
Red Hat Enterprise Linux 8

Monitoring and managing system status and
performance

Optimizing system throughput, latency, and power consumption

Last Updated: 2024-06-25

Red Hat Enterprise Linux 8 Monitoring and managing system status and
performance

Optimizing system throughput, latency, and power consumption

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Monitor and optimize the throughput, latency, and power consumption of Red Hat Enterprise Linux
8 in different scenarios.

. .

. .

. .

. .

. .

Table of Contents

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

CHAPTER 1. OVERVIEW OF PERFORMANCE MONITORING OPTIONS

CHAPTER 2. GETTING STARTED WITH TUNED
2.1. THE PURPOSE OF TUNED
2.2. TUNED PROFILES

Syntax of profile configuration
2.3. THE DEFAULT TUNED PROFILE
2.4. MERGED TUNED PROFILES
2.5. THE LOCATION OF TUNED PROFILES
2.6. TUNED PROFILES DISTRIBUTED WITH RHEL
2.7. TUNED CPU-PARTITIONING PROFILE
2.8. USING THE TUNED CPU-PARTITIONING PROFILE FOR LOW-LATENCY TUNING
2.9. CUSTOMIZING THE CPU-PARTITIONING TUNED PROFILE
2.10. REAL-TIME TUNED PROFILES DISTRIBUTED WITH RHEL
2.11. STATIC AND DYNAMIC TUNING IN TUNED
2.12. TUNED NO-DAEMON MODE
2.13. INSTALLING AND ENABLING TUNED
2.14. LISTING AVAILABLE TUNED PROFILES
2.15. SETTING A TUNED PROFILE
2.16. USING THE TUNED D-BUS INTERFACE

2.16.1. Using the TuneD D-Bus interface to show available TuneD D-Bus API methods
2.16.2. Using the TuneD D-Bus interface to change the active TuneD profile

2.17. DISABLING TUNED

CHAPTER 3. CUSTOMIZING TUNED PROFILES
3.1. TUNED PROFILES

Syntax of profile configuration
3.2. THE DEFAULT TUNED PROFILE
3.3. MERGED TUNED PROFILES
3.4. THE LOCATION OF TUNED PROFILES
3.5. INHERITANCE BETWEEN TUNED PROFILES
3.6. STATIC AND DYNAMIC TUNING IN TUNED
3.7. TUNED PLUG-INS

Syntax for plug-ins in TuneD profiles
Short plug-in syntax
Conflicting plug-in definitions in a profile

3.8. AVAILABLE TUNED PLUG-INS
Monitoring plug-ins
Tuning plug-ins

3.9. FUNCTIONALITIES OF THE SCHEDULER TUNED PLUGIN
3.10. VARIABLES IN TUNED PROFILES
3.11. BUILT-IN FUNCTIONS IN TUNED PROFILES
3.12. BUILT-IN FUNCTIONS AVAILABLE IN TUNED PROFILES
3.13. CREATING NEW TUNED PROFILES
3.14. MODIFYING EXISTING TUNED PROFILES
3.15. SETTING THE DISK SCHEDULER USING TUNED

CHAPTER 4. REVIEWING A SYSTEM USING TUNA INTERFACE
4.1. INSTALLING THE TUNA TOOL
4.2. VIEWING THE SYSTEM STATUS USING TUNA TOOL

10

11

13
13
13
13
14
14
15
15
17
18
19

20
20
21
21
22
23
24
24
25
26

27
27
27
27
28
28
29
29
30
31
31
32
32
32
32
37
42
42
43
44
45
46

49
49
49

Table of Contents

1

. .

. .

. .

. .

. .

. .

4.3. TUNING CPUS USING TUNA TOOL
4.4. TUNING IRQS USING TUNA TOOL

CHAPTER 5. MONITORING PERFORMANCE USING RHEL SYSTEM ROLES
5.1. PREPARING A CONTROL NODE AND MANAGED NODES TO USE RHEL SYSTEM ROLES

5.1.1. Preparing a control node on RHEL 8
5.1.2. Preparing a managed node

5.2. INTRODUCTION TO THE METRICS RHEL SYSTEM ROLE
5.3. USING THE METRICS RHEL SYSTEM ROLE TO MONITOR YOUR LOCAL SYSTEM WITH VISUALIZATION

