Search

RHACS Cloud Service

download PDF
Red Hat Advanced Cluster Security for Kubernetes 4.1

About the RHACS Cloud Service

Red Hat OpenShift Documentation Team

Abstract

Guidance on understanding the RHACS Cloud Service.

Chapter 1. RHACS Cloud Service service description

1.1. Introduction to RHACS

Red Hat Advanced Cluster Security for Kubernetes (RHACS) is an enterprise-ready, Kubernetes-native container security solution that helps you build, deploy, and run cloud-native applications more securely.

Red Hat Advanced Cluster Security Cloud Service (RHACS Cloud Service) provides Kubernetes-native security as a service. With RHACS Cloud Service, Red Hat maintains, upgrades, and manages your Central services.

Central services include the user interface (UI), data storage, RHACS application programming interface (API), and image scanning capabilities. You deploy your Central service through the Red Hat Hybrid Cloud Console. When you create a new ACS instance, Red Hat creates your individual control plane for RHACS.

RHACS Cloud Service allows you to secure self-managed clusters that communicate with a Central instance. The clusters you secure, called Secured Clusters, are managed by you, and not by Red Hat. Secured Cluster services include optional vulnerability scanning services, admission control services, and data collection services used for runtime monitoring and compliance. You install Secured Cluster services on any OpenShift or Kubernetes cluster you want to secure.

1.2. Billing

Customers can purchase a RHACS Cloud Service subscription on the Amazon Web Services (AWS) marketplace. The service cost is charged hourly per secured core, or vCPU of a node belonging to a secured cluster.

Example 1.1. Subscription cost example

If you have established a connection to two secured clusters, each with 5 identical nodes with 8 vCPUs (such as Amazon EC2 m7g.2xlarge), the total number of secured cores is 80 (2 x 5 x 8 = 80).

1.3. Security and Compliance

All Red Hat Advanced Cluster Security Cloud Service (RHACS Cloud Service) data in the Central instance is encrypted in transit and at rest. The data is stored in secure storage with full replication and high availability together with regularly scheduled backups. The RHACS Cloud Service is available through cloud data centers that ensure optimal performance and the ability to meet data residency requirements.

1.3.1. Authentication provider

When you create a Central instance using Red Hat Hybrid Cloud Console, authentication for the cluster administrator is configured as part of the process. Customers must manage all access to the Central instance as part of their integrated solution. For more information about the available authentication methods, see Understanding authentication providers.

The default identity provider in RHACS Cloud Service is Red Hat Single Sign-On (SSO). For more information about authentication using Red Hat SSO, see Default access to ACS Console.

1.3.2. Regulatory compliance

For the latest regulatory compliance information, see Understanding process and security for OpenShift Dedicated.

1.4. Metrics and Logging

1.4.1. Service metrics

Service metrics are internal only. Red Hat provides and maintains the service at the agreed upon level. Service metrics are accessible only to authorized Red Hat personnel. For more information, see PRODUCT APPENDIX 4 RED HAT ONLINE SERVICES.

1.4.2. Customer metrics

Core usage capacity metrics are available either through Subscription Watch or the Subscriptions page.

1.4.3. Service logging

System logs for all components of the Red Hat Advanced Cluster Security Cloud Service (RHACS Cloud Service) are internal and available only to Red Hat personnel. Red Hat does not provide user access to component logs. For more information, see PRODUCT APPENDIX 4 RED HAT ONLINE SERVICES.

1.5. Scalability and Service Level

Red Hat Advanced Cluster Security Cloud Service (RHACS Cloud Service) has set limits on the number of cores or clusters it can protect. The limits are based on the resources available in the Secured Cluster and the limits on usability.

1.5.1. Service Level Objective and Agreement

For more information about Service Level Objectives (SLOs) and Service Level Agreements (SLAs), see PRODUCT APPENDIX 4 RED HAT ONLINE SERVICES.

1.6. Updates and Upgrades

Red Hat makes a commercially reasonable effort to notify customers prior to updates and upgrades that impact service. The decision regarding the need for a Service update to the Central instance and its timing is the sole responsibility of Red Hat.

Customers have no control over when a Central service update occurs. For more information, see PRODUCT APPENDIX 4 RED HAT ONLINE SERVICES. Upgrades to the version of Red Hat Advanced Cluster Security Cloud Service (RHACS Cloud Service) are considered part of the service update.

The version of RHACS Cloud Service used on Secured Clusters must match the version of the Central instance of RHACS Cloud Service to ensure compatibility. Customers are responsible for Secured Cluster services upgrades required to maintain this version compatibility.

1.7. Availability

Availability and disaster avoidance are extremely important aspects of any security platform. Red Hat Advanced Cluster Security Cloud Service (RHACS Cloud Service) provides numerous protections against failures at multiple levels. To account for possible cloud provider failures, Red Hat established multiple availability zones.

1.7.1. Backup and Disaster Recovery

All RHACS Cloud Service clusters are backed up using Database backups. This also applies to customer data stored in the Central database.

All snapshots are created using the appropriate cloud provider snapshot APIs, encrypted and then uploaded to secure object storage, which for Amazon Web Services (AWS) is an S3 bucket.

  • Red Hat does not commit to a Recovery Point Objective (RPO) or Recovery Time Objective (RTO). For more information, see PRODUCT APPENDIX 4 RED HAT ONLINE SERVICES.
  • Site Reliability Engineering performs backups only as a precautionary measure. They are stored in the same region as the cluster.
  • Customers should deploy multiple availability zone Secured Clusters with workloads that follow Kubernetes best practices to ensure high availability within a region.

1.7.2. Getting Support

The RHACS Cloud Service includes Red Hat Standard and Premium support, which you can access using the Red Hat Customer Portal. You can open support tickets for the product "Red Hat Advanced Cluster Security Cloud Service".

Red Hat support responds to support tickets submitted by Limited Availability customers, while Red Hat Site Reliability Engineers (SREs) proactively monitor the health of Red Hat Advanced Cluster Security Cloud Service (RHACS Cloud Service).

In addition, a Red Hat Business Unit Solution Architect (BU SA) acts as a hands-on technical liaison between customer experts, Red Hat support, and Red Hat SREs, supporting customers with limited availability.

1.7.3. Service Removal

You can delete RHACS Cloud Service using the default delete operations from the Red Hat Hybrid Cloud Console. Deleting the RHACS Cloud Service Central instance automatically removes all RHACS components. Deleting is not reversible.

1.8. Pricing

Red Hat does charge a subscription fee for Red Hat Advanced Cluster Security Cloud Service (RHACS Cloud Service) during the Limited Availability. For more information, see PRODUCT APPENDIX 4 RED HAT ONLINE SERVICES.

1.9. Service Level Agreement

For more information about the Service Level Agreements (SLAs) offered for Red Hat Advanced Cluster Security Cloud Service (RHACS Cloud Service), see PRODUCT APPENDIX 4 RED HAT ONLINE SERVICES.

1.10. Timelines

Limited Availability

Production support for Red Hat Advanced Cluster Security Cloud Service (RHACS Cloud Service) is offered to a limited number of customers. For more information, see PRODUCT APPENDIX 4 RED HAT ONLINE SERVICES.

General Availability

Production support for RHACS Cloud Service is offered to all RHACS Cloud Service customers. For more information, see PRODUCT APPENDIX 4 RED HAT ONLINE SERVICES.

Chapter 2. Getting started with RHACS Cloud Service

Red Hat Advanced Cluster Security Cloud Service (RHACS Cloud Service) provides security services for your Red Hat OpenShift and Kubernetes clusters. See Supported platforms and installation methods for more information on supported platforms for secured clusters.

Prerequisites

  • Ensure that you can access the Advanced Cluster Security menu option from the Red Hat Hybrid Cloud Console.

    Note

    To access the RHACS Cloud Service console, you need your Red Hat Single Sign-On (SSO) credentials, or credentials for another identity provider if that has been configured. See Default access to the ACS console.

2.1. High-level overview of installation steps

The following sections provide an overview of installation steps and links to the relevant documentation.

2.1.1. Securing Red Hat OpenShift clusters

To secure Red Hat OpenShift clusters by using the Operator, perform the following steps:

  1. Verify that the clusters you want to secure meet the requirements.
  2. In the Red Hat Hybrid Cloud Console, create an ACS Instance.
  3. On each Red Hat OpenShift cluster you want to secure, create a project named stackrox. This project will contain the resources for RHACS Cloud Service secured clusters.
  4. In the ACS Console, create an init bundle. The init bundle contains secrets that allow communication between RHACS Cloud Service secured clusters and the ACS Console.
  5. On each Red Hat OpenShift cluster, apply the init bundle by using it to create resources.
  6. On each Red Hat OpenShift cluster, install the RHACS Operator.
  7. On each Red Hat OpenShift cluster, install secured cluster resources in the stackrox project by using the Operator.
  8. Verify installation by ensuring that your secured clusters can communicate with the ACS instance.

To secure Red Hat OpenShift clusters by using Helm charts or the roxctl CLI, perform the following steps:

  1. Verify that the clusters you want to secure meet the requirements.
  2. In the Red Hat Hybrid Cloud Console, create an ACS Instance.
  3. On each Red Hat OpenShift cluster you want to secure, create a project named stackrox. This project will contain the resources for RHACS Cloud Service secured clusters.
  4. In the ACS Console, create an init bundle. The init bundle contains secrets that allow communication between RHACS Cloud Service secured clusters and the ACS Console.
  5. On each Red Hat OpenShift cluster, apply the init bundle by using it to create resources.
  6. On each Red Hat OpenShift cluster, install secured cluster resources in the stackrox project by using Helm charts or by using the roxctl CLI.
  7. Verify installation by ensuring that your secured clusters can communicate with the ACS instance.

