& RedHat

Red Hat Al Inference Server 3.0

Getting started

Getting started with Red Hat Al Inference Server

Last Updated: 2025-07-18

Red Hat Al Inference Server 3.0 Getting started

Getting started with Red Hat Al Inference Server

Legal Notice

Copyright © 2025 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Learn how to work with Red Hat Al Inference Server for model serving and inferencing.

Table of Contents

Table of Contents

o L 3
CHAPTER1.ABOUT AIINFERENCE SERVER ... i e i 4
CHAPTER 2. PRODUCT AND VERSION COMPATIBILITY ..o 5
CHAPTER 3. SERVING AND INFERENCING WITH Al INFERENCE SERVER ..., 6
CHAPTER 4. VALIDATING RED HAT Al INFERENCE SERVER BENEFITS USING KEY METRICS n
CHAPTER 5. TROUBLESHOOTING ... i i e i i et 13
5.1. MODEL LOADING ERRORS 13
5.2. MEMORY OPTIMIZATION 15
5.3. GENERATED MODEL RESPONSE QUALITY 15
5.4. CUDA ACCELERATOR ERRORS 16
5.5.NETWORKING ERRORS 16
5.6. PYTHON MULTIPROCESSING ERRORS 17
5.7. GPU DRIVER OR DEVICE PASS-THROUGH ISSUES 17

Red Hat Al Inference Server 3.0 Getting started

PREFACE

PREFACE

Red Hat Al Inference Server is a container image that optimizes serving and inferencing with LLMs.
Using Al Inference Server, you can serve and inference models in a way that boosts their performance
while reducing their costs.

Red Hat Al Inference Server 3.0 Getting started

CHAPTER 1. ABOUT Al INFERENCE SERVER

Al Inference Server provides enterprise-grade stability and security, building on upstream, open source
software. Al Inference Server leverages the upstream vLLM project, which provides state-of-the-art
inferencing features.

For example, Al Inference Server uses continuous batching to process requests as they arrive instead of
waiting for a full batch to be accumulated. It also uses tensor parallelism to distribute LLM workloads
across multiple GPUs. These features provide reduced latency and higher throughput.

To reduce the cost of inferencing models, Al Inference Server uses paged attention. LLMs use a
mechanism called attention to understand conversations with users. Normally, attention uses a
significant amount of memory, much of which is wasted. Paged attention addresses this memory
wastage by provisioning memory for LLMs similar to the way that virtual memory works for operating
systems. This approach consumes less memory, which lowers costs.

To verify cost savings and performance gains with Al Inference Server, complete the following
procedures:

1. Serving and inferencing with Al Inference Server

2. Validating Red Hat Al Inference Server benefits using key metrics

https://github.com/vllm-project

CHAPTER 2. PRODUCT AND VERSION COMPATIBILITY

CHAPTER 2. PRODUCT AND VERSION COMPATIBILITY

The following table lists the supported product versions for Red Hat Al Inference Server 3.0.

Table 2.1. Product and version compatibility

Product Supported version

Red Hat Al Inference Server 3.0
VvLLM core 0.8.4
LLM Compressor 0.5.1 Technology Preview

Red Hat Al Inference Server 3.0 Getting started

CHAPTER 3. SERVING AND INFERENCING WITH Al
INFERENCE SERVER

Serve and inference a large language model with Red Hat Al Inference Server.

Prerequisites

® You have installed Podman or Docker

® You have access to a Linux server with NVIDIA or AMD GPUs and are logged in as a user with
root privileges

o For NVIDIA GPUs:
m |nstall NVIDIA drivers
m |nstall the NVIDIA Container Toolkit

® |f your system has multiple NVIDIA GPUs that use NVswitch, you must have root access
to start Fabric Manager

o For AMD GPUs:

® |nstall ROCm software

m Verify that you can run ROCm containers

® You have access to registry.redhat.io and have logged in

® You have a Hugging Face account and have generated a Hugging Face token

NOTE

AMD GPUs support FP8 (W8AS8) and GGUF quantization schemes only. For
more information, see Supported hardware.

