
Red Hat build of Keycloak 26.2

High Availability Guide

Last Updated: 2025-09-19

Red Hat build of Keycloak 26.2 High Availability Guide

Legal Notice

Copyright © 2025 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide consists of information for administrators to configure and use the Red Hat build of
Keycloak 26.2 for high availability.

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. MULTI-SITE DEPLOYMENTS
1.1. WHEN TO USE A MULTI-SITE SETUP
1.2. SUPPORTED CONFIGURATION
1.3. MAXIMUM LOAD
1.4. LIMITATIONS
1.5. NEXT STEPS

CHAPTER 2. CONCEPTS FOR MULTI-SITE DEPLOYMENTS
2.1. WHEN TO USE THIS SETUP
2.2. DEPLOYMENT, DATA STORAGE AND CACHING
2.3. CAUSES OF DATA AND SERVICE LOSS
2.4. FAILURES WHICH THIS SETUP CAN SURVIVE
2.5. KNOWN LIMITATIONS
2.6. QUESTIONS AND ANSWERS
2.7. NEXT STEPS

CHAPTER 3. BUILDING BLOCKS MULTI-SITE DEPLOYMENTS
3.1. PREREQUISITES
3.2. TWO SITES WITH LOW-LATENCY CONNECTION
3.3. ENVIRONMENT FOR RED HAT BUILD OF KEYCLOAK AND DATA GRID
3.4. DATABASE
3.5. DATA GRID
3.6. RED HAT BUILD OF KEYCLOAK
3.7. LOAD BALANCER

CHAPTER 4. CONCEPTS FOR DATABASE CONNECTION POOLS
4.1. CONCEPTS

CHAPTER 5. CONCEPTS FOR CONFIGURING THREAD POOLS
5.1. CONCEPTS

5.1.1. JGroups communications
5.1.2. Quarkus executor pool
5.1.3. Load Shedding
5.1.4. Probes
5.1.5. OS Resources

CHAPTER 6. CONCEPTS FOR SIZING CPU AND MEMORY RESOURCES
6.1. PERFORMANCE RECOMMENDATIONS

6.1.1. Measuring the activity of a running Red Hat build of Keycloak instance
6.1.2. Calculation example (single site)
6.1.3. Sizing a multi-site setup

6.2. REFERENCE ARCHITECTURE

CHAPTER 7. CONCEPTS TO AUTOMATE DATA GRID CLI COMMANDS
7.1. WHEN TO USE IT
7.2. EXAMPLE
7.3. FURTHER READING

CHAPTER 8. DEPLOYING AWS AURORA IN MULTIPLE AVAILABILITY ZONES
8.1. ARCHITECTURE
8.2. PROCEDURE

8.2.1. Create Aurora database Cluster
8.2.2. Establish Peering Connections with ROSA clusters

5
5
5
5
6
6

7
7
7
7
7

10
10
11

12
12
12
12
12
12
13
13

14
14

15
15
15
15
15
16
16

17
17
18
19
19

20

21
21
21
21

22
22
22
23
29

Table of Contents

1

. .

. .

. .

. .

. .

. .

. .

. .

8.3. VERIFYING THE CONNECTION
8.4. CONNECTING AURORA DATABASE WITH RED HAT BUILD OF KEYCLOAK
8.5. NEXT STEPS

CHAPTER 9. DEPLOYING DATA GRID FOR HA WITH THE DATA GRID OPERATOR
9.1. ARCHITECTURE
9.2. PREREQUISITES
9.3. PROCEDURE
9.4. VERIFYING THE DEPLOYMENT
9.5. CONNECTING DATA GRID WITH RED HAT BUILD OF KEYCLOAK

9.5.1. Architecture
9.6. NEXT STEPS
9.7. RELEVANT OPTIONS

CHAPTER 10. DEPLOYING RED HAT BUILD OF KEYCLOAK FOR HA WITH THE OPERATOR
10.1. PREREQUISITES
10.2. PROCEDURE
10.3. VERIFYING THE DEPLOYMENT
10.4. OPTIONAL: LOAD SHEDDING
10.5. OPTIONAL: DISABLE STICKY SESSIONS

CHAPTER 11. DEPLOYING AN AWS GLOBAL ACCELERATOR LOAD BALANCER
11.1. AUDIENCE
11.2. ARCHITECTURE
11.3. PREREQUISITES
11.4. PROCEDURE
11.5. VERIFY
11.6. FURTHER READING

CHAPTER 12. DEPLOYING AN AWS LAMBDA TO DISABLE A NON-RESPONDING SITE
12.1. ARCHITECTURE
12.2. PREREQUISITES
12.3. PROCEDURE
12.4. VERIFY
12.5. FURTHER READING

CHAPTER 13. TAKING A SITE OFFLINE
13.1. WHEN TO USE THIS PROCEDURE
13.2. PROCEDURE

13.2.1. Global Accelerator

CHAPTER 14. BRINGING A SITE ONLINE
14.1. WHEN TO USE THIS PROCEDURE
14.2. PROCEDURE

14.2.1. Global Accelerator

CHAPTER 15. SYNCHRONIZING SITES
15.1. WHEN TO USE THIS PROCEDURE
15.2. PROCEDURES

15.2.1. Data Grid Cluster
15.2.2. AWS Aurora Database
15.2.3. AWS Global Accelerator

15.3. FURTHER READING

CHAPTER 16. HEALTH CHECKS FOR MULTI-SITE DEPLOYMENTS

33
33
33

34
34
34
34
44
44
45
45
45

47
47
47
49
49
49

51
51
51
51
52
56
57

58
58
58
59
68
69

70
70
70
70

73
73
73
73

76
76
76
76
80
80
80

81

Red Hat build of Keycloak 26.2 High Availability Guide

2

16.1. OVERVIEW
16.2. PREREQUISITES
16.3. SPECIFIC HEALTH CHECKS

16.3.1. Red Hat build of Keycloak load balancer and sites
16.3.2. Data Grid Cache health
16.3.3. Data Grid Cluster distribution
16.3.4. Overall, Data Grid system health
16.3.5. Red Hat build of Keycloak readiness in Kubernetes

81
81
81
81

82
82
82
83

Table of Contents

3

Red Hat build of Keycloak 26.2 High Availability Guide

4

CHAPTER 1. MULTI-SITE DEPLOYMENTS
Connect multiple Red Hat build of Keycloak deployments in different sites to increase the overall
availability.

Red Hat build of Keycloak supports deployments that consist of multiple Red Hat build of Keycloak
instances that connect to each other using its Infinispan caches; load balancers can distribute the load
evenly across those instances. Those setups are intended for a transparent network on a single site.

The Red Hat build of Keycloak high-availability guide goes one step further to describe setups across
multiple sites. While this setup adds additional complexity, that extra amount of high availability may be
needed for some environments.

1.1. WHEN TO USE A MULTI-SITE SETUP

The multi-site deployment capabilities of Red Hat build of Keycloak are targeted at use cases that:

Are constrained to a single AWS Region.

Permit planned outages for maintenance.

Fit within a defined user and request count.

Can accept the impact of periodic outages.

1.2. SUPPORTED CONFIGURATION

Two Openshift single-AZ clusters, in the same AWS Region

Provisioned with Red Hat OpenShift Service on AWS (ROSA), either ROSA HCP or ROSA
classic.

Each Openshift cluster has all its workers in a single Availability Zone.

OpenShift version 4.17 (or later).

Amazon Aurora PostgreSQL database

High availability with a primary DB instance in one Availability Zone, and a synchronously
replicated reader in the second Availability Zone

Version 16.1

AWS Global Accelerator, sending traffic to both ROSA clusters

AWS Lambda to automate failover

Any deviation from the configuration above is not supported and any issue must be replicated in that
environment for support.

Read more on each item in the Building blocks multi-site deployments chapter.

1.3. MAXIMUM LOAD

100,000 users

CHAPTER 1. MULTI-SITE DEPLOYMENTS

5

https://www.redhat.com/en/technologies/cloud-computing/openshift/aws

300 requests per second

See the Concepts for sizing CPU and memory resources chapter for more information.

1.4. LIMITATIONS

During upgrades of Red Hat build of Keycloak or Data Grid both sites needs to be taken offline
for the duration of the upgrade.

During certain failure scenarios, there may be downtime of up to 5 minutes.

After certain failure scenarios, manual intervention may be required to restore redundancy by
bringing the failed site back online.

During certain switchover scenarios, there may be downtime of up to 5 minutes.

For more details on limitations see the Concepts for multi-site deployments chapter.

1.5. NEXT STEPS

The different chapters introduce the necessary concepts and building blocks. For each building block, a
blueprint shows how to set a fully functional example. Additional performance tuning and security
hardening are still recommended when preparing a production setup.

Red Hat build of Keycloak 26.2 High Availability Guide

6

CHAPTER 2. CONCEPTS FOR MULTI-SITE DEPLOYMENTS
Understand multi-site deployment with synchronous replication.

This topic describes a highly available multi-site setup and the behavior to expect. It outlines the
requirements of the high availability architecture and describes the benefits and tradeoffs.

2.1. WHEN TO USE THIS SETUP

Use this setup to provide Red Hat build of Keycloak deployments that are able to tolerate site failures,
reducing the likelihood of downtime.

2.2. DEPLOYMENT, DATA STORAGE AND CACHING

Two independent Red Hat build of Keycloak deployments running in different sites are connected with a
low latency network connection. Users, realms, clients, sessions, and other entities are stored in a
database that is replicated synchronously across the two sites. The data is also cached in the Red Hat
build of Keycloak Infinispan caches as local caches. When the data is changed in one Red Hat build of
Keycloak instance, that data is updated in the database, and an invalidation message is sent to the other
site using the work cache.

In the following paragraphs and diagrams, references to deploying Data Grid apply to the external Data
Grid.

Site A

2.3. CAUSES OF DATA AND SERVICE LOSS

While this setup aims for high availability, the following situations can still lead to service or data loss:

Red Hat build of Keycloak site failure may result in requests failing in the period between the
failure and the loadbalancer detecting it, as requests may still be routed to the failed site.

Once failures occur in the communication between the sites, manual steps are necessary to re-
synchronize a degraded setup.

Degraded setups can lead to service or data loss if additional components fail. Monitoring is
necessary to detect degraded setups.

2.4. FAILURES WHICH THIS SETUP CAN SURVIVE

CHAPTER 2. CONCEPTS FOR MULTI-SITE DEPLOYMENTS

7

Failure Recovery RPO1 RTO2

Database node If the writer instance
fails, the database can
promote a reader
instance in the same or
other site to be the new
writer.

No data loss Seconds to minutes
(depending on the
database)

Red Hat build of
Keycloak node

Multiple Red Hat build
of Keycloak instances
run on each site. If one
instance fails some
incoming requests might
receive an error
message or are delayed
for some seconds.

No data loss Less than 30 seconds

Data Grid node Multiple Data Grid
instances run in each
site. If one instance fails,
it takes a few seconds
for the other nodes to
notice the change.
Entities are stored in at
least two Data Grid
nodes, so a single node
failure does not lead to
data loss.

No data loss Less than 30 seconds

Data Grid cluster failure If the Data Grid cluster
fails in one of the sites,
Red Hat build of
Keycloak will not be able
to communicate with
the external Data Grid
on that site, and the Red
Hat build of Keycloak
service will be
unavailable. The
loadbalancer will detect
the situation as /lb-
check returns an error,
and will direct all traffic
to the other site.

The setup is degraded
until the Data Grid
cluster is restored and
the data is re-
synchronized.

No data loss3 Seconds to minutes
(depending on load
balancer setup)

Red Hat build of Keycloak 26.2 High Availability Guide

8

Connectivity Data Grid If the connectivity
between the two sites is
lost, data cannot be sent
to the other site.
Incoming requests might
receive an error
message or are delayed
for some seconds. The
Data Grid will mark the
other site offline, and will
stop sending data. One
of the sites needs to be
taken offline in the
loadbalancer until the
connection is restored
and the data is re-
synchronized between
the two sites. In the
blueprints, we show how
this can be automated.

No data loss3 Seconds to minutes
(depending on load
balancer setup)

Connectivity database If the connectivity
between the two sites is
lost, the synchronous
replication will fail. Some
requests might receive
an error message or be
delayed for a few
seconds. Manual
operations might be
necessary depending on
the database.

No data loss3 Seconds to minutes
(depending on the
database)

Site failure If none of the Red Hat
build of Keycloak nodes
are available, the
loadbalancer will detect
the outage and redirect
the traffic to the other
site. Some requests
might receive an error
message until the
loadbalancer detects the
failure.

No data loss3 Less than two minutes

Failure Recovery RPO1 RTO2

Table footnotes:

1 Recovery point objective, assuming all parts of the setup were healthy at the time this occurred.
2 Recovery time objective.
3 Manual operations needed to restore the degraded setup.

CHAPTER 2. CONCEPTS FOR MULTI-SITE DEPLOYMENTS

9

The statement “No data loss ” depends on the setup not being degraded from previous failures, which
includes completing any pending manual operations to resynchronize the state between the sites.

2.5. KNOWN LIMITATIONS

Site Failure

A successful failover requires a setup not degraded from previous failures. All manual operations like
a re-synchronization after a previous failure must be complete to prevent data loss. Use monitoring
to ensure degradations are detected and handled in a timely manner.

Out-of-sync sites

The sites can become out of sync when a synchronous Data Grid request fails. This situation is
currently difficult to monitor, and it would need a full manual re-sync of Data Grid to recover.
Monitoring the number of cache entries in both sites and the Red Hat build of Keycloak log file can
show when resynch would become necessary.

Manual operations

Manual operations that re-synchronize the Data Grid state between the sites will issue a full state
transfer which will put a stress on the system.

Two sites restriction

This setup is tested and supported only with two sites. Each additional site increases overall latency
as it is necessary for data to be synchronously written to each site. Furthermore, the probability of
network failures, and therefore downtime, also increases. Therefore, we do not support more than
two sites as we believe it would lead to a deployment with inferior stability and performance.

2.6. QUESTIONS AND ANSWERS

Why synchronous database replication?

A synchronously replicated database ensures that data written in one site is always available in the
other site after site failures and no data is lost. It also ensures that the next request will not return
stale data, independent on which site it is served.

Why synchronous Data Grid replication?

A synchronously replicated Data Grid ensures that cached data in one site are always available on the
other site after a site failure and no data is lost. It also ensures that the next request will not return
stale data, independent on which site it is served.

Why is a low-latency network between sites needed?

Synchronous replication defers the response to the caller until the data is received at the other site.
For synchronous database replication and synchronous Data Grid replication, a low latency is
necessary as each request can have potentially multiple interactions between the sites when data is
updated which would amplify the latency.

Is a synchronous cluster less stable than an asynchronous cluster?

An asynchronous setup would handle network failures between the sites gracefully, while the
synchronous setup would delay requests and will throw errors to the caller where the asynchronous
setup would have deferred the writes to Data Grid or the database on the other site. However, as the
two sites would never be fully up-to-date, this setup could lead to data loss during failures. This
would include:

Lost changes leading to users being able to log in with an old password because database
changes are not replicated to the other site at the point of failure when using an
asynchronous database.

Invalid caches leading to users being able to log in with an old password because invalidating

Red Hat build of Keycloak 26.2 High Availability Guide

10

Invalid caches leading to users being able to log in with an old password because invalidating
caches are not propagated at the point of failure to the other site when using an
asynchronous Data Grid replication.

Therefore, tradeoffs exist between high availability and consistency. The focus of this topic is to
prioritize consistency over availability with Red Hat build of Keycloak.

2.7. NEXT STEPS

Continue reading in the Building blocks multi-site deployments chapter to find blueprints for the
different building blocks.

CHAPTER 2. CONCEPTS FOR MULTI-SITE DEPLOYMENTS

11

CHAPTER 3. BUILDING BLOCKS MULTI-SITE DEPLOYMENTS
Learn about building blocks and suggested setups for multi-site deployments.

The following building blocks are needed to set up a multi-site deployment with synchronous replication.

The building blocks link to a blueprint with an example configuration. They are listed in the order in which
they need to be installed.

NOTE

We provide these blueprints to show a minimal functionally complete example with a
good baseline performance for regular installations. You would still need to adapt it to
your environment and your organization’s standards and security best practices.

3.1. PREREQUISITES

Understanding the concepts laid out in the Concepts for multi-site deployments chapter.

3.2. TWO SITES WITH LOW-LATENCY CONNECTION

Ensures that synchronous replication is available for both the database and the external Data Grid.

Suggested setup: Two AWS Availability Zones within the same AWS Region.

Not considered: Two regions on the same or different continents, as it would increase the latency and
the likelihood of network failures. Synchronous replication of databases as services with Aurora Regional
Deployments on AWS is only available within the same region.

3.3. ENVIRONMENT FOR RED HAT BUILD OF KEYCLOAK AND DATA
GRID

Ensures that the instances are deployed and restarted as needed.

Suggested setup: Red Hat OpenShift Service on AWS (ROSA) deployed in each availability zone.

Not considered: A stretched ROSA cluster which spans multiple availability zones, as this could be a
single point of failure if misconfigured.

3.4. DATABASE

A synchronously replicated database across two sites.

Blueprint: Deploying AWS Aurora in multiple availability zones .

3.5. DATA GRID

A deployment of Data Grid that leverages the Data Grid’s Cross-DC functionality.

Blueprint: Deploying Data Grid for HA with the Data Grid Operator using the Data Grid Operator, and
connect the two sites using Data Grid’s Gossip Router.

