
Red Hat build of Quarkus 3.15

Configure data sources

Last Updated: 2025-10-02

Red Hat build of Quarkus 3.15 Configure data sources

Legal Notice

Copyright © 2025 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Define JDBC and Reactive driver data sources in Red Hat build of Quarkus using a unified
configuration model.

. .

. .

Table of Contents

PROVIDING FEEDBACK ON RED HAT BUILD OF QUARKUS DOCUMENTATION

CHAPTER 1. CONFIGURE DATA SOURCES IN RED HAT BUILD OF QUARKUS
1.1. GET STARTED WITH CONFIGURING DATASOURCES IN QUARKUS

1.1.1. Zero-config setup in development mode
1.1.2. Configure a JDBC datasource

1.1.2.1. JDBC connection pool size adjustment
1.1.3. Configure a reactive datasource

1.2. CONFIGURE DATASOURCES
1.2.1. Configure a single datasource

1.2.1.1. JDBC datasource
1.2.1.1.1. Custom databases and drivers
1.2.1.1.2. Consuming the datasource

1.2.1.2. Reactive datasource
1.2.1.2.1. Reactive connection pool size adjustment

1.2.1.3. JDBC and reactive datasources simultaneously
1.2.2. Configure multiple datasources

1.2.2.1. Named datasource injection
1.2.3. Activate or deactivate datasources
1.2.4. Use multiple datasources in a single transaction

1.3. DATASOURCE INTEGRATIONS
1.3.1. Datasource health check
1.3.2. Datasource metrics
1.3.3. Datasource tracing
1.3.4. Narayana transaction manager integration

1.3.4.1. Named datasources
1.3.5. Testing with in-memory databases

1.3.5.1. Support and limitations
1.4. REFERENCES

1.4.1. Common datasource configuration reference
1.4.2. JDBC configuration reference
1.4.3. JDBC URL reference

1.4.3.1. DB2
1.4.3.2. Derby
1.4.3.3. H2
1.4.3.4. MariaDB
1.4.3.5. Microsoft SQL server
1.4.3.6. MySQL

1.4.3.6.1. MySQL limitations
1.4.3.7. Oracle
1.4.3.8. PostgreSQL

1.4.4. Quarkus extensions and database drivers reference
1.4.5. Reactive datasource configuration reference

1.4.5.1. Reactive MariaDB/MySQL specific configuration
1.4.5.2. Reactive Microsoft SQL server-specific configuration
1.4.5.3. Reactive Oracle-specific configuration
1.4.5.4. Reactive PostgreSQL-specific configuration

1.4.6. Reactive datasource URL reference
1.4.6.1. DB2
1.4.6.2. Microsoft SQL server
1.4.6.3. MySQL / MariaDB

4

5
5
5
6
6
7
7
7
8

10
10
11
11
11

12
13
13
15
16
16
16
17
17
17
17
18
18
18

24
33
33
34
34
34
34
34
35
35
35
35
37
48
50
50
51
52
52
52
53

Table of Contents

1

1.4.6.4. Oracle
1.4.6.4.1. EZConnect format
1.4.6.4.2. TNS alias format

1.4.6.5. PostgreSQL

53
53
53
54

Red Hat build of Quarkus 3.15 Configure data sources

2

Table of Contents

3

PROVIDING FEEDBACK ON RED HAT BUILD OF QUARKUS
DOCUMENTATION

To report an error or to improve our documentation, log in to your Red Hat Jira account and submit an
issue. If you do not have a Red Hat Jira account, then you will be prompted to create an account.

Procedure

1. Click the following link to create a ticket.

2. Enter a brief description of the issue in the Summary.

3. Provide a detailed description of the issue or enhancement in the Description. Include a URL to
where the issue occurs in the documentation.

4. Clicking Submit creates and routes the issue to the appropriate documentation team.

Red Hat build of Quarkus 3.15 Configure data sources

4

https://issues.redhat.com/secure/CreateIssueDetails!init.jspa?pid=12332926&summary=(userfeedback)&issuetype=1&description=[Please+include+the+Document+URL,+the+section+number+and +describe+the+issue]&priority=3&labels=[ddf]&components=12368558&customfield_10010

CHAPTER 1. CONFIGURE DATA SOURCES IN RED HAT BUILD
OF QUARKUS

Use a unified configuration model to define data sources for Java Database Connectivity (JDBC) and
Reactive drivers.

Applications use datasources to access relational databases. Quarkus provides a unified configuration
model to define datasources for Java Database Connectivity (JDBC) and Reactive database drivers.

Quarkus uses Agroal and Vert.x to provide high-performance, scalable datasource connection pooling
for JDBC and reactive drivers. The quarkus-jdbc-* and quarkus-reactive-*-client extensions provide
build time optimizations and integrate configured datasources with Quarkus features like security,
health checks, and metrics.

For more information about consuming and using a reactive datasource, see the Quarkus Reactive SQL
clients guide.

Additionally, refer to the Quarkus Hibernate ORM guide for information on consuming and using a JDBC
datasource.

1.1. GET STARTED WITH CONFIGURING DATASOURCES IN QUARKUS

For users familiar with the fundamentals, this section provides an overview and code samples to set up
datasources quickly.

For more advanced configuration with examples, see References.

1.1.1. Zero-config setup in development mode

Quarkus simplifies database configuration by offering the Dev Services feature, enabling zero-config
database setup for testing or running in development (dev) mode. In dev mode, the suggested
approach is to use DevServices and let Quarkus handle the database for you, whereas for production
mode, you provide explicit database configuration details pointing to a database managed outside of
Quarkus.

To use Dev Services, add the appropriate driver extension, such as jdbc-postgresql, for your desired
database type to the pom.xml file. In dev mode, if you do not provide any explicit database connection
details, Quarkus automatically handles the database setup and provides the wiring between the
application and the database.

If you provide user credentials, the underlying database will be configured to use them. This is useful if
you want to connect to the database with an external tool.

To use this feature, ensure a Docker or Podman container runtime is installed, depending on the
database type. Certain databases, such as H2, operate in in-memory mode and do not require a
container runtime.

TIP

Prefix the actual connection details for prod mode with %prod. to ensure they are not applied in dev
mode. For more information, see the Profiles section of the "Configuration reference" guide.

For more information about Dev Services, see Dev Services overview.

CHAPTER 1. CONFIGURE DATA SOURCES IN RED HAT BUILD OF QUARKUS

5

https://agroal.github.io/
https://vertx.io/
https://quarkus.io/version/3.15/guides/reactive-sql-clients
https://quarkus.io/version/3.15/guides/hibernate-orm
https://quarkus.io/version/3.15/guides/config-reference#profiles
https://quarkus.io/version/3.15/guides/dev-services

1

For more details and optional configurations, see Dev Services for databases.

1.1.2. Configure a JDBC datasource

1. Add the correct JDBC extension for the database of your choice.

quarkus-jdbc-db2

quarkus-jdbc-derby

NOTE

The Apache Derby database is deprecated in Red Hat build of Quarkus 3.15
and is planned to be removed in a future release. Red Hat will continue to
provide development support for Apache Derby during the current release
lifecycle.

quarkus-jdbc-h2

quarkus-jdbc-mariadb

quarkus-jdbc-mssql

quarkus-jdbc-mysql

quarkus-jdbc-oracle

quarkus-jdbc-postgresql

2. Configure your JDBC datasource:

This configuration value is only required if there is more than one database extension on
the classpath.

If only one viable extension is available, Quarkus assumes this is the correct one. When you add a driver
to the test scope, Quarkus automatically includes the specified driver in testing.

1.1.2.1. JDBC connection pool size adjustment

To protect your database from overloading during load peaks, size the pool adequately to throttle the
database load. The optimal pool size depends on many factors, such as the number of parallel
application users or the nature of the workload.

Be aware that setting the pool size too low might cause some requests to time out while waiting for a
connection.

For more information about pool size adjustment properties, see the JDBC configuration reference

quarkus.datasource.db-kind=postgresql 1
quarkus.datasource.username=<your username>
quarkus.datasource.password=<your password>

quarkus.datasource.jdbc.url=jdbc:postgresql://localhost:5432/hibernate_orm_test
quarkus.datasource.jdbc.max-size=16

Red Hat build of Quarkus 3.15 Configure data sources

6

https://quarkus.io/version/3.15/guides/databases-dev-services
https://access.redhat.com/support/offerings/developer/soc/

1

For more information about pool size adjustment properties, see the JDBC configuration reference
section.

1.1.3. Configure a reactive datasource

1. Add the correct reactive extension for the database of your choice.

quarkus-reactive-mssql-client

quarkus-reactive-mysql-client

quarkus-reactive-oracle-client

quarkus-reactive-pg-client

2. Configure your reactive datasource:

This configuration value is only required if there is more than one Reactive driver extension
on the classpath.

1.2. CONFIGURE DATASOURCES

The following section describes the configuration for single or multiple datasources. For simplicity, we
will reference a single datasource as the default (unnamed) datasource.

1.2.1. Configure a single datasource

A datasource can be either a JDBC datasource, reactive, or both. This depends on the configuration and
the selection of project extensions.

1. Define a datasource with the following configuration property, where db-kind defines which
database platform to connect to, for example, h2:

Quarkus deduces the JDBC driver class it needs to use from the specified value of the db-kind
database platform attribute.

NOTE

This step is required only if your application depends on multiple database
drivers. If the application operates with a single driver, this driver is detected
automatically.

Quarkus currently includes the following built-in database kinds:

quarkus.datasource.db-kind=postgresql 1
quarkus.datasource.username=<your username>
quarkus.datasource.password=<your password>

quarkus.datasource.reactive.url=postgresql:///your_database
quarkus.datasource.reactive.max-size=20

quarkus.datasource.db-kind=h2

CHAPTER 1. CONFIGURE DATA SOURCES IN RED HAT BUILD OF QUARKUS

7

DB2: db2

Derby: derby

NOTE

The Apache Derby database is deprecated in Red Hat build of Quarkus 3.15
and is planned to be removed in a future release. Red Hat will continue to
provide development support for Apache Derby during the current release
lifecycle.

H2: h2

MariaDB: mariadb

Microsoft SQL Server: mssql

MySQL: mysql

Oracle: oracle

PostgreSQL: postgresql, pgsql or pg

To use a database kind that is not built-in, use other and define the JDBC driver explicitly

NOTE

You can use any JDBC driver in a Quarkus app in JVM mode as described in
Custom databases and drivers. However, using a non-built-in database kind
is unlikely to work when compiling your application to a native executable.

For native executable builds, it is recommended to either use the available
JDBC Quarkus extensions or contribute a custom extension for your specific
driver.

2. Configure the following properties to define credentials:

You can also retrieve the password from Vault by using a credential provider for your
datasource.

Until now, the configuration has been the same regardless of whether you are using a JDBC or a reactive
driver. When you have defined the database kind and the credentials, the rest depends on what type of
driver you are using. It is possible to use JDBC and a reactive driver simultaneously.

1.2.1.1. JDBC datasource

JDBC is the most common database connection pattern, typically needed when used in combination
with non-reactive Hibernate ORM.

