRS | CLIENT
ADDRS |
+------------------+---------+------------------------------+---------------------------+----------------
-----------+
| 5eb0d6b8ca24730c | started | ip-10-0-133-53.ec2.internal | https://10.0.133.53:2380 |
https://10.0.133.53:2379 |
| 757b6793e2408b6c | started | ip-10-0-164-97.ec2.internal | https://10.0.164.97:2380 |
https://10.0.164.97:2379 |
| ca8c2990a0aa29d1 | started | ip-10-0-154-204.ec2.internal | https://10.0.154.204:2380 |
https://10.0.154.204:2379 |
+------------------+---------+------------------------------+---------------------------+----------------
-----------+



OpenShift Container Platform 4.20 etcd

58

1

Additional resources

Recovering a degraded etcd Operator

Installing a primary control plane node on an unhealthy cluster

4.2.3.2. Replacing an unhealthy etcd member whose etcd pod is crashlooping

This procedure details the steps to replace an etcd member that is unhealthy because the etcd pod is
crashlooping.

Prerequisites

You have identified the unhealthy etcd member.

You have verified that the etcd pod is crashlooping.

You have access to the cluster as a user with the cluster-admin role.

You have taken an etcd backup.

IMPORTANT

It is important to take an etcd backup before performing this procedure so that
your cluster can be restored if you encounter any issues.

Procedure

1. Stop the crashlooping etcd pod.

a. Debug the node that is crashlooping.
In a terminal that has access to the cluster as a cluster-admin user, run the following
command:

Replace this with the name of the unhealthy node.

b. Change your root directory to /host:

c. Move the existing etcd pod file out of the kubelet manifest directory:

d. Move the etcd data directory to a different location:

$ oc debug node/ip-10-0-131-183.ec2.internal 1

sh-4.2# chroot /host

sh-4.2# mkdir /var/lib/etcd-backup

sh-4.2# mv /etc/kubernetes/manifests/etcd-pod.yaml /var/lib/etcd-backup/

sh-4.2# mv /var/lib/etcd/ /tmp

CHAPTER 4. BACKING UP AND RESTORING ETCD DATA

59

https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/machine_management/#cpmso-ts-etcd-degraded_cpmso-troubleshooting
https://docs.redhat.com/en/documentation/assisted_installer_for_openshift_container_platform/2024/html/installing_openshift_container_platform_with_the_assisted_installer/expanding-the-cluster#installing-primary-control-plane-node-unhealthy-cluster_expanding-the-cluster

You can now exit the node shell.

2. Remove the unhealthy member.

a. Choose a pod that is not on the affected node.
In a terminal that has access to the cluster as a cluster-admin user, run the following
command:

Example output

b. Connect to the running etcd container, passing in the name of a pod that is not on the
affected node.
In a terminal that has access to the cluster as a cluster-admin user, run the following
command:

c. View the member list:

Example output

Take note of the ID and the name of the unhealthy etcd member, because these values are
needed later in the procedure.

d. Remove the unhealthy etcd member by providing the ID to the etcdctl member remove
command:

Example output

$ oc -n openshift-etcd get pods -l k8s-app=etcd

etcd-ip-10-0-131-183.ec2.internal 2/3 Error 7 6h9m
etcd-ip-10-0-164-97.ec2.internal 3/3 Running 0 6h6m
etcd-ip-10-0-154-204.ec2.internal 3/3 Running 0 6h6m

$ oc rsh -n openshift-etcd etcd-ip-10-0-154-204.ec2.internal

sh-4.2# etcdctl member list -w table

+------------------+---------+------------------------------+---------------------------+----------------
-----------+
| ID | STATUS | NAME | PEER ADDRS | CLIENT
ADDRS |
+------------------+---------+------------------------------+---------------------------+----------------
-----------+
| 62bcf33650a7170a | started | ip-10-0-131-183.ec2.internal | https://10.0.131.183:2380 |
https://10.0.131.183:2379 |
| b78e2856655bc2eb | started | ip-10-0-164-97.ec2.internal | https://10.0.164.97:2380 |
https://10.0.164.97:2379 |
| d022e10b498760d5 | started | ip-10-0-154-204.ec2.internal | https://10.0.154.204:2380
| https://10.0.154.204:2379 |
+------------------+---------+------------------------------+---------------------------+----------------
-----------+

sh-4.2# etcdctl member remove 62bcf33650a7170a

OpenShift Container Platform 4.20 etcd

60

1

e. View the member list again and verify that the member was removed:

Example output

You can now exit the node shell.

3. Turn off the quorum guard by entering the following command:

This command ensures that you can successfully re-create secrets and roll out the static pods.

4. Remove the old secrets for the unhealthy etcd member that was removed.

a. List the secrets for the unhealthy etcd member that was removed.

Pass in the name of the unhealthy etcd member that you took note of earlier in this
procedure.

There is a peer, serving, and metrics secret as shown in the following output:

Example output

b. Delete the secrets for the unhealthy etcd member that was removed.

i. Delete the peer secret:

Member 62bcf33650a7170a removed from cluster ead669ce1fbfb346

sh-4.2# etcdctl member list -w table

+------------------+---------+------------------------------+---------------------------+----------------
-----------+
| ID | STATUS | NAME | PEER ADDRS | CLIENT
ADDRS |
+------------------+---------+------------------------------+---------------------------+----------------
-----------+
| b78e2856655bc2eb | started | ip-10-0-164-97.ec2.internal | https://10.0.164.97:2380 |
https://10.0.164.97:2379 |
| d022e10b498760d5 | started | ip-10-0-154-204.ec2.internal | https://10.0.154.204:2380
| https://10.0.154.204:2379 |
+------------------+---------+------------------------------+---------------------------+----------------
-----------+

$ oc patch etcd/cluster --type=merge -p '{"spec": {"unsupportedConfigOverrides":
{"useUnsupportedUnsafeNonHANonProductionUnstableEtcd": true}}}'

$ oc get secrets -n openshift-etcd | grep ip-10-0-131-183.ec2.internal 1

etcd-peer-ip-10-0-131-183.ec2.internal kubernetes.io/tls 2 47m
etcd-serving-ip-10-0-131-183.ec2.internal kubernetes.io/tls 2 47m
etcd-serving-metrics-ip-10-0-131-183.ec2.internal kubernetes.io/tls 2
47m

$ oc delete secret -n openshift-etcd etcd-peer-ip-10-0-131-183.ec2.internal

CHAPTER 4. BACKING UP AND RESTORING ETCD DATA

61

1

ii. Delete the serving secret:

iii. Delete the metrics secret:

5. Force etcd redeployment.
In a terminal that has access to the cluster as a cluster-admin user, run the following command:

The forceRedeploymentReason value must be unique, which is why a timestamp is
appended.

When the etcd cluster Operator performs a redeployment, it ensures that all control plane
nodes have a functioning etcd pod.

6. Turn the quorum guard back on by entering the following command:

7. You can verify that the unsupportedConfigOverrides section is removed from the object by
entering this command:

8. If you are using single-node OpenShift, restart the node. Otherwise, you might encounter the
following error in the etcd cluster Operator:

Example output

Verification

Verify that the new member is available and healthy.

a. Connect to the running etcd container again.
In a terminal that has access to the cluster as a cluster-admin user, run the following
command:

$ oc delete secret -n openshift-etcd etcd-serving-ip-10-0-131-183.ec2.internal

$ oc delete secret -n openshift-etcd etcd-serving-metrics-ip-10-0-131-
183.ec2.internal

$ oc patch etcd cluster -p='{"spec": {"forceRedeploymentReason": "single-master-recovery-
'"$(date --rfc-3339=ns)"'"}}' --type=merge 1

$ oc patch etcd/cluster --type=merge -p '{"spec": {"unsupportedConfigOverrides": null}}'

$ oc get etcd/cluster -oyaml

EtcdCertSignerControllerDegraded: [Operation cannot be fulfilled on secrets "etcd-peer-sno-
0": the object has been modified; please apply your changes to the latest version and try
again, Operation cannot be fulfilled on secrets "etcd-serving-sno-0": the object has been
modified; please apply your changes to the latest version and try again, Operation cannot be
fulfilled on secrets "etcd-serving-metrics-sno-0": the object has been modified; please apply
your changes to the latest version and try again]

$ oc rsh -n openshift-etcd etcd-ip-10-0-154-204.ec2.internal

OpenShift Container Platform 4.20 etcd

62

b. Verify that all members are healthy:

Example output

4.2.3.3. Replacing an unhealthy bare metal etcd member whose machine is not running or
whose node is not ready

This procedure details the steps to replace a bare metal etcd member that is unhealthy either because
the machine is not running or because the node is not ready.

If you are running installer-provisioned infrastructure or you used the Machine API to create your
machines, follow these steps. Otherwise you must create the new control plane node using the same
method that was used to originally create it.

Prerequisites

You have identified the unhealthy bare metal etcd member.

You have verified that either the machine is not running or the node is not ready.

You have access to the cluster as a user with the cluster-admin role.

You have taken an etcd backup.

IMPORTANT

You must take an etcd backup before performing this procedure so that your
cluster can be restored if you encounter any issues.

Procedure

1. Verify and remove the unhealthy member.

a. Choose a pod that is not on the affected node:
In a terminal that has access to the cluster as a cluster-admin user, run the following
command:

Example output

sh-4.2# etcdctl endpoint health

https://10.0.131.183:2379 is healthy: successfully committed proposal: took =
16.671434ms
https://10.0.154.204:2379 is healthy: successfully committed proposal: took =
16.698331ms
https://10.0.164.97:2379 is healthy: successfully committed proposal: took =
16.621645ms

$ oc -n openshift-etcd get pods -l k8s-app=etcd -o wide

etcd-openshift-control-plane-0 5/5 Running 11 3h56m 192.168.10.9 openshift-
control-plane-0 <none> <none>
etcd-openshift-control-plane-1 5/5 Running 0 3h54m 192.168.10.10 openshift-

CHAPTER 4. BACKING UP AND RESTORING ETCD DATA

63

b. Connect to the running etcd container, passing in the name of a pod that is not on the
affected node:
In a terminal that has access to the cluster as a cluster-admin user, run the following
command:

c. View the member list:

Example output

Take note of the ID and the name of the unhealthy etcd member, because these values are
required later in the procedure. The etcdctl endpoint health command will list the removed
member until the replacement procedure is completed and the new member is added.

d. Remove the unhealthy etcd member by providing the ID to the etcdctl member remove
command:

WARNING

Be sure to remove the correct etcd member; removing a good etcd
member might lead to quorum loss.