Not considered: Direct interconnections between the Kubernetes clusters on the network layer. It might

Red Hat build of Keycloak 26.2 High Availability Guide

12

Not considered: Direct interconnections between the Kubernetes clusters on the network layer. It might
be considered in the future.

3.6. RED HAT BUILD OF KEYCLOAK

A clustered deployment of Red Hat build of Keycloak in each site, connected to an external Data Grid.

Blueprint: Deploying Red Hat build of Keycloak for HA with the Operator that includes connecting to
the Aurora database and the Data Grid server.

3.7. LOAD BALANCER

A load balancer which checks the /lb-check URL of the Red Hat build of Keycloak deployment in each
site, plus an automation to detect Data Grid connectivity problems between the two sites.

Blueprint: Deploying an AWS Global Accelerator load balancer together with Deploying an AWS
Lambda to disable a non-responding site.

CHAPTER 3. BUILDING BLOCKS MULTI-SITE DEPLOYMENTS

13

CHAPTER 4. CONCEPTS FOR DATABASE CONNECTION
POOLS

Understand concepts for avoiding resource exhaustion and congestion.

This section is intended when you want to understand considerations and best practices on how to
configure database connection pools for Red Hat build of Keycloak. For a configuration where this is
applied, visit Deploying Red Hat build of Keycloak for HA with the Operator .

4.1. CONCEPTS

Creating new database connections is expensive as it takes time. Creating them when a request arrives
will delay the response, so it is good to have them created before the request arrives. It can also
contribute to a stampede effect where creating a lot of connections in a short time makes things worse
as it slows down the system and blocks threads. Closing a connection also invalidates all server side
statements caching for that connection.

For the best performance, the values for the initial, minimal and maximum database connection pool size
should all be equal. This avoids creating new database connections when a new request comes in which is
costly.

Keeping the database connection open for as long as possible allows for server side statement caching
bound to a connection. In the case of PostgreSQL, to use a server-side prepared statement, a query
needs to be executed (by default) at least five times.

See the PostgreSQL docs on prepared statements for more information.

Red Hat build of Keycloak 26.2 High Availability Guide

14

https://en.wikipedia.org/wiki/Cache_stampede
https://jdbc.postgresql.org/documentation/server-prepare/#activation
https://www.postgresql.org/docs/current/sql-prepare.html

CHAPTER 5. CONCEPTS FOR CONFIGURING THREAD POOLS
Understand concepts for avoiding resource exhaustion and congestion.

This section is intended when you want to understand the considerations and best practices on how to
configure thread pools connection pools for Red Hat build of Keycloak. For a configuration where this is
applied, visit Deploying Red Hat build of Keycloak for HA with the Operator .

5.1. CONCEPTS

5.1.1. JGroups communications

JGroups communications, which is used in single-site setups for the communication between Red Hat
build of Keycloak nodes, benefits from the use of virtual threads which are available in OpenJDK 21 when
at least two cores are available for Red Hat build of Keycloak. This reduces the memory usage and
removes the need to configure thread pool sizes. Therefore, the use of OpenJDK 21 is recommended.

5.1.2. Quarkus executor pool

Red Hat build of Keycloak requests, as well as blocking probes, are handled by an executor pool.
Depending on the available CPU cores, it has a maximum size of 50 or more threads. Threads are
created as needed, and will end when no longer needed, so the system will scale up and down
automatically. Red Hat build of Keycloak allows configuring the maximum thread pool size by the http-
pool-max-threads configuration option. See Deploying Red Hat build of Keycloak for HA with the
Operator for an example.

When running on Kubernetes, adjust the number of worker threads to avoid creating more load than
what the CPU limit allows for the Pod to avoid throttling, which would lead to congestion. When running
on physical machines, adjust the number of worker threads to avoid creating more load than the node
can handle to avoid congestion. Congestion would result in longer response times and an increased
memory usage, and eventually an unstable system.

Ideally, you should start with a low limit of threads and adjust it accordingly to the target throughput and
response time. When the load and the number of threads increases, the database connections can also
become a bottleneck. Once a request cannot acquire a database connection within 5 seconds, it will fail
with a message in the log like Unable to acquire JDBC Connection. The caller will receive a response
with a 5xx HTTP status code indicating a server side error.

If you increase the number of database connections and the number of threads too much, the system
will be congested under a high load with requests queueing up, which leads to a bad performance. The
number of database connections is configured via the Database settings db-pool-initial-size, db-pool-
min-size and db-pool-max-size respectively. Low numbers ensure fast response times for all clients,
even if there is an occasionally failing request when there is a load spike.

5.1.3. Load Shedding

By default, Red Hat build of Keycloak will queue all incoming requests infinitely, even if the request
processing stalls. This will use additional memory in the Pod, can exhaust resources in the load
balancers, and the requests will eventually time out on the client side without the client knowing if the
request has been processed. To limit the number of queued requests in Red Hat build of Keycloak, set
an additional Quarkus configuration option.

Configure http-max-queued-requests to specify a maximum queue length to allow for effective load

CHAPTER 5. CONCEPTS FOR CONFIGURING THREAD POOLS

15

https://docs.redhat.com/en/documentation/red_hat_build_of_keycloak/26.2/html-single/server_configuration_guide/#all-config-
https://docs.redhat.com/en/documentation/red_hat_build_of_keycloak/26.2/html-single/server_configuration_guide/#all-config-

Configure http-max-queued-requests to specify a maximum queue length to allow for effective load
shedding once this queue size is exceeded. Assuming a Red Hat build of Keycloak Pod processes around
200 requests per second, a queue of 1000 would lead to maximum waiting times of around 5 seconds.

When this setting is active, requests that exceed the number of queued requests will return with an
HTTP 503 error. Red Hat build of Keycloak logs the error message in its log.

5.1.4. Probes

Red Hat build of Keycloak’s liveness probe is non-blocking to avoid a restart of a Pod under a high load.

The overall health probe and the readiness probe can in some cases block to check the connection to
the database, so they might fail under a high load. Due to this, a Pod can become non-ready under a
high load.

5.1.5. OS Resources

In order for Java to create threads, when running on Linux it needs to have file handles available.
Therefore, the number of open files (as retrieved as ulimit -n on Linux) need to provide head-space for
Red Hat build of Keycloak to increase the number of threads needed. Each thread will also consume
memory, and the container memory limits need to be set to a value that allows for this or the Pod will be
killed by Kubernetes.

Red Hat build of Keycloak 26.2 High Availability Guide

16

CHAPTER 6. CONCEPTS FOR SIZING CPU AND MEMORY
RESOURCES

Understand concepts for avoiding resource exhaustion and congestion.

Use this as a starting point to size a product environment. Adjust the values for your environment as
needed based on your load tests.

6.1. PERFORMANCE RECOMMENDATIONS

WARNING

Performance will be lowered when scaling to more Pods (due to additional
overhead) and using a cross-datacenter setup (due to additional traffic and
operations).

Increased cache sizes can improve the performance when Red Hat build of
Keycloak instances running for a longer time. This will decrease response
times and reduce IOPS on the database. Still, those caches need to be filled
when an instance is restarted, so do not set resources too tight based on
the stable state measured once the caches have been filled.

Use these values as a starting point and perform your own load tests before
going into production.

Summary:

The used CPU scales linearly with the number of requests up to the tested limit below.

Recommendations:

The base memory usage for a Pod including caches of Realm data and 10,000 cached sessions
is 1250 MB of RAM.

In containers, Keycloak allocates 70% of the memory limit for heap-based memory. It will also
use approximately 300 MB of non-heap-based memory. To calculate the requested memory,
use the calculation above. As memory limit, subtract the non-heap memory from the value
above and divide the result by 0.7.

For each 15 password-based user logins per second, allocate 1 vCPU to the cluster (tested with
up to 300 per second).
Red Hat build of Keycloak spends most of the CPU time hashing the password provided by the
user, and it is proportional to the number of hash iterations.

For each 120 client credential grants per second, 1 vCPU to the cluster (tested with up to 2000
per second).*

Most CPU time goes into creating new TLS connections, as each client runs only a single
request.

For each 120 refresh token requests per second, 1 vCPU to the cluster (tested with up to 435



CHAPTER 6. CONCEPTS FOR SIZING CPU AND MEMORY RESOURCES

17

For each 120 refresh token requests per second, 1 vCPU to the cluster (tested with up to 435
refresh token requests per second).*

Leave 150% extra head-room for CPU usage to handle spikes in the load. This ensures a fast
startup of the node, and enough capacity to handle failover tasks. Performance of Red Hat build
of Keycloak dropped significantly when its Pods were throttled in our tests.

When performing requests with more than 2500 different clients concurrently, not all client
information will fit into Red Hat build of Keycloak’s caches when those are using the standard
cache sizes of 10000 entries each. Due to this, the database may become a bottleneck as client
data is reloaded frequently from the database. To reduce the database usage, increase the
users cache size by two times the number of concurrently used clients, and the realms cache
size by four times the number of concurrently used clients.

Red Hat build of Keycloak, which by default stores user sessions in the database, requires the following
resources for optimal performance on an Aurora PostgreSQL multi-AZ database:

For every 100 login/logout/refresh requests per second:

Budget for 1400 Write IOPS.

Allocate between 0.35 and 0.7 vCPU.

The vCPU requirement is given as a range, as with an increased CPU saturation on the database host the
CPU usage per request decreases while the response times increase. A lower CPU quota on the
database can lead to slower response times during peak loads. Choose a larger CPU quota if fast
response times during peak loads are critical. See below for an example.

6.1.1. Measuring the activity of a running Red Hat build of Keycloak instance

Sizing of a Red Hat build of Keycloak instance depends on the actual and forecasted numbers for
password-based user logins, refresh token requests, and client credential grants as described in the
previous section.

To retrieve the actual numbers of a running Red Hat build of Keycloak instance for these three key
inputs, use the metrics Red Hat build of Keycloak provides:

The user event metric keycloak_user_events_total for event type login includes both
password-based logins and cookie-based logins, still it can serve as a first approximate input for
this sizing guide.

To find out number of password validations performed by Red Hat build of Keycloak use the
metric keycloak_credentials_password_hashing_validations_total. The metric also contains
tags providing some details about the hashing algorithm used and the outcome of the validation.
Here is the list of available tags: realm, algorithm, hashing_strength, outcome.

Use the user event metric keycloak_user_events_total for the event types refresh_token
and client_login for refresh token requests and client credential grants respectively.

See the {links_observability_event-metrics_name} and {links_observability_metrics-for-
troubleshooting-http_name} chapters for more information.

These metrics are crucial for tracking daily and weekly fluctuations in user activity loads, identifying
emerging trends that may indicate the need to resize the system and validating sizing calculations. By
systematically measuring and evaluating these user event metrics, you can ensure your system remains
appropriately scaled and responsive to changes in user behavior and demand.

Red Hat build of Keycloak 26.2 High Availability Guide

18

{links_observability_event-metrics_url}
{links_observability_metrics-for-troubleshooting-http_url}

6.1.2. Calculation example (single site)

Target size:

45 logins and logouts per seconds

360 client credential grants per second*

360 refresh token requests per second (1:8 ratio for logins)*

3 Pods

Limits calculated:

CPU requested per Pod: 3 vCPU
(45 logins per second = 3 vCPU, 360 client credential grants per second = 3 vCPU, 360 refresh
tokens = 3 vCPU. This sums up to 9 vCPU total. With 3 Pods running in the cluster, each Pod
then requests 3 vCPU)

CPU limit per Pod: 7.5 vCPU
(Allow for an additional 150% CPU requested to handle peaks, startups and failover tasks)

Memory requested per Pod: 1250 MB
(1250 MB base memory)

Memory limit per Pod: 1360 MB
(1250 MB expected memory usage minus 300 non-heap-usage, divided by 0.7)

Aurora Database instance: either db.t4g.large or db.t4g.xlarge depending on the required
response times during peak loads.
(45 logins per second, 5 logouts per second, 360 refresh tokens per seconds. This sums up to
410 requests per second. This expected DB usage is 1.4 to 2.8 vCPU, with a DB idle load of 0.3
vCPU. This indicates either a 2 vCPU db.t4g.large instance or a 4 vCPU db.t4g.xlarge instance.
A 2 vCPU db.t4g.large would be more cost-effective if the response times are allowed to be
higher during peak usage. In our tests, the median response time for a login and a token refresh
increased by up to 120 ms once the CPU saturation reached 90% on a 2 vCPU db.t4g.large
instance given this scenario. For faster response times during peak usage, consider a 4 vCPU
db.t4g.xlarge instance for this scenario.)

6.1.3. Sizing a multi-site setup

To create the sizing an active-active Keycloak setup with two AZs in one AWS region, following these
steps:

Create the same number of Pods with the same memory sizing as above on the second site.

The database sizing remains unchanged. Both sites will connect to the same database writer
instance.

In regard to the sizing of CPU requests and limits, there are different approaches depending on the
expected failover behavior:

Fast failover and more expensive

Keep the CPU requests and limits as above for the second site. This way any remaining site can take
over the traffic from the primary site immediately without the need to scale.

CHAPTER 6. CONCEPTS FOR SIZING CPU AND MEMORY RESOURCES

19

Slower failover and more cost-effective

Reduce the CPU requests and limits as above by 50% for the second site. When one of the sites fails,
scale the remaining site from 3 Pod to 6 Pods either manually, automated, or using a Horizontal Pod
Autoscaler. This requires enough spare capacity on the cluster or cluster auto-scaling capabilities.

Alternative setup for some environments

Reduce the CPU requests by 50% for the second site, but keep the CPU limits as above. This way,
the remaining site can take the traffic, but only at the downside that the Nodes will experience CPU
pressure and therefore slower response times during peak traffic. The benefit of this setup is that the
number of Pods does not need to scale during failovers which is simpler to set up.

6.2. REFERENCE ARCHITECTURE

The following setup was used to retrieve the settings above to run tests of about 10 minutes for
different scenarios:

OpenShift 4.17.x deployed on AWS via ROSA.

Machine pool with c7g.2xlarge instances.*

Red Hat build of Keycloak deployed with the Operator and 3 pods in a high-availability setup
with two sites in active/active mode.

OpenShift’s reverse proxy runs in the passthrough mode where the TLS connection of the client
is terminated at the Pod.

Database Amazon Aurora PostgreSQL in a multi-AZ setup.

Default user password hashing with Argon2 and 5 hash iterations and minimum memory size 7
MiB as recommended by OWASP (which is the default).

Client credential grants do not use refresh tokens (which is the default).

Database seeded with 20,000 users and 20,000 clients.

Infinispan local caches at default of 10,000 entries, so not all clients and users fit into the cache,
and some requests will need to fetch the data from the database.

All authentication sessions in distributed caches as per default, with two owners per entries,
allowing one failing Pod without losing data.

All user and client sessions are stored in the database and are not cached in-memory as this was
tested in a multi-site setup. Expect a slightly higher performance for single-site setups as a
fixed number of user and client sessions will be cached.

OpenJDK 21

* For non-ARM CPU architectures on AWS (c7i/c7a vs. c7g) we found that client credential grants and
refresh token workloads were able to deliver up to two times the number of operations per CPU core,
while password hashing was delivering a constant number of operations per CPU core. Depending on
your workload and your cloud pricing, please run your own tests and make your own calculations for
mixed workloads to find out which architecture delivers a better pricing for you.

Red Hat build of Keycloak 26.2 High Availability Guide

20

https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html#argon2id

1

2

3

CHAPTER 7. CONCEPTS TO AUTOMATE DATA GRID CLI
COMMANDS

Data Grid CLI commands can be automated by creating a `Batch` CR instance.

When interacting with an external Data Grid in Kubernetes, the Batch CR allows you to automate this
using standard oc commands.

7.1. WHEN TO USE IT

Use this when automating interactions on Kubernetes. This avoids providing usernames and passwords
and checking shell script outputs and their status.

For human interactions, the CLI shell might still be a better fit.

7.2. EXAMPLE

The following Batch CR takes a site offline as described in the operational procedure Taking a site
offline.

The Batch CR must be created in the same namespace as the Data Grid deployment.

The name of the Infinispan CR.

A multiline string containing one or more Data Grid CLI commands.

Once the CR has been created, wait for the status to show the completion.

NOTE

Modifying a Batch CR instance has no effect. Batch operations are “one-time” events
that modify Infinispan resources. To update .spec fields for the CR, or when a batch
operation fails, you must create a new instance of the Batch CR.

7.3. FURTHER READING

For more information, see the Data Grid Operator Batch CR documentation.

apiVersion: infinispan.org/v2alpha1
kind: Batch
metadata:
 name: take-offline
 namespace: keycloak 1
spec:
 cluster: infinispan 2
 config: | 3
 site take-offline --all-caches --site=site-a
 site status --all-caches --site=site-a

oc -n keycloak wait --for=jsonpath='{.status.phase}'=Succeeded Batch/take-offline

CHAPTER 7. CONCEPTS TO AUTOMATE DATA GRID CLI COMMANDS

21

https://docs.redhat.com/en/documentation/red_hat_data_grid/8.5/html-single/data_grid_operator_guide/index#batch-cr

CHAPTER 8. DEPLOYING AWS AURORA IN MULTIPLE
AVAILABILITY ZONES

Deploy an AWS Aurora as the database building block in a multi-site deployment.

This topic describes how to deploy an Aurora regional deployment of a PostgreSQL instance across
multiple availability zones to tolerate one or more availability zone failures in a given AWS region.

This deployment is intended to be used with the setup described in the Concepts for multi-site
deployments chapter. Use this deployment with the other building blocks outlined in the Building blocks
multi-site deployments chapter.