1. To use a JDBC datasource, start with adding the necessary dependencies:

quarkus.datasource.username=<your username>
quarkus.datasource.password=<your password>

Red Hat build of Quarkus 3.15 Configure data sources

8

https://access.redhat.com/support/offerings/developer/soc/
https://quarkiverse.github.io/quarkiverse-docs/quarkus-vault/dev/vault-datasource.html

a. For use with a built-in JDBC driver, choose and add the Quarkus extension for your
relational database driver from the list below:

Derby - quarkus-jdbc-derby

NOTE

The Apache Derby database is deprecated in Red Hat build of Quarkus
3.15 and is planned to be removed in a future release. Red Hat will
continue to provide development support for Apache Derby during the
current release lifecycle.

H2 - quarkus-jdbc-h2

NOTE

H2 and Derby databases can be configured to run in "embedded mode";
however, the Derby extension does not support compiling the embedded
database engine into native executables.

Read Testing with in-memory databases for suggestions regarding
integration testing.

DB2 - quarkus-jdbc-db2

MariaDB - quarkus-jdbc-mariadb

Microsoft SQL Server - quarkus-jdbc-mssql

MySQL - quarkus-jdbc-mysql

Oracle - quarkus-jdbc-oracle

PostgreSQL - quarkus-jdbc-postgresql
For example, to add the PostgreSQL driver dependency:

NOTE

Using a built-in JDBC driver extension automatically includes the Agroal
extension, which is the JDBC connection pool implementation applicable
for custom and built-in JDBC drivers. However, for custom drivers,
Agroal needs to be added explicitly.

b. For use with a custom JDBC driver, add the quarkus-agroal dependency to your project
alongside the extension for your relational database driver:

To use a JDBC driver for another database, use a database with no built-in extension or
with a different driver.

./mvnw quarkus:add-extension -Dextensions="jdbc-postgresql"

./mvnw quarkus:add-extension -Dextensions="agroal"

CHAPTER 1. CONFIGURE DATA SOURCES IN RED HAT BUILD OF QUARKUS

9

https://access.redhat.com/support/offerings/developer/soc/

2. Configure the JDBC connection by defining the JDBC URL property:

NOTE

Note the jdbc prefix in the property name. All the configuration properties
specific to JDBC have the jdbc prefix. For reactive datasources, the prefix is
reactive.

For more information about configuring JDBC, see JDBC URL format reference and Quarkus
extensions and database drivers reference.

1.2.1.1.1. Custom databases and drivers

If you need to connect to a database for which Quarkus does not provide an extension with the JDBC
driver, you can use a custom driver instead. For example, if you are using the OpenTracing JDBC driver
in your project.

Without an extension, the driver will work correctly in any Quarkus app running in JVM mode. However,
the driver is unlikely to work when compiling your application to a native executable. If you plan to make a
native executable, use the existing JDBC Quarkus extensions, or contribute one for your driver.

WARNING

OpenTracing has been deprecated in favor of OpenTelemetry. For tracing
information, please check the related section about Datasource tracing, bellow.

A custom driver definition example with the legacy OpenTracing driver:

An example for defining access to a database with no built-in support in JVM mode:

For all the details about the JDBC configuration options and configuring other aspects, such as the
connection pool size, refer to the JDBC configuration reference section.

1.2.1.1.2. Consuming the datasource

With Hibernate ORM, the Hibernate layer automatically picks up the datasource and uses it.

For the in-code access to the datasource, obtain it as any other bean as follows:

quarkus.datasource.jdbc.url=jdbc:postgresql://localhost:5432/hibernate_orm_test



quarkus.datasource.jdbc.driver=io.opentracing.contrib.jdbc.TracingDriver

quarkus.datasource.db-kind=other
quarkus.datasource.jdbc.driver=oracle.jdbc.driver.OracleDriver
quarkus.datasource.jdbc.url=jdbc:oracle:thin:@192.168.1.12:1521/ORCL_SVC
quarkus.datasource.username=scott
quarkus.datasource.password=tiger

Red Hat build of Quarkus 3.15 Configure data sources

10

In the above example, the type is AgroalDataSource, a javax.sql.DataSource subtype. Because of
this, you can also use javax.sql.DataSource as the injected type.

1.2.1.2. Reactive datasource

Quarkus offers several reactive clients for use with a reactive datasource.

1. Add the corresponding extension to your application:

MariaDB/MySQL: quarkus-reactive-mysql-client

Microsoft SQL Server: quarkus-reactive-mssql-client

Oracle: quarkus-reactive-oracle-client

PostgreSQL: quarkus-reactive-pg-client
The installed extension must be consistent with the quarkus.datasource.db-kind you
define in your datasource configuration.

2. After adding the driver, configure the connection URL and define a proper size for your
connection pool.

1.2.1.2.1. Reactive connection pool size adjustment

To protect your database from overloading during load peaks, size the pool adequately to throttle the
database load. The proper size always depends on many factors, such as the number of parallel
application users or the nature of the workload.

Be aware that setting the pool size too low might cause some requests to time out while waiting for a
connection.

For more information about pool size adjustment properties, see the Reactive datasource configuration
reference section.

1.2.1.3. JDBC and reactive datasources simultaneously

When both a JDBC extension and a reactive datasource extension for the same database kind are
included, both JDBC and reactive datasources will be created by default.

To use the JDBC and reactive datasources simultaneously:

If you do not want to have both a JDBC datasource and a reactive datasource created, use the following
configuration.

To disable the JDBC datasource explicitly:

@Inject
AgroalDataSource defaultDataSource;

quarkus.datasource.reactive.url=postgresql:///your_database
quarkus.datasource.reactive.max-size=20

%prod.quarkus.datasource.reactive.url=postgresql:///your_database
%prod.quarkus.datasource.jdbc.url=jdbc:postgresql://localhost:5432/hibernate_orm_test

CHAPTER 1. CONFIGURE DATA SOURCES IN RED HAT BUILD OF QUARKUS

11

To disable the reactive datasource explicitly:

TIP

In most cases, the configuration above will be optional as either a JDBC driver or a reactive
datasource extension will be present, not both.

1.2.2. Configure multiple datasources

NOTE

The Hibernate ORM extension supports defining persistence units by using configuration
properties. For each persistence unit, point to the datasource of your choice.

Defining multiple datasources works like defining a single datasource, with one important change - you
have to specify a name (configuration property) for each datasource.

The following example provides three different datasources:

the default one

a datasource named users

a datasource named inventory

Each with its configuration:

Notice there is an extra section in the configuration property. The syntax is as follows:
quarkus.datasource.[optional name.][datasource property].

NOTE

quarkus.datasource.jdbc=false

quarkus.datasource.reactive=false

quarkus.datasource.db-kind=h2
quarkus.datasource.username=username-default
quarkus.datasource.jdbc.url=jdbc:h2:mem:default
quarkus.datasource.jdbc.max-size=13

quarkus.datasource.users.db-kind=h2
quarkus.datasource.users.username=username1
quarkus.datasource.users.jdbc.url=jdbc:h2:mem:users
quarkus.datasource.users.jdbc.max-size=11

quarkus.datasource.inventory.db-kind=h2
quarkus.datasource.inventory.username=username2
quarkus.datasource.inventory.jdbc.url=jdbc:h2:mem:inventory
quarkus.datasource.inventory.jdbc.max-size=12

Red Hat build of Quarkus 3.15 Configure data sources

12

https://quarkus.io/version/3.15/guides/hibernate-orm#multiple-persistence-units

NOTE

Even when only one database extension is installed, named databases need to specify at
least one build-time property so that Quarkus can detect them. Generally, this is the db-
kind property, but you can also specify Dev Services properties to create named
datasources according to the Dev Services for Databases guide.

1.2.2.1. Named datasource injection

When using multiple datasources, each DataSource also has the io.quarkus.agroal.DataSource
qualifier with the name of the datasource as the value.

By using the properties mentioned in the previous section to configure three different datasources,
inject each one of them as follows:

1.2.3. Activate or deactivate datasources

When a datasource is configured at build time, it is active by default at runtime. This means that
Quarkus will start the corresponding JDBC connection pool or reactive client when the application
starts.

To deactivate a datasource at runtime, set quarkus.datasource[.optional name].active to false.
Quarkus will then skip starting the JDBC connection pool or reactive client during application startup.
Any attempt to use the deactivated datasource at runtime results in an exception.

This feature is especially useful when you need the application to select one datasource from a
predefined set at runtime.

WARNING

If another Quarkus extension relies on an inactive datasource, that extension might
fail to start.

In such a case, you will need to deactivate that other extension as well. For an
example of this scenario, see the Hibernate ORM section.

For example, with the following configuration:

@Inject
AgroalDataSource defaultDataSource;

@Inject
@DataSource("users")
AgroalDataSource usersDataSource;

@Inject
@DataSource("inventory")
AgroalDataSource inventoryDataSource;



quarkus.datasource."pg".db-kind=postgres

CHAPTER 1. CONFIGURE DATA SOURCES IN RED HAT BUILD OF QUARKUS

13

https://quarkus.io/version/3.15/guides/databases-dev-services
https://quarkus.io/version/3.15/guides/hibernate-orm#persistence-unit-active

Setting quarkus.datasource."pg".active=true at runtime will make only the PostgreSQL datasource
available, and setting quarkus.datasource."oracle".active=true at runtime will make only the Oracle
datasource available.

TIP

Custom configuration profiles can help simplify such a setup. By appending the following profile-specific
configuration to the one above, you can select a persistence unit/datasource at runtime simply by
setting quarkus.profile: quarkus.profile=prod,pg or quarkus.profile=prod,oracle.

TIP

It can also be useful to define a CDI bean producer redirecting to the currently active datasource, like
this:

quarkus.datasource."pg".active=false
quarkus.datasource."pg".jdbc.url=jdbc:postgresql:///your_database

quarkus.datasource."oracle".db-kind=oracle
quarkus.datasource."oracle".active=false
quarkus.datasource."oracle".jdbc.url=jdbc:oracle:///your_database

%pg.quarkus.hibernate-orm."pg".active=true
%pg.quarkus.datasource."pg".active=true
Add any pg-related runtime configuration here, prefixed with "%pg."

%oracle.quarkus.hibernate-orm."oracle".active=true
%oracle.quarkus.datasource."oracle".active=true
Add any pg-related runtime configuration here, prefixed with "%pg."

public class MyProducer {
 @Inject
 DataSourceSupport dataSourceSupport;

 @Inject
 @DataSource("pg")
 AgroalDataSource pgDataSourceBean;

 @Inject
 @DataSource("oracle")
 AgroalDataSource oracleDataSourceBean;

 @Produces
 @ApplicationScoped
 public AgroalDataSource dataSource() {
 if (dataSourceSupport.getInactiveNames().contains("pg")) {
 return oracleDataSourceBean;
 } else {
 return pgDataSourceBean;
 }
 }
}

Red Hat build of Quarkus 3.15 Configure data sources

14

https://quarkus.io/version/3.15/guides/config-reference#configuration-sources
https://quarkus.io/version/3.15/guides/config-reference#custom-profiles
https://quarkus.io/version/3.15/guides/config-reference#multiple-profiles
https://quarkus.io/version/3.15/guides/cdi#ok-you-said-that-there-are-several-kinds-of-beans

1.2.4. Use multiple datasources in a single transaction

By default, XA support on datasources is disabled. Therefore, a transaction may include no more than
one datasource. Attempting to access multiple non-XA datasources in the same transaction results in an
exception similar to the following:

...
Caused by: java.sql.SQLException: Exception in association of connection to existing transaction
 at
io.agroal.narayana.NarayanaTransactionIntegration.associate(NarayanaTransactionIntegration.java:13
0)
 ...
Caused by: java.sql.SQLException: Failed to enlist. Check if a connection from another datasource is
already enlisted to the same transaction
 at
io.agroal.narayana.NarayanaTransactionIntegration.associate(NarayanaTransactionIntegration.java:12
1)
 ...