Example output

control-plane-1 <none> <none>
etcd-openshift-control-plane-2 5/5 Running 0 3h58m 192.168.10.11 openshift-
control-plane-2 <none> <none>

$ oc rsh -n openshift-etcd etcd-openshift-control-plane-0

sh-4.2# etcdctl member list -w table

+------------------+---------+--------------------+---------------------------+--------------------------
-+---------------------+
| ID | STATUS | NAME | PEER ADDRS | CLIENT
ADDRS | IS LEARNER |
+------------------+---------+--------------------+---------------------------+--------------------------
-+---------------------+
| 7a8197040a5126c8 | started | openshift-control-plane-2 | https://192.168.10.11:2380/ |
https://192.168.10.11:2379/ | false |
| 8d5abe9669a39192 | started | openshift-control-plane-1 | https://192.168.10.10:2380/ |
https://192.168.10.10:2379/ | false |
| cc3830a72fc357f9 | started | openshift-control-plane-0 | https://192.168.10.9:2380/ |
https://192.168.10.9:2379/ | false |
+------------------+---------+--------------------+---------------------------+--------------------------
-+---------------------+


sh-4.2# etcdctl member remove 7a8197040a5126c8

OpenShift Container Platform 4.20 etcd

64

e. View the member list again and verify that the member was removed:

Example output

You can now exit the node shell.

IMPORTANT

After you remove the member, the cluster might be unreachable for a short
time while the remaining etcd instances reboot.

2. Turn off the quorum guard by entering the following command:

This command ensures that you can successfully re-create secrets and roll out the static pods.

3. Remove the old secrets for the unhealthy etcd member that was removed by running the
following commands.

a. List the secrets for the unhealthy etcd member that was removed.

Pass in the name of the unhealthy etcd member that you took note of earlier in this
procedure.

There is a peer, serving, and metrics secret as shown in the following output:

b. Delete the secrets for the unhealthy etcd member that was removed.

Member 7a8197040a5126c8 removed from cluster b23536c33f2cdd1b

sh-4.2# etcdctl member list -w table

+------------------+---------+--------------------+---------------------------+--------------------------
-+-------------------------+
| ID | STATUS | NAME | PEER ADDRS | CLIENT
ADDRS | IS LEARNER |
+------------------+---------+--------------------+---------------------------+--------------------------
-+-------------------------+
| cc3830a72fc357f9 | started | openshift-control-plane-2 | https://192.168.10.11:2380/ |
https://192.168.10.11:2379/ | false |
| 8d5abe9669a39192 | started | openshift-control-plane-1 | https://192.168.10.10:2380/ |
https://192.168.10.10:2379/ | false |
+------------------+---------+--------------------+---------------------------+--------------------------
-+-------------------------+

$ oc patch etcd/cluster --type=merge -p '{"spec": {"unsupportedConfigOverrides":
{"useUnsupportedUnsafeNonHANonProductionUnstableEtcd": true}}}'

$ oc get secrets -n openshift-etcd | grep openshift-control-plane-2

etcd-peer-openshift-control-plane-2 kubernetes.io/tls 2 134m
etcd-serving-metrics-openshift-control-plane-2 kubernetes.io/tls 2 134m
etcd-serving-openshift-control-plane-2 kubernetes.io/tls 2 134m

CHAPTER 4. BACKING UP AND RESTORING ETCD DATA

65

1

i. Delete the peer secret:

ii. Delete the serving secret:

iii. Delete the metrics secret:

4. Obtain the machine for the unhealthy member.
In a terminal that has access to the cluster as a cluster-admin user, run the following command:

Example output

This is the control plane machine for the unhealthy node, examplecluster-control-plane-2.

5. Ensure that the Bare Metal Operator is available by running the following command:

Example output

$ oc delete secret etcd-peer-openshift-control-plane-2 -n openshift-etcd

secret "etcd-peer-openshift-control-plane-2" deleted

$ oc delete secret etcd-serving-metrics-openshift-control-plane-2 -n openshift-etcd

secret "etcd-serving-metrics-openshift-control-plane-2" deleted

$ oc delete secret etcd-serving-openshift-control-plane-2 -n openshift-etcd

secret "etcd-serving-openshift-control-plane-2" deleted

$ oc get machines -n openshift-machine-api -o wide

NAME PHASE TYPE REGION ZONE AGE NODE
PROVIDERID STATE
examplecluster-control-plane-0 Running 3h11m openshift-control-plane-0
baremetalhost:///openshift-machine-api/openshift-control-plane-0/da1ebe11-3ff2-41c5-b099-
0aa41222964e externally provisioned 1
examplecluster-control-plane-1 Running 3h11m openshift-control-plane-1
baremetalhost:///openshift-machine-api/openshift-control-plane-1/d9f9acbc-329c-475e-8d81-
03b20280a3e1 externally provisioned
examplecluster-control-plane-2 Running 3h11m openshift-control-plane-2
baremetalhost:///openshift-machine-api/openshift-control-plane-2/3354bdac-61d8-410f-be5b-
6a395b056135 externally provisioned
examplecluster-compute-0 Running 165m openshift-compute-0
baremetalhost:///openshift-machine-api/openshift-compute-0/3d685b81-7410-4bb3-80ec-
13a31858241f provisioned
examplecluster-compute-1 Running 165m openshift-compute-1
baremetalhost:///openshift-machine-api/openshift-compute-1/0fdae6eb-2066-4241-91dc-
e7ea72ab13b9 provisioned

$ oc get clusteroperator baremetal

OpenShift Container Platform 4.20 etcd

66

6. Remove the old BareMetalHost object by running the following command:

Example output

7. Delete the machine of the unhealthy member by running the following command:

After you remove the BareMetalHost and Machine objects, then the Machine controller
automatically deletes the Node object.

If deletion of the machine is delayed for any reason or the command is obstructed and delayed,
you can force deletion by removing the machine object finalizer field.

IMPORTANT

Do not interrupt machine deletion by pressing Ctrl+c. You must allow the
command to proceed to completion. Open a new terminal window to edit and
delete the finalizer fields.

A new machine is automatically provisioned after deleting the machine of the unhealthy
member.

a. Edit the machine configuration by running the following command:

b. Delete the following fields in the Machine custom resource, and then save the updated file:

Example output

8. Verify that the machine was deleted by running the following command:

Example output

NAME VERSION AVAILABLE PROGRESSING DEGRADED SINCE MESSAGE
baremetal 4.20.0 True False False 3d15h

$ oc delete bmh openshift-control-plane-2 -n openshift-machine-api

baremetalhost.metal3.io "openshift-control-plane-2" deleted

$ oc delete machine -n openshift-machine-api examplecluster-control-plane-2

$ oc edit machine -n openshift-machine-api examplecluster-control-plane-2

finalizers:
- machine.machine.openshift.io

machine.machine.openshift.io/examplecluster-control-plane-2 edited

$ oc get machines -n openshift-machine-api -o wide

NAME PHASE TYPE REGION ZONE AGE NODE
PROVIDERID STATE

CHAPTER 4. BACKING UP AND RESTORING ETCD DATA

67

9. Verify that the node has been deleted by running the following command:

10. Create the new BareMetalHost object and the secret to store the BMC credentials:

examplecluster-control-plane-0 Running 3h11m openshift-control-plane-0
baremetalhost:///openshift-machine-api/openshift-control-plane-0/da1ebe11-3ff2-41c5-b099-
0aa41222964e externally provisioned
examplecluster-control-plane-1 Running 3h11m openshift-control-plane-1
baremetalhost:///openshift-machine-api/openshift-control-plane-1/d9f9acbc-329c-475e-8d81-
03b20280a3e1 externally provisioned
examplecluster-compute-0 Running 165m openshift-compute-0
baremetalhost:///openshift-machine-api/openshift-compute-0/3d685b81-7410-4bb3-80ec-
13a31858241f provisioned
examplecluster-compute-1 Running 165m openshift-compute-1
baremetalhost:///openshift-machine-api/openshift-compute-1/0fdae6eb-2066-4241-91dc-
e7ea72ab13b9 provisioned

$ oc get nodes

NAME STATUS ROLES AGE VERSION
openshift-control-plane-0 Ready master 3h24m v1.33.4
openshift-control-plane-1 Ready master 3h24m v1.33.4
openshift-compute-0 Ready worker 176m v1.33.4
openshift-compute-1 Ready worker 176m v1.33.4

$ cat <<EOF | oc apply -f -
apiVersion: v1
kind: Secret
metadata:
 name: openshift-control-plane-2-bmc-secret
 namespace: openshift-machine-api
data:
 password: <password>
 username: <username>
type: Opaque

apiVersion: metal3.io/v1alpha1
kind: BareMetalHost
metadata:
 name: openshift-control-plane-2
 namespace: openshift-machine-api
spec:
 automatedCleaningMode: disabled
 bmc:
 address: redfish://10.46.61.18:443/redfish/v1/Systems/1
 credentialsName: openshift-control-plane-2-bmc-secret
 disableCertificateVerification: true
 bootMACAddress: 48:df:37:b0:8a:a0
 bootMode: UEFI
 externallyProvisioned: false
 online: true
 rootDeviceHints:
 deviceName: /dev/disk/by-id/scsi-<serial_number>
 userData:

OpenShift Container Platform 4.20 etcd

68

NOTE

The username and password can be found from the other bare metal host’s
secrets. The protocol to use in bmc:address can be taken from other bmh
objects.

IMPORTANT

If you reuse the BareMetalHost object definition from an existing control plane
host, do not leave the externallyProvisioned field set to true.

Existing control plane BareMetalHost objects may have the
externallyProvisioned flag set to true if they were provisioned by the OpenShift
Container Platform installation program.

After the inspection is complete, the BareMetalHost object is created and available to be
provisioned.

