Deploying confidential containers
Protecting containers and data by leveraging trusted execution environments
Abstract
Preface Copy linkLink copied to clipboard!
Chapter 1. Overview Copy linkLink copied to clipboard!
Learn about confidential containers and ensure that your OpenShift Container Platform environment is compatible.
1.1. About confidential containers Copy linkLink copied to clipboard!
Confidential containers provides a confidential computing environment to protect containers and data by leveraging Trusted Execution Environments.
For more information, see Exploring the OpenShift confidential containers solution.
1.2. Compatibility with OpenShift Container Platform Copy linkLink copied to clipboard!
The required functionality for Red Hat OpenShift Container Platform is supported by two main components:
- Kata runtime
- The Kata runtime is included with Red Hat Enterprise Linux CoreOS (RHCOS) and receives updates with every OpenShift Container Platform release. When enabling peer pods with the Kata runtime, the OpenShift sandboxed containers Operator requires external network connectivity to pull the necessary image components and helper utilities to create the pod virtual machine (VM) image.
- OpenShift sandboxed containers Operator
- The OpenShift sandboxed containers Operator is a Rolling Stream Operator, which means the latest version is the only supported version. It works with all currently supported versions of OpenShift Container Platform.
The Operator depends on the features that come with the RHCOS host and the environment it runs in.
You must install RHCOS on the worker nodes. Red Hat Enterprise Linux (RHEL) nodes are not supported.
The following compatibility matrix for OpenShift sandboxed containers and OpenShift Container Platform releases identifies compatible features and environments.
| Architecture | OpenShift Container Platform version |
|---|---|
| x86_64 | 4.17 or later |
| s390x | 4.17 or later |
There are two ways to deploy the Kata containers runtime:
- Bare metal
- Peer pods
You can deploy OpenShift sandboxed containers by using peer pods on Microsoft Azure, AWS Cloud Computing Services, or Google Cloud. With the release of OpenShift sandboxed containers 1.11, the OpenShift sandboxed containers Operator requires OpenShift Container Platform version 4.17 or later.
| Major release version | 4.17 | 4.18 | 4.19 | 4.20 | |
|---|---|---|---|---|---|
| Minor release version | 4.17.45+ | 4.18.30+ | 4.19.20+ | 4.20.6+ | |
| Feature | Platform | ||||
| Confidential containers | Bare metal | — | — | — | TP |
| Azure peer pods | GA | GA | GA | GA | |
| IBM Z peer pods | TP | TP | TP | TP | |
| IBM Z bare metal | — | — | — | TP | |
| GPU support | Bare metal | — | — | — | — |
| Azure | DP | DP | DP | DP | |
| AWS | DP | DP | DP | DP | |
| Google Cloud | DP | DP | DP | DP | |
GPU support for peer pods is a Developer Preview feature only. Developer Preview features are not supported by Red Hat in any way and are not functionally complete or production-ready. Do not use Developer Preview features for production or business-critical workloads. Developer Preview features provide early access to upcoming product features in advance of their possible inclusion in a Red Hat product offering, enabling customers to test functionality and provide feedback during the development process. These features might not have any documentation, are subject to change or removal at any time, and testing is limited. Red Hat might provide ways to submit feedback on Developer Preview features without an associated SLA.
| Platform | GPU | Confidential containers |
|---|---|---|
| Azure | DP | GA |
| AWS | DP | — |
| Google Cloud | DP | — |
| Platform | GPU | Confidential containers |
|---|---|---|
| Bare metal | — | TP |
| IBM Z | — | TP |
1.3. Providing feedback on Red Hat documentation Copy linkLink copied to clipboard!
You can provide feedback or report an error by submitting the Create Issue form in Jira:
- Ensure that you are logged in to Jira. If you do not have a Jira account, you must create a Red Hat Jira account.
- Launch the Create Issue form.
Complete the Summary, Description, and Reporter fields.
In the Description field, include the documentation URL, chapter or section number, and a detailed description of the issue.
- Click Create.
Chapter 2. Deploying confidential containers on bare metal Copy linkLink copied to clipboard!
You can deploy confidential containers workloads on a Red Hat OpenShift Container Platform cluster running on bare metal.
Confidential containers on bare metal is a Technology Preview feature only. Technology Preview features are not supported with Red Hat production service level agreements (SLAs) and might not be functionally complete. Red Hat does not recommend using them in production. These features provide early access to upcoming product features, enabling customers to test functionality and provide feedback during the development process.
For more information about the support scope of Red Hat Technology Preview features, see Technology Preview Features Support Scope.
2.1. Preparation Copy linkLink copied to clipboard!
Review these prerequisites and concepts before you deploy confidential containers on bare metal.
2.1.1. Prerequisites Copy linkLink copied to clipboard!
- You have deployed Red Hat build of Trustee on an OpenShift Container Platform cluster in a trusted environment. For more information, see Deploying Red Hat build of Trustee.
- You have installed the latest version of Red Hat OpenShift Container Platform on the cluster where you are running your confidential containers workload.
2.1.2. Initdata Copy linkLink copied to clipboard!
The initdata specification provides a flexible way to initialize a pod with workload-specific data at runtime, avoiding the need to embed such data in the virtual machine (VM) image.
This approach enhances security by reducing the exposure of confidential information and improves flexibility by eliminating custom image builds. For example, initdata can include three configuration settings:
- An X.509 certificate for secure communication.
- A cryptographic key for authentication.
-
An optional Kata Agent
policy.regofile to enforce runtime behavior when overriding the default Kata Agent policy.
The initdata content configures the following components:
- Attestation Agent (AA), which verifies the trustworthiness of the pod by sending evidence for attestation.
- Confidential Data Hub (CDH), which manages secrets and secure data access within the pod VM.
- Kata Agent, which enforces runtime policies and manages the lifecycle of the containers inside the pod VM.
You create an initdata.toml file and convert it to a Base64-encoded, gzip-format string.
You apply the initdata string to your workload by one of the following methods:
-
Global configuration: Add the initdata string as the value of the
INITDATAkey in the peer pods config map to create a default configuration for all peer pods. Pod configuration: Add the initdata string as an annotation to a pod manifest, allowing customization for individual workloads.
NoteThe initdata annotation in the pod manifest overrides the global
INITDATAvalue in the peer pods config map for that specific pod. The Kata runtime handles this precedence automatically at pod creation time.
2.1.3. Kata runtime deployment modes Copy linkLink copied to clipboard!
You can choose how the Operator installs and configures the Kata runtime using the deployment modes MachineConfig, DaemonSet, or DaemonSetFallback. You specify the data.deploymentMode key in the osc-feature-gates config map. This flexibility allows the Operator to work consistently in clusters with or without the Machine Config Operator (MCO).
MachineConfig-
For clusters that use the Machine Config Operator (MCO). If the
deploymentModekey is missing in the config map, the Operator defaults to theMachineConfigfor backward compatibility. DaemonSet-
For clusters without the MCO. The Operator uses a
DaemonSetto install kata-containers RPMs and manage CRI-O configuration by using host drop-in files. Installation progress is tracked through node labels (for example,installing,installed). DaemonSetFallback-
Enables conditional deployment based on the cluster environment. When set, the operator checks for the presence of the MCO. It uses
DaemonSetif theMachineConfigadd-on is unavailable and defaults toMachineConfigotherwise.
2.2. Deployment overview Copy linkLink copied to clipboard!
You deploy confidential containers on bare metal by performing the following steps:
- Create MachineConfig for Intel® Trust Domain Extensions (TDX).
- Install the OpenShift sandboxed containers Operator.
- Configure the remote attestation infrastructure for Intel® TDX workloads.
- Enable the confidential containers feature gate.
-
Create the
KataConfigCR. - Verify the attestation process.
2.3. Creating a machine config for Intel TDX Copy linkLink copied to clipboard!
If you use Intel® Trust Domain Extensions (TDX), you must create a MachineConfig object before you install the Red Hat build of Trustee Operator.
Procedure
Create a
tdx-machine-config.yamlmanifest file according to the following example:Copy to Clipboard Copied! Toggle word wrap Toggle overflow - 1
- Specify
masterfor single-node OpenShift orkata-ocfor a multi-node cluster.
Create the config map by running the following command:
oc create -f tdx-machine-config.yaml
$ oc create -f tdx-machine-config.yamlCopy to Clipboard Copied! Toggle word wrap Toggle overflow Updating the machine config triggers node reboot.
Verification
Verify that the machine config is correctly configured by running the following command:
oc get oc get machineconfig 99-enable-intel-tdx
$ oc get oc get machineconfig 99-enable-intel-tdxCopy to Clipboard Copied! Toggle word wrap Toggle overflow
2.4. Installing the OpenShift sandboxed containers Operator Copy linkLink copied to clipboard!
You install the OpenShift sandboxed containers Operator by using the command line interface (CLI).
Prerequisites
-
You have access to the cluster as a user with the
cluster-adminrole.
Procedure
Create an
osc-namespace.yamlmanifest file:apiVersion: v1 kind: Namespace metadata: name: openshift-sandboxed-containers-operator
apiVersion: v1 kind: Namespace metadata: name: openshift-sandboxed-containers-operatorCopy to Clipboard Copied! Toggle word wrap Toggle overflow Create the namespace by running the following command:
oc apply -f osc-namespace.yaml
$ oc apply -f osc-namespace.yamlCopy to Clipboard Copied! Toggle word wrap Toggle overflow Create an
osc-operatorgroup.yamlmanifest file:Copy to Clipboard Copied! Toggle word wrap Toggle overflow Create the operator group by running the following command:
oc apply -f osc-operatorgroup.yaml
$ oc apply -f osc-operatorgroup.yamlCopy to Clipboard Copied! Toggle word wrap Toggle overflow Create an
osc-subscription.yamlmanifest file:Copy to Clipboard Copied! Toggle word wrap Toggle overflow Create the subscription by running the following command:
oc create -f osc-subscription.yaml
$ oc create -f osc-subscription.yamlCopy to Clipboard Copied! Toggle word wrap Toggle overflow Verify that the Operator is correctly installed by running the following command:
oc get csv -n openshift-sandboxed-containers-operator
$ oc get csv -n openshift-sandboxed-containers-operatorCopy to Clipboard Copied! Toggle word wrap Toggle overflow This command can take several minutes to complete.
Watch the process by running the following command:
watch oc get csv -n openshift-sandboxed-containers-operator
$ watch oc get csv -n openshift-sandboxed-containers-operatorCopy to Clipboard Copied! Toggle word wrap Toggle overflow Example output
NAME DISPLAY VERSION REPLACES PHASE openshift-sandboxed-containers openshift-sandboxed-containers-operator 1.11.1 1.10.3 Succeeded
NAME DISPLAY VERSION REPLACES PHASE openshift-sandboxed-containers openshift-sandboxed-containers-operator 1.11.1 1.10.3 SucceededCopy to Clipboard Copied! Toggle word wrap Toggle overflow
2.5. Configuring auto-detection of TEEs Copy linkLink copied to clipboard!
You must configure your nodes so that the OpenShift sandboxed containers Operator can detect the Trusted Execution Environments (TEEs).
You label the nodes by installing and configuring the Node Feature Discovery (NFD) Operator.
2.5.1. Creating a NodeFeatureDiscovery custom resource Copy linkLink copied to clipboard!
You create a NodeFeatureDiscovery custom resource (CR) to define the configuration parameters that the Node Feature Discovery (NFD) Operator checks to automatically detect your TEE.
Prerequisites
- You have installed the NFD Operator. For more information, see Node Feature Discovery Operator in the OpenShift Container Platform documentation.
Procedure
Create a
my-nfd.yamlmanifest file according to the following example:Copy to Clipboard Copied! Toggle word wrap Toggle overflow Create the
NodeFeatureDiscoveryCR:oc create -f my-nfd.yaml
$ oc create -f my-nfd.yamlCopy to Clipboard Copied! Toggle word wrap Toggle overflow
2.5.2. Creating the NodeFeatureRule custom resource Copy linkLink copied to clipboard!
Create a NodeFeatureRule custom resource for your Trusted Execution Environment (TEE).
Procedure
Create a custom resource manifest named
my-nodefeaturerule.yamlfor your TEE:Copy to Clipboard Copied! Toggle word wrap Toggle overflow AMD SEV-SNP:
Copy to Clipboard Copied! Toggle word wrap Toggle overflow Intel® Trust Domain Extensions (TDX):
Copy to Clipboard Copied! Toggle word wrap Toggle overflow
Create the
NodeFeatureRuleCR by running the following command:oc create -f my-nodefeaturerule.yaml
$ oc create -f my-nodefeaturerule.yamlCopy to Clipboard Copied! Toggle word wrap Toggle overflow
A relabeling delay of up to 1 minute might occur.
2.6. Deploying remote attestation for Intel TDX Copy linkLink copied to clipboard!
You must deploy the Intel® remote attestation infrastructure to enable quote generation for Intel® Trust Domain Extensions (TDX) pod virtual machines.
The infrastructure includes the following components:
- In-cluster Provisioning Certificate Caching Service (PCCS)
- Automatic per-node Provisioning Certification Key (PCK) Cert ID Retrieval Tool based platform (re-)registration
- Per-node Quote Generation Service (QGS)
Prerequisites
- You have installed the Intel® device plugins Operator and created an instance of the Intel® Software Guard Extensions device plugin. For details, see Installing from the software catalog by using the web console in the OpenShift Container Platform documentation.
- The node on which you deploy PCCS has Internet access.
