
Red Hat Developer Hub 1.5

Configuring dynamic plugins

Configuring dynamic plugins in Red Hat Developer Hub

Last Updated: 2025-07-15

Red Hat Developer Hub 1.5 Configuring dynamic plugins

Configuring dynamic plugins in Red Hat Developer Hub

Legal Notice

Copyright © 2025 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

As a platform engineer, you can configure dynamic plugins in RHDH to access your development
infrastructure or software development tools.

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. INSTALLING ANSIBLE PLUG-INS FOR RED HAT DEVELOPER HUB

CHAPTER 2. ENABLING THE ARGO CD PLUGIN
2.1. ENABLING ARGO CD ROLLOUTS

CHAPTER 3. INSTALLING AND CONFIGURING THE JFROG ARTIFACTORY PLUGIN
3.1. INSTALLATION
3.2. CONFIGURATION

CHAPTER 4. INSTALLING AND CONFIGURING KEYCLOAK
4.1. INSTALLATION
4.2. BASIC CONFIGURATION
4.3. ADVANCED CONFIGURATION
4.4. LIMITATIONS

CHAPTER 5. INSTALLING AND CONFIGURING THE NEXUS REPOSITORY MANAGER PLUGIN
5.1. INSTALLATION
5.2. CONFIGURATION

CHAPTER 6. INSTALLING AND CONFIGURING THE TEKTON PLUGIN
6.1. INSTALLATION

CHAPTER 7. INSTALLING THE TOPOLOGY PLUGIN
7.1. INSTALLATION
7.2. CONFIGURING THE TOPOLOGY PLUGIN

7.2.1. Viewing OpenShift routes
7.2.2. Viewing pod logs
7.2.3. Viewing Tekton PipelineRuns
7.2.4. Viewing virtual machines
7.2.5. Enabling the source code editor

7.3. MANAGING LABELS AND ANNOTATIONS FOR TOPOLOGY PLUGINS
7.3.1. Linking to the source code editor or the source
7.3.2. Entity annotation/label
7.3.3. Namespace annotation
7.3.4. Label selector query annotation
7.3.5. Icon displayed in the node
7.3.6. App grouping
7.3.7. Node connector

CHAPTER 8. BULK IMPORTING GITHUB REPOSITORIES
8.1. ENABLING AND GIVING ACCESS TO THE BULK IMPORT FEATURE
8.2. IMPORTING MULTIPLE GITHUB REPOSITORIES
8.3. MANAGING THE ADDED REPOSITORIES
8.4. UNDERSTANDING THE BULK IMPORT AUDIT LOGS

CHAPTER 9. SERVICENOW CUSTOM ACTIONS IN RED HAT DEVELOPER HUB
9.1. ENABLING SERVICENOW CUSTOM ACTIONS PLUGIN IN RED HAT DEVELOPER HUB
9.2. SUPPORTED SERVICENOW CUSTOM ACTIONS IN RED HAT DEVELOPER HUB

9.2.1. ServiceNow custom actions

CHAPTER 10. KUBERNETES CUSTOM ACTIONS IN RED HAT DEVELOPER HUB
10.1. ENABLING KUBERNETES CUSTOM ACTIONS PLUGIN IN RED HAT DEVELOPER HUB
10.2. USING KUBERNETES CUSTOM ACTIONS PLUGIN IN RED HAT DEVELOPER HUB
10.3. CREATING A TEMPLATE USING KUBERNETES CUSTOM ACTIONS IN RED HAT DEVELOPER HUB

4

5
6

9
9
9

11
11
11
11

13

14
14
14

16
16

19
19
19
19

20
20
21
22
22
22
23
23
24
24
25
25

27
27
28
29
30

32
32
33
33

40
40
41
41

Table of Contents

1

. .

10.3.1. Supported Kubernetes custom actions in Red Hat Developer Hub

CHAPTER 11. OVERRIDING CORE BACKEND SERVICE CONFIGURATION
11.1. OVERRIDING ENVIRONMENT VARIABLES

43

44
44

Red Hat Developer Hub 1.5 Configuring dynamic plugins

2

Table of Contents

3

CHAPTER 1. INSTALLING ANSIBLE PLUG-INS FOR RED HAT
DEVELOPER HUB

Ansible plug-ins for Red Hat Developer Hub deliver an Ansible-specific portal experience with curated
learning paths, push-button content creation, integrated development tools, and other opinionated
resources.

To install and configure the Ansible plugins, see Installing Ansible plug-ins for Red Hat Developer Hub .

Red Hat Developer Hub 1.5 Configuring dynamic plugins

4

https://docs.redhat.com/en/documentation/red_hat_ansible_automation_platform/2.5/html/installing_ansible_plug-ins_for_red_hat_developer_hub/index

CHAPTER 2. ENABLING THE ARGO CD PLUGIN
You can use the Argo CD plugin to visualize the Continuous Delivery (CD) workflows in OpenShift
GitOps. This plugin provides a visual overview of the application’s status, deployment details, commit
message, author of the commit, container image promoted to environment and deployment history.

Prerequisites

Add Argo CD instance information to your app-config.yaml configmap as shown in the
following example:

Add the following annotation to the entity’s catalog-info.yaml file to identify the Argo CD
applications.

(Optional) Add the following annotation to the entity’s catalog-info.yaml file to switch between
Argo CD instances as shown in the following example:

NOTE

If you do not set this annotation, the Argo CD plugin defaults to the first Argo CD
instance configured in app-config.yaml.

Procedure

1. Add the following to your dynamic-plugins ConfigMap to enable the Argo CD plugin.

argocd:
 appLocatorMethods:
 - type: 'config'
 instances:
 - name: argoInstance1
 url: https://argoInstance1.com
 username: ${ARGOCD_USERNAME}
 password: ${ARGOCD_PASSWORD}
 - name: argoInstance2
 url: https://argoInstance2.com
 username: ${ARGOCD_USERNAME}
 password: ${ARGOCD_PASSWORD}

annotations:
 ...
 # The label that Argo CD uses to fetch all the applications. The format to be used is
label.key=label.value. For example, rht-gitops.com/janus-argocd=quarkus-app.

 argocd/app-selector: '${ARGOCD_LABEL_SELECTOR}'

 annotations:
 ...
 # The Argo CD instance name used in `app-config.yaml`.

 argocd/instance-name: '${ARGOCD_INSTANCE}'

global:

CHAPTER 2. ENABLING THE ARGO CD PLUGIN

5

2.1. ENABLING ARGO CD ROLLOUTS

The optional Argo CD Rollouts feature enhances Kubernetes by providing advanced deployment
strategies, such as blue-green and canary deployments, for your applications. When integrated into the
backstage Kubernetes plugin, it allows developers and operations teams to visualize and manage Argo
CD Rollouts seamlessly within the Backstage interface.

Prerequisites

The Backstage Kubernetes plugin (@backstage/plugin-kubernetes) is installed and
configured.

To install and configure Kubernetes plugin in Backstage, see Installaltion and Configuration
guide.

You have access to the Kubernetes cluster with the necessary permissions to create and
manage custom resources and ClusterRoles.

The Kubernetes cluster has the argoproj.io group resources (for example, Rollouts and
AnalysisRuns) installed.

Procedure

1. In the app-config.yaml file in your Backstage instance, add the following customResources
component under the kubernetes configuration to enable Argo Rollouts and AnalysisRuns:

2. Grant ClusterRole permissions for custom resources.

NOTE

If the Backstage Kubernetes plugin is already configured, the ClusterRole
permissions for Rollouts and AnalysisRuns might already be granted.

Use the prepared manifest to provide read-only ClusterRole access to both
the Kubernetes and ArgoCD plugins.

 dynamic:
 includes:
 - dynamic-plugins.default.yaml
 plugins:
 - package: ./dynamic-plugins/dist/roadiehq-backstage-plugin-argo-cd-backend-dynamic
 disabled: false
 - package: ./dynamic-plugins/dist/backstage-community-plugin-redhat-argocd
 disabled: false

kubernetes:
 ...
 customResources:
 - group: 'argoproj.io'
 apiVersion: 'v1alpha1'
 plural: 'Rollouts'
 - group: 'argoproj.io'
 apiVersion: 'v1alpha1'
 plural: 'analysisruns'

Red Hat Developer Hub 1.5 Configuring dynamic plugins

6

https://backstage.io/docs/features/kubernetes/installation/
https://backstage.io/docs/features/kubernetes/configuration/
https://raw.githubusercontent.com/backstage/community-plugins/main/workspaces/redhat-argocd/plugins/argocd/manifests/clusterrole.yaml

a. If the ClusterRole permission is not granted, use the following YAML manifest to create
the ClusterRole:

a. Apply the manifest to the cluster using kubectl:

b. Ensure the ServiceAccount accessing the cluster has this ClusterRole assigned.