Procedure

1. Using the table below, identify the correct image for your infrastructure.

GPU Al Inference Server image

NVIDIA CUDA (T4, A100, L4, L40S, H100, registry.redhat.io/rhaiis/vlim-cuda-

H200) rhel9:3.0.0

AMD ROCm (MI210, MI300X) registry.redhat.io/rhaiis/vlim-rocm-
rhel9:3.0.0

2. Open a terminal on your server host, and log in to registry.redhat.io:

I $ podman login registry.redhat.io

3. Pull the relevant image for your GPUs:

https://docs.nvidia.com/datacenter/tesla/driver-installation-guide/index.html
https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html
https://rocm.docs.amd.com/projects/install-on-linux/en/docs-6.4.0/
https://rocm.docs.amd.com/projects/install-on-linux/en/docs-6.4.0/how-to/docker.html
https://docs.vllm.ai/en/latest/features/quantization/supported_hardware.html

CHAPTER 3. SERVING AND INFERENCING WITH Al INFERENCE SERVER

I $ podman pull registry.redhat.io/rhaiis/vlilm-<gpu_type>-rhel9:3.0.0

. If your system has SELinux enabled, configure SELinux to allow device access:

I $ sudo setsebool -P container_use_devices 1

. Create a volume and mount it into the container. Adjust the container permissions so
that the container can use it.

I $ mkdir -p rhaiis-cache
I $ chmod g+rwX rhaiis-cache

. Create or append your HF_TOKEN Hugging Face token to the private.env file. Source
the private.env file.

I $ echo "export HF_TOKEN=<your_HF_token>" > private.env

I $ source private.env

. Start the Al Inference Server container image.
a. For NVIDIA CUDA accelerators:

i. If the host system has multiple GPUs and uses NVSwitch, then start NVIDIA
Fabric Manager. To detect if your system is using NVSwitch, first check if files
are present in /proc/driver/nvidia-nvswitch/devices/, and then start NVIDIA
Fabric Manager. Starting NVIDIA Fabric Manager requires root privileges.

I $ Is /proc/driver/nvidia-nvswitch/devices/
Example output

0000:0c:09.0 0000:0c:0a.0 0000:0c:0b.0 0000:0c:0c.0 0000:0c:0d.0
0000:0c:0e.0

I $ systemctl start nvidia-fabricmanager

IMPORTANT

NVIDIA Fabric Manager is only required on systems with multiple
GPUs that use NVswitch. For more information, see NVIDIA
Server Architectures.

ii. Check that the Red Hat Al Inference Server container can access NVIDIA GPUs
on the host by running the following command:

$ podman run --rm -it \
--security-opt=label=disable \
--device nvidia.com/gpu=all \

https://docs.nvidia.com/datacenter/tesla/fabric-manager-user-guide/index.html#nvidia-server-architectures

Red Hat Al Inference Server 3.0 Getting started

nvcr.io/nvidia/cuda:12.4.1-base-ubi9 \
nvidia-smi

Example output

+ +
| NVIDIA-SMI 570.124.06 Driver Version: 570.124.06 CUDA
Version: 12.8 |

| + + +

| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr.
ECC |

| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util
Compute M. |

| | | MIG M. |
|===+f=================:
=====t======================|

| 0 NVIDIA A100-SXM4-80GB Off | 00000000:08:01.0 Off |

0|

|N/A 32C PO 64W / 400W | 1MiB/ 81920MiB| 0%
Default |

| | | Disabled |

+ + + +

| 1 NVIDIA A100-SXM4-80GB Off | 00000000:08:02.0 Off |

0|

|N/A 29C PO 63W / 400W | 1MiB/ 81920MiB| 0%
Default |

| | | Disabled |

+ + + +

+ +

| Processes: |

| GPU Gl ClI PID Type Process name GPU
Memory |

| ID ID Usage |
|s================—c=o=oooooooooooooooomoooooooooooooooooooo
| No running processes found |

+ +

iii. Start the container.

$ podman run --rm -it \

--device nvidia.com/gpu=all \
--security-opt=label=disable \

~-shm-size=4g -p 8000:8000 \ @)
--userns=keep-id:uid=1001 \6

--env "HUGGING_FACE_HUB_TOKEN=$HF_TOKEN" \ﬂ
--env "HF_HUB_OFFLINE=0"\
--env=VLLM_NO_USAGE_STATS=1\

-v ./rhaiis-cache:/opt/app-root/src/.cache:Z \ 6
registry.redhat.io/rhaiis/vllm-cuda-rhel9:3.0.0 \
--model RedHatAl/Llama-3.2-1B-Instruct-FP8 \
--tensor-parallel-size 2 G

CHAPTER 3. SERVING AND INFERENCING WITH Al INFERENCE SERVER

Required for systems where SELinux is enabled. --security-
opt=label=disable prevents SELinux from relabeling files in the volume

If you experience an issue with shared memory, increase --shm-size to
8GB.