Procedure
Configure the remote attestation project:
Create the
intel-dcapnamespace by running the following command:oc create namespace intel-dcap
$ oc create namespace intel-dcapCopy to Clipboard Copied! Toggle word wrap Toggle overflow Switch to the
intel-dcapproject by running the following command:oc project intel-dcap
$ oc project intel-dcapCopy to Clipboard Copied! Toggle word wrap Toggle overflow Update the Security Context Constraint by running the following command:
oc adm policy add-scc-to-user privileged -z default
$ oc adm policy add-scc-to-user privileged -z defaultCopy to Clipboard Copied! Toggle word wrap Toggle overflow
Switch to the default project by running the following command:
oc project default
$ oc project defaultCopy to Clipboard Copied! Toggle word wrap Toggle overflow Set the PCCS variables by running the following commands:
export PCCS_API_KEY="${PCCS_API_KEY:-}"$ export PCCS_API_KEY="${PCCS_API_KEY:-}"Copy to Clipboard Copied! Toggle word wrap Toggle overflow To obtain the API key for the Intel® Software Guard Extensions and Intel® TDX Provisioning Certification Service, navigate to the Intel Trusted Services API portal, sign in, and subscribe to the Provisioning Certification Service. The API key is displayed on the Manage Subscriptions page.
export PCCS_USER_TOKEN="${PCCS_USER_TOKEN:-mytoken}"$ export PCCS_USER_TOKEN="${PCCS_USER_TOKEN:-mytoken}"Copy to Clipboard Copied! Toggle word wrap Toggle overflow For details about PCCS tokens, see the Design Guide for Intel® SGX Provisioning Certificate Caching Service (Intel® SGX PCCS).
export PCCS_ADMIN_TOKEN="${PCCS_ADMIN_TOKEN:-mytoken}"$ export PCCS_ADMIN_TOKEN="${PCCS_ADMIN_TOKEN:-mytoken}"Copy to Clipboard Copied! Toggle word wrap Toggle overflow export PCCS_NODE=$(oc get nodes \ -l 'node-role.kubernetes.io/control-plane=,node-role.kubernetes.io/master=' \ -o jsonpath='{.items[0].metadata.name}')$ export PCCS_NODE=$(oc get nodes \ -l 'node-role.kubernetes.io/control-plane=,node-role.kubernetes.io/master=' \ -o jsonpath='{.items[0].metadata.name}')Copy to Clipboard Copied! Toggle word wrap Toggle overflow Set the cluster proxy variable by running the appropriate command:
export CLUSTER_HTTPS_PROXY="$(oc get proxy/cluster \ -o jsonpath={.spec.httpsProxy})"$ export CLUSTER_HTTPS_PROXY="$(oc get proxy/cluster \ -o jsonpath={.spec.httpsProxy})"Copy to Clipboard Copied! Toggle word wrap Toggle overflow export CLUSTER_NO_PROXY="$(oc get proxy/cluster \ -o jsonpath={.spec.noProxy})"$ export CLUSTER_NO_PROXY="$(oc get proxy/cluster \ -o jsonpath={.spec.noProxy})"Copy to Clipboard Copied! Toggle word wrap Toggle overflow Create the PCCS secrets:
Set the PCCS secrets variables by running the following commands:
export PCCS_USER_TOKEN_HASH=$(echo -n "$PCCS_USER_TOKEN" | sha512sum | tr -d '[:space:]-')
$ export PCCS_USER_TOKEN_HASH=$(echo -n "$PCCS_USER_TOKEN" | sha512sum | tr -d '[:space:]-')Copy to Clipboard Copied! Toggle word wrap Toggle overflow export PCCS_ADMIN_TOKEN_HASH=$(echo -n "$PCCS_ADMIN_TOKEN" | sha512sum | tr -d '[:space:]-')
$ export PCCS_ADMIN_TOKEN_HASH=$(echo -n "$PCCS_ADMIN_TOKEN" | sha512sum | tr -d '[:space:]-')Copy to Clipboard Copied! Toggle word wrap Toggle overflow PCCS_PEM_CERT_PATH=$(mktemp -d)
$ PCCS_PEM_CERT_PATH=$(mktemp -d)Copy to Clipboard Copied! Toggle word wrap Toggle overflow NoteThis directory is automatically deleted at reboot. To re-use the PCCS certificate and key, you must create a persistent directory.
Generate an RSA key pair and output the private key as a PCCS certificate by running the following command:
openssl req -x509 -sha256 -nodes -days 365 -newkey rsa:2048 \ -keyout $PCCS_PEM_CERT_PATH/private.pem \ -out $PCCS_PEM_CERT_PATH/certificate.pem \ -subj "/C=US/ST=Denial/L=Springfield/O=Dis/CN=www.example.com"
$ openssl req -x509 -sha256 -nodes -days 365 -newkey rsa:2048 \ -keyout $PCCS_PEM_CERT_PATH/private.pem \ -out $PCCS_PEM_CERT_PATH/certificate.pem \ -subj "/C=US/ST=Denial/L=Springfield/O=Dis/CN=www.example.com"Copy to Clipboard Copied! Toggle word wrap Toggle overflow Set the PCCS certificate variables by running the following commands:
export PCCS_PEM=$(cat "$PCCS_PEM_CERT_PATH"/private.pem | base64 | tr -d '\n')
$ export PCCS_PEM=$(cat "$PCCS_PEM_CERT_PATH"/private.pem | base64 | tr -d '\n')Copy to Clipboard Copied! Toggle word wrap Toggle overflow export PCCS_CERT=$(cat "$PCCS_PEM_CERT_PATH"/certificate.pem | base64 | tr -d '\n')
$ export PCCS_CERT=$(cat "$PCCS_PEM_CERT_PATH"/certificate.pem | base64 | tr -d '\n')Copy to Clipboard Copied! Toggle word wrap Toggle overflow Create the PCCS secrets by running the following command:
Copy to Clipboard Copied! Toggle word wrap Toggle overflow
Create the PCCS by running the following command:
oc apply -f <(curl -sSf https://raw.githubusercontent.com/openshift/sandboxed-containers-operator/refs/heads/devel/scripts/install-helpers/baremetal-coco/intel-dcap/pccs.yaml.in|envsubst)
$ oc apply -f <(curl -sSf https://raw.githubusercontent.com/openshift/sandboxed-containers-operator/refs/heads/devel/scripts/install-helpers/baremetal-coco/intel-dcap/pccs.yaml.in|envsubst)Copy to Clipboard Copied! Toggle word wrap Toggle overflow Create the QGS by running the following command:
oc apply -f https://raw.githubusercontent.com/openshift/sandboxed-containers-operator/refs/heads/devel/scripts/install-helpers/baremetal-coco/intel-dcap/qgs.yaml
$ oc apply -f https://raw.githubusercontent.com/openshift/sandboxed-containers-operator/refs/heads/devel/scripts/install-helpers/baremetal-coco/intel-dcap/qgs.yamlCopy to Clipboard Copied! Toggle word wrap Toggle overflow
2.7. Creating the osc-feature-gates config map Copy linkLink copied to clipboard!
You enable the confidential containers feature gate and specify the deployment mode by creating the config map.
Procedure
Create a
my-feature-gate.yamlmanifest file:Copy to Clipboard Copied! Toggle word wrap Toggle overflow where
<deployment_mode>On OpenShift Container Platform clusters with the Machine Config Operator (MCO), the
deploymentModefield is optional and can be omitted. Specifies the strategy for installing and configuring the Kata runtime. Specify the deployment mode:-
MachineConfigfor clusters that always use the MCO -
DaemonSetfor clusters that never use the MCO -
DaemonSetFallbackfor clusters that sometimes use the MCO
-
Create the
my-feature-gatesconfig map by running the following command:oc create -f my-feature-gate.yaml
$ oc create -f my-feature-gate.yamlCopy to Clipboard Copied! Toggle word wrap Toggle overflow
2.8. Creating initdata Copy linkLink copied to clipboard!
You create initdata to securely initialize a pod with sensitive or workload-specific data at runtime, thus avoiding the need to embed this data in a virtual machine image. This approach provides additional security by reducing the risk of exposure of confidential information and eliminates the need for custom image builds.
You must delete the kbs_cert setting if you configure insecure_http = true in the kbs-config config map for Red Hat build of Trustee.
Procedure
Create the
initdata.tomlfile:Copy to Clipboard Copied! Toggle word wrap Toggle overflow - url
- Specify the Red Hat build of Trustee
- <kbs_certificate>
- Specify the Base64-encoded TLS certificate for the attestation agent.
- kbs_cert
-
Delete the
kbs_certsetting if you configureinsecure_http = truein thekbs-configconfig map for Red Hat build of Trustee. - image_security_policy_uri
-
Optional, only if you enabled the container image signature verification policy. Replace
<secret-policy-name>and<key>with the secret name and key, respectively specified in Creating the KbsConfig custom resource.
Convert the
initdata.tomlfile to a gzipped, Base64-encoded string in a text file by running the following command:cat initdata.toml | gzip | base64 -w0 > initdata.txt
$ cat initdata.toml | gzip | base64 -w0 > initdata.txtCopy to Clipboard Copied! Toggle word wrap Toggle overflow Record this string to use in the pod manifest.
Calculate the SHA-256 hash of an
initdata.tomlfile and assign its value to thehashvariable by running the following command:hash=$(sha256sum initdata.toml | cut -d' ' -f1)
$ hash=$(sha256sum initdata.toml | cut -d' ' -f1)Copy to Clipboard Copied! Toggle word wrap Toggle overflow Assign 32 bytes of 0s to the
initial_pcrvariable by running the following command:initial_pcr=0000000000000000000000000000000000000000000000000000000000000000
$ initial_pcr=0000000000000000000000000000000000000000000000000000000000000000Copy to Clipboard Copied! Toggle word wrap Toggle overflow Calculate the SHA-256 hash of
hashandinitial_pcrand assign its value to thePCR8_HASHvariable by running the following command:PCR8_HASH=$(echo -n "$initial_pcr$hash" | xxd -r -p | sha256sum | cut -d' ' -f1) && echo $PCR8_HASH
$ PCR8_HASH=$(echo -n "$initial_pcr$hash" | xxd -r -p | sha256sum | cut -d' ' -f1) && echo $PCR8_HASHCopy to Clipboard Copied! Toggle word wrap Toggle overflow Record the
PCR8_HASHvalue for the RVPS config map.
2.9. Applying initdata to a pod Copy linkLink copied to clipboard!
Prerequisite
- You have created an initdata string.
Procedure
Add the initdata string to the pod manifest:
Copy to Clipboard Copied! Toggle word wrap Toggle overflow Create the pod by running the following command:
oc create -f my-pod.yaml
$ oc create -f my-pod.yamlCopy to Clipboard Copied! Toggle word wrap Toggle overflow
2.10. Creating the KataConfig custom resource Copy linkLink copied to clipboard!
You must create the KataConfig custom resource (CR) to install kata-cc as a runtime class on your worker nodes.
OpenShift sandboxed containers installs kata-cc as a secondary, optional runtime on the cluster and not as the primary runtime.
Creating the KataConfig CR automatically reboots the worker nodes. The reboot can take from 10 to more than 60 minutes. The following factors can increase the reboot time:
- A large OpenShift Container Platform deployment with a greater number of worker nodes.
- Activation of the BIOS and Diagnostics utility.
- Deployment on a hard disk drive rather than an SSD.
- Deployment on physical nodes such as bare metal, rather than on virtual nodes.
- A slow CPU and network.
Procedure
Create an
example-kataconfig.yamlmanifest file according to the following example:Copy to Clipboard Copied! Toggle word wrap Toggle overflow Create the
KataConfigCR by running the following command:oc create -f example-kataconfig.yaml
$ oc create -f example-kataconfig.yamlCopy to Clipboard Copied! Toggle word wrap Toggle overflow The new
KataConfigCR is created and installskata-ccas a runtime class on the worker nodes.Wait for the
kata-ccinstallation to complete and the worker nodes to reboot before verifying the installation.Monitor the installation progress by running the following command:
watch "oc describe kataconfig | sed -n /^Status:/,/^Events/p"
$ watch "oc describe kataconfig | sed -n /^Status:/,/^Events/p"Copy to Clipboard Copied! Toggle word wrap Toggle overflow When the status of all workers under
kataNodesisinstalledand the conditionInProgressisFalsewithout specifying a reason, thekata-ccis installed on the cluster.Verify the runtime classes by running the following command:
oc get runtimeclass
$ oc get runtimeclassCopy to Clipboard Copied! Toggle word wrap Toggle overflow Example output
NAME HANDLER AGE kata-cc kata-tdx 152m
NAME HANDLER AGE kata-cc kata-tdx 152mCopy to Clipboard Copied! Toggle word wrap Toggle overflow
2.11. Verifying attestation Copy linkLink copied to clipboard!
You can verify the attestation process by creating a test pod to retrieve a specific resource from Red Hat build of Trustee.
This procedure is an example to verify that attestation is working. Do not write sensitive data to standard I/O, because the data can be captured by using a memory dump. Only data written to memory is encrypted.
Procedure
Create a
test-pod.yamlmanifest file:Copy to Clipboard Copied! Toggle word wrap Toggle overflow Create the pod by running the following command:
oc create -f test-pod.yaml
$ oc create -f test-pod.yamlCopy to Clipboard Copied! Toggle word wrap Toggle overflow Log in to the pod by running the following command:
oc exec -it ocp-cc-pod -- bash
$ oc exec -it ocp-cc-pod -- bashCopy to Clipboard Copied! Toggle word wrap Toggle overflow Fetch the Red Hat build of Trustee resource by running the following command:
curl http://127.0.0.1:8006/cdh/resource/default/attestation-status/status
$ curl http://127.0.0.1:8006/cdh/resource/default/attestation-status/statusCopy to Clipboard Copied! Toggle word wrap Toggle overflow Example output
success #/
success #/Copy to Clipboard Copied! Toggle word wrap Toggle overflow
Chapter 3. Deploying confidential containers on Microsoft Azure Red Hat OpenShift Copy linkLink copied to clipboard!
You can deploy confidential containers workloads on Microsoft Azure Red Hat OpenShift.
3.1. Preparation Copy linkLink copied to clipboard!
Review these prerequisites and concepts before you deploy confidential containers on Azure Red Hat OpenShift.
3.1.1. Prerequisites Copy linkLink copied to clipboard!
- You have deployed Red Hat build of Trustee on an OpenShift Container Platform cluster in a trusted environment. For more information, see Deploying Red Hat build of Trustee.
You have installed the latest version of Red Hat OpenShift Container Platform on the cluster where you are running your confidential containers workload.
IMPORTANT
Microsoft Azure Red Hat OpenShift clusters use OpenShift Container Platform versions 4.17.26 or 4.18.26 by default. You must update your cluster to 4.17.45 or 4.18.31 before you deploy confidential containers. See Performing a cluster update in the OpenShift Container Platform documentation.
- You have enabled ports 15150 and 9000 for communication in the subnet used for worker nodes and the pod virtual machine (VM). The ports enable communication between the Kata shim running on the worker node and the Kata agent running on the pod VM.