11. Verify the creation process using available BareMetalHost objects:

a. Verify that a new machine has been created:

Example output

 name: master-user-data-managed
 namespace: openshift-machine-api
EOF

$ oc get bmh -n openshift-machine-api

NAME STATE CONSUMER ONLINE ERROR AGE
openshift-control-plane-0 externally provisioned examplecluster-control-plane-0 true
4h48m
openshift-control-plane-1 externally provisioned examplecluster-control-plane-1 true
4h48m
openshift-control-plane-2 available examplecluster-control-plane-3 true 47m
openshift-compute-0 provisioned examplecluster-compute-0 true 4h48m
openshift-compute-1 provisioned examplecluster-compute-1 true 4h48m

$ oc get machines -n openshift-machine-api -o wide

NAME PHASE TYPE REGION ZONE AGE NODE
PROVIDERID STATE
examplecluster-control-plane-0 Running 3h11m openshift-control-
plane-0 baremetalhost:///openshift-machine-api/openshift-control-plane-0/da1ebe11-
3ff2-41c5-b099-0aa41222964e externally provisioned 1
examplecluster-control-plane-1 Running 3h11m openshift-control-
plane-1 baremetalhost:///openshift-machine-api/openshift-control-plane-1/d9f9acbc-
329c-475e-8d81-03b20280a3e1 externally provisioned
examplecluster-control-plane-2 Running 3h11m openshift-control-
plane-2 baremetalhost:///openshift-machine-api/openshift-control-plane-2/3354bdac-
61d8-410f-be5b-6a395b056135 externally provisioned
examplecluster-compute-0 Running 165m openshift-compute-

CHAPTER 4. BACKING UP AND RESTORING ETCD DATA

69

1 The new machine, clustername-8qw5l-master-3 is being created and is ready after
the phase changes from Provisioning to Running.

It should take a few minutes for the new machine to be created. The etcd cluster Operator
will automatically sync when the machine or node returns to a healthy state.

b. Verify that the bare metal host becomes provisioned and no error reported by running the
following command:

Example output

c. Verify that the new node is added and in a ready state by running this command:

Example output

12. Turn the quorum guard back on by entering the following command:

13. You can verify that the unsupportedConfigOverrides section is removed from the object by
entering this command:

0 baremetalhost:///openshift-machine-api/openshift-compute-0/3d685b81-7410-
4bb3-80ec-13a31858241f provisioned
examplecluster-compute-1 Running 165m openshift-compute-
1 baremetalhost:///openshift-machine-api/openshift-compute-1/0fdae6eb-2066-
4241-91dc-e7ea72ab13b9 provisioned

$ oc get bmh -n openshift-machine-api

$ oc get bmh -n openshift-machine-api
NAME STATE CONSUMER ONLINE ERROR AGE
openshift-control-plane-0 externally provisioned examplecluster-control-plane-0 true
4h48m
openshift-control-plane-1 externally provisioned examplecluster-control-plane-1 true
4h48m
openshift-control-plane-2 provisioned examplecluster-control-plane-3 true
47m
openshift-compute-0 provisioned examplecluster-compute-0 true
4h48m
openshift-compute-1 provisioned examplecluster-compute-1 true
4h48m

$ oc get nodes

$ oc get nodes
NAME STATUS ROLES AGE VERSION
openshift-control-plane-0 Ready master 4h26m v1.33.4
openshift-control-plane-1 Ready master 4h26m v1.33.4
openshift-control-plane-2 Ready master 12m v1.33.4
openshift-compute-0 Ready worker 3h58m v1.33.4
openshift-compute-1 Ready worker 3h58m v1.33.4

$ oc patch etcd/cluster --type=merge -p '{"spec": {"unsupportedConfigOverrides": null}}'

OpenShift Container Platform 4.20 etcd

70

1

14. If you are using single-node OpenShift, restart the node. Otherwise, you might encounter the
following error in the etcd cluster Operator:

Example output

Verification

1. Verify that all etcd pods are running properly.
In a terminal that has access to the cluster as a cluster-admin user, run the following command:

Example output

If the output from the previous command only lists two pods, you can manually force an etcd
redeployment. In a terminal that has access to the cluster as a cluster-admin user, run the
following command:

The forceRedeploymentReason value must be unique, which is why a timestamp is
appended.

To verify there are exactly three etcd members, connect to the running etcd container, passing
in the name of a pod that was not on the affected node. In a terminal that has access to the
cluster as a cluster-admin user, run the following command:

2. View the member list:

Example output

$ oc get etcd/cluster -oyaml

EtcdCertSignerControllerDegraded: [Operation cannot be fulfilled on secrets "etcd-peer-sno-
0": the object has been modified; please apply your changes to the latest version and try
again, Operation cannot be fulfilled on secrets "etcd-serving-sno-0": the object has been
modified; please apply your changes to the latest version and try again, Operation cannot be
fulfilled on secrets "etcd-serving-metrics-sno-0": the object has been modified; please apply
your changes to the latest version and try again]

$ oc -n openshift-etcd get pods -l k8s-app=etcd

etcd-openshift-control-plane-0 5/5 Running 0 105m
etcd-openshift-control-plane-1 5/5 Running 0 107m
etcd-openshift-control-plane-2 5/5 Running 0 103m

$ oc patch etcd cluster -p='{"spec": {"forceRedeploymentReason": "recovery-'"$(date --rfc-
3339=ns)"'"}}' --type=merge 1

$ oc rsh -n openshift-etcd etcd-openshift-control-plane-0

sh-4.2# etcdctl member list -w table

+------------------+---------+--------------------+---------------------------+---------------------------+---
--------------+

CHAPTER 4. BACKING UP AND RESTORING ETCD DATA

71

NOTE

If the output from the previous command lists more than three etcd members,
you must carefully remove the unwanted member.

3. Verify that all etcd members are healthy by running the following command:

Example output

4. Validate that all nodes are at the latest revision by running the following command:

AllNodesAtLatestRevision

Additional resources

Quorum protection with machine lifecycle hooks

4.3. DISASTER RECOVERY

The disaster recovery documentation provides information for administrators on how to recover from
several disaster situations that might occur with their OpenShift Container Platform cluster. As an
administrator, you might need to follow one or more of the following procedures to return your cluster to
a working state.

IMPORTANT

Disaster recovery requires you to have at least one healthy control plane host.

4.3.1. Quorum restoration

| ID | STATUS | NAME | PEER ADDRS | CLIENT ADDRS
| IS LEARNER |
+------------------+---------+--------------------+---------------------------+---------------------------+---
--------------+
| 7a8197040a5126c8 | started | openshift-control-plane-2 | https://192.168.10.11:2380 |
https://192.168.10.11:2379 | false |
| 8d5abe9669a39192 | started | openshift-control-plane-1 | https://192.168.10.10:2380 |
https://192.168.10.10:2379 | false |
| cc3830a72fc357f9 | started | openshift-control-plane-0 | https://192.168.10.9:2380 |
https://192.168.10.9:2379 | false |
+------------------+---------+--------------------+---------------------------+---------------------------+---
--------------+

etcdctl endpoint health --cluster

https://192.168.10.10:2379 is healthy: successfully committed proposal: took = 8.973065ms
https://192.168.10.9:2379 is healthy: successfully committed proposal: took = 11.559829ms
https://192.168.10.11:2379 is healthy: successfully committed proposal: took = 11.665203ms

$ oc get etcd -o=jsonpath='{range.items[0].status.conditions[?
(@.type=="NodeInstallerProgressing")]}{.reason}{"\n"}{.message}{"\n"}'

OpenShift Container Platform 4.20 etcd

72

https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/machine_management/#machine-lifecycle-hook-deletion-etcd_deleting-machine

You can use the quorum-restore.sh script to restore etcd quorum on clusters that are offline due to
quorum loss. When quorum is lost, the OpenShift Container Platform API becomes read-only. After
quorum is restored, the OpenShift Container Platform API returns to read/write mode.

4.3.1.1. Restoring etcd quorum for high availability clusters

You can use the quorum-restore.sh script to restore etcd quorum on clusters that are offline due to
quorum loss. When quorum is lost, the OpenShift Container Platform API becomes read-only. After
quorum is restored, the OpenShift Container Platform API returns to read/write mode.

The quorum-restore.sh script instantly brings back a new single-member etcd cluster based on its local
data directory and marks all other members as invalid by retiring the previous cluster identifier. No prior
backup is required to restore the control plane from.

For high availability (HA) clusters, a three-node HA cluster requires you to shut down etcd on two hosts
to avoid a cluster split. On four-node and five-node HA clusters, you must shut down three hosts.
Quorum requires a simple majority of nodes. The minimum number of nodes required for quorum on a
three-node HA cluster is two. On four-node and five-node HA clusters, the minimum number of nodes
required for quorum is three. If you start a new cluster from backup on your recovery host, the other etcd
members might still be able to form quorum and continue service.

WARNING

You might experience data loss if the host that runs the restoration does not have
all data replicated to it.

IMPORTANT

Quorum restoration should not be used to decrease the number of nodes outside of the
restoration process. Decreasing the number of nodes results in an unsupported cluster
configuration.

Prerequisites

You have SSH access to the node used to restore quorum.

Procedure

1. Select a control plane host to use as the recovery host. You run the restore operation on this
host.

a. List the running etcd pods by running the following command:

b. Choose a pod and run the following command to obtain its IP address:

Note the IP address of a member that is not a learner and has the highest Raft index.



$ oc get pods -n openshift-etcd -l app=etcd --field-selector="status.phase==Running"

$ oc exec -n openshift-etcd <etcd-pod> -c etcdctl -- etcdctl endpoint status -w table

CHAPTER 4. BACKING UP AND RESTORING ETCD DATA

73

c. Run the following command and note the node name that corresponds to the IP address of
the chosen etcd member:

2. Using SSH, connect to the chosen recovery node and run the following command to restore
etcd quorum:

After a few minutes, the nodes that went down are automatically synchronized with the node
that the recovery script was run on. Any remaining online nodes automatically rejoin the new
etcd cluster created by the quorum-restore.sh script. This process takes a few minutes.

3. Exit the SSH session.

4. Return to a three-node configuration if any nodes are offline. Repeat the following steps for
each node that is offline to delete and re-create them. After the machines are re-created, a
new revision is forced and etcd automatically scales up.

If you use a user-provisioned bare-metal installation, you can re-create a control plane
machine by using the same method that you used to originally create it. For more
information, see "Installing a user-provisioned cluster on bare metal".

WARNING

Do not delete and re-create the machine for the recovery host.

If you are running installer-provisioned infrastructure, or you used the Machine API to create
your machines, follow these steps:

WARNING

Do not delete and re-create the machine for the recovery host.

For bare-metal installations on installer-provisioned infrastructure,
control plane machines are not re-created. For more information, see
"Replacing a bare-metal control plane node".

a. Obtain the machine for one of the offline nodes.
In a terminal that has access to the cluster as a cluster-admin user, run the following
command:

$ oc get nodes -o jsonpath='{range .items[*]}[{.metadata.name},{.status.addresses[?
(@.type=="InternalIP")].address}]{end}'

$ sudo -E /usr/local/bin/quorum-restore.sh





$ oc get machines -n openshift-machine-api -o wide

OpenShift Container Platform 4.20 etcd

74

1

1

Example output

This is the control plane machine for the offline node, ip-10-0-131-
183.ec2.internal.

b. Delete the machine of the offline node by running:

Specify the name of the control plane machine for the offline node.

