Search

Chapter 13. PMML model execution

download PDF

You can import PMML files into your Red Hat Decision Manager project using Business Central (Menu Design Projects Import Asset) or package the PMML files as part of your project knowledge JAR (KJAR) file without Business Central. After you implement your PMML files in your Red Hat Decision Manager project, you can execute the PMML-based decision service by embedding PMML calls directly in your Java application or by sending an ApplyPmmlModelCommand command to a configured KIE Server.

For more information about including PMML assets with your project packaging and deployment method, see Packaging and deploying an Red Hat Decision Manager project.

Note

You can also include a PMML model as part of a Decision Model and Notation (DMN) service in Business Central. When you include a PMML model within a DMN file, you can invoke that PMML model as a boxed function expression for a DMN decision node or business knowledge model node. For more information about including PMML models in a DMN service, see Designing a decision service using DMN models.

13.1. Embedding a PMML trusty call directly in a Java application

A KIE container is local when the knowledge assets are either embedded directly into the calling program or are physically pulled in using Maven dependencies for the KJAR. You embed knowledge assets directly into a project if there is a tight relationship between the version of the code and the version of the PMML definition. Any changes to the decision take effect after you have intentionally updated and redeployed the application. A benefit of this approach is that proper operation does not rely on any external dependencies to the run time, which can be a limitation of locked-down environments.

Prerequisites

Procedure

  1. In your client application, add the following dependencies to the relevant classpath of your Java project:

    <!-- Required for the PMML compiler -->
    <dependency>
      <groupId>org.drools</groupId>
      <artifactId>kie-pmml-dependencies</artifactId>
      <version>${rhpam.version}</version>
    </dependency>
    
    <!-- Required for the KIE public API -->
    <dependency>
      <groupId>org.kie</groupId>
      <artifactId>kie-api</artifactId>
      <version>${rhpam.version}</version>
    </dependencies>
    
    <!-- Required if not using classpath KIE container -->
    <dependency>
      <groupId>org.kie</groupId>
      <artifactId>kie-ci</artifactId>
      <version>${rhpam.version}</version>
    </dependency>

    The <version> is the Maven artifact version for Red Hat Decision Manager currently used in your project (for example, 7.67.0.Final-redhat-00024).

    Note

    Instead of specifying a Red Hat Decision Manager <version> for individual dependencies, consider adding the Red Hat Business Automation bill of materials (BOM) dependency to your project pom.xml file. The Red Hat Business Automation BOM applies to both Red Hat Decision Manager and Red Hat Process Automation Manager. When you add the BOM files, the correct versions of transitive dependencies from the provided Maven repositories are included in the project.

    Example BOM dependency:

    <dependency>
      <groupId>com.redhat.ba</groupId>
      <artifactId>ba-platform-bom</artifactId>
      <version>7.13.5.redhat-00002</version>
      <scope>import</scope>
      <type>pom</type>
    </dependency>

    For more information about the Red Hat Business Automation BOM, see What is the mapping between RHDM product and maven library version?.

  2. Create a KIE container from classpath or ReleaseId:

    KieServices kieServices = KieServices.Factory.get();
    
    ReleaseId releaseId = kieServices.newReleaseId( "org.acme", "my-kjar", "1.0.0" );
    KieContainer kieContainer = kieServices.newKieContainer( releaseId );

    Alternative option:

    KieServices kieServices = KieServices.Factory.get();
    
    KieContainer kieContainer = kieServices.getKieClasspathContainer();
  3. Create an instance of the PMMLRuntime that is used to execute the model:

    PMMLRuntime pmmlRuntime = KieRuntimeFactory.of(kieContainer.getKieBase()).get(PMMLRuntime.class);
  4. Create an instance of the PMMLRequestData class that applies your PMML model to a data set:

    PMMLRequestData pmmlRequestData = new PMMLRequestData({correlation_id}, {model_name});
    pmmlRequestData.addRequestParam({parameter_name}, {parameter_value})
    ...
  5. Create an instance of the PMMLContext class that contains the input data:

    PMMLContext pmmlContext = new PMMLContextImpl(pmmlRequestData);
  6. Retrieve the PMML4Result while executing the PMML model with the required PMML class instances that you created:

    PMML4Result pmml4Result = pmmlRuntime.evaluate({model_name}, pmmlContext);

13.2. Embedding a PMML legacy call directly in a Java application

A KIE container is local when the knowledge assets are either embedded directly into the calling program or are physically pulled in using Maven dependencies for the KJAR. You embed knowledge assets directly into a project if there is a tight relationship between the version of the code and the version of the PMML definition. Any changes to the decision take effect after you have intentionally updated and redeployed the application. A benefit of this approach is that proper operation does not rely on any external dependencies to the run time, which can be a limitation of locked-down environments.