3. Add annotations to catalog-info.yaml to identify Kubernetes resources for Backstage.

a. For identifying resources by entity ID:

b. (Optional) For identifying resources by namespace:

c. For using custom label selectors, which override resource identification by entity ID or
namespace:

NOTE

Ensure you specify the labels declared in backstage.io/kubernetes-label-
selector on your Kubernetes resources. This annotation overrides entity-
based or namespace-based identification annotations, such as
backstage.io/kubernetes-id and backstage.io/kubernetes-namespace.

4. Add label to Kubernetes resources to enable Backstage to find the appropriate Kubernetes
resources.

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 name: backstage-read-only
rules:
 - apiGroups:
 - argoproj.io
 resources:
 - rollouts
 - analysisruns
 verbs:
 - get
 - list

kubectl apply -f <your-clusterrole-file>.yaml

annotations:
 ...
 backstage.io/kubernetes-id: <BACKSTAGE_ENTITY_NAME>

annotations:
 ...
 backstage.io/kubernetes-namespace: <RESOURCE_NAMESPACE>

annotations:
 ...
 backstage.io/kubernetes-label-selector: 'app=my-app,component=front-end'

CHAPTER 2. ENABLING THE ARGO CD PLUGIN

7

a. Backstage Kubernetes plugin label: Add this label to map resources to specific Backstage
entities.

b. GitOps application mapping: Add this label to map Argo CD Rollouts to a specific GitOps
application

NOTE

If using the label selector annotation (backstage.io/kubernetes-label-selector),
ensure the specified labels are present on the resources. The label selector will
override other annotations like kubernetes-id or kubernetes-namespace.

Verification

1. Push the updated configuration to your GitOps repository to trigger a rollout.

2. Open Red Hat Developer Hub interface and navigate to the entity you configured.

3. Select the CD tab and then select the GitOps application. The side panel opens.

4. In the Resources table of the side panel, verify that the following resources are displayed:

Rollouts

AnalysisRuns (optional)

5. Expand a rollout resource and review the following details:

The Revisions row displays traffic distribution details for different rollout versions.

The Analysis Runs row displays the status of analysis tasks that evaluate rollout success.

Additional resources

The package path, scope, and name of the Red Hat ArgoCD plugin has changed since 1.2. For
more information, see Breaking Changes in the Red Hat Developer Hub release notes .

For more information on installing dynamic plugins, see Installing and viewing plugins in Red Hat
Developer Hub.

labels:
 ...
 backstage.io/kubernetes-id: <BACKSTAGE_ENTITY_NAME>

labels:
 ...
 app.kubernetes.io/instance: <GITOPS_APPLICATION_NAME>

Red Hat Developer Hub 1.5 Configuring dynamic plugins

8

https://docs.redhat.com/en/documentation/red_hat_developer_hub/1.5/html-single/red_hat_developer_hub_release_notes/index#removed-functionality-rhidp-4293
https://docs.redhat.com/en/documentation/red_hat_developer_hub/1.5/html-single/installing_and_viewing_plugins_in_red_hat_developer_hub/index

CHAPTER 3. INSTALLING AND CONFIGURING THE JFROG
ARTIFACTORY PLUGIN

JFrog Artifactory is a front-end plugin that displays the information about your container images stored
in the JFrog Artifactory repository. The JFrog Artifactory plugin is preinstalled with Developer Hub and
disabled by default. To use it, you need to enable and configure it first.

IMPORTANT

The JFrog Artifactory plugin is a Technology Preview feature only.

Technology Preview features are not supported with Red Hat production service level
agreements (SLAs), might not be functionally complete, and Red Hat does not
recommend using them for production. These features provide early access to upcoming
product features, enabling customers to test functionality and provide feedback during
the development process.

For more information on Red Hat Technology Preview features, see Technology Preview
Features Scope.

Additional detail on how Red Hat provides support for bundled community dynamic
plugins is available on the Red Hat Developer Support Policy page.

3.1. INSTALLATION

The JFrog Artifactory plugin is preinstalled in Developer Hub with basic configuration properties. To
enable it, set the disabled property to false as follows:

3.2. CONFIGURATION

1. Set the proxy to the desired JFrog Artifactory server in the app-config.yaml file as follows:

2. Add the following annotation to the entity’s catalog-info.yaml file to enable the JFrog
Artifactory plugin features in RHDH components:

global:
 dynamic:
 includes:
 - dynamic-plugins.default.yaml
 plugins:
 - package: ./dynamic-plugins/dist/backstage-community-plugin-jfrog-artifactory
 disabled: false

proxy:
 endpoints:
 ‘/jfrog-artifactory/api’:
 target: http://<hostname>:8082 # or https://<customer>.jfrog.io
 headers:
 # Authorization: 'Bearer <YOUR TOKEN>'
 # Change to "false" in case of using a self-hosted Artifactory instance with a self-signed
certificate
 secure: true

CHAPTER 3. INSTALLING AND CONFIGURING THE JFROG ARTIFACTORY PLUGIN

9

https://access.redhat.com/support/offerings/techpreview/
https://access.redhat.com/policy/developerhub-support-policy

metadata:
 annotations:
 'jfrog-artifactory/image-name': '<IMAGE-NAME>'

Red Hat Developer Hub 1.5 Configuring dynamic plugins

10

CHAPTER 4. INSTALLING AND CONFIGURING KEYCLOAK
The Keycloak backend plugin, which integrates Keycloak into Developer Hub, has the following
capabilities:

Synchronization of Keycloak users in a realm.

Synchronization of Keycloak groups and their users in a realm.

NOTE

The supported Red Hat Build of Keycloak (RHBK) version is 24.0.

4.1. INSTALLATION

The Keycloak plugin is pre-loaded in Developer Hub with basic configuration properties. To enable it,
set the disabled property to false as follows:

4.2. BASIC CONFIGURATION

To enable the Keycloak plugin, you must set the following environment variables:

KEYCLOAK_BASE_URL

KEYCLOAK_LOGIN_REALM

KEYCLOAK_REALM

KEYCLOAK_CLIENT_ID

KEYCLOAK_CLIENT_SECRET

4.3. ADVANCED CONFIGURATION

Schedule configuration

You can configure a schedule in the app-config.yaml file, as follows:

global:
 dynamic:
 includes:
 - dynamic-plugins.default.yaml
 plugins:
 - package: ./dynamic-plugins/dist/backstage-community-plugin-catalog-backend-module-
keycloak-dynamic
 disabled: false

 catalog:
 providers:
 keycloakOrg:
 default:
 # ...
 # highlight-add-start

CHAPTER 4. INSTALLING AND CONFIGURING KEYCLOAK

11

NOTE

If you have made any changes to the schedule in the app-config.yaml file, then restart to
apply the changes.

Keycloak query parameters

You can override the default Keycloak query parameters in the app-config.yaml file, as follows:

Communication between Developer Hub and Keycloak is enabled by using the Keycloak API. Username
and password, or client credentials are supported authentication methods.

The following table describes the parameters that you can configure to enable the plugin under
catalog.providers.keycloakOrg.<ENVIRONMENT_NAME> object in the app-config.yaml file:

Name Description Default Value Required

baseUrl Location of the Keycloak
server, such as
https://localhost:844
3/auth.