2.1.2. Securing Kubernetes clusters

To secure Kubernetes clusters, perform the following steps:

  1. Verify that the clusters you want to secure meet the requirements.
  2. In the Red Hat Hybrid Cloud Console, create an ACS Instance.
  3. In the ACS Console, create an init bundle. The init bundle contains secrets that allow communication between RHACS Cloud Service secured clusters and the ACS Console.
  4. On each Kubernetes cluster, apply the init bundle by using it to create resources.
  5. On each Kubernetes cluster, install secured cluster resources by using Helm charts or the roxctl CLI.
  6. Verify installation by ensuring that your secured clusters can communicate with the ACS instance.

2.2. Default access to the ACS Console

By default, the authentication mechanism available to users is authentication by using Red Hat Single Sign-On (SSO). You cannot delete or change the Red Hat SSO authentication provider. However, you can change the minimum access role and add additional rules, or add another identity provider.

Note

To learn how authentication providers work in ACS, see Understanding authentication providers.

A dedicated OIDC client of sso.redhat.com is created for each ACS Console. All OIDC clients share the same sso.redhat.com realm. Claims from the token issued by sso.redhat.com are mapped to an ACS-issued token as follows:

  • realm_access.roles to groups
  • org_id to rh_org_id
  • is_org_admin to rh_is_org_admin
  • sub to userid

The built-in Red Hat SSO authentication provider has the required attribute rh_org_id set to the organization ID assigned to account of the user who created the RHACS Cloud Service instance. This is the ID of the organizational account the user is a part of. This can be thought of as the "tenant" the user is under and owned by. Only users with the same organizational account can access the ACS console by using the Red Hat SSO authentication provider.

Note

To gain more control over access to your ACS Console, configure another identity provider instead of relying on the Red Hat SSO authentication provider. For more information, see Understanding authentication providers. To configure the other authentication provider to be the first authentication option on the login page, its name should be lexicographically smaller than Red Hat SSO.

The minimum access role is set to None. Assigning a different value to this field gives access to the RHACS Cloud Service instance to all users with the same organizational account.

Other rules that are set up in the built-in Red Hat SSO authentication provider include the following:

  • Rule mapping your userid to Admin
  • Rules mapping administrators of the organization to Admin

You can add more rules to grant access to the ACS Console to someone else with the same organizational account. For example, you can use email as a key.

Chapter 3. Default resource requirements for Red Hat Advanced Cluster Security Cloud Service

3.1. General requirements

RHACS has some system requirements that must be met before you can install it.

Warning

You must not install Red Hat Advanced Cluster Security for Kubernetes on:

  • Amazon Elastic File System (Amazon EFS). Use the Amazon Elastic Block Store (Amazon EBS) with the default gp2 volume type instead.
  • Older CPUs that do not have the Streaming SIMD Extensions (SSE) 4.2 instruction set. For example, Intel processors older than Sandy Bridge and AMD processors older than Bulldozer. (These processors were released in 2011.)

To install Red Hat Advanced Cluster Security for Kubernetes, you must have one of the following systems:

  • OpenShift Container Platform version 4.10 or later, and cluster nodes with a supported operating system of Red Hat Enterprise Linux CoreOS (RHCOS) or Red Hat Enterprise Linux (RHEL).
  • a supported managed Kubernetes platform, and cluster nodes with a supported operating system of Amazon Linux, CentOS, Container-Optimized OS from Google, Red Hat Enterprise Linux CoreOS (RHCOS), Debian, Red Hat Enterprise Linux (RHEL), or Ubuntu.

    For more information, see Red Hat Advanced Cluster Security for Kubernetes Support Policy.

Cluster nodes minimum requirements:

  • Architecture: amd64, ppc64le, or s390x

    Note

    For ppc64le, or s390x architectures, you can only install RHACS secured cluster services on IBM Power, IBM Z, and IBM® LinuxONE clusters. Central is not supported at this time.

  • Processor: 3 CPU cores
  • Memory: 6 GiB of RAM

    Note

    See the default memory and CPU requirements for each component and ensure that the node size can support them.

Persistent storage by using persistent volume claim (PVC):

  • Use Solid-State Drives (SSDs) for best performance. However, you can use another storage type if you do not have SSDs available.

    Important

    You must not use Ceph FS storage with Red Hat Advanced Cluster Security for Kubernetes. Red Hat recommends using RBD block mode PVCs for Red Hat Advanced Cluster Security for Kubernetes.

To install using Helm charts:

  • You must have Helm command-line interface (CLI) v3.2 or newer, if you are installing or configuring Red Hat Advanced Cluster Security for Kubernetes using Helm charts. Use the helm version command to verify the version of Helm you have installed.
  • You must have access to the Red Hat Container Registry. For information about downloading images from registry.redhat.io, see Red Hat Container Registry Authentication.

3.2. Secured cluster services

Secured cluster services contain the following components:

  • Sensor
  • Admission controller
  • Collector

3.2.1. Sensor

Sensor monitors your Kubernetes and OpenShift Container Platform clusters. These services currently deploy in a single deployment, which handles interactions with the Kubernetes API and coordinates with Collector.

Memory and CPU requirements

The following table lists the minimum memory and storage values required to install and run sensor on secured clusters.

SensorCPUMemory

Request

2 cores

4 GiB

Limit

4 cores

8 GiB

3.2.2. Admission controller

The Admission controller prevents users from creating workloads that violate policies you configure.

Memory and CPU requirements

By default, the admission control service runs 3 replicas. The following table lists the request and limits for each replica.

Admission controllerCPUMemory

Request

0.05 cores

100 MiB

Limit

0.5 cores

500 MiB

3.2.3. Collector

Collector monitors runtime activity on each node in your secured clusters. It connects to Sensor to report this information. The collector pod has three containers. The first container is collector, which actually monitors and reports the runtime activity on the node. The other two are compliance and node-inventory.

Memory and CPU requirements

By default, the admission control service runs 3 replicas. The following table lists the request and limits for each replica.

Collector CPUMemory

Collector Container

Request

0.05 cores

320 MiB

Limit

0.75 cores

1000 MiB

Compliance Container

Request

0.01 cores

10 MiB

Limit

1 core

2000 MiB

Node-Inventory Container

Request

0.01 cores

10 MiB

Limit

1 core

500 MiB

Total

Request

0.07 cores

340 MiB

Limit

2.75 cores

5000 MiB

Chapter 5. Setting up RHACS Cloud Service with Red Hat OpenShift secured clusters

5.1. Creating a RHACS Cloud instance on Red Hat Cloud

Access Red Hat Advanced Cluster Security Cloud Service (RHACS Cloud Service) by selecting an instance in the Red Hat Hybrid Cloud Console. An ACS instance contains the RHACS Cloud Service management interface and services that Red Hat configures and manages for you. The management interface connects to your secured clusters, which contain the services that scan and collect information about vulnerabilities. One instance can connect to and monitor many clusters.

5.1.1. Creating an instance in the console

In the Red Hat Hybrid Cloud Console, create an ACS instance to connect to your secured clusters.

Procedure

To create an ACS instance:

  1. Log in to the Red Hat Hybrid Cloud Console.
  2. From the navigation menu, select Advanced Cluster SecurityACS Instances.
  3. Select Create ACS instance and enter information into the displayed fields or select the appropriate option from the drop-down list:

    • Name: Enter the name of your ACS instance. An ACS instance contains the RHACS Central component, also referred to as "Central", which includes the RHACS Cloud Service management interface and services that are configured and managed by Red Hat. You manage your secured clusters that communicate with Central. You can connect many secured clusters to one instance.
    • Cloud provider: The cloud provider where Central is located. Select AWS.
    • Cloud region: The region for your cloud provider where Central is located. Select one of the following regions:

      • US-East, N. Virginia
      • Europe, Ireland
    • Availability zones: Use the default value (Multi).
  4. Click Create instance.

5.1.2. Next steps

  • On each Red Hat OpenShift cluster you want to secure, create a project named stackrox. This project will contain the resources for RHACS Cloud Service secured clusters.

5.2. Creating a project on your Red Hat OpenShift secured cluster

Create a project on each Red Hat OpenShift cluster that you want to secure. You then use this project to install RHACS Cloud Service resources by using the Operator or Helm charts.

5.2.1. Creating a project on your cluster

Procedure

  • In your OpenShift Container Platform cluster, navigate to HomeProjects and create a project for RHACS Cloud Service. Use stackrox as the project Name.

5.2.2. Next steps

  • In the ACS Console, create an init bundle. The init bundle contains secrets that allow communication between RHACS Cloud Service secured clusters and the ACS Console.

5.3. Generating an init bundle for secured clusters

Before you install the SecuredCluster resource on a cluster, you must create an init bundle. The cluster that has SecuredCluster installed and configured then uses this bundle to authenticate with Central. You can create an init bundle by using either the RHACS portal or the roxctl CLI. You then apply the init bundle by using it to create resources.

Note

You must have the Admin user role to create an init bundle.

5.3.1. Generating an init bundle

5.3.1.1. Generating an init bundle by using the RHACS portal

You can create an init bundle containing secrets by using the RHACS portal.

Note

You must have the Admin user role to create an init bundle.

Procedure

  1. Find the address of the RHACS portal based on your exposure method:

    1. For a route:

      $ oc get route central -n stackrox
    2. For a load balancer:

      $ oc get service central-loadbalancer -n stackrox
    3. For port forward:

      1. Run the following command:

        $ oc port-forward svc/central 18443:443 -n stackrox
      2. Navigate to https://localhost:18443/.
  2. On the RHACS portal, navigate to Platform ConfigurationIntegrations.
  3. Navigate to the Authentication Tokens section and click on Cluster Init Bundle.
  4. Click Generate bundle.
  5. Enter a name for the cluster init bundle and click Generate.

