
OpenShift Container Platform 4.20

Virtualization

OpenShift Virtualization installation, usage, and release notes

Last Updated: 2025-11-06

OpenShift Container Platform 4.20 Virtualization

OpenShift Virtualization installation, usage, and release notes

Legal Notice

Copyright © 2025 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides information about how to use OpenShift Virtualization in OpenShift
Container Platform.

. .

. .

Table of Contents

CHAPTER 1. ABOUT
1.1. ABOUT OPENSHIFT VIRTUALIZATION

1.1.1. What you can do with OpenShift Virtualization
1.1.2. Comparing OpenShift Virtualization to VMware vSphere
1.1.3. Supported cluster versions for OpenShift Virtualization
1.1.4. About volume and access modes for virtual machine disks
1.1.5. Single-node OpenShift differences
1.1.6. Additional resources

1.2. SUPPORTED LIMITS
1.2.1. Tested maximums for OpenShift Virtualization

1.2.1.1. Virtual machine maximums
1.2.1.2. Host maximums
1.2.1.3. Cluster maximums

1.2.2. Additional resources
1.3. SECURITY POLICIES

1.3.1. About workload security
1.3.2. TLS certificates
1.3.3. Authorization

1.3.3.1. Default cluster roles for OpenShift Virtualization
1.3.3.2. RBAC roles for storage features in OpenShift Virtualization

1.3.3.2.1. Cluster-wide RBAC roles
1.3.3.2.2. Namespaced RBAC roles

1.3.3.3. Additional SCCs and permissions for the kubevirt-controller service account
1.3.4. Additional resources

1.4. OPENSHIFT VIRTUALIZATION ARCHITECTURE
1.4.1. About the HyperConverged Operator (HCO)
1.4.2. About the Containerized Data Importer (CDI) Operator
1.4.3. About the Cluster Network Addons Operator
1.4.4. About the Hostpath Provisioner (HPP) Operator
1.4.5. About the Scheduling, Scale, and Performance (SSP) Operator
1.4.6. About the OpenShift Virtualization Operator

CHAPTER 2. RELEASE NOTES
2.1. OPENSHIFT VIRTUALIZATION RELEASE NOTES

2.1.1. Providing documentation feedback
2.1.2. About Red Hat OpenShift Virtualization

2.1.2.1. Supported cluster versions for OpenShift Virtualization
2.1.2.2. Supported guest operating systems
2.1.2.3. Microsoft Windows SVVP certification

2.1.3. Quick starts
2.1.4. New and changed features

2.1.4.1. Installation and update
2.1.4.2. Virtualization
2.1.4.3. Networking
2.1.4.4. Web console
2.1.4.5. Monitoring
2.1.4.6. Notable technical changes

2.1.5. Deprecated and removed features
2.1.5.1. Deprecated features
2.1.5.2. Removed features

2.1.6. Technology Preview features

20
20
20
21
22
22
23
23
23
23
24
24
24
25
25
25
26
26
26
27
27
30
31
32
32
33
34
35
35
36
36

38
38
38
38
38
38
38
39
39
39
39
39
40
40
41
41
41
41
41

Table of Contents

1

. .

. .

2.1.7. Bug fixes
2.1.8. Known issues

2.1.8.1. Networking
2.1.8.2. Nodes
2.1.8.3. Storage
2.1.8.4. Virtualization
2.1.8.5. IBM Z and IBM LinuxONE

CHAPTER 3. GETTING STARTED
3.1. GETTING STARTED WITH OPENSHIFT VIRTUALIZATION

3.1.1. Tours and quick starts
Getting started tour
Quick starts

3.1.2. Planning and installing OpenShift Virtualization
Planning and installation resources

3.1.3. Creating and managing virtual machines
3.1.4. Migrating to OpenShift Virtualization
3.1.5. Next steps

3.2. USING THE CLI TOOLS
3.2.1. Installing virtctl

3.2.1.1. Installing the virtctl binary on RHEL 9, Linux, Windows, or macOS
3.2.1.2. Installing the virtctl RPM on RHEL 8

3.2.2. virtctl commands
3.2.2.1. virtctl information commands
3.2.2.2. VM information commands
3.2.2.3. VM manifest creation commands
3.2.2.4. VM management commands
3.2.2.5. VM connection commands
3.2.2.6. VM export commands
3.2.2.7. Hot plug and hot unplug commands
3.2.2.8. Image upload commands

3.2.3. Deploying libguestfs by using virtctl
3.2.3.1. Libguestfs and virtctl guestfs commands

3.2.4. Using Ansible

CHAPTER 4. INSTALLING
4.1. PREPARING YOUR CLUSTER FOR OPENSHIFT VIRTUALIZATION

4.1.1. Compatible platforms
4.1.1.1. OpenShift Virtualization on AWS bare metal
4.1.1.2. ARM64 compatibility
4.1.1.3. IBM Z and IBM LinuxONE compatibility

Currently unavailable features
Functionality differences

4.1.2. Important considerations for any platform
4.1.3. Hardware and operating system requirements

4.1.3.1. CPU requirements
4.1.3.2. Operating system requirements
4.1.3.3. Storage requirements

4.1.3.3.1. About volume and access modes for virtual machine disks
4.1.4. Live migration requirements
4.1.5. Physical resource overhead requirements

Memory overhead
CPU overhead

41
42
42
42
42
42
43

44
44
44
44
44
44
44
45
45
46
46
46
46
47
48
48
48
49
50
51
52
53
53
54
54
56

57
57
57
58
60
61
61
61

62
62
62
63
63
63
64
64
65
65

OpenShift Container Platform 4.20 Virtualization

2

. .

. .

Storage overhead
4.1.6. Single-node OpenShift differences
4.1.7. Object maximums
4.1.8. Cluster high-availability options

4.2. INSTALLING OPENSHIFT VIRTUALIZATION
4.2.1. Installing the OpenShift Virtualization Operator

4.2.1.1. Installing the OpenShift Virtualization Operator by using the web console
4.2.1.2. Installing the OpenShift Virtualization Operator by using the command line

4.2.1.2.1. Subscribing to the OpenShift Virtualization catalog by using the CLI
4.2.1.2.2. Deploying the OpenShift Virtualization Operator by using the CLI

4.2.2. Next steps
4.3. UNINSTALLING OPENSHIFT VIRTUALIZATION

4.3.1. Uninstalling OpenShift Virtualization by using the web console
4.3.1.1. Deleting the HyperConverged custom resource
4.3.1.2. Deleting Operators from a cluster using the web console
4.3.1.3. Deleting a namespace using the web console
4.3.1.4. Deleting OpenShift Virtualization custom resource definitions

4.3.2. Uninstalling OpenShift Virtualization by using the CLI

CHAPTER 5. POSTINSTALLATION CONFIGURATION
5.1. POSTINSTALLATION CONFIGURATION
5.2. SPECIFYING NODES FOR OPENSHIFT VIRTUALIZATION COMPONENTS

5.2.1. About node placement rules for OpenShift Virtualization components
5.2.2. Applying node placement rules
5.2.3. Node placement rule examples

5.2.3.1. Subscription object node placement rule examples
5.2.3.2. HyperConverged object node placement rule example
5.2.3.3. HostPathProvisioner object node placement rule example

5.2.4. Additional resources
5.3. POSTINSTALLATION NETWORK CONFIGURATION

5.3.1. Installing networking Operators
5.3.2. Configuring a Linux bridge network

5.3.2.1. Creating a Linux bridge NNCP
5.3.2.2. Creating a Linux bridge NAD by using the web console

5.3.3. Configuring a network for live migration
5.3.3.1. Configuring a dedicated secondary network for live migration
5.3.3.2. Selecting a dedicated network by using the web console

5.3.4. Configuring an SR-IOV network
5.3.4.1. Configuring SR-IOV network devices

5.3.5. Enabling load balancer service creation by using the web console
5.4. POSTINSTALLATION STORAGE CONFIGURATION

5.4.1. Configuring local storage by using the HPP
5.4.1.1. Creating a storage class for the CSI driver with the storagePools stanza

5.5. CONFIGURING HIGHER VM WORKLOAD DENSITY
5.5.1. Using wasp-agent to increase VM workload density
5.5.2. Removing the wasp-agent component
5.5.3. Pod eviction conditions used by wasp-agent

5.5.3.1. Environment variables
5.6. CONFIGURING CERTIFICATE ROTATION

5.6.1. Configuring certificate rotation
5.6.2. Troubleshooting certificate rotation parameters

CHAPTER 6. VIRTUALIZATION WITH IBM FUSION ACCESS FOR SAN

66
66
67
67
67
68
68
69
69
72
72
73
73
73
73
74
74
75

77
77
77
77
78
78
78
79
81

82
82
82
82
83
84
85
85
86
87
87
89
90
90
90
91

92
98
99
99

100
100
101

102

Table of Contents

3

. .

. .

6.1. IBM FUSION ACCESS FOR SAN OVERVIEW
6.1.1. About IBM Fusion Access for SAN

6.1.1.1. Why use Fusion Access for SAN?
6.1.2. Prerequisites and Limitations for Fusion Access for SAN

6.1.2.1. Prerequisites
6.1.2.2. Limitations

6.2. INSTALLING AND CONFIGURING IBM FUSION ACCESS FOR SAN
6.2.1. Installing the Fusion Access for SAN Operator
6.2.2. Creating a Kubernetes pull secret
6.2.3. Creating the FusionAccess CR
6.2.4. Creating a storage cluster with Fusion Access for SAN
6.2.5. Creating a file system with Fusion Access for SAN
6.2.6. Next steps
6.2.7. IBM Fusion Access for SAN release updates

6.2.7.1. New and changed features
6.2.7.2. Bug fixes
6.2.7.3. Known issues

CHAPTER 7. UPDATING
7.1. UPDATING OPENSHIFT VIRTUALIZATION

7.1.1. About updating OpenShift Virtualization
7.1.1.1. Recommended settings
7.1.1.2. What to expect
7.1.1.3. How updates work
7.1.1.4. RHEL 9 compatibility

7.1.1.4.1. RHEL 9 machine type
7.1.2. Monitoring update status
7.1.3. VM workload updates

Migration attempts and timeouts
7.1.3.1. Configuring workload update methods
7.1.3.2. Viewing outdated VM workloads

7.1.4. Control Plane Only updates
7.1.4.1. Prerequisites
7.1.4.2. Preventing workload updates during a Control Plane Only update

7.1.5. Advanced options
7.1.5.1. Changing update settings
7.1.5.2. Manual approval strategy
7.1.5.3. Manually approving a pending Operator update

7.1.6. Early access releases
7.1.7. Additional resources

CHAPTER 8. CREATING A VIRTUAL MACHINE
8.1. CREATING VIRTUAL MACHINES FROM INSTANCE TYPES

8.1.1. About instance types
8.1.1.1. Required attributes
8.1.1.2. Optional attributes
8.1.1.3. Controller revisions

8.1.2. Pre-defined instance types
8.1.3. Specifying an instance type or preference

8.1.3.1. Using flags to specify instance types and preferences
8.1.3.2. Inferring an instance type or preference
8.1.3.3. Setting the inferFromVolume labels

8.1.4. Creating a VM from an instance type by using the web console

102
102
102
102
102
103
103
103
104
105
105
106
107
107
107
108
108

109
109
109
109
109
109
110
110
110
111

112
112
113
114
114
114
118
118
119
119

120
120

121
121
121
121
122
122
123
124
124
124
125
126

OpenShift Container Platform 4.20 Virtualization

4

. .

8.1.5. Changing the instance type for a VM
8.1.5.1. Changing the instance type of a VM by using the web console
8.1.5.2. Changing the instance type of a VM by using the CLI

8.2. CREATING VIRTUAL MACHINES FROM TEMPLATES
8.2.1. About VM templates
8.2.2. Creating a VM from a template

8.2.2.1. Removing a deprecated designation from a customized VM template by using the web console
8.2.2.2. Creating a custom VM template in the web console

8.3. CONFIGURING IBM SECURE EXECUTION VIRTUAL MACHINES ON IBM Z AND IBM LINUXONE
8.3.1. Enabling VMs to run IBM(R) Secure Execution on IBM Z(R) and IBM(R) LinuxONE
8.3.2. Launching an IBM Secure Execution VM on IBM Z and IBM LinuxONE

CHAPTER 9. ADVANCED VM CREATION
9.1. CREATING VMS FROM RED HAT IMAGES

9.1.1. Creating virtual machines from Red Hat images
9.1.1.1. About golden images

9.1.1.1.1. How do golden images work?
9.1.1.1.2. Red Hat implementation of golden images

9.1.1.2. About VM boot sources
9.1.1.3. Configuring a custom namespace for golden images by using the web console
9.1.1.4. Configuring a custom namespace for golden images by using the CLI

9.1.2. Heterogeneous cluster support
9.1.2.1. Enabling heterogeneous cluster support
9.1.2.2. Modifying a common golden image source in a heterogeneous cluster
9.1.2.3. Adding a custom golden image in a heterogeneous cluster
9.1.2.4. Modifying workloads node placement in a heterogeneous cluster

9.2. CREATING VMS IN THE WEB CONSOLE
9.2.1. Creating VMs by importing images from web pages

9.2.1.1. Creating a VM from an image on a web page by using the web console
9.2.1.2. Creating a VM from an image on a web page by using the CLI

9.2.2. Creating VMs by uploading images
9.2.2.1. Creating a VM from an uploaded image by using the web console

9.2.2.1.1. Generalizing a VM image
9.2.2.2. Creating a Windows VM

9.2.2.2.1. Generalizing a Windows VM image
9.2.2.2.2. Specializing a Windows VM image

9.2.2.3. Creating a VM from an uploaded image by using the CLI
9.2.3. Cloning VMs

9.2.3.1. Cloning a VM by using the web console
9.2.3.2. Creating a VM from an existing snapshot by using the web console
9.2.3.3. Additional resources

9.3. CREATING VMS USING THE CLI
9.3.1. Creating virtual machines from the CLI

9.3.1.1. Creating a VM from a VirtualMachine manifest
9.3.2. Creating VMs by using container disks

9.3.2.1. Building and uploading a container disk
9.3.2.2. Disabling TLS for a container registry
9.3.2.3. Creating a VM from a container disk by using the web console
9.3.2.4. Creating a VM from a container disk by using the CLI

9.3.3. Creating VMs by cloning PVCs
9.3.3.1. About cloning

9.3.3.1.1. CSI volume cloning
9.3.3.1.2. Smart cloning

128
128
129
130
130
130
131
132
132
133
134

136
136
136
136
136
137
137
137
137
138
139
140
141

142
143
143
143
144
146
146
146
148
149
150
151
152
152
152
153
153
153
153
154
155
156
157
157
159
159
159
159

Table of Contents

5

. .

9.3.3.1.3. Host-assisted cloning
9.3.3.2. Creating a VM from a PVC by using the web console
9.3.3.3. Creating a VM from a PVC by using the CLI

9.3.3.3.1. Optimizing clone Performance at scale in OpenShift Data Foundation
9.3.3.3.2. Cloning a PVC to a data volume
9.3.3.3.3. Creating a VM from a cloned PVC by using a data volume template

CHAPTER 10. MANAGING VMS
10.1. LISTING VIRTUAL MACHINES

10.1.1. Listing virtual machines by using the CLI
10.1.2. Listing virtual machines by using the web console
10.1.3. Organizing virtual machines by using the web console

10.2. INSTALLING THE QEMU GUEST AGENT AND VIRTIO DRIVERS
10.2.1. Installing the QEMU guest agent

10.2.1.1. Installing the QEMU guest agent on a Linux VM
10.2.1.2. Installing the QEMU guest agent on a Windows VM

10.2.2. Installing VirtIO drivers on Windows VMs
10.2.2.1. Attaching VirtIO container disk to Windows VMs during installation
10.2.2.2. Attaching VirtIO container disk to an existing Windows VM
10.2.2.3. Installing VirtIO drivers during Windows installation
10.2.2.4. Installing VirtIO drivers from a SATA CD drive on an existing Windows VM
10.2.2.5. Installing VirtIO drivers from a container disk added as a SATA CD drive

10.2.3. Updating VirtIO drivers
10.2.3.1. Updating VirtIO drivers on a Windows VM

10.3. CONNECTING TO VIRTUAL MACHINE CONSOLES
10.3.1. Connecting to the VNC console

10.3.1.1. Connecting to the VNC console by using the web console
10.3.1.2. Connecting to the VNC console by using virtctl
10.3.1.3. Generating a temporary token for the VNC console

10.3.1.3.1. Granting token generation permission for the VNC console by using the cluster role
10.3.2. Connecting to the serial console

10.3.2.1. Connecting to the serial console by using the web console
10.3.2.2. Connecting to the serial console by using virtctl

10.3.3. Connecting to the desktop viewer
10.3.3.1. Connecting to the desktop viewer by using the web console

10.4. CONFIGURING SSH ACCESS TO VIRTUAL MACHINES
10.4.1. Access configuration considerations
10.4.2. Using virtctl ssh

10.4.2.1. About static and dynamic SSH key management
Static SSH key management
Dynamic SSH key management

10.4.2.2. Static key management
10.4.2.2.1. Adding a key when creating a VM from a template
10.4.2.2.2. Creating a VM from an instance type by using the web console
10.4.2.2.3. Adding a key when creating a VM by using the CLI

10.4.2.3. Dynamic key management
10.4.2.3.1. Enabling dynamic key injection when creating a VM from a template
10.4.2.3.2. Creating a VM from an instance type by using the web console
10.4.2.3.3. Enabling dynamic SSH key injection by using the web console
10.4.2.3.4. Enabling dynamic key injection by using the CLI

10.4.2.4. Using the virtctl ssh command
10.4.3. Using the virtctl port-forward command
10.4.4. Using a service for SSH access

160
160
161
161

162
163

165
165
165
165
165
166
166
166
167
167
168
168
169
169
170
171
171
172
172
172
172
173
174
175
175
175
176
176
177
177
178
178
179
179
179
180
181

183
185
185
186
188
189
191

192
192

OpenShift Container Platform 4.20 Virtualization

6

10.4.4.1. About services
10.4.4.2. Creating a service

10.4.4.2.1. Enabling load balancer service creation by using the web console
10.4.4.2.2. Creating a service by using the web console
10.4.4.2.3. Creating a service by using virtctl
10.4.4.2.4. Creating a service by using the CLI

10.4.4.3. Connecting to a VM exposed by a service by using SSH
10.4.5. Using a secondary network for SSH access

10.4.5.1. Configuring a VM network interface by using the web console
10.4.5.2. Connecting to a VM attached to a secondary network by using SSH

10.5. EDITING VIRTUAL MACHINES
10.5.1. Changing the instance type of a VM by using the web console
10.5.2. Hot plugging memory on a virtual machine
10.5.3. Hot plugging CPUs on a virtual machine
10.5.4. Editing a virtual machine by using the CLI
10.5.5. Adding a disk to a virtual machine

10.5.5.1. Storage fields
Advanced storage settings

10.5.6. Mounting a Windows driver disk on a virtual machine
10.5.7. Adding a secret, config map, or service account to a virtual machine
10.5.8. Updating multiple virtual machines

10.5.8.1. Performing bulk actions on virtual machines
10.5.9. Configuring multiple IOThreads for fast storage access

Additional resources for config maps, secrets, and service accounts
10.6. EDITING BOOT ORDER

10.6.1. Adding items to a boot order list in the web console
10.6.2. Editing a boot order list in the web console
10.6.3. Editing a boot order list in the YAML configuration file
10.6.4. Removing items from a boot order list in the web console

10.7. DELETING VIRTUAL MACHINES
10.7.1. Deleting a virtual machine using the web console
10.7.2. Deleting a virtual machine by using the CLI

10.8. ENABLING OR DISABLING VIRTUAL MACHINE DELETE PROTECTION
10.8.1. Enabling or disabling virtual machine delete protection by using the web console
10.8.2. Enabling or disabling VM delete protection by using the CLI
10.8.3. Removing the VM delete protection option
10.8.4. Additional resources

10.9. EXPORTING VIRTUAL MACHINES
10.9.1. Creating a VirtualMachineExport custom resource
10.9.2. Accessing exported virtual machine manifests

10.10. MANAGING VIRTUAL MACHINE INSTANCES
10.10.1. About virtual machine instances
10.10.2. Listing all virtual machine instances using the CLI
10.10.3. Listing standalone virtual machine instances using the web console
10.10.4. Searching for standalone virtual machine instances by using the web console
10.10.5. Editing a standalone virtual machine instance using the web console
10.10.6. Deleting a standalone virtual machine instance using the CLI
10.10.7. Deleting a standalone virtual machine instance using the web console

10.11. CONTROLLING VIRTUAL MACHINE STATES
10.11.1. Enabling confirmations of virtual machine actions
10.11.2. Starting a virtual machine
10.11.3. Stopping a virtual machine
10.11.4. Restarting a virtual machine

193
193
193
194
194
195
196
197
197
197
198
198
199

200
200
201
201

202
203
203
204
205
206
206
207
207
207
208
209
209
209
210
210
211
211
212
213
213
213
216
218
219
219
219

220
220
221
221
221
221
222
222
223

Table of Contents

7

10.11.5. Pausing a virtual machine
10.11.6. Unpausing a virtual machine
10.11.7. Controlling the state of multiple virtual machines

10.12. USING VIRTUAL TRUSTED PLATFORM MODULE DEVICES
10.12.1. About vTPM devices
10.12.2. Adding a vTPM device to a virtual machine

10.13. MANAGING VIRTUAL MACHINES WITH OPENSHIFT PIPELINES
10.13.1. Prerequisites
10.13.2. Supported virtual machine tasks
10.13.3. Windows EFI installer pipeline

10.13.3.1. Running the example pipelines using the web console
10.13.3.2. Running the example pipelines using the CLI

10.13.4. Removing deprecated or unused resources
10.13.5. Additional resources

10.14. MIGRATING VMS IN A SINGLE CLUSTER TO A DIFFERENT STORAGE CLASS
10.14.1. Migrating VMs in a single cluster to a different storage class by using the web console

10.15. ADVANCED VIRTUAL MACHINE MANAGEMENT
10.15.1. Working with resource quotas for virtual machines

10.15.1.1. Setting resource quota limits for virtual machines
10.15.1.2. Additional resources

10.15.2. Configuring the Application-Aware Quota (AAQ) Operator
10.15.2.1. About the AAQ Operator

10.15.2.1.1. AAQ Operator controller and custom resources
10.15.2.2. Enabling the AAQ Operator
10.15.2.3. Configuring the AAQ Operator by using the CLI
10.15.2.4. Additional resources

10.15.3. Specifying nodes for virtual machines
10.15.3.1. About node placement for virtual machines
10.15.3.2. Node placement examples

10.15.3.2.1. Example: VM node placement with nodeSelector
10.15.3.2.2. Example: VM node placement with pod affinity and pod anti-affinity
10.15.3.2.3. Example: VM node placement with node affinity
10.15.3.2.4. Example: VM node placement with tolerations

10.15.3.3. Additional resources
10.15.4. Configuring the default CPU model

10.15.4.1. Configuring the default CPU model
10.15.5. Using UEFI mode for virtual machines

10.15.5.1. About UEFI mode for virtual machines
10.15.5.2. Booting virtual machines in UEFI mode
10.15.5.3. Enabling persistent EFI
10.15.5.4. Configuring VMs with persistent EFI

10.15.6. Configuring PXE booting for virtual machines
10.15.6.1. PXE booting with a specified MAC address
10.15.6.2. OpenShift Virtualization networking glossary

10.15.7. Using huge pages with virtual machines
10.15.7.1. What huge pages do
10.15.7.2. Configuring huge pages for virtual machines

10.15.8. Enabling dedicated resources for virtual machines
10.15.8.1. About dedicated resources
10.15.8.2. Enabling dedicated resources for a virtual machine

10.15.9. Scheduling virtual machines
10.15.9.1. Policy attributes
10.15.9.2. Setting a policy attribute and CPU feature

224
224
225
225
226
227
227
228
228
229
229
229
230
231
231
231

232
232
232
233
233
233
233
235
235
236
236
236
237
237
238
239
240
240
240
241
241
241
242
243
243
243
244
246
247
247
247
248
248
249
249
249
250

OpenShift Container Platform 4.20 Virtualization

8

10.15.9.3. Scheduling virtual machines with the supported CPU model
10.15.9.4. Scheduling virtual machines with the host model
10.15.9.5. Scheduling virtual machines with a custom scheduler

10.15.10. Configuring PCI passthrough
10.15.10.1. Preparing nodes for GPU passthrough

10.15.10.1.1. Preventing NVIDIA GPU operands from deploying on nodes
10.15.10.2. Preparing host devices for PCI passthrough

10.15.10.2.1. About preparing a host device for PCI passthrough
10.15.10.2.2. Adding kernel arguments to enable the IOMMU driver
10.15.10.2.3. Binding PCI devices to the VFIO driver
10.15.10.2.4. Exposing PCI host devices in the cluster using the CLI
10.15.10.2.5. Removing PCI host devices from the cluster using the CLI

10.15.10.3. Configuring virtual machines for PCI passthrough
10.15.10.3.1. Assigning a PCI device to a virtual machine

10.15.10.4. Additional resources
10.15.11. Configuring virtual GPUs

10.15.11.1. About using virtual GPUs with OpenShift Virtualization
10.15.11.2. Preparing hosts for mediated devices

10.15.11.2.1. Adding kernel arguments to enable the IOMMU driver
10.15.11.3. Configuring the NVIDIA GPU Operator

10.15.11.3.1. About using the NVIDIA GPU Operator
10.15.11.3.2. Options for configuring mediated devices

10.15.11.4. How vGPUs are assigned to nodes
10.15.11.5. Managing mediated devices

10.15.11.5.1. Creating and exposing mediated devices
10.15.11.5.2. About changing and removing mediated devices
10.15.11.5.3. Removing mediated devices from the cluster

10.15.11.6. Using mediated devices
10.15.11.6.1. Assigning a vGPU to a VM by using the CLI
10.15.11.6.2. Assigning a vGPU to a VM by using the web console

10.15.11.7. Additional resources
10.15.12. Configuring USB host passthrough

10.15.12.1. Enabling USB host passthrough
10.15.12.2. Connecting a USB device to a virtual machine

10.15.13. Enabling descheduler evictions on virtual machines
10.15.13.1. Descheduler profiles
10.15.13.2. Installing the descheduler
10.15.13.3. Configuring descheduler evictions for virtual machines
10.15.13.4. Additional resources

10.15.14. About high availability for virtual machines
10.15.15. Virtual machine control plane tuning

10.15.15.1. Configuring a highBurst profile
10.15.16. Assigning compute resources

10.15.16.1. Overcommitting CPU resources
10.15.16.2. Setting the CPU allocation ratio
10.15.16.3. Additional resources

10.15.17. About multi-queue functionality
10.15.17.1. Known limitations
10.15.17.2. Enabling multi-queue functionality

10.15.18. Managing virtual machines by using OpenShift GitOps
10.15.19. Working with NUMA topology for virtual machines

10.15.19.1. Using NUMA topology with OpenShift Virtualization
10.15.19.2. Prerequisites

250
251
251

252
253
253
254
254
254
256
258
259
261
261
262
262
262
262
262
264
264
264
266
267
267
270
270
271
271

272
272
272
273
275
276
276
278
279
280
281
281
281
282
282
282
283
283
283
283
284
284
285
285

Table of Contents

9

. .

10.15.19.3. Creating a VM with NUMA functionality enabled
10.15.19.4. Verifying vNUMA status of a VM
10.15.19.5. Disabling the hot plug capability for VMs

10.15.19.5.1. Disabling the CPU hot plug by instance type
10.15.19.5.2. Adjusting or disabling the CPU hot plug by VM
10.15.19.5.3. Disabling hot plugging for all VMs on a cluster

10.15.19.6. Limitations of NUMA for OpenShift Virtualization
10.15.19.7. Live migration outcomes using vNUMA
10.15.19.8. Additional resources

10.16. VM DISKS
10.16.1. Hot-plugging VM disks

10.16.1.1. Hot plugging and hot unplugging a disk by using the web console
10.16.1.2. Hot plugging and hot unplugging a disk by using the CLI

10.16.2. Expanding virtual machine disks
10.16.2.1. Increasing a VM disk size by expanding the PVC of the disk

10.16.2.1.1. Expanding a VM disk PVC in the web console
10.16.2.1.2. Expanding a VM disk PVC by editing its manifest

10.16.2.2. Expanding available virtual storage by adding blank data volumes
10.16.3. Configuring shared volumes for virtual machines

10.16.3.1. Configuring disk sharing by using virtual machine disks
10.16.3.2. Configuring disk sharing by using LUN

10.16.3.2.1. Configuring disk sharing by using LUN and the web console
10.16.3.2.2. Configuring disk sharing by using LUN and the CLI

10.16.3.3. Enabling the PersistentReservation feature gate
10.16.3.3.1. Enabling the PersistentReservation feature gate by using the web console
10.16.3.3.2. Enabling the PersistentReservation feature gate by using the CLI

10.16.4. Migrating VM disks to a different storage class
10.16.4.1. Migrating VM disks to a different storage class by using the web console

CHAPTER 11. NETWORKING
11.1. NETWORKING OVERVIEW

11.1.1. OpenShift Virtualization networking glossary
11.1.2. Using the default pod network
11.1.3. Configuring a primary user-defined network
11.1.4. Configuring VM secondary network interfaces

11.1.4.1. Comparing Linux bridge CNI and OVN-Kubernetes localnet topology
11.1.5. Integrating with OpenShift Service Mesh
11.1.6. Managing MAC address pools
11.1.7. Configuring SSH access

11.2. CONNECTING A VIRTUAL MACHINE TO THE DEFAULT POD NETWORK
11.2.1. Configuring masquerade mode from the CLI
11.2.2. Configuring masquerade mode with dual-stack (IPv4 and IPv6)
11.2.3. About jumbo frames support
11.2.4. Additional resources

11.3. CONNECTING A VIRTUAL MACHINE TO A PRIMARY USER-DEFINED NETWORK
11.3.1. Creating a primary user-defined network by using the web console

11.3.1.1. Creating a namespace for user-defined networks by using the web console
11.3.1.2. Creating a primary namespace-scoped user-defined network by using the web console
11.3.1.3. Creating a primary cluster-scoped user-defined network by using the web console

11.3.2. Creating a primary user-defined network by using the CLI
11.3.2.1. Creating a namespace for user-defined networks by using the CLI
11.3.2.2. Creating a primary namespace-scoped user-defined network by using the CLI
11.3.2.3. Creating a primary cluster-scoped user-defined network by using the CLI

285
286
286
286
288
289
290
291
292
292
292
293
293
294
294
294
295
296
296
297
298
299
300
301
301
301
302
302

304
304
305
306
306
306
308
309
309
309
309
309

311
312
312
313
313
313
314
314
315
315
316
317

OpenShift Container Platform 4.20 Virtualization

10

11.3.3. Attaching a virtual machine to the primary user-defined network
11.3.3.1. Attaching a virtual machine to the primary user-defined network by using the web console
11.3.3.2. Attaching a virtual machine to the primary user-defined network by using the CLI

11.3.4. Additional resources
11.4. CONNECTING A VIRTUAL MACHINE TO A SECONDARY LOCALNET USER-DEFINED NETWORK

11.4.1. Creating a user-defined-network for localnet topology by using the CLI
11.4.2. Creating a namespace for secondary user-defined networks by using the CLI
11.4.3. Attaching a virtual machine to secondary user-defined networks by using the CLI
11.4.4. Additional resources

11.5. EXPOSING A VIRTUAL MACHINE BY USING A SERVICE
11.5.1. About services
11.5.2. Dual-stack support
11.5.3. Creating a service by using the CLI
11.5.4. Additional resources

11.6. ACCESSING A VIRTUAL MACHINE BY USING ITS INTERNAL FQDN
11.6.1. Creating a headless service in a project by using the CLI
11.6.2. Mapping a virtual machine to a headless service by using the CLI
11.6.3. Connecting to a virtual machine by using its internal FQDN
11.6.4. Additional resources

11.7. CONNECTING A VIRTUAL MACHINE TO A LINUX BRIDGE NETWORK
11.7.1. Creating a Linux bridge NNCP
11.7.2. Creating a Linux bridge NAD

11.7.2.1. Creating a Linux bridge NAD by using the web console
11.7.2.2. Creating a Linux bridge NAD by using the CLI
11.7.2.3. Enabling port isolation for a Linux bridge NAD

11.7.3. Configuring a VM network interface
11.7.3.1. Configuring a VM network interface by using the web console

Networking fields
11.7.3.2. Configuring a VM network interface by using the CLI

11.8. CONNECTING A VIRTUAL MACHINE TO AN SR-IOV NETWORK
11.8.1. Configuring SR-IOV network devices
11.8.2. Configuring SR-IOV additional network
11.8.3. Connecting a virtual machine to an SR-IOV network by using the CLI
11.8.4. Connecting a VM to an SR-IOV network by using the web console
11.8.5. Additional resources

11.9. USING DPDK WITH SR-IOV
11.9.1. Configuring a cluster for DPDK workloads

11.9.1.1. Removing a custom machine config pool for high-availability clusters
11.9.2. Configuring a project for DPDK workloads
11.9.3. Configuring a virtual machine for DPDK workloads

11.10. CONNECTING A VIRTUAL MACHINE TO AN OVN-KUBERNETES LAYER 2 SECONDARY NETWORK
11.10.1. Creating an OVN-Kubernetes layer 2 NAD

11.10.1.1. Creating a NAD for layer 2 topology by using the CLI
11.10.1.2. Creating a NAD for layer 2 topology by using the web console

11.10.2. Attaching a virtual machine to the OVN-Kubernetes layer 2 secondary network
11.10.2.1. Attaching a virtual machine to an OVN-Kubernetes secondary network using the CLI

11.10.3. Additional resources
11.11. HOT PLUGGING SECONDARY NETWORK INTERFACES

11.11.1. VirtIO limitations
11.11.2. Hot plugging a secondary network interface by using the CLI
11.11.3. Hot unplugging a secondary network interface by using the CLI
11.11.4. Additional resources

11.12. MANAGING THE LINK STATE OF A VIRTUAL MACHINE INTERFACE

318
318
319
321
321
321

324
324
325
326
326
326
327
328
328
329
330
330
331
331
332
333
333
334
336
337
337
338
338
339
339
342
344
345
345
345
345
348
349
350
352
352
353
354
354
354
355
356
356
356
358
359
360

Table of Contents

11

. .

11.12.1. Setting the VM interface link state by using the web console
11.12.2. Setting the VM interface link state by using the CLI

11.13. CONNECTING A VIRTUAL MACHINE TO A SERVICE MESH
11.13.1. Adding a virtual machine to a service mesh
11.13.2. Additional resources

11.14. CONFIGURING A DEDICATED NETWORK FOR LIVE MIGRATION
11.14.1. Configuring a dedicated secondary network for live migration
11.14.2. Selecting a dedicated network by using the web console
11.14.3. Additional resources

11.15. CONFIGURING AND VIEWING IP ADDRESSES
11.15.1. Configuring IP addresses for virtual machines

11.15.1.1. Configuring an IP address when creating a virtual machine by using the CLI
11.15.2. Viewing IP addresses of virtual machines

11.15.2.1. Viewing the IP address of a virtual machine by using the web console
11.15.2.2. Viewing the IP address of a virtual machine by using the CLI

11.15.3. Additional resources
11.16. ACCESSING A VIRTUAL MACHINE BY USING ITS EXTERNAL FQDN

11.16.1. Configuring a DNS server for secondary networks
11.16.2. Connecting to a VM on a secondary network by using the cluster FQDN
11.16.3. Additional resources

11.17. MANAGING MAC ADDRESS POOLS FOR NETWORK INTERFACES
11.17.1. Managing KubeMacPool by using the CLI

CHAPTER 12. STORAGE
12.1. STORAGE CONFIGURATION OVERVIEW

12.1.1. Storage
12.1.2. Containerized Data Importer
12.1.3. Data volumes
12.1.4. Boot source updates

12.2. CONFIGURING STORAGE PROFILES
12.2.1. Customizing the storage profile

12.2.1.1. Specifying a volume snapshot class by using the web console
12.2.1.2. Specifying a volume snapshot class by using the CLI
12.2.1.3. Viewing automatically created storage profiles
12.2.1.4. Setting a default cloning strategy by using a storage profile

12.3. MANAGING AUTOMATIC BOOT SOURCE UPDATES
12.3.1. Managing Red Hat boot source updates

12.3.1.1. Managing automatic updates for all system-defined boot sources
12.3.2. Managing custom boot source updates

12.3.2.1. Configuring the default and virt-default storage classes
12.3.2.2. Configuring a storage class for boot source images
12.3.2.3. Enabling automatic updates for custom boot sources
12.3.2.4. Enabling volume snapshot boot sources

12.3.3. Disabling automatic updates for a single boot source
12.3.4. Verifying the status of a boot source

12.4. RESERVING PVC SPACE FOR FILE SYSTEM OVERHEAD
12.4.1. Overriding the default file system overhead value

12.5. CONFIGURING LOCAL STORAGE BY USING THE HOSTPATH PROVISIONER
12.5.1. Creating a hostpath provisioner with a basic storage pool

12.5.1.1. About creating storage classes
12.5.1.2. Creating a storage class for the CSI driver with the storagePools stanza

12.5.2. About storage pools created with PVC templates
12.5.2.1. Creating a storage pool with a PVC template

360
361

362
362
364
364
364
366
366
366
366
367
368
368
368
369
369
370
371
372
373
373

374
374
374
374
374
375
375
375
376
377
377
379
380
380
380
381
381
382
384
385
386
387
388
389
390
390
391
391

392
393

OpenShift Container Platform 4.20 Virtualization

12

. .

. .

12.6. ENABLING USER PERMISSIONS TO CLONE DATA VOLUMES ACROSS NAMESPACES
12.6.1. Creating RBAC resources for cloning data volumes

12.7. CONFIGURING CDI TO OVERRIDE CPU AND MEMORY QUOTAS
12.7.1. About CPU and memory quotas in a namespace
12.7.2. Overriding CPU and memory defaults
12.7.3. Additional resources

12.8. PREPARING CDI SCRATCH SPACE
12.8.1. About scratch space

Manual provisioning
12.8.2. CDI operations that require scratch space
12.8.3. Defining a storage class
12.8.4. CDI supported operations matrix
12.8.5. Additional resources

12.9. USING PREALLOCATION FOR DATA VOLUMES
12.9.1. About preallocation
12.9.2. Enabling preallocation for a data volume

12.10. MANAGING DATA VOLUME ANNOTATIONS
12.10.1. Example: Data volume annotations

12.11. UNDERSTANDING VIRTUAL MACHINE STORAGE WITH THE CSI PARADIGM
12.11.1. Virtual machine CSI storage overview

CHAPTER 13. LIVE MIGRATION
13.1. ABOUT LIVE MIGRATION

13.1.1. Live migration requirements
13.1.2. About live migration permissions
13.1.3. Preserving pre-4.19 live migration permissions during update
13.1.4. Granting live migration permissions
13.1.5. VM migration tuning
13.1.6. Common live migration tasks
13.1.7. Additional resources

13.2. CONFIGURING LIVE MIGRATION
13.2.1. Configuring live migration limits and timeouts
13.2.2. Configure live migration for heavy workloads
13.2.3. Additional resources
13.2.4. Live migration policies

13.2.4.1. Creating a live migration policy by using the CLI
13.2.5. Migrating a VM to a specific node
13.2.6. Additional resources

13.3. INITIATING AND CANCELING LIVE MIGRATION
13.3.1. Initiating live migration

13.3.1.1. Initiating live migration by using the web console
13.3.1.2. Initiating live migration by using the CLI

13.3.2. Canceling live migration
13.3.2.1. Canceling live migration by using the web console
13.3.2.2. Canceling live migration by using the CLI

13.3.3. Additional resources

CHAPTER 14. NODES
14.1. NODE MAINTENANCE

14.1.1. Eviction strategies
14.1.1.1. Configuring a VM eviction strategy using the CLI
14.1.1.2. Configuring a cluster eviction strategy by using the CLI

14.1.2. Run strategies

394
394
395
395
396
396
396
396
397
397
397
398
399
399
399
399
400
400
400
400

402
402
402
402
403
404
405
405
405
405
406
407
408
408
408
410
411
411
411
411

412
413
413
413
413

414
414
414
415
416
417

Table of Contents

13

. .

14.1.2.1. Run strategies
14.1.2.2. Configuring a VM run strategy by using the CLI

14.1.3. Maintaining bare metal nodes
14.1.4. Additional resources

14.2. MANAGING NODE LABELING FOR OBSOLETE CPU MODELS
14.2.1. About node labeling for obsolete CPU models
14.2.2. Configuring obsolete CPU models

14.3. PREVENTING NODE RECONCILIATION
14.3.1. Using skip-node annotation
14.3.2. Additional resources

14.4. DELETING A FAILED NODE TO TRIGGER VIRTUAL MACHINE FAILOVER
14.4.1. Prerequisites
14.4.2. Deleting nodes from a bare metal cluster
14.4.3. Verifying virtual machine failover

14.4.3.1. Listing all virtual machine instances using the CLI
14.5. ACTIVATING KERNEL SAMEPAGE MERGING (KSM)

14.5.1. Prerequisites
14.5.2. About using OpenShift Virtualization to activate KSM

14.5.2.1. Configuration methods
CR configuration

14.5.2.2. KSM node labels
14.5.3. Configuring KSM activation by using the web console
14.5.4. Configuring KSM activation by using the CLI
14.5.5. Additional resources

CHAPTER 15. MONITORING
15.1. MONITORING OVERVIEW
15.2. OPENSHIFT VIRTUALIZATION CLUSTER CHECKUP FRAMEWORK

15.2.1. Running predefined latency checkups
15.2.1.1. Running a latency checkup by using the web console
15.2.1.2. Running a latency checkup by using the CLI

15.2.2. Running predefined storage checkups
15.2.2.1. Retaining resources for troubleshooting storage checkups
15.2.2.2. Running a storage checkup by using the web console
15.2.2.3. Running a storage checkup by using the CLI
15.2.2.4. Troubleshooting a failed storage checkup
15.2.2.5. Storage checkup error codes

15.2.3. Additional resources
15.3. PROMETHEUS QUERIES FOR VIRTUAL RESOURCES

15.3.1. Prerequisites
15.3.2. Querying metrics for all projects with the OpenShift Container Platform web console
15.3.3. Querying metrics for user-defined projects with the OpenShift Container Platform web console
15.3.4. Virtualization metrics

15.3.4.1. vCPU metrics
15.3.4.2. Network metrics
15.3.4.3. Storage metrics

15.3.4.3.1. Storage-related traffic
15.3.4.3.2. Storage snapshot data
15.3.4.3.3. I/O performance

15.3.4.4. Guest memory swapping metrics
15.3.4.5. Monitoring AAQ operator metrics
15.3.4.6. Live migration metrics

15.3.5. Additional resources

417
417
418
418
418
418
419
419
419

420
420
420
420
421
421
421
421
421
421
422
422
422
423
424

425
425
425
426
426
427
431
431

432
432
436
437
438
438
438
438
440
442
443
443
444
444
444
445
445
445
446
446

OpenShift Container Platform 4.20 Virtualization

14

15.4. EXPOSING CUSTOM METRICS FOR VIRTUAL MACHINES
15.4.1. Configuring the node exporter service
15.4.2. Configuring a virtual machine with the node exporter service
15.4.3. Creating a custom monitoring label for virtual machines

15.4.3.1. Querying the node-exporter service for metrics
15.4.4. Creating a ServiceMonitor resource for the node exporter service

15.4.4.1. Accessing the node exporter service outside the cluster
15.4.5. Additional resources

15.5. EXPOSING DOWNWARD METRICS FOR VIRTUAL MACHINES
15.5.1. Enabling or disabling the downwardMetrics feature gate

15.5.1.1. Enabling or disabling the downward metrics feature gate in a YAML file
15.5.1.2. Enabling or disabling the downward metrics feature gate from the CLI

15.5.2. Configuring a downward metrics device
15.5.3. Viewing downward metrics

15.5.3.1. Viewing downward metrics by using the CLI
15.5.3.2. Viewing downward metrics by using the vm-dump-metrics tool

15.6. VIRTUAL MACHINE HEALTH CHECKS
15.6.1. About readiness and liveness probes

15.6.1.1. Defining an HTTP readiness probe
15.6.1.2. Defining a TCP readiness probe
15.6.1.3. Defining an HTTP liveness probe

15.6.2. Defining a watchdog
15.6.2.1. Configuring a watchdog device for the virtual machine
15.6.2.2. Installing the watchdog agent on the guest

15.6.3. Defining a guest agent ping probe
15.6.4. Additional resources

15.7. OPENSHIFT VIRTUALIZATION RUNBOOKS
15.7.1. CDIDataImportCronOutdated
15.7.2. CDIDataVolumeUnusualRestartCount
15.7.3. CDIDefaultStorageClassDegraded
15.7.4. CDIMultipleDefaultVirtStorageClasses
15.7.5. CDINoDefaultStorageClass
15.7.6. CDINotReady
15.7.7. CDIOperatorDown
15.7.8. CDIStorageProfilesIncomplete
15.7.9. CnaoDown
15.7.10. CnaoNMstateMigration
15.7.11. HAControlPlaneDown
15.7.12. HCOInstallationIncomplete
15.7.13. HCOMisconfiguredDescheduler
15.7.14. HPPNotReady
15.7.15. HPPOperatorDown
15.7.16. HPPSharingPoolPathWithOS
15.7.17. HighCPUWorkload
15.7.18. KubemacpoolDown
15.7.19. KubeMacPoolDuplicateMacsFound
15.7.20. KubeVirtComponentExceedsRequestedCPU
15.7.21. KubeVirtComponentExceedsRequestedMemory
15.7.22. KubeVirtCRModified
15.7.23. KubeVirtDeprecatedAPIRequested
15.7.24. KubeVirtNoAvailableNodesToRunVMs
15.7.25. KubevirtVmHighMemoryUsage
15.7.26. KubeVirtVMIExcessiveMigrations

446
447
448
449
449
451
452
452
453
453
453
454
455
456
456
456
457
457
458
459
460
461
461

463
463
465
465
465
465
465
465
465
465
465
465
465
466
466
466
466
466
466
466
466
466
466
466
466
466
467
467
467
467

Table of Contents

15

. .

15.7.27. LowKVMNodesCount
15.7.28. LowReadyVirtControllersCount
15.7.29. LowReadyVirtOperatorsCount
15.7.30. LowVirtAPICount
15.7.31. LowVirtControllersCount
15.7.32. LowVirtOperatorCount
15.7.33. NetworkAddonsConfigNotReady
15.7.34. NoLeadingVirtOperator
15.7.35. NoReadyVirtController
15.7.36. NoReadyVirtOperator
15.7.37. NodeNetworkInterfaceDown
15.7.38. OperatorConditionsUnhealthy
15.7.39. OrphanedVirtualMachineInstances
15.7.40. OutdatedVirtualMachineInstanceWorkloads
15.7.41. SingleStackIPv6Unsupported
15.7.42. SSPCommonTemplatesModificationReverted
15.7.43. SSPDown
15.7.44. SSPFailingToReconcile
15.7.45. SSPHighRateRejectedVms
15.7.46. SSPOperatorDown
15.7.47. SSPTemplateValidatorDown
15.7.48. UnsupportedHCOModification
15.7.49. VirtAPIDown
15.7.50. VirtApiRESTErrorsBurst
15.7.51. VirtApiRESTErrorsHigh
15.7.52. VirtControllerDown
15.7.53. VirtControllerRESTErrorsBurst
15.7.54. VirtControllerRESTErrorsHigh
15.7.55. VirtHandlerDaemonSetRolloutFailing
15.7.56. VirtHandlerRESTErrorsBurst
15.7.57. VirtHandlerRESTErrorsHigh
15.7.58. VirtOperatorDown
15.7.59. VirtOperatorRESTErrorsBurst
15.7.60. VirtOperatorRESTErrorsHigh
15.7.61. VirtualMachineCRCErrors
15.7.62. VMCannotBeEvicted
15.7.63. VMStorageClassWarning

CHAPTER 16. SUPPORT
16.1. SUPPORT OVERVIEW

16.1.1. Opening support tickets
16.1.1.1. Submitting a support case

16.1.1.1.1. Collecting data for Red Hat Support
16.1.1.2. Creating a Jira issue

16.1.2. Web console monitoring
16.2. COLLECTING DATA FOR RED HAT SUPPORT

16.2.1. Collecting data about your environment
16.2.2. Collecting data about virtual machines
16.2.3. Using the must-gather tool for OpenShift Virtualization

16.2.3.1. must-gather tool options
16.2.3.1.1. Parameters
16.2.3.1.2. Usage and examples

16.2.4. Generating a VM memory dump

467
467
467
467
467
467
467
467
467
468
468
468
468
468
468
468
468
468
468
468
468
468
469
469
469
469
469
469
469
469
469
469
469
469
469
470
470

471
471
471
471
471
471
471
472
472
473
473
474
474
475
476

OpenShift Container Platform 4.20 Virtualization

16

. .

16.2.5. Additional resources
16.3. TROUBLESHOOTING

16.3.1. Events
16.3.2. Pod logs

16.3.2.1. Configuring OpenShift Virtualization pod log verbosity
16.3.2.2. Viewing virt-launcher pod logs with the web console
16.3.2.3. Viewing OpenShift Virtualization pod logs with the CLI

16.3.3. Guest system logs
16.3.3.1. Enabling default access to VM guest system logs with the web console
16.3.3.2. Enabling default access to VM guest system logs with the CLI
16.3.3.3. Setting guest system log access for a single VM with the web console
16.3.3.4. Setting guest system log access for a single VM with the CLI
16.3.3.5. Viewing guest system logs with the web console
16.3.3.6. Viewing guest system logs with the CLI

16.3.4. Log aggregation
16.3.4.1. Viewing aggregated OpenShift Virtualization logs with the LokiStack
16.3.4.2. OpenShift Virtualization LogQL queries

16.3.5. Common error messages
16.3.6. Troubleshooting data volumes

16.3.6.1. About data volume conditions and events
16.3.6.2. Analyzing data volume conditions and events

CHAPTER 17. BACKUP AND RESTORE
17.1. BACKUP AND RESTORE BY USING VM SNAPSHOTS

17.1.1. About snapshots
17.1.2. About application-consistent snapshots and backups
17.1.3. Creating snapshots

17.1.3.1. Creating a snapshot by using the web console
17.1.3.2. Creating a snapshot by using the CLI

17.1.4. Verifying online snapshots by using snapshot indications
17.1.5. Restoring virtual machines from snapshots

17.1.5.1. Restoring a VM from a snapshot by using the web console
17.1.5.2. Restoring a VM from a snapshot by using the CLI

17.1.6. Deleting snapshots
17.1.6.1. Deleting a snapshot by using the web console
17.1.6.2. Deleting a virtual machine snapshot in the CLI

17.1.7. Additional resources
17.2. BACKING UP AND RESTORING VIRTUAL MACHINES

17.2.1. Installing and configuring OADP with OpenShift Virtualization
17.2.2. Installing the Data Protection Application

17.3. DISASTER RECOVERY
17.3.1. About disaster recovery methods

17.3.1.1. Metro-DR
17.3.1.2. Regional-DR

17.3.2. Defining applications for disaster recovery
17.3.2.1. Best practices when defining an RHACM-managed VM
17.3.2.2. Best practices when defining an RHACM-discovered VM

17.3.3. VM behavior during disaster recovery scenarios
Relocate
Failover

17.3.4. Disaster recovery solutions for Red Hat managed clusters
17.3.4.1. Metro-DR for Red Hat OpenShift Data Foundation
17.3.4.2. Regional-DR for Red Hat OpenShift Data Foundation

477
477
477
478
478
479
479
480
480
481
481

482
482
483
483
483
483
485
486
486
486

489
489
489
490
490
491
491

494
495
495
496
498
498
498
499
499
499
500
503
503
503
504
504
504
504
505
505
505
505
505
506

Table of Contents

17

17.3.5. Additional resources 506

OpenShift Container Platform 4.20 Virtualization

18

Table of Contents

19

CHAPTER 1. ABOUT

1.1. ABOUT OPENSHIFT VIRTUALIZATION

Learn about OpenShift Virtualization’s capabilities and support scope.

1.1.1. What you can do with OpenShift Virtualization

OpenShift Virtualization provides the scalable, enterprise-grade virtualization functionality in Red Hat
OpenShift. You can use it to manage virtual machines (VMs) exclusively or alongside container
workloads.

NOTE

If you have a Red Hat OpenShift Virtualization Engine subscription, you can run unlimited
VMs on subscribed hosts, but you cannot run application instances in containers. For
more information, see the subscription guide section about Red Hat OpenShift
Virtualization Engine and related products.

OpenShift Virtualization adds new objects into your OpenShift Container Platform cluster by using
Kubernetes custom resources to enable virtualization tasks. These tasks include:

Creating and managing Linux and Windows VMs

Running pod and VM workloads alongside each other in a cluster

Connecting to VMs through a variety of consoles and CLI tools

Importing and cloning existing VMs

Managing network interface controllers and storage disks attached to VMs

Live migrating VMs between nodes

You can manage your cluster and virtualization resources by using the Virtualization perspective of the
OpenShift Container Platform web console, and by using the OpenShift CLI (oc).

OpenShift Virtualization is designed and tested to work well with Red Hat OpenShift Data Foundation
features.

IMPORTANT

When you deploy OpenShift Virtualization with OpenShift Data Foundation, you must
create a dedicated storage class for Windows virtual machine disks. See Optimizing ODF
PersistentVolumes for Windows VMs for details.

You can use OpenShift Virtualization with OVN-Kubernetes or one of the other certified network
plugins listed in Certified OpenShift CNI Plug-ins .

You can check your OpenShift Virtualization cluster for compliance issues by installing the Compliance
Operator and running a scan with the ocp4-moderate and ocp4-moderate-node profiles. The
Compliance Operator uses OpenSCAP, a NIST-certified tool, to scan and enforce security policies.

For information about partnering with Independent Software Vendors (ISVs) and Services partners for

OpenShift Container Platform 4.20 Virtualization

20

https://www.redhat.com/en/resources/self-managed-openshift-subscription-guide#section-8
https://access.redhat.com/articles/6978371
https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/ovn-kubernetes_network_plugin/#about-ovn-kubernetes
https://access.redhat.com/articles/5436171
https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/security_and_compliance/#understanding-compliance
https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/security_and_compliance/#compliance-operator-supported-profiles
https://www.nist.gov/

For information about partnering with Independent Software Vendors (ISVs) and Services partners for
specialized storage, networking, backup, and additional functionality, see the Red Hat Ecosystem
Catalog.

1.1.2. Comparing OpenShift Virtualization to VMware vSphere

If you are familiar with VMware vSphere, the following table lists OpenShift Virtualization components
that you can use to accomplish similar tasks. However, because OpenShift Virtualization is conceptually
different from vSphere, and much of its functionality comes from the underlying OpenShift Container
Platform, OpenShift Virtualization does not have direct alternatives for all vSphere concepts or
components.

Table 1.1. Mapping of vSphere concepts to their closest OpenShift Virtualization counterparts

vSphere concept OpenShift Virtualization Explanation

Datastore Persistent volume (PV) +
Persistent volume claim
(PVC)

Stores VM disks. A PV represents existing
storage and is attached to a VM through a
PVC. When created with the
ReadWriteMany (RWX) access mode,
PVCs can be mounted by multiple VMs
simultaneously.

Dynamic Resource
Scheduling (DRS)

Pod eviction policy +
Descheduler

Provides active resource balancing. A
combination of pod eviction policies and a
descheduler allows VMs to be live migrated
to more appropriate nodes to keep node
resource utilization manageable.

NSX Multus +
OVN-Kubernetes +
Third-party container
network interface (CNI)
plug-ins

Provides an overlay network configuration.
There is no direct equivalent for NSX in
OpenShift Virtualization, but you can use the
OVN-Kubernetes network provider or install
certified third-party CNI plug-ins.

Storage Policy Based
Management (SPBM)

Storage class Provides policy-based storage selection.
Storage classes represent various storage
types and describe storage capabilities, such
as quality of service, backup policy, reclaim
policy, and whether volume expansion is
allowed. A PVC can request a specific
storage class to satisfy application
requirements.

vCenter
vRealize Operations

OpenShift Metrics and
Monitoring

Provides host and VM metrics. You can view
metrics and monitor the overall health of the
cluster and VMs by using the OpenShift
Container Platform web console.

CHAPTER 1. ABOUT

21

https://red.ht/workswithvirt

vMotion Live migration Moves a running VM to another node
without interruption. For live migration to be
available, the PVC attached to the VM must
have the ReadWriteMany (RWX) access
mode.

vSwitch
DvSwitch

NMState Operator +
Multus

Provides a physical network configuration.
You can use the NMState Operator to apply
state-driven network configuration and
manage various network interface types,
including Linux bridges and network bonds.
With Multus, you can attach multiple network
interfaces and connect VMs to external
networks.

vSphere concept OpenShift Virtualization Explanation

1.1.3. Supported cluster versions for OpenShift Virtualization

The latest stable release of OpenShift Virtualization 4.20 is 4.20.0.

OpenShift Virtualization 4.20 is supported for use on OpenShift Container Platform 4.20 clusters. To
use the latest z-stream release of OpenShift Virtualization, you must first upgrade to the latest version
of OpenShift Container Platform.

1.1.4. About volume and access modes for virtual machine disks

If you use the storage API with known storage providers, the volume and access modes are selected
automatically. However, if you use a storage class that does not have a storage profile, you must
configure the volume and access mode.

For a list of known storage providers for OpenShift Virtualization, see the Red Hat Ecosystem Catalog .

For best results, use the ReadWriteMany (RWX) access mode and the Block volume mode. This is
important for the following reasons:

ReadWriteMany (RWX) access mode is required for live migration.

The Block volume mode performs significantly better than the Filesystem volume mode. This
is because the Filesystem volume mode uses more storage layers, including a file system layer
and a disk image file. These layers are not necessary for VM disk storage.
For example, if you use Red Hat OpenShift Data Foundation, Ceph RBD volumes are preferable
to CephFS volumes.

IMPORTANT

OpenShift Container Platform 4.20 Virtualization

22

https://catalog.redhat.com/search?searchType=software&badges_and_features=OpenShift+Virtualization&subcategories=Storage

IMPORTANT

You cannot live migrate virtual machines with the following configurations:

Storage volume with ReadWriteOnce (RWO) access mode

Passthrough features such as GPUs

Set the evictionStrategy field to None for these virtual machines. The None strategy
powers down VMs during node reboots.

1.1.5. Single-node OpenShift differences

You can install OpenShift Virtualization on single-node OpenShift.

However, you should be aware that Single-node OpenShift does not support the following features:

High availability

Pod disruption

Live migration

Virtual machines or templates that have an eviction strategy configured

1.1.6. Additional resources

OpenShift Virtualization supported limits

Glossary of common terms for OpenShift Container Platform storage

About single-node OpenShift

Assisted installer

Pod disruption budgets

About live migration

Eviction strategies

Tuning & Scaling Guide in the Red Hat Knowledgebase

1.2. SUPPORTED LIMITS

You can refer to tested object maximums when planning your OpenShift Container Platform
environment for OpenShift Virtualization. However, approaching the maximum values can reduce
performance and increase latency. Ensure that you plan for your specific use case and consider all
factors that can impact cluster scaling.

For more information about cluster configuration and options that impact performance, see the
OpenShift Virtualization - Tuning & Scaling Guide in the Red Hat Knowledgebase.

1.2.1. Tested maximums for OpenShift Virtualization

The following limits apply to a large-scale OpenShift Virtualization 4.x environment. They are based on a

CHAPTER 1. ABOUT

23

https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/storage/#openshift-storage-common-terms_storage-overview
https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/installing_on_a_single_node/#install-sno-about-installing-on-a-single-node_install-sno-preparing
https://cloud.redhat.com/blog/using-the-openshift-assisted-installer-service-to-deploy-an-openshift-cluster-on-metal-and-vsphere
https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/nodes/#priority-preemption-other_nodes-pods-priority
https://access.redhat.com/articles/6994974
https://access.redhat.com/articles/6994974

The following limits apply to a large-scale OpenShift Virtualization 4.x environment. They are based on a
single cluster of the largest possible size. When you plan an environment, remember that multiple
smaller clusters might be the best option for your use case.

1.2.1.1. Virtual machine maximums

The following maximums apply to virtual machines (VMs) running on OpenShift Virtualization. These
values are subject to the limits specified in Virtualization limits for Red Hat Enterprise Linux with KVM .

Objective (per VM) Tested limit Theoretical limit

Virtual CPUs 216 vCPUs 255 vCPUs

Memory 6 TB 16 TB

Single disk size 20 TB 100 TB

Hot-pluggable disks 255 disks N/A

NOTE

Each VM must have at least 512 MB of memory.

1.2.1.2. Host maximums

The following maximums apply to the OpenShift Container Platform hosts used for OpenShift
Virtualization.

Objective (per host) Tested limit Theoretical limit

Logical CPU cores or threads Same as Red Hat Enterprise Linux
(RHEL)

N/A

RAM Same as RHEL N/A

Simultaneous live migrations Defaults to 2 outbound
migrations per node, and 5
concurrent migrations per cluster

Depends on NIC bandwidth

Live migration bandwidth No default limit Depends on NIC bandwidth

1.2.1.3. Cluster maximums

The following maximums apply to objects defined in OpenShift Virtualization.

Objective (per cluster) Tested limit Theoretical limit

Number of attached PVs per node N/A CSI storage provider dependent

OpenShift Container Platform 4.20 Virtualization

24

https://access.redhat.com/articles/rhel-kvm-limits

Maximum PV size N/A CSI storage provider dependent

Hosts 500 hosts (100 or fewer

recommended) [1]

Same as OpenShift Container
Platform

Defined VMs 10,000 VMs [2] Same as OpenShift Container
Platform

Objective (per cluster) Tested limit Theoretical limit

1. If you use more than 100 nodes, consider using Red Hat Advanced Cluster Management
(RHACM) to manage multiple clusters instead of scaling out a single control plane. Larger
clusters add complexity, require longer updates, and depending on node size and total object
density, they can increase control plane stress.
Using multiple clusters can be beneficial in areas like per-cluster isolation and high availability.

2. The maximum number of VMs per node depends on the host hardware and resource capacity. It
is also limited by the following parameters:

Settings that limit the number of pods that can be scheduled to a node. For example:
maxPods.

The default number of KVM devices. For example: devices.kubevirt.io/kvm: 1k.

1.2.2. Additional resources

OpenShift Virtualization - Tuning & Scaling Guide

Planning your environment according to object maximums

Managing the maximum number of pods per node

Red Hat Advanced Cluster Management documentation

1.3. SECURITY POLICIES

Learn about OpenShift Virtualization security and authorization.

Key points

OpenShift Virtualization adheres to the restricted Kubernetes pod security standards profile,
which aims to enforce the current best practices for pod security.

Virtual machine (VM) workloads run as unprivileged pods.

Security context constraints (SCCs) are defined for the kubevirt-controller service account.

TLS certificates for OpenShift Virtualization components are renewed and rotated
automatically.

1.3.1. About workload security

By default, virtual machine (VM) workloads do not run with root privileges in OpenShift Virtualization,

CHAPTER 1. ABOUT

25

https://access.redhat.com/articles/6994974
https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/scalability_and_performance/#planning-your-environment-according-to-object-maximums
https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/nodes/#nodes-nodes-managing-max-pods
https://docs.redhat.com/en/documentation/red_hat_advanced_cluster_management_for_kubernetes
https://kubernetes.io/docs/concepts/security/pod-security-standards/#restricted
https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/authentication_and_authorization/#security-context-constraints-about_configuring-internal-oauth

By default, virtual machine (VM) workloads do not run with root privileges in OpenShift Virtualization,
and there are no supported OpenShift Virtualization features that require root privileges.

For each VM, a virt-launcher pod runs an instance of libvirt in session mode to manage the VM process.
In session mode, the libvirt daemon runs as a non-root user account and only permits connections from
clients that are running under the same user identifier (UID). Therefore, VMs run as unprivileged pods,
adhering to the security principle of least privilege.

1.3.2. TLS certificates

TLS certificates for OpenShift Virtualization components are renewed and rotated automatically. You
are not required to refresh them manually.

Automatic renewal schedules

TLS certificates are automatically deleted and replaced according to the following schedule:

KubeVirt certificates are renewed daily.

Containerized Data Importer controller (CDI) certificates are renewed every 15 days.

MAC pool certificates are renewed every year.

Automatic TLS certificate rotation does not disrupt any operations. For example, the following
operations continue to function without any disruption:

Migrations

Image uploads

VNC and console connections

1.3.3. Authorization

OpenShift Virtualization uses role-based access control (RBAC) to define permissions for human users
and service accounts. The permissions defined for service accounts control the actions that OpenShift
Virtualization components can perform.

You can also use RBAC roles to manage user access to virtualization features. For example, an
administrator can create an RBAC role that provides the permissions required to launch a virtual
machine. The administrator can then restrict access by binding the role to specific users.

1.3.3.1. Default cluster roles for OpenShift Virtualization

By using cluster role aggregation, OpenShift Virtualization extends the default OpenShift Container
Platform cluster roles to include permissions for accessing virtualization objects. Roles unique to
OpenShift Virtualization are not aggregated with OpenShift Container Platform roles.

Table 1.2. OpenShift Virtualization cluster roles

Default cluster
role

OpenShift
Virtualization
cluster role

OpenShift Virtualization cluster role description

OpenShift Container Platform 4.20 Virtualization

26

https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/authentication_and_authorization/#using-rbac

view kubevirt.io:vi
ew

A user that can view all OpenShift Virtualization resources in the cluster
but cannot create, delete, modify, or access them. For example, the
user can see that a virtual machine (VM) is running but cannot shut it
down or gain access to its console.

edit kubevirt.io:e
dit

A user that can modify all OpenShift Virtualization resources in the
cluster. For example, the user can create VMs, access VM consoles, and
delete VMs.

admin kubevirt.io:a
dmin

A user that has full permissions to all OpenShift Virtualization
resources, including the ability to delete collections of resources. The
user can also view and modify the OpenShift Virtualization runtime
configuration, which is located in the HyperConverged custom
resource in the openshift-cnv namespace.

N/A kubevirt.io:m
igrate

A user that can create, delete, and update VM live migration requests,
which are represented by namespaced
VirtualMachineInstanceMigration (VMIM) objects. This role is
specific to OpenShift Virtualization.

Default cluster
role

OpenShift
Virtualization
cluster role

OpenShift Virtualization cluster role description

1.3.3.2. RBAC roles for storage features in OpenShift Virtualization

The following permissions are granted to the Containerized Data Importer (CDI), including the cdi-
operator and cdi-controller service accounts.

1.3.3.2.1. Cluster-wide RBAC roles

Table 1.3. Aggregated cluster roles for the cdi.kubevirt.io API group

CDI cluster role Resources Verbs

cdi.kubevirt.io:admin datavolumes, uploadtokenrequests * (all)

datavolumes/source create

cdi.kubevirt.io:edit datavolumes, uploadtokenrequests *

datavolumes/source create

cdi.kubevirt.io:view cdiconfigs, dataimportcrons, datasources,
datavolumes, objecttransfers, storageprofiles,
volumeimportsources,
volumeuploadsources, volumeclonesources

get, list, watch

datavolumes/source create

CHAPTER 1. ABOUT

27

cdi.kubevirt.io:confi
g-reader

cdiconfigs, storageprofiles get, list, watch

CDI cluster role Resources Verbs

Table 1.4. Cluster-wide roles for the cdi-operator service account

API group Resources Verbs

rbac.authorization.k8
s.io

clusterrolebindings,
clusterroles

get, list, watch, create, update, delete

security.openshift.io securitycontextcons
traints

get, list, watch, update, create

apiextensions.k8s.io customresourcedefi
nitions,
customresourcedefi
nitions/status

get, list, watch, create, update, delete

cdi.kubevirt.io * *

upload.cdi.kubevirt.i
o

* *

admissionregistratio
n.k8s.io

validatingwebhookc
onfigurations,
mutatingwebhookco
nfigurations

create, list, watch

admissionregistratio
n.k8s.io

validatingwebhookc
onfigurations

Allow list: cdi-api-
dataimportcron-
validate, cdi-api-
populator-validate,
cdi-api-datavolume-
validate, cdi-api-
validate,
objecttransfer-api-
validate

get, update, delete

OpenShift Container Platform 4.20 Virtualization

28

admissionregistratio
n.k8s.io

mutatingwebhookco
nfigurations

Allow list: cdi-api-
datavolume-mutate

get, update, delete

apiregistration.k8s.io apiservices get, list, watch, create, update, delete

API group Resources Verbs

Table 1.5. Cluster-wide roles for the cdi-controller service account

API group Resources Verbs

"" (core) events create, patch

"" (core) persistentvolumeclai
ms

get, list, watch, create, update, delete,
deletecollection, patch

"" (core) persistentvolumes get, list, watch, update

"" (core) persistentvolumeclai
ms/finalizers,
pods/finalizers

update

"" (core) pods, services get, list, watch, create, delete

"" (core) configmaps get, create

storage.k8s.io storageclasses,
csidrivers

get, list, watch

config.openshift.io proxies get, list, watch

cdi.kubevirt.io * *

snapshot.storage.k8
s.io

volumesnapshots,
volumesnapshotclas
ses,
volumesnapshotcon
tents

get, list, watch, create, delete

snapshot.storage.k8
s.io

volumesnapshots update, deletecollection

apiextensions.k8s.io customresourcedefi
nitions

get, list, watch

CHAPTER 1. ABOUT

29

scheduling.k8s.io priorityclasses get, list, watch

image.openshift.io imagestreams get, list, watch

"" (core) secrets create

kubevirt.io virtualmachines/final
izers

update

API group Resources Verbs

1.3.3.2.2. Namespaced RBAC roles

Table 1.6. Namespaced roles for the cdi-operator service account

API group Resources Verbs

rbac.authorization.k8
s.io

rolebindings, roles get, list, watch, create, update, delete

"" (core) serviceaccounts,
configmaps, events,
secrets, services

get, list, watch, create, update, patch, delete

apps deployments,
deployments/finalize
rs

get, list, watch, create, update, delete

route.openshift.io routes,
routes/custom-host

get, list, watch, create, update

config.openshift.io proxies get, list, watch

monitoring.coreos.c
om

servicemonitors,
prometheusrules

get, list, watch, create, delete, update, patch

coordination.k8s.io leases get, create, update

Table 1.7. Namespaced roles for the cdi-controller service account

API group Resources Verbs

"" (core) configmaps get, list, watch, create, update, delete

"" (core) secrets get, list, watch

OpenShift Container Platform 4.20 Virtualization

30

batch cronjobs get, list, watch, create, update, delete

batch jobs create, delete, list, watch

coordination.k8s.io leases get, create, update

networking.k8s.io ingresses get, list, watch

route.openshift.io routes get, list, watch

API group Resources Verbs

1.3.3.3. Additional SCCs and permissions for the kubevirt-controller service account

Security context constraints (SCCs) control permissions for pods. These permissions include actions
that a pod, a collection of containers, can perform and what resources it can access. You can use SCCs
to define a set of conditions that a pod must run with to be accepted into the system.

The virt-controller is a cluster controller that creates the virt-launcher pods for virtual machines in the
cluster.

NOTE

By default, virt-launcher pods run with the default service account in the namespace. If
your compliance controls require a unique service account, assign one to the VM. The
setting applies to the VirtualMachineInstance object and the virt-launcher pod.

The kubevirt-controller service account is granted additional SCCs and Linux capabilities so that it can
create virt-launcher pods with the appropriate permissions. These extended permissions allow virtual
machines to use OpenShift Virtualization features that are beyond the scope of typical pods.

The kubevirt-controller service account is granted the following SCCs:

scc.AllowHostDirVolumePlugin = true
This allows virtual machines to use the hostpath volume plugin.

scc.AllowPrivilegedContainer = false
This ensures the virt-launcher pod is not run as a privileged container.

scc.AllowedCapabilities = []corev1.Capability{"SYS_NICE", "NET_BIND_SERVICE"}

SYS_NICE allows setting the CPU affinity.

NET_BIND_SERVICE allows DHCP and Slirp operations.

Viewing the SCC and RBAC definitions for the kubevirt-controller

You can view the SecurityContextConstraints definition for the kubevirt-controller by using the oc
tool:

$ oc get scc kubevirt-controller -o yaml

CHAPTER 1. ABOUT

31

You can view the RBAC definition for the kubevirt-controller clusterrole by using the oc tool:

1.3.4. Additional resources

Managing security context constraints

Using RBAC to define and apply permissions

Creating a cluster role

Cluster role binding commands

Enabling user permissions to clone data volumes across namespaces

1.4. OPENSHIFT VIRTUALIZATION ARCHITECTURE

The Operator Lifecycle Manager (OLM) deploys operator pods for each component of OpenShift
Virtualization:

Compute: virt-operator

Storage: cdi-operator

Network: cluster-network-addons-operator

Scaling: ssp-operator

OLM also deploys the hyperconverged-cluster-operator pod, which is responsible for the deployment,
configuration, and life cycle of other components, and several helper pods: hco-webhook, and
hyperconverged-cluster-cli-download.

After all operator pods are successfully deployed, you should create the HyperConverged custom
resource (CR). The configurations set in the HyperConverged CR serve as the single source of truth
and the entrypoint for OpenShift Virtualization, and guide the behavior of the CRs.

The HyperConverged CR creates corresponding CRs for the operators of all other components within
its reconciliation loop. Each operator then creates resources such as daemon sets, config maps, and
additional components for the OpenShift Virtualization control plane. For example, when the
HyperConverged Operator (HCO) creates the KubeVirt CR, the OpenShift Virtualization Operator
reconciles it and creates additional resources such as virt-controller, virt-handler, and virt-api.

The OLM deploys the Hostpath Provisioner (HPP) Operator, but it is not functional until you create a
hostpath-provisioner CR.

$ oc get clusterrole kubevirt-controller -o yaml

OpenShift Container Platform 4.20 Virtualization

32

https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/authentication_and_authorization/#security-context-constraints-about_configuring-internal-oauth
https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/authentication_and_authorization/#using-rbac
https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/authentication_and_authorization/#creating-cluster-role_using-rbac
https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/authentication_and_authorization/#cluster-role-binding-commands_using-rbac

Virtctl client commands

1.4.1. About the HyperConverged Operator (HCO)

The HCO, hco-operator, provides a single entry point for deploying and managing OpenShift
Virtualization and several helper operators with opinionated defaults. It also creates custom resources
(CRs) for those operators.

Table 1.8. HyperConverged Operator components

CHAPTER 1. ABOUT

33

Component Description

deployment/hco-webhook Validates the HyperConverged custom resource
contents.

deployment/hyperconverged-cluster-cli-
download

Provides the virtctl tool binaries to the cluster so
that you can download them directly from the
cluster.

KubeVirt/kubevirt-kubevirt-hyperconverged Contains all operators, CRs, and objects needed by
OpenShift Virtualization.

SSP/ssp-kubevirt-hyperconverged A Scheduling, Scale, and Performance (SSP) CR.
This is automatically created by the HCO.

CDI/cdi-kubevirt-hyperconverged A Containerized Data Importer (CDI) CR. This is
automatically created by the HCO.

NetworkAddonsConfig/cluster A CR that instructs and is managed by the cluster-
network-addons-operator.

1.4.2. About the Containerized Data Importer (CDI) Operator

The CDI Operator, cdi-operator, manages CDI and its related resources, which imports a virtual machine
(VM) image into a persistent volume claim (PVC) by using a data volume.

Table 1.9. CDI Operator components

Component Description

deployment/cdi-apiserver Manages the authorization to upload VM disks into
PVCs by issuing secure upload tokens.

OpenShift Container Platform 4.20 Virtualization

34

deployment/cdi-uploadproxy Directs external disk upload traffic to the
appropriate upload server pod so that it can be
written to the correct PVC. Requires a valid upload
token.

pod/cdi-importer Helper pod that imports a virtual machine image into
a PVC when creating a data volume.

Component Description

1.4.3. About the Cluster Network Addons Operator

The Cluster Network Addons Operator, cluster-network-addons-operator, deploys networking
components on a cluster and manages the related resources for extended network functionality.

Table 1.10. Cluster Network Addons Operator components

Component Description

deployment/kubemacpool-cert-manager Manages TLS certificates of Kubemacpool’s
webhooks.

deployment/kubemacpool-mac-controller-
manager

Provides a MAC address pooling service for virtual
machine (VM) network interface cards (NICs).

daemonset/bridge-marker Marks network bridges available on nodes as node
resources.

daemonset/kube-cni-linux-bridge-plugin Installs Container Network Interface (CNI) plugins on
cluster nodes, enabling the attachment of VMs to
Linux bridges through network attachment
definitions.

1.4.4. About the Hostpath Provisioner (HPP) Operator

CHAPTER 1. ABOUT

35

The HPP Operator, hostpath-provisioner-operator, deploys and manages the multi-node HPP and
related resources.

Table 1.11. HPP Operator components

Component Description

deployment/hpp-pool-hpp-csi-pvc-block-
<worker_node_name>

Provides a worker for each node where the HPP is
designated to run. The pods mount the specified
backing storage on the node.

daemonset/hostpath-provisioner-csi Implements the Container Storage Interface (CSI)
driver interface of the HPP.

daemonset/hostpath-provisioner Implements the legacy driver interface of the HPP.

1.4.5. About the Scheduling, Scale, and Performance (SSP) Operator

The SSP Operator, ssp-operator, deploys the common templates, the related default boot sources, the
pipeline tasks, and the template validator.

1.4.6. About the OpenShift Virtualization Operator

The OpenShift Virtualization Operator, virt-operator, deploys, upgrades, and manages OpenShift
Virtualization without disrupting current virtual machine (VM) workloads. In addition, the OpenShift
Virtualization Operator deploys the common instance types and common preferences.

OpenShift Container Platform 4.20 Virtualization

36

Table 1.12. virt-operator components

Component Description

deployment/virt-api HTTP API server that serves as the entry point for all
virtualization-related flows.

deployment/virt-controller Observes the creation of a new VM instance object
and creates a corresponding pod. When the pod is
scheduled on a node, virt-controller updates the
VM with the node name.

daemonset/virt-handler Monitors any changes to a VM and instructs virt-
launcher to perform the required operations. This
component is node-specific.

pod/virt-launcher Contains the VM that was created by the user as
implemented by libvirt and qemu.

CHAPTER 1. ABOUT

37

CHAPTER 2. RELEASE NOTES

2.1. OPENSHIFT VIRTUALIZATION RELEASE NOTES

2.1.1. Providing documentation feedback

To report an error or to improve our documentation, log in to your Red Hat Jira account and submit a
Jira issue .

2.1.2. About Red Hat OpenShift Virtualization

With Red Hat OpenShift Virtualization, you can bring traditional virtual machines (VMs) into OpenShift
Container Platform and run them alongside containers. In OpenShift Virtualization, VMs are native
Kubernetes objects that you can manage by using the OpenShift Container Platform web console or the
command line.

OpenShift Virtualization is represented by the icon.

You can use OpenShift Virtualization the OVN-Kubernetes Container Network Interface (CNI) network
provider.

Learn more about what you can do with OpenShift Virtualization .

Learn more about OpenShift Virtualization architecture and deployments .

Prepare your cluster for OpenShift Virtualization.

2.1.2.1. Supported cluster versions for OpenShift Virtualization

The latest stable release of OpenShift Virtualization 4.20 is 4.20.0.

OpenShift Virtualization 4.20 is supported for use on OpenShift Container Platform 4.20 clusters. To
use the latest z-stream release of OpenShift Virtualization, you must first upgrade to the latest version
of OpenShift Container Platform.

2.1.2.2. Supported guest operating systems

To view the supported guest operating systems for OpenShift Virtualization, see Certified Guest
Operating Systems in Red Hat OpenStack Platform, Red Hat Virtualization, OpenShift Virtualization and
Red Hat Enterprise Linux with KVM.

2.1.2.3. Microsoft Windows SVVP certification

OpenShift Virtualization is certified in Microsoft’s Windows Server Virtualization Validation Program
(SVVP) to run Windows Server workloads.

The SVVP certification applies to:

Red Hat Enterprise Linux CoreOS workers. In the Microsoft SVVP Catalog, they are named
Red Hat OpenShift Container Platform 4.20 .

Intel and AMD CPUs.

OpenShift Container Platform 4.20 Virtualization

38

https://issues.redhat.com
https://issues.redhat.com/secure/CreateIssueDetails!init.jspa?pid=12323181&issuetype=1&components=12333768&priority=10200&summary=%5BDoc%5D&customfield_12316142
https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/ovn-kubernetes_network_plugin/#about-ovn-kubernetes
https://access.redhat.com/articles/973163#ocpvirt

2.1.3. Quick starts

Quick start tours are available for several OpenShift Virtualization features. To view the tours, click the
Help icon ? in the menu bar on the header of the OpenShift Container Platform web console and then
select Quick Starts. You can filter the available tours by entering the keyword virtualization in the
Filter field.

2.1.4. New and changed features

This release adds new features and enhancements related to the following components and concepts:

2.1.4.1. Installation and update

You can now directly update OpenShift Virtualization to a later z-stream (x.y.z) release without
applying each intermediate z-stream version.

NOTE

Ensure that you update to the latest z-stream release of your current minor (x.y)
version before updating to the next minor version.

Installing OpenShift Virtualization on Oracle Cloud Infrastructure (OCI) is now generally
available. For more information, see OpenShift Virtualization and Oracle Cloud Infrastructure
known issues and limitations in the Red Hat Knowledgebase, and Installing OpenShift
Virtualization on OCI on GitHub.

Using OpenShift Virtualization on a bare-metal cluster installed on an ARM64 (AARCH64)
system is now generally available. For more information, see ARM64 compatibility.

2.1.4.2. Virtualization

The descheduler profile DevKubeVirtRelieveAndMigrate has been renamed to
KubeVirtRelieveAndMigrate and is now generally available. The updated profile improves VM
eviction stability during live migrations by enabling background evictions and reducing
oscillatory behavior. For more information, see Configuring descheduler evictions for virtual
machines.

vNUMA topology for VMs is now generally available (GA). By enabling this feature, you opt in to
an improved NUMA configuration for VMs, with better performance and optimal resource
allocation. For more information, see Working with NUMA topology for virtual machines .

You can now use the kube_application_aware_resourcequota and
kube_application_aware_resourcequota_creation_timestamp metrics to query the current
usage and creation times of the Application-Aware Quota (AAQ) Operator resources. For more
information, see AAQ Operator metrics.

2.1.4.3. Networking

You can now hot plug and hot unplug a secondary network interface to a VM without manually
triggering live migration. You do not need permission to create and list
VirtualMachineInstanceMigration objects. For more information, see Hot plugging secondary
network interfaces.

Managing the link state of a virtual machine interface is now generally available. In previous

CHAPTER 2. RELEASE NOTES

39

https://access.redhat.com/articles/7118050
https://github.com/oracle-quickstart/oci-openshift/blob/main/docs/openshift-virtualization.md

Managing the link state of a virtual machine interface is now generally available. In previous
releases this was a Technology Preview feature.

You can now use the Border Gateway Protocol (BGP) to configure dynamic ingress and egress
routing for VMs that are connected to primary user-defined networks. Importing routes from
provider networks into OVN-Kubernetes eliminates the need to manually configure routes on
hosts. With dynamic egress, you can export VM IP addresses to provider networks, making the
VMs directly reachable from outside the cluster. For more information, see Advertise cluster
network routes with Border Gateway Protocol.

2.1.4.4. Web console

In the OpenShift Container Platform web console, the Migrations tab of the Virtualization
page now displays a progress bar for each migrating virtual machine.

When performing live migration of a VM, you can now specify the particular node for the VM to
migrate to.

The procedure for hot plugging disks now includes an optional step for selecting a bus type. You
can select the virtio-blk or the virtio-scsi bus type. The virtio-blk type is the default. For more
information, see Hot plugging VM disks .

The InstanceTypes tab on the Create new VirtualMachine page now includes options for
selecting huge pages. These options appear in the M and CX series of instance types. They are
accessible both through the Select InstanceType tiles and in the Default InstanceType menu
of the Add volume dialog box.
For more information about selecting huge pages for an instance type, see "Creating a VM from
an instance type by using the web console".

You can now easily identify if NUMA is enabled on your virtual machines. With this update, the
vNUMA attribute is displayed in the VM details next to the CPU | Memory section.

2.1.4.5. Monitoring

Added documentation for the kubevirt_vmi_vcpu_delay_seconds_total Prometheus metric.
This metric reports the time a virtual CPU (vCPU) was queued by the host scheduler but was
not running. The updated documentation helps users better understand vCPU queue delays in
OpenShift Virtualization environments.

The following alerts for the OpenShift Virtualization Operator are now included in the
OpenShift Virtualization runbooks:

HighNodeCPUFrequency

VirtualMachineStuckInUnhealthyState

VirtualMachineStuckOnNode

PersistentVolumeFillingUp

DeprecatedMachineType

HCOGoldenImageWithNoSupportedArchitecture

HCOGoldenImageWithNoArchitectureAnnotation

OpenShift Container Platform 4.20 Virtualization

40

https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/advanced_networking/#nw-routeadvertisements-about_about-route-advertisements

HCOMultiArchGoldenImagesDisabled

For a complete list of virtualization metrics, see the openshift/runbooks Git repository.

Using the guest agent ping probe to determine if the QEMU guest agent is running on the VM is
now generally available. Previously, this feature was provided as a Technology Preview.

Using Microsoft Azure Boost with OpenShift Virtualization on Azure Red Hat OpenShift (ARO)
is now generally available.

2.1.4.6. Notable technical changes

Before this update, only the virtio-scsi bus type could be used for hot plugging disks. With this
update, the virtio-blk bus type is supported as well.

2.1.5. Deprecated and removed features

2.1.5.1. Deprecated features

Deprecated features are included in the current release and supported. However, they will be removed
in a future release and are not recommended for new deployments.

The OperatorConditionsUnhealthy alert is deprecated. You can safely silence it.

All hot plugged disks are persistent by default. The use of non-persistent hot plugged disks is
deprecated. They will not be supported in future releases.

2.1.5.2. Removed features

Removed features are no longer supported in OpenShift Virtualization.

With this release, support for the Data Plane Development Kit (DPDK) checkup has been
removed. You can no longer run a predefined checkup to verify if your OpenShift Container
Platform cluster node can run a VM with a DPDK workload with zero packet loss.

2.1.6. Technology Preview features

Some features in this release are currently in Technology Preview. These experimental features are not
intended for production use. Note the following scope of support on the Red Hat Customer Portal for
these features:

Technology Preview Features Support Scope

You can use OpenShift Virtualization on Microsoft Azure Boost.

Golden image support for heterogeneous clusters is now available.

You can now use the Plug a Simple Socket Transport (passt) network binding plugin to connect
a VM to a primary user-defined network (UDN). For more information, see Attaching a virtual
machine to the primary user-defined network.

2.1.7. Bug fixes

Restoring a snapshot of a VM after a storage migration no longer fails because of unreferenced

CHAPTER 2. RELEASE NOTES

41

https://github.com/openshift/runbooks/tree/master/alerts/openshift-virtualization-operator
https://learn.microsoft.com/en-us/azure/azure-boost/overview
https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/monitoring/#silencing-alerts-adm_managing-alerts-as-an-administrator
https://access.redhat.com/support/offerings/techpreview
https://learn.microsoft.com/en-us/azure/azure-boost/overview

dataVolumeTemplate objects. The snapshot process now refreshes the data volume templates
in the controller revision to match the volumes list, ensuring consistent data recovery. (CNV-
61279)

The migration controller in the virt-handler pod was redesigned to separate source, target, and
VM responsibilities, ensure deterministic completion, and use a unified VirtualMachineInstance
(VMI) cache. (CNV-48348)

Virtual Trusted Platform Module (vTPM) persistence is now enabled by default in VM templates.
BitLocker system checks in Windows VMs no longer pass with non-persistent vTPM devices.
(CNV-36448)

On s390x systems, VMs created from a template with the Boot from CD option now boot
correctly. CD-ROM devices are attached as SCSI instead of SATA, which is not supported on
s390x architecture. (CNV-61740)

2.1.8. Known issues

2.1.8.1. Networking

When you update from OpenShift Container Platform 4.12 to a newer minor version, VMs that
use the cnv-bridge Container Network Interface (CNI) fail to live migrate.
(https://access.redhat.com/solutions/7069807)

As a workaround, change the spec.config.type field in your NetworkAttachmentDefinition
manifest from cnv-bridge to bridge before performing the update.

Red Hat OpenShift Service Mesh 3.1.1 and Istio versions 1.25 and later are incompatible with
OpenShift Virtualization 4.20 because the annotation
traffic.sidecar.istio.io/kubevirtInterfaces is deprecated. (OSSM-10883)

As a workaround, when installing Service Mesh for integration with OpenShift Virtualization,
select version 3.0.4 and Istio 1.24.4 instead of the default versions that are displayed in the
web console.

2.1.8.2. Nodes

Uninstalling OpenShift Virtualization does not remove the feature.node.kubevirt.io node labels
created by OpenShift Virtualization. You must remove the labels manually. (CNV-38543)

2.1.8.3. Storage

Attempting a storage live migration from the OpenShift Container Platform web console might
hang and fail to create a destination PersistentVolumeClaim (PVC). This issue occurs because
the web console does not detect a label that marks source PVCs previously used for migration.
When this label is present, the migration cannot proceed successfully. (CNV-70866)

As a workaround, use the Migration Toolkit for Containers (MTC) web console or create the
MigPlan resource manually by using the CLI to perform the migration.

2.1.8.4. Virtualization

Live migration fails if the VM name exceeds 47 characters. (CNV-61066)

Live migration might fail if you are migrating a VM which has vNUMA enabled, and the

OpenShift Container Platform 4.20 Virtualization

42

https://issues.redhat.com/browse/CNV-61279
https://issues.redhat.com/browse/CNV-48348
https://issues.redhat.com/browse/CNV-36448
https://issues.redhat.com/browse/CNV-61740
https://access.redhat.com/solutions/7069807
https://issues.redhat.com/browse/OSSM-10883
https://issues.redhat.com/browse/CNV-38543
https://issues.redhat.com/browse/CNV-70866
https://issues.redhat.com/browse/CNV-61066

Live migration might fail if you are migrating a VM which has vNUMA enabled, and the
topologyManagerPolicy setting in the KubeletConfig is configured with none. This is due to
conflicting NUMA cells in the Topology Manager policy. (CNV-70330)

As a workaround, configure the topologyManagerPolicy setting in the KubeletConfig to
use either the best-effort or single-numa-node policies.

OpenShift Virtualization links a service account token in use by a pod to that specific pod.
OpenShift Virtualization implements a service account volume by creating a disk image that
contains a token. If you migrate a VM, then the service account volume becomes invalid. (CNV-
33835)

As a workaround, use user accounts rather than service accounts because user account
tokens are not bound to a specific pod.

2.1.8.5. IBM Z and IBM LinuxONE

VMs based on s390x architecture can only use the IPL boot mode. However, in the OpenShift
Container Platform web console, the Boot mode list for s390x VMs incorrectly includes BIOS,
UEFI, and UEFI (secure) boot modes. If you select one of these modes for an s390x-based VM,
the operation fails. (CNV-56889)

CHAPTER 2. RELEASE NOTES

43

https://issues.redhat.com/browse/CNV-70330
https://issues.redhat.com/browse/CNV-33835
https://issues.redhat.com/browse/CNV-56889

CHAPTER 3. GETTING STARTED

3.1. GETTING STARTED WITH OPENSHIFT VIRTUALIZATION

You can explore the features and functionalities of OpenShift Virtualization by installing and configuring
a basic environment.

NOTE

Cluster configuration procedures require cluster-admin privileges.

3.1.1. Tours and quick starts

You can start exploring OpenShift Virtualization by taking tours in the OpenShift Container Platform
web console.

Getting started tour
This short guided tour introduces several key aspects of using OpenShift Virtualization. There are two
ways to start the tour:

On the Welcome to OpenShift Virtualization dialog, click Start Tour.

Go to Virtualization → Overview → Settings → User → Getting started resources and click
Guided tour.

Quick starts
Quick start tours are available for several OpenShift Virtualization features. To access quick starts,
complete the following steps:

1. Click the Help icon ? in the menu bar on the header of the OpenShift Container Platform web
console.

2. Select Quick Starts.

You can filter the available tours by entering the keyword virtual in the Filter field.

3.1.2. Planning and installing OpenShift Virtualization

Plan and install OpenShift Virtualization on an OpenShift Container Platform cluster:

Plan your bare metal cluster for OpenShift Virtualization .

Prepare your cluster for OpenShift Virtualization .

Install the OpenShift Virtualization Operator.

Install the virtctl command-line interface (CLI) tool .

Planning and installation resources

About storage volumes for virtual machine disks .

Using a CSI-enabled storage provider .

Configuring local storage for virtual machines .

OpenShift Container Platform 4.20 Virtualization

44

https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/installing_on_bare_metal/#virt-planning-bare-metal-cluster-for-ocp-virt_preparing-to-install-on-bare-metal
https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/storage/#persistent-storage-csi

Installing the Kubernetes NMState Operator .

Specifying nodes for virtual machines .

Virtctl commands.

3.1.3. Creating and managing virtual machines

Create a virtual machine (VM):

Create a VM from a Red Hat image .
You can create a VM by using a Red Hat template or an instance type.

You can create a VM by importing a custom image from a container registry or a web page , by
uploading an image from your local machine , or by cloning a persistent volume claim (PVC) .

Connect a VM to a secondary network:

Linux bridge network .

Open Virtual Network (OVN)-Kubernetes secondary network .

Single Root I/O Virtualization (SR-IOV) network .

NOTE

VMs are connected to the pod network by default.

Connect to a VM:

Connect to the serial console or VNC console of a VM.

Connect to a VM by using SSH .

Connect to the desktop viewer for Windows VMs .

Manage a VM:

Manage a VM by using the web console .

Manage a VM by using the virtctl CLI tool.

Export a VM .

3.1.4. Migrating to OpenShift Virtualization

To migrate virtual machines from an external provider such as VMware vSphere, Red Hat OpenStack
Platform (RHOSP), Red Hat Virtualization, or another OpenShift Container Platform cluster, use the
Migration Toolkit for Virtualization (MTV). You can also migrate Open Virtual Appliance (OVA) files
created by VMware vSphere.

NOTE

CHAPTER 3. GETTING STARTED

45

https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/networking_operators/#installing-the-kubernetes-nmstate-operator-cli

NOTE

Migration Toolkit for Virtualization is not part of OpenShift Virtualization and requires
separate installation. For this reason, all links in this procedure lead outside of OpenShift
Virtualization documentation.

Prerequisites

The Migration Toolkit for Virtualization Operator is installed.

Procedure

Migrate virtual machines from VMware vSphere .

Migrate virtual machines from Red Hat OpenStack Platform (RHOSP) .

Migrate virtual machines from Red Hat Virtualization .

Migrate virtual machines from OpenShift Virtualization .

Migrate virtual machines from OVA files created by VMware vSphere .

3.1.5. Next steps

Review postinstallation configuration options .

Configure storage options and automatic boot source updates .

Learn about monitoring and health checks .

Learn about live migration .

Back up and restore VMs by using the OpenShift API for Data Protection (OADP) .

Tune and scale your cluster .

3.2. USING THE CLI TOOLS

You can manage OpenShift Virtualization resources by using the virtctl command-line tool.

You can access and modify virtual machine (VM) disk images by using the libguestfs command-line
tool. You deploy libguestfs by using the virtctl libguestfs command.

3.2.1. Installing virtctl

To install virtctl on Red Hat Enterprise Linux (RHEL) 9, Linux, Windows, and MacOS operating systems,
you download and install the virtctl binary file.

To install virtctl on RHEL 8, you enable the OpenShift Virtualization repository and then install the
kubevirt-virtctl package.

3.2.1.1. Installing the virtctl binary on RHEL 9, Linux, Windows, or macOS

You can download the virtctl binary for your operating system from the OpenShift Container Platform

OpenShift Container Platform 4.20 Virtualization

46

https://docs.redhat.com/en/documentation/migration_toolkit_for_virtualization/2.8/html/installing_and_using_the_migration_toolkit_for_virtualization/installing-the-operator_mtv#installing-the-operator_mtv
https://docs.redhat.com/en/documentation/migration_toolkit_for_virtualization/2.8/html/installing_and_using_the_migration_toolkit_for_virtualization/migrating-vmware#adding-source-provider_vmware
https://docs.redhat.com/en/documentation/migration_toolkit_for_virtualization/2.8/html/installing_and_using_the_migration_toolkit_for_virtualization/migrating-osp_ostack#adding-source-provider_ostack
https://docs.redhat.com/en/documentation/migration_toolkit_for_virtualization/2.8/html/installing_and_using_the_migration_toolkit_for_virtualization/migrating-rhv_rhv#adding-source-provider_rhv
https://docs.redhat.com/en/documentation/migration_toolkit_for_virtualization/2.8/html/installing_and_using_the_migration_toolkit_for_virtualization/migrating-virt_cnv#adding-source-provider_cnv
https://docs.redhat.com/en/documentation/migration_toolkit_for_virtualization/2.8/html/installing_and_using_the_migration_toolkit_for_virtualization/migrating-ova_ova#adding-source-provider_ova
https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/backup_and_restore/#installing-oadp-kubevirt
https://access.redhat.com/articles/6994974
https://libguestfs.org

You can download the virtctl binary for your operating system from the OpenShift Container Platform
web console and then install it.

Procedure

1. Navigate to the Virtualization → Overview page in the web console.

2. Click the Download virtctl link to download the virtctl binary for your operating system.

3. Install virtctl:

For RHEL 9 and other Linux operating systems:

a. Decompress the archive file:

b. Run the following command to make the virtctl binary executable:

c. Move the virtctl binary to a directory in your PATH environment variable.
You can check your path by running the following command:

d. Set the KUBECONFIG environment variable:

For Windows:

a. Decompress the archive file.

b. Navigate the extracted folder hierarchy and double-click the virtctl executable file to
install the client.

c. Move the virtctl binary to a directory in your PATH environment variable.
You can check your path by running the following command:

For macOS:

a. Decompress the archive file.

b. Move the virtctl binary to a directory in your PATH environment variable.
You can check your path by running the following command:

3.2.1.2. Installing the virtctl RPM on RHEL 8

$ tar -xvf <virtctl-version-distribution.arch>.tar.gz

$ chmod +x <path/virtctl-file-name>

$ echo $PATH

$ export KUBECONFIG=/home/<user>/clusters/current/auth/kubeconfig

C:\> path

echo $PATH

CHAPTER 3. GETTING STARTED

47

You can install the virtctl RPM package on Red Hat Enterprise Linux (RHEL) 8 by enabling the
OpenShift Virtualization repository and installing the kubevirt-virtctl package.

Prerequisites

Each host in your cluster must be registered with Red Hat Subscription Manager (RHSM) and
have an active OpenShift Container Platform subscription.

Procedure

1. Enable the OpenShift Virtualization repository by using the subscription-manager CLI tool to
run the following command:

2. Install the kubevirt-virtctl package by running the following command:

3.2.2. virtctl commands

The virtctl client is a command-line utility for managing OpenShift Virtualization resources.

NOTE

The virtual machine (VM) commands also apply to virtual machine instances (VMIs)
unless otherwise specified.

3.2.2.1. virtctl information commands

You can use the following virtctl information commands to view information about the virtctl client.

Table 3.1. Information commands

Command Description

virtctl version View the virtctl client and server versions.

virtctl help View a list of virtctl commands.

virtctl <command> -h|--help View a list of options for a specific command.

virtctl options View a list of global command options for any virtctl command.

3.2.2.2. VM information commands

You can use virtctl to view information about virtual machines (VMs) and virtual machine instances
(VMIs).

Table 3.2. VM information commands

subscription-manager repos --enable cnv-4.20-for-rhel-8-x86_64-rpms

yum install kubevirt-virtctl

OpenShift Container Platform 4.20 Virtualization

48

Command Description

virtctl fslist <vm_name> View the file systems available on a guest machine.

virtctl guestosinfo
<vm_name>

View information about the operating systems on a guest machine.

virtctl userlist <vm_name> View the logged-in users on a guest machine.

3.2.2.3. VM manifest creation commands

You can use the following virtctl create commands to create manifests for virtual machines, instance
types, and preferences.

Table 3.3. VM manifest creation commands

Command Description

virtctl create vm
Create a VirtualMachine (VM)
manifest.

virtctl create vm --name <vm_name> Create a VM manifest, specifying
a name for the VM.

virtctl create vm --user <user_name> --ssh-key|password-file=
<value>

Create a VM manifest with a
cloud-init configuration to create
the selected user and either add
an SSH public key from the
supplied string, or a password
from a file.

virtctl create vm --access-cred type:password,src:<secret> Create a VM manifest with a user
and password combination
injected from the selected secret.

virtctl create vm --access-cred type:ssh,src:<secret>,user:
<user_name>

Create a VM manifest with an
SSH public key injected from the
selected secret.

virtctl create vm --volume-sysprep src:<config_map> Create a VM manifest, specifying
a config map to use as the
sysprep volume. The config map
must contain a valid answer file
named unattend.xml or
autounattend.xml.

virtctl create vm --instancetype <instancetype_name> Create a VM manifest that uses
an existing cluster-wide instance
type.

CHAPTER 3. GETTING STARTED

49

virtctl create vm --
instancetype=virtualmachineinstancetype/<instancetype_nam
e>

Create a VM manifest that uses
an existing namespaced instance
type.

virtctl create instancetype --cpu <cpu_value> --memory
<memory_value> --name <instancetype_name>

Create a manifest for a cluster-
wide instance type.

virtctl create instancetype --cpu <cpu_value> --memory
<memory_value> --name <instancetype_name> --namespace
<namespace_value>

Create a manifest for a
namespaced instance type.

virtctl create preference --name <preference_name> Create a manifest for a cluster-
wide VM preference, specifying a
name for the preference.

virtctl create preference --namespace <namespace_value> Create a manifest for a
namespaced VM preference.

Command Description

3.2.2.4. VM management commands

You can use the following virtctl commands to manage and migrate virtual machines (VMs) and VM
instances (VMIs).

Table 3.4. VM management commands

Command Description

virtctl start <vm_name> Start a VM.

virtctl start --paused
<vm_name>

Start a VM in a paused state. This option enables you to interrupt the
boot process from the VNC console.

virtctl stop <vm_name> Stop a VM.

virtctl stop <vm_name> --
grace-period 0 --force

Force stop a VM. This option might cause data inconsistency or data
loss.

virtctl pause vm <vm_name> Pause a VM. The machine state is kept in memory.

virtctl unpause vm
<vm_name>

Unpause a VM.

virtctl migrate <vm_name> Migrate a VM.

OpenShift Container Platform 4.20 Virtualization

50

virtctl migrate-cancel
<vm_name>

Cancel a VM migration.

virtctl restart <vm_name> Restart a VM.

Command Description

3.2.2.5. VM connection commands

You use can use the following virtctl commands to expose ports and connect to virtual machines (VMs)
and VM instances (VMIs).

Table 3.5. VM connection commands

Command Description

virtctl console <vm_name> Connect to the serial console of a VM.

virtctl expose vm
<vm_name> --name
<service_name> --type
<ClusterIP|NodePort|LoadBa
lancer> --port <port>

Create a service that forwards a designated port of a VM and expose
the service on the specified port of the node.

Example: virtctl expose vm rhel9_vm --name rhel9-ssh --type
NodePort --port 22

virtctl scp -i <ssh_key>
<file_name>
<user_name>@vm/<vm_nam
e>

Copy a file from your machine to a VM. This command uses the private
key of an SSH key pair. The VM must be configured with the public key.

virtctl scp -i <ssh_key>
<user_name@vm/<vm_name
>:<file_name> .

Copy a file from a VM to your machine. This command uses the private
key of an SSH key pair. The VM must be configured with the public key.

virtctl ssh -i <ssh_key>
<user_name>@vm/<vm_nam
e>

Open an SSH connection with a VM. This command uses the private key
of an SSH key pair. The VM must be configured with the public key.

virtctl vnc <vm_name> Connect to the VNC console of a VM.

You must have virt-viewer installed.

virtctl vnc --proxy-only=true
<vm_name>

Display the port number and connect manually to a VM by using any
viewer through the VNC connection.

virtctl vnc --port=<port-
number> <vm_name>

Specify a port number to run the proxy on the specified port, if that port
is available.

If a port number is not specified, the proxy runs on a random port.

CHAPTER 3. GETTING STARTED

51

3.2.2.6. VM export commands

Use virtctl vmexport commands to create, download, or delete a volume exported from a VM, VM
snapshot, or persistent volume claim (PVC). Certain manifests also contain a header secret, which grants
access to the endpoint to import a disk image in a format that OpenShift Virtualization can use.

Table 3.6. VM export commands

Command Description

virtctl vmexport create
<vmexport_name> --
vm|snapshot|pvc=
<object_name>

Create a VirtualMachineExport custom resource (CR) to export a
volume from a VM, VM snapshot, or PVC.

--vm: Exports the PVCs of a VM.

--snapshot: Exports the PVCs contained in a
VirtualMachineSnapshot CR.

--pvc: Exports a PVC.

Optional: --ttl=1h specifies the time to live. The default
duration is 2 hours.

virtctl vmexport delete
<vmexport_name>

Delete a VirtualMachineExport CR manually.

virtctl vmexport download
<vmexport_name> --output=
<output_file> --volume=
<volume_name>

Download the volume defined in a VirtualMachineExport CR.

--output specifies the file format. Example: disk.img.gz.

--volume specifies the volume to download. This flag is
optional if only one volume is available.

Optional:

--keep-vme retains the VirtualMachineExport CR after
download. The default behavior is to delete the
VirtualMachineExport CR after download.

--insecure enables an insecure HTTP connection.

virtctl vmexport download
<vmexport_name> --
vm|snapshot|pvc=
<object_name> --output=
<output_file> --volume=
<volume_name>

Create a VirtualMachineExport CR and then download the volume
defined in the CR.

virtctl vmexport download
export --manifest

Retrieve the manifest for an existing export. The manifest does not
include the header secret.

OpenShift Container Platform 4.20 Virtualization

52

virtctl vmexport download
export --manifest --
vm=example

Create a VM export for a VM example, and retrieve the manifest. The
manifest does not include the header secret.

virtctl vmexport download
export --manifest --
snap=example

Create a VM export for a VM snapshot example, and retrieve the
manifest. The manifest does not include the header secret.

virtctl vmexport download
export --manifest --include-
secret

Retrieve the manifest for an existing export. The manifest includes the
header secret.

virtctl vmexport download
export --manifest --manifest-
output-format=json

Retrieve the manifest for an existing export in json format. The manifest
does not include the header secret.

virtctl vmexport download
export --manifest --include-
secret --
output=manifest.yaml

Retrieve the manifest for an existing export. The manifest includes the
header secret and writes it to the file specified.

Command Description

3.2.2.7. Hot plug and hot unplug commands

You can use the following virtctl commands to add or remove resources from running virtual machines
(VMs) and VM instances (VMIs).

Table 3.7. Hot plug and hot unplug commands

Command Description

virtctl addvolume
<vm_name> --volume-
name=
<datavolume_or_PVC> [--
persist] [--serial=<label>]

Hot plug a data volume or persistent volume claim (PVC).

Optional:

--persist mounts the virtual disk permanently on a VM. This
flag does not apply to VMIs.

--serial=<label> adds a label to the VM. If you do not specify
a label, the default label is the data volume or PVC name.

virtctl removevolume
<vm_name> --volume-
name=<virtual_disk>

Hot unplug a virtual disk.

3.2.2.8. Image upload commands

You can use the following virtctl image-upload commands to upload a VM image to a data volume.

CHAPTER 3. GETTING STARTED

53

1

Table 3.8. Image upload commands

Command Description

virtctl image-upload dv
<datavolume_name> --
image-path=
</path/to/image> --no-create

Upload a VM image to a data volume that already exists.

virtctl image-upload dv
<datavolume_name> --size=
<datavolume_size> --image-
path=</path/to/image>

Upload a VM image to a new data volume of a specified requested size.

virtctl image-upload dv
<datavolume_name> --
datasource --size=
<datavolume_size> --image-
path=</path/to/image>

Upload a VM image to a new data volume and create an associated
DataSource object for it.

3.2.3. Deploying libguestfs by using virtctl

You can use the virtctl guestfs command to deploy an interactive container with libguestfs-tools and a
persistent volume claim (PVC) attached to it.

Procedure

To deploy a container with libguestfs-tools, mount the PVC, and attach a shell to it, run the
following command:

The PVC name is a required argument. If you do not include it, an error message appears.

3.2.3.1. Libguestfs and virtctl guestfs commands

Libguestfs tools help you access and modify virtual machine (VM) disk images. You can use libguestfs
tools to view and edit files in a guest, clone and build virtual machines, and format and resize disks.

You can also use the virtctl guestfs command and its sub-commands to modify, inspect, and debug VM
disks on a PVC. To see a complete list of possible sub-commands, enter virt- on the command line and
press the Tab key. For example:

Command Description

virt-edit -a /dev/vda /etc/motd Edit a file interactively in your terminal.

$ virtctl guestfs -n <namespace> <pvc_name> 1

OpenShift Container Platform 4.20 Virtualization

54

virt-customize -a /dev/vda --ssh-
inject root:string:<public key
example>

Inject an ssh key into the guest and create a login.

virt-df -a /dev/vda -h See how much disk space is used by a VM.

virt-customize -a /dev/vda --run-
command 'rpm -qa > /rpm-list'

See the full list of all RPMs installed on a guest by creating an
output file containing the full list.

virt-cat -a /dev/vda /rpm-list Display the output file list of all RPMs created using the virt-
customize -a /dev/vda --run-command 'rpm -qa >
/rpm-list' command in your terminal.

virt-sysprep -a /dev/vda Seal a virtual machine disk image to be used as a template.

Command Description

By default, virtctl guestfs creates a session with everything needed to manage a VM disk. However, the
command also supports several flag options if you want to customize the behavior:

Flag Option Description

--h or --help Provides help for guestfs.

-n <namespace> option with a
<pvc_name> argument

To use a PVC from a specific namespace.