"" Yes

realm Realm to synchronize master No

loginRealm Realm used to
authenticate

master No

username Username to
authenticate

"" Yes if using password
based authentication

password Password to
authenticate

"" Yes if using password
based authentication

 schedule: # optional; same options as in TaskScheduleDefinition
 # supports cron, ISO duration, "human duration" as used in code
 frequency: { minutes: 1 }
 # supports ISO duration, "human duration" as used in code
 timeout: { minutes: 1 }
 initialDelay: { seconds: 15 }
 # highlight-add-end

 catalog:
 providers:
 keycloakOrg:
 default:
 # ...
 # highlight-add-start
 userQuerySize: 500 # Optional
 groupQuerySize: 250 # Optional
 # highlight-add-end

Red Hat Developer Hub 1.5 Configuring dynamic plugins

12

clientId Client ID to authenticate "" Yes if using client
credentials based
authentication

clientSecret Client Secret to
authenticate

"" Yes if using client
credentials based
authentication

userQuerySize Number of users to
query at a time

100 No

groupQuerySize Number of groups to
query at a time

100 No

Name Description Default Value Required

When using client credentials, the access type must be set to confidential and service accounts must be
enabled. You must also add the following roles from the realm-management client role:

query-groups

query-users

view-users

4.4. LIMITATIONS

If you have self-signed or corporate certificate issues, you can set the following environment variable
before starting Developer Hub:

NODE_TLS_REJECT_UNAUTHORIZED=0

NOTE

The solution of setting the environment variable is not recommended.

CHAPTER 4. INSTALLING AND CONFIGURING KEYCLOAK

13

CHAPTER 5. INSTALLING AND CONFIGURING THE NEXUS
REPOSITORY MANAGER PLUGIN

The Nexus Repository Manager plugin displays the information about your build artifacts in your
Developer Hub application. The build artifacts are available in the Nexus Repository Manager.

IMPORTANT

The Nexus Repository Manager plugin is a Technology Preview feature only.

Technology Preview features are not supported with Red Hat production service level
agreements (SLAs), might not be functionally complete, and Red Hat does not
recommend using them for production. These features provide early access to upcoming
product features, enabling customers to test functionality and provide feedback during
the development process.

For more information on Red Hat Technology Preview features, see Technology Preview
Features Scope.

Additional detail on how Red Hat provides support for bundled community dynamic
plugins is available on the Red Hat Developer Support Policy page.

5.1. INSTALLATION

The Nexus Repository Manager plugin is pre-loaded in Developer Hub with basic configuration
properties. To enable it, set the disabled property to false as follows:

5.2. CONFIGURATION

1. Set the proxy to the desired Nexus Repository Manager server in the app-config.yaml file as
follows:

global:
 dynamic:
 includes:
 - dynamic-plugins.default.yaml
 plugins:
 - package: ./dynamic-plugins/dist/backstage-community-plugin-nexus-repository-manager
 disabled: false

proxy:
 '/nexus-repository-manager':
 target: 'https://<NEXUS_REPOSITORY_MANAGER_URL>'
 headers:
 X-Requested-With: 'XMLHttpRequest'
 # Uncomment the following line to access a private Nexus Repository Manager using a
token
 # Authorization: 'Bearer <YOUR TOKEN>'
 changeOrigin: true
 # Change to "false" in case of using self hosted Nexus Repository Manager instance with a
self-signed certificate
 secure: true

Red Hat Developer Hub 1.5 Configuring dynamic plugins

14

https://access.redhat.com/support/offerings/techpreview/
https://access.redhat.com/policy/developerhub-support-policy

2. Optional: Change the base URL of Nexus Repository Manager proxy as follows:

3. Optional: Enable the following experimental annotations:

4. Annotate your entity using the following annotations:

nexusRepositoryManager:
 # default path is `/nexus-repository-manager`
 proxyPath: /custom-path

nexusRepositoryManager:
 experimentalAnnotations: true

metadata:
 annotations:
 # insert the chosen annotations here
 # example
 nexus-repository-manager/docker.image-name: `<ORGANIZATION>/<REPOSITORY>`,

CHAPTER 5. INSTALLING AND CONFIGURING THE NEXUS REPOSITORY MANAGER PLUGIN

15

CHAPTER 6. INSTALLING AND CONFIGURING THE TEKTON
PLUGIN

You can use the Tekton plugin to visualize the results of CI/CD pipeline runs on your Kubernetes or
OpenShift clusters. The plugin allows users to visually see high level status of all associated tasks in the
pipeline for their applications.

6.1. INSTALLATION

Prerequisites

You have installed and configured the @backstage/plugin-kubernetes and
@backstage/plugin-kubernetes-backend dynamic plugins.

You have configured the Kubernetes plugin to connect to the cluster using a ServiceAccount.

The ClusterRole must be granted for custom resources (PipelineRuns and TaskRuns) to the
ServiceAccount accessing the cluster.

NOTE

If you have the RHDH Kubernetes plugin configured, then the ClusterRole is
already granted.

To view the pod logs, you have granted permissions for pods/log.

You can use the following code to grant the ClusterRole for custom resources and pod logs:

kubernetes:
 ...
 customResources:
 - group: 'tekton.dev'
 apiVersion: 'v1'
 plural: 'pipelineruns'
 - group: 'tekton.dev'
 apiVersion: 'v1'

 ...
 apiVersion: rbac.authorization.k8s.io/v1
 kind: ClusterRole
 metadata:
 name: backstage-read-only
 rules:
 - apiGroups:
 - ""
 resources:
 - pods/log
 verbs:
 - get
 - list
 - watch
 ...

Red Hat Developer Hub 1.5 Configuring dynamic plugins

16

You can use the prepared manifest for a read-only ClusterRole, which provides access for both
Kubernetes plugin and Tekton plugin.

Add the following annotation to the entity’s catalog-info.yaml file to identify whether an entity
contains the Kubernetes resources:

You can also add the backstage.io/kubernetes-namespace annotation to identify the
Kubernetes resources using the defined namespace.

Add the following annotation to the catalog-info.yaml file of the entity to enable the Tekton
related features in RHDH. The value of the annotation identifies the name of the RHDH entity:

Add a custom label selector, which RHDH uses to find the Kubernetes resources. The label
selector takes precedence over the ID annotations.

Add the following label to the resources so that the Kubernetes plugin gets the Kubernetes
resources from the requested entity:

NOTE

 - apiGroups:
 - tekton.dev
 resources:
 - pipelineruns
 - taskruns
 verbs:
 - get
 - list

annotations:
 ...

 backstage.io/kubernetes-id: <BACKSTAGE_ENTITY_NAME>

annotations:
 ...

 backstage.io/kubernetes-namespace: <RESOURCE_NS>

annotations:
 ...

 janus-idp.io/tekton : <BACKSTAGE_ENTITY_NAME>

annotations:
 ...

 backstage.io/kubernetes-label-selector: 'app=my-app,component=front-end'

labels:
 ...

 backstage.io/kubernetes-id: <BACKSTAGE_ENTITY_NAME>

CHAPTER 6. INSTALLING AND CONFIGURING THE TEKTON PLUGIN

17

NOTE

When you use the label selector, the mentioned labels must be present on the
resource.

Procedure

The Tekton plugin is pre-loaded in RHDH with basic configuration properties. To enable it, set
the disabled property to false as follows:

global:
 dynamic:
 includes:
 - dynamic-plugins.default.yaml
 plugins:
 - package: ./dynamic-plugins/dist/backstage-community-plugin-tekton
 disabled: false

Red Hat Developer Hub 1.5 Configuring dynamic plugins

18

CHAPTER 7. INSTALLING THE TOPOLOGY PLUGIN

7.1. INSTALLATION

The Topology plugin enables you to visualize the workloads such as Deployment, Job, Daemonset,
Statefulset, CronJob, Pods and Virtual Machines powering any service on your Kubernetes cluster.

Prerequisites

You have installed and configured the @backstage/plugin-kubernetes-backend dynamic
plugins.

You have configured the Kubernetes plugin to connect to the cluster using a ServiceAccount.

The ClusterRole must be granted to ServiceAccount accessing the cluster.

NOTE

If you have the Developer Hub Kubernetes plugin configured, then the
ClusterRole is already granted.