    1. If you are installing using Helm charts, click Download Helm Values File to download the generated bundle.
    2. If you are installing using the Operator, click Download Kubernetes Secret File to download the generated bundle.
Important

Store this bundle securely because it contains secrets. You can use the same bundle to create multiple secured clusters.

Next steps

  1. Apply the init bundle by creating a resource on the secured cluster.
  2. Install secured cluster services on each cluster.
5.3.1.2. Generating an init bundle by using the roxctl CLI

You can create an init bundle with secrets by using the roxctl CLI.

Note

You must have the Admin user role to create init bundles.

Prerequisites

You have configured the ROX_API_TOKEN and the ROX_CENTRAL_ADDRESS environment variables.

  • Set the ROX_API_TOKEN and the ROX_CENTRAL_ADDRESS environment variables:

    $ export ROX_API_TOKEN=<api_token>
    $ export ROX_CENTRAL_ADDRESS=<address>:<port_number>

Procedure

  • Run the following command to generate a cluster init bundle containing secrets:

    For Helm installations:

    $ roxctl -e "$ROX_CENTRAL_ADDRESS" \
      central init-bundles generate <cluster_init_bundle_name> \
      --output cluster_init_bundle.yaml

    For Operator installations:

    $ roxctl -e "$ROX_CENTRAL_ADDRESS" \
      central init-bundles generate <cluster_init_bundle_name> \
      --output-secrets cluster_init_bundle.yaml
    Important

    Ensure that you store this bundle securely because it contains secrets. You can use the same bundle to set up multiple secured clusters.

5.3.2. Next steps

Next Step

5.4. Applying an init bundle for secured clusters

Apply the init bundle by using it to create resources.

Note

You must have the Admin user role to apply an init bundle.

5.4.1. Creating resources by using the init bundle

Before you install secured clusters, you must use the init bundle to create the required resources on the cluster that will allow the services on the secured clusters to communicate with RHACS Cloud Service.

Note

If you are installing by using Helm charts, do not perform this step. Complete the installation by using Helm; See "Installing RHACS on secured clusters by using Helm charts" in the additional resources section.

Prerequisites

  • You must have generated an init bundle containing secrets.

Procedure

To create resources, perform one of the following steps:

  • In the OpenShift Container Platform web console, in the top menu, click + to open the Import YAML page. You can drag the init bundle file or copy and paste its contents into the editor, and then click Create.
  • Using the Red Hat OpenShift CLI, run the following command to create the resources:

    $ oc create -f <init_bundle>.yaml \ 1
      -n <stackrox> 2
    1
    Specify the file name of the init bundle containing the secrets.
    2
    Specify the name of the project where Central services are installed.

Next Step

  • Install RHACS secured cluster services in all clusters that you want to monitor.

5.4.2. Next steps

5.5. Installing the Operator

Install the RHACS Operator on your secured clusters.

5.5.1. Installing the RHACS Operator for RHACS Cloud Service

Using the OperatorHub provided with OpenShift Container Platform is the easiest way to install the RHACS Operator.

Prerequisites

Procedure

  1. Navigate in the web console to the OperatorsOperatorHub page.
  2. If Red Hat Advanced Cluster Security for Kubernetes is not displayed, enter Advanced Cluster Security into the Filter by keyword box to find the Red Hat Advanced Cluster Security for Kubernetes Operator.
  3. Select the Red Hat Advanced Cluster Security for Kubernetes Operator to view the details page.
  4. Read the information about the Operator, and then click Install.
  5. On the Install Operator page:

    • Keep the default value for Installation mode as All namespaces on the cluster.
    • Select a specific namespace in which to install the Operator for the Installed namespace field. Install the Red Hat Advanced Cluster Security for Kubernetes Operator in the rhacs-operator namespace.
    • Select automatic or manual updates for Update approval.

      If you select automatic updates, when a new version of the Operator is available, Operator Lifecycle Manager (OLM) automatically upgrades the running instance of your Operator.

      If you select manual updates, when a newer version of the Operator is available, OLM creates an update request. As a cluster administrator, you must manually approve the update request to update the Operator to the latest version.

  6. Click Install.

Verification

  • After the installation completes, navigate to OperatorsInstalled Operators to verify that the Red Hat Advanced Cluster Security for Kubernetes Operator is listed with the status of Succeeded.

5.5.2. Next steps

5.6. Installing secured cluster resources from RHACS Cloud Service

You can install RHACS Cloud Service on your secured clusters by using the the Operator or Helm charts. You can also use the roxctl CLI to install it, but do not use this method unless you have a specific installation need that requires using it.

Prerequisites

  • You have created your Red Hat OpenShift cluster and installed the Operator on it.
  • In the ACS Console in RHACS Cloud Service, you have created and downloaded the init bundle.
  • You applied the init bundle by using the oc create command.
  • During installation, you noted the Central API Endpoint, including the address and the port number. You can view this information by choosing Advanced Cluster SecurityACS Instances from the cloud console navigation menu, and then clicking the ACS instance you created.

5.6.1. Installing RHACS on secured clusters by using the Operator

5.6.1.1. Installing secured cluster services

You can install secured cluster services on your clusters by using the SecuredCluster custom resource. You must install the secured cluster services on every cluster in your environment that you want to monitor.

Caution

When you install secured cluster services, Collector is also installed. To install Collector on systems that have Unified Extensible Firmware Interface (UEFI) and that have Secure Boot enabled, you must use eBPF probes because kernel modules are unsigned, and the UEFI firmware cannot load unsigned packages. Collector identifies Secure Boot status at the start and switches to eBPF probes if required.

Prerequisites

  • If you are using OpenShift Container Platform, you must install version 4.10 or later.
  • You have installed the RHACS Operator.
  • You have generated an init bundle and applied it to the cluster.

Procedure

  1. On the OpenShift Container Platform web console, navigate to the OperatorsInstalled Operators page.
  2. Click the RHACS Operator.
  3. Click Secured Cluster from the central navigation menu in the Operator details page.
  4. Click Create SecuredCluster.
  5. Select one of the following options in the Configure via field:

    • Form view: Use this option if you want to use the on-screen fields to configure the secured cluster and do not need to change any other fields.
    • YAML view: Use this view to set up the secured cluster using the YAML file. The YAML file is displayed in the window and you can edit fields in it. If you select this option, when you are finished editing the file, click Create.
  6. If you are using Form view, enter the new project name by accepting or editing the default name. The default value is stackrox-secured-cluster-services.
  7. Optional: Add any labels for the cluster.
  8. Enter a unique name for your SecuredCluster custom resource.
  9. For Central Endpoint, enter the address and port number of your Central instance. For example, if Central is available at https://central.example.com, then specify the central endpoint as central.example.com:443. The default value of central.stackrox.svc:443 only works when you install secured cluster services and Central in the same cluster. Do not use the default value when you are configuring multiple clusters. Instead, use the hostname when configuring the Central Endpoint value for each cluster.

    • For RHACS Cloud Service use the Central API Endpoint, including the address and the port number. You can view this information by choosing Advanced Cluster SecurityACS Instances from the cloud console navigation menu, then clicking the ACS instance you created.
    • Only if you are installing secured cluster services and Central in the same cluster, use central.stackrox.svc:443.
  10. Accept the default values or configure custom values if needed. For example, you may need to configure TLS if you are using custom certificates or untrusted CAs.
  11. Click Create.

Next step

  1. Optional: Configure additional secured cluster settings.
  2. Verify installation.

5.6.2. Installing RHACS Cloud Service on secured clusters by using Helm charts

You can install RHACS on secured clusters by using Helm charts with no customization, using the default values, or with customizations of configuration parameters.

First, ensure that you add the Helm chart repository.

5.6.2.1. Adding the Helm chart repository

Procedure

  • Add the RHACS charts repository.

    $ helm repo add rhacs https://mirror.openshift.com/pub/rhacs/charts/

The Helm repository for Red Hat Advanced Cluster Security for Kubernetes includes Helm charts for installing different components, including:

  • Secured Cluster Services Helm chart (secured-cluster-services) for installing the per-cluster and per-node components (Sensor, Admission Controller, Collector, and Scanner-slim).

    Note

    Deploy the per-cluster components into each cluster that you want to monitor and deploy the per-node components in all nodes that you want to monitor.

Verification

  • Run the following command to verify the added chart repository:

    $ helm search repo -l rhacs/
5.6.2.2. Installing RHACS Cloud Service on secured clusters by using Helm charts without customizations
5.6.2.2.1. Installing the secured-cluster-services Helm chart without customization

Use the following instructions to install the secured-cluster-services Helm chart to deploy the per-cluster and per-node components (Sensor, Admission controller, Collector, and Scanner-slim).

Caution

To install Collector on systems that have Unified Extensible Firmware Interface (UEFI) and that have Secure Boot enabled, you must use eBPF probes because kernel modules are unsigned, and the UEFI firmware cannot load unsigned packages. Collector identifies Secure Boot status at the start and switches to eBPF probes if required.

Prerequisites

  • You must have generated an RHACS init bundle for your cluster.
  • You must have access to the Red Hat Container Registry and a pull secret for authentication. For information about downloading images from registry.redhat.io, see Red Hat Container Registry Authentication.
  • You must have the Central API Endpoint, including the address and the port number. You can view this information by choosing Advanced Cluster SecurityACS Instances from the cloud console navigation menu, then clicking the ACS instance you created.
5.6.2.3. Configuring the secured-cluster-services Helm chart with customizations

You can use Helm chart configuration parameters with the helm install and helm upgrade commands. Specify these parameters by using the --set option or by creating YAML configuration files.

Create the following files for configuring the Helm chart for installing Red Hat Advanced Cluster Security for Kubernetes:

  • Public configuration file values-public.yaml: Use this file to save all non-sensitive configuration options.
  • Private configuration file values-private.yaml: Use this file to save all sensitive configuration options. Ensure that you store this file securely.
Important

When using the secured-cluster-services Helm chart, do not change the values.yaml file that is part of the chart.