3.1.2. Outbound connections Copy linkLink copied to clipboard!
To enable peer pods to communicate with external networks, such as the public internet, you must configure outbound connectivity for the pod virtual machine (VM) subnet. This involves setting up a NAT gateway and, optionally, defining how the subnet integrates with your cluster’s virtual network (VNet) in Azure.
- Peer pods and subnets
- Peer pods operate in a dedicated Azure subnet that requires explicit configuration for outbound access. This subnet can either be the default worker subnet used by OpenShift Container Platform nodes or a separate, custom subnet created specifically for peer pods.
- VNet peering
- When using a separate subnet, VNet peering connects the peer pod VNet to the cluster’s VNet, ensuring internal communication while maintaining isolation. This requires non-overlapping CIDR ranges between the VNets.
You can configure outbound connectivity in two ways:
- Default worker subnet: Modify the existing worker subnet to include a NAT gateway. This is simpler and reuses cluster resources, but it offers less isolation.
- Peer pod VNet: Set up a dedicated VNet and subnet for peer pods, attach a NAT gateway, and peer it with the cluster VNet. This provides greater isolation and flexibility at the cost of additional complexity.
3.1.3. Peer pod resource requirements Copy linkLink copied to clipboard!
You must ensure that your cluster has sufficient resources.
Peer pod virtual machines (VMs) require resources in two locations:
-
The worker node. The worker node stores metadata, Kata shim resources (
containerd-shim-kata-v2), remote-hypervisor resources (cloud-api-adaptor), and the tunnel setup between the worker nodes and the peer pod VM. - The cloud instance. This is the actual peer pod VM running in the cloud.
The CPU and memory resources used in the Kubernetes worker node are handled by the pod overhead included in the RuntimeClass (kata-remote) definition used for creating peer pods.
The total number of peer pod VMs running in the cloud is defined as Kubernetes Node extended resources. This limit is per node and is set by the PEERPODS_LIMIT_PER_NODE attribute in the peer-pods-cm config map.
The extended resource is named kata.peerpods.io/vm, and enables the Kubernetes scheduler to handle capacity tracking and accounting.
You can edit the limit per node based on the requirements for your environment after you install the OpenShift sandboxed containers Operator.
A mutating webhook adds the extended resource kata.peerpods.io/vm to the pod specification. It also removes any resource-specific entries from the pod specification, if present. This enables the Kubernetes scheduler to account for these extended resources, ensuring the peer pod is only scheduled when resources are available.
The mutating webhook modifies a Kubernetes pod as follows:
-
The mutating webhook checks the pod for the expected
RuntimeClassNamevalue, specified in theTARGET_RUNTIMECLASSenvironment variable. If the value in the pod specification does not match the value in theTARGET_RUNTIMECLASS, the webhook exits without modifying the pod. If the
RuntimeClassNamevalues match, the webhook makes the following changes to the pod spec:-
The webhook removes every resource specification from the
resourcesfield of all containers and init containers in the pod. -
The webhook adds the extended resource (
kata.peerpods.io/vm) to the spec by modifying the resources field of the first container in the pod. The extended resourcekata.peerpods.io/vmis used by the Kubernetes scheduler for accounting purposes.
-
The webhook removes every resource specification from the
The mutating webhook excludes specific system namespaces in OpenShift Container Platform from mutation. If a peer pod is created in those system namespaces, then resource accounting using Kubernetes extended resources does not work unless the pod spec includes the extended resource.
As a best practice, define a cluster-wide policy to only allow peer pod creation in specific namespaces.
3.1.4. Initdata Copy linkLink copied to clipboard!
The initdata specification provides a flexible way to initialize a pod with workload-specific data at runtime, avoiding the need to embed such data in the virtual machine (VM) image.
This approach enhances security by reducing the exposure of confidential information and improves flexibility by eliminating custom image builds. For example, initdata can include three configuration settings:
- An X.509 certificate for secure communication.
- A cryptographic key for authentication.
-
An optional Kata Agent
policy.regofile to enforce runtime behavior when overriding the default Kata Agent policy.
The initdata content configures the following components:
- Attestation Agent (AA), which verifies the trustworthiness of the pod by sending evidence for attestation.
- Confidential Data Hub (CDH), which manages secrets and secure data access within the pod VM.
- Kata Agent, which enforces runtime policies and manages the lifecycle of the containers inside the pod VM.
You create an initdata.toml file and convert it to a Base64-encoded, gzip-format string.
Then, you create a hash from the initdata file. This hash is required as a reference value for the Reference Value Provider Service (RVPS) config map for Red Hat build of Trustee.
3.2. Deployment overview Copy linkLink copied to clipboard!
You deploy confidential containers on Azure Red Hat OpenShift by performing the following steps:
- Prepare your network by configuring outbound connectivity for the peer pods.
- Install the OpenShift sandboxed containers Operator.
- Enable the confidential containers feature gate.
- Create initdata to initialize a peer pod with sensitive or workload-specific data at runtime.
- Create the peer pods config map. You can add initdata to the config map to create a default global configuration for your peer pods.
-
Create the
KataConfigCR. - Verify the attestation process.
- You can add initdata to a pod manifest to override the global initdata configuration you set in the peer pods config map.
- Optional: If you select a container image from an authenticated registry, you must configure a pull secret for the pod.
- Optional: You can select a custom peer pod VM image.
3.3. Preparing your network Copy linkLink copied to clipboard!
You must prepare your network by configuring outbound connectivity for the peer pods. You can perform this task by using one of the following methods:
- Add a NAT gateway to the default worker subnet. This method is simple and reuses cluster resources, but it offers less isolation.
- Create a dedicated VNet and subnet for your peer pods, attach a NAT gateway, and peer it with the cluster VNet. This method is more complex but it provides greater isolation and flexibility.
3.3.1. Configuring the default worker subnet Copy linkLink copied to clipboard!
You can configure the default worker subnet for outbound connections by attaching a NAT gateway. This method is simple and reuses cluster resources, but it offers less isolation than a dedicated virtual network.
Prerequisites
-
The Azure CLI (
az) is installed and authenticated. - You have administrator access to the Azure resource group and the VNet.
Procedure
Set the
AZURE_RESOURCE_GROUPenvironment variable by running the following command:AZURE_RESOURCE_GROUP=$(oc get infrastructure/cluster \ -o jsonpath='{.status.platformStatus.azure.resourceGroupName}')$ AZURE_RESOURCE_GROUP=$(oc get infrastructure/cluster \ -o jsonpath='{.status.platformStatus.azure.resourceGroupName}')Copy to Clipboard Copied! Toggle word wrap Toggle overflow Set the
AZURE_REGIONenvironment variable by running the following command:AZURE_REGION=$(az group show --resource-group ${AZURE_RESOURCE_GROUP}\ --query "{Location:location}" --output tsv) && \ echo "AZURE_REGION: \"$AZURE_REGION\""$ AZURE_REGION=$(az group show --resource-group ${AZURE_RESOURCE_GROUP}\ --query "{Location:location}" --output tsv) && \ echo "AZURE_REGION: \"$AZURE_REGION\""Copy to Clipboard Copied! Toggle word wrap Toggle overflow Set the
AZURE_VNET_NAMEenvironment variable by running the following command:AZURE_VNET_NAME=$(az network vnet list \ -g "${AZURE_RESOURCE_GROUP}" --query '[].name' -o tsv)$ AZURE_VNET_NAME=$(az network vnet list \ -g "${AZURE_RESOURCE_GROUP}" --query '[].name' -o tsv)Copy to Clipboard Copied! Toggle word wrap Toggle overflow Set the
AZURE_SUBNET_IDenvironment variable by running the following command:AZURE_SUBNET_ID=$(az network vnet subnet list \ --resource-group "${AZURE_RESOURCE_GROUP}" \ --vnet-name "${AZURE_VNET_NAME}" --query "[].{Id:id} \ | [? contains(Id, 'worker')]" --output tsv)$ AZURE_SUBNET_ID=$(az network vnet subnet list \ --resource-group "${AZURE_RESOURCE_GROUP}" \ --vnet-name "${AZURE_VNET_NAME}" --query "[].{Id:id} \ | [? contains(Id, 'worker')]" --output tsv)Copy to Clipboard Copied! Toggle word wrap Toggle overflow Set the NAT gateway environment variables for the peer pod subnet by running the following commands:
export PEERPOD_NAT_GW=peerpod-nat-gw
$ export PEERPOD_NAT_GW=peerpod-nat-gwCopy to Clipboard Copied! Toggle word wrap Toggle overflow export PEERPOD_NAT_GW_IP=peerpod-nat-gw-ip
$ export PEERPOD_NAT_GW_IP=peerpod-nat-gw-ipCopy to Clipboard Copied! Toggle word wrap Toggle overflow Create a public IP address for the NAT gateway by running the following command:
az network public-ip create -g "${AZURE_RESOURCE_GROUP}" \ -n "${PEERPOD_NAT_GW_IP}" -l "${AZURE_REGION}" --sku Standard$ az network public-ip create -g "${AZURE_RESOURCE_GROUP}" \ -n "${PEERPOD_NAT_GW_IP}" -l "${AZURE_REGION}" --sku StandardCopy to Clipboard Copied! Toggle word wrap Toggle overflow Create the NAT gateway and associate it with the public IP address by running the following command:
az network nat gateway create -g "${AZURE_RESOURCE_GROUP}" \ -l "${AZURE_REGION}" --public-ip-addresses "${PEERPOD_NAT_GW_IP}" \ -n "${PEERPOD_NAT_GW}"$ az network nat gateway create -g "${AZURE_RESOURCE_GROUP}" \ -l "${AZURE_REGION}" --public-ip-addresses "${PEERPOD_NAT_GW_IP}" \ -n "${PEERPOD_NAT_GW}"Copy to Clipboard Copied! Toggle word wrap Toggle overflow Update the VNet subnet to use the NAT gateway by running the following command:
az network vnet subnet update --nat-gateway "${PEERPOD_NAT_GW}" \ --ids "${AZURE_SUBNET_ID}"$ az network vnet subnet update --nat-gateway "${PEERPOD_NAT_GW}" \ --ids "${AZURE_SUBNET_ID}"Copy to Clipboard Copied! Toggle word wrap Toggle overflow
Verification
Confirm the NAT gateway is attached to the VNet subnet by running the following command:
az network vnet subnet show --ids "${AZURE_SUBNET_ID}" \ --query "natGateway.id" -o tsv$ az network vnet subnet show --ids "${AZURE_SUBNET_ID}" \ --query "natGateway.id" -o tsvCopy to Clipboard Copied! Toggle word wrap Toggle overflow The output contains the NAT gateway resource ID. If no NAT gateway is attached, the output is empty.
Example output
/subscriptions/12345678-1234-1234-1234-1234567890ab/resourceGroups/myResourceGroup/providers/Microsoft.Network/natGateways/myNatGateway
/subscriptions/12345678-1234-1234-1234-1234567890ab/resourceGroups/myResourceGroup/providers/Microsoft.Network/natGateways/myNatGatewayCopy to Clipboard Copied! Toggle word wrap Toggle overflow
3.3.2. Creating a dedicated peer pod virtual network Copy linkLink copied to clipboard!
You can configure outbound connections for peer pods by creating a dedicated virtual network (VNet). Then, you create a network address translation (NAT) gateway for the VNet, create a subnet within the VNet, and enable VNet peering with non-overlapping address spaces.
This method is more complex than creating a NAT gateway for the default worker subnet but it provides greater isolation and flexibility.
Prerequisites
-
The Azure CLI (
az) is installed - You have signed in to Azure. See Authenticate to Azure using Azure CLI.
- You have administrator access to the Azure resource group and VNet hosting the cluster.
-
You have verified the cluster VNet classless inter-domain routing (CIDR) address. The default value is
10.0.0.0/14. If you overrode the default value, you have ensured that you chose a non-overlapping CIDR address for the peer pod VNet. For example,192.168.0.0/16.