Using Maven dependencies enables further flexibility because the specific version of the decision can dynamically change (for example, by using a system property), and it can be periodically scanned for updates and automatically updated. This introduces an external dependency on the deploy time of the service, but executes the decision locally, reducing reliance on an external service being available during run time.

Prerequisites

Procedure

  1. In your client application, add the following dependencies to the relevant classpath of your Java project:

    <!-- Required for the PMML compiler -->
    <dependency>
      <groupId>org.drools</groupId>
      <artifactId>kie-pmml</artifactId>
      <version>${rhpam.version}</version>
    </dependency>
    
    <!-- Required for the KIE public API -->
    <dependency>
      <groupId>org.kie</groupId>
      <artifactId>kie-api</artifactId>
      <version>${rhpam.version}</version>
    </dependencies>
    
    <!-- Required if not using classpath KIE container -->
    <dependency>
      <groupId>org.kie</groupId>
      <artifactId>kie-ci</artifactId>
      <version>${rhpam.version}</version>
    </dependency>

    The <version> is the Maven artifact version for Red Hat Decision Manager currently used in your project (for example, 7.67.0.Final-redhat-00024).

    Note

    Instead of specifying a Red Hat Decision Manager <version> for individual dependencies, consider adding the Red Hat Business Automation bill of materials (BOM) dependency to your project pom.xml file. The Red Hat Business Automation BOM applies to both Red Hat Decision Manager and Red Hat Process Automation Manager. When you add the BOM files, the correct versions of transitive dependencies from the provided Maven repositories are included in the project.

    Example BOM dependency:

    <dependency>
      <groupId>com.redhat.ba</groupId>
      <artifactId>ba-platform-bom</artifactId>
      <version>7.13.5.redhat-00002</version>
      <scope>import</scope>
      <type>pom</type>
    </dependency>

    For more information about the Red Hat Business Automation BOM, see What is the mapping between RHDM product and maven library version?.

    Important

    To use the legacy implementation, ensure that the kie-pmml-implementation system property is set as legacy.

  2. Create a KIE container from classpath or ReleaseId:

    KieServices kieServices = KieServices.Factory.get();
    
    ReleaseId releaseId = kieServices.newReleaseId( "org.acme", "my-kjar", "1.0.0" );
    KieContainer kieContainer = kieServices.newKieContainer( releaseId );

    Alternative option:

    KieServices kieServices = KieServices.Factory.get();
    
    KieContainer kieContainer = kieServices.getKieClasspathContainer();
  3. Create an instance of the PMMLRequestData class, which applies your PMML model to a set of data:

    public class PMMLRequestData {
        private String correlationId; 1
        private String modelName; 2
        private String source; 3
        private List<ParameterInfo<?>> requestParams; 4
        ...
    }
    1
    Identifies data that is associated with a particular request or result
    2
    The name of the model that should be applied to the request data
    3
    Used by internally generated PMMLRequestData objects to identify the segment that generated the request
    4
    The default mechanism for sending input data points
  4. Create an instance of the PMML4Result class, which holds the output information that is the result of applying the PMML-based rules to the input data:

    public class PMML4Result {
        private String correlationId;
        private String segmentationId; 1
        private String segmentId; 2
        private int segmentIndex; 3
        private String resultCode; 4
        private Map<String, Object> resultVariables; 5
        ...
    }
    1
    Used when the model type is MiningModel. The segmentationId is used to differentiate between multiple segmentations.
    2
    Used in conjunction with the segmentationId to identify which segment generated the results.
    3
    Used to maintain the order of segments.
    4
    Used to determine whether the model was successfully applied, where OK indicates success.
    5
    Contains the name of a resultant variable and its associated value.