5.6.2.3.1. Configuration parameters
ParameterDescription

clusterName

Name of your cluster.

centralEndpoint

Address, including port number, of the Central endpoint. If you are using a non-gRPC capable load balancer, use the WebSocket protocol by prefixing the endpoint address with wss://. When configuring multiple clusters, use the hostname for the address (for example, central.example.com:443).

sensor.endpoint

Address of the Sensor endpoint including port number.

sensor.imagePullPolicy

Image pull policy for the Sensor container.

sensor.serviceTLS.cert

The internal service-to-service TLS certificate that Sensor uses.

sensor.serviceTLS.key

The internal service-to-service TLS certificate key that Sensor uses.

sensor.resources.requests.memory

The memory request for the Sensor container. Use this parameter to override the default value.

sensor.resources.requests.cpu

The CPU request for the Sensor container. Use this parameter to override the default value.

sensor.resources.limits.memory

The memory limit for the Sensor container. Use this parameter to override the default value.

sensor.resources.limits.cpu

The CPU limit for the Sensor container. Use this parameter to override the default value.

sensor.nodeSelector

Specify a node selector label as label-key: label-value to force Sensor to only schedule on nodes with the specified label.

sensor.tolerations

If the node selector selects tainted nodes, use this parameter to specify a taint toleration key, value, and effect for Sensor. This parameter is mainly used for infrastructure nodes.

image.main.name

The name of the main image.

image.collector.name

The name of the Collector image.

image.main.registry

Address of the registry you are using for the main image.

image.collector.registry

Address of the registry you are using for the Collector image.

image.main.pullPolicy

Image pull policy for main images.

image.collector.pullPolicy

Image pull policy for the Collector images.

image.main.tag

Tag of main image to use.

image.collector.tag

Tag of collector image to use.

collector.collectionMethod

Either EBPF, CORE_BPF, or NO_COLLECTION. The CORE_BPF collection method is a Technology Preview feature only.

collector.imagePullPolicy

Image pull policy for the Collector container.

collector.complianceImagePullPolicy

Image pull policy for the Compliance container.

collector.disableTaintTolerations

If you specify false, tolerations are applied to Collector, and the collector pods can schedule onto all nodes with taints. If you specify it as true, no tolerations are applied, and the collector pods are not scheduled onto nodes with taints.

collector.resources.requests.memory

The memory request for the Collector container. Use this parameter to override the default value.

collector.resources.requests.cpu

The CPU request for the Collector container. Use this parameter to override the default value.

collector.resources.limits.memory

The memory limit for the Collector container. Use this parameter to override the default value.

collector.resources.limits.cpu

The CPU limit for the Collector container. Use this parameter to override the default value.

collector.complianceResources.requests.memory

The memory request for the Compliance container. Use this parameter to override the default value.

collector.complianceResources.requests.cpu

The CPU request for the Compliance container. Use this parameter to override the default value.

collector.complianceResources.limits.memory

The memory limit for the Compliance container. Use this parameter to override the default value.

collector.complianceResources.limits.cpu

The CPU limit for the Compliance container. Use this parameter to override the default value.

collector.serviceTLS.cert

The internal service-to-service TLS certificate that Collector uses.

collector.serviceTLS.key

The internal service-to-service TLS certificate key that Collector uses.

admissionControl.listenOnCreates

This setting controls whether Kubernetes is configured to contact Red Hat Advanced Cluster Security for Kubernetes with AdmissionReview requests for workload creation events.

admissionControl.listenOnUpdates

When you set this parameter as false, Red Hat Advanced Cluster Security for Kubernetes creates the ValidatingWebhookConfiguration in a way that causes the Kubernetes API server not to send object update events. Since the volume of object updates is usually higher than the object creates, leaving this as false limits the load on the admission control service and decreases the chances of a malfunctioning admission control service.

admissionControl.listenOnEvents

This setting controls whether the cluster is configured to contact Red Hat Advanced Cluster Security for Kubernetes with AdmissionReview requests for Kubernetes exec and portforward events. Red Hat Advanced Cluster Security for Kubernetes does not support this feature on OpenShift Container Platform 3.11. For more information, see Red Hat Advanced Cluster Security for Kubernetes Support Policy.

admissionControl.dynamic.enforceOnCreates

This setting controls whether Red Hat Advanced Cluster Security for Kubernetes evaluates policies; if it is disabled, all AdmissionReview requests are automatically accepted.

admissionControl.dynamic.enforceOnUpdates

This setting controls the behavior of the admission control service. You must specify listenOnUpdates as true for this to work.

admissionControl.dynamic.scanInline

If you set this option to true, the admission control service requests an image scan before making an admission decision. Since image scans take several seconds, enable this option only if you can ensure that all images used in your cluster are scanned before deployment (for example, by a CI integration during image build). This option corresponds to the Contact image scanners option in the RHACS Portal.

admissionControl.dynamic.disableBypass

Set it to true to disable bypassing the Admission controller.

admissionControl.dynamic.timeout

The maximum time, in seconds, Red Hat Advanced Cluster Security for Kubernetes should wait while evaluating admission review requests. Use this to set request timeouts when you enable image scanning. If the image scan runs longer than the specified time, Red Hat Advanced Cluster Security for Kubernetes accepts the request.

admissionControl.resources.requests.memory

The memory request for the Admission Control container. Use this parameter to override the default value.

admissionControl.resources.requests.cpu

The CPU request for the Admission Control container. Use this parameter to override the default value.

admissionControl.resources.limits.memory

The memory limit for the Admission Control container. Use this parameter to override the default value.

admissionControl.resources.limits.cpu

The CPU limit for the Admission Control container. Use this parameter to override the default value.

admissionControl.nodeSelector

Specify a node selector label as label-key: label-value to force Admission Control to only schedule on nodes with the specified label.

admissionControl.tolerations

If the node selector selects tainted nodes, use this parameter to specify a taint toleration key, value, and effect for Admission Control. This parameter is mainly used for infrastructure nodes.

admissionControl.serviceTLS.cert

The internal service-to-service TLS certificate that Admission Control uses.

admissionControl.serviceTLS.key

The internal service-to-service TLS certificate key that Admission Control uses.

registryOverride

Use this parameter to override the default docker.io registry. Specify the name of your registry if you are using some other registry.

collector.disableTaintTolerations

If you specify false, tolerations are applied to Collector, and the Collector pods can schedule onto all nodes with taints. If you specify it as true, no tolerations are applied, and the Collector pods are not scheduled onto nodes with taints.

createUpgraderServiceAccount

Specify true to create the sensor-upgrader account. By default, Red Hat Advanced Cluster Security for Kubernetes creates a service account called sensor-upgrader in each secured cluster. This account is highly privileged but is only used during upgrades. If you do not create this account, you must complete future upgrades manually if the Sensor does not have enough permissions.

createSecrets

Specify false to skip the orchestrator secret creation for the Sensor, Collector, and Admission controller.

collector.slimMode

Specify true if you want to use a slim Collector image for deploying Collector. Using slim Collector images requires Central to provide the matching eBPF probe or kernel module. If you are running Red Hat Advanced Cluster Security for Kubernetes in offline mode, you must download a kernel support package from stackrox.io and upload it to Central for slim Collectors to function. Otherwise, you must ensure that Central can access the online probe repository hosted at https://collector-modules.stackrox.io/.

sensor.resources

Resource specification for Sensor.

admissionControl.resources

Resource specification for Admission controller.

collector.resources

Resource specification for Collector.

collector.complianceResources

Resource specification for Collector’s Compliance container.

exposeMonitoring

If you set this option to true, Red Hat Advanced Cluster Security for Kubernetes exposes Prometheus metrics endpoints on port number 9090 for the Sensor, Collector, and the Admission controller.

auditLogs.disableCollection

If you set this option to true, Red Hat Advanced Cluster Security for Kubernetes disables the audit log detection features used to detect access and modifications to configuration maps and secrets.

scanner.disable

If you set this option to false, Red Hat Advanced Cluster Security for Kubernetes deploys a Scanner-slim and Scanner DB in the secured cluster to allow scanning images on OpenShift Container Registry. Enabling Scanner-slim is supported on OpenShift Container Platform and Kubernetes secured clusters. Defaults to true.

scanner.dbTolerations

If the node selector selects tainted nodes, use this parameter to specify a taint toleration key, value, and effect for Scanner DB.

scanner.replicas

Resource specification for Collector’s Compliance container.

scanner.logLevel

Setting this parameter allows you to modify the scanner log level. Use this option only for troubleshooting purposes.

scanner.autoscaling.disable

If you set this option to true, Red Hat Advanced Cluster Security for Kubernetes disables autoscaling on the Scanner deployment.

scanner.autoscaling.minReplicas

The minimum number of replicas for autoscaling. Defaults to 2.

scanner.autoscaling.maxReplicas

The maximum number of replicas for autoscaling. Defaults to 5.

scanner.nodeSelector

Specify a node selector label as label-key: label-value to force Scanner to only schedule on nodes with the specified label.

scanner.tolerations

If the node selector selects tainted nodes, use this parameter to specify a taint toleration key, value, and effect for Scanner.

scanner.dbNodeSelector

Specify a node selector label as label-key: label-value to force Scanner DB to only schedule on nodes with the specified label.

scanner.dbTolerations

If the node selector selects tainted nodes, use this parameter to specify a taint toleration key, value, and effect for Scanner DB.

scanner.resources.requests.memory

The memory request for the Scanner container. Use this parameter to override the default value.

scanner.resources.requests.cpu

The CPU request for the Scanner container. Use this parameter to override the default value.

scanner.resources.limits.memory

The memory limit for the Scanner container. Use this parameter to override the default value.

scanner.resources.limits.cpu

The CPU limit for the Scanner container. Use this parameter to override the default value.

scanner.dbResources.requests.memory

The memory request for the Scanner DB container. Use this parameter to override the default value.

scanner.dbResources.requests.cpu

The CPU request for the Scanner DB container. Use this parameter to override the default value.

scanner.dbResources.limits.memory

The memory limit for the Scanner DB container. Use this parameter to override the default value.

scanner.dbResources.limits.cpu

The CPU limit for the Scanner DB container. Use this parameter to override the default value.