A new machine is automatically provisioned after deleting the machine of the offline
node.

5. Verify that a new machine has been created by running:

Example output

NAME PHASE TYPE REGION ZONE AGE
NODE PROVIDERID STATE
clustername-8qw5l-master-0 Running m4.xlarge us-east-1 us-east-1a
3h37m ip-10-0-131-183.ec2.internal aws:///us-east-1a/i-0ec2782f8287dfb7e
stopped 1
clustername-8qw5l-master-1 Running m4.xlarge us-east-1 us-east-1b
3h37m ip-10-0-143-125.ec2.internal aws:///us-east-1b/i-096c349b700a19631
running
clustername-8qw5l-master-2 Running m4.xlarge us-east-1 us-east-1c
3h37m ip-10-0-154-194.ec2.internal aws:///us-east-1c/i-02626f1dba9ed5bba
running
clustername-8qw5l-worker-us-east-1a-wbtgd Running m4.large us-east-1 us-
east-1a 3h28m ip-10-0-129-226.ec2.internal aws:///us-east-1a/i-
010ef6279b4662ced running
clustername-8qw5l-worker-us-east-1b-lrdxb Running m4.large us-east-1 us-
east-1b 3h28m ip-10-0-144-248.ec2.internal aws:///us-east-1b/i-
0cb45ac45a166173b running
clustername-8qw5l-worker-us-east-1c-pkg26 Running m4.large us-east-1 us-
east-1c 3h28m ip-10-0-170-181.ec2.internal aws:///us-east-1c/i-
06861c00007751b0a running

$ oc delete machine -n openshift-machine-api clustername-8qw5l-master-0 1

$ oc get machines -n openshift-machine-api -o wide

NAME PHASE TYPE REGION ZONE AGE
NODE PROVIDERID STATE
clustername-8qw5l-master-1 Running m4.xlarge us-east-1 us-east-1b
3h37m ip-10-0-143-125.ec2.internal aws:///us-east-1b/i-096c349b700a19631 running
clustername-8qw5l-master-2 Running m4.xlarge us-east-1 us-east-1c
3h37m ip-10-0-154-194.ec2.internal aws:///us-east-1c/i-02626f1dba9ed5bba running
clustername-8qw5l-master-3 Provisioning m4.xlarge us-east-1 us-east-1a 85s
ip-10-0-173-171.ec2.internal aws:///us-east-1a/i-015b0888fe17bc2c8 running 1
clustername-8qw5l-worker-us-east-1a-wbtgd Running m4.large us-east-1 us-east-1a
3h28m ip-10-0-129-226.ec2.internal aws:///us-east-1a/i-010ef6279b4662ced running
clustername-8qw5l-worker-us-east-1b-lrdxb Running m4.large us-east-1 us-east-1b

CHAPTER 4. BACKING UP AND RESTORING ETCD DATA

75

1 The new machine, clustername-8qw5l-master-3 is being created and is ready after the
phase changes from Provisioning to Running.

It might take a few minutes for the new machine to be created. The etcd cluster Operator will
automatically synchronize when the machine or node returns to a healthy state.

a. Repeat these steps for each node that is offline.

6. Wait until the control plane recovers by running the following command:

NOTE

It can take up to 15 minutes for the control plane to recover.

Troubleshooting

If you see no progress rolling out the etcd static pods, you can force redeployment from the
etcd cluster Operator by running the following command:

Additional resources

Installing a user-provisioned cluster on bare metal

Replacing a bare-metal control plane node

NOTE

If you have a majority of your control plane nodes still available and have an etcd quorum,
replace a single unhealthy etcd member.

4.3.2. Restoring to a previous cluster state

To restore the cluster to a previous state, you must have previously backed up the etcd data by creating
a snapshot. You will use this snapshot to restore the cluster state. For more information, see "Backing up
etcd data".

If applicable, you might also need to recover from expired control plane certificates .

3h28m ip-10-0-144-248.ec2.internal aws:///us-east-1b/i-0cb45ac45a166173b running
clustername-8qw5l-worker-us-east-1c-pkg26 Running m4.large us-east-1 us-east-1c
3h28m ip-10-0-170-181.ec2.internal aws:///us-east-1c/i-06861c00007751b0a running

$ oc adm wait-for-stable-cluster

$ oc patch etcd cluster -p='{"spec": {"forceRedeploymentReason": "recovery-'"$(date --rfc-
3339=ns)"'"}}' --type=merge

OpenShift Container Platform 4.20 etcd

76

https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/installing_on_bare_metal/#installing-bare-metal
https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/installing_on_bare_metal/#replacing-a-bare-metal-control-plane-node_bare-metal-expanding
https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/backup_and_restore/#replacing-unhealthy-etcd-member
https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/backup_and_restore/#dr-recovering-expired-certs

WARNING

Restoring to a previous cluster state is a destructive and destablizing action to take
on a running cluster. This procedure should only be used as a last resort.

Before performing a restore, see "About restoring to a previous cluster state" for
more information on the impact to the cluster.

4.3.2.1. About restoring to a previous cluster state

To restore the cluster to a previous state, you must have previously backed up the etcd data by creating
a snapshot. You will use this snapshot to restore the cluster state. For more information, see "Backing up
etcd data".

You can use an etcd backup to restore your cluster to a previous state. This can be used to recover from
the following situations:

The cluster has lost the majority of control plane hosts (quorum loss).

An administrator has deleted something critical and must restore to recover the cluster.

WARNING

Restoring to a previous cluster state is a destructive and destablizing action to take
on a running cluster. This should only be used as a last resort.

If you are able to retrieve data using the Kubernetes API server, then etcd is
available and you should not restore using an etcd backup.

Restoring etcd effectively takes a cluster back in time and all clients will experience a conflicting, parallel
history. This can impact the behavior of watching components like kubelets, Kubernetes controller
managers, persistent volume controllers, and OpenShift Container Platform Operators, including the
network Operator.

It can cause Operator churn when the content in etcd does not match the actual content on disk, causing
Operators for the Kubernetes API server, Kubernetes controller manager, Kubernetes scheduler, and
etcd to get stuck when files on disk conflict with content in etcd. This can require manual actions to
resolve the issues.

In extreme cases, the cluster can lose track of persistent volumes, delete critical workloads that no
longer exist, reimage machines, and rewrite CA bundles with expired certificates.

4.3.2.2. Restoring to a previous cluster state for a single node

You can use a saved etcd backup to restore a previous cluster state on a single node.

IMPORTANT





CHAPTER 4. BACKING UP AND RESTORING ETCD DATA

77

IMPORTANT

When you restore your cluster, you must use an etcd backup that was taken from the
same z-stream release. For example, an OpenShift Container Platform 4.20.2 cluster
must use an etcd backup that was taken from 4.20.2.

Prerequisites

Access to the cluster as a user with the cluster-admin role through a certificate-based
kubeconfig file, like the one that was used during installation.

You have SSH access to control plane hosts.

A backup directory containing both the etcd snapshot and the resources for the static pods,
which were from the same backup. The file names in the directory must be in the following
formats: snapshot_<datetimestamp>.db and
static_kuberesources_<datetimestamp>.tar.gz.

Procedure

1. Use SSH to connect to the single node and copy the etcd backup to the /home/core directory
by running the following command:

2. Run the following command in the single node to restore the cluster from a previous backup:

3. Exit the SSH session.

4. Monitor the recovery progress of the control plane by running the following command:

NOTE

It can take up to 15 minutes for the control plane to recover.

4.3.2.3. Restoring to a previous cluster state for more than one node

You can use a saved etcd backup to restore a previous cluster state or restore a cluster that has lost the
majority of control plane hosts.

For high availability (HA) clusters, a three-node HA cluster requires you to shut down etcd on two hosts
to avoid a cluster split. On four-node and five-node HA clusters, you must shut down three hosts.
Quorum requires a simple majority of nodes. The minimum number of nodes required for quorum on a
three-node HA cluster is two. On four-node and five-node HA clusters, the minimum number of nodes
required for quorum is three. If you start a new cluster from backup on your recovery host, the other etcd
members might still be able to form quorum and continue service.

NOTE

$ cp <etcd_backup_directory> /home/core

$ sudo -E /usr/local/bin/cluster-restore.sh /home/core/<etcd_backup_directory>

$ oc adm wait-for-stable-cluster

OpenShift Container Platform 4.20 etcd

78

NOTE

If your cluster uses a control plane machine set, see "Recovering a degraded etcd
Operator" in "Troubleshooting the control plane machine set" for an etcd recovery
procedure. For OpenShift Container Platform on a single node, see "Restoring to a
previous cluster state for a single node".

IMPORTANT

When you restore your cluster, you must use an etcd backup that was taken from the
same z-stream release. For example, an OpenShift Container Platform 4.20.2 cluster
must use an etcd backup that was taken from 4.20.2.

Prerequisites

Access to the cluster as a user with the cluster-admin role through a certificate-based
kubeconfig file, like the one that was used during installation.

A healthy control plane host to use as the recovery host.

You have SSH access to control plane hosts.

A backup directory containing both the etcd snapshot and the resources for the static pods,
which were from the same backup. The file names in the directory must be in the following
formats: snapshot_<datetimestamp>.db and
static_kuberesources_<datetimestamp>.tar.gz.

Nodes must be accessible or bootable.

IMPORTANT

For non-recovery control plane nodes, it is not required to establish SSH connectivity or
to stop the static pods. You can delete and re-create other non-recovery, control plane
machines, one by one.

Procedure

1. Select a control plane host to use as the recovery host. This is the host that you run the restore
operation on.

2. Establish SSH connectivity to each of the control plane nodes, including the recovery host.
kube-apiserver becomes inaccessible after the restore process starts, so you cannot access
the control plane nodes. For this reason, it is recommended to establish SSH connectivity to
each control plane host in a separate terminal.

IMPORTANT

If you do not complete this step, you will not be able to access the control plane
hosts to complete the restore procedure, and you will be unable to recover your
cluster from this state.

3. Using SSH, connect to each control plane node and run the following command to disable etcd:

$ sudo -E /usr/local/bin/disable-etcd.sh

CHAPTER 4. BACKING UP AND RESTORING ETCD DATA

79

4. Copy the etcd backup directory to the recovery control plane host.
This procedure assumes that you copied the backup directory containing the etcd snapshot
and the resources for the static pods to the /home/core/ directory of your recovery control
plane host.