To allow using multiple JDBC datasources in the same transaction:

1. Make sure your JDBC driver supports XA. All supported JDBC drivers do , but other JDBC
drivers might not.

2. Make sure your database server is configured to enable XA.

3. Enable XA support explicitly for each relevant datasource by setting
quarkus.datasource[.optional name].jdbc.transactions to xa.

Using XA, a rollback in one datasource will trigger a rollback in every other datasource enrolled in the
transaction.

NOTE

XA transactions on reactive datasources are not supported at the moment.

NOTE

If your transaction involves non-datasource resources, be aware that they might not
support XA transactions or might require additional configuration.

If XA cannot be enabled for one of your datasources:

Be aware that enabling XA for all datasources except one (and only one) is still supported
through Last Resource Commit Optimization (LRCO) .

If you do not need a rollback for one datasource to trigger a rollback for other datasources,
consider splitting your code into multiple transactions. To do so, use
QuarkusTransaction.requiringNew()/@Transactional(REQUIRES_NEW) (preferably) or
UserTransaction (for more complex use cases).

CAUTION

CHAPTER 1. CONFIGURE DATA SOURCES IN RED HAT BUILD OF QUARKUS

15

https://www.narayana.io/docs/project/index.html#_last_resource_commit_optimization_lrco
https://quarkus.io/version/3.15/guides/transaction#programmatic-approach
https://quarkus.io/version/3.15/guides/transaction#declarative-approach
https://quarkus.io/version/3.15/guides/transaction#legacy-api-approach

CAUTION

If no other solution works, and to maintain compatibility with Quarkus 3.8 and earlier, set
quarkus.transaction-manager.unsafe-multiple-last-resources to allow to enable unsafe transaction
handling across multiple non-XA datasources.

With this property set to allow, it might happen that a transaction rollback will only be applied to the last
non-XA datasource, while other non-XA datasources have already committed their changes, potentially
leaving your overall system in an inconsistent state.

Alternatively, you can allow the same unsafe behavior, but with warnings when it takes effect:

Setting the property to warn-each results in logging a warning on each offending transaction.

Setting the property to warn-first results in logging a warning on the first offending transaction.

We do not recommend using this configuration property, and we plan to remove it in the future, so you
should fix your application accordingly. If you think your use case of this feature is valid and this option
should be kept around, open an issue in the Quarkus tracker explaining why.

1.3. DATASOURCE INTEGRATIONS

1.3.1. Datasource health check

If you use the quarkus-smallrye-health extension, the quarkus-agroal and reactive client extensions
automatically add a readiness health check to validate the datasource.

When you access your application’s health readiness endpoint, /q/health/ready by default, you receive
information about the datasource validation status. If you have multiple datasources, all datasources are
checked, and if a single datasource validation failure occurs, the status changes to DOWN.

This behavior can be disabled by using the quarkus.datasource.health.enabled property.

To exclude only a particular datasource from the health check:

1.3.2. Datasource metrics

If you are using the quarkus-micrometer or quarkus-smallrye-metrics extension, quarkus-agroal can
contribute some datasource-related metrics to the metric registry. This can be activated by setting the
quarkus.datasource.metrics.enabled property to true.

For the exposed metrics to contain any actual values, a metric collection must be enabled internally by
the Agroal mechanisms. By default, this metric collection mechanism is enabled for all datasources when
a metrics extension is present, and metrics for the Agroal extension are enabled.

To disable metrics for a particular datasource, set quarkus.datasource.jdbc.enable-metrics to false,
or apply quarkus.datasource.<datasource name>.jdbc.enable-metrics for a named datasource. This
disables collecting the metrics and exposing them in the /q/metrics endpoint if the mechanism to
collect them is disabled.

Conversely, setting quarkus.datasource.jdbc.enable-metrics to true, or quarkus.datasource.
<datasource name>.jdbc.enable-metrics for a named datasource explicitly enables metrics collection

quarkus.datasource."datasource-name".health-exclude=true

Red Hat build of Quarkus 3.15 Configure data sources

16

https://github.com/quarkusio/quarkus/issues/new?assignees=&labels=kind%2Fenhancement&projects=&template=feature_request.yml
https://quarkus.io/extensions/io.quarkus/quarkus-smallrye-health
https://quarkus.io/version/3.15/guides/telemetry-micrometer
https://quarkus.io/version/3.15/guides/smallrye-metrics

even if a metrics extension is not in use. This can be useful if you need to access the collected metrics
programmatically. They are available after calling dataSource.getMetrics() on an injected
AgroalDataSource instance.

If the metrics collection for this datasource is disabled, all values result in zero.

1.3.3. Datasource tracing

To use tracing with a datasource, you need to add the quarkus-opentelemetry extension to your
project.

You do not need to declare a different driver to enable tracing. If you use a JDBC driver, you need to
follow the instructions in the OpenTelemetry extension .

Even with all the tracing infrastructure in place, the datasource tracing is not enabled by default, and you
need to enable it by setting this property:

1.3.4. Narayana transaction manager integration

Integration is automatic if the Narayana JTA extension is also available.

You can override this by setting the transactions configuration property:

quarkus.datasource.jdbc.transactions for default unnamed datasource

quarkus.datasource.<datasource-name>.jdbc.transactions for named datasource

For more information, see the Configuration reference section below.

To facilitate the storage of transaction logs in a database by using JDBC, see Configuring transaction
logs to be stored in a datasource section of the Using transactions in Quarkus guide.

1.3.4.1. Named datasources

When using Dev Services, the default datasource will always be created, but to specify a named
datasource, you need to have at least one build time property so Quarkus can detect how to create the
datasource.

You will usually specify the db-kind property or explicitly enable Dev Services by setting
quarkus.datasource."name".devservices.enabled=true.

1.3.5. Testing with in-memory databases

Some databases like H2 and Derby are commonly used in the embedded mode as a facility to run
integration tests quickly.

The recommended approach is to use the real database you intend to use in production, especially when
Dev Services provide a zero-config database for testing , and running tests against a container is
relatively quick and produces expected results on an actual environment. However, it is also possible to
use JVM-powered databases for scenarios when the ability to run simple integration tests is required.

enable tracing
quarkus.datasource.jdbc.telemetry=true

CHAPTER 1. CONFIGURE DATA SOURCES IN RED HAT BUILD OF QUARKUS

17

https://quarkus.io/version/3.15/guides/opentelemetry-tracing
https://quarkus.io/version/3.15/guides/opentelemetry-tracing#jdbc
https://quarkus.io/version/3.15/guides/transaction#jdbcstore
https://quarkus.io/version/3.15/guides/transaction
https://quarkus.io/version/3.15/guides/databases-dev-services

1.3.5.1. Support and limitations

Embedded databases (H2 and Derby) work in JVM mode. For native mode, the following limitations
apply:

Derby cannot be embedded into the application in native mode. However, the Quarkus Derby
extension allows native compilation of the Derby JDBC client, supporting remote connections.

Embedding H2 within your native image is not recommended. Consider using an alternative
approach, for example, using a remote connection to a separate database instead.

1.4. REFERENCES

1.4.1. Common datasource configuration reference

� Fixed at build time - Configuration property fixed at build time - All other configuration properties
are overridable at runtime

Configuration property Type Defaul
t

� Fixed at build time quarkus.datasource.health.enabled

Whether or not a health check is published in case the smallrye-health extension is
present.

This is a global setting and is not specific to a datasource.

Environment variable: QUARKUS_DATASOURCE_HEALTH_ENABLED

boolea
n

true

� Fixed at build time quarkus.datasource.metrics.enabled

Whether or not datasource metrics are published in case a metrics extension is present.

This is a global setting and is not specific to a datasource.

NOTE

This is different from the "jdbc.enable-metrics" property that needs to
be set on the JDBC datasource level to enable collection of metrics for
that datasource.

Environment variable: QUARKUS_DATASOURCE_METRICS_ENABLED

boolea
n

false

� Fixed at build time quarkus.datasource.db-kind

quarkus.datasource."datasource-name".db-kind

The kind of database we will connect to (e.g. h2, postgresql…​).

Environment variable: QUARKUS_DATASOURCE_DB_KIND

string

Red Hat build of Quarkus 3.15 Configure data sources

18

� Fixed at build time quarkus.datasource.db-version

quarkus.datasource."datasource-name".db-version

The version of the database we will connect to (e.g. '10.0').

CAUTION

The version number set here should follow the same numbering scheme as the string
returned by java.sql.DatabaseMetaData#getDatabaseProductVersion() for
your database’s JDBC driver. This numbering scheme may be different from the most
popular one for your database; for example Microsoft SQL Server 2016 would be
version 13.

As a rule, the version set here should be as high as possible, but must be lower than or
equal to the version of any database your application will connect to.

A high version will allow better performance and using more features (e.g. Hibernate
ORM may generate more efficient SQL, avoid workarounds and take advantage of
more database features), but if it is higher than the version of the database you want to
connect to, it may lead to runtime exceptions (e.g. Hibernate ORM may generate invalid
SQL that your database will reject).

Some extensions (like the Hibernate ORM extension) will try to check this version
against the actual database version on startup, leading to a startup failure when the
actual version is lower or simply a warning in case the database cannot be reached.

The default for this property is specific to each extension; the Hibernate ORM
extension will default to the oldest version it supports.

Environment variable: QUARKUS_DATASOURCE_DB_VERSION

string

� Fixed at build time quarkus.datasource.health-exclude

quarkus.datasource."datasource-name".health-exclude

Whether this particular data source should be excluded from the health check if the
general health check for data sources is enabled.

By default, the health check includes all configured data sources (if it is enabled).

Environment variable: QUARKUS_DATASOURCE_HEALTH_EXCLUDE

boolea
n

false

quarkus.datasource.active

quarkus.datasource."datasource-name".active

Whether this datasource should be active at runtime.

See this section of the documentation.

If the datasource is not active, it won’t start with the application, and accessing the
corresponding Datasource CDI bean will fail, meaning in particular that consumers of
this datasource (e.g. Hibernate ORM persistence units) will fail to start unless they are
inactive too.