Important

The CORE_BPF collection method is a Technology Preview feature only. Technology Preview features are not supported with Red Hat production service level agreements (SLAs) and might not be functionally complete. Red Hat does not recommend using them in production. These features provide early access to upcoming product features, enabling customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features, see Technology Preview Features Support Scope.

5.6.2.3.1.1. Environment variables

You can specify environment variables for Sensor and Admission controller in the following format:

customize:
  envVars:
    ENV_VAR1: "value1"
    ENV_VAR2: "value2"

The customize setting allows you to specify custom Kubernetes metadata (labels and annotations) for all objects created by this Helm chart and additional pod labels, pod annotations, and container environment variables for workloads.

The configuration is hierarchical, in the sense that metadata defined at a more generic scope (for example, for all objects) can be overridden by metadata defined at a narrower scope (for example, only for the Sensor deployment).

5.6.2.3.2. Installing the secured-cluster-services Helm chart

After you configure the values-public.yaml and values-private.yaml files, install the secured-cluster-services Helm chart to deploy the per-cluster and per-node components (Sensor, Admission controller, Collector, and Scanner-slim).

Caution

To install Collector on systems that have Unified Extensible Firmware Interface (UEFI) and that have Secure Boot enabled, you must use eBPF probes because kernel modules are unsigned, and the UEFI firmware cannot load unsigned packages. Collector identifies Secure Boot status at the start and switches to eBPF probes if required.

Prerequisites

  • You must have generated an RHACS init bundle for your cluster.
  • You must have access to the Red Hat Container Registry and a pull secret for authentication. For information about downloading images from registry.redhat.io, see Red Hat Container Registry Authentication.
  • You must have the Central API Endpoint, including the address and the port number. You can view this information by choosing Advanced Cluster SecurityACS Instances from the cloud console navigation menu, then clicking the ACS instance you created.

Procedure

  • Run the following command:

    $ helm install -n stackrox \
      --create-namespace stackrox-secured-cluster-services rhacs/secured-cluster-services \
      -f <name_of_cluster_init_bundle.yaml> \
      -f <path_to_values_public.yaml> -f <path_to_values_private.yaml> \ 1
      --set imagePullSecrets.username=<username> \ 2
      --set imagePullSecrets.password=<password> 3
    1
    Use the -f option to specify the paths for your YAML configuration files.
    2
    Include the user name for your pull secret for Red Hat Container Registry authentication.
    3
    Include the password for your pull secret for Red Hat Container Registry authentication.
Note

To deploy secured-cluster-services Helm chart by using a continuous integration (CI) system, pass the init bundle YAML file as an environment variable to the helm install command:

$ helm install ... -f <(echo "$INIT_BUNDLE_YAML_SECRET") 1
1
If you are using base64 encoded variables, use the helm install …​ -f <(echo "$INIT_BUNDLE_YAML_SECRET" | base64 --decode) command instead.
5.6.2.4. Changing configuration options after deploying the secured-cluster-services Helm chart

You can make changes to any configuration options after you have deployed the secured-cluster-services Helm chart.

Procedure

  1. Update the values-public.yaml and values-private.yaml configuration files with new values.
  2. Run the helm upgrade command and specify the configuration files using the -f option:

    $ helm upgrade -n stackrox \
      stackrox-secured-cluster-services rhacs/secured-cluster-services \
      --reuse-values \ 1
      -f <path_to_values_public.yaml> \
      -f <path_to_values_private.yaml>
    1
    You must specify the --reuse-values parameter, otherwise the Helm upgrade command resets all previously configured settings.
    Note

    You can also specify configuration values using the --set or --set-file parameters. However, these options are not saved, and it requires you to manually specify all the options again whenever you make changes.

5.6.3. Installing RHACS on secured clusters by using the roxctl CLI

To install RHACS on secured clusters by using the CLI, perform the following steps:

  1. Install the roxctl CLI.
  2. Install Sensor.
5.6.3.1. Installing the roxctl CLI

You must first download the binary. You can install roxctl on Linux, Windows, or macOS.

5.6.3.1.1. Installing the roxctl CLI on Linux

You can install the roxctl CLI binary on Linux by using the following procedure.

Procedure

  1. Download the latest version of the roxctl CLI:

    $ curl -O https://mirror.openshift.com/pub/rhacs/assets/4.1.5/bin/Linux/roxctl
  2. Make the roxctl binary executable:

    $ chmod +x roxctl
  3. Place the roxctl binary in a directory that is on your PATH:

    To check your PATH, execute the following command:

    $ echo $PATH

Verification

  • Verify the roxctl version you have installed:

    $ roxctl version
5.6.3.1.2. Installing the roxctl CLI on macOS

You can install the roxctl CLI binary on macOS by using the following procedure.

Procedure

  1. Download the latest version of the roxctl CLI:

    $ curl -O https://mirror.openshift.com/pub/rhacs/assets/4.1.5/bin/Darwin/roxctl
  2. Remove all extended attributes from the binary:

    $ xattr -c roxctl
  3. Make the roxctl binary executable:

    $ chmod +x roxctl
  4. Place the roxctl binary in a directory that is on your PATH:

    To check your PATH, execute the following command:

    $ echo $PATH

Verification

  • Verify the roxctl version you have installed:

    $ roxctl version
5.6.3.1.3. Installing the roxctl CLI on Windows

You can install the roxctl CLI binary on Windows by using the following procedure.

Procedure

  • Download the latest version of the roxctl CLI:

    $ curl -O https://mirror.openshift.com/pub/rhacs/assets/4.1.5/bin/Windows/roxctl.exe

Verification

  • Verify the roxctl version you have installed:

    $ roxctl version
5.6.3.2. Installing Sensor

To monitor a cluster, you must deploy Sensor. You must deploy Sensor into each cluster that you want to monitor. The following steps describe adding Sensor by using the RHACS portal.

Prerequisites

  • You must have already installed Central services, or you can access Central services by selecting your ACS instance on Red Hat Advanced Cluster Security Cloud Service (RHACS Cloud Service).

Procedure

  1. On your secured cluster, in the RHACS portal, navigate to Platform ConfigurationClusters.
  2. Select + New Cluster.
  3. Specify a name for the cluster.
  4. Provide appropriate values for the fields based on where you are deploying the Sensor.

    • Enter the Central API Endpoint, including the address and the port number. You can view this information again in the Red Hat Hybrid Cloud Console by choosing Advanced Cluster SecurityACS Instances, and then clicking the ACS instance you created.
  5. Click Next to continue with the Sensor setup.
  6. Click Download YAML File and Keys to download the cluster bundle (zip archive).

    Important

    The cluster bundle zip archive includes unique configurations and keys for each cluster. Do not reuse the same files in another cluster.

  7. From a system that has access to the monitored cluster, unzip and run the sensor script from the cluster bundle:

    $ unzip -d sensor sensor-<cluster_name>.zip
    $ ./sensor/sensor.sh

    If you get a warning that you do not have the required permissions to deploy Sensor, follow the on-screen instructions, or contact your cluster administrator for assistance.

After Sensor is deployed, it contacts Central and provides cluster information.

Verification

  1. Return to the RHACS portal and check if the deployment is successful. If successful, when viewing your list of clusters in Platform ConfigurationClusters, the cluster status displays a green checkmark and a Healthy status. If you do not see a green checkmark, use the following command to check for problems:

    • On OpenShift Container Platform, enter the following command:

      $ oc get pod -n stackrox -w
    • On Kubernetes, enter the following command:

      $ kubectl get pod -n stackrox -w
  2. Click Finish to close the window.

After installation, Sensor starts reporting security information to RHACS and the RHACS portal dashboard begins showing deployments, images, and policy violations from the cluster on which you have installed the Sensor.

5.6.4. Next steps

  • Verify installation by ensuring that your secured clusters can communicate with the ACS instance.

5.7. Configuring the proxy for secured cluster services in RHACS Cloud Service

You must configure the proxy settings for secured cluster services within the Red Hat Advanced Cluster Security Cloud Service (RHACS Cloud Service) environment to establish a connection between the Secured Cluster and the specified proxy server. This ensures reliable data collection and transmission.

5.7.1. Specifying the environment variables in the SecuredCluster CR

To configure an egress proxy, you can either use the cluster-wide Red Hat OpenShift proxy or specify the HTTP_PROXY, HTTPS_PROXY, and NO_PROXY environment variables within the SecuredCluster Custom Resource (CR) configuration file to ensure proper use of the proxy and bypass for internal requests within the specified domain.

The proxy configuration applies to all running services: Sensor, Collector, Admission Controller and Scanner.

Procedure

  • Specify the HTTP_PROXY, HTTPS_PROXY, and NO_PROXY environment variables under the customize specification in the SecuredCluster CR configuration file:

    For example:

    # proxy collector
    customize:
      envVars:
        - name: HTTP_PROXY
          value: http://egress-proxy.stackrox.svc:xxxx 1
        - name: HTTPS_PROXY
          value: http://egress-proxy.stackrox.svc:xxxx 2
        - name: NO_PROXY
          value: .stackrox.svc 3
    1
    The variable HTTP_PROXY is set to the value http://egress-proxy.stackrox.svc:xxxx. This is the proxy server used for HTTP connections.
    2
    The variable HTTPS_PROXY is set to the value http://egress-proxy.stackrox.svc:xxxx. This is the proxy server used for HTTPS connections.
    3
    The variable NO _PROXY is set to .stackrox.svc. This variable is used to define the hostname or IP address that should not be accessed through the proxy server.