5.4. USING THE METRICS RHEL SYSTEM ROLE TO SET UP A FLEET OF INDIVIDUAL SYSTEMS TO MONITOR
THEMSELVES
5.5. USING THE METRICS RHEL SYSTEM ROLE TO MONITOR A FLEET OF MACHINES CENTRALLY USING
YOUR LOCAL MACHINE
5.6. SETTING UP AUTHENTICATION WHILE MONITORING A SYSTEM BY USING THE METRICS RHEL
SYSTEM ROLE
5.7. USING THE METRICS RHEL SYSTEM ROLE TO CONFIGURE AND ENABLE METRICS COLLECTION FOR
SQL SERVER

CHAPTER 6. SETTING UP PCP
6.1. OVERVIEW OF PCP
6.2. INSTALLING AND ENABLING PCP
6.3. DEPLOYING A MINIMAL PCP SETUP
6.4. SYSTEM SERVICES AND TOOLS DISTRIBUTED WITH PCP
6.5. PCP DEPLOYMENT ARCHITECTURES
6.6. RECOMMENDED DEPLOYMENT ARCHITECTURE
6.7. SIZING FACTORS
6.8. CONFIGURATION OPTIONS FOR PCP SCALING
6.9. EXAMPLE: ANALYZING THE CENTRALIZED LOGGING DEPLOYMENT
6.10. EXAMPLE: ANALYZING THE FEDERATED SETUP DEPLOYMENT
6.11. TROUBLESHOOTING HIGH MEMORY USAGE

CHAPTER 7. LOGGING PERFORMANCE DATA WITH PMLOGGER
7.1. MODIFYING THE PMLOGGER CONFIGURATION FILE WITH PMLOGCONF
7.2. EDITING THE PMLOGGER CONFIGURATION FILE MANUALLY
7.3. ENABLING THE PMLOGGER SERVICE
7.4. SETTING UP A CLIENT SYSTEM FOR METRICS COLLECTION
7.5. SETTING UP A CENTRAL SERVER TO COLLECT DATA
7.6. SYSTEMD UNITS AND PMLOGGER
7.7. REPLAYING THE PCP LOG ARCHIVES WITH PMREP

CHAPTER 8. MONITORING PERFORMANCE WITH PERFORMANCE CO-PILOT
8.1. MONITORING POSTFIX WITH PMDA-POSTFIX
8.2. VISUALLY TRACING PCP LOG ARCHIVES WITH THE PCP CHARTS APPLICATION
8.3. COLLECTING DATA FROM SQL SERVER USING PCP

CHAPTER 9. PERFORMANCE ANALYSIS OF XFS WITH PCP
9.1. INSTALLING XFS PMDA MANUALLY
9.2. EXAMINING XFS PERFORMANCE METRICS WITH PMINFO
9.3. RESETTING XFS PERFORMANCE METRICS WITH PMSTORE
9.4. PCP METRIC GROUPS FOR XFS
9.5. PER-DEVICE PCP METRIC GROUPS FOR XFS

CHAPTER 10. SETTING UP GRAPHICAL REPRESENTATION OF PCP METRICS
10.1. SETTING UP PCP WITH PCP-ZEROCONF

50
52

54
54
54
56
59

59

60

61

62

63

66
66
66
67
68
71
75
75
76
76
77
78

81
81
81

82
83
84
85
87

89
89
90
92

95
95
96
97
98
99

102
102

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

2

. .

. .

. .

. .

10.2. SETTING UP A GRAFANA-SERVER
10.3. ACCESSING THE GRAFANA WEB UI
10.4. CONFIGURING PCP REDIS
10.5. CREATING PANELS AND ALERT IN PCP REDIS DATA SOURCE
10.6. ADDING NOTIFICATION CHANNELS FOR ALERTS
10.7. SETTING UP AUTHENTICATION BETWEEN PCP COMPONENTS
10.8. INSTALLING PCP BPFTRACE
10.9. VIEWING THE PCP BPFTRACE SYSTEM ANALYSIS DASHBOARD
10.10. INSTALLING PCP VECTOR
10.11. VIEWING THE PCP VECTOR CHECKLIST
10.12. USING HEATMAPS IN GRAFANA
10.13. TROUBLESHOOTING GRAFANA ISSUES