Procedure

The Topology plugin is pre-loaded in Developer Hub with basic configuration properties. To
enable it, set the disabled property to false as follows:

app-config.yaml fragment

7.2. CONFIGURING THE TOPOLOGY PLUGIN

7.2.1. Viewing OpenShift routes

Procedure

1. To view OpenShift routes, grant read access to the routes resource in the Cluster Role:

auth:
global:
 dynamic:
 includes:
 - dynamic-plugins.default.yaml
 plugins:
 - package: ./dynamic-plugins/dist/backstage-community-plugin-topology
 disabled: false

 apiVersion: rbac.authorization.k8s.io/v1
 kind: ClusterRole
 metadata:
 name: backstage-read-only
 rules:
 ...
 - apiGroups:

CHAPTER 7. INSTALLING THE TOPOLOGY PLUGIN

19

2. Also add the following in kubernetes.customResources property in your app-config.yaml file:

7.2.2. Viewing pod logs

Procedure

To view pod logs, you must grant the following permission to the ClusterRole:

7.2.3. Viewing Tekton PipelineRuns

Procedure

1. To view the Tekton PipelineRuns, grant read access to the pipelines, pipelinesruns, and
taskruns resources in the ClusterRole:

 - route.openshift.io
 resources:
 - routes
 verbs:
 - get
 - list

kubernetes:
 ...
 customResources:
 - group: 'route.openshift.io'
 apiVersion: 'v1'
 plural: 'routes'

 apiVersion: rbac.authorization.k8s.io/v1
 kind: ClusterRole
 metadata:
 name: backstage-read-only
 rules:
 ...
 - apiGroups:
 - ''
 resources:
 - pods
 - pods/log
 verbs:
 - get
 - list
 - watch

 ...
 apiVersion: rbac.authorization.k8s.io/v1
 kind: ClusterRole
 metadata:
 name: backstage-read-only
 rules:
 ...
 - apiGroups:

Red Hat Developer Hub 1.5 Configuring dynamic plugins

20

2. To view the Tekton PipelineRuns list in the side panel and the latest PipelineRuns status in the
Topology node decorator, add the following code to the kubernetes.customResources
property in your app-config.yaml file:

7.2.4. Viewing virtual machines

Prerequisites

1. The OpenShift Virtualization operator is installed and configured on a Kubernetes cluster.
.Procedure

2. Grant read access to the VirtualMachines resource in the ClusterRole:

3. To view the virtual machine nodes on the topology plugin, add the following code to the
kubernetes.customResources property in the app-config.yaml file:

 - tekton.dev
 resources:
 - pipelines
 - pipelineruns
 - taskruns
 verbs:
 - get
 - list

kubernetes:
 ...
 customResources:
 - group: 'tekton.dev'
 apiVersion: 'v1'
 plural: 'pipelines'
 - group: 'tekton.dev'
 apiVersion: 'v1'
 plural: 'pipelineruns'
 - group: 'tekton.dev'
 apiVersion: 'v1'
 plural: 'taskruns'

 ...
 apiVersion: rbac.authorization.k8s.io/v1
 kind: ClusterRole
 metadata:
 name: backstage-read-only
 rules:
 ...
 - apiGroups:
 - kubevirt.io
 resources:
 - virtualmachines
 - virtualmachineinstances
 verbs:
 - get
 - list

CHAPTER 7. INSTALLING THE TOPOLOGY PLUGIN

21

7.2.5. Enabling the source code editor

To enable the source code editor, you must grant read access to the CheClusters resource in the
ClusterRole as shown in the following example code:

To use the source code editor, you must add the following configuration to the
kubernetes.customResources property in your app-config.yaml file:

7.3. MANAGING LABELS AND ANNOTATIONS FOR TOPOLOGY
PLUGINS

7.3.1. Linking to the source code editor or the source

Add the following annotations to workload resources, such as Deployments to navigate to the Git
repository of the associated application using the source code editor:

Add the following annotation to navigate to a specific branch:

kubernetes:
 ...
 customResources:
 - group: 'kubevirt.io'
 apiVersion: 'v1'
 plural: 'virtualmachines'
 - group: 'kubevirt.io'
 apiVersion: 'v1'
 plural: 'virtualmachineinstances'

 ...
 apiVersion: rbac.authorization.k8s.io/v1
 kind: ClusterRole
 metadata:
 name: backstage-read-only
 rules:
 ...
 - apiGroups:
 - org.eclipse.che
 resources:
 - checlusters
 verbs:
 - get
 - list

 kubernetes:
 ...
 customResources:
 - group: 'org.eclipse.che'
 apiVersion: 'v2'
 plural: 'checlusters'

annotations:
 app.openshift.io/vcs-uri: <GIT_REPO_URL>

Red Hat Developer Hub 1.5 Configuring dynamic plugins

22

NOTE

If Red Hat OpenShift Dev Spaces is installed and configured and Git URL annotations are
also added to the workload YAML file, then clicking on the edit code decorator redirects
you to the Red Hat OpenShift Dev Spaces instance.

NOTE

When you deploy your application using the OCP Git import flows, then you do not need
to add the labels as import flows do that. Otherwise, you need to add the labels manually
to the workload YAML file.

You can also add the app.openshift.io/edit-url annotation with the edit URL that you want to access
using the decorator.

7.3.2. Entity annotation/label

For RHDH to detect that an entity has Kubernetes components, add the following annotation to the
catalog-info.yaml file of the entity:

Add the following label to the resources so that the Kubernetes plugin gets the Kubernetes resources
from the requested entity:

NOTE

When using the label selector, the mentioned labels must be present on the resource.

7.3.3. Namespace annotation

Procedure

To identify the Kubernetes resources using the defined namespace, add the
backstage.io/kubernetes-namespace annotation:

The Red Hat OpenShift Dev Spaces instance is not accessible using the source code editor if
the backstage.io/kubernetes-namespace annotation is added to the catalog-info.yaml file.

To retrieve the instance URL, you require the CheCluster custom resource (CR). As the
CheCluster CR is created in the openshift-devspaces namespace, the instance URL is not
retrieved if the namespace annotation value is not openshift-devspaces.

annotations:
 app.openshift.io/vcs-ref: <GIT_REPO_BRANCH>

annotations:
 backstage.io/kubernetes-id: <BACKSTAGE_ENTITY_NAME>

labels:
 backstage.io/kubernetes-id: <BACKSTAGE_ENTITY_NAME>`

annotations:
 backstage.io/kubernetes-namespace: <RESOURCE_NS>

CHAPTER 7. INSTALLING THE TOPOLOGY PLUGIN

23

7.3.4. Label selector query annotation

You can write your own custom label, which RHDH uses to find the Kubernetes resources. The label
selector takes precedence over the ID annotations:

If you have multiple entities while Red Hat Dev Spaces is configured and want multiple entities to
support the edit code decorator that redirects to the Red Hat Dev Spaces instance, you can add the
backstage.io/kubernetes-label-selector annotation to the catalog-info.yaml file for each entity.

If you are using the previous label selector, you must add the following labels to your resources so that
the Kubernetes plugin gets the Kubernetes resources from the requested entity:

You can also write your own custom query for the label selector with unique labels to differentiate your
entities. However, you need to ensure that you add those labels to the resources associated with your
entities including your CheCluster instance.

7.3.5. Icon displayed in the node

To display a runtime icon in the topology nodes, add the following label to workload resources, such as
Deployments:

Alternatively, you can include the following label to display the runtime icon:

Supported values of <RUNTIME_NAME> include:

django

dotnet

drupal

go-gopher

golang

grails

annotations:
 backstage.io/kubernetes-label-selector: 'app=my-app,component=front-end'

annotations:
 backstage.io/kubernetes-label-selector: 'component in (<BACKSTAGE_ENTITY_NAME>,che)'

labels:
 component: che # add this label to your che cluster instance
labels:
 component: <BACKSTAGE_ENTITY_NAME> # add this label to the other resources associated with
your entity

labels:
 app.openshift.io/runtime: <RUNTIME_NAME>

labels:
 app.kubernetes.io/name: <RUNTIME_NAME>

Red Hat Developer Hub 1.5 Configuring dynamic plugins

24

jboss

jruby

js

nginx

nodejs

openjdk

perl

phalcon

php

python

quarkus

rails

redis

rh-spring-boot

rust

java

rh-openjdk

ruby

spring

spring-boot

NOTE

Other values result in icons not being rendered for the node.