    In addition to the normal getter methods, the PMML4Result class also supports the following methods for directly retrieving the values for result variables:

    public <T> Optional<T> getResultValue(String objName, String objField, Class<T> clazz, Object...params)
    
    public Object getResultValue(String objName, String objField, Object...params)
  5. Create an instance of the ParameterInfo class, which serves as a wrapper for basic data type objects used as part of the PMMLRequestData class:

    public class ParameterInfo<T> { 1
        private String correlationId;
        private String name; 2
        private String capitalizedName;
        private Class<T> type; 3
        private T value; 4
        ...
    }
    1
    The parameterized class to handle many different types
    2
    The name of the variable that is expected as input for the model
    3
    The class that is the actual type of the variable
    4
    The actual value of the variable
  6. Execute the PMML model based on the required PMML class instances that you have created:

    public void executeModel(KieBase kbase,
                             Map<String,Object> variables,
                             String modelName,
                             String correlationId,
                             String modelPkgName) {
        RuleUnitExecutor executor = RuleUnitExecutor.create().bind(kbase);
        PMMLRequestData request = new PMMLRequestData(correlationId, modelName);
        PMML4Result resultHolder = new PMML4Result(correlationId);
        variables.entrySet().forEach( es -> {
            request.addRequestParam(es.getKey(), es.getValue());
        });
    
        DataSource<PMMLRequestData> requestData = executor.newDataSource("request");
        DataSource<PMML4Result> resultData = executor.newDataSource("results");
        DataSource<PMMLData> internalData = executor.newDataSource("pmmlData");
    
        requestData.insert(request);
        resultData.insert(resultHolder);
    
        List<String> possiblePackageNames = calculatePossiblePackageNames(modelName,
                                                                        modelPkgName);
        Class<? extends RuleUnit> ruleUnitClass = getStartingRuleUnit("RuleUnitIndicator",
                                                                    (InternalKnowledgeBase)kbase,
                                                                    possiblePackageNames);
    
        if (ruleUnitClass != null) {
            executor.run(ruleUnitClass);
            if ( "OK".equals(resultHolder.getResultCode()) ) {
              // extract result variables here
            }
        }
    }
    
    protected Class<? extends RuleUnit> getStartingRuleUnit(String startingRule, InternalKnowledgeBase ikb, List<String> possiblePackages) {
        RuleUnitRegistry unitRegistry = ikb.getRuleUnitRegistry();
        Map<String,InternalKnowledgePackage> pkgs = ikb.getPackagesMap();
        RuleImpl ruleImpl = null;
        for (String pkgName: possiblePackages) {
          if (pkgs.containsKey(pkgName)) {
              InternalKnowledgePackage pkg = pkgs.get(pkgName);
              ruleImpl = pkg.getRule(startingRule);
              if (ruleImpl != null) {
                  RuleUnitDescr descr = unitRegistry.getRuleUnitFor(ruleImpl).orElse(null);
                  if (descr != null) {
                      return descr.getRuleUnitClass();
                  }
              }
          }
        }
        return null;
    }
    
    protected List<String> calculatePossiblePackageNames(String modelId, String...knownPackageNames) {
        List<String> packageNames = new ArrayList<>();
        String javaModelId = modelId.replaceAll("\\s","");
        if (knownPackageNames != null && knownPackageNames.length > 0) {
            for (String knownPkgName: knownPackageNames) {
                packageNames.add(knownPkgName + "." + javaModelId);
            }
        }
        String basePkgName = PMML4UnitImpl.DEFAULT_ROOT_PACKAGE+"."+javaModelId;
        packageNames.add(basePkgName);
        return packageNames;
    }

    Rules are executed by the RuleUnitExecutor class. The RuleUnitExecutor class creates KIE sessions and adds the required DataSource objects to those sessions, and then executes the rules based on the RuleUnit that is passed as a parameter to the run() method. The calculatePossiblePackageNames and the getStartingRuleUnit methods determine the fully qualified name of the RuleUnit class that is passed to the run() method.

To facilitate your PMML model execution, you can also use a PMML4ExecutionHelper class supported in Red Hat Decision Manager. For more information about the PMML helper class, see Section 13.2.1, “PMML execution helper class”.

13.2.1. PMML execution helper class

Red Hat Decision Manager provides a PMML4ExecutionHelper class that helps create the PMMLRequestData class required for PMML model execution and that helps execute rules using the RuleUnitExecutor class.