CHAPTER 11. OPTIMIZING THE SYSTEM PERFORMANCE USING THE WEB CONSOLE
11.1. PERFORMANCE TUNING OPTIONS IN THE WEB CONSOLE
11.2. SETTING A PERFORMANCE PROFILE IN THE WEB CONSOLE
11.3. MONITORING PERFORMANCE ON THE LOCAL SYSTEM USING THE WEB CONSOLE
11.4. MONITORING PERFORMANCE ON SEVERAL SYSTEMS USING THE WEB CONSOLE AND GRAFANA

CHAPTER 12. SETTING THE DISK SCHEDULER
12.1. AVAILABLE DISK SCHEDULERS
12.2. DIFFERENT DISK SCHEDULERS FOR DIFFERENT USE CASES
12.3. THE DEFAULT DISK SCHEDULER
12.4. DETERMINING THE ACTIVE DISK SCHEDULER
12.5. SETTING THE DISK SCHEDULER USING TUNED
12.6. SETTING THE DISK SCHEDULER USING UDEV RULES
12.7. TEMPORARILY SETTING A SCHEDULER FOR A SPECIFIC DISK

CHAPTER 13. TUNING THE PERFORMANCE OF A SAMBA SERVER
13.1. SETTING THE SMB PROTOCOL VERSION
13.2. TUNING SHARES WITH DIRECTORIES THAT CONTAIN A LARGE NUMBER OF FILES
13.3. SETTINGS THAT CAN HAVE A NEGATIVE PERFORMANCE IMPACT

CHAPTER 14. OPTIMIZING VIRTUAL MACHINE PERFORMANCE
14.1. WHAT INFLUENCES VIRTUAL MACHINE PERFORMANCE

The impact of virtualization on system performance
Reducing VM performance loss

14.2. OPTIMIZING VIRTUAL MACHINE PERFORMANCE BY USING TUNED
14.3. CONFIGURING VIRTUAL MACHINE MEMORY

14.3.1. Adding and removing virtual machine memory by using the web console
14.3.2. Adding and removing virtual machine memory by using the command-line interface
14.3.3. Additional resources

14.4. OPTIMIZING VIRTUAL MACHINE I/O PERFORMANCE
14.4.1. Tuning block I/O in virtual machines
14.4.2. Disk I/O throttling in virtual machines
14.4.3. Enabling multi-queue virtio-scsi

14.5. OPTIMIZING VIRTUAL MACHINE CPU PERFORMANCE
14.5.1. Adding and removing virtual CPUs by using the command-line interface
14.5.2. Managing virtual CPUs by using the web console
14.5.3. Configuring NUMA in a virtual machine
14.5.4. Sample vCPU performance tuning scenario
14.5.5. Deactivating kernel same-page merging

14.6. OPTIMIZING VIRTUAL MACHINE NETWORK PERFORMANCE
14.7. VIRTUAL MACHINE PERFORMANCE MONITORING TOOLS

102
103
105
106
108
109
110
111

112
113
114
116

118
118
118
119
121

124
124
125
125
125
126
128
129

130
130
130
131

132
132
132
132
133
134
134
135
137
137
137
138
139
140
140
141

142
144
150
151
152

Table of Contents

3

. .

. .

. .

. .

. .

. .

14.8. ADDITIONAL RESOURCES

CHAPTER 15. IMPORTANCE OF POWER MANAGEMENT
15.1. POWER MANAGEMENT BASICS
15.2. AUDIT AND ANALYSIS OVERVIEW
15.3. TOOLS FOR AUDITING

CHAPTER 16. MANAGING POWER CONSUMPTION WITH POWERTOP
16.1. THE PURPOSE OF POWERTOP
16.2. USING POWERTOP

16.2.1. Starting PowerTOP
16.2.2. Calibrating PowerTOP
16.2.3. Setting the measuring interval
16.2.4. Additional resources

16.3. POWERTOP STATISTICS
16.3.1. The Overview tab
16.3.2. The Idle stats tab
16.3.3. The Device stats tab
16.3.4. The Tunables tab
16.3.5. The WakeUp tab

16.4. WHY POWERTOP DOES NOT DISPLAY FREQUENCY STATS VALUES IN SOME INSTANCES
16.5. GENERATING AN HTML OUTPUT
16.6. OPTIMIZING POWER CONSUMPTION

16.6.1. Optimizing power consumption using the powertop service
16.6.2. The powertop2tuned utility
16.6.3. Optimizing power consumption using the powertop2tuned utility
16.6.4. Comparison of powertop.service and powertop2tuned