Environment variable: QUARKUS_DATASOURCE_ACTIVE

boolea
n

true

CHAPTER 1. CONFIGURE DATA SOURCES IN RED HAT BUILD OF QUARKUS

19

quarkus.datasource.username

quarkus.datasource."datasource-name".username

The datasource username

Environment variable: QUARKUS_DATASOURCE_USERNAME

string

quarkus.datasource.password

quarkus.datasource."datasource-name".password

The datasource password

Environment variable: QUARKUS_DATASOURCE_PASSWORD

string

quarkus.datasource.credentials-provider

quarkus.datasource."datasource-name".credentials-provider

The credentials provider name

Environment variable: QUARKUS_DATASOURCE_CREDENTIALS_PROVIDER

string

quarkus.datasource.credentials-provider-name

quarkus.datasource."datasource-name".credentials-provider-name

The credentials provider bean name.

This is a bean name (as in @Named) of a bean that implements
CredentialsProvider. It is used to select the credentials provider bean when multiple
exist. This is unnecessary when there is only one credentials provider available.

For Vault, the credentials provider bean name is vault-credentials-provider.

Environment variable:
QUARKUS_DATASOURCE_CREDENTIALS_PROVIDER_NAME

string

Red Hat build of Quarkus 3.15 Configure data sources

20

Dev Services Type Defaul
t

� Fixed at build time quarkus.datasource.devservices.enabled

quarkus.datasource."datasource-name".devservices.enabled

Whether this Dev Service should start with the application in dev mode or tests.

Dev Services are enabled by default unless connection configuration (e.g. the JDBC
URL or reactive client URL) is set explicitly.

Environment variable: QUARKUS_DATASOURCE_DEVSERVICES_ENABLED

boolea
n

� Fixed at build time quarkus.datasource.devservices.image-name

quarkus.datasource."datasource-name".devservices.image-name

The container image name for container-based Dev Service providers.

This has no effect if the provider is not a container-based database, such as H2 or
Derby.

Environment variable:
QUARKUS_DATASOURCE_DEVSERVICES_IMAGE_NAME

string

� Fixed at build time quarkus.datasource.devservices.container-
env."environment-variable-name"

quarkus.datasource."datasource-name".devservices.container-
env."environment-variable-name"

Environment variables that are passed to the container.

Environment variable:
QUARKUS_DATASOURCE_DEVSERVICES_CONTAINER_ENV__ENVIRON
MENT_VARIABLE_NAME_

Map<St
ring,Str
ing>

� Fixed at build time quarkus.datasource.devservices.container-
properties."property-key"

quarkus.datasource."datasource-name".devservices.container-
properties."property-key"

Generic properties that are passed for additional container configuration.

Properties defined here are database-specific and are interpreted specifically in each
database dev service implementation.

Environment variable:
QUARKUS_DATASOURCE_DEVSERVICES_CONTAINER_PROPERTIES__P
ROPERTY_KEY_

Map<St
ring,Str
ing>

CHAPTER 1. CONFIGURE DATA SOURCES IN RED HAT BUILD OF QUARKUS

21

� Fixed at build time quarkus.datasource.devservices.properties."property-
key"

quarkus.datasource."datasource-name".devservices.properties."property-
key"

Generic properties that are added to the database connection URL.

Environment variable:
QUARKUS_DATASOURCE_DEVSERVICES_PROPERTIES__PROPERTY_K
EY_

Map<St
ring,Str
ing>

� Fixed at build time quarkus.datasource.devservices.port

quarkus.datasource."datasource-name".devservices.port

Optional fixed port the dev service will listen to.

If not defined, the port will be chosen randomly.

Environment variable: QUARKUS_DATASOURCE_DEVSERVICES_PORT

int

� Fixed at build time quarkus.datasource.devservices.command

quarkus.datasource."datasource-name".devservices.command

The container start command to use for container-based Dev Service providers.

This has no effect if the provider is not a container-based database, such as H2 or
Derby.

Environment variable: QUARKUS_DATASOURCE_DEVSERVICES_COMMAND

string

� Fixed at build time quarkus.datasource.devservices.db-name

quarkus.datasource."datasource-name".devservices.db-name

The database name to use if this Dev Service supports overriding it.

Environment variable: QUARKUS_DATASOURCE_DEVSERVICES_DB_NAME

string

� Fixed at build time quarkus.datasource.devservices.username

quarkus.datasource."datasource-name".devservices.username

The username to use if this Dev Service supports overriding it.

Environment variable: QUARKUS_DATASOURCE_DEVSERVICES_USERNAME

string

Red Hat build of Quarkus 3.15 Configure data sources

22

� Fixed at build time quarkus.datasource.devservices.password

quarkus.datasource."datasource-name".devservices.password

The password to use if this Dev Service supports overriding it.

Environment variable:
QUARKUS_DATASOURCE_DEVSERVICES_PASSWORD

string

� Fixed at build time quarkus.datasource.devservices.init-script-path

quarkus.datasource."datasource-name".devservices.init-script-path

The path to a SQL script to be loaded from the classpath and applied to the Dev
Service database.

This has no effect if the provider is not a container-based database, such as H2 or
Derby.

Environment variable:
QUARKUS_DATASOURCE_DEVSERVICES_INIT_SCRIPT_PATH

string

� Fixed at build time quarkus.datasource.devservices.volumes."host-path"

quarkus.datasource."datasource-name".devservices.volumes."host-path"

The volumes to be mapped to the container.

The map key corresponds to the host location; the map value is the container location.
If the host location starts with "classpath:", the mapping loads the resource from the
classpath with read-only permission.

When using a file system location, the volume will be generated with read-write
permission, potentially leading to data loss or modification in your file system.

This has no effect if the provider is not a container-based database, such as H2 or
Derby.

Environment variable:
QUARKUS_DATASOURCE_DEVSERVICES_VOLUMES__HOST_PATH_

Map<St
ring,Str
ing>

CHAPTER 1. CONFIGURE DATA SOURCES IN RED HAT BUILD OF QUARKUS

23

� Fixed at build time quarkus.datasource.devservices.reuse

quarkus.datasource."datasource-name".devservices.reuse

Whether to keep Dev Service containers running after a dev mode session or test suite
execution to reuse them in the next dev mode session or test suite execution.

Within a dev mode session or test suite execution, Quarkus will always reuse Dev
Services as long as their configuration (username, password, environment, port
bindings, …​) did not change. This feature is specifically about keeping containers running
when Quarkus is not running to reuse them across runs.

WARNING

This feature needs to be enabled explicitly in
testcontainers.properties, may require changes to how you
configure data initialization in dev mode and tests, and may leave
containers running indefinitely, forcing you to stop and remove
them manually. See this section of the documentation for more
information.

This configuration property is set to true by default, so it is mostly useful to disable
reuse, if you enabled it in testcontainers.properties but only want to use it for some
of your Quarkus applications or datasources.

Environment variable: QUARKUS_DATASOURCE_DEVSERVICES_REUSE

boolea
n

true

1.4.2. JDBC configuration reference

� Fixed at build time - Configuration property fixed at build time - All other configuration properties
are overridable at runtime

Configuration property Type Defaul
t

� Fixed at build time quarkus.datasource.jdbc

quarkus.datasource."datasource-name".jdbc

If we create a JDBC datasource for this datasource.

Environment variable: QUARKUS_DATASOURCE_JDBC

boolea
n

true



Red Hat build of Quarkus 3.15 Configure data sources

24

https://quarkus.io/version/3.15/guides/databases-dev-services#reuse

� Fixed at build time quarkus.datasource.jdbc.driver

quarkus.datasource."datasource-name".jdbc.driver

The datasource driver class name

Environment variable: QUARKUS_DATASOURCE_JDBC_DRIVER

string

� Fixed at build time quarkus.datasource.jdbc.transactions

quarkus.datasource."datasource-name".jdbc.transactions

Whether we want to use regular JDBC transactions, XA, or disable all transactional
capabilities.

When enabling XA you will need a driver implementing javax.sql.XADataSource.

Environment variable: QUARKUS_DATASOURCE_JDBC_TRANSACTIONS

enable
d:
Integra
te the
JDBC
Dataso
urce
with
the
JTA
Transa
ctionM
anager
of
Quarku
s. This
is the
default.

xa:
Similarl
y to
enabl
ed,
also
enables
integra
tion
with
the
JTA
Transa
ctionM
anager
of
Quarku
s, but
enablin
g XA
transac
tions as
well.
Requir
es a
JDBC
driver
implem

enable
d

CHAPTER 1. CONFIGURE DATA SOURCES IN RED HAT BUILD OF QUARKUS

25

enting
javax.
sql.XA
DataS
ource

disable
d:
Disable
s the
Agroal
integra
tion
with
the
Naraya
na
Transa
ctionM
anager.
This is
typicall
y a bad
idea,
and is
only
useful
in
special
cases:
make
sure to
not use
this
without
having
a deep
underst
anding
of the
implicat
ions.

� Fixed at build time quarkus.datasource.jdbc.enable-metrics

quarkus.datasource."datasource-name".jdbc.enable-metrics

Enable datasource metrics collection. If unspecified, collecting metrics will be enabled
by default if a metrics extension is active.

Environment variable: QUARKUS_DATASOURCE_JDBC_ENABLE_METRICS

boolea
n

Red Hat build of Quarkus 3.15 Configure data sources

26

� Fixed at build time quarkus.datasource.jdbc.tracing

quarkus.datasource."datasource-name".jdbc.tracing

Enable JDBC tracing. Disabled by default.

Environment variable: QUARKUS_DATASOURCE_JDBC_TRACING

boolea
n

false

� Fixed at build time quarkus.datasource.jdbc.telemetry

quarkus.datasource."datasource-name".jdbc.telemetry

Enable OpenTelemetry JDBC instrumentation.

Environment variable: QUARKUS_DATASOURCE_JDBC_TELEMETRY

boolea
n

false

quarkus.datasource.jdbc.url

quarkus.datasource."datasource-name".jdbc.url

The datasource URL

Environment variable: QUARKUS_DATASOURCE_JDBC_URL

string

quarkus.datasource.jdbc.initial-size

quarkus.datasource."datasource-name".jdbc.initial-size

The initial size of the pool. Usually you will want to set the initial size to match at least
the minimal size, but this is not enforced so to allow for architectures which prefer a lazy
initialization of the connections on boot, while being able to sustain a minimal pool size
after boot.

Environment variable: QUARKUS_DATASOURCE_JDBC_INITIAL_SIZE

int

quarkus.datasource.jdbc.min-size

quarkus.datasource."datasource-name".jdbc.min-size

The datasource pool minimum size

Environment variable: QUARKUS_DATASOURCE_JDBC_MIN_SIZE

int 0

quarkus.datasource.jdbc.max-size

quarkus.datasource."datasource-name".jdbc.max-size

The datasource pool maximum size

Environment variable: QUARKUS_DATASOURCE_JDBC_MAX_SIZE

int 20

CHAPTER 1. CONFIGURE DATA SOURCES IN RED HAT BUILD OF QUARKUS

27

quarkus.datasource.jdbc.background-validation-interval

quarkus.datasource."datasource-name".jdbc.background-validation-
interval

The interval at which we validate idle connections in the background.

Set to 0 to disable background validation.

Environment variable:
QUARKUS_DATASOURCE_JDBC_BACKGROUND_VALIDATION_INTERVA
L

Duratio
n ℹ️
Duratio
n
format

2M

quarkus.datasource.jdbc.foreground-validation-interval

quarkus.datasource."datasource-name".jdbc.foreground-validation-
interval

Perform foreground validation on connections that have been idle for longer than the
specified interval.