NOTE

We provide these blueprints to show a minimal functionally complete example with a
good baseline performance for regular installations. You would still need to adapt it to
your environment and your organization’s standards and security best practices.

8.1. ARCHITECTURE

Aurora database clusters consist of multiple Aurora database instances, with one instance designated as
the primary writer and all others as backup readers. To ensure high availability in the event of availability
zone failures, Aurora allows database instances to be deployed across multiple zones in a single AWS
region. In the event of a failure on the availability zone that is hosting the Primary database instance,
Aurora automatically heals itself and promotes a reader instance from a non-failed availability zone to be
the new writer instance.

Figure 8.1. Aurora Multiple Availability Zone Deployment

AWS Region

Availability
Zone

See the AWS Aurora documentation for more details on the semantics provided by Aurora databases.

This documentation follows AWS best practices and creates a private Aurora database that is not
exposed to the Internet. To access the database from a ROSA cluster, establish a peering connection
between the database and the ROSA cluster.

8.2. PROCEDURE

The following procedure contains two sections:

Creation of an Aurora Multi-AZ database cluster with the name "keycloak-aurora" in eu-west-1.

Creation of a peering connection between the ROSA cluster(s) and the Aurora VPC to allow
applications deployed on the ROSA clusters to establish connections with the database.

Red Hat build of Keycloak 26.2 High Availability Guide

22

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/CHAP_AuroraOverview.html

1

8.2.1. Create Aurora database Cluster

1. Create a VPC for the Aurora cluster

Command:

We add an optional tag with the name of the Aurora cluster so that we can easily retrieve
the VPC.

Output:

2. Create a subnet for each availability zone that Aurora will be deployed to, using the VpcId of the
newly created VPC.

NOTE

The cidr-block range specified for each of the availability zones must not overlap.

a. Zone A

Command:

aws ec2 create-vpc \
 --cidr-block 192.168.0.0/16 \
 --tag-specifications "ResourceType=vpc, Tags=[{Key=AuroraCluster,Value=keycloak-
aurora}]" \ 1
 --region eu-west-1

{
 "Vpc": {
 "CidrBlock": "192.168.0.0/16",
 "DhcpOptionsId": "dopt-0bae7798158bc344f",
 "State": "pending",
 "VpcId": "vpc-0b40bd7c59dbe4277",
 "OwnerId": "606671647913",
 "InstanceTenancy": "default",
 "Ipv6CidrBlockAssociationSet": [],
 "CidrBlockAssociationSet": [
 {
 "AssociationId": "vpc-cidr-assoc-09a02a83059ba5ab6",
 "CidrBlock": "192.168.0.0/16",
 "CidrBlockState": {
 "State": "associated"
 }
 }
],
 "IsDefault": false
 }
}

aws ec2 create-subnet \
 --availability-zone "eu-west-1a" \
 --vpc-id vpc-0b40bd7c59dbe4277 \

CHAPTER 8. DEPLOYING AWS AURORA IN MULTIPLE AVAILABILITY ZONES

23

Output:

b. Zone B

Command:

Output:

 --cidr-block 192.168.0.0/19 \
 --region eu-west-1

{
 "Subnet": {
 "AvailabilityZone": "eu-west-1a",
 "AvailabilityZoneId": "euw1-az3",
 "AvailableIpAddressCount": 8187,
 "CidrBlock": "192.168.0.0/19",
 "DefaultForAz": false,
 "MapPublicIpOnLaunch": false,
 "State": "available",
 "SubnetId": "subnet-0d491a1a798aa878d",
 "VpcId": "vpc-0b40bd7c59dbe4277",
 "OwnerId": "606671647913",
 "AssignIpv6AddressOnCreation": false,
 "Ipv6CidrBlockAssociationSet": [],
 "SubnetArn": "arn:aws:ec2:eu-west-1:606671647913:subnet/subnet-
0d491a1a798aa878d",
 "EnableDns64": false,
 "Ipv6Native": false,
 "PrivateDnsNameOptionsOnLaunch": {
 "HostnameType": "ip-name",
 "EnableResourceNameDnsARecord": false,
 "EnableResourceNameDnsAAAARecord": false
 }
 }
}

aws ec2 create-subnet \
 --availability-zone "eu-west-1b" \
 --vpc-id vpc-0b40bd7c59dbe4277 \
 --cidr-block 192.168.32.0/19 \
 --region eu-west-1

{
 "Subnet": {
 "AvailabilityZone": "eu-west-1b",
 "AvailabilityZoneId": "euw1-az1",
 "AvailableIpAddressCount": 8187,
 "CidrBlock": "192.168.32.0/19",
 "DefaultForAz": false,
 "MapPublicIpOnLaunch": false,
 "State": "available",
 "SubnetId": "subnet-057181b1e3728530e",
 "VpcId": "vpc-0b40bd7c59dbe4277",
 "OwnerId": "606671647913",

Red Hat build of Keycloak 26.2 High Availability Guide

24

3. Obtain the ID of the Aurora VPC route-table

Command:

Output:

4. Associate the Aurora VPC route-table each availability zone’s subnet

 "AssignIpv6AddressOnCreation": false,
 "Ipv6CidrBlockAssociationSet": [],
 "SubnetArn": "arn:aws:ec2:eu-west-1:606671647913:subnet/subnet-
057181b1e3728530e",
 "EnableDns64": false,
 "Ipv6Native": false,
 "PrivateDnsNameOptionsOnLaunch": {
 "HostnameType": "ip-name",
 "EnableResourceNameDnsARecord": false,
 "EnableResourceNameDnsAAAARecord": false
 }
 }
}

aws ec2 describe-route-tables \
 --filters Name=vpc-id,Values=vpc-0b40bd7c59dbe4277 \
 --region eu-west-1

{
 "RouteTables": [
 {
 "Associations": [
 {
 "Main": true,
 "RouteTableAssociationId": "rtbassoc-02dfa06f4c7b4f99a",
 "RouteTableId": "rtb-04a644ad3cd7de351",
 "AssociationState": {
 "State": "associated"
 }
 }
],
 "PropagatingVgws": [],
 "RouteTableId": "rtb-04a644ad3cd7de351",
 "Routes": [
 {
 "DestinationCidrBlock": "192.168.0.0/16",
 "GatewayId": "local",
 "Origin": "CreateRouteTable",
 "State": "active"
 }
],
 "Tags": [],
 "VpcId": "vpc-0b40bd7c59dbe4277",
 "OwnerId": "606671647913"
 }
]
}

CHAPTER 8. DEPLOYING AWS AURORA IN MULTIPLE AVAILABILITY ZONES

25

a. Zone A

Command:

b. Zone B

Command:

5. Create Aurora Subnet Group

Command:

6. Create Aurora Security Group

Command:

Output:

7. Create the Aurora DB Cluster

Command:

aws ec2 associate-route-table \
 --route-table-id rtb-04a644ad3cd7de351 \
 --subnet-id subnet-0d491a1a798aa878d \
 --region eu-west-1

aws ec2 associate-route-table \
 --route-table-id rtb-04a644ad3cd7de351 \
 --subnet-id subnet-057181b1e3728530e \
 --region eu-west-1

aws rds create-db-subnet-group \
 --db-subnet-group-name keycloak-aurora-subnet-group \
 --db-subnet-group-description "Aurora DB Subnet Group" \
 --subnet-ids subnet-0d491a1a798aa878d subnet-057181b1e3728530e \
 --region eu-west-1

aws ec2 create-security-group \
 --group-name keycloak-aurora-security-group \
 --description "Aurora DB Security Group" \
 --vpc-id vpc-0b40bd7c59dbe4277 \
 --region eu-west-1

{
 "GroupId": "sg-0d746cc8ad8d2e63b"
}

aws rds create-db-cluster \
 --db-cluster-identifier keycloak-aurora \
 --database-name keycloak \
 --engine aurora-postgresql \
 --engine-version ${properties["aurora-postgresql.version"]} \

Red Hat build of Keycloak 26.2 High Availability Guide

26

NOTE

You should replace the --master-username and --master-user-password
values. The values specified here must be used when configuring the Red Hat
build of Keycloak database credentials.

Output:

 --master-username keycloak \
 --master-user-password secret99 \
 --vpc-security-group-ids sg-0d746cc8ad8d2e63b \
 --db-subnet-group-name keycloak-aurora-subnet-group \
 --region eu-west-1

{
 "DBCluster": {
 "AllocatedStorage": 1,
 "AvailabilityZones": [
 "eu-west-1b",
 "eu-west-1c",
 "eu-west-1a"
],
 "BackupRetentionPeriod": 1,
 "DatabaseName": "keycloak",
 "DBClusterIdentifier": "keycloak-aurora",
 "DBClusterParameterGroup": "default.aurora-postgresql15",
 "DBSubnetGroup": "keycloak-aurora-subnet-group",
 "Status": "creating",
 "Endpoint": "keycloak-aurora.cluster-clhthfqe0h8p.eu-west-1.rds.amazonaws.com",
 "ReaderEndpoint": "keycloak-aurora.cluster-ro-clhthfqe0h8p.eu-west-
1.rds.amazonaws.com",
 "MultiAZ": false,
 "Engine": "aurora-postgresql",
 "EngineVersion": "15.5",
 "Port": 5432,
 "MasterUsername": "keycloak",
 "PreferredBackupWindow": "02:21-02:51",
 "PreferredMaintenanceWindow": "fri:03:34-fri:04:04",
 "ReadReplicaIdentifiers": [],
 "DBClusterMembers": [],
 "VpcSecurityGroups": [
 {
 "VpcSecurityGroupId": "sg-0d746cc8ad8d2e63b",
 "Status": "active"
 }
],
 "HostedZoneId": "Z29XKXDKYMONMX",
 "StorageEncrypted": false,
 "DbClusterResourceId": "cluster-IBWXUWQYM3MS5BH557ZJ6ZQU4I",
 "DBClusterArn": "arn:aws:rds:eu-west-1:606671647913:cluster:keycloak-aurora",
 "AssociatedRoles": [],
 "IAMDatabaseAuthenticationEnabled": false,
 "ClusterCreateTime": "2023-11-01T10:40:45.964000+00:00",
 "EngineMode": "provisioned",
 "DeletionProtection": false,

CHAPTER 8. DEPLOYING AWS AURORA IN MULTIPLE AVAILABILITY ZONES

27

8. Create Aurora DB instances

a. Create Zone A Writer instance

Command:

b. Create Zone B Reader instance

Command:

9. Wait for all Writer and Reader instances to be ready

Command:

10. Obtain the Writer endpoint URL for use by Keycloak

Command:

 "HttpEndpointEnabled": false,
 "CopyTagsToSnapshot": false,
 "CrossAccountClone": false,
 "DomainMemberships": [],
 "TagList": [],
 "AutoMinorVersionUpgrade": true,
 "NetworkType": "IPV4"
 }
}

 aws rds create-db-instance \
 --no-auto-minor-version-upgrade \
 --db-cluster-identifier keycloak-aurora \
 --db-instance-identifier "keycloak-aurora-instance-1" \
 --db-instance-class db.t4g.large \
 --engine aurora-postgresql \
 --region eu-west-1

 aws rds create-db-instance \
 --no-auto-minor-version-upgrade \
 --db-cluster-identifier keycloak-aurora \
 --db-instance-identifier "keycloak-aurora-instance-2" \
 --db-instance-class db.t4g.large \
 --engine aurora-postgresql \
 --region eu-west-1

aws rds wait db-instance-available --db-instance-identifier keycloak-aurora-instance-1 --
region eu-west-1
aws rds wait db-instance-available --db-instance-identifier keycloak-aurora-instance-2 --
region eu-west-1

aws rds describe-db-clusters \
 --db-cluster-identifier keycloak-aurora \
 --query 'DBClusters[*].Endpoint' \
 --region eu-west-1 \
 --output text

Red Hat build of Keycloak 26.2 High Availability Guide

28

Output:

8.2.2. Establish Peering Connections with ROSA clusters

Perform these steps once for each ROSA cluster that contains a Red Hat build of Keycloak deployment.

1. Retrieve the Aurora VPC

Command:

Output:

vpc-0b40bd7c59dbe4277

2. Retrieve the ROSA cluster VPC

a. Log in to the ROSA cluster using oc

b. Retrieve the ROSA VPC

Command:

Output:

vpc-0b721449398429559

3. Create Peering Connection

Command:

[
 "keycloak-aurora.cluster-clhthfqe0h8p.eu-west-1.rds.amazonaws.com"
]

aws ec2 describe-vpcs \
 --filters "Name=tag:AuroraCluster,Values=keycloak-aurora" \
 --query 'Vpcs[*].VpcId' \
 --region eu-west-1 \
 --output text

NODE=$(oc get nodes --selector=node-role.kubernetes.io/worker -o
jsonpath='{.items[0].metadata.name}')
aws ec2 describe-instances \
 --filters "Name=private-dns-name,Values=${NODE}" \
 --query 'Reservations[0].Instances[0].VpcId' \
 --region eu-west-1 \
 --output text

aws ec2 create-vpc-peering-connection \
 --vpc-id vpc-0b721449398429559 \ 1
 --peer-vpc-id vpc-0b40bd7c59dbe4277 \ 2

CHAPTER 8. DEPLOYING AWS AURORA IN MULTIPLE AVAILABILITY ZONES

29

1

2

ROSA cluster VPC

Aurora VPC

Output:

4. Wait for Peering connection to exist

Command:

5. Accept the peering connection

Command:

 --peer-region eu-west-1 \
 --region eu-west-1

{
 "VpcPeeringConnection": {
 "AccepterVpcInfo": {
 "OwnerId": "606671647913",
 "VpcId": "vpc-0b40bd7c59dbe4277",
 "Region": "eu-west-1"
 },
 "ExpirationTime": "2023-11-08T13:26:30+00:00",
 "RequesterVpcInfo": {
 "CidrBlock": "10.0.17.0/24",
 "CidrBlockSet": [
 {
 "CidrBlock": "10.0.17.0/24"
 }
],
 "OwnerId": "606671647913",
 "PeeringOptions": {
 "AllowDnsResolutionFromRemoteVpc": false,
 "AllowEgressFromLocalClassicLinkToRemoteVpc": false,
 "AllowEgressFromLocalVpcToRemoteClassicLink": false
 },
 "VpcId": "vpc-0b721449398429559",
 "Region": "eu-west-1"
 },
 "Status": {
 "Code": "initiating-request",
 "Message": "Initiating Request to 606671647913"
 },
 "Tags": [],
 "VpcPeeringConnectionId": "pcx-0cb23d66dea3dca9f"
 }
}

aws ec2 wait vpc-peering-connection-exists --vpc-peering-connection-ids pcx-
0cb23d66dea3dca9f

Red Hat build of Keycloak 26.2 High Availability Guide

30

Output:

6. Update ROSA cluster VPC route-table

Command:

aws ec2 accept-vpc-peering-connection \
 --vpc-peering-connection-id pcx-0cb23d66dea3dca9f \
 --region eu-west-1

{
 "VpcPeeringConnection": {
 "AccepterVpcInfo": {
 "CidrBlock": "192.168.0.0/16",
 "CidrBlockSet": [
 {
 "CidrBlock": "192.168.0.0/16"
 }
],
 "OwnerId": "606671647913",
 "PeeringOptions": {
 "AllowDnsResolutionFromRemoteVpc": false,
 "AllowEgressFromLocalClassicLinkToRemoteVpc": false,
 "AllowEgressFromLocalVpcToRemoteClassicLink": false
 },
 "VpcId": "vpc-0b40bd7c59dbe4277",
 "Region": "eu-west-1"
 },
 "RequesterVpcInfo": {
 "CidrBlock": "10.0.17.0/24",
 "CidrBlockSet": [
 {
 "CidrBlock": "10.0.17.0/24"
 }
],
 "OwnerId": "606671647913",
 "PeeringOptions": {
 "AllowDnsResolutionFromRemoteVpc": false,
 "AllowEgressFromLocalClassicLinkToRemoteVpc": false,
 "AllowEgressFromLocalVpcToRemoteClassicLink": false
 },
 "VpcId": "vpc-0b721449398429559",
 "Region": "eu-west-1"
 },
 "Status": {
 "Code": "provisioning",
 "Message": "Provisioning"
 },
 "Tags": [],
 "VpcPeeringConnectionId": "pcx-0cb23d66dea3dca9f"
 }
}

ROSA_PUBLIC_ROUTE_TABLE_ID=$(aws ec2 describe-route-tables \
 --filters "Name=vpc-id,Values=vpc-0b721449398429559"

CHAPTER 8. DEPLOYING AWS AURORA IN MULTIPLE AVAILABILITY ZONES

31

1

2

1

ROSA cluster VPC

This must be the same as the cidr-block used when creating the Aurora VPC

7. Update the Aurora Security Group

Command:

The "machine_cidr" of the ROSA cluster

Output:

"Name=association.main,Values=true" \ 1
 --query "RouteTables[*].RouteTableId" \
 --output text \
 --region eu-west-1
)
aws ec2 create-route \
 --route-table-id ${ROSA_PUBLIC_ROUTE_TABLE_ID} \
 --destination-cidr-block 192.168.0.0/16 \ 2
 --vpc-peering-connection-id pcx-0cb23d66dea3dca9f \
 --region eu-west-1

AURORA_SECURITY_GROUP_ID=$(aws ec2 describe-security-groups \
 --filters "Name=group-name,Values=keycloak-aurora-security-group" \
 --query "SecurityGroups[*].GroupId" \
 --region eu-west-1 \
 --output text
)
aws ec2 authorize-security-group-ingress \
 --group-id ${AURORA_SECURITY_GROUP_ID} \
 --protocol tcp \
 --port 5432 \
 --cidr 10.0.17.0/24 \ 1
 --region eu-west-1

{
 "Return": true,
 "SecurityGroupRules": [
 {
 "SecurityGroupRuleId": "sgr-0785d2f04b9cec3f5",
 "GroupId": "sg-0d746cc8ad8d2e63b",
 "GroupOwnerId": "606671647913",
 "IsEgress": false,
 "IpProtocol": "tcp",
 "FromPort": 5432,
 "ToPort": 5432,
 "CidrIpv4": "10.0.17.0/24"
 }
]
}

Red Hat build of Keycloak 26.2 High Availability Guide

32

1

2

3

4

8.3. VERIFYING THE CONNECTION

The simplest way to verify that a connection is possible between a ROSA cluster and an Aurora DB
cluster is to deploy psql on the Openshift cluster and attempt to connect to the writer endpoint.