The following are examples of a PMML model execution without and with the PMML4ExecutionHelper class, as a comparison:

Example PMML model execution without using PMML4ExecutionHelper

public void executeModel(KieBase kbase,
                         Map<String,Object> variables,
                         String modelName,
                         String correlationId,
                         String modelPkgName) {
    RuleUnitExecutor executor = RuleUnitExecutor.create().bind(kbase);
    PMMLRequestData request = new PMMLRequestData(correlationId, modelName);
    PMML4Result resultHolder = new PMML4Result(correlationId);
    variables.entrySet().forEach( es -> {
        request.addRequestParam(es.getKey(), es.getValue());
    });

    DataSource<PMMLRequestData> requestData = executor.newDataSource("request");
    DataSource<PMML4Result> resultData = executor.newDataSource("results");
    DataSource<PMMLData> internalData = executor.newDataSource("pmmlData");

    requestData.insert(request);
    resultData.insert(resultHolder);

    List<String> possiblePackageNames = calculatePossiblePackageNames(modelName,
                                                                    modelPkgName);
    Class<? extends RuleUnit> ruleUnitClass = getStartingRuleUnit("RuleUnitIndicator",
                                                                (InternalKnowledgeBase)kbase,
                                                                possiblePackageNames);

    if (ruleUnitClass != null) {
        executor.run(ruleUnitClass);
        if ( "OK".equals(resultHolder.getResultCode()) ) {
          // extract result variables here
        }
    }
}

protected Class<? extends RuleUnit> getStartingRuleUnit(String startingRule, InternalKnowledgeBase ikb, List<String> possiblePackages) {
    RuleUnitRegistry unitRegistry = ikb.getRuleUnitRegistry();
    Map<String,InternalKnowledgePackage> pkgs = ikb.getPackagesMap();
    RuleImpl ruleImpl = null;
    for (String pkgName: possiblePackages) {
      if (pkgs.containsKey(pkgName)) {
          InternalKnowledgePackage pkg = pkgs.get(pkgName);
          ruleImpl = pkg.getRule(startingRule);
          if (ruleImpl != null) {
              RuleUnitDescr descr = unitRegistry.getRuleUnitFor(ruleImpl).orElse(null);
              if (descr != null) {
                  return descr.getRuleUnitClass();
              }
          }
      }
    }
    return null;
}

protected List<String> calculatePossiblePackageNames(String modelId, String...knownPackageNames) {
    List<String> packageNames = new ArrayList<>();
    String javaModelId = modelId.replaceAll("\\s","");
    if (knownPackageNames != null && knownPackageNames.length > 0) {
        for (String knownPkgName: knownPackageNames) {
            packageNames.add(knownPkgName + "." + javaModelId);
        }
    }
    String basePkgName = PMML4UnitImpl.DEFAULT_ROOT_PACKAGE+"."+javaModelId;
    packageNames.add(basePkgName);
    return packageNames;
}

Example PMML model execution using PMML4ExecutionHelper

public void executeModel(KieBase kbase,
                         Map<String,Object> variables,
                         String modelName,
                         String modelPkgName,
                         String correlationId) {
   PMML4ExecutionHelper helper = PMML4ExecutionHelperFactory.getExecutionHelper(modelName, kbase);
   helper.addPossiblePackageName(modelPkgName);

   PMMLRequestData request = new PMMLRequestData(correlationId, modelName);
   variables.entrySet().forEach(entry -> {
     request.addRequestParam(entry.getKey(), entry.getValue);
   });

   PMML4Result resultHolder = helper.submitRequest(request);
   if ("OK".equals(resultHolder.getResultCode)) {
     // extract result variables here
   }
}

When you use the PMML4ExecutionHelper, you do not need to specify the possible package names nor the RuleUnit class as you would in a typical PMML model execution.

To construct a PMML4ExecutionHelper class, you use the PMML4ExecutionHelperFactory class to determine how instances of PMML4ExecutionHelper are retrieved.