CHAPTER 17. TUNING CPU FREQUENCY TO OPTIMIZE ENERGY CONSUMPTION
17.1. SUPPORTED CPUPOWER TOOL COMMANDS
17.2. CPU IDLE STATES
17.3. OVERVIEW OF CPUFREQ

17.3.1. CPUfreq drivers
17.3.2. Core CPUfreq governors
17.3.3. Intel P-state CPUfreq governors
17.3.4. Setting up CPUfreq governor

CHAPTER 18. GETTING STARTED WITH PERF
18.1. INTRODUCTION TO PERF
18.2. INSTALLING PERF
18.3. COMMON PERF COMMANDS

CHAPTER 19. PROFILING CPU USAGE IN REAL TIME WITH PERF TOP
19.1. THE PURPOSE OF PERF TOP
19.2. PROFILING CPU USAGE WITH PERF TOP
19.3. INTERPRETATION OF PERF TOP OUTPUT
19.4. WHY PERF DISPLAYS SOME FUNCTION NAMES AS RAW FUNCTION ADDRESSES
19.5. ENABLING DEBUG AND SOURCE REPOSITORIES
19.6. GETTING DEBUGINFO PACKAGES FOR AN APPLICATION OR LIBRARY USING GDB

CHAPTER 20. COUNTING EVENTS DURING PROCESS EXECUTION WITH PERF STAT
20.1. THE PURPOSE OF PERF STAT
20.2. COUNTING EVENTS WITH PERF STAT
20.3. INTERPRETATION OF PERF STAT OUTPUT
20.4. ATTACHING PERF STAT TO A RUNNING PROCESS

154

155
155
156
157

161
161
161
161
161

162
162
162
162
163
163
163
163
164
165
165
165
165
165
166

167
167
168
169
169
170
171
172

174
174
174
174

176
176
176
177
177
177
178

180
180
180
181

182

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

4

. .

. .

. .

. .

. .

. .

. .

. .

. .

CHAPTER 21. RECORDING AND ANALYZING PERFORMANCE PROFILES WITH PERF
21.1. THE PURPOSE OF PERF RECORD
21.2. RECORDING A PERFORMANCE PROFILE WITHOUT ROOT ACCESS
21.3. RECORDING A PERFORMANCE PROFILE WITH ROOT ACCESS
21.4. RECORDING A PERFORMANCE PROFILE IN PER-CPU MODE
21.5. CAPTURING CALL GRAPH DATA WITH PERF RECORD
21.6. ANALYZING PERF.DATA WITH PERF REPORT
21.7. INTERPRETATION OF PERF REPORT OUTPUT
21.8. GENERATING A PERF.DATA FILE THAT IS READABLE ON A DIFFERENT DEVICE
21.9. ANALYZING A PERF.DATA FILE THAT WAS CREATED ON A DIFFERENT DEVICE
21.10. WHY PERF DISPLAYS SOME FUNCTION NAMES AS RAW FUNCTION ADDRESSES
21.11. ENABLING DEBUG AND SOURCE REPOSITORIES
21.12. GETTING DEBUGINFO PACKAGES FOR AN APPLICATION OR LIBRARY USING GDB

CHAPTER 22. INVESTIGATING BUSY CPUS WITH PERF
22.1. DISPLAYING WHICH CPU EVENTS WERE COUNTED ON WITH PERF STAT
22.2. DISPLAYING WHICH CPU SAMPLES WERE TAKEN ON WITH PERF REPORT
22.3. DISPLAYING SPECIFIC CPUS DURING PROFILING WITH PERF TOP
22.4. MONITORING SPECIFIC CPUS WITH PERF RECORD AND PERF REPORT

CHAPTER 23. MONITORING APPLICATION PERFORMANCE WITH PERF
23.1. ATTACHING PERF RECORD TO A RUNNING PROCESS
23.2. CAPTURING CALL GRAPH DATA WITH PERF RECORD
23.3. ANALYZING PERF.DATA WITH PERF REPORT

CHAPTER 24. CREATING UPROBES WITH PERF
24.1. CREATING UPROBES AT THE FUNCTION LEVEL WITH PERF
24.2. CREATING UPROBES ON LINES WITHIN A FUNCTION WITH PERF
24.3. PERF SCRIPT OUTPUT OF DATA RECORDED OVER UPROBES