Procedure
Set the environmental variables for the peer pod network:
Set the peer pod VNet environment variables by running the following commands:
export PEERPOD_VNET_NAME="${PEERPOD_VNET_NAME:-peerpod-vnet}"$ export PEERPOD_VNET_NAME="${PEERPOD_VNET_NAME:-peerpod-vnet}"Copy to Clipboard Copied! Toggle word wrap Toggle overflow export PEERPOD_VNET_CIDR="${PEERPOD_VNET_CIDR:-192.168.0.0/16}"$ export PEERPOD_VNET_CIDR="${PEERPOD_VNET_CIDR:-192.168.0.0/16}"Copy to Clipboard Copied! Toggle word wrap Toggle overflow Set the peer pod subnet environment variables by running the following commands:
export PEERPOD_SUBNET_NAME="${PEERPOD_SUBNET_NAME:-peerpod-subnet}"$ export PEERPOD_SUBNET_NAME="${PEERPOD_SUBNET_NAME:-peerpod-subnet}"Copy to Clipboard Copied! Toggle word wrap Toggle overflow export PEERPOD_SUBNET_CIDR="${PEERPOD_SUBNET_CIDR:-192.168.0.0/16}"$ export PEERPOD_SUBNET_CIDR="${PEERPOD_SUBNET_CIDR:-192.168.0.0/16}"Copy to Clipboard Copied! Toggle word wrap Toggle overflow
Set the environmental variables for Azure:
AZURE_RESOURCE_GROUP=$(oc get infrastructure/cluster \ -o jsonpath='{.status.platformStatus.azure.resourceGroupName}')$ AZURE_RESOURCE_GROUP=$(oc get infrastructure/cluster \ -o jsonpath='{.status.platformStatus.azure.resourceGroupName}')Copy to Clipboard Copied! Toggle word wrap Toggle overflow AZURE_REGION=$(az group show --resource-group ${AZURE_RESOURCE_GROUP}\ --query "{Location:location}" --output tsv) && \ echo "AZURE_REGION: \"$AZURE_REGION\""$ AZURE_REGION=$(az group show --resource-group ${AZURE_RESOURCE_GROUP}\ --query "{Location:location}" --output tsv) && \ echo "AZURE_REGION: \"$AZURE_REGION\""Copy to Clipboard Copied! Toggle word wrap Toggle overflow AZURE_VNET_NAME=$(az network vnet list \ -g "${AZURE_RESOURCE_GROUP}" --query '[].name' -o tsv)$ AZURE_VNET_NAME=$(az network vnet list \ -g "${AZURE_RESOURCE_GROUP}" --query '[].name' -o tsv)Copy to Clipboard Copied! Toggle word wrap Toggle overflow Set the peer pod NAT gateway environment variables by running the following commands:
export PEERPOD_NAT_GW="${PEERPOD_NAT_GW:-peerpod-nat-gw}"$ export PEERPOD_NAT_GW="${PEERPOD_NAT_GW:-peerpod-nat-gw}"Copy to Clipboard Copied! Toggle word wrap Toggle overflow export PEERPOD_NAT_GW_IP="${PEERPOD_NAT_PUBLIC_IP:-peerpod-nat-gw-ip}"$ export PEERPOD_NAT_GW_IP="${PEERPOD_NAT_PUBLIC_IP:-peerpod-nat-gw-ip}"Copy to Clipboard Copied! Toggle word wrap Toggle overflow Configure the VNET:
Create the peer pod VNet by running the following command:
az network vnet create --resource-group "${AZURE_RESOURCE_GROUP}" \ --name "${PEERPOD_VNET_NAME}" \ --address-prefixes "${PEERPOD_VNET_CIDR}"$ az network vnet create --resource-group "${AZURE_RESOURCE_GROUP}" \ --name "${PEERPOD_VNET_NAME}" \ --address-prefixes "${PEERPOD_VNET_CIDR}"Copy to Clipboard Copied! Toggle word wrap Toggle overflow Create a public IP address for the peer pod VNet by running the following command:
az network public-ip create -g "${AZURE_RESOURCE_GROUP}" \ -n "${PEERPOD_NAT_GW_IP}" -l "${AZURE_REGION}"$ az network public-ip create -g "${AZURE_RESOURCE_GROUP}" \ -n "${PEERPOD_NAT_GW_IP}" -l "${AZURE_REGION}"Copy to Clipboard Copied! Toggle word wrap Toggle overflow Create a NAT gateway for the peer pod VNet by running the following command:
az network nat gateway create -g "${AZURE_RESOURCE_GROUP}" \ -l "${AZURE_REGION}" \ --public-ip-addresses "${PEERPOD_NAT_GW_IP}" \ -n "${PEERPOD_NAT_GW}"$ az network nat gateway create -g "${AZURE_RESOURCE_GROUP}" \ -l "${AZURE_REGION}" \ --public-ip-addresses "${PEERPOD_NAT_GW_IP}" \ -n "${PEERPOD_NAT_GW}"Copy to Clipboard Copied! Toggle word wrap Toggle overflow Create a subnet in the peer pod VNet and attach the NAT gateway by running the following command:
Copy to Clipboard Copied! Toggle word wrap Toggle overflow
Configure the virtual network peering connection:
Create the peering connection by running the following command:
az network vnet peering create -g "${AZURE_RESOURCE_GROUP}" \ -n peerpod-azure-vnet-to-peerpod-vnet \ --vnet-name "${AZURE_VNET_NAME}" \ --remote-vnet "${PEERPOD_VNET_NAME}" --allow-vnet-access \ --allow-forwarded-traffic$ az network vnet peering create -g "${AZURE_RESOURCE_GROUP}" \ -n peerpod-azure-vnet-to-peerpod-vnet \ --vnet-name "${AZURE_VNET_NAME}" \ --remote-vnet "${PEERPOD_VNET_NAME}" --allow-vnet-access \ --allow-forwarded-trafficCopy to Clipboard Copied! Toggle word wrap Toggle overflow Sync the peering connection by running the following command:
az network vnet peering sync -g "${AZURE_RESOURCE_GROUP}" \ -n peerpod-azure-vnet-to-peerpod-vnet \ --vnet-name "${AZURE_VNET_NAME}"$ az network vnet peering sync -g "${AZURE_RESOURCE_GROUP}" \ -n peerpod-azure-vnet-to-peerpod-vnet \ --vnet-name "${AZURE_VNET_NAME}"Copy to Clipboard Copied! Toggle word wrap Toggle overflow Complete the peering connection by running the following command:
az network vnet peering create -g "${AZURE_RESOURCE_GROUP}" \ -n peerpod-peerpod-vnet-to-azure-vnet \ --vnet-name "${PEERPOD_VNET_NAME}" \ --remote-vnet "${AZURE_VNET_NAME}" --allow-vnet-access \ --allow-forwarded-traffic$ az network vnet peering create -g "${AZURE_RESOURCE_GROUP}" \ -n peerpod-peerpod-vnet-to-azure-vnet \ --vnet-name "${PEERPOD_VNET_NAME}" \ --remote-vnet "${AZURE_VNET_NAME}" --allow-vnet-access \ --allow-forwarded-trafficCopy to Clipboard Copied! Toggle word wrap Toggle overflow
Verification
Check the peering connection status from the cluster VNet by running the following command:
az network vnet peering show -g "${AZURE_RESOURCE_GROUP}" \ -n peerpod-azure-vnet-to-peerpod-vnet \ --vnet-name "${AZURE_VNET_NAME}" \ --query "peeringState" -o tsv$ az network vnet peering show -g "${AZURE_RESOURCE_GROUP}" \ -n peerpod-azure-vnet-to-peerpod-vnet \ --vnet-name "${AZURE_VNET_NAME}" \ --query "peeringState" -o tsvCopy to Clipboard Copied! Toggle word wrap Toggle overflow This should return
Connected.Verify that the NAT gateway is attached to the peer pod subnet by running the following command:
az network vnet subnet show --resource-group "${AZURE_RESOURCE_GROUP}" \ --vnet-name "${PEERPOD_VNET_NAME}" --name "${PEERPOD_SUBNET_NAME}" \ --query "natGateway.id" -o tsv$ az network vnet subnet show --resource-group "${AZURE_RESOURCE_GROUP}" \ --vnet-name "${PEERPOD_VNET_NAME}" --name "${PEERPOD_SUBNET_NAME}" \ --query "natGateway.id" -o tsvCopy to Clipboard Copied! Toggle word wrap Toggle overflow
3.4. Installing the OpenShift sandboxed containers Operator Copy linkLink copied to clipboard!
You install the OpenShift sandboxed containers Operator by using the command line interface (CLI).
Prerequisites
-
You have access to the cluster as a user with the
cluster-adminrole.
Procedure
Create an
osc-namespace.yamlmanifest file:apiVersion: v1 kind: Namespace metadata: name: openshift-sandboxed-containers-operator
apiVersion: v1 kind: Namespace metadata: name: openshift-sandboxed-containers-operatorCopy to Clipboard Copied! Toggle word wrap Toggle overflow Create the namespace by running the following command:
oc apply -f osc-namespace.yaml
$ oc apply -f osc-namespace.yamlCopy to Clipboard Copied! Toggle word wrap Toggle overflow Create an
osc-operatorgroup.yamlmanifest file:Copy to Clipboard Copied! Toggle word wrap Toggle overflow Create the operator group by running the following command:
oc apply -f osc-operatorgroup.yaml
$ oc apply -f osc-operatorgroup.yamlCopy to Clipboard Copied! Toggle word wrap Toggle overflow Create an
osc-subscription.yamlmanifest file:Copy to Clipboard Copied! Toggle word wrap Toggle overflow Create the subscription by running the following command:
oc create -f osc-subscription.yaml
$ oc create -f osc-subscription.yamlCopy to Clipboard Copied! Toggle word wrap Toggle overflow Verify that the Operator is correctly installed by running the following command:
oc get csv -n openshift-sandboxed-containers-operator
$ oc get csv -n openshift-sandboxed-containers-operatorCopy to Clipboard Copied! Toggle word wrap Toggle overflow This command can take several minutes to complete.
Watch the process by running the following command:
watch oc get csv -n openshift-sandboxed-containers-operator
$ watch oc get csv -n openshift-sandboxed-containers-operatorCopy to Clipboard Copied! Toggle word wrap Toggle overflow Example output
NAME DISPLAY VERSION REPLACES PHASE openshift-sandboxed-containers openshift-sandboxed-containers-operator 1.11.1 1.10.3 Succeeded
NAME DISPLAY VERSION REPLACES PHASE openshift-sandboxed-containers openshift-sandboxed-containers-operator 1.11.1 1.10.3 SucceededCopy to Clipboard Copied! Toggle word wrap Toggle overflow
3.5. Creating the osc-feature-gates config map Copy linkLink copied to clipboard!
You enable the confidential containers feature gate by creating the config map.
Procedure
Create a
my-feature-gate.yamlmanifest file:Copy to Clipboard Copied! Toggle word wrap Toggle overflow where
<deployment_mode>On OpenShift Container Platform clusters with the Machine Config Operator (MCO), the
deploymentModefield is optional and can be omitted. Specifies the strategy for installing and configuring the Kata runtime. Specify the deployment mode:-
MachineConfigfor clusters that always use the MCO -
DaemonSetfor clusters that never use the MCO -
DaemonSetFallbackfor clusters that sometimes use the MCO
-
Create the
my-feature-gatesconfig map by running the following command:oc create -f my-feature-gate.yaml
$ oc create -f my-feature-gate.yamlCopy to Clipboard Copied! Toggle word wrap Toggle overflow
3.6. Creating initdata Copy linkLink copied to clipboard!
You create initdata to securely initialize a pod with sensitive or workload-specific data at runtime, thus avoiding the need to embed this data in a virtual machine image. This approach provides additional security by reducing the risk of exposure of confidential information and eliminates the need for custom image builds.
You can specify initdata in the pods config map, for global configuration, or in a pod manifest, for a specific pod. The initdata value in a pod manifest overrides the value set in the pods config map.
In a production environment, you must create initdata to override the default permissive Kata agent policy.
You can specify initdata in the peer pods config map, for global configuration, or in a peer pod manifest, for a specific pod. The initdata value in a peer pod manifest overrides the value set in the peer pods config map.
Then, you generate a Platform Configuration Register (PCR) 8 hash from the initdata.toml file for the Reference Value Provider Service (RVPS) config map for Red Hat build of Trustee.
Red Hat build of Trustee uses the RVPS to validate attestation evidence sent by confidential workloads. The RVPS contains trusted reference values, such as file hashes, that are compared to the PCR measurements included in attestation requests. These hashes are not generated by Red Hat build of Trustee.
You must delete the kbs_cert setting if you configure insecure_http = true in the kbs-config config map for Red Hat build of Trustee.
Procedure
Obtain the Red Hat build of Trustee URL by running the following command:
TRUSTEE_URL=$(oc get route kbs-service \ -n trustee-operator-system -o jsonpath='{.spec.host}') \ && echo $TRUSTEE_URL$ TRUSTEE_URL=$(oc get route kbs-service \ -n trustee-operator-system -o jsonpath='{.spec.host}') \ && echo $TRUSTEE_URLCopy to Clipboard Copied! Toggle word wrap Toggle overflow Create the
initdata.tomlfile:Copy to Clipboard Copied! Toggle word wrap Toggle overflow - url
-
Specify the Red Hat build of Trustee URL. If you configure the Red Hat build of Trustee with
insecure_httpfor testing purposes, use HTTP. Otherwise, use HTTPS. For production systems, avoid usinginsecure_httpunless you configure your environment to handle TLS externally, for example, with a proxy. - <kbs_certificate>
- Specify the Base64-encoded TLS certificate for the attestation agent.
- kbs_cert
-
Delete the
kbs_certsetting if you configureinsecure_http = truein thekbs-configconfig map for Red Hat build of Trustee. - image_security_policy_uri
-
Optional, only if you enabled the container image signature verification policy. Replace
<secret-policy-name>and<key>with the secret name and key, respectively specified in Creating the KbsConfig custom resource.
Convert the
initdata.tomlfile to a gzipped, Base64-encoded string in a text file by running the following command:cat initdata.toml | gzip | base64 -w0 > initdata.txt
$ cat initdata.toml | gzip | base64 -w0 > initdata.txtCopy to Clipboard Copied! Toggle word wrap Toggle overflow Record this string to use in the peer pods config map or the peer pod manifest.
Calculate the SHA-256 hash of an
initdata.tomlfile and assign its value to thehashvariable by running the following command:hash=$(sha256sum initdata.toml | cut -d' ' -f1)
$ hash=$(sha256sum initdata.toml | cut -d' ' -f1)Copy to Clipboard Copied! Toggle word wrap Toggle overflow Assign 32 bytes of 0s to the
initial_pcrvariable by running the following command:initial_pcr=0000000000000000000000000000000000000000000000000000000000000000
$ initial_pcr=0000000000000000000000000000000000000000000000000000000000000000Copy to Clipboard Copied! Toggle word wrap Toggle overflow Calculate the SHA-256 hash of
hashandinitial_pcrand assign its value to thePCR8_HASHvariable by running the following command:PCR8_HASH=$(echo -n "$initial_pcr$hash" | xxd -r -p | sha256sum | cut -d' ' -f1) && echo $PCR8_HASH
$ PCR8_HASH=$(echo -n "$initial_pcr$hash" | xxd -r -p | sha256sum | cut -d' ' -f1) && echo $PCR8_HASHCopy to Clipboard Copied! Toggle word wrap Toggle overflow Record the
PCR8_HASHvalue for the RVPS config map.
3.7. Creating the peer pods config map Copy linkLink copied to clipboard!
You must create the peer pods config map.
Optional: Add initdata to the peer pods config map to create a default configuration for all peer pods.
Procedure
Obtain the following values from your Azure instance:
Retrieve and record the Azure resource group:
AZURE_RESOURCE_GROUP=$(oc get infrastructure/cluster \ -o jsonpath='{.status.platformStatus.azure.resourceGroupName}') \ && echo "AZURE_RESOURCE_GROUP: \"$AZURE_RESOURCE_GROUP\""$ AZURE_RESOURCE_GROUP=$(oc get infrastructure/cluster \ -o jsonpath='{.status.platformStatus.azure.resourceGroupName}') \ && echo "AZURE_RESOURCE_GROUP: \"$AZURE_RESOURCE_GROUP\""Copy to Clipboard Copied! Toggle word wrap Toggle overflow Retrieve and record the Azure VNet name:
AZURE_VNET_NAME=$(az network vnet list \ --resource-group ${AZURE_RESOURCE_GROUP} \ --query "[].{Name:name}" --output tsv)$ AZURE_VNET_NAME=$(az network vnet list \ --resource-group ${AZURE_RESOURCE_GROUP} \ --query "[].{Name:name}" --output tsv)Copy to Clipboard Copied! Toggle word wrap Toggle overflow This value is used to retrieve the Azure subnet ID.