If you do not use the -n <namespace> option, your current
project is used. To change projects, use oc project
<namespace>.

If you do not include a <pvc_name> argument, an error
message appears.

--image string Lists the libguestfs-tools container image.

You can configure the container to use a custom image by
using the --image option.

CHAPTER 3. GETTING STARTED

55

--kvm Indicates that kvm is used by the libguestfs-tools
container.

By default, virtctl guestfs sets up kvm for the interactive
container, which greatly speeds up the libguest-tools
execution because it uses QEMU.

If a cluster does not have any kvm supporting nodes, you
must disable kvm by setting the option --kvm=false.

If not set, the libguestfs-tools pod remains pending
because it cannot be scheduled on any node.

--pull-policy string Shows the pull policy for the libguestfs image.

You can also overwrite the image’s pull policy by setting the
pull-policy option.

Flag Option Description

The command also checks if a PVC is in use by another pod, in which case an error message appears.
However, once the libguestfs-tools process starts, the setup cannot avoid a new pod using the same
PVC. You must verify that there are no active virtctl guestfs pods before starting the VM that accesses
the same PVC.

NOTE

The virtctl guestfs command accepts only a single PVC attached to the interactive pod.

3.2.4. Using Ansible

To use the Ansible collection for OpenShift Virtualization, see Red Hat Ansible Automation Hub
(Red Hat Hybrid Cloud Console).

OpenShift Container Platform 4.20 Virtualization

56

https://console.redhat.com/ansible/automation-hub/repo/published/redhat/openshift_virtualization

CHAPTER 4. INSTALLING

4.1. PREPARING YOUR CLUSTER FOR OPENSHIFT VIRTUALIZATION

Before you install OpenShift Virtualization, review this section to ensure that your cluster meets the
requirements.

4.1.1. Compatible platforms

You can use the following platforms with OpenShift Virtualization:

On-premise bare metal servers. See Planning a bare metal cluster for OpenShift Virtualization .

Bare metal clusters installed on ARM64-based (arm64, also known as aarch64) systems.

IBM Z® or IBM® LinuxONE (s390x architecture) systems where an OpenShift Container
Platform cluster is installed in logical partitions (LPARs). See Preparing to install on IBM Z and
IBM LinuxONE.

Cloud platforms

OpenShift Virtualization is also compatible with a variety of public cloud platforms. Each cloud
platform has specific storage provider options available. The following table outlines which platforms
are fully supported (GA) and which are currently offered as Technology Preview features.

IMPORTANT

Installing OpenShift Virtualization on certain cloud platforms is a Technology Preview
feature only. Technology Preview features are not supported with Red Hat production
service level agreements (SLAs) and might not be functionally complete. Red Hat
does not recommend using them in production. These features provide early access
to upcoming product features, enabling customers to test functionality and provide
feedback during the development process.

For more information about the support scope of Red Hat Technology Preview
features, see Technology Preview Features Support Scope .

Vendor Status Storage Related links

Amazon Web
Services (AWS)

GA Elastic Block Store (EBS),
Red Hat OpenShift Data
Foundation (ODF), Portworx, FSx
(NetApp)

Installing a cluster on
AWS with
customizations

CHAPTER 4. INSTALLING

57

https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/installing_on_bare_metal/#virt-planning-bare-metal-cluster-for-ocp-virt_preparing-to-install-on-bare-metal
https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/installing_on_ibm_z_and_ibm_linuxone/#preparing-to-install-on-ibm-z_preparing-to-install-on-ibm-z
https://access.redhat.com/support/offerings/techpreview/
https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/installing_on_aws/#installing-aws-customizations

Red Hat
OpenShift
Service on
AWS (ROSA)

GA EBS, Portworx, FSx (Q3), ODF
OpenShift Virtualization
in the Red Hat
OpenShift Service on
AWS documentation

What is Red Hat
OpenShift Service on
AWS? in the AWS
documentation

Oracle Cloud
Infrastructure
(OCI)

GA OCI native storage
OpenShift Virtualization
and Oracle Cloud
Infrastructure known
issues and limitations in
the Red Hat
Knowledgebase

Installing OpenShift
Virtualization on OCI in
the oracle-
quickstart/oci-
openshift GitHub
repository

Azure Red Hat
OpenShift
(ARO)

GA ODF
OpenShift Virtualization
for Azure Red Hat
OpenShift (preview) in
the Microsoft
documentation

Google Cloud Technology
Preview

Google Cloud native storage
OpenShift Virtualization
and Google Cloud
known storage issues
and limitations in the
Red Hat Knowledgebase

Vendor Status Storage Related links

TIP

For platform-specific networking information, see the networking overview .

Bare metal instances or servers offered by other cloud providers are not supported.

4.1.1.1. OpenShift Virtualization on AWS bare metal

You can run OpenShift Virtualization on an Amazon Web Services (AWS) bare metal OpenShift
Container Platform cluster.

NOTE

OpenShift Container Platform 4.20 Virtualization

58

https://docs.redhat.com/en/documentation/red_hat_openshift_service_on_aws/4/html/virtualization/index
https://docs.aws.amazon.com/rosa/latest/userguide/what-is-rosa.html
https://access.redhat.com/articles/7118050
https://github.com/oracle-quickstart/oci-openshift/blob/main/docs/openshift-virtualization.md
https://learn.microsoft.com/en-us/azure/openshift/howto-create-openshift-virtualization
https://access.redhat.com/articles/7120382

NOTE

OpenShift Virtualization is also supported on Red Hat OpenShift Service on AWS (ROSA)
Classic clusters, which have the same configuration requirements as AWS bare-metal
clusters.

Before you set up your cluster, review the following summary of supported features and limitations:

Installing

You can install the cluster by using installer-provisioned infrastructure, ensuring that you specify
bare-metal instance types for the worker nodes. For example, you can use the c5n.metal type
value for a machine based on x86_64 architecture. You specify bare-metal instance types by
editing the install-config.yaml file.
For more information, see the OpenShift Container Platform documentation about installing on
AWS.

Accessing virtual machines (VMs)

There is no change to how you access VMs by using the virtctl CLI tool or the OpenShift
Container Platform web console.

You can expose VMs by using a NodePort or LoadBalancer service.

NOTE

The load balancer approach is preferable because OpenShift Container Platform
automatically creates the load balancer in AWS and manages its lifecycle. A
security group is also created for the load balancer, and you can use annotations
to attach existing security groups. When you remove the service, OpenShift
Container Platform removes the load balancer and its associated resources.

Networking

You cannot use Single Root I/O Virtualization (SR-IOV) or bridge Container Network Interface
(CNI) networks, including virtual LAN (VLAN). If your application requires a flat layer 2 network
or control over the IP pool, consider using OVN-Kubernetes secondary overlay networks.

Storage

You can use any storage solution that is certified by the storage vendor to work with the
underlying platform.

IMPORTANT

AWS bare metal, Red Hat OpenShift Service on AWS, and Red Hat OpenShift
Service on AWS classic architecture clusters might have different supported
storage solutions. Ensure that you confirm support with your storage vendor.

Using Amazon Elastic File System (EFS) or Amazon Elastic Block Store (EBS) with OpenShift
Virtualization might cause performance and functionality limitations as shown in the following
table:

CHAPTER 4. INSTALLING

59

Table 4.1. EFS and EBS performance and functionality limitations

Feature EBS volume EFS volume Shared
storage
solutions

 gp2 gp3 io2

VM live
migration

Not available Not available Available Available Available

Fast VM
creation by
using cloning

Available Not available Available

VM backup
and restore
by using
snapshots

Available Not available Available

Consider using CSI storage, which supports ReadWriteMany (RWX), cloning, and snapshots to
enable live migration, fast VM creation, and VM snapshots capabilities.

Hosted control planes (HCPs)

HCPs for OpenShift Virtualization are not currently supported on AWS infrastructure.

Additional resources

Connecting a virtual machine to an OVN-Kubernetes secondary network

Exposing a virtual machine by using a service

4.1.1.2. ARM64 compatibility

Using OpenShift Virtualization on an OpenShift Container Platform cluster installed on an ARM64
system is generally available (GA).

Before using OpenShift Virtualization on an ARM64-based system, consider the following limitations:

Operating system

Only Linux-based guest operating systems are supported.

All virtualization limitations for RHEL also apply to OpenShift Virtualization. For more
information, see How virtualization on ARM64 differs from AMD64 and Intel 64 in the RHEL
documentation.

Live migration

Live migration is not supported on ARM64-based OpenShift Container Platform clusters.

Hotplug is not supported on ARM64-based clusters because it depends on live migration.

OpenShift Container Platform 4.20 Virtualization

60

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/9/html/configuring_and_managing_virtualization/assembly_feature-support-and-limitations-in-rhel-9-virtualization_configuring-and-managing-virtualization#how-virtualization-on-arm-64-differs-from-amd64-and-intel64_feature-support-and-limitations-in-rhel-9-virtualization

VM creation

RHEL 10 supports instance types and preferences, but not templates.

RHEL 9 supports templates, instance types, and preferences.

4.1.1.3. IBM Z and IBM LinuxONE compatibility

You can use OpenShift Virtualization in an OpenShift Container Platform cluster that is installed in
logical partitions (LPARs) on an IBM Z® or IBM® LinuxONE (s390x architecture) system.

Some features are not currently available on s390x architecture, while others require workarounds or
procedural changes. These lists are subject to change.

Currently unavailable features
The following features are currently not available on s390x architecture:

Memory hot plugging and hot unplugging

Node Health Check Operator

SR-IOV Operator

PCI passthrough

OpenShift Virtualization cluster checkup framework

OpenShift Virtualization on a cluster installed in FIPS mode

IPv6

IBM® Storage scale

Hosted control planes for OpenShift Virtualization

VM pages using HugePages

The following features are not applicable on s390x architecture:

virtual Trusted Platform Module (vTPM) devices

UEFI mode for VMs

USB host passthrough

Configuring virtual GPUs

Creating and managing Windows VMs

Hyper-V

Functionality differences
The following features are available for use on s390x architecture but function differently or require
procedural changes:

When deleting a virtual machine by using the web console , the grace period option is ignored.

CHAPTER 4. INSTALLING

61

When configuring the default CPU model , the spec.defaultCPUModel value is "gen15b" for an
IBM Z cluster.

When configuring a downward metrics device , if you use a VM preference, the
spec.preference.name value must be set to rhel.9.s390x or another available preference with
the format *.s390x.

When creating virtual machines from instance types , you are not allowed to set
spec.domain.memory.maxGuest because memory hot plugging is not supported on IBM Z®.

Prometheus queries for VM guests could have inconsistent outcome in comparison to x86.

4.1.2. Important considerations for any platform

Before you install OpenShift Virtualization on any platform, note the following caveats and
considerations.

Installation method considerations

You can use any installation method, including user-provisioned, installer-provisioned, or Assisted
Installer, to deploy OpenShift Container Platform. However, the installation method and the cluster
topology might affect OpenShift Virtualization functionality, such as snapshots or live migration .

Red Hat OpenShift Data Foundation

If you deploy OpenShift Virtualization with Red Hat OpenShift Data Foundation, you must create a
dedicated storage class for Windows virtual machine disks. See Optimizing ODF PersistentVolumes
for Windows VMs for details.

IPv6

OpenShift Virtualization support for single-stack IPv6 clusters is limited to the OVN-Kubernetes
localnet and Linux bridge Container Network Interface (CNI) plugins.

IMPORTANT

Deploying OpenShift Virtualization on a single-stack IPv6 cluster is a Technology
Preview feature only. Technology Preview features are not supported with Red Hat
production service level agreements (SLAs) and might not be functionally complete.
Red Hat does not recommend using them in production. These features provide early
access to upcoming product features, enabling customers to test functionality and
provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview
features, see Technology Preview Features Support Scope .

FIPS mode

If you install your cluster in FIPS mode, no additional setup is required for OpenShift Virtualization.

4.1.3. Hardware and operating system requirements

Review the following hardware and operating system requirements for OpenShift Virtualization.

4.1.3.1. CPU requirements

Supported by Red Hat Enterprise Linux (RHEL) 9.

OpenShift Container Platform 4.20 Virtualization

62

https://access.redhat.com/articles/6978371
https://access.redhat.com/support/offerings/techpreview/
https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/installation_overview/#installing-fips-mode_installing-fips

See Red Hat Ecosystem Catalog for supported CPUs.

NOTE

If your worker nodes have different CPUs, live migration failures might occur
because different CPUs have different capabilities. You can mitigate this issue by
ensuring that your worker nodes have CPUs with the appropriate capacity and by
configuring node affinity rules for your virtual machines.

See Configuring a required node affinity rule for details.

Supports AMD64, Intel 64-bit (x86-64-v2), IBM Z® (s390x), or ARM64-based (arm64 or
aarch64) architectures and their respective CPU extensions.

Intel VT-x, AMD-V, or ARM virtualization extensions are enabled, or s390x virtualization support
is enabled.

NX (no execute) flag is enabled.

If you use s390x architecture, the default CPU model is set to gen15b.

4.1.3.2. Operating system requirements

Red Hat Enterprise Linux CoreOS (RHCOS) installed on worker nodes.
See About RHCOS for details.

NOTE

RHEL worker nodes are not supported.

4.1.3.3. Storage requirements

Supported by OpenShift Container Platform. See Optimizing storage.

You must create a default OpenShift Virtualization or OpenShift Container Platform storage
class. The purpose of this is to address the unique storage needs of VM workloads and offer
optimized performance, reliability, and user experience. If both OpenShift Virtualization and
OpenShift Container Platform default storage classes exist, the OpenShift Virtualization class
takes precedence when creating VM disks.

NOTE

To mark a storage class as the default for virtualization workloads, set the annotation
storageclass.kubevirt.io/is-default-virt-class to "true".

If the storage provisioner supports snapshots, you must associate a VolumeSnapshotClass
object with the default storage class.

4.1.3.3.1. About volume and access modes for virtual machine disks

If you use the storage API with known storage providers, the volume and access modes are selected
automatically. However, if you use a storage class that does not have a storage profile, you must
configure the volume and access mode.

CHAPTER 4. INSTALLING

63

https://catalog.redhat.com
https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/nodes/#nodes-scheduler-node-affinity-configuring-required_nodes-scheduler-node-affinity
https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/architecture/#rhcos-about_architecture-rhcos
https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/scalability_and_performance/#_optimizing-storage

For a list of known storage providers for OpenShift Virtualization, see the Red Hat Ecosystem Catalog .

For best results, use the ReadWriteMany (RWX) access mode and the Block volume mode. This is
important for the following reasons:

ReadWriteMany (RWX) access mode is required for live migration.

The Block volume mode performs significantly better than the Filesystem volume mode. This
is because the Filesystem volume mode uses more storage layers, including a file system layer
and a disk image file. These layers are not necessary for VM disk storage.
For example, if you use Red Hat OpenShift Data Foundation, Ceph RBD volumes are preferable
to CephFS volumes.

IMPORTANT

You cannot live migrate virtual machines with the following configurations:

Storage volume with ReadWriteOnce (RWO) access mode

Passthrough features such as GPUs

Set the evictionStrategy field to None for these virtual machines. The None strategy
powers down VMs during node reboots.

4.1.4. Live migration requirements

Shared storage with ReadWriteMany (RWX) access mode.

Sufficient RAM and network bandwidth.

NOTE

You must ensure that there is enough memory request capacity in the cluster to
support node drains that result in live migrations. You can determine the
approximate required spare memory by using the following calculation:

Product of (Maximum number of nodes that can drain in parallel) and (Highest
total VM memory request allocations across nodes)

The default number of migrations that can run in parallel in the cluster is 5.

If the virtual machine uses a host model CPU, the nodes must support the virtual machine’s host
model CPU.

NOTE

A dedicated Multus network for live migration is highly recommended. A dedicated
network minimizes the effects of network saturation on tenant workloads during
migration.

4.1.5. Physical resource overhead requirements

OpenShift Virtualization is an add-on to OpenShift Container Platform and imposes additional overhead

OpenShift Container Platform 4.20 Virtualization

64

https://catalog.redhat.com/search?searchType=software&badges_and_features=OpenShift+Virtualization&subcategories=Storage

1

2

3

4

that you must account for when planning a cluster. Each cluster machine must accommodate the
following overhead requirements in addition to the OpenShift Container Platform requirements.
Oversubscribing the physical resources in a cluster can affect performance.

IMPORTANT

The numbers noted in this documentation are based on Red Hat’s test methodology and
setup. These numbers can vary based on your own individual setup and environments.

Memory overhead
Calculate the memory overhead values for OpenShift Virtualization by using the equations below.

Cluster memory overhead

Memory overhead per infrastructure node ≈ 150 MiB

Memory overhead per worker node ≈ 360 MiB

Additionally, OpenShift Virtualization environment resources require a total of 2179 MiB of RAM that is
spread across all infrastructure nodes.

Virtual machine memory overhead

Memory overhead per virtual machine ≈ (0.002 × requested memory) \
 + 218 MiB \ 1
 + 8 MiB × (number of vCPUs) \ 2
 + 16 MiB × (number of graphics devices) \ 3
 + (additional memory overhead) 4

Required for the processes that run in the virt-launcher pod.

Number of virtual CPUs requested by the virtual machine.

Number of virtual graphics cards requested by the virtual machine.

Additional memory overhead:

If your environment includes a Single Root I/O Virtualization (SR-IOV) network device or a
Graphics Processing Unit (GPU), allocate 1 GiB additional memory overhead for each
device.

If Secure Encrypted Virtualization (SEV) is enabled, add 256 MiB.

If Trusted Platform Module (TPM) is enabled, add 53 MiB.

CPU overhead
Calculate the cluster processor overhead requirements for OpenShift Virtualization by using the
equation below. The CPU overhead per virtual machine depends on your individual setup.

Cluster CPU overhead

CPU overhead for infrastructure nodes ≈ 4 cores

CHAPTER 4. INSTALLING

65

OpenShift Virtualization increases the overall utilization of cluster level services such as logging, routing,
and monitoring. To account for this workload, ensure that nodes that host infrastructure components
have capacity allocated for 4 additional cores (4000 millicores) distributed across those nodes.

CPU overhead for worker nodes ≈ 2 cores + CPU overhead per virtual machine

Each worker node that hosts virtual machines must have capacity for 2 additional cores (2000
millicores) for OpenShift Virtualization management workloads in addition to the CPUs required for
virtual machine workloads.

Virtual machine CPU overhead

If dedicated CPUs are requested, there is a 1:1 impact on the cluster CPU overhead requirement.
Otherwise, there are no specific rules about how many CPUs a virtual machine requires.

Storage overhead
Use the guidelines below to estimate storage overhead requirements for your OpenShift Virtualization
environment.

Cluster storage overhead

Aggregated storage overhead per node ≈ 10 GiB

10 GiB is the estimated on-disk storage impact for each node in the cluster when you install OpenShift
Virtualization.

Virtual machine storage overhead

Storage overhead per virtual machine depends on specific requests for resource allocation within the
virtual machine. The request could be for ephemeral storage on the node or storage resources hosted
elsewhere in the cluster. OpenShift Virtualization does not currently allocate any additional ephemeral
storage for the running container itself.

Example

As a cluster administrator, if you plan to host 10 virtual machines in the cluster, each with 1 GiB of RAM
and 2 vCPUs, the memory impact across the cluster is 11.68 GiB. The estimated on-disk storage impact
for each node in the cluster is 10 GiB and the CPU impact for worker nodes that host virtual machine
workloads is a minimum of 2 cores.

4.1.6. Single-node OpenShift differences

You can install OpenShift Virtualization on single-node OpenShift.

However, you should be aware that Single-node OpenShift does not support the following features:

High availability

Pod disruption

Live migration

Virtual machines or templates that have an eviction strategy configured

Additional resources

OpenShift Container Platform 4.20 Virtualization

66

Glossary of common terms for OpenShift Container Platform storage

4.1.7. Object maximums

You must consider the following tested object maximums when planning your cluster:

OpenShift Container Platform object maximums

OpenShift Virtualization supported limits

4.1.8. Cluster high-availability options

You can configure one of the following high-availability (HA) options for your cluster:

Automatic high availability for installer-provisioned infrastructure (IPI) is available by deploying
machine health checks .

NOTE

In OpenShift Container Platform clusters installed using installer-provisioned
infrastructure and with a properly configured MachineHealthCheck resource, if
a node fails the machine health check and becomes unavailable to the cluster, it is
recycled. What happens next with VMs that ran on the failed node depends on a
series of conditions. See Run strategies for more detailed information about the
potential outcomes and how run strategies affect those outcomes.

Currently, IPI is not supported on IBM Z®.

Automatic high availability for both IPI and non-IPI is available by using the Node Health Check
Operator on the OpenShift Container Platform cluster to deploy the NodeHealthCheck
controller. The controller identifies unhealthy nodes and uses a remediation provider, such as
the Self Node Remediation Operator or Fence Agents Remediation Operator, to remediate the
unhealthy nodes. For more information on remediation, fencing, and maintaining nodes, see the
Workload Availability for Red Hat OpenShift documentation.

NOTE

Fence Agents Remediation uses supported fencing agents to reset failed nodes
faster than the Self Node Remediation Operator. This improves overall virtual
machine high availability. For more information, see the OpenShift Virtualization
- Fencing and VM High Availability Guide knowledgebase article.

High availability for any platform is available by using either a monitoring system or a qualified
human to monitor node availability. When a node is lost, shut it down and run oc delete node
<lost_node>.

NOTE

Without an external monitoring system or a qualified human monitoring node
health, virtual machines lose high availability.

4.2. INSTALLING OPENSHIFT VIRTUALIZATION

CHAPTER 4. INSTALLING

67

https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/storage/#openshift-storage-common-terms_storage-overview
https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/scalability_and_performance/#planning-your-environment-according-to-object-maximums
https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/installing_on_bare_metal/#ipi-install-overview
https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/machine_management/#machine-health-checks-about_deploying-machine-health-checks
https://access.redhat.com/documentation/en-us/workload_availability_for_red_hat_openshift
https://access.redhat.com/articles/7057929

Install OpenShift Virtualization to add virtualization functionality to your OpenShift Container Platform
cluster.

IMPORTANT

If you install OpenShift Virtualization in a restricted environment with no internet
connectivity, you must configure Operator Lifecycle Manager for disconnected
environments.

If you have limited internet connectivity, you can configure proxy support in OLM to
access the software catalog.

4.2.1. Installing the OpenShift Virtualization Operator

Install the OpenShift Virtualization Operator by using the OpenShift Container Platform web console or
the command line.

4.2.1.1. Installing the OpenShift Virtualization Operator by using the web console

You can deploy the OpenShift Virtualization Operator by using the OpenShift Container Platform web
console.

Prerequisites

Install OpenShift Container Platform 4.20 on your cluster.

Log in to the OpenShift Container Platform web console as a user with cluster-admin
permissions.

Procedure

1. From the Administrator perspective, click Ecosystem → Software Catalog.

2. In the Filter by keyword field, type Virtualization.

3. Select the OpenShift Virtualization Operator tile with the Red Hat source label.

4. Read the information about the Operator and click Install.

5. On the Install Operator page:

a. Select stable from the list of available Update Channel options. This ensures that you
install the version of OpenShift Virtualization that is compatible with your OpenShift
Container Platform version.

b. For Installed Namespace, ensure that the Operator recommended namespace option is
selected. This installs the Operator in the mandatory openshift-cnv namespace, which is
automatically created if it does not exist.

OpenShift Container Platform 4.20 Virtualization

68

https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/disconnected_environments/#olm-restricted-networks
https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/operators/#olm-configuring-proxy-support

WARNING

Attempting to install the OpenShift Virtualization Operator in a
namespace other than openshift-cnv causes the installation to fail.

c. For Approval Strategy, it is highly recommended that you select Automatic, which is the
default value, so that OpenShift Virtualization automatically updates when a new version is
available in the stable update channel.
Selecting the Manual approval strategy is not recommended, as it poses a high risk to
cluster support and functionality. Only select Manual if you fully understand these risks and
cannot use Automatic.

WARNING

Because OpenShift Virtualization is only supported when used with the
corresponding OpenShift Container Platform version, missing
OpenShift Virtualization updates can cause your cluster to become
unsupported.

6. Click Install to make the Operator available to the openshift-cnv namespace.

7. When the Operator installs successfully, click Create HyperConverged.

8. Optional: Configure Infra and Workloads node placement options for OpenShift Virtualization
components.

9. Click Create to launch OpenShift Virtualization.

Verification

Navigate to the Workloads → Pods page and monitor the OpenShift Virtualization pods until
they are all Running. After all the pods display the Running state, you can use OpenShift
Virtualization.

4.2.1.2. Installing the OpenShift Virtualization Operator by using the command line

Subscribe to the OpenShift Virtualization catalog and install the OpenShift Virtualization Operator by
applying manifests to your cluster.

4.2.1.2.1. Subscribing to the OpenShift Virtualization catalog by using the CLI

Before you install OpenShift Virtualization, you must subscribe to the OpenShift Virtualization catalog.
Subscribing gives the openshift-cnv namespace access to the OpenShift Virtualization Operators.

To subscribe, configure Namespace, OperatorGroup, and Subscription objects by applying a single





CHAPTER 4. INSTALLING

69

1

To subscribe, configure Namespace, OperatorGroup, and Subscription objects by applying a single
manifest to your cluster.

Prerequisites

Install OpenShift Container Platform 4.20 on your cluster.

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

1. Create a YAML file that contains the following manifest:

Using the stable channel ensures that you install the version of OpenShift Virtualization
that is compatible with your OpenShift Container Platform version.

2. Create the required Namespace, OperatorGroup, and Subscription objects for OpenShift
Virtualization by running the following command:

Verification

You must verify that the subscription creation was successful before you can proceed with installing

apiVersion: v1
kind: Namespace
metadata:
 name: openshift-cnv
 labels:
 openshift.io/cluster-monitoring: "true"

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: kubevirt-hyperconverged-group
 namespace: openshift-cnv
spec:
 targetNamespaces:
 - openshift-cnv

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: hco-operatorhub
 namespace: openshift-cnv
spec:
 source: redhat-operators
 sourceNamespace: openshift-marketplace
 name: kubevirt-hyperconverged
 startingCSV: kubevirt-hyperconverged-operator.v4.20.0
 channel: "stable" 1

$ oc apply -f <filename>.yaml

OpenShift Container Platform 4.20 Virtualization

70

You must verify that the subscription creation was successful before you can proceed with installing
OpenShift Virtualization.

1. Check that the ClusterServiceVersion (CSV) object was created successfully. Run the
following command and verify the output:

If the CSV was created successfully, the output shows an entry that contains a NAME value of
kubevirt-hyperconverged-operator-*, a DISPLAY value of OpenShift Virtualization, and a
PHASE value of Succeeded, as shown in the following example output:

Example output

2. Check that the HyperConverged custom resource (CR) has the correct version. Run the
following command and verify the output:

Example output

3. Verify the HyperConverged CR conditions. Run the following command and check the output:

Example output

$ oc get csv -n openshift-cnv

NAME DISPLAY VERSION REPLACES
PHASE
kubevirt-hyperconverged-operator.v4.20.0 OpenShift Virtualization 4.20.0 kubevirt-
hyperconverged-operator.v4.19.0 Succeeded

$ oc get hco -n openshift-cnv kubevirt-hyperconverged -o json | jq .status.versions

{
"name": "operator",
"version": "4.20.0"
}

$ oc get hco kubevirt-hyperconverged -n openshift-cnv -o json | jq -r '.status.conditions[] |
{type,status}'

{
 "type": "ReconcileComplete",
 "status": "True"
}
{
 "type": "Available",
 "status": "True"
}
{
 "type": "Progressing",
 "status": "False"
}
{
 "type": "Degraded",
 "status": "False"
}

CHAPTER 4. INSTALLING

71

NOTE

You can configure certificate rotation parameters in the YAML file.

4.2.1.2.2. Deploying the OpenShift Virtualization Operator by using the CLI

You can deploy the OpenShift Virtualization Operator by using the oc CLI.

Prerequisites

Install the OpenShift CLI (oc).

Subscribe to the OpenShift Virtualization catalog in the openshift-cnv namespace.

Log in as a user with cluster-admin privileges.

Procedure

1. Create a YAML file that contains the following manifest:

2. Deploy the OpenShift Virtualization Operator by running the following command:

Verification

Ensure that OpenShift Virtualization deployed successfully by watching the PHASE of the
cluster service version (CSV) in the openshift-cnv namespace. Run the following command:

The following output displays if deployment was successful:

Example output

4.2.2. Next steps

{
 "type": "Upgradeable",
 "status": "True"
}

apiVersion: hco.kubevirt.io/v1beta1
kind: HyperConverged
metadata:
 name: kubevirt-hyperconverged
 namespace: openshift-cnv
spec:

$ oc apply -f <file_name>.yaml

$ watch oc get csv -n openshift-cnv

NAME DISPLAY VERSION REPLACES PHASE
kubevirt-hyperconverged-operator.v4.20.0 OpenShift Virtualization 4.20.0
Succeeded

OpenShift Container Platform 4.20 Virtualization

72

The hostpath provisioner is a local storage provisioner designed for OpenShift Virtualization. If
you want to configure local storage for virtual machines, you must enable the hostpath
provisioner first.

4.3. UNINSTALLING OPENSHIFT VIRTUALIZATION

You uninstall OpenShift Virtualization by using the web console or the command-line interface (CLI) to
delete the OpenShift Virtualization workloads, the Operator, and its resources.

4.3.1. Uninstalling OpenShift Virtualization by using the web console

You uninstall OpenShift Virtualization by using the web console to perform the following tasks:

1. Delete the HyperConverged CR.

2. Delete the OpenShift Virtualization Operator.

3. Delete the openshift-cnv namespace.

4. Delete the OpenShift Virtualization custom resource definitions (CRDs) .

IMPORTANT

You must first delete all virtual machines, and virtual machine instances.

You cannot uninstall OpenShift Virtualization while its workloads remain on the cluster.

4.3.1.1. Deleting the HyperConverged custom resource

To uninstall OpenShift Virtualization, you first delete the HyperConverged custom resource (CR).

Prerequisites

You have access to an OpenShift Container Platform cluster using an account with cluster-
admin permissions.

Procedure

1. Navigate to the Ecosystem → Installed Operators page.

2. Select the OpenShift Virtualization Operator.

3. Click the OpenShift Virtualization Deployment tab.

4. Click the Options menu beside kubevirt-hyperconverged and select Delete
HyperConverged.

5. Click Delete in the confirmation window.

4.3.1.2. Deleting Operators from a cluster using the web console

Cluster administrators can delete installed Operators from a selected namespace by using the web

CHAPTER 4. INSTALLING

73

https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/web_console/#web-console-overview_web-console

Cluster administrators can delete installed Operators from a selected namespace by using the web
console.

Prerequisites

You have access to the OpenShift Container Platform cluster web console using an account
with cluster-admin permissions.

Procedure

1. Navigate to the Ecosystem → Installed Operators page.

2. Scroll or enter a keyword into the Filter by name field to find the Operator that you want to
remove. Then, click on it.

3. On the right side of the Operator Details page, select Uninstall Operator from the Actions list.
An Uninstall Operator? dialog box is displayed.

4. Select Uninstall to remove the Operator, Operator deployments, and pods. Following this
action, the Operator stops running and no longer receives updates.

NOTE

This action does not remove resources managed by the Operator, including
custom resource definitions (CRDs) and custom resources (CRs). Dashboards
and navigation items enabled by the web console and off-cluster resources that
continue to run might need manual clean up. To remove these after uninstalling
the Operator, you might need to manually delete the Operator CRDs.

4.3.1.3. Deleting a namespace using the web console

You can delete a namespace by using the OpenShift Container Platform web console.

Prerequisites

You have access to the OpenShift Container Platform cluster using an account with cluster-
admin permissions.

Procedure

1. Navigate to Administration → Namespaces.

2. Locate the namespace that you want to delete in the list of namespaces.

3. On the far right side of the namespace listing, select Delete Namespace from the Options

menu .

4. When the Delete Namespace pane opens, enter the name of the namespace that you want to
delete in the field.

5. Click Delete.

4.3.1.4. Deleting OpenShift Virtualization custom resource definitions

OpenShift Container Platform 4.20 Virtualization

74

You can delete the OpenShift Virtualization custom resource definitions (CRDs) by using the web
console.

Prerequisites

You have access to the OpenShift Container Platform cluster using an account with cluster-
admin permissions.

Procedure

1. Navigate to Administration → CustomResourceDefinitions.

2. Select the Label filter and enter operators.coreos.com/kubevirt-hyperconverged.openshift-
cnv in the Search field to display the OpenShift Virtualization CRDs.

3. Click the Options menu beside each CRD and select Delete CustomResourceDefinition.

4.3.2. Uninstalling OpenShift Virtualization by using the CLI

You can uninstall OpenShift Virtualization by using the OpenShift CLI (oc).

Prerequisites

You have access to the OpenShift Container Platform cluster using an account with cluster-
admin permissions.

You have installed the OpenShift CLI (oc).

You have deleted all virtual machines and virtual machine instances. You cannot uninstall
OpenShift Virtualization while its workloads remain on the cluster.

Procedure

1. Delete the HyperConverged custom resource:

2. Delete the OpenShift Virtualization Operator subscription:

3. Delete the OpenShift Virtualization ClusterServiceVersion resource:

4. Delete the OpenShift Virtualization namespace:

5. List the OpenShift Virtualization custom resource definitions (CRDs) by running the oc delete

$ oc delete HyperConverged kubevirt-hyperconverged -n openshift-cnv

$ oc delete subscription hco-operatorhub -n openshift-cnv

$ oc delete csv -n openshift-cnv -l operators.coreos.com/kubevirt-hyperconverged.openshift-
cnv

$ oc delete namespace openshift-cnv

CHAPTER 4. INSTALLING

75

5. List the OpenShift Virtualization custom resource definitions (CRDs) by running the oc delete
crd command with the dry-run option:

Example output

customresourcedefinition.apiextensions.k8s.io "cdis.cdi.kubevirt.io" deleted (dry run)
customresourcedefinition.apiextensions.k8s.io
"hostpathprovisioners.hostpathprovisioner.kubevirt.io" deleted (dry run)
customresourcedefinition.apiextensions.k8s.io "hyperconvergeds.hco.kubevirt.io" deleted
(dry run)
customresourcedefinition.apiextensions.k8s.io "kubevirts.kubevirt.io" deleted (dry run)
customresourcedefinition.apiextensions.k8s.io
"networkaddonsconfigs.networkaddonsoperator.network.kubevirt.io" deleted (dry run)
customresourcedefinition.apiextensions.k8s.io "ssps.ssp.kubevirt.io" deleted (dry run)
customresourcedefinition.apiextensions.k8s.io "tektontasks.tektontasks.kubevirt.io" deleted
(dry run)

6. Delete the CRDs by running the oc delete crd command without the dry-run option:

Additional resources

Deleting virtual machines

Deleting virtual machine instances

$ oc delete crd --dry-run=client -l operators.coreos.com/kubevirt-hyperconverged.openshift-
cnv

$ oc delete crd -l operators.coreos.com/kubevirt-hyperconverged.openshift-cnv

OpenShift Container Platform 4.20 Virtualization

76

CHAPTER 5. POSTINSTALLATION CONFIGURATION

5.1. POSTINSTALLATION CONFIGURATION

The following procedures are typically performed after OpenShift Virtualization is installed. You can
configure the components that are relevant for your environment:

Node placement rules for OpenShift Virtualization Operators, workloads, and controllers

Network configuration:

Installing the Kubernetes NMState and SR-IOV Operators

Configuring a Linux bridge network for external access to virtual machines (VMs)

Configuring a dedicated secondary network for live migration

Configuring an SR-IOV network

Enabling the creation of load balancer services by using the OpenShift Container Platform
web console

Storage configuration :

Defining a default storage class for the Container Storage Interface (CSI)

Configuring local storage by using the Hostpath Provisioner (HPP)

5.2. SPECIFYING NODES FOR OPENSHIFT VIRTUALIZATION
COMPONENTS

The default scheduling for virtual machines (VMs) on bare metal nodes is appropriate. Optionally, you
can specify the nodes where you want to deploy OpenShift Virtualization Operators, workloads, and
controllers by configuring node placement rules.

NOTE

You can configure node placement rules for some components after installing OpenShift
Virtualization, but virtual machines cannot be present if you want to configure node
placement rules for workloads.

5.2.1. About node placement rules for OpenShift Virtualization components

You can use node placement rules for the following tasks:

Deploy virtual machines only on nodes intended for virtualization workloads.

Deploy Operators only on infrastructure nodes.

Maintain separation between workloads.

Depending on the object, you can use one or more of the following rule types:

nodeSelector

Allows pods to be scheduled on nodes that are labeled with the key-value pair or pairs that you

CHAPTER 5. POSTINSTALLATION CONFIGURATION

77

Allows pods to be scheduled on nodes that are labeled with the key-value pair or pairs that you
specify in this field. The node must have labels that exactly match all listed pairs.

affinity

Enables you to use more expressive syntax to set rules that match nodes with pods. Affinity also
allows for more nuance in how the rules are applied. For example, you can specify that a rule is a
preference, not a requirement. If a rule is a preference, pods are still scheduled when the rule is not
satisfied.

tolerations

Allows pods to be scheduled on nodes that have matching taints. If a taint is applied to a node, that
node only accepts pods that tolerate the taint.

5.2.2. Applying node placement rules

You can apply node placement rules by editing a Subscription, HyperConverged, or
HostPathProvisioner object using the command line.

Prerequisites

The oc CLI tool is installed.

You are logged in with cluster administrator permissions.

Procedure

1. Edit the object in your default editor by running the following command:

2. Save the file to apply the changes.

5.2.3. Node placement rule examples

You can specify node placement rules for a OpenShift Virtualization component by editing a
Subscription, HyperConverged, or HostPathProvisioner object.

5.2.3.1. Subscription object node placement rule examples

To specify the nodes where OLM deploys the OpenShift Virtualization Operators, edit the
Subscription object during OpenShift Virtualization installation.

Currently, you cannot configure node placement rules for the Subscription object by using the web
console.

The Subscription object does not support the affinity node pplacement rule.

Example Subscription object with nodeSelector rule

$ oc edit <resource_type> <resource_name> -n openshift-cnv

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: hco-operatorhub
 namespace: openshift-cnv

OpenShift Container Platform 4.20 Virtualization

78

1

1

OLM deploys the OpenShift Virtualization Operators on nodes labeled example.io/example-infra-
key = example-infra-value.

Example Subscription object with tolerations rule

OLM deploys OpenShift Virtualization Operators on nodes labeled key =
virtualization:NoSchedule taint. Only pods with the matching tolerations are scheduled on these
nodes.

5.2.3.2. HyperConverged object node placement rule example

To specify the nodes where OpenShift Virtualization deploys its components, you can edit the
nodePlacement object in the HyperConverged custom resource (CR) file that you create during
OpenShift Virtualization installation.

Example HyperConverged object with nodeSelector rule

spec:
 source: redhat-operators
 sourceNamespace: openshift-marketplace
 name: kubevirt-hyperconverged
 startingCSV: kubevirt-hyperconverged-operator.v4.20.0
 channel: "stable"
 config:
 nodeSelector:
 example.io/example-infra-key: example-infra-value 1

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: hco-operatorhub
 namespace: openshift-cnv
spec:
 source: redhat-operators
 sourceNamespace: openshift-marketplace
 name: kubevirt-hyperconverged
 startingCSV: kubevirt-hyperconverged-operator.v4.20.0
 channel: "stable"
 config:
 tolerations:
 - key: "key"
 operator: "Equal"
 value: "virtualization" 1
 effect: "NoSchedule"

apiVersion: hco.kubevirt.io/v1beta1
kind: HyperConverged
metadata:
 name: kubevirt-hyperconverged
 namespace: openshift-cnv
spec:
 infra:

CHAPTER 5. POSTINSTALLATION CONFIGURATION

79

1

2

Infrastructure resources are placed on nodes labeled example.io/example-infra-key = example-
infra-value.

workloads are placed on nodes labeled example.io/example-workloads-key = example-
workloads-value.

Example HyperConverged object with affinity rule

 nodePlacement:
 nodeSelector:
 example.io/example-infra-key: example-infra-value 1
 workloads:
 nodePlacement:
 nodeSelector:
 example.io/example-workloads-key: example-workloads-value 2

apiVersion: hco.kubevirt.io/v1beta1
kind: HyperConverged
metadata:
 name: kubevirt-hyperconverged
 namespace: openshift-cnv
spec:
 infra:
 nodePlacement:
 affinity:
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: example.io/example-infra-key
 operator: In
 values:
 - example-infra-value 1
 workloads:
 nodePlacement:
 affinity:
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: example.io/example-workloads-key 2
 operator: In
 values:
 - example-workloads-value
 preferredDuringSchedulingIgnoredDuringExecution:
 - weight: 1
 preference:
 matchExpressions:
 - key: example.io/num-cpus
 operator: Gt
 values:
 - 8 3

OpenShift Container Platform 4.20 Virtualization

80

1

2

3

1

Infrastructure resources are placed on nodes labeled example.io/example-infra-key = example-
value.

workloads are placed on nodes labeled example.io/example-workloads-key = example-
workloads-value.

Nodes that have more than eight CPUs are preferred for workloads, but if they are not available,
pods are still scheduled.

Example HyperConverged object with tolerations rule

Nodes reserved for OpenShift Virtualization components are labeled with the key =
virtualization:NoSchedule taint. Only pods with matching tolerations are scheduled on reserved
nodes.

5.2.3.3. HostPathProvisioner object node placement rule example

You can edit the HostPathProvisioner object directly or by using the web console.

WARNING

You must schedule the hostpath provisioner and the OpenShift Virtualization
components on the same nodes. Otherwise, virtualization pods that use the
hostpath provisioner cannot run. You cannot run virtual machines.

After you deploy a virtual machine (VM) with the hostpath provisioner (HPP) storage class, you can
remove the hostpath provisioner pod from the same node by using the node selector. However, you
must first revert that change, at least for that specific node, and wait for the pod to run before trying to
delete the VM.

You can configure node placement rules by specifying nodeSelector, affinity, or tolerations for the
spec.workload field of the HostPathProvisioner object that you create when you install the hostpath
provisioner.

apiVersion: hco.kubevirt.io/v1beta1
kind: HyperConverged
metadata:
 name: kubevirt-hyperconverged
 namespace: openshift-cnv
spec:
 workloads:
 nodePlacement:
 tolerations: 1
 - key: "key"
 operator: "Equal"
 value: "virtualization"
 effect: "NoSchedule"



CHAPTER 5. POSTINSTALLATION CONFIGURATION

81

1

Example HostPathProvisioner object with nodeSelector rule

Workloads are placed on nodes labeled example.io/example-workloads-key = example-
workloads-value.

5.2.4. Additional resources

Specifying nodes for virtual machines

Placing pods on specific nodes using node selectors

Controlling pod placement on nodes using node affinity rules

Controlling pod placement using node taints

5.3. POSTINSTALLATION NETWORK CONFIGURATION

By default, OpenShift Virtualization is installed with a single, internal pod network.

After you install OpenShift Virtualization, you can install networking Operators and configure additional
networks.

5.3.1. Installing networking Operators

You must install the Kubernetes NMState Operator to configure a Linux bridge network for live
migration or external access to virtual machines (VMs). For installation instructions, see Installing the
Kubernetes NMState Operator by using the web console.

You can install the SR-IOV Operator to manage SR-IOV network devices and network attachments. For
installation instructions, see Installing the SR-IOV Network Operator .

You can add the About MetalLB and the MetalLB Operator to manage the lifecycle for an instance of
MetalLB on your cluster. For installation instructions, see Installing the MetalLB Operator from the
software catalog using the web console.

5.3.2. Configuring a Linux bridge network

After you install the Kubernetes NMState Operator, you can configure a Linux bridge network for live
migration or external access to virtual machines (VMs).

apiVersion: hostpathprovisioner.kubevirt.io/v1beta1
kind: HostPathProvisioner
metadata:
 name: hostpath-provisioner
spec:
 imagePullPolicy: IfNotPresent
 pathConfig:
 path: "</path/to/backing/directory>"
 useNamingPrefix: false
 workload:
 nodeSelector:
 example.io/example-workloads-key: example-workloads-value 1

OpenShift Container Platform 4.20 Virtualization

82

https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/nodes/#nodes-scheduler-node-selectors
https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/nodes/#nodes-scheduler-node-affinity
https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/nodes/#nodes-scheduler-taints-tolerations
https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/networking_operators/#k8s-nmstate-about-the-k8s-nmstate-operator
https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/networking_operators/#installing-the-kubernetes-nmstate-operator-web-console_k8s-nmstate-operator
https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/hardware_networks/#about-sriov
https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/networking_operators/#installing-sr-iov-operator_installing-sriov-operator
https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/networking_operators/#about-metallb
https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/networking_operators/#installing-the-metallb-operator-using-web-console_metallb-operator-install

1

2

3

4

5

6

7

8

5.3.2.1. Creating a Linux bridge NNCP

You can create a NodeNetworkConfigurationPolicy (NNCP) manifest for a Linux bridge network.

Prerequisites

You have installed the Kubernetes NMState Operator.

Procedure

Create the NodeNetworkConfigurationPolicy manifest. This example includes sample values
that you must replace with your own information.

Name of the policy.

Name of the interface.

Optional: Human-readable description of the interface.

The type of interface. This example creates a bridge.

The requested state for the interface after creation.

Disables IPv4 in this example.

Disables STP in this example.

The node NIC to which the bridge is attached.

NOTE

apiVersion: nmstate.io/v1
kind: NodeNetworkConfigurationPolicy
metadata:
 name: br1-eth1-policy 1
spec:
 desiredState:
 interfaces:
 - name: br1 2
 description: Linux bridge with eth1 as a port 3
 type: linux-bridge 4
 state: up 5
 ipv4:
 enabled: false 6
 bridge:
 options:
 stp:
 enabled: false 7
 port:
 - name: eth1 8

CHAPTER 5. POSTINSTALLATION CONFIGURATION

83

NOTE

To create the NNCP manifest for a Linux bridge using OSA with IBM Z®, you must disable
VLAN filtering by the setting the rx-vlan-filter to false in the
NodeNetworkConfigurationPolicy manifest.

Alternatively, if you have SSH access to the node, you can disable VLAN filtering by
running the following command:

5.3.2.2. Creating a Linux bridge NAD by using the web console

You can create a network attachment definition (NAD) to provide layer-2 networking to pods and virtual
machines by using the OpenShift Container Platform web console.

WARNING

Configuring IP address management (IPAM) in a network attachment definition for
virtual machines is not supported.

Procedure

1. In the web console, click Networking → NetworkAttachmentDefinitions.

2. Click Create Network Attachment Definition.

NOTE

The network attachment definition must be in the same namespace as the pod or
virtual machine.

3. Enter a unique Name and optional Description.

4. Select CNV Linux bridge from the Network Type list.

5. Enter the name of the bridge in the Bridge Name field.

6. Optional: If the resource has VLAN IDs configured, enter the ID numbers in the VLAN Tag
Number field.

NOTE

OSA interfaces on IBM Z® do not support VLAN filtering and VLAN-tagged
traffic is dropped. Avoid using VLAN-tagged NADs with OSA interfaces.

7. Optional: Select MAC Spoof Check to enable MAC spoof filtering. This feature provides
security against a MAC spoofing attack by allowing only a single MAC address to exit the pod.

$ sudo ethtool -K <osa-interface-name> rx-vlan-filter off



OpenShift Container Platform 4.20 Virtualization

84

1

8. Click Create.

Next steps

Attaching a virtual machine (VM) to a Linux bridge network

5.3.3. Configuring a network for live migration

After you have configured a Linux bridge network, you can configure a dedicated network for live
migration. A dedicated network minimizes the effects of network saturation on tenant workloads during
live migration.

5.3.3.1. Configuring a dedicated secondary network for live migration

To configure a dedicated secondary network for live migration, you must first create a bridge network
attachment definition (NAD) by using the CLI. Then, you add the name of the
NetworkAttachmentDefinition object to the HyperConverged custom resource (CR).

Prerequisites

You installed the OpenShift CLI (oc).

You logged in to the cluster as a user with the cluster-admin role.

Each node has at least two Network Interface Cards (NICs).

The NICs for live migration are connected to the same VLAN.

Procedure

1. Create a NetworkAttachmentDefinition manifest according to the following example:

Example configuration file

Specify the name of the NetworkAttachmentDefinition object.

apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:
 name: my-secondary-network 1
 namespace: openshift-cnv
spec:
 config: '{
 "cniVersion": "0.3.1",
 "name": "migration-bridge",
 "type": "macvlan",
 "master": "eth1", 2
 "mode": "bridge",
 "ipam": {
 "type": "whereabouts", 3
 "range": "10.200.5.0/24" 4
 }
 }'

CHAPTER 5. POSTINSTALLATION CONFIGURATION

85

2

3

4

1

Specify the name of the NIC to be used for live migration.

Specify the name of the CNI plugin that provides the network for the NAD.

Specify an IP address range for the secondary network. This range must not overlap the IP
addresses of the main network.

2. Open the HyperConverged CR in your default editor by running the following command:

3. Add the name of the NetworkAttachmentDefinition object to the spec.liveMigrationConfig
stanza of the HyperConverged CR:

Example HyperConverged manifest

Specify the name of the Multus NetworkAttachmentDefinition object to be used for live
migrations.

4. Save your changes and exit the editor. The virt-handler pods restart and connect to the
secondary network.

Verification

When the node that the virtual machine runs on is placed into maintenance mode, the VM
automatically migrates to another node in the cluster. You can verify that the migration
occurred over the secondary network and not the default pod network by checking the target IP
address in the virtual machine instance (VMI) metadata.

5.3.3.2. Selecting a dedicated network by using the web console

You can select a dedicated network for live migration by using the OpenShift Container Platform web
console.

Prerequisites

$ oc edit hyperconverged kubevirt-hyperconverged -n openshift-cnv

apiVersion: hco.kubevirt.io/v1beta1
kind: HyperConverged
metadata:
 name: kubevirt-hyperconverged
 namespace: openshift-cnv
spec:
 liveMigrationConfig:
 completionTimeoutPerGiB: 800
 network: <network> 1
 parallelMigrationsPerCluster: 5
 parallelOutboundMigrationsPerNode: 2
 progressTimeout: 150
...

$ oc get vmi <vmi_name> -o jsonpath='{.status.migrationState.targetNodeAddress}'

OpenShift Container Platform 4.20 Virtualization

86

You configured a Multus network for live migration.

You created a network attachment definition for the network.

Procedure

1. Navigate to Virtualization > Overview in the OpenShift Container Platform web console.

2. Click the Settings tab and then click Live migration.

3. Select the network from the Live migration network list.

5.3.4. Configuring an SR-IOV network

After you install the SR-IOV Operator, you can configure an SR-IOV network.

5.3.4.1. Configuring SR-IOV network devices

The SR-IOV Network Operator adds the SriovNetworkNodePolicy.sriovnetwork.openshift.io
CustomResourceDefinition to OpenShift Container Platform. You can configure an SR-IOV network
device by creating a SriovNetworkNodePolicy custom resource (CR).

NOTE

When applying the configuration specified in a SriovNetworkNodePolicy object, the SR-
IOV Operator might drain the nodes, and in some cases, reboot nodes. Reboot only
happens in the following cases:

With Mellanox NICs (mlx5 driver) a node reboot happens every time the number
of virtual functions (VFs) increase on a physical function (PF).

With Intel NICs, a reboot only happens if the kernel parameters do not include
intel_iommu=on and iommu=pt.

It might take several minutes for a configuration change to apply.

Prerequisites

You installed the OpenShift CLI (oc).

You have access to the cluster as a user with the cluster-admin role.

You have installed the SR-IOV Network Operator.

You have enough available nodes in your cluster to handle the evicted workload from drained
nodes.

You have not selected any control plane nodes for SR-IOV network device configuration.

Procedure

1. Create an SriovNetworkNodePolicy object, and then save the YAML in the <name>-sriov-
node-network.yaml file. Replace <name> with the name for this configuration.

apiVersion: sriovnetwork.openshift.io/v1

CHAPTER 5. POSTINSTALLATION CONFIGURATION

87

1

2

3

4

5

6

7

8

Specify a name for the CR object.

Specify the namespace where the SR-IOV Operator is installed.

Specify the resource name of the SR-IOV device plugin. You can create multiple
SriovNetworkNodePolicy objects for a resource name.

Specify the node selector to select which nodes are configured. Only SR-IOV network
devices on selected nodes are configured. The SR-IOV Container Network Interface (CNI)
plugin and device plugin are deployed only on selected nodes.

Optional: Specify an integer value between 0 and 99. A smaller number gets higher priority,
so a priority of 10 is higher than a priority of 99. The default value is 99.

Optional: Specify a value for the maximum transmission unit (MTU) of the virtual function.
The maximum MTU value can vary for different NIC models.

Specify the number of the virtual functions (VF) to create for the SR-IOV physical network
device. For an Intel network interface controller (NIC), the number of VFs cannot be larger
than the total VFs supported by the device. For a Mellanox NIC, the number of VFs cannot
be larger than 127.

The nicSelector mapping selects the Ethernet device for the Operator to configure. You
do not need to specify values for all the parameters.

NOTE

It is recommended to identify the Ethernet adapter with enough precision
to minimize the possibility of selecting an Ethernet device unintentionally. If
you specify rootDevices, you must also specify a value for vendor,
deviceID, or pfNames.

If you specify both pfNames and rootDevices at the same time, ensure that they point to
an identical device.

kind: SriovNetworkNodePolicy
metadata:
 name: <name> 1
 namespace: openshift-sriov-network-operator 2
spec:
 resourceName: <sriov_resource_name> 3
 nodeSelector:
 feature.node.kubernetes.io/network-sriov.capable: "true" 4
 priority: <priority> 5
 mtu: <mtu> 6
 numVfs: <num> 7
 nicSelector: 8
 vendor: "<vendor_code>" 9
 deviceID: "<device_id>" 10
 pfNames: ["<pf_name>", ...] 11
 rootDevices: ["<pci_bus_id>", "..."] 12
 deviceType: vfio-pci 13
 isRdma: false 14

OpenShift Container Platform 4.20 Virtualization

88

9

10

11

12

13

14

Optional: Specify the vendor hex code of the SR-IOV network device. The only allowed
values are either 8086 or 15b3.

Optional: Specify the device hex code of SR-IOV network device. The only allowed values
are 158b, 1015, 1017.

Optional: The parameter accepts an array of one or more physical function (PF) names for
the Ethernet device.

The parameter accepts an array of one or more PCI bus addresses for the physical function
of the Ethernet device. Provide the address in the following format: 0000:02:00.1.

The vfio-pci driver type is required for virtual functions in OpenShift Virtualization.

Optional: Specify whether to enable remote direct memory access (RDMA) mode. For a
Mellanox card, set isRdma to false. The default value is false.

NOTE

If isRDMA flag is set to true, you can continue to use the RDMA enabled VF
as a normal network device. A device can be used in either mode.

2. Optional: Label the SR-IOV capable cluster nodes with
SriovNetworkNodePolicy.Spec.NodeSelector if they are not already labeled. For more
information about labeling nodes, see "Understanding how to update labels on nodes".

3. Create the SriovNetworkNodePolicy object:

where <name> specifies the name for this configuration.

After applying the configuration update, all the pods in sriov-network-operator namespace
transition to the Running status.

4. To verify that the SR-IOV network device is configured, enter the following command. Replace
<node_name> with the name of a node with the SR-IOV network device that you just
configured.

Next steps

Attaching a virtual machine (VM) to an SR-IOV network

5.3.5. Enabling load balancer service creation by using the web console

You can enable the creation of load balancer services for a virtual machine (VM) by using the OpenShift
Container Platform web console.

Prerequisites

$ oc create -f <name>-sriov-node-network.yaml

$ oc get sriovnetworknodestates -n openshift-sriov-network-operator <node_name> -o
jsonpath='{.status.syncStatus}'

CHAPTER 5. POSTINSTALLATION CONFIGURATION

89

You have configured a load balancer for the cluster.

You are logged in as a user with the cluster-admin role.

You created a network attachment definition for the network.

Procedure

1. Navigate to Virtualization → Overview.

2. On the Settings tab, click Cluster.

3. Expand General settings and SSH configuration.

4. Set SSH over LoadBalancer service to on.

5.4. POSTINSTALLATION STORAGE CONFIGURATION

The following storage configuration tasks are mandatory:

You must configure a default storage class for your cluster. Otherwise, the cluster cannot
receive automated boot source updates.

You must configure storage profiles if your storage provider is not recognized by CDI. A storage
profile provides recommended storage settings based on the associated storage class.

Optional: You can configure local storage by using the hostpath provisioner (HPP).

See the storage configuration overview for more options, including configuring the Containerized Data
Importer (CDI), data volumes, and automatic boot source updates.

5.4.1. Configuring local storage by using the HPP

When you install the OpenShift Virtualization Operator, the Hostpath Provisioner (HPP) Operator is
automatically installed. The HPP Operator creates the HPP provisioner.

The HPP is a local storage provisioner designed for OpenShift Virtualization. To use the HPP, you must
create an HPP custom resource (CR).

IMPORTANT

HPP storage pools must not be in the same partition as the operating system. Otherwise,
the storage pools might fill the operating system partition. If the operating system
partition is full, performance can be effected or the node can become unstable or
unusable.

5.4.1.1. Creating a storage class for the CSI driver with the storagePools stanza

To use the hostpath provisioner (HPP) you must create an associated storage class for the Container
Storage Interface (CSI) driver.

When you create a storage class, you set parameters that affect the dynamic provisioning of persistent
volumes (PVs) that belong to that storage class. You cannot update a StorageClass object’s
parameters after you create it.

NOTE

OpenShift Container Platform 4.20 Virtualization

90

https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/storage/#defining-storage-classes_dynamic-provisioning

1

2

3

NOTE

Virtual machines use data volumes that are based on local PVs. Local PVs are bound to
specific nodes. While a disk image is prepared for consumption by the virtual machine, it is
possible that the virtual machine cannot be scheduled to the node where the local
storage PV was previously pinned.

To solve this problem, use the Kubernetes pod scheduler to bind the persistent volume
claim (PVC) to a PV on the correct node. By using the StorageClass value with
volumeBindingMode parameter set to WaitForFirstConsumer, the binding and
provisioning of the PV is delayed until a pod is created using the PVC.

Procedure

1. Create a storageclass_csi.yaml file to define the storage class:

The two possible reclaimPolicy values are Delete and Retain. If you do not specify a value,
the default value is Delete.

The volumeBindingMode parameter determines when dynamic provisioning and volume
binding occur. Specify WaitForFirstConsumer to delay the binding and provisioning of a
persistent volume (PV) until after a pod that uses the persistent volume claim (PVC) is
created. This ensures that the PV meets the pod’s scheduling requirements.

Specify the name of the storage pool defined in the HPP CR.

2. Save the file and exit.

3. Create the StorageClass object by running the following command:

5.5. CONFIGURING HIGHER VM WORKLOAD DENSITY

You can increase the number of virtual machines (VMs) on nodes by overcommitting memory (RAM).
Increasing VM workload density can be useful in the following situations:

You have many similar workloads.

You have underused workloads.

NOTE

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 name: hostpath-csi
provisioner: kubevirt.io.hostpath-provisioner
reclaimPolicy: Delete 1
volumeBindingMode: WaitForFirstConsumer 2
parameters:
 storagePool: my-storage-pool 3

$ oc create -f storageclass_csi.yaml

CHAPTER 5. POSTINSTALLATION CONFIGURATION

91

NOTE

Memory overcommitment can lower workload performance on a highly utilized system.

5.5.1. Using wasp-agent to increase VM workload density

The wasp-agent component facilitates memory overcommitment by assigning swap resources to
worker nodes. It also manages pod evictions when nodes are at risk due to high swap I/O traffic or high
utilization.

IMPORTANT

Swap resources can be only assigned to virtual machine workloads (VM pods) of the
Burstable Quality of Service (QoS) class. VM pods of the Guaranteed QoS class and
pods of any QoS class that do not belong to VMs cannot swap resources.

For descriptions of QoS classes, see Configure Quality of Service for Pods (Kubernetes
documentation).

Using spec.domain.resources.requests.memory in the VM manifest disables the
memory overcommit configuration. Use spec.domain.memory.guest instead.

Prerequisites

You have installed the OpenShift CLI (oc).

You are logged into the cluster with the cluster-admin role.

A memory overcommit ratio is defined.

The node belongs to a worker pool.

NOTE

The wasp-agent component deploys an Open Container Initiative (OCI) hook to enable
swap usage for containers on the node level. The low-level nature requires the
DaemonSet object to be privileged.

Procedure

1. Configure the kubelet service to permit swap usage:

a. Create or edit a KubeletConfig file with the parameters shown in the following example:

Example of a KubeletConfig file

apiVersion: machineconfiguration.openshift.io/v1
kind: KubeletConfig
metadata:
 name: custom-config
spec:
 machineConfigPoolSelector:
 matchLabels:
 pools.operator.machineconfiguration.openshift.io/worker: '' # MCP

OpenShift Container Platform 4.20 Virtualization

92

https://kubernetes.io/docs/tasks/configure-pod-container/quality-service-pod/

b. Wait for the worker nodes to sync with the new configuration by running the following
command:

2. Provision swap by creating a MachineConfig object. For example:

 #machine.openshift.io/cluster-api-machine-role: worker # machine
 #node-role.kubernetes.io/worker: '' # node
 kubeletConfig:
 failSwapOn: false

$ oc wait mcp worker --for condition=Updated=True --timeout=-1s

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
 labels:
 machineconfiguration.openshift.io/role: worker
 name: 90-worker-swap
spec:
 config:
 ignition:
 version: 3.5.0
 systemd:
 units:
 - contents: |
 [Unit]
 Description=Provision and enable swap
 ConditionFirstBoot=no
 ConditionPathExists=!/var/tmp/swapfile

 [Service]
 Type=oneshot
 Environment=SWAP_SIZE_MB=5000
 ExecStart=/bin/sh -c "sudo dd if=/dev/zero of=/var/tmp/swapfile
count=${SWAP_SIZE_MB} bs=1M && \
 sudo chmod 600 /var/tmp/swapfile && \
 sudo mkswap /var/tmp/swapfile && \
 sudo swapon /var/tmp/swapfile && \
 free -h"

 [Install]
 RequiredBy=kubelet-dependencies.target
 enabled: true
 name: swap-provision.service
 - contents: |
 [Unit]
 Description=Restrict swap for system slice
 ConditionFirstBoot=no

 [Service]
 Type=oneshot
 ExecStart=/bin/sh -c "sudo systemctl set-property --runtime system.slice
MemorySwapMax=0 IODeviceLatencyTargetSec=\"/ 50ms\""

 [Install]

CHAPTER 5. POSTINSTALLATION CONFIGURATION

93

To have enough swap space for the worst-case scenario, make sure to have at least as much
swap space provisioned as overcommitted RAM. Calculate the amount of swap space to be
provisioned on a node by using the following formula:

Example

3. Create a privileged service account by running the following commands:

4. Wait for the worker nodes to sync with the new configuration by running the following
command:

5. Determine the pull URL for the wasp agent image by running the following command:

6. Deploy wasp-agent by creating a DaemonSet object as shown in the following example:

 RequiredBy=kubelet-dependencies.target
 enabled: true
 name: cgroup-system-slice-config.service

NODE_SWAP_SPACE = NODE_RAM * (MEMORY_OVER_COMMIT_PERCENT / 100% -
1)

NODE_SWAP_SPACE = 16 GB * (150% / 100% - 1)
 = 16 GB * (1.5 - 1)
 = 16 GB * (0.5)
 = 8 GB

$ oc adm new-project wasp

$ oc create sa -n wasp wasp

$ oc create clusterrolebinding wasp --clusterrole=cluster-admin --serviceaccount=wasp:wasp

$ oc adm policy add-scc-to-user -n wasp privileged -z wasp

$ oc wait mcp worker --for condition=Updated=True --timeout=-1s

$ oc get csv -n openshift-cnv -l=operators.coreos.com/kubevirt-hyperconverged.openshift-
cnv -ojson | jq '.items[0].spec.relatedImages[] | select(.name|test(".*wasp-agent.*")) | .image'

kind: DaemonSet
apiVersion: apps/v1
metadata:
 name: wasp-agent
 namespace: wasp
 labels:
 app: wasp
 tier: node
spec:
 selector:
 matchLabels:
 name: wasp

OpenShift Container Platform 4.20 Virtualization

94

 template:
 metadata:
 annotations:
 description: >-
 Configures swap for workloads
 labels:
 name: wasp
 spec:
 containers:
 - env:
 - name: SWAP_UTILIZATION_THRESHOLD_FACTOR
 value: "0.8"
 - name: MAX_AVERAGE_SWAP_IN_PAGES_PER_SECOND
 value: "1000000000"
 - name: MAX_AVERAGE_SWAP_OUT_PAGES_PER_SECOND
 value: "1000000000"
 - name: AVERAGE_WINDOW_SIZE_SECONDS
 value: "30"
 - name: VERBOSITY
 value: "1"
 - name: FSROOT
 value: /host
 - name: NODE_NAME
 valueFrom:
 fieldRef:
 fieldPath: spec.nodeName
 image: >-
 quay.io/openshift-virtualization/wasp-agent:v4.20 1
 imagePullPolicy: Always
 name: wasp-agent
 resources:
 requests:
 cpu: 100m
 memory: 50M
 securityContext:
 privileged: true
 volumeMounts:
 - mountPath: /host
 name: host
 - mountPath: /rootfs
 name: rootfs
 hostPID: true
 hostUsers: true
 priorityClassName: system-node-critical
 serviceAccountName: wasp
 terminationGracePeriodSeconds: 5
 volumes:
 - hostPath:
 path: /
 name: host
 - hostPath:
 path: /
 name: rootfs
 updateStrategy:
 type: RollingUpdate

CHAPTER 5. POSTINSTALLATION CONFIGURATION

95

1 Replace the image value with the image URL from the previous step.

7. Deploy alerting rules by creating a PrometheusRule object. For example:

8. Add the cluster-monitoring label to the wasp namespace by running the following command:

9. Enable memory overcommitment in OpenShift Virtualization by using the web console or the
CLI.

Web console

1. In the OpenShift Container Platform web console, go to Virtualization → Overview →
Settings → General settings → Memory density.

2. Set Enable memory density to on.

CLI

Configure your OpenShift Virtualization to enable higher memory density and set the
overcommit rate:

 rollingUpdate:
 maxUnavailable: 10%
 maxSurge: 0

apiVersion: monitoring.coreos.com/v1
kind: PrometheusRule
metadata:
 labels:
 tier: node
 wasp.io: ""
 name: wasp-rules
 namespace: wasp
spec:
 groups:
 - name: alerts.rules
 rules:
 - alert: NodeHighSwapActivity
 annotations:
 description: High swap activity detected at {{ $labels.instance }}. The rate
 of swap out and swap in exceeds 200 in both operations in the last minute.
 This could indicate memory pressure and may affect system performance.
 runbook_url: https://github.com/openshift-virtualization/wasp-
agent/tree/main/docs/runbooks/NodeHighSwapActivity.md
 summary: High swap activity detected at {{ $labels.instance }}.
 expr: rate(node_vmstat_pswpout[1m]) > 200 and rate(node_vmstat_pswpin[1m]) >
 200
 for: 1m
 labels:
 kubernetes_operator_component: kubevirt
 kubernetes_operator_part_of: kubevirt
 operator_health_impact: warning
 severity: warning

$ oc label namespace wasp openshift.io/cluster-monitoring="true"

OpenShift Container Platform 4.20 Virtualization

96

1

Successful output

Verification

1. To verify the deployment of wasp-agent, run the following command:

If the deployment is successful, the following message is displayed:

Example output

2. To verify that swap is correctly provisioned, complete the following steps:

a. View a list of worker nodes by running the following command:

b. Select a node from the list and display its memory usage by running the following command:

Replace <selected_node> with the node name.

If swap is provisioned, an amount greater than zero is displayed in the Swap: row.

Table 5.1. Example output

 total used free shared buff/cach
e

available

Mem: 31846 23155 1044 6014 14483 8690

Swap: 8191 2337 5854

3. Verify the OpenShift Virtualization memory overcommitment configuration by running the
following command:

$ oc -n openshift-cnv patch HyperConverged/kubevirt-hyperconverged --type='json' -
p='[\
 { \
 "op": "replace", \
 "path": "/spec/higherWorkloadDensity/memoryOvercommitPercentage", \
 "value": 150 \
 } \
]'

hyperconverged.hco.kubevirt.io/kubevirt-hyperconverged patched

$ oc rollout status ds wasp-agent -n wasp

daemon set "wasp-agent" successfully rolled out

$ oc get nodes -l node-role.kubernetes.io/worker

$ oc debug node/<selected_node> -- free -m 1

CHAPTER 5. POSTINSTALLATION CONFIGURATION

97

Example output

The returned value must match the value you had previously configured.

5.5.2. Removing the wasp-agent component

If you no longer need memory overcommitment, you can remove the wasp-agent component and
associated resources from your cluster.

Prerequisites

You are logged in to the cluster with the cluster-admin role.

You have installed the OpenShift CLI (oc).

Procedure

1. Remove the wasp-agent DaemonSet:

2. If deployed, remove the alerting rules:

3. Optionally, delete the wasp namespace if no other resources depend on it:

4. Revert the memory overcommitment configuration:

5. Delete the MachineConfig that provisions swap memory:

6. Delete the associated KubeletConfig:

7. Wait for the worker nodes to reconcile:

$ oc -n openshift-cnv get HyperConverged/kubevirt-hyperconverged -o
jsonpath='{.spec.higherWorkloadDensity}{"\n"}'

{"memoryOvercommitPercentage":150}

$ oc delete daemonset wasp-agent -n wasp

$ oc delete prometheusrule wasp-rules -n wasp

$ oc delete namespace wasp

$ oc -n openshift-cnv patch HyperConverged/kubevirt-hyperconverged \
 --type='json' \
 -p='[{"op": "remove", "path": "/spec/higherWorkloadDensity"}]'

$ oc delete machineconfig 90-worker-swap

$ oc delete kubeletconfig custom-config

$ oc wait mcp worker --for condition=Updated=True --timeout=-1s

OpenShift Container Platform 4.20 Virtualization

98

Verification

Confirm that the wasp-agent DaemonSet is removed:

No wasp-agent should be listed.

Confirm that swap is no longer enabled on a node:

Ensure that the Swap: row shows 0 or that no swap space shows as provisioned.

5.5.3. Pod eviction conditions used by wasp-agent

The wasp agent manages pod eviction when the system is heavily loaded and nodes are at risk. Eviction
is triggered if one of the following conditions is met:

High swap I/O traffic

This condition is met when swap-related I/O traffic is excessively high.

Condition

By default, maxAverageSwapInPagesPerSecond and maxAverageSwapOutPagesPerSecond
are set to 1000 pages. The default time interval for calculating the average is 30 seconds.

High swap utilization

This condition is met when swap utilization is excessively high, causing the current virtual memory
usage to exceed the factored threshold. The NODE_SWAP_SPACE setting in your MachineConfig
object can impact this condition.

Condition

5.5.3.1. Environment variables

You can use the following environment variables to adjust the values used to calculate eviction
conditions:

Environment variable Function

MAX_AVERAGE_SWAP_IN_PAGES_PER_SE
COND

Sets the value of
maxAverageSwapInPagesPerSecond.

$ oc get daemonset -n wasp

$ oc debug node/<selected_node> -- free -m

averageSwapInPerSecond > maxAverageSwapInPagesPerSecond
&&
averageSwapOutPerSecond > maxAverageSwapOutPagesPerSecond

nodeWorkingSet + nodeSwapUsage < totalNodeMemory + totalSwapMemory × thresholdFactor

CHAPTER 5. POSTINSTALLATION CONFIGURATION

99

1

2

MAX_AVERAGE_SWAP_OUT_PAGES_PER_S
ECOND

Sets the value of
maxAverageSwapOutPagesPerSecond.

SWAP_UTILIZATION_THRESHOLD_FACTOR Sets the thresholdFactor value used to calculate
high swap utilization.

AVERAGE_WINDOW_SIZE_SECONDS Sets the time interval for calculating the average
swap usage.

5.6. CONFIGURING CERTIFICATE ROTATION

Configure certificate rotation parameters to replace existing certificates.

5.6.1. Configuring certificate rotation

You can do this during OpenShift Virtualization installation in the web console or after installation in the
HyperConverged custom resource (CR).

Prerequisites

You have installed the OpenShift CLI (oc).

Procedure

1. Open the HyperConverged CR by running the following command:

2. Edit the spec.certConfig fields as shown in the following example. To avoid overloading the
system, ensure that all values are greater than or equal to 10 minutes. Express all values as
strings that comply with the golang ParseDuration format.

The value of ca.renewBefore must be less than or equal to the value of ca.duration.

The value of server.duration must be less than or equal to the value of ca.duration.

$ oc edit hyperconverged kubevirt-hyperconverged -n openshift-cnv

apiVersion: hco.kubevirt.io/v1beta1
kind: HyperConverged
metadata:
 name: kubevirt-hyperconverged
 namespace: openshift-cnv
spec:
 certConfig:
 ca:
 duration: 48h0m0s
 renewBefore: 24h0m0s 1
 server:
 duration: 24h0m0s 2
 renewBefore: 12h0m0s 3

OpenShift Container Platform 4.20 Virtualization

100

https://golang.org/pkg/time/#ParseDuration

3 The value of server.renewBefore must be less than or equal to the value of
server.duration.

3. Apply the YAML file to your cluster.

5.6.2. Troubleshooting certificate rotation parameters

Deleting one or more certConfig values causes them to revert to the default values, unless the default
values conflict with one of the following conditions:

The value of ca.renewBefore must be less than or equal to the value of ca.duration.

The value of server.duration must be less than or equal to the value of ca.duration.

The value of server.renewBefore must be less than or equal to the value of server.duration.

If the default values conflict with these conditions, you will receive an error.

If you remove the server.duration value in the following example, the default value of 24h0m0s is
greater than the value of ca.duration, conflicting with the specified conditions.

Example

This results in the following error message:

The error message only mentions the first conflict. Review all certConfig values before you proceed.

certConfig:
 ca:
 duration: 4h0m0s
 renewBefore: 1h0m0s
 server:
 duration: 4h0m0s
 renewBefore: 4h0m0s

error: hyperconvergeds.hco.kubevirt.io "kubevirt-hyperconverged" could not be patched: admission
webhook "validate-hco.kubevirt.io" denied the request: spec.certConfig: ca.duration is smaller than
server.duration

CHAPTER 5. POSTINSTALLATION CONFIGURATION

101

CHAPTER 6. VIRTUALIZATION WITH IBM FUSION ACCESS
FOR SAN

6.1. IBM FUSION ACCESS FOR SAN OVERVIEW

6.1.1. About IBM Fusion Access for SAN

IBM Fusion Access for SAN is a solution that provides a scalable clustered file system for enterprise
storage, primarily designed to offer access to consolidated, block-level data storage. It presents storage
devices, such as disk arrays, to the operating system as if they were direct-attached storage.

This solution is particularly geared towards enterprise storage for Red Hat OpenShift Virtualization and
leverages existing Storage Area Network (SAN) infrastructure. A SAN is a dedicated network of storage
devices that is typically not accessible through the local area network (LAN).

6.1.1.1. Why use Fusion Access for SAN?

Easy user experience

Fusion Access for SAN features a wizard-driven user interface (UI) for installing and configuring
storage clusters, file systems, and storage classes, to simplify the setup process.

Leverage existing infrastructure

Organizations can leverage their existing SAN investments, including Fibre Channel (FC) and iSCSI
technologies, as they transition to or expand with OpenShift Virtualization.

Scalability

The storage cluster is designed to scale with OpenShift Container Platform clusters and virtual
machine (VM) workloads. It can support up to approximately 3000 VMs on 6 bare-metal hosts, with
possibilities for further scaling by adding more file systems or using specific storage class
parameters.

Consolidated and shared storage

SANs enable multiple servers to access a large, shared data storage capacity. This architecture
facilitates automatic data backup and continuous monitoring of the storage and backup processes.

High-speed data transfer

By using a dedicated high-speed network for storage, Fusion Access for SAN overcomes the data
transfer bottlenecks that can occur over a traditional LAN, especially for large volumes of data.

File-level access

Although a SAN primarily operates at the block level, file systems built on top of SAN storage can
provide file-level access through shared-disk file systems.

Centralized management

The underlying SAN software manages servers, storage devices, and the network to ensure that data
moves directly between storage devices with minimal server intervention. It also supports centralized
management and configuration of SAN components like Logical Unit Numbers (LUNs).

6.1.2. Prerequisites and Limitations for Fusion Access for SAN

6.1.2.1. Prerequisites

Installing and configuring Fusion Access for SAN require the following prerequisites:

OpenShift Container Platform 4.20 Virtualization

102

Bare-metal worker nodes with attached SAN storage.

A working container registry enabled.

All worker nodes must connect to the same LUNs.
A shared LUN is a shared disk that is accessed by all worker nodes simultaneously.

A Kubernetes pull secret.

6.1.2.2. Limitations

Limitations for Fusion Access for SAN rely on the IBM Storage Scale container native limitations
and can be found in the documentation for IBM Storage Scale container native .

Hosted control planes (HCP) clusters are not supported.

6.2. INSTALLING AND CONFIGURING IBM FUSION ACCESS FOR SAN

To use Red Hat OpenShift Virtualization with IBM Fusion Access for SAN, you must first install the
Fusion Access for SAN Operator.

Then you must create a Kubernetes pull secret and create the FusionAccess custom resource (CR).

Finally, follow the Red Hat OpenShift Container Platform web console wizard to configure the storage
cluster, local disk, and file systems.

6.2.1. Installing the Fusion Access for SAN Operator

Install the Fusion Access for SAN Operator from the software catalog in the OpenShift Container
Platform web console.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

You have a working container registry enabled.

Procedure

1. In the OpenShift Container Platform web console, navigate to Ecosystem → Software Catalog.

2. In the Filter by keyword field, type Fusion Access for SAN.

3. Select the Fusion Access for SAN tile and click Install.

4. On the Install Operator page, keep the default selections for Update Channel, Version, and
Installation mode.

5. Verify that Operator recommended Namespace is selected for Installed Namespace.
This installs the Operator in the ibm-fusion-access namespace. If this namespace does not yet
exist, it is automatically created.

CHAPTER 6. VIRTUALIZATION WITH IBM FUSION ACCESS FOR SAN

103

https://www.ibm.com/docs/en/scalecontainernative/5.2.3?topic=overview-limitations

WARNING

You must install the Fusion Access for SAN Operator in the ibm-fusion-
access namespace. Installation in any other namespace is not supported.

6. Verify that the Automatic default is selected for Update Approval.
This enables automatic updates when a new z-stream release is available.

7. Click Install.
This installs the Operator.

Verification

1. Navigate to Ecosystem → Installed Operators.

2. Verify that the Fusion Access for SAN Operator is displayed.

6.2.2. Creating a Kubernetes pull secret

After installing the Fusion Access for SAN Operator, you must create a Kubernetes secret object to hold
the IBM entitlement key for pulling the required container images from the IBM container registry.

Prerequisites

You installed the oc CLI.

You have access to the cluster as a user with the cluster-admin role.

You installed the Fusion Access for SAN Operator and created the ibm-fusion-access
namespace in the process.

Procedure

1. Log in to the IBM Container software library with your Fusion Access for SAN IBMid and
password.

2. In the IBM Container software library, get the entitlement key:

a. If you do not have an entitlement key yet, click Get entitlement key or Add new key, and
then click Copy.

b. If you already have an entitlement key, click Copy.

3. Save the entitlement key in a safe place.

4. Create the secret object by running the oc create command:



$ oc create secret -n ibm-fusion-access generic fusion-pullsecret \
--from-literal=ibm-entitlement-key=<ibm-entitlement-key> 1

OpenShift Container Platform 4.20 Virtualization

104

https://myibm.ibm.com/products-services/containerlibrary

1 This is the entitlement key you copied in step 2 from the IBM Container software library.

Verification

1. In the OpenShift Container Platform web console, navigate to Workloads → Secrets.

2. Find the fusion-pullsecret in the list.

6.2.3. Creating the FusionAccess CR

After installing the Fusion Access for SAN Operator and creating a Kubernetes pull secret, you must
create the FusionAccess custom resource (CR).

Creating the FusionAccess CR triggers the installation of the correct version of IBM Storage Scale and
detects worker nodes with shared LUNs.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

You installed the Fusion Access for SAN Operator.

You created a Kubernetes pull secret.

Procedure

1. In the OpenShift Container Platform web console, navigate to Ecosystem → Installed
Operators.

2. Click on the Fusion Access for SAN Operator you installed.

3. In the Fusion Access for SAN page, select the Fusion Access tab.

4. Click Create FusionAccess.

5. On the Create FusionAccess page, enter the object Name.

6. Optional: You can choose to add Labels if they are relevant.

7. Select the IBM Storage Scale Version from the drop-down list.

8. Click Create.

Verification

In the Fusion Access for SAN Operator page, in the Fusion Access tab, verify that the created
FusionAccess CR appears with the status Ready.

6.2.4. Creating a storage cluster with Fusion Access for SAN

Once you have installed the Fusion Access for SAN Operator, you can create a storage cluster with
shared storage nodes.

The wizard for creating the storage cluster in the OpenShift Container Platform web console provides

CHAPTER 6. VIRTUALIZATION WITH IBM FUSION ACCESS FOR SAN

105

The wizard for creating the storage cluster in the OpenShift Container Platform web console provides
easy-to-follow steps and lists the relevant worker nodes with shared disks.

Prerequisites

You have bare-metal worker nodes with visible and attached shared LUNs.
A shared LUN is a shared disk that is accessed by all workers simultaneously.

You installed the Fusion Access for SAN Operator.

You created the FusionAccess custom resource (CR) in the ibm-fusion-access namespace.

Procedure

1. In the OpenShift Container Platform web console, navigate to Storage → Fusion Access for
SAN.

2. Click Create storage cluster.

3. Select the worker nodes that have shared LUNs.

NOTE

You can only select worker nodes with a minimum of 20 GB of RAM from the list.

4. Click Create storage cluster.
The page reloads, opening the Fusion Access for SAN page for the new storage cluster.

6.2.5. Creating a file system with Fusion Access for SAN

You need to create a file system to represent your required storage.

The file system is based on the storage available in the worker nodes you selected when creating the
storage cluster.

Prerequisites

You created a Fusion Access for SAN storage cluster.

Procedure

1. In the OpenShift Container Platform web console, navigate to Storage → Fusion Access for
SAN.

2. In the File systems tab, click Create file system.

3. Enter a Name for the new file system.

4. Select the LUNs that you want to use as the storage volumes for your file system.

5. Click Create file system.
The Fusion Access for SAN page reloads, and the new file system appears in the File systems
tab.

Next steps

OpenShift Container Platform 4.20 Virtualization

106

Repeat this procedure for each file system that you want to create.

Verification

1. Watch the Status of the file system in the File systems tab until it is marked as Healthy.

NOTE

This may take several minutes.

2. Click on the StorageClass for the file system.

3. In the YAML tab, verify the following:

a. The value in the name field is the name of the file system you created.

b. The value in the provisioner field is spectrumscale.csi.ibm.com.

c. The value in the volBackendFs field matches the name of the file system you created.

6.2.6. Next steps

Once you create a storage cluster with file systems, you can create a virtual machine (VM) on the
storage cluster.

Create a VM from an instance type or template and select a storage class that corresponds to one of
the file systems you created as the storage type.

Creating virtual machines from instance types .

Creating virtual machines from templates .

6.2.7. IBM Fusion Access for SAN release updates

Release updates for IBM Fusion Access for SAN, including new features, bug fixes, and known issues.

6.2.7.1. New and changed features

Image registry requirements for kernel module management

IBM Fusion Access for SAN uses the OpenShift Container Platform image registry to manage the

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
 name: filesystem1
 uid: eb410309-a043-a89b-9bb05483872a
 resourceVersion: '87746'
 creationTimestamp: '2025-05-14T12:30:08Z'
 managedFields:
provisioner: spectrumscale.csi.ibm.com
parameters:
 volBackendFs: filesystem1
reclaimPolicy: Delete
allowVolumeExpansion: true
volumeBindingMode: Immediate

CHAPTER 6. VIRTUALIZATION WITH IBM FUSION ACCESS FOR SAN

107

IBM Fusion Access for SAN uses the OpenShift Container Platform image registry to manage the
kernel module. Do not configure the registry to use emptyDir storage because it provides only
temporary storage and is not suitable for production use. Configure IBM Fusion Access for SAN to
use a different image registry by creating a config map and secret after installing the Operator and
before creating the FusionAccess CR. (OCPNAS-213)

6.2.7.2. Bug fixes

Filesystem creation button stays disabled until daemons are ready

The IBM Fusion Access for SAN Operator was updated to check the readiness of filesystem
daemons before allowing a filesystem to be created. The Create file system button in the web
console now stays disabled with a tooltip explaining the condition until the environment is ready. This
change prevents filesystems from appearing stuck during creation. (OCPNAS-184)

Filesystems cannot be deleted from the user interface

The OpenShift Container Platform web console does not support deleting filesystems. To delete a
filesystem, use the OpenShift CLI (oc). (OCPNAS-217)

6.2.7.3. Known issues

Filesystem creation might fail during core pod deletion

Filesystem creation might fail if core pods are deleted at the same time. The filesystem might be
partially created on the LUN, which results in the following persistent error:

No workaround is available. Contact IBM Support for assistance. (OCPNAS-233)

Disk <ID> may still belong to an active file system

OpenShift Container Platform 4.20 Virtualization

108

https://issues.redhat.com/browse/OCPNAS-213
https://issues.redhat.com/browse/OCPNAS-184
https://issues.redhat.com/browse/OCPNAS-217
https://issues.redhat.com/browse/OCPNAS-233

CHAPTER 7. UPDATING

7.1. UPDATING OPENSHIFT VIRTUALIZATION

Learn how to keep OpenShift Virtualization updated and compatible with OpenShift Container
Platform.

7.1.1. About updating OpenShift Virtualization

When you install OpenShift Virtualization, you select an update channel and an approval strategy. The
update channel determines the versions that OpenShift Virtualization will be updated to. The approval
strategy setting determines whether updates occur automatically or require manual approval. Both
settings can impact supportability.

7.1.1.1. Recommended settings

To maintain a supportable environment, use the following settings:

Update channel: stable

Approval strategy: Automatic

With these settings, the update process automatically starts when a new version of the Operator is
available in the stable channel. This ensures that your OpenShift Virtualization and OpenShift Container
Platform versions remain compatible, and that your version of OpenShift Virtualization is suitable for
production environments.

NOTE

Each minor version of OpenShift Virtualization is supported only if you run the
corresponding OpenShift Container Platform version. For example, you must run
OpenShift Virtualization 4.20 on OpenShift Container Platform 4.20.

7.1.1.2. What to expect

The amount of time an update takes to complete depends on your network connection. Most
automatic updates complete within fifteen minutes.

Updating OpenShift Virtualization does not interrupt network connections.

Data volumes and their associated persistent volume claims are preserved during an update.

IMPORTANT

If you have virtual machines running that use hostpath provisioner storage, they cannot
be live migrated and might block an OpenShift Container Platform cluster update.

As a workaround, you can reconfigure the virtual machines so that they can be powered
off automatically during a cluster update. Set the evictionStrategy field to None and the
runStrategy field to Always.

7.1.1.3. How updates work

Operator Lifecycle Manager (OLM) manages the lifecycle of the OpenShift Virtualization

CHAPTER 7. UPDATING

109

Operator Lifecycle Manager (OLM) manages the lifecycle of the OpenShift Virtualization
Operator. The Marketplace Operator, which is deployed during OpenShift Container Platform
installation, makes external Operators available to your cluster.

OLM provides z-stream and minor version updates for OpenShift Virtualization. Minor version
updates become available when you update OpenShift Container Platform to the next minor
version. You cannot update OpenShift Virtualization to the next minor version without first
updating OpenShift Container Platform.

7.1.1.4. RHEL 9 compatibility

OpenShift Virtualization 4.20 is based on Red Hat Enterprise Linux (RHEL) 9. You can update to
OpenShift Virtualization 4.20 from a version that was based on RHEL 8 by following the standard
OpenShift Virtualization update procedure. No additional steps are required.

As in previous versions, you can perform the update without disrupting running workloads. OpenShift
Virtualization 4.20 supports live migration from RHEL 8 nodes to RHEL 9 nodes.

7.1.1.4.1. RHEL 9 machine type

All VM templates that are included with OpenShift Virtualization now use the RHEL 9 machine type by
default: machineType: pc-q35-rhel9.<y>.0, where <y> is a single digit corresponding to the latest
minor version of RHEL 9. For example, the value pc-q35-rhel9.2.0 is used for RHEL 9.2.

Updating OpenShift Virtualization does not change the machineType value of any existing VMs. These
VMs continue to function as they did before the update. You can optionally change a VM’s machine type
so that it can benefit from RHEL 9 improvements.

IMPORTANT

Before you change a VM’s machineType value, you must shut down the VM.

7.1.2. Monitoring update status

To monitor the status of a OpenShift Virtualization Operator update, watch the cluster service version
(CSV) PHASE. You can also monitor the CSV conditions in the web console or by running the command
provided here.

NOTE

The PHASE and conditions values are approximations that are based on available
information.

Prerequisites

Log in to the cluster as a user with the cluster-admin role.

Install the OpenShift CLI (oc).

Procedure

1. Run the following command:

$ oc get csv -n openshift-cnv

OpenShift Container Platform 4.20 Virtualization

110

2. Review the output, checking the PHASE field. For example:

Example output

3. Optional: Monitor the aggregated status of all OpenShift Virtualization component conditions
by running the following command:

A successful upgrade results in the following output:

Example output

7.1.3. VM workload updates

When you update OpenShift Virtualization, virtual machine workloads, including libvirt, virt-launcher,
and qemu, update automatically if they support live migration.

NOTE

Each virtual machine has a virt-launcher pod that runs the virtual machine instance
(VMI). The virt-launcher pod runs an instance of libvirt, which is used to manage the
virtual machine (VM) process.

You can configure how workloads are updated by editing the spec.workloadUpdateStrategy stanza of
the HyperConverged custom resource (CR). There are two available workload update methods:
LiveMigrate and Evict.

Because the Evict method shuts down VMI pods, only the LiveMigrate update strategy is enabled by
default.

When LiveMigrate is the only update strategy enabled:

VMIs that support live migration are migrated during the update process. The VM guest moves
into a new pod with the updated components enabled.

VMIs that do not support live migration are not disrupted or updated.

If a VMI has the LiveMigrate eviction strategy but does not support live migration, it is not
updated.

If you enable both LiveMigrate and Evict:

VERSION REPLACES PHASE
4.9.0 kubevirt-hyperconverged-operator.v4.8.2 Installing
4.9.0 kubevirt-hyperconverged-operator.v4.9.0 Replacing

$ oc get hyperconverged kubevirt-hyperconverged -n openshift-cnv \
 -o=jsonpath='{range .status.conditions[*]}{.type}{"\t"}{.status}{"\t"}{.message}{"\n"}{end}'

ReconcileComplete True Reconcile completed successfully
Available True Reconcile completed successfully
Progressing False Reconcile completed successfully
Degraded False Reconcile completed successfully
Upgradeable True Reconcile completed successfully

CHAPTER 7. UPDATING

111

VMIs that support live migration use the LiveMigrate update strategy.

VMIs that do not support live migration use the Evict update strategy. If a VMI is controlled by a
VirtualMachine object that has runStrategy: Always set, a new VMI is created in a new pod
with updated components.

Migration attempts and timeouts
When updating workloads, live migration fails if a pod is in the Pending state for the following periods:

5 minutes

If the pod is pending because it is Unschedulable.

15 minutes

If the pod is stuck in the pending state for any reason.

When a VMI fails to migrate, the virt-controller tries to migrate it again. It repeats this process until all
migratable VMIs are running on new virt-launcher pods. If a VMI is improperly configured, however,
these attempts can repeat indefinitely.

NOTE

Each attempt corresponds to a migration object. Only the five most recent attempts are
held in a buffer. This prevents migration objects from accumulating on the system while
retaining information for debugging.

7.1.3.1. Configuring workload update methods

You can configure workload update methods by editing the HyperConverged custom resource (CR).

Prerequisites

To use live migration as an update method, you must first enable live migration in the cluster.

NOTE

If a VirtualMachineInstance CR contains evictionStrategy: LiveMigrate and
the virtual machine instance (VMI) does not support live migration, the VMI will
not update.

You have installed the OpenShift CLI (oc).

Procedure

1. To open the HyperConverged CR in your default editor, run the following command:

2. Edit the workloadUpdateStrategy stanza of the HyperConverged CR. For example:

$ oc edit hyperconverged kubevirt-hyperconverged -n openshift-cnv

apiVersion: hco.kubevirt.io/v1beta1
kind: HyperConverged
metadata:
 name: kubevirt-hyperconverged

OpenShift Container Platform 4.20 Virtualization

112

1

2

3

4

5

The methods that can be used to perform automated workload updates. The available
values are LiveMigrate and Evict. If you enable both options as shown in this example,
updates use LiveMigrate for VMIs that support live migration and Evict for any VMIs that
do not support live migration. To disable automatic workload updates, you can either
remove the workloadUpdateStrategy stanza or set workloadUpdateMethods: [] to leave
the array empty.

The least disruptive update method. VMIs that support live migration are updated by
migrating the virtual machine (VM) guest into a new pod with the updated components
enabled. If LiveMigrate is the only workload update method listed, VMIs that do not
support live migration are not disrupted or updated.

A disruptive method that shuts down VMI pods during upgrade. Evict is the only update
method available if live migration is not enabled in the cluster. If a VMI is controlled by a
VirtualMachine object that has runStrategy: Always configured, a new VMI is created in a
new pod with updated components.

The number of VMIs that can be forced to be updated at a time by using the Evict method.
This does not apply to the LiveMigrate method.

The interval to wait before evicting the next batch of workloads. This does not apply to the
LiveMigrate method.

NOTE

You can configure live migration limits and timeouts by editing the
spec.liveMigrationConfig stanza of the HyperConverged CR.

3. To apply your changes, save and exit the editor.

7.1.3.2. Viewing outdated VM workloads

You can view a list of outdated virtual machine (VM) workloads by using the CLI.

NOTE

If there are outdated virtualization pods in your cluster, the
OutdatedVirtualMachineInstanceWorkloads alert fires.

Prerequisites

You have installed the OpenShift CLI (oc).

Procedure

spec:
 workloadUpdateStrategy:
 workloadUpdateMethods: 1
 - LiveMigrate 2
 - Evict 3
 batchEvictionSize: 10 4
 batchEvictionInterval: "1m0s" 5
...

CHAPTER 7. UPDATING

113

Procedure

To view a list of outdated virtual machine instances (VMIs), run the following command:

NOTE

To ensure that VMIs update automatically, configure workload updates.

7.1.4. Control Plane Only updates

Every even-numbered minor version of OpenShift Container Platform is an Extended Update Support
(EUS) version. However, Kubernetes design mandates serial minor version updates, so you cannot
directly update from one EUS version to the next. An EUS-to-EUS update starts with updating
OpenShift Virtualization to the latest z-stream of the next odd-numbered minor version. Next, update
OpenShift Container Platform to the target EUS version. When the OpenShift Container Platform
update succeeds, the corresponding update for OpenShift Virtualization becomes available. You can
now update OpenShift Virtualization to the target EUS version.

NOTE

You can directly update OpenShift Virtualization to the latest z-stream release of your
current minor version without applying each intermediate z-stream update.

For more information about EUS versions, see the Red Hat OpenShift Container Platform Life Cycle
Policy.

7.1.4.1. Prerequisites

Before beginning a Control Plane Only update, you must:

Pause worker nodes' machine config pools before you start a Control Plane Only update so that
the workers are not rebooted twice.

Disable automatic workload updates before you begin the update process. This is to prevent
OpenShift Virtualization from migrating or evicting your virtual machines (VMs) until you update
to your target EUS version.

NOTE

By default, OpenShift Virtualization automatically updates workloads, such as the virt-
launcher pod, when you update the OpenShift Virtualization Operator. You can configure
this behavior in the spec.workloadUpdateStrategy stanza of the HyperConverged
custom resource.

Learn more about Performing a Control Plane Only update .

7.1.4.2. Preventing workload updates during a Control Plane Only update

When you update from one Extended Update Support (EUS) version to the next, you must manually
disable automatic workload updates to prevent OpenShift Virtualization from migrating or evicting
workloads during the update process.

$ oc get vmi -l kubevirt.io/outdatedLauncherImage --all-namespaces

OpenShift Container Platform 4.20 Virtualization

114

https://access.redhat.com/support/policy/updates/openshift
https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/updating_clusters/#control-plane-only-update

IMPORTANT

In OpenShift Container Platform 4.16, the underlying Red Hat Enterprise Linux CoreOS
(RHCOS) upgraded to version 9.4 of Red Hat Enterprise Linux (RHEL). To operate
correctly, all virt-launcher pods in the cluster need to use the same version of RHEL.

After upgrading to OpenShift Container Platform 4.16 from an earlier version, re-enable
workload updates in OpenShift Virtualization to allow virt-launcher pods to update.
Before upgrading to the next OpenShift Container Platform version, verify that all VMIs
use up-to-date workloads:

If the previous command returns a value larger than 0, list all VMIs with outdated virt-
launcher pods and start live migration to update them to a new version:

For the list of supported OpenShift Container Platform releases and the RHEL versions
they use, see RHEL Versions Utilized by RHCOS and OpenShift Container Platform .

Prerequisites

You have installed the OpenShift CLI (oc).

You are running an EUS version of OpenShift Container Platform and want to update to the
next EUS version. You have not yet updated to the odd-numbered version in between.

You read "Preparing to perform a Control Plane Only update" and learned the caveats and
requirements that pertain to your OpenShift Container Platform cluster.

You paused the worker nodes' machine config pools as directed by the OpenShift Container
Platform documentation.

It is recommended that you use the default Automatic approval strategy. If you use the Manual
approval strategy, you must approve all pending updates in the web console. For more details,
refer to the "Manually approving a pending Operator update" section.

Procedure

1. Run the following command and record the workloadUpdateMethods configuration:

2. Turn off all workload update methods by running the following command:

Example output

$ oc get kv kubevirt-kubevirt-hyperconverged -o json -n openshift-cnv | jq
.status.outdatedVirtualMachineInstanceWorkloads

$ oc get vmi -l kubevirt.io/outdatedLauncherImage --all-namespaces

$ oc get kv kubevirt-kubevirt-hyperconverged \
 -n openshift-cnv -o jsonpath='{.spec.workloadUpdateStrategy.workloadUpdateMethods}'

$ oc patch hyperconverged kubevirt-hyperconverged -n openshift-cnv \
 --type json -p
'[{"op":"replace","path":"/spec/workloadUpdateStrategy/workloadUpdateMethods", "value":[]}]'

CHAPTER 7. UPDATING

115

https://access.redhat.com/articles/6907891

3. Ensure that the HyperConverged Operator is Upgradeable before you continue. Enter the
following command and monitor the output:

Example 7.1. Example output

hyperconverged.hco.kubevirt.io/kubevirt-hyperconverged patched

$ oc get hyperconverged kubevirt-hyperconverged -n openshift-cnv -o json | jq
".status.conditions"

[
 {
 "lastTransitionTime": "2022-12-09T16:29:11Z",
 "message": "Reconcile completed successfully",
 "observedGeneration": 3,
 "reason": "ReconcileCompleted",
 "status": "True",
 "type": "ReconcileComplete"
 },
 {
 "lastTransitionTime": "2022-12-09T20:30:10Z",
 "message": "Reconcile completed successfully",
 "observedGeneration": 3,
 "reason": "ReconcileCompleted",
 "status": "True",
 "type": "Available"
 },
 {
 "lastTransitionTime": "2022-12-09T20:30:10Z",
 "message": "Reconcile completed successfully",
 "observedGeneration": 3,
 "reason": "ReconcileCompleted",
 "status": "False",
 "type": "Progressing"
 },
 {
 "lastTransitionTime": "2022-12-09T16:39:11Z",
 "message": "Reconcile completed successfully",
 "observedGeneration": 3,
 "reason": "ReconcileCompleted",
 "status": "False",
 "type": "Degraded"
 },
 {
 "lastTransitionTime": "2022-12-09T20:30:10Z",
 "message": "Reconcile completed successfully",
 "observedGeneration": 3,
 "reason": "ReconcileCompleted",
 "status": "True",
 "type": "Upgradeable" 1
 }
]

OpenShift Container Platform 4.20 Virtualization

116

1 The OpenShift Virtualization Operator has the Upgradeable status.

4. Manually update your cluster from the source EUS version to the next minor version of
OpenShift Container Platform:

Verification

Check the current version by running the following command:

NOTE

Updating OpenShift Container Platform to the next version is a prerequisite
for updating OpenShift Virtualization. For more details, refer to the
"Updating clusters" section of the OpenShift Container Platform
documentation.

5. Update OpenShift Virtualization.

With the default Automatic approval strategy, OpenShift Virtualization automatically
updates to the corresponding version after you update OpenShift Container Platform.

If you use the Manual approval strategy, approve the pending updates by using the web
console.

6. Monitor the OpenShift Virtualization update by running the following command:

7. Confirm that OpenShift Virtualization successfully updated to the latest z-stream release of the
non-EUS version by running the following command:

Example output

8. Wait until the HyperConverged Operator has the Upgradeable status before you perform the
next update. Enter the following command and monitor the output:

$ oc adm upgrade

$ oc get clusterversion

$ oc get csv -n openshift-cnv

$ oc get hyperconverged kubevirt-hyperconverged -n openshift-cnv -o json | jq
".status.versions"

[
 {
 "name": "operator",
 "version": "4.20.0"
 }
]

$ oc get hyperconverged kubevirt-hyperconverged -n openshift-cnv -o json | jq
".status.conditions"

CHAPTER 7. UPDATING

117

9. Update OpenShift Container Platform to the target EUS version.

10. Confirm that the update succeeded by checking the cluster version:

11. Update OpenShift Virtualization to the target EUS version.

With the default Automatic approval strategy, OpenShift Virtualization automatically
updates to the corresponding version after you update OpenShift Container Platform.

If you use the Manual approval strategy, approve the pending updates by using the web
console.

12. Monitor the OpenShift Virtualization update by running the following command:

The update completes when the VERSION field matches the target EUS version and the
PHASE field reads Succeeded.

13. Restore the workloadUpdateMethods configuration that you recorded from step 1 with the
following command:

Example output

Verification

Check the status of VM migration by running the following command:

Next steps

Unpause the machine config pools for each compute node.

7.1.5. Advanced options

The stable release channel and the Automatic approval strategy are recommended for most OpenShift
Virtualization installations. Use other settings only if you understand the risks.

7.1.5.1. Changing update settings

You can change the update channel and approval strategy for your OpenShift Virtualization Operator
subscription by using the web console.

Prerequisites

$ oc get clusterversion

$ oc get csv -n openshift-cnv

$ oc patch hyperconverged kubevirt-hyperconverged -n openshift-cnv --type json -p \
 "[{\"op\":\"add\",\"path\":\"/spec/workloadUpdateStrategy/workloadUpdateMethods\",
\"value\":{WorkloadUpdateMethodConfig}}]"

hyperconverged.hco.kubevirt.io/kubevirt-hyperconverged patched

$ oc get vmim -A

OpenShift Container Platform 4.20 Virtualization

118

You have installed the OpenShift Virtualization Operator.

You have administrator permissions.

Procedure

1. Click Ecosystem → Installed Operators.

2. Select OpenShift Virtualization from the list.

3. Click the Subscription tab.

4. In the Subscription details section, click the setting that you want to change. For example, to
change the approval strategy from Manual to Automatic, click Manual.

5. In the window that opens, select the new update channel or approval strategy.

6. Click Save.

7.1.5.2. Manual approval strategy

If you use the Manual approval strategy, you must manually approve every pending update. If OpenShift
Container Platform and OpenShift Virtualization updates are out of sync, your cluster becomes
unsupported. To avoid risking the supportability and functionality of your cluster, use the Automatic
approval strategy.

If you must use the Manual approval strategy, maintain a supportable cluster by approving pending
Operator updates as soon as they become available.

7.1.5.3. Manually approving a pending Operator update

If an installed Operator has the approval strategy in its subscription set to Manual, when new updates are
released in its current update channel, the update must be manually approved before installation can
begin.

Prerequisites

An Operator previously installed using Operator Lifecycle Manager (OLM).

Procedure

1. In the OpenShift Container Platform web console, navigate to Ecosystem → Installed
Operators.

2. Operators that have a pending update display a status with Upgrade available. Click the name
of the Operator you want to update.

3. Click the Subscription tab. Any updates requiring approval are displayed next to Upgrade
status. For example, it might display 1 requires approval.

4. Click 1 requires approval, then click Preview Install Plan.

5. Review the resources that are listed as available for update. When satisfied, click Approve.

6. Navigate back to the Ecosystem → Installed Operators page to monitor the progress of the
update. When complete, the status changes to Succeeded and Up to date.

CHAPTER 7. UPDATING

119

7.1.6. Early access releases

You can gain access to builds in development by subscribing to the candidate update channel for your
version of OpenShift Virtualization. These releases have not been fully tested by Red Hat and are not
supported, but you can use them on non-production clusters to test capabilities and bug fixes being
developed for that version.

The stable channel, which matches the underlying OpenShift Container Platform version and is fully
tested, is suitable for production systems. You can switch between the stable and candidate channels in
Operator Hub. However, updating from a candidate channel release to a stable channel release is not
tested by Red Hat.

Some candidate releases are promoted to the stable channel. However, releases present only in
candidate channels might not contain all features that will be made generally available (GA), and some
features in candidate builds might be removed before GA. Additionally, candidate releases might not
offer update paths to later GA releases.

IMPORTANT

The candidate channel is only suitable for testing purposes where destroying and
recreating a cluster is acceptable.

7.1.7. Additional resources

Performing a Control Plane Only update

What are Operators?

Operator Lifecycle Manager concepts and resources

Cluster service versions (CSVs)

About live migration

Configuring eviction strategies

Configuring live migration limits and timeouts

OpenShift Container Platform 4.20 Virtualization

120

https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/updating_clusters/#control-plane-only-update
https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/operators/#olm-what-operators-are
https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/operators/#olm-understanding-olm
https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/operators/#olm-csv_olm-understanding-olm

1

CHAPTER 8. CREATING A VIRTUAL MACHINE

8.1. CREATING VIRTUAL MACHINES FROM INSTANCE TYPES

You can simplify virtual machine (VM) creation by using instance types, whether you use the OpenShift
Container Platform web console or the CLI to create VMs.

8.1.1. About instance types

An instance type is a reusable object where you can define resources and characteristics to apply to new
VMs. You can define custom instance types or use the variety that are included when you install
OpenShift Virtualization.

To create a new instance type, you must first create a manifest, either manually or by using the virtctl
CLI tool. You then create the instance type object by applying the manifest to your cluster.

OpenShift Virtualization provides two CRDs for configuring instance types:

A namespaced object: VirtualMachineInstancetype

A cluster-wide object: VirtualMachineClusterInstancetype

These objects use the same VirtualMachineInstancetypeSpec.

8.1.1.1. Required attributes

When you configure an instance type, you must define the cpu and memory attributes. Other attributes
are optional.

NOTE

When you create a VM from an instance type, you cannot override any parameters
defined in the instance type.

Because instance types require defined CPU and memory attributes, OpenShift
Virtualization always rejects additional requests for these resources when creating a VM
from an instance type.

You can manually create an instance type manifest. For example:

Example YAML file with required fields

Required. Specifies the number of vCPUs to allocate to the guest.

apiVersion: instancetype.kubevirt.io/v1beta1
kind: VirtualMachineInstancetype
metadata:
 name: example-instancetype
spec:
 cpu:
 guest: 1 1
 memory:
 guest: 128Mi 2

CHAPTER 8. CREATING A VIRTUAL MACHINE

121

2 Required. Specifies an amount of memory to allocate to the guest.

You can create an instance type manifest by using the virtctl CLI utility. For example:

Example virtctl command with required fields

where:

--cpu <value>

Specifies the number of vCPUs to allocate to the guest. Required.

--memory <value>

Specifies an amount of memory to allocate to the guest. Required.

TIP

You can immediately create the object from the new manifest by running the following command:

8.1.1.2. Optional attributes

In addition to the required cpu and memory attributes, you can include the following optional attributes
in the VirtualMachineInstancetypeSpec:

annotations

List annotations to apply to the VM.

gpus

List vGPUs for passthrough.

hostDevices

List host devices for passthrough.

ioThreadsPolicy

Define an IO threads policy for managing dedicated disk access.

launchSecurity

Configure Secure Encrypted Virtualization (SEV).

nodeSelector

Specify node selectors to control the nodes where this VM is scheduled.

schedulerName

Define a custom scheduler to use for this VM instead of the default scheduler.

8.1.1.3. Controller revisions

When you create a VM by using an instance type, a ControllerRevision object retains an immutable
snapshot of the instance type object. This snapshot locks in resource-related characteristics defined in
the instance type object, such as the required guest CPU and memory. The VM status also contains a
reference to the ControllerRevision object.

$ virtctl create instancetype --cpu 2 --memory 256Mi

$ virtctl create instancetype --cpu 2 --memory 256Mi | oc apply -f -

OpenShift Container Platform 4.20 Virtualization

122

This snapshot is essential for versioning, and ensures that the VM instance created when starting a VM
does not change if the underlying instance type object is updated while the VM is running.

8.1.2. Pre-defined instance types

OpenShift Virtualization includes a set of pre-defined instance types called common-instancetypes.
Some are specialized for specific workloads and others are workload-agnostic.

These instance type resources are named according to their series, version, and size. The size value
follows the . delimiter and ranges from nano to 8xlarge.