Maps the host UID to the effective UID of the vLLM process in the
container. You can also pass --user=0, but this less secure than the --

userns option. Setting --user=0 runs vLLM as root inside the container.

Set and export HF_TOKEN with your Hugging Face APl access token

0 o o 9o

Required for systems where SELinux is enabled. On Debian or Ubuntu
operating systems, or when using Docker without SELinux, the :Z suffix is
not available.

6 Set --tensor-parallel-size to match the number of GPUs when running the
Al Inference Server container on multiple GPUs.

b. For AMD ROCm accelerators:

i. Use amd-smi static -a to verify that the container can access the host system
GPUs:

$ podman run -ti --rm --pull=newer \
--security-opt=label=disable \
--device=/dev/kfd --device=/dev/dri \
--group-add keep-groups \ ﬂ
--entrypoint=""\
registry.redhat.io/rhaiis/vlilm-rocm-rhel9:3.0.0 \
amd-smi static -a

You must belong to both the video and render groups on AMD systems to
use the GPUs. To access GPUs, you must pass the --group-add=keep-
groups supplementary groups option into the container.

ii. Start the container:

podman run --rm -it \

--device /dev/kfd --device /dev/dri\
--security-opt=label=disable \ ﬂ

--group-add keep-groups \

--shm-size=4GB -p 8000:8000 \ @)

--env "HUGGING_FACE_HUB_TOKEN=$HF_TOKEN"\
--env "HF_HUB_OFFLINE=0"\
--env=VLLM_NO_USAGE_STATS=1\

-v ./rhaiis-cache:/opt/app-root/src/.cache \
registry.redhat.io/rhaiis/vlilm-rocm-rhel9:3.0.0 \
--model RedHatAl/Llama-3.2-1B-Instruct-FP8 \
--tensor-parallel-size 2 6

--security-opt=label=disable prevents SELinux from relabeling files in
the volume mount. If you choose not to use this argument, your container
might not successfully run.

https://huggingface.co/settings/tokens

Red Hat Al Inference Server 3.0 Getting started

9 If you experience an issue with shared memory, increase --shm-size to
8GB.

9 Set --tensor-parallel-size to match the number of GPUs when running the
Al Inference Server container on multiple GPUs.

8. In a separate tab in your terminal, make a request to your model with the API.

curl -X POST -H "Content-Type: application/json" -d '{
"prompt": "What is the capital of France?",
"max_tokens": 50

}' http://<your_server_ip>:8000/v1/completions | jq

Example output

"id": "cmpl-b84aeda1d5a4485c9ch9ed4ai3072fca”,
"object": "text_completion”,

"created™ 1746555421,

"model": "RedHatAl/Llama-3.2-1B-Instruct-FP8",

"choices": [
{
"index": 0,
"text™: " Paris.\nThe capital of France is Paris.",
"logprobs": null,

"finish_reason": "stop",
"stop_reason": null,
"prompt_logprobs": null
}
1,
"usage": {
"prompt_tokens": 8,
"total _tokens": 18,
"completion_tokens™: 10,
"prompt_tokens_details": null

10

CHAPTER 4. VALIDATING RED HAT Al INFERENCE SERVER BENEFITS USING KEY METRICS

CHAPTER 4. VALIDATING RED HAT Al INFERENCE SERVER
BENEFITS USING KEY METRICS

Use the following metrics to evaluate the performance of the LLM model being served with Al Inference
Server:

® Time to first token (TTFT) How long does it take for the model to provide the first token of its
response?

® Time per output token (TPOT) How long does it take for the model to provide an output
token to each user, who has sent a request?

® | atency: How long does it take for the model to generate a complete response?

® Throughput: How many output tokens can a model produce simultaneously, across all users and
requests?