Retrieve and record the Azure subnet ID:
AZURE_SUBNET_ID=$(az network vnet subnet list \ --resource-group ${AZURE_RESOURCE_GROUP} --vnet-name $AZURE_VNET_NAME \ --query "[].{Id:id} | [? contains(Id, 'worker')]" --output tsv) \ && echo "AZURE_SUBNET_ID: \"$AZURE_SUBNET_ID\""$ AZURE_SUBNET_ID=$(az network vnet subnet list \ --resource-group ${AZURE_RESOURCE_GROUP} --vnet-name $AZURE_VNET_NAME \ --query "[].{Id:id} | [? contains(Id, 'worker')]" --output tsv) \ && echo "AZURE_SUBNET_ID: \"$AZURE_SUBNET_ID\""Copy to Clipboard Copied! Toggle word wrap Toggle overflow Retrieve and record the Azure network security group (NSG) ID:
AZURE_NSG_ID=$(az network nsg list --resource-group ${AZURE_RESOURCE_GROUP} \ --query "[].{Id:id}" --output tsv) && echo "AZURE_NSG_ID: \"$AZURE_NSG_ID\""$ AZURE_NSG_ID=$(az network nsg list --resource-group ${AZURE_RESOURCE_GROUP} \ --query "[].{Id:id}" --output tsv) && echo "AZURE_NSG_ID: \"$AZURE_NSG_ID\""Copy to Clipboard Copied! Toggle word wrap Toggle overflow Retrieve and record the Azure region:
AZURE_REGION=$(az group show --resource-group ${AZURE_RESOURCE_GROUP} \ --query "{Location:location}" --output tsv) \ && echo "AZURE_REGION: \"$AZURE_REGION\""$ AZURE_REGION=$(az group show --resource-group ${AZURE_RESOURCE_GROUP} \ --query "{Location:location}" --output tsv) \ && echo "AZURE_REGION: \"$AZURE_REGION\""Copy to Clipboard Copied! Toggle word wrap Toggle overflow
Create a
peer-pods-cm.yamlmanifest file according to the following example:Copy to Clipboard Copied! Toggle word wrap Toggle overflow AZURE_INSTANCE_SIZE-
Defines the default instance size that is used if the instance size is not defined in the workload object.
"Standard_DC2as_v5"is for AMD SEV-SNP. If your TEE is Intel® Trust Domain Extensions (TDX), specifyStandard_EC4eds_v5. AZURE_IMAGE_ID- Leave this value empty. When you install the Operator, a Job is scheduled to download the default pod VM image from the Red Hat Ecosystem Catalog and upload it to the Azure Image Gallery within the same Azure Resource Group as the OpenShift Container Platform cluster. This image provides root disk integrity protection (dm-verity) and encrypted container storage. See Confidential VMs: The core of confidential containers for details.
AZURE_INSTANCE_SIZES- Specify the allowed instance sizes, without spaces, for creating the pod. You can define smaller instance sizes for workloads that need less memory and fewer CPUs or larger instance sizes for larger workloads.
TAGS-
You can configure custom tags as
key:valuepairs for pod VM instances to track peer pod costs or to identify peer pods in different clusters. PEERPODS_LIMIT_PER_NODE-
You can increase this value to run more peer pods on a node. The default value is
10. ROOT_VOLUME_SIZE- You can increase this value for pods with larger container images. Specify the root volume size in gigabytes for the pod VM. The default and minimum size is 6 GB.
- INITDATA
- Specify the initdata string to create a default configuration for all peer pods. If you add initdata to a peer pod manifest, that setting overrides this global configuration.
Create the config map by running the following command:
oc create -f peer-pods-cm.yaml
$ oc create -f peer-pods-cm.yamlCopy to Clipboard Copied! Toggle word wrap Toggle overflow
3.8. Applying initdata to a pod Copy linkLink copied to clipboard!
You can override the global INITDATA setting you applied in the peer pods config map by applying customized initdata to a specific pod for special use cases, such as development and testing with a relaxed policy, or when using different Red Hat build of Trustee configurations. You can customize initdata by adding an annotation to the workload pod YAML.
Prerequisite
- You have created an initdata string.
Procedure
Add the initdata string to the pod manifest:
Copy to Clipboard Copied! Toggle word wrap Toggle overflow Create the pod by running the following command:
oc create -f my-pod.yaml
$ oc create -f my-pod.yamlCopy to Clipboard Copied! Toggle word wrap Toggle overflow
3.9. Creating the KataConfig custom resource Copy linkLink copied to clipboard!
You must create the KataConfig custom resource (CR) to install kata-remote as a runtime class on your worker nodes.
OpenShift sandboxed containers installs kata-remote as a secondary, optional runtime on the cluster and not as the primary runtime.
Creating the KataConfig CR automatically reboots the worker nodes. The reboot can take from 10 to more than 60 minutes. The following factors can increase the reboot time:
- A large OpenShift Container Platform deployment with a greater number of worker nodes.
- Activation of the BIOS and Diagnostics utility.
- Deployment on a hard disk drive rather than an SSD.
- Deployment on physical nodes such as bare metal, rather than on virtual nodes.
- A slow CPU and network.
Procedure
Create an
example-kataconfig.yamlmanifest file according to the following example:Copy to Clipboard Copied! Toggle word wrap Toggle overflow - 1
- Optional: If you have applied node labels to install
kata-remoteon specific nodes, specify the key and value, for example,cc: 'true'.
Create the
KataConfigCR by running the following command:oc create -f example-kataconfig.yaml
$ oc create -f example-kataconfig.yamlCopy to Clipboard Copied! Toggle word wrap Toggle overflow The new
KataConfigCR is created and installskata-remoteas a runtime class on the worker nodes.Wait for the
kata-remoteinstallation to complete and the worker nodes to reboot before verifying the installation.Monitor the installation progress by running the following command:
watch "oc describe kataconfig | sed -n /^Status:/,/^Events/p"
$ watch "oc describe kataconfig | sed -n /^Status:/,/^Events/p"Copy to Clipboard Copied! Toggle word wrap Toggle overflow When the status of all workers under
kataNodesisinstalledand the conditionInProgressisFalsewithout specifying a reason, thekata-remoteis installed on the cluster.Verify the daemon set by running the following command:
oc get -n openshift-sandboxed-containers-operator ds/osc-caa-ds
$ oc get -n openshift-sandboxed-containers-operator ds/osc-caa-dsCopy to Clipboard Copied! Toggle word wrap Toggle overflow Verify the runtime classes by running the following command:
oc get runtimeclass
$ oc get runtimeclassCopy to Clipboard Copied! Toggle word wrap Toggle overflow Example output
NAME HANDLER AGE kata-remote kata-remote 152m
NAME HANDLER AGE kata-remote kata-remote 152mCopy to Clipboard Copied! Toggle word wrap Toggle overflow
3.10. Verifying attestation Copy linkLink copied to clipboard!
You can verify the attestation process by creating a test pod to retrieve a specific resource from Red Hat build of Trustee.
This procedure is an example to verify that attestation is working. Do not write sensitive data to standard I/O, because the data can be captured by using a memory dump. Only data written to memory is encrypted.
Procedure
Create a
test-pod.yamlmanifest file:Copy to Clipboard Copied! Toggle word wrap Toggle overflow - 1
- Optional: Setting initdata in a pod annotation overrides the global
INITDATAsetting in the peer pods config map.
Create the pod by running the following command:
oc create -f test-pod.yaml
$ oc create -f test-pod.yamlCopy to Clipboard Copied! Toggle word wrap Toggle overflow Log in to the pod by running the following command:
oc exec -it ocp-cc-pod -- bash
$ oc exec -it ocp-cc-pod -- bashCopy to Clipboard Copied! Toggle word wrap Toggle overflow Fetch the Red Hat build of Trustee resource by running the following command:
curl http://127.0.0.1:8006/cdh/resource/default/attestation-status/status
$ curl http://127.0.0.1:8006/cdh/resource/default/attestation-status/statusCopy to Clipboard Copied! Toggle word wrap Toggle overflow Example output
success #/
success #/Copy to Clipboard Copied! Toggle word wrap Toggle overflow
3.11. Configuring a pull secret for peer pods Copy linkLink copied to clipboard!
If you select a custom peer pod VM image from a private registry such as registry.access.redhat.com, you must configure a pull secret for peer pods.
Then, you can link the pull secret to the default service account or you can specify the pull secret in the peer pod manifest.
Procedure
Set the
NSvariable to the namespace where you deploy your peer pods:NS=<namespace>
$ NS=<namespace>Copy to Clipboard Copied! Toggle word wrap Toggle overflow Copy the pull secret to the peer pod namespace:
oc get secret pull-secret -n openshift-config -o yaml \ | sed "s/namespace: openshift-config/namespace: ${NS}/" \ | oc apply -n "${NS}" -f -$ oc get secret pull-secret -n openshift-config -o yaml \ | sed "s/namespace: openshift-config/namespace: ${NS}/" \ | oc apply -n "${NS}" -f -Copy to Clipboard Copied! Toggle word wrap Toggle overflow You can use the cluster pull secret, as in this example, or a custom pull secret.
Optional: Link the pull secret to the default service account:
oc secrets link default pull-secret --for=pull -n ${NS}$ oc secrets link default pull-secret --for=pull -n ${NS}Copy to Clipboard Copied! Toggle word wrap Toggle overflow Alternatively, add the pull secret to the peer pod manifest:
Copy to Clipboard Copied! Toggle word wrap Toggle overflow
3.12. Selecting a custom peer pod VM image Copy linkLink copied to clipboard!
You can select a custom peer pod virtual machine (VM) image, tailored to your workload requirements, by adding an annotation to the pod manifest. The custom image overrides the default image specified in the peer pods config map.
Prerequisites
- If the custom peer pod VM image is in a private registry, you have created a pull secret.
- You have the ID of a custom pod VM image, which is compatible with your cloud provider or hypervisor.
Procedure
Create a
my-pod-manifest.yamlfile according to the following example:Copy to Clipboard Copied! Toggle word wrap Toggle overflow Create the pod by running the following command:
oc create -f my-pod-manifest.yaml
$ oc create -f my-pod-manifest.yamlCopy to Clipboard Copied! Toggle word wrap Toggle overflow
Chapter 4. Deploying confidential containers on IBM Z and IBM LinuxONE with peer pods Copy linkLink copied to clipboard!
You can deploy confidential containers workloads on a Red Hat OpenShift Container Platform cluster running on IBM Z® and IBM® LinuxONE with peer pods.
In the peer pod approach, you leverage libvirt as the provider to launch peer pod virtual machines (VMs) on a logical partition (LPAR). The OpenShift Container Platform cluster is hosted on the same LPAR, either as a single-node or multi-node setup, where all nodes run as VMs (guests).
This approach enables flexible resource sharing and isolation in a virtualized environment, making it suitable for development, testing, or workloads that need isolation without requiring dedicated hardware.
Confidential containers on IBM Z® and IBM® LinuxONE is a Technology Preview feature only. Technology Preview features are not supported with Red Hat production service level agreements (SLAs) and might not be functionally complete. Red Hat does not recommend using them in production. These features provide early access to upcoming product features, enabling customers to test functionality and provide feedback during the development process.
For more information about the support scope of Red Hat Technology Preview features, see Technology Preview Features Support Scope.
4.1. Preparation Copy linkLink copied to clipboard!
Review these prerequisites and concepts before you deploy confidential containers on IBM Z® and IBM® LinuxONE with peer pods.
IBM® Hyper Protect Confidential Container (HPCC) for Red Hat OpenShift Container Platform is now production-ready. HPCC enables Confidential Computing technology at the enterprise scale by providing a multiparty Hyper Protect Contract, deployment attestation, and validation of container runtime and OCI image integrity.
HPCC is supported by IBM Z17® and IBM® LinuxONE Emperor 5. For more information, see the IBM HPCC documentation.
4.1.1. Prerequisites Copy linkLink copied to clipboard!
- You have deployed Red Hat build of Trustee on an OpenShift Container Platform cluster in a trusted environment. For more information, see Deploying Red Hat build of Trustee.
- You have installed the latest version of Red Hat OpenShift Container Platform on the cluster where you are running your confidential containers workload.
- You are using LinuxONE Emperor 4 or later.
- You have enabled Secure Unpack Facility on your Logical Partition (LPAR), which is necessary for the IBM Secure Execution. For more information, see Enabling the KVM host for IBM Secure Execution.
4.1.2. Peer pod resource requirements Copy linkLink copied to clipboard!
You must ensure that your cluster has sufficient resources.
Peer pod virtual machines (VMs) require resources in two locations:
-
The worker node. The worker node stores metadata, Kata shim resources (
containerd-shim-kata-v2), remote-hypervisor resources (cloud-api-adaptor), and the tunnel setup between the worker nodes and the peer pod VM. - The cloud instance. This is the actual peer pod VM running in the cloud.
The CPU and memory resources used in the Kubernetes worker node are handled by the pod overhead included in the RuntimeClass (kata-remote) definition used for creating peer pods.
The total number of peer pod VMs running in the cloud is defined as Kubernetes Node extended resources. This limit is per node and is set by the PEERPODS_LIMIT_PER_NODE attribute in the peer-pods-cm config map.
The extended resource is named kata.peerpods.io/vm, and enables the Kubernetes scheduler to handle capacity tracking and accounting.
You can edit the limit per node based on the requirements for your environment after you install the OpenShift sandboxed containers Operator.
A mutating webhook adds the extended resource kata.peerpods.io/vm to the pod specification. It also removes any resource-specific entries from the pod specification, if present. This enables the Kubernetes scheduler to account for these extended resources, ensuring the peer pod is only scheduled when resources are available.