5.8. Verifying installation of secured clusters

After installing RHACS Cloud Service, you can perform some steps to verify that the installation was successful.

To verify installation, access your ACS Console from the Red Hat Hybrid Cloud Console. The Dashboard displays the number of clusters that RHACS Cloud Service is monitoring, along with information about nodes, deployments, images, and violations.

If no data appears in the ACS Console:

  • Ensure that at least one secured cluster is connected to your RHACS Cloud Service instance. For more information, see Installing secured cluster resources from RHACS Cloud Service.
  • Examine your Sensor pod logs to ensure that the connection to your RHACS Cloud Service instance is successful.
  • In the Red Hat OpenShift cluster, navigate to Platform ConfigurationClusters to verify that the components are healthy and view additional operational information.
  • Examine the values in the SecuredCluster API in the Operator on your local cluster to ensure that the Central API Endpoint has been entered correctly. This value should be the same value as shown in the ACS instance details in the Red Hat Hybrid Cloud Console.

Chapter 6. Setting up RHACS Cloud Service with Kubernetes secured clusters

6.1. Creating a RHACS Cloud instance for Kubernetes clusters

Access Red Hat Advanced Cluster Security Cloud Service (RHACS Cloud Service) by selecting an instance in the Red Hat Hybrid Cloud Console. An ACS instance contains the RHACS Cloud Service management interface and services that Red Hat configures and manages for you. The management interface connects to your secured clusters, which contain the services that scan and collect information about vulnerabilities. One instance can connect to and monitor many clusters.

6.1.1. Creating an instance in the console

In the Red Hat Hybrid Cloud Console, create an ACS instance to connect to your secured clusters.

Procedure

To create an ACS instance:

  1. Log in to the Red Hat Hybrid Cloud Console.
  2. From the navigation menu, select Advanced Cluster SecurityACS Instances.
  3. Select Create ACS instance and enter information into the displayed fields or select the appropriate option from the drop-down list:

    • Name: Enter the name of your ACS instance. An ACS instance contains the RHACS Central component, also referred to as "Central", which includes the RHACS Cloud Service management interface and services that are configured and managed by Red Hat. You manage your secured clusters that communicate with Central. You can connect many secured clusters to one instance.
    • Cloud provider: The cloud provider where Central is located. Select AWS.
    • Cloud region: The region for your cloud provider where Central is located. Select one of the following regions:

      • US-East, N. Virginia
      • Europe, Ireland
    • Availability zones: Use the default value (Multi).
  4. Click Create instance.

6.1.2. Next steps

6.2. Generating an init bundle for Kubernetes secured clusters

Before you install the SecuredCluster resource on a cluster, you must create an init bundle. The cluster that has SecuredCluster installed and configured then uses this bundle to authenticate with the ACS Console. You can create an init bundle by using either the RHACS portal or the roxctl CLI. You then apply the init bundle by using it to create resources.

6.2.1. Generating an init bundle by using the RHACS portal

You can create an init bundle containing secrets by using the RHACS portal, also called the ACS Console.

Note

You must have the Admin user role to create an init bundle.

Procedure

  1. On the RHACS portal, navigate to Platform ConfigurationIntegrations.
  2. Navigate to the Authentication Tokens section and click on Cluster Init Bundle.
  3. Click Generate bundle.
  4. Enter a name for the cluster init bundle and click Generate.

    1. If you are installing using Helm charts, click Download Helm Values File to download the generated bundle.
    2. If you are installing using the Operator, click Download Kubernetes Secret File to download the generated bundle.
Important

Store this bundle securely because it contains secrets. You can use the same bundle to create multiple secured clusters.

Next steps

  1. Apply the init bundle by creating a resource on the secured cluster.
  2. Install secured cluster services on each cluster.

6.2.2. Generating an init bundle by using the roxctl CLI

You can create an init bundle with secrets by using the roxctl CLI.

Note

You must have the Admin user role to create init bundles.

Prerequisites

You have configured the ROX_API_TOKEN and the ROX_CENTRAL_ADDRESS environment variables.

  • Set the ROX_API_TOKEN and the ROX_CENTRAL_ADDRESS environment variables:

    $ export ROX_API_TOKEN=<api_token>
    $ export ROX_CENTRAL_ADDRESS=<address>:<port_number>

Procedure

  • Run the following command to generate a cluster init bundle containing secrets:

    For Helm installations:

    $ roxctl -e "$ROX_CENTRAL_ADDRESS" \
      central init-bundles generate <cluster_init_bundle_name> \
      --output cluster_init_bundle.yaml

    For Operator installations:

    $ roxctl -e "$ROX_CENTRAL_ADDRESS" \
      central init-bundles generate <cluster_init_bundle_name> \
      --output-secrets cluster_init_bundle.yaml
    Important

    Ensure that you store this bundle securely because it contains secrets. You can use the same bundle to set up multiple secured clusters.

Next Step

  • Use the Red Hat OpenShift CLI to create resources using the init bundle.

6.3. Applying an init bundle for Kubernetes secured clusters

Apply the init bundle by using it to create resources.

6.3.1. Creating resources by using the init bundle

Before you install secured clusters, you must use the init bundle to create the required resources on the cluster that will allow the services on the secured clusters to communicate with RHACS Cloud Service.

Note

If you are installing by using Helm charts, do not perform this step. Complete the installation by using Helm; See "Installing RHACS on secured clusters by using Helm charts" in the additional resources section.

Prerequisites

  • You must have generated an init bundle containing secrets.

Procedure

To create resources, perform one of the following steps:

  • In the OpenShift Container Platform web console, in the top menu, click + to open the Import YAML page. You can drag the init bundle file or copy and paste its contents into the editor, and then click Create.
  • Using the Red Hat OpenShift CLI, run the following command to create the resources:

    $ oc create -f <init_bundle>.yaml \ 1
      -n <stackrox> 2
    1
    Specify the file name of the init bundle containing the secrets.
    2
    Specify the name of the project where Central services are installed.
  • Using the kubectl CLI, run the following commands to create the resources:

    $ kubectl create namespace stackrox 1
    $ kubectl create -f <init_bundle>.yaml \ 2
      -n <stackrox> 3
    1
    Create the project where secured cluster resources will be installed. This example uses stackrox.
    2
    Specify the file name of the init bundle containing the secrets.
    3
    Specify the project name that you created. This example uses stackrox.

Next Step

  • Install RHACS secured cluster services in all clusters that you want to monitor.

6.4. Installing secured cluster services from RHACS Cloud Service on Kubernetes clusters

You can install RHACS Cloud Service on your secured clusters by using one of the following methods:

  • By using Helm charts
  • By using the roxctl CLI (do not use this method unless you have a specific installation need that requires using it)

6.4.1. Installing RHACS Cloud Service on secured clusters by using Helm charts

You can install RHACS on secured clusters by using Helm charts with no customization, by using Helm charts with the default values, or by using Helm charts with customizations of configuration parameters.

First, ensure that you add the Helm chart repository.

6.4.1.1. Adding the Helm chart repository

Procedure

  • Add the RHACS charts repository.

    $ helm repo add rhacs https://mirror.openshift.com/pub/rhacs/charts/

The Helm repository for Red Hat Advanced Cluster Security for Kubernetes includes Helm charts for installing different components, including:

  • Secured Cluster Services Helm chart (secured-cluster-services) for installing the per-cluster and per-node components (Sensor, Admission Controller, Collector, and Scanner-slim).

    Note

    Deploy the per-cluster components into each cluster that you want to monitor and deploy the per-node components in all nodes that you want to monitor.

Verification

  • Run the following command to verify the added chart repository:

    $ helm search repo -l rhacs/
6.4.1.2. Installing RHACS Cloud Service on secured clusters by using Helm charts without customizations
6.4.1.2.1. Installing the secured-cluster-services Helm chart without customization

Use the following instructions to install the secured-cluster-services Helm chart to deploy the per-cluster and per-node components (Sensor, Admission controller, Collector, and Scanner-slim).

Caution

To install Collector on systems that have Unified Extensible Firmware Interface (UEFI) and that have Secure Boot enabled, you must use eBPF probes because kernel modules are unsigned, and the UEFI firmware cannot load unsigned packages. Collector identifies Secure Boot status at the start and switches to eBPF probes if required.

Prerequisites

  • You must have generated an RHACS init bundle for your cluster.
  • You must have access to the Red Hat Container Registry and a pull secret for authentication. For information about downloading images from registry.redhat.io, see Red Hat Container Registry Authentication.
  • You must have the Central API Endpoint, including the address and the port number. You can view this information by choosing Advanced Cluster SecurityACS Instances from the cloud console navigation menu, then clicking the ACS instance you created.
6.4.1.3. Configuring the secured-cluster-services Helm chart with customizations

Procedure

This section describes Helm chart configuration parameters that you can use with the helm install and helm upgrade commands. You can specify these parameters by using the --set option or by creating YAML configuration files.

Create the following files for configuring the Helm chart for installing Red Hat Advanced Cluster Security for Kubernetes:

  • Public configuration file values-public.yaml: Use this file to save all non-sensitive configuration options.
  • Private configuration file values-private.yaml: Use this file to save all sensitive configuration options. Ensure that you store this file securely.
Important

While using the secured-cluster-services Helm chart, do not modify the values.yaml file that is part of the chart.