Table 8.1. common-instancetypes series comparison

Use case Series Characteristics vCPU to
memory

ratio

Example resource

Network N
Hugepages

Dedicated CPU

Isolated
emulator
threads

Requires nodes
capable of
running DPDK
workloads

1:2
n1.medium

4 vCPUs

4GiB
Memory

Overcommitted O
Overcommitte
d memory

Burstable CPU
performance

1:4
o1.small

1 vCPU

2GiB
Memory

Compute Exclusive CX
Hugepages

Dedicated CPU

Isolated
emulator
threads

vNUMA

1:2
cx1.2xlarge

8 vCPUs

16GiB
Memory

CHAPTER 8. CREATING A VIRTUAL MACHINE

123

General Purpose U
Burstable CPU
performance

1:4
u1.medium

1 vCPU

4GiB
Memory

Memory Intensive M
Hugepages

Burstable CPU
performance

1:8
m1.large

2 vCPUs

16GiB
Memory

Use case Series Characteristics vCPU to
memory

ratio

Example resource

8.1.3. Specifying an instance type or preference

You can specify an instance type, a preference, or both to define a set of workload sizing and runtime
characteristics for reuse across multiple VMs.

8.1.3.1. Using flags to specify instance types and preferences

Specify instance types and preferences by using flags.

Prerequisites

You must have an instance type, preference, or both on the cluster.

Procedure

1. To specify an instance type when creating a VM, use the --instancetype flag. To specify a
preference, use the --preference flag. The following example includes both flags:

2. Optional: To specify a namespaced instance type or preference, include the kind in the value
passed to the --instancetype or --preference flag command. The namespaced instance type or
preference must be in the same namespace you are creating the VM in. The following example
includes flags for a namespaced instance type and a namespaced preference:

8.1.3.2. Inferring an instance type or preference

Inferring instance types, preferences, or both is enabled by default, and the inferFromVolumeFailure

$ virtctl create vm --instancetype <my_instancetype> --preference <my_preference>

$ virtctl create vm --instancetype virtualmachineinstancetype/<my_instancetype> --
preference virtualmachinepreference/<my_preference>

OpenShift Container Platform 4.20 Virtualization

124

Inferring instance types, preferences, or both is enabled by default, and the inferFromVolumeFailure
policy of the inferFromVolume attribute is set to Ignore. When inferring from the boot volume, errors
are ignored, and the VM is created with the instance type and preference left unset.

However, when flags are applied, the inferFromVolumeFailure policy defaults to Reject. When inferring
from the boot volume, errors result in the rejection of the creation of that VM.

You can use the --infer-instancetype and --infer-preference flags to infer which instance type,
preference, or both to use to define the workload sizing and runtime characteristics of a VM.

Prerequisites

You have installed the virtctl tool.

Procedure

To explicitly infer instance types from the volume used to boot the VM, use the --infer-
instancetype flag. To explicitly infer preferences, use the --infer-preference flag. The following
command includes both flags:

To infer an instance type or preference from a volume other than the volume used to boot the
VM, use the --infer-instancetype-from and --infer-preference-from flags to specify any of the
virtual machine’s volumes. In the example below, the virtual machine boots from volume-a but
infers the instancetype and preference from volume-b.

8.1.3.3. Setting the inferFromVolume labels

Use the following labels on your PVC, data source, or data volume to instruct the inference mechanism
which instance type, preference, or both to use when trying to boot from a volume.

A cluster-wide instance type: instancetype.kubevirt.io/default-instancetype label.

A namespaced instance type: instancetype.kubevirt.io/default-instancetype-kind label.
Defaults to the VirtualMachineClusterInstancetype label if left empty.

A cluster-wide preference: instancetype.kubevirt.io/default-preference label.

A namespaced preference: instancetype.kubevirt.io/default-preference-kind label. Defaults
to VirtualMachineClusterPreference label, if left empty.

Prerequisites

You must have an instance type, preference, or both on the cluster.

You have installed the OpenShift CLI (oc).

$ virtctl create vm --volume-import type:pvc,src:my-ns/my-pvc --infer-instancetype --infer-
preference

$ virtctl create vm \
 --volume-import=type:pvc,src:my-ns/my-pvc-a,name:volume-a \
 --volume-import=type:pvc,src:my-ns/my-pvc-b,name:volume-b \
 --infer-instancetype-from volume-b \
 --infer-preference-from volume-b

CHAPTER 8. CREATING A VIRTUAL MACHINE

125

Procedure

To apply a label to a data source, use oc label. The following command applies a label that
points to a cluster-wide instance type:

8.1.4. Creating a VM from an instance type by using the web console

You can create a virtual machine (VM) from an instance type by using the OpenShift Container Platform
web console. You can also use the web console to create a VM by copying an existing snapshot or to
clone a VM.

You can create a VM from a list of available bootable volumes. You can add Linux- or Windows-based
volumes to the list.

Procedure

1. In the web console, navigate to Virtualization → Catalog.
The InstanceTypes tab opens by default.

NOTE

When configuring a downward-metrics device on an IBM Z® system that uses a
VM preference, set the spec.preference.name value to rhel.9.s390x or another
available preference with the format *.s390x.

2. Heterogeneous clusters only: To filter the bootable volumes using the options provided, click
Architecture.

3. Select either of the following options:

Select a suitable bootable volume from the list. If the list is truncated, click the Show all
button to display the entire list.

NOTE

The bootable volume table lists only those volumes in the openshift-
virtualization-os-images namespace that have the
instancetype.kubevirt.io/default-preference label.

Optional: Click the star icon to designate a bootable volume as a favorite. Starred
bootable volumes appear first in the volume list.

Click Add volume to upload a new volume or to use an existing persistent volume claim
(PVC), a volume snapshot, or a containerDisk volume. Click Save.
Logos of operating systems that are not available in the cluster are shown at the bottom of
the list. You can add a volume for the required operating system by clicking the Add volume
link.

In addition, there is a link to the Create a Windows bootable volume quick start. The same
link appears in a popover if you hover the pointer over the question mark icon next to the
Select volume to boot from line.

$ oc label DataSource foo instancetype.kubevirt.io/default-instancetype=<my_instancetype>

OpenShift Container Platform 4.20 Virtualization

126

Immediately after you install the environment or when the environment is disconnected, the
list of volumes to boot from is empty. In that case, three operating system logos are
displayed: Windows, RHEL, and Linux. You can add a new volume that meets your
requirements by clicking the Add volume button.

4. Click an instance type tile and select the resource size appropriate for your workload. You can
select huge pages for Red Hat-provided instance types of the M and CX series. Huge page
options are identified by names that end with 1gi.

5. Optional: Choose the virtual machine details, including the VM’s name, that apply to the volume
you are booting from:

For a Linux-based volume, follow these steps to configure SSH:

a. If you have not already added a public SSH key to your project, click the edit icon beside
Authorized SSH key in the VirtualMachine details section.

b. Select one of the following options:

Use existing: Select a secret from the secrets list.

Add new: Follow these steps:

i. Browse to the public SSH key file or paste the file in the key field.

ii. Enter the secret name.

iii. Optional: Select Automatically apply this key to any new VirtualMachine you
create in this project.

c. Click Save.

For a Windows volume, follow either of these set of steps to configure sysprep options:

If you have not already added sysprep options for the Windows volume, follow these
steps:

i. Click the edit icon beside Sysprep in the VirtualMachine details section.

ii. Add the Autoattend.xml answer file.

iii. Add the Unattend.xml answer file.

iv. Click Save.

If you want to use existing sysprep options for the Windows volume, follow these steps:

i. Click Attach existing sysprep.

ii. Enter the name of the existing sysprep Unattend.xml answer file.

iii. Click Save.

6. Optional: If you are creating a Windows VM, you can mount a Windows driver disk:

a. Click the Customize VirtualMachine button.

b. On the VirtualMachine details page, click Storage.

CHAPTER 8. CREATING A VIRTUAL MACHINE

127

c. Select the Mount Windows drivers disk checkbox.

7. Optional: Click View YAML & CLI to view the YAML file. Click CLI to view the CLI commands.
You can also download or copy either the YAML file contents or the CLI commands.

8. Click Create VirtualMachine.

After the VM is created, you can monitor the status on the VirtualMachine details page.

Additional resources

Configuring a downward metrics device

8.1.5. Changing the instance type for a VM

As a cluster administrator or VM owner, you might want to change the instance type for an existing VM
for the following reasons:

If a VM’s workload has increased, you might change the instance type to one with more CPU,
more memory, or specific hardware resources, to prevent performance bottlenecks.

If you are using specialized workloads, you might switch to a different instance type to improve
performance, as some instance types are optimized for specific use cases.

You can use the OpenShift Container Platform web console or the OpenShift CLI (oc) to change the
instance type for an existing VM.

8.1.5.1. Changing the instance type of a VM by using the web console

You can change the instance type associated with a running virtual machine (VM) by using the web
console. The change takes effect immediately.

Prerequisites

You created the VM by using an instance type.

Procedure

1. In the OpenShift Container Platform web console, click Virtualization → VirtualMachines.

2. Select a VM to open the VirtualMachine details page.

3. Click the Configuration tab.

4. On the Details tab, click the instance type text to open the Edit Instancetype dialog. For
example, click 1 CPU | 2 GiB Memory.

5. Edit the instance type by using the Series and Size lists.

a. Select an item from the Series list to show the relevant sizes for that series. For example,
select General Purpose.

b. Select the VM’s new instance type from the Size list. For example, select medium: 1 CPUs,
4Gi Memory, which is available in the General Purpose series.

6. Click Save.

OpenShift Container Platform 4.20 Virtualization

128

Verification

1. Click the YAML tab.

2. Click Reload.

3. Review the VM YAML to confirm that the instance type changed.

8.1.5.2. Changing the instance type of a VM by using the CLI

To change the instance type of a VM, change the name field in the VM spec. This triggers the update
logic, which ensures that a new, immutable controller revision snapshot is taken of the new resource
configuration.

Prerequisites

You have installed the OpenShift CLI (oc).

You created the VM by using an instance type, or have administrator privileges for the VM that
you want to modify.

Procedure

1. Stop the VM.

2. Run the following command, and replace <vm_name> with the name of your VM, and
<new_instancetype> with the name of the instance type you want to change to:

Verification

Check the controller revision reference in the updated VM status field. Run the following
command and verify that the revision name is updated in the output:

Example output

Optional: Check that the VM instance is running the new configuration defined in the latest
controller revision. For example, if you updated the instance type to use 2 vCPUs instead of 1,
run the following command and check the output:

$ oc patch vm/<vm_name> --type merge -p '{"spec":{"instancetype":{"name": "
<new_instancetype>"}}}'

$ oc get vms/<vm_name> -o json | jq .status.instancetypeRef

{
 "controllerRevisionRef": {
 "name": "vm-cirros-csmall-csmall-3e86e367-9cd7-4426-9507-b14c27a08671-2"
 },
 "kind": "VirtualMachineInstancetype",
 "name": "csmall"
}

$ oc get vmi/<vm_name> -o json | jq .spec.domain.cpu

CHAPTER 8. CREATING A VIRTUAL MACHINE

129

Example output that verifies that the revision uses 2 vCPUs

8.2. CREATING VIRTUAL MACHINES FROM TEMPLATES

You can create virtual machines (VMs) from Red Hat templates by using the OpenShift Container
Platform web console.

8.2.1. About VM templates

You can use VM templates to help you easily create VMs.

Expedite creation with boot sources

You can expedite VM creation by using templates that have an available boot source. Templates with
a boot source are labeled Available boot source if they do not have a custom label.
Templates without a boot source are labeled Boot source required. See Managing automatic boot
source updates for details.

Customize before starting the VM

You can customize the disk source and VM parameters before you start the VM.

NOTE

If you copy a VM template with all its labels and annotations, your version of the
template is marked as deprecated when a new version of the Scheduling, Scale, and
Performance (SSP) Operator is deployed. You can remove this designation. See
Removing a deprecated designation from a customized VM template by using the web
console.

Single-node OpenShift

Due to differences in storage behavior, some templates are incompatible with single-node
OpenShift. To ensure compatibility, do not set the evictionStrategy field for templates or VMs that
use data volumes or storage profiles.

8.2.2. Creating a VM from a template

You can create a virtual machine (VM) from a template with an available boot source by using the
OpenShift Container Platform web console. You can customize template or VM parameters, such as
data sources, Cloud-init, or SSH keys, before you start the VM.

You can choose between two views in the web console to create the VM:

A virtualization-focused view, which provides a concise list of virtualization-related options at
the top of the view

A general view, which provides access to the various web console options, including

{
 "cores": 1,
 "model": "host-model",
 "sockets": 2,
 "threads": 1
}

OpenShift Container Platform 4.20 Virtualization

130

A general view, which provides access to the various web console options, including
Virtualization

Procedure

1. From the OpenShift Container Platform web console, choose your view:

For a virtualization-focused view, select Administrator → Virtualization → Catalog.

For a general view, navigate to Virtualization → Catalog.

2. Click the Template catalog tab.

3. Click the Boot source available checkbox to filter templates with boot sources. The catalog
displays the default templates.

4. Heterogeneous clusters only: To filter the search results to show templates associated with a
particular architecture, click Architecture Type .

5. Click All templates to view the available templates for your filters.

To focus on particular templates, enter the keyword in the Filter by keyword field.

Choose a template project from the All projects dropdown menu, or view all projects.

6. Click a template tile to view its details.

Optional: If you are using a Windows template, you can mount a Windows driver disk by
selecting the Mount Windows drivers disk checkbox.

If you do not need to customize the template or VM parameters, click Quick create
VirtualMachine to create a VM from the template.

If you need to customize the template or VM parameters, do the following:

a. Click Customize VirtualMachine. The Customize and create VirtualMachine page
displays the Overview, YAML, Scheduling, Environment, Network interfaces, Disks,
Scripts, and Metadata tabs.

b. Click the Scripts tab to edit the parameters that must be set before the VM boots, such
as Cloud-init, SSH key, or Sysprep (Windows VM only).

c. Optional: Click the Start this virtualmachine after creation (Always) checkbox.

d. Click Create VirtualMachine.
The VirtualMachine details page displays the provisioning status.

8.2.2.1. Removing a deprecated designation from a customized VM template by using the
web console

You can customize an existing virtual machine (VM) template by modifying the VM or template
parameters, such as data sources, cloud-init, or SSH keys, before you start the VM. If you customize a
template by copying it and including all of its labels and annotations, the customized template is marked
as deprecated when a new version of the Scheduling, Scale, and Performance (SSP) Operator is
deployed.

You can remove the deprecated designation from the customized template.

CHAPTER 8. CREATING A VIRTUAL MACHINE

131

Procedure

1. Navigate to Virtualization → Templates in the web console.

2. From the list of VM templates, click the template marked as deprecated.

3. Click Edit next to the pencil icon beside Labels.

4. Remove the following two labels:

template.kubevirt.io/type: "base"

template.kubevirt.io/version: "version"

5. Click Save.

6. Click the pencil icon beside the number of existing Annotations.

7. Remove the following annotation:

template.kubevirt.io/deprecated

8. Click Save.

8.2.2.2. Creating a custom VM template in the web console

You create a virtual machine template by editing a YAML file example in the OpenShift Container
Platform web console.

Procedure

1. In the web console, click Virtualization → Templates in the side menu.

2. Optional: Use the Project drop-down menu to change the project associated with the new
template. All templates are saved to the openshift project by default.

3. Click Create Template.

4. Specify the template parameters by editing the YAML file.

5. Click Create.
The template is displayed on the Templates page.

6. Optional: Click Download to download and save the YAML file.

8.3. CONFIGURING IBM SECURE EXECUTION VIRTUAL MACHINES ON
IBM Z AND IBM LINUXONE

You can configure IBM® Secure Execution virtual machines (VMs) on IBM Z® and IBM® LinuxONE.

IBM® Secure Execution for Linux is a s390x security technology that is introduced with IBM® z15 and
IBM® LinuxONE III. It protects data of workloads that run in a KVM guest from being inspected or
modified by the server environment.

In particular, no hardware administrator, no KVM code, and no KVM administrator can access the data in
a guest that was started as an IBM Secure Execution guest.

OpenShift Container Platform 4.20 Virtualization

132

Additional resources

What is IBM Secure Execution?

8.3.1. Enabling VMs to run IBM(R) Secure Execution on IBM Z(R) and IBM(R)
LinuxONE

To enable IBM® Secure Execution virtual machines (VMs) on IBM Z® and IBM® LinuxONE on the
compute nodes of your cluster, you must ensure that you meet the prerequisites and complete the
following steps.

Prerequisites

Your cluster has logical partition (LPAR) nodes running on IBM® z15 or later, or IBM® LinuxONE
III or later.

You have IBM® Secure Execution workloads available to run on the cluster.

You have installed the OpenShift CLI (oc).

Procedure

1. To run IBM® Secure Execution VMs, you must add the prot_virt=1 kernel parameter for each
compute node. To enable all compute nodes, create a file named secure-execution.yaml that
contains the following machine config manifest:

where:

prot_virt=1

Specifies that the ultravisor can store memory security information.

2. Apply the changes by running the following command:

The Machine Config Operator (MCO) applies the changes and reboots the nodes in a
controlled rollout.

3. Edit the HyperConverged custom resource (CR) by running the following command:

4. Enable the feature gate for IBM® Secure Execution by applying the following annotations:

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
 name: secure-execution
 labels:
 machineconfiguration.openshift.io/role: worker
spec:
 kernelArguments:
 - prot_virt=1

$ oc apply -f secure-execution.yaml

$ oc edit -n openshift-cnv HyperConverged kubevirt-hyperconverged

CHAPTER 8. CREATING A VIRTUAL MACHINE

133

https://www.ibm.com/docs/en/linux-on-systems?topic=execution-introduction

8.3.2. Launching an IBM Secure Execution VM on IBM Z and IBM LinuxONE

Before launching an IBM® Secure Execution VM on IBM Z® and IBM® LinuxONE, you must add the
launchSecurity parameter to the VM manifest. Otherwise, the VM does not boot correctly because it
does not have access to the devices.

Procedure

Apply the following VirtualMachine manifest to the cluster:

apiVersion: hco.kubevirt.io/v1beta1
kind: HyperConverged
metadata:
 annotations:
 kubevirt.kubevirt.io/jsonpatch: |-
 [
 {
 "op":"add",
 "path":"/spec/configuration/developerConfiguration/featureGates/-",
 "value":"SecureExecution"
 }
]

apiVersion: kubevirt.io/v1
kind: VirtualMachine
metadata:
 labels:
 kubevirt.io/vm: f41-se
 name: f41-se
spec:
 runStrategy: Always
 template:
 metadata:
 labels:
 kubevirt.io/vm: f41-se
 spec:
 domain:
 launchSecurity: {}
 devices:
 disks:
 - disk:
 bus: virtio
 name: rootfs
 machine:
 type: ""
 resources:
 requests:
 memory: 4Gi
 terminationGracePeriodSeconds: 0
 volumes:
 - name: rootfs
 dataVolume:
 name: f41-se

OpenShift Container Platform 4.20 Virtualization

134

To launch IBM® Secure Execution VMs, you must include the following YAML in the manifest:

The rest of the VM manifest is variable depending on your setup.

NOTE

Because the memory of the VM is protected, IBM® Secure Execution VMs are not
live migratable. The VMs can only be migrated offline.

spec:
 domain:
 launchSecurity: {}

CHAPTER 8. CREATING A VIRTUAL MACHINE

135

CHAPTER 9. ADVANCED VM CREATION

9.1. CREATING VMS FROM RED HAT IMAGES

9.1.1. Creating virtual machines from Red Hat images

Red Hat images are golden images. They are published as container disks in a secure registry. The
Containerized Data Importer (CDI) polls and imports the container disks into your cluster and stores
them in the openshift-virtualization-os-images project as snapshots or persistent volume claims
(PVCs). You can optionally use a custom namespace for golden images. For more information about
using a custom namespace, see:

Configuring a custom namespace for golden images by using the web console

Configuring a custom namespace for golden images by using the CLI

Red Hat images are automatically updated. You can disable and re-enable automatic updates for these
images. See Managing Red Hat boot source updates .

Cluster administrators can enable automatic subscription for Red Hat Enterprise Linux (RHEL) virtual
machines in the OpenShift Virtualization web console.

You can create virtual machines (VMs) from operating system images provided by Red Hat by using one
of the following methods:

Creating a VM from a template by using the web console

Creating a VM from an instance type by using the web console

Creating a VM from a VirtualMachine manifest by using the command line

IMPORTANT

Do not create VMs in the default openshift-* namespaces. Instead, create a new
namespace or use an existing namespace without the openshift prefix.

9.1.1.1. About golden images

A golden image is a preconfigured snapshot of a virtual machine (VM) that you can use as a resource to
deploy new VMs. For example, you can use golden images to provision the same system environment
consistently and deploy systems more quickly and efficiently.

9.1.1.1.1. How do golden images work?

Golden images are created by installing and configuring an operating system and software applications
on a reference machine or virtual machine. This includes setting up the system, installing required
drivers, applying patches and updates, and configuring specific options and preferences.

After the golden image is created, it is saved as a template or image file that can be replicated and
deployed across multiple clusters. The golden image can be updated by its maintainer periodically to
incorporate necessary software updates and patches, ensuring that the image remains up to date and
secure, and newly created VMs are based on this updated image.

OpenShift Container Platform 4.20 Virtualization

136

9.1.1.1.2. Red Hat implementation of golden images

Red Hat publishes golden images as container disks in the registry for versions of Red Hat Enterprise
Linux (RHEL). Container disks are virtual machine images that are stored as a container image in a
container image registry. Any published image will automatically be made available in connected clusters
after the installation of OpenShift Virtualization. After the images are available in a cluster, they are
ready to use to create VMs.

9.1.1.2. About VM boot sources

Virtual machines (VMs) consist of a VM definition and one or more disks that are backed by data
volumes. VM templates enable you to create VMs using predefined specifications.

Every template requires a boot source, which is a fully configured disk image including configured
drivers. Each template contains a VM definition with a pointer to the boot source. Each boot source has
a predefined name and namespace. For some operating systems, a boot source is automatically
provided. If it is not provided, then an administrator must prepare a custom boot source.

Provided boot sources are updated automatically to the latest version of the operating system. For
auto-updated boot sources, persistent volume claims (PVCs) and volume snapshots are created with
the cluster’s default storage class. If you select a different default storage class after configuration, you
must delete the existing boot sources in the cluster namespace that are configured with the previous
default storage class.

9.1.1.3. Configuring a custom namespace for golden images by using the web console

You can configure a custom namespace for golden images in your cluster by using the OpenShift
Container Platform web console.

Procedure

1. In the web console, select Virtualization → Overview.

2. Select the Settings tab.

3. On the Cluster tab, select General settings → Bootable volumes project.

4. Select a namespace to use for golden images.

a. If you already created a namespace, select it from the Project list.

b. If you did not create a namespace, scroll to the bottom of the list and click Create project.

i. Enter a name for your new namespace in the Name field of the Create project dialog.

ii. Click Create.

9.1.1.4. Configuring a custom namespace for golden images by using the CLI

You can configure a custom namespace for golden images in your cluster by setting the
spec.commonBootImageNamespace field in the HyperConverged custom resource (CR).

Prerequisites

You installed the OpenShift CLI (oc).

CHAPTER 9. ADVANCED VM CREATION

137

1

You created a namespace to use for golden images.

Procedure

1. Open the HyperConverged CR in your default editor by running the following command:

2. Configure the custom namespace by updating the value of the
spec.commonBootImageNamespace field:

Example configuration file

The namespace to use for golden images.

3. Save your changes and exit the editor.

9.1.2. Heterogeneous cluster support

IMPORTANT

Golden image support for heterogeneous clusters is a Technology Preview feature only.
Technology Preview features are not supported with Red Hat production service level
agreements (SLAs) and might not be functionally complete. Red Hat does not
recommend using them in production. These features provide early access to upcoming
product features, enabling customers to test functionality and provide feedback during
the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

A heterogeneous cluster is a cluster where nodes have differing architectures. Heterogeneous clusters
promote optimal compute resource usage by mixing different types of hardware in one cluster. This
allows workloads to be better matched to hardware intended for the workload task instead of general
purpose compute platforms. For example, in a heterogeneous cluster, GPU and general purpose
compute resources could be combined and workloads assigned to the appropriate hardware.

IMPORTANT

$ oc edit hyperconverged kubevirt-hyperconverged -n openshift-cnv

apiVersion: hco.kubevirt.io/v1
kind: HyperConverged
metadata:
 name: kubevirt-hyperconverged
 namespace: openshift-cnv
spec:
 commonBootImageNamespace: <custom_namespace> 1
...

OpenShift Container Platform 4.20 Virtualization

138

https://access.redhat.com/support/offerings/techpreview/

IMPORTANT

If golden image support is disabled in a heterogeneous cluster, you can encounter
inconsistencies between node and image architectures. This happens when images are
used for virtual machine creation that do not match the node architecture. This can lead
to the failure of virtual machine boot up or virtual machines that do not run as expected.
The warning level alert HCOMultiArchGoldenImagesDisabled is produced when this
feature is not enabled in a heterogeneous cluster.

If you have a heterogeneous cluster but do not want to enable multiple architecture support, see
Modifying workloads node placement in a hetergeneous cluster for the procedure to limit node
placement to a specific architecture.

Golden image support for heterogeneous clusters extends golden image support in the following areas:

Enables VM creators to deploy persistent virtual machines with specific architectures.

Enables VM creators to define custom golden images that support heterogenous clusters.

The same golden image can be used with nodes of different architectures if the boot image supports
the required architectures. For example, a golden image that supports both ARM and AMD architectures
can be used with both types of nodes.

Golden image support for heterogeneous clusters is not enabled by default. For the procedure to
enable this feature, see Enabling hetergenous cluster support

9.1.2.1. Enabling heterogeneous cluster support

You can enable golden image support for heterogeneous clusters by setting the
enableMultiArchBootImageImport feature gate to true in the HyperConverged custom resource
(CR).

IMPORTANT

Golden image support for heterogeneous clusters is a Technology Preview feature only.
Technology Preview features are not supported with Red Hat production service level
agreements (SLAs) and might not be functionally complete. Red Hat does not
recommend using them in production. These features provide early access to upcoming
product features, enabling customers to test functionality and provide feedback during
the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

Prerequisites

You have access to the cluster as a user with cluster-admin permissions.

You have installed the OpenShift CLI (oc).

Procedure

Enable the enableMultiArchBootImageImport feature gate by running the following
command:

CHAPTER 9. ADVANCED VM CREATION

139

https://access.redhat.com/support/offerings/techpreview/

9.1.2.2. Modifying a common golden image source in a heterogeneous cluster

You can modify the image source of a common golden image in a heterogeneous cluster by specifying
the supported architectures in the ssp.kubevirt.io/dict.architectures annotation in the
HyperConverged custom resource (CR).

IMPORTANT

Golden image support for heterogeneous clusters is a Technology Preview feature only.
Technology Preview features are not supported with Red Hat production service level
agreements (SLAs) and might not be functionally complete. Red Hat does not
recommend using them in production. These features provide early access to upcoming
product features, enabling customers to test functionality and provide feedback during
the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

Prerequisites

You have installed the OpenShift CLI (oc).

Procedure

1. Open the HyperConverged CR in your default editor by running the following command:

2. Edit the HyperConverged CR, adding the appropriate values for
ssp.kubevirt.io/dict.architectures annotation in the dataImportCronTemplates section. For
example:

$ oc patch hyperconverged kubevirt-hyperconverged -n openshift-cnv \
 --type json -p
'[{"op":"replace","path":"/spec/featureGates/enableMultiArchBootImageImport", "value": true}]'

$ oc edit hyperconverged kubevirt-hyperconverged -n openshift-cnv

#...
spec:
 dataImportCronTemplates:
 - metadata:
 name: kubevirt-hyperconverged
 annotations:
 ssp.kubevirt.io/dict.architectures: "<architecture_list>" 1
 spec:
 schedule: "0 */12 * * *"
 template:
 spec:
 source:
 registry:
 url: docker://my-private-registry/my-own-version-of-centos:8
 managedDataSource: centos-stream8
#...

OpenShift Container Platform 4.20 Virtualization

140

https://access.redhat.com/support/offerings/techpreview/

1 The comma-separated list of supported architectures for this image. For example, if the
image supports amd64 and arm64 architectures, the value would be "amd64,arm64".

3. Save and exit the editor to update the HyperConverged CR.

9.1.2.3. Adding a custom golden image in a heterogeneous cluster

IMPORTANT

Golden image support for heterogeneous clusters is a Technology Preview feature only.
Technology Preview features are not supported with Red Hat production service level
agreements (SLAs) and might not be functionally complete. Red Hat does not
recommend using them in production. These features provide early access to upcoming
product features, enabling customers to test functionality and provide feedback during
the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

Add a custom golden image in a heterogeneous cluster by setting the
ssp.kubevirt.io/dict.architectures annotation in the
spec.dataImportCronTemplates.metadata.annotations stanza of the HyperConverged custom
resource (CR). This annotation lists the architectures supported by the image.

Prerequisites

You have installed the OpenShift CLI (oc).

Procedure

1. Open the HyperConverged CR in your default editor by running the following command:

2. Edit the HyperConverged CR, to add the custom golden image. You must add the appropriate
values for ssp.kubevirt.io/dict.architectures annotation in the dataImportCronTemplates
section. For example:

$ oc edit hyperconverged kubevirt-hyperconverged -n openshift-cnv

apiVersion: hco.kubevirt.io/v1beta1
kind: HyperConverged
metadata:
 name: kubevirt-hyperconverged
spec:
 dataImportCronTemplates:
 - metadata:
 name: custom-image1
 annotations:
 ssp.kubevirt.io/dict.architectures: "<architecture_list>" 1
 spec:
 schedule: "0 */12 * * *"
 template:
 spec:

CHAPTER 9. ADVANCED VM CREATION

141

https://access.redhat.com/support/offerings/techpreview/

1 The comma-separated list of supported architectures for this image. For example, if the
image supports amd64 and arm64 architectures, the value would be "amd64,arm64".

NOTE

An image may support more architectures than you want to use in your cluster.
You do not have to list all of the architectures an image supports, only those for
which you want to create a boot source.

3. Save and exit the editor to update the HyperConverged CR.

9.1.2.4. Modifying workloads node placement in a heterogeneous cluster

IMPORTANT

Golden image support for heterogeneous clusters is a Technology Preview feature only.
Technology Preview features are not supported with Red Hat production service level
agreements (SLAs) and might not be functionally complete. Red Hat does not
recommend using them in production. These features provide early access to upcoming
product features, enabling customers to test functionality and provide feedback during
the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

If you have a heterogeneous cluster but not want to enable multiple archiecture support, you can modify
the workloads node placement in the HyperConverged custom resource (CR) to only include nodes
with a specific architecture.

Prerequisites

You have installed the OpenShift CLI (oc).

Procedure

1. Open the HyperConverged CR in your default editor by running the following command:

2. Edit the HyperConverged CR, to modify the workloads node placement to include only nodes
with a specific architecture. For example:

 source:
 registry:
 url: docker://myprivateregistry/custom1
 managedDataSource: custom1
 retentionPolicy: "All"
#...

$ oc edit hyperconverged kubevirt-hyperconverged -n openshift-cnv

apiVersion: hco.kubevirt.io/v1beta1
kind: HyperConverged
metadata:

OpenShift Container Platform 4.20 Virtualization

142

https://access.redhat.com/support/offerings/techpreview/

1 Replace <node_architecture> with the target architecture. For example, to limit
placement to AMD nodes, use amd64.

3. Save and exit the editor to update the HyperConverged CR.

9.2. CREATING VMS IN THE WEB CONSOLE

9.2.1. Creating VMs by importing images from web pages

You can create virtual machines (VMs) by importing operating system images from web pages.

IMPORTANT

You must install the QEMU guest agent on VMs created from operating system images
that are not provided by Red Hat.

9.2.1.1. Creating a VM from an image on a web page by using the web console

You can create a virtual machine (VM) by importing an image from a web page by using the OpenShift
Container Platform web console.

Prerequisites

You must have access to the web page that contains the image.

Procedure

1. Navigate to Virtualization → Catalog in the web console.

2. Click a template tile without an available boot source.

3. Click Customize VirtualMachine.

4. On the Customize template parameters page, expand Storage and select URL (creates
PVC) from the Disk source list.

5. Enter the image URL. Example: https://access.redhat.com/downloads/content/69/ver=/rhel--
-7/7.9/x86_64/product-software

 name: kubevirt-hyperconverged
spec:
#...
 workloads:
 nodePlacement:
 affinity:
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: kubernetes.io/arch
 operator: In
 values:
 - <node_architecture> 1

CHAPTER 9. ADVANCED VM CREATION

143

6. Set the disk size.

7. Click Next.

8. Click Create VirtualMachine.

9.2.1.2. Creating a VM from an image on a web page by using the CLI

You can create a virtual machine (VM) from an image on a web page by using the command line.

When the VM is created, the data volume with the image is imported into persistent storage.

Prerequisites

You must have access credentials for the web page that contains the image.

You have installed the virtctl CLI.

You have installed the OpenShift CLI (oc).

Procedure

1. Create a VirtualMachine manifest for your VM and save it as a YAML file. For example, to
create a minimal Red Hat Enterprise Linux (RHEL) VM from an image on a web page, run the
following command:

2. Review the VirtualMachine manifest for your VM:

$ virtctl create vm --name vm-rhel-9 --instancetype u1.small --preference rhel.9 --volume-
import type:http,url:https://example.com/rhel9.qcow2,size:10Gi

apiVersion: kubevirt.io/v1
kind: VirtualMachine
metadata:
 name: vm-rhel-9 1
spec:
 dataVolumeTemplates:
 - metadata:
 name: imported-volume-6dcpf 2
 spec:
 source:
 http:
 url: https://example.com/rhel9.qcow2 3
 storage:
 resources:
 requests:
 storage: 10Gi 4
 instancetype:
 name: u1.small 5
 preference:
 name: rhel.9 6
 runStrategy: Always
 template:
 spec:

OpenShift Container Platform 4.20 Virtualization

144

1

2

3

4

5

6

The VM name.

The data volume name.

The URL of the image.

The size of the storage requested for the data volume.

The instance type to use to control resource sizing of the VM.

The preference to use.

3. Create the VM by running the following command:

The oc create command creates the data volume and the VM. The CDI controller creates an
underlying PVC with the correct annotation and the import process begins. When the import is
complete, the data volume status changes to Succeeded. You can start the VM.

Data volume provisioning happens in the background, so there is no need to monitor the
process.

Verification

1. The importer pod downloads the image from the specified URL and stores it on the provisioned
persistent volume. View the status of the importer pod:

2. Monitor the status of the data volume:

If the provisioning is successful, the data volume phase is Succeeded:

Example output

3. Verify that provisioning is complete and that the VM has started by accessing its serial console:

 domain:
 devices: {}
 resources: {}
 terminationGracePeriodSeconds: 180
 volumes:
 - dataVolume:
 name: imported-volume-6dcpf
 name: imported-volume-6dcpf

$ oc create -f <vm_manifest_file>.yaml

$ oc get pods

$ oc get dv <data_volume_name>

NAME PHASE PROGRESS RESTARTS AGE
imported-volume-6dcpf Succeeded 100.0% 18s

$ virtctl console <vm_name>

CHAPTER 9. ADVANCED VM CREATION

145

If the VM is running and the serial console is accessible, the output looks as follows:

Example output

9.2.2. Creating VMs by uploading images

You can create virtual machines (VMs) by uploading operating system images from your local machine.

You can create a Windows VM by uploading a Windows image to a PVC. Then you clone the PVC when
you create the VM.

IMPORTANT

You must install the QEMU guest agent on VMs created from operating system images
that are not provided by Red Hat.

You must also install VirtIO drivers on Windows VMs.

9.2.2.1. Creating a VM from an uploaded image by using the web console

You can create a virtual machine (VM) from an uploaded operating system image by using the
OpenShift Container Platform web console.

Prerequisites

You must have an IMG, ISO, or QCOW2 image file.

Procedure

1. Navigate to Virtualization → Catalog in the web console.

2. Click a template tile without an available boot source.

3. Click Customize VirtualMachine.

4. On the Customize template parameters page, expand Storage and select Upload (Upload a
new file to a PVC) from the Disk source list.

5. Browse to the image on your local machine and set the disk size.

6. Click Customize VirtualMachine.

7. Click Create VirtualMachine.

9.2.2.1.1. Generalizing a VM image

You can generalize a Red Hat Enterprise Linux (RHEL) image to remove all system-specific
configuration data before you use the image to create a golden image, a preconfigured snapshot of a
virtual machine (VM). You can use a golden image to deploy new VMs.

You can generalize a RHEL VM by using the virtctl, guestfs, and virt-sysprep tools.

Successfully connected to vm-rhel-9 console. The escape sequence is ^]

OpenShift Container Platform 4.20 Virtualization

146

Prerequisites

You have a RHEL virtual machine (VM) to use as a base VM.

You have installed the OpenShift CLI (oc).

You have installed the virtctl tool.

Procedure

1. Stop the RHEL VM if it is running, by entering the following command:

2. Optional: Clone the virtual machine to avoid losing the data from your original VM. You can then
generalize the cloned VM.

3. Retrieve the dataVolume that stores the root filesystem for the VM by running the following
command:

Example output

4. Retrieve the persistent volume claim (PVC) that matches the listed dataVolume by running the
followimg command:

Example output

NOTE

If your cluster configuration does not enable you to clone a VM, to avoid losing
the data from your original VM, you can clone the VM PVC to a data volume
instead. You can then use the cloned PVC to create a golden image.

If you are creating a golden image by cloning a PVC, continue with the next steps,
using the cloned PVC.

5. Deploy a new interactive container with libguestfs-tools and attach the PVC to it by running
the following command:

This command opens a shell for you to run the next command.

$ virtctl stop <my_vm_name>

$ oc get vm <my_vm_name> -o jsonpath="{.spec.template.spec.volumes}{'\n'}"

[{"dataVolume":{"name":"<my_vm_volume>"},"name":"rootdisk"},{"cloudInitNoCloud":{...}]

$ oc get pvc

NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS
AGE
<my_vm_volume> Bound …

$ virtctl guestfs <my-vm-volume> --uid 107

CHAPTER 9. ADVANCED VM CREATION

147

6. Remove all configurations specific to your system by running the following command:

7. In the OpenShift Container Platform console, click Virtualization → Catalog.

8. Click Add volume.

9. In the Add volume window:

a. From the Source type list, select Use existing Volume.

b. From the Volume project list, select your project.

c. From the Volume name list, select the correct PVC.

d. In the Volume name field, enter a name for the new golden image.

e. From the Preference list, select the RHEL version you are using.

f. From the Default Instance Type list, select the instance type with the correct CPU and
memory requirements for the version of RHEL you selected previously.

g. Heterogeneous clusters only: From the Architecture list, select the architecture that
corresponds with the selected volume.

h. Click Save.

The new volume appears in the Select volume to boot from list. This is your new golden image. You can
use this volume to create new VMs.

Additional resources for generalizing VMs

Cloning VMs

Cloning a PVC to a data volume

9.2.2.2. Creating a Windows VM

You can create a Windows virtual machine (VM) by uploading a Windows image to a persistent volume
claim (PVC) and then cloning the PVC when you create a VM by using the OpenShift Container Platform
web console.

Prerequisites

You created a Windows installation DVD or USB with the Windows Media Creation Tool. See
Create Windows 10 installation media in the Microsoft documentation.

You created an autounattend.xml answer file. See Answer files (unattend.xml) in the Microsoft
documentation.

Procedure

1. Upload the Windows image as a new PVC:

a. Navigate to Storage → PersistentVolumeClaims in the web console.

$ virt-sysprep -a disk.img

OpenShift Container Platform 4.20 Virtualization

148

https://www.microsoft.com/en-us/software-download/windows10
https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/update-windows-settings-and-scripts-create-your-own-answer-file-sxs

b. Click Create PersistentVolumeClaim → With Data upload form.

c. Browse to the Windows image and select it.

d. Enter the PVC name, select the storage class and size and then click Upload.
The Windows image is uploaded to a PVC.

2. Configure a new VM by cloning the uploaded PVC:

a. Navigate to Virtualization → Catalog.

b. Select a Windows template tile and click Customize VirtualMachine.

c. Select Clone (clone PVC) from the Disk source list.

d. Select the PVC project, the Windows image PVC, and the disk size.

3. Apply the answer file to the VM:

a. Click Customize VirtualMachine parameters.

b. On the Sysprep section of the Scripts tab, click Edit.

c. Browse to the autounattend.xml answer file and click Save.

4. Set the run strategy of the VM:

a. Clear Start this VirtualMachine after creation so that the VM does not start immediately.

b. Click Create VirtualMachine.

c. On the YAML tab, replace running:false with runStrategy: RerunOnFailure and click
Save.

5. Click the Options menu and select Start.
The VM boots from the sysprep disk containing the autounattend.xml answer file.

9.2.2.2.1. Generalizing a Windows VM image

You can generalize a Windows operating system image to remove all system-specific configuration data
before you use the image to create a new virtual machine (VM).

Before generalizing the VM, you must ensure the sysprep tool cannot detect an answer file after the
unattended Windows installation.

Prerequisites

A running Windows VM with the QEMU guest agent installed.

Procedure

1. In the OpenShift Container Platform console, click Virtualization → VirtualMachines.

2. Select a Windows VM to open the VirtualMachine details page.

CHAPTER 9. ADVANCED VM CREATION

149

3. Click Configuration → Disks.

4. Click the Options menu beside the sysprep disk and select Detach.

5. Click Detach.

6. Rename C:\Windows\Panther\unattend.xml to avoid detection by the sysprep tool.

7. Start the sysprep program by running the following command:

8. After the sysprep tool completes, the Windows VM shuts down. The disk image of the VM is
now available to use as an installation image for Windows VMs.

You can now specialize the VM.

9.2.2.2.2. Specializing a Windows VM image

Specializing a Windows virtual machine (VM) configures the computer-specific information from a
generalized Windows image onto the VM.

Prerequisites

You must have a generalized Windows disk image.

You must create an unattend.xml answer file. See the Microsoft documentation for details.

Procedure

1. In the OpenShift Container Platform console, click Virtualization → Catalog.

2. Select a Windows template and click Customize VirtualMachine.

3. Select PVC (clone PVC) from the Disk source list.

4. Select the PVC project and PVC name of the generalized Windows image.

5. Click Customize VirtualMachine parameters.

6. Click the Scripts tab.

7. In the Sysprep section, click Edit, browse to the unattend.xml answer file, and click Save.

8. Click Create VirtualMachine.

During the initial boot, Windows uses the unattend.xml answer file to specialize the VM. The VM is now
ready to use.

Additional resources for creating Windows VMs

Microsoft, Sysprep (Generalize) a Windows installation

Microsoft, generalize

%WINDIR%\System32\Sysprep\sysprep.exe /generalize /shutdown /oobe /mode:vm

OpenShift Container Platform 4.20 Virtualization

150

https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/update-windows-settings-and-scripts-create-your-own-answer-file-sxs?view=windows-11
https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/sysprep--generalize--a-windows-installation
https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/generalize

1

2

3

Microsoft, specialize

9.2.2.3. Creating a VM from an uploaded image by using the CLI

You can upload an operating system image by using the virtctl command-line tool. You can use an
existing data volume or create a new data volume for the image.

Prerequisites

You must have an ISO, IMG, or QCOW2 operating system image file.

For best performance, compress the image file by using the virt-sparsify tool or the xz or gzip
utilities.

The client machine must be configured to trust the OpenShift Container Platform router’s
certificate.

You have installed the virtctl CLI.

You have installed the OpenShift CLI (oc).

Procedure

1. Upload the image by running the virtctl image-upload command:

The name of the data volume.

The size of the data volume. For example: --size=500Mi, --size=1G

The file path of the image.

NOTE

If you do not want to create a new data volume, omit the --size parameter
and include the --no-create flag.

When uploading a disk image to a PVC, the PVC size must be larger than the
size of the uncompressed virtual disk.

To allow insecure server connections when using HTTPS, use the --insecure
parameter. When you use the --insecure flag, the authenticity of the upload
endpoint is not verified.

2. Optional. To verify that a data volume was created, view all data volumes by running the
following command:

$ virtctl image-upload dv <datavolume_name> \ 1
 --size=<datavolume_size> \ 2
 --image-path=</path/to/image> \ 3

$ oc get dvs

CHAPTER 9. ADVANCED VM CREATION

151

https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/specialize
https://libguestfs.org/virt-sparsify.1.html

9.2.3. Cloning VMs

You can clone virtual machines (VMs) or create new VMs from snapshots.

IMPORTANT

Cloning a VM with a vTPM device attached to it or creating a new VM from its snapshot is
not supported.

9.2.3.1. Cloning a VM by using the web console

You can clone an existing VM by using the web console.

Procedure

1. Navigate to Virtualization → VirtualMachines in the web console.

2. Select a VM to open the VirtualMachine details page.

3. Click Actions.
Alternatively, access the same menu in the tree view by right-clicking the VM.

4. Select Clone.

5. On the Clone VirtualMachine page, enter the name of the new VM.

6. (Optional) Select the Start cloned VM checkbox to start the cloned VM.

7. Click Clone.

9.2.3.2. Creating a VM from an existing snapshot by using the web console

You can create a new VM by copying an existing snapshot.

Procedure

1. Navigate to Virtualization → VirtualMachines in the web console.

2. Select a VM to open the VirtualMachine details page.

3. Click the Snapshots tab.

4. Click the Options menu for the snapshot you want to copy.

5. Select Create VirtualMachine.

6. Enter the name of the virtual machine.

7. (Optional) Select the Start this VirtualMachine after creation checkbox to start the new virtual
machine.

8. Click Create.

OpenShift Container Platform 4.20 Virtualization

152

9.2.3.3. Additional resources

Creating VMs by cloning PVCs

9.3. CREATING VMS USING THE CLI

9.3.1. Creating virtual machines from the CLI

You can create virtual machines (VMs) from the command line by editing or creating a VirtualMachine
manifest. You can simplify VM configuration by using an instance type in your VM manifest.

NOTE

You can also create VMs from instance types by using the web console .

9.3.1.1. Creating a VM from a VirtualMachine manifest

You can create a virtual machine (VM) from a VirtualMachine manifest. To simplify the creation of
these manifests, you can use the virtctl command-line tool.

Prerequisites

You have installed the virtctl CLI.

You have installed the OpenShift CLI (oc).

Procedure

1. Create a VirtualMachine manifest for your VM and save it as a YAML file. For example, to
create a minimal Red Hat Enterprise Linux (RHEL) VM, run the following command:

2. Review the VirtualMachine manifest for your VM:

NOTE

This example manifest does not configure VM authentication.

Example manifest for a RHEL VM

$ virtctl create vm --name rhel-9-minimal --volume-import type:ds,src:openshift-virtualization-
os-images/rhel9

apiVersion: kubevirt.io/v1
kind: VirtualMachine
metadata:
 name: rhel-9-minimal 1
spec:
 dataVolumeTemplates:
 - metadata:
 name: imported-volume-mk4lj
 spec:
 sourceRef:

CHAPTER 9. ADVANCED VM CREATION

153

1

2

3

4

5

The VM name.

The boot source for the guest operating system.

The namespace for the boot source. Golden images are stored in the openshift-
virtualization-os-images namespace.

The instance type is inferred from the selected DataSource object.

The preference is inferred from the selected DataSource object.

3. Create a virtual machine by using the manifest file:

4. Optional: Start the virtual machine:

Next steps

Configuring SSH access to virtual machines

9.3.2. Creating VMs by using container disks

You can create virtual machines (VMs) by using container disks built from operating system images.

You can enable auto updates for your container disks. See Managing automatic boot source updates for

 kind: DataSource
 name: rhel9 2
 namespace: openshift-virtualization-os-images 3
 storage:
 resources: {}
 instancetype:
 inferFromVolume: imported-volume-mk4lj 4
 inferFromVolumeFailurePolicy: Ignore
 preference:
 inferFromVolume: imported-volume-mk4lj 5
 inferFromVolumeFailurePolicy: Ignore
 runStrategy: Always
 template:
 spec:
 domain:
 devices: {}
 memory:
 guest: 512Mi
 resources: {}
 terminationGracePeriodSeconds: 180
 volumes:
 - dataVolume:
 name: imported-volume-mk4lj
 name: imported-volume-mk4lj

$ oc create -f <vm_manifest_file>.yaml

$ virtctl start <vm_name>

OpenShift Container Platform 4.20 Virtualization

154

You can enable auto updates for your container disks. See Managing automatic boot source updates for
details.

IMPORTANT

If the container disks are large, the I/O traffic might increase and cause worker nodes to
be unavailable. You can perform the following tasks to resolve this issue:

Pruning DeploymentConfig objects.

Configuring garbage collection .

You create a VM from a container disk by performing the following steps:

1. Build an operating system image into a container disk and upload it to your container registry .

2. If your container registry does not have TLS, configure your environment to disable TLS for your
registry.

3. Create a VM with the container disk as the disk source by using the web console or the
command line.

IMPORTANT

You must install the QEMU guest agent on VMs created from operating system images
that are not provided by Red Hat.

9.3.2.1. Building and uploading a container disk

You can build a virtual machine (VM) image into a container disk and upload it to a registry.

The size of a container disk is limited by the maximum layer size of the registry where the container disk
is hosted.

NOTE

For Red Hat Quay, you can change the maximum layer size by editing the YAML
configuration file that is created when Red Hat Quay is first deployed.

Prerequisites

You must have podman installed.

You must have a QCOW2 or RAW image file.

Procedure

1. Create a Dockerfile to build the VM image into a container image. The VM image must be
owned by QEMU, which has a UID of 107, and placed in the /disk/ directory inside the container.
Permissions for the /disk/ directory must then be set to 0440.
The following example uses the Red Hat Universal Base Image (UBI) to handle these
configuration changes in the first stage, and uses the minimal scratch image in the second
stage to store the result:

CHAPTER 9. ADVANCED VM CREATION

155

https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/building_applications/#pruning-deployments_pruning-objects
https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/nodes/#nodes-nodes-garbage-collection-configuring_nodes-nodes-configuring
https://access.redhat.com/documentation/en-us/red_hat_quay/

1

1

Where <vm_image> is the image in either QCOW2 or RAW format. If you use a remote
image, replace <vm_image>.qcow2 with the complete URL.

2. Build and tag the container:

3. Push the container image to the registry:

9.3.2.2. Disabling TLS for a container registry

You can disable TLS (transport layer security) for one or more container registries by editing the
insecureRegistries field of the HyperConverged custom resource.

Prerequisites

You have installed the OpenShift CLI (oc).

Procedure

1. Open the HyperConverged CR in your default editor by running the following command:

2. Add a list of insecure registries to the spec.storageImport.insecureRegistries field.

Example HyperConverged custom resource

Replace the examples in this list with valid registry hostnames.

$ cat > Dockerfile << EOF
FROM registry.access.redhat.com/ubi8/ubi:latest AS builder
ADD --chown=107:107 <vm_image>.qcow2 /disk/ 1
RUN chmod 0440 /disk/*

FROM scratch
COPY --from=builder /disk/* /disk/
EOF

$ podman build -t <registry>/<container_disk_name>:latest .

$ podman push <registry>/<container_disk_name>:latest

$ oc edit hyperconverged kubevirt-hyperconverged -n openshift-cnv

apiVersion: hco.kubevirt.io/v1beta1
kind: HyperConverged
metadata:
 name: kubevirt-hyperconverged
 namespace: openshift-cnv
spec:
 storageImport:
 insecureRegistries: 1
 - "private-registry-example-1:5000"
 - "private-registry-example-2:5000"

OpenShift Container Platform 4.20 Virtualization

156

9.3.2.3. Creating a VM from a container disk by using the web console

You can create a virtual machine (VM) by importing a container disk from a container registry by using
the OpenShift Container Platform web console.

Procedure

1. Navigate to Virtualization → Catalog in the web console.

2. Click a template tile without an available boot source.

3. Click Customize VirtualMachine.

4. On the Customize template parameters page, expand Storage and select Registry (creates
PVC) from the Disk source list.

5. Enter the container image URL. Example:
https://mirror.arizona.edu/fedora/linux/releases/38/Cloud/x86_64/images/Fedora-Cloud-
Base-38-1.6.x86_64.qcow2

6. Set the disk size.

7. Click Next.

8. Click Create VirtualMachine.

9.3.2.4. Creating a VM from a container disk by using the CLI

You can create a virtual machine (VM) from a container disk by using the command line.

Prerequisites

You must have access credentials for the container registry that contains the container disk.

You have installed the virtctl CLI.

You have installed the OpenShift CLI (oc).

Procedure

1. Create a VirtualMachine manifest for your VM and save it as a YAML file. For example, to
create a minimal Red Hat Enterprise Linux (RHEL) VM from a container disk, run the following
command:

2. Review the VirtualMachine manifest for your VM:

$ virtctl create vm --name vm-rhel-9 --instancetype u1.small --preference rhel.9 --volume-
containerdisk src:registry.redhat.io/rhel9/rhel-guest-image:9.5

apiVersion: kubevirt.io/v1
kind: VirtualMachine
metadata:
 name: vm-rhel-9 1
spec:
 instancetype:

CHAPTER 9. ADVANCED VM CREATION

157

1

2

3

4

The VM name.

The instance type to use to control resource sizing of the VM.

The preference to use.

The URL of the container disk.

3. Create the VM by running the following command:

Verification

1. Monitor the status of the VM:

If the provisioning is successful, the VM status is Running:

Example output

2. Verify that provisioning is complete and that the VM has started by accessing its serial console:

If the VM is running and the serial console is accessible, the output looks as follows:

Example output

 name: u1.small 2
 preference:
 name: rhel.9 3
 runStrategy: Always
 template:
 metadata:
 creationTimestamp: null
 spec:
 domain:
 devices: {}
 resources: {}
 terminationGracePeriodSeconds: 180
 volumes:
 - containerDisk:
 image: registry.redhat.io/rhel9/rhel-guest-image:9.5 4
 name: vm-rhel-9-containerdisk-0

$ oc create -f <vm_manifest_file>.yaml

$ oc get vm <vm_name>

NAME AGE STATUS READY
vm-rhel-9 18s Running True

$ virtctl console <vm_name>

Successfully connected to vm-rhel-9 console. The escape sequence is ^]

OpenShift Container Platform 4.20 Virtualization

158

9.3.3. Creating VMs by cloning PVCs

You can create virtual machines (VMs) by cloning existing persistent volume claims (PVCs) with custom
images.

You must install the QEMU guest agent on VMs created from operating system images that are not
provided by Red Hat.

You clone a PVC by creating a data volume that references a source PVC.

9.3.3.1. About cloning

When cloning a data volume, the Containerized Data Importer (CDI) chooses one of the following
Container Storage Interface (CSI) clone methods:

CSI volume cloning

Smart cloning

Both CSI volume cloning and smart cloning methods are efficient, but they have certain requirements
for use. If the requirements are not met, the CDI uses host-assisted cloning. Host-assisted cloning is the
slowest and least efficient method of cloning, but it has fewer requirements than either of the other two
cloning methods.

9.3.3.1.1. CSI volume cloning

Container Storage Interface (CSI) cloning uses CSI driver features to more efficiently clone a source
data volume.

CSI volume cloning has the following requirements:

The CSI driver that backs the storage class of the persistent volume claim (PVC) must support
volume cloning.

For provisioners not recognized by the CDI, the corresponding storage profile must have the
cloneStrategy set to CSI Volume Cloning.

The source and target PVCs must have the same storage class and volume mode.

If you create the data volume, you must have permission to create the datavolumes/source
resource in the source namespace.

The source volume must not be in use.

9.3.3.1.2. Smart cloning

When a Container Storage Interface (CSI) plugin with snapshot capabilities is available, the
Containerized Data Importer (CDI) creates a persistent volume claim (PVC) from a snapshot, which then
allows efficient cloning of additional PVCs.

Smart cloning has the following requirements:

A snapshot class associated with the storage class must exist.

The source and target PVCs must have the same storage class and volume mode.

CHAPTER 9. ADVANCED VM CREATION

159

If you create the data volume, you must have permission to create the datavolumes/source
resource in the source namespace.

The source volume must not be in use.

9.3.3.1.3. Host-assisted cloning

When the requirements for neither Container Storage Interface (CSI) volume cloning nor smart cloning
have been met, host-assisted cloning is used as a fallback method. Host-assisted cloning is less efficient
than either of the two other cloning methods.

Host-assisted cloning uses a source pod and a target pod to copy data from the source volume to the
target volume. The target persistent volume claim (PVC) is annotated with the fallback reason that
explains why host-assisted cloning has been used, and an event is created.

Example PVC target annotation

Example event

9.3.3.2. Creating a VM from a PVC by using the web console

You can create a virtual machine (VM) by cloning a persistent volume claim (PVC) by using the
OpenShift Container Platform web console.

Prerequisites

You must have access to the namespace that contains the source PVC.

Procedure

1. Navigate to Virtualization → Catalog in the web console.

2. Click a template tile without an available boot source.

3. Click Customize VirtualMachine.

4. On the Customize template parameters page, expand Storage and select PVC (clone PVC)
from the Disk source list.

5. Select the PVC project and the PVC name.

6. Set the disk size.

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 annotations:
 cdi.kubevirt.io/cloneFallbackReason: The volume modes of source and target are incompatible
 cdi.kubevirt.io/clonePhase: Succeeded
 cdi.kubevirt.io/cloneType: copy

NAMESPACE LAST SEEN TYPE REASON OBJECT MESSAGE
test-ns 0s Warning IncompatibleVolumeModes persistentvolumeclaim/test-target The
volume modes of source and target are incompatible

OpenShift Container Platform 4.20 Virtualization

160

7. Click Next.

8. Click Create VirtualMachine.

9.3.3.3. Creating a VM from a PVC by using the CLI

You can create a virtual machine (VM) by cloning the persistent volume claim (PVC) of an existing VM
by using the command line.

You can clone a PVC by using one of the following options:

Cloning a PVC to a new data volume.
This method creates a data volume whose lifecycle is independent of the original VM. Deleting
the original VM does not affect the new data volume or its associated PVC.

Cloning a PVC by creating a VirtualMachine manifest with a dataVolumeTemplates stanza.
This method creates a data volume whose lifecycle is dependent on the original VM. Deleting
the original VM deletes the cloned data volume and its associated PVC.

9.3.3.3.1. Optimizing clone Performance at scale in OpenShift Data Foundation

When you use OpenShift Data Foundation, the storage profile configures the default cloning strategy as
csi-clone. However, this method has limitations, as shown in the following link. After a certain number of
clones are created from a persistent volume claim (PVC), a background flattening process begins, which
can significantly reduce clone creation performance at scale.

To improve performance when creating hundreds of clones from a single source PVC, use the
VolumeSnapshot cloning method instead of the default csi-clone strategy.

Procedure

Create a VolumeSnapshot custom resource (CR) of the source image by using the following content:

1. Add the spec.source.snapshot stanza to reference the VolumeSnapshot as the source for
the DataVolume clone:

Additional resources

Setting a default cloning strategy using a storage profile

apiVersion: snapshot.storage.k8s.io/v1
kind: VolumeSnapshot
metadata:
 name: golden-volumesnapshot
 namespace: golden-ns
spec:
 volumeSnapshotClassName: ocs-storagecluster-rbdplugin-snapclass
 source:
 persistentVolumeClaimName: golden-snap-source

spec:
 source:
 snapshot:
 namespace: golden-ns
 name: golden-volumesnapshot

CHAPTER 9. ADVANCED VM CREATION

161

Volume cloning

CSI volume snapshots

9.3.3.3.2. Cloning a PVC to a data volume

You can clone the persistent volume claim (PVC) of an existing virtual machine (VM) disk to a data
volume by using the command line.

You create a data volume that references the original source PVC. The lifecycle of the new data volume
is independent of the original VM. Deleting the original VM does not affect the new data volume or its
associated PVC.

Cloning between different volume modes is supported for host-assisted cloning, such as cloning from a
block persistent volume (PV) to a file system PV, as long as the source and target PVs belong to the
kubevirt content type.

NOTE

Smart-cloning is faster and more efficient than host-assisted cloning because it uses
snapshots to clone PVCs. Smart-cloning is supported by storage providers that support
snapshots, such as Red Hat OpenShift Data Foundation.

Cloning between different volume modes is not supported for smart-cloning.

Prerequisites

You have installed the OpenShift CLI (oc).

The VM with the source PVC must be powered down.

If you clone a PVC to a different namespace, you must have permissions to create resources in
the target namespace.

Additional prerequisites for smart-cloning:

Your storage provider must support snapshots.

The source and target PVCs must have the same storage provider and volume mode.

The value of the driver key of the VolumeSnapshotClass object must match the value of
the provisioner key of the StorageClass object as shown in the following example:

Example VolumeSnapshotClass object

Example StorageClass object

kind: VolumeSnapshotClass
apiVersion: snapshot.storage.k8s.io/v1
driver: openshift-storage.rbd.csi.ceph.com
...

kind: StorageClass
apiVersion: storage.k8s.io/v1
...

OpenShift Container Platform 4.20 Virtualization

162

https://docs.redhat.com/en/documentation/red_hat_openshift_data_foundation/latest/html/managing_and_allocating_storage_resources/volume-cloning_rhodf#volume-cloning_rhodf
https://docs.redhat.com/en/documentation/openshift_container_platform/latest/html/storage/using-container-storage-interface-csi#persistent-storage-csi-snapshots

1

2

3

Procedure

1. Create a DataVolume manifest as shown in the following example:

Specify the name of the new data volume.

Specify the namespace of the source PVC.

Specify the name of the source PVC.

2. Create the data volume by running the following command:

NOTE

Data volumes prevent a VM from starting before the PVC is prepared. You can
create a VM that references the new data volume while the PVC is being cloned.

9.3.3.3.3. Creating a VM from a cloned PVC by using a data volume template

You can create a virtual machine (VM) that clones the persistent volume claim (PVC) of an existing VM
by using a data volume template. This method creates a data volume whose lifecycle is independent on
the original VM.

Prerequisites

The VM with the source PVC must be powered down.

You have installed the virtctl CLI.

You have installed the OpenShift CLI (oc).

Procedure

1. Create a VirtualMachine manifest for your VM and save it as a YAML file, for example:

provisioner: openshift-storage.rbd.csi.ceph.com

apiVersion: cdi.kubevirt.io/v1beta1
kind: DataVolume
metadata:
 name: <datavolume> 1
spec:
 source:
 pvc:
 namespace: "<source_namespace>" 2
 name: "<my_vm_disk>" 3
 storage: {}

$ oc create -f <datavolume>.yaml

$ virtctl create vm --name rhel-9-clone --volume-import type:pvc,src:my-project/imported-
volume-q5pr9

CHAPTER 9. ADVANCED VM CREATION

163

1

2

3

4

5

2. Review the VirtualMachine manifest for your VM:

The VM name.

The name of the source PVC.

The namespace of the source PVC.

If the PVC source has appropriate labels, the instance type is inferred from the selected
DataSource object.

If the PVC source has appropriate labels, the preference is inferred from the selected
DataSource object.

3. Create the virtual machine with the PVC-cloned data volume:

apiVersion: kubevirt.io/v1
kind: VirtualMachine
metadata:
 name: rhel-9-clone 1
spec:
 dataVolumeTemplates:
 - metadata:
 name: imported-volume-h4qn8
 spec:
 source:
 pvc:
 name: imported-volume-q5pr9 2
 namespace: my-project 3
 storage:
 resources: {}
 instancetype:
 inferFromVolume: imported-volume-h4qn8 4
 inferFromVolumeFailurePolicy: Ignore
 preference:
 inferFromVolume: imported-volume-h4qn8 5
 inferFromVolumeFailurePolicy: Ignore
 runStrategy: Always
 template:
 spec:
 domain:
 devices: {}
 memory:
 guest: 512Mi
 resources: {}
 terminationGracePeriodSeconds: 180
 volumes:
 - dataVolume:
 name: imported-volume-h4qn8
 name: imported-volume-h4qn8

$ oc create -f <vm_manifest_file>.yaml

OpenShift Container Platform 4.20 Virtualization

164

CHAPTER 10. MANAGING VMS

10.1. LISTING VIRTUAL MACHINES

You can list available virtual machines (VMs) by using the web console or the OpenShift CLI (oc).

10.1.1. Listing virtual machines by using the CLI

You can either list all of the virtual machines (VMs) in your cluster or limit the list to VMs in a specified
namespace by using the OpenShift CLI (oc).

Prerequisites

You have installed the OpenShift CLI (oc).

Procedure

List all of the VMs in your cluster by running the following command:

List all of the VMs in a specific namespace by running the following command:

10.1.2. Listing virtual machines by using the web console

You can list all of the virtual machines (VMs) in your cluster by using the web console.

Procedure

1. Click Virtualization → VirtualMachines from the side menu to access the tree view with all of
the projects and VMs in your cluster.

2. Optional: Enable the Show only projects with VirtualMachines option above the tree view to
limit the displayed projects.

3. Optional: Click the Advanced search button next to the search bar to further filter VMs by one
of the following: their name, the project they belong to, their labels, or the allocated vCPU and
memory resources.

10.1.3. Organizing virtual machines by using the web console

In addition to creating virtual machines (VMs) in different projects, you can use the tree view to further
organize them in folders.

Procedure

1. Click Virtualization → VirtualMachines from the side menu to access the tree view with all
projects and VMs in your cluster.

2. Perform one of the following actions depending on your use case:

$ oc get vms -A

$ oc get vms -n <namespace>

CHAPTER 10. MANAGING VMS

165

To move the VM to a new folder in the same project:

a. Right-click the name of the VM in the tree view.

b. Select Move to folder from the menu.

c. Type the name of the folder to create in the "Search folder" bar.

d. Click Create folder in the drop-down list.

e. Click Save.

To move the VM to an existing folder in the same project:

Click the name of the VM in the tree view and drag it to a folder in the same project. If
the operation is permitted, the folder is highlighted in green when you drag the VM over
it.

To move the VM from a folder to the project:

Click the name of the VM in the tree view and drag it on the project name. If the
operation is permitted, the project name is highlighted in green when you drag the VM
over it.

10.2. INSTALLING THE QEMU GUEST AGENT AND VIRTIO DRIVERS

The QEMU guest agent is a daemon that runs on the virtual machine (VM) and passes information to
the host about the VM, users, file systems, and secondary networks.

You must install the QEMU guest agent on VMs created from operating system images that are not
provided by Red Hat.

10.2.1. Installing the QEMU guest agent

10.2.1.1. Installing the QEMU guest agent on a Linux VM

The qemu-guest-agent is available by default in Red Hat Enterprise Linux (RHEL) virtual machines
(VMs)

To create snapshots of a VM in the Running state with the highest integrity, install the QEMU guest
agent.

The QEMU guest agent takes a consistent snapshot by attempting to quiesce the VM file system. This
ensures that in-flight I/O is written to the disk before the snapshot is taken. If the guest agent is not
present, quiescing is not possible and a best-effort snapshot is taken.

The conditions under which a snapshot is taken are reflected in the snapshot indications that are
displayed in the web console or CLI. If these conditions do not meet your requirements, try creating the
snapshot again, or use an offline snapshot

Prerequisites

You have installed the OpenShift CLI (oc).

Procedure

OpenShift Container Platform 4.20 Virtualization

166

1. Log in to the VM by using a console or SSH.

2. Install the QEMU guest agent by running the following command:

3. Ensure the service is persistent and start it:

Verification

Run the following command to verify that AgentConnected is listed in the VM spec:

10.2.1.2. Installing the QEMU guest agent on a Windows VM

For Windows virtual machines (VMs), the QEMU guest agent is included in the VirtIO drivers. You can
install the drivers during a Windows installation or on an existing Windows VM.

To create snapshots of a VM in the Running state with the highest integrity, install the QEMU guest
agent.

The QEMU guest agent takes a consistent snapshot by attempting to quiesce the VM file system. This
ensures that in-flight I/O is written to the disk before the snapshot is taken. If the guest agent is not
present, quiescing is not possible and a best-effort snapshot is taken.

Note that in a Windows guest operating system, quiescing also requires the Volume Shadow Copy
Service (VSS). Therefore, before you create a snapshot, ensure that VSS is enabled on the VM as well.

The conditions under which a snapshot is taken are reflected in the snapshot indications that are
displayed in the web console or CLI. If these conditions do not meet your requirements, try creating the
snapshot again or use an offline snapshot.

Procedure

1. In the Windows guest operating system, use the File Explorer to navigate to the guest-agent
directory in the virtio-win CD drive.

2. Run the qemu-ga-x86_64.msi installer.

Verification

1. Obtain a list of network services by running the following command:

2. Verify that the output contains the QEMU Guest Agent.

10.2.2. Installing VirtIO drivers on Windows VMs

VirtIO drivers are paravirtualized device drivers required for Microsoft Windows virtual machines (VMs)

$ yum install -y qemu-guest-agent

$ systemctl enable --now qemu-guest-agent

$ oc get vm <vm_name>

$ net start

CHAPTER 10. MANAGING VMS

167

VirtIO drivers are paravirtualized device drivers required for Microsoft Windows virtual machines (VMs)
to run in OpenShift Virtualization. The drivers are shipped with the rest of the images and do not require
a separate download.

The container-native-virtualization/virtio-win container disk must be attached to the VM as a SATA
CD drive to enable driver installation. You can install VirtIO drivers during Windows installation or added
to an existing Windows installation.

After the drivers are installed, the container-native-virtualization/virtio-win container disk can be
removed from the VM.

Table 10.1. Supported drivers

Driver name Hardware ID Description

viostor VEN_1AF4&DEV_1001
VEN_1AF4&DEV_1042

The block driver. Sometimes
labeled as an SCSI Controller in
the Other devices group.

viorng VEN_1AF4&DEV_1005
VEN_1AF4&DEV_1044

The entropy source driver.
Sometimes labeled as a PCI
Device in the Other devices
group.

NetKVM VEN_1AF4&DEV_1000
VEN_1AF4&DEV_1041

The network driver. Sometimes
labeled as an Ethernet Controller
in the Other devices group.
Available only if a VirtIO NIC is
configured.

10.2.2.1. Attaching VirtIO container disk to Windows VMs during installation

You must attach the VirtIO container disk to the Windows VM to install the necessary Windows drivers.
This can be done during creation of the VM.

Procedure

1. When creating a Windows VM from a template, click Customize VirtualMachine.

2. Select Mount Windows drivers disk.

3. Click the Customize VirtualMachine parameters.

4. Click Create VirtualMachine.

After the VM is created, the virtio-win SATA CD disk will be attached to the VM.

10.2.2.2. Attaching VirtIO container disk to an existing Windows VM

You must attach the VirtIO container disk to the Windows VM to install the necessary Windows drivers.
This can be done to an existing VM.

Procedure

OpenShift Container Platform 4.20 Virtualization

168

1. Navigate to the existing Windows VM, and click Actions → Stop.

2. Go to VM Details → Configuration → Storage.

3. Select the Mount Windows drivers disk checkbox.

4. Click Save.

5. Start the VM, and connect to a graphical console.

10.2.2.3. Installing VirtIO drivers during Windows installation

You can install the VirtIO drivers while installing Windows on a virtual machine (VM).

NOTE

This procedure uses a generic approach to the Windows installation and the installation
method might differ between versions of Windows. See the documentation for the
version of Windows that you are installing.

Prerequisites

A storage device containing the virtio drivers must be attached to the VM.

Procedure

1. In the Windows operating system, use the File Explorer to navigate to the virtio-win CD drive.

2. Double-click the drive to run the appropriate installer for your VM.
For a 64-bit vCPU, select the virtio-win-gt-x64 installer. 32-bit vCPUs are no longer supported.

3. Optional: During the Custom Setup step of the installer, select the device drivers you want to
install. The recommended driver set is selected by default.

4. After the installation is complete, select Finish.

5. Reboot the VM.

Verification

1. Open the system disk on the PC. This is typically C:.

2. Navigate to Program Files → Virtio-Win.

If the Virtio-Win directory is present and contains a sub-directory for each driver, the installation was
successful.

10.2.2.4. Installing VirtIO drivers from a SATA CD drive on an existing Windows VM

You can install the VirtIO drivers from a SATA CD drive on an existing Windows virtual machine (VM).

NOTE

This procedure uses a generic approach to adding drivers to Windows. See the
installation documentation for your version of Windows for specific installation steps.

CHAPTER 10. MANAGING VMS

169

Prerequisites

A storage device containing the virtio drivers must be attached to the VM as a SATA CD drive.

Procedure

1. Start the VM and connect to a graphical console.

2. Log in to a Windows user session.

3. Open Device Manager and expand Other devices to list any Unknown device.

a. Open the Device Properties to identify the unknown device.

b. Right-click the device and select Properties.

c. Click the Details tab and select Hardware Ids in the Property list.

d. Compare the Value for the Hardware Ids with the supported VirtIO drivers.

4. Right-click the device and select Update Driver Software.

5. Click Browse my computer for driver software and browse to the attached SATA CD drive,
where the VirtIO drivers are located. The drivers are arranged hierarchically according to their
driver type, operating system, and CPU architecture.

6. Click Next to install the driver.

7. Repeat this process for all the necessary VirtIO drivers.

8. After the driver installs, click Close to close the window.

9. Reboot the VM to complete the driver installation.

10.2.2.5. Installing VirtIO drivers from a container disk added as a SATA CD drive

You can install VirtIO drivers from a container disk that you add to a Windows virtual machine (VM) as a
SATA CD drive.

TIP

Downloading the container-native-virtualization/virtio-win container disk from the Red Hat Ecosystem
Catalog is not mandatory, because the container disk is downloaded from the Red Hat registry if it not
already present in the cluster. However, downloading reduces the installation time.

Prerequisites

You must have access to the Red Hat registry or to the downloaded container-native-
virtualization/virtio-win container disk in a restricted environment.

You have installed the virtctl CLI.

You have installed the OpenShift CLI (oc).

Procedure

1. Add the container-native-virtualization/virtio-win container disk as a CD drive by editing the

OpenShift Container Platform 4.20 Virtualization

170

https://catalog.redhat.com/software/containers/search?q=virtio-win&p=1

1

1. Add the container-native-virtualization/virtio-win container disk as a CD drive by editing the
VirtualMachine manifest:

OpenShift Virtualization boots the VM disks in the order defined in the VirtualMachine
manifest. You can either define other VM disks that boot before the container-native-
virtualization/virtio-win container disk or use the optional bootOrder parameter to
ensure the VM boots from the correct disk. If you configure the boot order for a disk, you
must configure the boot order for the other disks.

2. Apply the changes:

If the VM is not running, run the following command:

If the VM is running, reboot the VM or run the following command:

3. After the VM has started, install the VirtIO drivers from the SATA CD drive.

10.2.3. Updating VirtIO drivers

10.2.3.1. Updating VirtIO drivers on a Windows VM

Update the virtio drivers on a Windows virtual machine (VM) by using the Windows Update service.

Prerequisites

The cluster must be connected to the internet. Disconnected clusters cannot reach the
Windows Update service.

Procedure

1. In the Windows Guest operating system, click the Windows key and select Settings.

2. Navigate to Windows Update → Advanced Options → Optional Updates.

3. Install all updates from Red Hat, Inc..

...
spec:
 domain:
 devices:
 disks:
 - name: virtiocontainerdisk
 bootOrder: 2 1
 cdrom:
 bus: sata
volumes:
 - containerDisk:
 image: container-native-virtualization/virtio-win
 name: virtiocontainerdisk

$ virtctl start <vm> -n <namespace>

$ oc apply -f <vm.yaml>

CHAPTER 10. MANAGING VMS

171

4. Reboot the VM.

Verification

1. On the Windows VM, navigate to the Device Manager.

2. Select a device.

3. Select the Driver tab.

4. Click Driver Details and confirm that the virtio driver details displays the correct version.

10.3. CONNECTING TO VIRTUAL MACHINE CONSOLES

You can connect to the following consoles to access running virtual machines (VMs):

VNC console

Serial console

Desktop viewer for Windows VMs

10.3.1. Connecting to the VNC console

You can connect to the VNC console of a virtual machine by using the OpenShift Container Platform
web console or the virtctl command-line tool.

10.3.1.1. Connecting to the VNC console by using the web console

You can connect to the VNC console of a virtual machine (VM) by using the OpenShift Container
Platform web console.

NOTE

If you connect to a Windows VM with a vGPU assigned as a mediated device, you can
switch between the default display and the vGPU display.

Procedure

1. On the Virtualization → VirtualMachines page, click a VM to open the VirtualMachine details
page.

2. Click the Console tab. The VNC console session starts automatically.

3. Optional: To switch to the vGPU display of a Windows VM, select Ctl + Alt + 2 from the Send
key list.

Select Ctl + Alt + 1 from the Send key list to restore the default display.

4. To end the console session, click outside the console pane and then click Disconnect.

10.3.1.2. Connecting to the VNC console by using virtctl

You can use the virtctl command-line tool to connect to the VNC console of a running virtual machine.

NOTE

OpenShift Container Platform 4.20 Virtualization

172

NOTE

If you run the virtctl vnc command on a remote machine over an SSH connection, you
must forward the X session to your local machine by running the ssh command with the -
X or -Y flags.

Prerequisites

You must install the virt-viewer package.

Procedure

1. Run the following command to start the console session:

2. If the connection fails, run the following command to collect troubleshooting information:

10.3.1.3. Generating a temporary token for the VNC console

To access the VNC of a virtual machine (VM), generate a temporary authentication bearer token for the
Kubernetes API.

NOTE

Kubernetes also supports authentication using client certificates, instead of a bearer
token, by modifying the curl command.

Prerequisites

A running VM with OpenShift Virtualization 4.14 or later and ssp-operator 4.14 or later.

You have installed the OpenShift CLI (oc).

Procedure

1. Set the deployVmConsoleProxy field value in the HyperConverged (HCO) custom resource
(CR) to true:

2. Generate a token by entering the following command:

The <duration> parameter can be set in hours and minutes, with a minimum duration of 10

$ virtctl vnc <vm_name>

$ virtctl vnc <vm_name> -v 4

$ oc patch hyperconverged kubevirt-hyperconverged -n openshift-cnv --type json -p '[{"op":
"replace", "path": "/spec/deployVmConsoleProxy", "value": true}]'

$ curl --header "Authorization: Bearer ${TOKEN}" \
 "https://api.
<cluster_fqdn>/apis/token.kubevirt.io/v1alpha1/namespaces/<namespace>/virtualmachines/<vm
_name>/vnc?duration=<duration>"

CHAPTER 10. MANAGING VMS

173

The <duration> parameter can be set in hours and minutes, with a minimum duration of 10
minutes. For example: 5h30m. If this parameter is not set, the token is valid for 10 minutes by
default.

Sample output:

3. Optional: Use the token provided in the output to create a variable:

You can now use the token to access the VNC console of a VM.

Verification

1. Log in to the cluster by entering the following command:

2. Test access to the VNC console of the VM by using the virtctl command:

WARNING

It is currently not possible to revoke a specific token.

To revoke a token, you must delete the service account that was used to create it.
However, this also revokes all other tokens that were created by using the service
account. Use the following command with caution:

Additional resources

About the Scheduling, Scale, and Performance (SSP) Operator

10.3.1.3.1. Granting token generation permission for the VNC console by using the cluster role

As a cluster administrator, you can install a cluster role and bind it to a user or service account to allow
access to the endpoint that generates tokens for the VNC console.

Procedure

Choose to bind the cluster role to either a user or service account.

{ "token": "eyJhb..." }

$ export VNC_TOKEN="<token>"

$ oc login --token ${VNC_TOKEN}

$ virtctl vnc <vm_name> -n <namespace>


$ virtctl delete serviceaccount --namespace "<namespace>" "<vm_name>-vnc-
access"

OpenShift Container Platform 4.20 Virtualization

174

Run the following command to bind the cluster role to a user:

Run the following command to bind the cluster role to a service account:

10.3.2. Connecting to the serial console

You can connect to the serial console of a virtual machine by using the OpenShift Container Platform
web console or the virtctl command-line tool.

NOTE

Running concurrent VNC connections to a single virtual machine is not currently
supported.

10.3.2.1. Connecting to the serial console by using the web console

You can connect to the serial console of a virtual machine (VM) by using the OpenShift Container
Platform web console.

NOTE

If you connect to a Windows VM with a vGPU assigned as a mediated device, you can
switch between the default display and the vGPU display.

Procedure

1. On the Virtualization → VirtualMachines page, click a VM to open the VirtualMachine details
page.

2. Click the Console tab. The VNC console session starts automatically.

3. Click Disconnect to end the VNC console session. Otherwise, the VNC console session
continues to run in the background.

4. Select Serial console from the console list.

5. Optional: To switch to the vGPU display of a Windows VM, select Ctl + Alt + 2 from the Send
key list.

Select Ctl + Alt + 1 from the Send key list to restore the default display.

6. To end the console session, click outside the console pane and then click Disconnect.

10.3.2.2. Connecting to the serial console by using virtctl

You can use the virtctl command-line tool to connect to the serial console of a running virtual machine.

NOTE

$ kubectl create rolebinding "${ROLE_BINDING_NAME}" --
clusterrole="token.kubevirt.io:generate" --user="${USER_NAME}"

$ kubectl create rolebinding "${ROLE_BINDING_NAME}" --
clusterrole="token.kubevirt.io:generate" --
serviceaccount="${SERVICE_ACCOUNT_NAME}"

CHAPTER 10. MANAGING VMS

175

NOTE

If you run the virtctl vnc command on a remote machine over an SSH connection, you
must forward the X session to your local machine by running the ssh command with the -
X or -Y flags.

Prerequisites

You must install the virt-viewer package.

Procedure

1. Run the following command to start the console session:

2. Press Ctrl+] to end the console session.

3. If the connection fails, run the following command to collect troubleshooting information:

10.3.3. Connecting to the desktop viewer

You can connect to a Windows virtual machine (VM) by using the desktop viewer and the Remote
Desktop Protocol (RDP).

10.3.3.1. Connecting to the desktop viewer by using the web console

You can connect to the desktop viewer of a virtual machine (VM) by using the OpenShift Container
Platform web console. You can connect to the desktop viewer of a Windows virtual machine (VM) by
using the OpenShift Container Platform web console.

NOTE

If you connect to a Windows VM with a vGPU assigned as a mediated device, you can
switch between the default display and the vGPU display.

Prerequisites

You installed the QEMU guest agent on the Windows VM.

You have an RDP client installed.

Procedure

1. On the Virtualization → VirtualMachines page, click a VM to open the VirtualMachine details
page.

2. Click the Console tab. The VNC console session starts automatically.

3. Click Disconnect to end the VNC console session. Otherwise, the VNC console session

$ virtctl console <vm_name>

$ virtctl vnc <vm_name>

$ virtctl vnc <vm_name> -v 4

OpenShift Container Platform 4.20 Virtualization

176

3. Click Disconnect to end the VNC console session. Otherwise, the VNC console session
continues to run in the background.

4. Select Desktop viewer from the console list.

5. Click Create RDP Service to open the RDP Service dialog.

6. Select Expose RDP Service and click Save to create a node port service.

7. Click Launch Remote Desktop to download an .rdp file and launch the desktop viewer.

8. Optional: To switch to the vGPU display of a Windows VM, select Ctl + Alt + 2 from the Send
key list.

Select Ctl + Alt + 1 from the Send key list to restore the default display.

9. To end the console session, click outside the console pane and then click Disconnect.

10.4. CONFIGURING SSH ACCESS TO VIRTUAL MACHINES

You can configure SSH access to virtual machines (VMs) by using the following methods:

virtctl ssh command
You create an SSH key pair, add the public key to a VM, and connect to the VM by running the
virtctl ssh command with the private key.

You can add public SSH keys to Red Hat Enterprise Linux (RHEL) 9 VMs at runtime or at first
boot to VMs with guest operating systems that can be configured by using a cloud-init data
source.

virtctl port-forward command
You add the virtctl port-foward command to your .ssh/config file and connect to the VM by
using OpenSSH.

Service
You create a service, associate the service with the VM, and connect to the IP address and port
exposed by the service.

Secondary network
You configure a secondary network, attach a virtual machine (VM) to the secondary network
interface, and connect to the DHCP-allocated IP address.

10.4.1. Access configuration considerations

Each method for configuring access to a virtual machine (VM) has advantages and limitations,
depending on the traffic load and client requirements.

NOTE

Services provide excellent performance and are recommended for applications that are
accessed from outside the cluster.

If the internal cluster network cannot handle the traffic load, you can configure a secondary network.

virtctl ssh and virtctl port-forwarding commands

Simple to configure.

CHAPTER 10. MANAGING VMS

177

Simple to configure.

Recommended for troubleshooting VMs.

virtctl port-forwarding recommended for automated configuration of VMs with Ansible.

Dynamic public SSH keys can be used to provision VMs with Ansible.

Not recommended for high-traffic applications like Rsync or Remote Desktop Protocol
because of the burden on the API server.

The API server must be able to handle the traffic load.

The clients must be able to access the API server.

The clients must have access credentials for the cluster.

Cluster IP service

The internal cluster network must be able to handle the traffic load.

The clients must be able to access an internal cluster IP address.

Node port service

The internal cluster network must be able to handle the traffic load.

The clients must be able to access at least one node.

Load balancer service

A load balancer must be configured.

Each node must be able to handle the traffic load of one or more load balancer services.

Secondary network

Excellent performance because traffic does not go through the internal cluster network.

Allows a flexible approach to network topology.

Guest operating system must be configured with appropriate security because the VM is
exposed directly to the secondary network. If a VM is compromised, an intruder could gain
access to the secondary network.

10.4.2. Using virtctl ssh

You can add a public SSH key to a virtual machine (VM) and connect to the VM by running the virtctl
ssh command.

This method is simple to configure. However, it is not recommended for high traffic loads because it
places a burden on the API server.

10.4.2.1. About static and dynamic SSH key management

OpenShift Container Platform 4.20 Virtualization

178

You can add public SSH keys to virtual machines (VMs) statically at first boot or dynamically at runtime.

NOTE

Only Red Hat Enterprise Linux (RHEL) 9 supports dynamic key injection.

Static SSH key management
You can add a statically managed SSH key to a VM with a guest operating system that supports
configuration by using a cloud-init data source. The key is added to the virtual machine (VM) at first
boot.

You can add the key by using one of the following methods:

Add a key to a single VM when you create it by using the web console or the command line.

Add a key to a project by using the web console. Afterwards, the key is automatically added to
the VMs that you create in this project.

Use cases

As a VM owner, you can provision all your newly created VMs with a single key.

Dynamic SSH key management
You can enable dynamic SSH key management for a VM with Red Hat Enterprise Linux (RHEL) 9
installed. Afterwards, you can update the key during runtime. The key is added by the QEMU guest
agent, which is installed with Red Hat boot sources.

When dynamic key management is disabled, the default key management setting of a VM is determined
by the image used for the VM.

Use cases

Granting or revoking access to VMs: As a cluster administrator, you can grant or revoke remote
VM access by adding or removing the keys of individual users from a Secret object that is
applied to all VMs in a namespace.

User access: You can add your access credentials to all VMs that you create and manage.

Ansible provisioning:

As an operations team member, you can create a single secret that contains all the keys
used for Ansible provisioning.

As a VM owner, you can create a VM and attach the keys used for Ansible provisioning.

Key rotation:

As a cluster administrator, you can rotate the Ansible provisioner keys used by VMs in a
namespace.

As a workload owner, you can rotate the key for the VMs that you manage.

10.4.2.2. Static key management

You can add a statically managed public SSH key when you create a virtual machine (VM) by using the

CHAPTER 10. MANAGING VMS

179

You can add a statically managed public SSH key when you create a virtual machine (VM) by using the
OpenShift Container Platform web console or the command line. The key is added as a cloud-init data
source when the VM boots for the first time.

You can also add a public SSH key to a project when you create a VM by using the web console. The key
is saved as a secret and is added automatically to all VMs that you create.

NOTE

If you add a secret to a project and then delete the VM, the secret is retained because it
is a namespace resource. You must delete the secret manually.

10.4.2.2.1. Adding a key when creating a VM from a template

You can add a statically managed public SSH key when you create a virtual machine (VM) by using the
OpenShift Container Platform web console. The key is added to the VM as a cloud-init data source at
first boot. This method does not affect cloud-init user data.

Optional: You can add a key to a project. Afterwards, this key is added automatically to VMs that you
create in the project.

Prerequisites

You generated an SSH key pair by running the ssh-keygen command.

Procedure

1. Navigate to Virtualization → Catalog in the web console.

2. Click a template tile.
The guest operating system must support configuration from a cloud-init data source.

3. Click Customize VirtualMachine.

4. Click Next.

5. Click the Scripts tab.

6. If you have not already added a public SSH key to your project, click the edit icon beside
Authorized SSH key and select one of the following options:

Use existing: Select a secret from the secrets list.

Add new:

a. Browse to the SSH key file or paste the file in the key field.

b. Enter the secret name.

c. Optional: Select Automatically apply this key to any new VirtualMachine you create
in this project.

7. Click Save.

8. Click Create VirtualMachine.
The VirtualMachine details page displays the progress of the VM creation.

OpenShift Container Platform 4.20 Virtualization

180

Verification

Click the Scripts tab on the Configuration tab.
The secret name is displayed in the Authorized SSH key section.

10.4.2.2.2. Creating a VM from an instance type by using the web console

You can create a virtual machine (VM) from an instance type by using the OpenShift Container Platform
web console. You can also use the web console to create a VM by copying an existing snapshot or to
clone a VM.

You can create a VM from a list of available bootable volumes. You can add Linux- or Windows-based
volumes to the list.

You can add a statically managed SSH key when you create a virtual machine (VM) from an instance
type by using the OpenShift Container Platform web console. The key is added to the VM as a cloud-init
data source at first boot. This method does not affect cloud-init user data.

Procedure

1. In the web console, navigate to Virtualization → Catalog.
The InstanceTypes tab opens by default.

NOTE

When configuring a downward-metrics device on an IBM Z® system that uses a
VM preference, set the spec.preference.name value to rhel.9.s390x or another
available preference with the format *.s390x.

2. Heterogeneous clusters only: To filter the bootable volumes using the options provided, click
Architecture.

3. Select either of the following options:

Select a suitable bootable volume from the list. If the list is truncated, click the Show all
button to display the entire list.

NOTE

The bootable volume table lists only those volumes in the openshift-
virtualization-os-images namespace that have the
instancetype.kubevirt.io/default-preference label.

Optional: Click the star icon to designate a bootable volume as a favorite. Starred
bootable volumes appear first in the volume list.

Click Add volume to upload a new volume or to use an existing persistent volume claim
(PVC), a volume snapshot, or a containerDisk volume. Click Save.
Logos of operating systems that are not available in the cluster are shown at the bottom of
the list. You can add a volume for the required operating system by clicking the Add volume
link.

In addition, there is a link to the Create a Windows bootable volume quick start. The same

CHAPTER 10. MANAGING VMS

181

In addition, there is a link to the Create a Windows bootable volume quick start. The same
link appears in a popover if you hover the pointer over the question mark icon next to the
Select volume to boot from line.

Immediately after you install the environment or when the environment is disconnected, the
list of volumes to boot from is empty. In that case, three operating system logos are
displayed: Windows, RHEL, and Linux. You can add a new volume that meets your
requirements by clicking the Add volume button.

4. Click an instance type tile and select the resource size appropriate for your workload. You can
select huge pages for Red Hat-provided instance types of the M and CX series. Huge page
options are identified by names that end with 1gi.

5. Optional: Choose the virtual machine details, including the VM’s name, that apply to the volume
you are booting from:

For a Linux-based volume, follow these steps to configure SSH:

a. If you have not already added a public SSH key to your project, click the edit icon beside
Authorized SSH key in the VirtualMachine details section.

b. Select one of the following options:

Use existing: Select a secret from the secrets list.

Add new: Follow these steps:

i. Browse to the public SSH key file or paste the file in the key field.

ii. Enter the secret name.

iii. Optional: Select Automatically apply this key to any new VirtualMachine you
create in this project.

c. Click Save.

For a Windows volume, follow either of these set of steps to configure sysprep options:

If you have not already added sysprep options for the Windows volume, follow these
steps:

i. Click the edit icon beside Sysprep in the VirtualMachine details section.

ii. Add the Autoattend.xml answer file.

iii. Add the Unattend.xml answer file.

iv. Click Save.

If you want to use existing sysprep options for the Windows volume, follow these steps:

i. Click Attach existing sysprep.

ii. Enter the name of the existing sysprep Unattend.xml answer file.

iii. Click Save.

6. Optional: If you are creating a Windows VM, you can mount a Windows driver disk:

OpenShift Container Platform 4.20 Virtualization

182

a. Click the Customize VirtualMachine button.

b. On the VirtualMachine details page, click Storage.

c. Select the Mount Windows drivers disk checkbox.

7. Optional: Click View YAML & CLI to view the YAML file. Click CLI to view the CLI commands.
You can also download or copy either the YAML file contents or the CLI commands.

8. Click Create VirtualMachine.

After the VM is created, you can monitor the status on the VirtualMachine details page.

10.4.2.2.3. Adding a key when creating a VM by using the CLI

You can add a statically managed public SSH key when you create a virtual machine (VM) by using the
command line. The key is added to the VM at first boot.

The key is added to the VM as a cloud-init data source. This method separates the access credentials
from the application data in the cloud-init user data. This method does not affect cloud-init user data.

Prerequisites

You generated an SSH key pair by running the ssh-keygen command.

You have installed the OpenShift CLI (oc).

Procedure

1. Create a manifest file for a VirtualMachine object and a Secret object:

Example manifest

apiVersion: kubevirt.io/v1
kind: VirtualMachine
metadata:
 name: example-vm
 namespace: example-namespace
spec:
 dataVolumeTemplates:
 - metadata:
 name: example-vm-volume
 spec:
 sourceRef:
 kind: DataSource
 name: rhel9
 namespace: openshift-virtualization-os-images
 storage:
 resources: {}
 instancetype:
 name: u1.medium
 preference:
 name: rhel.9
 runStrategy: Always
 template:
 spec:

CHAPTER 10. MANAGING VMS

183

1

2

3

Specify the cloudInitNoCloud data source.

Specify the Secret object name.

Paste the public SSH key.

2. Create the VirtualMachine and Secret objects by running the following command:

3. Start the VM by running the following command:

Verification

Get the VM configuration:

Example output

 domain:
 devices: {}
 volumes:
 - dataVolume:
 name: example-vm-volume
 name: rootdisk
 - cloudInitNoCloud: 1
 userData: |-
 #cloud-config
 user: cloud-user
 name: cloudinitdisk
 accessCredentials:
 - sshPublicKey:
 propagationMethod:
 noCloud: {}
 source:
 secret:
 secretName: authorized-keys 2

apiVersion: v1
kind: Secret
metadata:
 name: authorized-keys
data:
 key: c3NoLXJzYSB... 3

$ oc create -f <manifest_file>.yaml

$ virtctl start vm example-vm -n example-namespace

$ oc describe vm example-vm -n example-namespace

apiVersion: kubevirt.io/v1
kind: VirtualMachine
metadata:
 name: example-vm
 namespace: example-namespace

OpenShift Container Platform 4.20 Virtualization

184

10.4.2.3. Dynamic key management

You can enable dynamic key injection for a virtual machine (VM) by using the OpenShift Container
Platform web console or the command line. Then, you can update the key at runtime.

NOTE

Only Red Hat Enterprise Linux (RHEL) 9 supports dynamic key injection.

If you disable dynamic key injection, the VM inherits the key management method of the image from
which it was created.

10.4.2.3.1. Enabling dynamic key injection when creating a VM from a template

You can enable dynamic public SSH key injection when you create a virtual machine (VM) from a
template by using the OpenShift Container Platform web console. Then, you can update the key at
runtime.

NOTE

Only Red Hat Enterprise Linux (RHEL) 9 supports dynamic key injection.

The key is added to the VM by the QEMU guest agent, which is installed with RHEL 9.

Prerequisites

You generated an SSH key pair by running the ssh-keygen command.

Procedure

1. Navigate to Virtualization → Catalog in the web console.

2. Click the Red Hat Enterprise Linux 9 VM tile.

3. Click Customize VirtualMachine.

4. Click Next.

5. Click the Scripts tab.

6. If you have not already added a public SSH key to your project, click the edit icon beside
Authorized SSH key and select one of the following options:

spec:
 template:
 spec:
 accessCredentials:
 - sshPublicKey:
 propagationMethod:
 noCloud: {}
 source:
 secret:
 secretName: authorized-keys
...

CHAPTER 10. MANAGING VMS

185

Use existing: Select a secret from the secrets list.

Add new:

a. Browse to the SSH key file or paste the file in the key field.

b. Enter the secret name.

c. Optional: Select Automatically apply this key to any new VirtualMachine you create
in this project.

7. Set Dynamic SSH key injection to on.

8. Click Save.

9. Click Create VirtualMachine.
The VirtualMachine details page displays the progress of the VM creation.

Verification

Click the Scripts tab on the Configuration tab.
The secret name is displayed in the Authorized SSH key section.

10.4.2.3.2. Creating a VM from an instance type by using the web console

You can create a virtual machine (VM) from an instance type by using the OpenShift Container Platform
web console. You can also use the web console to create a VM by copying an existing snapshot or to
clone a VM.

You can create a VM from a list of available bootable volumes. You can add Linux- or Windows-based
volumes to the list.

You can enable dynamic SSH key injection when you create a virtual machine (VM) from an instance
type by using the OpenShift Container Platform web console. Then, you can add or revoke the key at
runtime.

NOTE

Only Red Hat Enterprise Linux (RHEL) 9 supports dynamic key injection.

The key is added to the VM by the QEMU guest agent, which is installed with RHEL 9.

Procedure

1. In the web console, navigate to Virtualization → Catalog.
The InstanceTypes tab opens by default.

NOTE

When configuring a downward-metrics device on an IBM Z® system that uses a
VM preference, set the spec.preference.name value to rhel.9.s390x or another
available preference with the format *.s390x.

2. Heterogeneous clusters only: To filter the bootable volumes using the options provided, click

OpenShift Container Platform 4.20 Virtualization

186

2. Heterogeneous clusters only: To filter the bootable volumes using the options provided, click
Architecture.

3. Select either of the following options:

Select a suitable bootable volume from the list. If the list is truncated, click the Show all
button to display the entire list.

NOTE

The bootable volume table lists only those volumes in the openshift-
virtualization-os-images namespace that have the
instancetype.kubevirt.io/default-preference label.

Optional: Click the star icon to designate a bootable volume as a favorite. Starred
bootable volumes appear first in the volume list.

Click Add volume to upload a new volume or to use an existing persistent volume claim
(PVC), a volume snapshot, or a containerDisk volume. Click Save.
Logos of operating systems that are not available in the cluster are shown at the bottom of
the list. You can add a volume for the required operating system by clicking the Add volume
link.

In addition, there is a link to the Create a Windows bootable volume quick start. The same
link appears in a popover if you hover the pointer over the question mark icon next to the
Select volume to boot from line.

Immediately after you install the environment or when the environment is disconnected, the
list of volumes to boot from is empty. In that case, three operating system logos are
displayed: Windows, RHEL, and Linux. You can add a new volume that meets your
requirements by clicking the Add volume button.

4. Click an instance type tile and select the resource size appropriate for your workload. You can
select huge pages for Red Hat-provided instance types of the M and CX series. Huge page
options are identified by names that end with 1gi.

5. Click the Red Hat Enterprise Linux 9 VM tile.

6. Optional: Choose the virtual machine details, including the VM’s name, that apply to the volume
you are booting from:

For a Linux-based volume, follow these steps to configure SSH:

a. If you have not already added a public SSH key to your project, click the edit icon beside
Authorized SSH key in the VirtualMachine details section.

b. Select one of the following options:

Use existing: Select a secret from the secrets list.

Add new: Follow these steps:

i. Browse to the public SSH key file or paste the file in the key field.

ii. Enter the secret name.

iii. Optional: Select Automatically apply this key to any new VirtualMachine you

CHAPTER 10. MANAGING VMS

187

iii. Optional: Select Automatically apply this key to any new VirtualMachine you
create in this project.

c. Click Save.

For a Windows volume, follow either of these set of steps to configure sysprep options:

If you have not already added sysprep options for the Windows volume, follow these
steps:

i. Click the edit icon beside Sysprep in the VirtualMachine details section.

ii. Add the Autoattend.xml answer file.

iii. Add the Unattend.xml answer file.

iv. Click Save.

If you want to use existing sysprep options for the Windows volume, follow these steps:

i. Click Attach existing sysprep.

ii. Enter the name of the existing sysprep Unattend.xml answer file.

iii. Click Save.

7. Set Dynamic SSH key injection in the VirtualMachine details section to on.

8. Optional: If you are creating a Windows VM, you can mount a Windows driver disk:

a. Click the Customize VirtualMachine button.

b. On the VirtualMachine details page, click Storage.

c. Select the Mount Windows drivers disk checkbox.

9. Optional: Click View YAML & CLI to view the YAML file. Click CLI to view the CLI commands.
You can also download or copy either the YAML file contents or the CLI commands.

10. Click Create VirtualMachine.

After the VM is created, you can monitor the status on the VirtualMachine details page.

10.4.2.3.3. Enabling dynamic SSH key injection by using the web console

You can enable dynamic key injection for a virtual machine (VM) by using the OpenShift Container
Platform web console. Then, you can update the public SSH key at runtime.

The key is added to the VM by the QEMU guest agent, which is installed with Red Hat Enterprise Linux
(RHEL) 9.

Prerequisites

The guest operating system is RHEL 9.

Procedure

1. Navigate to Virtualization → VirtualMachines in the web console.

OpenShift Container Platform 4.20 Virtualization

188

2. Select a VM to open the VirtualMachine details page.

3. On the Configuration tab, click Scripts.

4. If you have not already added a public SSH key to your project, click the edit icon beside
Authorized SSH key and select one of the following options:

Use existing: Select a secret from the secrets list.

Add new:

a. Browse to the SSH key file or paste the file in the key field.

b. Enter the secret name.

c. Optional: Select Automatically apply this key to any new VirtualMachine you create
in this project.

5. Set Dynamic SSH key injection to on.

6. Click Save.

10.4.2.3.4. Enabling dynamic key injection by using the CLI

You can enable dynamic key injection for a virtual machine (VM) by using the command line. Then, you
can update the public SSH key at runtime.

NOTE

Only Red Hat Enterprise Linux (RHEL) 9 supports dynamic key injection.

The key is added to the VM by the QEMU guest agent, which is installed automatically with RHEL 9.

Prerequisites

You generated an SSH key pair by running the ssh-keygen command.

You have installed the OpenShift CLI (oc).

Procedure

1. Create a manifest file for a VirtualMachine object and a Secret object:

Example manifest

apiVersion: kubevirt.io/v1
kind: VirtualMachine
metadata:
 name: example-vm
 namespace: example-namespace
spec:
 dataVolumeTemplates:
 - metadata:
 name: example-vm-volume
 spec:

CHAPTER 10. MANAGING VMS

189

1

2

3

Specify the cloudInitNoCloud data source.

Specify the Secret object name.

Paste the public SSH key.

2. Create the VirtualMachine and Secret objects by running the following command:

3. Start the VM by running the following command:

 sourceRef:
 kind: DataSource
 name: rhel9
 namespace: openshift-virtualization-os-images
 storage:
 resources: {}
 instancetype:
 name: u1.medium
 preference:
 name: rhel.9
 runStrategy: Always
 template:
 spec:
 domain:
 devices: {}
 volumes:
 - dataVolume:
 name: example-vm-volume
 name: rootdisk
 - cloudInitNoCloud: 1
 userData: |-
 #cloud-config
 runcmd:
 - [setsebool, -P, virt_qemu_ga_manage_ssh, on]
 name: cloudinitdisk
 accessCredentials:
 - sshPublicKey:
 propagationMethod:
 qemuGuestAgent:
 users: ["cloud-user"]
 source:
 secret:
 secretName: authorized-keys 2

apiVersion: v1
kind: Secret
metadata:
 name: authorized-keys
data:
 key: c3NoLXJzYSB... 3

$ oc create -f <manifest_file>.yaml

$ virtctl start vm example-vm -n example-namespace

OpenShift Container Platform 4.20 Virtualization

190

1

Verification

Get the VM configuration:

Example output

10.4.2.4. Using the virtctl ssh command

You can access a running virtual machine (VM) by using the virtcl ssh command.

Prerequisites

You installed the virtctl command-line tool.

You added a public SSH key to the VM.

You have an SSH client installed.

The environment where you installed the virtctl tool has the cluster permissions required to
access the VM. For example, you ran oc login or you set the KUBECONFIG environment
variable.

Procedure

Run the virtctl ssh command:

Specify the namespace, user name, and the SSH private key. The default SSH key location
is /home/user/.ssh. If you save the key in a different location, you must specify the path.

Example

$ oc describe vm example-vm -n example-namespace

apiVersion: kubevirt.io/v1
kind: VirtualMachine
metadata:
 name: example-vm
 namespace: example-namespace
spec:
 template:
 spec:
 accessCredentials:
 - sshPublicKey:
 propagationMethod:
 qemuGuestAgent:
 users: ["cloud-user"]
 source:
 secret:
 secretName: authorized-keys
...

$ virtctl -n <namespace> ssh <username>@example-vm -i <ssh_key> 1

CHAPTER 10. MANAGING VMS

191

TIP

You can copy the virtctl ssh command in the web console by selecting Copy SSH command from the

options menu beside a VM on the VirtualMachines page.

Alternatively, right-click the VM in the tree view and select Copy SSH command from the pop-up menu
to copy the virtctl ssh command.

10.4.3. Using the virtctl port-forward command

You can use your local OpenSSH client and the virtctl port-forward command to connect to a running
virtual machine (VM). You can use this method with Ansible to automate the configuration of VMs.

This method is recommended for low-traffic applications because port-forwarding traffic is sent over
the control plane. This method is not recommended for high-traffic applications such as Rsync or
Remote Desktop Protocol because it places a heavy burden on the API server.

Prerequisites

You have installed the virtctl client.

The virtual machine you want to access is running.

The environment where you installed the virtctl tool has the cluster permissions required to
access the VM. For example, you ran oc login or you set the KUBECONFIG environment
variable.

Procedure

1. Add the following text to the ~/.ssh/config file on your client machine:

2. Connect to the VM by running the following command:

10.4.4. Using a service for SSH access

You can create a service for a virtual machine (VM) and connect to the IP address and port exposed by
the service.

NOTE

Services provide excellent performance and are recommended for applications that are
accessed from outside the cluster or within the cluster. Ingress traffic is protected by
firewalls.

$ virtctl -n my-namespace ssh cloud-user@example-vm -i my-key

Host vm/*
 ProxyCommand virtctl port-forward --stdio=true %h %p

$ ssh <user>@vm/<vm_name>.<namespace>

OpenShift Container Platform 4.20 Virtualization

192

If the cluster network cannot handle the traffic load, consider using a secondary network for VM access.

10.4.4.1. About services

A Kubernetes service exposes network access for clients to an application running on a set of pods.
Services offer abstraction, load balancing, and, in the case of the NodePort and LoadBalancer types,
exposure to the outside world.

ClusterIP

Exposes the service on an internal IP address and as a DNS name to other applications within the
cluster. A single service can map to multiple virtual machines. When a client tries to connect to the
service, the client’s request is load balanced among available backends. ClusterIP is the default
service type.

NodePort

Exposes the service on the same port of each selected node in the cluster. NodePort makes a port
accessible from outside the cluster, as long as the node itself is externally accessible to the client.

LoadBalancer

Creates an external load balancer in the current cloud (if supported) and assigns a fixed, external IP
address to the service.

NOTE

For on-premise clusters, you can configure a load-balancing service by deploying the
MetalLB Operator.

10.4.4.2. Creating a service

You can create a service to expose a virtual machine (VM) by using the OpenShift Container Platform
web console, virtctl command-line tool, or a YAML file.

10.4.4.2.1. Enabling load balancer service creation by using the web console

You can enable the creation of load balancer services for a virtual machine (VM) by using the OpenShift
Container Platform web console.

Prerequisites

You have configured a load balancer for the cluster.

You are logged in as a user with the cluster-admin role.

You created a network attachment definition for the network.

Procedure

1. Navigate to Virtualization → Overview.

2. On the Settings tab, click Cluster.

3. Expand General settings and SSH configuration.

4. Set SSH over LoadBalancer service to on.

CHAPTER 10. MANAGING VMS

193

1

10.4.4.2.2. Creating a service by using the web console

You can create a node port or load balancer service for a virtual machine (VM) by using the OpenShift
Container Platform web console.

Prerequisites

You configured the cluster network to support either a load balancer or a node port.

To create a load balancer service, you enabled the creation of load balancer services.

Procedure

1. Navigate to VirtualMachines and select a virtual machine to view the VirtualMachine details
page.

2. On the Details tab, select SSH over LoadBalancer from the SSH service type list.

3. Optional: Click the copy icon to copy the SSH command to your clipboard.

Verification

Check the Services pane on the Details tab to view the new service.

10.4.4.2.3. Creating a service by using virtctl

You can create a service for a virtual machine (VM) by using the virtctl command-line tool.

Prerequisites

You installed the virtctl command-line tool.

You configured the cluster network to support the service.

The environment where you installed virtctl has the cluster permissions required to access the
VM. For example, you ran oc login or you set the KUBECONFIG environment variable.

Procedure

Create a service by running the following command:

Specify the ClusterIP, NodePort, or LoadBalancer service type.

Example

Verification

Verify the service by running the following command:

$ virtctl expose vm <vm_name> --name <service_name> --type <service_type> --port <port>
1

$ virtctl expose vm example-vm --name example-service --type NodePort --port 22

OpenShift Container Platform 4.20 Virtualization

194

1

Next steps

After you create a service with virtctl, you must add special: key to the spec.template.metadata.labels
stanza of the VirtualMachine manifest. See Creating a service by using the command line .

10.4.4.2.4. Creating a service by using the CLI

You can create a service and associate it with a virtual machine (VM) by using the command line.

Prerequisites

You configured the cluster network to support the service.

You have installed the OpenShift CLI (oc).

Procedure

1. Edit the VirtualMachine manifest to add the label for service creation:

Add special: key to the spec.template.metadata.labels stanza.

NOTE

Labels on a virtual machine are passed through to the pod. The special: key
label must match the label in the spec.selector attribute of the Service
manifest.

2. Save the VirtualMachine manifest file to apply your changes.

3. Create a Service manifest to expose the VM:

$ oc get service

apiVersion: kubevirt.io/v1
kind: VirtualMachine
metadata:
 name: example-vm
 namespace: example-namespace
spec:
 runStrategy: Halted
 template:
 metadata:
 labels:
 special: key 1
...

apiVersion: v1
kind: Service
metadata:
 name: example-service
 namespace: example-namespace
spec:
...