The following are the available PMML4ExecutionHelperFactory class methods for constructing a PMML4ExecutionHelper class:

PMML4ExecutionHelperFactory methods for PMML assets in a KIE base

Use these methods when PMML assets have already been compiled and are being used from an existing KIE base:

public static PMML4ExecutionHelper getExecutionHelper(String modelName, KieBase kbase)

public static PMML4ExecutionHelper getExecutionHelper(String modelName, KieBase kbase, boolean includeMiningDataSources)
PMML4ExecutionHelperFactory methods for PMML assets on the project classpath

Use these methods when PMML assets are on the project classpath. The classPath argument is the project classpath location of the PMML file:

public static PMML4ExecutionHelper getExecutionHelper(String modelName,  String classPath, KieBaseConfiguration kieBaseConf)

public static PMML4ExecutionHelper getExecutionHelper(String modelName,String classPath, KieBaseConfiguration kieBaseConf, boolean includeMiningDataSources)
PMML4ExecutionHelperFactory methods for PMML assets in a byte array

Use these methods when PMML assets are in the form of a byte array:

public static PMML4ExecutionHelper getExecutionHelper(String modelName, byte[] content, KieBaseConfiguration kieBaseConf)

public static PMML4ExecutionHelper getExecutionHelper(String modelName, byte[] content, KieBaseConfiguration kieBaseConf, boolean includeMiningDataSources)
PMML4ExecutionHelperFactory methods for PMML assets in a Resource

Use these methods when PMML assets are in the form of an org.kie.api.io.Resource object:

public static PMML4ExecutionHelper getExecutionHelper(String modelName, Resource resource, KieBaseConfiguration kieBaseConf)

public static PMML4ExecutionHelper getExecutionHelper(String modelName, Resource resource, KieBaseConfiguration kieBaseConf, boolean includeMiningDataSources)
Note

The classpath, byte array, and resource PMML4ExecutionHelperFactory methods create a KIE container for the generated rules and Java classes. The container is used as the source of the KIE base that the RuleUnitExecutor uses. The container is not persisted. The PMML4ExecutionHelperFactory method for PMML assets that are already in a KIE base does not create a KIE container in this way.

13.3. Executing a PMML model using KIE Server

You can execute PMML models that have been deployed to KIE Server by sending the ApplyPmmlModelCommand command to the configured KIE Server. When you use this command, a PMMLRequestData object is sent to KIE Server and a PMML4Result result object is received as a reply. You can send PMML requests to KIE Server through the KIE Server REST API from a configured Java class or directly from a REST client.

Prerequisites

Procedure

  1. In your client application, add the following dependencies to the relevant classpath of your Java project:

    Example of legacy implementation

    <!-- Required for the PMML compiler -->
    <dependency>
      <groupId>org.drools</groupId>
      <artifactId>kie-pmml</artifactId>
      <version>${rhpam.version}</version>
    </dependency>
    
    <!-- Required for the KIE public API -->
    <dependency>
      <groupId>org.kie</groupId>
      <artifactId>kie-api</artifactId>
      <version>${rhpam.version}</version>
    </dependencies>
    
    <!-- Required for the KIE Server Java client API -->
    <dependency>
      <groupId>org.kie.server</groupId>
      <artifactId>kie-server-client</artifactId>
      <version>${rhpam.version}</version>
    </dependency>
    
    <!-- Required if not using classpath KIE container -->
    <dependency>
      <groupId>org.kie</groupId>
      <artifactId>kie-ci</artifactId>
      <version>${rhpam.version}</version>
    </dependency>

    Important

    To use the legacy implementation, ensure that the kie-pmml-implementation system property is set as legacy.

    Example of trusty implementation

    <!-- Required for the PMML compiler -->
    <dependency>
      <groupId>org.drools</groupId>
      <artifactId>kie-pmml-dependencies</artifactId>
      <version>${rhpam.version}</version>
    </dependency>
    
    <!-- Required for the KIE public API -->
    <dependency>
      <groupId>org.kie</groupId>
      <artifactId>kie-api</artifactId>
      <version>${rhpam.version}</version>
    </dependencies>
    
    <!-- Required for the KIE Server Java client API -->
    <dependency>
      <groupId>org.kie.server</groupId>
      <artifactId>kie-server-client</artifactId>
      <version>${rhpam.version}</version>
    </dependency>
    
    <!-- Required if not using classpath KIE container -->
    <dependency>
      <groupId>org.kie</groupId>
      <artifactId>kie-ci</artifactId>
      <version>${rhpam.version}</version>
    </dependency>

    The <version> is the Maven artifact version for Red Hat Decision Manager currently used in your project (for example, 7.67.0.Final-redhat-00024).