The following command creates a pod in the default namespace and establishes a psql connection with
the Aurora cluster if possible. Upon exiting the pod shell, the pod is deleted.

Aurora DB user, this can be the same as --master-username used when creating the DB.

Aurora DB user-password, this can be the same as --master— ​user-password used when creating
the DB.

The name of the Aurora DB, such as --database-name.

The name of your Aurora DB cluster.

8.4. CONNECTING AURORA DATABASE WITH RED HAT BUILD OF
KEYCLOAK

Now that an Aurora database has been established and linked with all of your ROSA clusters, here are
the relevant Red Hat build of Keycloak CR options to connect the Aurora database with Red Hat build of
Keycloak. These changes will be required in the Deploying Red Hat build of Keycloak for HA with the
Operator chapter. The JDBC url is configured to use the Aurora database writer endpoint.

1. Update spec.db.url to be jdbc:aws-wrapper:postgresql://$HOST:5432/keycloak where
$HOST is the Aurora writer endpoint URL .

2. Ensure that the Secrets referenced by spec.db.usernameSecret and
spec.db.passwordSecret contain usernames and passwords defined when creating Aurora.

8.5. NEXT STEPS

After successful deployment of the Aurora database continue with Deploying Data Grid for HA with the
Data Grid Operator

USER=keycloak 1
PASSWORD=secret99 2
DATABASE=keycloak 3
HOST=$(aws rds describe-db-clusters \
 --db-cluster-identifier keycloak-aurora \ 4
 --query 'DBClusters[*].Endpoint' \
 --region eu-west-1 \
 --output text
)
oc run -i --tty --rm debug --image=postgres:15 --restart=Never -- psql
postgresql://${USER}:${PASSWORD}@${HOST}/${DATABASE}

CHAPTER 8. DEPLOYING AWS AURORA IN MULTIPLE AVAILABILITY ZONES

33

CHAPTER 9. DEPLOYING DATA GRID FOR HA WITH THE DATA
GRID OPERATOR

Deploy Data Grid for high availability in multi availability zones on Kubernetes.

This chapter describes the procedures required to deploy Data Grid in a multiple-cluster environment
(cross-site). For simplicity, this topic uses the minimum configuration possible that allows Red Hat build
of Keycloak to be used with an external Data Grid.

This chapter assumes two OpenShift clusters named Site-A and Site-B.

This is a building block following the concepts described in the Concepts for multi-site deployments
chapter. See the Multi-site deployments chapter for an overview.

IMPORTANT

Only Data Grid version 8.5.3 or more recent patch releases are supported for external
Data Grid deployments.

9.1. ARCHITECTURE

This setup deploys two synchronously replicating Data Grid clusters in two sites with a low-latency
network connection. An example of this scenario could be two availability zones in one AWS region.

Red Hat build of Keycloak, loadbalancer and database have been removed from the following diagram
for simplicity.

Primary site
(active)

Kubernetes Cluster

«Pod»
Data Grid

9.2. PREREQUISITES

OpenShift or Kubernetes cluster running

Understanding of the Data Grid Operator

9.3. PROCEDURE

1. Install the Data Grid Operator

2. Configure the credential to access the Data Grid cluster.
Red Hat build of Keycloak needs this credential to be able to authenticate with the Data Grid
cluster. The following identities.yaml file sets the username and password with admin
permissions

Red Hat build of Keycloak 26.2 High Availability Guide

34

https://docs.redhat.com/en/documentation/red_hat_data_grid/8.5/html-single/data_grid_operator_guide/index
https://docs.redhat.com/en/documentation/red_hat_data_grid/8.5/html-single/data_grid_operator_guide/index#installation

1

The identities.yaml could be set in a secret as one of the following:

As a Kubernetes Resource:

Credential Secret

The identities.yaml from the previous example base64 encoded.

Using the CLI

Check the Configuring Authentication documentation for more details.

These commands must be executed on both OpenShift clusters.

3. Create a service account.
A service account is required to establish a connection between clusters. The Data Grid
Operator uses it to inspect the network configuration from the remote site and to configure the
local Data Grid cluster accordingly.

For more details, see the Managing Cross-Site Connections documentation.

a. Create a service-account-token secret type as follows. The same YAML file can be used in
both OpenShift clusters.

xsite-sa-secret-token.yaml

credentials:
 - username: developer
 password: strong-password
 roles:
 - admin

apiVersion: v1
kind: Secret
type: Opaque
metadata:
 name: connect-secret
 namespace: keycloak
data:
 identities.yaml:
Y3JlZGVudGlhbHM6CiAgLSB1c2VybmFtZTogZGV2ZWxvcGVyCiAgICBwYXNzd29yZDog
c3Ryb25nLXBhc3N3b3JkCiAgICByb2xlczoKICAgICAgLSBhZG1pbgo= 1

oc create secret generic connect-secret --from-file=identities.yaml

apiVersion: v1
kind: Secret
metadata:
 name: ispn-xsite-sa-token 1
 annotations:
 kubernetes.io/service-account.name: "xsite-sa" 2
type: kubernetes.io/service-account-token

CHAPTER 9. DEPLOYING DATA GRID FOR HA WITH THE DATA GRID OPERATOR

35

https://docs.redhat.com/en/documentation/red_hat_data_grid/8.5/html-single/data_grid_operator_guide/index#configuring-authentication
https://docs.redhat.com/en/documentation/red_hat_data_grid/8.5/html-single/data_grid_operator_guide/index#managed-cross-site-connections_cross-site

1

2

The secret name.

The service account name.

b. Create the service account and generate an access token in both OpenShift clusters.

Create the service account in Site-A

Create the service account in Site-B

c. The next step is to deploy the token from Site-A into Site-B and the reverse:

Deploy Site-B token into Site-A

Deploy Site-A token into Site-B

4. Create TLS secrets
In this chapter, Data Grid uses an OpenShift Route for the cross-site communication. It uses the
SNI extension of TLS to direct the traffic to the correct Pods. To achieve that, JGroups use
TLS sockets, which require a Keystore and Truststore with the correct certificates.

For more information, see the Securing Cross Site Connections documentation or this Red Hat
Developer Guide.

Upload the Keystore and the Truststore in an OpenShift Secret. The secret contains the file
content, the password to access it, and the type of the store. Instructions for creating the
certificates and the stores are beyond the scope of this chapter.

To upload the Keystore as a Secret, use the following command:

Deploy a Keystore

oc create sa -n keycloak xsite-sa
oc policy add-role-to-user view -n keycloak -z xsite-sa
oc create -f xsite-sa-secret-token.yaml
oc get secrets ispn-xsite-sa-token -o jsonpath="{.data.token}" | base64 -d > Site-A-
token.txt

oc create sa -n keycloak xsite-sa
oc policy add-role-to-user view -n keycloak -z xsite-sa
oc create -f xsite-sa-secret-token.yaml
oc get secrets ispn-xsite-sa-token -o jsonpath="{.data.token}" | base64 -d > Site-B-
token.txt

oc create secret generic -n keycloak xsite-token-secret \
 --from-literal=token="$(cat Site-B-token.txt)"

oc create secret generic -n keycloak xsite-token-secret \
 --from-literal=token="$(cat Site-A-token.txt)"

oc -n keycloak create secret generic xsite-keystore-secret \
 --from-file=keystore.p12="./certs/keystore.p12" \ 1

Red Hat build of Keycloak 26.2 High Availability Guide

36

https://docs.redhat.com/en/documentation/red_hat_data_grid/8.5/html-single/data_grid_operator_guide/index#securing-cross-site-connections_cross-site
https://developers.redhat.com/learn/openshift/cross-site-and-cross-applications-red-hat-openshift-and-red-hat-data-grid

1

2

3

1

2

3

The filename and the path to the Keystore.

The password to access the Keystore.

The Keystore type.

To upload the Truststore as a Secret, use the following command:

Deploy a Truststore

The filename and the path to the Truststore.

The password to access the Truststore.

The Truststore type.

NOTE

Keystore and Truststore must be uploaded in both OpenShift clusters.

5. Create a Cluster for Data Grid with Cross-Site enabled
The Setting Up Cross-Site documentation provides all the information on how to create and
configure your Data Grid cluster with cross-site enabled, including the previous steps.

A basic example is provided in this chapter using the credentials, tokens, and TLS
Keystore/Truststore created by the commands from the previous steps.

The Infinispan CR for Site-A

 --from-literal=password=secret \ 2
 --from-literal=type=pkcs12 3

oc -n keycloak create secret generic xsite-truststore-secret \
 --from-file=truststore.p12="./certs/truststore.p12" \ 1
 --from-literal=password=caSecret \ 2
 --from-literal=type=pkcs12 3

apiVersion: infinispan.org/v1
kind: Infinispan
metadata:
 name: infinispan 1
 namespace: keycloak
 annotations:
 infinispan.org/monitoring: 'true' 2
spec:
 replicas: 3
 jmx:
 enabled: true
 security:
 endpointSecretName: connect-secret 3
 service:
 type: DataGrid

CHAPTER 9. DEPLOYING DATA GRID FOR HA WITH THE DATA GRID OPERATOR

37

https://docs.redhat.com/en/documentation/red_hat_data_grid/8.5/html-single/data_grid_operator_guide/index#setting-up-xsite

1

2

3

4

5

6 9

7 10

8 11

12

13

14

15

16

17

The cluster name

Allows the cluster to be monitored by Prometheus.

If using a custom credential, configure here the secret name.

The name of the local site, in this case Site-A.

Exposing the cross-site connection using OpenShift Route.

The secret name where the Keystore exists as defined in the previous step.

The alias of the certificate inside the Keystore.

The secret key (filename) of the Keystore as defined in the previous step.

The secret name where the Truststore exists as defined in the previous step.

The Truststore key (filename) of the Keystore as defined in the previous step.

The remote site’s name, in this case Site-B.

The namespace of the Data Grid cluster from the remote site.

The OpenShift API URL for the remote site.

The secret with the access token to authenticate into the remote site.

For Site-B, the Infinispan CR looks similar to the above. Note the differences in point 4, 11 and

 sites:
 local:
 name: site-a 4
 expose:
 type: Route 5
 maxRelayNodes: 128
 encryption:
 transportKeyStore:
 secretName: xsite-keystore-secret 6
 alias: xsite 7
 filename: keystore.p12 8
 routerKeyStore:
 secretName: xsite-keystore-secret 9
 alias: xsite 10
 filename: keystore.p12 11
 trustStore:
 secretName: xsite-truststore-secret 12
 filename: truststore.p12 13
 locations:
 - name: site-b 14
 clusterName: infinispan
 namespace: keycloak 15
 url: openshift://api.site-b 16
 secretName: xsite-token-secret 17

Red Hat build of Keycloak 26.2 High Availability Guide

38

For Site-B, the Infinispan CR looks similar to the above. Note the differences in point 4, 11 and
13.

The Infinispan CR for Site-B

6. Creating the caches for Red Hat build of Keycloak.
Red Hat build of Keycloak requires the following caches to be present: actionTokens,
authenticationSessions, loginFailures, and work.

The Data Grid Cache CR allows deploying the caches in the Data Grid cluster. Cross-site needs
to be enabled per cache as documented by Cross Site Documentation . The documentation
contains more details about the options used by this chapter. The following example shows the
Cache CR for Site-A.

apiVersion: infinispan.org/v1
kind: Infinispan
metadata:
 name: infinispan 1
 namespace: keycloak
 annotations:
 infinispan.org/monitoring: 'true' 2
spec:
 replicas: 3
 jmx:
 enabled: true
 security:
 endpointSecretName: connect-secret 3
 service:
 type: DataGrid
 sites:
 local:
 name: site-b 4
 expose:
 type: Route 5
 maxRelayNodes: 128
 encryption:
 transportKeyStore:
 secretName: xsite-keystore-secret 6
 alias: xsite 7
 filename: keystore.p12 8
 routerKeyStore:
 secretName: xsite-keystore-secret 9
 alias: xsite 10
 filename: keystore.p12 11
 trustStore:
 secretName: xsite-truststore-secret 12
 filename: truststore.p12 13
 locations:
 - name: site-a 14
 clusterName: infinispan
 namespace: keycloak 15
 url: openshift://api.site-a 16
 secretName: xsite-token-secret 17

CHAPTER 9. DEPLOYING DATA GRID FOR HA WITH THE DATA GRID OPERATOR

39

https://docs.redhat.com/en/documentation/red_hat_data_grid/8.5/html-single/data_grid_operator_guide/index#creating-caches
https://docs.redhat.com/en/documentation/red_hat_data_grid/8.5/html-single/data_grid_cross-site_replication/index

1. In Site-A create a Cache CR for each of the caches mentioned above with the following
content.

Cache actionTokens

Cache authenticationSessions

apiVersion: infinispan.org/v2alpha1
kind: Cache
metadata:
 name: actiontokens
 namespace: keycloak
spec:
 clusterName: infinispan
 name: actionTokens
 template: |-
 distributedCache:
 mode: "SYNC"
 owners: "2"
 statistics: "true"
 remoteTimeout: "5000"
 encoding:
 media-type: "application/x-protostream"
 locking:
 acquireTimeout: "4000"
 transaction:
 mode: "NON_DURABLE_XA" 1
 locking: "PESSIMISTIC" 2
 stateTransfer:
 chunkSize: "16"
 backups:
 site-b: 3
 backup:
 strategy: "SYNC" 4
 timeout: "4500" 5
 failurePolicy: "FAIL" 6
 stateTransfer:
 chunkSize: "16"

apiVersion: infinispan.org/v2alpha1
kind: Cache
metadata:
 name: authenticationsessions
 namespace: keycloak
spec:
 clusterName: infinispan
 name: authenticationSessions
 template: |-
 distributedCache:
 mode: "SYNC"
 owners: "2"
 statistics: "true"
 remoteTimeout: "5000"
 encoding:

Red Hat build of Keycloak 26.2 High Availability Guide

40

Cache loginFailures

 media-type: "application/x-protostream"
 locking:
 acquireTimeout: "4000"
 transaction:
 mode: "NON_DURABLE_XA" 1
 locking: "PESSIMISTIC" 2
 stateTransfer:
 chunkSize: "16"
 indexing:
 enabled: true
 indexed-entities:
 - keycloak.RootAuthenticationSessionEntity
 backups:
 site-b: 3
 backup:
 strategy: "SYNC" 4
 timeout: "4500" 5
 failurePolicy: "FAIL" 6
 stateTransfer:
 chunkSize: "16"

apiVersion: infinispan.org/v2alpha1
kind: Cache
metadata:
 name: loginfailures
 namespace: keycloak
spec:
 clusterName: infinispan
 name: loginFailures
 template: |-
 distributedCache:
 mode: "SYNC"
 owners: "2"
 statistics: "true"
 remoteTimeout: "5000"
 encoding:
 media-type: "application/x-protostream"
 locking:
 acquireTimeout: "4000"
 transaction:
 mode: "NON_DURABLE_XA" 1
 locking: "PESSIMISTIC" 2
 stateTransfer:
 chunkSize: "16"
 indexing:
 enabled: true
 indexed-entities:
 - keycloak.LoginFailureEntity
 backups:
 site-b: 3
 backup:
 strategy: "SYNC" 4

CHAPTER 9. DEPLOYING DATA GRID FOR HA WITH THE DATA GRID OPERATOR

41

1 1 1 1 1

2 2 2 2 2

3 3 3 3 3

4 4 4 4 4

5 5 5 5 5

6 9 6 6 6 6

Cache work

The transaction mode.

The locking mode used by the transaction.

The remote site name.

The cross-site communication strategy, in this case, SYNC.

The cross-site replication timeout.

The cross-site replication failure policy.

The example above is the recommended configuration to achieve the best data consistency.

 timeout: "4500" 5
 failurePolicy: "FAIL" 6
 stateTransfer:
 chunkSize: "16"

apiVersion: infinispan.org/v2alpha1
kind: Cache
metadata:
 name: work
 namespace: keycloak
spec:
 clusterName: infinispan
 name: work
 template: |-
 distributedCache:
 mode: "SYNC"
 owners: "2"
 statistics: "true"
 remoteTimeout: "5000"
 encoding:
 media-type: "application/x-protostream"
 locking:
 acquireTimeout: "4000"
 transaction:
 mode: "NON_DURABLE_XA" 1
 locking: "PESSIMISTIC" 2
 stateTransfer:
 chunkSize: "16"
 backups:
 site-b: 3
 backup:
 strategy: "SYNC" 4
 timeout: "4500" 5
 failurePolicy: "FAIL" 6
 stateTransfer:
 chunkSize: "16"

Red Hat build of Keycloak 26.2 High Availability Guide

42

Background information

Deadlocks may occur in an active-active setup as entries are modified concurrently in both sites.