7.3.6. App grouping

To display workload resources such as deployments or pods in a visual group, add the following label:

7.3.7. Node connector

Procedure

To display the workload resources such as deployments or pods with a visual connector, add the

labels:
 app.kubernetes.io/part-of: <GROUP_NAME>

CHAPTER 7. INSTALLING THE TOPOLOGY PLUGIN

25

To display the workload resources such as deployments or pods with a visual connector, add the
following annotation:

+

For more information about the labels and annotations, see Guidelines for labels and annotations for
OpenShift applications.

annotations:
 app.openshift.io/connects-to: '[{"apiVersion": <RESOURCE_APIVERSION>,"kind":
<RESOURCE_KIND>,"name": <RESOURCE_NAME>}]'

Red Hat Developer Hub 1.5 Configuring dynamic plugins

26

CHAPTER 8. BULK IMPORTING GITHUB REPOSITORIES

IMPORTANT

These features are for Technology Preview only. Technology Preview features are not
supported with Red Hat production service level agreements (SLAs), might not be
functionally complete, and Red Hat does not recommend using them for production.
These features provide early access to upcoming product features, enabling customers
to test functionality and provide feedback during the development process.

For more information on Red Hat Technology Preview features, see Technology Preview
Features Scope.

Red Hat Developer Hub can automate GitHub repositories onboarding and track their import status.

8.1. ENABLING AND GIVING ACCESS TO THE BULK IMPORT FEATURE

You can enable the Bulk Import feature for users and give them the necessary permissions to access it.

Prerequisites

You have configured GitHub integration.

Procedure

1. The Bulk Import plugins are installed but disabled by default. To enable the ./dynamic-
plugins/dist/red-hat-developer-hub-backstage-plugin-bulk-import-backend-dynamic and
./dynamic-plugins/dist/red-hat-developer-hub-backstage-plugin-bulk-import plugins, edit
your dynamic-plugins.yaml with the following content:

dynamic-plugins.yaml fragment

See Installing and viewing plugins in Red Hat Developer Hub .

2. Configure the required bulk.import RBAC permission for the users who are not administrators
as follows:

rbac-policy.csv fragment

Note that only Developer Hub administrators or users with the bulk.import permission can use
the Bulk Import feature. See Permission policies in Red Hat Developer Hub .

plugins:
 - package: ./dynamic-plugins/dist/red-hat-developer-hub-backstage-plugin-bulk-import-
backend-dynamic
 disabled: false
 - package: ./dynamic-plugins/dist/red-hat-developer-hub-backstage-plugin-bulk-import
 disabled: false

p, role:default/bulk-import, bulk.import, use, allow
g, user:default/<your_user>, role:default/bulk-import

CHAPTER 8. BULK IMPORTING GITHUB REPOSITORIES

27

https://access.redhat.com/support/offerings/techpreview/
https://docs.redhat.com/documentation/en-us/red_hat_developer_hub/1.5/html-single/authentication_in_red_hat_developer_hub/index#enabling-authentication-with-github
https://docs.redhat.com/en/documentation/red_hat_developer_hub/1.5/html-single/installing_and_viewing_plugins_in_red_hat_developer_hub/index
https://docs.redhat.com/documentation/en-us/red_hat_developer_hub/1.5/html-single/authorization_in_red_hat_developer_hub/index#ref-rbac-permission-policies_title-authorization

Verification

The sidebar displays a Bulk Import option.

The Bulk Import page shows a list of Added Repositories.

8.2. IMPORTING MULTIPLE GITHUB REPOSITORIES

In Red Hat Developer Hub, you can select your GitHub repositories and automate their onboarding to
the Developer Hub catalog.

Prerequisites

You have enabled the Bulk Import feature and gave access to it .

Procedure

1. Click Bulk Import in the left sidebar.

2. Click the Add button in the top-right corner to see the list of all repositories accessible from the
configured GitHub integrations.

a. From the Repositories view, you can select any repository, or search for any accessible
repositories. For each repository selected, a catalog-info.yaml is generated.

b. From the Organizations view, you can select any organization by clicking Select in the third
column. This option allows you to select one or more repositories from the selected
organization.

3. Click Preview file to view or edit the details of the pull request for each repository.

a. Review the pull request description and the catalog-info.yaml file content.

b. Optional: when the repository has a .github/CODEOWNERS file, you can select the Use
CODEOWNERS file as Entity Owner checkbox to use it, rather than having the content-
info.yaml contain a specific entity owner.

c. Click Save.

4. Click Create pull requests. At this point, a set of dry-run checks runs against the selected
repositories to ensure they meet the requirements for import, such as:

a. Verifying that there is no entity in the Developer Hub catalog with the name specified in the
repository catalog-info.yaml

b. Verifying that the repository is not empty

c. Verifying that the repository contains a .github/CODEOWNERS file if the Use
CODEOWNERS file as Entity Owner checkbox is selected for that repository

If any errors occur, the pull requests are not created, and you see a Failed to create PR
error message detailing the issues. To view more details about the reasons, click Edit.

If there are no errors, the pull requests are created, and you are redirected to the list of
added repositories.

5. Review and merge each pull request that creates a catalog-info.yml file.

Red Hat Developer Hub 1.5 Configuring dynamic plugins

28

Verification

The Added repositories list displays the repositories you imported, each with an appropriate
status: either Waiting for approval or Added.

For each Waiting for approval import job listed, there is a corresponding pull request adding the
catalog-info.yaml file in the corresponding repository.

8.3. MANAGING THE ADDED REPOSITORIES

You can oversee and manage the repositories that are imported to the Developer Hub.

Prerequisites

You have imported GitHub repositories.

Procedure

1. Click Bulk Import in the left sidebar to display all the current repositories that are being tracked
as Import jobs, along with their status.

Added

The repository is added to the Developer Hub catalog after the import pull request is
merged or if the repository already contained a catalog-info.yaml file during the bulk
import. Note that it may take a few minutes for the entities to be available in the catalog.

Waiting for approval

There is an open pull request adding a catalog-info.yaml file to the repository. You can:

Click the pencil icon on the right to see details about the pull request or edit the pull
request content right from Developer Hub.

Delete the Import job, this action closes the import PR as well.

To transition the Import job to the Added state, merge the import pull request from the
Git repository.

Empty

Developer Hub is unable to determine the import job status because the repository is
imported from other sources but does not have a catalog-info.yaml file and lacks any import
pull request adding it.

NOTE

CHAPTER 8. BULK IMPORTING GITHUB REPOSITORIES

29

NOTE

After an import pull request is merged, the import status is marked as Added in
the list of Added Repositories, but it might take a few seconds for the
corresponding entities to appear in the Developer Hub Catalog.

A location added through other sources (like statically in an app-config.yaml file,
dynamically when enabling GitHub discovery , or registered manually using the
"Register an existing component" page) might show up in the Bulk Import list of
Added Repositories if the following conditions are met:

The target repository is accessible from the configured GitHub integrations.

The location URL points to a catalog-info.yaml file at the root of the
repository default branch.

8.4. UNDERSTANDING THE BULK IMPORT AUDIT LOGS

The Bulk Import backend plugin adds the following events to the Developer Hub audit logs. See Audit
Logs in Red Hat Developer Hub for more information on how to configure and view audit logs.

Bulk Import Events:

BulkImportUnknownEndpoint

Tracks requests to unknown endpoints.

BulkImportPing

Tracks GET requests to the /ping endpoint, which allows us to make sure the bulk import backend is
up and running.

BulkImportFindAllOrganizations

Tracks GET requests to the /organizations endpoint, which returns the list of organizations
accessible from all configured GitHub Integrations.

BulkImportFindRepositoriesByOrganization

Tracks GET requests to the /organizations/:orgName/repositories endpoint, which returns the list
of repositories for the specified organization (accessible from any of the configured GitHub
Integrations).

BulkImportFindAllRepositories

Tracks GET requests to the /repositories endpoint, which returns the list of repositories accessible
from all configured GitHub Integrations.

BulkImportFindAllImports

Tracks GET requests to the /imports endpoint, which returns the list of existing import jobs along
with their statuses.

BulkImportCreateImportJobs

Tracks POST requests to the /imports endpoint, which allows to submit requests to bulk-import one
or many repositories into the Developer Hub catalog, by eventually creating import pull requests in
the target repositories.

BulkImportFindImportStatusByRepo

Tracks GET requests to the /import/by-repo endpoint, which fetches details about the import job for
the specified repository.