Environment variable:
QUARKUS_DATASOURCE_JDBC_FOREGROUND_VALIDATION_INTERVA
L

Duratio
n ℹ️
Duratio
n
format

quarkus.datasource.jdbc.acquisition-timeout

quarkus.datasource."datasource-name".jdbc.acquisition-timeout

The timeout before cancelling the acquisition of a new connection

Environment variable:
QUARKUS_DATASOURCE_JDBC_ACQUISITION_TIMEOUT

Duratio
n ℹ️
Duratio
n
format

5S

quarkus.datasource.jdbc.leak-detection-interval

quarkus.datasource."datasource-name".jdbc.leak-detection-interval

The interval at which we check for connection leaks.

Environment variable:
QUARKUS_DATASOURCE_JDBC_LEAK_DETECTION_INTERVAL

Duratio
n ℹ️
Duratio
n
format

This
featur
e is
disabl
ed by
defaul
t.

quarkus.datasource.jdbc.idle-removal-interval

quarkus.datasource."datasource-name".jdbc.idle-removal-interval

The interval at which we try to remove idle connections.

Environment variable:
QUARKUS_DATASOURCE_JDBC_IDLE_REMOVAL_INTERVAL

Duratio
n ℹ️
Duratio
n
format

5M

Red Hat build of Quarkus 3.15 Configure data sources

28

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/time/Duration.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/time/Duration.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/time/Duration.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/time/Duration.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/time/Duration.html

quarkus.datasource.jdbc.max-lifetime

quarkus.datasource."datasource-name".jdbc.max-lifetime

The max lifetime of a connection.

Environment variable: QUARKUS_DATASOURCE_JDBC_MAX_LIFETIME

Duratio
n ℹ️
Duratio
n
format

By
defaul
t,
there
is no
restric
tion
on the
lifesp
an of
a
conne
ction.

quarkus.datasource.jdbc.transaction-isolation-level

quarkus.datasource."datasource-name".jdbc.transaction-isolation-level

The transaction isolation level.

Environment variable:
QUARKUS_DATASOURCE_JDBC_TRANSACTION_ISOLATION_LEVEL

undefi
ned,
none,
read-
unco
mmitt
ed,
read-
comm
itted,
repeat
able-
read,
seriali
zable

quarkus.datasource.jdbc.extended-leak-report

quarkus.datasource."datasource-name".jdbc.extended-leak-report

Collect and display extra troubleshooting info on leaked connections.

Environment variable:
QUARKUS_DATASOURCE_JDBC_EXTENDED_LEAK_REPORT

boolea
n

false

quarkus.datasource.jdbc.flush-on-close

quarkus.datasource."datasource-name".jdbc.flush-on-close

Allows connections to be flushed upon return to the pool. It’s not enabled by default.

Environment variable: QUARKUS_DATASOURCE_JDBC_FLUSH_ON_CLOSE

boolea
n

false

CHAPTER 1. CONFIGURE DATA SOURCES IN RED HAT BUILD OF QUARKUS

29

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/time/Duration.html

quarkus.datasource.jdbc.detect-statement-leaks

quarkus.datasource."datasource-name".jdbc.detect-statement-leaks

When enabled, Agroal will be able to produce a warning when a connection is returned
to the pool without the application having closed all open statements. This is unrelated
with tracking of open connections. Disable for peak performance, but only when there’s
high confidence that no leaks are happening.

Environment variable:
QUARKUS_DATASOURCE_JDBC_DETECT_STATEMENT_LEAKS

boolea
n

true

quarkus.datasource.jdbc.new-connection-sql

quarkus.datasource."datasource-name".jdbc.new-connection-sql

Query executed when first using a connection.

Environment variable:
QUARKUS_DATASOURCE_JDBC_NEW_CONNECTION_SQL

string

quarkus.datasource.jdbc.validation-query-sql

quarkus.datasource."datasource-name".jdbc.validation-query-sql

Query executed to validate a connection.

Environment variable:
QUARKUS_DATASOURCE_JDBC_VALIDATION_QUERY_SQL

string

quarkus.datasource.jdbc.validate-on-borrow

quarkus.datasource."datasource-name".jdbc.validate-on-borrow

Forces connection validation prior to acquisition (foreground validation) regardless of
the idle status.

Because of the overhead of performing validation on every call, it’s recommended to
rely on default idle validation instead, and to leave this to false.

Environment variable:
QUARKUS_DATASOURCE_JDBC_VALIDATE_ON_BORROW

boolea
n

false

quarkus.datasource.jdbc.pooling-enabled

quarkus.datasource."datasource-name".jdbc.pooling-enabled

Disable pooling to prevent reuse of Connections. Use this when an external pool
manages the life-cycle of Connections.

Environment variable: QUARKUS_DATASOURCE_JDBC_POOLING_ENABLED

boolea
n

true

Red Hat build of Quarkus 3.15 Configure data sources

30

quarkus.datasource.jdbc.transaction-requirement

quarkus.datasource."datasource-name".jdbc.transaction-requirement

Require an active transaction when acquiring a connection. Recommended for
production. WARNING: Some extensions acquire connections without holding a
transaction for things like schema updates and schema validation. Setting this setting to
STRICT may lead to failures in those cases.

Environment variable:
QUARKUS_DATASOURCE_JDBC_TRANSACTION_REQUIREMENT

off,
warn,
strict

quarkus.datasource.jdbc.additional-jdbc-properties."property-key"

quarkus.datasource."datasource-name".jdbc.additional-jdbc-
properties."property-key"

Other unspecified properties to be passed to the JDBC driver when creating new
connections.

Environment variable:
QUARKUS_DATASOURCE_JDBC_ADDITIONAL_JDBC_PROPERTIES__PR
OPERTY_KEY_

Map<St
ring,Str
ing>

quarkus.datasource.jdbc.tracing.enabled

quarkus.datasource."datasource-name".jdbc.tracing.enabled

Enable JDBC tracing.

Environment variable: QUARKUS_DATASOURCE_JDBC_TRACING_ENABLED

boolea
n

false
if
quark
us.dat
asour
ce.jdb
c.traci
ng=fal
se
and
true if
quark
us.dat
asour
ce.jdb
c.traci
ng=tr
ue

CHAPTER 1. CONFIGURE DATA SOURCES IN RED HAT BUILD OF QUARKUS

31

quarkus.datasource.jdbc.tracing.trace-with-active-span-only

quarkus.datasource."datasource-name".jdbc.tracing.trace-with-active-
span-only

Trace calls with active Spans only

Environment variable:
QUARKUS_DATASOURCE_JDBC_TRACING_TRACE_WITH_ACTIVE_SPA
N_ONLY

boolea
n

false

quarkus.datasource.jdbc.tracing.ignore-for-tracing

quarkus.datasource."datasource-name".jdbc.tracing.ignore-for-tracing

Ignore specific queries from being traced

Environment variable:
QUARKUS_DATASOURCE_JDBC_TRACING_IGNORE_FOR_TRACING

string Ignor
e
specif
ic
querie
s from
being
traced
,
multip
le
querie
s can
be
specif
ied
separ
ated
by
semic
olon,
doubl
e
quote
s
shoul
d be
escap
ed
with \

Red Hat build of Quarkus 3.15 Configure data sources

32

quarkus.datasource.jdbc.telemetry.enabled

quarkus.datasource."datasource-name".jdbc.telemetry.enabled

Enable OpenTelemetry JDBC instrumentation.

Environment variable:
QUARKUS_DATASOURCE_JDBC_TELEMETRY_ENABLED

boolea
n

false
if
quark
us.dat
asour
ce.jdb
c.tele
metry
=false
and
true if
quark
us.dat
asour
ce.jdb
c.tele
metry
=true

ABOUT THE DURATION FORMAT

To write duration values, use the standard java.time.Duration format. See the
Duration#parse() Java API documentation for more information.

You can also use a simplified format, starting with a number:

If the value is only a number, it represents time in seconds.

If the value is a number followed by ms, it represents time in milliseconds.

In other cases, the simplified format is translated to the java.time.Duration format for
parsing:

If the value is a number followed by h, m, or s, it is prefixed with PT.

If the value is a number followed by d, it is prefixed with P.

1.4.3. JDBC URL reference

Each of the supported databases contains different JDBC URL configuration options. The following
section gives an overview of each database URL and a link to the official documentation.

1.4.3.1. DB2

jdbc:db2://<serverName>[:<portNumber>]/<databaseName>[:<key1>=<value>;[<key2>=
<value2>;]]

Example

jdbc:db2://localhost:50000/MYDB:user=dbadm;password=dbadm;

For more information on URL syntax and additional supported options, see the official documentation.

CHAPTER 1. CONFIGURE DATA SOURCES IN RED HAT BUILD OF QUARKUS

33

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/time/Duration.html#parse(java.lang.CharSequence)
https://www.ibm.com/support/knowledgecenter/SSEPGG_11.5.0/com.ibm.db2.luw.apdv.java.doc/src/tpc/imjcc_r0052342.html

1.4.3.2. Derby

jdbc:derby:[//serverName[:portNumber]/]
[memory:]databaseName[;property=value[;property=value]]

Example

jdbc:derby://localhost:1527/myDB, jdbc:derby:memory:myDB;create=true

Derby is an embedded database that can run as a server, based on a file, or can run completely in
memory. All of these options are available as listed above.

For more information, see the official documentation.

1.4.3.3. H2

jdbc:h2:{ {.|mem:}[name] | [file:]fileName | {tcp|ssl}:[//]server[:port][,server2[:port]]/name }
[;key=value… ​]

Example

jdbc:h2:tcp://localhost/~/test, jdbc:h2:mem:myDB

H2 is a database that can run in embedded or server mode. It can use a file storage or run entirely in
memory. All of these options are available as listed above.

For more information, see the official documentation.

1.4.3.4. MariaDB

jdbc:mariadb:[replication:|failover:|sequential:|aurora:]//<hostDescription>[,<hostDescription>… ​
]/[database][?<key1>=<value1>[&<key2>=<value2>]] hostDescription:: <host>[:<portnumber>] or
address=(host=<host>)[(port=<portnumber>)][(type=(master|slave))]

Example

jdbc:mariadb://localhost:3306/test

For more information, see the official documentation.

1.4.3.5. Microsoft SQL server

jdbc:sqlserver://[serverName[\instanceName][:portNumber]][;property=value[;property=value]]

Example

jdbc:sqlserver://localhost:1433;databaseName=AdventureWorks

The Microsoft SQL Server JDBC driver works essentially the same as the others.

For more information, see the official documentation.

1.4.3.6. MySQL

jdbc:mysql:[replication:|failover:|sequential:|aurora:]//<hostDescription>[,<hostDescription>… ​
]/[database][?<key1>=<value1>[&<key2>=<value2>]] hostDescription:: <host>[:<portnumber>] or
address=(host=<host>)[(port=<portnumber>)][(type=(master|slave))]

Red Hat build of Quarkus 3.15 Configure data sources

34

https://db.apache.org/derby/docs/10.8/devguide/cdevdvlp17453.html#cdevdvlp17453
https://h2database.com/html/features.html#database_url
https://mariadb.com/kb/en/library/about-mariadb-connector-j/
https://docs.microsoft.com/en-us/sql/connect/jdbc/connecting-to-sql-server-with-the-jdbc-driver?view=sql-server-2017

Example

jdbc:mysql://localhost:3306/test

For more information, see the official documentation.