The mutating webhook modifies a Kubernetes pod as follows:
-
The mutating webhook checks the pod for the expected
RuntimeClassNamevalue, specified in theTARGET_RUNTIMECLASSenvironment variable. If the value in the pod specification does not match the value in theTARGET_RUNTIMECLASS, the webhook exits without modifying the pod. If the
RuntimeClassNamevalues match, the webhook makes the following changes to the pod spec:-
The webhook removes every resource specification from the
resourcesfield of all containers and init containers in the pod. -
The webhook adds the extended resource (
kata.peerpods.io/vm) to the spec by modifying the resources field of the first container in the pod. The extended resourcekata.peerpods.io/vmis used by the Kubernetes scheduler for accounting purposes.
-
The webhook removes every resource specification from the
The mutating webhook excludes specific system namespaces in OpenShift Container Platform from mutation. If a peer pod is created in those system namespaces, then resource accounting using Kubernetes extended resources does not work unless the pod spec includes the extended resource.
As a best practice, define a cluster-wide policy to only allow peer pod creation in specific namespaces.
4.1.3. Initdata Copy linkLink copied to clipboard!
The initdata specification provides a flexible way to initialize a pod with workload-specific data at runtime, avoiding the need to embed such data in the virtual machine (VM) image.
This approach enhances security by reducing the exposure of confidential information and improves flexibility by eliminating custom image builds. For example, initdata can include three configuration settings:
- An X.509 certificate for secure communication.
- A cryptographic key for authentication.
-
An optional Kata Agent
policy.regofile to enforce runtime behavior when overriding the default Kata Agent policy.
The initdata content configures the following components:
- Attestation Agent (AA), which verifies the trustworthiness of the pod by sending evidence for attestation.
- Confidential Data Hub (CDH), which manages secrets and secure data access within the pod VM.
- Kata Agent, which enforces runtime policies and manages the lifecycle of the containers inside the pod VM.
You create an initdata.toml file and convert it to a Base64-encoded, gzip-format string.
4.2. Deployment overview Copy linkLink copied to clipboard!
You deploy confidential containers on IBM Z® and IBM® LinuxONE with peer pods by performing the following steps:
- Install the OpenShift sandboxed containers Operator.
- Create the peer pods secret.
- Enable the confidential containers feature gate.
- Create initdata to initialize a peer pod with sensitive or workload-specific data at runtime.
Create initdata to initialize a pod with sensitive or workload-specific data at runtime.
ImportantDo not use the default permissive Kata Agent policy in a production environment. You must configure a restrictive policy, preferably by creating initdata.
As a minimum requirement, you must disable
ExecProcessRequestto prevent a cluster administrator from accessing sensitive data by running theoc execcommand on a confidential containers pod.- Create the peer pods config map. You can add initdata to the config map to create a default global configuration for your peer pods.
-
Create the
KataConfigCR. - Verify the attestation process.
4.3. Installing and upgrading the OpenShift sandboxed containers Operator Copy linkLink copied to clipboard!
You can install or upgrade the OpenShift sandboxed containers Operator by using the command line interface (CLI).
You must configure the OpenShift sandboxed containers Operator subscription for manual updates by setting the value of installPlanApproval to Manual. Automatic updates are not supported.
Prerequisites
-
You have access to the cluster as a user with the
cluster-adminrole.
Procedure
Create an
osc-namespace.yamlmanifest file:apiVersion: v1 kind: Namespace metadata: name: openshift-sandboxed-containers-operator
apiVersion: v1 kind: Namespace metadata: name: openshift-sandboxed-containers-operatorCopy to Clipboard Copied! Toggle word wrap Toggle overflow Create the namespace by running the following command:
oc apply -f osc-namespace.yaml
$ oc apply -f osc-namespace.yamlCopy to Clipboard Copied! Toggle word wrap Toggle overflow Create an
osc-operatorgroup.yamlmanifest file:Copy to Clipboard Copied! Toggle word wrap Toggle overflow Create the operator group by running the following command:
oc apply -f osc-operatorgroup.yaml
$ oc apply -f osc-operatorgroup.yamlCopy to Clipboard Copied! Toggle word wrap Toggle overflow Create an
osc-subscription.yamlmanifest file:Copy to Clipboard Copied! Toggle word wrap Toggle overflow Create the subscription by running the following command:
oc create -f osc-subscription.yaml
$ oc create -f osc-subscription.yamlCopy to Clipboard Copied! Toggle word wrap Toggle overflow Get the
InstallPlanCR for the OpenShift sandboxed containers Operator by running the following command:oc get installplan -n openshift-sandboxed-containers-operator
$ oc get installplan -n openshift-sandboxed-containers-operatorCopy to Clipboard Copied! Toggle word wrap Toggle overflow Installation example output
NAME CSV APPROVAL APPROVED install-bl4fl sandboxed-containers-operator.v1.11.1 Manual false
NAME CSV APPROVAL APPROVED install-bl4fl sandboxed-containers-operator.v1.11.1 Manual falseCopy to Clipboard Copied! Toggle word wrap Toggle overflow Upgrade example output
NAME CSV APPROVAL APPROVED install-jdzrb sandboxed-containers-operator.v1.11.1 Manual false install-pfk8l sandboxed-containers-operator.v1.10.3 Manual true
NAME CSV APPROVAL APPROVED install-jdzrb sandboxed-containers-operator.v1.11.1 Manual false install-pfk8l sandboxed-containers-operator.v1.10.3 Manual trueCopy to Clipboard Copied! Toggle word wrap Toggle overflow
Approve the manual installation by running the following command:
oc patch installplan <installplan_name> -p '{"spec":{"approved":true}}' --type=merge -n openshift-sandboxed-containers-operator$ oc patch installplan <installplan_name> -p '{"spec":{"approved":true}}' --type=merge -n openshift-sandboxed-containers-operatorCopy to Clipboard Copied! Toggle word wrap Toggle overflow <installplan_name>-
Specify the
InstallPlanresource. For example,install-jdzrb.
Verify that the Operator is correctly installed by running the following command:
oc get csv -n openshift-sandboxed-containers-operator
$ oc get csv -n openshift-sandboxed-containers-operatorCopy to Clipboard Copied! Toggle word wrap Toggle overflow This command can take several minutes to complete.
Watch the process by running the following command:
watch oc get csv -n openshift-sandboxed-containers-operator
$ watch oc get csv -n openshift-sandboxed-containers-operatorCopy to Clipboard Copied! Toggle word wrap Toggle overflow Example output
NAME DISPLAY VERSION REPLACES PHASE openshift-sandboxed-containers openshift-sandboxed-containers-operator 1.11.1 1.10.3 Succeeded
NAME DISPLAY VERSION REPLACES PHASE openshift-sandboxed-containers openshift-sandboxed-containers-operator 1.11.1 1.10.3 SucceededCopy to Clipboard Copied! Toggle word wrap Toggle overflow
4.4. Creating the peer pods secret Copy linkLink copied to clipboard!
You must create a peer pods secret. The secret stores credentials for creating the pod virtual machine (VM) image and peer pod instances.
Prerequisites
LIBVIRT_URI. This value is the default gateway IP address of the libvirt network. Check your libvirt network setup to obtain this value.NoteIf libvirt uses the default bridge virtual network, you can obtain the
LIBVIRT_URIby running the following commands:virtint=$(bridge_line=$(virsh net-info default | grep Bridge); echo "${bridge_line//Bridge:/}" | tr -d [:blank:]) LIBVIRT_URI=$( ip -4 addr show $virtint | grep -oP '(?<=inet\s)\d+(\.\d+){3}') LIBVIRT_GATEWAY_URI="qemu+ssh://root@${LIBVIRT_URI}/system?no_verify=1"$ virtint=$(bridge_line=$(virsh net-info default | grep Bridge); echo "${bridge_line//Bridge:/}" | tr -d [:blank:]) $ LIBVIRT_URI=$( ip -4 addr show $virtint | grep -oP '(?<=inet\s)\d+(\.\d+){3}') $ LIBVIRT_GATEWAY_URI="qemu+ssh://root@${LIBVIRT_URI}/system?no_verify=1"Copy to Clipboard Copied! Toggle word wrap Toggle overflow -
REDHAT_OFFLINE_TOKEN. You have generated this token to download the RHEL image at Red Hat API Tokens. -
HOST_KEY_CERTS. The Host Key Document (HKD) certificate enables secure execution on IBM Z®. For more information, see Obtaining a host key document from Resource Link in the IBM documentation.
Procedure
Create a
peer-pods-secret.yamlmanifest file according to the following example:Copy to Clipboard Copied! Toggle word wrap Toggle overflow Create the secret by running the following command:
oc create -f peer-pods-secret.yaml
$ oc create -f peer-pods-secret.yamlCopy to Clipboard Copied! Toggle word wrap Toggle overflow
4.5. Creating the osc-feature-gates config map Copy linkLink copied to clipboard!
You enable the confidential containers feature gate by creating the config map.
Procedure
Create a
my-feature-gate.yamlmanifest file:Copy to Clipboard Copied! Toggle word wrap Toggle overflow where
<deployment_mode>On OpenShift Container Platform clusters with the Machine Config Operator (MCO), the
deploymentModefield is optional and can be omitted. Specifies the strategy for installing and configuring the Kata runtime. Specify the deployment mode:-
MachineConfigfor clusters that always use the MCO -
DaemonSetfor clusters that never use the MCO -
DaemonSetFallbackfor clusters that sometimes use the MCO
-
Create the
my-feature-gatesconfig map by running the following command:oc create -f my-feature-gate.yaml
$ oc create -f my-feature-gate.yamlCopy to Clipboard Copied! Toggle word wrap Toggle overflow
4.6. Creating initdata Copy linkLink copied to clipboard!
You create initdata to securely initialize a pod with sensitive or workload-specific data at runtime, thus avoiding the need to embed this data in a virtual machine image. This approach provides additional security by reducing the risk of exposure of confidential information and eliminates the need for custom image builds.
You can specify initdata in the pods config map, for global configuration, or in a pod manifest, for a specific pod. The initdata value in a pod manifest overrides the value set in the pods config map.
In a production environment, you must create initdata to override the default permissive Kata agent policy.
You can specify initdata in the peer pods config map, for global configuration, or in a peer pod manifest, for a specific pod. The initdata value in a peer pod manifest overrides the value set in the peer pods config map.
You must delete the kbs_cert setting if you configure insecure_http = true in the kbs-config config map for Red Hat build of Trustee.
Procedure
Obtain the Red Hat build of Trustee IP address by running the following command:
oc get node $(oc get pod -n trustee-operator-system \ -o jsonpath='{.items[0].spec.nodeName}') \ -o jsonpath='{.status.addresses[?(@.type=="InternalIP")].address}'$ oc get node $(oc get pod -n trustee-operator-system \ -o jsonpath='{.items[0].spec.nodeName}') \ -o jsonpath='{.status.addresses[?(@.type=="InternalIP")].address}'Copy to Clipboard Copied! Toggle word wrap Toggle overflow Example output
192.168.122.22
192.168.122.22Copy to Clipboard Copied! Toggle word wrap Toggle overflow Obtain the port by running the following command:
oc get svc kbs-service -n trustee-operator-system
$ oc get svc kbs-service -n trustee-operator-systemCopy to Clipboard Copied! Toggle word wrap Toggle overflow Example output
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE kbs-service NodePort 172.30.116.11 <none> 8080:32178/TCP 12d
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE kbs-service NodePort 172.30.116.11 <none> 8080:32178/TCP 12dCopy to Clipboard Copied! Toggle word wrap Toggle overflow Create the
initdata.tomlfile:Copy to Clipboard Copied! Toggle word wrap Toggle overflow - url
-
Specify the Red Hat build of Trustee IP address and the port, for example,
https://192.168.122.22:32178. - <kbs_certificate>
- Specify the Base64-encoded TLS certificate for the attestation agent.
- kbs_cert
-
Delete the
kbs_certsetting if you configureinsecure_http = truein thekbs-configconfig map for Red Hat build of Trustee. - image_security_policy_uri
-
Optional, only if you enabled the container image signature verification policy. Replace
<secret-policy-name>and<key>with the secret name and key, respectively specified in Creating the KbsConfig custom resource.
Convert the
initdata.tomlfile to a gzipped, Base64-encoded string in a text file by running the following command:cat initdata.toml | gzip | base64 -w0 > initdata.txt
$ cat initdata.toml | gzip | base64 -w0 > initdata.txtCopy to Clipboard Copied! Toggle word wrap Toggle overflow Record this string to use in the peer pods config map or the peer pod manifest.
4.7. Creating the peer pods config map Copy linkLink copied to clipboard!
You must create the peer pods config map.
Optional: Add initdata to the peer pods config map to create a default configuration for all peer pods.
Procedure
Create a
peer-pods-cm.yamlmanifest file according to the following example:Copy to Clipboard Copied! Toggle word wrap Toggle overflow LIBVIRT_POOL- If you have manually configured the libvirt pool, use the same name as in your KVM host configuration.
LIBVIRT_VOL_NAME- If you have manually configured the libvirt volume, use the same name as in your KVM host configuration.
LIBVIRT_DIR_NAME-
Specify the libvirt directory for storing virtual machine disk images, such as
.qcow2, or.rawfiles. To ensure libvirt has read and write access permissions, use a subdirectory of the libvirt storage directory. The default is/var/lib/libvirt/images/. LIBVIRT_NET- Specify a libvirt network if you do not want to use the default network.
PEERPODS_LIMIT_PER_NODE-
You can increase this value to run more peer pods on a node. The default value is
10. ROOT_VOLUME_SIZE- You can increase this value for pods with larger container images. Specify the root volume size in gigabytes for the pod VM. The default and minimum size is 6 GB.
- INITDATA
- Specify the initdata string to create a default configuration for all peer pods. If you add initdata to a peer pod manifest, that setting overrides this global configuration.
Create the config map by running the following command:
oc create -f peer-pods-cm.yaml
$ oc create -f peer-pods-cm.yamlCopy to Clipboard Copied! Toggle word wrap Toggle overflow
4.8. Applying initdata to a pod Copy linkLink copied to clipboard!
You can override the global INITDATA setting you applied in the peer pods config map by applying customized initdata to a specific pod for special use cases, such as development and testing with a relaxed policy, or when using different Red Hat build of Trustee configurations. You can customize initdata by adding an annotation to the workload pod YAML.
Prerequisite
- You have created an initdata string.