5. Use SSH to connect to the recovery host and restore the cluster from a previous backup by
running the following command:

6. Exit the SSH session.

7. Once the API responds, turn off the etcd Operator quorum guard by running the following
command:

8. Monitor the recovery progress of the control plane by running the following command:

NOTE

It can take up to 15 minutes for the control plane to recover.

9. Once recovered, enable the quorum guard by running the following command:

Troubleshooting

If you see no progress rolling out the etcd static pods, you can force redeployment from the cluster-
etcd-operator by running the following command:

Additional resources

Recovering a degraded etcd Operator

4.3.2.4. Restoring a cluster manually from an etcd backup

The restore procedure described in the section "Restoring to a previous cluster state":

Requires the complete recreation of 2 control plane nodes, which might be a complex procedure
for clusters installed with the UPI installation method, since an UPI installation does not create
any Machine or ControlPlaneMachineset for the control plane nodes.

Uses the script /usr/local/bin/cluster-restore.sh, which starts a new single-member etcd cluster
and then scales it to three members.

$ sudo -E /usr/local/bin/cluster-restore.sh /home/core/<etcd-backup-directory>

$ oc patch etcd/cluster --type=merge -p '{"spec": {"unsupportedConfigOverrides":
{"useUnsupportedUnsafeNonHANonProductionUnstableEtcd": true}}}'

$ oc adm wait-for-stable-cluster

$ oc patch etcd/cluster --type=merge -p '{"spec": {"unsupportedConfigOverrides": null}}'

$ oc patch etcd cluster -p='{"spec": {"forceRedeploymentReason": "recovery-'"$(date --rfc-3339=ns
)"'"}}' --type=merge

OpenShift Container Platform 4.20 etcd

80

https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/machine_management/#cpmso-ts-etcd-degraded_cpmso-troubleshooting

In contrast, this procedure:

Does not require recreating any control plane nodes.

Directly starts a three-member etcd cluster.

If the cluster uses a MachineSet for the control plane, it is suggested to use the "Restoring to a previous
cluster state" for a simpler etcd recovery procedure.

When you restore your cluster, you must use an etcd backup that was taken from the same z-stream
release. For example, an OpenShift Container Platform 4.7.2 cluster must use an etcd backup that was
taken from 4.7.2.

Prerequisites

Access to the cluster as a user with the cluster-admin role; for example, the kubeadmin user.

SSH access to all control plane hosts, with a host user allowed to become root; for example, the
default core host user.

A backup directory containing both a previous etcd snapshot and the resources for the static
pods from the same backup. The file names in the directory must be in the following formats:
snapshot_<datetimestamp>.db and static_kuberesources_<datetimestamp>.tar.gz.

Procedure

1. Use SSH to connect to each of the control plane nodes.
The Kubernetes API server becomes inaccessible after the restore process starts, so you cannot
access the control plane nodes. For this reason, it is recommended to use a SSH connection for
each control plane host you are accessing in a separate terminal.

IMPORTANT

If you do not complete this step, you will not be able to access the control plane
hosts to complete the restore procedure, and you will be unable to recover your
cluster from this state.

2. Copy the etcd backup directory to each control plane host.
This procedure assumes that you copied the backup directory containing the etcd snapshot
and the resources for the static pods to the /home/core/assets directory of each control plane
host. You might need to create such assets folder if it does not exist yet.

3. Stop the static pods on all the control plane nodes; one host at a time.

a. Move the existing Kubernetes API Server static pod manifest out of the kubelet manifest
directory.

b. Verify that the Kubernetes API Server containers have stopped with the command:

$ mkdir -p /root/manifests-backup

$ mv /etc/kubernetes/manifests/kube-apiserver-pod.yaml /root/manifests-backup/

$ crictl ps | grep kube-apiserver | grep -E -v "operator|guard"

CHAPTER 4. BACKING UP AND RESTORING ETCD DATA

81

The output of this command should be empty. If it is not empty, wait a few minutes and
check again.

c. If the Kubernetes API Server containers are still running, terminate them manually with the
following command:

d. Repeat the same steps for kube-controller-manager-pod.yaml, kube-scheduler-
pod.yaml and finally etcd-pod.yaml.

i. Stop the kube-controller-manager pod with the following command:

ii. Check if the containers are stopped using the following command:

iii. Stop the kube-scheduler pod using the following command:

iv. Check if the containers are stopped using the following command:

v. Stop the etcd pod using the following command:

vi. Check if the containers are stopped using the following command:

4. On each control plane host, save the current etcd data, by moving it into the backup folder:

This data will be useful in case the etcd backup restore does not work and the etcd cluster must
be restored to the current state.

5. Find the correct etcd parameters for each control plane host.

a. The value for <ETCD_NAME> is unique for the each control plane host, and it is equal to
the value of the ETCD_NAME variable in the manifest /etc/kubernetes/static-pod-
resources/etcd-certs/configmaps/restore-etcd-pod/pod.yaml file in the specific control
plane host. It can be found with the command:

$ crictl stop <container_id>

$ mv /etc/kubernetes/manifests/kube-controller-manager-pod.yaml /root/manifests-
backup/

$ crictl ps | grep kube-controller-manager | grep -E -v "operator|guard"

$ mv /etc/kubernetes/manifests/kube-scheduler-pod.yaml /root/manifests-backup/

$ crictl ps | grep kube-scheduler | grep -E -v "operator|guard"

$ mv /etc/kubernetes/manifests/etcd-pod.yaml /root/manifests-backup/

$ crictl ps | grep etcd | grep -E -v "operator|guard"

$ mkdir /home/core/assets/old-member-data

$ mv /var/lib/etcd/member /home/core/assets/old-member-data

OpenShift Container Platform 4.20 etcd

82

1

b. The value for <UUID> can be generated in a control plane host with the command:

NOTE

The value for <UUID> must be generated only once. After generating UUID
on one control plane host, do not generate it again on the others. The same
UUID will be used in the next steps on all control plane hosts.

c. The value for ETCD_NODE_PEER_URL should be set like the following example:

The correct IP can be found from the <ETCD_NAME> of the specific control plane host,
with the command:

d. The value for <ETCD_INITIAL_CLUSTER> should be set like the following, where
<ETCD_NAME_n> is the <ETCD_NAME> of each control plane host.

NOTE

The port used must be 2380 and not 2379. The port 2379 is used for etcd
database management and is configured directly in etcd start command in
container.

Example output

Specifies the ETCD_NODE_PEER_URL values from each control plane host.

The <ETCD_INITIAL_CLUSTER> value remains same across all control plane hosts. The
same value is required in the next steps on every control plane host.

6. Regenerate the etcd database from the backup.

RESTORE_ETCD_POD_YAML="/etc/kubernetes/static-pod-resources/etcd-
certs/configmaps/restore-etcd-pod/pod.yaml"
cat $RESTORE_ETCD_POD_YAML | \
 grep -A 1 $(cat $RESTORE_ETCD_POD_YAML | grep 'export ETCD_NAME' | grep -Eo
'NODE_.+_ETCD_NAME') | \
 grep -Po '(?<=value: ").+(?=")'

$ uuidgen

https://<IP_CURRENT_HOST>:2380

$ echo <ETCD_NAME> | \
 sed -E 's/[.-]/_/g' | \
 xargs -I {} grep {} /etc/kubernetes/static-pod-resources/etcd-certs/configmaps/etcd-
scripts/etcd.env | \
 grep "IP" | grep -Po '(?<=").+(?=")'

<ETCD_NAME_0>=<ETCD_NODE_PEER_URL_0>,<ETCD_NAME_1>=
<ETCD_NODE_PEER_URL_1>,<ETCD_NAME_2>=<ETCD_NODE_PEER_URL_2>
1

CHAPTER 4. BACKING UP AND RESTORING ETCD DATA

83

Such operation must be executed on each control plane host.

a. Copy the etcd backup to /var/lib/etcd directory with the command:

b. Identify the correct etcdctl image before proceeding. Use the following command to
retrieve the image from the backup of the pod manifest:

c. Check that the version of the etcdctl tool is the version of the etcd server where the
backup was created:

d. Run the following command to regenerate the etcd database, using the correct values for
the current host:

NOTE

The quotes are mandatory when regenerating the etcd database.

7. Record the values printed in the added member logs; for example:

Example output

2022-06-28T19:52:43Z info membership/cluster.go:421 added member {"cluster-id":
"c5996b7c11c30d6b", "local-member-id": "0", "added-peer-id": "56cd73b614699e7", "added-
peer-peer-urls": ["https://10.0.91.5:2380"], "added-peer-is-learner": false}
2022-06-28T19:52:43Z info membership/cluster.go:421 added member {"cluster-id":
"c5996b7c11c30d6b", "local-member-id": "0", "added-peer-id": "1f63d01b31bb9a9e", "added-
peer-peer-urls": ["https://10.0.90.221:2380"], "added-peer-is-learner": false}
2022-06-28T19:52:43Z info membership/cluster.go:421 added member {"cluster-id":
"c5996b7c11c30d6b", "local-member-id": "0", "added-peer-id": "fdc2725b3b70127c", "added-
peer-peer-urls": ["https://10.0.94.214:2380"], "added-peer-is-learner": false}

a. Exit from the container.

$ cp /home/core/assets/backup/<snapshot_yyyy-mm-dd_hhmmss>.db /var/lib/etcd

$ jq -r '.spec.containers[]|select(.name=="etcdctl")|.image' /root/manifests-backup/etcd-
pod.yaml

$ podman run --rm -it --entrypoint="/bin/bash" -v /var/lib/etcd:/var/lib/etcd:z <image-
hash>

$ etcdctl version

$ ETCDCTL_API=3 /usr/bin/etcdctl snapshot restore /var/lib/etcd/<snapshot_yyyy-mm-
dd_hhmmss>.db \
 --name "<ETCD_NAME>" \
 --initial-cluster="<ETCD_INITIAL_CLUSTER>" \
 --initial-cluster-token "openshift-etcd-<UUID>" \
 --initial-advertise-peer-urls "<ETCD_NODE_PEER_URL>" \
 --data-dir="/var/lib/etcd/restore-<UUID>" \
 --skip-hash-check=true

OpenShift Container Platform 4.20 etcd

84

b. Repeat these steps on the other control plane hosts, checking that the values printed in the
added member logs are the same for all control plane hosts.