1.4.3.6.1. MySQL limitations

When compiling a Quarkus application to a native image, the MySQL support for JMX and Oracle Cloud
Infrastructure (OCI) integrations are disabled as they are incompatible with GraalVM native images.

The lack of JMX support is a natural consequence of running in native mode and is unlikely to
be resolved.

The integration with OCI is not supported.

1.4.3.7. Oracle

jdbc:oracle:driver_type:@database_specifier

Example

jdbc:oracle:thin:@localhost:1521/ORCL_SVC

For more information, see the official documentation.

1.4.3.8. PostgreSQL

jdbc:postgresql:[//][host][:port][/database][?key=value… ​]

Example

jdbc:postgresql://localhost/test

The defaults for the different parts are as follows:

host

localhost

port

5432

database

same name as the username

For more information about additional parameters, see the official documentation.

1.4.4. Quarkus extensions and database drivers reference

The following tables list the built-in db-kind values, the corresponding Quarkus extensions, and the
JDBC drivers used by those extensions.

When using one of the built-in datasource kinds, the JDBC and Reactive drivers are resolved
automatically to match the values from these tables.

Table 1.1. Database platform kind to JDBC driver mapping

CHAPTER 1. CONFIGURE DATA SOURCES IN RED HAT BUILD OF QUARKUS

35

https://dev.mysql.com/doc/connector-j/en/
https://docs.oracle.com/en/database/oracle/oracle-database/21/jjdbc/data-sources-and-URLs.html#GUID-AEA8E228-1B21-4111-AF4C-B1F33744CA08
https://jdbc.postgresql.org/documentation/head/connect.html

Databa
se kind

Quarkus extension Drivers

db2 quarkus-jdbc-db2
JDBC: com.ibm.db2.jcc.DB2Driver

XA: com.ibm.db2.jcc.DB2XADataSource

derby quarkus-jdbc-derby
JDBC: org.apache.derby.jdbc.ClientDriver

XA: org.apache.derby.jdbc.ClientXADataSource

h2 quarkus-jdbc-h2
JDBC: org.h2.Driver

XA: org.h2.jdbcx.JdbcDataSource

maria
db

quarkus-jdbc-
mariadb JDBC: org.mariadb.jdbc.Driver

XA: org.mariadb.jdbc.MySQLDataSource

mssql quarkus-jdbc-mssql
JDBC:
com.microsoft.sqlserver.jdbc.SQLServerDriver

XA:
com.microsoft.sqlserver.jdbc.SQLServerXADataSou
rce

mysql quarkus-jdbc-mysql
JDBC: com.mysql.cj.jdbc.Driver

XA: com.mysql.cj.jdbc.MysqlXADataSource

oracle quarkus-jdbc-oracle
JDBC: oracle.jdbc.driver.OracleDriver

XA: oracle.jdbc.xa.client.OracleXADataSource

postgr
esql

quarkus-jdbc-
postgresql JDBC: org.postgresql.Driver

XA: org.postgresql.xa.PGXADataSource

Table 1.2. Database kind to Reactive driver mapping

Red Hat build of Quarkus 3.15 Configure data sources

36

Databa
se kind

Quarkus extension Driver

oracle reactive-oracle-client io.vertx.oracleclient.spi.OracleDriver

mysql reactive-mysql-client io.vertx.mysqlclient.spi.MySQLDriver

mssql reactive-mssql-client io.vertx.mssqlclient.spi.MSSQLDriver

postgr
esql

reactive-pg-client io.vertx.pgclient.spi.PgDriver

TIP

This automatic resolution is applicable in most cases so that driver configuration is not needed.

1.4.5. Reactive datasource configuration reference

� Fixed at build time - Configuration property fixed at build time - All other configuration properties
are overridable at runtime

Configuration property Type Defaul
t

� Fixed at build time quarkus.datasource.reactive

If we create a Reactive datasource for this datasource.

Environment variable: QUARKUS_DATASOURCE_REACTIVE

boolea
n

true

quarkus.datasource.reactive.cache-prepared-statements

Whether prepared statements should be cached on the client side.

Environment variable:
QUARKUS_DATASOURCE_REACTIVE_CACHE_PREPARED_STATEMENT
S

boolea
n

false

quarkus.datasource.reactive.url

The datasource URLs.

If multiple values are set, this datasource will create a pool with a list of servers instead
of a single server. The pool uses round-robin load balancing for server selection during
connection establishment. Note that certain drivers might not accommodate multiple
values in this context.

Environment variable: QUARKUS_DATASOURCE_REACTIVE_URL

list of
string

CHAPTER 1. CONFIGURE DATA SOURCES IN RED HAT BUILD OF QUARKUS

37

quarkus.datasource.reactive.max-size

The datasource pool maximum size.

Environment variable: QUARKUS_DATASOURCE_REACTIVE_MAX_SIZE

int 20

quarkus.datasource.reactive.event-loop-size

When a new connection object is created, the pool assigns it an event loop.

When #event-loop-size is set to a strictly positive value, the pool assigns as many
event loops as specified, in a round-robin fashion. By default, the number of event loops
configured or calculated by Quarkus is used. If #event-loop-size is set to zero or a
negative value, the pool assigns the current event loop to the new connection.

Environment variable:
QUARKUS_DATASOURCE_REACTIVE_EVENT_LOOP_SIZE

int

quarkus.datasource.reactive.trust-all

Whether all server certificates should be trusted.

Environment variable: QUARKUS_DATASOURCE_REACTIVE_TRUST_ALL

boolea
n

false

quarkus.datasource.reactive.trust-certificate-pem

PEM Trust config is disabled by default.

Environment variable:
QUARKUS_DATASOURCE_REACTIVE_TRUST_CERTIFICATE_PEM

boolea
n

false

quarkus.datasource.reactive.trust-certificate-pem.certs

Comma-separated list of the trust certificate files (Pem format).

Environment variable:
QUARKUS_DATASOURCE_REACTIVE_TRUST_CERTIFICATE_PEM_CERT
S

list of
string

quarkus.datasource.reactive.trust-certificate-jks

JKS config is disabled by default.

Environment variable:
QUARKUS_DATASOURCE_REACTIVE_TRUST_CERTIFICATE_JKS

boolea
n

false

quarkus.datasource.reactive.trust-certificate-jks.path

Path of the key file (JKS format).

Environment variable:
QUARKUS_DATASOURCE_REACTIVE_TRUST_CERTIFICATE_JKS_PATH

string

Red Hat build of Quarkus 3.15 Configure data sources

38

quarkus.datasource.reactive.trust-certificate-jks.password

Password of the key file.

Environment variable:
QUARKUS_DATASOURCE_REACTIVE_TRUST_CERTIFICATE_JKS_PASS
WORD

string

quarkus.datasource.reactive.trust-certificate-pfx

PFX config is disabled by default.

Environment variable:
QUARKUS_DATASOURCE_REACTIVE_TRUST_CERTIFICATE_PFX

boolea
n

false

quarkus.datasource.reactive.trust-certificate-pfx.path

Path to the key file (PFX format).

Environment variable:
QUARKUS_DATASOURCE_REACTIVE_TRUST_CERTIFICATE_PFX_PATH

string

quarkus.datasource.reactive.trust-certificate-pfx.password

Password of the key.

Environment variable:
QUARKUS_DATASOURCE_REACTIVE_TRUST_CERTIFICATE_PFX_PASS
WORD

string

quarkus.datasource.reactive.key-certificate-pem

PEM Key/cert config is disabled by default.

Environment variable:
QUARKUS_DATASOURCE_REACTIVE_KEY_CERTIFICATE_PEM

boolea
n

false

quarkus.datasource.reactive.key-certificate-pem.keys

Comma-separated list of the path to the key files (Pem format).

Environment variable:
QUARKUS_DATASOURCE_REACTIVE_KEY_CERTIFICATE_PEM_KEYS

list of
string

quarkus.datasource.reactive.key-certificate-pem.certs

Comma-separated list of the path to the certificate files (Pem format).

Environment variable:
QUARKUS_DATASOURCE_REACTIVE_KEY_CERTIFICATE_PEM_CERTS

list of
string

CHAPTER 1. CONFIGURE DATA SOURCES IN RED HAT BUILD OF QUARKUS

39

quarkus.datasource.reactive.key-certificate-jks

JKS config is disabled by default.

Environment variable:
QUARKUS_DATASOURCE_REACTIVE_KEY_CERTIFICATE_JKS

boolea
n

false

quarkus.datasource.reactive.key-certificate-jks.path

Path of the key file (JKS format).

Environment variable:
QUARKUS_DATASOURCE_REACTIVE_KEY_CERTIFICATE_JKS_PATH

string

quarkus.datasource.reactive.key-certificate-jks.password

Password of the key file.

Environment variable:
QUARKUS_DATASOURCE_REACTIVE_KEY_CERTIFICATE_JKS_PASSWO
RD

string

quarkus.datasource.reactive.key-certificate-pfx

PFX config is disabled by default.

Environment variable:
QUARKUS_DATASOURCE_REACTIVE_KEY_CERTIFICATE_PFX

boolea
n

false

quarkus.datasource.reactive.key-certificate-pfx.path

Path to the key file (PFX format).

Environment variable:
QUARKUS_DATASOURCE_REACTIVE_KEY_CERTIFICATE_PFX_PATH

string

quarkus.datasource.reactive.key-certificate-pfx.password

Password of the key.

Environment variable:
QUARKUS_DATASOURCE_REACTIVE_KEY_CERTIFICATE_PFX_PASSWO
RD

string

quarkus.datasource.reactive.reconnect-attempts

The number of reconnection attempts when a pooled connection cannot be established
on first try.

Environment variable:
QUARKUS_DATASOURCE_REACTIVE_RECONNECT_ATTEMPTS

int 0

Red Hat build of Quarkus 3.15 Configure data sources

40

quarkus.datasource.reactive.reconnect-interval

The interval between reconnection attempts when a pooled connection cannot be
established on first try.

Environment variable:
QUARKUS_DATASOURCE_REACTIVE_RECONNECT_INTERVAL

Duratio
n ℹ️
Duratio
n
format

PT1S

quarkus.datasource.reactive.hostname-verification-algorithm

The hostname verification algorithm to use in case the server’s identity should be
checked. Should be HTTPS, LDAPS or NONE. NONE is the default value and
disables the verification.

Environment variable:
QUARKUS_DATASOURCE_REACTIVE_HOSTNAME_VERIFICATION_ALG
ORITHM

string NONE

quarkus.datasource.reactive.idle-timeout

The maximum time a connection remains unused in the pool before it is closed.

Environment variable: QUARKUS_DATASOURCE_REACTIVE_IDLE_TIMEOUT

Duratio
n ℹ️
Duratio
n
format

no
timeo
ut

quarkus.datasource.reactive.max-lifetime

The maximum time a connection remains in the pool, after which it will be closed upon
return and replaced as necessary.