Procedure
Add the initdata string to the pod manifest:
Copy to Clipboard Copied! Toggle word wrap Toggle overflow Create the pod by running the following command:
oc create -f my-pod.yaml
$ oc create -f my-pod.yamlCopy to Clipboard Copied! Toggle word wrap Toggle overflow
4.9. Creating the KataConfig custom resource Copy linkLink copied to clipboard!
You must create the KataConfig custom resource (CR) to install kata-remote as a runtime class on your worker nodes.
OpenShift sandboxed containers installs kata-remote as a secondary, optional runtime on the cluster and not as the primary runtime.
Creating the KataConfig CR automatically reboots the worker nodes. The reboot can take from 10 to more than 60 minutes. The following factors can increase the reboot time:
- A large OpenShift Container Platform deployment with a greater number of worker nodes.
- Activation of the BIOS and Diagnostics utility.
- Deployment on a hard disk drive rather than an SSD.
- Deployment on physical nodes such as bare metal, rather than on virtual nodes.
- A slow CPU and network.
Procedure
Create an
example-kataconfig.yamlmanifest file according to the following example:Copy to Clipboard Copied! Toggle word wrap Toggle overflow - 1
- Optional: If you have applied node labels to install
kata-remoteon specific nodes, specify the key and value, for example,cc: 'true'.
Create the
KataConfigCR by running the following command:oc create -f example-kataconfig.yaml
$ oc create -f example-kataconfig.yamlCopy to Clipboard Copied! Toggle word wrap Toggle overflow The new
KataConfigCR is created and installskata-remoteas a runtime class on the worker nodes.Wait for the
kata-remoteinstallation to complete and the worker nodes to reboot before verifying the installation.Monitor the installation progress by running the following command:
watch "oc describe kataconfig | sed -n /^Status:/,/^Events/p"
$ watch "oc describe kataconfig | sed -n /^Status:/,/^Events/p"Copy to Clipboard Copied! Toggle word wrap Toggle overflow When the status of all workers under
kataNodesisinstalledand the conditionInProgressisFalsewithout specifying a reason, thekata-remoteis installed on the cluster.Verify that you have built the peer pod image and uploaded it to the libvirt volume by running the following command:
oc describe configmap peer-pods-cm -n openshift-sandboxed-containers-operator
$ oc describe configmap peer-pods-cm -n openshift-sandboxed-containers-operatorCopy to Clipboard Copied! Toggle word wrap Toggle overflow Example output
Copy to Clipboard Copied! Toggle word wrap Toggle overflow Monitor the
kata-ocmachine config pool progress to ensure that it is in theUPDATEDstate, whenUPDATEDMACHINECOUNTequalsMACHINECOUNT, by running the following command:watch oc get mcp/kata-oc
$ watch oc get mcp/kata-ocCopy to Clipboard Copied! Toggle word wrap Toggle overflow Verify the daemon set by running the following command:
oc get -n openshift-sandboxed-containers-operator ds/osc-caa-ds
$ oc get -n openshift-sandboxed-containers-operator ds/osc-caa-dsCopy to Clipboard Copied! Toggle word wrap Toggle overflow Verify the runtime classes by running the following command:
oc get runtimeclass
$ oc get runtimeclassCopy to Clipboard Copied! Toggle word wrap Toggle overflow Example output
NAME HANDLER AGE kata-remote kata-remote 152m
NAME HANDLER AGE kata-remote kata-remote 152mCopy to Clipboard Copied! Toggle word wrap Toggle overflow
4.10. Verifying attestation Copy linkLink copied to clipboard!
You can verify the attestation process by creating a BusyBox pod. The pod image deploys the confidential workload where you can retrieve the key.
This procedure is an example to verify that attestation is working. Do not write sensitive data to standard I/O, because the data can be captured by using a memory dump. Only data written to memory is encrypted.
Procedure
Create a
test-pod.yamlmanifest file:Copy to Clipboard Copied! Toggle word wrap Toggle overflow - 1
- Optional: Setting initdata in a pod annotation overrides the global
INITDATAsetting in the peer pods config map.
Create the pod by running the following command:
oc create -f test-pod.yaml
$ oc create -f test-pod.yamlCopy to Clipboard Copied! Toggle word wrap Toggle overflow Log in to the pod by running the following command:
oc exec -it busybox -n default -- /bin/sh
$ oc exec -it busybox -n default -- /bin/shCopy to Clipboard Copied! Toggle word wrap Toggle overflow Fetch the Red Hat build of Trustee resource by running the following command:
wget http://127.0.0.1:8006/cdh/resource/default/kbsres1/key1
$ wget http://127.0.0.1:8006/cdh/resource/default/kbsres1/key1Copy to Clipboard Copied! Toggle word wrap Toggle overflow Example output
Connecting to 127.0.0.1:8006 (127.0.0.1:8006) saving to 'key1' key1 100% |*******************************************| 8 0:00:00 ETA 'key1' saved
Connecting to 127.0.0.1:8006 (127.0.0.1:8006) saving to 'key1' key1 100% |*******************************************| 8 0:00:00 ETA 'key1' savedCopy to Clipboard Copied! Toggle word wrap Toggle overflow Display the
key1value by running the following command:cat key1
$ cat key1Copy to Clipboard Copied! Toggle word wrap Toggle overflow Example output
success #/
success #/Copy to Clipboard Copied! Toggle word wrap Toggle overflow
Chapter 5. Deploying confidential containers on IBM Z and IBM LinuxONE bare-metal servers Copy linkLink copied to clipboard!
You can deploy confidential containers workloads on a Red Hat OpenShift Container Platform cluster running on IBM Z® and IBM® LinuxONE bare-metal servers.
In the bare metal approach, you launch confidential containers virtual machines (VMs) directly on a logical partition (LPAR) that is booted with Red Hat Enterprise Linux CoreOS (RHCOS). The LPAR acts as a compute node in the cluster, providing a dedicated environment for running confidential workloads.
This approach eliminates the need for intermediate peer pod components, resulting in faster boot times, quicker recovery from failures, and simpler storage integration. As a result, it is suitable for production workloads that require high performance, consistent storage behaviour, and resource management that aligns with Kubernetes standards.
Confidential containers on IBM Z® and IBM® LinuxONE bare-metal servers is a Technology Preview feature only. Technology Preview features are not supported with Red Hat production service level agreements (SLAs) and might not be functionally complete. Red Hat does not recommend using them in production. These features provide early access to upcoming product features, enabling customers to test functionality and provide feedback during the development process.
For more information about the support scope of Red Hat Technology Preview features, see Technology Preview Features Support Scope.
5.1. Preparation Copy linkLink copied to clipboard!
Review these prerequisites and concepts before you deploy confidential containers on IBM Z® and IBM® LinuxONE bare-metal servers.
5.1.1. Prerequisites Copy linkLink copied to clipboard!
- You have deployed Red Hat build of Trustee on an OpenShift Container Platform cluster in a trusted environment. For more information, see Deploying Red Hat build of Trustee.
- You have installed the latest version of Red Hat OpenShift Container Platform on the cluster where you are running your confidential containers workload.
5.1.2. Initdata Copy linkLink copied to clipboard!
The initdata specification provides a flexible way to initialize a pod with workload-specific data at runtime, avoiding the need to embed such data in the virtual machine (VM) image.
This approach enhances security by reducing the exposure of confidential information and improves flexibility by eliminating custom image builds. For example, initdata can include three configuration settings:
- An X.509 certificate for secure communication.
- A cryptographic key for authentication.
-
An optional Kata Agent
policy.regofile to enforce runtime behavior when overriding the default Kata Agent policy.
The initdata content configures the following components:
- Attestation Agent (AA), which verifies the trustworthiness of the pod by sending evidence for attestation.
- Confidential Data Hub (CDH), which manages secrets and secure data access within the pod VM.
- Kata Agent, which enforces runtime policies and manages the lifecycle of the containers inside the pod VM.
You create an initdata.toml file and convert it to a Base64-encoded, gzip-format string.
You add the initdata string as an annotation to a pod manifest, allowing customization for individual workloads.
5.2. Deployment overview Copy linkLink copied to clipboard!
You deploy confidential containers on IBM Z® and IBM® LinuxONE bare-metal servers by performing the following steps:
- Install the OpenShift sandboxed containers Operator.
- Configure auto-detection of TEEs.
- Enable the confidential containers feature gate.
- Create initdata to initialize a peer pod with sensitive or workload-specific data at runtime.
- Upload a Secure Execution image to the container registry.
-
Create the
kata-addon-artifactsconfig map. Create initdata to initialize a pod with sensitive or workload-specific data at runtime.
ImportantDo not use the default permissive Kata Agent policy in a production environment. You must configure a restrictive policy, preferably by creating initdata.
As a minimum requirement, you must disable
ExecProcessRequestto prevent a cluster administrator from accessing sensitive data by running theoc execcommand on a confidential containers pod.- Apply initdata to a pod.
-
Create the
KataConfigCR. - Verify the attestation process.
5.3. Installing and upgrading the OpenShift sandboxed containers Operator Copy linkLink copied to clipboard!
You can install or upgrade the OpenShift sandboxed containers Operator by using the command line interface (CLI).
You must configure the OpenShift sandboxed containers Operator subscription for manual updates by setting the value of installPlanApproval to Manual. Automatic updates are not supported.
Prerequisites
-
You have access to the cluster as a user with the
cluster-adminrole.
Procedure
Create an
osc-namespace.yamlmanifest file:apiVersion: v1 kind: Namespace metadata: name: openshift-sandboxed-containers-operator
apiVersion: v1 kind: Namespace metadata: name: openshift-sandboxed-containers-operatorCopy to Clipboard Copied! Toggle word wrap Toggle overflow Create the namespace by running the following command:
oc apply -f osc-namespace.yaml
$ oc apply -f osc-namespace.yamlCopy to Clipboard Copied! Toggle word wrap Toggle overflow Create an
osc-operatorgroup.yamlmanifest file:Copy to Clipboard Copied! Toggle word wrap Toggle overflow Create the operator group by running the following command:
oc apply -f osc-operatorgroup.yaml
$ oc apply -f osc-operatorgroup.yamlCopy to Clipboard Copied! Toggle word wrap Toggle overflow Create an
osc-subscription.yamlmanifest file:Copy to Clipboard Copied! Toggle word wrap Toggle overflow Create the subscription by running the following command:
oc create -f osc-subscription.yaml
$ oc create -f osc-subscription.yamlCopy to Clipboard Copied! Toggle word wrap Toggle overflow Get the
InstallPlanCR for the OpenShift sandboxed containers Operator by running the following command:oc get installplan -n openshift-sandboxed-containers-operator
$ oc get installplan -n openshift-sandboxed-containers-operatorCopy to Clipboard Copied! Toggle word wrap Toggle overflow Installation example output
NAME CSV APPROVAL APPROVED install-bl4fl sandboxed-containers-operator.v1.11.1 Manual false
NAME CSV APPROVAL APPROVED install-bl4fl sandboxed-containers-operator.v1.11.1 Manual falseCopy to Clipboard Copied! Toggle word wrap Toggle overflow Upgrade example output
NAME CSV APPROVAL APPROVED install-jdzrb sandboxed-containers-operator.v1.11.1 Manual false install-pfk8l sandboxed-containers-operator.v1.10.3 Manual true
NAME CSV APPROVAL APPROVED install-jdzrb sandboxed-containers-operator.v1.11.1 Manual false install-pfk8l sandboxed-containers-operator.v1.10.3 Manual trueCopy to Clipboard Copied! Toggle word wrap Toggle overflow
Approve the manual installation by running the following command:
oc patch installplan <installplan_name> -p '{"spec":{"approved":true}}' --type=merge -n openshift-sandboxed-containers-operator$ oc patch installplan <installplan_name> -p '{"spec":{"approved":true}}' --type=merge -n openshift-sandboxed-containers-operatorCopy to Clipboard Copied! Toggle word wrap Toggle overflow <installplan_name>-
Specify the
InstallPlanresource. For example,install-jdzrb.
Verify that the Operator is correctly installed by running the following command:
oc get csv -n openshift-sandboxed-containers-operator
$ oc get csv -n openshift-sandboxed-containers-operatorCopy to Clipboard Copied! Toggle word wrap Toggle overflow This command can take several minutes to complete.
Watch the process by running the following command:
watch oc get csv -n openshift-sandboxed-containers-operator
$ watch oc get csv -n openshift-sandboxed-containers-operatorCopy to Clipboard Copied! Toggle word wrap Toggle overflow Example output
NAME DISPLAY VERSION REPLACES PHASE openshift-sandboxed-containers openshift-sandboxed-containers-operator 1.11.1 1.10.3 Succeeded
NAME DISPLAY VERSION REPLACES PHASE openshift-sandboxed-containers openshift-sandboxed-containers-operator 1.11.1 1.10.3 SucceededCopy to Clipboard Copied! Toggle word wrap Toggle overflow
5.4. Configuring auto-detection of TEEs Copy linkLink copied to clipboard!
You must configure your nodes so that the OpenShift sandboxed containers Operator can detect the Trusted Execution Environments (TEEs).
You label the nodes by installing and configuring the Node Feature Discovery (NFD) Operator.
5.4.1. Creating a NodeFeatureDiscovery custom resource Copy linkLink copied to clipboard!
Prerequisites
- You have installed the NFD Operator. For more information, see Node Feature Discovery Operator in the OpenShift Container Platform documentation.
Procedure
Create a
my-nfd.yamlmanifest file according to the following example:Copy to Clipboard Copied! Toggle word wrap Toggle overflow Create the
NodeFeatureDiscoveryCR:oc create -f my-nfd.yaml
$ oc create -f my-nfd.yamlCopy to Clipboard Copied! Toggle word wrap Toggle overflow
5.4.2. Creating the NodeFeatureRule custom resource Copy linkLink copied to clipboard!
Procedure
Create a custom resource manifest named
my-nodefeaturerule.yamlfor your TEE:Copy to Clipboard Copied! Toggle word wrap Toggle overflow Create the
NodeFeatureRuleCR by running the following command:oc create -f my-nodefeaturerule.yaml
$ oc create -f my-nodefeaturerule.yamlCopy to Clipboard Copied! Toggle word wrap Toggle overflow
A relabeling delay of up to 1 minute might occur.
5.5. Creating the osc-feature-gates config map Copy linkLink copied to clipboard!
You enable the confidential containers feature gate by creating the config map.