6.4.1.3.1. Configuration parameters
ParameterDescription

clusterName

Name of your cluster.

centralEndpoint

Address, including port number, of the Central endpoint. If you are using a non-gRPC capable load balancer, use the WebSocket protocol by prefixing the endpoint address with wss://. When configuring multiple clusters, use the hostname for the address (for example, central.example.com:443).

sensor.endpoint

Address of the Sensor endpoint including port number.

sensor.imagePullPolicy

Image pull policy for the Sensor container.

sensor.serviceTLS.cert

The internal service-to-service TLS certificate that Sensor uses.

sensor.serviceTLS.key

The internal service-to-service TLS certificate key that Sensor uses.

sensor.resources.requests.memory

The memory request for the Sensor container. Use this parameter to override the default value.

sensor.resources.requests.cpu

The CPU request for the Sensor container. Use this parameter to override the default value.

sensor.resources.limits.memory

The memory limit for the Sensor container. Use this parameter to override the default value.

sensor.resources.limits.cpu

The CPU limit for the Sensor container. Use this parameter to override the default value.

sensor.nodeSelector

Specify a node selector label as label-key: label-value to force Sensor to only schedule on nodes with the specified label.

sensor.tolerations

If the node selector selects tainted nodes, use this parameter to specify a taint toleration key, value, and effect for Sensor. This parameter is mainly used for infrastructure nodes.

image.main.name

The name of the main image.

image.collector.name

The name of the Collector image.

image.main.registry

Address of the registry you are using for the main image.

image.collector.registry

Address of the registry you are using for the Collector image.

image.main.pullPolicy

Image pull policy for main images.

image.collector.pullPolicy

Image pull policy for the Collector images.

image.main.tag

Tag of main image to use.

image.collector.tag

Tag of collector image to use.

collector.collectionMethod

Either EBPF, CORE_BPF, or NO_COLLECTION. The CORE_BPF collection method is a Technology Preview feature only.

collector.imagePullPolicy

Image pull policy for the Collector container.

collector.complianceImagePullPolicy

Image pull policy for the Compliance container.

collector.disableTaintTolerations

If you specify false, tolerations are applied to Collector, and the collector pods can schedule onto all nodes with taints. If you specify it as true, no tolerations are applied, and the collector pods are not scheduled onto nodes with taints.

collector.resources.requests.memory

The memory request for the Collector container. Use this parameter to override the default value.

collector.resources.requests.cpu

The CPU request for the Collector container. Use this parameter to override the default value.

collector.resources.limits.memory

The memory limit for the Collector container. Use this parameter to override the default value.

collector.resources.limits.cpu

The CPU limit for the Collector container. Use this parameter to override the default value.

collector.complianceResources.requests.memory

The memory request for the Compliance container. Use this parameter to override the default value.

collector.complianceResources.requests.cpu

The CPU request for the Compliance container. Use this parameter to override the default value.

collector.complianceResources.limits.memory

The memory limit for the Compliance container. Use this parameter to override the default value.

collector.complianceResources.limits.cpu

The CPU limit for the Compliance container. Use this parameter to override the default value.

collector.serviceTLS.cert

The internal service-to-service TLS certificate that Collector uses.

collector.serviceTLS.key

The internal service-to-service TLS certificate key that Collector uses.

admissionControl.listenOnCreates

This setting controls whether Kubernetes is configured to contact Red Hat Advanced Cluster Security for Kubernetes with AdmissionReview requests for workload creation events.

admissionControl.listenOnUpdates

When you set this parameter as false, Red Hat Advanced Cluster Security for Kubernetes creates the ValidatingWebhookConfiguration in a way that causes the Kubernetes API server not to send object update events. Since the volume of object updates is usually higher than the object creates, leaving this as false limits the load on the admission control service and decreases the chances of a malfunctioning admission control service.

admissionControl.listenOnEvents

This setting controls whether the cluster is configured to contact Red Hat Advanced Cluster Security for Kubernetes with AdmissionReview requests for Kubernetes exec and portforward events. Red Hat Advanced Cluster Security for Kubernetes does not support this feature on OpenShift Container Platform 3.11. For more information, see Red Hat Advanced Cluster Security for Kubernetes Support Policy.

admissionControl.dynamic.enforceOnCreates

This setting controls whether Red Hat Advanced Cluster Security for Kubernetes evaluates policies; if it is disabled, all AdmissionReview requests are automatically accepted.

admissionControl.dynamic.enforceOnUpdates

This setting controls the behavior of the admission control service. You must specify listenOnUpdates as true for this to work.

admissionControl.dynamic.scanInline

If you set this option to true, the admission control service requests an image scan before making an admission decision. Since image scans take several seconds, enable this option only if you can ensure that all images used in your cluster are scanned before deployment (for example, by a CI integration during image build). This option corresponds to the Contact image scanners option in the RHACS Portal.

admissionControl.dynamic.disableBypass

Set it to true to disable bypassing the Admission controller.

admissionControl.dynamic.timeout

The maximum time, in seconds, Red Hat Advanced Cluster Security for Kubernetes should wait while evaluating admission review requests. Use this to set request timeouts when you enable image scanning. If the image scan runs longer than the specified time, Red Hat Advanced Cluster Security for Kubernetes accepts the request.

admissionControl.resources.requests.memory

The memory request for the Admission Control container. Use this parameter to override the default value.

admissionControl.resources.requests.cpu

The CPU request for the Admission Control container. Use this parameter to override the default value.

admissionControl.resources.limits.memory

The memory limit for the Admission Control container. Use this parameter to override the default value.

admissionControl.resources.limits.cpu

The CPU limit for the Admission Control container. Use this parameter to override the default value.

admissionControl.nodeSelector

Specify a node selector label as label-key: label-value to force Admission Control to only schedule on nodes with the specified label.

admissionControl.tolerations

If the node selector selects tainted nodes, use this parameter to specify a taint toleration key, value, and effect for Admission Control. This parameter is mainly used for infrastructure nodes.

admissionControl.serviceTLS.cert

The internal service-to-service TLS certificate that Admission Control uses.

admissionControl.serviceTLS.key

The internal service-to-service TLS certificate key that Admission Control uses.

registryOverride

Use this parameter to override the default docker.io registry. Specify the name of your registry if you are using some other registry.

collector.disableTaintTolerations

If you specify false, tolerations are applied to Collector, and the Collector pods can schedule onto all nodes with taints. If you specify it as true, no tolerations are applied, and the Collector pods are not scheduled onto nodes with taints.

createUpgraderServiceAccount

Specify true to create the sensor-upgrader account. By default, Red Hat Advanced Cluster Security for Kubernetes creates a service account called sensor-upgrader in each secured cluster. This account is highly privileged but is only used during upgrades. If you do not create this account, you must complete future upgrades manually if the Sensor does not have enough permissions.

createSecrets

Specify false to skip the orchestrator secret creation for the Sensor, Collector, and Admission controller.

collector.slimMode

Specify true if you want to use a slim Collector image for deploying Collector. Using slim Collector images requires Central to provide the matching eBPF probe or kernel module. If you are running Red Hat Advanced Cluster Security for Kubernetes in offline mode, you must download a kernel support package from stackrox.io and upload it to Central for slim Collectors to function. Otherwise, you must ensure that Central can access the online probe repository hosted at https://collector-modules.stackrox.io/.

sensor.resources

Resource specification for Sensor.

admissionControl.resources

Resource specification for Admission controller.

collector.resources

Resource specification for Collector.

collector.complianceResources

Resource specification for Collector’s Compliance container.

exposeMonitoring

If you set this option to true, Red Hat Advanced Cluster Security for Kubernetes exposes Prometheus metrics endpoints on port number 9090 for the Sensor, Collector, and the Admission controller.

auditLogs.disableCollection

If you set this option to true, Red Hat Advanced Cluster Security for Kubernetes disables the audit log detection features used to detect access and modifications to configuration maps and secrets.

scanner.disable

If you set this option to false, Red Hat Advanced Cluster Security for Kubernetes deploys a Scanner-slim and Scanner DB in the secured cluster to allow scanning images on OpenShift Container Registry. Enabling Scanner-slim is supported on OpenShift Container Platform and Kubernetes secured clusters. Defaults to true.

scanner.dbTolerations

If the node selector selects tainted nodes, use this parameter to specify a taint toleration key, value, and effect for Scanner DB.

scanner.replicas

Resource specification for Collector’s Compliance container.

scanner.logLevel

Setting this parameter allows you to modify the scanner log level. Use this option only for troubleshooting purposes.

scanner.autoscaling.disable

If you set this option to true, Red Hat Advanced Cluster Security for Kubernetes disables autoscaling on the Scanner deployment.

scanner.autoscaling.minReplicas

The minimum number of replicas for autoscaling. Defaults to 2.

scanner.autoscaling.maxReplicas

The maximum number of replicas for autoscaling. Defaults to 5.

scanner.nodeSelector

Specify a node selector label as label-key: label-value to force Scanner to only schedule on nodes with the specified label.

scanner.tolerations

If the node selector selects tainted nodes, use this parameter to specify a taint toleration key, value, and effect for Scanner.

scanner.dbNodeSelector

Specify a node selector label as label-key: label-value to force Scanner DB to only schedule on nodes with the specified label.

scanner.dbTolerations

If the node selector selects tainted nodes, use this parameter to specify a taint toleration key, value, and effect for Scanner DB.

scanner.resources.requests.memory

The memory request for the Scanner container. Use this parameter to override the default value.

scanner.resources.requests.cpu

The CPU request for the Scanner container. Use this parameter to override the default value.

scanner.resources.limits.memory

The memory limit for the Scanner container. Use this parameter to override the default value.

scanner.resources.limits.cpu

The CPU limit for the Scanner container. Use this parameter to override the default value.

scanner.dbResources.requests.memory

The memory request for the Scanner DB container. Use this parameter to override the default value.

scanner.dbResources.requests.cpu

The CPU request for the Scanner DB container. Use this parameter to override the default value.

scanner.dbResources.limits.memory

The memory limit for the Scanner DB container. Use this parameter to override the default value.

scanner.dbResources.limits.cpu

The CPU limit for the Scanner DB container. Use this parameter to override the default value.