Complete the procedure below to run a benchmark test that shows how Al Inference Server, and other
inference servers, perform according to these metrics.

Prerequisites
® Al lInference Server container image
® GitHub account

® Python 3.9 or higher

Procedure

1. Onyour host system, start an Al Inference Server container and serve a model.

$ podman run --rm -it --device nvidia.com/gpu=all \
--shm-size=4GB -p 8000:8000 \

--env "HUGGING_FACE_HUB_TOKEN=$HF_TOKEN"\
--env "HF_HUB_OFFLINE=0" \

-v ./rhaiis-cache:/opt/app-root/src/.cache \
--security-opt=label=disable \
registry.redhat.io/rhaiis/vllm-cuda-rhel9:3.0.0 \

--model RedHatAl/Llama-3.2-1B-Instruct-FP8

2. In a separate terminal tab, install the benchmark tool dependencies.
I $ pip install vilm pandas datasets

3. Clone the vLLM Git repository:
I $ git clone https://github.com/vlim-project/viim.git

4. Run the ./vlim/benchmarks/benchmark_serving.py script.

$ python vliim/benchmarks/benchmark_serving.py --backend vlim --model RedHatAl/Llama-
3.2-1B-Instruct-FP8 --num-prompts 100 --dataset-name random --random-input 1024 --
random-output 512 --port 8000

1

https://github.com/vllm-project/vllm

Red Hat Al Inference Server 3.0 Getting started

Verification

The results show how Al Inference Server performs according to key server metrics:

============ 3erving Benchmark Result ============

Successful requests: 100
Benchmark duration (s): 4.61
Total input tokens: 102300
Total generated tokens: 40493
Request throughput (req/s): 21.67

Output token throughput (tok/s): 8775.85
Total Token throughput (tok/s): 30946.83

Mean TTFT (ms): 193.61
Median TTFT (ms): 193.82
P99 TTFT (ms): 303.90
----- Time per Output Token (excl. 1st token)------
Mean TPOT (ms): 9.06
Median TPOT (ms): 8.57
P99 TPOT (ms): 13.57
--------------- Inter-token Latency----------------
Mean ITL (ms): 8.54
Median ITL (ms): 8.49

P99 ITL (ms): 13.14

Try changing the parameters of this benchmark and running it again. Notice how vllm as a backend
compares to other options. Throughput should be consistently higher, while latency should be lower.

e Other options for --backend are: tgi, Indeploy, deepspeed-mii, openai, and openai-chat

e Other options for --dataset-name are: sharegpt, burstgpt, sonnet, random, hf

Additional resources

® v[L LM documentation

® | LM Inference Performance Engineering: Best Practices , by Mosaic Al Research, which explains
metrics such as throughput and latency

12

https://docs.vllm.ai/en/latest/
https://www.databricks.com/blog/llm-inference-performance-engineering-best-practices

CHAPTER 5. TROUBLESHOOTING

CHAPTER 5. TROUBLESHOOTING

The following troubleshooting information for Red Hat Al Inference Server 3.0 describes common
problems related to model loading, memory, model response quality, networking, and GPU drivers.
Where available, workarounds for common issues are described.

Most common issues in vLLM relate to installation, model loading, memory management, and GPU
communication. Most problems can be resolved by using a correctly configured environment, ensuring
compatible hardware and software versions, and following the recommended configuration practices.

IMPORTANT

For persistent issues, export VLLM_LOGGING_LEVEL=DEBUG to enable debug
logging and then check the logs.

I $ export VLLM_LOGGING_LEVEL=DEBUG

5.1. MODEL LOADING ERRORS

® When you run the Red Hat Al Inference Server container image without specifying a user
namespace, an unrecognized model error is returned.

podman run --rm -it \

--device nvidia.com/gpu=all \
--security-opt=label=disable \

--shm-size=4GB -p 8000:8000 \

--env "HUGGING_FACE_HUB_TOKEN=$HF_TOKEN"\
--env "HF_HUB_OFFLINE=0"\
--env=VLLM_NO_USAGE_STATS=1\

-v ./rhaiis-cache:/opt/app-root/src/.cache \
registry.redhat.io/rhaiis/vllm-cuda-rhel9:3.0.0 \

--model RedHatAl/Llama-3.2-1B-Instruct-FP8

Example output

ValueError: Unrecognized model in RedHatAl/Llama-3.2-1B-Instruct-FP8. Should have a
model_type key in its config.json

To resolve this error, pass --userns=keep-id:uid=1001 as a Podman parameter to ensure that
the container runs with the root user.