CHAPTER 10. MANAGING VMS

195

1

2

3

1

Specify the label that you added to the spec.template.metadata.labels stanza of the
VirtualMachine manifest.

Specify ClusterIP, NodePort, or LoadBalancer.

Specifies a collection of network ports and protocols that you want to expose from the
virtual machine.

4. Save the Service manifest file.

5. Create the service by running the following command:

6. Restart the VM to apply the changes.

Verification

Query the Service object to verify that it is available:

10.4.4.3. Connecting to a VM exposed by a service by using SSH

You can connect to a virtual machine (VM) that is exposed by a service by using SSH.

Prerequisites

You created a service to expose the VM.

You have an SSH client installed.

You are logged in to the cluster.

Procedure

Run the following command to access the VM:

Specify the cluster IP for a cluster IP service, the node IP for a node port service, or the
external IP address for a load balancer service.

 selector:
 special: key 1
 type: NodePort 2
 ports: 3
 protocol: TCP
 port: 80
 targetPort: 9376
 nodePort: 30000

$ oc create -f example-service.yaml

$ oc get service -n example-namespace

$ ssh <user_name>@<ip_address> -p <port> 1

OpenShift Container Platform 4.20 Virtualization

196

10.4.5. Using a secondary network for SSH access

You can configure a secondary network, attach a virtual machine (VM) to the secondary network
interface, and connect to the DHCP-allocated IP address by using SSH.

IMPORTANT

Secondary networks provide excellent performance because the traffic is not handled by
the cluster network stack. However, the VMs are exposed directly to the secondary
network and are not protected by firewalls. If a VM is compromised, an intruder could gain
access to the secondary network. You must configure appropriate security within the
operating system of the VM if you use this method.

See the Multus and SR-IOV documentation in the OpenShift Virtualization Tuning & Scaling Guide for
additional information about networking options.

Prerequisites

You configured a secondary network such as Linux bridge or SR-IOV.

You created a network attachment definition for a Linux bridge network or the SR-IOV Network
Operator created a network attachment definition when you created an SriovNetwork object.

10.4.5.1. Configuring a VM network interface by using the web console

You can configure a network interface for a virtual machine (VM) by using the OpenShift Container
Platform web console.

Prerequisites

You created a network attachment definition for the network.

Procedure

1. Navigate to Virtualization → VirtualMachines.

2. Click a VM to view the VirtualMachine details page.

3. On the Configuration tab, click the Network interfaces tab.

4. Click Add network interface.

5. Enter the interface name and select the network attachment definition from the Network list.

6. Click Save.

7. Restart or live migrate the VM to apply the changes.

10.4.5.2. Connecting to a VM attached to a secondary network by using SSH

You can connect to a virtual machine (VM) attached to a secondary network by using SSH.

Prerequisites

CHAPTER 10. MANAGING VMS

197

https://access.redhat.com/articles/6994974#networking-multus
https://access.redhat.com/articles/6994974#networking-sriov
https://access.redhat.com/articles/6994974

You attached a VM to a secondary network with a DHCP server.

You have an SSH client installed.

You have installed the OpenShift CLI (oc).

Procedure

1. Obtain the IP address of the VM by running the following command:

Example output

...
Interfaces:
 Interface Name: eth0
 Ip Address: 10.244.0.37/24
 Ip Addresses:
 10.244.0.37/24
 fe80::858:aff:fef4:25/64
 Mac: 0a:58:0a:f4:00:25
 Name: default
...

2. Connect to the VM by running the following command:

Example

NOTE

You can also access a VM attached to a secondary network interface by using the cluster
FQDN.

10.5. EDITING VIRTUAL MACHINES

You can update a virtual machine (VM) configuration by using the OpenShift Container Platform web
console. You can update the YAML file or the VirtualMachine details page.

You can also edit a VM by using the command line.

To edit a VM to configure disk sharing by using virtual disks or LUN, see Configuring shared volumes for
virtual machines.

10.5.1. Changing the instance type of a VM by using the web console

You can change the instance type associated with a running virtual machine (VM) by using the web
console. The change takes effect immediately.

$ oc describe vm <vm_name> -n <namespace>

$ ssh <user_name>@<ip_address> -i <ssh_key>

$ ssh cloud-user@10.244.0.37 -i ~/.ssh/id_rsa_cloud-user

OpenShift Container Platform 4.20 Virtualization

198

Prerequisites

You created the VM by using an instance type.

Procedure

1. In the OpenShift Container Platform web console, click Virtualization → VirtualMachines.

2. Select a VM to open the VirtualMachine details page.

3. Click the Configuration tab.

4. On the Details tab, click the instance type text to open the Edit Instancetype dialog. For
example, click 1 CPU | 2 GiB Memory.

5. Edit the instance type by using the Series and Size lists.

a. Select an item from the Series list to show the relevant sizes for that series. For example,
select General Purpose.

b. Select the VM’s new instance type from the Size list. For example, select medium: 1 CPUs,
4Gi Memory, which is available in the General Purpose series.

6. Click Save.

Verification

1. Click the YAML tab.

2. Click Reload.

3. Review the VM YAML to confirm that the instance type changed.

10.5.2. Hot plugging memory on a virtual machine

You can add or remove the amount of memory allocated to a virtual machine (VM) without having to
restart the VM by using the OpenShift Container Platform web console.

Procedure

1. Navigate to Virtualization → VirtualMachines.

2. Select the required VM to open the VirtualMachine details page.

3. On the Configuration tab, click Edit CPU|Memory.

4. Enter the desired amount of memory and click Save.

NOTE

You can hot plug up to three times the default initial amount of memory of the
VM. Exceeding this limit requires a restart.

The system applies these changes immediately. If the VM is migratable, a live migration is

CHAPTER 10. MANAGING VMS

199

The system applies these changes immediately. If the VM is migratable, a live migration is
triggered. If not, or if the changes cannot be live-updated, a RestartRequired condition is
added to the VM.

NOTE

Memory hot plugging for virtual machines requires guest operating system support for
the virtio-mem driver. This support depends on the driver being included and enabled
within the guest operating system, not on specific upstream kernel versions.

Supported guest operating systems:

RHEL 9.4 and later

RHEL 8.10 and later (hot-unplug is disabled by default)

Other Linux guests require kernel version 5.16 or later and the virtio-mem kernel
module

Windows guests require virtio-mem driver version 100.95.104.26200 or later

10.5.3. Hot plugging CPUs on a virtual machine

You can increase or decrease the number of CPU sockets allocated to a virtual machine (VM) without
having to restart the VM by using the OpenShift Container Platform web console.

Procedure

1. Navigate to Virtualization → VirtualMachines.

2. Select the required VM to open the VirtualMachine details page.

3. On the Configuration tab, click Edit CPU|Memory.

4. Select the vCPU radio button.

5. Enter the desired number of vCPU sockets and click Save.

NOTE

You can hot plug up to three times the default initial number of vCPU sockets of
the VM. Exceeding this limit requires a restart.

If the VM is migratable, a live migration is triggered. If not, or if the changes cannot be live-
updated, a RestartRequired condition is added to the VM.

10.5.4. Editing a virtual machine by using the CLI

You can edit a virtual machine (VM) by using the command line.

Prerequisites

You installed the oc CLI.

Procedure

OpenShift Container Platform 4.20 Virtualization

200

Procedure

1. Obtain the virtual machine configuration by running the following command:

2. Edit the YAML configuration.

3. If you edit a running virtual machine, you need to do one of the following:

Restart the virtual machine.

Run the following command for the new configuration to take effect:

10.5.5. Adding a disk to a virtual machine

You can add a virtual disk to a virtual machine (VM) by using the OpenShift Container Platform web
console.

Procedure

1. Navigate to Virtualization → VirtualMachines in the web console.

2. Select a VM to open the VirtualMachine details page.

3. On the Disks tab, click Add disk.

4. Specify the Source, Name, Size, Type, Interface, and Storage Class.

a. Optional: You can enable preallocation if you use a blank disk source and require maximum
write performance when creating data volumes. To do so, select the Enable preallocation
checkbox.

b. Optional: You can clear Apply optimized StorageProfile settings to change the Volume
Mode and Access Mode for the virtual disk. If you do not specify these parameters, the
system uses the default values from the kubevirt-storage-class-defaults config map.

5. Click Add.

NOTE

If the VM is running, you must restart the VM to apply the change.

10.5.5.1. Storage fields

Field Description

Blank (creates PVC) Create an empty disk.

Import via URL (creates
PVC)

Import content via URL (HTTP or HTTPS endpoint).

$ oc edit vm <vm_name>

$ oc apply vm <vm_name> -n <namespace>

CHAPTER 10. MANAGING VMS

201

Use an existing PVC Use a PVC that is already available in the cluster.

Clone existing PVC
(creates PVC)

Select an existing PVC available in the cluster and clone it.

Import via Registry
(creates PVC)

Import content via container registry.

Container (ephemeral) Upload content from a container located in a registry accessible from the cluster.
The container disk should be used only for read-only filesystems such as CD-
ROMs or temporary virtual machines.

Name Name of the disk. The name can contain lowercase letters (a-z), numbers (0-9),
hyphens (-), and periods (.), up to a maximum of 253 characters. The first and last
characters must be alphanumeric. The name must not contain uppercase letters,
spaces, or special characters.

Size Size of the disk in GiB.

Type Type of disk. Example: Disk or CD-ROM

Interface Type of disk device. Supported interfaces are virtIO, SATA, and SCSI.

Storage Class The storage class that is used to create the disk.

Field Description

Advanced storage settings
The following advanced storage settings are optional and available for Blank, Import via URL, and
Clone existing PVC disks.

If you do not specify these parameters, the system uses the default storage profile values.

Parameter Option Parameter description

Volume Mode Filesystem Stores the virtual disk on a file system-based volume.

Block Stores the virtual disk directly on the block volume. Only use
Block if the underlying storage supports it.

Access Mode ReadWriteOnce
(RWO)

Volume can be mounted as read-write by a single node.

OpenShift Container Platform 4.20 Virtualization

202

ReadWriteMany
(RWX)

Volume can be mounted as read-write by many nodes at one
time.

NOTE

This mode is required for live migration.

Parameter Option Parameter description

10.5.6. Mounting a Windows driver disk on a virtual machine

You can mount a Windows driver disk on a virtual machine (VM) by using the OpenShift Container
Platform web console.

Procedure

1. Navigate to Virtualization → VirtualMachines.

2. Select the required VM to open the VirtualMachine details page.

3. On the Configuration tab, click Storage.

4. Select the Mount Windows drivers disk checkbox.
The Windows driver disk is displayed in the list of mounted disks.

10.5.7. Adding a secret, config map, or service account to a virtual machine

You add a secret, config map, or service account to a virtual machine by using the OpenShift Container
Platform web console.

These resources are added to the virtual machine as disks. You then mount the secret, config map, or
service account as you would mount any other disk.

If the virtual machine is running, changes do not take effect until you restart the virtual machine. The
newly added resources are marked as pending changes at the top of the page.

Prerequisites

The secret, config map, or service account that you want to add must exist in the same
namespace as the target virtual machine.

Procedure

1. Click Virtualization → VirtualMachines from the side menu.

2. Select a virtual machine to open the VirtualMachine details page.

3. Click Configuration → Environment.

4. Click Add Config Map, Secret or Service Account.

CHAPTER 10. MANAGING VMS

203

5. Click Select a resource and select a resource from the list. A six character serial number is
automatically generated for the selected resource.

6. Optional: Click Reload to revert the environment to its last saved state.

7. Click Save.

Verification

1. On the VirtualMachine details page, click Configuration → Disks and verify that the resource
is displayed in the list of disks.

2. Restart the virtual machine by clicking Actions → Restart.

You can now mount the secret, config map, or service account as you would mount any other disk.

10.5.8. Updating multiple virtual machines

You can use the command line interface (CLI) to update multiple virtual machines (VMs) at the same
time.

Prerequisites

You installed the oc CLI.

You have access to the OpenShift Container Platform cluster, and you have cluster-admin
permissions.

Procedure

1. Create a privileged service account by running the following commands:

2. Determine the pull URL for the kubevirt-api-lifecycle image by running the following
command:

3. Deploy Kubevirt-Api-Lifecycle-Automation by creating a job object as shown in the following
example:

$ oc adm new-project kubevirt-api-lifecycle-automation

$ oc create sa kubevirt-api-lifecycle-automation -n kubevirt-api-lifecycle-automation

$ oc create clusterrolebinding kubevirt-api-lifecycle-automation --clusterrole=cluster-admin --
serviceaccount=kubevirt-api-lifecycle-automation:kubevirt-api-lifecycle-automation

$ oc get csv -n openshift-cnv -l=operators.coreos.com/kubevirt-hyperconverged.openshift-
cnv -ojson | jq '.items[0].spec.relatedImages[] | select(.name|test(".*kubevirt-api-lifecycle-
automation.*")) | .image'

apiVersion: batch/v1
kind: Job
metadata:
 name: kubevirt-api-lifecycle-automation

OpenShift Container Platform 4.20 Virtualization

204

1

2

3

4

5

Replace the image value with your pull URL for the image.

Replace the MACHINE_TYPE_GLOB value with your own pattern. This pattern is used to detect
deprecated machine types that need to be upgraded.

If the RESTART_REQUIRED emvironment variable is set to true, VMs are restarted after the
machine type is updated. If you do not want VMs to be restarted, set the value to false.

The namespace environment value indicates the namespace to look for VMs in. Leave the
parameter empty for the job to go over all namespaces in the cluster.

You can use the LABEL_SELECTOR environment variable to select VMs that receive the job
action. If you want the job to go over all VMs in the cluster, do not assign a value to the parameter.

10.5.8.1. Performing bulk actions on virtual machines

You can perform bulk actions on multiple virtual machines (VMs) simultaneously by using the
VirtualMachines list view in the web console. This allows you to efficiently manage a group of VMs with
minimal manual effort.

Available bulk actions

Label VMs - Add, edit, or remove labels that are applied across selected VMs.

Delete VMs - Select multiple VMs to delete. The confirmation dialog displays the number of

 namespace: kubevirt-api-lifecycle-automation
spec:
 template:
 spec:
 containers:
 - name: kubevirt-api-lifecycle-automation
 image: quay.io/openshift-virtualization/kubevirt-api-lifecycle-automation:v4.20 1
 imagePullPolicy: Always
 env:
 - name: MACHINE_TYPE_GLOB 2
 value: smth-glob9.10.0
 - name: RESTART_REQUIRED 3
 value: "true"
 - name: NAMESPACE 4
 value: "default"
 - name: LABEL_SELECTOR 5
 value: my-vm
 securityContext:
 allowPrivilegeEscalation: false
 capabilities:
 drop:
 - ALL
 privileged: false
 runAsNonRoot: true
 seccompProfile:
 type: RuntimeDefault
 restartPolicy: Never
 serviceAccountName: kubevirt-api-lifecycle-automation

CHAPTER 10. MANAGING VMS

205

Delete VMs - Select multiple VMs to delete. The confirmation dialog displays the number of
VMs selected for deletion.

Move VMs to folder - Move selected VMs to a folder. All VMs must belong to the same
namespace.

10.5.9. Configuring multiple IOThreads for fast storage access

You can improve storage performance by configuring multiple IOThreads for a virtual machine (VM)
that uses fast storage, such as solid-state drive (SSD) or non-volatile memory express (NVMe). This
configuration option is only available by editing YAML of the VM.

NOTE

Multiple IOThreads are supported only when blockMultiQueue is enabled and the disk
bus is set to virtio. You must set this configuration for the configuration to work correctly.

Procedure

1. Click Virtualization → VirtualMachines from the side menu.

2. Select a virtual machine to open the VirtualMachine details page.

3. Click the YAML tab to open the VM manifest.

4. In the YAML editor, locate the spec.template.spec.domain section and add or modify the
following fields:

5. Click Save.

IMPORTANT

The spec.template.spec.domain setting cannot be changed while the VM is running.
You must stop the VM before applying the changes, and then restart the VM for the new
settings to take effect.

Additional resources for config maps, secrets, and service accounts

Understanding config maps

Providing sensitive data to pods

domain:
 ioThreadsPolicy: supplementalPool
 ioThreads:
 supplementalPoolThreadCount: 4
 devices:
 blockMultiQueue: true
 disks:
 - name: datavolume
 disk:
 bus: virtio
...

OpenShift Container Platform 4.20 Virtualization

206

https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/nodes/#nodes-pods-configmap-overview_builds-configmaps
https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/nodes/#nodes-pods-secrets-about

Understanding and creating service accounts

10.6. EDITING BOOT ORDER

You can update the values for a boot order list by using the web console or the CLI.

With Boot Order in the Virtual Machine Overview page, you can:

Select a disk or network interface controller (NIC) and add it to the boot order list.

Edit the order of the disks or NICs in the boot order list.

Remove a disk or NIC from the boot order list, and return it back to the inventory of bootable
sources.

10.6.1. Adding items to a boot order list in the web console

Add items to a boot order list by using the web console.

Procedure

1. Click Virtualization → VirtualMachines from the side menu.

2. Select a virtual machine to open the VirtualMachine details page.

3. Click the Details tab.

4. Click the pencil icon that is located on the right side of Boot Order. If a YAML configuration
does not exist, or if this is the first time that you are creating a boot order list, the following
message displays: No resource selected. VM will attempt to boot from disks by order of
appearance in YAML file.

5. Click Add Source and select a bootable disk or network interface controller (NIC) for the virtual
machine.

6. Add any additional disks or NICs to the boot order list.

7. Click Save.

NOTE

If the virtual machine is running, changes to Boot Order will not take effect until you
restart the virtual machine.

You can view pending changes by clicking View Pending Changes on the right side of the
Boot Order field. The Pending Changes banner at the top of the page displays a list of
all changes that will be applied when the virtual machine restarts.

10.6.2. Editing a boot order list in the web console

Edit the boot order list in the web console.

Procedure

1. Click Virtualization → VirtualMachines from the side menu.

CHAPTER 10. MANAGING VMS

207

https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/authentication_and_authorization/#service-accounts-overview

2. Select a virtual machine to open the VirtualMachine details page.

3. Click the Details tab.

4. Click the pencil icon that is located on the right side of Boot Order.

5. Choose the appropriate method to move the item in the boot order list:

If you do not use a screen reader, hover over the arrow icon next to the item that you want
to move, drag the item up or down, and drop it in a location of your choice.

If you use a screen reader, press the Up Arrow key or Down Arrow key to move the item in
the boot order list. Then, press the Tab key to drop the item in a location of your choice.

6. Click Save.

NOTE

If the virtual machine is running, changes to the boot order list will not take effect until
you restart the virtual machine.

You can view pending changes by clicking View Pending Changes on the right side of the
Boot Order field. The Pending Changes banner at the top of the page displays a list of
all changes that will be applied when the virtual machine restarts.

10.6.3. Editing a boot order list in the YAML configuration file

Edit the boot order list in a YAML configuration file by using the CLI.

Prerequisites

You have installed the OpenShift CLI (oc).

Procedure

1. Open the YAML configuration file for the virtual machine by running the following command:

2. Edit the YAML file and modify the values for the boot order associated with a disk or network
interface controller (NIC). For example:

$ oc edit vm <vm_name> -n <namespace>

disks:
 - bootOrder: 1 1
 disk:
 bus: virtio
 name: containerdisk
 - disk:
 bus: virtio
 name: cloudinitdisk
 - cdrom:
 bus: virtio
 name: cd-drive-1
interfaces:
 - boot Order: 2 2

OpenShift Container Platform 4.20 Virtualization

208

1

2

The boot order value specified for the disk.

The boot order value specified for the network interface controller.

3. Save the YAML file.

10.6.4. Removing items from a boot order list in the web console

Remove items from a boot order list by using the web console.

Procedure

1. Click Virtualization → VirtualMachines from the side menu.

2. Select a virtual machine to open the VirtualMachine details page.

3. Click the Details tab.

4. Click the pencil icon that is located on the right side of Boot Order.

5. Click the Remove icon next to the item. The item is removed from the boot order list and
saved in the list of available boot sources. If you remove all items from the boot order list, the
following message displays: No resource selected. VM will attempt to boot from disks by
order of appearance in YAML file.

NOTE

If the virtual machine is running, changes to Boot Order will not take effect until you
restart the virtual machine.

You can view pending changes by clicking View Pending Changes on the right side of the
Boot Order field. The Pending Changes banner at the top of the page displays a list of
all changes that will be applied when the virtual machine restarts.

10.7. DELETING VIRTUAL MACHINES

You can delete a virtual machine by using the web console or the oc command line interface.

10.7.1. Deleting a virtual machine using the web console

Deleting a virtual machine (VM) permanently removes it from the cluster.

If the VM is delete protected, the Delete action is disabled in the VM’s Actions menu.

Prerequisites

You have disabled the VM’s delete protection setting.

You have stopped the VM.

 macAddress: '02:96:c4:00:00'
 masquerade: {}
 name: default

CHAPTER 10. MANAGING VMS

209

Procedure

1. From the OpenShift Container Platform web console, choose your view:

For a virtualization-focused view, select Administrator → Virtualization →
VirtualMachines.

For a general view, navigate to Virtualization → VirtualMachines.

2. Click the Options menu beside a VM and select Delete.
Alternatively, click the VM’s name to open the VirtualMachine details page and click Actions →
Delete.

You can also right-click the VM in the tree view and select Delete from the pop-up menu.

3. Optional: Select With grace period or clear Delete disks.

4. Click Delete to permanently delete the VM.

10.7.2. Deleting a virtual machine by using the CLI

You can delete a virtual machine (VM) by using the oc command-line interface (CLI). The oc client
enables you to perform actions on multiple VMs.

Prerequisites

You have disabled the VM’s delete protection setting.

You have stopped the VM.

You have installed the OpenShift CLI (oc).

Procedure

Delete the VM by running the following command:

NOTE

This command only deletes a VM in the current project. Specify the -n
<project_name> option if the VM you want to delete is in a different project or
namespace.

10.8. ENABLING OR DISABLING VIRTUAL MACHINE DELETE
PROTECTION

You can prevent the inadvertent deletion of a virtual machine (VM) by enabling delete protection for
the VM. You can also disable delete protection for the VM.

You enable or disable delete protection from either the command line or the VM’s VirtualMachine
details page in the OpenShift Container Platform web console. The option is disabled by default.

$ oc delete vm <vm_name>

OpenShift Container Platform 4.20 Virtualization

210

You can also choose to remove availability of the delete protection option for any VMs in a cluster you
administer. In this case, VMs with the feature already enabled retain the protection, while the option is
unavailable for any newly created VMs.

10.8.1. Enabling or disabling virtual machine delete protection by using the web
console

To prevent the inadvertent deletion of a virtual machine (VM), you can enable VM delete protection by
using the OpenShift Container Platform web console. You can also disable delete protection for a VM.

By default, delete protection is not enabled for VMs. You must set the option for each individual VM.

Procedure

1. From the OpenShift Container Platform web console, choose your view:

For a virtualization-focused view, select Administrator → Virtualization →
VirtualMachines.

For a general view, navigate to Virtualization → VirtualMachines.

2. From the VirtualMachines list, select the VM whose delete protection you want to enable or
disable.

3. Click the Configuration tab.

4. In the VirtualMachines details, choose to enable or disable the protection as follows:

To enable the protection:

a. Set the Deletion protection switch to On.

b. Click Enable to confirm the protection.

To disable the protection:

a. Set the Deletion protection switch to Off.

b. Click Disable to disable the protection.

10.8.2. Enabling or disabling VM delete protection by using the CLI

To prevent the inadvertent deletion of a virtual machine (VM), you can enable VM delete protection by
using the command line. You can also disable delete protection for a VM.

By default, delete protection is not enabled for VMs. You must set the option for each individual VM.

Prerequisites

You have installed the OpenShift CLI (oc).

Procedure

Enable delete protection for a VM by running the following command:

CHAPTER 10. MANAGING VMS

211

Disable delete protection for a VM by running the following command:

10.8.3. Removing the VM delete protection option

When you enable delete protection on a virtual machine (VM), you ensure that the VM cannot be
inadvertently deleted. You can also disable the protection for a VM.

As a cluster administrator, you can choose not to make the VM delete protection option available. VMs
with delete protection already enabled retain that setting; for any new VMs that are created, enabling
the option is not allowed.

You can remove the delete protection option by establishing a validation admission policy for the cluster
and then creating the necessary binding to use the policy in the cluster.

Prerequisites

You must have cluster administrator privileges.

You have installed the OpenShift CLI (oc).

Procedure

1. Create the validation admission policy, as shown in the following example:

Example validation admission policy file

$ oc patch vm <vm_name> --type merge -p '{"metadata":{"labels":{"kubevirt.io/vm-delete-
protection":"True"}}}' -n <namespace>

$ oc patch vm <vm_name> --type json -p '[{"op": "remove", "path":
"/metadata/labels/kubevirt.io~1vm-delete-protection"}]' -n <namespace>

apiVersion: admissionregistration.k8s.io/v1
kind: ValidatingAdmissionPolicy
metadata:
 name: "disable-vm-delete-protection"
spec:
 failurePolicy: Fail
 matchConstraints:
 resourceRules:
 - apiGroups: ["kubevirt.io"]
 apiVersions: ["*"]
 operations: ["UPDATE", "CREATE"]
 resources: ["virtualmachines"]
 variables:
 - expression: string('kubevirt.io/vm-delete-protection')
 name: vmDeleteProtectionLabel
 validations:
 - expression: >-
 !has(object.metadata.labels) ||
 !object.metadata.labels.exists(label, label == variables.vmDeleteProtectionLabel) ||
 has(oldObject.metadata.labels) &&
 oldObject.metadata.labels.exists(label, label == variables.vmDeleteProtectionLabel)
 message: "Virtual Machine delete protection feature is disabled"

OpenShift Container Platform 4.20 Virtualization

212

2. Apply the validation admission policy to the cluster:

3. Create the validation admission policy binding, as shown in the following example:

Example validation admission policy binding file

4. Apply the validation admission policy binding to the cluster:

10.8.4. Additional resources

Enabling or disabling virtual machine delete protection by using the web console

Enabling or disabling virtual machine delete protection by using the CLI

10.9. EXPORTING VIRTUAL MACHINES

You can export a virtual machine (VM) and its associated disks in order to import a VM into another
cluster or to analyze the volume for forensic purposes.

You create a VirtualMachineExport custom resource (CR) by using the command-line interface.

Alternatively, you can use the virtctl vmexport command to create a VirtualMachineExport CR and to
download exported volumes.

NOTE

You can migrate virtual machines between OpenShift Virtualization clusters by using the
Migration Toolkit for Virtualization.

10.9.1. Creating a VirtualMachineExport custom resource

You can create a VirtualMachineExport custom resource (CR) to export the following objects:

Virtual machine (VM): Exports the persistent volume claims (PVCs) of a specified VM.

VM snapshot: Exports PVCs contained in a VirtualMachineSnapshot CR.

PVC: Exports a PVC. If the PVC is used by another pod, such as the virt-launcher pod, the
export remains in a Pending state until the PVC is no longer in use.

The VirtualMachineExport CR creates internal and external links for the exported volumes. Internal

$ oc apply -f disable-vm-delete-protection.yaml

apiVersion: admissionregistration.k8s.io/v1
kind: ValidatingAdmissionPolicyBinding
metadata:
 name: "disable-vm-delete-protection-binding"
spec:
 policyName: "disable-vm-delete-protection"
 validationActions: [Deny]
 matchResources:

$ oc apply -f disable-vm-delete-protection-binding.yaml

CHAPTER 10. MANAGING VMS

213

https://access.redhat.com/products/migration-toolkits-virtualization

1

2

3

The VirtualMachineExport CR creates internal and external links for the exported volumes. Internal
links are valid within the cluster. External links can be accessed by using an Ingress or Route.

The export server supports the following file formats:

raw: Raw disk image file.

gzip: Compressed disk image file.

dir: PVC directory and files.

tar.gz: Compressed PVC file.

Prerequisites

The VM must be shut down for a VM export.

You have installed the OpenShift CLI (oc).

Procedure

1. Create a VirtualMachineExport manifest to export a volume from a VirtualMachine,
VirtualMachineSnapshot, or PersistentVolumeClaim CR according to the following example
and save it as example-export.yaml:

VirtualMachineExport example

Specify the appropriate API group:

"kubevirt.io" for VirtualMachine.

"snapshot.kubevirt.io" for VirtualMachineSnapshot.

"" for PersistentVolumeClaim.

Specify VirtualMachine, VirtualMachineSnapshot, or PersistentVolumeClaim.

Optional. The default duration is 2 hours.

2. Create the VirtualMachineExport CR:

apiVersion: export.kubevirt.io/v1beta1
kind: VirtualMachineExport
metadata:
 name: example-export
spec:
 source:
 apiGroup: "kubevirt.io" 1
 kind: VirtualMachine 2
 name: example-vm
 ttlDuration: 1h 3

$ oc create -f example-export.yaml

OpenShift Container Platform 4.20 Virtualization

214

3. Get the VirtualMachineExport CR:

The internal and external links for the exported volumes are displayed in the status stanza:

Output example

$ oc get vmexport example-export -o yaml

apiVersion: export.kubevirt.io/v1beta1
kind: VirtualMachineExport
metadata:
 name: example-export
 namespace: example
spec:
 source:
 apiGroup: ""
 kind: PersistentVolumeClaim
 name: example-pvc
 tokenSecretRef: example-token
status:
 conditions:
 - lastProbeTime: null
 lastTransitionTime: "2022-06-21T14:10:09Z"
 reason: podReady
 status: "True"
 type: Ready
 - lastProbeTime: null
 lastTransitionTime: "2022-06-21T14:09:02Z"
 reason: pvcBound
 status: "True"
 type: PVCReady
 links:
 external: 1
 cert: |-
 -----BEGIN CERTIFICATE-----
 ...
 -----END CERTIFICATE-----
 volumes:
 - formats:
 - format: raw
 url: https://vmexport-
proxy.test.net/api/export.kubevirt.io/v1beta1/namespaces/example/virtualmachineexports/examp
le-export/volumes/example-disk/disk.img
 - format: gzip
 url: https://vmexport-
proxy.test.net/api/export.kubevirt.io/v1beta1/namespaces/example/virtualmachineexports/examp
le-export/volumes/example-disk/disk.img.gz
 name: example-disk
 internal: 2
 cert: |-
 -----BEGIN CERTIFICATE-----
 ...
 -----END CERTIFICATE-----
 volumes:
 - formats:

CHAPTER 10. MANAGING VMS

215

1

2

1

External links are accessible from outside the cluster by using an Ingress or Route.

Internal links are only valid inside the cluster.

10.9.2. Accessing exported virtual machine manifests

After you export a virtual machine (VM) or snapshot, you can get the VirtualMachine manifest and
related information from the export server.

Prerequisites

You have installed the OpenShift CLI (oc).

You exported a virtual machine or VM snapshot by creating a VirtualMachineExport custom
resource (CR).

NOTE

VirtualMachineExport objects that have the spec.source.kind:
PersistentVolumeClaim parameter do not generate virtual machine manifests.

Procedure

1. To access the manifests, you must first copy the certificates from the source cluster to the
target cluster.

a. Log in to the source cluster.

b. Save the certificates to the cacert.crt file by running the following command:

Replace <export_name> with the metadata.name value from the
VirtualMachineExport object.

c. Copy the cacert.crt file to the target cluster.

2. Decode the token in the source cluster and save it to the token_decode file by running the
following command:

 - format: raw
 url: https://virt-export-example-export.example.svc/volumes/example-disk/disk.img
 - format: gzip
 url: https://virt-export-example-export.example.svc/volumes/example-disk/disk.img.gz
 name: example-disk
 phase: Ready
 serviceName: virt-export-example-export

$ oc get vmexport <export_name> -o jsonpath={.status.links.external.cert} > cacert.crt
1

$ oc get secret export-token-<export_name> -o jsonpath={.data.token} | base64 --decode >
token_decode 1

OpenShift Container Platform 4.20 Virtualization

216

1

1

2

Replace <export_name> with the metadata.name value from the VirtualMachineExport
object.

3. Copy the token_decode file to the target cluster.

4. Get the VirtualMachineExport custom resource by running the following command:

5. Review the status.links stanza, which is divided into external and internal sections. Note the
manifests.url fields within each section:

Example output

Contains the VirtualMachine manifest, DataVolume manifest, if present, and a
ConfigMap manifest that contains the public certificate for the external URL’s ingress or
route.

Contains a secret containing a header that is compatible with Containerized Data Importer
(CDI). The header contains a text version of the export token.

$ oc get vmexport <export_name> -o yaml

apiVersion: export.kubevirt.io/v1beta1
kind: VirtualMachineExport
metadata:
 name: example-export
spec:
 source:
 apiGroup: "kubevirt.io"
 kind: VirtualMachine
 name: example-vm
 tokenSecretRef: example-token
status:
#...
 links:
 external:
#...
 manifests:
 - type: all
 url: https://vmexport-
proxy.test.net/api/export.kubevirt.io/v1beta1/namespaces/example/virtualmachineexports/examp
le-export/external/manifests/all 1
 - type: auth-header-secret
 url: https://vmexport-
proxy.test.net/api/export.kubevirt.io/v1beta1/namespaces/example/virtualmachineexports/examp
le-export/external/manifests/secret 2
 internal:
#...
 manifests:
 - type: all
 url: https://virt-export-export-pvc.default.svc/internal/manifests/all 3
 - type: auth-header-secret
 url: https://virt-export-export-pvc.default.svc/internal/manifests/secret
 phase: Ready
 serviceName: virt-export-example-export

CHAPTER 10. MANAGING VMS

217

3

1

2

1

2

(CDI). The header contains a text version of the export token.

Contains the VirtualMachine manifest, DataVolume manifest, if present, and a
ConfigMap manifest that contains the certificate for the internal URL’s export server.

6. Log in to the target cluster.

7. Get the Secret manifest by running the following command:

Replace <secret_manifest_url> with an auth-header-secret URL from the
VirtualMachineExport YAML output.

Reference the token_decode file that you created earlier.

For example:

8. Get the manifests of type: all, such as the ConfigMap and VirtualMachine manifests, by
running the following command:

Replace <all_manifest_url> with a URL from the VirtualMachineExport YAML output.

Reference the token_decode file that you created earlier.

For example:

Next steps

You can now create the ConfigMap and VirtualMachine objects on the target cluster by using
the exported manifests.

10.10. MANAGING VIRTUAL MACHINE INSTANCES

If you have standalone virtual machine instances (VMIs) that were created independently outside of the

$ curl --cacert cacert.crt <secret_manifest_url> -H \ 1
"x-kubevirt-export-token:token_decode" -H \ 2
"Accept:application/yaml"

$ curl --cacert cacert.crt https://vmexport-
proxy.test.net/api/export.kubevirt.io/v1beta1/namespaces/example/virtualmachineexports/examp
le-export/external/manifests/secret -H "x-kubevirt-export-token:token_decode" -H
"Accept:application/yaml"

$ curl --cacert cacert.crt <all_manifest_url> -H \ 1
"x-kubevirt-export-token:token_decode" -H \ 2
"Accept:application/yaml"

$ curl --cacert cacert.crt https://vmexport-
proxy.test.net/api/export.kubevirt.io/v1beta1/namespaces/example/virtualmachineexports/examp
le-export/external/manifests/all -H "x-kubevirt-export-token:token_decode" -H
"Accept:application/yaml"

OpenShift Container Platform 4.20 Virtualization

218

If you have standalone virtual machine instances (VMIs) that were created independently outside of the
OpenShift Virtualization environment, you can manage them by using the web console or by using oc or
virtctl commands from the command-line interface (CLI).

The virtctl command provides more virtualization options than the oc command. For example, you can
use virtctl to pause a VM or expose a port.

10.10.1. About virtual machine instances

A virtual machine instance (VMI) is a representation of a running virtual machine (VM). When a VMI is
owned by a VM or by another object, you manage it through its owner in the web console or by using the
oc command-line interface (CLI).

A standalone VMI is created and started independently with a script, through automation, or by using
other methods in the CLI. In your environment, you might have standalone VMIs that were developed
and started outside of the OpenShift Virtualization environment. You can continue to manage those
standalone VMIs by using the CLI. You can also use the web console for specific tasks associated with
standalone VMIs:

List standalone VMIs and their details.

Edit labels and annotations for a standalone VMI.

Delete a standalone VMI.

When you delete a VM, the associated VMI is automatically deleted. You delete a standalone VMI
directly because it is not owned by VMs or other objects.

NOTE

Before you uninstall OpenShift Virtualization, list and view the standalone VMIs by using
the CLI or the web console. Then, delete any outstanding VMIs.

When you edit a VM, some settings might be applied to the VMIs dynamically and without the need for a
restart. Any change made to a VM object that cannot be applied to the VMIs dynamically will trigger the
RestartRequired VM condition. Changes are effective on the next reboot, and the condition is removed.

10.10.2. Listing all virtual machine instances using the CLI

You can list all virtual machine instances (VMIs) in your cluster, including standalone VMIs and those
owned by virtual machines, by using the oc command-line interface (CLI).

Prerequisites

You have installed the OpenShift CLI (oc).

Procedure

List all VMIs by running the following command:

10.10.3. Listing standalone virtual machine instances using the web console

$ oc get vmis -A

CHAPTER 10. MANAGING VMS

219

Using the web console, you can list and view standalone virtual machine instances (VMIs) in your cluster
that are not owned by virtual machines (VMs).

NOTE

VMIs that are owned by VMs or other objects are not displayed in the web console. The
web console displays only standalone VMIs. If you want to list all VMIs in your cluster, you
must use the CLI.

Procedure

Click Virtualization → VirtualMachines from the side menu.
You can identify a standalone VMI by a dark colored badge next to its name.

10.10.4. Searching for standalone virtual machine instances by using the web
console

You can search for virtual machine instances (VMIs) by using the search bar on the VirtualMachines
page. Use the advanced search to apply additional filters.

Procedure

1. In the OpenShift Container Platform console, click Virtualization → VirtualMachines from the
side menu.

2. In the search bar at the top of the page, type a VM name, label, or IP address.

3. In the suggestions list, choose one of the following options:

Click a VM name to open its details page.

Click All search results found for …​ to view results on a dedicated page.

Click a related suggestion to prefill search filters.

4. Optional: To open advanced search options, click the sliders icon next to the search bar. Expand
the Details section and specify one or more of the available filters: Name, Project, Description,
Labels, Date created, vCPU, and Memory.

5. Optional: Expand the Network section and enter an IP address to filter by.

6. Click Search.

7. Optional: If Advanced Cluster Management (ACM) is installed, use the Cluster dropdown to
search across multiple clusters.

8. Optional: Click the Save search icon to store your search in the kubevirt-user-settings
ConfigMap.

10.10.5. Editing a standalone virtual machine instance using the web console

You can edit the annotations and labels of a standalone virtual machine instance (VMI) using the web
console. Other fields are not editable.

Procedure

OpenShift Container Platform 4.20 Virtualization

220

1. In the OpenShift Container Platform console, click Virtualization → VirtualMachines from the
side menu.

2. Select a standalone VMI to open the VirtualMachineInstance details page.

3. On the Details tab, click the pencil icon beside Annotations or Labels.

4. Make the relevant changes and click Save.

10.10.6. Deleting a standalone virtual machine instance using the CLI

You can delete a standalone virtual machine instance (VMI) by using the oc command-line interface
(CLI).

Prerequisites

Identify the name of the VMI that you want to delete.

You have installed the OpenShift CLI (oc).

Procedure

Delete the VMI by running the following command:

10.10.7. Deleting a standalone virtual machine instance using the web console

Delete a standalone virtual machine instance (VMI) from the web console.

Procedure

1. In the OpenShift Container Platform web console, click Virtualization → VirtualMachines from
the side menu.

2. Click Actions → Delete VirtualMachineInstance.

3. In the confirmation pop-up window, click Delete to permanently delete the standalone VMI.

10.11. CONTROLLING VIRTUAL MACHINE STATES

You can use virtctl to manage virtual machine states and perform other actions from the CLI. For
example, you can use virtctl to force stop a VM or expose a port.

You can stop, start, restart, pause, and unpause virtual machines from the web console.

10.11.1. Enabling confirmations of virtual machine actions

The Stop, Restart, and Pause actions can display confirmation dialogs if confirmation is enabled. By
default, confirmation is disabled.

Procedure

1. In the Virtualization section of the OpenShift Container Platform web console, navigate to

$ oc delete vmi <vmi_name>

CHAPTER 10. MANAGING VMS

221

1. In the Virtualization section of the OpenShift Container Platform web console, navigate to
Overview → Settings → Cluster → General settings.

2. Toggle the VirtualMachine actions confirmation setting to On.

10.11.2. Starting a virtual machine

You can start a virtual machine (VM) from the web console.

Procedure

1. Click Virtualization → VirtualMachines from the side menu.

2. In the tree view, select the project that contains the VM that you want to start.

3. Navigate to the appropriate menu for your use case:

To stay on this page, where you can perform actions on multiple VMs:

a. Click the Options menu located at the far right end of the row and click Start
VirtualMachine.

To start the VM from the tree view:

a. Click the > icon next to the project name to open the list of VMs.

b. Right-click the name of the VM and select Start.

To view comprehensive information about the selected VM before you start it:

a. Access the VirtualMachine details page by clicking the name of the VM.

b. Click Actions → Start.

NOTE

When you start VM that is provisioned from a URL source for the first time, the VM has a
status of Importing while OpenShift Virtualization imports the container from the URL
endpoint. Depending on the size of the image, this process might take several minutes.

10.11.3. Stopping a virtual machine

You can stop a virtual machine (VM) from the web console.

Procedure

1. Click Virtualization → VirtualMachines from the side menu.

2. In the tree view, select the project that contains the VM that you want to stop.

3. Navigate to the appropriate menu for your use case:

To stay on this page, where you can perform actions on multiple VMs:

OpenShift Container Platform 4.20 Virtualization

222

a. Click the Options menu located at the far right end of the row and click Stop
VirtualMachine.

b. If action confirmation is enabled, click Stop in the confirmation dialog.

To stop the VM from the tree view:

a. Click the > icon next to the project name to open the list of VMs.

b. Right-click the name of the VM and select Stop.

c. If action confirmation is enabled, click Stop in the confirmation dialog.

To view comprehensive information about the selected VM before you stop it:

a. Access the VirtualMachine details page by clicking the name of the VM.

b. Click Actions → Stop.

c. If action confirmation is enabled, click Stop in the confirmation dialog.

10.11.4. Restarting a virtual machine

You can restart a running virtual machine (VM) from the web console.

IMPORTANT

To avoid errors, do not restart a VM while it has a status of Importing.

Procedure

1. Click Virtualization → VirtualMachines from the side menu.

2. In the tree view, select the project that contains the VM that you want to restart.

3. Navigate to the appropriate menu for your use case:

To stay on this page, where you can perform actions on multiple VMs:

a. Click the Options menu located at the far right end of the row and click Restart.

b. If action confirmation is enabled, click Restart in the confirmation dialog.

To restart the VM from the tree view:

a. Click the > icon next to the project name to open the list of VMs.

b. Right-click the name of the VM and select Restart.

c. If action confirmation is enabled, click Restart in the confirmation dialog.

To view comprehensive information about the selected VM before you restart it:

a. Access the VirtualMachine details page by clicking the name of the virtual machine.

CHAPTER 10. MANAGING VMS

223

b. Click Actions → Restart.

c. If action confirmation is enabled, click Restart in the confirmation dialog.

10.11.5. Pausing a virtual machine

You can pause a virtual machine (VM) from the web console.

Procedure

1. Click Virtualization → VirtualMachines from the side menu.

2. In the tree view, select the project that contains the VM that you want to pause.

3. Navigate to the appropriate menu for your use case:

To stay on this page, where you can perform actions on multiple VMs:

a. Click the Options menu located at the far right end of the row and click Pause
VirtualMachine.

b. If action confirmation is enabled, click Pause in the confirmation dialog.

To pause the VM from the tree view:

a. Click the > icon next to the project name to open the list of VMs.

b. Right-click the name of the VM and select Pause.

c. If action confirmation is enabled, click Pause in the confirmation dialog.

To view comprehensive information about the selected VM before you pause it:

a. Access the VirtualMachine details page by clicking the name of the VM.

b. Click Actions → Pause.

c. If action confirmation is enabled, click Pause in the confirmation dialog.

10.11.6. Unpausing a virtual machine

You can unpause a paused virtual machine (VM) from the web console.

Prerequisites

At least one of your VMs must have a status of Paused.

Procedure

1. Click Virtualization → VirtualMachines from the side menu.

2. In the tree view, select the project that contains the VM that you want to unpause.

3. Navigate to the appropriate menu for your use case:

OpenShift Container Platform 4.20 Virtualization

224

To stay on this page, where you can perform actions on multiple VMs:

a. Click the Options menu located at the far right end of the row and click Unpause
VirtualMachine.

To unpause the VM from the tree view:

a. Click the > icon next to the project name to open the list of VMs.

b. Right-click the name of the VM and select Unpause.

To view comprehensive information about the selected VM before you unpause it:

a. Access the VirtualMachine details page by clicking the name of the virtual machine.

b. Click Actions → Unpause.

10.11.7. Controlling the state of multiple virtual machines

You can start, stop, restart, pause, and unpause multiple virtual machines (VMs) from the web console.

Procedure

1. Navigate to Virtualization → VirtualMachines in the web console.

2. Optional: Enable the Show only projects with VirtualMachines option above the tree view to
limit the displayed projects.

3. Select a relevant project from the tree view.

4. Navigate to the appropriate menu for your use case:

To change the state of all VMs in the selected project:

a. Right-click the name of the project in the tree view and select the intended action from
the menu.

b. If action confirmation is enabled, confirm the action in the confirmation dialog.

To change the state of specific VMs:

a. Select a checkbox next to the VMs you want to work with. To select all VMs, click the
checkbox in the VirtualMachines table header.

b. Click Actions and select the intended action from the menu.

c. If action confirmation is enabled, confirm the action in the confirmation dialog.

10.12. USING VIRTUAL TRUSTED PLATFORM MODULE DEVICES

Add a virtual Trusted Platform Module (vTPM) device to a new or existing virtual machine by editing the
VirtualMachine (VM) or VirtualMachineInstance (VMI) manifest.

IMPORTANT

CHAPTER 10. MANAGING VMS

225

IMPORTANT

With OpenShift Virtualization 4.18 and newer, you can export virtual machines (VMs) with
attached vTPM devices, create snapshots of these VMs , and restore VMs from these
snapshots. However, cloning a VM with a vTPM device attached to it or creating a new
VM from its snapshot is not supported.

10.12.1. About vTPM devices

A virtual Trusted Platform Module (vTPM) device functions like a physical Trusted Platform Module
(TPM) hardware chip. You can use a vTPM device with any operating system, but Windows 11 requires
the presence of a TPM chip to install or boot. A vTPM device allows VMs created from a Windows 11
image to function without a physical TPM chip.

OpenShift Virtualization supports persisting vTPM device state by using Persistent Volume Claims
(PVCs) for VMs. If you do not specify the storage class for this PVC, OpenShift Virtualization uses the
default storage class for virtualization workloads. If the default storage class for virtualization workloads
is not set, OpenShift Virtualization uses the default storage class for the cluster.

NOTE

The storage class that is marked as default for virtualization workloads has the annotation
storageclass.kubevirt.io/is-default-virt-class set to "true". You can find this storage
class by running the following command:

Similarly, the default storage class for the cluster has the annotation
storageclass.kubernetes.io/is-default-class set to "true". To find this storage class, run
the following command:

To ensure consistent behavior, configure only one storage class as the default for
virtualization workloads and for the cluster respectively.

It is recommended that you specify the storage class explicitly by setting the vmStateStorageClass
attribute in the HyperConverged custom resource (CR):

If you do not enable vTPM, then the VM does not recognize a TPM device, even if the node has one.

$ oc get sc -o jsonpath='{range .items[?
(.metadata.annotations.storageclass\.kubevirt\.io/is-default-virt-class=="true")]}
{.metadata.name}{"\n"}{end}'

$ oc get sc -o jsonpath='{range .items[?
(.metadata.annotations.storageclass\.kubernetes\.io/is-default-class=="true")]}
{.metadata.name}{"\n"}{end}'

kind: HyperConverged
metadata:
 name: kubevirt-hyperconverged
spec:
 vmStateStorageClass: <storage_class_name>

...

OpenShift Container Platform 4.20 Virtualization

226

1

2

10.12.2. Adding a vTPM device to a virtual machine

Adding a virtual Trusted Platform Module (vTPM) device to a virtual machine (VM) allows you to run a
VM created from a Windows 11 image without a physical TPM device. A vTPM device also stores secrets
for that VM.

Prerequisites

You have installed the OpenShift CLI (oc).

Procedure

1. Run the following command to update the VM configuration:

2. Edit the VM specification to add the vTPM device. For example:

Adds the vTPM device to the VM.

Specifies that the vTPM device state persists after the VM is shut down. The default value
is false.

3. To apply your changes, save and exit the editor.

4. Optional: If you edited a running virtual machine, you must restart it for the changes to take
effect.

10.13. MANAGING VIRTUAL MACHINES WITH OPENSHIFT PIPELINES

Red Hat OpenShift Pipelines is a Kubernetes-native CI/CD framework that allows developers to design
and run each step of the CI/CD pipeline in its own container.

By using OpenShift Pipelines tasks and the example pipeline, you can do the following:

Create and manage virtual machines (VMs), persistent volume claims (PVCs), data volumes,
and data sources.

Run commands in VMs.

Manipulate disk images with libguestfs tools.

$ oc edit vm <vm_name> -n <namespace>

apiVersion: kubevirt.io/v1
kind: VirtualMachine
metadata:
 name: example-vm
spec:
 template:
 spec:
 domain:
 devices:
 tpm: 1
 persistent: true 2
...

CHAPTER 10. MANAGING VMS

227

https://docs.openshift.com/pipelines/latest/about/understanding-openshift-pipelines.html

The tasks are located in the task catalog (ArtifactHub) .

The example Windows pipeline is located in the pipeline catalog (ArtifactHub) .

10.13.1. Prerequisites

You have access to an OpenShift Container Platform cluster with cluster-admin permissions.

You have installed the OpenShift CLI (oc).

You have installed OpenShift Pipelines.

10.13.2. Supported virtual machine tasks

The following table shows the supported tasks.

Table 10.2. Supported virtual machine tasks

Task Description

create-vm-from-manifest Create a virtual machine from a provided manifest or
with virtctl.

create-vm-from-template Create a virtual machine from a template.

copy-template Copy a virtual machine template.

modify-vm-template Modify a virtual machine template.

modify-data-object Create or delete data volumes or data sources.

cleanup-vm Run a script or a command in a virtual machine and
stop or delete the virtual machine afterward.

disk-virt-customize Use the virt-customize tool to run a customization
script on a target PVC.

disk-virt-sysprep Use the virt-sysprep tool to run a sysprep script on
a target PVC.

wait-for-vmi-status Wait for a specific status of a virtual machine
instance and fail or succeed based on the status.

NOTE

Virtual machine creation in pipelines now utilizes ClusterInstanceType and
ClusterPreference instead of template-based tasks, which have been deprecated. The
create-vm-from-template, copy-template, and modify-vm-template commands remain
available but are not used in default pipeline tasks.

OpenShift Container Platform 4.20 Virtualization

228

https://artifacthub.io/packages/search?repo=redhat-tekton-tasks&sort=relevance&page=1
https://artifacthub.io/packages/tekton-pipeline/redhat-pipelines/windows-efi-installer
https://docs.openshift.com/pipelines/latest/install_config/installing-pipelines.html

10.13.3. Windows EFI installer pipeline

You can run the Windows EFI installer pipeline by using the web console or CLI.

The Windows EFI installer pipeline installs Windows 10, Windows 11, or Windows Server 2022 into a new
data volume from a Windows installation image (ISO file). A custom answer file is used to run the
installation process.

NOTE

The Windows EFI installer pipeline uses a config map file with sysprep predefined by
OpenShift Container Platform and suitable for Microsoft ISO files. For ISO files
pertaining to different Windows editions, it may be necessary to create a new config map
file with a system-specific sysprep definition.

10.13.3.1. Running the example pipelines using the web console

You can run the example pipelines from the Pipelines menu in the web console.

Procedure

1. Click Pipelines → Pipelines in the side menu.

2. Select a pipeline to open the Pipeline details page.

3. From the Actions list, select Start. The Start Pipeline dialog is displayed.

4. Keep the default values for the parameters and then click Start to run the pipeline. The Details
tab tracks the progress of each task and displays the pipeline status.

10.13.3.2. Running the example pipelines using the CLI

Use a PipelineRun resource to run the example pipelines. A PipelineRun object is the running instance
of a pipeline. It instantiates a pipeline for execution with specific inputs, outputs, and execution
parameters on a cluster. It also creates a TaskRun object for each task in the pipeline.

Prerequisites

You have installed the OpenShift CLI (oc).

Procedure

1. To run the Microsoft Windows 11 installer pipeline, create the following PipelineRun manifest:

apiVersion: tekton.dev/v1
kind: PipelineRun
metadata:
 generateName: windows11-installer-run-
 labels:
 pipelinerun: windows11-installer-run
spec:
 params:
 - name: winImageDownloadURL
 value: <windows_image_download_url> 1

CHAPTER 10. MANAGING VMS

229

https://artifacthub.io/packages/tekton-pipeline/redhat-pipelines/windows-efi-installer

1

2

Specify the URL for the Windows 11 64-bit ISO file. The product’s language must be
English (United States).

Example PipelineRun objects have a special parameter, acceptEula. By setting this
parameter, you are agreeing to the applicable Microsoft user license agreements for each
deployment or installation of the Microsoft products. If you set it to false, the pipeline exits
at the first task.

2. Apply the PipelineRun manifest:

10.13.4. Removing deprecated or unused resources

You can clean up deprecated or unused resources associated with the Red Hat OpenShift Pipelines
Operator.

Procedure

Remove any remaining OpenShift Pipelines resources from the cluster by running the following
command:

If the Red Hat OpenShift Pipelines Operator custom resource definitions (CRDs) have already
been removed, the command may return an error. You can safely ignore this, as all other
matching resources will still be deleted.

 - name: acceptEula
 value: false 2
 pipelineRef:
 params:
 - name: catalog
 value: redhat-pipelines
 - name: type
 value: artifact
 - name: kind
 value: pipeline
 - name: name
 value: windows-efi-installer
 - name: version
 value: 4.20
 resolver: hub
 taskRunSpecs:
 - pipelineTaskName: modify-windows-iso-file
 PodTemplate:
 securityContext:
 fsGroup: 107
 runAsUser: 107

$ oc apply -f windows11-customize-run.yaml

$ oc delete clusterroles,rolebindings,serviceaccounts,configmaps,pipelines,tasks \
 --selector 'app.kubernetes.io/managed-by=ssp-operator' \
 --selector 'app.kubernetes.io/component in (tektonPipelines,tektonTasks)' \
 --selector 'app.kubernetes.io/name in (tekton-pipelines,tekton-tasks)' \
 --ignore-not-found \
 --all-namespaces

OpenShift Container Platform 4.20 Virtualization

230

10.13.5. Additional resources

Creating CI/CD solutions for applications using Red Hat OpenShift Pipelines

Creating a Windows VM

10.14. MIGRATING VMS IN A SINGLE CLUSTER TO A DIFFERENT
STORAGE CLASS

You can migrate virtual machines (VMs) within a single cluster from one storage class to a different
storage class. By using the OpenShift Container Platform web console, you can perform the migration
for the VMs in bulk.

10.14.1. Migrating VMs in a single cluster to a different storage class by using the
web console

By using the OpenShift Container Platform web console, you can migrate single-cluster VMs in bulk
from one storage class to another storage class.

Prerequisites

The VMs you select for each bulk migration must be in the same namespace.

The Migration Toolkit for Containers (MTC) must be installed.

Procedure

1. From the OpenShift Container Platform web console, navigate to Virtualization →
VirtualMachines.

2. From the list of VMs in the same namespace, select each VM that you want to move from its
current storage class.

3. Select Actions → Migrate storage.

Alternatively, you can access this option by opening the Options menu for a selected VM,
and then selecting Migration → Storage.

The Migrate VirtualMachine storage page opens.

4. To review the VMs that you want to migrate, click the link that identifies the number of VMs and
volumes. Click View more to see the full list.

5. Select either the entire VM or only selected volumes for storage class migration. If you choose to
migrate only selected volumes, the page expands to allow you to make specific selections.
You can also click VirtualMachine name to select all VMs.

6. Click Next.

7. From the list of available storage classes, select the destination storage class for the migration.

8. Click Next.

9. Review the details, and click Migrate VirtualMachine storage to start the migration.

10. Optional: Click Stop to interrupt the migration, or click View storage migrations to see the

CHAPTER 10. MANAGING VMS

231

https://docs.openshift.com/pipelines/latest/create/creating-applications-with-cicd-pipelines.html

10. Optional: Click Stop to interrupt the migration, or click View storage migrations to see the
status of current and previous migrations.

10.15. ADVANCED VIRTUAL MACHINE MANAGEMENT

10.15.1. Working with resource quotas for virtual machines

Create and manage resource quotas for virtual machines.

10.15.1.1. Setting resource quota limits for virtual machines

By default, OpenShift Virtualization automatically manages CPU and memory limits for virtual machines
(VMs) if a namespace enforces resource quotas that require limits to be set. The memory limit is
automatically set to twice the requested memory and the CPU limit is set to one per vCPU.

You can customize the memory limit ratio for a specific namespace by adding the
alpha.kubevirt.io/auto-memory-limits-ratio label to the namespace. For example, the following
command sets the memory limit ratio to 1.2:

WARNING

Avoid managing resource quota limits manually. To prevent misconfigurations or
scheduling issues, rely on the automatic resource limit management provided by
OpenShift Virtualization unless you have a specific need to override the defaults.

Resource quotas that only use requests automatically work with VMs. If your resource quota uses limits,
you must manually set resource limits on VMs. Resource limits must be at least 100 MiB larger than
resource requests.

Procedure

1. Set limits for a VM by editing the VirtualMachine manifest. For example:

$ oc label ns/my-virtualization-project alpha.kubevirt.io/auto-memory-limits-ratio=1.2



apiVersion: kubevirt.io/v1
kind: VirtualMachine
metadata:
 name: with-limits
spec:
 runStrategy: Halted
 template:
 spec:
 domain:
...
 resources:
 requests:
 memory: 128Mi
 limits:

OpenShift Container Platform 4.20 Virtualization

232

1 This configuration is supported because the limits.memory value is at least 100Mi larger
than the requests.memory value.

2. Save the VirtualMachine manifest.

10.15.1.2. Additional resources

Resource quotas per project

Resource quotas across multiple projects

10.15.2. Configuring the Application-Aware Quota (AAQ) Operator

You can use the Application-Aware Quota (AAQ) Operator to customize and manage resource quotas
for individual components in an OpenShift Container Platform cluster.

10.15.2.1. About the AAQ Operator

The Application-Aware Quota (AAQ) Operator provides more flexible and extensible quota
management compared to the native ResourceQuota object in the OpenShift Container Platform
platform.

In a multi-tenant cluster environment, where multiple workloads operate on shared infrastructure and
resources, using the Kubernetes native ResourceQuota object to limit aggregate CPU and memory
consumption presents infrastructure overhead and live migration challenges for OpenShift
Virtualization workloads.

OpenShift Virtualization requires significant compute resource allocation to handle virtual machine (VM)
live migrations and manage VM infrastructure overhead. When upgrading OpenShift Virtualization, you
must migrate VMs to upgrade the virt-launcher pod. However, migrating a VM in the presence of a
resource quota can cause the migration, and subsequently the upgrade, to fail.

With AAQ, you can allocate resources for VMs without interfering with cluster-level activities such as
upgrades and node maintenance. The AAQ Operator also supports non-compute resources which
eliminates the need to manage both the native resource quota and AAQ API objects separately.

10.15.2.1.1. AAQ Operator controller and custom resources

The AAQ Operator introduces two new API objects defined as custom resource definitions (CRDs) for
managing alternative quota implementations across multiple namespaces:

ApplicationAwareResourceQuota: Sets aggregate quota restrictions enforced per
namespace. The ApplicationAwareResourceQuota API is compatible with the native
ResourceQuota object and shares the same specification and status definitions.

Example manifest

 memory: 256Mi 1

apiVersion: aaq.kubevirt.io/v1alpha1
kind: ApplicationAwareResourceQuota
metadata:
 name: example-resource-quota

CHAPTER 10. MANAGING VMS

233

https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/building_applications/#quotas-setting-per-project
https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/building_applications/#quotas-setting-across-multiple-projects

1

2

1

The maximum amount of CPU that is allowed for VM workloads in the default namespace.

The maximum amount of RAM that is allowed for VM workloads in the default namespace.

ApplicationAwareClusterResourceQuota: Mirrors the ApplicationAwareResourceQuota
object at a cluster scope. It is compatible with the native ClusterResourceQuota API object
and shares the same specification and status definitions. When creating an AAQ cluster quota,
you can select multiple namespaces based on annotation selection, label selection, or both by
editing the spec.selector.labels or spec.selector.annotations fields.

Example manifest

You can only create an ApplicationAwareClusterResourceQuota object if the
spec.allowApplicationAwareClusterResourceQuota field in the HyperConverged
custom resource (CR) is set to true.

NOTE

If both spec.selector.labels and spec.selector.annotations fields are set, only
namespaces that match both are selected.

The AAQ controller uses a scheduling gate mechanism to evaluate whether there is enough of a
resource available to run a workload. If so, the scheduling gate is removed from the pod and it is
considered ready for scheduling. The quota usage status is updated to indicate how much of the quota
is used.

spec:
 hard:
 requests.memory: 1Gi
 limits.memory: 1Gi
 requests.cpu/vmi: "1" 1
 requests.memory/vmi: 1Gi 2
...

apiVersion: aaq.kubevirt.io/v1alpha1
kind: ApplicationAwareClusterResourceQuota 1
metadata:
 name: example-resource-quota
spec:
 quota:
 hard:
 requests.memory: 1Gi
 limits.memory: 1Gi
 requests.cpu/vmi: "1"
 requests.memory/vmi: 1Gi
 selector:
 annotations: null
 labels:
 matchLabels:
 kubernetes.io/metadata.name: default
...

OpenShift Container Platform 4.20 Virtualization

234

If the CPU and memory requests and limits for the workload exceed the enforced quota usage limit, the
pod remains in SchedulingGated status until there is enough quota available. The AAQ controller
creates an event of type Warning with details on why the quota was exceeded. You can view the event
details by using the oc get events command.

IMPORTANT

Pods that have the spec.nodeName field set to a specific node cannot use namespaces
that match the spec.namespaceSelector labels defined in the HyperConverged CR.

10.15.2.2. Enabling the AAQ Operator

To deploy the AAQ Operator, set the enableApplicationAwareQuota field value to true in the
HyperConverged custom resource (CR).

Prerequisites

You have access to the cluster as a user with cluster-admin privileges.

You have installed the OpenShift CLI (oc).

Procedure

Set the enableApplicationAwareQuota field value to true in the HyperConverged CR by
running the following command:

10.15.2.3. Configuring the AAQ Operator by using the CLI

You can configure the AAQ Operator by specifying the fields of the spec.applicationAwareConfig
object in the HyperConverged custom resource (CR).

Prerequisites

You have access to the cluster as a user with cluster-admin privileges.

You have installed the OpenShift CLI (oc).

Procedure

Update the HyperConverged CR by running the following command:

$ oc patch hco kubevirt-hyperconverged -n openshift-cnv \
 --type json -p '[{"op": "add", "path": "/spec/enableApplicationAwareQuota", "value": true}]'

$ oc patch hco kubevirt-hyperconverged -n openshift-cnv --type merge -p '{
 "spec": {
 "applicationAwareConfig": {
 "vmiCalcConfigName": "DedicatedVirtualResources",
 "namespaceSelector": {
 "matchLabels": {
 "app": "my-app"
 }
 },

CHAPTER 10. MANAGING VMS

235

where:

vmiCalcConfigName

Specifies how resource counting is managed for pods that run virtual machine (VM)
workloads. Possible values are:

VmiPodUsage: Counts compute resources for pods associated with VMs in the same
way as native resource quotas and excludes migration-related resources.

VirtualResources: Counts compute resources based on the VM specifications, using the
VM RAM size for memory and virtual CPUs for processing.

DedicatedVirtualResources (default): Similar to VirtualResources, but separates
resource tracking for pods associated with VMs by adding a /vmi suffix to CPU and
memory resource names. For example, requests.cpu/vmi and requests.memory/vmi.

namespaceSelector

Determines the namespaces for which an AAQ scheduling gate is added to pods when they
are created. If a namespace selector is not defined, the AAQ Operator targets namespaces
with the application-aware-quota/enable-gating label as default.

allowApplicationAwareClusterResourceQuota

If set to true, you can create and manage the ApplicationAwareClusterResourceQuota
object. Setting this attribute to true can increase scheduling time.

10.15.2.4. Additional resources

Resource quotas per project

Resource quotas across multiple projects

ResourceQuota API reference

ClusterResourceQuota API reference

Pod scheduling gates specification

Viewing system event information in an OpenShift Container Platform cluster

10.15.3. Specifying nodes for virtual machines

You can place virtual machines (VMs) on specific nodes by using node placement rules.

10.15.3.1. About node placement for virtual machines

To ensure that virtual machines (VMs) run on appropriate nodes, you can configure node placement
rules. You might want to do this if:

You have several VMs. To ensure fault tolerance, you want them to run on different nodes.

You have two chatty VMs. To avoid redundant inter-node routing, you want the VMs to run on

 "allowApplicationAwareClusterResourceQuota": true
 }
 }
}'

OpenShift Container Platform 4.20 Virtualization

236

https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/building_applications/#quotas-setting-per-project
https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/building_applications/#quotas-setting-across-multiple-projects
https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/schedule_and_quota_apis/#resourcequota-v1
https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/schedule_and_quota_apis/#clusterresourcequota-quota-openshift-io-v1
https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/workloads_apis/#spec-schedulinggates
https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/nodes/#nodes-containers-events

You have two chatty VMs. To avoid redundant inter-node routing, you want the VMs to run on
the same node.

Your VMs require specific hardware features that are not present on all available nodes.

You have a pod that adds capabilities to a node, and you want to place a VM on that node so
that it can use those capabilities.

NOTE

Virtual machine placement relies on any existing node placement rules for workloads. If
workloads are excluded from specific nodes on the component level, virtual machines
cannot be placed on those nodes.

You can use the following rule types in the spec field of a VirtualMachine manifest:

nodeSelector

Allows virtual machines to be scheduled on nodes that are labeled with the key-value pair or pairs
that you specify in this field. The node must have labels that exactly match all listed pairs.

affinity

Enables you to use more expressive syntax to set rules that match nodes with virtual machines. For
example, you can specify that a rule is a preference, rather than a hard requirement, so that virtual
machines are still scheduled if the rule is not satisfied. Pod affinity, pod anti-affinity, and node affinity
are supported for virtual machine placement. Pod affinity works for virtual machines because the
VirtualMachine workload type is based on the Pod object.

tolerations

Allows virtual machines to be scheduled on nodes that have matching taints. If a taint is applied to a
node, that node only accepts virtual machines that tolerate the taint.

NOTE

Affinity rules only apply during scheduling. OpenShift Container Platform does not
reschedule running workloads if the constraints are no longer met.

10.15.3.2. Node placement examples

The following example YAML file snippets use nodePlacement, affinity, and tolerations fields to
customize node placement for virtual machines.

10.15.3.2.1. Example: VM node placement with nodeSelector

In this example, the virtual machine requires a node that has metadata containing both example-key-1 =
example-value-1 and example-key-2 = example-value-2 labels.

CHAPTER 10. MANAGING VMS

237

WARNING

If there are no nodes that fit this description, the virtual machine is not scheduled.

Example VM manifest

10.15.3.2.2. Example: VM node placement with pod affinity and pod anti-affinity

In this example, the VM must be scheduled on a node that has a running pod with the label example-
key-1 = example-value-1. If there is no such pod running on any node, the VM is not scheduled.

If possible, the VM is not scheduled on a node that has any pod with the label example-key-2 =
example-value-2. However, if all candidate nodes have a pod with this label, the scheduler ignores this
constraint.

Example VM manifest



metadata:
 name: example-vm-node-selector
apiVersion: kubevirt.io/v1
kind: VirtualMachine
spec:
 template:
 spec:
 nodeSelector:
 example-key-1: example-value-1
 example-key-2: example-value-2
...

metadata:
 name: example-vm-pod-affinity
apiVersion: kubevirt.io/v1
kind: VirtualMachine
spec:
 template:
 spec:
 affinity:
 podAffinity:
 requiredDuringSchedulingIgnoredDuringExecution: 1
 - labelSelector:
 matchExpressions:
 - key: example-key-1
 operator: In
 values:
 - example-value-1
 topologyKey: kubernetes.io/hostname
 podAntiAffinity:
 preferredDuringSchedulingIgnoredDuringExecution: 2
 - weight: 100
 podAffinityTerm:

OpenShift Container Platform 4.20 Virtualization

238

1

2

If you use the requiredDuringSchedulingIgnoredDuringExecution rule type, the VM is not
scheduled if the constraint is not met.

If you use the preferredDuringSchedulingIgnoredDuringExecution rule type, the VM is still
scheduled if the constraint is not met, as long as all required constraints are met.

10.15.3.2.3. Example: VM node placement with node affinity

In this example, the VM must be scheduled on a node that has the label example.io/example-key =
example-value-1 or the label example.io/example-key = example-value-2. The constraint is met if
only one of the labels is present on the node. If neither label is present, the VM is not scheduled.

If possible, the scheduler avoids nodes that have the label example-node-label-key = example-node-
label-value. However, if all candidate nodes have this label, the scheduler ignores this constraint.

Example VM manifest

 labelSelector:
 matchExpressions:
 - key: example-key-2
 operator: In
 values:
 - example-value-2
 topologyKey: kubernetes.io/hostname
...

metadata:
 name: example-vm-node-affinity
apiVersion: kubevirt.io/v1
kind: VirtualMachine
spec:
 template:
 spec:
 affinity:
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution: 1
 nodeSelectorTerms:
 - matchExpressions:
 - key: example.io/example-key
 operator: In
 values:
 - example-value-1
 - example-value-2
 preferredDuringSchedulingIgnoredDuringExecution: 2
 - weight: 1
 preference:
 matchExpressions:
 - key: example-node-label-key
 operator: In
 values:
 - example-node-label-value
...

CHAPTER 10. MANAGING VMS

239

1

2

If you use the requiredDuringSchedulingIgnoredDuringExecution rule type, the VM is not
scheduled if the constraint is not met.

If you use the preferredDuringSchedulingIgnoredDuringExecution rule type, the VM is still
scheduled if the constraint is not met, as long as all required constraints are met.

10.15.3.2.4. Example: VM node placement with tolerations

In this example, nodes that are reserved for virtual machines are already labeled with the
key=virtualization:NoSchedule taint. Because this virtual machine has matching tolerations, it can
schedule onto the tainted nodes.

NOTE

A virtual machine that tolerates a taint is not required to schedule onto a node with that
taint.

Example VM manifest

10.15.3.3. Additional resources

Specifying nodes for virtualization components

Placing pods on specific nodes using node selectors

Controlling pod placement on nodes using node affinity rules

Controlling pod placement using node taints

10.15.4. Configuring the default CPU model

Use the defaultCPUModel setting in the HyperConverged custom resource (CR) to define a cluster-
wide default CPU model.

The virtual machine (VM) CPU model depends on the availability of CPU models within the VM and the
cluster.

If the VM does not have a defined CPU model:

The defaultCPUModel is automatically set using the CPU model defined at the cluster-
wide level.

metadata:
 name: example-vm-tolerations
apiVersion: kubevirt.io/v1
kind: VirtualMachine
spec:
 tolerations:
 - key: "key"
 operator: "Equal"
 value: "virtualization"
 effect: "NoSchedule"
...

OpenShift Container Platform 4.20 Virtualization

240

https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/nodes/#nodes-scheduler-node-selectors
https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/nodes/#nodes-scheduler-node-affinity
https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/nodes/#nodes-scheduler-taints-tolerations

If both the VM and the cluster have a defined CPU model:

The VM’s CPU model takes precedence.

If neither the VM nor the cluster have a defined CPU model:

The host-model is automatically set using the CPU model defined at the host level.

10.15.4.1. Configuring the default CPU model

Configure the defaultCPUModel by updating the HyperConverged custom resource (CR). You can
change the defaultCPUModel while OpenShift Virtualization is running.

NOTE

The defaultCPUModel is case sensitive.

Prerequisites

Install the OpenShift CLI (oc).

Procedure

1. Open the HyperConverged CR by running the following command:

2. Add the defaultCPUModel field to the CR and set the value to the name of a CPU model that
exists in the cluster:

3. Apply the YAML file to your cluster.

10.15.5. Using UEFI mode for virtual machines

You can boot a virtual machine (VM) in Unified Extensible Firmware Interface (UEFI) mode.

10.15.5.1. About UEFI mode for virtual machines

Unified Extensible Firmware Interface (UEFI), like legacy BIOS, initializes hardware components and
operating system image files when a computer starts. UEFI supports more modern features and
customization options than BIOS, enabling faster boot times.

It stores all the information about initialization and startup in a file with a .efi extension, which is stored
on a special partition called EFI System Partition (ESP). The ESP also contains the boot loader programs
for the operating system that is installed on the computer.

$ oc edit hyperconverged kubevirt-hyperconverged -n openshift-cnv

apiVersion: hco.kubevirt.io/v1beta1
kind: HyperConverged
metadata:
 name: kubevirt-hyperconverged
 namespace: openshift-cnv
spec:
 defaultCPUModel: "EPYC"

CHAPTER 10. MANAGING VMS

241

1

2

10.15.5.2. Booting virtual machines in UEFI mode

You can configure a virtual machine to boot in UEFI mode by editing the VirtualMachine manifest.

Prerequisites

Install the OpenShift CLI (oc).

Procedure

1. Edit or create a VirtualMachine manifest file. Use the spec.firmware.bootloader stanza to
configure UEFI mode:

Booting in UEFI mode with secure boot active

OpenShift Virtualization requires System Management Mode (SMM) to be enabled for
Secure Boot in UEFI mode to occur.

OpenShift Virtualization supports a VM with or without Secure Boot when using UEFI
mode. If Secure Boot is enabled, then UEFI mode is required. However, UEFI mode can be
enabled without using Secure Boot.

2. Apply the manifest to your cluster by running the following command:

apiversion: kubevirt.io/v1
kind: VirtualMachine
metadata:
 labels:
 special: vm-secureboot
 name: vm-secureboot
spec:
 template:
 metadata:
 labels:
 special: vm-secureboot
 spec:
 domain:
 devices:
 disks:
 - disk:
 bus: virtio
 name: containerdisk
 features:
 acpi: {}
 smm:
 enabled: true 1
 firmware:
 bootloader:
 efi:
 secureBoot: true 2
...

$ oc create -f <file_name>.yaml

OpenShift Container Platform 4.20 Virtualization

242

10.15.5.3. Enabling persistent EFI

You can enable EFI persistence in a VM by configuring an RWX storage class at the cluster level and
adjusting the settings in the EFI section of the VM.

Prerequisites

You must have cluster administrator privileges.

You must have a storage class that supports RWX access mode and FS volume mode.

You have installed the OpenShift CLI (oc).

Procedure

Enable the VMPersistentState feature gate by running the following command:

10.15.5.4. Configuring VMs with persistent EFI

You can configure a VM to have EFI persistence enabled by editing its manifest file.

Prerequisites

VMPersistentState feature gate enabled.

Procedure

Edit the VM manifest file and save to apply settings.

10.15.6. Configuring PXE booting for virtual machines

PXE booting, or network booting, is available in OpenShift Virtualization. Network booting allows a
computer to boot and load an operating system or other program without requiring a locally attached
storage device. For example, you can use it to choose your desired OS image from a PXE server when
deploying a new host.

$ oc patch hyperconverged kubevirt-hyperconverged -n openshift-cnv \
 --type json -p '[{"op":"replace","path":"/spec/featureGates/VMPersistentState", "value":
true}]'

apiVersion: kubevirt.io/v1
kind: VirtualMachine
metadata:
 name: vm
spec:
 template:
 spec:
 domain:
 firmware:
 bootloader:
 efi:
 persistent: true
...

CHAPTER 10. MANAGING VMS

243

1

2

3

4

5

6

10.15.6.1. PXE booting with a specified MAC address

As an administrator, you can boot a client over the network by first creating a
NetworkAttachmentDefinition object for your PXE network. Then, reference the network attachment
definition in your virtual machine instance configuration file before you start the virtual machine
instance. You can also specify a MAC address in the virtual machine instance configuration file, if
required by the PXE server.

Prerequisites

A Linux bridge must be connected.

The PXE server must be connected to the same VLAN as the bridge.

You have installed the OpenShift CLI (oc).

Procedure

1. Configure a PXE network on the cluster:

a. Create the network attachment definition file for PXE network pxe-net-conf:

The name for the NetworkAttachmentDefinition object.

The name for the configuration. It is recommended to match the configuration name
to the name value of the network attachment definition.

The actual name of the Container Network Interface (CNI) plugin that provides the
network for this network attachment definition. This example uses a Linux bridge CNI
plugin. You can also use an OVN-Kubernetes localnet or an SR-IOV CNI plugin.

The name of the Linux bridge configured on the node.

Optional: A flag to enable the MAC spoof check. When set to true, you cannot change
the MAC address of the pod or guest interface. This attribute allows only a single MAC
address to exit the pod, which provides security against a MAC spoofing attack.

Optional: The VLAN tag. No additional VLAN configuration is required on the node

apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:
 name: pxe-net-conf 1
spec:
 config: |
 {
 "cniVersion": "0.3.1",
 "name": "pxe-net-conf", 2
 "type": "bridge", 3
 "bridge": "bridge-interface", 4
 "macspoofchk": false, 5
 "vlan": 100, 6
 "disableContainerInterface": true,
 "preserveDefaultVlan": false 7
 }

OpenShift Container Platform 4.20 Virtualization

244

7

Optional: The VLAN tag. No additional VLAN configuration is required on the node
network configuration policy.

Optional: Indicates whether the VM connects to the bridge through the default VLAN.
The default value is true.

2. Create the network attachment definition by using the file you created in the previous step:

3. Edit the virtual machine instance configuration file to include the details of the interface and
network.

a. Specify the network and MAC address, if required by the PXE server. If the MAC address is
not specified, a value is assigned automatically.
Ensure that bootOrder is set to 1 so that the interface boots first. In this example, the
interface is connected to a network called <pxe-net>:

NOTE

Boot order is global for interfaces and disks.

b. Assign a boot device number to the disk to ensure proper booting after operating system
provisioning.
Set the disk bootOrder value to 2:

c. Specify that the network is connected to the previously created network attachment
definition. In this scenario, <pxe-net> is connected to the network attachment definition
called <pxe-net-conf>:

$ oc create -f pxe-net-conf.yaml

interfaces:
- masquerade: {}
 name: default
- bridge: {}
 name: pxe-net
 macAddress: de:00:00:00:00:de
 bootOrder: 1

devices:
 disks:
 - disk:
 bus: virtio
 name: containerdisk
 bootOrder: 2

networks:
- name: default
 pod: {}
- name: pxe-net
 multus:
 networkName: pxe-net-conf

CHAPTER 10. MANAGING VMS

245

4. Create the virtual machine instance:

Example output

5. Wait for the virtual machine instance to run:

6. View the virtual machine instance using VNC:

7. Watch the boot screen to verify that the PXE boot is successful.

8. Log in to the virtual machine instance:

Verification

1. Verify the interfaces and MAC address on the virtual machine and that the interface connected
to the bridge has the specified MAC address. In this case, we used eth1 for the PXE boot,
without an IP address. The other interface, eth0, got an IP address from OpenShift Container
Platform.

Example output

10.15.6.2. OpenShift Virtualization networking glossary

The following terms are used throughout OpenShift Virtualization documentation:

Container Network Interface (CNI)

A Cloud Native Computing Foundation project, focused on container network connectivity.
OpenShift Virtualization uses CNI plugins to build upon the basic Kubernetes networking
functionality.

Multus

A "meta" CNI plugin that allows multiple CNIs to exist so that a pod or virtual machine can use the
interfaces it needs.

Custom resource definition (CRD)

$ oc create -f vmi-pxe-boot.yaml

 virtualmachineinstance.kubevirt.io "vmi-pxe-boot" created

$ oc get vmi vmi-pxe-boot -o yaml | grep -i phase
 phase: Running

$ virtctl vnc vmi-pxe-boot

$ virtctl console vmi-pxe-boot

$ ip addr

...
3. eth1: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN group default qlen
1000
 link/ether de:00:00:00:00:de brd ff:ff:ff:ff:ff:ff

OpenShift Container Platform 4.20 Virtualization

246

https://www.cncf.io/

A Kubernetes API resource that allows you to define custom resources, or an object defined by using
the CRD API resource.

Network attachment definition (NAD)

A CRD introduced by the Multus project that allows you to attach pods, virtual machines, and virtual
machine instances to one or more networks.

UserDefinedNetwork (UDN)

A namespace-scoped CRD introduced by the user-defined network API that can be used to create a
tenant network that isolates the tenant namespace from other namespaces.

ClusterUserDefinedNetwork (CUDN)

A cluster-scoped CRD introduced by the user-defined network API that cluster administrators can
use to create a shared network across multiple namespaces.

Node network configuration policy (NNCP)

A CRD introduced by the nmstate project, describing the requested network configuration on nodes.
You update the node network configuration, including adding and removing interfaces, by applying a
NodeNetworkConfigurationPolicy manifest to the cluster.

10.15.7. Using huge pages with virtual machines

You can use huge pages as backing memory for virtual machines in your cluster.

10.15.7.1. What huge pages do

Memory is managed in blocks known as pages. On most systems, a page is 4Ki. 1Mi of memory is equal to
256 pages; 1Gi of memory is 256,000 pages, and so on. CPUs have a built-in memory management unit
that manages a list of these pages in hardware. The Translation Lookaside Buffer (TLB) is a small
hardware cache of virtual-to-physical page mappings. If the virtual address passed in a hardware
instruction can be found in the TLB, the mapping can be determined quickly. If not, a TLB miss occurs,
and the system falls back to slower, software-based address translation, resulting in performance issues.
Since the size of the TLB is fixed, the only way to reduce the chance of a TLB miss is to increase the
page size.

A huge page is a memory page that is larger than 4Ki. On x86_64 architectures, there are two common
huge page sizes: 2Mi and 1Gi. Sizes vary on other architectures. To use huge pages, code must be
written so that applications are aware of them. Transparent Huge Pages (THP) attempt to automate the
management of huge pages without application knowledge, but they have limitations. In particular, they
are limited to 2Mi page sizes. THP can lead to performance degradation on nodes with high memory
utilization or fragmentation due to defragmenting efforts of THP, which can lock memory pages. For this
reason, some applications may be designed to (or recommend) usage of pre-allocated huge pages
instead of THP.

In OpenShift Virtualization, virtual machines can be configured to consume pre-allocated huge pages.

10.15.7.2. Configuring huge pages for virtual machines

You can configure virtual machines to use pre-allocated huge pages by including the
memory.hugepages.pageSize and resources.requests.memory parameters in your virtual machine
configuration.

The memory request must be divisible by the page size. For example, you cannot request 500Mi
memory with a page size of 1Gi.

NOTE

CHAPTER 10. MANAGING VMS

247

https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/

1

2

NOTE

The memory layouts of the host and the guest OS are unrelated. Huge pages requested
in the virtual machine manifest apply to QEMU. Huge pages inside the guest can only be
configured based on the amount of available memory of the virtual machine instance.

If you edit a running virtual machine, the virtual machine must be rebooted for the changes to take
effect.

Prerequisites

Nodes must have pre-allocated huge pages configured.

You have installed the OpenShift CLI (oc).

Procedure

1. In your virtual machine configuration, add the resources.requests.memory and
memory.hugepages.pageSize parameters to the spec.domain. The following configuration
snippet is for a virtual machine that requests a total of 4Gi memory with a page size of 1Gi:

The total amount of memory requested for the virtual machine. This value must be divisible
by the page size.

The size of each huge page. Valid values for x86_64 architecture are 1Gi and 2Mi. The
page size must be smaller than the requested memory.

2. Apply the virtual machine configuration:

10.15.8. Enabling dedicated resources for virtual machines

To improve performance, you can dedicate node resources, such as CPU, to a virtual machine.

10.15.8.1. About dedicated resources

When you enable dedicated resources for your virtual machine, your virtual machine’s workload is
scheduled on CPUs that will not be used by other processes. By using dedicated resources, you can
improve the performance of the virtual machine and the accuracy of latency predictions.

kind: VirtualMachine
...
spec:
 domain:
 resources:
 requests:
 memory: "4Gi" 1
 memory:
 hugepages:
 pageSize: "1Gi" 2
...

$ oc apply -f <virtual_machine>.yaml

OpenShift Container Platform 4.20 Virtualization

248

10.15.8.2. Enabling dedicated resources for a virtual machine

You enable dedicated resources for a virtual machine in the Details tab. Virtual machines that were
created from a Red Hat template can be configured with dedicated resources.

Prerequisites

The CPU Manager must be configured on the node. Verify that the node has the cpumanager
= true label before scheduling virtual machine workloads.

The virtual machine must be powered off.

Procedure

1. In the OpenShift Container Platform console, click Virtualization → VirtualMachines from the
side menu.

2. Select a virtual machine to open the VirtualMachine details page.

3. On the Configuration → Scheduling tab, click the edit icon beside Dedicated Resources.

4. Select Schedule this workload with dedicated resources (guaranteed policy).

5. Click Save.

10.15.9. Scheduling virtual machines

You can schedule a virtual machine (VM) on a node by ensuring that the VM’s CPU model and policy
attribute are matched for compatibility with the CPU models and policy attributes supported by the
node.

10.15.9.1. Policy attributes

You can schedule a virtual machine (VM) by specifying a policy attribute and a CPU feature that is
matched for compatibility when the VM is scheduled on a node. A policy attribute specified for a VM
determines how that VM is scheduled on a node.

Policy attribute Description

force The VM is forced to be scheduled on a node. This is true even if the host
CPU does not support the VM’s CPU.

require Default policy that applies to a VM if the VM is not configured with a
specific CPU model and feature specification. If a node is not configured to
support CPU node discovery with this default policy attribute or any one of
the other policy attributes, VMs are not scheduled on that node. Either the
host CPU must support the VM’s CPU or the hypervisor must be able to
emulate the supported CPU model.

optional The VM is added to a node if that VM is supported by the host’s physical
machine CPU.

disable The VM cannot be scheduled with CPU node discovery.

CHAPTER 10. MANAGING VMS

249

1

2

forbid The VM is not scheduled even if the feature is supported by the host CPU
and CPU node discovery is enabled.

Policy attribute Description

10.15.9.2. Setting a policy attribute and CPU feature

You can set a policy attribute and CPU feature for each virtual machine (VM) to ensure that it is
scheduled on a node according to policy and feature. The CPU feature that you set is verified to ensure
that it is supported by the host CPU or emulated by the hypervisor.

Procedure

Edit the domain spec of your VM configuration file. The following example sets the CPU
feature and the require policy for a virtual machine (VM):

Name of the CPU feature for the VM.

Policy attribute for the VM.

10.15.9.3. Scheduling virtual machines with the supported CPU model

You can configure a CPU model for a virtual machine (VM) to schedule it on a node where its CPU
model is supported.

Procedure

Edit the domain spec of your virtual machine configuration file. The following example shows a
specific CPU model defined for a VM:

apiVersion: kubevirt.io/v1
kind: VirtualMachine
metadata:
 name: myvm
spec:
 template:
 spec:
 domain:
 cpu:
 features:
 - name: apic 1
 policy: require 2

apiVersion: kubevirt.io/v1
kind: VirtualMachine
metadata:
 name: myvm
spec:
 template:
 spec:

OpenShift Container Platform 4.20 Virtualization

250

1

1

CPU model for the VM.

10.15.9.4. Scheduling virtual machines with the host model

When the CPU model for a virtual machine (VM) is set to host-model, the VM inherits the CPU model of
the node where it is scheduled.

Procedure

Edit the domain spec of your VM configuration file. The following example shows host-model
being specified for the virtual machine:

The VM that inherits the CPU model of the node where it is scheduled.

10.15.9.5. Scheduling virtual machines with a custom scheduler

You can use a custom scheduler to schedule a virtual machine (VM) on a node.

Prerequisites

A secondary scheduler is configured for your cluster.

You have installed the OpenShift CLI (oc).

Procedure

Add the custom scheduler to the VM configuration by editing the VirtualMachine manifest. For
example:

 domain:
 cpu:
 model: Conroe 1

apiVersion: kubevirt/v1alpha3
kind: VirtualMachine
metadata:
 name: myvm
spec:
 template:
 spec:
 domain:
 cpu:
 model: host-model 1

apiVersion: kubevirt.io/v1
kind: VirtualMachine
metadata:
 name: vm-fedora
spec:
 runStrategy: Always
 template:
 spec:

CHAPTER 10. MANAGING VMS

251

1 The name of the custom scheduler. If the schedulerName value does not match an
existing scheduler, the virt-launcher pod stays in a Pending state until the specified
scheduler is found.

Verification

Verify that the VM is using the custom scheduler specified in the VirtualMachine manifest by
checking the virt-launcher pod events:

a. View the list of pods in your cluster by entering the following command:

Example output

b. Run the following command to display the pod events:

The value of the From field in the output verifies that the scheduler name matches the
custom scheduler specified in the VirtualMachine manifest:

Example output

Additional resources

Deploying a secondary scheduler

10.15.10. Configuring PCI passthrough

The Peripheral Component Interconnect (PCI) passthrough feature enables you to access and manage

 schedulerName: my-scheduler 1
 domain:
 devices:
 disks:
 - name: containerdisk
 disk:
 bus: virtio
...

$ oc get pods

NAME READY STATUS RESTARTS AGE
virt-launcher-vm-fedora-dpc87 2/2 Running 0 24m

$ oc describe pod virt-launcher-vm-fedora-dpc87

[...]
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal Scheduled 21m my-scheduler Successfully assigned default/virt-launcher-
vm-fedora-dpc87 to node01
[...]

OpenShift Container Platform 4.20 Virtualization

252

https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/nodes/#nodes-secondary-scheduler-configuring-console_secondary-scheduler-configuring

1

The Peripheral Component Interconnect (PCI) passthrough feature enables you to access and manage
hardware devices from a virtual machine (VM). When PCI passthrough is configured, the PCI devices
function as if they were physically attached to the guest operating system.

Cluster administrators can expose and manage host devices that are permitted to be used in the cluster
by using the oc command-line interface (CLI).

10.15.10.1. Preparing nodes for GPU passthrough

You can prevent GPU operands from deploying on worker nodes that you designated for GPU
passthrough.

10.15.10.1.1. Preventing NVIDIA GPU operands from deploying on nodes

If you use the NVIDIA GPU Operator in your cluster, you can apply the
nvidia.com/gpu.deploy.operands=false label to nodes that you do not want to configure for GPU or
vGPU operands. This label prevents the creation of the pods that configure GPU or vGPU operands
and terminates the pods if they already exist.

Prerequisites

The OpenShift CLI (oc) is installed.

Procedure

Label the node by running the following command:

Replace <node_name> with the name of a node where you do not want to install the
NVIDIA GPU operands.

Verification

1. Verify that the label was added to the node by running the following command:

2. Optional: If GPU operands were previously deployed on the node, verify their removal.

a. Check the status of the pods in the nvidia-gpu-operator namespace by running the
following command:

Example output

$ oc label node <node_name> nvidia.com/gpu.deploy.operands=false 1

$ oc describe node <node_name>

$ oc get pods -n nvidia-gpu-operator

NAME READY STATUS RESTARTS AGE
gpu-operator-59469b8c5c-hw9wj 1/1 Running 0 8d
nvidia-sandbox-validator-7hx98 1/1 Running 0 8d
nvidia-sandbox-validator-hdb7p 1/1 Running 0 8d
nvidia-sandbox-validator-kxwj7 1/1 Terminating 0 9d
nvidia-vfio-manager-7w9fs 1/1 Running 0 8d

CHAPTER 10. MANAGING VMS

253

https://docs.nvidia.com/datacenter/cloud-native/gpu-operator/openshift/contents.html

b. Monitor the pod status until the pods with Terminating status are removed:

Example output

10.15.10.2. Preparing host devices for PCI passthrough

10.15.10.2.1. About preparing a host device for PCI passthrough

To prepare a host device for PCI passthrough by using the CLI, create a MachineConfig object and add
kernel arguments to enable the Input-Output Memory Management Unit (IOMMU). Bind the PCI device
to the Virtual Function I/O (VFIO) driver and then expose it in the cluster by editing the
permittedHostDevices field of the HyperConverged custom resource (CR). The
permittedHostDevices list is empty when you first install the OpenShift Virtualization Operator.

To remove a PCI host device from the cluster by using the CLI, delete the PCI device information from
the HyperConverged CR.

10.15.10.2.2. Adding kernel arguments to enable the IOMMU driver

To enable the IOMMU driver in the kernel, create the MachineConfig object and add the kernel
arguments.

Prerequisites

You have cluster administrator permissions.

Your CPU hardware is Intel or AMD.

You enabled Intel Virtualization Technology for Directed I/O extensions or AMD IOMMU in the
BIOS.

You have installed the OpenShift CLI (oc).

Procedure

1. Create a MachineConfig object that identifies the kernel argument. The following example
shows a kernel argument for an Intel CPU.

nvidia-vfio-manager-866pz 1/1 Running 0 8d
nvidia-vfio-manager-zqtck 1/1 Terminating 0 9d

$ oc get pods -n nvidia-gpu-operator

NAME READY STATUS RESTARTS AGE
gpu-operator-59469b8c5c-hw9wj 1/1 Running 0 8d
nvidia-sandbox-validator-7hx98 1/1 Running 0 8d
nvidia-sandbox-validator-hdb7p 1/1 Running 0 8d
nvidia-vfio-manager-7w9fs 1/1 Running 0 8d
nvidia-vfio-manager-866pz 1/1 Running 0 8d

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:

OpenShift Container Platform 4.20 Virtualization

254

where:

<apiversion>

Applies the new kernel argument only to worker nodes.

<name>

Indicates the ranking of this kernel argument (100) among the machine configs and its
purpose. If you have an AMD CPU, specify the kernel argument as amd_iommu=on.

<intel_iommu=o>

Identifies the kernel argument as intel_iommu for an Intel CPU.

2. Create the new MachineConfig object:

Verification

1. Verify that the new MachineConfig object was added by entering the following command and
observing the output:

Example output

2. Verify that IOMMU is enabled at the operating system (OS) level by entering the following
command:

If IOMMU is enabled, output is displayed as shown in the following example:

 labels:
 machineconfiguration.openshift.io/role: worker
 name: 100-worker-iommu
spec:
 config:
 ignition:
 version: 3.2.0
 kernelArguments:
 - intel_iommu=on
...

$ oc create -f 100-worker-kernel-arg-iommu.yaml

$ oc get MachineConfig

NAME IGNITIONVERSION AGE
00-master 3.5.0 164m
00-worker 3.5.0 164m
01-master-container-runtime 3.5.0 164m
01-master-kubelet 3.5.0 164m
01-worker-container-runtime 3.5.0 164m
01-worker-kubelet 3.5.0 164m
100-master-chrony-configuration 3.5.0 169m
100-master-set-core-user-password 3.5.0 169m
100-worker-chrony-configuration 3.5.0 169m
100-worker-iommu 3.5.0 14s

$ dmesg | grep -i iommu

CHAPTER 10. MANAGING VMS

255

Example output

10.15.10.2.3. Binding PCI devices to the VFIO driver

To bind PCI devices to the VFIO (Virtual Function I/O) driver, obtain the values for vendor-ID and
device-ID from each device and create a list with the values. Add this list to the MachineConfig object.
The MachineConfig Operator generates the /etc/modprobe.d/vfio.conf on the nodes with the PCI
devices, and binds the PCI devices to the VFIO driver.

Prerequisites

You added kernel arguments to enable IOMMU for the CPU.

You have installed the OpenShift CLI (oc).

Procedure

1. Run the lspci command to obtain the vendor-ID and the device-ID for the PCI device.

Example output

2. Create a Butane config file, 100-worker-vfiopci.bu, binding the PCI device to the VFIO driver.

NOTE

The Butane version you specify in the config file should match the OpenShift
Container Platform version and always ends in 0. For example, 4.20.0. See
"Creating machine configs with Butane" for information about Butane.

Example

Intel: [0.000000] DMAR: Intel(R) IOMMU Driver
AMD: [0.000000] AMD-Vi: IOMMU Initialized

$ lspci -nnv | grep -i nvidia

02:01.0 3D controller [0302]: NVIDIA Corporation GV100GL [Tesla V100 PCIe 32GB]
[10de:1eb8] (rev a1)

variant: openshift
version: 4.20.0
metadata:
 name: 100-worker-vfiopci
 labels:
 machineconfiguration.openshift.io/role: worker 1
storage:
 files:
 - path: /etc/modprobe.d/vfio.conf
 mode: 0644
 overwrite: true
 contents:
 inline: |

OpenShift Container Platform 4.20 Virtualization

256

https://coreos.github.io/butane/specs/

1

2

3

Applies the new kernel argument only to worker nodes.

Specify the previously determined vendor-ID value (10de) and the device-ID value (1eb8)
to bind a single device to the VFIO driver. You can add a list of multiple devices with their
vendor and device information.

The file that loads the vfio-pci kernel module on the worker nodes.

3. Use Butane to generate a MachineConfig object file, 100-worker-vfiopci.yaml, containing the
configuration to be delivered to the worker nodes:

4. Apply the MachineConfig object to the worker nodes:

5. Verify that the MachineConfig object was added.

Example output

Verification

Verify that the VFIO driver is loaded.

The output confirms that the VFIO driver is being used.

 options vfio-pci ids=10de:1eb8 2
 - path: /etc/modules-load.d/vfio-pci.conf 3
 mode: 0644
 overwrite: true
 contents:
 inline: vfio-pci

$ butane 100-worker-vfiopci.bu -o 100-worker-vfiopci.yaml

$ oc apply -f 100-worker-vfiopci.yaml

$ oc get MachineConfig

NAME GENERATEDBYCONTROLLER IGNITIONVERSION
AGE
00-master d3da910bfa9f4b599af4ed7f5ac270d55950a3a1 3.5.0 25h
00-worker d3da910bfa9f4b599af4ed7f5ac270d55950a3a1 3.5.0 25h
01-master-container-runtime d3da910bfa9f4b599af4ed7f5ac270d55950a3a1 3.5.0
25h
01-master-kubelet d3da910bfa9f4b599af4ed7f5ac270d55950a3a1 3.5.0
25h
01-worker-container-runtime d3da910bfa9f4b599af4ed7f5ac270d55950a3a1 3.5.0
25h
01-worker-kubelet d3da910bfa9f4b599af4ed7f5ac270d55950a3a1 3.5.0
25h
100-worker-iommu 3.5.0 30s
100-worker-vfiopci-configuration 3.5.0 30s

$ lspci -nnk -d 10de:

CHAPTER 10. MANAGING VMS

257

1

2

3

4

5

Example output

04:00.0 3D controller [0302]: NVIDIA Corporation GP102GL [Tesla P40] [10de:1eb8] (rev a1)
 Subsystem: NVIDIA Corporation Device [10de:1eb8]
 Kernel driver in use: vfio-pci
 Kernel modules: nouveau

10.15.10.2.4. Exposing PCI host devices in the cluster using the CLI

To expose PCI host devices in the cluster, add details about the PCI devices to the
spec.permittedHostDevices.pciHostDevices array of the HyperConverged custom resource (CR).

Prerequisites

You have installed the OpenShift CLI (oc).

Procedure

1. Edit the HyperConverged CR in your default editor by running the following command:

2. Add the PCI device information to the spec.permittedHostDevices.pciHostDevices array. For
example:

Example configuration file

The host devices that are permitted to be used in the cluster.

The list of PCI devices available on the node.

The vendor-ID and the device-ID required to identify the PCI device.

The name of a PCI host device.

Optional: Setting this field to true indicates that the resource is provided by an external

$ oc edit hyperconverged kubevirt-hyperconverged -n openshift-cnv

apiVersion: hco.kubevirt.io/v1
kind: HyperConverged
metadata:
 name: kubevirt-hyperconverged
 namespace: openshift-cnv
spec:
 permittedHostDevices: 1
 pciHostDevices: 2
 - pciDeviceSelector: "10DE:1DB6" 3
 resourceName: "nvidia.com/GV100GL_Tesla_V100" 4
 - pciDeviceSelector: "10DE:1EB8"
 resourceName: "nvidia.com/TU104GL_Tesla_T4"
 - pciDeviceSelector: "8086:6F54"
 resourceName: "intel.com/qat"
 externalResourceProvider: true 5
...

OpenShift Container Platform 4.20 Virtualization

258

Optional: Setting this field to true indicates that the resource is provided by an external
device plugin. OpenShift Virtualization allows the usage of this device in the cluster but

NOTE

The above example snippet shows two PCI host devices that are named
nvidia.com/GV100GL_Tesla_V100 and nvidia.com/TU104GL_Tesla_T4 added
to the list of permitted host devices in the HyperConverged CR. These devices
have been tested and verified to work with OpenShift Virtualization.

3. Save your changes and exit the editor.

Verification

Verify that the PCI host devices were added to the node by running the following command.
The example output shows that there is one device each associated with the
nvidia.com/GV100GL_Tesla_V100, nvidia.com/TU104GL_Tesla_T4, and intel.com/qat
resource names.

Example output

10.15.10.2.5. Removing PCI host devices from the cluster using the CLI

To remove a PCI host device from the cluster, delete the information for that device from the

$ oc describe node <node_name>

Capacity:
 cpu: 64
 devices.kubevirt.io/kvm: 110
 devices.kubevirt.io/tun: 110
 devices.kubevirt.io/vhost-net: 110
 ephemeral-storage: 915128Mi
 hugepages-1Gi: 0
 hugepages-2Mi: 0
 memory: 131395264Ki
 nvidia.com/GV100GL_Tesla_V100 1
 nvidia.com/TU104GL_Tesla_T4 1
 intel.com/qat: 1
 pods: 250
Allocatable:
 cpu: 63500m
 devices.kubevirt.io/kvm: 110
 devices.kubevirt.io/tun: 110
 devices.kubevirt.io/vhost-net: 110
 ephemeral-storage: 863623130526
 hugepages-1Gi: 0
 hugepages-2Mi: 0
 memory: 130244288Ki
 nvidia.com/GV100GL_Tesla_V100 1
 nvidia.com/TU104GL_Tesla_T4 1
 intel.com/qat: 1
 pods: 250

CHAPTER 10. MANAGING VMS

259

To remove a PCI host device from the cluster, delete the information for that device from the
HyperConverged custom resource (CR).

Prerequisites

You have installed the OpenShift CLI (oc).

Procedure

1. Edit the HyperConverged CR in your default editor by running the following command:

2. Remove the PCI device information from the spec.permittedHostDevices.pciHostDevices
array by deleting the pciDeviceSelector, resourceName and externalResourceProvider (if
applicable) fields for the appropriate device. In this example, the intel.com/qat resource has
been deleted.

Example configuration file

3. Save your changes and exit the editor.

Verification

Verify that the PCI host device was removed from the node by running the following command.
The example output shows that there are zero devices associated with the intel.com/qat
resource name.

Example output

$ oc edit hyperconverged kubevirt-hyperconverged -n openshift-cnv

apiVersion: hco.kubevirt.io/v1
kind: HyperConverged
metadata:
 name: kubevirt-hyperconverged
 namespace: openshift-cnv
spec:
 permittedHostDevices:
 pciHostDevices:
 - pciDeviceSelector: "10DE:1DB6"
 resourceName: "nvidia.com/GV100GL_Tesla_V100"
 - pciDeviceSelector: "10DE:1EB8"
 resourceName: "nvidia.com/TU104GL_Tesla_T4"
...

$ oc describe node <node_name>

Capacity:
 cpu: 64
 devices.kubevirt.io/kvm: 110
 devices.kubevirt.io/tun: 110
 devices.kubevirt.io/vhost-net: 110
 ephemeral-storage: 915128Mi
 hugepages-1Gi: 0

OpenShift Container Platform 4.20 Virtualization

260

1

10.15.10.3. Configuring virtual machines for PCI passthrough

After the PCI devices have been added to the cluster, you can assign them to virtual machines. The PCI
devices are now available as if they are physically connected to the virtual machines.

10.15.10.3.1. Assigning a PCI device to a virtual machine

When a PCI device is available in a cluster, you can assign it to a virtual machine and enable PCI
passthrough.

Procedure

Assign the PCI device to a virtual machine as a host device.

Example

The name of the PCI device that is permitted on the cluster as a host device. The virtual
machine can access this host device.

Verification

Use the following command to verify that the host device is available from the virtual machine.

 hugepages-2Mi: 0
 memory: 131395264Ki
 nvidia.com/GV100GL_Tesla_V100 1
 nvidia.com/TU104GL_Tesla_T4 1
 intel.com/qat: 0
 pods: 250
Allocatable:
 cpu: 63500m
 devices.kubevirt.io/kvm: 110
 devices.kubevirt.io/tun: 110
 devices.kubevirt.io/vhost-net: 110
 ephemeral-storage: 863623130526
 hugepages-1Gi: 0
 hugepages-2Mi: 0
 memory: 130244288Ki
 nvidia.com/GV100GL_Tesla_V100 1
 nvidia.com/TU104GL_Tesla_T4 1
 intel.com/qat: 0
 pods: 250

apiVersion: kubevirt.io/v1
kind: VirtualMachine
spec:
 domain:
 devices:
 hostDevices:
 - deviceName: nvidia.com/TU104GL_Tesla_T4 1
 name: hostdevices1

$ lspci -nnk | grep NVIDIA

CHAPTER 10. MANAGING VMS

261

Example output

10.15.10.4. Additional resources

Enabling Intel VT-X and AMD-V Virtualization Hardware Extensions in BIOS

Managing file permissions

Machine Config Overview

10.15.11. Configuring virtual GPUs

If you have graphics processing unit (GPU) cards, OpenShift Virtualization can automatically create
virtual GPUs (vGPUs) that you can assign to virtual machines (VMs).

10.15.11.1. About using virtual GPUs with OpenShift Virtualization

Some graphics processing unit (GPU) cards support the creation of virtual GPUs (vGPUs). OpenShift
Virtualization can automatically create vGPUs and other mediated devices if an administrator provides
configuration details in the HyperConverged custom resource (CR). This automation is especially
useful for large clusters.

NOTE

Refer to your hardware vendor’s documentation for functionality and support details.

Mediated device

A physical device that is divided into one or more virtual devices. A vGPU is a type of mediated
device (mdev); the performance of the physical GPU is divided among the virtual devices. You can
assign mediated devices to one or more virtual machines (VMs), but the number of guests must be
compatible with your GPU. Some GPUs do not support multiple guests.

10.15.11.2. Preparing hosts for mediated devices

You must enable the Input-Output Memory Management Unit (IOMMU) driver before you can
configure mediated devices.

10.15.11.2.1. Adding kernel arguments to enable the IOMMU driver

To enable the IOMMU driver in the kernel, create the MachineConfig object and add the kernel
arguments.

Prerequisites

You have cluster administrator permissions.

Your CPU hardware is Intel or AMD.

You enabled Intel Virtualization Technology for Directed I/O extensions or AMD IOMMU in the
BIOS.

$ 02:01.0 3D controller [0302]: NVIDIA Corporation GV100GL [Tesla V100 PCIe 32GB]
[10de:1eb8] (rev a1)

OpenShift Container Platform 4.20 Virtualization

262

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/virtualization_deployment_and_administration_guide/sect-troubleshooting-enabling_intel_vt_x_and_amd_v_virtualization_hardware_extensions_in_bios
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_basic_system_settings/assembly_managing-file-permissions_configuring-basic-system-settings
https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/machine_configuration/#machine-config-overview

You have installed the OpenShift CLI (oc).

Procedure

1. Create a MachineConfig object that identifies the kernel argument. The following example
shows a kernel argument for an Intel CPU.

where:

<apiversion>

Applies the new kernel argument only to worker nodes.

<name>

Indicates the ranking of this kernel argument (100) among the machine configs and its
purpose. If you have an AMD CPU, specify the kernel argument as amd_iommu=on.

<intel_iommu=o>

Identifies the kernel argument as intel_iommu for an Intel CPU.

2. Create the new MachineConfig object:

Verification

1. Verify that the new MachineConfig object was added by entering the following command and
observing the output:

Example output

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
 labels:
 machineconfiguration.openshift.io/role: worker
 name: 100-worker-iommu
spec:
 config:
 ignition:
 version: 3.2.0
 kernelArguments:
 - intel_iommu=on
...

$ oc create -f 100-worker-kernel-arg-iommu.yaml

$ oc get MachineConfig

NAME IGNITIONVERSION AGE
00-master 3.5.0 164m
00-worker 3.5.0 164m
01-master-container-runtime 3.5.0 164m
01-master-kubelet 3.5.0 164m
01-worker-container-runtime 3.5.0 164m
01-worker-kubelet 3.5.0 164m
100-master-chrony-configuration 3.5.0 169m

CHAPTER 10. MANAGING VMS

263

2. Verify that IOMMU is enabled at the operating system (OS) level by entering the following
command:

If IOMMU is enabled, output is displayed as shown in the following example:

Example output

10.15.11.3. Configuring the NVIDIA GPU Operator

You can use the NVIDIA GPU Operator to provision worker nodes for running GPU-accelerated virtual
machines (VMs) in OpenShift Virtualization.

NOTE

The NVIDIA GPU Operator is supported only by NVIDIA. For more information, see
Obtaining Support from NVIDIA in the Red Hat Knowledgebase.

10.15.11.3.1. About using the NVIDIA GPU Operator

You can use the NVIDIA GPU Operator with OpenShift Virtualization to rapidly provision worker nodes
for running GPU-enabled virtual machines (VMs). The NVIDIA GPU Operator manages NVIDIA GPU
resources in an OpenShift Container Platform cluster and automates tasks that are required when
preparing nodes for GPU workloads.