Bare metal solutions on IBM Z® and IBM® LinuxONE now support only a DaemonSet deployment approach. This method uses the prebuilt image pull process to ensure the virtual machine (VM) runs a Secure Execution-enabled kernel image.
Procedure
Create a
my-feature-gate.yamlmanifest file:Copy to Clipboard Copied! Toggle word wrap Toggle overflow where
<deployment_mode>On OpenShift Container Platform clusters with the Machine Config Operator (MCO), the
deploymentModefield is optional and can be omitted. Specifies the strategy for installing and configuring the Kata runtime. Specify the deployment mode:-
MachineConfigfor clusters that always use the MCO -
DaemonSetfor clusters that never use the MCO -
DaemonSetFallbackfor clusters that sometimes use the MCO
-
Create the
my-feature-gatesconfig map by running the following command:oc create -f my-feature-gate.yaml
$ oc create -f my-feature-gate.yamlCopy to Clipboard Copied! Toggle word wrap Toggle overflow
5.6. Uploading a Secure Execution image to the container registry Copy linkLink copied to clipboard!
You can either use a custom Secure Execution image or an IBM® Hyper Protect Confidential Container (HPCC) image to deploy confidential containers on IBM Z and IBM LinuxONE bare-metal servers.
You must build a Secure Execution image, create a Dockerfile and push the image to your container registry.
Procedure
- Build a Secure Execution image.
Create a
Dockerfilefile for the Secure Execution image:FROM alpine:3.20 RUN mkdir -p /images COPY ./<image_name> /images/<image_name> RUN chmod 644 /images/<image_name>
FROM alpine:3.20 RUN mkdir -p /images COPY ./<image_name> /images/<image_name> RUN chmod 644 /images/<image_name>Copy to Clipboard Copied! Toggle word wrap Toggle overflow <image_name>-
Specify the custom Secure Execution image name. For example,
se.img.
Build a container image with a custom tag from the
Dockerfile:docker build -t <registry_name>/<user_name>/kata-se-artifacts:<image_tag> .
$ docker build -t <registry_name>/<user_name>/kata-se-artifacts:<image_tag> .Copy to Clipboard Copied! Toggle word wrap Toggle overflow Push the container image to your registry:
docker push <registry_name>/<user_name>/kata-se-artifacts:<image_tag>
$ docker push <registry_name>/<user_name>/kata-se-artifacts:<image_tag>Copy to Clipboard Copied! Toggle word wrap Toggle overflow
5.7. Creating the kata-addon-artifacts config map Copy linkLink copied to clipboard!
You must create the kata-addon-artifacts config map to enable the use of custom kernel artifacts from container images when deploying in daemon set mode.
If you are using the IBM® Hyper Protect Confidential Container (HPCC) image, see IBM HPCC documentation for further procedure information.
Procedure
Create the
kata-addon-artifacts.yamlmanifest file:Copy to Clipboard Copied! Toggle word wrap Toggle overflow <container_image_path>-
Specify the path to your container image in the registry. For example,
quay.io/openshift_sandboxed_containers/kata-se-artifacts:v1.0. <kernel_path>-
Specify the kernel path inside the image. For example,
/images/se.img.
Create the
kata-addon-artifactsconfig map by running the following command:oc create -f kata-addon-artifacts.yaml
$ oc create -f kata-addon-artifacts.yamlCopy to Clipboard Copied! Toggle word wrap Toggle overflow
5.8. Creating initdata Copy linkLink copied to clipboard!
You create initdata to securely initialize a pod with sensitive or workload-specific data at runtime, thus avoiding the need to embed this data in a virtual machine image. This approach provides additional security by reducing the risk of exposure of confidential information and eliminates the need for custom image builds.
You can specify initdata in the pods config map, for global configuration, or in a pod manifest, for a specific pod. The initdata value in a pod manifest overrides the value set in the pods config map.
In a production environment, you must create initdata to override the default permissive Kata agent policy.
You can specify initdata in the pod manifest, for a specific pod.
You must delete the kbs_cert setting if you configure insecure_http = true in the kbs-config config map for Red Hat build of Trustee.
Procedure
Obtain the Red Hat build of Trustee IP address by running the following command:
oc get node $(oc get pod -n trustee-operator-system \ -o jsonpath='{.items[0].spec.nodeName}') \ -o jsonpath='{.status.addresses[?(@.type=="InternalIP")].address}'$ oc get node $(oc get pod -n trustee-operator-system \ -o jsonpath='{.items[0].spec.nodeName}') \ -o jsonpath='{.status.addresses[?(@.type=="InternalIP")].address}'Copy to Clipboard Copied! Toggle word wrap Toggle overflow Example output
192.168.122.22
192.168.122.22Copy to Clipboard Copied! Toggle word wrap Toggle overflow Obtain the port by running the following command:
oc get svc kbs-service -n trustee-operator-system
$ oc get svc kbs-service -n trustee-operator-systemCopy to Clipboard Copied! Toggle word wrap Toggle overflow Example output
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE kbs-service NodePort 172.30.116.11 <none> 8080:32178/TCP 12d
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE kbs-service NodePort 172.30.116.11 <none> 8080:32178/TCP 12dCopy to Clipboard Copied! Toggle word wrap Toggle overflow Create the
initdata.tomlfile:Copy to Clipboard Copied! Toggle word wrap Toggle overflow - url
- Specify the Red Hat build of Trustee
- <kbs_certificate>
- Specify the Base64-encoded TLS certificate for the attestation agent.
- kbs_cert
-
Delete the
kbs_certsetting if you configureinsecure_http = truein thekbs-configconfig map for Red Hat build of Trustee. - image_security_policy_uri
-
Optional, only if you enabled the container image signature verification policy. Replace
<secret-policy-name>and<key>with the secret name and key, respectively specified in Creating the KbsConfig custom resource.
Convert the
initdata.tomlfile to a gzipped, Base64-encoded string in a text file by running the following command:cat initdata.toml | gzip | base64 -w0 > initdata.txt
$ cat initdata.toml | gzip | base64 -w0 > initdata.txtCopy to Clipboard Copied! Toggle word wrap Toggle overflow Record this string to use in the pod manifest.
5.9. Applying initdata to a pod Copy linkLink copied to clipboard!
You can override the global INITDATA setting by applying customized initdata to a specific pod for special use cases, such as development and testing with a relaxed policy, or when using different Red Hat build of Trustee configurations. You can customize initdata by adding an annotation to the workload pod YAML.
Prerequisite
- You have created an initdata string.
Procedure
Add the initdata string to the pod manifest:
Copy to Clipboard Copied! Toggle word wrap Toggle overflow Create the pod by running the following command:
oc create -f my-pod.yaml
$ oc create -f my-pod.yamlCopy to Clipboard Copied! Toggle word wrap Toggle overflow
5.10. Creating the KataConfig custom resource Copy linkLink copied to clipboard!
You must create the KataConfig custom resource (CR) to install kata-cc as a runtime class on your worker nodes.
OpenShift sandboxed containers installs kata-cc as a secondary, optional runtime on the cluster and not as the primary runtime.
Creating the KataConfig CR automatically reboots the worker nodes. The reboot can take from 10 to more than 60 minutes. The following factors can increase the reboot time:
- A large OpenShift Container Platform deployment with a greater number of worker nodes.
- Activation of the BIOS and Diagnostics utility.
- Deployment on a hard disk drive rather than an SSD.
- Deployment on physical nodes such as bare metal, rather than on virtual nodes.
- A slow CPU and network.
Procedure
Create an
example-kataconfig.yamlmanifest file according to the following example:Copy to Clipboard Copied! Toggle word wrap Toggle overflow - 1
- Optional: If you have applied node labels to install
kata-ccon specific nodes, specify the key and value, for example,cc: 'true'.
Create the
KataConfigCR by running the following command:oc create -f example-kataconfig.yaml
$ oc create -f example-kataconfig.yamlCopy to Clipboard Copied! Toggle word wrap Toggle overflow The new
KataConfigCR is created and installskata-ccas a runtime class on the worker nodes.Wait for the
kata-ccinstallation to complete and the worker nodes to reboot before verifying the installation.Monitor the installation progress by running the following command:
watch "oc describe kataconfig | sed -n /^Status:/,/^Events/p"
$ watch "oc describe kataconfig | sed -n /^Status:/,/^Events/p"Copy to Clipboard Copied! Toggle word wrap Toggle overflow When the status of all workers under
kataNodesisinstalledand the conditionInProgressisFalsewithout specifying a reason, thekata-ccis installed on the cluster.Verify the runtime classes by running the following command:
oc get runtimeclass
$ oc get runtimeclassCopy to Clipboard Copied! Toggle word wrap Toggle overflow Example output
NAME HANDLER AGE kata-cc kata-se 152m
NAME HANDLER AGE kata-cc kata-se 152mCopy to Clipboard Copied! Toggle word wrap Toggle overflow
5.11. Verifying attestation Copy linkLink copied to clipboard!
You can verify the attestation process by creating a test pod to retrieve a specific resource from Red Hat build of Trustee.
This procedure is an example to verify that attestation is working. Do not write sensitive data to standard I/O, because the data can be captured by using a memory dump. Only data written to memory is encrypted.
Procedure
Create a
test-pod.yamlmanifest file:Copy to Clipboard Copied! Toggle word wrap Toggle overflow Create the pod by running the following command:
oc create -f test-pod.yaml
$ oc create -f test-pod.yamlCopy to Clipboard Copied! Toggle word wrap Toggle overflow Log in to the pod by running the following command:
oc exec -it ocp-cc-pod -- bash
$ oc exec -it ocp-cc-pod -- bashCopy to Clipboard Copied! Toggle word wrap Toggle overflow Fetch the Red Hat build of Trustee resource by running the following command:
curl http://127.0.0.1:8006/cdh/resource/default/attestation-status/status
$ curl http://127.0.0.1:8006/cdh/resource/default/attestation-status/statusCopy to Clipboard Copied! Toggle word wrap Toggle overflow Example output
success #/
success #/Copy to Clipboard Copied! Toggle word wrap Toggle overflow
Chapter 6. Uninstalling confidential containers Copy linkLink copied to clipboard!
You uninstall confidential containers by uninstalling OpenShift sandboxed containers and its components on your workload cluster.
Then, you uninstall the Red Hat build of Trustee Operator and its components. See Uninstalling Red Hat build of Trustee for details.
You uninstall OpenShift sandboxed containers by performing the following tasks:
- Delete the workload pods.
-
Delete the
KataConfigcustom resource (CR). - Uninstall the OpenShift sandboxed containers Operator.
-
Delete the
KataConfigcustom resource definition (CRD).
You must delete the workload pods before deleting the KataConfig CR. The pod names usually have the prefix podvm and custom tags, if provided. If you deployed OpenShift sandboxed containers on a cloud provider and any resources remain after following these procedures, you might receive an unexpected bill for those resources from your cloud provider. Once you complete uninstalling OpenShift sandboxed containers on a cloud provider, check the cloud provider console to ensure that the procedures deleted all of the resources.
6.1. Deleting workload pods Copy linkLink copied to clipboard!
You can delete the OpenShift sandboxed containers workload pods by using the CLI.
Prerequisites
-
You have the JSON processor (
jq) utility installed.
Procedure
Search for the pods by running the following command:
oc get pods -A -o json | jq -r '.items[] | \ select(.spec.runtimeClassName == "<runtime>").metadata.name'
$ oc get pods -A -o json | jq -r '.items[] | \ select(.spec.runtimeClassName == "<runtime>").metadata.name'Copy to Clipboard Copied! Toggle word wrap Toggle overflow Delete each pod by running the following command:
oc delete pod <pod>
$ oc delete pod <pod>Copy to Clipboard Copied! Toggle word wrap Toggle overflow
When uninstalling OpenShift sandboxed containers deployed using a cloud provider, you must delete all of the pods. Any remaining pod resources might result in an unexpected bill from your cloud provider.
6.2. Deleting the KataConfig custom resource Copy linkLink copied to clipboard!
You delete the KataConfig custom resource (CR) by using the command line.
Procedure
Delete the
KataConfigCR by running the following command:oc delete kataconfig example-kataconfig
$ oc delete kataconfig example-kataconfigCopy to Clipboard Copied! Toggle word wrap Toggle overflow Verify the CR removal by running the following command:
oc get kataconfig example-kataconfig
$ oc get kataconfig example-kataconfigCopy to Clipboard Copied! Toggle word wrap Toggle overflow Example output
No example-kataconfig instances exist
No example-kataconfig instances existCopy to Clipboard Copied! Toggle word wrap Toggle overflow
You must ensure that all pods are deleted. Any remaining pod resources might result in an unexpected bill from your cloud provider.
6.3. Uninstalling the OpenShift sandboxed containers Operator Copy linkLink copied to clipboard!
You uninstall the OpenShift sandboxed containers Operator by using the command line.
Procedure
Delete the subscription by running the following command:
oc delete subscription sandboxed-containers-operator -n openshift-sandboxed-containers-operator
$ oc delete subscription sandboxed-containers-operator -n openshift-sandboxed-containers-operatorCopy to Clipboard Copied! Toggle word wrap Toggle overflow Delete the namespace by running the following command:
oc delete namespace openshift-sandboxed-containers-operator
$ oc delete namespace openshift-sandboxed-containers-operatorCopy to Clipboard Copied! Toggle word wrap Toggle overflow
6.4. Deleting the KataConfig CRD Copy linkLink copied to clipboard!
You delete the KataConfig custom resource definition (CRD) by using the command line.
Prerequisites
-
You have deleted the
KataConfigcustom resource. - You have uninstalled the OpenShift sandboxed containers Operator.
Procedure
Delete the
KataConfigCRD by running the following command:oc delete crd kataconfigs.kataconfiguration.openshift.io
$ oc delete crd kataconfigs.kataconfiguration.openshift.ioCopy to Clipboard Copied! Toggle word wrap Toggle overflow Verify that the CRD was deleted by running the following command:
oc get crd kataconfigs.kataconfiguration.openshift.io
$ oc get crd kataconfigs.kataconfiguration.openshift.ioCopy to Clipboard Copied! Toggle word wrap Toggle overflow Example output
Unknown CRD kataconfigs.kataconfiguration.openshift.io
Unknown CRD kataconfigs.kataconfiguration.openshift.ioCopy to Clipboard Copied! Toggle word wrap Toggle overflow