    Note

    Instead of specifying a Red Hat Decision Manager <version> for individual dependencies, consider adding the Red Hat Business Automation bill of materials (BOM) dependency to your project pom.xml file. The Red Hat Business Automation BOM applies to both Red Hat Decision Manager and Red Hat Process Automation Manager. When you add the BOM files, the correct versions of transitive dependencies from the provided Maven repositories are included in the project.

    Example BOM dependency:

    <dependency>
      <groupId>com.redhat.ba</groupId>
      <artifactId>ba-platform-bom</artifactId>
      <version>7.13.5.redhat-00002</version>
      <scope>import</scope>
      <type>pom</type>
    </dependency>

    For more information about the Red Hat Business Automation BOM, see What is the mapping between RHDM product and maven library version?.

  2. Create a KIE container from classpath or ReleaseId:

    KieServices kieServices = KieServices.Factory.get();
    
    ReleaseId releaseId = kieServices.newReleaseId( "org.acme", "my-kjar", "1.0.0" );
    KieContainer kieContainer = kieServices.newKieContainer( releaseId );

    Alternative option:

    KieServices kieServices = KieServices.Factory.get();
    
    KieContainer kieContainer = kieServices.getKieClasspathContainer();
  3. Create a class for sending requests to KIE Server and receiving responses:

    public class ApplyScorecardModel {
      private static final ReleaseId releaseId =
              new ReleaseId("org.acme","my-kjar","1.0.0");
      private static final String containerId = "SampleModelContainer";
      private static KieCommands commandFactory;
      private static ClassLoader kjarClassLoader; 1
      private RuleServicesClient serviceClient; 2
    
      // Attributes specific to your class instance
      private String rankedFirstCode;
      private Double score;
    
      // Initialization of non-final static attributes
      static {
        commandFactory = KieServices.Factory.get().getCommands();
    
        // Specifications for kjarClassLoader, if used
        KieMavenRepository kmp = KieMavenRepository.getMavenRepository();
        File artifactFile = kmp.resolveArtifact(releaseId).getFile();
        if (artifactFile != null) {
          URL urls[] = new URL[1];
          try {
            urls[0] = artifactFile.toURI().toURL();
            classLoader = new KieURLClassLoader(urls,PMML4Result.class.getClassLoader());
          } catch (MalformedURLException e) {
            logger.error("Error getting classLoader for "+containerId);
            logger.error(e.getMessage());
          }
        } else {
          logger.warn("Did not find the artifact file for "+releaseId.toString());
        }
      }
    
      public ApplyScorecardModel(KieServicesConfiguration kieConfig) {
        KieServicesClient clientFactory = KieServicesFactory.newKieServicesClient(kieConfig);
        serviceClient = clientFactory.getServicesClient(RuleServicesClient.class);
      }
      ...
      // Getters and setters
      ...
    
      // Method for executing the PMML model on KIE Server
      public void applyModel(String occupation, int age) {
        PMMLRequestData input = new PMMLRequestData("1234","SampleModelName"); 3
        input.addRequestParam(new ParameterInfo("1234","occupation",String.class,occupation));
        input.addRequestParam(new ParameterInfo("1234","age",Integer.class,age));
    
        CommandFactoryServiceImpl cf = (CommandFactoryServiceImpl)commandFactory;
        ApplyPmmlModelCommand command = (ApplyPmmlModelCommand) cf.newApplyPmmlModel(request); 4
    
        ServiceResponse<ExecutionResults> results =
            ruleClient.executeCommandsWithResults(CONTAINER_ID, command); 5
    
        if (results != null) {  6
          PMML4Result resultHolder = (PMML4Result)results.getResult().getValue("results");
          if (resultHolder != null && "OK".equals(resultHolder.getResultCode())) {
            this.score = resultHolder.getResultValue("ScoreCard","score",Double.class).get();
            Map<String,Object> rankingMap =
                 (Map<String,Object>)resultHolder.getResultValue("ScoreCard","ranking");
            if (rankingMap != null && !rankingMap.isEmpty()) {
              this.rankedFirstCode = rankingMap.keySet().iterator().next();
            }
          }
        }
      }
    }
    1
    Defines the class loader if you did not include the KJAR in your client project dependencies
    2
    Identifies the service client as defined in the configuration settings, including KIE Server REST API access credentials
    3
    Initializes a PMMLRequestData object
    4
    Creates an instance of the ApplyPmmlModelCommand
    5
    Sends the command using the service client
    6
    Retrieves the results of the executed PMML model
  4. Execute the class instance to send the PMML invocation request to KIE Server.