Before you can deploy application workloads to a GPU resource, you must install components such as
the NVIDIA drivers that enable the compute unified device architecture (CUDA), Kubernetes device
plugin, container runtime, and other features, such as automatic node labeling and monitoring. By
automating these tasks, you can quickly scale the GPU capacity of your infrastructure. The NVIDIA GPU
Operator can especially facilitate provisioning complex artificial intelligence and machine learning
(AI/ML) workloads.

10.15.11.3.2. Options for configuring mediated devices

There are two available methods for configuring mediated devices when using the NVIDIA GPU
Operator. The method that Red Hat tests uses OpenShift Virtualization features to schedule mediated
devices, while the NVIDIA method only uses the GPU Operator.

Using the NVIDIA GPU Operator to configure mediated devices

This method exclusively uses the NVIDIA GPU Operator to configure mediated devices. To use this
method, refer to NVIDIA GPU Operator with OpenShift Virtualization in the NVIDIA documentation.

Using OpenShift Virtualization to configure mediated devices

This method, which is tested by Red Hat, uses OpenShift Virtualization’s capabilities to configure
mediated devices. In this case, the NVIDIA GPU Operator is only used for installing drivers with the
NVIDIA vGPU Manager. The GPU Operator does not configure mediated devices.

100-master-set-core-user-password 3.5.0 169m
100-worker-chrony-configuration 3.5.0 169m
100-worker-iommu 3.5.0 14s

$ dmesg | grep -i iommu

Intel: [0.000000] DMAR: Intel(R) IOMMU Driver
AMD: [0.000000] AMD-Vi: IOMMU Initialized

OpenShift Container Platform 4.20 Virtualization

264

https://access.redhat.com/solutions/5174941
https://docs.nvidia.com/datacenter/cloud-native/openshift/latest/openshift-virtualization.html

When using the OpenShift Virtualization method, you still configure the GPU Operator by following
the NVIDIA documentation. However, this method differs from the NVIDIA documentation in the
following ways:

You must not overwrite the default disableMDEVConfiguration: false setting in the
HyperConverged custom resource (CR).

IMPORTANT

Setting this feature gate as described in the NVIDIA documentation prevents
OpenShift Virtualization from configuring mediated devices.

You must configure your ClusterPolicy manifest so that it matches the following example:

Example manifest

kind: ClusterPolicy
apiVersion: nvidia.com/v1
metadata:
 name: gpu-cluster-policy
spec:
 operator:
 defaultRuntime: crio
 use_ocp_driver_toolkit: true
 initContainer: {}
 sandboxWorkloads:
 enabled: true
 defaultWorkload: vm-vgpu
 driver:
 enabled: false 1
 dcgmExporter: {}
 dcgm:
 enabled: true
 daemonsets: {}
 devicePlugin: {}
 gfd: {}
 migManager:
 enabled: true
 nodeStatusExporter:
 enabled: true
 mig:
 strategy: single
 toolkit:
 enabled: true
 validator:
 plugin:
 env:
 - name: WITH_WORKLOAD
 value: "true"
 vgpuManager:
 enabled: true 2
 repository: <vgpu_container_registry> 3
 image: <vgpu_image_name>
 version: nvidia-vgpu-manager
 vgpuDeviceManager:

CHAPTER 10. MANAGING VMS

265

https://docs.nvidia.com/datacenter/cloud-native/openshift/latest/openshift-virtualization.html
https://docs.nvidia.com/datacenter/cloud-native/openshift/latest/openshift-virtualization.html#prerequisites

1

2

3

4

5

6

Set this value to false. Not required for VMs.

Set this value to true. Required for using vGPUs with VMs.

Substitute <vgpu_container_registry> with your registry value.

Set this value to false to allow OpenShift Virtualization to configure mediated devices
instead of the NVIDIA GPU Operator.

Set this value to false to prevent discovery and advertising of the vGPU devices to the
kubelet.

Set this value to false to prevent loading the vfio-pci driver. Instead, follow the
OpenShift Virtualization documentation to configure PCI passthrough.

Additional resources

Configuring PCI passthrough

10.15.11.4. How vGPUs are assigned to nodes

For each physical device, OpenShift Virtualization configures the following values:

A single mdev type.

The maximum number of instances of the selected mdev type.

The cluster architecture affects how devices are created and assigned to nodes.

Large cluster with multiple cards per node

On nodes with multiple cards that can support similar vGPU types, the relevant device types are
created in a round-robin manner. For example:

In this scenario, each node has two cards, both of which support the following vGPU types:

 enabled: false 4
 config:
 name: vgpu-devices-config
 default: default
 sandboxDevicePlugin:
 enabled: false 5
 vfioManager:
 enabled: false 6

...
mediatedDevicesConfiguration:
 mediatedDeviceTypes:
 - nvidia-222
 - nvidia-228
 - nvidia-105
 - nvidia-108
...

OpenShift Container Platform 4.20 Virtualization

266

On each node, OpenShift Virtualization creates the following vGPUs:

16 vGPUs of type nvidia-105 on the first card.

2 vGPUs of type nvidia-108 on the second card.

One node has a single card that supports more than one requested vGPU type

OpenShift Virtualization uses the supported type that comes first on the mediatedDeviceTypes list.
For example, the card on a node card supports nvidia-223 and nvidia-224. The following
mediatedDeviceTypes list is configured:

In this example, OpenShift Virtualization uses the nvidia-223 type.

10.15.11.5. Managing mediated devices

Before you can assign mediated devices to virtual machines, you must create the devices and expose
them to the cluster. You can also reconfigure and remove mediated devices.

10.15.11.5.1. Creating and exposing mediated devices

As an administrator, you can create mediated devices and expose them to the cluster by editing the
HyperConverged custom resource (CR). Before you edit the CR, explore a worker node to find the
configuration values that are specific to your hardware devices.

Prerequisites

You installed the OpenShift CLI (oc).

You enabled the Input-Output Memory Management Unit (IOMMU) driver.

If your hardware vendor provides drivers, you installed them on the nodes where you want to
create mediated devices.

If you use NVIDIA cards, you installed the NVIDIA GRID driver .

Procedure

1. Identify the name selector and resource name values for the mediated devices by exploring a

nvidia-105
...
nvidia-108
nvidia-217
nvidia-299
...

...
mediatedDevicesConfiguration:
 mediatedDeviceTypes:
 - nvidia-22
 - nvidia-223
 - nvidia-224
...

CHAPTER 10. MANAGING VMS

267

https://docs.nvidia.com/datacenter/cloud-native/openshift/latest/openshift-virtualization.html

1. Identify the name selector and resource name values for the mediated devices by exploring a
worker node:

a. Start a debugging session with the worker node by using the oc debug command. For
example:

b. Change the root directory of the shell process to the file system of the host node by
running the following command:

c. Navigate to the mdev_bus directory and view its contents. Each subdirectory name is a PCI
address of a physical GPU. For example:

Example output:

d. Go to the directory for your physical device and list the supported mediated device types as
defined by the hardware vendor. For example:

Example output:

e. Select the mediated device type that you want to use and identify its name selector value
by viewing the contents of its name file. For example:

Example output:

2. Open the HyperConverged CR in your default editor by running the following command:

3. Create and expose the mediated devices by updating the configuration:

a. Create mediated devices by adding them to the spec.mediatedDevicesConfiguration
stanza.

b. Expose the mediated devices to the cluster by adding the mdevNameSelector and
resourceName values to the spec.permittedHostDevices.mediatedDevices stanza. The

$ oc debug node/node-11.redhat.com

chroot /host

cd sys/class/mdev_bus && ls

0000:4b:00.4

cd 0000:4b:00.4 && ls mdev_supported_types

nvidia-742 nvidia-744 nvidia-746 nvidia-748 nvidia-750 nvidia-752
nvidia-743 nvidia-745 nvidia-747 nvidia-749 nvidia-751 nvidia-753

cat nvidia-745/name

NVIDIA A2-2Q

$ oc edit hyperconverged kubevirt-hyperconverged -n openshift-cnv

OpenShift Container Platform 4.20 Virtualization

268

resourceName value is based on the mdevNameSelector value, but you use underscores
instead of spaces.
Example HyperConverged CR:

where:

mediatedDeviceTypes

Specifies global settings for the cluster and is required.

nodeMediatedDeviceTypes

Specifies global configuration overrides for a specific node or group of nodes and is
optional. Must be used with the global mediatedDeviceTypes configuration.

mediatedDeviceTypes

Specifies an override to the global mediatedDeviceTypes configuration for the
specified nodes. Required if you use nodeMediatedDeviceTypes.

nodeSelector

Specifies the node selector and must include a key:value pair. Required if you use
nodeMediatedDeviceTypes.

mdevNameSelector

Specifies the mediated devices that map to this value on the host.

resourceName

Specifies the matching resource name that is allocated on the node.

4. Save your changes and exit the editor.

Verification

Confirm that the virtual GPU is attached to the node by running the following command:

apiVersion: hco.kubevirt.io/v1
kind: HyperConverged
metadata:
 name: kubevirt-hyperconverged
 namespace: openshift-cnv
spec:
 mediatedDevicesConfiguration:
 mediatedDeviceTypes:
 - nvidia-745
 nodeMediatedDeviceTypes:
 - mediatedDeviceTypes:
 - nvidia-746
 nodeSelector:
 kubernetes.io/hostname: node-11.redhat.com
 permittedHostDevices:
 mediatedDevices:
 - mdevNameSelector: NVIDIA A2-2Q
 resourceName: nvidia.com/NVIDIA_A2-2Q
 - mdevNameSelector: NVIDIA A2-4Q
 resourceName: nvidia.com/NVIDIA_A2-4Q
...

$ oc get node <node_name> -o json \

CHAPTER 10. MANAGING VMS

269

10.15.11.5.2. About changing and removing mediated devices

You can reconfigure or remove mediated devices in several ways:

Edit the HyperConverged CR and change the contents of the mediatedDeviceTypes stanza.

Change the node labels that match the nodeMediatedDeviceTypes node selector.

Remove the device information from the spec.mediatedDevicesConfiguration and
spec.permittedHostDevices stanzas of the HyperConverged CR.

NOTE

If you remove the device information from the spec.permittedHostDevices
stanza without also removing it from the spec.mediatedDevicesConfiguration
stanza, you cannot create a new mediated device type on the same node. To
properly remove mediated devices, remove the device information from both
stanzas.

10.15.11.5.3. Removing mediated devices from the cluster

To remove a mediated device from the cluster, delete the information for that device from the
HyperConverged custom resource (CR).

Prerequisites

You have installed the OpenShift CLI (oc).

Procedure

1. Edit the HyperConverged CR in your default editor by running the following command:

2. Remove the device information from the spec.mediatedDevicesConfiguration and
spec.permittedHostDevices stanzas of the HyperConverged CR. Removing both entries
ensures that you can later create a new mediated device type on the same node. For example:

Example configuration file

 | jq '.status.allocatable \
 | with_entries(select(.key | startswith("nvidia.com/"))) \
 | with_entries(select(.value != "0"))'

$ oc edit hyperconverged kubevirt-hyperconverged -n openshift-cnv

apiVersion: hco.kubevirt.io/v1
kind: HyperConverged
metadata:
 name: kubevirt-hyperconverged
 namespace: openshift-cnv
spec:
 mediatedDevicesConfiguration:
 mediatedDeviceTypes: 1
 - nvidia-231

OpenShift Container Platform 4.20 Virtualization

270

1

2

1

2

To remove the nvidia-231 device type, delete it from the mediatedDeviceTypes array.

To remove the GRID T4-2Q device, delete the mdevNameSelector field and its
corresponding resourceName field.

3. Save your changes and exit the editor.

10.15.11.6. Using mediated devices

You can assign mediated devices to one or more virtual machines.

10.15.11.6.1. Assigning a vGPU to a VM by using the CLI

Assign mediated devices such as virtual GPUs (vGPUs) to virtual machines (VMs).

Prerequisites

The mediated device is configured in the HyperConverged custom resource.

The VM is stopped.

Procedure

Assign the mediated device to a virtual machine (VM) by editing the
spec.domain.devices.gpus stanza of the VirtualMachine manifest:

Example virtual machine manifest

The resource name associated with the mediated device.

A name to identify the device on the VM.

Verification

To verify that the device is available from the virtual machine, run the following command,
substituting <device_name> with the deviceName value from the VirtualMachine manifest:

 permittedHostDevices:
 mediatedDevices: 2
 - mdevNameSelector: GRID T4-2Q
 resourceName: nvidia.com/GRID_T4-2Q

apiVersion: kubevirt.io/v1
kind: VirtualMachine
spec:
 domain:
 devices:
 gpus:
 - deviceName: nvidia.com/TU104GL_Tesla_T4 1
 name: gpu1 2
 - deviceName: nvidia.com/GRID_T4-2Q
 name: gpu2

CHAPTER 10. MANAGING VMS

271

10.15.11.6.2. Assigning a vGPU to a VM by using the web console

You can assign virtual GPUs to virtual machines by using the OpenShift Container Platform web
console.

NOTE

You can add hardware devices to virtual machines created from customized templates or
a YAML file. You cannot add devices to pre-supplied boot source templates for specific
operating systems.

Prerequisites

The vGPU is configured as a mediated device in your cluster.

To view the devices that are connected to your cluster, click Compute → Hardware
Devices from the side menu.

The VM is stopped.

Procedure

1. In the OpenShift Container Platform web console, click Virtualization → VirtualMachines from
the side menu.

2. Select the VM that you want to assign the device to.

3. On the Details tab, click GPU devices.

4. Click Add GPU device.

5. Enter an identifying value in the Name field.

6. From the Device name list, select the device that you want to add to the VM.

7. Click Save.

Verification

To confirm that the devices were added to the VM, click the YAML tab and review the
VirtualMachine configuration. Mediated devices are added to the spec.domain.devices
stanza.

10.15.11.7. Additional resources

Enabling Intel VT-X and AMD-V Virtualization Hardware Extensions in BIOS

10.15.12. Configuring USB host passthrough

As a cluster administrator, you can expose USB devices in a cluster, which makes the devices available
for virtual machine (VM) owners to assign to VMs. Enabling this passthrough of USB devices allows a VM
to connect to USB hardware that is attached to an OpenShift Container Platform node, as if the

$ lspci -nnk | grep <device_name>

OpenShift Container Platform 4.20 Virtualization

272

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/virtualization_deployment_and_administration_guide/sect-troubleshooting-enabling_intel_vt_x_and_amd_v_virtualization_hardware_extensions_in_bios

hardware and the VM are physically connected.

To expose a USB device, first enable host passthrough and then configure the VM to use the USB
device.

10.15.12.1. Enabling USB host passthrough

To attach a USB device to a virtual machine (VM), you must first enable USB host passthrough at the
cluster level.

To do this, specify a resource name and USB device name for each device you want first to add and
then assign to a VM. You can allocate more than one device, each of which is known as a selector in the
HyperConverged custom resource (CR), to a single resource name. If you have multiple identical USB
devices on the cluster, you can choose to allocate a VM to a specific device.

Prerequisites

You have access to an OpenShift Container Platform cluster as a user who has the cluster-
admin role.

You have installed the OpenShift CLI (oc).

Procedure

1. Ensure that the HostDevices feature gate is enabled:

Successful output

2. Identify the USB device vendor and product:

Example output

If you cannot use the lsusb command, inspect the USB device configurations in the host’s
/sys/bus/usb/devices/ directory:

$ oc get featuregate cluster -o yaml

 featureGates:
...
 enabled:
 - name: HostDevices

$ lsusb

Bus 003 Device 007: ID 1b1c:0a60 example_manufacturer example_product_name

for dev in *; do
 if [[-f "$dev/idVendor" && -f "$dev/idProduct"]]; then
 echo "Device: $dev"
 echo -n " Manufacturer : "; cat "$dev/manufacturer"
 echo -n " Product: "; cat "$dev/product"
 echo -n " Vendor ID : "; cat "$dev/idVendor"
 echo -n " Product ID: "; cat "$dev/idProduct"

CHAPTER 10. MANAGING VMS

273

Example output

3. Add the required USB device to the permittedHostDevices stanza of the HyperConvered CR.
The following example adds a device with vendor ID 045e and product ID 07a5:

Verification

Ensure that the HCO CR contains the required USB devices:

Example output

 echo
 fi
done

Device: 3-7
 Manufacturer : example_manufacturer
 Product: example_product_name
 Vendor ID : 1b1c
 Product ID: 0a60

oc patch hyperconverged kubevirt-hyperconverged \
 -n openshift-cnv \
 --type=merge \
 -p '{
 "metadata": {
 "annotations": {
 "kubevirt.kubevirt.io/jsonpatch": "[{\"op\": \"add\", \"path\":
\"/spec/permittedHostDevices/usbHostDevices/-\", \"value\": {\"resourceName\":
\"kubevirt.io/peripherals\", \"selectors\": [{\"vendor\": \"045e\", \"product\": \"07a5\"}]}}]"
 }
 }
 }'

$ oc get hyperconverged kubevirt-hyperconverged -n openshift-cnv

apiVersion: hco.kubevirt.io/v1beta1
kind: HyperConverged
metadata:
 name: kubevirt-hyperconverged
 namespace: openshift-cnv
spec:
 permittedHostDevices: 1
 usbHostDevices: 2
 - resourceName: kubevirt.io/peripherals 3
 selectors:
 - vendor: "045e"
 product: "07a5"
 - vendor: "062a"
 product: "4102"
 - vendor: "072f"
 product: "b100"

OpenShift Container Platform 4.20 Virtualization

274

1

2

3

Lists the host devices that have permission to be used in the cluster.

Lists the available USB devices.

Uses resourceName: deviceName for each device you want to add and assign to the VM.
In this example, the resource is bound to three devices, each of which is identified by
vendor and product and is known as a selector.

10.15.12.2. Connecting a USB device to a virtual machine

You can configure virtual machine (VM) access to a USB device. This configuration enables the VM to
connect to USB hardware that is attached to an OpenShift Container Platform node, as if the hardware
and the VM are physically connected.

Prerequisites

You have installed the OpenShift CLI (oc).

You have attached the required USB device as a resource at the cluster level.

Procedure

1. In the HyperConverged custom resource (CR), find the assigned resource name of the USB
device:

Example output

2. Open the VM instance CR:

where:

<vmi_usb>

Specifies the name of the VirtualMachineInstance CR.

3. Edit the CR by adding the USB device, as shown in the following example:
Example configuration

$ oc get hyperconverged kubevirt-hyperconverged -n openshift-cnv

...
 spec:
 permittedHostDevices:
 usbHostDevices:
 - resourceName: kubevirt.io/peripherals
 selectors:
 - vendor: "045e"
 product: "07a5"
 - vendor: "062a"
 product: "4102"
 - vendor: "072f"
 product: "b100"

$ oc edit vmi <vmi_usb>

CHAPTER 10. MANAGING VMS

275

1 The name of the USB device.

4. Apply the modifications to the VM configurations:

where:

<filename>

Specifies the name of the VirtualMachineInstance manifest YAML file.

10.15.13. Enabling descheduler evictions on virtual machines

You can use the descheduler to evict pods so that the pods can be rescheduled onto more appropriate
nodes. If the pod is a virtual machine, the pod eviction causes the virtual machine to be live migrated to
another node.

10.15.13.1. Descheduler profiles

Use the KubeVirtRelieveAndMigrate or LongLifecycle profile to enable the descheduler on a virtual
machine.

IMPORTANT

You cannot have both KubeVirtRelieveAndMigrate and LongLifeCycle enabled at the
same time.

KubeVirtRelieveAndMigrate

This profile is an enhanced version of the LongLifeCycle profile.

The KubeVirtRelieveAndMigrate profile evicts pods from high-cost nodes to reduce overall resource
expenses and enable workload migration. It also periodically rebalances workloads to help maintain
similar spare capacity across nodes, which supports better handling of sudden workload spikes. Nodes
can experience the following costs:

Resource utilization: Increased resource pressure raises the overhead for running applications.

Node maintenance: A higher number of containers on a node increases resource consumption

apiVersion: kubevirt.io/v1
kind: VirtualMachineInstance
metadata:
 labels:
 special: vmi-usb
 name: vmi-usb
spec:
 domain:
 devices:
 hostDevices:
 - deviceName: kubevirt.io/peripherals
 name: local-peripherals 1
...

$ oc apply -f <filename>.yaml

OpenShift Container Platform 4.20 Virtualization

276

Node maintenance: A higher number of containers on a node increases resource consumption
and maintenance costs.

The profile enables the LowNodeUtilization strategy with the EvictionsInBackground alpha feature.
The profile also exposes the following customization fields:

devActualUtilizationProfile: Enables load-aware descheduling.

devLowNodeUtilizationThresholds: Sets experimental thresholds for the LowNodeUtilization
strategy. Do not use this field with devDeviationThresholds.

devDeviationThresholds: Treats nodes with below-average resource usage as underutilized to
help redistribute workloads from overutilized nodes. Do not use this field with
devLowNodeUtilizationThresholds. Supported values are: Low (10%:10%), Medium
(20%:20%), High (30%:30%), AsymmetricLow (0%:10%), AsymmetricMedium (0%:20%),
AsymmetricHigh (0%:30%).

devEnableSoftTainter: Enables the soft-tainting component to dynamically apply or remove
soft taints as scheduling hints.

Example configuration

The KubeVirtRelieveAndMigrate profile requires PSI metrics to be enabled on all worker nodes. You
can enable this by applying the following MachineConfig custom resource (CR):

Example MachineConfig CR

NOTE

apiVersion: operator.openshift.io/v1
kind: KubeDescheduler
metadata:
 name: cluster
 namespace: openshift-kube-descheduler-operator
spec:
 managementState: Managed
 deschedulingIntervalSeconds: 30
 mode: "Automatic"
 profiles:
 - KubeVirtRelieveAndMigrate
 profileCustomizations:
 devEnableSoftTainter: true
 devDeviationThresholds: AsymmetricLow
 devActualUtilizationProfile: PrometheusCPUCombined

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
 labels:
 machineconfiguration.openshift.io/role: worker
 name: 99-openshift-machineconfig-worker-psi-karg
spec:
 kernelArguments:
 - psi=1

CHAPTER 10. MANAGING VMS

277

NOTE

The name of the MachineConfig object is significant because machine configs are
processed in lexicographical order. By default, a config that starts with 98- disables PSI.
To ensure that PSI is enabled, name your config with a higher prefix, such as 99-
openshift-machineconfig-worker-psi-karg.

You can use this profile with the SoftTopologyAndDuplicates profile to also rebalance pods based on
soft topology constraints, which can be useful in hosted control plane environments.

LongLifecycle

This profile balances resource usage between nodes and enables the following strategies:

RemovePodsHavingTooManyRestarts: removes pods whose containers have been restarted
too many times and pods where the sum of restarts over all containers (including Init
Containers) is more than 100. Restarting the VM guest operating system does not increase this
count.

LowNodeUtilization: evicts pods from overutilized nodes when there are any underutilized
nodes. The destination node for the evicted pod will be determined by the scheduler.

A node is considered underutilized if its usage is below 20% for all thresholds (CPU,
memory, and number of pods).

A node is considered overutilized if its usage is above 50% for any of the thresholds (CPU,
memory, and number of pods).

10.15.13.2. Installing the descheduler

The descheduler is not available by default. To enable the descheduler, you must install the Kube
Descheduler Operator from the software catalog and enable one or more descheduler profiles.

By default, the descheduler runs in predictive mode, which means that it only simulates pod evictions.
You must change the mode to automatic for the descheduler to perform the pod evictions.

IMPORTANT

If you have enabled hosted control planes in your cluster, set a custom priority threshold
to lower the chance that pods in the hosted control plane namespaces are evicted. Set
the priority threshold class name to hypershift-control-plane, because it has the lowest
priority value (100000000) of the hosted control plane priority classes.

Prerequisites

You are logged in to OpenShift Container Platform as a user with the cluster-admin role.

Access to the OpenShift Container Platform web console.

Procedure

1. Log in to the OpenShift Container Platform web console.

2. Create the required namespace for the Kube Descheduler Operator.

a. Navigate to Administration → Namespaces and click Create Namespace.

OpenShift Container Platform 4.20 Virtualization

278

b. Enter openshift-kube-descheduler-operator in the Name field, enter
openshift.io/cluster-monitoring=true in the Labels field to enable descheduler metrics,
and click Create.

3. Install the Kube Descheduler Operator.

a. Navigate to Ecosystem → Software Catalog.

b. Type Kube Descheduler Operator into the filter box.

c. Select the Kube Descheduler Operator and click Install.

d. On the Install Operator page, select A specific namespace on the cluster. Select
openshift-kube-descheduler-operator from the drop-down menu.

e. Adjust the values for the Update Channel and Approval Strategy to the desired values.

f. Click Install.

4. Create a descheduler instance.

a. From the Ecosystem → Installed Operators page, click the Kube Descheduler Operator.

b. Select the Kube Descheduler tab and click Create KubeDescheduler.

c. Edit the settings as necessary.

i. To evict pods instead of simulating the evictions, change the Mode field to Automatic.

ii. Expand the Profiles section and select LongLifecycle. The AffinityAndTaints profile
is enabled by default.

IMPORTANT

The only profile currently available for OpenShift Virtualization is
LongLifecycle.

You can also configure the profiles and settings for the descheduler later using the OpenShift CLI (oc).

10.15.13.3. Configuring descheduler evictions for virtual machines

After the descheduler is installed and configured, all migratable virtual machines (VMs) are eligible for
eviction by default. You can configure the descheduler to manage VM evictions across the cluster and
optionally exclude specific VMs from eviction.

Prerequisites

Install the descheduler in the OpenShift Container Platform web console or OpenShift CLI
(oc).

Procedure

1. Stop the VM.

2. Configure the KubeDescheduler object with the KubeVirtRelieveAndMigrate profile and
enable background evictions for improved VM eviction stability during live migration:

CHAPTER 10. MANAGING VMS

279

3. Optional: To evict pods, set the mode field value to Automatic. By default, the descheduler
does not evict pods.

4. Optional: Configure limits for the number of parallel evictions to improve stability in large
clusters.
The descheduler can limit the number of concurrent evictions per node and across the cluster
by using the evictionLimits field. Set these limits to match the migration limits configured in the
HyperConverged custom resource (CR).

Set values that correspond to the migration limits in the HyperConverged CR:

5. Optional: To exclude the VM from eviction, add the descheduler.alpha.kubernetes.io/prefer-
no-eviction annotation to the spec.template.metadata.annotations field. The change is
applied dynamically and is propagated to the VirtualMachineInstance (VMI) object and the
virt-launcher pod.
Only the presence of the annotation is checked. The value is not evaluated, so "true" and
"false" have the same effect.

6. Start the VM.

The VM is now configured according to the descheduler settings.

10.15.13.4. Additional resources

apiVersion: operator.openshift.io/v1
kind: KubeDescheduler
metadata:
 name: cluster
 namespace: openshift-kube-descheduler-operator
spec:
 deschedulingIntervalSeconds: 60
 profiles:
 - KubeVirtRelieveAndMigrate
 mode: Automatic

spec:
 evictionLimits:
 node: 2
 total: 5

spec:
 liveMigrationConfig:
 parallelMigrationsPerCluster: 5
 parallelOutboundMigrationsPerNode: 2

apiVersion: kubevirt.io/v1
kind: VirtualMachine
spec:
 template:
 metadata:
 annotations:
 descheduler.alpha.kubernetes.io/prefer-no-eviction: "true"

OpenShift Container Platform 4.20 Virtualization

280

Descheduler overview

10.15.14. About high availability for virtual machines

You can enable high availability for virtual machines (VMs) by manually deleting a failed node to trigger
VM failover or by configuring remediating nodes.

Manually deleting a failed node

If a node fails and machine health checks are not deployed on your cluster, virtual machines with
runStrategy: Always configured are not automatically relocated to healthy nodes. To trigger VM
failover, you must manually delete the Node object.

See Deleting a failed node to trigger virtual machine failover .

Configuring remediating nodes

You can configure remediating nodes by installing the Self Node Remediation Operator or the Fence
Agents Remediation Operator from the software catalog and enabling machine health checks or node
remediation checks.

For more information on remediation, fencing, and maintaining nodes, see the Workload Availability for
Red Hat OpenShift documentation.

10.15.15. Virtual machine control plane tuning

OpenShift Virtualization offers the following tuning options at the control-plane level:

The highBurst profile, which uses fixed QPS and burst rates, to create hundreds of virtual
machines (VMs) in one batch

Migration setting adjustment based on workload type

10.15.15.1. Configuring a highBurst profile

Use the highBurst profile to create and maintain a large number of virtual machines (VMs) in one
cluster.

Prerequisites

You have installed the OpenShift CLI (oc).

Procedure

Apply the following patch to enable the highBurst tuning policy profile:

Verification

Run the following command to verify the highBurst tuning policy profile is enabled:

$ oc patch hyperconverged kubevirt-hyperconverged -n openshift-cnv \
 --type=json -p='[{"op": "add", "path": "/spec/tuningPolicy", \
 "value": "highBurst"}]'

$ oc get kubevirt.kubevirt.io/kubevirt-kubevirt-hyperconverged \

CHAPTER 10. MANAGING VMS

281

https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/nodes/#nodes-descheduler-about
https://docs.redhat.com/en/documentation/workload_availability_for_red_hat_openshift/24.3

10.15.16. Assigning compute resources

In OpenShift Virtualization, compute resources assigned to virtual machines (VMs) are backed by either
guaranteed CPUs or time-sliced CPU shares.

Guaranteed CPUs, also known as CPU reservation, dedicate CPU cores or threads to a specific
workload, which makes them unavailable to any other workload. Assigning guaranteed CPUs to a VM
ensures that the VM will have sole access to a reserved physical CPU. Enable dedicated resources for
VMs to use a guaranteed CPU.

Time-sliced CPUs dedicate a slice of time on a shared physical CPU to each workload. You can specify
the size of the slice during VM creation, or when the VM is offline. By default, each vCPU receives 100
milliseconds, or 1/10 of a second, of physical CPU time.

The type of CPU reservation depends on the instance type or VM configuration.

10.15.16.1. Overcommitting CPU resources

Time-slicing allows multiple virtual CPUs (vCPUs) to share a single physical CPU. This is known as CPU
overcommitment. Guaranteed VMs can not be overcommitted.

Configure CPU overcommitment to prioritize VM density over performance when assigning CPUs to
VMs. With a higher CPU over-commitment of vCPUs, more VMs fit onto a given node.

10.15.16.2. Setting the CPU allocation ratio

The CPU Allocation Ratio specifies the degree of overcommitment by mapping vCPUs to time slices of
physical CPUs.

For example, a mapping or ratio of 10:1 maps 10 virtual CPUs to 1 physical CPU by using time slices.

To change the default number of vCPUs mapped to each physical CPU, set the
vmiCPUAllocationRatio value in the HyperConverged CR. The pod CPU request is calculated by
multiplying the number of vCPUs by the reciprocal of the CPU allocation ratio. For example, if
vmiCPUAllocationRatio is set to 10, OpenShift Virtualization will request 10 times fewer CPUs on the
pod for that VM.

Prerequisites

You have installed the OpenShift CLI (oc).

Procedure

Set the vmiCPUAllocationRatio value in the HyperConverged CR to define a node CPU allocation
ratio.

1. Open the HyperConverged CR in your default editor by running the following command:

 -n openshift-cnv -o go-template --template='{{range $config, \
 $value := .spec.configuration}} {{if eq $config "apiConfiguration" \
 "webhookConfiguration" "controllerConfiguration" "handlerConfiguration"}} \
 {{"\n"}} {{$config}} = {{$value}} {{end}} {{end}} {{"\n"}}

$ oc edit hyperconverged kubevirt-hyperconverged -n openshift-cnv

OpenShift Container Platform 4.20 Virtualization

282

1

2. Set the vmiCPUAllocationRatio:

When vmiCPUAllocationRatio is set to 1, the maximum amount of vCPUs are requested
for the pod.

10.15.16.3. Additional resources

Pod Quality of Service Classes

10.15.17. About multi-queue functionality

Use multi-queue functionality to scale network throughput and performance on virtual machines (VMs)
with multiple vCPUs.

By default, the queueCount value, which is derived from the domain XML, is determined by the number
of vCPUs allocated to a VM. Network performance does not scale as the number of vCPUs increases.
Additionally, because virtio-net has only one Tx and Rx queue, guests cannot transmit or retrieve packs
in parallel.

NOTE

Enabling virtio-net multiqueue does not offer significant improvements when the number
of vNICs in a guest instance is proportional to the number of vCPUs.

10.15.17.1. Known limitations

MSI vectors are still consumed if virtio-net multiqueue is enabled in the host but not enabled in
the guest operating system by the administrator.

Each virtio-net queue consumes 64 KiB of kernel memory for the vhost driver.

Starting a VM with more than 16 CPUs results in no connectivity if networkInterfaceMultiqueue
is set to 'true' (CNV-16107).

10.15.17.2. Enabling multi-queue functionality

Enable multi-queue functionality for interfaces configured with a VirtIO model.

Procedure

1. Set the networkInterfaceMultiqueue value to true in the VirtualMachine manifest file of your
VM to enable multi-queue functionality:

...
spec:
 resourceRequirements:
 vmiCPUAllocationRatio: 1 1
...

apiVersion: kubevirt.io/v1
kind: VM
spec:

CHAPTER 10. MANAGING VMS

283

https://kubernetes.io/docs/concepts/workloads/pods/pod-qos/
https://issues.redhat.com/browse/CNV-16107

2. Save the VirtualMachine manifest file to apply your changes.

10.15.18. Managing virtual machines by using OpenShift GitOps

To automate and optimize virtual machine (VM) management in OpenShift Virtualization, you can use
OpenShift GitOps.

With GitOps, you can set up VM deployments based on configuration files stored in a Git repository. This
also makes it easier to automate, update, or replicate these configurations, as well to use version control
for tracking their changes.

Prerequisites

You have a GitHub account. For instructions to set up an account, see Creating an account on
GitHub.

OpenShift Virtualuzation has been installed on your OpenShift cluster. For instructions, see
OpenShift Virtualization installation.

The OpenShift GitOps operator has been installed on your OpenShift cluster. For instructions,
see Installing GitOps .

Procedure

Follow the Manage OpenShift virtual machines with GitOps learning path in performing these steps:

1. Connect an external Git repository to your Argo CD instance.

2. Create the required VM configuration in the Git repository.

3. Use the VM configuration to create VMs on your cluster.

Additional resources

OpenShift GitOps documentation

10.15.19. Working with NUMA topology for virtual machines

Non-uniform memory access (NUMA) architecture is a multiprocessor architecture model where CPUs
do not access all memory in all locations at the same speed. Instead, CPUs can gain faster access to
memory that is in closer proximity to them, or local to them, but slower access to memory that is further
away.

A CPU with multiple memory controllers can use any available memory across CPU complexes,
regardless of where the memory is located. However, this increased flexibility comes at the expense of
performance.

NUMA resource topology refers to the physical locations of CPUs, memory, and PCI devices relative to
each other in a NUMA zone. In a NUMA architecture, a NUMA zone is a group of CPUs that has its own
processors and memory. Colocated resources are said to be in the same NUMA zone, and CPUs in a
zone have faster access to the same local memory than CPUs outside of that zone. A CPU processing a

 domain:
 devices:
 networkInterfaceMultiqueue: true

OpenShift Container Platform 4.20 Virtualization

284

https://docs.github.com/en/get-started/start-your-journey/creating-an-account-on-github
https://docs.openshift.com/gitops/1.15/installing_gitops/preparing-gitops-install.html
https://developers.redhat.com/learning/learn:manage-openshift-virtual-machines-gitops/resource/resources:connect-and-configure-external-repository-argo-cd-virtual-machines
https://docs.openshift.com/gitops/

workload using memory that is outside its NUMA zone is slower than a workload processed in a single
NUMA zone. For I/O-constrained workloads, the network interface on a distant NUMA zone slows down
how quickly information can reach the application.

Applications can achieve better performance by containing data and processing within the same NUMA
zone. For high-performance workloads and applications, such as telecommunications workloads, the
cluster must process pod workloads in a single NUMA zone so that the workload can operate to
specification.

10.15.19.1. Using NUMA topology with OpenShift Virtualization

You must enable the NUMA functionality for OpenShift Virtualization VMs to prevent performance
degradation on nodes with multiple NUMA zones. This feature is vital for high-performance and
latency-sensitive workloads.

Without NUMA awareness, a VM’s virtual CPUs might run on one physical NUMA zone, while its memory
is allocated on another. This "cross-node" communication significantly increases latency and reduces
memory bandwidth, and can cause the interconnect buses which link the NUMA zones to become a
bottleneck.

When you enable the NUMA functionality for OpenShift Virtualization VMs, you allow the host to pass its
physical topology directly to the VM’s guest operating system (OS). The guest OS can then make
intelligent, NUMA-aware decisions about scheduling and memory allocation. This ensures that process
threads and memory are kept on the same physical NUMA node. By aligning the virtual topology with
the physical one, you minimize latency and maximize performance.

10.15.19.2. Prerequisites

Before you can enable NUMA functionality with OpenShift Virtualization VMs, you must ensure that
your environment meets the following prerequisites.

Worker nodes must have huge pages enabled.

The KubeletConfig object on worker nodes must be configured with the cpuManagerPolicy:
static spec to guarantee dedicated CPU allocation, which is a prerequisite for NUMA pinning.

Example cpuManagerPolicy: static spec

10.15.19.3. Creating a VM with NUMA functionality enabled

VM owners can enable NUMA with ComputeExclusive (CX) instance types, which are specifically
designed for high-performance, compute-intensive workloads, and are configured to use NUMA
features.

For information about creating VMs using a CX instance type, see Creating virtual machines from
instance types.

apiVersion: machineconfiguration.openshift.io/v1
kind: KubeletConfig
metadata:
 name: cpu-numa-static-config
spec:
 kubeletConfig:
 cpuManagerPolicy: static
...

CHAPTER 10. MANAGING VMS

285

10.15.19.4. Verifying vNUMA status of a VM

VM administrators might need to confirm whether non-uniform memory access (NUMA) is configured
for a VM, to verify the VM’s resource allocation setup for high-performance, latency-sensitive workloads
that rely on memory locality.

You can verify whether an already deployed VM is configured for vNUMA by checking the
spec.domain.cpu.numa attribute. This is displayed as a vNUMA badge in the OpenShift Container
Platform web console.

Prerequisites

You have access to an OpenShift Container Platform cluster with OpenShift Virtualization
installed.

If you want to use the command line for verification, you must have installed the OpenShift CLI
(oc). Otherwise, you only need access to the OpenShift Container Platform web console.

Procedure

To verify vNUMA status on the command line, check that the spec.domain.cpu.numa attribute
is configured by using the OpenShift CLI (oc). Run the following command:

If any output other than an empty string is returned, vNUMA is enabled for the VM.

To verify vNUMA status in a GUI, check if the VM has a vNUMA badge in the OpenShift
Container Platform web console. Go to VirtualMachines → VirtualMachine details, and check
either the Overview or the Configuration tabs.

10.15.19.5. Disabling the hot plug capability for VMs

Hot plugging is the ability to add resources like memory or CPU dynamically to a VM while it is running.

Default OpenShift Virtualization hot plug multipliers can cause VMs to request an excessive number of
sockets. For example, if your VM requests 10 sockets, the default hot plug behavior multiplies this by 4,
which means that the total request is 40 sockets. This can exceed the recommended CPUs supported
by the Kernel-based Virtual Machine (KVM), which can cause deployment failures.

You can keep VM resource requests aligned with NUMA and optimize performance for resource-
intensive workloads by disabling the VM’s default hot plug capability.

10.15.19.5.1. Disabling the CPU hot plug by instance type

As a cluster administrator, you can disable the CPU hot plug by instance type. This is the recommended
approach to standardize VM configurations and ensure NUMA-aware CPU allocation without hot plugs
for specific instance types.

When a VM is created by using an instance type where the CPU hot plug is disabled, the VM inherits
these settings and the CPU hot plug is disabled for that VM.

Prerequisites

$ oc get vm <vm_name> -n <namespace> -o
jsonpath='{.spec.template.spec.domain.cpu.numa}'

OpenShift Container Platform 4.20 Virtualization

286

You have installed the OpenShift CLI (oc).

Procedure

1. Create a YAML file for a VirtualMachineClusterInstancetype custom resource (CR). Add a
maxSockets spec to the instance type that you want to configure:

Example VirtualMachineClusterInstancetype CR

where:

spec.cpu.dedicatedCPUPlacement

Specifies whether dedicated resources are allocated to the VM instance. If this is set to true,
the VM’s VCPUs are pinned to physical host CPUs. This is often used for high-performance
workloads to minimize scheduling jitter.

spec.cpu.isolateEmulatorThread

Specifies whether the QEMU emulator thread should be isolated and run on a dedicated
physical CPU core. This is a performance optimization that is typically used alongside the
dedicatedCPUPlacement spec.

spec.cpu.numa

Specifies the NUMA topology configuration for the VM.

spec.cpu.numa.guestMappingPassthrough

Specifies that the VM’s NUMA topology should directly pass through the NUMA topology of
the underlying host machine. This is critical for applications that are NUMA-aware and
require optimal performance.

spec.cpu.guest

Specifies the total number of vCPUs to be allocated to the VM.

spec.cpu.maxSockets

Specifies the maximum number of CPU sockets the VM is allowed to have.

spec.memory

Specifies the memory configuration for the VM.

spec.memory.guest

Specifies the total amount of memory to be allocated to the VM.

apiVersion: instancetype.kubevirt.io/v1beta1
kind: VirtualMachineClusterInstancetype
metadata:
 name: cx1.mycustom-numa-instance
spec:
 cpu:
 dedicatedCPUPlacement: true
 isolateEmulatorThread: true
 numa:
 guestMappingPassthrough: {}
 guest: 8
 maxSockets: 8
 memory:
 guest: 16Gi
 hugepages:
 pageSize: 1Gi

CHAPTER 10. MANAGING VMS

287

spec.memory.hugepages

Specifies configuration related to hugepages.

spec.memory.hugepages.pageSize

Specifies the size of the hugepages to be used for the VM’s memory.

2. Create the VirtualMachineClusterInstancetype CR by running the following command:

Verification

1. Create a VM that uses the updated VirtualMachineClusterInstancetype configuration.

2. Inspect the configuration of the created VM by running the following command and inspecting
the output:

Example output

The update has applied successfully if in the spec.template.spec.domain.cpu section:

The sockets value matches the maxSockets and guest values from the instance type,
which ensures that no extra hot plug slots are configured.

The dedicatedCPUPlacement and isolateEmulatorThread fields are present and set to
true.

10.15.19.5.2. Adjusting or disabling the CPU hot plug by VM

As a VM owner, you can adjust or disable the CPU hot plug for individual VMs. This is the simplest
solution for large, performance-critical VMs where you want to ensure a fixed CPU allocation from the
start.

$ oc create -f <filename>.yaml

$ oc get vmi <vm_name> -o yaml

apiVersion: kubevirt.io/v1
kind: VirtualMachineInstance
metadata:
 name: example-vmi
 labels:
 instancetype.kubevirt.io/cluster-instancetype: cx1.example-numa-instance
spec:
 domain:
 cpu:
 dedicatedCPUPlacement: true
 isolateEmulatorThread: true
 sockets: 8
 cores: 1
 threads: 1
 numa:
 guestMappingPassthrough: {}
 guest: 8
 maxSockets: 8
...

OpenShift Container Platform 4.20 Virtualization

288

Prerequisites

You have installed the OpenShift CLI (oc).

Procedure

1. Modify the VirtualMachine custom resource (CR) for the VM that you want to configure to add
a maxSockets and sockets spec:

By explicitly setting maxSockets and sockets to a value of 10 or higher, you are specifying that
additional capacity is not reserved for hot plugging, which ensures that the entire requested
cores are the actual cores allocated.

2. Apply the changes to the VirtualMachine CR by running the following command:

Verification

1. Check that you have configured the maxSockets and sockets values correctly, by running the
following commands:

If the configuration was successful, the outputs are the maxSockets and sockets values that
you set in the previous procedure:

Example output

10.15.19.5.3. Disabling hot plugging for all VMs on a cluster

If you are a cluster administrator and want to disable hot plugging for an entire cluster, you must modify
the spec.configuration.kubevirtConfiguration.developerConfiguration.maxHotplugRatio setting in
the HyperConverged custom resource (CR).

apiVersion: kubevirt.io/v1
kind: VirtualMachine
metadata:
 name: large-numa-vm
spec:
 template:
 spec:
 domain:
 cpu:
 maxSockets: 10
 sockets: 10
 cores: 1
 threads: 1

$ oc apply -f <filename>.yaml

$ oc get vmi -o jsonpath='{.spec.domain.cpu.maxSockets}'

$ oc get vmi -o jsonpath='{.spec.domain.cpu.sockets}'

10

CHAPTER 10. MANAGING VMS

289

Prerequisites

You have installed the OpenShift CLI (oc).

You have installed the OpenShift Virtualization Operator.

Procedure

1. Modify the HyperConverged CR and set the maxHotplugRatio value to 1.0:

2. Apply the changes to the HyperConverged CR by running the following command:

Verification

1. Check that you have configured the maxHotplugRatio value correctly, by running the following
command:

If the configuration was successful, the output is the maxHotplugRatio value that you set in the
previous procedure:

Example output

10.15.19.6. Limitations of NUMA for OpenShift Virtualization

When you use NUMA topology with OpenShift Virtualization VMs, certain limitations can impact
performance and VM management.

Asymmetrical topology

The host scheduler cannot guarantee assigning specific NUMA nodes to a VM. For example, if a VM
is rescheduled to a different host machine because of a restart or maintenance, the new host might
have a different physical NUMA layout. This means that the VM could be presented with an
asymmetrical NUMA topology that reflects the new host’s configuration, rather than its original or
desired layout. This change can have a negative impact on the VM’s performance.

Live migration challenges

apiVersion: hco.kubevirt.io/v1beta1
kind: HyperConverged
metadata:
 name: kubevirt-hyperconverged
 namespace: kubevirt-hyperconverged
spec:
 # ...
 kubevirtConfiguration:
 developerConfiguration:
 maxHotplugRatio: 1.0
...

$ oc apply -f <filename>.yaml

$ oc get hyperconverged -n openshift-cnv -o
jsonpath='{.spec.liveUpdateConfiguration.maxHotplugRatio}'

1.0

OpenShift Container Platform 4.20 Virtualization

290

Migrating a NUMA-enabled VM to a different host node can be challenging if the destination node’s
NUMA topology differs significantly from the source node’s. A mismatch between the NUMA layouts
of the source and destination can lead to a degradation of the VM’s performance after the migration
is complete.

No support for PCI NUMA nodes

There is no explicit support for passing GPU NUMA zone information to the VM. This means that the
VM’s guest operating system is not aware of the NUMA locality of PCI devices such as GPUs. For
workloads that heavily rely on these devices, this lack of awareness could potentially lead to reduced
performance if the GPU’s memory is not local to the accessing CPU within the NUMA architecture.

10.15.19.7. Live migration outcomes using vNUMA

Migration outcomes for VMs are dependent on the configured Topology Manager policies. These
policies determine how CPU and memory resources are allocated with respect to the physical NUMA
nodes of the host. There are four available policies: None, single-numa-node, best-effort, and
restricted.

The following table outlines which policies are supported for different VM configurations, and their
effect on live migration.

A small VM is defined as a VM with less total cores than half of cores in NUMA node.

A large VM is defined as a VM with more total cores than half of cores in NUMA node.

An extra large VM is defined as a VM with more cores than 1 NUMA node.

VM size Topology Manager policy Tested support status

Any single-numa-node The VM fails to start because the
pod requests more cpus than a
single NUMA node on the host
can provide. This triggers a
topology affinity error during
scheduling, which is expected
behavior given the node’s
hardware limits.

Any None Live migration does not work. This
is a known issue. The process
ends with an incorrect memnode
allocation error, and libvirt rejects
the XML manifest generated by
KubeVirt. See release notes for
additional information.

Small None Live migration works, as
expected.

Small single-numa-node Live migration works, as
expected.

CHAPTER 10. MANAGING VMS

291

Small best-effort Live migration works, as
expected.

Small restricted Live migration works, as
expected.

Large single-numa-node Live migration works, as
expected.

Large best-effort Live migration works, as
expected.

Large restricted Live migration works, as
expected.

Extra large None Live migration works, as
expected.

Extra large best-effort Live migration works, as
expected.

Extra large restricted VMs do not work, as expected.

VM size Topology Manager policy Tested support status

10.15.19.8. Additional resources

Topology Manager policies

10.16. VM DISKS

10.16.1. Hot-plugging VM disks

You can add or remove virtual disks without stopping your virtual machine (VM) or virtual machine
instance (VMI).

Only data volumes and persistent volume claims (PVCs) can be hot plugged and hot-unplugged. You
cannot hot plug or hot-unplug container disks.

A hot plugged disk remains attached to the VM even after reboot. You must unplug the disk to remove it
from the VM.

NOTE

OpenShift Container Platform 4.20 Virtualization

292

https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/scalability_and_performance/#using-cpu-manager_topology-manager-policies

NOTE

Each VM has a virtio-scsi controller so that hot plugged disks can use the SCSI bus. The
virtio-scsi controller overcomes the limitations of VirtIO while retaining its performance
advantages. It is highly scalable and supports hot plugging over 4 million disks.

When you hot plug disks to the VirtIO (virtio-blk) bus, each disk uses a PCI Express
(PCIe) slot in the VM. The number of PCIe slots is limited and pre-set automatically at
the VM creation as specified in the Available VirtIO Ports table. Therefore, you can use
virtio-blk for a small number of disks that does not exceed the number of available slots.

10.16.1.1. Hot plugging and hot unplugging a disk by using the web console

You can hot plug a disk by attaching it to a virtual machine (VM) while the VM is running by using the
OpenShift Container Platform web console.

The hot plugged disk remains attached to the VM until you unplug it.

Prerequisites

You must have a data volume or persistent volume claim (PVC) available for hot plugging.

Procedure

1. Navigate to Virtualization → VirtualMachines in the web console.

2. Select a running VM to view its details.

3. On the VirtualMachine details page, click Configuration → Storage.

4. Add a hot plugged disk:

a. Click Add.

b. In the Add disk (hot plugged) window, select the disk from the Source list and click Save.

5. Optional: Select the type of the interface bus. The options are VirtIO and SCSI. The default bus
type is VirtIO.

6. Optional: Change the type of the interface bus of an existing hot plugged disk:

a. Click the Options menu beside the disk and select the Edit option.

b. In the Interface field, select the desired option.

7. Optional: Unplug a hot plugged disk:

a. Click the Options menu beside the disk and select Detach.

b. Click Detach.

10.16.1.2. Hot plugging and hot unplugging a disk by using the CLI

CHAPTER 10. MANAGING VMS

293

https://kubevirt.io/user-guide/storage/hotplug_volumes/#available-virtio-ports

You can hot plug and hot unplug a disk while a virtual machine (VM) is running by using the command
line.

The hot plugged disk remains attached to the VM until you unplug it.

Prerequisites

You must have at least one data volume or persistent volume claim (PVC) available for hot
plugging.

Procedure

Hot plug a disk by running the following command:

The optional --bus flag allows you to specify the bus type of the added disk. The options
are virtio and scsi. The default bus type is virtio.

The optional --serial flag allows you to add an alphanumeric string label of your choice. This
helps you to identify the hot plugged disk in a guest virtual machine. If you do not specify
this option, the label defaults to the name of the hot plugged data volume or PVC.

Hot unplug a disk by running the following command:

10.16.2. Expanding virtual machine disks

You can increase the size of a virtual machine (VM) disk by expanding the persistent volume claim
(PVC) of the disk.

If your storage provider does not support volume expansion, you can expand the available virtual
storage of a VM by adding blank data volumes.

You cannot reduce the size of a VM disk.

10.16.2.1. Increasing a VM disk size by expanding the PVC of the disk

You can increase the size of a virtual machine (VM) disk by expanding the persistent volume claim
(PVC) of the disk. To specify the increased PVC volume, you can use the web console with the VM
running. Alternatively, you can edit the PVC manifest in the CLI.

NOTE

If the PVC uses the file system volume mode, the disk image file expands to the available
size while reserving some space for file system overhead.

10.16.2.1.1. Expanding a VM disk PVC in the web console

You can increase the size of a VM disk PVC in the web console without leaving the VirtualMachines

$ virtctl addvolume <virtual-machine|virtual-machine-instance> \
 --volume-name=<datavolume|PVC> \
 [--bus <bus_type>] [--serial=<label_name>]

$ virtctl removevolume <virtual-machine|virtual-machine-instance> \
 --volume-name=<datavolume|PVC>

OpenShift Container Platform 4.20 Virtualization

294

1

You can increase the size of a VM disk PVC in the web console without leaving the VirtualMachines
page and with the VM running.

Procedure

1. In the Administrator or Virtualization perspective, open the VirtualMachines page.

2. Select the running VM to open its Details page.

3. Select the Configuration tab and click Storage.

4. Click the options menu next to the disk you want to expand. Select the Edit option.
The Edit disk dialog opens.

5. In the PersistentVolumeClaim size field, enter the desired size.

6. Click Save.

NOTE

You can enter any value greater than the current one. However, if the new value exceeds
the available size, an error is displayed.

10.16.2.1.2. Expanding a VM disk PVC by editing its manifest

Prerequisites

You have installed the OpenShift CLI (oc).

Procedure

1. Edit the PersistentVolumeClaim manifest of the VM disk that you want to expand:

2. Update the disk size:

Specify the new disk size.

$ oc edit pvc <pvc_name>

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: vm-disk-expand
spec:
 accessModes:
 - ReadWriteMany
 resources:
 requests:
 storage: 3Gi 1
...

CHAPTER 10. MANAGING VMS

295

1

2

Additional resources for volume expansion

Extending a basic volume in Windows

Extending an existing file system partition without destroying data in Red Hat Enterprise Linux

Extending a logical volume and its file system online in Red Hat Enterprise Linux

10.16.2.2. Expanding available virtual storage by adding blank data volumes

You can expand the available storage of a virtual machine (VM) by adding blank data volumes.

Prerequisites

You must have at least one persistent volume.

You have installed the OpenShift CLI (oc).

Procedure

1. Create a DataVolume manifest as shown in the following example:

Example DataVolume manifest

Specify the amount of available space requested for the data volume.

Optional: If you do not specify a storage class, the default storage class is used.

2. Create the data volume by running the following command:

Additional resources for data volumes

Configuring preallocation mode for data volumes

Managing data volume annotations

10.16.3. Configuring shared volumes for virtual machines

apiVersion: cdi.kubevirt.io/v1beta1
kind: DataVolume
metadata:
 name: blank-image-datavolume
spec:
 source:
 blank: {}
 storage:
 resources:
 requests:
 storage: <2Gi> 1
 storageClassName: "<storage_class>" 2

$ oc create -f <blank-image-datavolume>.yaml

OpenShift Container Platform 4.20 Virtualization

296

https://docs.microsoft.com/en-us/windows-server/storage/disk-management/extend-a-basic-volume
https://access.redhat.com/solutions/29095
https://access.redhat.com/solutions/24770

You can configure shared disks to allow multiple virtual machines (VMs) to share the same underlying
storage. A shared disk’s volume must be block mode.

You configure disk sharing by exposing the storage as either of these types:

An ordinary VM disk

A logical unit number (LUN) disk with an SCSI connection and raw device mapping, as required
for Windows Failover Clustering for shared volumes

In addition to configuring disk sharing, you can also set an error policy for each ordinary VM disk or LUN
disk. The error policy controls how the hypervisor behaves when an input/output error occurs on a disk
Read or Write.

10.16.3.1. Configuring disk sharing by using virtual machine disks

You can configure block volumes so that multiple virtual machines (VMs) can share storage.

The application running on the guest operating system determines the storage option you must
configure for the VM. A disk of type disk exposes the volume as an ordinary disk to the VM.

You can set an error policy for each disk. The error policy controls how the hypervisor behaves when an
input/output error occurs while a disk is being written to or read. The default behavior stops the VM and
generates a Kubernetes event.

You can accept the default behavior, or you can set the error policy to one of the following options:

report, which reports the error in the guest.

ignore, which ignores the error. The Read or Write failure is undetected.

enospace, which produces an error indicating that there is not enough disk space.

Prerequisites

The volume access mode must be ReadWriteMany (RWX) if the VMs that are sharing disks are
running on different nodes.
If the VMs that are sharing disks are running on the same node, ReadWriteOnce (RWO) volume
access mode is sufficient.

The storage provider must support the required Container Storage Interface (CSI) driver.

Procedure

1. Create the VirtualMachine manifest for your VM to set the required values, as shown in the
following example:

apiVersion: kubevirt.io/v1
kind: VirtualMachine
metadata:
 name: <vm_name>
spec:
 template:
...
 spec:
 domain:

CHAPTER 10. MANAGING VMS

297

1

2

Identifies the error policy.

Identifies a shared disk.

2. Save the VirtualMachine manifest file to apply your changes.

10.16.3.2. Configuring disk sharing by using LUN

To secure data on your VM from outside access, you can enable SCSI persistent reservation and
configure a LUN-backed virtual machine disk to be shared among multiple virtual machines. By enabling
the shared option, you can use advanced SCSI commands, such as those required for a Windows failover
clustering implementation, for managing the underlying storage.

When a storage volume is configured as the LUN disk type, a VM can use the volume as a logical unit
number (LUN) device. As a result, the VM can deploy and manage the disk by using SCSI commands.

You reserve a LUN through the SCSI persistent reserve options. To enable the reservation:

1. Configure the feature gate option

2. Activate the feature gate option on the LUN disk to issue SCSI device-specific input and output
controls (IOCTLs) that the VM requires.

You can set an error policy for each LUN disk. The error policy controls how the hypervisor behaves
when an input/output error occurs on a disk Read or Write. The default behavior stops the guest and
generates a Kubernetes event.

For a LUN disk with an SCSi connection and a persistent reservation, as required for Windows Failover
Clustering for shared volumes, you set the error policy to report.

IMPORTANT

OpenShift Virtualization does not currently support SCSI-3 Persistent Reservations
(SCSI-3 PR) over multipath storage. As a workaround, disable multipath or ensure the
Windows Server Failover Clustering (WSFC) shared disk is setup from a single device and
not part of multipath.

Prerequisites

You must have cluster administrator privileges to configure the feature gate option.

 devices:
 disks:
 - disk:
 bus: virtio
 name: rootdisk
 errorPolicy: report 1
 - disk:
 bus: virtio
 name: cluster
 shareable: true 2
 interfaces:
 - masquerade: {}
 name: default

OpenShift Container Platform 4.20 Virtualization

298

1

2

3

The volume access mode must be ReadWriteMany (RWX) if the VMs that are sharing disks are
running on different nodes.
If the VMs that are sharing disks are running on the same node, ReadWriteOnce (RWO) volume
access mode is sufficient.

The storage provider must support a Container Storage Interface (CSI) driver that uses Fibre
Channel (FC), Fibre Channel over Ethernet (FCoE), or iSCSI storage protocols.

If you are a cluster administrator and intend to configure disk sharing by using LUN, you must
enable the cluster’s feature gate on the HyperConverged custom resource (CR).

Disks that you want to share must be in block mode.

Procedure

1. Edit or create the VirtualMachine manifest for your VM to set the required values, as shown in
the following example:

Identifies the error policy.

Identifies a LUN disk.

Identifies that the persistent reservation is enabled.

2. Save the VirtualMachine manifest file to apply your changes.

10.16.3.2.1. Configuring disk sharing by using LUN and the web console

apiVersion: kubevirt.io/v1
kind: VirtualMachine
metadata:
 name: vm-0
spec:
 template:
 spec:
 domain:
 devices:
 disks:
 - disk:
 bus: sata
 name: rootdisk
 - errorPolicy: report 1
 lun: 2
 bus: scsi
 reservation: true 3
 name: na-shared
 serial: shared1234
 volumes:
 - dataVolume:
 name: vm-0
 name: rootdisk
 - name: na-shared
 persistentVolumeClaim:
 claimName: pvc-na-share

CHAPTER 10. MANAGING VMS

299

You can use the OpenShift Container Platform web console to configure disk sharing by using LUN.

Prerequisites

The cluster administrator must enable the persistentreservation feature gate setting.

Procedure

1. Click Virtualization → VirtualMachines in the web console.

2. Select a VM to open the VirtualMachine details page.

3. Expand Storage.

4. On the Disks tab, click Add disk.

5. Specify the Name, Source, Size, Interface, and Storage Class.

6. Select LUN as the Type.

7. Select Shared access (RWX) as the Access Mode.

8. Select Block as the Volume Mode.

9. Expand Advanced Settings, and select both checkboxes.

10. Click Save.

10.16.3.2.2. Configuring disk sharing by using LUN and the CLI

You can use the command line to configure disk sharing by using LUN.

Procedure

1. Edit or create the VirtualMachine manifest for your VM to set the required values, as shown in
the following example:

apiVersion: kubevirt.io/v1
kind: VirtualMachine
metadata:
 name: vm-0
spec:
 template:
 spec:
 domain:
 devices:
 disks:
 - disk:
 bus: sata
 name: rootdisk
 - errorPolicy: report
 lun: 1
 bus: scsi
 reservation: true 2
 name: na-shared

OpenShift Container Platform 4.20 Virtualization

300

1

2

Identifies a LUN disk.

Identifies that the persistent reservation is enabled.

2. Save the VirtualMachine manifest file to apply your changes.

10.16.3.3. Enabling the PersistentReservation feature gate

You can enable the SCSI persistentReservation feature gate and allow a LUN-backed block mode
virtual machine (VM) disk to be shared among multiple virtual machines.

The persistentReservation feature gate is disabled by default. You can enable the
persistentReservation feature gate by using the web console or the command line.

Prerequisites

Cluster administrator privileges are required.

The volume access mode ReadWriteMany (RWX) is required if the VMs that are sharing disks
are running on different nodes. If the VMs that are sharing disks are running on the same node,
the ReadWriteOnce (RWO) volume access mode is sufficient.

The storage provider must support a Container Storage Interface (CSI) driver that uses Fibre
Channel (FC), Fibre Channel over Ethernet (FCoE), or iSCSI storage protocols.

10.16.3.3.1. Enabling the PersistentReservation feature gate by using the web console

You must enable the PersistentReservation feature gate to allow a LUN-backed block mode virtual
machine (VM) disk to be shared among multiple virtual machines. Enabling the feature gate requires
cluster administrator privileges.

Procedure

1. Click Virtualization → Overview in the web console.

2. Click the Settings tab.

3. Select Cluster.

4. Expand SCSI persistent reservation and set Enable persistent reservation to on.

10.16.3.3.2. Enabling the PersistentReservation feature gate by using the CLI

You enable the persistentReservation feature gate by using the command line. Enabling the feature
gate requires cluster administrator privileges.

 serial: shared1234
 volumes:
 - dataVolume:
 name: vm-0
 name: rootdisk
 - name: na-shared
 persistentVolumeClaim:
 claimName: pvc-na-share

CHAPTER 10. MANAGING VMS

301

Prerequisites

You have installed the OpenShift CLI (oc).

Procedure

1. Enable the persistentReservation feature gate by running the following command:

Additional resources

Persistent reservation helper protocol

Failover Clustering in Windows Server and Azure Stack HCI

10.16.4. Migrating VM disks to a different storage class

You can migrate one or more virtual disks to a different storage class without stopping your virtual
machine (VM) or virtual machine instance (VMI).

10.16.4.1. Migrating VM disks to a different storage class by using the web console

You can migrate one or more disks attached to a virtual machine (VM) to a different storage class by
using the OpenShift Container Platform web console. When performing this action on a running VM, the
operation of the VM is not interrupted and the data on the migrated disks remains accessible.

NOTE

With the OpenShift Virtualization Operator, you can only start storage class migration for
one VM at the time and the VM must be running. If you need to migrate more VMs at
once or migrate a mix of running and stopped VMs, consider using the Migration Toolkit
for Containers (MTC).

Migration Toolkit for Containers is not part of OpenShift Virtualization and requires
separate installation.

Prerequisites

You must have a data volume or a persistent volume claim (PVC) available for storage class
migration.

The cluster must have a node available for live migration. As part of the storage class migration,
the VM is live migrated to a different node.

The VM must be running.

Procedure

1. Navigate to Virtualization → VirtualMachines in the web console.

$ oc patch hyperconverged kubevirt-hyperconverged -n openshift-cnv --type json -p \
'[{"op":"replace","path":"/spec/featureGates/persistentReservation", "value": true}]'

OpenShift Container Platform 4.20 Virtualization

302

https://www.qemu.org/docs/master/interop/pr-helper.html
https://learn.microsoft.com/en-us/windows-server/failover-clustering/failover-clustering-overview
https://docs.redhat.com/en/documentation/migration_toolkit_for_containers/1.8/html/migration_toolkit_for_containers/index

2. Click the Options menu beside the virtual machine and select Migration → Storage.
You can also access this option from the VirtualMachine details page by selecting Actions →
Migration → Storage.

Alternatively, right-click the VM in the tree view and select Migration from the pop-up menu.

3. On the Migration details page, choose whether to migrate the entire VM storage or selected
volumes only. If you click Selected volumes, select any disks that you intend to migrate. Click
Next to proceed.

4. From the list of available options on the Destination StorageClass page, select the storage
class to migrate to. Click Next to proceed.

5. On the Review page, review the list of affected disks and the target storage class. To start the
migration, click Migrate VirtualMachine storage.

6. Stay on the Migrate VirtualMachine storage page to watch the progress and wait for the
confirmation that the migration completed successfully.

Verification

1. From the VirtualMachine details page, navigate to Configuration → Storage.

2. Verify that all disks have the expected storage class listed in the Storage class column.

CHAPTER 10. MANAGING VMS

303

CHAPTER 11. NETWORKING

11.1. NETWORKING OVERVIEW

OpenShift Virtualization provides advanced networking functionality by using custom resources and
plugins. Virtual machines (VMs) are integrated with OpenShift Container Platform networking and its
ecosystem.

OpenShift Virtualization support for single-stack IPv6 clusters is limited to the OVN-Kubernetes
localnet and Linux bridge Container Network Interface (CNI) plugins.

IMPORTANT

Deploying OpenShift Virtualization on a single-stack IPv6 cluster is a Technology Preview
feature only. Technology Preview features are not supported with Red Hat production
service level agreements (SLAs) and might not be functionally complete. Red Hat does
not recommend using them in production. These features provide early access to
upcoming product features, enabling customers to test functionality and provide
feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

The following figure illustrates the typical network setup of OpenShift Virtualization. Other
configurations are also possible.

Figure 11.1. OpenShift Virtualization networking overview

 Pods and VMs run on the same network infrastructure which allows you to easily connect your
containerized and virtualized workloads.

 You can connect VMs to the default pod network and to any number of secondary networks.

 The default pod network provides connectivity between all its members, service abstraction, IP
management, micro segmentation, and other functionality.

OpenShift Container Platform 4.20 Virtualization

304

https://access.redhat.com/support/offerings/techpreview/

 Multus is a "meta" CNI plugin that enables a pod or virtual machine to connect to additional network
interfaces by using other compatible CNI plugins.

 The default pod network is overlay-based, tunneled through the underlying machine network.

 The machine network can be defined over a selected set of network interface controllers (NICs).

 Secondary VM networks are typically bridged directly to a physical network, with or without VLAN
encapsulation. It is also possible to create virtual overlay networks for secondary networks.

IMPORTANT

Connecting VMs directly to the underlay network is not supported on Red Hat OpenShift
Service on AWS, Azure for OpenShift Container Platform, Google Cloud, or Oracle®
Cloud Infrastructure (OCI).

NOTE

Connecting VMs to user-defined networks with the layer2 topology is recommended on
public clouds.

 Secondary VM networks can be defined on dedicated set of NICs, as shown in Figure 1, or they can
use the machine network.

11.1.1. OpenShift Virtualization networking glossary

The following terms are used throughout OpenShift Virtualization documentation:

Container Network Interface (CNI)

A Cloud Native Computing Foundation project, focused on container network connectivity.
OpenShift Virtualization uses CNI plugins to build upon the basic Kubernetes networking
functionality.

Multus

A "meta" CNI plugin that allows multiple CNIs to exist so that a pod or virtual machine can use the
interfaces it needs.

Custom resource definition (CRD)

A Kubernetes API resource that allows you to define custom resources, or an object defined by using
the CRD API resource.

Network attachment definition (NAD)

A CRD introduced by the Multus project that allows you to attach pods, virtual machines, and virtual
machine instances to one or more networks.

UserDefinedNetwork (UDN)

A namespace-scoped CRD introduced by the user-defined network API that can be used to create a
tenant network that isolates the tenant namespace from other namespaces.

ClusterUserDefinedNetwork (CUDN)

A cluster-scoped CRD introduced by the user-defined network API that cluster administrators can
use to create a shared network across multiple namespaces.

CHAPTER 11. NETWORKING

305

https://www.cncf.io/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/

Node network configuration policy (NNCP)

A CRD introduced by the nmstate project, describing the requested network configuration on nodes.
You update the node network configuration, including adding and removing interfaces, by applying a
NodeNetworkConfigurationPolicy manifest to the cluster.

11.1.2. Using the default pod network

Connecting a virtual machine to the default pod network

Each VM is connected by default to the default internal pod network. You can add or remove
network interfaces by editing the VM specification.

Exposing a virtual machine as a service

You can expose a VM within the cluster or outside the cluster by creating a Service object. For on-
premise clusters, you can configure a load balancing service by using the MetalLB Operator. You can
install the MetalLB Operator by using the OpenShift Container Platform web console or the CLI.

11.1.3. Configuring a primary user-defined network

Connecting a virtual machine to a primary user-defined network

You can connect a virtual machine (VM) to a user-defined network (UDN) on the primary interface
of the VM. The primary UDN replaces the default pod network to connect pods and VMs in selected
namespaces.
Cluster administrators can configure a primary UserDefinedNetwork CRD to create a tenant
network that isolates the tenant namespace from other namespaces without requiring network
policies. Additionally, cluster administrators can use the ClusterUserDefinedNetwork CRD to create
a shared OVN layer2 network across multiple namespaces.

User-defined networks with the layer2 overlay topology are useful for VM workloads, and a good
alternative to secondary networks in environments where physical network access is limited, such as
the public cloud. The layer2 topology enables seamless migration of VMs without the need for
Network Address Translation (NAT), and also provides persistent IP addresses that are preserved
between reboots and during live migration.

11.1.4. Configuring VM secondary network interfaces

You can connect a virtual machine to a secondary network by using Linux bridge, SR-IOV and OVN-
Kubernetes CNI plugins. You can list multiple secondary networks and interfaces in the VM specification.
It is not required to specify the primary pod network in the VM specification when connecting to a
secondary network interface.

Connecting a virtual machine to an OVN-Kubernetes secondary network

You can connect a VM to an OVN-Kubernetes secondary network. OpenShift Virtualization supports
the layer2 and localnet topologies for OVN-Kubernetes. The localnet topology is the
recommended way of exposing VMs to the underlying physical network, with or without VLAN
encapsulation.

A layer2 topology connects workloads by a cluster-wide logical switch. The OVN-
Kubernetes CNI plugin uses the Geneve (Generic Network Virtualization Encapsulation)
protocol to create an overlay network between nodes. You can use this overlay network to
connect VMs on different nodes, without having to configure any additional physical
networking infrastructure.

A localnet topology connects the secondary network to the physical underlay. This enables

OpenShift Container Platform 4.20 Virtualization

306

https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/networking_operators/#metallb-operator-install_metallb-operator-install

both east-west cluster traffic and access to services running outside the cluster, but it
requires additional configuration of the underlying Open vSwitch (OVS) system on cluster
nodes.

To configure an OVN-Kubernetes secondary network and attach a VM to that network, perform the
following steps:

1. Choose the appropriate option based on your OVN-Kubernetes network topology:

Configure an OVN-Kubernetes layer 2 secondary network by creating a network
attachment definition (NAD).

Configure an OVN-Kubernetes localnet secondary network by creating a
ClusterUserDefinedNetwork (CUDN) CR.

2. Choose the appropriate option based on your OVN-Kubernetes network topology:

Connect the VM to the OVN-Kubernetes layer 2 secondary network by adding the
network details to the VM specification.

Connect the VM to the OVN-Kubernetes localnet secondary network by adding the
network details to the VM specification.

Connecting a virtual machine to an SR-IOV network

You can use Single Root I/O Virtualization (SR-IOV) network devices with additional networks on
your OpenShift Container Platform cluster installed on bare metal or Red Hat OpenStack Platform
(RHOSP) infrastructure for applications that require high bandwidth or low latency.
You must install the SR-IOV Network Operator on your cluster to manage SR-IOV network devices
and network attachments.

You can connect a VM to an SR-IOV network by performing the following steps:

1. Configure an SR-IOV network device by creating a SriovNetworkNodePolicy CRD.

2. Configure an SR-IOV network by creating an SriovNetwork object.

3. Connect the VM to the SR-IOV network by including the network details in the VM
configuration.

Connecting a virtual machine to a Linux bridge network

Install the Kubernetes NMState Operator to configure Linux bridges, VLANs, and bonding for your
secondary networks. The OVN-Kubernetes localnet topology is the recommended way of
connecting a VM to the underlying physical network, but OpenShift Virtualization also supports Linux
bridge networks.

NOTE

You cannot directly attach to the default machine network when using Linux bridge
networks.

You can create a Linux bridge network and attach a VM to the network by performing the following
steps:

1. Configure a Linux bridge network device by creating a NodeNetworkConfigurationPolicy

CHAPTER 11. NETWORKING

307

https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/networking_operators/#installing-sriov-operator
https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/networking_operators/#k8s-nmstate-about-the-k8s-nmstate-operator

1. Configure a Linux bridge network device by creating a NodeNetworkConfigurationPolicy
custom resource definition (CRD).

2. Configure a Linux bridge network by creating a NetworkAttachmentDefinition CRD.

3. Connect the VM to the Linux bridge network by including the network details in the VM
configuration.

Hot plugging secondary network interfaces

You can add or remove secondary network interfaces without stopping your VM. OpenShift
Virtualization supports hot plugging and hot unplugging for secondary interfaces that use bridge
binding and the VirtIO device driver. OpenShift Virtualization also supports hot plugging secondary
interfaces that use the SR-IOV binding.

Using DPDK with SR-IOV

The Data Plane Development Kit (DPDK) provides a set of libraries and drivers for fast packet
processing. You can configure clusters and VMs to run DPDK workloads over SR-IOV networks.

Configuring a dedicated network for live migration

You can configure a dedicated Multus network for live migration. A dedicated network minimizes the
effects of network saturation on tenant workloads during live migration.

Accessing a virtual machine by using the cluster FQDN

You can access a VM that is attached to a secondary network interface from outside the cluster by
using its fully qualified domain name (FQDN).

Configuring and viewing IP addresses

You can configure an IP address of a secondary network interface when you create a VM. The IP
address is provisioned with cloud-init. You can view the IP address of a VM by using the OpenShift
Container Platform web console or the command line. The network information is collected by the
QEMU guest agent.

11.1.4.1. Comparing Linux bridge CNI and OVN-Kubernetes localnet topology

The following table provides a comparison of features available when using the Linux bridge CNI
compared to the localnet topology for an OVN-Kubernetes plugin:

Table 11.1. Linux bridge CNI compared to an OVN-Kubernetes localnet topology

Feature Available on Linux bridge CNI Available on OVN-Kubernetes
localnet

Layer 2 access to the underlay
native network

Only on secondary network
interface controllers (NICs)

Yes

Layer 2 access to underlay VLANs Yes Yes

Layer 2 trunk access Yes No

Network policies No Yes

MAC spoof filtering Yes Yes (Always on)

OpenShift Container Platform 4.20 Virtualization

308

11.1.5. Integrating with OpenShift Service Mesh

Connecting a virtual machine to a service mesh

OpenShift Virtualization is integrated with OpenShift Service Mesh. You can monitor, visualize, and
control traffic between pods and virtual machines.

11.1.6. Managing MAC address pools

Managing MAC address pools for network interfaces

The KubeMacPool component allocates MAC addresses for VM network interfaces from a shared
MAC address pool. This ensures that each network interface is assigned a unique MAC address. A
virtual machine instance created from that VM retains the assigned MAC address across reboots.

11.1.7. Configuring SSH access

Configuring SSH access to virtual machines

You can configure SSH access to VMs by using the following methods:

virtctl ssh command
You create an SSH key pair, add the public key to a VM, and connect to the VM by running
the virtctl ssh command with the private key.

You can add public SSH keys to Red Hat Enterprise Linux (RHEL) 9 VMs at runtime or at
first boot to VMs with guest operating systems that can be configured by using a cloud-init
data source.

virtctl port-forward command
You add the virtctl port-foward command to your .ssh/config file and connect to the VM by
using OpenSSH.

Service
You create a service, associate the service with the VM, and connect to the IP address and
port exposed by the service.

Secondary network
You configure a secondary network, attach a VM to the secondary network interface, and
connect to its allocated IP address.

11.2. CONNECTING A VIRTUAL MACHINE TO THE DEFAULT POD
NETWORK

You can connect a virtual machine to the default internal pod network by configuring its network
interface to use the masquerade binding mode.

NOTE

Traffic passing through network interfaces to the default pod network is interrupted
during live migration.

11.2.1. Configuring masquerade mode from the CLI

You can use masquerade mode to hide a virtual machine’s outgoing traffic behind the pod IP address.

CHAPTER 11. NETWORKING

309

1

2

You can use masquerade mode to hide a virtual machine’s outgoing traffic behind the pod IP address.
Masquerade mode uses Network Address Translation (NAT) to connect virtual machines to the pod
network backend through a Linux bridge.

Enable masquerade mode and allow traffic to enter the virtual machine by editing your virtual machine
configuration file.

Prerequisites

You have installed the OpenShift CLI (oc).

The virtual machine must be configured to use DHCP to acquire IPv4 addresses.

Procedure

1. Edit the interfaces spec of your virtual machine configuration file:

Connect using masquerade mode.

Optional: List the ports that you want to expose from the virtual machine, each specified by
the port field. The port value must be a number between 0 and 65536. When the ports
array is not used, all ports in the valid range are open to incoming traffic. In this example,
incoming traffic is allowed on port 80.

NOTE

Ports 49152 and 49153 are reserved for use by the libvirt platform and all other
incoming traffic to these ports is dropped.

2. Create the virtual machine:

apiVersion: kubevirt.io/v1
kind: VirtualMachine
metadata:
 name: example-vm
spec:
 template:
 spec:
 domain:
 devices:
 interfaces:
 - name: default
 masquerade: {} 1
 ports: 2
 - port: 80
...
 networks:
 - name: default
 pod: {}

$ oc create -f <vm-name>.yaml

OpenShift Container Platform 4.20 Virtualization

310

11.2.2. Configuring masquerade mode with dual-stack (IPv4 and IPv6)

You can configure a new virtual machine (VM) to use both IPv6 and IPv4 on the default pod network by
using cloud-init.

The Network.pod.vmIPv6NetworkCIDR field in the virtual machine instance configuration determines
the static IPv6 address of the VM and the gateway IP address. These are used by the virt-launcher pod
to route IPv6 traffic to the virtual machine and are not used externally. The
Network.pod.vmIPv6NetworkCIDR field specifies an IPv6 address block in Classless Inter-Domain
Routing (CIDR) notation. The default value is fd10:0:2::2/120. You can edit this value based on your
network requirements.

When the virtual machine is running, incoming and outgoing traffic for the virtual machine is routed to
both the IPv4 address and the unique IPv6 address of the virt-launcher pod. The virt-launcher pod then
routes the IPv4 traffic to the DHCP address of the virtual machine, and the IPv6 traffic to the statically
set IPv6 address of the virtual machine.

Prerequisites

The OpenShift Container Platform cluster must use the OVN-Kubernetes Container Network
Interface (CNI) network plugin configured for dual-stack.

You have installed the OpenShift CLI (oc).

Procedure

1. In a new virtual machine configuration, include an interface with masquerade and configure the
IPv6 address and default gateway by using cloud-init.

apiVersion: kubevirt.io/v1
kind: VirtualMachine
metadata:
 name: example-vm-ipv6
spec:
 template:
 spec:
 domain:
 devices:
 interfaces:
 - name: default
 masquerade: {} 1
 ports:
 - port: 80 2
...
 networks:
 - name: default
 pod: {}
 volumes:
 - cloudInitNoCloud:
 networkData: |
 version: 2
 ethernets:
 eth0:

CHAPTER 11. NETWORKING

311

1

2

3

4

Connect using masquerade mode.

Allows incoming traffic on port 80 to the virtual machine.

The static IPv6 address as determined by the Network.pod.vmIPv6NetworkCIDR field in
the virtual machine instance configuration. The default value is fd10:0:2::2/120.

The gateway IP address as determined by the Network.pod.vmIPv6NetworkCIDR field in
the virtual machine instance configuration. The default value is fd10:0:2::1.

2. Create the virtual machine in the namespace:

Verification

To verify that IPv6 has been configured, start the virtual machine and view the interface status
of the virtual machine instance to ensure it has an IPv6 address:

11.2.3. About jumbo frames support

When using the OVN-Kubernetes CNI plugin, you can send unfragmented jumbo frame packets
between two virtual machines (VMs) that are connected on the default pod network. Jumbo frames
have a maximum transmission unit (MTU) value greater than 1500 bytes.

The VM automatically gets the MTU value of the cluster network, set by the cluster administrator, in one
of the following ways:

libvirt: If the guest OS has the latest version of the VirtIO driver that can interpret incoming
data via a Peripheral Component Interconnect (PCI) config register in the emulated device.

DHCP: If the guest DHCP client can read the MTU value from the DHCP server response.

NOTE

For Windows VMs that do not have a VirtIO driver, you must set the MTU manually by
using netsh or a similar tool. This is because the Windows DHCP client does not read the
MTU value.

11.2.4. Additional resources

Changing the MTU for the cluster network

Optimizing the MTU for your network

11.3. CONNECTING A VIRTUAL MACHINE TO A PRIMARY USER-

 dhcp4: true
 addresses: [fd10:0:2::2/120] 3
 gateway6: fd10:0:2::1 4

$ oc create -f example-vm-ipv6.yaml

$ oc get vmi <vmi-name> -o jsonpath="{.status.interfaces[*].ipAddresses}"

OpenShift Container Platform 4.20 Virtualization

312

https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/advanced_networking/#changing-cluster-network-mtu
https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/scalability_and_performance/#optimizing-mtu_optimizing-networking

11.3. CONNECTING A VIRTUAL MACHINE TO A PRIMARY USER-
DEFINED NETWORK

You can connect a virtual machine (VM) to a user-defined network (UDN) on the VM’s primary interface
by using the OpenShift Container Platform web console or the CLI. The primary user-defined network
replaces the default pod network in your specified namespace. Unlike the pod network, you can define
the primary UDN per project, where each project can use its specific subnet and topology.

OpenShift Virtualization supports the namespace-scoped UserDefinedNetwork and the cluster-
scoped ClusterUserDefinedNetwork custom resource definitions (CRD).

Cluster administrators can configure a primary UserDefinedNetwork CRD to create a tenant network
that isolates the tenant namespace from other namespaces without requiring network policies.
Additionally, cluster administrators can use the ClusterUserDefinedNetwork CRD to create a shared
OVN network across multiple namespaces.

NOTE

You must add the k8s.ovn.org/primary-user-defined-network label when you create a
namespace that is to be used with user-defined networks.

With the layer 2 topology, OVN-Kubernetes creates an overlay network between nodes. You can use
this overlay network to connect VMs on different nodes without having to configure any additional
physical networking infrastructure.

The layer 2 topology enables seamless migration of VMs without the need for Network Address
Translation (NAT) because persistent IP addresses are preserved across cluster nodes during live
migration.

You must consider the following limitations before implementing a primary UDN:

You cannot use the virtctl ssh command to configure SSH access to a VM.

You cannot use the oc port-forward command to forward ports to a VM.

You cannot use headless services to access a VM.

11.3.1. Creating a primary user-defined network by using the web console

You can use the OpenShift Container Platform web console to create a primary namespace-scoped
UserDefinedNetwork or a cluster-scoped ClusterUserDefinedNetwork CRD. The UDN serves as the
default primary network for pods and VMs that you create in namespaces associated with the network.

11.3.1.1. Creating a namespace for user-defined networks by using the web console

You can create a namespace to be used with primary user-defined networks (UDNs) by using the
OpenShift Container Platform web console.

Prerequisites

Log in to the OpenShift Container Platform web console as a user with cluster-admin
permissions.

Procedure

CHAPTER 11. NETWORKING

313

1. From the Administrator perspective, click Administration → Namespaces.

2. Click Create Namespace.

3. In the Name field, specify a name for the namespace. The name must consist of lower case
alphanumeric characters or '-', and must start and end with an alphanumeric character.

4. In the Labels field, add the k8s.ovn.org/primary-user-defined-network label.

5. Optional: If the namespace is to be used with an existing cluster-scoped UDN, add the
appropriate labels as defined in the spec.namespaceSelector field in the
ClusterUserDefinedNetwork custom resource.

6. Optional: Specify a default network policy.

7. Click Create to create the namespace.

11.3.1.2. Creating a primary namespace-scoped user-defined network by using the web
console

You can create an isolated primary network in your project namespace by creating a
UserDefinedNetwork custom resource in the OpenShift Container Platform web console.

Prerequisites

You have access to the OpenShift Container Platform web console as a user with cluster-
admin permissions.

You have created a namespace and applied the k8s.ovn.org/primary-user-defined-network
label. For more information, see "Creating a namespace for user-defined networks by using the
web console".

Procedure

1. From the Administrator perspective, click Networking → UserDefinedNetworks.

2. Click Create UserDefinedNetwork.

3. From the Project name list, select the namespace that you previously created.

4. Specify a value in the Subnet field.

5. Click Create. The user-defined network serves as the default primary network for pods and
virtual machines that you create in this namespace.

11.3.1.3. Creating a primary cluster-scoped user-defined network by using the web console

You can connect multiple namespaces to the same primary user-defined network (UDN) by creating a
ClusterUserDefinedNetwork custom resource in the OpenShift Container Platform web console.

Prerequisites

You have access to the OpenShift Container Platform web console as a user with cluster-
admin permissions.

OpenShift Container Platform 4.20 Virtualization

314

1

Procedure

1. From the Administrator perspective, click Networking → UserDefinedNetworks.

2. From the Create list, select ClusterUserDefinedNetwork.

3. In the Name field, specify a name for the cluster-scoped UDN.

4. Specify a value in the Subnet field.

5. In the Project(s) Match Labels field, add the appropriate labels to select namespaces that the
cluster UDN applies to.

6. Click Create. The cluster-scoped UDN serves as the default primary network for pods and
virtual machines located in namespaces that contain the labels that you specified in step 5.

Next steps

Create namespaces that are associated with the cluster-scoped UDN

11.3.2. Creating a primary user-defined network by using the CLI

You can create a primary UserDefinedNetwork or ClusterUserDefinedNetwork CRD by using the CLI.

11.3.2.1. Creating a namespace for user-defined networks by using the CLI

You can create a namespace to be used with primary user-defined networks (UDNs) by using the
OpenShift CLI (oc).

Prerequisites

You have access to the cluster as a user with cluster-admin permissions.

You have installed the OpenShift CLI (oc).

Procedure

1. Create a Namespace object as a YAML file similar to the following example:

This label is required for the namespace to be associated with a UDN. If the namespace is
to be used with an existing cluster UDN, you must also add the appropriate labels that are
defined in the spec.namespaceSelector field of the ClusterUserDefinedNetwork
custom resource.

2. Apply the Namespace manifest by running the following command:

apiVersion: v1
kind: Namespace
metadata:
 name: my-namespace
 labels:
 k8s.ovn.org/primary-user-defined-network: "" 1
...

CHAPTER 11. NETWORKING

315

1

2

3

4

5

11.3.2.2. Creating a primary namespace-scoped user-defined network by using the CLI

You can create an isolated primary network in your project namespace by using the CLI. You must use
the OVN-Kubernetes layer 2 topology and enable persistent IP address allocation in the user-defined
network (UDN) configuration to ensure VM live migration support.

Prerequisites

You have installed the OpenShift CLI (oc).

You have created a namespace and applied the k8s.ovn.org/primary-user-defined-network
label.

Procedure

1. Create a UserDefinedNetwork object to specify the custom network configuration:

Example UserDefinedNetwork manifest

Specifies the name of the UserDefinedNetwork custom resource.

Specifies the namespace in which the VM is located. The namespace must have the
k8s.ovn.org/primary-user-defined-network label. The namespace must not be default,
an openshift-* namespace, or match any global namespaces that are defined by the
Cluster Network Operator (CNO).

Specifies the topological configuration of the network. The required value is Layer2. A
Layer2 topology creates a logical switch that is shared by all nodes.

Specifies whether the UDN is primary or secondary. The Primary role means that the UDN
acts as the primary network for the VM and all default traffic passes through this network.

Specifies that virtual workloads have consistent IP addresses across reboots and
migration. The spec.layer2.subnets field is required when ipam.lifecycle: Persistent is
specified.

$ oc apply -f <filename>.yaml

apiVersion: k8s.ovn.org/v1
kind: UserDefinedNetwork
metadata:
 name: udn-l2-net 1
 namespace: my-namespace 2
spec:
 topology: Layer2 3
 layer2:
 role: Primary 4
 subnets:
 - "10.0.0.0/24"
 - "2001:db8::/60"
 ipam:
 lifecycle: Persistent 5

OpenShift Container Platform 4.20 Virtualization

316

1

2

3

4

5

2. Apply the UserDefinedNetwork manifest by running the following command:

11.3.2.3. Creating a primary cluster-scoped user-defined network by using the CLI

You can connect multiple namespaces to the same primary user-defined network (UDN) to achieve
native tenant isolation by using the CLI.

Prerequisites

You have access to the cluster as a user with cluster-admin privileges.

You have installed the OpenShift CLI (oc).

Procedure

1. Create a ClusterUserDefinedNetwork object to specify the custom network configuration:

Example ClusterUserDefinedNetwork manifest

Specifies the name of the ClusterUserDefinedNetwork custom resource.

Specifies the set of namespaces that the cluster UDN applies to. The namespace selector
must not point to default, an openshift-* namespace, or any global namespaces that are
defined by the Cluster Network Operator (CNO).

Specifies the type of selector. In this example, the matchExpressions selector selects
objects that have the label kubernetes.io/metadata.name with the value red-namespace
or blue-namespace.

Specifies the type of operator. Possible values are In, NotIn, and Exists.

Specifies the topological configuration of the network. The required value is Layer2. A
Layer2 topology creates a logical switch that is shared by all nodes.

$ oc apply -f --validate=true <filename>.yaml

kind: ClusterUserDefinedNetwork
metadata:
 name: cudn-l2-net 1
spec:
 namespaceSelector: 2
 matchExpressions: 3
 - key: kubernetes.io/metadata.name
 operator: In 4
 values: ["red-namespace", "blue-namespace"]
 network:
 topology: Layer2 5
 layer2:
 role: Primary 6
 ipam:
 lifecycle: Persistent
 subnets:
 - 203.203.0.0/16

CHAPTER 11. NETWORKING

317

6 Specifies whether the UDN is primary or secondary. The Primary role means that the UDN
acts as the primary network for the VM and all default traffic passes through this network.

2. Apply the ClusterUserDefinedNetwork manifest by running the following command:

Next steps

Create namespaces that are associated with the cluster-scoped UDN

11.3.3. Attaching a virtual machine to the primary user-defined network

You can connect a virtual machine (VM) to the primary user-defined network (UDN) by requesting the
pod network attachment and configuring the interface binding.

OpenShift Virtualization supports the following network binding plugins to connect the network
interface to the VM:

Layer 2 bridge

The Layer 2 bridge binding creates a direct Layer 2 connection between the VM’s virtual interface
and the virtual switch of the UDN.

Passt

The Plug a Simple Socket Transport (passt) binding provides a user-space networking solution that
integrates seamlessly with the pod network, providing better integration with the OpenShift
Container Platform networking ecosystem.
Passt binding has the following benefits:

You can define readiness and liveness HTTP probes to configure VM health checks.

You can use Red Hat Advanced Cluster Security to monitor TCP traffic within the cluster
with detailed insights.

IMPORTANT

Using the passt binding plugin to attach a VM to the primary UDN is a Technology
Preview feature only. Technology Preview features are not supported with Red Hat
production service level agreements (SLAs) and might not be functionally complete. Red
Hat does not recommend using them in production. These features provide early access
to upcoming product features, enabling customers to test functionality and provide
feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

11.3.3.1. Attaching a virtual machine to the primary user-defined network by using the web
console

You can connect a virtual machine (VM) to the primary user-defined network (UDN) by using the
OpenShift Container Platform web console. VMs that are created in a namespace where the primary
UDN is configured are automatically attached to the UDN with the Layer 2 bridge network binding
plugin.

$ oc apply -f --validate=true <filename>.yaml

OpenShift Container Platform 4.20 Virtualization

318

https://access.redhat.com/support/offerings/techpreview/

To attach a VM to the primary UDN by using the Plug a Simple Socket Transport (passt) binding, enable
the plugin and configure the VM network interface in the web console.

IMPORTANT

Using the passt binding plugin to attach a VM to the primary UDN is a Technology
Preview feature only. Technology Preview features are not supported with Red Hat
production service level agreements (SLAs) and might not be functionally complete. Red
Hat does not recommend using them in production. These features provide early access
to upcoming product features, enabling customers to test functionality and provide
feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

Prerequisites

You are logged in to the OpenShift Container Platform web console.

Procedure

1. Follow these steps to enable the passt network binding plugin Technology Preview feature:

a. From the Virtualization perspective, click Overview.

b. On the Virtualization page, click the Settings tab.

c. Click Preview features and set Enable Passt binding for primary user-defined networks
to on.

2. From the Virtualization perspective, click VirtualMachines.

3. Select a VM to open the VirtualMachine details page.

4. Click the Configuration tab.

5. Click Network.

6. Click the Options menu on the Network interfaces page and select Edit.

7. In the Edit network interface dialog, select the default pod network attachment from the
Network list.

8. Expand Advanced and then select the Passt binding.

9. Click Save.

10. If your VM is running, restart it for the changes to take effect.

11.3.3.2. Attaching a virtual machine to the primary user-defined network by using the CLI

You can connect a virtual machine (VM) to the primary user-defined network (UDN) by using the CLI.

Prerequisites

CHAPTER 11. NETWORKING

319

https://access.redhat.com/support/offerings/techpreview/

1

2

3

4

You have installed the OpenShift CLI (oc).

Procedure

1. Edit the VirtualMachine manifest to add the UDN interface details, as in the following example:
Example VirtualMachine manifest:

The namespace in which the VM is located. This value must match the namespace in which
the UDN is defined.

The name of the user-defined network interface.

The name of the binding plugin that is used to connect the interface to the VM. The
possible values are l2bridge and passt. The default value is l2bridge.

The name of the network. This must match the value of the
spec.template.spec.domain.devices.interfaces.name field.

2. Optional: If you are using the Plug a Simple Socket Transport (passt) network binding plugin, set
the hco.kubevirt.io/deployPasstNetworkBinding annotation to true in the HyperConverged
custom resource (CR) by running the following command:

IMPORTANT

apiVersion: kubevirt.io/v1
kind: VirtualMachine
metadata:
 name: example-vm
 namespace: my-namespace 1
spec:
 template:
 spec:
 domain:
 devices:
 interfaces:
 - name: udn-l2-net 2
 binding:
 name: l2bridge 3
...
 networks:
 - name: udn-l2-net 4
 pod: {}
...

$ oc annotate hco kubevirt-hyperconverged -n kubevirt-hyperconverged
hco.kubevirt.io/deployPasstNetworkBinding=true --overwrite

OpenShift Container Platform 4.20 Virtualization

320

IMPORTANT

Using the passt binding plugin to attach a VM to the primary UDN is a
Technology Preview feature only. Technology Preview features are not
supported with Red Hat production service level agreements (SLAs) and might
not be functionally complete. Red Hat does not recommend using them in
production. These features provide early access to upcoming product features,
enabling customers to test functionality and provide feedback during the
development process.

For more information about the support scope of Red Hat Technology Preview
features, see Technology Preview Features Support Scope .

3. Apply the VirtualMachine manifest by running the following command:

11.3.4. Additional resources

About user-defined networks

11.4. CONNECTING A VIRTUAL MACHINE TO A SECONDARY
LOCALNET USER-DEFINED NETWORK

You can connect a virtual machine (VM) to an OVN-Kubernetes localnet secondary network by using
the CLI. Cluster administrators can use the ClusterUserDefinedNetwork (CUDN) custom resource
definition (CRD) to create a shared OVN-Kubernetes network across multiple namespaces.

An OVN-Kubernetes secondary network is compatible with the multi-network policy API which provides
the MultiNetworkPolicy custom resource definition (CRD) to control traffic flow to and from VMs.

IMPORTANT

You must use the ipBlock attribute to define network policy ingress and egress rules for
specific CIDR blocks. Using pod or namespace selector policy peers is not supported.

A localnet topology connects the secondary network to the physical underlay. This enables both east-
west cluster traffic and access to services running outside the cluster, but it requires additional
configuration of the underlying Open vSwitch (OVS) system on cluster nodes.

11.4.1. Creating a user-defined-network for localnet topology by using the CLI

You can create a secondary cluster-scoped user-defined-network (CUDN) for the localnet network
topology by using the CLI.

Prerequisites

You are logged in to the cluster as a user with cluster-admin privileges.

You have installed the OpenShift CLI (oc).

You installed the Kubernetes NMState Operator.

Procedure

$ oc apply -f <filename>.yaml

CHAPTER 11. NETWORKING

321

https://access.redhat.com/support/offerings/techpreview/
https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/multiple_networks/#about-user-defined-networks
https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/multiple_networks/#compatibility-with-multi-network-policy_configuring-additional-network

1

2

3

4

5

Procedure

1. Create a NodeNetworkConfigurationPolicy object to map the OVN-Kubernetes secondary
network to an Open vSwitch (OVS) bridge:

Example NodeNetworkConfigurationPolicy manifest

The name of the configuration object.

Specifies the nodes to which the node network configuration policy is applied. The
recommended node selector value is node-role.kubernetes.io/worker: ''.

The name of the additional network from which traffic is forwarded to the OVS bridge. This
attribute must match the value of the spec.network.localnet.physicalNetworkName field
of the ClusterUserDefinedNetwork object that defines the OVN-Kubernetes additional
network. This example uses the name localnet1.

The name of the OVS bridge on the node. This value is required if the state attribute is
present or not specified.

The state of the mapping. Must be either present to add the mapping or absent to
remove the mapping. The default value is present.

IMPORTANT

OpenShift Virtualization does not support Linux bridge bonding modes 0, 5, and
6. For more information, see Which bonding modes work when used with a bridge
that virtual machine guests or containers connect to?.

2. Apply the NodeNetworkConfigurationPolicy manifest by running the following command:

where:

<filename>

Specifies the name of your NodeNetworkConfigurationPolicy manifest YAML file.

apiVersion: nmstate.io/v1
kind: NodeNetworkConfigurationPolicy
metadata:
 name: mapping 1
spec:
 nodeSelector:
 node-role.kubernetes.io/worker: '' 2
 desiredState:
 ovn:
 bridge-mappings:
 - localnet: localnet1 3
 bridge: br-ex 4
 state: present 5

$ oc apply -f <filename>.yaml

OpenShift Container Platform 4.20 Virtualization

322

https://access.redhat.com/solutions/67546

1

2

3

4

5

6

7

8

3. Create a ClusterUserDefinedNetwork object to create a localnet secondary network:

Example ClusterUserDefinedNetwork manifest

The name of the ClusterUserDefinedNetwork custom resource.

The set of namespaces that the cluster UDN applies to. The namespace selector must not
point to the following values: default; an openshift-* namespace; or any global
namespaces that are defined by the Cluster Network Operator (CNO).

The type of selector. In this example, the matchExpressions selector selects objects that
have the label kubernetes.io/metadata.name with the value red or blue.

The type of operator. Possible values are In, NotIn, and Exists.

The topological configuration of the network. A Localnet topology connects the logical
network to the physical underlay.

Specifies whether the UDN is primary or secondary. The required value is Secondary for
topology: Localnet.

The name of the OVN-Kubernetes bridge mapping that is configured on the node. This
value must match the spec.desiredState.ovn.bridge-mappings.localnet field in the
NodeNetworkConfigurationPolicy manifest that you previously created. This ensures
that you are bridging to the intended segment of your physical network.

Specifies whether IP address management (IPAM) is enabled or disabled. The required
value is Disabled. OpenShift Virtualization does not support configuring IPAM for virtual
machines.

4. Apply the ClusterUserDefinedNetwork manifest by running the following command:

apiVersion: k8s.ovn.org/v1
kind: ClusterUserDefinedNetwork
metadata:
 name: cudn-localnet 1
spec:
 namespaceSelector: 2
 matchExpressions: 3
 - key: kubernetes.io/metadata.name
 operator: In 4
 values: ["red", "blue"]
 network:
 topology: Localnet 5
 localnet:
 role: Secondary 6
 physicalNetworkName: localnet1 7
 ipam:
 mode: Disabled 8
...

$ oc apply -f <filename>.yaml

CHAPTER 11. NETWORKING

323

where:

<filename>

Specifies the name of your ClusterUserDefinedNetwork manifest YAML file.

11.4.2. Creating a namespace for secondary user-defined networks by using the CLI

You can create a namespace to be used with an existing secondary cluster-scoped user-defined
network (CUDN) by using the CLI.

Prerequisites

You are logged in to the cluster as a user with cluster-admin permissions.

You have installed the OpenShift CLI (oc).

Procedure

1. Create a Namespace object similar to the following example:

Example Namespace manifest

2. Apply the Namespace manifest by running the following command:

where:

<filename>

Specifies the name of your Namespace manifest YAML file.

11.4.3. Attaching a virtual machine to secondary user-defined networks by using the
CLI

You can connect a virtual machine (VM) to multiple secondary cluster-scoped user-defined networks
(CUDNs) by configuring the interface binding.

Prerequisites

You have installed the OpenShift CLI (oc).

Procedure

1. Edit the VirtualMachine manifest to add the CUDN interface details, as in the following
example:

apiVersion: v1
kind: Namespace
metadata:
 name: red
...

oc apply -f <filename>.yaml

OpenShift Container Platform 4.20 Virtualization

324

1

2

3

4

Example VirtualMachine manifest

The namespace in which the VM is located. This value must match a namespace that is
associated with the secondary CUDN.

The name of the secondary user-defined network interface.

The name of the network. This must match the value of the
spec.template.spec.domain.devices.interfaces.name field.

The name of the localnet ClusterUserDefinedNetwork object that you previously created.

2. Apply the VirtualMachine manifest by running the following command:

where:

<filename>

Specifies the name of your VirtualMachine manifest YAML file.

NOTE

When running OpenShift Virtualization on IBM Z® using an OSA card, be aware that the
OSA card only forwards network traffic to devices that are registered with the OSA
device. As a result, any traffic destined for unregistered devices is not forwarded.

11.4.4. Additional resources

apiVersion: kubevirt.io/v1
kind: VirtualMachine
metadata:
 name: example-vm
 namespace: red 1
spec:
 template:
 spec:
 domain:
 devices:
 interfaces:
 - name: secondary_localnet 2
 bridge: {}
 machine:
 type: ""
 resources:
 requests:
 memory: 2048M
 networks:
 - name: secondary_localnet 3
 multus:
 networkName: <localnet_cudn_name> 4
...

$ oc apply -f <filename>.yaml

CHAPTER 11. NETWORKING

325

About the ClusterUserDefinedNetwork CR

OSA interface traffic forwarding

11.5. EXPOSING A VIRTUAL MACHINE BY USING A SERVICE

You can expose a virtual machine within the cluster or outside the cluster by creating a Service object.

11.5.1. About services

A Kubernetes service exposes network access for clients to an application running on a set of pods.
Services offer abstraction, load balancing, and, in the case of the NodePort and LoadBalancer types,
exposure to the outside world.

ClusterIP

Exposes the service on an internal IP address and as a DNS name to other applications within the
cluster. A single service can map to multiple virtual machines. When a client tries to connect to the
service, the client’s request is load balanced among available backends. ClusterIP is the default
service type.

NodePort

Exposes the service on the same port of each selected node in the cluster. NodePort makes a port
accessible from outside the cluster, as long as the node itself is externally accessible to the client.

LoadBalancer

Creates an external load balancer in the current cloud (if supported) and assigns a fixed, external IP
address to the service.

NOTE

For on-premise clusters, you can configure a load-balancing service by deploying the
MetalLB Operator.

Additional resources

Installing the MetalLB Operator

Configuring services to use MetalLB

11.5.2. Dual-stack support

If IPv4 and IPv6 dual-stack networking is enabled for your cluster, you can create a service that uses
IPv4, IPv6, or both, by defining the spec.ipFamilyPolicy and the spec.ipFamilies fields in the Service
object.

The spec.ipFamilyPolicy field can be set to one of the following values:

SingleStack

The control plane assigns a cluster IP address for the service based on the first configured service
cluster IP range.

PreferDualStack

The control plane assigns both IPv4 and IPv6 cluster IP addresses for the service on clusters that
have dual-stack configured.

OpenShift Container Platform 4.20 Virtualization

326

https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/multiple_networks/#about-cudn_about-user-defined-networks
https://www.ibm.com/docs/en/linux-on-systems?topic=choices-osa-interface-traffic-forwarding
https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/networking_operators/#metallb-operator-install_metallb-operator-install
https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/ingress_and_load_balancing/#metallb-configure-services

1

RequireDualStack

This option fails for clusters that do not have dual-stack networking enabled. For clusters that have
dual-stack configured, the behavior is the same as when the value is set to PreferDualStack. The
control plane allocates cluster IP addresses from both IPv4 and IPv6 address ranges.

You can define which IP family to use for single-stack or define the order of IP families for dual-stack by
setting the spec.ipFamilies field to one of the following array values:

[IPv4]

[IPv6]

[IPv4, IPv6]

[IPv6, IPv4]

11.5.3. Creating a service by using the CLI

You can create a service and associate it with a virtual machine (VM) by using the command line.

Prerequisites

You configured the cluster network to support the service.

You have installed the OpenShift CLI (oc).

Procedure

1. Edit the VirtualMachine manifest to add the label for service creation:

Add special: key to the spec.template.metadata.labels stanza.

NOTE

Labels on a virtual machine are passed through to the pod. The special: key
label must match the label in the spec.selector attribute of the Service
manifest.

2. Save the VirtualMachine manifest file to apply your changes.

apiVersion: kubevirt.io/v1
kind: VirtualMachine
metadata:
 name: example-vm
 namespace: example-namespace
spec:
 runStrategy: Halted
 template:
 metadata:
 labels:
 special: key 1
...

CHAPTER 11. NETWORKING

327

1

2

3

3. Create a Service manifest to expose the VM:

Specify the label that you added to the spec.template.metadata.labels stanza of the
VirtualMachine manifest.

Specify ClusterIP, NodePort, or LoadBalancer.

Specifies a collection of network ports and protocols that you want to expose from the
virtual machine.

4. Save the Service manifest file.

5. Create the service by running the following command:

6. Restart the VM to apply the changes.

Verification

Query the Service object to verify that it is available:

11.5.4. Additional resources

Configuring ingress cluster traffic using a NodePort

Configuring ingress cluster traffic using a load balancer

11.6. ACCESSING A VIRTUAL MACHINE BY USING ITS INTERNAL FQDN

You can access a virtual machine (VM) that is connected to the default internal pod network on a stable
fully qualified domain name (FQDN) by using headless services.

A Kubernetes headless service is a form of service that does not allocate a cluster IP address to

apiVersion: v1
kind: Service
metadata:
 name: example-service
 namespace: example-namespace
spec:
...
 selector:
 special: key 1
 type: NodePort 2
 ports: 3
 protocol: TCP
 port: 80
 targetPort: 9376
 nodePort: 30000

$ oc create -f example-service.yaml

$ oc get service -n example-namespace

OpenShift Container Platform 4.20 Virtualization

328

https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/ingress_and_load_balancing/#configuring-ingress-cluster-traffic-nodeport
https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/ingress_and_load_balancing/#configuring-ingress-cluster-traffic-load-balancer

1

2

3

4

represent a set of pods. Instead of providing a single virtual IP address for the service, a headless service
creates a DNS record for each pod associated with the service. You can expose a VM through its FQDN
without having to expose a specific TCP or UDP port.

IMPORTANT

If you created a VM by using the OpenShift Container Platform web console, you can find
its internal FQDN listed in the Network tile on the Overview tab of the VirtualMachine
details page. For more information about connecting to the VM, see Connecting to a
virtual machine by using its internal FQDN.

11.6.1. Creating a headless service in a project by using the CLI

To create a headless service in a namespace, add the clusterIP: None parameter to the service YAML
definition.

Prerequisites

You have installed the OpenShift CLI (oc).

Procedure

1. Create a Service manifest to expose the VM, such as the following example:

The name of the service. This must match the spec.subdomain attribute in the
VirtualMachine manifest file.

This service selector must match the expose:me label in the VirtualMachine manifest file.

Specifies a headless service.

The list of ports that are exposed by the service. You must define at least one port. This
can be any arbitrary value as it does not affect the headless service.

2. Save the Service manifest file.

3. Create the service by running the following command:

apiVersion: v1
kind: Service
metadata:
 name: mysubdomain 1
spec:
 selector:
 expose: me 2
 clusterIP: None 3
 ports: 4
 - protocol: TCP
 port: 1234
 targetPort: 1234

$ oc create -f headless_service.yaml

CHAPTER 11. NETWORKING

329

1

2

3

11.6.2. Mapping a virtual machine to a headless service by using the CLI

To connect to a virtual machine (VM) from within the cluster by using its internal fully qualified domain
name (FQDN), you must first map the VM to a headless service. Set the spec.hostname and
spec.subdomain parameters in the VM configuration file.

If a headless service exists with a name that matches the subdomain, a unique DNS A record is created
for the VM in the form of <vm.spec.hostname>.<vm.spec.subdomain>.
<vm.metadata.namespace>.svc.cluster.local.

Prerequisites

You have installed the OpenShift CLI (oc).

Procedure

1. Edit the VirtualMachine manifest to add the service selector label and subdomain by running
the following command:

Example VirtualMachine manifest file

The expose:me label must match the spec.selector attribute of the Service manifest
that you previously created.