8. Move the regenerated etcd database to the default location.
Such operation must be executed on each control plane host.

a. Move the regenerated database (the member folder created by the previous etcdctl
snapshot restore command) to the default etcd location /var/lib/etcd:

b. Restore the SELinux context for /var/lib/etcd/member folder on /var/lib/etcd directory:

c. Remove the leftover files and directories:

IMPORTANT

When you are finished the /var/lib/etcd directory must contain only the folder
member.

d. Repeat these steps on the other control plane hosts.

9. Restart the etcd cluster.

a. The following steps must be executed on all control plane hosts, but one host at a time.

b. Move the etcd static pod manifest back to the kubelet manifest directory, in order to make
kubelet start the related containers :

c. Verify that all the etcd containers have started:

Example output

$ mv /var/lib/etcd/restore-<UUID>/member /var/lib/etcd

$ restorecon -vR /var/lib/etcd/

$ rm -rf /var/lib/etcd/restore-<UUID>

$ rm /var/lib/etcd/<snapshot_yyyy-mm-dd_hhmmss>.db

$ mv /root/manifests-backup/etcd-pod.yaml /etc/kubernetes/manifests

$ crictl ps | grep etcd | grep -v operator

38c814767ad983
f79db5a8799fd2c08960ad9ee22f784b9fbe23babe008e8a3bf68323f004c840
28 seconds ago Running etcd-health-monitor 2
fe4b9c3d6483c
e1646b15207c6
9d28c15860870e85c91d0e36b45f7a6edd3da757b113ec4abb4507df88b17f06
About a minute ago Running etcd-metrics 0
fe4b9c3d6483c
08ba29b1f58a7

CHAPTER 4. BACKING UP AND RESTORING ETCD DATA

85

If the output of this command is empty, wait a few minutes and check again.

10. Check the status of the etcd cluster.

a. On any of the control plane hosts, check the status of the etcd cluster with the following
command:

Example output

11. Restart the other static pods.
The following steps must be executed on all control plane hosts, but one host at a time.

a. Move the Kubernetes API Server static pod manifest back to the kubelet manifest directory
to make kubelet start the related containers with the command:

b. Verify that all the Kubernetes API Server containers have started:

NOTE

if the output of the following command is empty, wait a few minutes and
check again.

c. Repeat the same steps for kube-controller-manager-pod.yaml and kube-scheduler-
pod.yaml files.

i. Restart the kubelets in all nodes using the following command:

9d28c15860870e85c91d0e36b45f7a6edd3da757b113ec4abb4507df88b17f06
About a minute ago Running etcd 0
fe4b9c3d6483c
2ddc9eda16f53
9d28c15860870e85c91d0e36b45f7a6edd3da757b113ec4abb4507df88b17f06
About a minute ago Running etcdctl

$ crictl exec -it $(crictl ps | grep etcdctl | awk '{print $1}') etcdctl endpoint status -w table

+--------------------------+------------------+---------+---------+-----------+------------+-----------
+------------+--------------------+--------+
| ENDPOINT | ID | VERSION | DB SIZE | IS LEADER | IS LEARNER |
RAFT TERM | RAFT INDEX | RAFT APPLIED INDEX | ERRORS |
+--------------------------+------------------+---------+---------+-----------+------------+-----------
+------------+--------------------+--------+
| https://10.0.89.133:2379 | 682e4a83a0cec6c0 | 3.5.0 | 67 MB | true | false |
2 | 218 | 218 | |
| https://10.0.92.74:2379 | 450bcf6999538512 | 3.5.0 | 67 MB | false | false |
2 | 218 | 218 | |
| https://10.0.93.129:2379 | 358efa9c1d91c3d6 | 3.5.0 | 67 MB | false | false |
2 | 218 | 218 | |
+--------------------------+------------------+---------+---------+-----------+------------+-----------
+------------+--------------------+--------+

$ mv /root/manifests-backup/kube-apiserver-pod.yaml /etc/kubernetes/manifests

$ crictl ps | grep kube-apiserver | grep -v operator

OpenShift Container Platform 4.20 etcd

86

i. Restart the kubelets in all nodes using the following command:

ii. Start the remaining control plane pods using the following command:

iii. Check if the kube-apiserver, kube-scheduler and kube-controller-manager pods
start correctly:

iv. Wipe the OVN databases using the following commands:

Additional resources

Backing up etcd data

Installing a user-provisioned cluster on bare metal

Accessing hosts on Amazon Web Services in an installer-provisioned infrastructure cluster

Replacing a bare-metal control plane node

4.3.2.5. Issues and workarounds for restoring a persistent storage state

If your OpenShift Container Platform cluster uses persistent storage of any form, a state of the cluster
is typically stored outside etcd. When you restore from an etcd backup, the status of the workloads in
OpenShift Container Platform is also restored. However, if the etcd snapshot is old, the status might be
invalid or outdated.

IMPORTANT

The contents of persistent volumes (PVs) are never part of the etcd snapshot. When you
restore an OpenShift Container Platform cluster from an etcd snapshot, non-critical
workloads might gain access to critical data, or vice-versa.

The following are some example scenarios that produce an out-of-date status:

MySQL database is running in a pod backed up by a PV object. Restoring OpenShift Container
Platform from an etcd snapshot does not bring back the volume on the storage provider, and

$ systemctl restart kubelet

$ mv /root/manifests-backup/kube-* /etc/kubernetes/manifests/

$ crictl ps | grep -E 'kube-(apiserver|scheduler|controller-manager)' | grep -v -E
'operator|guard'

for NODE in $(oc get node -o name | sed 's:node/::g')
do
 oc debug node/${NODE} -- chroot /host /bin/bash -c 'rm -f /var/lib/ovn-
ic/etc/ovn*.db && systemctl restart ovs-vswitchd ovsdb-server'
 oc -n openshift-ovn-kubernetes delete pod -l app=ovnkube-node --field-
selector=spec.nodeName=${NODE} --wait
 oc -n openshift-ovn-kubernetes wait pod -l app=ovnkube-node --field-
selector=spec.nodeName=${NODE} --for condition=ContainersReady --
timeout=600s
done

CHAPTER 4. BACKING UP AND RESTORING ETCD DATA

87

https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/backup_and_restore/#backing-up-etcd-data_backup-etcd
https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/installing_on_bare_metal/#installing-bare-metal
https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/networking_overview/#accessing-hosts-on-aws_accessing-hosts
https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/installing_on_bare_metal/#replacing-a-bare-metal-control-plane-node_bare-metal-expanding

does not produce a running MySQL pod, despite the pod repeatedly attempting to start. You
must manually restore this pod by restoring the volume on the storage provider, and then
editing the PV to point to the new volume.

Pod P1 is using volume A, which is attached to node X. If the etcd snapshot is taken while another
pod uses the same volume on node Y, then when the etcd restore is performed, pod P1 might
not be able to start correctly due to the volume still being attached to node Y. OpenShift
Container Platform is not aware of the attachment, and does not automatically detach it. When
this occurs, the volume must be manually detached from node Y so that the volume can attach
on node X, and then pod P1 can start.

Cloud provider or storage provider credentials were updated after the etcd snapshot was taken.
This causes any CSI drivers or Operators that depend on the those credentials to not work. You
might have to manually update the credentials required by those drivers or Operators.

A device is removed or renamed from OpenShift Container Platform nodes after the etcd
snapshot is taken. The Local Storage Operator creates symlinks for each PV that it manages
from /dev/disk/by-id or /dev directories. This situation might cause the local PVs to refer to
devices that no longer exist.
To fix this problem, an administrator must:

1. Manually remove the PVs with invalid devices.

2. Remove symlinks from respective nodes.

3. Delete LocalVolume or LocalVolumeSet objects (see Storage → Configuring persistent
storage → Persistent storage using local volumes → Deleting the Local Storage Operator
Resources).

4.3.3. Recovering from expired control plane certificates

The cluster can automatically recover from expired control plane certificates.

However, you must manually approve the pending node-bootstrapper certificate signing requests
(CSRs) to recover kubelet certificates. For user-provisioned installations, you might also need to
approve pending kubelet serving CSRs.

Use the following steps to approve the pending CSRs:

Procedure

1. Get the list of current CSRs:

Example output

NAME AGE SIGNERNAME REQUESTOR
CONDITION
csr-2s94x 8m3s kubernetes.io/kubelet-serving system:node:<node_name>
Pending 1
csr-4bd6t 8m3s kubernetes.io/kubelet-serving system:node:<node_name>
Pending
csr-4hl85 13m kubernetes.io/kube-apiserver-client-kubelet
system:serviceaccount:openshift-machine-config-operator:node-bootstrapper Pending 2

$ oc get csr

OpenShift Container Platform 4.20 etcd

88

1

2

1

csr-zhhhp 3m8s kubernetes.io/kube-apiserver-client-kubelet
system:serviceaccount:openshift-machine-config-operator:node-bootstrapper Pending
...

A pending kubelet service CSR (for user-provisioned installations).

A pending node-bootstrapper CSR.

2. Review the details of a CSR to verify that it is valid:

<csr_name> is the name of a CSR from the list of current CSRs.

3. Approve each valid node-bootstrapper CSR:

4. For user-provisioned installations, approve each valid kubelet serving CSR:

4.3.4. Testing restore procedures

Testing the restore procedure is important to ensure that your automation and workload handle the new
cluster state gracefully. Due to the complex nature of etcd quorum and the etcd Operator attempting
to mend automatically, it is often difficult to correctly bring your cluster into a broken enough state that
it can be restored.

WARNING

You must have SSH access to the cluster. Your cluster might be entirely lost
without SSH access.

Prerequisites

You have SSH access to control plane hosts.

You have installed the OpenShift CLI (oc).

Procedure

1. Use SSH to connect to each of your nonrecovery nodes and run the following commands to
disable etcd and the kubelet service:

a. Disable etcd by running the following command:

$ oc describe csr <csr_name> 1

$ oc adm certificate approve <csr_name>

$ oc adm certificate approve <csr_name>



CHAPTER 4. BACKING UP AND RESTORING ETCD DATA

89

b. Delete variable data for etcd by running the following command:

c. Disable the kubelet service by running the following command:

2. Exit every SSH session.

3. Run the following command to ensure that your nonrecovery nodes are in a NOT READY state:

4. Follow the steps in "Restoring to a previous cluster state" to restore your cluster.

5. After you restore the cluster and the API responds, use SSH to connect to each nonrecovery
node and enable the kubelet service:

6. Exit every SSH session.

7. Run the following command to observe your nodes coming back into the READY state:

8. Run the following command to verify that etcd is available:

Additional resources

Restoring to a previous cluster state

$ sudo /usr/local/bin/disable-etcd.sh

$ sudo rm -rf /var/lib/etcd

$ sudo systemctl disable kubelet.service

$ oc get nodes

$ sudo systemctl enable kubelet.service

$ oc get nodes

$ oc get pods -n openshift-etcd

OpenShift Container Platform 4.20 etcd

90

https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/backup_and_restore/#dr-restoring-cluster-state

CHAPTER 5. ENABLING ETCD ENCRYPTION

5.1. ABOUT ETCD ENCRYPTION

By default, etcd data is not encrypted in OpenShift Container Platform. You can enable etcd encryption
for your cluster to provide an additional layer of data security. For example, it can help protect the loss
of sensitive data if an etcd backup is exposed to the incorrect parties.