BulkImportDeleteImportByRepo

Tracks DELETE requests to the /import/by-repo endpoint, which deletes any existing import job for

Red Hat Developer Hub 1.5 Configuring dynamic plugins

30

{linkgettingstartedguide}#enabling-github-discovery-in-red-hat-developer-hub
{linkgettingstartedguide}#assembly-audit-log

Tracks DELETE requests to the /import/by-repo endpoint, which deletes any existing import job for
the specified repository, by closing any open import pull request that could have been created.

Example bulk import audit logs

{
 "actor": {
 "actorId": "user:default/myuser",
 "hostname": "localhost",
 "ip": "::1",
 "userAgent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/128.0.0.0 Safari/537.36"
 },
 "eventName": "BulkImportFindAllOrganizations",
 "isAuditLog": true,
 "level": "info",
 "message": "'get /organizations' endpoint hit by user:default/myuser",
 "meta": {},
 "plugin": "bulk-import",
 "request": {
 "body": {},
 "method": "GET",
 "params": {},
 "query": {
 "pagePerIntegration": "1",
 "sizePerIntegration": "5"
 },
 "url": "/api/bulk-import/organizations?pagePerIntegration=1&sizePerIntegration=5"
 },
 "response": {
 "status": 200
 },
 "service": "backstage",
 "stage": "completion",
 "status": "succeeded",
 "timestamp": "2024-08-26 16:41:02"
}

CHAPTER 8. BULK IMPORTING GITHUB REPOSITORIES

31

CHAPTER 9. SERVICENOW CUSTOM ACTIONS IN RED HAT
DEVELOPER HUB

IMPORTANT

These features are for Technology Preview only. Technology Preview features are not
supported with Red Hat production service level agreements (SLAs), might not be
functionally complete, and Red Hat does not recommend using them for production.
These features provide early access to upcoming product features, enabling customers
to test functionality and provide feedback during the development process.

For more information on Red Hat Technology Preview features, see Technology Preview
Features Scope.

In Red Hat Developer Hub, you can access ServiceNow custom actions (custom actions) for fetching
and registering resources in the catalog.

The custom actions in Developer Hub enable you to facilitate and automate the management of
records. Using the custom actions, you can perform the following actions:

Create, update, or delete a record

Retrieve information about a single record or multiple records

9.1. ENABLING SERVICENOW CUSTOM ACTIONS PLUGIN IN RED HAT
DEVELOPER HUB

In Red Hat Developer Hub, the ServiceNow custom actions are provided as a pre-loaded plugin, which is
disabled by default. You can enable the custom actions plugin using the following procedure.

Prerequisites

Red Hat Developer Hub is installed and running. For more information about installing the
Developer Hub, see Installing Red Hat Developer Hub on OpenShift Container Platform with
the Helm chart.

You have created a project in the Developer Hub.

Procedure

1. To activate the custom actions plugin, add a package with plugin name and update the
disabled field in your Helm chart as follows:

NOTE

global:
 dynamic:
 includes:
 - dynamic-plugins.default.yaml
 plugins:
 - package: ./dynamic-plugins/dist/backstage-community-plugin-scaffolder-backend-
module-servicenow-dynamic
 disabled: false

Red Hat Developer Hub 1.5 Configuring dynamic plugins

32

https://access.redhat.com/support/offerings/techpreview/
https://docs.redhat.com/en/documentation/red_hat_developer_hub/1.5/html-single/installing_red_hat_developer_hub_on_openshift_container_platform/index.xml#assembly-install-rhdh-ocp-helm

NOTE

The default configuration for a plugin is extracted from the dynamic-
plugins.default.yaml file, however, you can use a pluginConfig entry to override
the default configuration.

2. Set the following variables in the Helm chart to access the custom actions:

9.2. SUPPORTED SERVICENOW CUSTOM ACTIONS IN RED HAT
DEVELOPER HUB

The ServiceNow custom actions enable you to manage records in the Red Hat Developer Hub. The
custom actions support the following HTTP methods for API requests:

GET: Retrieves specified information from a specified resource endpoint

POST: Creates or updates a resource

PUT: Modify a resource

PATCH: Updates a resource

DELETE: Deletes a resource

9.2.1. ServiceNow custom actions

[GET] servicenow:now:table:retrieveRecord

Retrieves information of a specified record from a table in the Developer Hub.

Table 9.1. Input parameters

Name Type Requiremen
t

Description

tableName string Required Name of the table to retrieve the record from

sysId string Required Unique identifier of the record to retrieve

sysparmDi
splayValue

enum("true",
"false", "all")

Optional Returns field display values such as true,
actual values as false, or both. The default
value is false.

servicenow:
 # The base url of the ServiceNow instance.
 baseUrl: ${SERVICENOW_BASE_URL}
 # The username to use for authentication.
 username: ${SERVICENOW_USERNAME}
 # The password to use for authentication.
 password: ${SERVICENOW_PASSWORD}

CHAPTER 9. SERVICENOW CUSTOM ACTIONS IN RED HAT DEVELOPER HUB

33

sysparmE
xcludeRef
erenceLin
k

boolean Optional Set as true to exclude Table API links for
reference fields. The default value is false.

sysparmFi
elds

string[] Optional Array of fields to return in the response

sysparmVi
ew

string Optional Renders the response according to the
specified UI view. You can override this
parameter using sysparm_fields.

sysparmQ
ueryNoDo
main

boolean Optional Set as true to access data across domains if
authorized. The default value is false.

Name Type Requiremen
t

Description

Table 9.2. Output parameters

Name Type Description

result Record<PropertyKey,
unknown>

The response body of the request

[GET] servicenow:now:table:retrieveRecords

Retrieves information about multiple records from a table in the Developer Hub.

Table 9.3. Input parameters

Name Type Requiremen
t

Description

tableName string Required Name of the table to retrieve the records
from

sysparam
Query

string Optional Encoded query string used to filter the results

sysparmDi
splayValue

enum("true",
"false", "all")

Optional Returns field display values such as true,
actual values as false, or both. The default
value is false.

sysparmE
xcludeRef
erenceLin
k

boolean Optional Set as true to exclude Table API links for
reference fields. The default value is false.

Red Hat Developer Hub 1.5 Configuring dynamic plugins

34

sysparmS
uppressPa
ginationHe
ader

boolean Optional Set as true to suppress pagination header.
The default value is false.

sysparmFi
elds

string[] Optional Array of fields to return in the response

sysparmLi
mit

int Optional Maximum number of results returned per
page. The default value is 10,000.

sysparmVi
ew

string Optional Renders the response according to the
specified UI view. You can override this
parameter using sysparm_fields.

sysparmQ
ueryCateg
ory

string Optional Name of the query category to use for
queries

sysparmQ
ueryNoDo
main

boolean Optional Set as true to access data across domains if
authorized. The default value is false.

sysparmN
oCount

boolean Optional Does not execute a select count(*) on the
table. The default value is false.

Name Type Requiremen
t

Description

Table 9.4. Output parameters

Name Type Description

result Record<PropertyKey,
unknown>

The response body of the request

[POST] servicenow:now:table:createRecord

Creates a record in a table in the Developer Hub.

Table 9.5. Input parameters

Name Type Requiremen
t

Description

tableName string Required Name of the table to save the record in

CHAPTER 9. SERVICENOW CUSTOM ACTIONS IN RED HAT DEVELOPER HUB

35

requestBo
dy

Record<PropertyKe
y, unknown>

Optional Field name and associated value for each
parameter to define in the specified record

sysparmDi
splayValue

enum("true",
"false", "all")

Optional Returns field display values such as true,
actual values as false, or both. The default
value is false.

sysparmE
xcludeRef
erenceLin
k

boolean Optional Set as true to exclude Table API links for
reference fields. The default value is false.

sysparmFi
elds

string[] Optional Array of fields to return in the response

sysparmIn
putDisplay
Value

boolean Optional Set field values using their display value such
as true or actual value as false. The default
value is false.

sysparmS
uppressAu
toSysField

boolean Optional Set as true to suppress auto-generation of
system fields. The default value is false.

sysparmVi
ew

string Optional Renders the response according to the
specified UI view. You can override this
parameter using sysparm_fields.

Name Type Requiremen
t

Description

Table 9.6. Output parameters

Name Type Description

result Record<PropertyKey,
unknown>

The response body of the request

[PUT] servicenow:now:table:modifyRecord

Modifies a record in a table in the Developer Hub.