If this attribute is not specified, the resulting DNS A record takes the form of
<vm.metadata.name>.<vm.spec.subdomain>.
<vm.metadata.namespace>.svc.cluster.local.

The spec.subdomain attribute must match the metadata.name value of the Service
object.

2. Save your changes and exit the editor.

3. Restart the VM to apply the changes.

11.6.3. Connecting to a virtual machine by using its internal FQDN

$ oc edit vm <vm_name>

apiVersion: kubevirt.io/v1
kind: VirtualMachine
metadata:
 name: vm-fedora
spec:
 template:
 metadata:
 labels:
 expose: me 1
 spec:
 hostname: "myvm" 2
 subdomain: "mysubdomain" 3
...

OpenShift Container Platform 4.20 Virtualization

330

You can connect to a virtual machine (VM) by using its internal fully qualified domain name (FQDN).

Prerequisites

You have installed the virtctl tool.

You have identified the internal FQDN of the VM from the web console or by mapping the VM
to a headless service. The internal FQDN has the format <vm.spec.hostname>.
<vm.spec.subdomain>.<vm.metadata.namespace>.svc.cluster.local.

Procedure

1. Connect to the VM console by entering the following command:

2. To connect to the VM by using the requested FQDN, run the following command:

Example output

In the preceding example, the DNS entry for myvm.mysubdomain.default.svc.cluster.local
points to 10.244.0.57, which is the cluster IP address that is currently assigned to the VM.

11.6.4. Additional resources

Exposing a VM by using a service

11.7. CONNECTING A VIRTUAL MACHINE TO A LINUX BRIDGE
NETWORK

By default, OpenShift Virtualization is installed with a single, internal pod network.

You can create a Linux bridge network and attach a virtual machine (VM) to the network by performing
the following steps:

1. Create a Linux bridge node network configuration policy (NNCP) .

2. Create a Linux bridge network attachment definition (NAD) by using the web console or the
command line.

3. Configure the VM to recognize the NAD by using the web console or the command line.

NOTE

OpenShift Virtualization does not support Linux bridge bonding modes 0, 5, and 6. For
more information, see Which bonding modes work when used with a bridge that virtual
machine guests or containers connect to?.

$ virtctl console vm-fedora

$ ping myvm.mysubdomain.<namespace>.svc.cluster.local

PING myvm.mysubdomain.default.svc.cluster.local (10.244.0.57) 56(84) bytes of data.
64 bytes from myvm.mysubdomain.default.svc.cluster.local (10.244.0.57): icmp_seq=1 ttl=64
time=0.029 ms

CHAPTER 11. NETWORKING

331

https://access.redhat.com/solutions/67546

1

2

3

4

5

6

7

8

11.7.1. Creating a Linux bridge NNCP

You can create a NodeNetworkConfigurationPolicy (NNCP) manifest for a Linux bridge network.

Prerequisites

You have installed the Kubernetes NMState Operator.

Procedure

Create the NodeNetworkConfigurationPolicy manifest. This example includes sample values
that you must replace with your own information.

Name of the policy.

Name of the interface.

Optional: Human-readable description of the interface.

The type of interface. This example creates a bridge.

The requested state for the interface after creation.

Disables IPv4 in this example.

Disables STP in this example.

The node NIC to which the bridge is attached.

NOTE

apiVersion: nmstate.io/v1
kind: NodeNetworkConfigurationPolicy
metadata:
 name: br1-eth1-policy 1
spec:
 desiredState:
 interfaces:
 - name: br1 2
 description: Linux bridge with eth1 as a port 3
 type: linux-bridge 4
 state: up 5
 ipv4:
 enabled: false 6
 bridge:
 options:
 stp:
 enabled: false 7
 port:
 - name: eth1 8

OpenShift Container Platform 4.20 Virtualization

332

NOTE

To create the NNCP manifest for a Linux bridge using OSA with IBM Z®, you must disable
VLAN filtering by the setting the rx-vlan-filter to false in the
NodeNetworkConfigurationPolicy manifest.

Alternatively, if you have SSH access to the node, you can disable VLAN filtering by
running the following command:

11.7.2. Creating a Linux bridge NAD

You can create a Linux bridge network attachment definition (NAD) by using the OpenShift Container
Platform web console or command line.

11.7.2.1. Creating a Linux bridge NAD by using the web console

You can create a network attachment definition (NAD) to provide layer-2 networking to pods and virtual
machines by using the OpenShift Container Platform web console.

WARNING

Configuring IP address management (IPAM) in a network attachment definition for
virtual machines is not supported.

Procedure

1. In the web console, click Networking → NetworkAttachmentDefinitions.

2. Click Create Network Attachment Definition.

NOTE

The network attachment definition must be in the same namespace as the pod or
virtual machine.

3. Enter a unique Name and optional Description.

4. Select CNV Linux bridge from the Network Type list.

5. Enter the name of the bridge in the Bridge Name field.

6. Optional: If the resource has VLAN IDs configured, enter the ID numbers in the VLAN Tag
Number field.

NOTE

$ sudo ethtool -K <osa-interface-name> rx-vlan-filter off



CHAPTER 11. NETWORKING

333

NOTE

OSA interfaces on IBM Z® do not support VLAN filtering and VLAN-tagged
traffic is dropped. Avoid using VLAN-tagged NADs with OSA interfaces.

7. Optional: Select MAC Spoof Check to enable MAC spoof filtering. This feature provides
security against a MAC spoofing attack by allowing only a single MAC address to exit the pod.

8. Click Create.

11.7.2.2. Creating a Linux bridge NAD by using the CLI

You can create a network attachment definition (NAD) to provide layer-2 networking to pods and virtual
machines (VMs) by using the command line.

The NAD and the VM must be in the same namespace.

WARNING

Configuring IP address management (IPAM) in a network attachment definition for
virtual machines is not supported.

Prerequisites

You have installed the OpenShift CLI (oc).

Procedure

1. Add the VM to the NetworkAttachmentDefinition configuration, as in the following example:



apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:
 name: bridge-network 1
 annotations:
 k8s.v1.cni.cncf.io/resourceName: bridge.network.kubevirt.io/br1 2
spec:
 config: |
 {
 "cniVersion": "0.3.1",
 "name": "bridge-network", 3
 "type": "bridge", 4
 "bridge": "br1", 5
 "macspoofchk": false, 6
 "vlan": 100, 7
 "disableContainerInterface": true,
 "preserveDefaultVlan": false 8
 }

OpenShift Container Platform 4.20 Virtualization

334

1

2

3

4

5

6

7

8

The name for the NetworkAttachmentDefinition object.

Optional: Annotation key-value pair for node selection for the bridge configured on some
nodes. If you add this annotation to your network attachment definition, your virtual
machine instances will only run on the nodes that have the defined bridge connected.

The name for the configuration. It is recommended to match the configuration name to the
name value of the network attachment definition.

The actual name of the Container Network Interface (CNI) plugin that provides the
network for this network attachment definition. Do not change this field unless you want to
use a different CNI.

The name of the Linux bridge configured on the node. The name should match the
interface bridge name defined in the NodeNetworkConfigurationPolicy manifest.

Optional: A flag to enable the MAC spoof check. When set to true, you cannot change the
MAC address of the pod or guest interface. This attribute allows only a single MAC address
to exit the pod, which provides security against a MAC spoofing attack.

Optional: The VLAN tag. No additional VLAN configuration is required on the node
network configuration policy.

NOTE

OSA interfaces on IBM Z® do not support VLAN filtering and VLAN-tagged
traffic is dropped. Avoid using VLAN-tagged NADs with OSA interfaces.

Optional: Indicates whether the VM connects to the bridge through the default VLAN. The
default value is true.

2. Optional: If you want to connect a VM to the native network, configure the Linux bridge
NetworkAttachmentDefinition manifest without specifying any VLAN:

3. Create the network attachment definition:

apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:
 name: bridge-network
 annotations:
 k8s.v1.cni.cncf.io/resourceName: bridge.network.kubevirt.io/br1
spec:
 config: |
 {
 "cniVersion": "0.3.1",
 "name": "bridge-network",
 "type": "bridge",
 "bridge": "br1",
 "macspoofchk": false,
 "disableContainerInterface": true
 }

$ oc create -f network-attachment-definition.yaml 1

CHAPTER 11. NETWORKING

335

1 Where network-attachment-definition.yaml is the file name of the network attachment
definition manifest.

Verification

Verify that the network attachment definition was created by running the following command:

11.7.2.3. Enabling port isolation for a Linux bridge NAD

You can enable port isolation for a Linux bridge network attachment definition (NAD) so that virtual
machines (VMs) or pods that run on the same virtual LAN (VLAN) can operate in isolation from one
another. The Linux bridge NAD creates a virtual bridge, or virtual switch, between network interfaces
and the physical network.

Isolating ports in this way can provide enhanced security for VM workloads that run on the same node.

Prerequisites

For VMs, you configured either a static or dynamic IP address for each VM. See "Configuring IP
addresses for virtual machines".

You created a Linux bridge NAD by using either the web console or the command-line interface.

You have installed the OpenShift CLI (oc).

Procedure

1. Edit the Linux bridge NAD by setting portIsolation to true:

$ oc get network-attachment-definition bridge-network

apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:
 name: bridge-network
 annotations:
 k8s.v1.cni.cncf.io/resourceName: bridge.network.kubevirt.io/br1
spec:
 config: |
 {
 "cniVersion": "0.3.1",
 "name": "bridge-network", 1
 "type": "bridge", 2
 "bridge": "br1", 3
 "preserveDefaultVlan": false,
 "vlan": 100,
 "disableContainerInterface": false,
 "portIsolation": true 4
 }
...

OpenShift Container Platform 4.20 Virtualization

336

1

2

3

4

The name for the configuration. The name must match the value in the metadata.name of
the NAD.

The actual name of the Container Network Interface (CNI) plugin that provides the
network for this network attachment definition. Do not change this field unless you want to
use a different CNI.

The name of the Linux bridge that is configured on the node. The name must match the
interface bridge name defined in the NodeNetworkConfigurationPolicy manifest.

Enables or disables port isolation on the virtual bridge. Default value is false. When set to
true, each VM or pod is assigned to an isolated port. The virtual bridge prevents traffic
from one isolated port from reaching another isolated port.

2. Apply the configuration:

3. Optional: If you edited a running virtual machine, you must restart it for the changes to take
effect.

Additional resources

Configuring IP addresses for virtual machines

11.7.3. Configuring a VM network interface

You can configure a virtual machine (VM) network interface by using the OpenShift Container Platform
web console or command line.

11.7.3.1. Configuring a VM network interface by using the web console

You can configure a network interface for a virtual machine (VM) by using the OpenShift Container
Platform web console.

Prerequisites

You created a network attachment definition for the network.

Procedure

1. Navigate to Virtualization → VirtualMachines.

2. Click a VM to view the VirtualMachine details page.

3. On the Configuration tab, click the Network interfaces tab.

4. Click Add network interface.

5. Enter the interface name and select the network attachment definition from the Network list.

6. Click Save.

7. Restart or live migrate the VM to apply the changes.

$ oc apply -f example-vm.yaml

CHAPTER 11. NETWORKING

337

Networking fields

Name Description

Name Name for the network interface controller.

Model Indicates the model of the network interface
controller. Supported values are e1000e and virtio.

For IBM Z® (s390x) and ARM64 (arm64) systems,
use the virtio NIC model option. The e1000e model is
not supported on these architectures.

Network List of available network attachment definitions.

Type List of available binding methods. Select the binding
method suitable for the network interface:

Default pod network: masquerade

Linux bridge network: bridge

SR-IOV network: SR-IOV
On IBM Z®, SR-IOV is not supported.

MAC Address MAC address for the network interface controller. If a
MAC address is not specified, one is assigned
automatically.

11.7.3.2. Configuring a VM network interface by using the CLI

You can configure a virtual machine (VM) network interface for a bridge network by using the command
line.

Prerequisites

You have installed the OpenShift CLI (oc).

Shut down the virtual machine before editing the configuration. If you edit a running virtual
machine, you must restart the virtual machine for the changes to take effect.

Procedure

1. Add the bridge interface and the network attachment definition to the VM configuration as in
the following example:

apiVersion: kubevirt.io/v1
kind: VirtualMachine
metadata:
 name: example-vm
spec:
 template:
 spec:

OpenShift Container Platform 4.20 Virtualization

338

1

2

3

The name of the bridge interface.

The name of the network. This value must match the name value of the corresponding
spec.template.spec.domain.devices.interfaces entry.

The name of the network attachment definition.

2. Apply the configuration:

3. Optional: If you edited a running virtual machine, you must restart it for the changes to take
effect.

NOTE

When running OpenShift Virtualization on IBM Z® using an OSA card, you must register
the MAC address of the device. For more information, see OSA interface traffic
forwarding (IBM documentation).

11.8. CONNECTING A VIRTUAL MACHINE TO AN SR-IOV NETWORK

You can connect a virtual machine (VM) to a Single Root I/O Virtualization (SR-IOV) network by
performing the following steps:

Configuring an SR-IOV network device

Configuring an SR-IOV network

Connecting the VM to the SR-IOV network

11.8.1. Configuring SR-IOV network devices

The SR-IOV Network Operator adds the SriovNetworkNodePolicy.sriovnetwork.openshift.io
CustomResourceDefinition to OpenShift Container Platform. You can configure an SR-IOV network
device by creating a SriovNetworkNodePolicy custom resource (CR).

NOTE

 domain:
 devices:
 interfaces:
 - bridge: {}
 name: bridge-net 1
...
 networks:
 - name: bridge-net 2
 multus:
 networkName: bridge-network 3

$ oc apply -f example-vm.yaml

CHAPTER 11. NETWORKING

339

https://www.ibm.com/docs/en/linux-on-systems?topic=choices-osa-interface-traffic-forwarding

1

NOTE

When applying the configuration specified in a SriovNetworkNodePolicy object, the SR-
IOV Operator might drain the nodes, and in some cases, reboot nodes. Reboot only
happens in the following cases:

With Mellanox NICs (mlx5 driver) a node reboot happens every time the number
of virtual functions (VFs) increase on a physical function (PF).

With Intel NICs, a reboot only happens if the kernel parameters do not include
intel_iommu=on and iommu=pt.

It might take several minutes for a configuration change to apply.

Prerequisites

You installed the OpenShift CLI (oc).

You have access to the cluster as a user with the cluster-admin role.

You have installed the SR-IOV Network Operator.

You have enough available nodes in your cluster to handle the evicted workload from drained
nodes.

You have not selected any control plane nodes for SR-IOV network device configuration.

Procedure

1. Create an SriovNetworkNodePolicy object, and then save the YAML in the <name>-sriov-
node-network.yaml file. Replace <name> with the name for this configuration.

Specify a name for the CR object.

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetworkNodePolicy
metadata:
 name: <name> 1
 namespace: openshift-sriov-network-operator 2
spec:
 resourceName: <sriov_resource_name> 3
 nodeSelector:
 feature.node.kubernetes.io/network-sriov.capable: "true" 4
 priority: <priority> 5
 mtu: <mtu> 6
 numVfs: <num> 7
 nicSelector: 8
 vendor: "<vendor_code>" 9
 deviceID: "<device_id>" 10
 pfNames: ["<pf_name>", ...] 11
 rootDevices: ["<pci_bus_id>", "..."] 12
 deviceType: vfio-pci 13
 isRdma: false 14

OpenShift Container Platform 4.20 Virtualization

340

2

3

4

5

6

7

8

9

10

11

12

13

14

Specify the namespace where the SR-IOV Operator is installed.

Specify the resource name of the SR-IOV device plugin. You can create multiple
SriovNetworkNodePolicy objects for a resource name.

Specify the node selector to select which nodes are configured. Only SR-IOV network
devices on selected nodes are configured. The SR-IOV Container Network Interface (CNI)
plugin and device plugin are deployed only on selected nodes.

Optional: Specify an integer value between 0 and 99. A smaller number gets higher priority,
so a priority of 10 is higher than a priority of 99. The default value is 99.

Optional: Specify a value for the maximum transmission unit (MTU) of the virtual function.
The maximum MTU value can vary for different NIC models.

Specify the number of the virtual functions (VF) to create for the SR-IOV physical network
device. For an Intel network interface controller (NIC), the number of VFs cannot be larger
than the total VFs supported by the device. For a Mellanox NIC, the number of VFs cannot
be larger than 127.

The nicSelector mapping selects the Ethernet device for the Operator to configure. You
do not need to specify values for all the parameters.

NOTE

It is recommended to identify the Ethernet adapter with enough precision
to minimize the possibility of selecting an Ethernet device unintentionally. If
you specify rootDevices, you must also specify a value for vendor,
deviceID, or pfNames.

If you specify both pfNames and rootDevices at the same time, ensure that they point to
an identical device.

Optional: Specify the vendor hex code of the SR-IOV network device. The only allowed
values are either 8086 or 15b3.

Optional: Specify the device hex code of SR-IOV network device. The only allowed values
are 158b, 1015, 1017.

Optional: The parameter accepts an array of one or more physical function (PF) names for
the Ethernet device.

The parameter accepts an array of one or more PCI bus addresses for the physical function
of the Ethernet device. Provide the address in the following format: 0000:02:00.1.

The vfio-pci driver type is required for virtual functions in OpenShift Virtualization.

Optional: Specify whether to enable remote direct memory access (RDMA) mode. For a
Mellanox card, set isRdma to false. The default value is false.

NOTE

If isRDMA flag is set to true, you can continue to use the RDMA enabled VF
as a normal network device. A device can be used in either mode.

CHAPTER 11. NETWORKING

341

2. Optional: Label the SR-IOV capable cluster nodes with
SriovNetworkNodePolicy.Spec.NodeSelector if they are not already labeled. For more
information about labeling nodes, see "Understanding how to update labels on nodes".

3. Create the SriovNetworkNodePolicy object:

where <name> specifies the name for this configuration.

After applying the configuration update, all the pods in sriov-network-operator namespace
transition to the Running status.

4. To verify that the SR-IOV network device is configured, enter the following command. Replace
<node_name> with the name of a node with the SR-IOV network device that you just
configured.

11.8.2. Configuring SR-IOV additional network

You can configure an additional network that uses SR-IOV hardware by creating an SriovNetwork
object.

When you create an SriovNetwork object, the SR-IOV Network Operator automatically creates a
NetworkAttachmentDefinition object.

NOTE

Do not modify or delete an SriovNetwork object if it is attached to pods or virtual
machines in a running state.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

1. Create the following SriovNetwork object, and then save the YAML in the <name>-sriov-
network.yaml file. Replace <name> with a name for this additional network.

$ oc create -f <name>-sriov-node-network.yaml

$ oc get sriovnetworknodestates -n openshift-sriov-network-operator <node_name> -o
jsonpath='{.status.syncStatus}'

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetwork
metadata:
 name: <name> 1
 namespace: openshift-sriov-network-operator 2
spec:
 resourceName: <sriov_resource_name> 3
 networkNamespace: <target_namespace> 4
 vlan: <vlan> 5

OpenShift Container Platform 4.20 Virtualization

342

1

2

3

4

5

6

7

8

9

10

11

Replace <name> with a name for the object. The SR-IOV Network Operator creates a
NetworkAttachmentDefinition object with same name.

Specify the namespace where the SR-IOV Network Operator is installed.

Replace <sriov_resource_name> with the value for the .spec.resourceName parameter from the
SriovNetworkNodePolicy object that defines the SR-IOV hardware for this additional network.

Replace <target_namespace> with the target namespace for the SriovNetwork. Only pods or
virtual machines in the target namespace can attach to the SriovNetwork.

Optional: Replace <vlan> with a Virtual LAN (VLAN) ID for the additional network. The integer
value must be from 0 to 4095. The default value is 0.

Optional: Replace <spoof_check> with the spoof check mode of the VF. The allowed values are
the strings "on" and "off".

IMPORTANT

You must enclose the value you specify in quotes or the CR is rejected by the SR-
IOV Network Operator.

Optional: Replace <link_state> with the link state of virtual function (VF). Allowed value are
enable, disable and auto.

Optional: Replace <max_tx_rate> with a maximum transmission rate, in Mbps, for the VF.

Optional: Replace <min_tx_rate> with a minimum transmission rate, in Mbps, for the VF. This value
should always be less than or equal to Maximum transmission rate.

NOTE

Intel NICs do not support the minTxRate parameter. For more information, see
BZ#1772847.

Optional: Replace <vlan_qos> with an IEEE 802.1p priority level for the VF. The default value is 0.

Optional: Replace <trust_vf> with the trust mode of the VF. The allowed values are the strings
"on" and "off".

IMPORTANT

You must enclose the value you specify in quotes or the CR is rejected by the SR-
IOV Network Operator.

 spoofChk: "<spoof_check>" 6
 linkState: <link_state> 7
 maxTxRate: <max_tx_rate> 8
 minTxRate: <min_rx_rate> 9
 vlanQoS: <vlan_qos> 10
 trust: "<trust_vf>" 11
 capabilities: <capabilities> 12

CHAPTER 11. NETWORKING

343

https://bugzilla.redhat.com/show_bug.cgi?id=1772847

12

1

2

3

Optional: Replace <capabilities> with the capabilities to configure for this network.

2. To create the object, enter the following command. Replace <name> with a name for this
additional network.

3. Optional: To confirm that the NetworkAttachmentDefinition object associated with the
SriovNetwork object that you created in the previous step exists, enter the following command.
Replace <namespace> with the namespace you specified in the SriovNetwork object.

11.8.3. Connecting a virtual machine to an SR-IOV network by using the CLI

You can connect the virtual machine (VM) to the SR-IOV network by including the network details in the
VM configuration.

Prerequisites

You have installed the OpenShift CLI (oc).

Procedure

1. Add the SR-IOV network details to the spec.domain.devices.interfaces and spec.networks
stanzas of the VM configuration as in the following example:

Specify a unique name for the SR-IOV interface.

Specify the name of the SR-IOV interface. This must be the same as the interfaces.name
that you defined earlier.

Specify the name of the SR-IOV network attachment definition.

2. Apply the virtual machine configuration:

$ oc create -f <name>-sriov-network.yaml

$ oc get net-attach-def -n <namespace>

apiVersion: kubevirt.io/v1
kind: VirtualMachine
metadata:
 name: example-vm
spec:
 domain:
 devices:
 interfaces:
 - name: nic1 1
 sriov: {}
 networks:
 - name: nic1 2
 multus:
 networkName: sriov-network 3
...

OpenShift Container Platform 4.20 Virtualization

344

1 The name of the virtual machine YAML file.

11.8.4. Connecting a VM to an SR-IOV network by using the web console

You can connect a VM to the SR-IOV network by including the network details in the VM configuration.

Prerequisites

You must create a network attachment definition for the network.

Procedure

1. Navigate to Virtualization → VirtualMachines.

2. Click a VM to view the VirtualMachine details page.

3. On the Configuration tab, click the Network interfaces tab.

4. Click Add network interface.

5. Enter the interface name.

6. Select an SR-IOV network attachment definition from the Network list.

7. Select SR-IOV from the Type list.

8. Optional: Add a network Model or Mac address.

9. Click Save.

10. Restart or live-migrate the VM to apply the changes.

11.8.5. Additional resources

Configuring DPDK workloads for improved performance

11.9. USING DPDK WITH SR-IOV

The Data Plane Development Kit (DPDK) provides a set of libraries and drivers for fast packet
processing.

You can configure clusters and virtual machines (VMs) to run DPDK workloads over SR-IOV networks.

11.9.1. Configuring a cluster for DPDK workloads

You can configure an OpenShift Container Platform cluster to run Data Plane Development Kit (DPDK)
workloads for improved network performance.

Prerequisites

You have access to the cluster as a user with cluster-admin permissions.

$ oc apply -f <vm_sriov>.yaml 1

CHAPTER 11. NETWORKING

345

You have installed the OpenShift CLI (oc).

You have installed the SR-IOV Network Operator.

You have installed the Node Tuning Operator.

Procedure

1. Map your compute nodes topology to determine which Non-Uniform Memory Access (NUMA)
CPUs are isolated for DPDK applications and which ones are reserved for the operating system
(OS).

2. If your OpenShift Container Platform cluster uses separate control plane and compute nodes
for high-availability:

a. Label a subset of the compute nodes with a custom role; for example, worker-dpdk:

b. Create a new MachineConfigPool manifest that contains the worker-dpdk label in the
spec.machineConfigSelector object:

Example MachineConfigPool manifest

3. Create a PerformanceProfile manifest that applies to the labeled nodes and the machine
config pool that you created in the previous steps. The performance profile specifies the CPUs
that are isolated for DPDK applications and the CPUs that are reserved for house keeping.

Example PerformanceProfile manifest

$ oc label node <node_name> node-role.kubernetes.io/worker-dpdk=""

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfigPool
metadata:
 name: worker-dpdk
 labels:
 machineconfiguration.openshift.io/role: worker-dpdk
spec:
 machineConfigSelector:
 matchExpressions:
 - key: machineconfiguration.openshift.io/role
 operator: In
 values:
 - worker
 - worker-dpdk
 nodeSelector:
 matchLabels:
 node-role.kubernetes.io/worker-dpdk: ""

apiVersion: performance.openshift.io/v2
kind: PerformanceProfile
metadata:
 name: profile-1
spec:
 cpu:
 isolated: 4-39,44-79

OpenShift Container Platform 4.20 Virtualization

346

NOTE

The compute nodes automatically restart after you apply the
MachineConfigPool and PerformanceProfile manifests.

4. Retrieve the name of the generated RuntimeClass resource from the status.runtimeClass
field of the PerformanceProfile object:

5. Set the previously obtained RuntimeClass name as the default container runtime class for the
virt-launcher pods by editing the HyperConverged custom resource (CR):

NOTE

Editing the HyperConverged CR changes a global setting that affects all VMs
that are created after the change is applied.

6. If your DPDK-enabled compute nodes use Simultaneous multithreading (SMT), enable the
AlignCPUs enabler by editing the HyperConverged CR:

NOTE

Enabling AlignCPUs allows OpenShift Virtualization to request up to two
additional dedicated CPUs to bring the total CPU count to an even parity when
using emulator thread isolation.

7. Create an SriovNetworkNodePolicy object with the spec.deviceType field set to vfio-pci:

 reserved: 0-3,40-43
 globallyDisableIrqLoadBalancing: true
 hugepages:
 defaultHugepagesSize: 1G
 pages:
 - count: 8
 node: 0
 size: 1G
 net:
 userLevelNetworking: true
 nodeSelector:
 node-role.kubernetes.io/worker-dpdk: ""
 numa:
 topologyPolicy: single-numa-node

$ oc get performanceprofiles.performance.openshift.io profile-1 -
o=jsonpath='{.status.runtimeClass}{"\n"}'

$ oc patch hyperconverged kubevirt-hyperconverged -n openshift-cnv \
 --type='json' -p='[{"op": "add", "path": "/spec/defaultRuntimeClass", "value":"<runtimeclass-
name>"}]'

$ oc patch hyperconverged kubevirt-hyperconverged -n openshift-cnv \
 --type='json' -p='[{"op": "replace", "path": "/spec/featureGates/alignCPUs", "value": true}]'

CHAPTER 11. NETWORKING

347

Example SriovNetworkNodePolicy manifest

Additional resources

Using CPU Manager and Topology Manager

Configuring huge pages

Creating a custom machine config pool

11.9.1.1. Removing a custom machine config pool for high-availability clusters

You can delete a custom machine config pool that you previously created for your high-availability
cluster.

Prerequisites

You have access to the cluster as a user with cluster-admin permissions.

You have installed the OpenShift CLI (oc).

You have created a custom machine config pool by labeling a subset of the compute nodes with
a custom role and creating a MachineConfigPool manifest with that label.

Procedure

1. Remove the worker-dpdk label from the compute nodes by running the following command:

2. Delete the MachineConfigPool manifest that contains the worker-dpdk label by entering the
following command:

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetworkNodePolicy
metadata:
 name: policy-1
 namespace: openshift-sriov-network-operator
spec:
 resourceName: intel_nics_dpdk
 deviceType: vfio-pci
 mtu: 9000
 numVfs: 4
 priority: 99
 nicSelector:
 vendor: "8086"
 deviceID: "1572"
 pfNames:
 - eno3
 rootDevices:
 - "0000:19:00.2"
 nodeSelector:
 feature.node.kubernetes.io/network-sriov.capable: "true"

$ oc label node <node_name> node-role.kubernetes.io/worker-dpdk-

OpenShift Container Platform 4.20 Virtualization

348

https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/scalability_and_performance/#using-cpu-manager
https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/scalability_and_performance/#configuring-huge-pages_huge-pages
https://access.redhat.com/solutions/5688941

1

2

11.9.2. Configuring a project for DPDK workloads

You can configure the project to run DPDK workloads on SR-IOV hardware.

Prerequisites

Your cluster is configured to run DPDK workloads.

You have installed the OpenShift CLI (oc).

Procedure

1. Create a namespace for your DPDK applications:

2. Create an SriovNetwork object that references the SriovNetworkNodePolicy object. When
you create an SriovNetwork object, the SR-IOV Network Operator automatically creates a
NetworkAttachmentDefinition object.

Example SriovNetwork manifest

The namespace where the NetworkAttachmentDefinition object is deployed.

The value of the spec.resourceName attribute of the SriovNetworkNodePolicy object
that was created when configuring the cluster for DPDK workloads.

3. Optional: Run the virtual machine latency checkup to verify that the network is properly

$ oc delete mcp worker-dpdk

$ oc create ns dpdk-ns

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetwork
metadata:
 name: dpdk-sriovnetwork
 namespace: openshift-sriov-network-operator
spec:
 ipam: |
 {
 "type": "host-local",
 "subnet": "10.56.217.0/24",
 "rangeStart": "10.56.217.171",
 "rangeEnd": "10.56.217.181",
 "routes": [{
 "dst": "0.0.0.0/0"
 }],
 "gateway": "10.56.217.1"
 }
 networkNamespace: dpdk-ns 1
 resourceName: intel_nics_dpdk 2
 spoofChk: "off"
 trust: "on"
 vlan: 1019

CHAPTER 11. NETWORKING

349

3. Optional: Run the virtual machine latency checkup to verify that the network is properly
configured.

Additional resources

Working with projects

Virtual machine latency checkup

11.9.3. Configuring a virtual machine for DPDK workloads

You can run Data Packet Development Kit (DPDK) workloads on virtual machines (VMs) to achieve
lower latency and higher throughput for faster packet processing in the user space. DPDK uses the SR-
IOV network for hardware-based I/O sharing.

Prerequisites

Your cluster is configured to run DPDK workloads.

You have created and configured the project in which the VM will run.

You have installed the OpenShift CLI (oc).

Procedure

1. Edit the VirtualMachine manifest to include information about the SR-IOV network interface,
CPU topology, CRI-O annotations, and huge pages:

Example VirtualMachine manifest

apiVersion: kubevirt.io/v1
kind: VirtualMachine
metadata:
 name: rhel-dpdk-vm
spec:
 runStrategy: Always
 template:
 metadata:
 annotations:
 cpu-load-balancing.crio.io: disable 1
 cpu-quota.crio.io: disable 2
 irq-load-balancing.crio.io: disable 3
 spec:
 domain:
 cpu:
 sockets: 1 4
 cores: 5 5
 threads: 2
 dedicatedCpuPlacement: true
 isolateEmulatorThread: true
 interfaces:
 - masquerade: {}
 name: default
 - model: virtio

OpenShift Container Platform 4.20 Virtualization

350

https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/building_applications/#working-with-projects

1

2

3

4

5

6

7

This annotation specifies that load balancing is disabled for CPUs that are used by the
container.

This annotation specifies that the CPU quota is disabled for CPUs that are used by the
container.

This annotation specifies that Interrupt Request (IRQ) load balancing is disabled for CPUs
that are used by the container.

The number of sockets inside the VM. This field must be set to 1 for the CPUs to be
scheduled from the same Non-Uniform Memory Access (NUMA) node.

The number of cores inside the VM. This must be a value greater than or equal to 1. In this
example, the VM is scheduled with 5 hyper-threads or 10 CPUs.

The size of the huge pages. The possible values for x86-64 architecture are 1Gi and 2Mi. In
this example, the request is for 8 huge pages of size 1Gi.

The name of the SR-IOV NetworkAttachmentDefinition object.

2. Save and exit the editor.

3. Apply the VirtualMachine manifest:

4. Configure the guest operating system. The following example shows the configuration steps for
RHEL 9 operating system:

a. Configure huge pages by using the GRUB bootloader command-line interface. In the
following example, 8 1G huge pages are specified.

b. To achieve low-latency tuning by using the cpu-partitioning profile in the TuneD
application, run the following commands:

 name: nic-east
 pciAddress: '0000:07:00.0'
 sriov: {}
 networkInterfaceMultiqueue: true
 rng: {}
 memory:
 hugepages:
 pageSize: 1Gi 6
 guest: 8Gi
 networks:
 - name: default
 pod: {}
 - multus:
 networkName: dpdk-net 7
 name: nic-east
...

$ oc apply -f <file_name>.yaml

$ grubby --update-kernel=ALL --args="default_hugepagesz=1GB hugepagesz=1G
hugepages=8"

CHAPTER 11. NETWORKING

351

The first two CPUs (0 and 1) are set aside for house keeping tasks and the rest are isolated
for the DPDK application.

c. Override the SR-IOV NIC driver by using the driverctl device driver control utility:

5. Restart the VM to apply the changes.

11.10. CONNECTING A VIRTUAL MACHINE TO AN OVN-KUBERNETES
LAYER 2 SECONDARY NETWORK

You can connect a virtual machine (VM) to an OVN-Kubernetes layer2 secondary network by using the
CLI.

A layer2 topology connects workloads by a cluster-wide logical switch. The OVN-Kubernetes Container
Network Interface (CNI) plugin uses the Geneve (Generic Network Virtualization Encapsulation)
protocol to create an overlay network between nodes. You can use this overlay network to connect VMs
on different nodes, without having to configure any additional physical networking infrastructure.

NOTE

An OVN-Kubernetes secondary network is compatible with the multi-network policy API
which provides the MultiNetworkPolicy custom resource definition (CRD) to control
traffic flow to and from VMs. You must use the ipBlock attribute to define network policy
ingress and egress rules for specific CIDR blocks. You cannot use pod or namespace
selectors for virtualization workloads.

To configure an OVN-Kubernetes layer2 secondary network and attach a VM to that network, perform
the following steps:

1. Configure an OVN-Kubernetes layer 2 secondary network .

2. Connect the VM to the OVN-Kubernetes layer 2 secondary network .

11.10.1. Creating an OVN-Kubernetes layer 2 NAD

You can create an OVN-Kubernetes network attachment definition (NAD) for the layer 2 network
topology by using the OpenShift Container Platform web console or the CLI.

NOTE

$ dnf install -y tuned-profiles-cpu-partitioning

$ echo isolated_cores=2-9 > /etc/tuned/cpu-partitioning-variables.conf

$ tuned-adm profile cpu-partitioning

$ dnf install -y driverctl

$ driverctl set-override 0000:07:00.0 vfio-pci

OpenShift Container Platform 4.20 Virtualization

352

https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/multiple_networks/#compatibility-with-multi-network-policy_configuring-additional-network

1

2

3

4

5

6

NOTE

Configuring IP address management (IPAM) by specifying the spec.config.ipam.subnet
attribute in a network attachment definition for virtual machines is not supported.

11.10.1.1. Creating a NAD for layer 2 topology by using the CLI

You can create a network attachment definition (NAD) which describes how to attach a pod to the layer
2 overlay network.

Prerequisites

You have access to the cluster as a user with cluster-admin privileges.

You have installed the OpenShift CLI (oc).

Procedure

1. Create a NetworkAttachmentDefinition object:

The Container Network Interface (CNI) specification version. The required value is 0.3.1.

The name of the network. This attribute is not namespaced. For example, you can have a
network named l2-network referenced from two different NetworkAttachmentDefinition
objects that exist in two different namespaces. This feature is useful to connect VMs in
different namespaces.

The name of the CNI plugin. The required value is ovn-k8s-cni-overlay.

The topological configuration for the network. The required value is layer2.

Optional: The maximum transmission unit (MTU) value. If you do not set a value, the
Cluster Network Operator (CNO) sets a default MTU value by calculating the difference
among the underlay MTU of the primary network interface, the overlay MTU of the pod
network, such as the Geneve (Generic Network Virtualization Encapsulation), and byte
capacity of any enabled features, such as IPsec.

The value of the namespace and name fields in the metadata stanza of the
NetworkAttachmentDefinition object.

apiVersion: k8s.cni.cncf.io/v1
kind: NetworkAttachmentDefinition
metadata:
 name: l2-network
 namespace: my-namespace
spec:
 config: |-
 {
 "cniVersion": "0.3.1", 1
 "name": "my-namespace-l2-network", 2
 "type": "ovn-k8s-cni-overlay", 3
 "topology":"layer2", 4
 "mtu": 1400, 5
 "netAttachDefName": "my-namespace/l2-network" 6
 }

CHAPTER 11. NETWORKING

353

NetworkAttachmentDefinition object.

NOTE

The previous example configures a cluster-wide overlay without a subnet
defined. This means that the logical switch implementing the network only
provides layer 2 communication. You must configure an IP address when you
create the virtual machine by either setting a static IP address or by deploying a
DHCP server on the network for a dynamic IP address.

2. Apply the manifest by running the following command:

11.10.1.2. Creating a NAD for layer 2 topology by using the web console

You can create a network attachment definition (NAD) that describes how to attach a pod to the layer 2
overlay network.

Prerequisites

You have access to the cluster as a user with cluster-admin privileges.

Procedure

1. Go to Networking → NetworkAttachmentDefinitions in the web console.

2. Click Create Network Attachment Definition. The network attachment definition must be in
the same namespace as the pod or virtual machine using it.

3. Enter a unique Name and optional Description.

4. Select OVN Kubernetes L2 overlay network from the Network Type list.

5. Click Create.

11.10.2. Attaching a virtual machine to the OVN-Kubernetes layer 2 secondary
network

You can attach a virtual machine (VM) to the OVN-Kubernetes layer 2 secondary network interface by
using the OpenShift Container Platform web console or the CLI.

11.10.2.1. Attaching a virtual machine to an OVN-Kubernetes secondary network using the
CLI

You can connect a virtual machine (VM) to the OVN-Kubernetes secondary network by including the
network details in the VM configuration.

Prerequisites

You have access to the cluster as a user with cluster-admin privileges.

You have installed the OpenShift CLI (oc).

$ oc apply -f <filename>.yaml

OpenShift Container Platform 4.20 Virtualization

354

1

2

3

4

Procedure

1. Edit the VirtualMachine manifest to add the OVN-Kubernetes secondary network interface
details, as in the following example:

The name of the OVN-Kubernetes secondary interface.

The name of the network. This must match the value of the
spec.template.spec.domain.devices.interfaces.name field.

The name of the NetworkAttachmentDefinition object.

Specifies the nodes on which the VM can be scheduled. The recommended node selector
value is node-role.kubernetes.io/worker: ''.

2. Apply the VirtualMachine manifest:

3. Optional: If you edited a running virtual machine, you must restart it for the changes to take
effect.

11.10.3. Additional resources

Creating secondary networks on OVN-Kubernetes

About the Kubernetes NMState Operator

Creating primary networks using a NetworkAttachmentDefinition

apiVersion: kubevirt.io/v1
kind: VirtualMachine
metadata:
 name: vm-server
spec:
 runStrategy: Always
 template:
 spec:
 domain:
 devices:
 interfaces:
 - name: secondary 1
 bridge: {}
 resources:
 requests:
 memory: 1024Mi
 networks:
 - name: secondary 2
 multus:
 networkName: <nad_name> 3
 nodeSelector:
 node-role.kubernetes.io/worker: '' 4
...

$ oc apply -f <filename>.yaml

CHAPTER 11. NETWORKING

355

https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/multiple_networks/#configuration-ovnk-additional-networks_configuring-additional-network
https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/networking_operators/#k8s-nmstate-about-the-k8s-nmstate-operator
https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/multiple_networks/#understanding-multiple-networks

11.11. HOT PLUGGING SECONDARY NETWORK INTERFACES

You can add or remove secondary network interfaces without stopping your virtual machine (VM).
OpenShift Virtualization supports hot plugging and hot unplugging for secondary interfaces that use
bridge binding and the VirtIO device driver. OpenShift Virtualization also supports hot plugging
secondary interfaces that use SR-IOV binding. To hot plug or hot unplug a secondary interface, you
must have permission to create and list VirtualMachineInstanceMigration objects.

NOTE

Hot unplugging is not supported for Single Root I/O Virtualization (SR-IOV) interfaces.

11.11.1. VirtIO limitations

Each VirtIO interface uses one of the limited Peripheral Connect Interface (PCI) slots in the VM. There
are a total of 32 slots available. The PCI slots are also used by other devices and must be reserved in
advance, therefore slots might not be available on demand. OpenShift Virtualization reserves up to four
slots for hot plugging interfaces. This includes any existing plugged network interfaces. For example, if
your VM has two existing plugged interfaces, you can hot plug two more network interfaces.

NOTE

The actual number of slots available for hot plugging also depends on the machine type.
For example, the default PCI topology for the q35 machine type supports hot plugging
one additional PCIe device. For more information on PCI topology and hot plug support,
see the libvirt documentation.

If you restart the VM after hot plugging an interface, that interface becomes part of the standard
network interfaces.

11.11.2. Hot plugging a secondary network interface by using the CLI

Hot plug a secondary network interface to a virtual machine (VM) while the VM is running.

Prerequisites

A network attachment definition is configured in the same namespace as your VM.

The VM to which you want to hot plug the network interface is running.

You have installed the OpenShift CLI (oc).

Procedure

1. Use your preferred text editor to edit the VirtualMachine manifest, as shown in the following
example:

Example VM configuration

apiVersion: kubevirt.io/v1
kind: VirtualMachine
metadata:
 name: vm-fedora

OpenShift Container Platform 4.20 Virtualization

356

https://libvirt.org/pci-hotplug.html

1

2

3

Specifies the name of the new network interface.

Specifies the name of the network. This must be the same as the name of the new network
interface that you defined in the template.spec.domain.devices.interfaces list.

Specifies the name of the NetworkAttachmentDefinition object.

2. Save your changes and exit the editor.

3. For the new configuration to take effect, apply the changes by running the following command.
Applying the changes triggers automatic VM live migration and attaches the network interface
to the running VM.

where:

<filename>

Specifies the name of your VirtualMachine manifest YAML file.

Verification

1. Verify that the VM live migration is successful by using the following command:

Example output

template:
 spec:
 domain:
 devices:
 interfaces:
 - name: defaultnetwork
 masquerade: {}
 # new interface
 - name: <secondary_nic> 1
 bridge: {}
 networks:
 - name: defaultnetwork
 pod: {}
 # new network
 - name: <secondary_nic> 2
 multus:
 networkName: <nad_name> 3
...

$ oc apply -f <filename>.yaml

$ oc get VirtualMachineInstanceMigration -w

NAME PHASE VMI
kubevirt-migrate-vm-lj62q Scheduling vm-fedora
kubevirt-migrate-vm-lj62q Scheduled vm-fedora
kubevirt-migrate-vm-lj62q PreparingTarget vm-fedora

CHAPTER 11. NETWORKING

357

1

2. Verify that the new interface is added to the VM by checking the status of the virtual machine
instance (VMI):

Example output

The hot plugged interface appears in the VMI status.

11.11.3. Hot unplugging a secondary network interface by using the CLI

You can remove a secondary network interface from a running virtual machine (VM).

NOTE

Hot unplugging is not supported for Single Root I/O Virtualization (SR-IOV) interfaces.

Prerequisites

Your VM must be running.

The VM must be created on a cluster running OpenShift Virtualization 4.14 or later.

The VM must have a bridge network interface attached.

You have installed the OpenShift CLI (oc).

Procedure

kubevirt-migrate-vm-lj62q TargetReady vm-fedora
kubevirt-migrate-vm-lj62q Running vm-fedora
kubevirt-migrate-vm-lj62q Succeeded vm-fedora

$ oc get vmi vm-fedora -ojsonpath="{ @.status.interfaces }"

[
 {
 "infoSource": "domain, guest-agent",
 "interfaceName": "eth0",
 "ipAddress": "10.130.0.195",
 "ipAddresses": [
 "10.130.0.195",
 "fd02:0:0:3::43c"
],
 "mac": "52:54:00:0e:ab:25",
 "name": "default",
 "queueCount": 1
 },
 {
 "infoSource": "domain, guest-agent, multus-status",
 "interfaceName": "eth1",
 "mac": "02:d8:b8:00:00:2a",
 "name": "bridge-interface", 1
 "queueCount": 1
 }
]

OpenShift Container Platform 4.20 Virtualization

358

1

Procedure

1. Using your preferred text editor, edit the VirtualMachine manifest file and set the interface
state to absent. Setting the interface state to absent detaches the network interface from the
guest, but the interface still exists in the pod.

Example VM configuration

Set the interface state to absent to detach it from the running VM. Removing the
interface details from the VM specification does not hot unplug the secondary network
interface.

2. Save your changes and exit the editor.

3. For the new configuration to take effect, apply the changes by running the following command.
Applying the changes triggers automatic VM live migration and removes the interface from the
pod.

where:

<filename>

Specifies the name of your VirtualMachine manifest YAML file.

11.11.4. Additional resources

Installing virtctl

About live migration permissions

apiVersion: kubevirt.io/v1
kind: VirtualMachine
metadata:
 name: vm-fedora
template:
 spec:
 domain:
 devices:
 interfaces:
 - name: defaultnetwork
 masquerade: {}
 # set the interface state to absent
 - name: <secondary_nic>
 state: absent 1
 bridge: {}
 networks:
 - name: defaultnetwork
 pod: {}
 - name: <secondary_nic>
 multus:
 networkName: <nad_name>
...

$ oc apply -f <filename>.yaml

CHAPTER 11. NETWORKING

359

Creating a Linux bridge network attachment definition

Connecting a virtual machine to a Linux bridge network

Creating an SR-IOV network attachment definition

Connecting a virtual machine to an SR-IOV network

11.12. MANAGING THE LINK STATE OF A VIRTUAL MACHINE
INTERFACE

You can manage the link state of a primary or secondary virtual machine (VM) interface by using the
OpenShift Container Platform web console or the CLI. By specifying the link state, you can logically
connect or disconnect the virtual network interface controller (vNIC) from a network.

NOTE

OpenShift Virtualization does not support link state management for Single Root I/O
Virtualization (SR-IOV) secondary network interfaces and their link states are not
reported.

You can specify the desired link state when you first create a VM, by editing the configuration of an
existing VM that is stopped or running, or when you hot plug a new network interface to a running VM. If
you edit a running VM, you do not need to restart or migrate the VM for the changes to be applied. The
current link state of a VM interface is reported in the status.interfaces.linkState field of the
VirtualMachineInstance manifest.

11.12.1. Setting the VM interface link state by using the web console

You can set the link state of a primary or secondary virtual machine (VM) network interface by using the
web console.

Prerequisites

You are logged into the OpenShift Container Platform web console.

Procedure

1. Navigate to Virtualization → VirtualMachines.

2. Select a VM to view the VirtualMachine details page.

3. On the Configuration tab, click Network. A list of network interfaces is displayed.

4. Click the Options menu of the interface that you want to edit.

5. Choose the appropriate option to set the interface link state:

If the current interface link state is up, select Set link down.

If the current interface link state is down, select Set link up.

OpenShift Container Platform 4.20 Virtualization

360

1

2

11.12.2. Setting the VM interface link state by using the CLI

You can set the link state of a primary or secondary virtual machine (VM) network interface by using the
CLI.

Prerequisites

You have installed the OpenShift CLI (oc).

Procedure

1. Edit the VM configuration to set the interface link state, as in the following example:

The name of the interface.

The state of the interface. The possible values are:

up: Represents an active network connection. This is the default if no value is specified.

down: Represents a network interface link that is switched off.

absent: Represents a network interface that is hot unplugged.

IMPORTANT

If you have defined readiness or liveness probes to run VM health
checks, setting the primary interface’s link state to down causes the
probes to fail. If a liveness probe fails, the VM is deleted and a new VM is
created to restore responsiveness.

2. Apply the VirtualMachine manifest:

apiVersion: kubevirt.io/v1
kind: VirtualMachine
metadata:
 name: my-vm
spec:
 template:
 spec:
 domain:
 devices:
 interfaces:
 - name: default 1
 state: down 2
 masquerade: { }
 networks:
 - name: default
 pod: { }
...

$ oc apply -f <filename>.yaml

CHAPTER 11. NETWORKING

361

Verification

Verify that the desired link state is set by checking the status.interfaces.linkState field of the
VirtualMachineInstance manifest.

Example output

11.13. CONNECTING A VIRTUAL MACHINE TO A SERVICE MESH

OpenShift Virtualization is now integrated with OpenShift Service Mesh. You can monitor, visualize, and
control traffic between pods that run virtual machine workloads on the default pod network with IPv4.

11.13.1. Adding a virtual machine to a service mesh

To add a virtual machine (VM) workload to a service mesh, enable automatic sidecar injection in the VM
configuration file by setting the sidecar.istio.io/inject annotation to true. Then expose your VM as a
service to view your application in the mesh.

IMPORTANT

To avoid port conflicts, do not use ports used by the Istio sidecar proxy. These include
ports 15000, 15001, 15006, 15008, 15020, 15021, and 15090.

Prerequisites

You have installed the OpenShift CLI (oc).

You have installed the Service Mesh Operator.

Procedure

$ oc get vmi <vmi-name>

apiVersion: kubevirt.io/v1
kind: VirtualMachineInstance
metadata:
 name: my-vm
spec:
 domain:
 devices:
 interfaces:
 - name: default
 state: down
 masquerade: { }
 networks:
 - name: default
 pod: { }
status:
 interfaces:
 - name: default
 linkState: down
...

OpenShift Container Platform 4.20 Virtualization

362

1

2

3

1. Edit the VM configuration file to add the sidecar.istio.io/inject: "true" annotation:

Example configuration file

The key/value pair (label) that must be matched to the service selector attribute.

The annotation to enable automatic sidecar injection.

The binding method (masquerade mode) for use with the default pod network.

2. Apply the VM configuration:

apiVersion: kubevirt.io/v1
kind: VirtualMachine
metadata:
 labels:
 kubevirt.io/vm: vm-istio
 name: vm-istio
spec:
 runStrategy: Always
 template:
 metadata:
 labels:
 kubevirt.io/vm: vm-istio
 app: vm-istio 1
 annotations:
 sidecar.istio.io/inject: "true" 2
 spec:
 domain:
 devices:
 interfaces:
 - name: default
 masquerade: {} 3
 disks:
 - disk:
 bus: virtio
 name: containerdisk
 - disk:
 bus: virtio
 name: cloudinitdisk
 resources:
 requests:
 memory: 1024M
 networks:
 - name: default
 pod: {}
 terminationGracePeriodSeconds: 180
 volumes:
 - containerDisk:
 image: registry:5000/kubevirt/fedora-cloud-container-disk-demo:devel
 name: containerdisk

$ oc apply -f <vm_name>.yaml 1

CHAPTER 11. NETWORKING

363

1

1

1

The name of the virtual machine YAML file.

3. Create a Service object to expose your VM to the service mesh.

The service selector that determines the set of pods targeted by a service. This attribute
corresponds to the spec.metadata.labels field in the VM configuration file. In the above
example, the Service object named vm-istio targets TCP port 8080 on any pod with the
label app=vm-istio.

4. Create the service:

The name of the service YAML file.

11.13.2. Additional resources

Installing the Service Mesh Operator

11.14. CONFIGURING A DEDICATED NETWORK FOR LIVE MIGRATION

You can configure a dedicated Multus network for live migration. A dedicated network minimizes the
effects of network saturation on tenant workloads during live migration.

11.14.1. Configuring a dedicated secondary network for live migration

To configure a dedicated secondary network for live migration, you must first create a bridge network
attachment definition (NAD) by using the CLI. Then, you add the name of the
NetworkAttachmentDefinition object to the HyperConverged custom resource (CR).

Prerequisites

You installed the OpenShift CLI (oc).

You logged in to the cluster as a user with the cluster-admin role.

Each node has at least two Network Interface Cards (NICs).

The NICs for live migration are connected to the same VLAN.

apiVersion: v1
kind: Service
metadata:
 name: vm-istio
spec:
 selector:
 app: vm-istio 1
 ports:
 - port: 8080
 name: http
 protocol: TCP

$ oc create -f <service_name>.yaml 1

OpenShift Container Platform 4.20 Virtualization

364

https://docs.redhat.com/en/documentation/red_hat_openshift_service_mesh/3.0/html/installing/ossm-installing-service-mesh

1

2

3

4

Procedure

1. Create a NetworkAttachmentDefinition manifest according to the following example:

Example configuration file

Specify the name of the NetworkAttachmentDefinition object.

Specify the name of the NIC to be used for live migration.

Specify the name of the CNI plugin that provides the network for the NAD.

Specify an IP address range for the secondary network. This range must not overlap the IP
addresses of the main network.

2. Open the HyperConverged CR in your default editor by running the following command:

3. Add the name of the NetworkAttachmentDefinition object to the spec.liveMigrationConfig
stanza of the HyperConverged CR:

Example HyperConverged manifest

apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:
 name: my-secondary-network 1
 namespace: openshift-cnv
spec:
 config: '{
 "cniVersion": "0.3.1",
 "name": "migration-bridge",
 "type": "macvlan",
 "master": "eth1", 2
 "mode": "bridge",
 "ipam": {
 "type": "whereabouts", 3
 "range": "10.200.5.0/24" 4
 }
 }'

$ oc edit hyperconverged kubevirt-hyperconverged -n openshift-cnv

apiVersion: hco.kubevirt.io/v1beta1
kind: HyperConverged
metadata:
 name: kubevirt-hyperconverged
 namespace: openshift-cnv
spec:
 liveMigrationConfig:
 completionTimeoutPerGiB: 800
 network: <network> 1
 parallelMigrationsPerCluster: 5

CHAPTER 11. NETWORKING

365

1 Specify the name of the Multus NetworkAttachmentDefinition object to be used for live
migrations.

4. Save your changes and exit the editor. The virt-handler pods restart and connect to the
secondary network.

Verification

When the node that the virtual machine runs on is placed into maintenance mode, the VM
automatically migrates to another node in the cluster. You can verify that the migration
occurred over the secondary network and not the default pod network by checking the target IP
address in the virtual machine instance (VMI) metadata.

11.14.2. Selecting a dedicated network by using the web console

You can select a dedicated network for live migration by using the OpenShift Container Platform web
console.

Prerequisites

You configured a Multus network for live migration.

You created a network attachment definition for the network.

Procedure

1. Navigate to Virtualization > Overview in the OpenShift Container Platform web console.

2. Click the Settings tab and then click Live migration.

3. Select the network from the Live migration network list.

11.14.3. Additional resources

Configuring live migration limits and timeouts

11.15. CONFIGURING AND VIEWING IP ADDRESSES

You can configure an IP address when you create a virtual machine (VM). The IP address is provisioned
with cloud-init.

You can view the IP address of a VM by using the OpenShift Container Platform web console or the
command line. The network information is collected by the QEMU guest agent.

11.15.1. Configuring IP addresses for virtual machines

You can configure a static IP address when you create a virtual machine (VM) by using the web console

 parallelOutboundMigrationsPerNode: 2
 progressTimeout: 150
...

$ oc get vmi <vmi_name> -o jsonpath='{.status.migrationState.targetNodeAddress}'

OpenShift Container Platform 4.20 Virtualization

366

1

You can configure a static IP address when you create a virtual machine (VM) by using the web console
or the command line.

You can configure a dynamic IP address when you create a VM by using the command line.

The IP address is provisioned with cloud-init.

11.15.1.1. Configuring an IP address when creating a virtual machine by using the CLI

You can configure a static or dynamic IP address when you create a virtual machine (VM). The IP
address is provisioned with cloud-init.

NOTE

If the VM is connected to the pod network, the pod network interface is the default route
unless you update it.

Prerequisites

The virtual machine is connected to a secondary network.

You have a DHCP server available on the secondary network to configure a dynamic IP for the
virtual machine.

Procedure

Edit the spec.template.spec.volumes.cloudInitNoCloud.networkData stanza of the virtual
machine configuration:

To configure a dynamic IP address, specify the interface name and enable DHCP:

Specify the interface name.

To configure a static IP, specify the interface name and the IP address:

kind: VirtualMachine
spec:
...
 template:
 # ...
 spec:
 volumes:
 - cloudInitNoCloud:
 networkData: |
 version: 2
 ethernets:
 eth1: 1
 dhcp4: true

kind: VirtualMachine
spec:
...
 template:
 # ...

CHAPTER 11. NETWORKING

367

1

2

Specify the interface name.

Specify the static IP address.

11.15.2. Viewing IP addresses of virtual machines

You can view the IP address of a VM by using the OpenShift Container Platform web console or the
command line.

The network information is collected by the QEMU guest agent.

11.15.2.1. Viewing the IP address of a virtual machine by using the web console

You can view the IP address of a virtual machine (VM) by using the OpenShift Container Platform web
console.

NOTE

You must install the QEMU guest agent on a VM to view the IP address of a secondary
network interface. A pod network interface does not require the QEMU guest agent.

Procedure

1. In the OpenShift Container Platform console, click Virtualization → VirtualMachines from the
side menu.

2. Select a VM to open the VirtualMachine details page.

3. Click the Details tab to view the IP address.

11.15.2.2. Viewing the IP address of a virtual machine by using the CLI

You can view the IP address of a virtual machine (VM) by using the command line.

NOTE

You must install the QEMU guest agent on a VM to view the IP address of a secondary
network interface. A pod network interface does not require the QEMU guest agent.

Prerequisites

You have installed the OpenShift CLI (oc).

 spec:
 volumes:
 - cloudInitNoCloud:
 networkData: |
 version: 2
 ethernets:
 eth1: 1
 addresses:
 - 10.10.10.14/24 2

OpenShift Container Platform 4.20 Virtualization

368

Procedure

Obtain the virtual machine instance configuration by running the following command:

Example output

11.15.3. Additional resources

Installing the QEMU guest agent

11.16. ACCESSING A VIRTUAL MACHINE BY USING ITS EXTERNAL
FQDN

You can access a virtual machine (VM) that is attached to a secondary network interface from outside
the cluster by using its fully qualified domain name (FQDN).

IMPORTANT

$ oc describe vmi <vmi_name>

...
Interfaces:
 Interface Name: eth0
 Ip Address: 10.244.0.37/24
 Ip Addresses:
 10.244.0.37/24
 fe80::858:aff:fef4:25/64
 Mac: 0a:58:0a:f4:00:25
 Name: default
 Interface Name: v2
 Ip Address: 1.1.1.7/24
 Ip Addresses:
 1.1.1.7/24
 fe80::f4d9:70ff:fe13:9089/64
 Mac: f6:d9:70:13:90:89
 Interface Name: v1
 Ip Address: 1.1.1.1/24
 Ip Addresses:
 1.1.1.1/24
 1.1.1.2/24
 1.1.1.4/24
 2001:de7:0:f101::1/64
 2001:db8:0:f101::1/64
 fe80::1420:84ff:fe10:17aa/64
 Mac: 16:20:84:10:17:aa

CHAPTER 11. NETWORKING

369

1

IMPORTANT

Accessing a VM from outside the cluster by using its FQDN is a Technology Preview
feature only. Technology Preview features are not supported with Red Hat production
service level agreements (SLAs) and might not be functionally complete. Red Hat does
not recommend using them in production. These features provide early access to
upcoming product features, enabling customers to test functionality and provide
feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

11.16.1. Configuring a DNS server for secondary networks

The Cluster Network Addons Operator (CNAO) deploys a Domain Name Server (DNS) server and
monitoring components when you enable the deployKubeSecondaryDNS feature gate in the
HyperConverged custom resource (CR).

Prerequisites

You installed the OpenShift CLI (oc).

You configured a load balancer for the cluster.

You logged in to the cluster with cluster-admin permissions.

Procedure

1. Edit the HyperConverged CR in your default editor by running the following command:

2. Enable the DNS server and monitoring components according to the following example:

Enables the DNS server

3. Save the file and exit the editor.

4. Create a load balancer service to expose the DNS server outside the cluster by running the oc
expose command according to the following example:

$ oc edit hyperconverged kubevirt-hyperconverged -n openshift-cnv

apiVersion: hco.kubevirt.io/v1beta1
kind: HyperConverged
metadata:
 name: kubevirt-hyperconverged
 namespace: openshift-cnv
spec:
 featureGates:
 deployKubeSecondaryDNS: true 1
...

$ oc expose -n openshift-cnv deployment/secondary-dns --name=dns-lb \
 --type=LoadBalancer --port=53 --target-port=5353 --protocol='UDP'

OpenShift Container Platform 4.20 Virtualization

370

https://access.redhat.com/support/offerings/techpreview/

1

5. Retrieve the external IP address by running the following command:

Example output

6. Edit the HyperConverged CR again:

7. Add the external IP address that you previously retrieved to the
kubeSecondaryDNSNameServerIP field in the enterprise DNS server records. For example:

Specify the external IP address exposed by the load balancer service.

8. Save the file and exit the editor.

9. Retrieve the cluster FQDN by running the following command:

Example output

10. Point to the DNS server. To do so, add the kubeSecondaryDNSNameServerIP value and the
cluster FQDN to the enterprise DNS server records. For example:

11.16.2. Connecting to a VM on a secondary network by using the cluster FQDN

You can access a running virtual machine (VM) attached to a secondary network interface by using the
fully qualified domain name (FQDN) of the cluster.

$ oc get service -n openshift-cnv

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
dns-lb LoadBalancer 172.30.27.5 10.46.41.94 53:31829/TCP 5s

$ oc edit hyperconverged kubevirt-hyperconverged -n openshift-cnv

apiVersion: hco.kubevirt.io/v1beta1
kind: HyperConverged
metadata:
 name: kubevirt-hyperconverged
 namespace: openshift-cnv
spec:
 featureGates:
 deployKubeSecondaryDNS: true
 kubeSecondaryDNSNameServerIP: "10.46.41.94" 1
...

 $ oc get dnses.config.openshift.io cluster -o jsonpath='{.spec.baseDomain}'

openshift.example.com

vm.<FQDN>. IN NS ns.vm.<FQDN>.

ns.vm.<FQDN>. IN A <kubeSecondaryDNSNameServerIP>

CHAPTER 11. NETWORKING

371

1

Prerequisites

You installed the OpenShift CLI (oc).

You installed the QEMU guest agent on the VM.

The IP address of the VM is public.

You configured the DNS server for secondary networks.

You retrieved the fully qualified domain name (FQDN) of the cluster.
To obtain the FQDN, use the oc get command as follows:

Procedure

1. Retrieve the network interface name from the VM configuration by running the following
command:

Example output

Note the name of the network interface.

2. Connect to the VM by using the ssh command:

11.16.3. Additional resources

Configuring ingress cluster traffic using a load balancer

$ oc get dnses.config.openshift.io cluster -o json | jq .spec.baseDomain

$ oc get vm -n <namespace> <vm_name> -o yaml

apiVersion: kubevirt.io/v1
kind: VirtualMachine
metadata:
 name: example-vm
 namespace: example-namespace
spec:
 runStrategy: Always
 template:
 spec:
 domain:
 devices:
 interfaces:
 - bridge: {}
 name: example-nic
...
 networks:
 - multus:
 networkName: bridge-conf
 name: example-nic 1

$ ssh <user_name>@<interface_name>.<vm_name>.<namespace>.vm.<cluster_fqdn>

OpenShift Container Platform 4.20 Virtualization

372

https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/ingress_and_load_balancing/#configuring-ingress-cluster-traffic-load-balancer

About MetalLB and the MetalLB Operator

Configuring IP addresses for virtual machines

11.17. MANAGING MAC ADDRESS POOLS FOR NETWORK INTERFACES

The KubeMacPool component allocates MAC addresses for virtual machine (VM) network interfaces
from a shared MAC address pool. This ensures that each network interface is assigned a unique MAC
address.

A virtual machine instance created from that VM retains the assigned MAC address across reboots.

NOTE

KubeMacPool does not handle virtual machine instances created independently from a
virtual machine.

11.17.1. Managing KubeMacPool by using the CLI

You can disable and re-enable KubeMacPool by using the command line.

KubeMacPool is enabled by default.

Prerequisites

You have installed the OpenShift CLI (oc).

Procedure

To disable KubeMacPool in two namespaces, run the following command:

To re-enable KubeMacPool in two namespaces, run the following command:

$ oc label namespace <namespace1> <namespace2>
mutatevirtualmachines.kubemacpool.io=ignore

$ oc label namespace <namespace1> <namespace2>
mutatevirtualmachines.kubemacpool.io-

CHAPTER 11. NETWORKING

373

https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/networking_operators/#about-metallb_about-metallb

CHAPTER 12. STORAGE

12.1. STORAGE CONFIGURATION OVERVIEW

You can configure a default storage class, storage profiles, Containerized Data Importer (CDI), data
volumes, and automatic boot source updates.

12.1.1. Storage

The following storage configuration tasks are mandatory:

Configure a default storage class

You must configure a default storage class for your cluster. Otherwise, the cluster cannot receive
automated boot source updates.

Configure storage profiles

You must configure storage profiles if your storage provider is not recognized by CDI. A storage
profile provides recommended storage settings based on the associated storage class.

The following storage configuration tasks are optional:

Reserve additional PVC space for file system overhead

By default, 5.5% of a file system PVC is reserved for overhead, reducing the space available for VM
disks by that amount. You can configure a different overhead value.

Configure local storage by using the hostpath provisioner

You can configure local storage for virtual machines by using the hostpath provisioner (HPP). When
you install the OpenShift Virtualization Operator, the HPP Operator is automatically installed.

Configure user permissions to clone data volumes between namespaces

You can configure RBAC roles to enable users to clone data volumes between namespaces.

12.1.2. Containerized Data Importer

You can perform the following Containerized Data Importer (CDI) configuration tasks:

Override the resource request limits of a namespace

You can configure CDI to import, upload, and clone VM disks into namespaces that are subject to
CPU and memory resource restrictions.

Configure CDI scratch space

CDI requires scratch space (temporary storage) to complete some operations, such as importing and
uploading VM images. During this process, CDI provisions a scratch space PVC equal to the size of
the PVC backing the destination data volume (DV).

12.1.3. Data volumes

You can perform the following data volume configuration tasks:

Enable preallocation for data volumes

CDI can preallocate disk space to improve write performance when creating data volumes. You can
enable preallocation for specific data volumes.

Manage data volume annotations

Data volume annotations allow you to manage pod behavior. You can add one or more annotations

OpenShift Container Platform 4.20 Virtualization

374

https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/storage/#defining-storage-classes_dynamic-provisioning

Data volume annotations allow you to manage pod behavior. You can add one or more annotations
to a data volume, which then propagates to the created importer pods.

12.1.4. Boot source updates

You can perform the following boot source update configuration task:

Manage automatic boot source updates

Boot sources can make virtual machine (VM) creation more accessible and efficient for users. If
automatic boot source updates are enabled, CDI imports, polls, and updates the images so that they
are ready to be cloned for new VMs. By default, CDI automatically updates Red Hat boot sources.
You can enable automatic updates for custom boot sources.

12.2. CONFIGURING STORAGE PROFILES

A storage profile provides recommended storage settings based on the associated storage class. A
storage profile is allocated for each storage class.

The Containerized Data Importer (CDI) recognizes a storage provider if it has been configured to
identify and interact with the storage provider’s capabilities.

For recognized storage types, the CDI provides values that optimize the creation of PVCs. You can also
configure automatic settings for the storage class by customizing the storage profile. If the CDI does not
recognize your storage provider, you must configure storage profiles.

IMPORTANT

When using OpenShift Virtualization with Red Hat OpenShift Data Foundation, specify
RBD block mode persistent volume claims (PVCs) when creating virtual machine disks.
RBD block mode volumes are more efficient and provide better performance than Ceph
FS or RBD filesystem-mode PVCs.

To specify RBD block mode PVCs, use the 'ocs-storagecluster-ceph-rbd' storage class
and VolumeMode: Block.

12.2.1. Customizing the storage profile

You can specify default parameters by editing the StorageProfile object for the provisioner’s storage
class. These default parameters only apply to the persistent volume claim (PVC) if they are not
configured in the DataVolume object.

You cannot modify storage class parameters. To make changes, delete and re-create the storage class.
You must then reapply any customizations that were previously made to the storage profile.

An empty status section in a storage profile indicates that a storage provisioner is not recognized by the
Containerized Data Importer (CDI). Customizing a storage profile is necessary if you have a storage
provisioner that is not recognized by CDI. In this case, the administrator sets appropriate values in the
storage profile to ensure successful allocations.

If you are creating a snapshot of a VM, a warning appears if the storage class of the disk has more than
one VolumeSnapshotClass associated with it. In this case, you must specify one volume snapshot class;
otherwise, any disk that has more than one volume snapshot class is excluded from the snapshots list.

CHAPTER 12. STORAGE

375

1

2

WARNING

If you create a data volume and omit YAML attributes and these attributes are not
defined in the storage profile, then the requested storage will not be allocated and
the underlying persistent volume claim (PVC) will not be created.

Prerequisites

You have installed the OpenShift CLI (oc).

Ensure that your planned configuration is supported by the storage class and its provider.
Specifying an incompatible configuration in a storage profile causes volume provisioning to fail.

Procedure

1. Edit the storage profile. In this example, the provisioner is not recognized by CDI.

2. Specify the accessModes and volumeMode values you want to configure for the storage
profile. For example:

Example storage profile

Specify the accessModes.

Specify the volumeMode.

12.2.1.1. Specifying a volume snapshot class by using the web console

If you are creating a snapshot of a VM, a warning appears if the storage class of the disk has more than
one volume snapshot class associated with it. In this case, you must specify one volume snapshot class;
otherwise, any disk that has more than one volume snapshot class is excluded from the snapshots list.

You can specify the default volume snapshot class in the OpenShift Container Platform web console.



$ oc edit storageprofile <storage_class>

apiVersion: cdi.kubevirt.io/v1beta1
kind: StorageProfile
metadata:
 name: <unknown_provisioner_class>
...
spec:
 claimPropertySets:
 - accessModes:
 - ReadWriteOnce 1
 volumeMode: Filesystem 2
status:
 provisioner: <unknown_provisioner>
 storageClass: <unknown_provisioner_class>

OpenShift Container Platform 4.20 Virtualization

376

Procedure

1. From the Virtualization focused view, select Storage.

2. Click VolumeSnapshotClasses.

3. Select a volume snapshot class from the list.

4. Click the Annotations pencil icon.

5. Enter the following Key: snapshot.storage.kubernetes.io/is-default-class.

6. Enter the following Value: true.

7. Click Save.

12.2.1.2. Specifying a volume snapshot class by using the CLI

If you are creating a snapshot of a VM, a warning appears if the storage class of the disk has more than
one volume snapshot class associated with it. In this case, you must specify one volume snapshot class;
otherwise, any disk that has more than one volume snapshot class is excluded from the snapshots list.

You can select which volume snapshot class to use by either:

Setting the spec.snapshotClass for the storage profile.

Setting a default volume snapshot class.

Prerequisites

You have installed the OpenShift CLI (oc).

Procedure

Set the VolumeSnapshotClass you want to use. For example:

Alternatively, set the default volume snapshot class by running the following command:

12.2.1.3. Viewing automatically created storage profiles

The system creates storage profiles for each storage class automatically.

Prerequisites

apiVersion: cdi.kubevirt.io/v1beta1
kind: StorageProfile
metadata:
 name: ocs-storagecluster-ceph-rbd-virtualization
spec:
 snapshotClass: ocs-storagecluster-rbdplugin-snapclass

oc patch VolumeSnapshotClass ocs-storagecluster-cephfsplugin-snapclass --type=merge -
p '{"metadata":{"annotations":{"snapshot.storage.kubernetes.io/is-default-class":"true"}}}'

CHAPTER 12. STORAGE

377

You have installed the OpenShift CLI (oc).

Procedure

1. To view the list of storage profiles, run the following command:

2. To fetch the details of a particular storage profile, run the following command:

Example storage profile details

$ oc get storageprofile

$ oc describe storageprofile <name>

Name: ocs-storagecluster-ceph-rbd-virtualization
Namespace:
Labels: app=containerized-data-importer
 app.kubernetes.io/component=storage
 app.kubernetes.io/managed-by=cdi-controller
 app.kubernetes.io/part-of=hyperconverged-cluster
 app.kubernetes.io/version=4.17.2
 cdi.kubevirt.io=
Annotations: <none>
API Version: cdi.kubevirt.io/v1beta1
Kind: StorageProfile
Metadata:
 Creation Timestamp: 2023-11-13T07:58:02Z
 Generation: 2
 Owner References:
 API Version: cdi.kubevirt.io/v1beta1
 Block Owner Deletion: true
 Controller: true
 Kind: CDI
 Name: cdi-kubevirt-hyperconverged
 UID: 2d6f169a-382c-4caf-b614-a640f2ef8abb
 Resource Version: 4186799537
 UID: 14aef804-6688-4f2e-986b-0297fd3aaa68
Spec:
Status:
 Claim Property Sets: 1
 accessModes:
 ReadWriteMany
 volumeMode: Block
 accessModes:
 ReadWriteOnce
 volumeMode: Block
 accessModes:
 ReadWriteOnce
 volumeMode: Filesystem
 Clone Strategy: csi-clone 2
 Data Import Cron Source Format: snapshot 3
 Provisioner: openshift-storage.rbd.csi.ceph.com

OpenShift Container Platform 4.20 Virtualization

378

1

2

3

Claim Property Sets is an ordered list of AccessMode/VolumeMode pairs, which
describe the PVC modes that are used to provision VM disks.

The Clone Strategy line indicates the clone strategy to be used.

Data Import Cron Source Format indicates whether golden images on this storage are
stored as PVCs or volume snapshots.

12.2.1.4. Setting a default cloning strategy by using a storage profile

You can use storage profiles to set a default cloning method for a storage class by creating a cloning
strategy. Setting cloning strategies can be helpful, for example, if your storage vendor supports only
certain cloning methods. It also allows you to select a method that limits resource usage or maximizes
performance.

Cloning strategies are specified by setting the cloneStrategy attribute in a storage profile to one of the
following values:

snapshot is used by default when snapshots are configured. The Containerized Data Importer
(CDI) will use the snapshot method if it recognizes the storage provider and the provider
supports Container Storage Interface (CSI) snapshots. This cloning strategy uses a temporary
volume snapshot to clone the volume.

copy uses a source pod and a target pod to copy data from the source volume to the target
volume. Host-assisted cloning is the least efficient method of cloning.

csi-clone uses the CSI clone API to efficiently clone an existing volume without using an interim
volume snapshot. Unlike snapshot or copy, which are used by default if no storage profile is
defined, CSI volume cloning is only used when you specify it in the StorageProfile object for the
provisioner’s storage class.

NOTE

You can set clone strategies using the CLI without modifying the default
claimPropertySets in your YAML spec section.

Example storage profile

 Snapshot Class: ocs-storagecluster-rbdplugin-snapclass
 Storage Class: ocs-storagecluster-ceph-rbd-virtualization
Events: <none>

apiVersion: cdi.kubevirt.io/v1beta1
kind: StorageProfile
metadata:
 name: <provisioner_class>
...
spec:
 claimPropertySets:
 - accessModes:
 - ReadWriteOnce 1
 volumeMode: Filesystem 2
 cloneStrategy: csi-clone 3

CHAPTER 12. STORAGE

379

1

2

3

Specify the accessModes.

Specify the volumeMode.

Specify the default cloneStrategy.

12.3. MANAGING AUTOMATIC BOOT SOURCE UPDATES

You can manage automatic updates for the following boot sources:

All Red Hat boot sources

All custom boot sources

Individual Red Hat or custom boot sources

Boot sources can make virtual machine (VM) creation more accessible and efficient for users. If
automatic boot source updates are enabled, the Containerized Data Importer (CDI) imports, polls, and
updates the images so that they are ready to be cloned for new VMs. By default, CDI automatically
updates Red Hat boot sources.

12.3.1. Managing Red Hat boot source updates

You can opt out of automatic updates for all system-defined boot sources by setting the
enableCommonBootImageImport field value to false. If you set the value to false, all DataImportCron
objects are deleted. This does not, however, remove previously imported boot source objects that store
operating system images, though administrators can delete them manually.

When the enableCommonBootImageImport field value is set to false, DataSource objects are reset so
that they no longer point to the original boot source. An administrator can manually provide a boot
source by creating a new persistent volume claim (PVC) or volume snapshot for the DataSource object,
and then populating it with an operating system image.

12.3.1.1. Managing automatic updates for all system-defined boot sources

Disabling automatic boot source imports and updates can lower resource usage. In disconnected
environments, disabling automatic boot source updates prevents CDIDataImportCronOutdated alerts
from filling up logs.

To disable automatic updates for all system-defined boot sources, set the
enableCommonBootImageImport field value to false. Setting this value to true turns automatic
updates back on.

NOTE

Custom boot sources are not affected by this setting.

Prerequisites

status:
 provisioner: <provisioner>
 storageClass: <provisioner_class>

OpenShift Container Platform 4.20 Virtualization

380

You have installed the OpenShift CLI (oc).

Procedure

Enable or disable automatic boot source updates by editing the HyperConverged custom
resource (CR).

To disable automatic boot source updates, set the
spec.enableCommonBootImageImport field value in the HyperConverged CR to false.
For example:

To re-enable automatic boot source updates, set the
spec.enableCommonBootImageImport field value in the HyperConverged CR to true.
For example:

12.3.2. Managing custom boot source updates

Custom boot sources that are not provided by OpenShift Virtualization are not controlled by the feature
gate. You must manage them individually by editing the HyperConverged custom resource (CR).

IMPORTANT

You must configure a storage class. Otherwise, the cluster cannot receive automated
updates for custom boot sources. See Defining a storage class for details.

12.3.2.1. Configuring the default and virt-default storage classes

A storage class determines how persistent storage is provisioned for workloads. In OpenShift
Virtualization, the virt-default storage class takes precedence over the cluster default storage class and
is used specifically for virtualization workloads. Only one storage class should be set as virt-default or
cluster default at a time. If multiple storage classes are marked as default, the virt-default storage class
overrides the cluster default. To ensure consistent behavior, configure only one storage class as the
default for virtualization workloads.

IMPORTANT

Boot sources are created using the default storage class. When the default storage class
changes, old boot sources are automatically updated using the new default storage class.
If your cluster does not have a default storage class, you must define one.

If boot source images were stored as volume snapshots and both the cluster default and
virt-default storage class have been unset, the volume snapshots are cleaned up and new
data volumes will be created. However the newly created data volumes will not start
importing until a default storage class is set.

$ oc patch hyperconverged kubevirt-hyperconverged -n openshift-cnv \
 --type json -p '[{"op": "replace", "path": \
 "/spec/enableCommonBootImageImport", \
 "value": false}]'

$ oc patch hyperconverged kubevirt-hyperconverged -n openshift-cnv \
 --type json -p '[{"op": "replace", "path": \
 "/spec/enableCommonBootImageImport", \
 "value": true}]'

CHAPTER 12. STORAGE

381

https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/storage/#defining-storage-classes_dynamic-provisioning

Prerequisites

You have installed the OpenShift CLI (oc).

Procedure

1. Patch the current virt-default or a cluster default storage class to false:

a. Identify all storage classes currently marked as virt-default by running the following
command:

b. For each storage class returned, remove the virt-default annotation by running the
following command:

c. Identify all storage classes currently marked as cluster default by running the following
command:

d. For each storage class returned, remove the cluster default annotation by running the
following command:

2. Set a new default storage class:

a. Assign the virt-default role to a storage class by running the following command:

b. Alternatively, assign the cluster default role to a storage class by running the following
command:

12.3.2.2. Configuring a storage class for boot source images

You can configure a specific storage class in the HyperConverged resource.

IMPORTANT

$ oc get sc -o json| jq '.items[].metadata|select(.annotations."storageclass.kubevirt.io/is-
default-virt-class"=="true")|.name'

$ oc patch storageclass <storage_class_name> -p '{"metadata": {"annotations":
{"storageclass.kubevirt.io/is-default-virt-class": "false"}}}'

$ oc get sc -o json| jq
'.items[].metadata|select(.annotations."storageclass.kubernetes.io/is-default-
class"=="true")|.name'

$ oc patch storageclass <storage_class_name> -p '{"metadata": {"annotations":
{"storageclass.kubernetes.io/is-default-class": "false"}}}'

$ oc patch storageclass <storage_class_name> -p '{"metadata": {"annotations":
{"storageclass.kubevirt.io/is-default-virt-class": "true"}}}'

$ oc patch storageclass <storage_class_name> -p '{"metadata": {"annotations":
{"storageclass.kubernetes.io/is-default-class": "true"}}}'

OpenShift Container Platform 4.20 Virtualization

382

1

2

3

IMPORTANT

To ensure stable behavior and avoid unnecessary re-importing, you can specify the
storageClassName in the dataImportCronTemplates section of the HyperConverged
resource.

Prerequisites

You have installed the OpenShift CLI (oc).

Procedure

1. Open the HyperConverged CR in your default editor by running the following command:

2. Add the dataImportCronTemplate to the spec section of the HyperConverged resource and
set the storageClassName:

Define the storage class.

Required: Schedule for the job specified in cron format.

Required: The data source to use.

For the custom image to be detected as an available boot source, the value of the
`spec.dataVolumeTemplates.spec.sourceRef.name` parameter in the VM template must
match this value.

3. Wait for the HyperConverged Operator (HCO) and Scheduling, Scale, and Performance (SSP)
resources to complete reconciliation.

4. Delete any outdated DataVolume and VolumeSnapshot objects from the openshift-
virtualization-os-images namespace by running the following command.

$ oc edit hyperconverged kubevirt-hyperconverged -n openshift-cnv

apiVersion: hco.kubevirt.io/v1beta1
kind: HyperConverged
metadata:
 name: kubevirt-hyperconverged
spec:
 dataImportCronTemplates:
 - metadata:
 name: rhel9-image-cron
 spec:
 template:
 spec:
 storage:
 storageClassName: <storage_class> 1
 schedule: "0 */12 * * *" 2
 managedDataSource: <data_source> 3
...

CHAPTER 12. STORAGE

383

5. Wait for all DataSource objects to reach a "Ready - True" status. Data sources can reference
either a PersistentVolumeClaim (PVC) or a VolumeSnapshot. To check the expected source
format, run the following command:

12.3.2.3. Enabling automatic updates for custom boot sources

OpenShift Virtualization automatically updates system-defined boot sources by default, but does not
automatically update custom boot sources. You must manually enable automatic updates by editing the
HyperConverged custom resource (CR).

Prerequisites

The cluster has a default storage class.

You have installed the OpenShift CLI (oc).

Procedure

1. Open the HyperConverged CR in your default editor by running the following command:

2. Edit the HyperConverged CR, adding the appropriate template and boot source in the
dataImportCronTemplates section. For example:

Example custom resource

$ oc delete DataVolume,VolumeSnapshot -n openshift-virtualization-os-images --
selector=cdi.kubevirt.io/dataImportCron

$ oc get storageprofile <storage_class_name> -o json | jq
.status.dataImportCronSourceFormat

$ oc edit hyperconverged kubevirt-hyperconverged -n openshift-cnv

apiVersion: hco.kubevirt.io/v1beta1
kind: HyperConverged
metadata:
 name: kubevirt-hyperconverged
spec:
 dataImportCronTemplates:
 - metadata:
 name: centos-stream9-image-cron
 annotations:
 cdi.kubevirt.io/storage.bind.immediate.requested: "true" 1
 spec:
 schedule: "0 */12 * * *" 2
 template:
 spec:
 source:
 registry: 3
 url: docker://quay.io/containerdisks/centos-stream:9
 storage:
 resources:
 requests:

OpenShift Container Platform 4.20 Virtualization

384

1

2

3

4

This annotation is required for storage classes with volumeBindingMode set to
WaitForFirstConsumer.

Schedule for the job specified in cron format.

Use to create a data volume from a registry source. Use the default pod pullMethod and
not node pullMethod, which is based on the node docker cache. The node docker cache is
useful when a registry image is available via Container.Image, but the CDI importer is not
authorized to access it.

For the custom image to be detected as an available boot source, the name of the image’s
managedDataSource must match the name of the template’s DataSource, which is found
under spec.dataVolumeTemplates.spec.sourceRef.name in the VM template YAML file.

3. Save the file.

12.3.2.4. Enabling volume snapshot boot sources

Enable volume snapshot boot sources by setting the parameter in the StorageProfile associated with
the storage class that stores operating system base images. Although DataImportCron was originally
designed to maintain only PVC sources, VolumeSnapshot sources scale better than PVC sources for
certain storage types.

NOTE

Use volume snapshots on a storage profile that is proven to scale better when cloning
from a single snapshot.

Prerequisites

You must have access to a volume snapshot with the operating system image.

The storage must support snapshotting.

You have installed the OpenShift CLI (oc).

Procedure

1. Open the storage profile object that corresponds to the storage class used to provision boot
sources by running the following command:

2. Review the dataImportCronSourceFormat specification of the StorageProfile to confirm
whether or not the VM is using PVC or volume snapshot by default.

3. Edit the storage profile, if needed, by updating the dataImportCronSourceFormat
specification to snapshot.

 storage: 30Gi
 garbageCollect: Outdated
 managedDataSource: centos-stream9 4

$ oc edit storageprofile <storage_class>

CHAPTER 12. STORAGE

385

Example storage profile

Verification

1. Open the storage profile object that corresponds to the storage class used to provision boot
sources.

2. Confirm that the dataImportCronSourceFormat specification of the StorageProfile is set to
'snapshot', and that any DataSource objects that the DataImportCron points to now reference
volume snapshots.

You can now use these boot sources to create virtual machines.

12.3.3. Disabling automatic updates for a single boot source

You can disable automatic updates for an individual boot source, whether it is custom or system-
defined, by editing the HyperConverged custom resource (CR).

Prerequisites

You have installed the OpenShift CLI (oc).

Procedure

1. Open the HyperConverged CR in your default editor by running the following command:

2. Disable automatic updates for an individual boot source by editing the
spec.dataImportCronTemplates field.

Custom boot source

Remove the boot source from the spec.dataImportCronTemplates field. Automatic
updates are disabled for custom boot sources by default.

System-defined boot source

a. Add the boot source to spec.dataImportCronTemplates.

NOTE

apiVersion: cdi.kubevirt.io/v1beta1
kind: StorageProfile
metadata:
...
spec:
 dataImportCronSourceFormat: snapshot

$ oc get storageprofile <storage_class> -oyaml

$ oc edit hyperconverged kubevirt-hyperconverged -n openshift-cnv

OpenShift Container Platform 4.20 Virtualization

386

NOTE

Automatic updates are enabled by default for system-defined boot
sources, but these boot sources are not listed in the CR unless you add
them.

b. Set the value of the dataimportcrontemplate.kubevirt.io/enable annotation to 'false'.
For example:

3. Save the file.

12.3.4. Verifying the status of a boot source

You can determine if a boot source is system-defined or custom by viewing the HyperConverged
custom resource (CR).

Prerequisites

You have installed the OpenShift CLI (oc).

Procedure

1. View the contents of the HyperConverged CR by running the following command:

Example output

apiVersion: hco.kubevirt.io/v1beta1
kind: HyperConverged
metadata:
 name: kubevirt-hyperconverged
spec:
 dataImportCronTemplates:
 - metadata:
 annotations:
 dataimportcrontemplate.kubevirt.io/enable: 'false'
 name: rhel8-image-cron
...

$ oc get hyperconverged kubevirt-hyperconverged -n openshift-cnv -o yaml

apiVersion: hco.kubevirt.io/v1beta1
kind: HyperConverged
metadata:
 name: kubevirt-hyperconverged
spec:
...
status:
...
 dataImportCronTemplates:
 - metadata:
 annotations:
 cdi.kubevirt.io/storage.bind.immediate.requested: "true"
 name: centos-9-image-cron

CHAPTER 12. STORAGE

387

1

2

Indicates a system-defined boot source.

Indicates a custom boot source.

2. Verify the status of the boot source by reviewing the status.dataImportCronTemplates.status
field.

If the field contains commonTemplate: true, it is a system-defined boot source.

If the status.dataImportCronTemplates.status field has the value {}, it is a custom boot
source.

12.4. RESERVING PVC SPACE FOR FILE SYSTEM OVERHEAD

 spec:
 garbageCollect: Outdated
 managedDataSource: centos-stream9
 schedule: 55 8/12 * * *
 template:
 metadata: {}
 spec:
 source:
 registry:
 url: docker://quay.io/containerdisks/centos-stream:9
 storage:
 resources:
 requests:
 storage: 30Gi
 status: {}
 status:
 commonTemplate: true 1
...
 - metadata:
 annotations:
 cdi.kubevirt.io/storage.bind.immediate.requested: "true"
 name: user-defined-dic
 spec:
 garbageCollect: Outdated
 managedDataSource: user-defined-centos-stream9
 schedule: 55 8/12 * * *
 template:
 metadata: {}
 spec:
 source:
 registry:
 pullMethod: node
 url: docker://quay.io/containerdisks/centos-stream:9
 storage:
 resources:
 requests:
 storage: 30Gi
 status: {}
 status: {} 2
...

OpenShift Container Platform 4.20 Virtualization

388

1

2

When you add a virtual machine disk to a persistent volume claim (PVC) that uses the Filesystem
volume mode, you must ensure that there is enough space on the PVC for the VM disk and for file
system overhead, such as metadata.

By default, OpenShift Virtualization reserves 5.5% of the PVC space for overhead, reducing the space
available for virtual machine disks by that amount.

You can configure a different overhead value by editing the HCO object. You can change the value
globally and you can specify values for specific storage classes.

12.4.1. Overriding the default file system overhead value

Change the amount of persistent volume claim (PVC) space that the OpenShift Virtualization reserves
for file system overhead by editing the spec.filesystemOverhead attribute of the HCO object.

Prerequisites

Install the OpenShift CLI (oc).

Procedure

1. Open the HCO object for editing by running the following command:

2. Edit the spec.filesystemOverhead fields, populating them with your chosen values:

The default file system overhead percentage used for any storage classes that do not
already have a set value. For example, global: "0.07" reserves 7% of the PVC for file
system overhead.

The file system overhead percentage for the specified storage class. For example,
mystorageclass: "0.04" changes the default overhead value for PVCs in the
mystorageclass storage class to 4%.

3. Save and exit the editor to update the HCO object.

Verification

View the CDIConfig status and verify your changes by running one of the following commands:
To generally verify changes to CDIConfig:

To view your specific changes to CDIConfig:

$ oc edit hyperconverged kubevirt-hyperconverged -n openshift-cnv

...
spec:
 filesystemOverhead:
 global: "<new_global_value>" 1
 storageClass:
 <storage_class_name>: "<new_value_for_this_storage_class>" 2

$ oc get cdiconfig -o yaml

CHAPTER 12. STORAGE

389

1

2

12.5. CONFIGURING LOCAL STORAGE BY USING THE HOSTPATH
PROVISIONER

You can configure local storage for virtual machines by using the hostpath provisioner (HPP).

When you install the OpenShift Virtualization Operator, the Hostpath Provisioner Operator is
automatically installed. HPP is a local storage provisioner designed for OpenShift Virtualization that is
created by the Hostpath Provisioner Operator. To use HPP, you create an HPP custom resource (CR)
with a basic storage pool.

12.5.1. Creating a hostpath provisioner with a basic storage pool

You configure a hostpath provisioner (HPP) with a basic storage pool by creating an HPP custom
resource (CR) with a storagePools stanza. The storage pool specifies the name and path used by the
CSI driver.

IMPORTANT

Do not create storage pools in the same partition as the operating system. Otherwise, the
operating system partition might become filled to capacity, which will impact
performance or cause the node to become unstable or unusable.

Prerequisites

The directories specified in spec.storagePools.path must have read/write access.

You have installed the OpenShift CLI (oc).

Procedure

1. Create an hpp_cr.yaml file with a storagePools stanza as in the following example:

Specifies the name to identify the source to use. It must be the same as the storagePools
name in the StorageClass.yaml. For example, local.

Specifies the storage pool directories under this node path. Ensure that the path
/var/myvolumes has been created on each worker node.

$ oc get cdiconfig -o jsonpath='{.items..status.filesystemOverhead}'

apiVersion: hostpathprovisioner.kubevirt.io/v1beta1
kind: HostPathProvisioner
metadata:
 name: hostpath-provisioner
spec:
 imagePullPolicy: IfNotPresent
 storagePools:
 - name: any_name 1
 path: "/var/myvolumes" 2
 workload:
 nodeSelector:
 kubernetes.io/os: linux

OpenShift Container Platform 4.20 Virtualization

390

2. Save the file and exit.

3. Create the HPP by running the following command:

12.5.1.1. About creating storage classes

When you create a storage class, you set parameters that affect the dynamic provisioning of persistent
volumes (PVs) that belong to that storage class. You cannot update a StorageClass object’s
parameters after you create it.

In order to use the hostpath provisioner (HPP) you must create an associated storage class for the CSI
driver with the storagePools stanza.

NOTE

Virtual machines use data volumes that are based on local PVs. Local PVs are bound to
specific nodes. While the disk image is prepared for consumption by the virtual machine,
it is possible that the virtual machine cannot be scheduled to the node where the local
storage PV was previously pinned.

To solve this problem, use the Kubernetes pod scheduler to bind the persistent volume
claim (PVC) to a PV on the correct node. By using the StorageClass value with
volumeBindingMode parameter set to WaitForFirstConsumer, the binding and
provisioning of the PV is delayed until a pod is created using the PVC.

12.5.1.2. Creating a storage class for the CSI driver with the storagePools stanza

To use the hostpath provisioner (HPP) you must create an associated storage class for the Container
Storage Interface (CSI) driver.

When you create a storage class, you set parameters that affect the dynamic provisioning of persistent
volumes (PVs) that belong to that storage class. You cannot update a StorageClass object’s
parameters after you create it.

NOTE

Virtual machines use data volumes that are based on local PVs. Local PVs are bound to
specific nodes. While a disk image is prepared for consumption by the virtual machine, it is
possible that the virtual machine cannot be scheduled to the node where the local
storage PV was previously pinned.

To solve this problem, use the Kubernetes pod scheduler to bind the persistent volume
claim (PVC) to a PV on the correct node. By using the StorageClass value with
volumeBindingMode parameter set to WaitForFirstConsumer, the binding and
provisioning of the PV is delayed until a pod is created using the PVC.

Procedure

1. Create a storageclass_csi.yaml file to define the storage class:

$ oc create -f hpp_cr.yaml

apiVersion: storage.k8s.io/v1
kind: StorageClass

CHAPTER 12. STORAGE

391

1

2

3

1

The two possible reclaimPolicy values are Delete and Retain. If you do not specify a value,
the default value is Delete.

The volumeBindingMode parameter determines when dynamic provisioning and volume
binding occur. Specify WaitForFirstConsumer to delay the binding and provisioning of a
persistent volume (PV) until after a pod that uses the persistent volume claim (PVC) is
created. This ensures that the PV meets the pod’s scheduling requirements.

Specify the name of the storage pool defined in the HPP CR.

2. Save the file and exit.

3. Create the StorageClass object by running the following command:

12.5.2. About storage pools created with PVC templates

If you have a single, large persistent volume (PV), you can create a storage pool by defining a PVC
template in the hostpath provisioner (HPP) custom resource (CR).

A storage pool created with a PVC template can contain multiple HPP volumes. Splitting a PV into
smaller volumes provides greater flexibility for data allocation.

The PVC template is based on the spec stanza of the PersistentVolumeClaim object:

Example PersistentVolumeClaim object

This value is only required for block volume mode PVs.

You define a storage pool using a pvcTemplate specification in the HPP CR. The Operator creates a

metadata:
 name: hostpath-csi
provisioner: kubevirt.io.hostpath-provisioner
reclaimPolicy: Delete 1
volumeBindingMode: WaitForFirstConsumer 2
parameters:
 storagePool: my-storage-pool 3

$ oc create -f storageclass_csi.yaml

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: iso-pvc
spec:
 volumeMode: Block 1
 storageClassName: my-storage-class
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 5Gi

OpenShift Container Platform 4.20 Virtualization

392

1

2

PVC from the pvcTemplate specification for each node containing the HPP CSI driver. The PVC
created from the PVC template consumes the single large PV, allowing the HPP to create smaller
dynamic volumes.

You can combine basic storage pools with storage pools created from PVC templates.

12.5.2.1. Creating a storage pool with a PVC template

You can create a storage pool for multiple hostpath provisioner (HPP) volumes by specifying a PVC
template in the HPP custom resource (CR).

IMPORTANT

Do not create storage pools in the same partition as the operating system. Otherwise, the
operating system partition might become filled to capacity, which will impact
performance or cause the node to become unstable or unusable.

Prerequisites

The directories specified in spec.storagePools.path must have read/write access.

You have installed the OpenShift CLI (oc).

Procedure

1. Create an hpp_pvc_template_pool.yaml file for the HPP CR that specifies a persistent volume
(PVC) template in the storagePools stanza according to the following example:

The storagePools stanza is an array that can contain both basic and PVC template
storage pools.

Specify the storage pool directories under this node path.

apiVersion: hostpathprovisioner.kubevirt.io/v1beta1
kind: HostPathProvisioner
metadata:
 name: hostpath-provisioner
spec:
 imagePullPolicy: IfNotPresent
 storagePools: 1
 - name: my-storage-pool
 path: "/var/myvolumes" 2
 pvcTemplate:
 volumeMode: Block 3
 storageClassName: my-storage-class 4
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 5Gi 5
 workload:
 nodeSelector:
 kubernetes.io/os: linux

CHAPTER 12. STORAGE

393

3

4

5

Optional: The volumeMode parameter can be either Block or Filesystem as long as it
matches the provisioned volume format. If no value is specified, the default is Filesystem.

If the storageClassName parameter is omitted, the default storage class is used to create
PVCs. If you omit storageClassName, ensure that the HPP storage class is not the default
storage class.

You can specify statically or dynamically provisioned storage. In either case, ensure the
requested storage size is appropriate for the volume you want to virtually divide or the PVC
cannot be bound to the large PV. If the storage class you are using uses dynamically
provisioned storage, pick an allocation size that matches the size of a typical request.

2. Save the file and exit.

3. Create the HPP with a storage pool by running the following command:

12.6. ENABLING USER PERMISSIONS TO CLONE DATA VOLUMES
ACROSS NAMESPACES

The isolating nature of namespaces means that users cannot by default clone resources between
namespaces.

To enable a user to clone a virtual machine to another namespace, a user with the cluster-admin role
must create a new cluster role. Bind this cluster role to a user to enable them to clone virtual machines to
the destination namespace.

12.6.1. Creating RBAC resources for cloning data volumes

Create a new cluster role that enables permissions for all actions for the datavolumes resource.

Prerequisites

You have installed the OpenShift CLI (oc).

You must have cluster admin privileges.

NOTE

If you are a non-admin user that is an administrator for both the source and target
namespaces, you can create a Role instead of a ClusterRole where appropriate.

Procedure

1. Create a ClusterRole manifest:

$ oc create -f hpp_pvc_template_pool.yaml

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 name: <datavolume-cloner> 1
rules:

OpenShift Container Platform 4.20 Virtualization

394

1

1

1

2

3

4

1

Unique name for the cluster role.

2. Create the cluster role in the cluster:

The file name of the ClusterRole manifest created in the previous step.

3. Create a RoleBinding manifest that applies to both the source and destination namespaces
and references the cluster role created in the previous step.

Unique name for the role binding.

The namespace for the source data volume.

The namespace to which the data volume is cloned.

The name of the cluster role created in the previous step.

4. Create the role binding in the cluster:

The file name of the RoleBinding manifest created in the previous step.

12.7. CONFIGURING CDI TO OVERRIDE CPU AND MEMORY QUOTAS

You can configure the Containerized Data Importer (CDI) to import, upload, and clone virtual machine
disks into namespaces that are subject to CPU and memory resource restrictions.

12.7.1. About CPU and memory quotas in a namespace

A resource quota, defined by the ResourceQuota object, imposes restrictions on a namespace that limit

- apiGroups: ["cdi.kubevirt.io"]
 resources: ["datavolumes/source"]
 verbs: ["*"]

$ oc create -f <datavolume-cloner.yaml> 1

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
 name: <allow-clone-to-user> 1
 namespace: <Source namespace> 2
subjects:
- kind: ServiceAccount
 name: default
 namespace: <Destination namespace> 3
roleRef:
 kind: ClusterRole
 name: datavolume-cloner 4
 apiGroup: rbac.authorization.k8s.io

$ oc create -f <datavolume-cloner.yaml> 1

CHAPTER 12. STORAGE

395

A resource quota, defined by the ResourceQuota object, imposes restrictions on a namespace that limit
the total amount of compute resources that can be consumed by resources within that namespace.

The HyperConverged custom resource (CR) defines the user configuration for the Containerized Data
Importer (CDI). The CPU and memory request and limit values are set to a default value of 0. This
ensures that pods created by CDI that do not specify compute resource requirements are given the
default values and are allowed to run in a namespace that is restricted with a quota.

12.7.2. Overriding CPU and memory defaults

Modify the default settings for CPU and memory requests and limits for your use case by adding the
spec.resourceRequirements.storageWorkloads stanza to the HyperConverged custom resource
(CR).

Prerequisites

Install the OpenShift CLI (oc).

Procedure

1. Edit the HyperConverged CR by running the following command:

2. Add the spec.resourceRequirements.storageWorkloads stanza to the CR, setting the values
based on your use case. For example:

3. Save and exit the editor to update the HyperConverged CR.

12.7.3. Additional resources

Resource quotas per project

12.8. PREPARING CDI SCRATCH SPACE

12.8.1. About scratch space

The Containerized Data Importer (CDI) requires scratch space (temporary storage) to complete some
operations, such as importing and uploading virtual machine images. During this process, CDI provisions

$ oc edit hyperconverged kubevirt-hyperconverged -n openshift-cnv

apiVersion: hco.kubevirt.io/v1beta1
kind: HyperConverged
metadata:
 name: kubevirt-hyperconverged
spec:
 resourceRequirements:
 storageWorkloads:
 limits:
 cpu: "500m"
 memory: "2Gi"
 requests:
 cpu: "250m"
 memory: "1Gi"

OpenShift Container Platform 4.20 Virtualization

396

https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/building_applications/#quotas-setting-per-project

a scratch space PVC equal to the size of the PVC backing the destination data volume (DV). The
scratch space PVC is deleted after the operation completes or aborts.

You can define the storage class that is used to bind the scratch space PVC in the
spec.scratchSpaceStorageClass field of the HyperConverged custom resource.

If the defined storage class does not match a storage class in the cluster, then the default storage class
defined for the cluster is used. If there is no default storage class defined in the cluster, the storage class
used to provision the original DV or PVC is used.

NOTE

CDI requires requesting scratch space with a file volume mode, regardless of the PVC
backing the origin data volume. If the origin PVC is backed by block volume mode, you
must define a storage class capable of provisioning file volume mode PVCs.

Manual provisioning
If there are no storage classes, CDI uses any PVCs in the project that match the size requirements for
the image. If there are no PVCs that match these requirements, the CDI import pod remains in a
Pending state until an appropriate PVC is made available or until a timeout function kills the pod.

12.8.2. CDI operations that require scratch space

Type Reason

Registry imports CDI must download the image to a scratch space
and extract the layers to find the image file. The
image file is then passed to QEMU-IMG for
conversion to a raw disk.

Upload image QEMU-IMG does not accept input from STDIN.
Instead, the image to upload is saved in scratch
space before it can be passed to QEMU-IMG for
conversion.

HTTP imports of archived images QEMU-IMG does not know how to handle the archive
formats CDI supports. Instead, the image is
unarchived and saved into scratch space before it is
passed to QEMU-IMG.

HTTP imports of authenticated images QEMU-IMG inadequately handles authentication.
Instead, the image is saved to scratch space and
authenticated before it is passed to QEMU-IMG.

HTTP imports of custom certificates QEMU-IMG inadequately handles custom
certificates of HTTPS endpoints. Instead, CDI
downloads the image to scratch space before
passing the file to QEMU-IMG.

12.8.3. Defining a storage class

You can define the storage class that the Containerized Data Importer (CDI) uses when allocating

CHAPTER 12. STORAGE

397

1

You can define the storage class that the Containerized Data Importer (CDI) uses when allocating
scratch space by adding the spec.scratchSpaceStorageClass field to the HyperConverged custom
resource (CR).

Prerequisites

Install the OpenShift CLI (oc).

Procedure

1. Edit the HyperConverged CR by running the following command:

2. Add the spec.scratchSpaceStorageClass field to the CR, setting the value to the name of a
storage class that exists in the cluster:

If you do not specify a storage class, CDI uses the storage class of the persistent volume
claim that is being populated.

3. Save and exit your default editor to update the HyperConverged CR.

12.8.4. CDI supported operations matrix

This matrix shows the supported CDI operations for content types against endpoints, and which of these
operations requires scratch space.

Content types HTTP HTTPS HTTP basic
auth

Registry Upload

KubeVirt
(QCOW2)

✓ QCOW2
✓ GZ*
✓ XZ*

✓ QCOW2**
✓ GZ*
✓ XZ*

✓ QCOW2
✓ GZ*
✓ XZ*

✓ QCOW2*
□ GZ
□ XZ

✓ QCOW2*
✓ GZ*
✓ XZ*

KubeVirt
(RAW)

✓ RAW
✓ GZ
✓ XZ

✓ RAW
✓ GZ
✓ XZ

✓ RAW
✓ GZ
✓ XZ

✓ RAW*
□ GZ
□ XZ

✓ RAW*
✓ GZ*
✓ XZ*

✓ Supported operation

□ Unsupported operation

* Requires scratch space

$ oc edit hyperconverged kubevirt-hyperconverged -n openshift-cnv

apiVersion: hco.kubevirt.io/v1beta1
kind: HyperConverged
metadata:
 name: kubevirt-hyperconverged
spec:
 scratchSpaceStorageClass: "<storage_class>" 1

OpenShift Container Platform 4.20 Virtualization

398

** Requires scratch space if a custom certificate authority is required

12.8.5. Additional resources

Dynamic provisioning

12.9. USING PREALLOCATION FOR DATA VOLUMES

The Containerized Data Importer can preallocate disk space to improve write performance when
creating data volumes.

You can enable preallocation for specific data volumes.

12.9.1. About preallocation

The Containerized Data Importer (CDI) can use the QEMU preallocate mode for data volumes to
improve write performance. You can use preallocation mode for importing and uploading operations
and when creating blank data volumes.

If preallocation is enabled, CDI uses the better preallocation method depending on the underlying file
system and device type:

fallocate

If the file system supports it, CDI uses the operating system’s fallocate call to preallocate space by
using the posix_fallocate function, which allocates blocks and marks them as uninitialized.

full

If fallocate mode cannot be used, full mode allocates space for the image by writing data to the
underlying storage. Depending on the storage location, all the empty allocated space might be
zeroed.

12.9.2. Enabling preallocation for a data volume

You can enable preallocation for specific data volumes by including the spec.preallocation field in the
data volume manifest. You can enable preallocation mode in either the web console or by using the
OpenShift CLI (oc).

Preallocation mode is supported for all CDI source types.

Procedure

Specify the spec.preallocation field in the data volume manifest:

apiVersion: cdi.kubevirt.io/v1beta1
kind: DataVolume
metadata:
 name: preallocated-datavolume
spec:
 source: 1
 registry:
 url: <image_url> 2
 storage:
 resources:
 requests:

CHAPTER 12. STORAGE

399

https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/storage/#about_dynamic-provisioning

1

2

1

All CDI source types support preallocation. However, preallocation is ignored for cloning
operations.

Specify the URL of the data source in your registry.

12.10. MANAGING DATA VOLUME ANNOTATIONS

Data volume (DV) annotations allow you to manage pod behavior. You can add one or more annotations
to a data volume, which then propagates to the created importer pods.

12.10.1. Example: Data volume annotations

This example shows how you can configure data volume (DV) annotations to control which network the
importer pod uses. The v1.multus-cni.io/default-network: bridge-network annotation causes the pod
to use the multus network named bridge-network as its default network. If you want the importer pod
to use both the default network from the cluster and the secondary multus network, use the
k8s.v1.cni.cncf.io/networks: <network_name> annotation.

Multus network annotation example

Multus network annotation

12.11. UNDERSTANDING VIRTUAL MACHINE STORAGE WITH THE CSI
PARADIGM

Virtual machines (VMs) in OpenShift Virtualization use PersistentVolume (PV) and
PersistentVolumeClaim (PVC) paradigms to manage storage. This ensures seamless integration with
the Container Storage Interface (CSI).

12.11.1. Virtual machine CSI storage overview

OpenShift Virtualization integrates with the Container Storage Interface (CSI) to manage VM storage.
Storage classes define storage capabilities such as performance tiers and types.
PersistentVolumeClaims (PVCs) request storage resources, which bind to PersistentVolumes (PVs). CSI
drivers connect Kubernetes to vendor storage backends, including iSCSI, NFS, and Fibre Channel.

 storage: 1Gi
 preallocation: true
...

apiVersion: cdi.kubevirt.io/v1beta1
kind: DataVolume
metadata:
 name: datavolume-example
 annotations:
 v1.multus-cni.io/default-network: bridge-network 1
...

OpenShift Container Platform 4.20 Virtualization

400

CHAPTER 12. STORAGE

401

CHAPTER 13. LIVE MIGRATION

13.1. ABOUT LIVE MIGRATION

Live migration is the process of moving a running virtual machine (VM) to another node in the cluster
without interrupting the virtual workload. Live migration enables smooth transitions during cluster
upgrades or any time a node needs to be drained for maintenance or configuration changes.

By default, live migration traffic is encrypted using Transport Layer Security (TLS).

13.1.1. Live migration requirements

Live migration has the following requirements:

The cluster must have shared storage with ReadWriteMany (RWX) access mode.

The cluster must have sufficient RAM and network bandwidth.

NOTE

You must ensure that there is enough memory request capacity in the cluster to
support node drains that result in live migrations. You can determine the
approximate required spare memory by using the following calculation:

Product of (Maximum number of nodes that can drain in parallel) and (Highest
total VM memory request allocations across nodes)

The default number of migrations that can run in parallel in the cluster is 5.