® Sometimes when Red Hat Al Inference Server downloads the model, the download fails or gets

stuck. To prevent the model download from hanging, first download the model using the
huggingface-cli. For example:

I $ huggingface-cli download <MODEL_ID> --local-dir <DOWNLOAD_PATH>

When serving the model, pass the local model path to vLLM to prevent the model from being
downloaded again.

® When Red Hat Al Inference Server loads a model from disk, the process sometimes hangs. Large

models consume memory, and if memory runs low, the system slows down as it swaps data
between RAM and disk. Slow network file system speeds or a lack of available memory can

13

Red Hat Al Inference Server 3.0 Getting started

14

trigger excessive swapping. This can happen in clusters where file systems are shared between
cluster nodes.

Where possible, store the model in a local disk to prevent slow down during model loading.
Ensure that the system has sufficient CPU memory available.

Ensure that your system has enough CPU capacity to handle the model.

Sometimes, Red Hat Al Inference Server fails to inspect the model. Errors are reported in the
log. For example:

#...
File "vllm/model_executor/models/registry.py", line xxx, in _raise_for_unsupported
raise ValueError(
ValueError: Model architectures ["] failed to be inspected. Please check the logs for more
details.

The error occurs when vLLM fails to import the model file, which is usually related to missing
dependencies or outdated binaries in the vLLM build.

Some model architectures are not supported. Refer to the list of Validated models. For
example, the following errors indicate that the model you are trying to use is not supported:

Traceback (most recent call last):
#..
File "vllm/model_executor/models/registry.py", line xxx, in inspect_model_cls
for arch in architectures:
TypeError: '"NoneType' object is not iterable

#..
File "vllm/model_executor/models/registry.py", line xxx, in _raise_for_unsupported
raise ValueError(
ValueError: Model architectures ["] are not supported for now. Supported architectures:
#...

NOTE

Some architectures such as DeepSeekV2VL require the architecture to be
explicitly specified using the --hf_overrides flag, for example:

I --hf_overrides '{\"architectures\": [\"DeepseekVLV2ForCausalLM\"]}

® Sometimes a runtime error occurs for certain hardware when you load 8-bit floating point (FP8)

models. FP8 requires GPU hardware acceleration. Errors occur when you load FP8 models like
deepseek-r1 or models tagged with the F8_E4M3 tensor type. For example:

triton.compiler.errors.CompilationError: at 1:0:

def_per_token_group_quant_fp8(

\A

ValueError("type fp8e4nv not supported in this architecture. The supported fp8 dtypes are
(‘fp8e4b15', 'fp8e5')")

[rank0]:[W502 11:12:56.323757996 ProcessGroupNCCL.cpp:1496] Warning: WARNING:

https://docs.redhat.com/en/documentation/red_hat_ai_inference_server/3.0/html-single/validated_models/index

CHAPTER 5. TROUBLESHOOTING

destroy_process_group() was not called before program exit, which can leak resources. For
more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function
operator())

NOTE

Review Getting started to ensure your specific accelerator is supported.
Accelerators that are currently supported for FP8 models include:

o NVIDIA CUDA T4, A100, L4, L40S, H100, and H200 GPUs

©o AMD ROCm MI300X GPUs

® Sometimes when serving a model a runtime error occurs that is related to the host system. For
example, you might see errors in the log like this:

INFO 05-07 19:15:17 [config.py:1901] Chunked prefill is enabled with
max_num_batched tokens=2048.
OMP: Error #179: Function Can't open SHM failed:
OMP: System error #0: Success
Traceback (most recent call last):

File "/opt/app-root/bin/vlim", line 8, in <module>

sys.exit(main())

.......................... raise RuntimeError("Engine core initialization failed. "
RuntimeError: Engine core initialization failed. See root cause above.

You can work around this issue by passing the --shm-size=2g argument when starting vlim.

5.2. MEMORY OPTIMIZATION

e |f the modelis too large to run with a single GPU, you will get out-of-memory (OOM) errors. Use
memory optimization options such as quantization, tensor parallelism, or reduced precision to
reduce the memory consumption. For more information, see Conserving memory.