When you enable etcd encryption, the following OpenShift API server and Kubernetes API server
resources are encrypted:

Secrets

Config maps

Routes

OAuth access tokens

OAuth authorize tokens

When you enable etcd encryption, encryption keys are created. You must have these keys to restore
from an etcd backup.

NOTE

Etcd encryption only encrypts values, not keys. Resource types, namespaces, and object
names are unencrypted.

If etcd encryption is enabled during a backup, the
static_kuberesources_<datetimestamp>.tar.gz file contains the encryption keys for
the etcd snapshot. For security reasons, store this file separately from the etcd snapshot.
However, this file is required to restore a previous state of etcd from the respective etcd
snapshot.

5.2. SUPPORTED ENCRYPTION TYPES

The following encryption types are supported for encrypting etcd data in OpenShift Container Platform:

AES-CBC

Uses AES-CBC with PKCS#7 padding and a 32 byte key to perform the encryption. The encryption
keys are rotated weekly.

AES-GCM

Uses AES-GCM with a random nonce and a 32 byte key to perform the encryption. The encryption
keys are rotated weekly.

5.3. ENABLING ETCD ENCRYPTION

You can enable etcd encryption to encrypt sensitive resources in your cluster.

CHAPTER 5. ENABLING ETCD ENCRYPTION

91

1

WARNING

Do not back up etcd resources until the initial encryption process is completed. If
the encryption process is not completed, the backup might be only partially
encrypted.

After you enable etcd encryption, several changes can occur:

The etcd encryption might affect the memory consumption of a few
resources.

You might notice a transient affect on backup performance because the
leader must serve the backup.

A disk I/O can affect the node that receives the backup state.

You can encrypt the etcd database in either AES-GCM or AES-CBC encryption.

NOTE

To migrate your etcd database from one encryption type to the other, you can modify
the API server’s spec.encryption.type field. Migration of the etcd data to the new
encryption type occurs automatically.

Prerequisites

Access to the cluster as a user with the cluster-admin role.

Procedure

1. Modify the APIServer object:

2. Set the spec.encryption.type field to aesgcm or aescbc:

Set to aesgcm for AES-GCM encryption or aescbc for AES-CBC encryption.

3. Save the file to apply the changes.
The encryption process starts. It can take 20 minutes or longer for this process to complete,
depending on the size of the etcd database.

4. Verify that etcd encryption was successful.

a. Review the Encrypted status condition for the OpenShift API server to verify that its
resources were successfully encrypted:



$ oc edit apiserver

spec:
 encryption:
 type: aesgcm 1

OpenShift Container Platform 4.20 etcd

92

resources were successfully encrypted:

The output shows EncryptionCompleted upon successful encryption:

If the output shows EncryptionInProgress, encryption is still in progress. Wait a few
minutes and try again.

b. Review the Encrypted status condition for the Kubernetes API server to verify that its
resources were successfully encrypted:

The output shows EncryptionCompleted upon successful encryption:

If the output shows EncryptionInProgress, encryption is still in progress. Wait a few
minutes and try again.

c. Review the Encrypted status condition for the OpenShift OAuth API server to verify that
its resources were successfully encrypted:

The output shows EncryptionCompleted upon successful encryption:

If the output shows EncryptionInProgress, encryption is still in progress. Wait a few
minutes and try again.

5.4. DISABLING ETCD ENCRYPTION

You can disable encryption of etcd data in your cluster.

Prerequisites

Access to the cluster as a user with the cluster-admin role.

Procedure

1. Modify the APIServer object:

$ oc get openshiftapiserver -o=jsonpath='{range .items[0].status.conditions[?
(@.type=="Encrypted")]}{.reason}{"\n"}{.message}{"\n"}'

EncryptionCompleted
All resources encrypted: routes.route.openshift.io

$ oc get kubeapiserver -o=jsonpath='{range .items[0].status.conditions[?
(@.type=="Encrypted")]}{.reason}{"\n"}{.message}{"\n"}'

EncryptionCompleted
All resources encrypted: secrets, configmaps

$ oc get authentication.operator.openshift.io -o=jsonpath='{range
.items[0].status.conditions[?(@.type=="Encrypted")]}{.reason}{"\n"}{.message}{"\n"}'

EncryptionCompleted
All resources encrypted: oauthaccesstokens.oauth.openshift.io,
oauthauthorizetokens.oauth.openshift.io

CHAPTER 5. ENABLING ETCD ENCRYPTION

93

1

2. Set the encryption field type to identity:

The identity type is the default value and means that no encryption is performed.

3. Save the file to apply the changes.
The decryption process starts. It can take 20 minutes or longer for this process to complete,
depending on the size of your cluster.

4. Verify that etcd decryption was successful.

a. Review the Encrypted status condition for the OpenShift API server to verify that its
resources were successfully decrypted:

The output shows DecryptionCompleted upon successful decryption:

If the output shows DecryptionInProgress, decryption is still in progress. Wait a few
minutes and try again.

b. Review the Encrypted status condition for the Kubernetes API server to verify that its
resources were successfully decrypted:

The output shows DecryptionCompleted upon successful decryption:

If the output shows DecryptionInProgress, decryption is still in progress. Wait a few
minutes and try again.

c. Review the Encrypted status condition for the OpenShift OAuth API server to verify that
its resources were successfully decrypted:

The output shows DecryptionCompleted upon successful decryption:

$ oc edit apiserver

spec:
 encryption:
 type: identity 1

$ oc get openshiftapiserver -o=jsonpath='{range .items[0].status.conditions[?
(@.type=="Encrypted")]}{.reason}{"\n"}{.message}{"\n"}'

DecryptionCompleted
Encryption mode set to identity and everything is decrypted

$ oc get kubeapiserver -o=jsonpath='{range .items[0].status.conditions[?
(@.type=="Encrypted")]}{.reason}{"\n"}{.message}{"\n"}'

DecryptionCompleted
Encryption mode set to identity and everything is decrypted

$ oc get authentication.operator.openshift.io -o=jsonpath='{range
.items[0].status.conditions[?(@.type=="Encrypted")]}{.reason}{"\n"}{.message}{"\n"}'

OpenShift Container Platform 4.20 etcd

94

If the output shows DecryptionInProgress, decryption is still in progress. Wait a few
minutes and try again.

DecryptionCompleted
Encryption mode set to identity and everything is decrypted

CHAPTER 5. ENABLING ETCD ENCRYPTION

95

CHAPTER 6. GUIDANCE FOR CLUSTERS THAT SPAN DATA
CENTERS

Red Hat strongly recommends a deployment model where OpenShift Container Platform clusters are
deployed within a data center, but also acknowledges that there can be scenarios where a provider can
use a deployment model where a cluster can span across data centers. This document outlines
considerations when exploring the use of cluster deployments that span many data centers and
describes important metrics that affect the supportability of such deployments. The design of such
deployments should adhere to these guidelines for the product to function optimally and ensure the
highest quality of support with the appropriate product support subscriptions.

WARNING

A cluster deployment that spans many data centers extends the cluster as a single
failure domain across locations and should not be considered a replacement for a
disaster recovery plan.

Clusters with cluster deployments that span many data centers are bound by standard Red Hat
OpenShift Container Platform support guidance. See the Red Hat OpenShift Container Platform
Lifecycle and Red Hat Production Support Scope of Coverage for more information.

It is not recommended to deploy an OpenShift Container Platform cluster that spans many sites. If you
need to be in many data centers or regions, deploy one cluster per region or site and use tools such as
Red Hat Advanced Cluster Management for Kubernetes (ACM) to manage these clusters and
deployments.

Some OpenShift Container Platform platforms have specific support for many data center
deployments. Check the platform-specific product documentation and release notes for details. Other
platforms can span data centers, depending on the quality of the network connectivity between nodes.
For more information, see Understanding etcd and the tunables/conditions affecting performance .

When implementing a cluster deployment that spans many data centers, you should strive to implement
the practices detailed in Red Hat OpenShift Container Platform High Availability, and Recommended
Practices. An alternative to multisite deployments is to deploy one OpenShift Container Platform
cluster per site, managed by ACM.

6.1. DEPLOYMENT CAVEATS FOR SPANNED CLUSTERS

The guidance provided in this documentation focuses on general aspects of a cluster deployment that
spans data centers. Some caveats to remember:

Although the designs for deployments that span data centers are not bound by any special
support requirements, these clusters do have additional inherent complexities that can require
additional consideration or support involvement (time to identify, remediate and resolve issues)
when compared to a standard single-site cluster.

Applications might not work well or not work at all in clusters with high Kube API latency or low
transaction rates.

Layered products, such as storage providers, have lower latency requirements. In those cases,



OpenShift Container Platform 4.20 etcd

96

https://access.redhat.com/support/policy/updates/openshift
https://access.redhat.com/support/offerings/production/soc
https://access.redhat.com/articles/7010406
https://access.redhat.com/articles/3221001

Layered products, such as storage providers, have lower latency requirements. In those cases,
the latency limits are dictated by the architectures that are supported by the layered product.

The failure scenarios are amplified with stretched control planes, and the way they are affected
is specific to the deployment. Because of this, before using a deployment that spans data
centers on a production environment, the organization should test and document the behavior
of the cluster during disruptions such as:

When there is a network partition leaving one, two, or all control plane nodes isolated

When there are MTU mismatches on the transport network among the control plane nodes

When there is a sustained spike in latency as a Day 2 event towards one or more of the
control plane nodes

When there is a considerable change in jitter due to network congestion, misconfiguration,
or lack of QoS, an intermediate network device causing packet errors, and others

Clusters deployed across many sites, network infrastructures, storage infrastructures, or other
components inherently have a higher number of points of failure. Network disruptions or splits
become a larger threat to such clusters especially, putting the nodes at risk of losing contact
with each other. These multisite clusters must be designed with the potential for such failures in
mind. Organizations deploying multisite clusters should extensively test failure scenarios, and
should consider whether the cluster has protection from all points of failure. Consult with Red
Hat Support for assistance in considering the important aspects of a resilient High Availability
cluster design.