The transaction.mode: NON_DURABLE_XA ensures that the transaction is rolled back
keeping the data consistent if this occurs. The setting backup.failurePolicy: FAIL is required in
this case. It will throw an error that allows the transaction to be safely rolled back. When this
occurs, Red Hat build of Keycloak will attempt a retry.

The transaction.locking: PESSIMISTIC is the only supported locking mode; OPTIMISTIC is not
recommended due to its network costs. The same settings also prevent that one site is updated
while the other site is unreachable.

The backup.strategy: SYNC ensures the data is visible and stored in the other site when the
Red Hat build of Keycloak request is completed.

NOTE

The locking.acquireTimeout can be reduced to fail fast in a deadlock scenario.
The backup.timeout must always be higher than the locking.acquireTimeout.

For Site-B, the Cache CR is similar, except for the backups.<name> outlined in point 3 of the
above diagram.

Example for actionTokens cache in Site-B

apiVersion: infinispan.org/v2alpha1
kind: Cache
metadata:
 name: actiontokens
 namespace: keycloak
spec:
 clusterName: infinispan
 name: actionTokens
 template: |-
 distributedCache:
 mode: "SYNC"
 owners: "2"
 statistics: "true"
 remoteTimeout: "5000"
 encoding:
 media-type: "application/x-protostream"
 locking:
 acquireTimeout: "4000"
 transaction:
 mode: "NON_DURABLE_XA" 1
 locking: "PESSIMISTIC" 2
 stateTransfer:
 chunkSize: "16"
 backups:
 site-a: 3
 backup:
 strategy: "SYNC" 4
 timeout: "4500" 5

CHAPTER 9. DEPLOYING DATA GRID FOR HA WITH THE DATA GRID OPERATOR

43

9.4. VERIFYING THE DEPLOYMENT

Confirm that the Data Grid cluster is formed, and the cross-site connection is established between the
OpenShift clusters.

Wait until the Data Grid cluster is formed

Wait until the Data Grid cross-site connection is established

9.5. CONNECTING DATA GRID WITH RED HAT BUILD OF KEYCLOAK

Now that the Data Grid server is running, here are the relevant Red Hat build of Keycloak CR changes
necessary to connect it to Red Hat build of Keycloak. These changes will be required in the Deploying
Red Hat build of Keycloak for HA with the Operator chapter.

1. Create a Secret with the username and password to connect to the external Data Grid
deployment:

2. Extend the Red Hat build of Keycloak Custom Resource with additionalOptions as shown
below.

NOTE

All the memory, resource and database configurations are skipped from the CR
below as they have been described in the Deploying Red Hat build of Keycloak
for HA with the Operator chapter already. Administrators should leave those
configurations untouched.

 failurePolicy: "FAIL" 6
 stateTransfer:
 chunkSize: "16"

oc wait --for condition=WellFormed --timeout=300s infinispans.infinispan.org -n keycloak infinispan

oc wait --for condition=CrossSiteViewFormed --timeout=300s infinispans.infinispan.org -n keycloak
infinispan

apiVersion: v1
kind: Secret
metadata:
 name: remote-store-secret
 namespace: keycloak
type: Opaque
data:
 username: ZGV2ZWxvcGVy # base64 encoding for 'developer'
 password: c2VjdXJlX3Bhc3N3b3Jk # base64 encoding for 'secure_password'

apiVersion: k8s.keycloak.org/v2alpha1
kind: Keycloak
metadata:
 labels:
 app: keycloak

Red Hat build of Keycloak 26.2 High Availability Guide

44

1 1

2 2

3 3

4 4

5

The hostname of the remote Data Grid cluster.

The port of the remote Data Grid cluster. This is optional and it defaults to 11222.

The Secret name and key with the Data Grid username credential.

The Secret name and key with the Data Grid password credential.

The spi-connections-infinispan-quarkus-site-name is an arbitrary Data Grid site name
which Red Hat build of Keycloak needs for its Infinispan caches deployment when a remote
store is used. This site-name is related only to the Infinispan caches and does not need to
match any value from the external Data Grid deployment. If you are using multiple sites for
Red Hat build of Keycloak in a cross-DC setup such as Deploying Data Grid for HA with the
Data Grid Operator, the site name must be different in each site.

9.5.1. Architecture

This connects Red Hat build of Keycloak to Data Grid using TCP connections secured by TLS 1.3. It uses
the Red Hat build of Keycloak’s truststore to verify Data Grid’s server certificate. As Red Hat build of
Keycloak is deployed using its Operator on OpenShift in the prerequisites listed below, the Operator
already added the service-ca.crt to the truststore which is used to sign Data Grid’s server certificates. In
other environments, add the necessary certificates to Red Hat build of Keycloak’s truststore.

9.6. NEXT STEPS

After the Aurora AWS database and Data Grid are deployed and running, use the procedure in the
Deploying Red Hat build of Keycloak for HA with the Operator chapter to deploy Red Hat build of
Keycloak and connect it to all previously created building blocks.

9.7. RELEVANT OPTIONS

 name: keycloak
 namespace: keycloak
spec:
 additionalOptions:
 - name: cache-remote-host 1
 value: "infinispan.keycloak.svc"
 - name: cache-remote-port 2
 value: "11222"
 - name: cache-remote-username 3
 secret:
 name: remote-store-secret
 key: username
 - name: cache-remote-password 4
 secret:
 name: remote-store-secret
 key: password
 - name: db-driver

CHAPTER 9. DEPLOYING DATA GRID FOR HA WITH THE DATA GRID OPERATOR

45

 Value

cache-remote-host

The hostname of the external Infinispan cluster.

Available only when feature multi-site, clusterless or cache-embedded-
remote-store is set.

CLI: --cache-remote-host
Env: KC_CACHE_REMOTE_HOST

cache-remote-password

The password for the authentication to the external Infinispan cluster.

It is optional if connecting to an unsecure external Infinispan cluster. If the option
is specified, cache-remote-username is required as well.

CLI: --cache-remote-password
Env: KC_CACHE_REMOTE_PASSWORD

Available only when remote host is set

cache-remote-port

The port of the external Infinispan cluster.

CLI: --cache-remote-port
Env: KC_CACHE_REMOTE_PORT

Available only when remote host is set

11222 (default)

cache-remote-tls-enabled

Enable TLS support to communicate with a secured remote Infinispan server.

Recommended to be enabled in production.

CLI: --cache-remote-tls-enabled
Env: KC_CACHE_REMOTE_TLS_ENABLED

Available only when remote host is set

true (default), false

cache-remote-username

The username for the authentication to the external Infinispan cluster.

It is optional if connecting to an unsecure external Infinispan cluster. If the option
is specified, cache-remote-password is required as well.

CLI: --cache-remote-username
Env: KC_CACHE_REMOTE_USERNAME

Available only when remote host is set

Red Hat build of Keycloak 26.2 High Availability Guide

46

CHAPTER 10. DEPLOYING RED HAT BUILD OF KEYCLOAK
FOR HA WITH THE OPERATOR

Deploy Red Hat build of Keycloak for high availability with the Red Hat build of Keycloak Operator as a
building block.

This guide describes advanced Red Hat build of Keycloak configurations for Kubernetes which are load
tested and will recover from single Pod failures.

These instructions are intended for use with the setup described in the Concepts for multi-site
deployments chapter. Use it together with the other building blocks outlined in the Building blocks
multi-site deployments chapter.

10.1. PREREQUISITES

OpenShift or Kubernetes cluster running.

Understanding of a Basic Red Hat build of Keycloak deployment of Red Hat build of Keycloak
with the Red Hat build of Keycloak Operator.

Aurora AWS database deployed using the Deploying AWS Aurora in multiple availability zones
chapter.

Data Grid server deployed using the Deploying Data Grid for HA with the Data Grid Operator
chapter.

Running Red Hat build of Keycloak with OpenJDK 21, which is the default for the containers
distributed for Red Hat build of Keycloak, as this enabled virtual threads for the JGroups
communication.

10.2. PROCEDURE

1. Determine the sizing of the deployment using the Concepts for sizing CPU and memory
resources chapter.

2. Install the Red Hat build of Keycloak Operator as described in the Red Hat build of Keycloak
Operator installation chapter.

3. Notice the configuration file below contains options relevant for connecting to the Aurora
database from Deploying AWS Aurora in multiple availability zones

4. Notice the configuration file below options relevant for connecting to the Data Grid server from
Deploying Data Grid for HA with the Data Grid Operator

5. Build a custom Red Hat build of Keycloak image which is prepared for usage with the Amazon
Aurora PostgreSQL database.

6. Deploy the Red Hat build of Keycloak CR with the following values with the resource requests
and limits calculated in the first step:

apiVersion: k8s.keycloak.org/v2alpha1
kind: Keycloak
metadata:
 labels:
 app: keycloak

CHAPTER 10. DEPLOYING RED HAT BUILD OF KEYCLOAK FOR HA WITH THE OPERATOR

47

https://docs.redhat.com/en/documentation/red_hat_build_of_keycloak/26.2/html-single/operator_guide/#basic-deployment-
https://docs.redhat.com/en/documentation/red_hat_build_of_keycloak/26.2/html-single/operator_guide/#installation-
https://docs.redhat.com/en/documentation/red_hat_build_of_keycloak/26.2/html-single/server_configuration_guide/#db-preparing-keycloak-for-amazon-aurora-postgresql

 name: keycloak
 namespace: keycloak
spec:
 hostname:
 hostname: <KEYCLOAK_URL_HERE>
 resources:
 requests:
 cpu: "2"
 memory: "1250M"
 limits:
 cpu: "6"
 memory: "2250M"
 db:
 vendor: postgres
 url: jdbc:aws-wrapper:postgresql://<AWS_AURORA_URL_HERE>:5432/keycloak
 poolMinSize: 30 1
 poolInitialSize: 30
 poolMaxSize: 30
 usernameSecret:
 name: keycloak-db-secret
 key: username
 passwordSecret:
 name: keycloak-db-secret
 key: password
 image: <KEYCLOAK_IMAGE_HERE> 2
 startOptimized: false 3
 features:
 enabled:
 - multi-site 4
 additionalOptions:
 - name: log-console-output
 value: json
 - name: metrics-enabled 5
 value: 'true'
 - name: event-metrics-user-enabled
 value: 'true'
 - name: cache-remote-host
 value: "infinispan.keycloak.svc"
 - name: cache-remote-port
 value: "11222"
 - name: cache-remote-username
 secret:
 name: remote-store-secret
 key: username
 - name: cache-remote-password
 secret:
 name: remote-store-secret
 key: password
 - name: db-driver
 value: software.amazon.jdbc.Driver
 http:
 tlsSecret: keycloak-tls-secret
 instances: 3

Red Hat build of Keycloak 26.2 High Availability Guide

48

1

2 3

4

5

The database connection pool initial, max and min size should be identical to allow
statement caching for the database. Adjust this number to meet the needs of your system.

Specify the URL to your custom Red Hat build of Keycloak image. If your image is
optimized, set the startOptimized flag to true.

Enable additional features for multi-site support like the loadbalancer probe /lb-check.

To be able to analyze the system under load, enable the metrics endpoint.

10.3. VERIFYING THE DEPLOYMENT

Confirm that the Red Hat build of Keycloak deployment is ready.

10.4. OPTIONAL: LOAD SHEDDING

To enable load shedding, limit the number of queued requests.

Load shedding with max queued http requests

All exceeding requests are served with an HTTP 503.

You might consider limiting the value for http-pool-max-threads further because multiple concurrent
threads will lead to throttling by Kubernetes once the requested CPU limit is reached.

See the Concepts for configuring thread pools chapter about load shedding for details.

10.5. OPTIONAL: DISABLE STICKY SESSIONS

When running on OpenShift and the default passthrough Ingress setup as provided by the Red Hat build
of Keycloak Operator, the load balancing done by HAProxy is done by using sticky sessions based on the
IP address of the source. When running load tests, or when having a reverse proxy in front of HAProxy,
you might want to disable this setup to avoid receiving all requests on a single Red Hat build of Keycloak
Pod.

Add the following supplementary configuration under the spec in the Red Hat build of Keycloak Custom
Resource to disable sticky sessions.

oc wait --for=condition=Ready keycloaks.k8s.keycloak.org/keycloak
oc wait --for=condition=RollingUpdate=False keycloaks.k8s.keycloak.org/keycloak

spec:
 additionalOptions:
 - name: http-max-queued-requests
 value: "1000"

spec:
 ingress:
 enabled: true
 annotations:
 # When running load tests, disable sticky sessions on the OpenShift HAProxy router

CHAPTER 10. DEPLOYING RED HAT BUILD OF KEYCLOAK FOR HA WITH THE OPERATOR

49

 # to avoid receiving all requests on a single Red Hat build of Keycloak Pod.
 haproxy.router.openshift.io/balance: roundrobin
 haproxy.router.openshift.io/disable_cookies: 'true'

Red Hat build of Keycloak 26.2 High Availability Guide

50

CHAPTER 11. DEPLOYING AN AWS GLOBAL ACCELERATOR
LOAD BALANCER

Deploy an AWS Global Accelerator as the load-balancer building block in a multi-site deployment.

This topic describes the procedure required to deploy an AWS Global Accelerator to route traffic
between multi-site Red Hat build of Keycloak deployments.

This deployment is intended to be used with the setup described in the Concepts for multi-site
deployments chapter. Use this deployment with the other building blocks outlined in the Building blocks
multi-site deployments chapter.

NOTE

We provide these blueprints to show a minimal functionally complete example with a
good baseline performance for regular installations. You would still need to adapt it to
your environment and your organization’s standards and security best practices.

11.1. AUDIENCE

This chapter describes how to deploy an AWS Global Accelerator instance to handle Red Hat build of
Keycloak client connection failover for multiple availability-zone Red Hat build of Keycloak deployments.

11.2. ARCHITECTURE

To ensure user requests are routed to each Red Hat build of Keycloak site we need to utilise a load
balancer. To prevent issues with DNS caching on the client-side, the implementation should use a static
IP address that remains the same when routing clients to both availability-zones.

In this chapter we describe how to route all Red Hat build of Keycloak client requests via an AWS Global
Accelerator load balancer. In the event of a Red Hat build of Keycloak site failing, the Accelerator
ensures that all client requests are routed to the remaining healthy site. If both sites are marked as
unhealthy, then the Accelerator will “fail-open” and forward requests to a site chosen at random.

Figure 11.1. AWS Global Accelerator Failover

An AWS Network Load Balancer (NLB) is created on both ROSA clusters in order to make the Keycloak
pods available as Endpoints to an AWS Global Accelerator instance. Each cluster endpoint is assigned a
weight of 128 (half of the maximum weight 255) to ensure that accelerator traffic is routed equally to
both availability-zones when both clusters are healthy.

11.3. PREREQUISITES

CHAPTER 11. DEPLOYING AN AWS GLOBAL ACCELERATOR LOAD BALANCER

51

1

2

3

4

ROSA based Multi-AZ Red Hat build of Keycloak deployment

11.4. PROCEDURE

1. Create Network Load Balancers
Perform the following on each of the Red Hat build of Keycloak clusters:

a. Login to the ROSA cluster

b. Create a Kubernetes load balancer service

Command:

$NAMESPACE should be replaced with the namespace of your Red Hat build of
Keycloak deployment

Add additional Tags to the resources created by AWS so that we can retrieve them
later. ACCELERATOR_NAME should be the name of the Global Accelerator created
in subsequent steps and CLUSTER_NAME should be the name of the current site.