Important

The CORE_BPF collection method is a Technology Preview feature only. Technology Preview features are not supported with Red Hat production service level agreements (SLAs) and might not be functionally complete. Red Hat does not recommend using them in production. These features provide early access to upcoming product features, enabling customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features, see Technology Preview Features Support Scope.

6.4.1.3.1.1. Environment variables

You can specify environment variables for Sensor and Admission controller in the following format:

customize:
  envVars:
    ENV_VAR1: "value1"
    ENV_VAR2: "value2"

The customize setting allows you to specify custom Kubernetes metadata (labels and annotations) for all objects created by this Helm chart and additional pod labels, pod annotations, and container environment variables for workloads.

The configuration is hierarchical, in the sense that metadata defined at a more generic scope (for example, for all objects) can be overridden by metadata defined at a narrower scope (for example, only for the Sensor deployment).

6.4.1.3.2. Installing the secured-cluster-services Helm chart

After you configure the values-public.yaml and values-private.yaml files, install the secured-cluster-services Helm chart to deploy the per-cluster and per-node components (Sensor, Admission controller, Collector, and Scanner-slim).

Caution

To install Collector on systems that have Unified Extensible Firmware Interface (UEFI) and that have Secure Boot enabled, you must use eBPF probes because kernel modules are unsigned, and the UEFI firmware cannot load unsigned packages. Collector identifies Secure Boot status at the start and switches to eBPF probes if required.

Prerequisites

  • You must have generated an RHACS init bundle for your cluster.
  • You must have access to the Red Hat Container Registry and a pull secret for authentication. For information about downloading images from registry.redhat.io, see Red Hat Container Registry Authentication.
  • You must have the Central API Endpoint, including the address and the port number. You can view this information by choosing Advanced Cluster SecurityACS Instances from the cloud console navigation menu, then clicking the ACS instance you created.

Procedure

  • Run the following command:

    $ helm install -n stackrox \
      --create-namespace stackrox-secured-cluster-services rhacs/secured-cluster-services \
      -f <name_of_cluster_init_bundle.yaml> \
      -f <path_to_values_public.yaml> -f <path_to_values_private.yaml> \ 1
      --set imagePullSecrets.username=<username> \ 2
      --set imagePullSecrets.password=<password> 3
    1
    Use the -f option to specify the paths for your YAML configuration files.
    2
    Include the user name for your pull secret for Red Hat Container Registry authentication.
    3
    Include the password for your pull secret for Red Hat Container Registry authentication.
Note

To deploy secured-cluster-services Helm chart by using a continuous integration (CI) system, pass the init bundle YAML file as an environment variable to the helm install command:

$ helm install ... -f <(echo "$INIT_BUNDLE_YAML_SECRET") 1
1
If you are using base64 encoded variables, use the helm install …​ -f <(echo "$INIT_BUNDLE_YAML_SECRET" | base64 --decode) command instead.
6.4.1.4. Changing configuration options after deploying the secured-cluster-services Helm chart

You can make changes to any configuration options after you have deployed the secured-cluster-services Helm chart.

Procedure

  1. Update the values-public.yaml and values-private.yaml configuration files with new values.
  2. Run the helm upgrade command and specify the configuration files using the -f option:

    $ helm upgrade -n stackrox \
      stackrox-secured-cluster-services rhacs/secured-cluster-services \
      --reuse-values \ 1
      -f <path_to_values_public.yaml> \
      -f <path_to_values_private.yaml>
    1
    You must specify the --reuse-values parameter, otherwise the Helm upgrade command resets all previously configured settings.
    Note

    You can also specify configuration values using the --set or --set-file parameters. However, these options are not saved, and it requires you to manually specify all the options again whenever you make changes.

6.4.2. Installing RHACS on secured clusters by using the roxctl CLI

To install RHACS on secured clusters by using the CLI, perform the following steps:

  1. Install the roxctl CLI.
  2. Install Sensor.
6.4.2.1. Installing the roxctl CLI

You must first download the binary. You can install roxctl on Linux, Windows, or macOS.

6.4.2.1.1. Installing the roxctl CLI on Linux

You can install the roxctl CLI binary on Linux by using the following procedure.

Procedure

  1. Download the latest version of the roxctl CLI:

    $ curl -O https://mirror.openshift.com/pub/rhacs/assets/4.1.5/bin/Linux/roxctl
  2. Make the roxctl binary executable:

    $ chmod +x roxctl
  3. Place the roxctl binary in a directory that is on your PATH:

    To check your PATH, execute the following command:

    $ echo $PATH

Verification

  • Verify the roxctl version you have installed:

    $ roxctl version
6.4.2.1.2. Installing the roxctl CLI on macOS

You can install the roxctl CLI binary on macOS by using the following procedure.

Procedure

  1. Download the latest version of the roxctl CLI:

    $ curl -O https://mirror.openshift.com/pub/rhacs/assets/4.1.5/bin/Darwin/roxctl
  2. Remove all extended attributes from the binary:

    $ xattr -c roxctl
  3. Make the roxctl binary executable:

    $ chmod +x roxctl
  4. Place the roxctl binary in a directory that is on your PATH:

    To check your PATH, execute the following command:

    $ echo $PATH

Verification

  • Verify the roxctl version you have installed:

    $ roxctl version
6.4.2.1.3. Installing the roxctl CLI on Windows

You can install the roxctl CLI binary on Windows by using the following procedure.

Procedure

  • Download the latest version of the roxctl CLI:

    $ curl -O https://mirror.openshift.com/pub/rhacs/assets/4.1.5/bin/Windows/roxctl.exe

Verification

  • Verify the roxctl version you have installed:

    $ roxctl version
6.4.2.2. Installing Sensor

To monitor a cluster, you must deploy Sensor. You must deploy Sensor into each cluster that you want to monitor. The following steps describe adding Sensor by using the RHACS portal.

Prerequisites

  • You must have already installed Central services, or you can access Central services by selecting your ACS instance on Red Hat Advanced Cluster Security Cloud Service (RHACS Cloud Service).

Procedure

  1. On your secured cluster, in the RHACS portal, navigate to Platform ConfigurationClusters.
  2. Select + New Cluster.
  3. Specify a name for the cluster.
  4. Provide appropriate values for the fields based on where you are deploying the Sensor.

    • Enter the Central API Endpoint, including the address and the port number. You can view this information again in the Red Hat Hybrid Cloud Console by choosing Advanced Cluster SecurityACS Instances, and then clicking the ACS instance you created.
  5. Click Next to continue with the Sensor setup.
  6. Click Download YAML File and Keys to download the cluster bundle (zip archive).

    Important

    The cluster bundle zip archive includes unique configurations and keys for each cluster. Do not reuse the same files in another cluster.

  7. From a system that has access to the monitored cluster, unzip and run the sensor script from the cluster bundle:

    $ unzip -d sensor sensor-<cluster_name>.zip
    $ ./sensor/sensor.sh

    If you get a warning that you do not have the required permissions to deploy Sensor, follow the on-screen instructions, or contact your cluster administrator for assistance.

After Sensor is deployed, it contacts Central and provides cluster information.

Verification

  1. Return to the RHACS portal and check if the deployment is successful. If successful, when viewing your list of clusters in Platform ConfigurationClusters, the cluster status displays a green checkmark and a Healthy status. If you do not see a green checkmark, use the following command to check for problems:

    • On Kubernetes, enter the following command:

      $ kubectl get pod -n stackrox -w
  2. Click Finish to close the window.

After installation, Sensor starts reporting security information to RHACS and the RHACS portal dashboard begins showing deployments, images, and policy violations from the cluster on which you have installed the Sensor.

6.5. Verifying installation of secured clusters

After installing RHACS Cloud Service, you can perform some steps to verify that the installation was successful.

To verify installation, access your ACS Console from the Red Hat Hybrid Cloud Console. The Dashboard displays the number of clusters that RHACS Cloud Service is monitoring, along with information about nodes, deployments, images, and violations.

If no data appears in the ACS Console:

  • Ensure that at least one secured cluster is connected to your RHACS Cloud Service instance. For more information, see instructions for installing by using Helm charts or by using the roxctl CLI.
  • Examine your Sensor pod logs to ensure that the connection to your RHACS Cloud Service instance is successful.
  • Examine the values in the SecuredCluster API in the Operator on your local cluster to ensure that the Central API Endpoint has been entered correctly. This value should be the same value as shown in the ACS instance details in the Red Hat Hybrid Cloud Console.

Legal Notice

Copyright © 2024 Red Hat, Inc.
The text of and illustrations in this document are licensed by Red Hat under a Creative Commons Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is available at http://creativecommons.org/licenses/by-sa/3.0/. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must provide the URL for the original version.
Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert, Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.
Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift, Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other countries.
Linux® is the registered trademark of Linus Torvalds in the United States and other countries.
Java® is a registered trademark of Oracle and/or its affiliates.
XFS® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States and/or other countries.
MySQL® is a registered trademark of MySQL AB in the United States, the European Union and other countries.
Node.js® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the official Joyent Node.js open source or commercial project.
The OpenStack® Word Mark and OpenStack logo are either registered trademarks/service marks or trademarks/service marks of the OpenStack Foundation, in the United States and other countries and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.
All other trademarks are the property of their respective owners.
Red Hat logoGithubRedditYoutubeTwitter

Learn

Try, buy, & sell

Communities

About Red Hat Documentation

We help Red Hat users innovate and achieve their goals with our products and services with content they can trust.

Making open source more inclusive

Red Hat is committed to replacing problematic language in our code, documentation, and web properties. For more details, see the Red Hat Blog.

About Red Hat

We deliver hardened solutions that make it easier for enterprises to work across platforms and environments, from the core datacenter to the network edge.

© 2024 Red Hat, Inc.