    Alternatively, you can use JMS and REST interfaces to send the ApplyPmmlModelCommand command to KIE Server. For REST requests, you use the ApplyPmmlModelCommand command as a POST request to http://SERVER:PORT/kie-server/services/rest/server/containers/instances/{containerId} in JSON, JAXB, or XStream request format.

    Example POST endpoint

    http://localhost:8080/kie-server/services/rest/server/containers/instances/SampleModelContainer

    Example JSON request body

    {
      "commands": [ {
          "apply-pmml-model-command": {
            "outIdentifier": null,
            "packageName": null,
            "hasMining": false,
            "requestData": {
              "correlationId": "123",
              "modelName": "SimpleScorecard",
              "source": null,
              "requestParams": [
                {
                  "correlationId": "123",
                  "name": "param1",
                  "type": "java.lang.Double",
                  "value": "10.0"
                },
                {
                  "correlationId": "123",
                  "name": "param2",
                  "type": "java.lang.Double",
                  "value": "15.0"
                }
              ]
            }
          }
        }
      ]
    }

    Example curl request with endpoint and body

    curl -X POST "http://localhost:8080/kie-server/services/rest/server/containers/instances/SampleModelContainer" -H "accept: application/json" -H "content-type: application/json" -d "{ \"commands\": [ { \"apply-pmml-model-command\": { \"outIdentifier\": null, \"packageName\": null, \"hasMining\": false, \"requestData\": { \"correlationId\": \"123\", \"modelName\": \"SimpleScorecard\", \"source\": null, \"requestParams\": [ { \"correlationId\": \"123\", \"name\": \"param1\", \"type\": \"java.lang.Double\", \"value\": \"10.0\" }, { \"correlationId\": \"123\", \"name\": \"param2\", \"type\": \"java.lang.Double\", \"value\": \"15.0\" } ] } } } ]}"

    Example JSON response

    {
      "results" : [ {
        "value" : {"org.kie.api.pmml.DoubleFieldOutput":{
      "value" : 40.8,
      "correlationId" : "123",
      "segmentationId" : null,
      "segmentId" : null,
      "name" : "OverallScore",
      "displayValue" : "OverallScore",
      "weight" : 1.0
    }},
        "key" : "OverallScore"
      }, {
        "value" : {"org.kie.api.pmml.PMML4Result":{
      "resultVariables" : {
        "OverallScore" : {
          "value" : 40.8,
          "correlationId" : "123",
          "segmentationId" : null,
          "segmentId" : null,
          "name" : "OverallScore",
          "displayValue" : "OverallScore",
          "weight" : 1.0
        },
        "ScoreCard" : {
          "modelName" : "SimpleScorecard",
          "score" : 40.8,
          "holder" : {
            "modelName" : "SimpleScorecard",
            "correlationId" : "123",
            "voverallScore" : null,
            "moverallScore" : true,
            "vparam1" : 10.0,
            "mparam1" : false,
            "vparam2" : 15.0,
            "mparam2" : false
          },
          "enableRC" : true,
          "pointsBelow" : true,
          "ranking" : {
            "reasonCh1" : 5.0,
            "reasonCh2" : -6.0
          }
        }
      },
      "correlationId" : "123",
      "segmentationId" : null,
      "segmentId" : null,
      "segmentIndex" : 0,
      "resultCode" : "OK",
      "resultObjectName" : null
    }},
        "key" : "results"
      } ],
      "facts" : [ ]
    }

Red Hat logoGithubRedditYoutubeTwitter

Learn

Try, buy, & sell

Communities

About Red Hat Documentation

We help Red Hat users innovate and achieve their goals with our products and services with content they can trust.

Making open source more inclusive

Red Hat is committed to replacing problematic language in our code, documentation, and web properties. For more details, see the Red Hat Blog.

About Red Hat

We deliver hardened solutions that make it easier for enterprises to work across platforms and environments, from the core datacenter to the network edge.

© 2024 Red Hat, Inc.