Environment variable: QUARKUS_DATASOURCE_REACTIVE_MAX_LIFETIME

Duratio
n ℹ️
Duratio
n
format

no
timeo
ut

quarkus.datasource.reactive.shared

Set to true to share the pool among datasources. There can be multiple shared pools
distinguished by name, when no specific name is set, the __vertx.DEFAULT name is
used.

Environment variable: QUARKUS_DATASOURCE_REACTIVE_SHARED

boolea
n

false

quarkus.datasource.reactive.name

Set the pool name, used when the pool is shared among datasources, otherwise
ignored.

Environment variable: QUARKUS_DATASOURCE_REACTIVE_NAME

string

CHAPTER 1. CONFIGURE DATA SOURCES IN RED HAT BUILD OF QUARKUS

41

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/time/Duration.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/time/Duration.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/time/Duration.html

quarkus.datasource.reactive.additional-properties."property-key"

Other unspecified properties to be passed through the Reactive SQL Client directly to
the database when new connections are initiated.

Environment variable:
QUARKUS_DATASOURCE_REACTIVE_ADDITIONAL_PROPERTIES__PRO
PERTY_KEY_

Map<St
ring,Str
ing>

Additional named datasources Type Defaul
t

� Fixed at build time quarkus.datasource."datasource-name".reactive

If we create a Reactive datasource for this datasource.

Environment variable:
QUARKUS_DATASOURCE__DATASOURCE_NAME__REACTIVE

boolea
n

true

quarkus.datasource."datasource-name".reactive.cache-prepared-
statements

Whether prepared statements should be cached on the client side.

Environment variable:
QUARKUS_DATASOURCE__DATASOURCE_NAME__REACTIVE_CACHE_
PREPARED_STATEMENTS

boolea
n

false

quarkus.datasource."datasource-name".reactive.url

The datasource URLs.

If multiple values are set, this datasource will create a pool with a list of servers instead
of a single server. The pool uses round-robin load balancing for server selection during
connection establishment. Note that certain drivers might not accommodate multiple
values in this context.

Environment variable:
QUARKUS_DATASOURCE__DATASOURCE_NAME__REACTIVE_URL

list of
string

quarkus.datasource."datasource-name".reactive.max-size

The datasource pool maximum size.

Environment variable:
QUARKUS_DATASOURCE__DATASOURCE_NAME__REACTIVE_MAX_SIZ
E

int 20

Red Hat build of Quarkus 3.15 Configure data sources

42

quarkus.datasource."datasource-name".reactive.event-loop-size

When a new connection object is created, the pool assigns it an event loop.

When #event-loop-size is set to a strictly positive value, the pool assigns as many
event loops as specified, in a round-robin fashion. By default, the number of event loops
configured or calculated by Quarkus is used. If #event-loop-size is set to zero or a
negative value, the pool assigns the current event loop to the new connection.

Environment variable:
QUARKUS_DATASOURCE__DATASOURCE_NAME__REACTIVE_EVENT_L
OOP_SIZE

int

quarkus.datasource."datasource-name".reactive.trust-all

Whether all server certificates should be trusted.

Environment variable:
QUARKUS_DATASOURCE__DATASOURCE_NAME__REACTIVE_TRUST_
ALL

boolea
n

false

quarkus.datasource."datasource-name".reactive.trust-certificate-pem

PEM Trust config is disabled by default.

Environment variable:
QUARKUS_DATASOURCE__DATASOURCE_NAME__REACTIVE_TRUST_
CERTIFICATE_PEM

boolea
n

false

quarkus.datasource."datasource-name".reactive.trust-certificate-
pem.certs

Comma-separated list of the trust certificate files (Pem format).

Environment variable:
QUARKUS_DATASOURCE__DATASOURCE_NAME__REACTIVE_TRUST_
CERTIFICATE_PEM_CERTS

list of
string

quarkus.datasource."datasource-name".reactive.trust-certificate-jks

JKS config is disabled by default.

Environment variable:
QUARKUS_DATASOURCE__DATASOURCE_NAME__REACTIVE_TRUST_
CERTIFICATE_JKS

boolea
n

false

quarkus.datasource."datasource-name".reactive.trust-certificate-jks.path

Path of the key file (JKS format).

Environment variable:
QUARKUS_DATASOURCE__DATASOURCE_NAME__REACTIVE_TRUST_
CERTIFICATE_JKS_PATH

string

CHAPTER 1. CONFIGURE DATA SOURCES IN RED HAT BUILD OF QUARKUS

43

quarkus.datasource."datasource-name".reactive.trust-certificate-
jks.password

Password of the key file.

Environment variable:
QUARKUS_DATASOURCE__DATASOURCE_NAME__REACTIVE_TRUST_
CERTIFICATE_JKS_PASSWORD

string

quarkus.datasource."datasource-name".reactive.trust-certificate-pfx

PFX config is disabled by default.

Environment variable:
QUARKUS_DATASOURCE__DATASOURCE_NAME__REACTIVE_TRUST_
CERTIFICATE_PFX

boolea
n

false

quarkus.datasource."datasource-name".reactive.trust-certificate-pfx.path

Path to the key file (PFX format).

Environment variable:
QUARKUS_DATASOURCE__DATASOURCE_NAME__REACTIVE_TRUST_
CERTIFICATE_PFX_PATH

string

quarkus.datasource."datasource-name".reactive.trust-certificate-
pfx.password

Password of the key.

Environment variable:
QUARKUS_DATASOURCE__DATASOURCE_NAME__REACTIVE_TRUST_
CERTIFICATE_PFX_PASSWORD

string

quarkus.datasource."datasource-name".reactive.key-certificate-pem

PEM Key/cert config is disabled by default.

Environment variable:
QUARKUS_DATASOURCE__DATASOURCE_NAME__REACTIVE_KEY_CE
RTIFICATE_PEM

boolea
n

false

quarkus.datasource."datasource-name".reactive.key-certificate-pem.keys

Comma-separated list of the path to the key files (Pem format).

Environment variable:
QUARKUS_DATASOURCE__DATASOURCE_NAME__REACTIVE_KEY_CE
RTIFICATE_PEM_KEYS

list of
string

Red Hat build of Quarkus 3.15 Configure data sources

44

quarkus.datasource."datasource-name".reactive.key-certificate-pem.certs

Comma-separated list of the path to the certificate files (Pem format).

Environment variable:
QUARKUS_DATASOURCE__DATASOURCE_NAME__REACTIVE_KEY_CE
RTIFICATE_PEM_CERTS

list of
string

quarkus.datasource."datasource-name".reactive.key-certificate-jks

JKS config is disabled by default.

Environment variable:
QUARKUS_DATASOURCE__DATASOURCE_NAME__REACTIVE_KEY_CE
RTIFICATE_JKS

boolea
n

false

quarkus.datasource."datasource-name".reactive.key-certificate-jks.path

Path of the key file (JKS format).

Environment variable:
QUARKUS_DATASOURCE__DATASOURCE_NAME__REACTIVE_KEY_CE
RTIFICATE_JKS_PATH

string

quarkus.datasource."datasource-name".reactive.key-certificate-
jks.password

Password of the key file.

Environment variable:
QUARKUS_DATASOURCE__DATASOURCE_NAME__REACTIVE_KEY_CE
RTIFICATE_JKS_PASSWORD

string

quarkus.datasource."datasource-name".reactive.key-certificate-pfx

PFX config is disabled by default.

Environment variable:
QUARKUS_DATASOURCE__DATASOURCE_NAME__REACTIVE_KEY_CE
RTIFICATE_PFX

boolea
n

false

quarkus.datasource."datasource-name".reactive.key-certificate-pfx.path

Path to the key file (PFX format).

Environment variable:
QUARKUS_DATASOURCE__DATASOURCE_NAME__REACTIVE_KEY_CE
RTIFICATE_PFX_PATH

string

CHAPTER 1. CONFIGURE DATA SOURCES IN RED HAT BUILD OF QUARKUS

45

quarkus.datasource."datasource-name".reactive.key-certificate-
pfx.password

Password of the key.

Environment variable:
QUARKUS_DATASOURCE__DATASOURCE_NAME__REACTIVE_KEY_CE
RTIFICATE_PFX_PASSWORD

string

quarkus.datasource."datasource-name".reactive.reconnect-attempts

The number of reconnection attempts when a pooled connection cannot be established
on first try.

Environment variable:
QUARKUS_DATASOURCE__DATASOURCE_NAME__REACTIVE_RECONN
ECT_ATTEMPTS

int 0

quarkus.datasource."datasource-name".reactive.reconnect-interval

The interval between reconnection attempts when a pooled connection cannot be
established on first try.

Environment variable:
QUARKUS_DATASOURCE__DATASOURCE_NAME__REACTIVE_RECONN
ECT_INTERVAL

Duratio
n ℹ️
Duratio
n
format

PT1S

quarkus.datasource."datasource-name".reactive.hostname-verification-
algorithm

The hostname verification algorithm to use in case the server’s identity should be
checked. Should be HTTPS, LDAPS or NONE. NONE is the default value and
disables the verification.

Environment variable:
QUARKUS_DATASOURCE__DATASOURCE_NAME__REACTIVE_HOSTNA
ME_VERIFICATION_ALGORITHM

string NONE

quarkus.datasource."datasource-name".reactive.idle-timeout

The maximum time a connection remains unused in the pool before it is closed.

Environment variable:
QUARKUS_DATASOURCE__DATASOURCE_NAME__REACTIVE_IDLE_TI
MEOUT

Duratio
n ℹ️
Duratio
n
format

no
timeo
ut

Red Hat build of Quarkus 3.15 Configure data sources

46

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/time/Duration.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/time/Duration.html

quarkus.datasource."datasource-name".reactive.max-lifetime

The maximum time a connection remains in the pool, after which it will be closed upon
return and replaced as necessary.

Environment variable:
QUARKUS_DATASOURCE__DATASOURCE_NAME__REACTIVE_MAX_LIF
ETIME

Duratio
n ℹ️
Duratio
n
format

no
timeo
ut

quarkus.datasource."datasource-name".reactive.shared

Set to true to share the pool among datasources. There can be multiple shared pools
distinguished by name, when no specific name is set, the __vertx.DEFAULT name is
used.

Environment variable:
QUARKUS_DATASOURCE__DATASOURCE_NAME__REACTIVE_SHARED

boolea
n

false

quarkus.datasource."datasource-name".reactive.name

Set the pool name, used when the pool is shared among datasources, otherwise
ignored.

Environment variable:
QUARKUS_DATASOURCE__DATASOURCE_NAME__REACTIVE_NAME

string

quarkus.datasource."datasource-name".reactive.additional-
properties."property-key"

Other unspecified properties to be passed through the Reactive SQL Client directly to
the database when new connections are initiated.

Environment variable:
QUARKUS_DATASOURCE__DATASOURCE_NAME__REACTIVE_ADDITIO
NAL_PROPERTIES__PROPERTY_KEY_

Map<St
ring,Str
ing>

ABOUT THE DURATION FORMAT

CHAPTER 1. CONFIGURE DATA SOURCES IN RED HAT BUILD OF QUARKUS

47

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/time/Duration.html

ABOUT THE DURATION FORMAT

To write duration values, use the standard java.time.Duration format. See the
Duration#parse() Java API documentation for more information.