If a VM uses a host model CPU, the nodes must support the CPU.

Configuring a dedicated Multus network for live migration is highly recommended. A dedicated
network minimizes the effects of network saturation on tenant workloads during migration.

13.1.2. About live migration permissions

In OpenShift Virtualization 4.19 and later, live migration operations are restricted to users who are
explicitly granted the kubevirt.io:migrate cluster role. Users with this role can create, delete, and
update virtual machine (VM) live migration requests, which are represented by
VirtualMachineInstanceMigration (VMIM) custom resources.

Cluster administrators can bind the kubevirt.io:migrate role to trusted users or groups at either the
namespace or cluster level.

Before OpenShift Virtualization 4.19, namespace administrators had live migration permissions by
default. This behavior changed in version 4.19 to prevent unintended or malicious disruptions to
infrastructure-critical migration operations.

As a cluster administrator, you can preserve the old behavior by creating a temporary cluster role before
updating. After assigning the new role to users, delete the temporary role to enforce the more restrictive
permissions. If you have already updated, you can still revert to the old behavior by aggregating the
kubevirt.io:migrate role into the admin cluster role.

OpenShift Container Platform 4.20 Virtualization

402

1

13.1.3. Preserving pre-4.19 live migration permissions during update

Before you update to OpenShift Virtualization 4.20, you can create a temporary cluster role to preserve
the previous live migration permissions until you are ready for the more restrictive default permissions to
take effect.

Prerequisites

The OpenShift CLI (oc) is installed.

You have cluster administrator permissions.

Procedure

1. Before updating to OpenShift Virtualization 4.20, create a temporary ClusterRole object. For
example:

This cluster role is aggregated into the admin role before you update OpenShift
Virtualization. The update process does not modify it, ensuring the previous behavior is
maintained.

2. Add the cluster role manifest to the cluster by running the following command:

3. Update OpenShift Virtualization to version 4.20.

4. Bind the kubevirt.io:migrate cluster role to trusted users or groups by running one of the

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 labels:
 rbac.authorization.k8s.io/aggregate-to-admin=true 1
 name: kubevirt.io:upgrademigrate
rules:
- apiGroups:
 - subresources.kubevirt.io
 resources:
 - virtualmachines/migrate
 verbs:
 - update
- apiGroups:
 - kubevirt.io
 resources:
 - virtualmachineinstancemigrations
 verbs:
 - get
 - delete
 - create
 - update
 - patch
 - list
 - watch
 - deletecollection

$ oc apply -f <cluster_role_file_name>.yaml

CHAPTER 13. LIVE MIGRATION

403

4. Bind the kubevirt.io:migrate cluster role to trusted users or groups by running one of the
following commands, replacing <namespace>, <first_user>, <second_user>, and
<group_name> with your own values.

To bind the role at the namespace level, run the following command:

To bind the role at the cluster level, run the following command:

5. When you have bound the kubevirt.io:migrate role to all necessary users, delete the temporary
ClusterRole object by running the following command:

After you delete the temporary cluster role, only users with the kubevirt.io:migrate role can
create, delete, and update live migration requests.

13.1.4. Granting live migration permissions

Grant trusted users or groups the ability to create, delete, and update live migration instances.

Prerequisites

The OpenShift CLI (oc) is installed.

You have cluster administrator permissions.

Procedure

(Optional) To change the default behavior so that namespace administrators always have
permission to create, delete, and update live migrations, aggregate the kubevirt.io:migrate role
into the admin cluster role by running the following command:

Bind the kubevirt.io:migrate cluster role to trusted users or groups by running one of the
following commands, replacing <namespace>, <first_user>, <second_user>, and
<group_name> with your own values.

To bind the role at the namespace level, run the following command:

To bind the role at the cluster level, run the following command:

$ oc create -n <namespace> rolebinding kvmigrate --clusterrole=kubevirt.io:migrate --
user=<first_user> --user=<second_user> --group=<group_name>

$ oc create clusterrolebinding kvmigrate --clusterrole=kubevirt.io:migrate --user=
<first_user> --user=<second_user> --group=<group_name>

$ oc delete clusterrole kubevirt.io:upgrademigrate

$ oc label --overwrite clusterrole kubevirt.io:migrate rbac.authorization.k8s.io/aggregate-to-
admin=true

$ oc create -n <namespace> rolebinding kvmigrate --clusterrole=kubevirt.io:migrate --
user=<first_user> --user=<second_user> --group=<group_name>

OpenShift Container Platform 4.20 Virtualization

404

13.1.5. VM migration tuning

You can adjust your cluster-wide live migration settings based on the type of workload and migration
scenario. This enables you to control how many VMs migrate at the same time, the network bandwidth
you want to use for each migration, and how long OpenShift Virtualization attempts to complete the
migration before canceling the process. Configure these settings in the HyperConverged custom
resource (CR).

If you are migrating multiple VMs per node at the same time, set a bandwidthPerMigration limit to
prevent a large or busy VM from using a large portion of the node’s network bandwidth. By default, the
bandwidthPerMigration value is 0, which means unlimited.

A large VM running a heavy workload (for example, database processing), with higher memory dirty
rates, requires a higher bandwidth to complete the migration.

NOTE

Post copy mode, when enabled, triggers if the initial pre-copy phase does not complete
within the defined timeout. During post copy, the VM CPUs pause on the source host
while transferring the minimum required memory pages. Then the VM CPUs activate on
the destination host, and the remaining memory pages transfer into the destination node
at runtime. This can impact performance during the transfer.

Post copy mode should not be used for critical data, or with unstable networks.

13.1.6. Common live migration tasks

You can perform the following live migration tasks:

Configure live migration settings

Configure live migration for heavy workloads

Initiate and cancel live migration

Monitor the progress of all live migrations in the Migrations tab of the OpenShift Container
Platform web console.

View VM migration metrics in the Metrics tab of the web console.

13.1.7. Additional resources

Default cluster roles for OpenShift Virtualization

Prometheus queries for live migration

VM run strategies

VM and cluster eviction strategies

13.2. CONFIGURING LIVE MIGRATION

$ oc create clusterrolebinding kvmigrate --clusterrole=kubevirt.io:migrate --user=
<first_user> --user=<second_user> --group=<group_name>

CHAPTER 13. LIVE MIGRATION

405

1

2

3

4

5

6

You can configure live migration settings to ensure that the migration processes do not overwhelm the
cluster.

You can configure live migration policies to apply different migration configurations to groups of virtual
machines (VMs).

13.2.1. Configuring live migration limits and timeouts

Configure live migration limits and timeouts for the cluster by updating the HyperConverged custom
resource (CR), which is located in the openshift-cnv namespace.

Prerequisites

You have installed the OpenShift CLI (oc).

Procedure

Edit the HyperConverged CR and add the necessary live migration parameters:

Example configuration file

Bandwidth limit of each migration, where the value is the quantity of bytes per second. For
example, a value of 2048Mi means 2048 MiB/s. Default: 0, which is unlimited.

The migration is canceled if it has not completed in this time, in seconds per GiB of
memory. For example, a VM with 6GiB memory times out if it has not completed migration
in 4800 seconds. If the Migration Method is BlockMigration, the size of the migrating
disks is included in the calculation.

Number of migrations running in parallel in the cluster. Default: 5.

Maximum number of outbound migrations per node. Default: 2.

The migration is canceled if memory copy fails to make progress in this time, in seconds.
Default: 150.

If a VM is running a heavy workload and the memory dirty rate is too high, this can prevent

$ oc edit hyperconverged kubevirt-hyperconverged -n openshift-cnv

apiVersion: hco.kubevirt.io/v1beta1
kind: HyperConverged
metadata:
 name: kubevirt-hyperconverged
 namespace: openshift-cnv
spec:
 liveMigrationConfig:
 bandwidthPerMigration: 64Mi 1
 completionTimeoutPerGiB: 800 2
 parallelMigrationsPerCluster: 5 3
 parallelOutboundMigrationsPerNode: 2 4
 progressTimeout: 150 5
 allowPostCopy: false 6

OpenShift Container Platform 4.20 Virtualization

406

1

2

NOTE

You can restore the default value for any spec.liveMigrationConfig field by deleting
that key/value pair and saving the file. For example, delete progressTimeout: <value>
to restore the default progressTimeout: 150.

13.2.2. Configure live migration for heavy workloads

When migrating a VM running a heavy workload (for example, database processing) with higher memory
dirty rates, you need a higher bandwidth to complete the migration.

If the dirty rate is too high, the migration from one node to another does not converge. To prevent this,
enable post copy mode.

Post copy mode triggers if the initial pre-copy phase does not complete within the defined timeout.
During post copy, the VM CPUs pause on the source host while transferring the minimum required
memory pages. Then the VM CPUs activate on the destination host, and the remaining memory pages
transfer into the destination node at runtime.

Configure live migration for heavy workloads by updating the HyperConverged custom resource (CR),
which is located in the openshift-cnv namespace.

Prerequisites

You have installed the OpenShift CLI (oc).

Procedure

1. Edit the HyperConverged CR and add the necessary parameters for migrating heavy
workloads:

Example configuration file

Bandwidth limit of each migration, where the value is the quantity of bytes per second. The
default is 0, which is unlimited.

The migration is canceled if it is not completed in this time, and triggers post copy mode,

$ oc edit hyperconverged kubevirt-hyperconverged -n openshift-cnv

apiVersion: hco.kubevirt.io/v1beta1
kind: HyperConverged
metadata:
 name: kubevirt-hyperconverged
 namespace: openshift-cnv
spec:
 liveMigrationConfig:
 bandwidthPerMigration: 0Mi 1
 completionTimeoutPerGiB: 150 2
 parallelMigrationsPerCluster: 5 3
 parallelOutboundMigrationsPerNode: 1 4
 progressTimeout: 150 5
 allowPostCopy: true 6

CHAPTER 13. LIVE MIGRATION

407

3

4

5

6

The migration is canceled if it is not completed in this time, and triggers post copy mode,
when post copy is enabled. This value is measured in seconds per GiB of memory. You can

Number of migrations running in parallel in the cluster. The default is 5. Keeping the
parallelMigrationsPerCluster setting low is better when migrating heavy workloads.

Maximum number of outbound migrations per node. Configure a single VM per node for
heavy workloads.

The migration is canceled if memory copy fails to make progress in this time. This value is
measured in seconds. Increase this parameter for large memory sizes running heavy
workloads.

Use post copy mode when memory dirty rates are high to ensure the migration converges.
Set allowPostCopy to true to enable post copy mode.

2. Optional: If your main network is too busy for the migration, configure a secondary, dedicated
migration network.

NOTE

Post copy mode can impact performance during the transfer, and should not be used for
critical data, or with unstable networks.

13.2.3. Additional resources

Configuring a dedicated network for live migration

13.2.4. Live migration policies

You can create live migration policies to apply different migration configurations to groups of VMs that
are defined by VM or project labels.

TIP

You can create live migration policies by using the OpenShift Container Platform web console.

13.2.4.1. Creating a live migration policy by using the CLI

You can create a live migration policy by using the command line. KubeVirt applies the live migration
policy to selected virtual machines (VMs) by using any combination of labels:

VM labels such as size, os, or gpu

Project labels such as priority, bandwidth, or hpc-workload

For the policy to apply to a specific group of VMs, all labels on the group of VMs must match the labels
of the policy.

NOTE

OpenShift Container Platform 4.20 Virtualization

408

NOTE

If multiple live migration policies apply to a VM, the policy with the greatest number of
matching labels takes precedence.

If multiple policies meet this criteria, the policies are sorted by alphabetical order of the
matching label keys, and the first one in that order takes precedence.

Prerequisites

You have installed the OpenShift CLI (oc).

Procedure

1. Edit the VM object to which you want to apply a live migration policy, and add the corresponding
VM labels.

a. Open the YAML configuration of the resource:

b. Adjust the required label values in the .spec.template.metadata.labels section of the
configuration. For example, to mark the VM as a production VM for the purposes of
migration policies, add the kubevirt.io/environment: production line:

c. Save and exit the configuration.

2. Configure a MigrationPolicy object with the corresponding labels. The following example
configures a policy that applies to all VMs that are labeled as production:

$ oc edit vm <vm_name>

apiVersion: migrations.kubevirt.io/v1alpha1
kind: VirtualMachine
metadata:
 name: <vm_name>
 namespace: default
 labels:
 app: my-app
 environment: production
spec:
 template:
 metadata:
 labels:
 kubevirt.io/domain: <vm_name>
 kubevirt.io/size: large
 kubevirt.io/environment: production
...

apiVersion: migrations.kubevirt.io/v1alpha1
kind: MigrationPolicy
metadata:
 name: <migration_policy>
spec:
 selectors:
 namespaceSelector: 1
 hpc-workloads: "True"

CHAPTER 13. LIVE MIGRATION

409

1

2

Specify project labels.

Specify VM labels.

3. Create the migration policy by running the following command:

13.2.5. Migrating a VM to a specific node

You can migrate a running virtual machine (VM) to a specific subset of nodes by using the
addedNodeSelector field on the VirtualMachineInstanceMigration object. This field lets you apply
additional node selection rules for a one-time migration attempt, without affecting the VM
configuration or future migrations.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

The VM you want to migrate is running.

You have identified the labels of the target nodes. Multiple labels can be specified and are
combined with logical AND.

The oc CLI tool is installed.

Procedure

1. Create a migration manifest YAML file. For example:

where:

vmiName

Specifies the name of the running VM (for example, vmi-fedora).

addedNodeSelector

Specifies additional constraints for selecting the target node.

2. Apply the manifest to the cluster by running the following command:

 xyz-workloads-type: ""
 virtualMachineInstanceSelector: 2
 kubevirt.io/environment: "production"

$ oc create -f <migration_policy>.yaml

apiVersion: kubevirt.io/v1
kind: VirtualMachineInstanceMigration
metadata:
 name: migration-job
spec:
 vmiName: vmi-fedora
 addedNodeSelector:
 accelerator: gpu-enabled23
 kubernetes.io/hostname: "ip-172-28-114-199.example"

OpenShift Container Platform 4.20 Virtualization

410

If no nodes satisfy the constraints, the migration is declared a failure after a timeout. The VM
remains unaffected.

13.2.6. Additional resources

Configuring a dedicated Multus network for live migration

13.3. INITIATING AND CANCELING LIVE MIGRATION

You can initiate the live migration of a virtual machine (VM) to another node by using the OpenShift
Container Platform web console or the command line.

You can cancel a live migration by using the web console or the command line. The VM remains on its
original node.

TIP

You can also initiate and cancel live migration by using the virtctl migrate <vm_name> and virtctl
migrate-cancel <vm_name> commands.

13.3.1. Initiating live migration

13.3.1.1. Initiating live migration by using the web console

You can live migrate a running virtual machine (VM) to a different node in the cluster by using the
OpenShift Container Platform web console.

NOTE

The Migrate action is visible to all users but only cluster administrators can initiate a live
migration.

Prerequisites

You have the kubevirt.io:migrate RBAC role or you are a cluster administrator.

The VM is migratable.

If the VM is configured with a host model CPU, the cluster has an available node that supports
the CPU model.

Procedure

1. Navigate to Virtualization → VirtualMachines in the web console.

2. Take either of the following steps:

Click the Options menu beside the VM you want to migrate, hover over the Migrate
option, and select Compute.

Open the VM details page of the VM you want to migrate, click the Actions menu, hover

$ oc apply -f <file_name>.yaml

CHAPTER 13. LIVE MIGRATION

411

Open the VM details page of the VM you want to migrate, click the Actions menu, hover
over the Migrate option, and select Compute.

3. In the Migrate Virtual Machine to a different Node dialog box, select either Automatically
Selected Node or Specific Node.

a. If you selected the Specific Node option, choose a node from the list.

4. Click Migrate Virtual Machine.

13.3.1.2. Initiating live migration by using the CLI

You can initiate the live migration of a running virtual machine (VM) by using the command line to create
a VirtualMachineInstanceMigration object for the VM.

Prerequisites

You have installed the OpenShift CLI (oc).

You have the kubevirt.io:migrate RBAC role or you are a cluster administrator.

Procedure

1. Create a VirtualMachineInstanceMigration manifest for the VM that you want to migrate:

2. Create the object by running the following command:

The VirtualMachineInstanceMigration object triggers a live migration of the VM. This object
exists in the cluster for as long as the virtual machine instance is running, unless manually
deleted.

Verification

Obtain the VM status by running the following command:

Example output

apiVersion: kubevirt.io/v1
kind: VirtualMachineInstanceMigration
metadata:
 name: <migration_name>
spec:
 vmiName: <vm_name>

$ oc create -f <migration_name>.yaml

$ oc describe vmi <vm_name> -n <namespace>

...
Status:
 Conditions:
 Last Probe Time: <nil>
 Last Transition Time: <nil>
 Status: True

OpenShift Container Platform 4.20 Virtualization

412

13.3.2. Canceling live migration

13.3.2.1. Canceling live migration by using the web console

You can cancel the live migration of a virtual machine (VM) by using the OpenShift Container Platform
web console.

Prerequisites

You have the kubevirt.io:migrate RBAC role or you are a cluster administrator.

Procedure

1. Navigate to Virtualization → VirtualMachines in the web console.

2. Select Cancel Migration on the Options menu beside a VM.

13.3.2.2. Canceling live migration by using the CLI

Cancel the live migration of a virtual machine by deleting the VirtualMachineInstanceMigration object
associated with the migration.

Prerequisites

You have installed the OpenShift CLI (oc).

You have the kubevirt.io:migrate RBAC role or you are a cluster administrator.

Procedure

Delete the VirtualMachineInstanceMigration object that triggered the live migration,
migration-job in this example:

13.3.3. Additional resources

About live migration permissions

 Type: LiveMigratable
 Migration Method: LiveMigration
 Migration State:
 Completed: true
 End Timestamp: 2018-12-24T06:19:42Z
 Migration UID: d78c8962-0743-11e9-a540-fa163e0c69f1
 Source Node: node2.example.com
 Start Timestamp: 2018-12-24T06:19:35Z
 Target Node: node1.example.com
 Target Node Address: 10.9.0.18:43891
 Target Node Domain Detected: true

$ oc delete vmim migration-job

CHAPTER 13. LIVE MIGRATION

413

CHAPTER 14. NODES

14.1. NODE MAINTENANCE

Nodes can be placed into maintenance mode by using the oc adm utility or NodeMaintenance custom
resources (CRs).

NOTE

The node-maintenance-operator (NMO) is no longer shipped with OpenShift
Virtualization. It is deployed as a standalone Operator from the software catalog in the
OpenShift Container Platform web console or by using the OpenShift CLI (oc).

For more information on remediation, fencing, and maintaining nodes, see the Workload
Availability for Red Hat OpenShift documentation.

IMPORTANT

Virtual machines (VMs) must have a persistent volume claim (PVC) with a shared
ReadWriteMany (RWX) access mode to be live migrated.

The Node Maintenance Operator watches for new or deleted NodeMaintenance CRs. When a new
NodeMaintenance CR is detected, no new workloads are scheduled and the node is cordoned off from
the rest of the cluster. All pods that can be evicted are evicted from the node. When a
NodeMaintenance CR is deleted, the node that is referenced in the CR is made available for new
workloads.

NOTE

Using a NodeMaintenance CR for node maintenance tasks achieves the same results as
the oc adm cordon and oc adm drain commands using standard OpenShift Container
Platform custom resource processing.

14.1.1. Eviction strategies

Placing a node into maintenance marks the node as unschedulable and drains all the VMs and pods from
it.

You can configure eviction strategies for virtual machines (VMs) or for the cluster.

VM eviction strategy

The VM LiveMigrate eviction strategy ensures that a virtual machine instance (VMI) is not
interrupted if the node is placed into maintenance or drained. VMIs with this eviction strategy will be
live migrated to another node.
You can configure eviction strategies for virtual machines (VMs) by using the OpenShift Container
Platform web console or the command line.

IMPORTANT

OpenShift Container Platform 4.20 Virtualization

414

https://access.redhat.com/documentation/en-us/workload_availability_for_red_hat_openshift/23.2/html-single/remediation_fencing_and_maintenance/index#about-remediation-fencing-maintenance

IMPORTANT

The default eviction strategy is LiveMigrate. A non-migratable VM with a LiveMigrate
eviction strategy might prevent nodes from draining or block an infrastructure
upgrade because the VM is not evicted from the node. This situation causes a
migration to remain in a Pending or Scheduling state unless you shut down the VM
manually.

You must set the eviction strategy of non-migratable VMs to LiveMigrateIfPossible,
which does not block an upgrade, or to None, for VMs that should not be migrated.

Cluster eviction strategy

You can configure an eviction strategy for the cluster to prioritize workload continuity or
infrastructure upgrade.

Table 14.1. Cluster eviction strategies

Eviction strategy Description Interrupts
workflow

Blocks upgrades

LiveMigrate 1 Prioritizes workload continuity over
upgrades.

No Yes 2

LiveMigrateIfPo
ssible

Prioritizes upgrades over workload
continuity to ensure that the environment
is updated.

Yes No

None 3 Shuts down VMs with no eviction
strategy.

Yes No

1. Default eviction strategy for multi-node clusters.

2. If a VM blocks an upgrade, you must shut down the VM manually.

3. Default eviction strategy for single-node OpenShift.

14.1.1.1. Configuring a VM eviction strategy using the CLI

You can configure an eviction strategy for a virtual machine (VM) by using the command line.

IMPORTANT

The default eviction strategy is LiveMigrate. A non-migratable VM with a LiveMigrate
eviction strategy might prevent nodes from draining or block an infrastructure upgrade
because the VM is not evicted from the node. This situation causes a migration to remain
in a Pending or Scheduling state unless you shut down the VM manually.

You must set the eviction strategy of non-migratable VMs to LiveMigrateIfPossible,
which does not block an upgrade, or to None, for VMs that should not be migrated.

Prerequisites

CHAPTER 14. NODES

415

1

You have installed the OpenShift CLI (oc).

Procedure

1. Edit the VirtualMachine resource by running the following command:

Example eviction strategy

Specify the eviction strategy. The default value is LiveMigrate.

2. Restart the VM to apply the changes:

14.1.1.2. Configuring a cluster eviction strategy by using the CLI

You can configure an eviction strategy for a cluster by using the command line.

Prerequisites

You have installed the OpenShift CLI (oc).

Procedure

1. Edit the hyperconverged resource by running the following command:

2. Set the cluster eviction strategy as shown in the following example:

Example cluster eviction strategy

$ oc edit vm <vm_name> -n <namespace>

apiVersion: kubevirt.io/v1
kind: VirtualMachine
metadata:
 name: <vm_name>
spec:
 template:
 spec:
 evictionStrategy: LiveMigrateIfPossible 1
...

$ virtctl restart <vm_name> -n <namespace>

$ oc edit hyperconverged kubevirt-hyperconverged -n openshift-cnv

apiVersion: hco.kubevirt.io/v1beta1
kind: HyperConverged
metadata:
 name: kubevirt-hyperconverged
spec:
 evictionStrategy: LiveMigrate
...

OpenShift Container Platform 4.20 Virtualization

416

14.1.2. Run strategies

The spec.runStrategy key determines how a VM behaves under certain conditions.

14.1.2.1. Run strategies

The spec.runStrategy key has four possible values:

Always

The virtual machine instance (VMI) is always present when a virtual machine (VM) is created on
another node. A new VMI is created if the original stops for any reason.

RerunOnFailure

The VMI is re-created on another node if the previous instance fails. The instance is not re-created if
the VM stops successfully, such as when it is shut down.

Manual

You control the VMI state manually with the start, stop, and restart virtctl client commands. The VM
is not automatically restarted.

Halted

No VMI is present when a VM is created.

Different combinations of the virtctl start, stop and restart commands affect the run strategy.

The following table describes a VM’s transition between states. The first column shows the VM’s initial
run strategy. The remaining columns show a virtctl command and the new run strategy after that
command is run.

Table 14.2. Run strategy before and after virtctl commands

Initial run strategy Start Stop Restart

Always - Halted Always

RerunOnFailure RerunOnFailure RerunOnFailure RerunOnFailure

Manual Manual Manual Manual

Halted Always - -

NOTE

If a node in a cluster installed by using installer-provisioned infrastructure fails the
machine health check and is unavailable, VMs with runStrategy: Always or runStrategy:
RerunOnFailure are rescheduled on a new node.

14.1.2.2. Configuring a VM run strategy by using the CLI

You can configure a run strategy for a virtual machine (VM) by using the command line.

Prerequisites

CHAPTER 14. NODES

417

You have installed the OpenShift CLI (oc).

Procedure

Edit the VirtualMachine resource by running the following command:

Example run strategy

14.1.3. Maintaining bare metal nodes

When you deploy OpenShift Container Platform on bare metal infrastructure, there are additional
considerations that must be taken into account compared to deploying on cloud infrastructure. Unlike in
cloud environments where the cluster nodes are considered ephemeral, re-provisioning a bare metal
node requires significantly more time and effort for maintenance tasks.

When a bare metal node fails, for example, if a fatal kernel error happens or a NIC card hardware failure
occurs, workloads on the failed node need to be restarted elsewhere else on the cluster while the
problem node is repaired or replaced. Node maintenance mode allows cluster administrators to
gracefully power down nodes, moving workloads to other parts of the cluster and ensuring workloads do
not get interrupted. Detailed progress and node status details are provided during maintenance.

14.1.4. Additional resources

About live migration

14.2. MANAGING NODE LABELING FOR OBSOLETE CPU MODELS

You can schedule a virtual machine (VM) on a node as long as the VM CPU model and policy are
supported by the node.

14.2.1. About node labeling for obsolete CPU models

The OpenShift Virtualization Operator uses a predefined list of obsolete CPU models to ensure that a
node supports only valid CPU models for scheduled VMs.

By default, the following CPU models are eliminated from the list of labels generated for the node:

Example 14.1. Obsolete CPU models

"486"
Conroe
athlon
core2duo
coreduo
kvm32

$ oc edit vm <vm_name> -n <namespace>

apiVersion: kubevirt.io/v1
kind: VirtualMachine
spec:
 runStrategy: Always
...

OpenShift Container Platform 4.20 Virtualization

418

1

kvm64
n270
pentium
pentium2
pentium3
pentiumpro
phenom
qemu32
qemu64

This predefined list is not visible in the HyperConverged CR. You cannot remove CPU models from this
list, but you can add to the list by editing the spec.obsoleteCPUs.cpuModels field of the
HyperConverged CR.

14.2.2. Configuring obsolete CPU models

You can configure a list of obsolete CPU models by editing the HyperConverged custom resource
(CR).

Procedure

Edit the HyperConverged custom resource, specifying the obsolete CPU models in the
obsoleteCPUs array. For example:

Replace the example values in the cpuModels array with obsolete CPU models. Any value
that you specify is added to a predefined list of obsolete CPU models. The predefined list
is not visible in the CR.

14.3. PREVENTING NODE RECONCILIATION

Use skip-node annotation to prevent the node-labeller from reconciling a node.

14.3.1. Using skip-node annotation

If you want the node-labeller to skip a node, annotate that node by using the oc CLI.

Prerequisites

You have installed the OpenShift CLI (oc).

Procedure

apiVersion: hco.kubevirt.io/v1beta1
kind: HyperConverged
metadata:
 name: kubevirt-hyperconverged
 namespace: openshift-cnv
spec:
 obsoleteCPUs:
 cpuModels: 1
 - "<obsolete_cpu_1>"
 - "<obsolete_cpu_2>"

CHAPTER 14. NODES

419

1

Procedure

Annotate the node that you want to skip by running the following command:

Replace <node_name> with the name of the relevant node to skip.

Reconciliation resumes on the next cycle after the node annotation is removed or set to false.

14.3.2. Additional resources

Managing node labeling for obsolete CPU models

14.4. DELETING A FAILED NODE TO TRIGGER VIRTUAL MACHINE
FAILOVER

If a node fails and node health checks are not deployed on your cluster, virtual machines (VMs) with
runStrategy: Always configured are not automatically relocated to healthy nodes.

14.4.1. Prerequisites

A node where a virtual machine was running has the NotReady condition.

The virtual machine that was running on the failed node has runStrategy set to Always.

You have installed the OpenShift CLI (oc).

14.4.2. Deleting nodes from a bare metal cluster

When you delete a node using the CLI, the node object is deleted in Kubernetes, but the pods that exist
on the node are not deleted. Any bare pods not backed by a replication controller become inaccessible
to OpenShift Container Platform. Pods backed by replication controllers are rescheduled to other
available nodes. You must delete local manifest pods.

Procedure

Delete a node from an OpenShift Container Platform cluster running on bare metal by completing the
following steps:

1. Mark the node as unschedulable:

2. Drain all pods on the node:

This step might fail if the node is offline or unresponsive. Even if the node does not respond, it
might still be running a workload that writes to shared storage. To avoid data corruption, power
down the physical hardware before you proceed.

3. Delete the node from the cluster:

$ oc annotate node <node_name> node-labeller.kubevirt.io/skip-node=true 1

$ oc adm cordon <node_name>

$ oc adm drain <node_name> --force=true

OpenShift Container Platform 4.20 Virtualization

420

https://access.redhat.com/articles/7057929
https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/nodes/#nodes-nodes-viewing-listing_nodes-nodes-viewing

Although the node object is now deleted from the cluster, it can still rejoin the cluster after
reboot or if the kubelet service is restarted. To permanently delete the node and all its data, you
must decommission the node.

4. If you powered down the physical hardware, turn it back on so that the node can rejoin the
cluster.

14.4.3. Verifying virtual machine failover

After all resources are terminated on the unhealthy node, a new virtual machine instance (VMI) is
automatically created on a healthy node for each relocated VM. To confirm that the VMI was created,
view all VMIs by using the oc CLI.

14.4.3.1. Listing all virtual machine instances using the CLI

You can list all virtual machine instances (VMIs) in your cluster, including standalone VMIs and those
owned by virtual machines, by using the oc command-line interface (CLI).

Prerequisites

You have installed the OpenShift CLI (oc).

Procedure

List all VMIs by running the following command:

14.5. ACTIVATING KERNEL SAMEPAGE MERGING (KSM)

OpenShift Virtualization can activate kernel samepage merging (KSM) when nodes are overloaded. KSM
deduplicates identical data found in the memory pages of virtual machines (VMs). If you have very
similar VMs, KSM can make it possible to schedule more VMs on a single node.

IMPORTANT

You must only use KSM with trusted workloads.

14.5.1. Prerequisites

Ensure that an administrator has configured KSM support on any nodes where you want
OpenShift Virtualization to activate KSM.

14.5.2. About using OpenShift Virtualization to activate KSM

You can configure OpenShift Virtualization to activate kernel samepage merging (KSM) when nodes
experience memory overload.

14.5.2.1. Configuration methods

You can enable or disable the KSM activation feature for all nodes by using the OpenShift Container

$ oc delete node <node_name>

$ oc get vmis -A

CHAPTER 14. NODES

421

https://access.redhat.com/solutions/84663

You can enable or disable the KSM activation feature for all nodes by using the OpenShift Container
Platform web console or by editing the HyperConverged custom resource (CR). The
HyperConverged CR supports more granular configuration.

CR configuration
You can configure the KSM activation feature by editing the spec.configuration.ksmConfiguration
stanza of the HyperConverged CR.

You enable the feature and configure settings by editing the ksmConfiguration stanza.

You disable the feature by deleting the ksmConfiguration stanza.

You can allow OpenShift Virtualization to enable KSM on only a subset of nodes by adding node
selection syntax to the ksmConfiguration.nodeLabelSelector field.

NOTE

Even if the KSM activation feature is disabled in OpenShift Virtualization, an
administrator can still enable KSM on nodes that support it.

14.5.2.2. KSM node labels

OpenShift Virtualization identifies nodes that are configured to support KSM and applies the following
node labels:

kubevirt.io/ksm-handler-managed: "false"

This label is set to "true" when OpenShift Virtualization activates KSM on a node that is experiencing
memory overload. This label is not set to "true" if an administrator activates KSM.

kubevirt.io/ksm-enabled: "false"

This label is set to "true" when KSM is activated on a node, even if OpenShift Virtualization did not
activate KSM.

These labels are not applied to nodes that do not support KSM.

14.5.3. Configuring KSM activation by using the web console

You can allow OpenShift Virtualization to activate kernel samepage merging (KSM) on all nodes in your
cluster by using the OpenShift Container Platform web console.

Procedure

1. From the side menu, click Virtualization → Overview.

2. Select the Settings tab.

3. Select the Cluster tab.

4. Expand Resource management.

5. Enable or disable the feature for all nodes:

Set Kernel Samepage Merging (KSM) to on.

Set Kernel Samepage Merging (KSM) to off.

OpenShift Container Platform 4.20 Virtualization

422

14.5.4. Configuring KSM activation by using the CLI

You can enable or disable OpenShift Virtualization’s kernel samepage merging (KSM) activation feature
by editing the HyperConverged custom resource (CR). Use this method if you want OpenShift
Virtualization to activate KSM on only a subset of nodes.

Prerequisites

You have installed the OpenShift CLI (oc).

Procedure

1. Open the HyperConverged CR in your default editor by running the following command:

2. Edit the ksmConfiguration stanza:

To enable the KSM activation feature for all nodes, set the nodeLabelSelector value to {}.
For example:

To enable the KSM activation feature on a subset of nodes, edit the nodeLabelSelector
field. Add syntax that matches the nodes where you want OpenShift Virtualization to enable
KSM. For example, the following configuration allows OpenShift Virtualization to enable
KSM on nodes where both <first_example_key> and <second_example_key> are set to
"true":

To disable the KSM activation feature, delete the ksmConfiguration stanza. For example:

$ oc edit hyperconverged kubevirt-hyperconverged -n openshift-cnv

apiVersion: hco.kubevirt.io/v1beta1
kind: HyperConverged
metadata:
 name: kubevirt-hyperconverged
 namespace: openshift-cnv
spec:
 configuration:
 ksmConfiguration:
 nodeLabelSelector: {}
...

apiVersion: hco.kubevirt.io/v1beta1
kind: HyperConverged
metadata:
 name: kubevirt-hyperconverged
 namespace: openshift-cnv
spec:
 configuration:
 ksmConfiguration:
 nodeLabelSelector:
 matchLabels:
 <first_example_key>: "true"
 <second_example_key>: "true"
...

CHAPTER 14. NODES

423

3. Save the file.

14.5.5. Additional resources

Specifying nodes for virtual machines

Placing pods on specific nodes using node selectors

Managing kernel samepage merging in the Red Hat Enterprise Linux (RHEL) documentation

apiVersion: hco.kubevirt.io/v1beta1
kind: HyperConverged
metadata:
 name: kubevirt-hyperconverged
 namespace: openshift-cnv
spec:
 configuration:
...

OpenShift Container Platform 4.20 Virtualization

424

https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/nodes/#nodes-scheduler-node-selectors
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/configuring_and_managing_virtualization/index#proc_managing-ksm_optimizing-virtual-machine-cpu-performance

CHAPTER 15. MONITORING

15.1. MONITORING OVERVIEW

You can monitor the health of your cluster and virtual machines (VMs) with the following tools:

Monitoring OpenShift Virtualization VM health status

View the overall health of your OpenShift Virtualization environment in the web console by
navigating to the Home → Overview page in the OpenShift Container Platform web console. The
Status card displays the overall health of OpenShift Virtualization based on the alerts and conditions.

OpenShift Container Platform cluster checkup framework

Run automated tests on your cluster with the OpenShift Container Platform cluster checkup
framework to check the following conditions:

Network connectivity and latency between two VMs attached to a secondary network
interface

VM running a Data Plane Development Kit (DPDK) workload with zero packet loss

Cluster storage is optimally configured for OpenShift Virtualization

Prometheus queries for virtual resources

Query vCPU, network, storage, and guest memory swapping usage and live migration progress.

VM custom metrics

Configure the node-exporter service to expose internal VM metrics and processes.

VM health checks

Configure readiness, liveness, and guest agent ping probes and a watchdog for VMs.

Runbooks

Diagnose and resolve issues that trigger OpenShift Virtualization alerts in the OpenShift Container
Platform web console.

15.2. OPENSHIFT VIRTUALIZATION CLUSTER CHECKUP FRAMEWORK

A checkup is an automated test workload that allows you to verify if a specific cluster functionality works
as expected. The cluster checkup framework uses native Kubernetes resources to configure and
execute the checkup.

IMPORTANT

The OpenShift Virtualization cluster checkup framework is a Technology Preview feature
only. Technology Preview features are not supported with Red Hat production service
level agreements (SLAs) and might not be functionally complete. Red Hat does not
recommend using them in production. These features provide early access to upcoming
product features, enabling customers to test functionality and provide feedback during
the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

As a developer or cluster administrator, you can use predefined checkups to improve cluster

CHAPTER 15. MONITORING

425

https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/monitoring/#about-managing-alerts_key-concepts
https://access.redhat.com/support/offerings/techpreview/

maintainability, troubleshoot unexpected behavior, minimize errors, and save time. You can review the
results of the checkup and share them with experts for further analysis. Vendors can write and publish
checkups for features or services that they provide and verify that their customer environments are
configured correctly.

15.2.1. Running predefined latency checkups

You can use a latency checkup to verify network connectivity and measure latency between two virtual
machines (VMs) that are attached to a secondary network interface. The predefined latency checkup
uses the ping utility.

IMPORTANT

Before you run a latency checkup, you must first create a bridge interface on the cluster
nodes to connect the VM’s secondary interface to any interface on the node. If you do
not create a bridge interface, the VMs do not start and the job fails.

Running a predefined checkup in an existing namespace involves setting up a service account for the
checkup, creating the Role and RoleBinding objects for the service account, enabling permissions for
the checkup, and creating the input config map and the checkup job. You can run a checkup multiple
times.

IMPORTANT

You must always:

Verify that the checkup image is from a trustworthy source before applying it.

Review the checkup permissions before creating the Role and RoleBinding
objects.

15.2.1.1. Running a latency checkup by using the web console

Run a latency checkup to verify network connectivity and measure the latency between two virtual
machines attached to a secondary network interface.

Prerequisites

You must add a NetworkAttachmentDefinition to the namespace.

Procedure

1. Navigate to Virtualization → Checkups in the web console.

2. Click the Network latency tab.

3. Click Install permissions.

4. Click Run checkup.

5. Enter a name for the checkup in the Name field.

6. Select a NetworkAttachmentDefinition from the drop-down menu.

OpenShift Container Platform 4.20 Virtualization

426

7. Optional: Set a duration for the latency sample in the Sample duration (seconds) field.

8. Optional: Define a maximum latency time interval by enabling Set maximum desired latency
(milliseconds) and defining the time interval.

9. Optional: Target specific nodes by enabling Select nodes and specifying the Source node and
Target node.

10. Click Run.

Verification

To view the status of the latency checkup, go to the Checkups list on the Latency checkup tab.
Click on the name of the checkup for more details.

15.2.1.2. Running a latency checkup by using the CLI

You run a latency checkup using the CLI by performing the following steps:

1. Create a service account, roles, and rolebindings to provide cluster access permissions to the
latency checkup.

2. Create a config map to provide the input to run the checkup and to store the results.

3. Create a job to run the checkup.

4. Review the results in the config map.

5. Optional: To rerun the checkup, delete the existing config map and job and then create a new
config map and job.

6. When you are finished, delete the latency checkup resources.

Prerequisites

You installed the OpenShift CLI (oc).

The cluster has at least two worker nodes.

You configured a network attachment definition for a namespace.

Procedure

1. Create a ServiceAccount, Role, and RoleBinding manifest for the latency checkup:

Example 15.1. Example role manifest file

apiVersion: v1
kind: ServiceAccount
metadata:
 name: vm-latency-checkup-sa

apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:

CHAPTER 15. MONITORING

427

1

2. Apply the ServiceAccount, Role, and RoleBinding manifest:

<target_namespace> is the namespace where the checkup is to be run. This must be an
existing namespace where the NetworkAttachmentDefinition object resides.

3. Create a ConfigMap manifest that contains the input parameters for the checkup:

Example input config map

 name: kubevirt-vm-latency-checker
rules:
- apiGroups: ["kubevirt.io"]
 resources: ["virtualmachineinstances"]
 verbs: ["get", "create", "delete"]
- apiGroups: ["subresources.kubevirt.io"]
 resources: ["virtualmachineinstances/console"]
 verbs: ["get"]
- apiGroups: ["k8s.cni.cncf.io"]
 resources: ["network-attachment-definitions"]
 verbs: ["get"]

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
 name: kubevirt-vm-latency-checker
subjects:
- kind: ServiceAccount
 name: vm-latency-checkup-sa
roleRef:
 kind: Role
 name: kubevirt-vm-latency-checker
 apiGroup: rbac.authorization.k8s.io

apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
 name: kiagnose-configmap-access
rules:
- apiGroups: [""]
 resources: ["configmaps"]
 verbs: ["get", "update"]

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
 name: kiagnose-configmap-access
subjects:
- kind: ServiceAccount
 name: vm-latency-checkup-sa
roleRef:
 kind: Role
 name: kiagnose-configmap-access
 apiGroup: rbac.authorization.k8s.io

$ oc apply -n <target_namespace> -f <latency_sa_roles_rolebinding>.yaml 1

OpenShift Container Platform 4.20 Virtualization

428

1

2

3

4

5

Example input config map

The name of the NetworkAttachmentDefinition object.

Optional: The maximum desired latency, in milliseconds, between the virtual machines. If
the measured latency exceeds this value, the checkup fails.

Optional: The duration of the latency check, in seconds.

Optional: When specified, latency is measured from this node to the target node. If the
source node is specified, the spec.param.targetNode field cannot be empty.

Optional: When specified, latency is measured from the source node to this node.

4. Apply the config map manifest in the target namespace:

5. Create a Job manifest to run the checkup:

Example job manifest

apiVersion: v1
kind: ConfigMap
metadata:
 name: kubevirt-vm-latency-checkup-config
 labels:
 kiagnose/checkup-type: kubevirt-vm-latency
data:
 spec.timeout: 5m
 spec.param.networkAttachmentDefinitionNamespace: <target_namespace>
 spec.param.networkAttachmentDefinitionName: "blue-network" 1
 spec.param.maxDesiredLatencyMilliseconds: "10" 2
 spec.param.sampleDurationSeconds: "5" 3
 spec.param.sourceNode: "worker1" 4
 spec.param.targetNode: "worker2" 5

$ oc apply -n <target_namespace> -f <latency_config_map>.yaml

apiVersion: batch/v1
kind: Job
metadata:
 name: kubevirt-vm-latency-checkup
 labels:
 kiagnose/checkup-type: kubevirt-vm-latency
spec:
 backoffLimit: 0
 template:
 spec:
 serviceAccountName: vm-latency-checkup-sa
 restartPolicy: Never
 containers:
 - name: vm-latency-checkup
 image: registry.redhat.io/container-native-virtualization/vm-network-latency-checkup-
rhel9:v4.20.0

CHAPTER 15. MONITORING

429

6. Apply the Job manifest:

7. Wait for the job to complete:

8. Review the results of the latency checkup by running the following command. If the maximum
measured latency is greater than the value of the
spec.param.maxDesiredLatencyMilliseconds attribute, the checkup fails and returns an error.

Example output config map (success)

 securityContext:
 allowPrivilegeEscalation: false
 capabilities:
 drop: ["ALL"]
 runAsNonRoot: true
 seccompProfile:
 type: "RuntimeDefault"
 env:
 - name: CONFIGMAP_NAMESPACE
 value: <target_namespace>
 - name: CONFIGMAP_NAME
 value: kubevirt-vm-latency-checkup-config
 - name: POD_UID
 valueFrom:
 fieldRef:
 fieldPath: metadata.uid

$ oc apply -n <target_namespace> -f <latency_job>.yaml

$ oc wait job kubevirt-vm-latency-checkup -n <target_namespace> --for condition=complete -
-timeout 6m

$ oc get configmap kubevirt-vm-latency-checkup-config -n <target_namespace> -o yaml

apiVersion: v1
kind: ConfigMap
metadata:
 name: kubevirt-vm-latency-checkup-config
 namespace: <target_namespace>
 labels:
 kiagnose/checkup-type: kubevirt-vm-latency
data:
 spec.timeout: 5m
 spec.param.networkAttachmentDefinitionNamespace: <target_namespace>
 spec.param.networkAttachmentDefinitionName: "blue-network"
 spec.param.maxDesiredLatencyMilliseconds: "10"
 spec.param.sampleDurationSeconds: "5"
 spec.param.sourceNode: "worker1"
 spec.param.targetNode: "worker2"
 status.succeeded: "true"
 status.failureReason: ""
 status.completionTimestamp: "2022-01-01T09:00:00Z"
 status.startTimestamp: "2022-01-01T09:00:07Z"
 status.result.avgLatencyNanoSec: "177000"

OpenShift Container Platform 4.20 Virtualization

430

1 The maximum measured latency in nanoseconds.

9. Optional: To view the detailed job log in case of checkup failure, use the following command:

10. Delete the job and config map that you previously created by running the following commands:

11. Optional: If you do not plan to run another checkup, delete the roles manifest:

15.2.2. Running predefined storage checkups

You can use a storage checkup to verify that the cluster storage is optimally configured for OpenShift
Virtualization.

Running a predefined checkup in an existing namespace involves setting up a service account for the
checkup, creating the Role and RoleBinding objects for the service account, enabling permissions for
the checkup, and creating the input config map and the checkup job. You can run a checkup multiple
times.

IMPORTANT

You must always:

Verify that the checkup image is from a trustworthy source before applying it.

Review the checkup permissions before creating the Role and RoleBinding
objects.

15.2.2.1. Retaining resources for troubleshooting storage checkups

The predefined storage checkup includes skipTeardown configuration options, which control resource
clean up after a storage checkup runs. By default, the skipTeardown field value is Never, which means
that the checkup always performs teardown steps and deletes all resources after the checkup runs.

You can retain resources for further inspection in case a failure occurs by setting the skipTeardown
field to onfailure.

Prerequisites

 status.result.maxLatencyNanoSec: "244000" 1
 status.result.measurementDurationSec: "5"
 status.result.minLatencyNanoSec: "135000"
 status.result.sourceNode: "worker1"
 status.result.targetNode: "worker2"

$ oc logs job.batch/kubevirt-vm-latency-checkup -n <target_namespace>

$ oc delete job -n <target_namespace> kubevirt-vm-latency-checkup

$ oc delete config-map -n <target_namespace> kubevirt-vm-latency-checkup-config

$ oc delete -f <latency_sa_roles_rolebinding>.yaml

CHAPTER 15. MONITORING

431

You have installed the OpenShift CLI (oc).

Procedure

1. Run the following command to edit the storage-checkup-config config map:

2. Configure the skipTeardown field to use the onfailure value. You can do this by modifying the
storage-checkup-config config map, stored in the storage_checkup.yaml file:

3. Reapply the storage-checkup-config config map by running the following command:

15.2.2.2. Running a storage checkup by using the web console

Run a storage checkup to validate that storage is working correctly for virtual machines.

Procedure

1. Navigate to Virtualization → Checkups in the web console.

2. Click the Storage tab.

3. Click Install permissions.

4. Click Run checkup.

5. Enter a name for the checkup in the Name field.

6. Enter a timeout value for the checkup in the Timeout (minutes) fields.

7. Click Run.

You can view the status of the storage checkup in the Checkups list on the Storage tab. Click on the
name of the checkup for more details.

15.2.2.3. Running a storage checkup by using the CLI

Use a predefined checkup to verify that the OpenShift Container Platform cluster storage is configured
optimally to run OpenShift Virtualization workloads.

Prerequisites

$ oc edit configmap storage-checkup-config -n <checkup_namespace>

apiVersion: v1
kind: ConfigMap
metadata:
 name: storage-checkup-config
 namespace: <checkup_namespace>
data:
 spec.param.skipTeardown: onfailure
...

$ oc apply -f storage_checkup.yaml -n <checkup_namespace>

OpenShift Container Platform 4.20 Virtualization

432

1

You have installed the OpenShift CLI (oc).

The cluster administrator has created the required cluster-reader permissions for the storage
checkup service account and namespace, such as in the following example:

The namespace where the checkup is to be run.

Procedure

1. Create a ServiceAccount, Role, and RoleBinding manifest file for the storage checkup:

Example 15.2. Example service account, role, and rolebinding manifest

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 name: kubevirt-storage-checkup-clustereader
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: cluster-reader
subjects:
- kind: ServiceAccount
 name: storage-checkup-sa
 namespace: <target_namespace> 1

apiVersion: v1
kind: ServiceAccount
metadata:
 name: storage-checkup-sa

apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
 name: storage-checkup-role
rules:
 - apiGroups: [""]
 resources: ["configmaps"]
 verbs: ["get", "update"]
 - apiGroups: ["kubevirt.io"]
 resources: ["virtualmachines"]
 verbs: ["create", "delete"]
 - apiGroups: ["kubevirt.io"]
 resources: ["virtualmachineinstances"]
 verbs: ["get"]
 - apiGroups: ["subresources.kubevirt.io"]
 resources: ["virtualmachineinstances/addvolume",
"virtualmachineinstances/removevolume"]
 verbs: ["update"]
 - apiGroups: ["kubevirt.io"]
 resources: ["virtualmachineinstancemigrations"]
 verbs: ["create"]
 - apiGroups: ["cdi.kubevirt.io"]
 resources: ["datavolumes"]

CHAPTER 15. MONITORING

433

2. Apply the ServiceAccount, Role, and RoleBinding manifest in the target namespace:

3. Create a ConfigMap and Job manifest file. The config map contains the input parameters for
the checkup job.

Example input config map and job manifest

 verbs: ["create", "delete"]
 - apiGroups: [""]
 resources: ["persistentvolumeclaims"]
 verbs: ["delete"]

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
 name: storage-checkup-role
subjects:
 - kind: ServiceAccount
 name: storage-checkup-sa
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: Role
 name: storage-checkup-role

$ oc apply -n <target_namespace> -f <storage_sa_roles_rolebinding>.yaml

apiVersion: v1
kind: ConfigMap
metadata:
 name: storage-checkup-config
 namespace: $CHECKUP_NAMESPACE
data:
 spec.timeout: 10m
 spec.param.storageClass: ocs-storagecluster-ceph-rbd-virtualization
 spec.param.vmiTimeout: 3m

apiVersion: batch/v1
kind: Job
metadata:
 name: storage-checkup
 namespace: $CHECKUP_NAMESPACE
spec:
 backoffLimit: 0
 template:
 spec:
 serviceAccount: storage-checkup-sa
 restartPolicy: Never
 containers:
 - name: storage-checkup
 image: quay.io/kiagnose/kubevirt-storage-checkup:main
 imagePullPolicy: Always
 env:
 - name: CONFIGMAP_NAMESPACE

OpenShift Container Platform 4.20 Virtualization

434

4. Apply the ConfigMap and Job manifest file in the target namespace to run the checkup:

5. Wait for the job to complete:

6. Review the results of the checkup by running the following command:

Example output config map (success)

 value: $CHECKUP_NAMESPACE
 - name: CONFIGMAP_NAME
 value: storage-checkup-config

$ oc apply -n <target_namespace> -f <storage_configmap_job>.yaml

$ oc wait job storage-checkup -n <target_namespace> --for condition=complete --timeout
10m

$ oc get configmap storage-checkup-config -n <target_namespace> -o yaml

apiVersion: v1
kind: ConfigMap
metadata:
 name: storage-checkup-config
 labels:
 kiagnose/checkup-type: kubevirt-storage
data:
 spec.timeout: 10m
 status.succeeded: "true" 1
 status.failureReason: "" 2
 status.startTimestamp: "2023-07-31T13:14:38Z" 3
 status.completionTimestamp: "2023-07-31T13:19:41Z" 4
 status.result.cnvVersion: 4.20.2 5
 status.result.defaultStorageClass: trident-nfs 6
 status.result.goldenImagesNoDataSource: <data_import_cron_list> 7
 status.result.goldenImagesNotUpToDate: <data_import_cron_list> 8
 status.result.ocpVersion: 4.20.0 9
 status.result.pvcBound: "true" 10
 status.result.storageProfileMissingVolumeSnapshotClass: <storage_class_list> 11
 status.result.storageProfilesWithEmptyClaimPropertySets: <storage_profile_list> 12
 status.result.storageProfilesWithSmartClone: <storage_profile_list> 13
 status.result.storageProfilesWithSpecClaimPropertySets: <storage_profile_list> 14
 status.result.storageProfilesWithRWX: |-
 ocs-storagecluster-ceph-rbd
 ocs-storagecluster-ceph-rbd-virtualization
 ocs-storagecluster-cephfs
 trident-iscsi
 trident-minio
 trident-nfs
 windows-vms
 status.result.vmBootFromGoldenImage: VMI "vmi-under-test-dhkb8" successfully booted
 status.result.vmHotplugVolume: |-
 VMI "vmi-under-test-dhkb8" hotplug volume ready

CHAPTER 15. MONITORING

435

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Specifies if the checkup is successful (true) or not (false).

The reason for failure if the checkup fails.

The time when the checkup started, in RFC 3339 time format.

The time when the checkup has completed, in RFC 3339 time format.

The OpenShift Virtualization version.

Specifies if there is a default storage class.

The list of golden images whose data source is not ready.

The list of golden images whose data import cron is not up-to-date.

The OpenShift Container Platform version.

Specifies if a PVC of 10Mi has been created and bound by the provisioner.

The list of storage profiles using snapshot-based clone but missing VolumeSnapshotClass.

The list of storage profiles with unknown provisioners.

The list of storage profiles with smart clone support (CSI/snapshot).

The list of storage profiles spec-overriden claimPropertySets.

The list of virtual machines that use the Ceph RBD storage class when the virtualization
storage class exists.

The list of virtual machines that use an Elastic File Store (EFS) storage class where the GID
and UID are not set in the storage class.

7. Delete the job and config map that you previously created by running the following commands:

8. Optional: If you do not plan to run another checkup, delete the ServiceAccount, Role, and
RoleBinding manifest:

15.2.2.4. Troubleshooting a failed storage checkup

If a storage checkup fails, there are steps that you can take to identify the reason for failure.

 VMI "vmi-under-test-dhkb8" hotplug volume removed
 status.result.vmLiveMigration: VMI "vmi-under-test-dhkb8" migration completed
 status.result.vmVolumeClone: 'DV cloneType: "csi-clone"'
 status.result.vmsWithNonVirtRbdStorageClass: <vm_list> 15
 status.result.vmsWithUnsetEfsStorageClass: <vm_list> 16

$ oc delete job -n <target_namespace> storage-checkup

$ oc delete config-map -n <target_namespace> storage-checkup-config

$ oc delete -f <storage_sa_roles_rolebinding>.yaml

OpenShift Container Platform 4.20 Virtualization

436

1

2

Prerequisites

You have installed the OpenShift CLI (oc).

You have downloaded the directory provided by the must-gather tool.

Procedure

1. Review the status.failureReason field in the storage-checkup-config config map by running
the following command and observing the output:

Example output config map

If the checkup has failed, the status.succeeded value is false.

If the checkup has failed, the status.failureReason field contains an error message. In this
example output, the ErrNoDefaultStorageClass error message means that no default
storage class is configured.

2. Search the directory provided by the must-gather tool for logs, events, or terms related to the
error in the data.status.failureReason field value.

Additional resources

Collecting data for Red Hat Support

Using the must-gather tool for OpenShift Virtualization

15.2.2.5. Storage checkup error codes

The following error codes might appear in the storage-checkup-config config map after a storage
checkup fails.

Error code Meaning

ErrNoDefaultStorageClass No default storage class is configured.

$ oc get configmap storage-checkup-config -n <namespace> -o yaml

apiVersion: v1
kind: ConfigMap
metadata:
 name: storage-checkup-config
 labels:
 kiagnose/checkup-type: kubevirt-storage
data:
 spec.timeout: 10m
 status.succeeded: "false" 1
 status.failureReason: "ErrNoDefaultStorageClass" 2
...

CHAPTER 15. MONITORING

437

ErrPvcNotBound One or more persistent volume claims (PVCs) failed
to bind.

ErrMultipleDefaultStorageClasses Multiple default storage classes are configured.

ErrEmptyClaimPropertySets There are StorageProfile objects containing empty
ClaimPropertySets specs.

ErrVMsWithUnsetEfsStorageClass There are VMs using elastic file system (EFS)
storage classes, where the GID and UID are not set in
the StorageClass object.

ErrGoldenImagesNotUpToDate One or more golden images has a DataImportCron
object that is either not up to date or has a
DataSource object which is not ready.

ErrGoldenImageNoDataSource The DataSource object of the golden image has
either no PVC or no snapshot source configured.

ErrBootFailedOnSomeVMs Some VMs failed to boot within the expected time.

Error code Meaning

15.2.3. Additional resources

Connecting a virtual machine to a Linux bridge network

15.3. PROMETHEUS QUERIES FOR VIRTUAL RESOURCES

OpenShift Virtualization provides metrics that you can use to monitor the consumption of cluster
infrastructure resources, including vCPU, network, storage, and guest memory swapping. You can also
use metrics to query live migration status.

15.3.1. Prerequisites

To use the vCPU metric, the schedstats=enable kernel argument must be applied to the
MachineConfig object. This kernel argument enables scheduler statistics used for debugging
and performance tuning and adds a minor additional load to the scheduler. For more
information, see Adding kernel arguments to nodes .

For guest memory swapping queries to return data, memory swapping must be enabled on the
virtual guests.

15.3.2. Querying metrics for all projects with the OpenShift Container Platform web
console

You can use the OpenShift Container Platform metrics query browser to run Prometheus Query

OpenShift Container Platform 4.20 Virtualization

438

https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/machine_configuration/#nodes-nodes-kernel-arguments_machine-configs-configure

You can use the OpenShift Container Platform metrics query browser to run Prometheus Query
Language (PromQL) queries to examine metrics visualized on a plot. This functionality provides
information about the state of a cluster and any user-defined workloads that you are monitoring.

As a cluster administrator or as a user with view permissions for all projects, you can access metrics for all
default OpenShift Container Platform and user-defined projects in the Metrics UI.

The Metrics UI includes predefined queries, for example, CPU, memory, bandwidth, or network packet
for all projects. You can also run custom Prometheus Query Language (PromQL) queries.

Prerequisites

You have access to the cluster as a user with the cluster-admin cluster role or with view
permissions for all projects.

You have installed the OpenShift CLI (oc).

Procedure

1. In the OpenShift Container Platform web console, click Observe → Metrics.

2. To add one or more queries, perform any of the following actions:

Option Description

Select an existing query. From the Select query drop-down list, select an
existing query.

Create a custom query. Add your Prometheus Query Language
(PromQL) query to the Expression field.

As you type a PromQL expression,
autocomplete suggestions appear in a drop-
down list. These suggestions include functions,
metrics, labels, and time tokens. Use the
keyboard arrows to select one of these
suggested items and then press Enter to add the
item to your expression. Move your mouse
pointer over a suggested item to view a brief
description of that item.

Add multiple queries. Click Add query.

Duplicate an existing query.

Click the options menu next to the query,
then choose Duplicate query.

Disable a query from being run.

Click the options menu next to the query
and choose Disable query.

3. To run queries that you created, click Run queries. The metrics from the queries are visualized

CHAPTER 15. MONITORING

439

3. To run queries that you created, click Run queries. The metrics from the queries are visualized
on the plot. If a query is invalid, the UI shows an error message.

NOTE

When drawing time series graphs, queries that operate on large amounts of
data might time out or overload the browser. To avoid this, click Hide graph
and calibrate your query by using only the metrics table. Then, after finding a
feasible query, enable the plot to draw the graphs.

By default, the query table shows an expanded view that lists every metric
and its current value. Click the ˅ down arrowhead to minimize the expanded
view for a query.

4. Optional: Save the page URL to use this set of queries again in the future.

5. Explore the visualized metrics. Initially, all metrics from all enabled queries are shown on the plot.
Select which metrics are shown by performing any of the following actions:

Option Description

Hide all metrics from a query.

Click the options menu for the query and
click Hide all series.

Hide a specific metric. Go to the query table and click the colored
square near the metric name.

Zoom into the plot and change the time range. Perform one of the following actions:

Visually select the time range by clicking and
dragging on the plot horizontally.

Use the menu to select the time range.

Reset the time range. Click Reset zoom.

Display outputs for all queries at a specific point
in time.

Hover over the plot at the point you are
interested in. The query outputs appear in a
pop-up box.

Hide the plot. Click Hide graph.

15.3.3. Querying metrics for user-defined projects with the OpenShift Container
Platform web console

You can use the OpenShift Container Platform metrics query browser to run Prometheus Query
Language (PromQL) queries to examine metrics visualized on a plot. This functionality provides
information about any user-defined workloads that you are monitoring.

As a developer, you must specify a project name when querying metrics. You must have the required
privileges to view metrics for the selected project.
The Metrics UI includes predefined queries, for example, CPU, memory, bandwidth, or network packet.

OpenShift Container Platform 4.20 Virtualization

440

The Metrics UI includes predefined queries, for example, CPU, memory, bandwidth, or network packet.
These queries are restricted to the selected project. You can also run custom Prometheus Query
Language (PromQL) queries for the project.

Prerequisites

You have access to the cluster as a developer or as a user with view permissions for the project
that you are viewing metrics for.

You have enabled monitoring for user-defined projects.

You have deployed a service in a user-defined project.

You have created a ServiceMonitor custom resource definition (CRD) for the service to define
how the service is monitored.

Procedure

1. In the OpenShift Container Platform web console, click Observe → Metrics.

2. To add one or more queries, perform any of the following actions:

Option Description

Select an existing query. From the Select query drop-down list, select an
existing query.

Create a custom query. Add your Prometheus Query Language
(PromQL) query to the Expression field.

As you type a PromQL expression,
autocomplete suggestions appear in a drop-
down list. These suggestions include functions,
metrics, labels, and time tokens. Use the
keyboard arrows to select one of these
suggested items and then press Enter to add the
item to your expression. Move your mouse
pointer over a suggested item to view a brief
description of that item.

Add multiple queries. Click Add query.

Duplicate an existing query.

Click the options menu next to the query,
then choose Duplicate query.

Disable a query from being run.

Click the options menu next to the query
and choose Disable query.

3. To run queries that you created, click Run queries. The metrics from the queries are visualized
on the plot. If a query is invalid, the UI shows an error message.

CHAPTER 15. MONITORING

441

NOTE

When drawing time series graphs, queries that operate on large amounts of
data might time out or overload the browser. To avoid this, click Hide graph
and calibrate your query by using only the metrics table. Then, after finding a
feasible query, enable the plot to draw the graphs.

By default, the query table shows an expanded view that lists every metric
and its current value. Click the ˅ down arrowhead to minimize the expanded
view for a query.

4. Optional: Save the page URL to use this set of queries again in the future.

5. Explore the visualized metrics. Initially, all metrics from all enabled queries are shown on the plot.
Select which metrics are shown by performing any of the following actions:

Option Description

Hide all metrics from a query.

Click the options menu for the query and
click Hide all series.

Hide a specific metric. Go to the query table and click the colored
square near the metric name.

Zoom into the plot and change the time range. Perform one of the following actions:

Visually select the time range by clicking and
dragging on the plot horizontally.

Use the menu to select the time range.

Reset the time range. Click Reset zoom.

Display outputs for all queries at a specific point
in time.

Hover over the plot at the point you are
interested in. The query outputs appear in a
pop-up box.

Hide the plot. Click Hide graph.

 //
// * virt/support/virt-prometheus-queries.adoc

15.3.4. Virtualization metrics

The following metric descriptions include example Prometheus Query Language (PromQL) queries.
These metrics are not an API and might change between versions. For a complete list of virtualization
metrics, see KubeVirt components metrics.

NOTE

OpenShift Container Platform 4.20 Virtualization

442

https://github.com/kubevirt/monitoring/blob/main/docs/metrics.md

1

1

NOTE

The following examples use topk queries that specify a time period. If virtual machines
(VMs) are deleted during that time period, they can still appear in the query output.

15.3.4.1. vCPU metrics

The following query can identify virtual machines that are waiting for Input/Output (I/O):

kubevirt_vmi_vcpu_wait_seconds_total

Returns the wait time (in seconds) on I/O for vCPUs of a virtual machine. Type: Counter.

A value above '0' means that the vCPU wants to run, but the host scheduler cannot run it yet. This
inability to run indicates that there is an issue with I/O.

NOTE

To query the vCPU metric, the schedstats=enable kernel argument must first be applied
to the MachineConfig object. This kernel argument enables scheduler statistics used for
debugging and performance tuning and adds a minor additional load to the scheduler.

kubevirt_vmi_vcpu_delay_seconds_total

Returns the cumulative time, in seconds, that a vCPU was enqueued by the host scheduler but could
not run immediately. This delay appears to the virtual machine as steal time , which is CPU time lost
when the host runs other workloads. Steal time can impact performance and often indicates CPU
overcommitment or contention on the host. Type: Counter.

Example vCPU delay query

This query returns the average per-second delay over a 5-minute period. A high value may indicate
CPU overcommitment or contention on the node.

Example vCPU wait time query

This query returns the top 3 VMs waiting for I/O at every given moment over a six-minute time
period.

15.3.4.2. Network metrics

The following queries can identify virtual machines that are saturating the network:

kubevirt_vmi_network_receive_bytes_total

Returns the total amount of traffic received (in bytes) on the virtual machine’s network. Type:
Counter.

kubevirt_vmi_network_transmit_bytes_total

Returns the total amount of traffic transmitted (in bytes) on the virtual machine’s network. Type:

irate(kubevirt_vmi_vcpu_delay_seconds_total[5m]) > 0.05 1

topk(3, sum by (name, namespace) (rate(kubevirt_vmi_vcpu_wait_seconds_total[6m]))) > 0 1

CHAPTER 15. MONITORING

443

1

1

1

Returns the total amount of traffic transmitted (in bytes) on the virtual machine’s network. Type:
Counter.

Example network traffic query

This query returns the top 3 VMs transmitting the most network traffic at every given moment over
a six-minute time period.

15.3.4.3. Storage metrics

15.3.4.3.1. Storage-related traffic

The following queries can identify VMs that are writing large amounts of data:

kubevirt_vmi_storage_read_traffic_bytes_total

Returns the total amount (in bytes) of the virtual machine’s storage-related traffic. Type: Counter.

kubevirt_vmi_storage_write_traffic_bytes_total

Returns the total amount of storage writes (in bytes) of the virtual machine’s storage-related traffic.
Type: Counter.

Example storage-related traffic query

This query returns the top 3 VMs performing the most storage traffic at every given moment over a
six-minute time period.

15.3.4.3.2. Storage snapshot data

kubevirt_vmsnapshot_disks_restored_from_source

Returns the total number of virtual machine disks restored from the source virtual machine. Type:
Gauge.

kubevirt_vmsnapshot_disks_restored_from_source_bytes

Returns the amount of space in bytes restored from the source virtual machine. Type: Gauge.

Examples of storage snapshot data queries

This query returns the total number of virtual machine disks restored from the source virtual
machine.

topk(3, sum by (name, namespace) (rate(kubevirt_vmi_network_receive_bytes_total[6m])) + sum by
(name, namespace) (rate(kubevirt_vmi_network_transmit_bytes_total[6m]))) > 0 1

topk(3, sum by (name, namespace) (rate(kubevirt_vmi_storage_read_traffic_bytes_total[6m])) + sum
by (name, namespace) (rate(kubevirt_vmi_storage_write_traffic_bytes_total[6m]))) > 0 1

kubevirt_vmsnapshot_disks_restored_from_source{vm_name="simple-vm",
vm_namespace="default"} 1

kubevirt_vmsnapshot_disks_restored_from_source_bytes{vm_name="simple-vm",
vm_namespace="default"} 1

OpenShift Container Platform 4.20 Virtualization

444

1

1

1

This query returns the amount of space in bytes restored from the source virtual machine.

15.3.4.3.3. I/O performance

The following queries can determine the I/O performance of storage devices:

kubevirt_vmi_storage_iops_read_total

Returns the amount of write I/O operations the virtual machine is performing per second. Type:
Counter.

kubevirt_vmi_storage_iops_write_total

Returns the amount of read I/O operations the virtual machine is performing per second. Type:
Counter.

Example I/O performance query

This query returns the top 3 VMs performing the most I/O operations per second at every given
moment over a six-minute time period.

15.3.4.4. Guest memory swapping metrics

The following queries can identify which swap-enabled guests are performing the most memory
swapping:

kubevirt_vmi_memory_swap_in_traffic_bytes

Returns the total amount (in bytes) of memory the virtual guest is swapping in. Type: Gauge.

kubevirt_vmi_memory_swap_out_traffic_bytes

Returns the total amount (in bytes) of memory the virtual guest is swapping out. Type: Gauge.

Example memory swapping query

This query returns the top 3 VMs where the guest is performing the most memory swapping at
every given moment over a six-minute time period.

NOTE

Memory swapping indicates that the virtual machine is under memory pressure.
Increasing the memory allocation of the virtual machine can mitigate this issue.

15.3.4.5. Monitoring AAQ operator metrics

The following metrics are exposed by the Application Aware Quota (AAQ) controller for monitoring

topk(3, sum by (name, namespace) (rate(kubevirt_vmi_storage_iops_read_total[6m])) + sum by
(name, namespace) (rate(kubevirt_vmi_storage_iops_write_total[6m]))) > 0 1

topk(3, sum by (name, namespace) (rate(kubevirt_vmi_memory_swap_in_traffic_bytes[6m])) + sum
by (name, namespace) (rate(kubevirt_vmi_memory_swap_out_traffic_bytes[6m]))) > 0 1
+

CHAPTER 15. MONITORING

445

The following metrics are exposed by the Application Aware Quota (AAQ) controller for monitoring
resource quotas:

kube_application_aware_resourcequota

Returns the current quota usage and the CPU and memory limits enforced by the AAQ Operator
resources. Type: Gauge.

kube_application_aware_resourcequota_creation_timestamp

Returns the time, in UNIX timestamp format, when the AAQ Operator resource is created. Type:
Gauge.

15.3.4.6. Live migration metrics

The following metrics can be queried to show live migration status:

kubevirt_vmi_migration_data_processed_bytes

The amount of guest operating system data that has migrated to the new virtual machine (VM).
Type: Gauge.

kubevirt_vmi_migration_data_remaining_bytes

The amount of guest operating system data that remains to be migrated. Type: Gauge.

kubevirt_vmi_migration_memory_transfer_rate_bytes

The rate at which memory is becoming dirty in the guest operating system. Dirty memory is data that
has been changed but not yet written to disk. Type: Gauge.

kubevirt_vmi_migrations_in_pending_phase

The number of pending migrations. Type: Gauge.

kubevirt_vmi_migrations_in_scheduling_phase

The number of scheduling migrations. Type: Gauge.

kubevirt_vmi_migrations_in_running_phase

The number of running migrations. Type: Gauge.

kubevirt_vmi_migration_succeeded

The number of successfully completed migrations. Type: Gauge.

kubevirt_vmi_migration_failed

The number of failed migrations. Type: Gauge.

15.3.5. Additional resources

About OpenShift Container Platform monitoring

Querying Prometheus

Prometheus query examples

15.4. EXPOSING CUSTOM METRICS FOR VIRTUAL MACHINES

OpenShift Container Platform includes a preconfigured, preinstalled, and self-updating monitoring
stack that provides monitoring for core platform components. This monitoring stack is based on the
Prometheus monitoring system. Prometheus is a time-series database and a rule evaluation engine for
metrics.

In addition to using the OpenShift Container Platform monitoring stack, you can enable monitoring for

OpenShift Container Platform 4.20 Virtualization

446

https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/monitoring/#about-ocp-monitoring
https://prometheus.io/docs/prometheus/latest/querying/basics/
https://prometheus.io/docs/prometheus/latest/querying/examples/

1

2

3

4

5

6

In addition to using the OpenShift Container Platform monitoring stack, you can enable monitoring for
user-defined projects by using the CLI and query custom metrics that are exposed for virtual machines
through the node-exporter service.

15.4.1. Configuring the node exporter service

The node-exporter agent is deployed on every virtual machine in the cluster from which you want to
collect metrics. Configure the node-exporter agent as a service to expose internal metrics and
processes that are associated with virtual machines.

Prerequisites

Install the OpenShift CLI (oc).

Log in to the cluster as a user with cluster-admin privileges.

Create the cluster-monitoring-config ConfigMap object in the openshift-monitoring project.

Configure the user-workload-monitoring-config ConfigMap object in the openshift-user-
workload-monitoring project by setting enableUserWorkload to true.

Procedure

1. Create the Service YAML file. In the following example, the file is called node-exporter-
service.yaml.

The node-exporter service that exposes the metrics from the virtual machines.

The namespace where the service is created.

The label for the service. The ServiceMonitor uses this label to match this service.

The name given to the port that exposes metrics on port 9100 for the ClusterIP service.

The target port used by node-exporter-service to listen for requests.

The TCP port number of the virtual machine that is configured with the monitor label.

kind: Service
apiVersion: v1
metadata:
 name: node-exporter-service 1
 namespace: dynamation 2
 labels:
 servicetype: metrics 3
spec:
 ports:
 - name: exmet 4
 protocol: TCP
 port: 9100 5
 targetPort: 9100 6
 type: ClusterIP
 selector:
 monitor: metrics 7

CHAPTER 15. MONITORING

447

7 The label used to match the virtual machine’s pods. In this example, any virtual machine’s
pod with the label monitor and a value of metrics will be matched.

2. Create the node-exporter service:

15.4.2. Configuring a virtual machine with the node exporter service

Download the node-exporter file on to the virtual machine. Then, create a systemd service that runs
the node-exporter service when the virtual machine boots.

Prerequisites

The pods for the component are running in the openshift-user-workload-monitoring project.

Grant the monitoring-edit role to users who need to monitor this user-defined project.

Procedure

1. Log on to the virtual machine.

2. Download the node-exporter file on to the virtual machine by using the directory path that
applies to the version of node-exporter file.

3. Extract the executable and place it in the /usr/bin directory.

4. Create a node_exporter.service file in this directory path: /etc/systemd/system. This systemd
service file runs the node-exporter service when the virtual machine reboots.

$ oc create -f node-exporter-service.yaml

$ wget
https://github.com/prometheus/node_exporter/releases/download/<version>/node_exporter-
<version>.linux-<architecture>.tar.gz

$ sudo tar xvf node_exporter-<version>.linux-<architecture>.tar.gz \
 --directory /usr/bin --strip 1 "*/node_exporter"

[Unit]
Description=Prometheus Metrics Exporter
After=network.target
StartLimitIntervalSec=0

[Service]
Type=simple
Restart=always
RestartSec=1
User=root
ExecStart=/usr/bin/node_exporter

[Install]
WantedBy=multi-user.target

OpenShift Container Platform 4.20 Virtualization

448

5. Enable and start the systemd service.

Verification

Verify that the node-exporter agent is reporting metrics from the virtual machine.

Example output

15.4.3. Creating a custom monitoring label for virtual machines

To enable queries to multiple virtual machines from a single service, add a custom label in the virtual
machine’s YAML file.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Access to the web console for stop and restart a virtual machine.

Procedure

1. Edit the template spec of your virtual machine configuration file. In this example, the label
monitor has the value metrics.

2. Stop and restart the virtual machine to create a new pod with the label name given to the
monitor label.

15.4.3.1. Querying the node-exporter service for metrics

Metrics are exposed for virtual machines through an HTTP service endpoint under the /metrics
canonical name. When you query for metrics, Prometheus directly scrapes the metrics from the metrics
endpoint exposed by the virtual machines and presents these metrics for viewing.

Prerequisites

You have access to the cluster as a user with cluster-admin privileges or the monitoring-edit

$ sudo systemctl enable node_exporter.service
$ sudo systemctl start node_exporter.service

$ curl http://localhost:9100/metrics

go_gc_duration_seconds{quantile="0"} 1.5244e-05
go_gc_duration_seconds{quantile="0.25"} 3.0449e-05
go_gc_duration_seconds{quantile="0.5"} 3.7913e-05

spec:
 template:
 metadata:
 labels:
 monitor: metrics

CHAPTER 15. MONITORING

449

You have access to the cluster as a user with cluster-admin privileges or the monitoring-edit
role.

You have enabled monitoring for the user-defined project by configuring the node-exporter
service.

You have installed the OpenShift CLI (oc).

Procedure

1. Obtain the HTTP service endpoint by specifying the namespace for the service:

2. To list all available metrics for the node-exporter service, query the metrics resource.

Example output

$ oc get service -n <namespace> <node-exporter-service>

$ curl http://<172.30.226.162:9100>/metrics | grep -vE "^#|^$"

node_arp_entries{device="eth0"} 1
node_boot_time_seconds 1.643153218e+09
node_context_switches_total 4.4938158e+07
node_cooling_device_cur_state{name="0",type="Processor"} 0
node_cooling_device_max_state{name="0",type="Processor"} 0
node_cpu_guest_seconds_total{cpu="0",mode="nice"} 0
node_cpu_guest_seconds_total{cpu="0",mode="user"} 0
node_cpu_seconds_total{cpu="0",mode="idle"} 1.10586485e+06
node_cpu_seconds_total{cpu="0",mode="iowait"} 37.61
node_cpu_seconds_total{cpu="0",mode="irq"} 233.91
node_cpu_seconds_total{cpu="0",mode="nice"} 551.47
node_cpu_seconds_total{cpu="0",mode="softirq"} 87.3
node_cpu_seconds_total{cpu="0",mode="steal"} 86.12
node_cpu_seconds_total{cpu="0",mode="system"} 464.15
node_cpu_seconds_total{cpu="0",mode="user"} 1075.2
node_disk_discard_time_seconds_total{device="vda"} 0
node_disk_discard_time_seconds_total{device="vdb"} 0
node_disk_discarded_sectors_total{device="vda"} 0
node_disk_discarded_sectors_total{device="vdb"} 0
node_disk_discards_completed_total{device="vda"} 0
node_disk_discards_completed_total{device="vdb"} 0
node_disk_discards_merged_total{device="vda"} 0
node_disk_discards_merged_total{device="vdb"} 0
node_disk_info{device="vda",major="252",minor="0"} 1
node_disk_info{device="vdb",major="252",minor="16"} 1
node_disk_io_now{device="vda"} 0
node_disk_io_now{device="vdb"} 0
node_disk_io_time_seconds_total{device="vda"} 174
node_disk_io_time_seconds_total{device="vdb"} 0.054
node_disk_io_time_weighted_seconds_total{device="vda"} 259.79200000000003
node_disk_io_time_weighted_seconds_total{device="vdb"} 0.039
node_disk_read_bytes_total{device="vda"} 3.71867136e+08
node_disk_read_bytes_total{device="vdb"} 366592
node_disk_read_time_seconds_total{device="vda"} 19.128
node_disk_read_time_seconds_total{device="vdb"} 0.039

OpenShift Container Platform 4.20 Virtualization

450

1

2

15.4.4. Creating a ServiceMonitor resource for the node exporter service

You can use a Prometheus client library and scrape metrics from the /metrics endpoint to access and
view the metrics exposed by the node-exporter service. Use a ServiceMonitor custom resource
definition (CRD) to monitor the node exporter service.

Prerequisites

You have access to the cluster as a user with cluster-admin privileges or the monitoring-edit
role.

You have enabled monitoring for the user-defined project by configuring the node-exporter
service.

You have installed the OpenShift CLI (oc).

Procedure

1. Create a YAML file for the ServiceMonitor resource configuration. In this example, the service
monitor matches any service with the label metrics and queries the exmet port every 30
seconds.

The name of the ServiceMonitor.

The namespace where the ServiceMonitor is created.

node_disk_reads_completed_total{device="vda"} 5619
node_disk_reads_completed_total{device="vdb"} 96
node_disk_reads_merged_total{device="vda"} 5
node_disk_reads_merged_total{device="vdb"} 0
node_disk_write_time_seconds_total{device="vda"} 240.66400000000002
node_disk_write_time_seconds_total{device="vdb"} 0
node_disk_writes_completed_total{device="vda"} 71584
node_disk_writes_completed_total{device="vdb"} 0
node_disk_writes_merged_total{device="vda"} 19761
node_disk_writes_merged_total{device="vdb"} 0
node_disk_written_bytes_total{device="vda"} 2.007924224e+09
node_disk_written_bytes_total{device="vdb"} 0

apiVersion: monitoring.coreos.com/v1
kind: ServiceMonitor
metadata:
 labels:
 k8s-app: node-exporter-metrics-monitor
 name: node-exporter-metrics-monitor 1
 namespace: dynamation 2
spec:
 endpoints:
 - interval: 30s 3
 port: exmet 4
 scheme: http
 selector:
 matchLabels:
 servicetype: metrics

CHAPTER 15. MONITORING

451

3

4

The interval at which the port will be queried.

The name of the port that is queried every 30 seconds

2. Create the ServiceMonitor configuration for the node-exporter service.

15.4.4.1. Accessing the node exporter service outside the cluster

You can access the node-exporter service outside the cluster and view the exposed metrics.

Prerequisites

You have access to the cluster as a user with cluster-admin privileges or the monitoring-edit
role.

You have enabled monitoring for the user-defined project by configuring the node-exporter
service.

You have installed the OpenShift CLI (oc).

Procedure

1. Expose the node-exporter service.

2. Obtain the FQDN (Fully Qualified Domain Name) for the route.

Example output

3. Use the curl command to display metrics for the node-exporter service.

Example output

15.4.5. Additional resources

$ oc create -f node-exporter-metrics-monitor.yaml

$ oc expose service -n <namespace> <node_exporter_service_name>

$ oc get route -o=custom-columns=NAME:.metadata.name,DNS:.spec.host

NAME DNS
node-exporter-service node-exporter-service-dynamation.apps.cluster.example.org

$ curl -s http://node-exporter-service-dynamation.apps.cluster.example.org/metrics

go_gc_duration_seconds{quantile="0"} 1.5382e-05
go_gc_duration_seconds{quantile="0.25"} 3.1163e-05
go_gc_duration_seconds{quantile="0.5"} 3.8546e-05
go_gc_duration_seconds{quantile="0.75"} 4.9139e-05
go_gc_duration_seconds{quantile="1"} 0.000189423

OpenShift Container Platform 4.20 Virtualization

452

Core platform monitoring first steps

Enabling monitoring for user-defined projects

Accessing metrics as a developer

Reviewing monitoring dashboards as a developer

Monitoring application health by using health checks

Creating and using config maps

Controlling virtual machine states

15.5. EXPOSING DOWNWARD METRICS FOR VIRTUAL MACHINES

As an administrator, you can expose a limited set of host and virtual machine (VM) metrics to a guest VM
by first enabling a downwardMetrics feature gate and then configuring a downwardMetrics device.

Users can view the metrics results by using the command line or the vm-dump-metrics tool.

NOTE

On Red Hat Enterprise Linux (RHEL) 9, use the command line to view downward metrics.
See Viewing downward metrics by using the command line .

The vm-dump-metrics tool is not supported on the Red Hat Enterprise Linux (RHEL) 9
platform.

15.5.1. Enabling or disabling the downwardMetrics feature gate

You can enable or disable the downwardMetrics feature gate by performing either of the following
actions:

Editing the HyperConverged custom resource (CR) in your default editor

Using the command line

15.5.1.1. Enabling or disabling the downward metrics feature gate in a YAML file

To expose downward metrics for a host virtual machine, you can enable the downwardMetrics feature
gate by editing a YAML file.

Prerequisites

You must have administrator privileges to enable the feature gate.

You have installed the OpenShift CLI (oc).

Procedure

1. Open the HyperConverged custom resource (CR) in your default editor by running the
following command:

$ oc edit hyperconverged kubevirt-hyperconverged -n openshift-cnv

CHAPTER 15. MONITORING

453

https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/monitoring/#core-platform-monitoring-first-steps
https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/monitoring/#enabling-monitoring-for-user-defined-projects-uwm_preparing-to-configure-the-monitoring-stack-uwm
https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/monitoring/#accessing-metrics-as-a-developer
https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/monitoring/#reviewing-monitoring-dashboards-developer_accessing-metrics-as-a-developer
https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/building_applications/#application-health
https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/nodes/#nodes-pods-configmaps

2. Choose to enable or disable the downwardMetrics feature gate as follows:

To enable the downwardMetrics feature gate, add and then set
spec.featureGates.downwardMetrics to true. For example:

To disable the downwardMetrics feature gate, set spec.featureGates.downwardMetrics
to false. For example:

15.5.1.2. Enabling or disabling the downward metrics feature gate from the CLI

To expose downward metrics for a host virtual machine, you can enable the downwardMetrics feature
gate by using the command line.

Prerequisites

You must have administrator privileges to enable the feature gate.

You have installed the OpenShift CLI (oc).

Procedure

Choose to enable or disable the downwardMetrics feature gate as follows:

Enable the downwardMetrics feature gate by running the command shown in the following
example:

Disable the downwardMetrics feature gate by running the command shown in the
following example:

apiVersion: hco.kubevirt.io/v1beta1
kind: HyperConverged
metadata:
 name: kubevirt-hyperconverged
 namespace: openshift-cnv
spec:
 featureGates:
 downwardMetrics: true
...

apiVersion: hco.kubevirt.io/v1beta1
kind: HyperConverged
metadata:
 name: kubevirt-hyperconverged
 namespace: openshift-cnv
spec:
 featureGates:
 downwardMetrics: false
...

$ oc patch hco kubevirt-hyperconverged -n openshift-cnv \
 --type json -p '[{"op": "replace", "path": \
 "/spec/featureGates/downwardMetrics", \
 "value": true}]'

OpenShift Container Platform 4.20 Virtualization

454

15.5.2. Configuring a downward metrics device

You enable the capturing of downward metrics for a host VM by creating a configuration file that
includes a downwardMetrics device. Adding this device establishes that the metrics are exposed
through a virtio-serial port.

Prerequisites

You must first enable the downwardMetrics feature gate.

Procedure

Edit or create a YAML file that includes a downwardMetrics device, as shown in the following
example:

Example downwardMetrics configuration file

$ oc patch hco kubevirt-hyperconverged -n openshift-cnv \
 --type json -p '[{"op": "replace", "path": \
 "/spec/featureGates/downwardMetrics", \
 "value": false}]'

apiVersion: kubevirt.io/v1
kind: VirtualMachine
metadata:
 name: fedora
 namespace: default
spec:
 dataVolumeTemplates:
 - metadata:
 name: fedora-volume
 spec:
 sourceRef:
 kind: DataSource
 name: fedora
 namespace: openshift-virtualization-os-images
 storage:
 resources: {}
 instancetype:
 name: u1.medium
 runStrategy: Always
 template:
 metadata:
 labels:
 app.kubernetes.io/name: headless
 spec:
 domain:
 devices:
 downwardMetrics: {} 1
 subdomain: headless
 volumes:
 - dataVolume:
 name: fedora-volume
 name: rootdisk

CHAPTER 15. MONITORING

455

1

2

The downwardMetrics device.

The password for the fedora user.

15.5.3. Viewing downward metrics

You can view downward metrics by using either of the following options:

The command-line interface (CLI)

The vm-dump-metrics tool

NOTE

On Red Hat Enterprise Linux (RHEL) 9, use the command line to view downward metrics.
The vm-dump-metrics tool is not supported on the Red Hat Enterprise Linux (RHEL) 9
platform.

15.5.3.1. Viewing downward metrics by using the CLI

You can view downward metrics by entering a command from inside a guest virtual machine (VM).

Procedure

Run the following commands:

15.5.3.2. Viewing downward metrics by using the vm-dump-metrics tool

To view downward metrics, install the vm-dump-metrics tool and then use the tool to expose the
metrics results.

NOTE

On Red Hat Enterprise Linux (RHEL) 9, use the command line to view downward metrics.
The vm-dump-metrics tool is not supported on the Red Hat Enterprise Linux (RHEL) 9
platform.

Procedure

 - cloudInitNoCloud:
 userData: |
 #cloud-config
 chpasswd:
 expire: false
 password: '<password>' 2
 user: fedora
 name: cloudinitdisk

$ sudo sh -c 'printf "GET /metrics/XML\n\n" > /dev/virtio-ports/org.github.vhostmd.1'

$ sudo cat /dev/virtio-ports/org.github.vhostmd.1

OpenShift Container Platform 4.20 Virtualization

456

1. Install the vm-dump-metrics tool by running the following command:

2. Retrieve the metrics results by running the following command:

Example output

15.6. VIRTUAL MACHINE HEALTH CHECKS

You can configure virtual machine (VM) health checks by defining readiness and liveness probes in the
VirtualMachine resource.

15.6.1. About readiness and liveness probes

Use readiness and liveness probes to detect and handle unhealthy virtual machines (VMs). You can
include one or more probes in the specification of the VM to ensure that traffic does not reach a VM
that is not ready for it and that a new VM is created when a VM becomes unresponsive.

A readiness probe determines whether a VM is ready to accept service requests. If the probe fails, the
VM is removed from the list of available endpoints until the VM is ready.

A liveness probe determines whether a VM is responsive. If the probe fails, the VM is deleted and a new
VM is created to restore responsiveness.

You can configure readiness and liveness probes by setting the spec.readinessProbe and the
spec.livenessProbe fields of the VirtualMachine object. These fields support the following tests:

HTTP GET

The probe determines the health of the VM by using a web hook. The test is successful if the HTTP
response code is between 200 and 399. You can use an HTTP GET test with applications that return
HTTP status codes when they are completely initialized.

TCP socket

The probe attempts to open a socket to the VM. The VM is only considered healthy if the probe can
establish a connection. You can use a TCP socket test with applications that do not start listening
until initialization is complete.

$ sudo dnf install -y vm-dump-metrics

$ sudo vm-dump-metrics

<metrics>
 <metric type="string" context="host">
 <name>HostName</name>
 <value>node01</value>
[...]
 <metric type="int64" context="host" unit="s">
 <name>Time</name>
 <value>1619008605</value>
 </metric>
 <metric type="string" context="host">
 <name>VirtualizationVendor</name>
 <value>kubevirt.io</value>
 </metric>
</metrics>

CHAPTER 15. MONITORING

457

1

2

3

4

Guest agent ping

The probe uses the guest-ping command to determine if the QEMU guest agent is running on the
virtual machine.

15.6.1.1. Defining an HTTP readiness probe

Define an HTTP readiness probe by setting the spec.readinessProbe.httpGet field of the virtual
machine (VM) configuration.

Prerequisites

You have installed the OpenShift CLI (oc).

Procedure

1. Include details of the readiness probe in the VM configuration file.

Sample readiness probe with an HTTP GET test

The HTTP GET request to perform to connect to the VM.

The port of the VM that the probe queries. In the above example, the probe queries port
1500.

The path to access on the HTTP server. In the above example, if the handler for the
server’s /healthz path returns a success code, the VM is considered to be healthy. If the
handler returns a failure code, the VM is removed from the list of available endpoints.

The time, in seconds, after the VM starts before the readiness probe is initiated.

apiVersion: kubevirt.io/v1
kind: VirtualMachine
metadata:
 annotations:
 name: fedora-vm
 namespace: example-namespace
...
spec:
 template:
 spec:
 readinessProbe:
 httpGet: 1
 port: 1500 2
 path: /healthz 3
 httpHeaders:
 - name: Custom-Header
 value: Awesome
 initialDelaySeconds: 120 4
 periodSeconds: 20 5
 timeoutSeconds: 10 6
 failureThreshold: 3 7
 successThreshold: 3 8
...

OpenShift Container Platform 4.20 Virtualization

458

5

6

7

8

1

The delay, in seconds, between performing probes. The default delay is 10 seconds. This
value must be greater than timeoutSeconds.

The number of seconds of inactivity after which the probe times out and the VM is
assumed to have failed. The default value is 1. This value must be lower than
periodSeconds.

The number of times that the probe is allowed to fail. The default is 3. After the specified
number of attempts, the pod is marked Unready.

The number of times that the probe must report success, after a failure, to be considered
successful. The default is 1.

2. Create the VM by running the following command:

15.6.1.2. Defining a TCP readiness probe

Define a TCP readiness probe by setting the spec.readinessProbe.tcpSocket field of the virtual
machine (VM) configuration.

Prerequisites

You have installed the OpenShift CLI (oc).

Procedure

1. Include details of the TCP readiness probe in the VM configuration file.

Sample readiness probe with a TCP socket test

The time, in seconds, after the VM starts before the readiness probe is initiated.

The delay, in seconds, between performing probes. The default delay is 10 seconds. This

$ oc create -f <file_name>.yaml

apiVersion: kubevirt.io/v1
kind: VirtualMachine
metadata:
 annotations:
 name: fedora-vm
 namespace: example-namespace
...
spec:
 template:
 spec:
 readinessProbe:
 initialDelaySeconds: 120 1
 periodSeconds: 20 2
 tcpSocket: 3
 port: 1500 4
 timeoutSeconds: 10 5
...

CHAPTER 15. MONITORING

459

2

3

4

5

The delay, in seconds, between performing probes. The default delay is 10 seconds. This
value must be greater than timeoutSeconds.

The TCP action to perform.

The port of the VM that the probe queries.

The number of seconds of inactivity after which the probe times out and the VM is
assumed to have failed. The default value is 1. This value must be lower than
periodSeconds.

2. Create the VM by running the following command:

15.6.1.3. Defining an HTTP liveness probe

Define an HTTP liveness probe by setting the spec.livenessProbe.httpGet field of the virtual machine
(VM) configuration. You can define both HTTP and TCP tests for liveness probes in the same way as
readiness probes. This procedure configures a sample liveness probe with an HTTP GET test.

Prerequisites

You have installed the OpenShift CLI (oc).

Procedure

1. Include details of the HTTP liveness probe in the VM configuration file.

Sample liveness probe with an HTTP GET test

$ oc create -f <file_name>.yaml

apiVersion: kubevirt.io/v1
kind: VirtualMachine
metadata:
 annotations:
 name: fedora-vm
 namespace: example-namespace
...
spec:
 template:
 spec:
 livenessProbe:
 initialDelaySeconds: 120 1
 periodSeconds: 20 2
 httpGet: 3
 port: 1500 4
 path: /healthz 5
 httpHeaders:
 - name: Custom-Header
 value: Awesome
 timeoutSeconds: 10 6
...

OpenShift Container Platform 4.20 Virtualization

460

1

2

3

4

5

6

The time, in seconds, after the VM starts before the liveness probe is initiated.

The delay, in seconds, between performing probes. The default delay is 10 seconds. This
value must be greater than timeoutSeconds.

The HTTP GET request to perform to connect to the VM.

The port of the VM that the probe queries. In the above example, the probe queries port
1500. The VM installs and runs a minimal HTTP server on port 1500 via cloud-init.

The path to access on the HTTP server. In the above example, if the handler for the
server’s /healthz path returns a success code, the VM is considered to be healthy. If the
handler returns a failure code, the VM is deleted and a new VM is created.

The number of seconds of inactivity after which the probe times out and the VM is
assumed to have failed. The default value is 1. This value must be lower than
periodSeconds.

2. Create the VM by running the following command:

15.6.2. Defining a watchdog

You can define a watchdog to monitor the health of the guest operating system by performing the
following steps:

1. Configure a watchdog device for the virtual machine (VM).

2. Install the watchdog agent on the guest.

The watchdog device monitors the agent and performs one of the following actions if the guest
operating system is unresponsive:

poweroff: The VM powers down immediately. If spec.runStrategy is not set to manual, the VM
reboots.

reset: The VM reboots in place and the guest operating system cannot react.

NOTE

The reboot time might cause liveness probes to time out. If cluster-level
protections detect a failed liveness probe, the VM might be forcibly rescheduled,
increasing the reboot time.

shutdown: The VM gracefully powers down by stopping all services.

NOTE

Watchdog is not available for Windows VMs.

15.6.2.1. Configuring a watchdog device for the virtual machine

$ oc create -f <file_name>.yaml

CHAPTER 15. MONITORING

461

1

2

You configure a watchdog device for the virtual machine (VM).

Prerequisites

For x86 systems, the VM must use a kernel that works with the i6300esb watchdog device. If
you use s390x architecture, the kernel must be enabled for diag288. Red Hat Enterprise Linux
(RHEL) images support i6300esb and diag288.

You have installed the OpenShift CLI (oc).

Procedure

1. Create a YAML file with the following contents:

The watchdog device model to use. For x86 specify i6300esb. For s390x specify diag288.

Specify poweroff, reset, or shutdown. The shutdown action requires that the guest
virtual machine is responsive to ACPI signals. Therefore, using shutdown is not
recommended.

The example above configures the watchdog device on a VM with the poweroff action and
exposes the device as /dev/watchdog.

This device can now be used by the watchdog binary.

2. Apply the YAML file to your cluster by running the following command:

Verification

IMPORTANT

apiVersion: kubevirt.io/v1
kind: VirtualMachine
metadata:
 labels:
 kubevirt.io/vm: <vm-label>
 name: <vm-name>
spec:
 runStrategy: Halted
 template:
 metadata:
 labels:
 kubevirt.io/vm: <vm-label>
 spec:
 domain:
 devices:
 watchdog:
 name: <watchdog>
 <watchdog-device-model>: 1
 action: "poweroff" 2
...

$ oc apply -f <file_name>.yaml

OpenShift Container Platform 4.20 Virtualization

462

IMPORTANT

This procedure is provided for testing watchdog functionality only and must not be run on
production machines.

1. Run the following command to verify that the VM is connected to the watchdog device:

2. Run one of the following commands to confirm the watchdog is active:

Trigger a kernel panic:

Stop the watchdog service:

15.6.2.2. Installing the watchdog agent on the guest

You install the watchdog agent on the guest and start the watchdog service.

Procedure

1. Log in to the virtual machine as root user.

2. This step is only required when installing on IBM Z® (s390x). Enable watchdog by running the
following command:

3. Verify that the /dev/watchdog file path is present in the VM by running the following command:

4. Install the watchdog package and its dependencies:

5. Uncomment the following line in the /etc/watchdog.conf file and save the changes:

6. Enable the watchdog service to start on boot:

15.6.3. Defining a guest agent ping probe

Define a guest agent ping probe by setting the spec.readinessProbe.guestAgentPing field of the

$ lspci | grep watchdog -i

echo c > /proc/sysrq-trigger

pkill -9 watchdog

modprobe diag288_wdt

ls /dev/watchdog

yum install watchdog

#watchdog-device = /dev/watchdog

systemctl enable --now watchdog.service

CHAPTER 15. MONITORING

463

1

2

3

4

5

6

Define a guest agent ping probe by setting the spec.readinessProbe.guestAgentPing field of the
virtual machine (VM) configuration.

Prerequisites

The QEMU guest agent must be installed and enabled on the virtual machine.

You have installed the OpenShift CLI (oc).

Procedure

1. Include details of the guest agent ping probe in the VM configuration file. For example:

Sample guest agent ping probe

The guest agent ping probe to connect to the VM.

Optional: The time, in seconds, after the VM starts before the guest agent probe is
initiated.

Optional: The delay, in seconds, between performing probes. The default delay is 10
seconds. This value must be greater than timeoutSeconds.

Optional: The number of seconds of inactivity after which the probe times out and the VM
is assumed to have failed. The default value is 1. This value must be lower than
periodSeconds.

Optional: The number of times that the probe is allowed to fail. The default is 3. After the
specified number of attempts, the pod is marked Unready.

Optional: The number of times that the probe must report success, after a failure, to be
considered successful. The default is 1.

2. Create the VM by running the following command:

apiVersion: kubevirt.io/v1
kind: VirtualMachine
metadata:
 annotations:
 name: fedora-vm
 namespace: example-namespace
...
spec:
 template:
 spec:
 readinessProbe:
 guestAgentPing: {} 1
 initialDelaySeconds: 120 2
 periodSeconds: 20 3
 timeoutSeconds: 10 4
 failureThreshold: 3 5
 successThreshold: 3 6
...

OpenShift Container Platform 4.20 Virtualization

464

15.6.4. Additional resources

Monitoring application health by using health checks

15.7. OPENSHIFT VIRTUALIZATION RUNBOOKS

To diagnose and resolve issues that trigger OpenShift Virtualization alerts, follow the procedures in the
runbooks for the OpenShift Virtualization Operator. Triggered OpenShift Virtualization alerts can be
viewed in the main Observe → Alerts tab in the web console, and also in the Virtualization → Overview
tab.

Runbooks for the OpenShift Virtualization Operator are maintained in the openshift/runbooks Git
repository, and you can view them on GitHub.

15.7.1. CDIDataImportCronOutdated

View the runbook for the CDIDataImportCronOutdated alert.

15.7.2. CDIDataVolumeUnusualRestartCount

View the runbook for the CDIDataVolumeUnusualRestartCount alert.

15.7.3. CDIDefaultStorageClassDegraded

View the runbook for the CDIDefaultStorageClassDegraded alert.

15.7.4. CDIMultipleDefaultVirtStorageClasses

View the runbook for the CDIMultipleDefaultVirtStorageClasses alert.

15.7.5. CDINoDefaultStorageClass

View the runbook for the CDINoDefaultStorageClass alert.

15.7.6. CDINotReady

View the runbook for the CDINotReady alert.

15.7.7. CDIOperatorDown

View the runbook for the CDIOperatorDown alert.

15.7.8. CDIStorageProfilesIncomplete

View the runbook for the CDIStorageProfilesIncomplete alert.

15.7.9. CnaoDown

View the runbook for the CnaoDown alert.

$ oc create -f <file_name>.yaml

CHAPTER 15. MONITORING

465

https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/building_applications/#application-health
https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/monitoring/#about-managing-alerts_key-concepts
https://github.com/openshift/runbooks/tree/master/alerts/openshift-virtualization-operator
https://github.com/openshift/runbooks/blob/master/alerts/openshift-virtualization-operator/CDIDataImportCronOutdated.md
https://github.com/openshift/runbooks/blob/master/alerts/openshift-virtualization-operator/CDIDataVolumeUnusualRestartCount.md
https://github.com/openshift/runbooks/blob/master/alerts/openshift-virtualization-operator/CDIDefaultStorageClassDegraded.md
https://github.com/openshift/runbooks/blob/master/alerts/openshift-virtualization-operator/CDIMultipleDefaultVirtStorageClasses.md
https://github.com/openshift/runbooks/blob/master/alerts/openshift-virtualization-operator/CDINoDefaultStorageClass.md
https://github.com/openshift/runbooks/blob/master/alerts/openshift-virtualization-operator/CDINotReady.md
https://github.com/openshift/runbooks/blob/master/alerts/openshift-virtualization-operator/CDIOperatorDown.md
https://github.com/openshift/runbooks/blob/master/alerts/openshift-virtualization-operator/CDIStorageProfilesIncomplete.md
https://github.com/openshift/runbooks/blob/master/alerts/openshift-virtualization-operator/CnaoDown.md

15.7.10. CnaoNMstateMigration

View the runbook for the CnaoNMstateMigration alert.

15.7.11. HAControlPlaneDown

View the runbook for the HAControlPlaneDown alert.

15.7.12. HCOInstallationIncomplete

View the runbook for the HCOInstallationIncomplete alert.

15.7.13. HCOMisconfiguredDescheduler

View the runbook for the HCOMisconfiguredDescheduler alert.

15.7.14. HPPNotReady

View the runbook for the HPPNotReady alert.

15.7.15. HPPOperatorDown

View the runbook for the HPPOperatorDown alert.

15.7.16. HPPSharingPoolPathWithOS

View the runbook for the HPPSharingPoolPathWithOS alert.

15.7.17. HighCPUWorkload

View the runbook for the HighCPUWorkload alert.

15.7.18. KubemacpoolDown

View the runbook for the KubemacpoolDown alert.

15.7.19. KubeMacPoolDuplicateMacsFound

View the runbook for the KubeMacPoolDuplicateMacsFound alert.

15.7.20. KubeVirtComponentExceedsRequestedCPU

The KubeVirtComponentExceedsRequestedCPU alert is deprecated.

15.7.21. KubeVirtComponentExceedsRequestedMemory

The KubeVirtComponentExceedsRequestedMemory alert is deprecated.

15.7.22. KubeVirtCRModified

View the runbook for the KubeVirtCRModified alert.

OpenShift Container Platform 4.20 Virtualization

466

https://github.com/openshift/runbooks/blob/master/alerts/openshift-virtualization-operator/CnaoNmstateMigration.md
https://github.com/openshift/runbooks/blob/master/alerts/openshift-virtualization-operator/HAControlPlaneDown.md
https://github.com/openshift/runbooks/blob/master/alerts/openshift-virtualization-operator/HCOInstallationIncomplete.md
https://github.com/openshift/runbooks/blob/master/alerts/openshift-virtualization-operator/HCOMisconfiguredDescheduler.md
https://github.com/openshift/runbooks/blob/master/alerts/openshift-virtualization-operator/HPPNotReady.md
https://github.com/openshift/runbooks/blob/master/alerts/openshift-virtualization-operator/HPPOperatorDown.md
https://github.com/openshift/runbooks/blob/master/alerts/openshift-virtualization-operator/HPPSharingPoolPathWithOS.md
https://github.com/openshift/runbooks/blob/master/alerts/openshift-virtualization-operator/HighCPUWorkload.md
https://github.com/openshift/runbooks/blob/master/alerts/openshift-virtualization-operator/KubemacpoolDown.md
https://github.com/openshift/runbooks/blob/master/alerts/openshift-virtualization-operator/KubeMacPoolDuplicateMacsFound.md
https://github.com/openshift/runbooks/blob/master/alerts/openshift-virtualization-operator/KubeVirtComponentExceedsRequestedCPU.md
https://github.com/openshift/runbooks/blob/master/alerts/openshift-virtualization-operator/KubeVirtComponentExceedsRequestedMemory.md
https://github.com/openshift/runbooks/blob/master/alerts/openshift-virtualization-operator/KubeVirtCRModified.md

15.7.23. KubeVirtDeprecatedAPIRequested

View the runbook for the KubeVirtDeprecatedAPIRequested alert.

15.7.24. KubeVirtNoAvailableNodesToRunVMs

View the runbook for the KubeVirtNoAvailableNodesToRunVMs alert.

15.7.25. KubevirtVmHighMemoryUsage

View the runbook for the KubevirtVmHighMemoryUsage alert.

15.7.26. KubeVirtVMIExcessiveMigrations

View the runbook for the KubeVirtVMIExcessiveMigrations alert.

15.7.27. LowKVMNodesCount

View the runbook for the LowKVMNodesCount alert.

15.7.28. LowReadyVirtControllersCount

View the runbook for the LowReadyVirtControllersCount alert.

15.7.29. LowReadyVirtOperatorsCount

View the runbook for the LowReadyVirtOperatorsCount alert.

15.7.30. LowVirtAPICount

View the runbook for the LowVirtAPICount alert.

15.7.31. LowVirtControllersCount

View the runbook for the LowVirtControllersCount alert.

15.7.32. LowVirtOperatorCount

View the runbook for the LowVirtOperatorCount alert.

15.7.33. NetworkAddonsConfigNotReady

View the runbook for the NetworkAddonsConfigNotReady alert.

15.7.34. NoLeadingVirtOperator

View the runbook for the NoLeadingVirtOperator alert.

15.7.35. NoReadyVirtController

View the runbook for the NoReadyVirtController alert.

CHAPTER 15. MONITORING

467

https://github.com/openshift/runbooks/blob/master/alerts/openshift-virtualization-operator/KubeVirtDeprecatedAPIRequested.md
https://github.com/openshift/runbooks/blob/master/alerts/openshift-virtualization-operator/KubeVirtNoAvailableNodesToRunVMs.md
https://github.com/openshift/runbooks/blob/master/alerts/openshift-virtualization-operator/KubevirtVmHighMemoryUsage.md
https://github.com/openshift/runbooks/blob/master/alerts/openshift-virtualization-operator/KubeVirtVMIExcessiveMigrations.md
https://github.com/openshift/runbooks/blob/master/alerts/openshift-virtualization-operator/LowKVMNodesCount.md
https://github.com/openshift/runbooks/blob/master/alerts/openshift-virtualization-operator/LowReadyVirtControllersCount.md
https://github.com/openshift/runbooks/blob/master/alerts/openshift-virtualization-operator/LowReadyVirtOperatorsCount.md
https://github.com/openshift/runbooks/blob/master/alerts/openshift-virtualization-operator/LowVirtAPICount.md
https://github.com/openshift/runbooks/blob/master/alerts/openshift-virtualization-operator/LowVirtControllersCount.md
https://github.com/openshift/runbooks/blob/master/alerts/openshift-virtualization-operator/LowVirtOperatorCount.md
https://github.com/openshift/runbooks/blob/master/alerts/openshift-virtualization-operator/NetworkAddonsConfigNotReady.md
https://github.com/openshift/runbooks/blob/master/alerts/openshift-virtualization-operator/NoLeadingVirtOperator.md
https://github.com/openshift/runbooks/blob/master/alerts/openshift-virtualization-operator/NoReadyVirtController.md

15.7.36. NoReadyVirtOperator

View the runbook for the NoReadyVirtOperator alert.

15.7.37. NodeNetworkInterfaceDown

View the runbook for the NodeNetworkInterfaceDown alert.

15.7.38. OperatorConditionsUnhealthy

The OperatorConditionsUnhealthy alert is deprecated.

15.7.39. OrphanedVirtualMachineInstances

View the runbook for the OrphanedVirtualMachineInstances alert.

15.7.40. OutdatedVirtualMachineInstanceWorkloads

View the runbook for the OutdatedVirtualMachineInstanceWorkloads alert.

15.7.41. SingleStackIPv6Unsupported

View the runbook for the SingleStackIPv6Unsupported alert.

15.7.42. SSPCommonTemplatesModificationReverted

View the runbook for the SSPCommonTemplatesModificationReverted alert.

15.7.43. SSPDown

View the runbook for the SSPDown alert.

15.7.44. SSPFailingToReconcile

View the runbook for the SSPFailingToReconcile alert.

15.7.45. SSPHighRateRejectedVms

View the runbook for the SSPHighRateRejectedVms alert.

15.7.46. SSPOperatorDown

View the runbook for the SSPOperatorDown alert.

15.7.47. SSPTemplateValidatorDown

View the runbook for the SSPTemplateValidatorDown alert.

15.7.48. UnsupportedHCOModification

View the runbook for the UnsupportedHCOModification alert.