How frequently the healthcheck probe is executed in seconds

How many healthchecks must pass for the NLB to be considered healthy

cat <<EOF | oc apply -n $NAMESPACE -f - 1
 apiVersion: v1
 kind: Service
 metadata:
 name: accelerator-loadbalancer
 annotations:
 service.beta.kubernetes.io/aws-load-balancer-additional-resource-tags:
accelerator=${ACCELERATOR_NAME},site=${CLUSTER_NAME},namespace=${NAME
SPACE} 2
 service.beta.kubernetes.io/aws-load-balancer-type: "nlb"
 service.beta.kubernetes.io/aws-load-balancer-healthcheck-path: "/lb-check"
 service.beta.kubernetes.io/aws-load-balancer-healthcheck-protocol: "https"
 service.beta.kubernetes.io/aws-load-balancer-healthcheck-interval: "10" 3
 service.beta.kubernetes.io/aws-load-balancer-healthcheck-healthy-threshold: "3" 4
 service.beta.kubernetes.io/aws-load-balancer-healthcheck-unhealthy-threshold: "3"
5

 spec:
 ports:
 - name: https
 port: 443
 protocol: TCP
 targetPort: 8443
 selector:
 app: keycloak
 app.kubernetes.io/instance: keycloak
 app.kubernetes.io/managed-by: keycloak-operator
 sessionAffinity: None
 type: LoadBalancer
EOF

Red Hat build of Keycloak 26.2 High Availability Guide

52

5

1

2

3

How many healthchecks must fail for the NLB to be considered unhealthy

c. Take note of the DNS hostname as this will be required later:

Command:

Output:

2. Create a Global Accelerator instance

Command:

The name of the accelerator to be created, update as required

Can be 'DUAL_STACK' or 'IPV4'

All globalaccelerator commands must use the region 'us-west-2'

Output:

oc -n $NAMESPACE get svc accelerator-loadbalancer --template="{{range
.status.loadBalancer.ingress}}{{.hostname}}{{end}}"

abab80a363ce8479ea9c4349d116bce2-6b65e8b4272fa4b5.elb.eu-west-
1.amazonaws.com

aws globalaccelerator create-accelerator \
 --name example-accelerator \ 1
 --ip-address-type DUAL_STACK \ 2
 --region us-west-2 3

{
 "Accelerator": {
 "AcceleratorArn": "arn:aws:globalaccelerator::606671647913:accelerator/e35a94dd-
391f-4e3e-9a3d-d5ad22a78c71", 1
 "Name": "example-accelerator",
 "IpAddressType": "DUAL_STACK",
 "Enabled": true,
 "IpSets": [
 {
 "IpFamily": "IPv4",
 "IpAddresses": [
 "75.2.42.125",
 "99.83.132.135"
],
 "IpAddressFamily": "IPv4"
 },
 {
 "IpFamily": "IPv6",
 "IpAddresses": [
 "2600:9000:a400:4092:88f3:82e2:e5b2:e686",
 "2600:9000:a516:b4ef:157e:4cbd:7b48:20f1"

CHAPTER 11. DEPLOYING AN AWS GLOBAL ACCELERATOR LOAD BALANCER

53

1

2

3

The ARN associated with the created Accelerator instance, this will be used in subsequent
commands

The DNS name which IPv4 Red Hat build of Keycloak clients should connect to

The DNS name which IPv6 Red Hat build of Keycloak clients should connect to

3. Create a Listener for the accelerator

Command:

Output:

4. Create an Endpoint Group for the Listener

Command:

],
 "IpAddressFamily": "IPv6"
 }
],
 "DnsName": "a099f799900e5b10d.awsglobalaccelerator.com", 2
 "Status": "IN_PROGRESS",
 "CreatedTime": "2023-11-13T15:46:40+00:00",
 "LastModifiedTime": "2023-11-13T15:46:42+00:00",
 "DualStackDnsName": "ac86191ca5121e885.dualstack.awsglobalaccelerator.com" 3
 }
}

aws globalaccelerator create-listener \
 --accelerator-arn 'arn:aws:globalaccelerator::606671647913:accelerator/e35a94dd-391f-
4e3e-9a3d-d5ad22a78c71' \
 --port-ranges '[{"FromPort":443,"ToPort":443}]' \
 --protocol TCP \
 --region us-west-2

{
 "Listener": {
 "ListenerArn": "arn:aws:globalaccelerator::606671647913:accelerator/e35a94dd-391f-
4e3e-9a3d-d5ad22a78c71/listener/1f396d40",
 "PortRanges": [
 {
 "FromPort": 443,
 "ToPort": 443
 }
],
 "Protocol": "TCP",
 "ClientAffinity": "NONE"
 }
}

CLUSTER_1_ENDPOINT_ARN=$(aws elbv2 describe-load-balancers \
 --query "LoadBalancers[?DNSName=='abab80a363ce8479ea9c4349d116bce2-

Red Hat build of Keycloak 26.2 High Availability Guide

54

1 3

2 4 5

6

The DNS hostname of the Cluster’s NLB

The ARN of the Listener created in the previous step

This should be the AWS region that hosts the clusters

Output:

6b65e8b4272fa4b5.elb.eu-west-1.amazonaws.com'].LoadBalancerArn" \ 1
 --region eu-west-1 \ 2
 --output text
)
CLUSTER_2_ENDPOINT_ARN=$(aws elbv2 describe-load-balancers \
 --query "LoadBalancers[?DNSName=='a1c76566e3c334e4ab7b762d9f8dcbcf-
985941f9c8d108d4.elb.eu-west-1.amazonaws.com'].LoadBalancerArn" \ 3
 --region eu-west-1 \ 4
 --output text
)
ENDPOINTS='[
 {
 "EndpointId": "'${CLUSTER_1_ENDPOINT_ARN}'",
 "Weight": 128,
 "ClientIPPreservationEnabled": false
 },
 {
 "EndpointId": "'${CLUSTER_2_ENDPOINT_ARN}'",
 "Weight": 128,
 "ClientIPPreservationEnabled": false
 }
]'
aws globalaccelerator create-endpoint-group \
 --listener-arn 'arn:aws:globalaccelerator::606671647913:accelerator/e35a94dd-391f-4e3e-
9a3d-d5ad22a78c71/listener/1f396d40' \ 5
 --traffic-dial-percentage 100 \
 --endpoint-configurations ${ENDPOINTS} \
 --endpoint-group-region eu-west-1 \ 6
 --region us-west-2

{
 "EndpointGroup": {
 "EndpointGroupArn": "arn:aws:globalaccelerator::606671647913:accelerator/e35a94dd-
391f-4e3e-9a3d-d5ad22a78c71/listener/1f396d40/endpoint-group/2581af0dc700",
 "EndpointGroupRegion": "eu-west-1",
 "EndpointDescriptions": [
 {
 "EndpointId": "arn:aws:elasticloadbalancing:eu-west-
1:606671647913:loadbalancer/net/abab80a363ce8479ea9c4349d116bce2/6b65e8b4272fa4b5
",
 "Weight": 128,
 "HealthState": "HEALTHY",
 "ClientIPPreservationEnabled": false
 },
 {
 "EndpointId": "arn:aws:elasticloadbalancing:eu-west-

CHAPTER 11. DEPLOYING AN AWS GLOBAL ACCELERATOR LOAD BALANCER

55

1

2

5. Optional: Configure your custom domain
If you are using a custom domain, pointed your custom domain to the AWS Global Load
Balancer by configuring an Alias or CNAME in your custom domain.

6. Create or update the Red Hat build of Keycloak Deployment
Perform the following on each of the Red Hat build of Keycloak clusters:

a. Login to the ROSA cluster

b. Ensure the Keycloak CR has the following configuration

The hostname clients use to connect to Keycloak

Disable the default ingress as all Red Hat build of Keycloak access should be via the
provisioned NLB

To ensure that request forwarding works as expected, it is necessary for the Keycloak CR to
specify the hostname through which clients will access the Red Hat build of Keycloak
instances. This can either be the DualStackDnsName or DnsName hostname associated
with the Global Accelerator. If you are using a custom domain, point your custom domain to
the AWS Global Accelerator, and use your custom domain here.

11.5. VERIFY

To verify that the Global Accelerator is correctly configured to connect to the clusters, navigate to
hostname configured above, and you should be presented with the Red Hat build of Keycloak admin
console.

1:606671647913:loadbalancer/net/a1c76566e3c334e4ab7b762d9f8dcbcf/985941f9c8d108d4"
,
 "Weight": 128,
 "HealthState": "HEALTHY",
 "ClientIPPreservationEnabled": false
 }
],
 "TrafficDialPercentage": 100.0,
 "HealthCheckPort": 443,
 "HealthCheckProtocol": "TCP",
 "HealthCheckPath": "undefined",
 "HealthCheckIntervalSeconds": 30,
 "ThresholdCount": 3
 }
}

apiVersion: k8s.keycloak.org/v2alpha1
kind: Keycloak
metadata:
 name: keycloak
spec:
 hostname:
 hostname: $HOSTNAME 1
 ingress:
 enabled: false 2

Red Hat build of Keycloak 26.2 High Availability Guide

56

11.6. FURTHER READING

Bringing a site online

Taking a site offline

CHAPTER 11. DEPLOYING AN AWS GLOBAL ACCELERATOR LOAD BALANCER

57

CHAPTER 12. DEPLOYING AN AWS LAMBDA TO DISABLE A
NON-RESPONDING SITE

Deploy an AWS Lambda as part of the load-balancer building block in a multi-site deployment.

This chapter explains how to resolve split-brain scenarios between two sites in a multi-site deployment.
It also disables replication if one site fails, so the other site can continue to serve requests.

This deployment is intended to be used with the setup described in the Concepts for multi-site
deployments chapter. Use this deployment with the other building blocks outlined in the Building blocks
multi-site deployments chapter.

NOTE

We provide these blueprints to show a minimal functionally complete example with a
good baseline performance for regular installations. You would still need to adapt it to
your environment and your organization’s standards and security best practices.

12.1. ARCHITECTURE

In the event of a network communication failure between sites in a multi-site deployment, it is no longer
possible for the two sites to continue to replicate the data between them. The Data Grid is configured
with a FAIL failure policy, which ensures consistency over availability. Consequently, all user requests are
served with an error message until the failure is resolved, either by restoring the network connection or
by disabling cross-site replication.

In such scenarios, a quorum is commonly used to determine which sites are marked as online or offline.
However, as multi-site deployments only consist of two sites, this is not possible. Instead, we leverage
“fencing” to ensure that when one of the sites is unable to connect to the other site, only one site
remains in the load balancer configuration, and hence only this site is able to serve subsequent users
requests.

In addition to the load balancer configuration, the fencing procedure disables replication between the
two Data Grid clusters to allow serving user requests from the site that remains in the load balancer
configuration. As a result, the sites will be out-of-sync once the replication has been disabled.

To recover from the out-of-sync state, a manual re-sync is necessary as described in Synchronizing
sites. This is why a site which is removed via fencing will not be re-added automatically when the network
communication failure is resolved. The remove site should only be re-added once the two sites have
been synchronized using the outlined procedure Bringing a site online .

In this chapter we describe how to implement fencing using a combination of Prometheus Alerts and
AWS Lambda functions. A Prometheus Alert is triggered when split-brain is detected by the Data Grid
server metrics, which results in the Prometheus AlertManager calling the AWS Lambda based webhook.
The triggered Lambda function inspects the current Global Accelerator configuration and removes the
site reported to be offline.

In a true split-brain scenario, where both sites are still up but network communication is down, it is
possible that both sites will trigger the webhook simultaneously. We guard against this by ensuring that
only a single Lambda instance can be executed at a given time. The logic in the AWS Lambda ensures
that always one site entry remains in the load balancer configuration.

12.2. PREREQUISITES

Red Hat build of Keycloak 26.2 High Availability Guide

58

https://prometheus.io/docs/alerting/latest/overview/

1

2

3

ROSA HCP based multi-site Keycloak deployment

AWS CLI Installed

AWS Global Accelerator load balancer

jq tool installed

12.3. PROCEDURE

1. Enable Openshift user alert routing

Command:

2. Decide upon a username/password combination which will be used to authenticate the Lambda
webhook and create an AWS Secret storing the password

Command:

The name of the secret

The password to be used for authentication

The AWS region that hosts the secret

3. Create the Role used to execute the Lambda.

Command:

oc apply -f - << EOF
apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 alertmanager:
 enabled: true
 enableAlertmanagerConfig: true
EOF
oc -n openshift-user-workload-monitoring rollout status --watch
statefulset.apps/alertmanager-user-workload

aws secretsmanager create-secret \
 --name webhook-password \ 1
 --secret-string changeme \ 2
 --region eu-west-1 3

FUNCTION_NAME= 1
ROLE_ARN=$(aws iam create-role \
 --role-name ${FUNCTION_NAME} \
 --assume-role-policy-document \

CHAPTER 12. DEPLOYING AN AWS LAMBDA TO DISABLE A NON-RESPONDING SITE

59

1

2

A name of your choice to associate with the Lambda and related resources

The AWS Region hosting your Kubernetes clusters

4. Create and attach the 'LambdaSecretManager' Policy so that the Lambda can access AWS
Secrets

Command:

5. Attach the ElasticLoadBalancingReadOnly policy so that the Lambda can query the
provisioned Network Load Balancers

Command:

 '{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "lambda.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
 }' \
 --query 'Role.Arn' \
 --region eu-west-1 \ 2
 --output text
)

POLICY_ARN=$(aws iam create-policy \
 --policy-name LambdaSecretManager \
 --policy-document \
 '{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "secretsmanager:GetSecretValue"
],
 "Resource": "*"
 }
]
 }' \
 --query 'Policy.Arn' \
 --output text
)
aws iam attach-role-policy \
 --role-name ${FUNCTION_NAME} \
 --policy-arn ${POLICY_ARN}

Red Hat build of Keycloak 26.2 High Availability Guide

60

6. Attach the GlobalAcceleratorFullAccess policy so that the Lambda can update the Global
Accelerator EndpointGroup

Command:

7. Create a Lambda ZIP file containing the required fencing logic

Command:

aws iam attach-role-policy \
 --role-name ${FUNCTION_NAME} \
 --policy-arn arn:aws:iam::aws:policy/ElasticLoadBalancingReadOnly

aws iam attach-role-policy \
 --role-name ${FUNCTION_NAME} \
 --policy-arn arn:aws:iam::aws:policy/GlobalAcceleratorFullAccess

LAMBDA_ZIP=/tmp/lambda.zip
cat << EOF > /tmp/lambda.py

from urllib.error import HTTPError

import boto3
import jmespath
import json
import os
import urllib3

from base64 import b64decode
from urllib.parse import unquote

Prevent unverified HTTPS connection warning
urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)

class MissingEnvironmentVariable(Exception):
 pass

class MissingSiteUrl(Exception):
 pass

def env(name):
 if name in os.environ:
 return os.environ[name]
 raise MissingEnvironmentVariable(f"Environment Variable '{name}' must be set")

def handle_site_offline(labels):
 a_client = boto3.client('globalaccelerator', region_name='us-west-2')

 acceleratorDNS = labels['accelerator']
 accelerator = jmespath.search(f"Accelerators[?(DnsName=='{acceleratorDNS}'||
DualStackDnsName=='{acceleratorDNS}')]", a_client.list_accelerators())

CHAPTER 12. DEPLOYING AN AWS LAMBDA TO DISABLE A NON-RESPONDING SITE

61

 if not accelerator:
 print(f"Ignoring SiteOffline alert as accelerator with DnsName '{acceleratorDNS}' not
found")
 return

 accelerator_arn = accelerator[0]['AcceleratorArn']
 listener_arn = a_client.list_listeners(AcceleratorArn=accelerator_arn)['Listeners'][0]
['ListenerArn']

 endpoint_group = a_client.list_endpoint_groups(ListenerArn=listener_arn)
['EndpointGroups'][0]
 endpoints = endpoint_group['EndpointDescriptions']

 # Only update accelerator endpoints if two entries exist
 if len(endpoints) > 1:
 # If the reporter endpoint is not healthy then do nothing for now
 # A Lambda will eventually be triggered by the other offline site for this reporter
 reporter = labels['reporter']
 reporter_endpoint = [e for e in endpoints if endpoint_belongs_to_site(e, reporter)][0]
 if reporter_endpoint['HealthState'] == 'UNHEALTHY':
 print(f"Ignoring SiteOffline alert as reporter '{reporter}' endpoint is marked
UNHEALTHY")
 return

 offline_site = labels['site']
 endpoints = [e for e in endpoints if not endpoint_belongs_to_site(e, offline_site)]
 del reporter_endpoint['HealthState']
 a_client.update_endpoint_group(
 EndpointGroupArn=endpoint_group['EndpointGroupArn'],
 EndpointConfigurations=endpoints
)
 print(f"Removed site={offline_site} from Accelerator EndpointGroup")

 take_infinispan_site_offline(reporter, offline_site)
 print(f"Backup site={offline_site} caches taken offline")
 else:
 print("Ignoring SiteOffline alert only one Endpoint defined in the EndpointGroup")

def endpoint_belongs_to_site(endpoint, site):
 lb_arn = endpoint['EndpointId']
 region = lb_arn.split(':')[3]
 client = boto3.client('elbv2', region_name=region)
 tags = client.describe_tags(ResourceArns=[lb_arn])['TagDescriptions'][0]['Tags']
 for tag in tags:
 if tag['Key'] == 'site':
 return tag['Value'] == site
 return false

def take_infinispan_site_offline(reporter, offlinesite):
 endpoints = json.loads(INFINISPAN_SITE_ENDPOINTS)
 if reporter not in endpoints:
 raise MissingSiteUrl(f"Missing URL for site '{reporter}' in
'INFINISPAN_SITE_ENDPOINTS' json")

Red Hat build of Keycloak 26.2 High Availability Guide

62

 endpoint = endpoints[reporter]
 password = get_secret(INFINISPAN_USER_SECRET)
 url = f"https://{endpoint}/rest/v2/container/x-site/backups/{offlinesite}?action=take-offline"
 http = urllib3.PoolManager(cert_reqs='CERT_NONE')
 headers = urllib3.make_headers(basic_auth=f"{INFINISPAN_USER}:{password}")
 try:
 rsp = http.request("POST", url, headers=headers)
 if rsp.status >= 400:
 raise HTTPError(f"Unexpected response status '%d' when taking site offline",
rsp.status)
 rsp.release_conn()
 except HTTPError as e:
 print(f"HTTP error encountered: {e}")

def get_secret(secret_name):
 session = boto3.session.Session()
 client = session.client(
 service_name='secretsmanager',
 region_name=SECRETS_REGION
)
 return client.get_secret_value(SecretId=secret_name)['SecretString']

def decode_basic_auth_header(encoded_str):
 split = encoded_str.strip().split(' ')
 if len(split) == 2:
 if split[0].strip().lower() == 'basic':
 try:
 username, password = b64decode(split[1]).decode().split(':', 1)
 except:
 raise DecodeError
 else:
 raise DecodeError
 else:
 raise DecodeError

 return unquote(username), unquote(password)

def handler(event, context):
 print(json.dumps(event))

 authorization = event['headers'].get('authorization')
 if authorization is None:
 print("'Authorization' header missing from request")
 return {
 "statusCode": 401
 }

 expectedPass = get_secret(WEBHOOK_USER_SECRET)
 username, password = decode_basic_auth_header(authorization)
 if username != WEBHOOK_USER and password != expectedPass:
 print('Invalid username/password combination')
 return {
 "statusCode": 403