Table 9.7. Input parameters

Name Type Requiremen
t

Description

tableName string Required Name of the table to modify the record from

sysId string Required Unique identifier of the record to modify

Red Hat Developer Hub 1.5 Configuring dynamic plugins

36

requestBo
dy

Record<PropertyKe
y, unknown>

Optional Field name and associated value for each
parameter to define in the specified record

sysparmDi
splayValue

enum("true",
"false", "all")

Optional Returns field display values such as true,
actual values as false, or both. The default
value is false.

sysparmE
xcludeRef
erenceLin
k

boolean Optional Set as true to exclude Table API links for
reference fields. The default value is false.

sysparmFi
elds

string[] Optional Array of fields to return in the response

sysparmIn
putDisplay
Value

boolean Optional Set field values using their display value such
as true or actual value as false. The default
value is false.

sysparmS
uppressAu
toSysField

boolean Optional Set as true to suppress auto-generation of
system fields. The default value is false.

sysparmVi
ew

string Optional Renders the response according to the
specified UI view. You can override this
parameter using sysparm_fields.

sysparmQ
ueryNoDo
main

boolean Optional Set as true to access data across domains if
authorized. The default value is false.

Name Type Requiremen
t

Description

Table 9.8. Output parameters

Name Type Description

result Record<PropertyKey,
unknown>

The response body of the request

[PATCH] servicenow:now:table:updateRecord

Updates a record in a table in the Developer Hub.

Table 9.9. Input parameters

CHAPTER 9. SERVICENOW CUSTOM ACTIONS IN RED HAT DEVELOPER HUB

37

Name Type Requiremen
t

Description

tableName string Required Name of the table to update the record in

sysId string Required Unique identifier of the record to update

requestBo
dy

Record<PropertyKe
y, unknown>

Optional Field name and associated value for each
parameter to define in the specified record

sysparmDi
splayValue

enum("true",
"false", "all")

Optional Returns field display values such as true,
actual values as false, or both. The default
value is false.

sysparmE
xcludeRef
erenceLin
k

boolean Optional Set as true to exclude Table API links for
reference fields. The default value is false.

sysparmFi
elds

string[] Optional Array of fields to return in the response

sysparmIn
putDisplay
Value

boolean Optional Set field values using their display value such
as true or actual value as false. The default
value is false.

sysparmS
uppressAu
toSysField

boolean Optional Set as true to suppress auto-generation of
system fields. The default value is false.

sysparmVi
ew

string Optional Renders the response according to the
specified UI view. You can override this
parameter using sysparm_fields.

sysparmQ
ueryNoDo
main

boolean Optional Set as true to access data across domains if
authorized. The default value is false.

Table 9.10. Output parameters

Name Type Description

result Record<PropertyKey,
unknown>

The response body of the request

[DELETE] servicenow:now:table:deleteRecord

Deletes a record from a table in the Developer Hub.

Table 9.11. Input parameters

Red Hat Developer Hub 1.5 Configuring dynamic plugins

38

Name Type Requiremen
t

Description

tableName string Required Name of the table to delete the record from

sysId string Required Unique identifier of the record to delete

sysparmQ
ueryNoDo
main

boolean Optional Set as true to access data across domains if
authorized. The default value is false.

CHAPTER 9. SERVICENOW CUSTOM ACTIONS IN RED HAT DEVELOPER HUB

39

CHAPTER 10. KUBERNETES CUSTOM ACTIONS IN RED HAT
DEVELOPER HUB

IMPORTANT

These features are for Technology Preview only. Technology Preview features are not
supported with Red Hat production service level agreements (SLAs), might not be
functionally complete, and Red Hat does not recommend using them for production.
These features provide early access to upcoming product features, enabling customers
to test functionality and provide feedback during the development process.

For more information on Red Hat Technology Preview features, see Technology Preview
Features Scope.

With Kubernetes custom actions, you can create and manage Kubernetes resources.

The Kubernetes custom actions plugin is preinstalled and disabled on a Developer Hub instance by
default. You can disable or enable the Kubernetes custom actions plugin, and change other parameters,
by configuring the Red Hat Developer Hub Helm chart.

NOTE

Kubernetes scaffolder actions and Kubernetes custom actions refer to the same concept
throughout this documentation.

10.1. ENABLING KUBERNETES CUSTOM ACTIONS PLUGIN IN RED HAT
DEVELOPER HUB

In Red Hat Developer Hub, the Kubernetes custom actions are provided as a preinstalled plugin, which is
disabled by default. You can enable the Kubernetes custom actions plugin by updating the disabled key
value in your Helm chart.

Prerequisites

You have installed Red Hat Developer Hub with the Helm chart.

Procedure

To enable the Kubernetes custom actions plugin, complete the following step:

In your Helm chart, add a package with the Kubernetes custom action plugin name and update
the disabled field. For example:

NOTE

global:
 dynamic:
 includes:
 - dynamic-plugins.default.yaml
 plugins:
 - package: ./dynamic-plugins/dist/backstage-community-plugin-scaffolder-backend-
module-kubernetes-dynamic
 disabled: false

Red Hat Developer Hub 1.5 Configuring dynamic plugins

40

https://access.redhat.com/support/offerings/techpreview/

NOTE

The default configuration for a plugin is extracted from the dynamic-
plugins.default.yaml file, however, you can use a pluginConfig entry to override
the default configuration.

10.2. USING KUBERNETES CUSTOM ACTIONS PLUGIN IN RED HAT
DEVELOPER HUB

In Red Hat Developer Hub, the Kubernetes custom actions enable you to run template actions for
Kubernetes.

Procedure

To use a Kubernetes custom action in your custom template, add the following Kubernetes
actions to your template:

Additional resource

Configuring templates.

10.3. CREATING A TEMPLATE USING KUBERNETES CUSTOM ACTIONS
IN RED HAT DEVELOPER HUB

You can create a template by defining a Template object as a YAML file.

The Template object describes the template and its metadata. It also contains required input variables
and a list of actions that are executed by the scaffolding service.

+

action: kubernetes:create-namespace
id: create-kubernetes-namespace
name: Create kubernetes namespace
input:
 namespace: my-rhdh-project
 clusterRef: bar
 token: TOKEN
 skipTLSVerify: false
 caData: Zm9v
 labels: app.io/type=ns; app.io/managed-by=org;

apiVersion: scaffolder.backstage.io/v1beta3
kind: Template
metadata:
 name: create-kubernetes-namespace
 title: Create a kubernetes namespace
 description: Create a kubernetes namespace

spec:
 type: service
 parameters:
 - title: Information

CHAPTER 10. KUBERNETES CUSTOM ACTIONS IN RED HAT DEVELOPER HUB

41

{customizing-book-url#configuring-templates}

 required: [namespace, token]
 properties:
 namespace:
 title: Namespace name
 type: string
 description: Name of the namespace to be created
 clusterRef:
 title: Cluster reference
 type: string
 description: Cluster resource entity reference from the catalog
 ui:field: EntityPicker
 ui:options:
 catalogFilter:
 kind: Resource
 url:
 title: Url
 type: string
 description: Url of the kubernetes API, will be used if clusterRef is not provided
 token:
 title: Token
 type: string
 ui:field: Secret
 description: Bearer token to authenticate with
 skipTLSVerify:
 title: Skip TLS verification
 type: boolean
 description: Skip TLS certificate verification, not recommended to use in production
environment, default to false
 caData:
 title: CA data
 type: string
 ui:field: Secret
 description: Certificate Authority base64 encoded certificate
 labels:
 title: Labels
 type: string
 description: Labels to be applied to the namespace
 ui:widget: textarea
 ui:options:
 rows: 3
 ui:help: 'Hint: Separate multiple labels with a semicolon!'
 ui:placeholder: 'kubernetes.io/type=namespace; app.io/managed-by=org'

 steps:
 - id: create-kubernetes-namespace
 name: Create kubernetes namespace
 action: kubernetes:create-namespace
 input:
 namespace: ${{ parameters.namespace }}
 clusterRef: ${{ parameters.clusterRef }}
 url: ${{ parameters.url }}
 token: ${{ secrets.token }}
 skipTLSVerify: ${{ parameters.skipTLSVerify }}
 caData: ${{ secrets.caData }}
 labels: ${{ parameters.labels }}

Red Hat Developer Hub 1.5 Configuring dynamic plugins

42

10.3.1. Supported Kubernetes custom actions in Red Hat Developer Hub

In Red Hat Developer Hub, you can use custom Kubernetes actions in scaffolder templates.