You can also use a simplified format, starting with a number:

If the value is only a number, it represents time in seconds.

If the value is a number followed by ms, it represents time in milliseconds.

In other cases, the simplified format is translated to the java.time.Duration format for
parsing:

If the value is a number followed by h, m, or s, it is prefixed with PT.

If the value is a number followed by d, it is prefixed with P.

1.4.5.1. Reactive MariaDB/MySQL specific configuration

� Fixed at build time - Configuration property fixed at build time - All other configuration properties
are overridable at runtime

Configuration property Type Defaul
t

Additional named datasources Type Defaul
t

quarkus.datasource.reactive.mysql.charset

quarkus.datasource."datasource-name".reactive.mysql.charset

Charset for connections.

Environment variable:
QUARKUS_DATASOURCE_REACTIVE_MYSQL_CHARSET

string

quarkus.datasource.reactive.mysql.collation

quarkus.datasource."datasource-name".reactive.mysql.collation

Collation for connections.

Environment variable:
QUARKUS_DATASOURCE_REACTIVE_MYSQL_COLLATION

string

Red Hat build of Quarkus 3.15 Configure data sources

48

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/time/Duration.html#parse(java.lang.CharSequence)

quarkus.datasource.reactive.mysql.ssl-mode

quarkus.datasource."datasource-name".reactive.mysql.ssl-mode

Desired security state of the connection to the server.

See MySQL Reference Manual.

Environment variable:
QUARKUS_DATASOURCE_REACTIVE_MYSQL_SSL_MODE

disabl
ed,
prefer
red,
requir
ed,
verify-
ca,
verify-
identit
y

disabl
ed

quarkus.datasource.reactive.mysql.connection-timeout

quarkus.datasource."datasource-name".reactive.mysql.connection-
timeout

Connection timeout in seconds

Environment variable:
QUARKUS_DATASOURCE_REACTIVE_MYSQL_CONNECTION_TIMEOUT

int

quarkus.datasource.reactive.mysql.authentication-plugin

quarkus.datasource."datasource-name".reactive.mysql.authentication-
plugin

The authentication plugin the client should use. By default, it uses the plugin name
specified by the server in the initial handshake packet.

Environment variable:
QUARKUS_DATASOURCE_REACTIVE_MYSQL_AUTHENTICATION_PLUGI
N

defaul
t,
mysql
-clear-
passw
ord,
mysql
-
native
-
passw
ord,
sha25
6-
passw
ord,
cachi
ng-
sha2-
passw
ord

defaul
t

CHAPTER 1. CONFIGURE DATA SOURCES IN RED HAT BUILD OF QUARKUS

49

https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-mode

quarkus.datasource.reactive.mysql.pipelining-limit

quarkus.datasource."datasource-name".reactive.mysql.pipelining-limit

The maximum number of inflight database commands that can be pipelined. By default,
pipelining is disabled.

Environment variable:
QUARKUS_DATASOURCE_REACTIVE_MYSQL_PIPELINING_LIMIT

int

quarkus.datasource.reactive.mysql.use-affected-rows

quarkus.datasource."datasource-name".reactive.mysql.use-affected-rows

Whether to return the number of rows matched by the WHERE clause in UPDATE
statements, instead of the number of rows actually changed.

Environment variable:
QUARKUS_DATASOURCE_REACTIVE_MYSQL_USE_AFFECTED_ROWS

boolea
n

false

1.4.5.2. Reactive Microsoft SQL server-specific configuration

� Fixed at build time - Configuration property fixed at build time - All other configuration properties
are overridable at runtime

Configuration property Type Defaul
t

Datasources Type Defaul
t

quarkus.datasource.reactive.mssql.packet-size

quarkus.datasource."datasource-name".reactive.mssql.packet-size

The desired size (in bytes) for TDS packets.

Environment variable:
QUARKUS_DATASOURCE_REACTIVE_MSSQL_PACKET_SIZE

int

quarkus.datasource.reactive.mssql.ssl

quarkus.datasource."datasource-name".reactive.mssql.ssl

Whether SSL/TLS is enabled.

Environment variable: QUARKUS_DATASOURCE_REACTIVE_MSSQL_SSL

boolea
n

false

1.4.5.3. Reactive Oracle-specific configuration

� Fixed at build time - Configuration property fixed at build time - All other configuration properties

Red Hat build of Quarkus 3.15 Configure data sources

50

� Fixed at build time - Configuration property fixed at build time - All other configuration properties
are overridable at runtime

Configuration property Type Defaul
t

Datasources Type Defaul
t

1.4.5.4. Reactive PostgreSQL-specific configuration

� Fixed at build time - Configuration property fixed at build time - All other configuration properties
are overridable at runtime

Configuration property Type Defaul
t

Datasources Type Defaul
t

quarkus.datasource.reactive.postgresql.pipelining-limit

quarkus.datasource."datasource-name".reactive.postgresql.pipelining-
limit

The maximum number of inflight database commands that can be pipelined.

Environment variable:
QUARKUS_DATASOURCE_REACTIVE_POSTGRESQL_PIPELINING_LIMIT

int

quarkus.datasource.reactive.postgresql.ssl-mode

quarkus.datasource."datasource-name".reactive.postgresql.ssl-mode

SSL operating mode of the client.

See Protection Provided in Different Modes.

Environment variable:
QUARKUS_DATASOURCE_REACTIVE_POSTGRESQL_SSL_MODE

disabl
e,
allow,
prefer,
requir
e,
verify-
ca,
verify-
full

disabl
e

CHAPTER 1. CONFIGURE DATA SOURCES IN RED HAT BUILD OF QUARKUS

51

https://www.postgresql.org/docs/current/libpq-ssl.html#LIBPQ-SSL-PROTECTION

quarkus.datasource.reactive.postgresql.use-layer7-proxy

quarkus.datasource."datasource-name".reactive.postgresql.use-layer7-
proxy

Level 7 proxies can load balance queries on several connections to the actual database.
When it happens, the client can be confused by the lack of session affinity and
unwanted errors can happen like ERROR: unnamed prepared statement does not exist
(26000). See Using a level 7 proxy

Environment variable:
QUARKUS_DATASOURCE_REACTIVE_POSTGRESQL_USE_LAYER7_PR
OXY

boolea
n

false

1.4.6. Reactive datasource URL reference

1.4.6.1. DB2

db2://[user[:[password]]@]host[:port][/database][?<key1>=<value1>[&<key2>=<value2>]]

Example

db2://dbuser:secretpassword@database.server.com:50000/mydb

Currently, the client supports the following parameter keys:

host

port

user

password

database

NOTE

Configuring parameters in the connection URL overrides the default properties.

1.4.6.2. Microsoft SQL server

sqlserver://[user[:[password]]@]host[:port][/database][?<key1>=<value1>[&<key2>=<value2>]]

Example

sqlserver://dbuser:secretpassword@database.server.com:1433/mydb

Currently, the client supports the following parameter keys:

host

port

Red Hat build of Quarkus 3.15 Configure data sources

52

https://vertx.io/docs/vertx-pg-client/java/#_using_a_level_7_proxy

user

password

database

NOTE

Configuring parameters in the connection URL overrides the default properties.

1.4.6.3. MySQL / MariaDB

mysql://[user[:[password]]@]host[:port][/database][?<key1>=<value1>[&<key2>=<value2>]]

Example

mysql://dbuser:secretpassword@database.server.com:3211/mydb

Currently, the client supports the following parameter keys (case-insensitive):

host

port

user

password

schema

socket

useAffectedRows

NOTE

Configuring parameters in the connection URL overrides the default properties.

1.4.6.4. Oracle

1.4.6.4.1. EZConnect format

oracle:thin:@[[protocol:]//]host[:port][/service_name][:server_mode][/instance_name][?
connection properties]

Example

oracle:thin:@mydbhost1:5521/mydbservice?connect_timeout=10sec

1.4.6.4.2. TNS alias format

oracle:thin:@<alias_name>[?connection properties]

Example

oracle:thin:@prod_db?TNS_ADMIN=/work/tns/

CHAPTER 1. CONFIGURE DATA SOURCES IN RED HAT BUILD OF QUARKUS

53

1.4.6.5. PostgreSQL

postgresql://[user[:[password]]@]host[:port][/database][?<key1>=<value1>[&<key2>=<value2>]]

Example

postgresql://dbuser:secretpassword@database.server.com:5432/mydb

Currently, the client supports:

Following parameter keys:

host

port

user

password

dbname

sslmode

Additional properties, such as:

application_name

fallback_application_name

search_path

options

NOTE

Configuring parameters in the connection URL overrides the default properties.

Red Hat build of Quarkus 3.15 Configure data sources

54

	Table of Contents
	PROVIDING FEEDBACK ON RED HAT BUILD OF QUARKUS DOCUMENTATION
	CHAPTER 1. CONFIGURE DATA SOURCES IN RED HAT BUILD OF QUARKUS
	1.1. GET STARTED WITH CONFIGURING DATASOURCES IN QUARKUS
	1.1.1. Zero-config setup in development mode
	1.1.2. Configure a JDBC datasource
	1.1.2.1. JDBC connection pool size adjustment

	1.1.3. Configure a reactive datasource

	1.2. CONFIGURE DATASOURCES
	1.2.1. Configure a single datasource
	1.2.1.1. JDBC datasource
	1.2.1.2. Reactive datasource
	1.2.1.3. JDBC and reactive datasources simultaneously

	1.2.2. Configure multiple datasources
	1.2.2.1. Named datasource injection

	1.2.3. Activate or deactivate datasources
	1.2.4. Use multiple datasources in a single transaction

	1.3. DATASOURCE INTEGRATIONS
	1.3.1. Datasource health check
	1.3.2. Datasource metrics
	1.3.3. Datasource tracing
	1.3.4. Narayana transaction manager integration
	1.3.4.1. Named datasources

	1.3.5. Testing with in-memory databases
	1.3.5.1. Support and limitations

	1.4. REFERENCES
	1.4.1. Common datasource configuration reference
	1.4.2. JDBC configuration reference
	1.4.3. JDBC URL reference
	1.4.3.1. DB2
	1.4.3.2. Derby
	1.4.3.3. H2
	1.4.3.4. MariaDB
	1.4.3.5. Microsoft SQL server
	1.4.3.6. MySQL
	1.4.3.7. Oracle
	1.4.3.8. PostgreSQL

	1.4.4. Quarkus extensions and database drivers reference
	1.4.5. Reactive datasource configuration reference
	1.4.5.1. Reactive MariaDB/MySQL specific configuration
	1.4.5.2. Reactive Microsoft SQL server-specific configuration
	1.4.5.3. Reactive Oracle-specific configuration
	1.4.5.4. Reactive PostgreSQL-specific configuration

	1.4.6. Reactive datasource URL reference
	1.4.6.1. DB2
	1.4.6.2. Microsoft SQL server
	1.4.6.3. MySQL / MariaDB
	1.4.6.4. Oracle
	1.4.6.5. PostgreSQL