CHAPTER 12. DEPLOYING AN AWS LAMBDA TO DISABLE A NON-RESPONDING SITE

63

1

8. Create the Lambda function.

Command:

The AWS Region hosting your Kubernetes clusters

9. Expose a Function URL so the Lambda can be triggered as webhook

Command:

 }

 body = event.get('body')
 if body is None:
 raise Exception('Empty request body')

 body = json.loads(body)
 print(json.dumps(body))

 if body['status'] != 'firing':
 print("Ignoring alert as status is not 'firing', status was: '%s'" % body['status'])
 return {
 "statusCode": 204
 }

 for alert in body['alerts']:
 labels = alert['labels']
 if labels['alertname'] == 'SiteOffline':
 handle_site_offline(labels)

 return {
 "statusCode": 204
 }

INFINISPAN_USER = env('INFINISPAN_USER')
INFINISPAN_USER_SECRET = env('INFINISPAN_USER_SECRET')
INFINISPAN_SITE_ENDPOINTS = env('INFINISPAN_SITE_ENDPOINTS')
SECRETS_REGION = env('SECRETS_REGION')
WEBHOOK_USER = env('WEBHOOK_USER')
WEBHOOK_USER_SECRET = env('WEBHOOK_USER_SECRET')

EOF
zip -FS --junk-paths ${LAMBDA_ZIP} /tmp/lambda.py

aws lambda create-function \
 --function-name ${FUNCTION_NAME} \
 --zip-file fileb://${LAMBDA_ZIP} \
 --handler lambda.handler \
 --runtime python3.12 \
 --role ${ROLE_ARN} \
 --region eu-west-1 1

aws lambda create-function-url-config \

Red Hat build of Keycloak 26.2 High Availability Guide

64

1

1

1

The AWS Region hosting your Kubernetes clusters

10. Allow public invocations of the Function URL

Command:

The AWS Region hosting your Kubernetes clusters

11. Configure the Lambda’s Environment variables:

a. In each Kubernetes cluster, retrieve the exposed Data Grid URL endpoint:

Replace ${NAMESPACE} with the namespace containing your Data Grid server

b. Upload the desired Environment variables

 --function-name ${FUNCTION_NAME} \
 --auth-type NONE \
 --region eu-west-1 1

aws lambda add-permission \
 --action "lambda:InvokeFunctionUrl" \
 --function-name ${FUNCTION_NAME} \
 --principal "*" \
 --statement-id FunctionURLAllowPublicAccess \
 --function-url-auth-type NONE \
 --region eu-west-1 1

oc -n ${NAMESPACE} get route infinispan-external -o jsonpath='{.status.ingress[].host}'
1

ACCELERATOR_NAME= 1
LAMBDA_REGION= 2
CLUSTER_1_NAME= 3
CLUSTER_1_ISPN_ENDPOINT= 4
CLUSTER_2_NAME= 5
CLUSTER_2_ISPN_ENDPOINT= 6
INFINISPAN_USER= 7
INFINISPAN_USER_SECRET= 8
WEBHOOK_USER= 9
WEBHOOK_USER_SECRET= 10

INFINISPAN_SITE_ENDPOINTS=$(echo "
{\"${CLUSTER_NAME_1}\":\"${CLUSTER_1_ISPN_ENDPOINT}\",\"${CLUSTER_2_NA
ME}\":\"${CLUSTER_2_ISPN_ENDPOINT\"}" | jq tostring)
aws lambda update-function-configuration \
 --function-name ${ACCELERATOR_NAME} \
 --region ${LAMBDA_REGION} \
 --environment "{
 \"Variables\": {
 \"INFINISPAN_USER\" : \"${INFINISPAN_USER}\",

CHAPTER 12. DEPLOYING AN AWS LAMBDA TO DISABLE A NON-RESPONDING SITE

65

1

2

3

4

5

6

7

8

9

10

1

The name of the AWS Global Accelerator used by your deployment

The AWS Region hosting your Kubernetes cluster and Lambda function

The name of one of your Data Grid sites as defined in Deploying Data Grid for HA with
the Data Grid Operator

The Data Grid endpoint URL associated with the CLUSER_1_NAME site

The name of the second Data Grid site

The Data Grid endpoint URL associated with the CLUSER_2_NAME site

The username of a Data Grid user which has sufficient privileges to perform REST
requests on the server

The name of the AWS secret containing the password associated with the Data Grid
user

The username used to authenticate requests to the Lambda Function

The name of the AWS secret containing the password used to authenticate requests
to the Lambda function

12. Retrieve the Lambda Function URL

Command:

The AWS region where the Lambda was created

Output:

13. In each Kubernetes cluster, configure a Prometheus Alert routing to trigger the Lambda on
split-brain

Command:

 \"INFINISPAN_USER_SECRET\" : \"${INFINISPAN_USER_SECRET}\",
 \"INFINISPAN_SITE_ENDPOINTS\" : ${INFINISPAN_SITE_ENDPOINTS},
 \"WEBHOOK_USER\" : \"${WEBHOOK_USER}\",
 \"WEBHOOK_USER_SECRET\" : \"${WEBHOOK_USER_SECERT}\",
 \"SECRETS_REGION\" : \"eu-central-1\"
 }
 }"

aws lambda get-function-url-config \
 --function-name ${FUNCTION_NAME} \
 --query "FunctionUrl" \
 --region eu-west-1 \ 1
 --output text

https://tjqr2vgc664b6noj6vugprakoq0oausj.lambda-url.eu-west-1.on.aws

NAMESPACE= # The namespace containing your deployments

Red Hat build of Keycloak 26.2 High Availability Guide

66

oc apply -n ${NAMESPACE} -f - << EOF
apiVersion: v1
kind: Secret
type: kubernetes.io/basic-auth
metadata:
 name: webhook-credentials
stringData:
 username: 'keycloak' 1
 password: 'changme' 2

apiVersion: monitoring.coreos.com/v1beta1
kind: AlertmanagerConfig
metadata:
 name: example-routing
spec:
 route:
 receiver: default
 groupBy:
 - accelerator
 groupInterval: 90s
 groupWait: 60s
 matchers:
 - matchType: =
 name: alertname
 value: SiteOffline
 receivers:
 - name: default
 webhookConfigs:
 - url: 'https://tjqr2vgc664b6noj6vugprakoq0oausj.lambda-url.eu-west-1.on.aws/' 3
 httpConfig:
 basicAuth:
 username:
 key: username
 name: webhook-credentials
 password:
 key: password
 name: webhook-credentials
 tlsConfig:
 insecureSkipVerify: true

apiVersion: monitoring.coreos.com/v1
kind: PrometheusRule
metadata:
 name: xsite-status
spec:
 groups:
 - name: xsite-status
 rules:
 - alert: SiteOffline
 expr: 'min by (namespace, site)
(vendor_jgroups_site_view_status{namespace="default",site="site-b"}) == 0' 4
 labels:
 severity: critical
 reporter: site-a 5
 accelerator: a3da6a6cbd4e27b02.awsglobalaccelerator.com 6

CHAPTER 12. DEPLOYING AN AWS LAMBDA TO DISABLE A NON-RESPONDING SITE

67

1

2

3

4

5

6

1

2

The username required to authenticate Lambda requests

The password required to authenticate Lambda requests

The Lambda Function URL

The namespace value should be the namespace hosting the Infinispan CR and the site
should be the remote site defined by spec.service.sites.locations[0].name in your
Infinispan CR

The name of your local site defined by spec.service.sites.local.name in your Infinispan
CR

The DNS of your Global Accelerator

12.4. VERIFY

To test that the Prometheus alert triggers the webhook as expected, perform the following steps to
simulate a split-brain:

1. In each of your clusters execute the following:

Command:

Scale down the Data Grid Operator so that the next step does not result in the deployment
being recreated by the operator

Scale down the Gossip Router deployment.Replace ${NAMESPACE} with the namespace
containing your Data Grid server

2. Verify the SiteOffline event has been fired on a cluster by inspecting the Observe → Alerting
menu in the Openshift console

3. Inspect the Global Accelerator EndpointGroup in the AWS console and there should only be a
single endpoint present

4. Scale up the Data Grid Operator and Gossip Router to re-establish a connection between sites:

Command:

oc -n openshift-operators scale --replicas=0 deployment/infinispan-operator-controller-
manager 1
oc -n openshift-operators rollout status -w deployment/infinispan-operator-controller-manager
oc -n ${NAMESPACE} scale --replicas=0 deployment/infinispan-router 2
oc -n ${NAMESPACE} rollout status -w deployment/infinispan-router

oc -n openshift-operators scale --replicas=1 deployment/infinispan-operator-controller-
manager
oc -n openshift-operators rollout status -w deployment/infinispan-operator-controller-manager
oc -n ${NAMESPACE} scale --replicas=1 deployment/infinispan-router 1
oc -n ${NAMESPACE} rollout status -w deployment/infinispan-router

Red Hat build of Keycloak 26.2 High Availability Guide

68

1 Replace ${NAMESPACE} with the namespace containing your Data Grid server

5. Inspect the vendor_jgroups_site_view_status metric in each site. A value of 1 indicates that
the site is reachable.

6. Update the Accelerator EndpointGroup to contain both Endpoints. See the Bringing a site
online chapter for details.

12.5. FURTHER READING

Bringing a site online

Taking a site offline

CHAPTER 12. DEPLOYING AN AWS LAMBDA TO DISABLE A NON-RESPONDING SITE

69

1

2

CHAPTER 13. TAKING A SITE OFFLINE
Take a site offline so that it no longer processes client requests.

13.1. WHEN TO USE THIS PROCEDURE

During the deployment lifecycle it might be required that one of the sites is temporarily taken offline for
maintenance or to allow for software upgrades. To ensure that no user requests are routed to the site
requiring maintenance, it is necessary for the site to be removed from your load balancer configuration.

13.2. PROCEDURE

Follow these steps to remove a site from the load balancer so that no traffic can be routed to it.

13.2.1. Global Accelerator

1. Determine the ARN of the Network Load Balancer (NLB) associated with the site to be kept
online

Command:

The Kubernetes namespace containing the Keycloak deployment

The AWS Region hosting the Kubernetes cluster

Output:

2. Update the Accelerator EndpointGroup to only include a single site

a. List the current endpoints in the Global Accelerator’s EndpointGroup

Command:

NAMESPACE= 1
REGION= 2
HOSTNAME=$(oc -n $NAMESPACE get svc accelerator-loadbalancer --template="{{range
.status.loadBalancer.ingress}}{{.hostname}}{{end}}")
aws elbv2 describe-load-balancers \
 --query "LoadBalancers[?DNSName=='${HOSTNAME}'].LoadBalancerArn" \
 --region ${REGION} \
 --output text

arn:aws:elasticloadbalancing:eu-west-
1:606671647913:loadbalancer/net/a49e56e51e16843b9a3bc686327c907b/9b786f80ed4eba3d

ACCELERATOR_NAME= 1
ACCELERATOR_ARN=$(aws globalaccelerator list-accelerators \
 --query "Accelerators[?Name=='${ACCELERATOR_NAME}'].AcceleratorArn" \
 --region us-west-2 \ 2
 --output text
)
LISTENER_ARN=$(aws globalaccelerator list-listeners \

Red Hat build of Keycloak 26.2 High Availability Guide

70

1

2

The name of the Accelerator to be updated

The region must always be set to us-west-2 when querying AWS Global Accelerators

Output:

b. Update the EndpointGroup to only include the NLB retrieved in step 1.

Command:

 --accelerator-arn ${ACCELERATOR_ARN} \
 --query "Listeners[*].ListenerArn" \
 --region us-west-2 \
 --output text
)
aws globalaccelerator list-endpoint-groups \
 --listener-arn ${LISTENER_ARN} \
 --region us-west-2

{
 "EndpointGroups": [
 {
 "EndpointGroupArn":
"arn:aws:globalaccelerator::606671647913:accelerator/d280fc09-3057-4ab6-9330-
6cbf1f450748/listener/8769072f/endpoint-group/a30b64ec1700",
 "EndpointGroupRegion": "eu-west-1",
 "EndpointDescriptions": [
 {
 "EndpointId": "arn:aws:elasticloadbalancing:eu-west-
1:606671647913:loadbalancer/net/a49e56e51e16843b9a3bc686327c907b/9b786f80ed4e
ba3d",
 "Weight": 128,
 "HealthState": "HEALTHY",
 "ClientIPPreservationEnabled": false
 },
 {
 "EndpointId": "arn:aws:elasticloadbalancing:eu-west-
1:606671647913:loadbalancer/net/a3c75f239541c4a6e9c48cf8d48d602f/5ba333e87019ccf
0",
 "Weight": 128,
 "HealthState": "HEALTHY",
 "ClientIPPreservationEnabled": false
 }
],
 "TrafficDialPercentage": 100.0,
 "HealthCheckPort": 443,
 "HealthCheckProtocol": "TCP",
 "HealthCheckIntervalSeconds": 30,
 "ThresholdCount": 3
 }
]
}

aws globalaccelerator update-endpoint-group \

CHAPTER 13. TAKING A SITE OFFLINE

71

 --endpoint-group-arn arn:aws:globalaccelerator::606671647913:accelerator/d280fc09-
3057-4ab6-9330-6cbf1f450748/listener/8769072f/endpoint-group/a30b64ec1700 \
 --region us-west-2 \
 --endpoint-configurations '
 [
 {
 "EndpointId": "arn:aws:elasticloadbalancing:eu-west-
1:606671647913:loadbalancer/net/a49e56e51e16843b9a3bc686327c907b/9b786f80ed4e
ba3d",
 "Weight": 128,
 "ClientIPPreservationEnabled": false
 }
]
'

Red Hat build of Keycloak 26.2 High Availability Guide

72

1

2

CHAPTER 14. BRINGING A SITE ONLINE
Bring a site online so that it can process client requests.

14.1. WHEN TO USE THIS PROCEDURE

This procedure describes how to re-add a Keycloak site to the Global Accelerator, after it has previously
been taken offline, so that it can once again service client requests.

14.2. PROCEDURE

Follow these steps to re-add a Keycloak site to the AWS Global Accelerator so that it can handle client
requests.

14.2.1. Global Accelerator

1. Determine the ARN of the Network Load Balancer (NLB) associated with the site to be brought
online

Command:

The Kubernetes namespace containing the Keycloak deployment

The AWS Region hosting the Kubernetes cluster

Output:

2. Update the Accelerator EndpointGroup to include both sites

a. List the current endpoints in the Global Accelerator’s EndpointGroup

Command:

NAMESPACE= 1
REGION= 2
HOSTNAME=$(oc -n $NAMESPACE get svc accelerator-loadbalancer --template="{{range
.status.loadBalancer.ingress}}{{.hostname}}{{end}}")
aws elbv2 describe-load-balancers \
 --query "LoadBalancers[?DNSName=='${HOSTNAME}'].LoadBalancerArn" \
 --region ${REGION} \
 --output text

arn:aws:elasticloadbalancing:eu-west-
1:606671647913:loadbalancer/net/a49e56e51e16843b9a3bc686327c907b/9b786f80ed4eba3d

ACCELERATOR_NAME= 1
ACCELERATOR_ARN=$(aws globalaccelerator list-accelerators \
 --query "Accelerators[?Name=='${ACCELERATOR_NAME}'].AcceleratorArn" \
 --region us-west-2 \ 2
 --output text
)
LISTENER_ARN=$(aws globalaccelerator list-listeners \

CHAPTER 14. BRINGING A SITE ONLINE

73

1

2

The name of the Accelerator to be updated

The region must always be set to us-west-2 when querying AWS Global Accelerators

Output:

b. Update the EndpointGroup to include the existing Endpoint and the NLB retrieved in step 1.

Command:

 --accelerator-arn ${ACCELERATOR_ARN} \
 --query "Listeners[*].ListenerArn" \
 --region us-west-2 \
 --output text
)
aws globalaccelerator list-endpoint-groups \
 --listener-arn ${LISTENER_ARN} \
 --region us-west-2

{
 "EndpointGroups": [
 {
 "EndpointGroupArn":
"arn:aws:globalaccelerator::606671647913:accelerator/d280fc09-3057-4ab6-9330-
6cbf1f450748/listener/8769072f/endpoint-group/a30b64ec1700",
 "EndpointGroupRegion": "eu-west-1",
 "EndpointDescriptions": [
 {
 "EndpointId": "arn:aws:elasticloadbalancing:eu-west-
1:606671647913:loadbalancer/net/a3c75f239541c4a6e9c48cf8d48d602f/5ba333e87019ccf
0",
 "Weight": 128,
 "HealthState": "HEALTHY",
 "ClientIPPreservationEnabled": false
 }
],
 "TrafficDialPercentage": 100.0,
 "HealthCheckPort": 443,
 "HealthCheckProtocol": "TCP",
 "HealthCheckIntervalSeconds": 30,
 "ThresholdCount": 3
 }
]
}

aws globalaccelerator update-endpoint-group \
 --endpoint-group-arn arn:aws:globalaccelerator::606671647913:accelerator/d280fc09-
3057-4ab6-9330-6cbf1f450748/listener/8769072f/endpoint-group/a30b64ec1700 \
 --region us-west-2 \
 --endpoint-configurations '
 [
 {
 "EndpointId": "arn:aws:elasticloadbalancing:eu-west-
1:606671647913:loadbalancer/net/a3c75f239541c4a6e9c48cf8d48d602f/5ba333e87019ccf

Red Hat build of Keycloak 26.2 High Availability Guide

74

0",
 "Weight": 128,
 "ClientIPPreservationEnabled": false
 },
 {
 "EndpointId": "arn:aws:elasticloadbalancing:eu-west-
1:606671647913:loadbalancer/net/a49e56e51e16843b9a3bc686327c907b/9b786f80ed4e
ba3d",
 "Weight": 128,
 "ClientIPPreservationEnabled": false
 }
]
'

CHAPTER 14. BRINGING A SITE ONLINE

75

CHAPTER 15. SYNCHRONIZING SITES
Synchronize an offline site with an online site.