5.3. GENERATED MODEL RESPONSE QUALITY

® |nsome scenarios, the quality of the generated model responses might deteriorate after an
update.
Default sampling parameters source have been updated in newer versions. For vLLM version
0.8.4 and higher, the default sampling parameters come from the generation_config.json file
that is provided by the model creator. In most cases, this should lead to higher quality responses,
because the model creator is likely to know which sampling parameters are best for their model.
However, in some cases the defaults provided by the model creator can lead to degraded
performance.

If you experience this problem, try serving the model with the old defaults by using the --
generation-config vllm server argument.

15

https://docs.redhat.com/en/documentation/red_hat_ai_inference_server/3.0/html-single/getting_started/index
https://developer.nvidia.com/cuda-gpus
https://www.amd.com/en/products/accelerators/instinct/mi300/mi300x.html
https://docs.vllm.ai/en/latest/configuration/conserving_memory.html

Red Hat Al Inference Server 3.0 Getting started

IMPORTANT

If applying the --generation-config vlim server argument improves the model
output, continue to use the vLLM defaults and petition the model creator on
Hugging Face to update their default generation_config.json so that it
produces better quality generations.

5.4. CUDA ACCELERATOR ERRORS

® You might experience a self.graph.replay() error when running a model using CUDA

accelerators.

If vLLM crashes and the error trace captures the error somewhere around the
self.graph.replay() method in the vlim/worker/model_runner.py module, this is most likely a
CUDA error that occurs inside the CUDAGraph class.

To identify the particular CUDA operation that causes the error, add the --enforce-eager server
argument to the vllm command line to disable CUDAGraph optimization and isolate the
problematic CUDA operation.

You might experience accelerator and CPU communication problems that are caused by
incorrect hardware or driver settings.

NVIDIA Fabric Manager is required for multi-GPU systems for some types of NVIDIA GPUs. The
nvidia-fabricmanager package and associated systemd service might not be installed or the
package might not be running.

Run the diagnostic Python script to check whether the NVIDIA Collective Communications
Library (NCCL) and Gloo library components are communicating correctly.

On an NVIDIA system, check the fabric manager status by running the following command:

I $ systemctl status nvidia-fabricmanager

On successfully configured systems, the service should be active and running with no errors.

Running vLLM with tensor parallelism enabled and setting --tensor-parallel-size to be greater
than 1 on NVIDIA Multi-Instance GPU (MIG) hardware causes an AssertionError during the
initial model loading or shape checking phase. This typically occurs as one of the first errors
when starting vLLM.

5.5.NETWORKING ERRORS

16

® You might experience network errors with complicated network configurations.

To troubleshoot network issues, search the logs for DEBUG statements where an incorrect IP
address is listed, for example:

DEBUG 06-10 21:32:17 parallel_state.py:88] world_size=8 rank=0 local_rank=0
distributed_init_method=tcp://<incorrect_ip_address>:54641 backend=nccl

To correct the issue, set the correct IP address with the VLLM_HOST _IP environment variable,
for example:

I $ export VLLM_HOST _IP=<correct_ip_address>

Specify the network interface that is tied to the IP address for NCCL and Gloo:

https://huggingface.co
https://docs.vllm.ai/en/latest/usage/troubleshooting.html#incorrect-hardwaredriver

CHAPTER 5. TROUBLESHOOTING

I $ export NCCL_SOCKET_IFNAME=<your_network_interface>

I $ export GLOO_SOCKET_IFNAME=<your_network_interface>

5.6. PYTHON MULTIPROCESSING ERRORS

® You might experience Python multiprocessing warnings or runtime errors. This can be caused by
code that is not properly structured for Python multiprocessing. The following is an example
console warning:

WARNING 12-11 14:50:37 multiproc_worker_utils.py:281] CUDA was previously
initialized. We must use the “spawn™ multiprocessing start method. Setting
VLLM_WORKER_MULTIPROC_METHOD to 'spawn'. See
https://docs.vlim.ai/en/latest/getting_started/troubleshooting.html#python-multiprocessing
for more information.

The following is an example Python runtime error:

RuntimeError:
An attempt has been made to start a new process before the
current process has finished its bootstrapping phase.