Custom Kubernetes scaffolder actions

Action: kubernetes:create-namespace

Creates a namespace for the Kubernetes cluster in the Developer Hub.

Parameter
name

Type Requiremen
t

Description Example

namespace string Required Name of the Kubernetes namespace my-rhdh-
project

clusterRef string Required
only if url is
not defined.
You cannot
specify both
url and
clusterRef.

Cluster resource entity reference from
the catalog

bar

url string Required
only if
clusterRef
is not
defined. You
cannot
specify both
url and
clusterRef.

API url of the Kubernetes cluster https://api.f
oo.redhat.c
om:6443

token String Required Kubernetes API bearer token used for
authentication

skipTLSVer
ify

boolean Optional If true, certificate verification is skipped false

caData string Optional Base64 encoded certificate data

label string Optional Labels applied to the namespace app.io/type=
ns;
app.io/mana
ged-by=org;

CHAPTER 10. KUBERNETES CUSTOM ACTIONS IN RED HAT DEVELOPER HUB

43

https://api.foo.redhat.com:6443

CHAPTER 11. OVERRIDING CORE BACKEND SERVICE
CONFIGURATION

The Red Hat Developer Hub (RHDH) backend platform consists of a number of core services that are
well encapsulated. The RHDH backend installs these default core services statically during initialization.

You can configure these core services by customizing the backend source code and rebuilding your
Developer Hub application. Alternatively, you can customize a core service by installing it as a
BackendFeature by using dynamic plugin functionality.

To use the dynamic plugin functionality to customize a core service in your RHDH application, you must
configure the backend to avoid statically installing a given default core service.

For example, adding a middleware function to handle all incoming requests can be done by installing a
custom configure function for the root HTTP router backend service which allows access to the
underlying Express application.

Example of a BackendFeature middleware function to handle incoming HTTP requests

In the above example, as the BackendFeature overrides the default implementation of the HTTP router
service, you must set the ENABLE_CORE_ROOTHTTPROUTER_OVERRIDE environment variable to
true so that the Developer Hub does not install the default implementation automatically.

11.1. OVERRIDING ENVIRONMENT VARIABLES

To allow a dynamic plugin to load a core service override, you must start the Developer Hub backend
with the corresponding core service ID environment variable set to true.

Table 11.1. Environment variables and core service IDs

// Create the BackendFeature
export const customRootHttpServerFactory: BackendFeature =
 rootHttpRouterServiceFactory({
 configure: ({ app, routes, middleware, logger }) => {
 logger.info(
 'Using custom root HttpRouterServiceFactory configure function',
);
 app.use(middleware.helmet());
 app.use(middleware.cors());
 app.use(middleware.compression());
 app.use(middleware.logging());
 // Add a the custom middleware function before all
 // of the route handlers
 app.use(addTestHeaderMiddleware({ logger }));
 app.use(routes);
 app.use(middleware.notFound());
 app.use(middleware.error());
 },
 });

// Export the BackendFeature as the default entrypoint
export default customRootHttpServerFactory;

Red Hat Developer Hub 1.5 Configuring dynamic plugins

44

Variable Description

ENABLE_CORE_AUTH_OVERRIDE Override the core.auth service

ENABLE_CORE_CACHE_OVERRIDE Override the core.cache service

ENABLE_CORE_ROOTCONFIG_OVERRIDE Override the core.rootConfig service

ENABLE_CORE_DATABASE_OVERRIDE Override the core.database service

ENABLE_CORE_DISCOVERY_OVERRIDE Override the core.discovery service

ENABLE_CORE_HTTPAUTH_OVERRIDE Override the core.httpAuth service

ENABLE_CORE_HTTPROUTER_OVERRIDE Override the core.httpRouter service

ENABLE_CORE_LIFECYCLE_OVERRIDE Override the core.lifecycle service

ENABLE_CORE_LOGGER_OVERRIDE Override the core.logger service

ENABLE_CORE_PERMISSIONS_OVERRIDE Override the core.permissions service

ENABLE_CORE_ROOTHEALTH_OVERRIDE Override the core.rootHealth service

ENABLE_CORE_ROOTHTTPROUTER_OVER
RIDE

Override the core.rootHttpRouter service

ENABLE_CORE_ROOTLIFECYCLE_OVERRI
DE

Override the core.rootLifecycle service

ENABLE_CORE_SCHEDULER_OVERRIDE Override the core.scheduler service

ENABLE_CORE_USERINFO_OVERRIDE Override the core.userInfo service

ENABLE_CORE_URLREADER_OVERRIDE Override the core.urlReader service

ENABLE_EVENTS_SERVICE_OVERRIDE Override the events.service service

CHAPTER 11. OVERRIDING CORE BACKEND SERVICE CONFIGURATION

45

	Table of Contents
	CHAPTER 1. INSTALLING ANSIBLE PLUG-INS FOR RED HAT DEVELOPER HUB
	CHAPTER 2. ENABLING THE ARGO CD PLUGIN
	2.1. ENABLING ARGO CD ROLLOUTS

	CHAPTER 3. INSTALLING AND CONFIGURING THE JFROG ARTIFACTORY PLUGIN
	3.1. INSTALLATION
	3.2. CONFIGURATION

	CHAPTER 4. INSTALLING AND CONFIGURING KEYCLOAK
	4.1. INSTALLATION
	4.2. BASIC CONFIGURATION
	4.3. ADVANCED CONFIGURATION
	4.4. LIMITATIONS

	CHAPTER 5. INSTALLING AND CONFIGURING THE NEXUS REPOSITORY MANAGER PLUGIN
	5.1. INSTALLATION
	5.2. CONFIGURATION

	CHAPTER 6. INSTALLING AND CONFIGURING THE TEKTON PLUGIN
	6.1. INSTALLATION

	CHAPTER 7. INSTALLING THE TOPOLOGY PLUGIN
	7.1. INSTALLATION
	7.2. CONFIGURING THE TOPOLOGY PLUGIN
	7.2.1. Viewing OpenShift routes
	7.2.2. Viewing pod logs
	7.2.3. Viewing Tekton PipelineRuns
	7.2.4. Viewing virtual machines
	7.2.5. Enabling the source code editor

	7.3. MANAGING LABELS AND ANNOTATIONS FOR TOPOLOGY PLUGINS
	7.3.1. Linking to the source code editor or the source
	7.3.2. Entity annotation/label
	7.3.3. Namespace annotation
	7.3.4. Label selector query annotation
	7.3.5. Icon displayed in the node
	7.3.6. App grouping
	7.3.7. Node connector

	CHAPTER 8. BULK IMPORTING GITHUB REPOSITORIES
	8.1. ENABLING AND GIVING ACCESS TO THE BULK IMPORT FEATURE
	8.2. IMPORTING MULTIPLE GITHUB REPOSITORIES
	8.3. MANAGING THE ADDED REPOSITORIES
	8.4. UNDERSTANDING THE BULK IMPORT AUDIT LOGS

	CHAPTER 9. SERVICENOW CUSTOM ACTIONS IN RED HAT DEVELOPER HUB
	9.1. ENABLING SERVICENOW CUSTOM ACTIONS PLUGIN IN RED HAT DEVELOPER HUB
	9.2. SUPPORTED SERVICENOW CUSTOM ACTIONS IN RED HAT DEVELOPER HUB
	9.2.1. ServiceNow custom actions

	CHAPTER 10. KUBERNETES CUSTOM ACTIONS IN RED HAT DEVELOPER HUB
	10.1. ENABLING KUBERNETES CUSTOM ACTIONS PLUGIN IN RED HAT DEVELOPER HUB
	10.2. USING KUBERNETES CUSTOM ACTIONS PLUGIN IN RED HAT DEVELOPER HUB
	10.3. CREATING A TEMPLATE USING KUBERNETES CUSTOM ACTIONS IN RED HAT DEVELOPER HUB
	10.3.1. Supported Kubernetes custom actions in Red Hat Developer Hub

	CHAPTER 11. OVERRIDING CORE BACKEND SERVICE CONFIGURATION
	11.1. OVERRIDING ENVIRONMENT VARIABLES