15.1. WHEN TO USE THIS PROCEDURE

Use this when the state of Data Grid clusters of two sites become disconnected and the contents of the
caches are out-of-sync. Perform this for example after a split-brain or when one site has been taken
offline for maintenance.

At the end of the procedure, the data on the secondary site have been discarded and replaced by the
data of the active site. All caches in the offline site are cleared to prevent invalid cache contents.

15.2. PROCEDURES

15.2.1. Data Grid Cluster

For the context of this chapter, site-a is the currently active site and site-b is an offline site that is not
part of the AWS Global Accelerator EndpointGroup and is therefore not receiving user requests.

WARNING

Transferring state may impact Data Grid cluster performance by increasing the
response time and/or resources usage.

The first procedure is to delete the stale data from the offline site.

1. Login into the offline site.

2. Shutdown Red Hat build of Keycloak. This will clear all Red Hat build of Keycloak caches and
prevents the Red Hat build of Keycloak state from being out-of-sync with Data Grid.
When deploying Red Hat build of Keycloak using the Red Hat build of Keycloak Operator,
change the number of Red Hat build of Keycloak instances in the Red Hat build of Keycloak
Custom Resource to 0.

3. Connect into Data Grid Cluster using the Data Grid CLI tool:

Command:

It asks for the username and password for the Data Grid cluster. Those credentials are the one
set in the Deploying Data Grid for HA with the Data Grid Operator chapter in the configuring
credentials section.

Output:



oc -n keycloak exec -it pods/infinispan-0 -- ./bin/cli.sh --trustall --connect
https://127.0.0.1:11222

Red Hat build of Keycloak 26.2 High Availability Guide

76

NOTE

The pod name depends on the cluster name defined in the Data Grid CR. The
connection can be done with any pod in the Data Grid cluster.

4. Disable the replication from offline site to the active site by running the following command. It
prevents the clear request to reach the active site and delete all the correct cached data.

Command:

Output:

5. Check the replication status is offline.

Command:

Output:

If the status is not offline, repeat the previous step.

WARNING

Make sure the replication is offline otherwise the clear data will clear both
sites.

6. Clear all the cached data in offline site using the following commands:

Command:

Username: developer
Password:
[infinispan-0-29897@ISPN//containers/default]>

site take-offline --all-caches --site=site-a

{
 "authenticationSessions" : "ok",
 "work" : "ok",
 "loginFailures" : "ok",
 "actionTokens" : "ok"
}

site status --all-caches --site=site-a

{
 "status" : "offline"
}



CHAPTER 15. SYNCHRONIZING SITES

77

These commands do not print any output.

7. Re-enable the cross-site replication from offline site to the active site.

Command:

Output:

8. Check the replication status is online.

Command:

Output:

Now we are ready to transfer the state from the active site to the offline site.

1. Login into your Active site

2. Connect into Data Grid Cluster using the Data Grid CLI tool:

Command:

It asks for the username and password for the Data Grid cluster. Those credentials are the one
set in the Deploying Data Grid for HA with the Data Grid Operator chapter in the configuring
credentials section.

Output:

clearcache actionTokens
clearcache authenticationSessions
clearcache loginFailures
clearcache work

site bring-online --all-caches --site=site-a

{
 "authenticationSessions" : "ok",
 "work" : "ok",
 "loginFailures" : "ok",
 "actionTokens" : "ok"
}

site status --all-caches --site=site-a

{
 "status" : "online"
}

oc -n keycloak exec -it pods/infinispan-0 -- ./bin/cli.sh --trustall --connect
https://127.0.0.1:11222

Username: developer
Password:

Red Hat build of Keycloak 26.2 High Availability Guide

78

NOTE

The pod name depends on the cluster name defined in the Data Grid CR. The
connection can be done with any pod in the Data Grid cluster.

3. Trigger the state transfer from the active site to the offline site.

Command:

Output:

4. Check the replication status is online for all caches.

Command:

Output:

5. Wait for the state transfer to complete by checking the output of push-site-status command
for all caches.

Command:

Output:

[infinispan-0-29897@ISPN//containers/default]>

site push-site-state --all-caches --site=site-b

{
 "authenticationSessions" : "ok",
 "work" : "ok",
 "loginFailures" : "ok",
 "actionTokens" : "ok"
}

site status --all-caches --site=site-b

{
 "status" : "online"
}

site push-site-status --cache=actionTokens
site push-site-status --cache=authenticationSessions
site push-site-status --cache=loginFailures
site push-site-status --cache=work

{
 "site-b" : "OK"
}
{
 "site-b" : "OK"
}

CHAPTER 15. SYNCHRONIZING SITES

79

Check the table in this section for the Cross-Site Documentation for the possible status values.

If an error is reported, repeat the state transfer for that specific cache.

Command:

6. Clear/reset the state transfer status with the following command

Command:

Output:

Now the state is available in the offline site, Red Hat build of Keycloak can be started again:

1. Login into your secondary site.

2. Startup Red Hat build of Keycloak.
When deploying Red Hat build of Keycloak using the Red Hat build of Keycloak Operator,
change the number of Red Hat build of Keycloak instances in the Red Hat build of Keycloak
Custom Resource to the original value.

15.2.2. AWS Aurora Database

No action required.

15.2.3. AWS Global Accelerator

Once the two sites have been synchronized, it is safe to add the previously offline site back to the Global
Accelerator EndpointGroup following the steps in the Bringing a site online chapter.

15.3. FURTHER READING

See Concepts to automate Data Grid CLI commands .

{
 "site-b" : "OK"
}
{
 "site-b" : "OK"
}

site push-site-state --cache=<cache-name> --site=site-b

site clear-push-site-status --cache=actionTokens
site clear-push-site-status --cache=authenticationSessions
site clear-push-site-status --cache=loginFailures
site clear-push-site-status --cache=work

"ok"
"ok"
"ok"
"ok"

Red Hat build of Keycloak 26.2 High Availability Guide

80

https://docs.redhat.com/en/documentation/red_hat_data_grid/8.5/html-single/data_grid_cross-site_replication/index#rest_v2_xsite_state_push_cross-site-operations-rest

CHAPTER 16. HEALTH CHECKS FOR MULTI-SITE
DEPLOYMENTS

Validate the health of a multi-site deployment.

When running the Multi-site deployments in a Kubernetes environment, you should automate checks to
see if everything is up and running as expected.

This page provides an overview of URLs, Kubernetes resources, and Healthcheck endpoints available to
verify a multi-site setup of Red Hat build of Keycloak.

16.1. OVERVIEW

A proactive monitoring strategy aims to detect and alert about issues before they impact users. This
strategy is the key for a highly resilient and highly available Red Hat build of Keycloak application.

Health checks across various architectural components (such as application health, load balancing,
caching, and overall system status) are critical for:

Ensuring high availability

Verifying that all sites and the load balancer are operational is a key to ensure that a system can
handle requests even if one site goes down.

Maintaining performance

Checking the health and distribution of the Data Grid cache ensures that Red Hat build of Keycloak
can maintain optimal performance by efficiently handling sessions and other temporary data.

Operational resilience

By continuously monitoring the health of both Red Hat build of Keycloak and its dependencies within
the Kubernetes environment, the system can quickly identify and possibly auto-remediate issues,
reducing downtime.

16.2. PREREQUISITES

1. Kubectl CLI is installed and configured.

2. Install jq if it is not already installed on your operating system.

16.3. SPECIFIC HEALTH CHECKS

16.3.1. Red Hat build of Keycloak load balancer and sites

Verifies the health of the Red Hat build of Keycloak application through its load balancer and both
primary and backup sites. This ensures that Red Hat build of Keycloak is accessible and that the load
balancing mechanism is functioning correctly across different geographical or network locations.

This command returns the health status of the Red Hat build of Keycloak application’s connection to its
configured database, thus confirming the reliability of database connections. This command is available
only on the management port and not from the external URL. In a Kubernetes setup, the sub-status
health/ready is checked periodically to make the Pod as ready.

This command verifies the lb-check endpoint of the load balancer and ensures the Red Hat build of

curl -s https://keycloak:managementport/health

CHAPTER 16. HEALTH CHECKS FOR MULTI-SITE DEPLOYMENTS

81

https://kubernetes.io/docs/tasks/tools/#oc
https://jqlang.github.io/jq/download/

This command verifies the lb-check endpoint of the load balancer and ensures the Red Hat build of
Keycloak application cluster is up and running.

These commands will return the running status of the Site A and Site B of the Red Hat build of Keycloak
in a multi-site setup.

16.3.2. Data Grid Cache health

Check the health of the default cache manager and individual caches in an external Data Grid cluster.
This check is vital for Red Hat build of Keycloak performance and reliability, as Data Grid is often used
for distributed caching and session clustering in Red Hat build of Keycloak deployments.

This command returns the overall health of the Data Grid cache manager, which is useful as the Admin
user does not need to provide user credentials to get the health status.

In contrast to the preceding health checks, the following health checks require the Admin user to
provide the Data Grid user credentials as part of the request to peek into the overall health of the
external Data Grid cluster caches.

The jq filter is a convenience to compute the overall health based on the individual cache health. You
can also choose to run the above command without the jq filter to see the full details.

16.3.3. Data Grid Cluster distribution

Assesses the distribution health of the Data Grid cluster, ensuring that the cluster’s nodes are correctly
distributing data. This step is essential for the scalability and fault tolerance of the caching layer.

You can modify the expectedCount 3 argument to match the total nodes in the cluster and validate if
they are healthy or not.

16.3.4. Overall, Data Grid system health

Uses the oc CLI tool to query the health status of Data Grid clusters and the Red Hat build of Keycloak
service in the specified namespace. This comprehensive check ensures that all components of the Red
Hat build of Keycloak deployment are operational and correctly configured within the Kubernetes

curl -s https://keycloak-load-balancer-url/lb-check

curl -s https://keycloak_site_a_url/lb-check
curl -s https://keycloak_site_b_url/lb-check

curl -s https://infinispan_rest_url/rest/v2/cache-managers/default/health/status

curl -u <infinispan_user>:<infinispan_pwd> -s https://infinispan_rest_url/rest/v2/cache-
managers/default/health \
 | jq 'if .cluster_health.health_status == "HEALTHY" and (all(.cache_health[].status; . == "HEALTHY"))
then "HEALTHY" else "UNHEALTHY" end'

curl <infinispan_user>:<infinispan_pwd> -s https://infinispan_rest_url/rest/v2/cluster\?
action\=distribution \
 | jq --argjson expectedCount 3 'if map(select(.node_addresses | length > 0)) | length ==
$expectedCount then "HEALTHY" else "UNHEALTHY" end'

Red Hat build of Keycloak 26.2 High Availability Guide

82

environment.

16.3.5. Red Hat build of Keycloak readiness in Kubernetes

Specifically, checks for the readiness and rolling update conditions of Red Hat build of Keycloak
deployments in Kubernetes, ensuring that the Red Hat build of Keycloak instances are fully operational
and not undergoing updates that could impact availability.

oc get infinispan -n <NAMESPACE> -o json \
| jq '.items[].status.conditions' \
| jq 'map({(.type): .status})' \
| jq 'reduce .[] as $item ([]; . + [keys[] | select($item[.] != "True")]) | if length == 0 then "HEALTHY" else
"UNHEALTHY: " + (join(", ")) end'

oc wait --for=condition=Ready --timeout=10s keycloaks.k8s.keycloak.org/keycloak -n
<NAMESPACE>
oc wait --for=condition=RollingUpdate=False --timeout=10s keycloaks.k8s.keycloak.org/keycloak -n
<NAMESPACE>

CHAPTER 16. HEALTH CHECKS FOR MULTI-SITE DEPLOYMENTS

83

	Table of Contents
	CHAPTER 1. MULTI-SITE DEPLOYMENTS
	1.1. WHEN TO USE A MULTI-SITE SETUP
	1.2. SUPPORTED CONFIGURATION
	1.3. MAXIMUM LOAD
	1.4. LIMITATIONS
	1.5. NEXT STEPS

	CHAPTER 2. CONCEPTS FOR MULTI-SITE DEPLOYMENTS
	2.1. WHEN TO USE THIS SETUP
	2.2. DEPLOYMENT, DATA STORAGE AND CACHING
	2.3. CAUSES OF DATA AND SERVICE LOSS
	2.4. FAILURES WHICH THIS SETUP CAN SURVIVE
	2.5. KNOWN LIMITATIONS
	2.6. QUESTIONS AND ANSWERS
	2.7. NEXT STEPS

	CHAPTER 3. BUILDING BLOCKS MULTI-SITE DEPLOYMENTS
	3.1. PREREQUISITES
	3.2. TWO SITES WITH LOW-LATENCY CONNECTION
	3.3. ENVIRONMENT FOR RED HAT BUILD OF KEYCLOAK AND DATA GRID
	3.4. DATABASE
	3.5. DATA GRID
	3.6. RED HAT BUILD OF KEYCLOAK
	3.7. LOAD BALANCER

	CHAPTER 4. CONCEPTS FOR DATABASE CONNECTION POOLS
	4.1. CONCEPTS

	CHAPTER 5. CONCEPTS FOR CONFIGURING THREAD POOLS
	5.1. CONCEPTS
	5.1.1. JGroups communications
	5.1.2. Quarkus executor pool
	5.1.3. Load Shedding
	5.1.4. Probes
	5.1.5. OS Resources

	CHAPTER 6. CONCEPTS FOR SIZING CPU AND MEMORY RESOURCES
	6.1. PERFORMANCE RECOMMENDATIONS
	6.1.1. Measuring the activity of a running Red Hat build of Keycloak instance
	6.1.2. Calculation example (single site)
	6.1.3. Sizing a multi-site setup

	6.2. REFERENCE ARCHITECTURE

	CHAPTER 7. CONCEPTS TO AUTOMATE DATA GRID CLI COMMANDS
	7.1. WHEN TO USE IT
	7.2. EXAMPLE
	7.3. FURTHER READING

	CHAPTER 8. DEPLOYING AWS AURORA IN MULTIPLE AVAILABILITY ZONES
	8.1. ARCHITECTURE
	8.2. PROCEDURE
	8.2.1. Create Aurora database Cluster
	8.2.2. Establish Peering Connections with ROSA clusters

	8.3. VERIFYING THE CONNECTION
	8.4. CONNECTING AURORA DATABASE WITH RED HAT BUILD OF KEYCLOAK
	8.5. NEXT STEPS

	CHAPTER 9. DEPLOYING DATA GRID FOR HA WITH THE DATA GRID OPERATOR
	9.1. ARCHITECTURE
	9.2. PREREQUISITES
	9.3. PROCEDURE
	9.4. VERIFYING THE DEPLOYMENT
	9.5. CONNECTING DATA GRID WITH RED HAT BUILD OF KEYCLOAK
	9.5.1. Architecture

	9.6. NEXT STEPS
	9.7. RELEVANT OPTIONS

	CHAPTER 10. DEPLOYING RED HAT BUILD OF KEYCLOAK FOR HA WITH THE OPERATOR
	10.1. PREREQUISITES
	10.2. PROCEDURE
	10.3. VERIFYING THE DEPLOYMENT
	10.4. OPTIONAL: LOAD SHEDDING
	10.5. OPTIONAL: DISABLE STICKY SESSIONS

	CHAPTER 11. DEPLOYING AN AWS GLOBAL ACCELERATOR LOAD BALANCER
	11.1. AUDIENCE
	11.2. ARCHITECTURE
	11.3. PREREQUISITES
	11.4. PROCEDURE
	11.5. VERIFY
	11.6. FURTHER READING

	CHAPTER 12. DEPLOYING AN AWS LAMBDA TO DISABLE A NON-RESPONDING SITE
	12.1. ARCHITECTURE
	12.2. PREREQUISITES
	12.3. PROCEDURE
	12.4. VERIFY
	12.5. FURTHER READING

	CHAPTER 13. TAKING A SITE OFFLINE
	13.1. WHEN TO USE THIS PROCEDURE
	13.2. PROCEDURE
	13.2.1. Global Accelerator

	CHAPTER 14. BRINGING A SITE ONLINE
	14.1. WHEN TO USE THIS PROCEDURE
	14.2. PROCEDURE
	14.2.1. Global Accelerator

	CHAPTER 15. SYNCHRONIZING SITES
	15.1. WHEN TO USE THIS PROCEDURE
	15.2. PROCEDURES
	15.2.1. Data Grid Cluster
	15.2.2. AWS Aurora Database
	15.2.3. AWS Global Accelerator

	15.3. FURTHER READING

	CHAPTER 16. HEALTH CHECKS FOR MULTI-SITE DEPLOYMENTS
	16.1. OVERVIEW
	16.2. PREREQUISITES
	16.3. SPECIFIC HEALTH CHECKS
	16.3.1. Red Hat build of Keycloak load balancer and sites
	16.3.2. Data Grid Cache health
	16.3.3. Data Grid Cluster distribution
	16.3.4. Overall, Data Grid system health
	16.3.5. Red Hat build of Keycloak readiness in Kubernetes