CHAPTER 25. PROFILING MEMORY ACCESSES WITH PERF MEM
25.1. THE PURPOSE OF PERF MEM
25.2. SAMPLING MEMORY ACCESS WITH PERF MEM
25.3. INTERPRETATION OF PERF MEM REPORT OUTPUT

CHAPTER 26. DETECTING FALSE SHARING
26.1. THE PURPOSE OF PERF C2C
26.2. DETECTING CACHE-LINE CONTENTION WITH PERF C2C
26.3. VISUALIZING A PERF.DATA FILE RECORDED WITH PERF C2C RECORD
26.4. INTERPRETATION OF PERF C2C REPORT OUTPUT
26.5. DETECTING FALSE SHARING WITH PERF C2C

CHAPTER 27. GETTING STARTED WITH FLAMEGRAPHS
27.1. INSTALLING FLAMEGRAPHS
27.2. CREATING FLAMEGRAPHS OVER THE ENTIRE SYSTEM
27.3. CREATING FLAMEGRAPHS OVER SPECIFIC PROCESSES
27.4. INTERPRETING FLAMEGRAPHS

CHAPTER 28. MONITORING PROCESSES FOR PERFORMANCE BOTTLENECKS USING PERF CIRCULAR
BUFFERS

28.1. CIRCULAR BUFFERS AND EVENT-SPECIFIC SNAPSHOTS WITH PERF
28.2. COLLECTING SPECIFIC DATA TO MONITOR FOR PERFORMANCE BOTTLENECKS USING PERF
CIRCULAR BUFFERS

CHAPTER 29. ADDING AND REMOVING TRACEPOINTS FROM A RUNNING PERF COLLECTOR WITHOUT
STOPPING OR RESTARTING PERF

183
183
183
183
184
184
185
186
186
187
188
188
189

191
191
191

192
192

194
194
194
195

197
197
197
198

199
199
199
201

203
203
203
204
206
207

210
210
210
211
212

214
214

214

216

Table of Contents

5

. .

. .

. .

. .

. .

29.1. ADDING TRACEPOINTS TO A RUNNING PERF COLLECTOR WITHOUT STOPPING OR RESTARTING
PERF
29.2. REMOVING TRACEPOINTS FROM A RUNNING PERF COLLECTOR WITHOUT STOPPING OR
RESTARTING PERF

CHAPTER 30. PROFILING MEMORY ALLOCATION WITH NUMASTAT
30.1. DEFAULT NUMASTAT STATISTICS
30.2. VIEWING MEMORY ALLOCATION WITH NUMASTAT

CHAPTER 31. CONFIGURING AN OPERATING SYSTEM TO OPTIMIZE CPU UTILIZATION
31.1. TOOLS FOR MONITORING AND DIAGNOSING PROCESSOR ISSUES
31.2. TYPES OF SYSTEM TOPOLOGY

31.2.1. Displaying system topologies
31.3. CONFIGURING KERNEL TICK TIME
31.4. OVERVIEW OF AN INTERRUPT REQUEST

31.4.1. Balancing interrupts manually
31.4.2. Setting the smp_affinity mask

CHAPTER 32. TUNING SCHEDULING POLICY
32.1. CATEGORIES OF SCHEDULING POLICIES
32.2. STATIC PRIORITY SCHEDULING WITH SCHED_FIFO
32.3. ROUND ROBIN PRIORITY SCHEDULING WITH SCHED_RR
32.4. NORMAL SCHEDULING WITH SCHED_OTHER
32.5. SETTING SCHEDULER POLICIES
32.6. POLICY OPTIONS FOR THE CHRT COMMAND
32.7. CHANGING THE PRIORITY OF SERVICES DURING THE BOOT PROCESS
32.8. PRIORITY MAP
32.9. TUNED CPU-PARTITIONING PROFILE
32.10. USING THE TUNED CPU-PARTITIONING PROFILE FOR LOW-LATENCY TUNING
32.11. CUSTOMIZING THE CPU-PARTITIONING TUNED PROFILE