OpenShift Container Platform 4.20 Virtualization

468

https://github.com/openshift/runbooks/blob/master/alerts/openshift-virtualization-operator/NoReadyVirtOperator.md
https://github.com/openshift/runbooks/blob/master/alerts/openshift-virtualization-operator/NodeNetworkInterfaceDown.md
https://github.com/openshift/runbooks/blob/master/alerts/openshift-virtualization-operator/OperatorConditionsUnhealthy.md
https://github.com/openshift/runbooks/blob/master/alerts/openshift-virtualization-operator/OrphanedVirtualMachineInstances.md
https://github.com/openshift/runbooks/blob/master/alerts/openshift-virtualization-operator/OutdatedVirtualMachineInstanceWorkloads.md
https://github.com/openshift/runbooks/blob/master/alerts/openshift-virtualization-operator/SingleStackIPv6Unsupported.md
https://github.com/openshift/runbooks/blob/master/alerts/openshift-virtualization-operator/SSPCommonTemplatesModificationReverted.md
https://github.com/openshift/runbooks/blob/master/alerts/openshift-virtualization-operator/SSPDown.md
https://github.com/openshift/runbooks/blob/master/alerts/openshift-virtualization-operator/SSPFailingToReconcile.md
https://github.com/openshift/runbooks/blob/master/alerts/openshift-virtualization-operator/SSPHighRateRejectedVms.md
https://github.com/openshift/runbooks/blob/master/alerts/openshift-virtualization-operator/SSPOperatorDown.md
https://github.com/openshift/runbooks/blob/master/alerts/openshift-virtualization-operator/SSPTemplateValidatorDown.md
https://github.com/openshift/runbooks/blob/master/alerts/openshift-virtualization-operator/UnsupportedHCOModification.md

15.7.49. VirtAPIDown

View the runbook for the VirtAPIDown alert.

15.7.50. VirtApiRESTErrorsBurst

View the runbook for the VirtApiRESTErrorsBurst alert.

15.7.51. VirtApiRESTErrorsHigh

View the runbook for the VirtApiRESTErrorsHigh alert.

15.7.52. VirtControllerDown

View the runbook for the VirtControllerDown alert.

15.7.53. VirtControllerRESTErrorsBurst

View the runbook for the VirtControllerRESTErrorsBurst alert.

15.7.54. VirtControllerRESTErrorsHigh

View the runbook for the VirtControllerRESTErrorsHigh alert.

15.7.55. VirtHandlerDaemonSetRolloutFailing

View the runbook for the VirtHandlerDaemonSetRolloutFailing alert.

15.7.56. VirtHandlerRESTErrorsBurst

View the runbook for the VirtHandlerRESTErrorsBurst alert.

15.7.57. VirtHandlerRESTErrorsHigh

View the runbook for the VirtHandlerRESTErrorsHigh alert.

15.7.58. VirtOperatorDown

View the runbook for the VirtOperatorDown alert.

15.7.59. VirtOperatorRESTErrorsBurst

View the runbook for the VirtOperatorRESTErrorsBurst alert.

15.7.60. VirtOperatorRESTErrorsHigh

View the runbook for the VirtOperatorRESTErrorsHigh alert.

15.7.61. VirtualMachineCRCErrors

The VirtualMachineCRCErrors alert is deprecated.

CHAPTER 15. MONITORING

469

https://github.com/openshift/runbooks/blob/master/alerts/openshift-virtualization-operator/VirtAPIDown.md
https://github.com/openshift/runbooks/blob/master/alerts/openshift-virtualization-operator/VirtApiRESTErrorsBurst.md
https://github.com/openshift/runbooks/blob/master/alerts/openshift-virtualization-operator/VirtApiRESTErrorsHigh.md
https://github.com/openshift/runbooks/blob/master/alerts/openshift-virtualization-operator/VirtControllerDown.md
https://github.com/openshift/runbooks/blob/master/alerts/openshift-virtualization-operator/VirtControllerRESTErrorsBurst.md
https://github.com/openshift/runbooks/blob/master/alerts/openshift-virtualization-operator/VirtControllerRESTErrorsHigh.md
https://github.com/openshift/runbooks/blob/master/alerts/openshift-virtualization-operator/VirtHandlerDaemonSetRolloutFailing.md
https://github.com/openshift/runbooks/blob/master/alerts/openshift-virtualization-operator/VirtHandlerRESTErrorsBurst.md
https://github.com/openshift/runbooks/blob/master/alerts/openshift-virtualization-operator/VirtHandlerRESTErrorsHigh.md
https://github.com/openshift/runbooks/blob/master/alerts/openshift-virtualization-operator/VirtOperatorDown.md
https://github.com/openshift/runbooks/blob/master/alerts/openshift-virtualization-operator/VirtOperatorRESTErrorsBurst.md
https://github.com/openshift/runbooks/blob/master/alerts/openshift-virtualization-operator/VirtOperatorRESTErrorsHigh.md
https://github.com/openshift/runbooks/blob/master/alerts/openshift-virtualization-operator/VirtualMachineCRCErrors.md

The alert is now called VMStorageClassWarning.

15.7.62. VMCannotBeEvicted

View the runbook for the VMCannotBeEvicted alert.

15.7.63. VMStorageClassWarning

View the runbook for the VMStorageClassWarning alert.

OpenShift Container Platform 4.20 Virtualization

470

https://github.com/openshift/runbooks/blob/master/alerts/openshift-virtualization-operator/VMCannotBeEvicted.md
https://github.com/openshift/runbooks/blob/master/alerts/openshift-virtualization-operator/VMStorageClassWarning.md

CHAPTER 16. SUPPORT

16.1. SUPPORT OVERVIEW

You can request assistance from Red Hat Support, report bugs, collect data about your environment,
and monitor the health of your cluster and virtual machines (VMs) with the following tools.

16.1.1. Opening support tickets

If you have encountered an issue that requires immediate assistance from Red Hat Support, you can
submit a support case.

To report a bug, you can create a Jira issue directly.

16.1.1.1. Submitting a support case

To request support from Red Hat Support, follow the instructions for submitting a support case.

It is helpful to collect debugging data to include with your support request.

16.1.1.1.1. Collecting data for Red Hat Support

You can gather debugging information by performing the following steps:

Collecting data about your environment

Configure Prometheus and Alertmanager and collect must-gather data for OpenShift Container
Platform and OpenShift Virtualization.

must-gather tool for OpenShift Virtualization

Configure and use the must-gather tool.

Collecting data about VMs

Collect must-gather data and memory dumps from VMs.

16.1.1.2. Creating a Jira issue

To report a bug, you can create a Jira issue directly by filling out the form on the Create Issue page.

16.1.2. Web console monitoring

You can monitor the health of your cluster and VMs by using the OpenShift Container Platform web
console. The web console displays resource usage, alerts, events, and trends for your cluster and for
OpenShift Virtualization components and resources.

Table 16.1. Web console pages for monitoring and troubleshooting

Page Description

Overview page Cluster details, status, alerts, inventory, and resource
usage

CHAPTER 16. SUPPORT

471

https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/support/#support-submitting-a-case_getting-support
https://issues.redhat.com/secure/CreateIssueDetails!init.jspa?pid=12323181&issuetype=1&priority=10200

Virtualization → Overview tab OpenShift Virtualization resources, usage, alerts, and
status

Virtualization → Top consumers tab Top consumers of CPU, memory, and storage

Virtualization → Migrations tab Progress of live migrations

Virtualization → VirtualMachines tab CPU, memory, and storage usage summary

Virtualization → VirtualMachines → VirtualMachine
details → Metrics tab

VM resource usage, storage, network, and migration

Virtualization → VirtualMachines → VirtualMachine
details → Events tab

List of VM events

Virtualization → VirtualMachines → VirtualMachine
details → Diagnostics tab

VM status conditions and volume snapshot status

Page Description

16.2. COLLECTING DATA FOR RED HAT SUPPORT

When you submit a support case to Red Hat Support, it is helpful to provide debugging information for
OpenShift Container Platform and OpenShift Virtualization by using the following tools:

must-gather tool

The must-gather tool collects diagnostic information, including resource definitions and service logs.

Prometheus

Prometheus is a time-series database and a rule evaluation engine for metrics. Prometheus sends
alerts to Alertmanager for processing.

Alertmanager

The Alertmanager service handles alerts received from Prometheus. The Alertmanager is also
responsible for sending the alerts to external notification systems. For information about the
OpenShift Container Platform monitoring stack, see About OpenShift Container Platform
monitoring.

16.2.1. Collecting data about your environment

Collecting data about your environment minimizes the time required to analyze and determine the root
cause.

Prerequisites

Set the retention time for Prometheus metrics data to a minimum of seven days.

Configure the Alertmanager to capture relevant alerts and to send alert notifications to a
dedicated mailbox so that they can be viewed and persisted outside the cluster.

Record the exact number of affected nodes and virtual machines.

OpenShift Container Platform 4.20 Virtualization

472

https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/support/#support-submitting-a-case_getting-support
https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/monitoring/#about-ocp-monitoring
https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/monitoring/#modifying-retention-time-for-prometheus-metrics-data_storing-and-recording-data
https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/monitoring/#configuring-alert-notifications_configuring-alerts-and-notifications

Procedure

1. Collect must-gather data for the cluster.

2. Collect must-gather data for Red Hat OpenShift Data Foundation , if necessary.

3. Collect must-gather data for OpenShift Virtualization.

4. Collect Prometheus metrics for the cluster.

16.2.2. Collecting data about virtual machines

Collecting data about malfunctioning virtual machines (VMs) minimizes the time required to analyze and
determine the root cause.

Prerequisites

Linux VMs: Install the latest QEMU guest agent .

Windows VMs:

Record the Windows patch update details.

Install the latest VirtIO drivers .

Install the latest QEMU guest agent .

If Remote Desktop Protocol (RDP) is enabled, connect by using the desktop viewer to
determine whether there is a problem with the connection software.

Procedure

1. Collect must-gather data for the VMs using the /usr/bin/gather script.

2. Collect screenshots of VMs that have crashed before you restart them.

3. Collect memory dumps from VMs before remediation attempts.

4. Record factors that the malfunctioning VMs have in common. For example, the VMs have the
same host or network.

16.2.3. Using the must-gather tool for OpenShift Virtualization

You can collect data about OpenShift Virtualization resources by running the must-gather command
with the OpenShift Virtualization image.

The default data collection includes information about the following resources:

OpenShift Virtualization Operator namespaces, including child objects

OpenShift Virtualization custom resource definitions

Namespaces that contain virtual machines

Basic virtual machine definitions

Instance types information is not currently collected by default; you can, however, run a command to

CHAPTER 16. SUPPORT

473

https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/support/#support_gathering_data_gathering-cluster-data
https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/latest/html-single/troubleshooting_openshift_data_foundation/index#downloading-log-files-and-diagnostic-information_rhodf
https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/monitoring/#querying-metrics-for-all-projects-with-mon-dashboard_accessing-metrics-as-an-administrator
https://access.redhat.com/solutions/6957701

Instance types information is not currently collected by default; you can, however, run a command to
optionally collect it.

Prerequisites

You have installed the OpenShift CLI (oc).

Procedure

Run the following command to collect data about OpenShift Virtualization:

16.2.3.1. must-gather tool options

You can run the oc adm must-gather command to collect must gather images for all the Operators
and products deployed on your cluster without the need to explicitly specify the required images.
Alternatively, you can specify a combination of scripts and environment variables for the following
options:

Collecting detailed virtual machine (VM) information from a namespace

Collecting detailed information about specified VMs

Collecting image, image-stream, and image-stream-tags information

Limiting the maximum number of parallel processes used by the must-gather tool

16.2.3.1.1. Parameters

Environment variables

You can specify environment variables for a compatible script.

NS=<namespace_name>

Collect virtual machine information, including virt-launcher pod details, from the namespace that
you specify. The VirtualMachine and VirtualMachineInstance CR data is collected for all
namespaces.

VM=<vm_name>

Collect details about a particular virtual machine. To use this option, you must also specify a
namespace by using the NS environment variable.

PROS=<number_of_processes>

Modify the maximum number of parallel processes that the must-gather tool uses. The default value
is 5.

IMPORTANT

Using too many parallel processes can cause performance issues. Increasing the
maximum number of parallel processes is not recommended.

$ oc adm must-gather \
 --image=registry.redhat.io/container-native-virtualization/cnv-must-gather-rhel9:v4.20.0 \
 -- /usr/bin/gather

OpenShift Container Platform 4.20 Virtualization

474

Scripts

Each script is compatible only with certain environment variable combinations.

/usr/bin/gather

Use the default must-gather script, which collects cluster data from all namespaces and includes
only basic VM information. This script is compatible only with the PROS variable.

/usr/bin/gather --vms_details

Collect VM log files, VM definitions, control-plane logs, and namespaces that belong to OpenShift
Virtualization resources. Specifying namespaces includes their child objects. If you use this parameter
without specifying a namespace or VM, the must-gather tool collects this data for all VMs in the
cluster. This script is compatible with all environment variables, but you must specify a namespace if
you use the VM variable.

/usr/bin/gather --images

Collect image, image-stream, and image-stream-tags custom resource information. This script is
compatible only with the PROS variable.

/usr/bin/gather --instancetypes

Collect instance types information. This information is not currently collected by default; you can,
however, optionally collect it.

16.2.3.1.2. Usage and examples

Environment variables are optional. You can run a script by itself or with one or more compatible
environment variables.

Table 16.2. Compatible parameters

Script Compatible environment variable

/usr/bin/gather * PROS=<number_of_processes>

/usr/bin/gather --vms_details * For a namespace: NS=<namespace_name>

* For a VM: VM=<vm_name> NS=
<namespace_name>

* PROS=<number_of_processes>

/usr/bin/gather --images * PROS=<number_of_processes>

Syntax

To collect must-gather logs for all Operators and products on your cluster in a single pass, run the
following command:

If you need to pass additional parameters to individual must-gather images, use the following
command:

$ oc adm must-gather --all-images

$ oc adm must-gather \

CHAPTER 16. SUPPORT

475

1

1

Default data collection parallel processes

By default, five processes run in parallel.

You can modify the number of parallel processes by changing the default.

Detailed VM information

The following command collects detailed VM information for the my-vm VM in the mynamespace
namespace:

The NS environment variable is mandatory if you use the VM environment variable.

Image, image-stream, and image-stream-tags information

The following command collects image, image-stream, and image-stream-tags information from the
cluster:

Instance types information

The following command collects instance types information from the cluster:

16.2.4. Generating a VM memory dump

When a virtual machine (VM) terminates unexpectedly, you can use the virtctl memory-dump to
generate a memory dump command to output a VM memory dump and save it on a persistent volume
claim (PVC). Afterwards, you can analyze the memory dump to diagnose and troubleshoot issues on the
VM.

Prerequisites

The hot plug feature gate is enabled in the HyperConverged custom resource. To do so, run
the following command:

 --image=registry.redhat.io/container-native-virtualization/cnv-must-gather-rhel9:v4.20.0 \
 -- <environment_variable_1> <environment_variable_2> <script_name>

$ oc adm must-gather \
 --image=registry.redhat.io/container-native-virtualization/cnv-must-gather-rhel9:v4.20.0 \
 -- PROS=5 /usr/bin/gather 1

$ oc adm must-gather \
 --image=registry.redhat.io/container-native-virtualization/cnv-must-gather-rhel9:v4.20.0 \
 -- NS=mynamespace VM=my-vm /usr/bin/gather --vms_details 1

$ oc adm must-gather \
 --image=registry.redhat.io/container-native-virtualization/cnv-must-gather-rhel9:v4.20.0 \
 /usr/bin/gather --images

$ oc adm must-gather \
 --image=registry.redhat.io/container-native-virtualization/cnv-must-gather-rhel9:v4.20.0 \
 /usr/bin/gather --instancetypes

OpenShift Container Platform 4.20 Virtualization

476

Optional: You have an existing PVC on which you want to save the memory dump.

The PVC volume mode must be FileSystem.

The PVC must be large enough to contain the memory dump.
The formula for calculating the PVC size is (VMMemorySize + 100Mi) *
FileSystemOverhead, where 100Mi is the memory dump overhead, and
FileSystemOverhead is defined in the HCO object.

Procedure

1. Create a memory dump of the required VM:

If you have an existing PVC selected on which you want to save the memory dump:

If you want to create a new PVC for the memory dump:

2. Download the memory dump:

3. Attach the memory dump to a Red Hat Support case.
Alternatively, you can inspect the memory dump, for example by using the volatility3 tool.

4. Optional: Remove the memory dump:

16.2.5. Additional resources

VM support overview

How to provide log files to Red Hat Support (Red Hat Knowledgebase)

16.3. TROUBLESHOOTING

OpenShift Virtualization provides tools and logs for troubleshooting virtual machines (VMs) and
virtualization components.

You can troubleshoot OpenShift Virtualization components by using the tools provided in the web
console or by using the oc CLI tool.

16.3.1. Events

OpenShift Container Platform events are records of important life-cycle information and are useful for

$ oc patch hyperconverged kubevirt-hyperconverged -n openshift-cnv \
 --type json -p '[{"op": "add", "path": "/spec/featureGates", \
 "value": "HotplugVolumes"}]'

$ virtctl memory-dump get <vm_name> --claim-name=<pvc_name>

$ virtctl memory-dump get <vm_name> --claim-name=<new_pvc_name> --create-claim

$ virtctl memory-dump download <vm_name> --output=<output_file>

$ virtctl memory-dump remove <vm_name>

CHAPTER 16. SUPPORT

477

https://github.com/volatilityfoundation/volatility3
https://access.redhat.com/solutions/2112

OpenShift Container Platform events are records of important life-cycle information and are useful for
monitoring and troubleshooting virtual machine, namespace, and resource issues.

VM events: Navigate to the Events tab of the VirtualMachine details page in the web console.

Namespace events

You can view namespace events by running the following command:

See the list of events for details about specific events.

Resource events

You can view resource events by running the following command:

16.3.2. Pod logs

You can view logs for OpenShift Virtualization pods by using the web console or the CLI. You can also
view aggregated logs by using the LokiStack in the web console.

16.3.2.1. Configuring OpenShift Virtualization pod log verbosity

You can configure the verbosity level of OpenShift Virtualization pod logs by editing the
HyperConverged custom resource (CR).

Prerequisites

You have installed the OpenShift CLI (oc).

Procedure

1. To set log verbosity for specific components, open the HyperConverged CR in your default
text editor by running the following command:

2. Set the log level for one or more components by editing the spec.logVerbosityConfig stanza.
For example:

$ oc get events -n <namespace>

$ oc describe <resource> <resource_name>

$ oc edit hyperconverged kubevirt-hyperconverged -n openshift-cnv

apiVersion: hco.kubevirt.io/v1beta1
kind: HyperConverged
metadata:
 name: kubevirt-hyperconverged
spec:
 logVerbosityConfig:
 kubevirt:
 virtAPI: 5 1
 virtController: 4

OpenShift Container Platform 4.20 Virtualization

478

https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/nodes/#nodes-containers-events
https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/nodes/#nodes-containers-events-list_nodes-containers-events

1 The log verbosity value must be an integer in the range 1–9, where a higher number
indicates a more detailed log. In this example, the virtAPI component logs are exposed if
their priority level is 5 or higher.

3. Apply your changes by saving and exiting the editor.

16.3.2.2. Viewing virt-launcher pod logs with the web console

You can view the virt-launcher pod logs for a virtual machine by using the OpenShift Container
Platform web console.

Procedure

1. Navigate to Virtualization → VirtualMachines.

2. Select a virtual machine to open the VirtualMachine details page.

3. On the General tile, click the pod name to open the Pod details page.

4. Click the Logs tab to view the logs.

16.3.2.3. Viewing OpenShift Virtualization pod logs with the CLI

You can view logs for the OpenShift Virtualization pods by using the oc CLI tool.

Prerequisites

You have installed the OpenShift CLI (oc).

Procedure

1. View a list of pods in the OpenShift Virtualization namespace by running the following
command:

Example 16.1. Example output

 virtHandler: 3
 virtLauncher: 2
 virtOperator: 6

$ oc get pods -n openshift-cnv

NAME READY STATUS RESTARTS AGE
disks-images-provider-7gqbc 1/1 Running 0 32m
disks-images-provider-vg4kx 1/1 Running 0 32m
virt-api-57fcc4497b-7qfmc 1/1 Running 0 31m
virt-api-57fcc4497b-tx9nc 1/1 Running 0 31m
virt-controller-76c784655f-7fp6m 1/1 Running 0 30m
virt-controller-76c784655f-f4pbd 1/1 Running 0 30m
virt-handler-2m86x 1/1 Running 0 30m
virt-handler-9qs6z 1/1 Running 0 30m
virt-operator-7ccfdbf65f-q5snk 1/1 Running 0 32m
virt-operator-7ccfdbf65f-vllz8 1/1 Running 0 32m

CHAPTER 16. SUPPORT

479

2. View the pod log by running the following command:

NOTE

If a pod fails to start, you can use the --previous option to view logs from the last
attempt.

To monitor log output in real time, use the -f option.

Example 16.2. Example output

16.3.3. Guest system logs

Viewing the boot logs of VM guests can help diagnose issues. You can configure access to guests' logs
and view them by using either the OpenShift Container Platform web console or the oc CLI.

This feature is disabled by default. If a VM does not explicitly have this setting enabled or disabled, it
inherits the cluster-wide default setting.

IMPORTANT

If sensitive information such as credentials or other personally identifiable information
(PII) is written to the serial console, it is logged with all other visible text. Red Hat
recommends using SSH to send sensitive data instead of the serial console.

16.3.3.1. Enabling default access to VM guest system logs with the web console

You can enable default access to VM guest system logs by using the web console.

$ oc logs -n openshift-cnv <pod_name>

{"component":"virt-handler","level":"info","msg":"set verbosity to 2","pos":"virt-
handler.go:453","timestamp":"2022-04-17T08:58:37.373695Z"}
{"component":"virt-handler","level":"info","msg":"set verbosity to 2","pos":"virt-
handler.go:453","timestamp":"2022-04-17T08:58:37.373726Z"}
{"component":"virt-handler","level":"info","msg":"setting rate limiter to 5 QPS and 10
Burst","pos":"virt-handler.go:462","timestamp":"2022-04-17T08:58:37.373782Z"}
{"component":"virt-handler","level":"info","msg":"CPU features of a minimum baseline CPU
model: map[apic:true clflush:true cmov:true cx16:true cx8:true de:true fpu:true fxsr:true
lahf_lm:true lm:true mca:true mce:true mmx:true msr:true mtrr:true nx:true pae:true
pat:true pge:true pni:true pse:true pse36:true sep:true sse:true sse2:true sse4.1:true
ssse3:true syscall:true tsc:true]","pos":"cpu_plugin.go:96","timestamp":"2022-04-
17T08:58:37.390221Z"}
{"component":"virt-handler","level":"warning","msg":"host model mode is expected to
contain only one model","pos":"cpu_plugin.go:103","timestamp":"2022-04-
17T08:58:37.390263Z"}
{"component":"virt-handler","level":"info","msg":"node-labeller is
running","pos":"node_labeller.go:94","timestamp":"2022-04-17T08:58:37.391011Z"}

OpenShift Container Platform 4.20 Virtualization

480

1

Procedure

1. From the side menu, click Virtualization → Overview.

2. Click the Settings tab.

3. Click Cluster → Guest management.

4. Set Enable guest system log access to on.

16.3.3.2. Enabling default access to VM guest system logs with the CLI

You can enable default access to VM guest system logs by editing the HyperConverged custom
resource (CR).

Prerequisites

You have installed the OpenShift CLI (oc).

Procedure

1. Open the HyperConverged CR in your default editor by running the following command:

2. Update the disableSerialConsoleLog value. For example:

Set the value of disableSerialConsoleLog to false if you want serial console access to be
enabled on VMs by default.

16.3.3.3. Setting guest system log access for a single VM with the web console

You can configure access to VM guest system logs for a single VM by using the web console. This
setting takes precedence over the cluster-wide default configuration.

Procedure

1. Click Virtualization → VirtualMachines from the side menu.

2. Select a virtual machine to open the VirtualMachine details page.

3. Click the Configuration tab.

4. Set Guest system log access to on or off.

$ oc edit hyperconverged kubevirt-hyperconverged -n openshift-cnv

kind: HyperConverged
metadata:
 name: kubevirt-hyperconverged
spec:
 virtualMachineOptions:
 disableSerialConsoleLog: true 1
#...

CHAPTER 16. SUPPORT

481

1

16.3.3.4. Setting guest system log access for a single VM with the CLI

You can configure access to VM guest system logs for a single VM by editing the VirtualMachine CR.
This setting takes precedence over the cluster-wide default configuration.

Prerequisites

You have installed the OpenShift CLI (oc).

Procedure

1. Edit the virtual machine manifest by running the following command:

2. Update the value of the logSerialConsole field. For example:

To enable access to the guest’s serial console log, set the logSerialConsole value to true.

3. Apply the new configuration to the VM by running the following command:

4. Optional: If you edited a running VM, restart the VM to apply the new configuration. For
example:

16.3.3.5. Viewing guest system logs with the web console

You can view the serial console logs of a virtual machine (VM) guest by using the web console.

Prerequisites

Guest system log access is enabled.

Procedure

1. Click Virtualization → VirtualMachines from the side menu.

$ oc edit vm <vm_name>

apiVersion: kubevirt.io/v1
kind: VirtualMachine
metadata:
 name: example-vm
spec:
 template:
 spec:
 domain:
 devices:
 logSerialConsole: true 1
#...

$ oc apply vm <vm_name>

$ virtctl restart <vm_name> -n <namespace>

OpenShift Container Platform 4.20 Virtualization

482

2. Select a virtual machine to open the VirtualMachine details page.

3. Click the Diagnostics tab.

4. Click Guest system logs to load the serial console.

16.3.3.6. Viewing guest system logs with the CLI

You can view the serial console logs of a VM guest by running the oc logs command.

Prerequisites

Guest system log access is enabled.

You have installed the OpenShift CLI (oc).

Procedure

View the logs by running the following command, substituting your own values for
<namespace> and <vm_name>:

16.3.4. Log aggregation

You can facilitate troubleshooting by aggregating and filtering logs.

16.3.4.1. Viewing aggregated OpenShift Virtualization logs with the LokiStack

You can view aggregated logs for OpenShift Virtualization pods and containers by using the LokiStack
in the web console.

Prerequisites

You deployed the LokiStack.

Procedure

1. Navigate to Observe → Logs in the web console.

2. Select application, for virt-launcher pod logs, or infrastructure, for OpenShift Virtualization
control plane pods and containers, from the log type list.

3. Click Show Query to display the query field.

4. Enter the LogQL query in the query field and click Run Query to display the filtered logs.

16.3.4.2. OpenShift Virtualization LogQL queries

You can view and filter aggregated logs for OpenShift Virtualization components by running Loki Query
Language (LogQL) queries on the Observe → Logs page in the web console.

The default log type is infrastructure. The virt-launcher log type is application.

$ oc logs -n <namespace> -l kubevirt.io/domain=<vm_name> --tail=-1 -c guest-console-log

CHAPTER 16. SUPPORT

483

Optional: You can include or exclude strings or regular expressions by using line filter expressions.

NOTE

If the query matches a large number of logs, the query might time out.

Table 16.3. OpenShift Virtualization LogQL example queries

Component LogQL query

All

cdi-
apiserver

cdi-
deployme
nt

cdi-
operator

hco-
operator

kubemacp
ool

virt-api

virt-
controller

virt-
handler

virt-
operator

ssp-
operator

{log_type=~".+"}|json
|kubernetes_labels_app_kubernetes_io_part_of="hyperconverged-cluster"

{log_type=~".+"}|json
|kubernetes_labels_app_kubernetes_io_part_of="hyperconverged-cluster"
|kubernetes_labels_app_kubernetes_io_component="storage"

{log_type=~".+"}|json
|kubernetes_labels_app_kubernetes_io_part_of="hyperconverged-cluster"
|kubernetes_labels_app_kubernetes_io_component="deployment"

{log_type=~".+"}|json
|kubernetes_labels_app_kubernetes_io_part_of="hyperconverged-cluster"
|kubernetes_labels_app_kubernetes_io_component="network"

{log_type=~".+"}|json
|kubernetes_labels_app_kubernetes_io_part_of="hyperconverged-cluster"
|kubernetes_labels_app_kubernetes_io_component="compute"

{log_type=~".+"}|json
|kubernetes_labels_app_kubernetes_io_part_of="hyperconverged-cluster"
|kubernetes_labels_app_kubernetes_io_component="schedule"

OpenShift Container Platform 4.20 Virtualization

484

1

1

Container

Specify one or more containers separated by a pipe (|).

virt-
launcher

You must select application from the log type list before running this query.

|!= "custom-ga-command" excludes libvirt logs that contain the string custom-ga-
command. (BZ#2177684)

Component LogQL query

You can filter log lines to include or exclude strings or regular expressions by using line filter
expressions.

Table 16.4. Line filter expressions

Line filter expression Description

|= "<string>" Log line contains string

!= "<string>" Log line does not contain string

|~ "<regex>" Log line contains regular expression

!~ "<regex>" Log line does not contain regular expression

Example line filter expression

Additional resources for LokiStack and LogQL

LogQL log queries in the Grafana documentation

16.3.5. Common error messages

The following error messages might appear in OpenShift Virtualization logs:

ErrImagePull or ImagePullBackOff

{log_type=~".+",kubernetes_container_name=~"<container>|<container>"} 1
|json|kubernetes_labels_app_kubernetes_io_part_of="hyperconverged-cluster"

{log_type=~".+", kubernetes_container_name="compute"}|json
|!= "custom-ga-command" 1

{log_type=~".+"}|json
|kubernetes_labels_app_kubernetes_io_part_of="hyperconverged-cluster"
|= "error" != "timeout"

CHAPTER 16. SUPPORT

485

https://bugzilla.redhat.com/show_bug.cgi?id=2177684
https://grafana.com/docs/loki/latest/logql/log_queries/

Indicates an incorrect deployment configuration or problems with the images that are referenced.

16.3.6. Troubleshooting data volumes

You can check the Conditions and Events sections of the DataVolume object to analyze and resolve
issues.

16.3.6.1. About data volume conditions and events

You can diagnose data volume issues by examining the output of the Conditions and Events sections
generated by the command:

The Conditions section displays the following Types:

Bound

Running

Ready

The Events section provides the following additional information:

Type of event

Reason for logging

Source of the event

Message containing additional diagnostic information.

The output from oc describe does not always contains Events.

An event is generated when the Status, Reason, or Message changes. Both conditions and events
react to changes in the state of the data volume.

For example, if you misspell the URL during an import operation, the import generates a 404 message.
That message change generates an event with a reason. The output in the Conditions section is
updated as well.

16.3.6.2. Analyzing data volume conditions and events

By inspecting the Conditions and Events sections generated by the describe command, you
determine the state of the data volume in relation to persistent volume claims (PVCs), and whether or
not an operation is actively running or completed. You might also receive messages that offer specific
details about the status of the data volume, and how it came to be in its current state.

There are many different combinations of conditions. Each must be evaluated in its unique context.

Examples of various combinations follow.

Bound - A successfully bound PVC displays in this example.

Note that the Type is Bound, so the Status is True. If the PVC is not bound, the Status is

$ oc describe dv <DataVolume>

OpenShift Container Platform 4.20 Virtualization

486

Note that the Type is Bound, so the Status is True. If the PVC is not bound, the Status is
False.

When the PVC is bound, an event is generated stating that the PVC is bound. In this case, the
Reason is Bound and Status is True. The Message indicates which PVC owns the data
volume.

Message, in the Events section, provides further details including how long the PVC has been
bound (Age) and by what resource (From), in this case datavolume-controller:

Example output

Running - In this case, note that Type is Running and Status is False, indicating that an event
has occurred that caused an attempted operation to fail, changing the Status from True to
False.
However, note that Reason is Completed and the Message field indicates Import Complete.

In the Events section, the Reason and Message contain additional troubleshooting
information about the failed operation. In this example, the Message displays an inability to
connect due to a 404, listed in the Events section’s first Warning.

From this information, you conclude that an import operation was running, creating contention
for other operations that are attempting to access the data volume:

Example output

Status:
 Conditions:
 Last Heart Beat Time: 2020-07-15T03:58:24Z
 Last Transition Time: 2020-07-15T03:58:24Z
 Message: PVC win10-rootdisk Bound
 Reason: Bound
 Status: True
 Type: Bound
...
 Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal Bound 24s datavolume-controller PVC example-dv Bound

Status:
 Conditions:
 Last Heart Beat Time: 2020-07-15T04:31:39Z
 Last Transition Time: 2020-07-15T04:31:39Z
 Message: Import Complete
 Reason: Completed
 Status: False
 Type: Running
...
 Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Warning Error 12s (x2 over 14s) datavolume-controller Unable to connect
 to http data source: expected status code 200, got 404. Status: 404 Not Found

CHAPTER 16. SUPPORT

487

Ready – If Type is Ready and Status is True, then the data volume is ready to be used, as in
the following example. If the data volume is not ready to be used, the Status is False:

Example output

Status:
 Conditions:
 Last Heart Beat Time: 2020-07-15T04:31:39Z
 Last Transition Time: 2020-07-15T04:31:39Z
 Status: True
 Type: Ready

OpenShift Container Platform 4.20 Virtualization

488

CHAPTER 17. BACKUP AND RESTORE

17.1. BACKUP AND RESTORE BY USING VM SNAPSHOTS

You can back up and restore virtual machines (VMs) by using snapshots. Snapshots are supported by
the following storage providers:

Red Hat OpenShift Data Foundation

Any other cloud storage provider with the Container Storage Interface (CSI) driver that
supports the Kubernetes Volume Snapshot API

To create snapshots of a VM in the Running state with the highest integrity, install the QEMU guest
agent if it is not included with your operating system. The QEMU guest agent is included with the
default Red Hat templates.

IMPORTANT

Online snapshots are supported for virtual machines that have hot plugged virtual disks.
However, hot plugged disks that are not in the virtual machine specification are not
included in the snapshot.

The QEMU guest agent takes a consistent snapshot by attempting to quiesce the VM file system. This
ensures that in-flight I/O is written to the disk before the snapshot is taken. If the guest agent is not
present, quiescing is not possible and a best-effort snapshot is taken.

The conditions under which a snapshot is taken are reflected in the snapshot indications that are
displayed in the web console or CLI. If these conditions do not meet your requirements, try creating the
snapshot again or use an offline snapshot

17.1.1. About snapshots

A snapshot represents the state and data of a virtual machine (VM) at a specific point in time. You can
use a snapshot to restore an existing VM to a previous state (represented by the snapshot) for backup
and disaster recovery or to rapidly roll back to a previous development version.

A VM snapshot is created from a VM that is powered off (Stopped state) or powered on (Running
state).

When taking a snapshot of a running VM, the controller checks that the QEMU guest agent is installed
and running. If so, it freezes the VM file system before taking the snapshot, and thaws the file system
after the snapshot is taken.

The snapshot stores a copy of each Container Storage Interface (CSI) volume attached to the VM and a
copy of the VM specification and metadata. Snapshots cannot be changed after creation.

You can perform the following snapshot actions:

Create a new snapshot

Create a clone of a virtual machine from a snapshot

IMPORTANT

CHAPTER 17. BACKUP AND RESTORE

489

IMPORTANT

Cloning a VM with a vTPM device attached to it or creating a new VM from its
snapshot is not supported.

List all snapshots attached to a specific VM

Restore a VM from a snapshot

Delete an existing VM snapshot

VM snapshot controller and custom resources

The VM snapshot feature introduces three new API objects defined as custom resource definitions
(CRDs) for managing snapshots:

VirtualMachineSnapshot: Represents a user request to create a snapshot. It contains
information about the current state of the VM.

VirtualMachineSnapshotContent: Represents a provisioned resource on the cluster (a
snapshot). It is created by the VM snapshot controller and contains references to all resources
required to restore the VM.

VirtualMachineRestore: Represents a user request to restore a VM from a snapshot.

The VM snapshot controller binds a VirtualMachineSnapshotContent object with the
VirtualMachineSnapshot object for which it was created, with a one-to-one mapping.

17.1.2. About application-consistent snapshots and backups

You can configure application-consistent snapshots and backups for Linux or Windows virtual machines
(VMs) through a cycle of freezing and thawing. For any application, you can either configure a script on
a Linux VM or register on a Windows VM to be notified when a snapshot or backup is due to begin.

On a Linux VM, freeze and thaw processes trigger automatically when a snapshot is taken or a backup is
started by using, for example, a plugin from Velero or another backup vendor. The freeze process,
performed by QEMU Guest Agent (QEMU GA) freeze hooks, ensures that before the snapshot or
backup of a VM occurs, all of the VM’s filesystems are frozen and each appropriately configured
application is informed that a snapshot or backup is about to start. This notification affords each
application the opportunity to quiesce its state. Depending on the application, quiescing might involve
temporarily refusing new requests, finishing in-progress operations, and flushing data to disk. The
operating system is then directed to quiesce the filesystems by flushing outstanding writes to disk and
freezing new write activity. All new connection requests are refused. When all applications have become
inactive, the QEMU GA freezes the filesystems, and a snapshot is taken or a backup initiated. After the
taking of the snapshot or start of the backup, the thawing process begins. Filesystems writing is
reactivated and applications receive notification to resume normal operations.

The same cycle of freezing and thawing is available on a Windows VM. Applications register with the
Volume Shadow Copy Service (VSS) to receive notifications that they should flush out their data
because a backup or snapshot is imminent. Thawing of the applications after the backup or snapshot is
complete returns them to an active state. For more details, see the Windows Server documentation
about the Volume Shadow Copy Service.

17.1.3. Creating snapshots

You can create snapshots of virtual machines (VMs) by using the OpenShift Container Platform web

OpenShift Container Platform 4.20 Virtualization

490

You can create snapshots of virtual machines (VMs) by using the OpenShift Container Platform web
console or the command line.

17.1.3.1. Creating a snapshot by using the web console

You can create a snapshot of a virtual machine (VM) by using the OpenShift Container Platform web
console.

Prerequisites

The snapshot feature gate is enabled in the YAML configuration of the kubevirt CR.

The VM snapshot includes disks that meet the following requirements:

The disks are data volumes or persistent volume claims.

The disks belong to a storage class that supports Container Storage Interface (CSI) volume
snapshots.

The disks are bound to a persistent volume (PV) and populated with a datasource.

Procedure

1. Navigate to Virtualization → VirtualMachines in the web console.

2. Select a VM to open the VirtualMachine details page.

3. Click the Snapshots tab and then click Take Snapshot.
Alternatively, right-click the VM and select Create snapshot from the pop-up menu.

4. Enter the snapshot name.

5. Expand Disks included in this Snapshot to see the storage volumes to be included in the
snapshot.

6. If your VM has disks that cannot be included in the snapshot and you wish to proceed, select I
am aware of this warning and wish to proceed.

7. Click Save.

17.1.3.2. Creating a snapshot by using the CLI

You can create a virtual machine (VM) snapshot for an offline or online VM by creating a
VirtualMachineSnapshot object.

Prerequisites

Ensure the Snapshot feature gate is enabled for the kubevirt CR by using the following
command:

Truncated output

$ oc get kubevirt kubevirt-hyperconverged -n openshift-cnv -o yaml

spec:

CHAPTER 17. BACKUP AND RESTORE

491

Ensure that the VM snapshot includes disks that meet the following requirements:

The disks are data volumes or persistent volume claims.

The disks belong to a storage class that supports Container Storage Interface (CSI) volume
snapshots.

The disks are bound to a persistent volume (PV) and populated with a datasource.

Install the OpenShift CLI (oc).

Optional: Power down the VM for which you want to create a snapshot.

Procedure

1. Create a YAML file to define a VirtualMachineSnapshot object that specifies the name of the
new VirtualMachineSnapshot and the name of the source VM as in the following example:

2. Create the VirtualMachineSnapshot object:

The snapshot controller creates a VirtualMachineSnapshotContent object, binds it to the
VirtualMachineSnapshot, and updates the status and readyToUse fields of the
VirtualMachineSnapshot object.

Verification

1. Optional: During the snapshot creation process, you can use the wait command to monitor the
status of the snapshot and wait until it is ready for use:

a. Enter the following command:

b. Verify the status of the snapshot:

InProgress - The snapshot operation is still in progress.

Succeeded - The snapshot operation completed successfully.

 developerConfiguration:
 featureGates:
 - Snapshot

apiVersion: snapshot.kubevirt.io/v1beta1
kind: VirtualMachineSnapshot
metadata:
 name: <snapshot_name>
spec:
 source:
 apiGroup: kubevirt.io
 kind: VirtualMachine
 name: <vm_name>

$ oc create -f <snapshot_name>.yaml

$ oc wait <vm_name> <snapshot_name> --for condition=Ready

OpenShift Container Platform 4.20 Virtualization

492

Failed - The snapshot operaton failed.

NOTE

Online snapshots have a default time deadline of five minutes (5m). If
the snapshot does not complete successfully in five minutes, the status is
set to failed. Afterwards, the file system will be thawed and the VM
unfrozen but the status remains failed until you delete the failed
snapshot image.

To change the default time deadline, add the FailureDeadline attribute
to the VM snapshot spec with the time designated in minutes (m) or in
seconds (s) that you want to specify before the snapshot operation
times out.

To set no deadline, you can specify 0, though this is generally not
recommended, as it can result in an unresponsive VM.

If you do not specify a unit of time such as m or s, the default is seconds
(s).

2. Verify that the VirtualMachineSnapshot object is created and bound with
VirtualMachineSnapshotContent and that the readyToUse flag is set to true:

Example output

$ oc describe vmsnapshot <snapshot_name>

apiVersion: snapshot.kubevirt.io/v1beta1
kind: VirtualMachineSnapshot
metadata:
 creationTimestamp: "2020-09-30T14:41:51Z"
 finalizers:
 - snapshot.kubevirt.io/vmsnapshot-protection
 generation: 5
 name: mysnap
 namespace: default
 resourceVersion: "3897"
 selfLink:
/apis/snapshot.kubevirt.io/v1beta1/namespaces/default/virtualmachinesnapshots/my-
vmsnapshot
 uid: 28eedf08-5d6a-42c1-969c-2eda58e2a78d
spec:
 source:
 apiGroup: kubevirt.io
 kind: VirtualMachine
 name: my-vm
status:
 conditions:
 - lastProbeTime: null
 lastTransitionTime: "2020-09-30T14:42:03Z"
 reason: Operation complete
 status: "False" 1
 type: Progressing

CHAPTER 17. BACKUP AND RESTORE

493

1

2

3

4

5

6

The status field of the Progressing condition specifies if the snapshot is still being
created.

The status field of the Ready condition specifies if the snapshot creation process is
complete.

Specifies if the snapshot is ready to be used.

Specifies that the snapshot is bound to a VirtualMachineSnapshotContent object
created by the snapshot controller.

Specifies additional information about the snapshot, such as whether it is an online
snapshot, or whether it was created with QEMU guest agent running.

Lists the storage volumes that are part of the snapshot, as well as their parameters.

3. Check the includedVolumes section in the snapshot description to verify that the expected
PVCs are included in the snapshot.

17.1.4. Verifying online snapshots by using snapshot indications

Snapshot indications are contextual information about online virtual machine (VM) snapshot operations.
Indications are not available for offline virtual machine (VM) snapshot operations. Indications are helpful
in describing details about the online snapshot creation.

Prerequisites

You must have attempted to create an online VM snapshot.

Procedure

1. Display the output from the snapshot indications by performing one of the following actions:

Use the command line to view indicator output in the status stanza of the

 - lastProbeTime: null
 lastTransitionTime: "2020-09-30T14:42:03Z"
 reason: Operation complete
 status: "True" 2
 type: Ready
 creationTime: "2020-09-30T14:42:03Z"
 readyToUse: true 3
 sourceUID: 355897f3-73a0-4ec4-83d3-3c2df9486f4f
 virtualMachineSnapshotContentName: vmsnapshot-content-28eedf08-5d6a-42c1-969c-
2eda58e2a78d 4
 indications: 5
 - Online
 includedVolumes: 6
 - name: rootdisk
 kind: PersistentVolumeClaim
 namespace: default
 - name: datadisk1
 kind: DataVolume
 namespace: default

OpenShift Container Platform 4.20 Virtualization

494

Use the command line to view indicator output in the status stanza of the
VirtualMachineSnapshot object YAML.

In the web console, click VirtualMachineSnapshot → Status in the Snapshot details
screen.

2. Verify the status of your online VM snapshot by viewing the values of the status.indications
parameter:

Online indicates that the VM was running during online snapshot creation.

GuestAgent indicates that the QEMU guest agent was active and successfully quiesced the
guest file system for the online snapshot. This results in an application-consistent snapshot,
preserving data integrity as if the applications had been gracefully shut down.

NoGuestAgent indicates that the QEMU guest agent was not installed, or not ready to
quiesce the file system during the online snapshot. This results in a crash-consistent
snapshot, which captures the VM’s state like an abrupt power-off. As a result, application
consistency is not guaranteed, which causes a risk of data issues for critical applications. For
higher reliability, install and run the guest agent, or retry the snapshot.

QuiesceFailed indicates that an attempt to quiesce the file system failed during the online
snapshot process. This means that the snapshot was created, but it is not necessarily
application-consistent. To achieve proper consistency, retry the snapshot.

17.1.5. Restoring virtual machines from snapshots

You can restore virtual machines (VMs) from snapshots by using the OpenShift Container Platform web
console or the command line.

17.1.5.1. Restoring a VM from a snapshot by using the web console

You can restore a virtual machine (VM) to a previous configuration represented by a snapshot in the
OpenShift Container Platform web console.

Procedure

1. Navigate to Virtualization → VirtualMachines in the web console.

2. Select a VM to open the VirtualMachine details page.

3. If the VM is running, click the Options menu and select Stop to power it down.

4. Click the Snapshots tab to view a list of snapshots associated with the VM.

5. Select a snapshot to open the Snapshot Details screen.

6. Click the Options menu and select Restore VirtualMachine from snapshot.

7. Click Restore.

8. Optional: You can also create a new VM based on the snapshot. To do so:

CHAPTER 17. BACKUP AND RESTORE

495

a. In the Options menu of the snapshot, select Create VirtualMachine from Snapshot.

b. Provide a name for the new VM.

c. Click Create

17.1.5.2. Restoring a VM from a snapshot by using the CLI

You can restore an existing virtual machine (VM) to a previous configuration by using the command line.
You can only restore from an offline VM snapshot.

Prerequisites

Install the OpenShift CLI (oc).

Power down the VM you want to restore.

Optional: Adjust what happens if the target VM is not fully stopped (ready). To do so, set the
targetReadinessPolicy parameter in the vmrestore YAML configuration to one of the
following values:

FailImmediate - The restore process fails immediately if the VM is not ready.

StopTarget - If the VM is not ready, it gets stopped, and the restore process starts.

WaitGracePeriod 5 - The restore process waits for a set amount of time, in minutes, for the
VM to be ready. This is the default setting, with the default value set to 5 minutes.

WaitEventually - The restore process waits indefinitely for the VM to be ready.

Procedure

1. Create a YAML file to define a VirtualMachineRestore object that specifies the name of the
VM you want to restore and the name of the snapshot to be used as the source as in the
following example:

2. Create the VirtualMachineRestore object:

The snapshot controller updates the status fields of the VirtualMachineRestore object and
replaces the existing VM configuration with the snapshot content.

apiVersion: snapshot.kubevirt.io/v1beta1
kind: VirtualMachineRestore
metadata:
 name: <vm_restore>
spec:
 target:
 apiGroup: kubevirt.io
 kind: VirtualMachine
 name: <vm_name>
 virtualMachineSnapshotName: <snapshot_name>

$ oc create -f <vm_restore>.yaml

OpenShift Container Platform 4.20 Virtualization

496

Verification

Verify that the VM is restored to the previous state represented by the snapshot and that the
complete flag is set to true:

Example output

$ oc get vmrestore <vm_restore>

apiVersion: snapshot.kubevirt.io/v1beta1
kind: VirtualMachineRestore
metadata:
creationTimestamp: "2020-09-30T14:46:27Z"
generation: 5
name: my-vmrestore
namespace: default
ownerReferences:
- apiVersion: kubevirt.io/v1
 blockOwnerDeletion: true
 controller: true
 kind: VirtualMachine
 name: my-vm
 uid: 355897f3-73a0-4ec4-83d3-3c2df9486f4f
 resourceVersion: "5512"
 selfLink: /apis/snapshot.kubevirt.io/v1beta1/namespaces/default/virtualmachinerestores/my-
vmrestore
 uid: 71c679a8-136e-46b0-b9b5-f57175a6a041
 spec:
 target:
 apiGroup: kubevirt.io
 kind: VirtualMachine
 name: my-vm
 virtualMachineSnapshotName: my-vmsnapshot
 status:
 complete: true 1
 conditions:
 - lastProbeTime: null
 lastTransitionTime: "2020-09-30T14:46:28Z"
 reason: Operation complete
 status: "False" 2
 type: Progressing
 - lastProbeTime: null
 lastTransitionTime: "2020-09-30T14:46:28Z"
 reason: Operation complete
 status: "True" 3
 type: Ready
 deletedDataVolumes:
 - test-dv1
 restoreTime: "2020-09-30T14:46:28Z"
 restores:
 - dataVolumeName: restore-71c679a8-136e-46b0-b9b5-f57175a6a041-datavolumedisk1
 persistentVolumeClaim: restore-71c679a8-136e-46b0-b9b5-f57175a6a041-
datavolumedisk1

CHAPTER 17. BACKUP AND RESTORE

497

1

2

3

Specifies if the process of restoring the VM to the state represented by the snapshot is
complete.

The status field of the Progressing condition specifies if the VM is still being restored.

The status field of the Ready condition specifies if the VM restoration process is
complete.

17.1.6. Deleting snapshots

You can delete snapshots of virtual machines (VMs) by using the OpenShift Container Platform web
console or the command line.

17.1.6.1. Deleting a snapshot by using the web console

You can delete an existing virtual machine (VM) snapshot by using the web console.

Procedure

1. Navigate to Virtualization → VirtualMachines in the web console.

2. Select a VM to open the VirtualMachine details page.

3. Click the Snapshots tab to view a list of snapshots associated with the VM.

4. Click the Options menu beside a snapshot and select Delete snapshot.

5. Click Delete.

17.1.6.2. Deleting a virtual machine snapshot in the CLI

You can delete an existing virtual machine (VM) snapshot by deleting the appropriate
VirtualMachineSnapshot object.

Prerequisites

Install the OpenShift CLI (oc).

Procedure

Delete the VirtualMachineSnapshot object:

The snapshot controller deletes the VirtualMachineSnapshot along with the associated
VirtualMachineSnapshotContent object.

 volumeName: datavolumedisk1
 volumeSnapshotName: vmsnapshot-28eedf08-5d6a-42c1-969c-2eda58e2a78d-volume-
datavolumedisk1

$ oc delete vmsnapshot <snapshot_name>

OpenShift Container Platform 4.20 Virtualization

498

Verification

Verify that the snapshot is deleted and no longer attached to this VM:

17.1.7. Additional resources

CSI Volume Snapshots

17.2. BACKING UP AND RESTORING VIRTUAL MACHINES

IMPORTANT

Red Hat supports using OpenShift Virtualization 4.14 or later with OADP 1.3.x or later.

OADP versions earlier than 1.3.0 are not supported for back up and restore of OpenShift
Virtualization.

Back up and restore virtual machines by using the OpenShift API for Data Protection.

You can install the OpenShift API for Data Protection (OADP) with OpenShift Virtualization by installing
the OADP Operator and configuring a backup location. You can then install the Data Protection
Application.

NOTE

OpenShift API for Data Protection with OpenShift Virtualization supports the following
backup and restore storage options:

Container Storage Interface (CSI) backups

Container Storage Interface (CSI) backups with DataMover

The following storage options are excluded:

File system backup and restore

Volume snapshot backup and restore

For more information, see Backing up applications with File System Backup: Kopia or
Restic.

To install the OADP Operator in a restricted network environment, you must first disable the default
software catalog sources and mirror the Operator catalog.

See Using Operator Lifecycle Manager in disconnected environments for details.

17.2.1. Installing and configuring OADP with OpenShift Virtualization

As a cluster administrator, you install OADP by installing the OADP Operator.

The latest version of the OADP Operator installs Velero 1.16.

Prerequisites

$ oc get vmsnapshot

CHAPTER 17. BACKUP AND RESTORE

499

https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/storage/#persistent-storage-csi-snapshots
https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/backup_and_restore/#application-backup-restore-operations-overview
https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/backup_and_restore/#oadp-backing-up-applications-restic-doc
https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/disconnected_environments/#olm-restricted-networks
https://velero.io/docs/v1.16

Prerequisites

Access to the cluster as a user with the cluster-admin role.

Procedure

1. Install the OADP Operator according to the instructions for your storage provider.

2. Install the Data Protection Application (DPA) with the kubevirt and openshift OADP plugins.

3. Back up virtual machines by creating a Backup custom resource (CR).

WARNING

Red Hat support is limited to only the following options:

CSI backups

CSI backups with DataMover.

You restore the Backup CR by creating a Restore CR.

Additional resources

OADP plugins

Backup custom resource (CR)

Restore CR

Using Operator Lifecycle Manager in disconnected environments

17.2.2. Installing the Data Protection Application

You install the Data Protection Application (DPA) by creating an instance of the
DataProtectionApplication API.

Prerequisites

You must install the OADP Operator.

You must configure object storage as a backup location.

If you use snapshots to back up PVs, your cloud provider must support either a native snapshot
API or Container Storage Interface (CSI) snapshots.

If the backup and snapshot locations use the same credentials, you must create a Secret with
the default name, cloud-credentials.

NOTE



OpenShift Container Platform 4.20 Virtualization

500

https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/backup_and_restore/#oadp-plugins_oadp-features-plugins
https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/backup_and_restore/#backing-up-applications
https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/backup_and_restore/#restoring-applications
https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html-single/disconnected_environments/#olm-restricted-networks

1

2

3

4

NOTE

If you do not want to specify backup or snapshot locations during the installation,
you can create a default Secret with an empty credentials-velero file. If there is
no default Secret, the installation will fail.

Procedure

1. Click Ecosystem → Installed Operators and select the OADP Operator.

2. Under Provided APIs, click Create instance in the DataProtectionApplication box.

3. Click YAML View and update the parameters of the DataProtectionApplication manifest:

The default namespace for OADP is openshift-adp. The namespace is a variable and is
configurable.

The kubevirt plugin is mandatory for OpenShift Virtualization.

Specify the plugin for the backup provider, for example, gcp, if it exists.

The csi plugin is mandatory for backing up PVs with CSI snapshots. The csi plugin uses the
Velero CSI beta snapshot APIs . You do not need to configure a snapshot location.

apiVersion: oadp.openshift.io/v1alpha1
kind: DataProtectionApplication
metadata:
 name: <dpa_sample>
 namespace: openshift-adp 1
spec:
 configuration:
 velero:
 defaultPlugins:
 - kubevirt 2
 - gcp 3
 - csi 4
 - openshift 5
 resourceTimeout: 10m 6
 nodeAgent: 7
 enable: true 8
 uploaderType: kopia 9
 podConfig:
 nodeSelector: <node_selector> 10
 backupLocations:
 - velero:
 provider: gcp 11
 default: true
 credential:
 key: cloud
 name: <default_secret> 12
 objectStorage:
 bucket: <bucket_name> 13
 prefix: <prefix> 14

CHAPTER 17. BACKUP AND RESTORE

501

https://velero.io/docs/main/csi/

5

6

7

8

9

10

11

12

13

14

The openshift plugin is mandatory.

Specify how many minutes to wait for several Velero resources before timeout occurs,
such as Velero CRD availability, volumeSnapshot deletion, and backup repository
availability. The default is 10m.

The administrative agent that routes the administrative requests to servers.

Set this value to true if you want to enable nodeAgent and perform File System Backup.

Enter kopia as your uploader to use the Built-in DataMover. The nodeAgent deploys a
daemon set, which means that the nodeAgent pods run on each working node. You can
configure File System Backup by adding spec.defaultVolumesToFsBackup: true to the
Backup CR.

Specify the nodes on which Kopia are available. By default, Kopia runs on all nodes.

Specify the backup provider.

Specify the correct default name for the Secret, for example, cloud-credentials-gcp, if
you use a default plugin for the backup provider. If specifying a custom name, then the
custom name is used for the backup location. If you do not specify a Secret name, the
default name is used.

Specify a bucket as the backup storage location. If the bucket is not a dedicated bucket for
Velero backups, you must specify a prefix.

Specify a prefix for Velero backups, for example, velero, if the bucket is used for multiple
purposes.

4. Click Create.

Verification

1. Verify the installation by viewing the OpenShift API for Data Protection (OADP) resources by
running the following command:

Example output

NAME READY STATUS RESTARTS AGE
pod/oadp-operator-controller-manager-67d9494d47-6l8z8 2/2 Running 0 2m8s
pod/node-agent-9cq4q 1/1 Running 0 94s
pod/node-agent-m4lts 1/1 Running 0 94s
pod/node-agent-pv4kr 1/1 Running 0 95s
pod/velero-588db7f655-n842v 1/1 Running 0 95s

NAME TYPE CLUSTER-IP EXTERNAL-IP
PORT(S) AGE
service/oadp-operator-controller-manager-metrics-service ClusterIP 172.30.70.140
<none> 8443/TCP 2m8s
service/openshift-adp-velero-metrics-svc ClusterIP 172.30.10.0 <none>
8085/TCP 8h

$ oc get all -n openshift-adp

OpenShift Container Platform 4.20 Virtualization

502

NAME DESIRED CURRENT READY UP-TO-DATE AVAILABLE NODE
SELECTOR AGE
daemonset.apps/node-agent 3 3 3 3 3 <none> 96s

NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/oadp-operator-controller-manager 1/1 1 1 2m9s
deployment.apps/velero 1/1 1 1 96s

NAME DESIRED CURRENT READY AGE
replicaset.apps/oadp-operator-controller-manager-67d9494d47 1 1 1 2m9s
replicaset.apps/velero-588db7f655 1 1 1 96s

2. Verify that the DataProtectionApplication (DPA) is reconciled by running the following
command:

Example output

3. Verify the type is set to Reconciled.

4. Verify the backup storage location and confirm that the PHASE is Available by running the
following command:

Example output

17.3. DISASTER RECOVERY

OpenShift Virtualization supports using disaster recovery (DR) solutions to ensure that your
environment can recover after a site outage. To use these methods, you must plan your OpenShift
Virtualization deployment in advance.

17.3.1. About disaster recovery methods

For an overview of disaster recovery (DR) concepts, architecture, and planning considerations, see the
Red Hat OpenShift Virtualization disaster recovery guide in the Red Hat Knowledgebase.

The two primary DR methods for OpenShift Virtualization are Metropolitan Disaster Recovery (Metro-
DR) and Regional-DR.

17.3.1.1. Metro-DR

Metro-DR uses synchronous replication. It writes to storage at both the primary and secondary sites so

$ oc get dpa dpa-sample -n openshift-adp -o jsonpath='{.status}'

{"conditions":[{"lastTransitionTime":"2023-10-27T01:23:57Z","message":"Reconcile
complete","reason":"Complete","status":"True","type":"Reconciled"}]}

$ oc get backupstoragelocations.velero.io -n openshift-adp

NAME PHASE LAST VALIDATED AGE DEFAULT
dpa-sample-1 Available 1s 3d16h true

CHAPTER 17. BACKUP AND RESTORE

503

https://access.redhat.com/articles/7041594

that the data is always synchronized between sites. Because the storage provider is responsible for
ensuring that the synchronization succeeds, the environment must meet the throughput and latency
requirements of the storage provider.

17.3.1.2. Regional-DR

Regional-DR uses asynchronous replication. The data in the primary site is synchronized with the
secondary site at regular intervals. For this type of replication, you can have a higher latency connection
between the primary and secondary sites.

17.3.2. Defining applications for disaster recovery

Define applications for disaster recovery by using VMs that Red Hat Advanced Cluster Management
(RHACM) manages or discovers.

17.3.2.1. Best practices when defining an RHACM-managed VM

When creating an RHACM-managed application that includes a VM, you must use a GitOps workflow
and create an RHACM application or ApplicationSet resource.

You can take several actions to improve your experience and chance of success when defining an
RHACM-managed VM.

Use a PVC and populator to define storage for the VM

Because data volumes create persistent volume claims (PVCs) implicitly, data volumes and VMs with
data volume templates do not fit as neatly into the GitOps model.

Use the import method when choosing a population source for your VM disk

Select a RHEL image from the software catalog to use the import method. Red Hat recommends
using a specific version of the image rather than a floating tag for consistent results. The KubeVirt
community maintains container disks for other operating systems in a Quay repository.

Use pullMethod: node

Use the pod pullMethod: node when creating a data volume from a registry source to take
advantage of the OpenShift Container Platform pull secret, which is required to pull container
images from the Red Hat registry.

17.3.2.2. Best practices when defining an RHACM-discovered VM

You can configure any VM in the cluster that is not an RHACM-managed application as an RHACM-
discovered application. This includes VMs imported by using the Migration Toolkit for Virtualization
(MTV), VMs created by using the OpenShift Container Platform web console, or VMs created by any
other means, such as the CLI.

You can take several actions to improve your experience and chance of success when defining an
RHACM-discovered VM.

Protecting the VM when using MTV, the OpenShift Container Platform web console, or a custom
VM

Because automatic labeling is not currently available, the application owner must manually label the
components of the VM application when using MTV, the OpenShift Container Platform web console,
or a custom VM.
After creating the VM, apply a common label to the following resources associated with the VM:
VirtualMachine, DataVolume, PersistentVolumeClaim, Service, Route, Secret and ConfigMap. If
the VM uses an instance type or preference, you must also label the ControllerRevision copy of

OpenShift Container Platform 4.20 Virtualization

504

these objects referenced by the spec or status of the VM. Do not label virtual machine instances
(VMIs) or pods; OpenShift Virtualization creates and manages these automatically.

IMPORTANT

You must apply the common label to everything in the namespace that you want to
protect, including objects that you added to the VM that are not listed here.

Including more than the VirtualMachine object in the VM

Working VMs typically also contain data volumes, persistent volume claims (PVCs), services, routes,
secrets, ConfigMap objects, and VirtualMachineSnapshot objects.

Including the VM as part of a larger logical application

This includes other pod-based workloads and VMs.

17.3.3. VM behavior during disaster recovery scenarios

VMs typically act similarly to pod-based workloads during both relocate and failover disaster recovery
flows.

Relocate
Use relocate to move an application from the primary environment to the secondary environment when
the primary environment is still accessible. During relocate, the VM is gracefully terminated, any
unreplicated data is synchronized to the secondary environment, and the VM starts in the secondary
environment.

Because the VM terminates gracefully, there is no data loss. Therefore, the VM operating system will not
perform crash recovery.

Failover
Use failover when there is a critical failure in the primary environment that makes it impractical or
impossible to use relocation to move the workload to a secondary environment. When failover is
executed, the storage is fenced from the primary environment, the I/O to the VM disks is abruptly
halted, and the VM restarts in the secondary environment using the replicated data.

You should expect data loss due to failover. The extent of loss depends on whether you use Metro-DR,
which uses synchronous replication, or Regional-DR, which uses asynchronous replication. Because
Regional-DR uses snapshot-based replication intervals, the window of data loss is proportional to the
replication interval length. When the VM restarts, the operating system might perform crash recovery.

17.3.4. Disaster recovery solutions for Red Hat managed clusters

The following DR solutions combine Red Hat Advanced Cluster Management (RHACM), Red Hat Ceph
Storage, and OpenShift Data Foundation components. You can use them to failover applications from
the primary to the secondary site, and to relocate the applications back to the primary site after you
restore the disaster site.

17.3.4.1. Metro-DR for Red Hat OpenShift Data Foundation

OpenShift Virtualization supports the Metro-DR solution for OpenShift Data Foundation , which
provides two-way synchronous data replication between managed OpenShift Virtualization clusters
installed on primary and secondary sites.

Metro-DR differences

CHAPTER 17. BACKUP AND RESTORE

505

https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/latest/html-single/configuring_openshift_data_foundation_disaster_recovery_for_openshift_workloads/index#metro-dr-solution

This synchronous solution is only available to metropolitan distance data centers with a network
round-trip latency of 10 milliseconds or less.

Multiple disk VMs are supported.

To prevent data corruption, you must ensure that storage is fenced during failover.

TIP

Fencing means isolating a node so that workloads do not run on it.

For more information about using the Metro-DR solution for OpenShift Data Foundation with OpenShift
Virtualization, see IBM’s OpenShift Data Foundation Metro-DR documentation.

17.3.4.2. Regional-DR for Red Hat OpenShift Data Foundation

OpenShift Virtualization supports the Regional-DR solution for OpenShift Data Foundation , which
provides asynchronous data replication at regular intervals between managed OpenShift Virtualization
clusters installed on primary and secondary sites.

Regional-DR differences

Regional-DR supports higher network latency between the primary and secondary sites.

Regional-DR uses RBD snapshots to replicate data asynchronously. Currently, your applications
must be resilient to small variances between VM disks. You can prevent these variances by using
single disk VMs.

Using the import method when selecting a population source for your VM disk is recommended.
However, you can protect VMs that use cloned PVCs if you select a VolumeReplicationClass
that enables image flattening. For more information, see the OpenShift Data Foundation
documentation.

For more information about using the Regional-DR solution for OpenShift Data Foundation with
OpenShift Virtualization, see IBM’s OpenShift Data Foundation Regional-DR documentation.

17.3.5. Additional resources

Configuring OpenShift Data Foundation Disaster Recovery for OpenShift Workloads

Use OpenShift Data Foundation Disaster Recovery to Protect Virtual Machines in the Red Hat
Knowledgebase

Red Hat Advanced Cluster Management for Kubernetes 2.10

OpenShift Container Platform 4.20 Virtualization

506

https://docs.redhat.com/en/documentation/red_hat_openshift_data_foundation/latest/html-single/configuring_openshift_data_foundation_disaster_recovery_for_openshift_workloads/index#rdr-solution
https://docs.redhat.com/en/documentation/red_hat_openshift_data_foundation/latest/html/configuring_openshift_data_foundation_disaster_recovery_for_openshift_workloads/index
https://access.redhat.com/articles/7053115
https://docs.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.10

	Table of Contents
	CHAPTER 1. ABOUT
	1.1. ABOUT OPENSHIFT VIRTUALIZATION
	1.1.1. What you can do with OpenShift Virtualization
	1.1.2. Comparing OpenShift Virtualization to VMware vSphere
	1.1.3. Supported cluster versions for OpenShift Virtualization
	1.1.4. About volume and access modes for virtual machine disks
	1.1.5. Single-node OpenShift differences
	1.1.6. Additional resources

	1.2. SUPPORTED LIMITS
	1.2.1. Tested maximums for OpenShift Virtualization
	1.2.1.1. Virtual machine maximums
	1.2.1.2. Host maximums
	1.2.1.3. Cluster maximums

	1.2.2. Additional resources

	1.3. SECURITY POLICIES
	1.3.1. About workload security
	1.3.2. TLS certificates
	1.3.3. Authorization
	1.3.3.1. Default cluster roles for OpenShift Virtualization
	1.3.3.2. RBAC roles for storage features in OpenShift Virtualization
	1.3.3.3. Additional SCCs and permissions for the kubevirt-controller service account

	1.3.4. Additional resources

	1.4. OPENSHIFT VIRTUALIZATION ARCHITECTURE
	1.4.1. About the HyperConverged Operator (HCO)
	1.4.2. About the Containerized Data Importer (CDI) Operator
	1.4.3. About the Cluster Network Addons Operator
	1.4.4. About the Hostpath Provisioner (HPP) Operator
	1.4.5. About the Scheduling, Scale, and Performance (SSP) Operator
	1.4.6. About the OpenShift Virtualization Operator

	CHAPTER 2. RELEASE NOTES
	2.1. OPENSHIFT VIRTUALIZATION RELEASE NOTES
	2.1.1. Providing documentation feedback
	2.1.2. About Red Hat OpenShift Virtualization
	2.1.2.1. Supported cluster versions for OpenShift Virtualization
	2.1.2.2. Supported guest operating systems
	2.1.2.3. Microsoft Windows SVVP certification

	2.1.3. Quick starts
	2.1.4. New and changed features
	2.1.4.1. Installation and update
	2.1.4.2. Virtualization
	2.1.4.3. Networking
	2.1.4.4. Web console
	2.1.4.5. Monitoring
	2.1.4.6. Notable technical changes

	2.1.5. Deprecated and removed features
	2.1.5.1. Deprecated features
	2.1.5.2. Removed features

	2.1.6. Technology Preview features
	2.1.7. Bug fixes
	2.1.8. Known issues
	2.1.8.1. Networking
	2.1.8.2. Nodes
	2.1.8.3. Storage
	2.1.8.4. Virtualization
	2.1.8.5. IBM Z and IBM LinuxONE

	CHAPTER 3. GETTING STARTED
	3.1. GETTING STARTED WITH OPENSHIFT VIRTUALIZATION
	3.1.1. Tours and quick starts
	Getting started tour
	Quick starts

	3.1.2. Planning and installing OpenShift Virtualization
	Planning and installation resources

	3.1.3. Creating and managing virtual machines
	3.1.4. Migrating to OpenShift Virtualization
	3.1.5. Next steps

	3.2. USING THE CLI TOOLS
	3.2.1. Installing virtctl
	3.2.1.1. Installing the virtctl binary on RHEL 9, Linux, Windows, or macOS
	3.2.1.2. Installing the virtctl RPM on RHEL 8

	3.2.2. virtctl commands
	3.2.2.1. virtctl information commands
	3.2.2.2. VM information commands
	3.2.2.3. VM manifest creation commands
	3.2.2.4. VM management commands
	3.2.2.5. VM connection commands
	3.2.2.6. VM export commands
	3.2.2.7. Hot plug and hot unplug commands
	3.2.2.8. Image upload commands

	3.2.3. Deploying libguestfs by using virtctl
	3.2.3.1. Libguestfs and virtctl guestfs commands

	3.2.4. Using Ansible

	CHAPTER 4. INSTALLING
	4.1. PREPARING YOUR CLUSTER FOR OPENSHIFT VIRTUALIZATION
	4.1.1. Compatible platforms
	4.1.1.1. OpenShift Virtualization on AWS bare metal
	4.1.1.2. ARM64 compatibility
	4.1.1.3. IBM Z and IBM LinuxONE compatibility

	4.1.2. Important considerations for any platform
	4.1.3. Hardware and operating system requirements
	4.1.3.1. CPU requirements
	4.1.3.2. Operating system requirements
	4.1.3.3. Storage requirements

	4.1.4. Live migration requirements
	4.1.5. Physical resource overhead requirements
	Memory overhead
	CPU overhead
	Storage overhead

	4.1.6. Single-node OpenShift differences
	4.1.7. Object maximums
	4.1.8. Cluster high-availability options

	4.2. INSTALLING OPENSHIFT VIRTUALIZATION
	4.2.1. Installing the OpenShift Virtualization Operator
	4.2.1.1. Installing the OpenShift Virtualization Operator by using the web console
	4.2.1.2. Installing the OpenShift Virtualization Operator by using the command line

	4.2.2. Next steps

	4.3. UNINSTALLING OPENSHIFT VIRTUALIZATION
	4.3.1. Uninstalling OpenShift Virtualization by using the web console
	4.3.1.1. Deleting the HyperConverged custom resource
	4.3.1.2. Deleting Operators from a cluster using the web console
	4.3.1.3. Deleting a namespace using the web console
	4.3.1.4. Deleting OpenShift Virtualization custom resource definitions

	4.3.2. Uninstalling OpenShift Virtualization by using the CLI

	CHAPTER 5. POSTINSTALLATION CONFIGURATION
	5.1. POSTINSTALLATION CONFIGURATION
	5.2. SPECIFYING NODES FOR OPENSHIFT VIRTUALIZATION COMPONENTS
	5.2.1. About node placement rules for OpenShift Virtualization components
	5.2.2. Applying node placement rules
	5.2.3. Node placement rule examples
	5.2.3.1. Subscription object node placement rule examples
	5.2.3.2. HyperConverged object node placement rule example
	5.2.3.3. HostPathProvisioner object node placement rule example

	5.2.4. Additional resources

	5.3. POSTINSTALLATION NETWORK CONFIGURATION
	5.3.1. Installing networking Operators
	5.3.2. Configuring a Linux bridge network
	5.3.2.1. Creating a Linux bridge NNCP
	5.3.2.2. Creating a Linux bridge NAD by using the web console

	5.3.3. Configuring a network for live migration
	5.3.3.1. Configuring a dedicated secondary network for live migration
	5.3.3.2. Selecting a dedicated network by using the web console

	5.3.4. Configuring an SR-IOV network
	5.3.4.1. Configuring SR-IOV network devices

	5.3.5. Enabling load balancer service creation by using the web console

	5.4. POSTINSTALLATION STORAGE CONFIGURATION
	5.4.1. Configuring local storage by using the HPP
	5.4.1.1. Creating a storage class for the CSI driver with the storagePools stanza

	5.5. CONFIGURING HIGHER VM WORKLOAD DENSITY
	5.5.1. Using wasp-agent to increase VM workload density
	5.5.2. Removing the wasp-agent component
	5.5.3. Pod eviction conditions used by wasp-agent
	5.5.3.1. Environment variables

	5.6. CONFIGURING CERTIFICATE ROTATION
	5.6.1. Configuring certificate rotation
	5.6.2. Troubleshooting certificate rotation parameters

	CHAPTER 6. VIRTUALIZATION WITH IBM FUSION ACCESS FOR SAN
	6.1. IBM FUSION ACCESS FOR SAN OVERVIEW
	6.1.1. About IBM Fusion Access for SAN
	6.1.1.1. Why use Fusion Access for SAN?

	6.1.2. Prerequisites and Limitations for Fusion Access for SAN
	6.1.2.1. Prerequisites
	6.1.2.2. Limitations

	6.2. INSTALLING AND CONFIGURING IBM FUSION ACCESS FOR SAN
	6.2.1. Installing the Fusion Access for SAN Operator
	6.2.2. Creating a Kubernetes pull secret
	6.2.3. Creating the FusionAccess CR
	6.2.4. Creating a storage cluster with Fusion Access for SAN
	6.2.5. Creating a file system with Fusion Access for SAN
	6.2.6. Next steps
	6.2.7. IBM Fusion Access for SAN release updates
	6.2.7.1. New and changed features
	6.2.7.2. Bug fixes
	6.2.7.3. Known issues

	CHAPTER 7. UPDATING
	7.1. UPDATING OPENSHIFT VIRTUALIZATION
	7.1.1. About updating OpenShift Virtualization
	7.1.1.1. Recommended settings
	7.1.1.2. What to expect
	7.1.1.3. How updates work
	7.1.1.4. RHEL 9 compatibility

	7.1.2. Monitoring update status
	7.1.3. VM workload updates
	Migration attempts and timeouts
	7.1.3.1. Configuring workload update methods
	7.1.3.2. Viewing outdated VM workloads

	7.1.4. Control Plane Only updates
	7.1.4.1. Prerequisites
	7.1.4.2. Preventing workload updates during a Control Plane Only update

	7.1.5. Advanced options
	7.1.5.1. Changing update settings
	7.1.5.2. Manual approval strategy
	7.1.5.3. Manually approving a pending Operator update

	7.1.6. Early access releases
	7.1.7. Additional resources

	CHAPTER 8. CREATING A VIRTUAL MACHINE
	8.1. CREATING VIRTUAL MACHINES FROM INSTANCE TYPES
	8.1.1. About instance types
	8.1.1.1. Required attributes
	8.1.1.2. Optional attributes
	8.1.1.3. Controller revisions

	8.1.2. Pre-defined instance types
	8.1.3. Specifying an instance type or preference
	8.1.3.1. Using flags to specify instance types and preferences
	8.1.3.2. Inferring an instance type or preference
	8.1.3.3. Setting the inferFromVolume labels

	8.1.4. Creating a VM from an instance type by using the web console
	8.1.5. Changing the instance type for a VM
	8.1.5.1. Changing the instance type of a VM by using the web console
	8.1.5.2. Changing the instance type of a VM by using the CLI

	8.2. CREATING VIRTUAL MACHINES FROM TEMPLATES
	8.2.1. About VM templates
	8.2.2. Creating a VM from a template
	8.2.2.1. Removing a deprecated designation from a customized VM template by using the web console
	8.2.2.2. Creating a custom VM template in the web console

	8.3. CONFIGURING IBM SECURE EXECUTION VIRTUAL MACHINES ON IBM Z AND IBM LINUXONE
	8.3.1. Enabling VMs to run IBM(R) Secure Execution on IBM Z(R) and IBM(R) LinuxONE
	8.3.2. Launching an IBM Secure Execution VM on IBM Z and IBM LinuxONE

	CHAPTER 9. ADVANCED VM CREATION
	9.1. CREATING VMS FROM RED HAT IMAGES
	9.1.1. Creating virtual machines from Red Hat images
	9.1.1.1. About golden images
	9.1.1.2. About VM boot sources
	9.1.1.3. Configuring a custom namespace for golden images by using the web console
	9.1.1.4. Configuring a custom namespace for golden images by using the CLI

	9.1.2. Heterogeneous cluster support
	9.1.2.1. Enabling heterogeneous cluster support
	9.1.2.2. Modifying a common golden image source in a heterogeneous cluster
	9.1.2.3. Adding a custom golden image in a heterogeneous cluster
	9.1.2.4. Modifying workloads node placement in a heterogeneous cluster

	9.2. CREATING VMS IN THE WEB CONSOLE
	9.2.1. Creating VMs by importing images from web pages
	9.2.1.1. Creating a VM from an image on a web page by using the web console
	9.2.1.2. Creating a VM from an image on a web page by using the CLI

	9.2.2. Creating VMs by uploading images
	9.2.2.1. Creating a VM from an uploaded image by using the web console
	9.2.2.2. Creating a Windows VM
	9.2.2.3. Creating a VM from an uploaded image by using the CLI

	9.2.3. Cloning VMs
	9.2.3.1. Cloning a VM by using the web console
	9.2.3.2. Creating a VM from an existing snapshot by using the web console
	9.2.3.3. Additional resources

	9.3. CREATING VMS USING THE CLI
	9.3.1. Creating virtual machines from the CLI
	9.3.1.1. Creating a VM from a VirtualMachine manifest

	9.3.2. Creating VMs by using container disks
	9.3.2.1. Building and uploading a container disk
	9.3.2.2. Disabling TLS for a container registry
	9.3.2.3. Creating a VM from a container disk by using the web console
	9.3.2.4. Creating a VM from a container disk by using the CLI

	9.3.3. Creating VMs by cloning PVCs
	9.3.3.1. About cloning
	9.3.3.2. Creating a VM from a PVC by using the web console
	9.3.3.3. Creating a VM from a PVC by using the CLI

	CHAPTER 10. MANAGING VMS
	10.1. LISTING VIRTUAL MACHINES
	10.1.1. Listing virtual machines by using the CLI
	10.1.2. Listing virtual machines by using the web console
	10.1.3. Organizing virtual machines by using the web console

	10.2. INSTALLING THE QEMU GUEST AGENT AND VIRTIO DRIVERS
	10.2.1. Installing the QEMU guest agent
	10.2.1.1. Installing the QEMU guest agent on a Linux VM
	10.2.1.2. Installing the QEMU guest agent on a Windows VM

	10.2.2. Installing VirtIO drivers on Windows VMs
	10.2.2.1. Attaching VirtIO container disk to Windows VMs during installation
	10.2.2.2. Attaching VirtIO container disk to an existing Windows VM
	10.2.2.3. Installing VirtIO drivers during Windows installation
	10.2.2.4. Installing VirtIO drivers from a SATA CD drive on an existing Windows VM
	10.2.2.5. Installing VirtIO drivers from a container disk added as a SATA CD drive

	10.2.3. Updating VirtIO drivers
	10.2.3.1. Updating VirtIO drivers on a Windows VM

	10.3. CONNECTING TO VIRTUAL MACHINE CONSOLES
	10.3.1. Connecting to the VNC console
	10.3.1.1. Connecting to the VNC console by using the web console
	10.3.1.2. Connecting to the VNC console by using virtctl
	10.3.1.3. Generating a temporary token for the VNC console

	10.3.2. Connecting to the serial console
	10.3.2.1. Connecting to the serial console by using the web console
	10.3.2.2. Connecting to the serial console by using virtctl

	10.3.3. Connecting to the desktop viewer
	10.3.3.1. Connecting to the desktop viewer by using the web console

	10.4. CONFIGURING SSH ACCESS TO VIRTUAL MACHINES
	10.4.1. Access configuration considerations
	10.4.2. Using virtctl ssh
	10.4.2.1. About static and dynamic SSH key management
	10.4.2.2. Static key management
	10.4.2.3. Dynamic key management
	10.4.2.4. Using the virtctl ssh command

	10.4.3. Using the virtctl port-forward command
	10.4.4. Using a service for SSH access
	10.4.4.1. About services
	10.4.4.2. Creating a service
	10.4.4.3. Connecting to a VM exposed by a service by using SSH

	10.4.5. Using a secondary network for SSH access
	10.4.5.1. Configuring a VM network interface by using the web console
	10.4.5.2. Connecting to a VM attached to a secondary network by using SSH

	10.5. EDITING VIRTUAL MACHINES
	10.5.1. Changing the instance type of a VM by using the web console
	10.5.2. Hot plugging memory on a virtual machine
	10.5.3. Hot plugging CPUs on a virtual machine
	10.5.4. Editing a virtual machine by using the CLI
	10.5.5. Adding a disk to a virtual machine
	10.5.5.1. Storage fields

	10.5.6. Mounting a Windows driver disk on a virtual machine
	10.5.7. Adding a secret, config map, or service account to a virtual machine
	10.5.8. Updating multiple virtual machines
	10.5.8.1. Performing bulk actions on virtual machines

	10.5.9. Configuring multiple IOThreads for fast storage access
	Additional resources for config maps, secrets, and service accounts

	10.6. EDITING BOOT ORDER
	10.6.1. Adding items to a boot order list in the web console
	10.6.2. Editing a boot order list in the web console
	10.6.3. Editing a boot order list in the YAML configuration file
	10.6.4. Removing items from a boot order list in the web console

	10.7. DELETING VIRTUAL MACHINES
	10.7.1. Deleting a virtual machine using the web console
	10.7.2. Deleting a virtual machine by using the CLI

	10.8. ENABLING OR DISABLING VIRTUAL MACHINE DELETE PROTECTION
	10.8.1. Enabling or disabling virtual machine delete protection by using the web console
	10.8.2. Enabling or disabling VM delete protection by using the CLI
	10.8.3. Removing the VM delete protection option
	10.8.4. Additional resources

	10.9. EXPORTING VIRTUAL MACHINES
	10.9.1. Creating a VirtualMachineExport custom resource
	10.9.2. Accessing exported virtual machine manifests

	10.10. MANAGING VIRTUAL MACHINE INSTANCES
	10.10.1. About virtual machine instances
	10.10.2. Listing all virtual machine instances using the CLI
	10.10.3. Listing standalone virtual machine instances using the web console
	10.10.4. Searching for standalone virtual machine instances by using the web console
	10.10.5. Editing a standalone virtual machine instance using the web console
	10.10.6. Deleting a standalone virtual machine instance using the CLI
	10.10.7. Deleting a standalone virtual machine instance using the web console

	10.11. CONTROLLING VIRTUAL MACHINE STATES
	10.11.1. Enabling confirmations of virtual machine actions
	10.11.2. Starting a virtual machine
	10.11.3. Stopping a virtual machine
	10.11.4. Restarting a virtual machine
	10.11.5. Pausing a virtual machine
	10.11.6. Unpausing a virtual machine
	10.11.7. Controlling the state of multiple virtual machines

	10.12. USING VIRTUAL TRUSTED PLATFORM MODULE DEVICES
	10.12.1. About vTPM devices
	10.12.2. Adding a vTPM device to a virtual machine

	10.13. MANAGING VIRTUAL MACHINES WITH OPENSHIFT PIPELINES
	10.13.1. Prerequisites
	10.13.2. Supported virtual machine tasks
	10.13.3. Windows EFI installer pipeline
	10.13.3.1. Running the example pipelines using the web console
	10.13.3.2. Running the example pipelines using the CLI

	10.13.4. Removing deprecated or unused resources
	10.13.5. Additional resources

	10.14. MIGRATING VMS IN A SINGLE CLUSTER TO A DIFFERENT STORAGE CLASS
	10.14.1. Migrating VMs in a single cluster to a different storage class by using the web console

	10.15. ADVANCED VIRTUAL MACHINE MANAGEMENT
	10.15.1. Working with resource quotas for virtual machines
	10.15.1.1. Setting resource quota limits for virtual machines
	10.15.1.2. Additional resources

	10.15.2. Configuring the Application-Aware Quota (AAQ) Operator
	10.15.2.1. About the AAQ Operator
	10.15.2.2. Enabling the AAQ Operator
	10.15.2.3. Configuring the AAQ Operator by using the CLI
	10.15.2.4. Additional resources

	10.15.3. Specifying nodes for virtual machines
	10.15.3.1. About node placement for virtual machines
	10.15.3.2. Node placement examples
	10.15.3.3. Additional resources

	10.15.4. Configuring the default CPU model
	10.15.4.1. Configuring the default CPU model

	10.15.5. Using UEFI mode for virtual machines
	10.15.5.1. About UEFI mode for virtual machines
	10.15.5.2. Booting virtual machines in UEFI mode
	10.15.5.3. Enabling persistent EFI
	10.15.5.4. Configuring VMs with persistent EFI

	10.15.6. Configuring PXE booting for virtual machines
	10.15.6.1. PXE booting with a specified MAC address
	10.15.6.2. OpenShift Virtualization networking glossary

	10.15.7. Using huge pages with virtual machines
	10.15.7.1. What huge pages do
	10.15.7.2. Configuring huge pages for virtual machines

	10.15.8. Enabling dedicated resources for virtual machines
	10.15.8.1. About dedicated resources
	10.15.8.2. Enabling dedicated resources for a virtual machine

	10.15.9. Scheduling virtual machines
	10.15.9.1. Policy attributes
	10.15.9.2. Setting a policy attribute and CPU feature
	10.15.9.3. Scheduling virtual machines with the supported CPU model
	10.15.9.4. Scheduling virtual machines with the host model
	10.15.9.5. Scheduling virtual machines with a custom scheduler

	10.15.10. Configuring PCI passthrough
	10.15.10.1. Preparing nodes for GPU passthrough
	10.15.10.2. Preparing host devices for PCI passthrough
	10.15.10.3. Configuring virtual machines for PCI passthrough
	10.15.10.4. Additional resources

	10.15.11. Configuring virtual GPUs
	10.15.11.1. About using virtual GPUs with OpenShift Virtualization
	10.15.11.2. Preparing hosts for mediated devices
	10.15.11.3. Configuring the NVIDIA GPU Operator
	10.15.11.4. How vGPUs are assigned to nodes
	10.15.11.5. Managing mediated devices
	10.15.11.6. Using mediated devices
	10.15.11.7. Additional resources

	10.15.12. Configuring USB host passthrough
	10.15.12.1. Enabling USB host passthrough
	10.15.12.2. Connecting a USB device to a virtual machine

	10.15.13. Enabling descheduler evictions on virtual machines
	10.15.13.1. Descheduler profiles
	10.15.13.2. Installing the descheduler
	10.15.13.3. Configuring descheduler evictions for virtual machines
	10.15.13.4. Additional resources

	10.15.14. About high availability for virtual machines
	10.15.15. Virtual machine control plane tuning
	10.15.15.1. Configuring a highBurst profile

	10.15.16. Assigning compute resources
	10.15.16.1. Overcommitting CPU resources
	10.15.16.2. Setting the CPU allocation ratio
	10.15.16.3. Additional resources

	10.15.17. About multi-queue functionality
	10.15.17.1. Known limitations
	10.15.17.2. Enabling multi-queue functionality

	10.15.18. Managing virtual machines by using OpenShift GitOps
	10.15.19. Working with NUMA topology for virtual machines
	10.15.19.1. Using NUMA topology with OpenShift Virtualization
	10.15.19.2. Prerequisites
	10.15.19.3. Creating a VM with NUMA functionality enabled
	10.15.19.4. Verifying vNUMA status of a VM
	10.15.19.5. Disabling the hot plug capability for VMs
	10.15.19.6. Limitations of NUMA for OpenShift Virtualization
	10.15.19.7. Live migration outcomes using vNUMA
	10.15.19.8. Additional resources

	10.16. VM DISKS
	10.16.1. Hot-plugging VM disks
	10.16.1.1. Hot plugging and hot unplugging a disk by using the web console
	10.16.1.2. Hot plugging and hot unplugging a disk by using the CLI

	10.16.2. Expanding virtual machine disks
	10.16.2.1. Increasing a VM disk size by expanding the PVC of the disk
	10.16.2.2. Expanding available virtual storage by adding blank data volumes

	10.16.3. Configuring shared volumes for virtual machines
	10.16.3.1. Configuring disk sharing by using virtual machine disks
	10.16.3.2. Configuring disk sharing by using LUN
	10.16.3.3. Enabling the PersistentReservation feature gate

	10.16.4. Migrating VM disks to a different storage class
	10.16.4.1. Migrating VM disks to a different storage class by using the web console

	CHAPTER 11. NETWORKING
	11.1. NETWORKING OVERVIEW
	11.1.1. OpenShift Virtualization networking glossary
	11.1.2. Using the default pod network
	11.1.3. Configuring a primary user-defined network
	11.1.4. Configuring VM secondary network interfaces
	11.1.4.1. Comparing Linux bridge CNI and OVN-Kubernetes localnet topology

	11.1.5. Integrating with OpenShift Service Mesh
	11.1.6. Managing MAC address pools
	11.1.7. Configuring SSH access

	11.2. CONNECTING A VIRTUAL MACHINE TO THE DEFAULT POD NETWORK
	11.2.1. Configuring masquerade mode from the CLI
	11.2.2. Configuring masquerade mode with dual-stack (IPv4 and IPv6)
	11.2.3. About jumbo frames support
	11.2.4. Additional resources

	11.3. CONNECTING A VIRTUAL MACHINE TO A PRIMARY USER-DEFINED NETWORK
	11.3.1. Creating a primary user-defined network by using the web console
	11.3.1.1. Creating a namespace for user-defined networks by using the web console
	11.3.1.2. Creating a primary namespace-scoped user-defined network by using the web console
	11.3.1.3. Creating a primary cluster-scoped user-defined network by using the web console

	11.3.2. Creating a primary user-defined network by using the CLI
	11.3.2.1. Creating a namespace for user-defined networks by using the CLI
	11.3.2.2. Creating a primary namespace-scoped user-defined network by using the CLI
	11.3.2.3. Creating a primary cluster-scoped user-defined network by using the CLI

	11.3.3. Attaching a virtual machine to the primary user-defined network
	11.3.3.1. Attaching a virtual machine to the primary user-defined network by using the web console
	11.3.3.2. Attaching a virtual machine to the primary user-defined network by using the CLI

	11.3.4. Additional resources

	11.4. CONNECTING A VIRTUAL MACHINE TO A SECONDARY LOCALNET USER-DEFINED NETWORK
	11.4.1. Creating a user-defined-network for localnet topology by using the CLI
	11.4.2. Creating a namespace for secondary user-defined networks by using the CLI
	11.4.3. Attaching a virtual machine to secondary user-defined networks by using the CLI
	11.4.4. Additional resources

	11.5. EXPOSING A VIRTUAL MACHINE BY USING A SERVICE
	11.5.1. About services
	11.5.2. Dual-stack support
	11.5.3. Creating a service by using the CLI
	11.5.4. Additional resources

	11.6. ACCESSING A VIRTUAL MACHINE BY USING ITS INTERNAL FQDN
	11.6.1. Creating a headless service in a project by using the CLI
	11.6.2. Mapping a virtual machine to a headless service by using the CLI
	11.6.3. Connecting to a virtual machine by using its internal FQDN
	11.6.4. Additional resources

	11.7. CONNECTING A VIRTUAL MACHINE TO A LINUX BRIDGE NETWORK
	11.7.1. Creating a Linux bridge NNCP
	11.7.2. Creating a Linux bridge NAD
	11.7.2.1. Creating a Linux bridge NAD by using the web console
	11.7.2.2. Creating a Linux bridge NAD by using the CLI
	11.7.2.3. Enabling port isolation for a Linux bridge NAD

	11.7.3. Configuring a VM network interface
	11.7.3.1. Configuring a VM network interface by using the web console
	11.7.3.2. Configuring a VM network interface by using the CLI

	11.8. CONNECTING A VIRTUAL MACHINE TO AN SR-IOV NETWORK
	11.8.1. Configuring SR-IOV network devices
	11.8.2. Configuring SR-IOV additional network
	11.8.3. Connecting a virtual machine to an SR-IOV network by using the CLI
	11.8.4. Connecting a VM to an SR-IOV network by using the web console
	11.8.5. Additional resources

	11.9. USING DPDK WITH SR-IOV
	11.9.1. Configuring a cluster for DPDK workloads
	11.9.1.1. Removing a custom machine config pool for high-availability clusters

	11.9.2. Configuring a project for DPDK workloads
	11.9.3. Configuring a virtual machine for DPDK workloads

	11.10. CONNECTING A VIRTUAL MACHINE TO AN OVN-KUBERNETES LAYER 2 SECONDARY NETWORK
	11.10.1. Creating an OVN-Kubernetes layer 2 NAD
	11.10.1.1. Creating a NAD for layer 2 topology by using the CLI
	11.10.1.2. Creating a NAD for layer 2 topology by using the web console

	11.10.2. Attaching a virtual machine to the OVN-Kubernetes layer 2 secondary network
	11.10.2.1. Attaching a virtual machine to an OVN-Kubernetes secondary network using the CLI

	11.10.3. Additional resources

	11.11. HOT PLUGGING SECONDARY NETWORK INTERFACES
	11.11.1. VirtIO limitations
	11.11.2. Hot plugging a secondary network interface by using the CLI
	11.11.3. Hot unplugging a secondary network interface by using the CLI
	11.11.4. Additional resources

	11.12. MANAGING THE LINK STATE OF A VIRTUAL MACHINE INTERFACE
	11.12.1. Setting the VM interface link state by using the web console
	11.12.2. Setting the VM interface link state by using the CLI

	11.13. CONNECTING A VIRTUAL MACHINE TO A SERVICE MESH
	11.13.1. Adding a virtual machine to a service mesh
	11.13.2. Additional resources

	11.14. CONFIGURING A DEDICATED NETWORK FOR LIVE MIGRATION
	11.14.1. Configuring a dedicated secondary network for live migration
	11.14.2. Selecting a dedicated network by using the web console
	11.14.3. Additional resources

	11.15. CONFIGURING AND VIEWING IP ADDRESSES
	11.15.1. Configuring IP addresses for virtual machines
	11.15.1.1. Configuring an IP address when creating a virtual machine by using the CLI

	11.15.2. Viewing IP addresses of virtual machines
	11.15.2.1. Viewing the IP address of a virtual machine by using the web console
	11.15.2.2. Viewing the IP address of a virtual machine by using the CLI

	11.15.3. Additional resources

	11.16. ACCESSING A VIRTUAL MACHINE BY USING ITS EXTERNAL FQDN
	11.16.1. Configuring a DNS server for secondary networks
	11.16.2. Connecting to a VM on a secondary network by using the cluster FQDN
	11.16.3. Additional resources

	11.17. MANAGING MAC ADDRESS POOLS FOR NETWORK INTERFACES
	11.17.1. Managing KubeMacPool by using the CLI

	CHAPTER 12. STORAGE
	12.1. STORAGE CONFIGURATION OVERVIEW
	12.1.1. Storage
	12.1.2. Containerized Data Importer
	12.1.3. Data volumes
	12.1.4. Boot source updates

	12.2. CONFIGURING STORAGE PROFILES
	12.2.1. Customizing the storage profile
	12.2.1.1. Specifying a volume snapshot class by using the web console
	12.2.1.2. Specifying a volume snapshot class by using the CLI
	12.2.1.3. Viewing automatically created storage profiles
	12.2.1.4. Setting a default cloning strategy by using a storage profile

	12.3. MANAGING AUTOMATIC BOOT SOURCE UPDATES
	12.3.1. Managing Red Hat boot source updates
	12.3.1.1. Managing automatic updates for all system-defined boot sources

	12.3.2. Managing custom boot source updates
	12.3.2.1. Configuring the default and virt-default storage classes
	12.3.2.2. Configuring a storage class for boot source images
	12.3.2.3. Enabling automatic updates for custom boot sources
	12.3.2.4. Enabling volume snapshot boot sources

	12.3.3. Disabling automatic updates for a single boot source
	12.3.4. Verifying the status of a boot source

	12.4. RESERVING PVC SPACE FOR FILE SYSTEM OVERHEAD
	12.4.1. Overriding the default file system overhead value

	12.5. CONFIGURING LOCAL STORAGE BY USING THE HOSTPATH PROVISIONER
	12.5.1. Creating a hostpath provisioner with a basic storage pool
	12.5.1.1. About creating storage classes
	12.5.1.2. Creating a storage class for the CSI driver with the storagePools stanza

	12.5.2. About storage pools created with PVC templates
	12.5.2.1. Creating a storage pool with a PVC template

	12.6. ENABLING USER PERMISSIONS TO CLONE DATA VOLUMES ACROSS NAMESPACES
	12.6.1. Creating RBAC resources for cloning data volumes

	12.7. CONFIGURING CDI TO OVERRIDE CPU AND MEMORY QUOTAS
	12.7.1. About CPU and memory quotas in a namespace
	12.7.2. Overriding CPU and memory defaults
	12.7.3. Additional resources

	12.8. PREPARING CDI SCRATCH SPACE
	12.8.1. About scratch space
	Manual provisioning

	12.8.2. CDI operations that require scratch space
	12.8.3. Defining a storage class
	12.8.4. CDI supported operations matrix
	12.8.5. Additional resources

	12.9. USING PREALLOCATION FOR DATA VOLUMES
	12.9.1. About preallocation
	12.9.2. Enabling preallocation for a data volume

	12.10. MANAGING DATA VOLUME ANNOTATIONS
	12.10.1. Example: Data volume annotations

	12.11. UNDERSTANDING VIRTUAL MACHINE STORAGE WITH THE CSI PARADIGM
	12.11.1. Virtual machine CSI storage overview

	CHAPTER 13. LIVE MIGRATION
	13.1. ABOUT LIVE MIGRATION
	13.1.1. Live migration requirements
	13.1.2. About live migration permissions
	13.1.3. Preserving pre-4.19 live migration permissions during update
	13.1.4. Granting live migration permissions
	13.1.5. VM migration tuning
	13.1.6. Common live migration tasks
	13.1.7. Additional resources

	13.2. CONFIGURING LIVE MIGRATION
	13.2.1. Configuring live migration limits and timeouts
	13.2.2. Configure live migration for heavy workloads
	13.2.3. Additional resources
	13.2.4. Live migration policies
	13.2.4.1. Creating a live migration policy by using the CLI

	13.2.5. Migrating a VM to a specific node
	13.2.6. Additional resources

	13.3. INITIATING AND CANCELING LIVE MIGRATION
	13.3.1. Initiating live migration
	13.3.1.1. Initiating live migration by using the web console
	13.3.1.2. Initiating live migration by using the CLI

	13.3.2. Canceling live migration
	13.3.2.1. Canceling live migration by using the web console
	13.3.2.2. Canceling live migration by using the CLI

	13.3.3. Additional resources

	CHAPTER 14. NODES
	14.1. NODE MAINTENANCE
	14.1.1. Eviction strategies
	14.1.1.1. Configuring a VM eviction strategy using the CLI
	14.1.1.2. Configuring a cluster eviction strategy by using the CLI

	14.1.2. Run strategies
	14.1.2.1. Run strategies
	14.1.2.2. Configuring a VM run strategy by using the CLI

	14.1.3. Maintaining bare metal nodes
	14.1.4. Additional resources

	14.2. MANAGING NODE LABELING FOR OBSOLETE CPU MODELS
	14.2.1. About node labeling for obsolete CPU models
	14.2.2. Configuring obsolete CPU models

	14.3. PREVENTING NODE RECONCILIATION
	14.3.1. Using skip-node annotation
	14.3.2. Additional resources

	14.4. DELETING A FAILED NODE TO TRIGGER VIRTUAL MACHINE FAILOVER
	14.4.1. Prerequisites
	14.4.2. Deleting nodes from a bare metal cluster
	14.4.3. Verifying virtual machine failover
	14.4.3.1. Listing all virtual machine instances using the CLI

	14.5. ACTIVATING KERNEL SAMEPAGE MERGING (KSM)
	14.5.1. Prerequisites
	14.5.2. About using OpenShift Virtualization to activate KSM
	14.5.2.1. Configuration methods
	14.5.2.2. KSM node labels

	14.5.3. Configuring KSM activation by using the web console
	14.5.4. Configuring KSM activation by using the CLI
	14.5.5. Additional resources

	CHAPTER 15. MONITORING
	15.1. MONITORING OVERVIEW
	15.2. OPENSHIFT VIRTUALIZATION CLUSTER CHECKUP FRAMEWORK
	15.2.1. Running predefined latency checkups
	15.2.1.1. Running a latency checkup by using the web console
	15.2.1.2. Running a latency checkup by using the CLI

	15.2.2. Running predefined storage checkups
	15.2.2.1. Retaining resources for troubleshooting storage checkups
	15.2.2.2. Running a storage checkup by using the web console
	15.2.2.3. Running a storage checkup by using the CLI
	15.2.2.4. Troubleshooting a failed storage checkup
	15.2.2.5. Storage checkup error codes

	15.2.3. Additional resources

	15.3. PROMETHEUS QUERIES FOR VIRTUAL RESOURCES
	15.3.1. Prerequisites
	15.3.2. Querying metrics for all projects with the OpenShift Container Platform web console
	15.3.3. Querying metrics for user-defined projects with the OpenShift Container Platform web console
	15.3.4. Virtualization metrics
	15.3.4.1. vCPU metrics
	15.3.4.2. Network metrics
	15.3.4.3. Storage metrics
	15.3.4.4. Guest memory swapping metrics
	15.3.4.5. Monitoring AAQ operator metrics
	15.3.4.6. Live migration metrics

	15.3.5. Additional resources

	15.4. EXPOSING CUSTOM METRICS FOR VIRTUAL MACHINES
	15.4.1. Configuring the node exporter service
	15.4.2. Configuring a virtual machine with the node exporter service
	15.4.3. Creating a custom monitoring label for virtual machines
	15.4.3.1. Querying the node-exporter service for metrics

	15.4.4. Creating a ServiceMonitor resource for the node exporter service
	15.4.4.1. Accessing the node exporter service outside the cluster

	15.4.5. Additional resources

	15.5. EXPOSING DOWNWARD METRICS FOR VIRTUAL MACHINES
	15.5.1. Enabling or disabling the downwardMetrics feature gate
	15.5.1.1. Enabling or disabling the downward metrics feature gate in a YAML file
	15.5.1.2. Enabling or disabling the downward metrics feature gate from the CLI

	15.5.2. Configuring a downward metrics device
	15.5.3. Viewing downward metrics
	15.5.3.1. Viewing downward metrics by using the CLI
	15.5.3.2. Viewing downward metrics by using the vm-dump-metrics tool

	15.6. VIRTUAL MACHINE HEALTH CHECKS
	15.6.1. About readiness and liveness probes
	15.6.1.1. Defining an HTTP readiness probe
	15.6.1.2. Defining a TCP readiness probe
	15.6.1.3. Defining an HTTP liveness probe

	15.6.2. Defining a watchdog
	15.6.2.1. Configuring a watchdog device for the virtual machine
	15.6.2.2. Installing the watchdog agent on the guest

	15.6.3. Defining a guest agent ping probe
	15.6.4. Additional resources

	15.7. OPENSHIFT VIRTUALIZATION RUNBOOKS
	15.7.1. CDIDataImportCronOutdated
	15.7.2. CDIDataVolumeUnusualRestartCount
	15.7.3. CDIDefaultStorageClassDegraded
	15.7.4. CDIMultipleDefaultVirtStorageClasses
	15.7.5. CDINoDefaultStorageClass
	15.7.6. CDINotReady
	15.7.7. CDIOperatorDown
	15.7.8. CDIStorageProfilesIncomplete
	15.7.9. CnaoDown
	15.7.10. CnaoNMstateMigration
	15.7.11. HAControlPlaneDown
	15.7.12. HCOInstallationIncomplete
	15.7.13. HCOMisconfiguredDescheduler
	15.7.14. HPPNotReady
	15.7.15. HPPOperatorDown
	15.7.16. HPPSharingPoolPathWithOS
	15.7.17. HighCPUWorkload
	15.7.18. KubemacpoolDown
	15.7.19. KubeMacPoolDuplicateMacsFound
	15.7.20. KubeVirtComponentExceedsRequestedCPU
	15.7.21. KubeVirtComponentExceedsRequestedMemory
	15.7.22. KubeVirtCRModified
	15.7.23. KubeVirtDeprecatedAPIRequested
	15.7.24. KubeVirtNoAvailableNodesToRunVMs
	15.7.25. KubevirtVmHighMemoryUsage
	15.7.26. KubeVirtVMIExcessiveMigrations
	15.7.27. LowKVMNodesCount
	15.7.28. LowReadyVirtControllersCount
	15.7.29. LowReadyVirtOperatorsCount
	15.7.30. LowVirtAPICount
	15.7.31. LowVirtControllersCount
	15.7.32. LowVirtOperatorCount
	15.7.33. NetworkAddonsConfigNotReady
	15.7.34. NoLeadingVirtOperator
	15.7.35. NoReadyVirtController
	15.7.36. NoReadyVirtOperator
	15.7.37. NodeNetworkInterfaceDown
	15.7.38. OperatorConditionsUnhealthy
	15.7.39. OrphanedVirtualMachineInstances
	15.7.40. OutdatedVirtualMachineInstanceWorkloads
	15.7.41. SingleStackIPv6Unsupported
	15.7.42. SSPCommonTemplatesModificationReverted
	15.7.43. SSPDown
	15.7.44. SSPFailingToReconcile
	15.7.45. SSPHighRateRejectedVms
	15.7.46. SSPOperatorDown
	15.7.47. SSPTemplateValidatorDown
	15.7.48. UnsupportedHCOModification
	15.7.49. VirtAPIDown
	15.7.50. VirtApiRESTErrorsBurst
	15.7.51. VirtApiRESTErrorsHigh
	15.7.52. VirtControllerDown
	15.7.53. VirtControllerRESTErrorsBurst
	15.7.54. VirtControllerRESTErrorsHigh
	15.7.55. VirtHandlerDaemonSetRolloutFailing
	15.7.56. VirtHandlerRESTErrorsBurst
	15.7.57. VirtHandlerRESTErrorsHigh
	15.7.58. VirtOperatorDown
	15.7.59. VirtOperatorRESTErrorsBurst
	15.7.60. VirtOperatorRESTErrorsHigh
	15.7.61. VirtualMachineCRCErrors
	15.7.62. VMCannotBeEvicted
	15.7.63. VMStorageClassWarning

	CHAPTER 16. SUPPORT
	16.1. SUPPORT OVERVIEW
	16.1.1. Opening support tickets
	16.1.1.1. Submitting a support case
	16.1.1.2. Creating a Jira issue

	16.1.2. Web console monitoring

	16.2. COLLECTING DATA FOR RED HAT SUPPORT
	16.2.1. Collecting data about your environment
	16.2.2. Collecting data about virtual machines
	16.2.3. Using the must-gather tool for OpenShift Virtualization
	16.2.3.1. must-gather tool options

	16.2.4. Generating a VM memory dump
	16.2.5. Additional resources

	16.3. TROUBLESHOOTING
	16.3.1. Events
	16.3.2. Pod logs
	16.3.2.1. Configuring OpenShift Virtualization pod log verbosity
	16.3.2.2. Viewing virt-launcher pod logs with the web console
	16.3.2.3. Viewing OpenShift Virtualization pod logs with the CLI

	16.3.3. Guest system logs
	16.3.3.1. Enabling default access to VM guest system logs with the web console
	16.3.3.2. Enabling default access to VM guest system logs with the CLI
	16.3.3.3. Setting guest system log access for a single VM with the web console
	16.3.3.4. Setting guest system log access for a single VM with the CLI
	16.3.3.5. Viewing guest system logs with the web console
	16.3.3.6. Viewing guest system logs with the CLI

	16.3.4. Log aggregation
	16.3.4.1. Viewing aggregated OpenShift Virtualization logs with the LokiStack
	16.3.4.2. OpenShift Virtualization LogQL queries

	16.3.5. Common error messages
	16.3.6. Troubleshooting data volumes
	16.3.6.1. About data volume conditions and events
	16.3.6.2. Analyzing data volume conditions and events

	CHAPTER 17. BACKUP AND RESTORE
	17.1. BACKUP AND RESTORE BY USING VM SNAPSHOTS
	17.1.1. About snapshots
	17.1.2. About application-consistent snapshots and backups
	17.1.3. Creating snapshots
	17.1.3.1. Creating a snapshot by using the web console
	17.1.3.2. Creating a snapshot by using the CLI

	17.1.4. Verifying online snapshots by using snapshot indications
	17.1.5. Restoring virtual machines from snapshots
	17.1.5.1. Restoring a VM from a snapshot by using the web console
	17.1.5.2. Restoring a VM from a snapshot by using the CLI

	17.1.6. Deleting snapshots
	17.1.6.1. Deleting a snapshot by using the web console
	17.1.6.2. Deleting a virtual machine snapshot in the CLI

	17.1.7. Additional resources

	17.2. BACKING UP AND RESTORING VIRTUAL MACHINES
	17.2.1. Installing and configuring OADP with OpenShift Virtualization
	17.2.2. Installing the Data Protection Application

	17.3. DISASTER RECOVERY
	17.3.1. About disaster recovery methods
	17.3.1.1. Metro-DR
	17.3.1.2. Regional-DR

	17.3.2. Defining applications for disaster recovery
	17.3.2.1. Best practices when defining an RHACM-managed VM
	17.3.2.2. Best practices when defining an RHACM-discovered VM

	17.3.3. VM behavior during disaster recovery scenarios
	Relocate
	Failover

	17.3.4. Disaster recovery solutions for Red Hat managed clusters
	17.3.4.1. Metro-DR for Red Hat OpenShift Data Foundation
	17.3.4.2. Regional-DR for Red Hat OpenShift Data Foundation

	17.3.5. Additional resources