This probably means that you are not using fork to start your
child processes and you have forgotten to use the proper idiom
in the main module:
if name =" main_ "
freeze_support()

The "freeze_support()" line can be omitted if the program
is not going to be frozen to produce an executable.

To fix this issue, refer to the "Safe importing of main module”
section in https://docs.python.org/3/library/multiprocessing.html

To resolve the runtime error, update your Python code to guard the usage of vllm behind an

if _name__ ="__main__": block, for example:
if _name__ =" main_ "
import viim

lim = viim.LLM(...)

5.7. GPU DRIVER OR DEVICE PASS-THROUGH ISSUES

® When you run the Red Hat Al Inference Server container image, sometimes it is unclear whether
device pass-through errors are being caused by GPU drivers or tools such as the NVIDIA
Container Toolkit.

o Check that the NVIDIA Container toolkit that is installed on the host machine can see the
host GPUs:

17

Red Hat Al Inference Server 3.0 Getting started

I $ nvidia-ctk cdi list
Example output

#..
nvidia.com/gpu=GPU-0fe9bb20-207e-90bf-71a7-677e4627d9a1
nvidia.com/gpu=GPU-10eff114-f824-a804-e7b7-e07e3f8ebc26
nvidia.com/gpu=GPU-39af96b4-f115-9b6d-5be9-68af3abd0e52
nvidia.com/gpu=GPU-3a711e90-a1c5-3d32-a2cd-0abeaa3df073
nvidia.com/gpu=GPU-6f5f6d46-3fc1-8266-5baf-582a4de11937
nvidia.com/gpu=GPU-da30e69a-7ba3-dc81-8a8b-e9b3c30aa593
nvidia.com/gpu=GPU-dc3c1c36-841b-bb2e-4481-381f614e6667
nvidia.com/gpu=GPU-e85ffe36-1642-47c2-644e-76f8a0f02ba7
nvidia.com/gpu=all

o Ensure that the NVIDIA accelerator configuration has been created on the host machine:

I $ sudo nvidia-ctk cdi generate --output=/etc/cdi/nvidia.yaml

o Check that the Red Hat Al Inference Server container can access NVIDIA GPUs on the host
by running the following command:

$ podman run --rm -it --security-opt=label=disable --device nvidia.com/gpu=all
nvcr.io/nvidia/cuda:12.4.1-base-ubi9 nvidia-smi

Example output

+

| NVIDIA-SMI 570.124.06 Driver Version: 570.124.06 CUDA Version: 12.8 |
| + + +

| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |

| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M.
|

| | | MIG M. |
|===+========================+==
========oooooooooc

| 0 NVIDIA A100-SXM4-80GB Off | 00000000:08:01.0 Off | 0|
|N/A 32C PO 64W / 400W | 1MiB/ 81920MiB| 0% Default |

| | | Disabled |

+ + + +

| 1 NVIDIA A100-SXM4-80GB Off | 00000000:08:02.0 Off | 0|
|N/A 29C PO 63W / 400W | 1MiB/ 81920MiB| 0% Default |

| | | Disabled |

+ + + +

+ +

| Processes: |

| GPU GI ClI PID Type Process name GPU Memory |

| ID ID Usage |
|=================ooooooooooooooooo oo oo
========oooooooooc

| No running processes found |

+ +

18

CHAPTER 5. TROUBLESHOOTING

19

	Table of Contents
	PREFACE
	CHAPTER 1. ABOUT AI INFERENCE SERVER
	CHAPTER 2. PRODUCT AND VERSION COMPATIBILITY
	CHAPTER 3. SERVING AND INFERENCING WITH AI INFERENCE SERVER
	CHAPTER 4. VALIDATING RED HAT AI INFERENCE SERVER BENEFITS USING KEY METRICS
	CHAPTER 5. TROUBLESHOOTING
	5.1. MODEL LOADING ERRORS
	5.2. MEMORY OPTIMIZATION
	5.3. GENERATED MODEL RESPONSE QUALITY
	5.4. CUDA ACCELERATOR ERRORS
	5.5. NETWORKING ERRORS
	5.6. PYTHON MULTIPROCESSING ERRORS
	5.7. GPU DRIVER OR DEVICE PASS-THROUGH ISSUES