In some cases, GEO awareness is a requirement or issue that must be solved to minimize
latency, so a proper implementation of a Global Service Load Balancing (GSLB) method must
be available.

6.2. INFRASTRUCTURE AS A SERVICE (IAAS) AND CLOUD PROVIDER
CONSIDERATIONS

This guidance applies to any infrastructure provider for which OpenShift Container Platform control
plane nodes are supported by the user-provisioned infrastructure installer (platform=none) or the
agent-based installer (platform=metal) using the ”User Managed Network” option. Installer-provisioned
infrastructure installers are not covered by these guidelines, however, where possible, installer-
provisioned infrastructure deployments will span zones or availability zones on cloud or IaaS providers if
possible by following these or similar guidelines. This means infrastructure provider-specific integrations
will not be available (for example, integration with Cloud provider services such as storage services and
load balancers). Provider-specific services might still be used as external services.

Using different infrastructure platform providers for control plane nodes is discouraged (for example,
mixing nodes across IaaS, cloud, and bare metal as control plane nodes). Consider the following
guidelines when such combinations are needed:

The minimum effective MTU across the infrastructure should be the maximum MTU used for
the deployment. Using a lower MTU is acceptable. See Understanding and Validating MTU
setting with OpenShift Container Platform 4.x for more information.

The combined disk and network latency and jitter must maintain an etcd peer round trip time of
less than 100ms. This is not the same as the network round trip time.

Layered products might have lower latency requirements. In those cases, the latency limits are
dictated by the requirements of the architecture supported by the layered product. For

CHAPTER 6. GUIDANCE FOR CLUSTERS THAT SPAN DATA CENTERS

97

example, OpenShift Container Platform cluster deployments that span data centers with Red
Hat OpenShift Data Foundation must have a latency requirement of less than 10ms RTT. For
those cases, follow the specific product guidance.

For guidance on cluster deployments that span data centers using OpenShift Data Foundation
as the storage provider, see Configuring OpenShift Data Foundation Disaster Recovery for
OpenShift Workloads.

Additional resources

Understanding and Validating MTU setting with OpenShift Container Platform 4.x

Configuring OpenShift Data Foundation Disaster Recovery for OpenShift Workloads

6.3. SITE RECOMMENDATIONS

Assuming each site gets one control plane member, you theoretically define three sites, which is what
Red Hat recommends. This allows for one data center to go into an inactive state and the cluster still
maintains quorum and operational consistency.

When this assumption is not met, attention should be given to the desired and actual fault tolerance
state of the cluster, as it will often outline or dictate the operational capabilities (uptime and stability) of
the deployment.

6.4. REQUIREMENTS FOR ETCD, NETWORKING, AND STORAGE

Consider the following requirements for clusters that span data centers.

6.4.1. etcd requirements

There is a large list of factors and considerations that go into planning an etcd cluster deployment.
When planning an OpenShift Container Platform cluster that spans data centers, you need to plan for
situations that will likely stress or push etcd to the edge of its operational limits.

See Understanding etcd and the tunables/conditions affecting performance for more details on how to
maintain operational capabilities and reduce service-affecting events and instability of the cluster.

6.4.2. Network requirements

The chosen network topology must yield direct IP connectivity between nodes. The minimum effective
MTU across the infrastructure should be the maximum MTU used for the deployment. Using a lower
MTU is acceptable.

For more information, see Understanding and Validating MTU setting with OpenShift Container Platform
4.x. The latency needs are ultimately defined by the services that use the network. See the sections
related to etcd and storage for more details on requirements.

In addition to the base networking requirements, you need to think about how applications will be
accessed. A top-level Global Service Load Balancing (GSLB) method will be needed outside of
OpenShift Container Platform to enable external traffic to connect to the OpenShift Container
Platform control plane services and ingress controllers.

6.4.3. Storage requirements

When considering a cluster deployment that spans data centers, special consideration needs to be given

OpenShift Container Platform 4.20 etcd

98

https://access.redhat.com/articles/7010220
https://docs.redhat.com/en/documentation/red_hat_openshift_data_foundation/4.19/html-single/configuring_openshift_data_foundation_disaster_recovery_for_openshift_workloads/index

When considering a cluster deployment that spans data centers, special consideration needs to be given
to the selected storage integration to ensure that it also meets multisite requirements, as it pertains to
accessibility from all sites, fault tolerance, high availability, and so on.

An object storage solution should be used for the registry, and this storage solution needs to be in
addition to any PV storage integration used for application volumes or workloads. This object storage
solution should also have the same special considerations given to accessibility from all sites, fault
tolerance, high availability, and so on.

Because disk I/O is a critical factor in the health of etcd database, it is required that they are deployed
on a high speed, low latency media. See etcd guidance on etcd peer round trip time and etcd database
size for more details on the exact requirements to meet.

Additional resources

Understanding etcd and the tunables/conditions affecting performance

Understanding and Validating MTU setting with OpenShift Container Platform 4.x

etcd peer round trip time

etcd database size

6.5. WORKLOAD PLACEMENT CONSIDERATIONS

With multisite clusters, administrators and developers must take special considerations into account to
ensure that critical workloads are scheduled or placed based on the proper hardware or hosts within the
topology of the cluster. This ensures that the applications and services are Highly Available and Fault
Tolerant based on the topology of the cluster’s deployment.

Without considering this, it is possible for OpenShift Container Platform to schedule workloads on hosts
within the cluster so that a Single Point of Failure (SPoF) is created for OpenShift Container Platform
infrastructure services and other application services if there is a data center outage.

CHAPTER 6. GUIDANCE FOR CLUSTERS THAT SPAN DATA CENTERS

99

https://access.redhat.com/articles/7010406
https://access.redhat.com/articles/7010220
https://access.redhat.com/articles/7010406#etcd-peer-round-trip-time-impacts-on-performance-6
https://access.redhat.com/articles/7010406#effects-of-database-size-on-etcd-7

	Table of Contents
	CHAPTER 1. OVERVIEW OF ETCD
	1.1. HOW ETCD WORKS
	1.2. UNDERSTANDING ETCD PERFORMANCE

	CHAPTER 2. RECOMMENDED ETCD PRACTICES
	2.1. STORAGE PRACTICES FOR ETCD
	2.2. CLUSTER LATENCY REQUIREMENTS FOR ETCD
	2.3. VALIDATING THE HARDWARE FOR ETCD

	CHAPTER 3. ENSURING RELIABLE ETCD PERFORMANCE AND SCALABILITY
	3.1. LEADER ELECTION AND LOG REPLICATION OF ETCD
	3.2. NODE SCALING FOR ETCD
	3.3. EFFECTS OF DISK LATENCY ON ETCD
	3.4. MONITORING CONSENSUS LATENCY FOR ETCD
	3.5. MOVING ETCD TO A DIFFERENT DISK
	3.6. DEFRAGMENTING ETCD DATA
	3.6.1. Automatic defragmentation
	3.6.2. Manual defragmentation

	3.7. SETTING TUNING PARAMETERS FOR ETCD
	3.7.1. Changing hardware speed tolerance

	3.8. OPENSHIFT CONTAINER PLATFORM TIMER TUNABLES FOR ETCD
	3.9. DETERMINING THE SIZE OF THE ETCD DATABASE AND UNDERSTANDING ITS EFFECTS
	3.10. INCREASING THE DATABASE SIZE FOR ETCD
	3.10.1. Changing the etcd database size
	3.10.2. Troubleshooting
	3.10.2.1. Value is too small
	3.10.2.2. Value is too large
	3.10.2.3. Value is decreasing

	3.11. MEASURING NETWORK JITTER BETWEEN CONTROL PLANE NODES
	3.12. HOW ETCD PEER ROUND TRIP TIME AFFECTS PERFORMANCE
	3.13. DETERMINING KUBERNETES API TRANSACTION RATE FOR YOUR ENVIRONMENT

	CHAPTER 4. BACKING UP AND RESTORING ETCD DATA
	4.1. BACKING UP AND RESTORING ETCD DATA
	4.1.1. Backing up etcd data
	4.1.2. Creating automated etcd backups
	4.1.2.1. Creating a single automated etcd backup
	4.1.2.2. Creating recurring automated etcd backups

	4.2. REPLACING AN UNHEALTHY ETCD MEMBER
	4.2.1. Identifying an unhealthy etcd member
	4.2.2. Determining the state of the unhealthy etcd member
	4.2.3. Replacing the unhealthy etcd member
	4.2.3.1. Replacing an unhealthy etcd member whose machine is not running or whose node is not ready
	4.2.3.2. Replacing an unhealthy etcd member whose etcd pod is crashlooping
	4.2.3.3. Replacing an unhealthy bare metal etcd member whose machine is not running or whose node is not ready

	4.3. DISASTER RECOVERY
	4.3.1. Quorum restoration
	4.3.1.1. Restoring etcd quorum for high availability clusters

	4.3.2. Restoring to a previous cluster state
	4.3.2.1. About restoring to a previous cluster state
	4.3.2.2. Restoring to a previous cluster state for a single node
	4.3.2.3. Restoring to a previous cluster state for more than one node
	4.3.2.4. Restoring a cluster manually from an etcd backup
	4.3.2.5. Issues and workarounds for restoring a persistent storage state

	4.3.3. Recovering from expired control plane certificates
	4.3.4. Testing restore procedures

	CHAPTER 5. ENABLING ETCD ENCRYPTION
	5.1. ABOUT ETCD ENCRYPTION
	5.2. SUPPORTED ENCRYPTION TYPES
	5.3. ENABLING ETCD ENCRYPTION
	5.4. DISABLING ETCD ENCRYPTION

	CHAPTER 6. GUIDANCE FOR CLUSTERS THAT SPAN DATA CENTERS
	6.1. DEPLOYMENT CAVEATS FOR SPANNED CLUSTERS
	6.2. INFRASTRUCTURE AS A SERVICE (IAAS) AND CLOUD PROVIDER CONSIDERATIONS
	6.3. SITE RECOMMENDATIONS
	6.4. REQUIREMENTS FOR ETCD, NETWORKING, AND STORAGE
	6.4.1. etcd requirements
	6.4.2. Network requirements
	6.4.3. Storage requirements

	6.5. WORKLOAD PLACEMENT CONSIDERATIONS