CHAPTER 33. FACTORS AFFECTING I/O AND FILE SYSTEM PERFORMANCE
33.1. TOOLS FOR MONITORING AND DIAGNOSING I/O AND FILE SYSTEM ISSUES
33.2. AVAILABLE TUNING OPTIONS FOR FORMATTING A FILE SYSTEM
33.3. AVAILABLE TUNING OPTIONS FOR MOUNTING A FILE SYSTEM
33.4. TYPES OF DISCARDING UNUSED BLOCKS
33.5. SOLID-STATE DISKS TUNING CONSIDERATIONS
33.6. GENERIC BLOCK DEVICE TUNING PARAMETERS

CHAPTER 34. TUNING THE NETWORK PERFORMANCE
34.1. TUNING NETWORK ADAPTER SETTINGS

34.1.1. Increasing the ring buffer size to reduce a high packet drop rate by using nmcli
34.1.2. Tuning the network device backlog queue to avoid packet drops
34.1.3. Increasing the transmit queue length of a NIC to reduce the number of transmit errors

34.2. TUNING IRQ BALANCING
34.2.1. Interrupts and interrupt handlers
34.2.2. Software interrupt requests
34.2.3. NAPI Polling
34.2.4. The irqbalance service
34.2.5. Increasing the time SoftIRQs can run on the CPU

34.3. IMPROVING THE NETWORK LATENCY
34.3.1. How the CPU power states influence the network latency
34.3.2. C-state settings in the EFI firmware
34.3.3. Disabling C-states by using a custom TuneD profile

216

217

218
218
218

220
220
221
221

223
225
225
226

228
228
228
229
229
229
230
231

232
233
234
235

237
237
239
240
241
241
242

244
244
244
245
247
248
248
248
249
249
250
251
251

252
252

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

6

. .

. .

. .

34.3.4. Disabling C-states by using a kernel command line option
34.4. IMPROVING THE THROUGHPUT OF LARGE AMOUNTS OF CONTIGUOUS DATA STREAMS

34.4.1. Considerations before configuring jumbo frames
34.4.2. Configuring the MTU in an existing NetworkManager connection profile

34.5. TUNING TCP CONNECTIONS FOR HIGH THROUGHPUT
34.5.1. Testing the TCP throughput using iperf3
34.5.2. The system-wide TCP socket buffer settings
34.5.3. Increasing the system-wide TCP socket buffers
34.5.4. TCP Window Scaling
34.5.5. How TCP SACK reduces the packet drop rate

34.6. TUNING UDP CONNECTIONS
34.6.1. Detecting packet drops
34.6.2. Testing the UDP throughput using iperf3
34.6.3. Impact of the MTU size on UDP traffic throughput
34.6.4. Impact of the CPU speed on UDP traffic throughput
34.6.5. Increasing the system-wide UDP socket buffers

34.7. IDENTIFYING APPLICATION READ SOCKET BUFFER BOTTLENECKS
34.7.1. Identifying receive buffer collapsing and pruning

34.8. TUNING APPLICATIONS WITH A LARGE NUMBER OF INCOMING REQUESTS
34.8.1. Tuning the TCP listen backlog to process a high number of TCP connection attempts

34.9. AVOIDING LISTEN QUEUE LOCK CONTENTION
34.9.1. Avoiding RX queue lock contention: The SO_REUSEPORT and SO_REUSEPORT_BPF socket options

34.9.2. Avoiding TX queue lock contention: Transmit packet steering
34.9.3. Disabling the Generic Receive Offload feature on servers with high UDP traffic

34.10. TUNING THE DEVICE DRIVER AND NIC
34.10.1. Configuring custom NIC driver parameters

34.11. CONFIGURING NETWORK ADAPTER OFFLOAD SETTINGS
34.11.1. Temporarily setting an offload feature
34.11.2. Permanently setting an offload feature

34.12. TUNING INTERRUPT COALESCENCE SETTINGS
34.12.1. Optimizing RHEL for latency or throughput-sensitive services

34.13. BENEFITS OF TCP TIMESTAMPS
34.14. FLOW CONTROL FOR ETHERNET NETWORKS

CHAPTER 35. CONFIGURING AN OPERATING SYSTEM TO OPTIMIZE MEMORY ACCESS
35.1. TOOLS FOR MONITORING AND DIAGNOSING SYSTEM MEMORY ISSUES
35.2. OVERVIEW OF A SYSTEM’S MEMORY
35.3. VIRTUAL MEMORY PARAMETERS
35.4. FILE SYSTEM PARAMETERS
35.5. KERNEL PARAMETERS
35.6. SETTING MEMORY-RELATED KERNEL PARAMETERS

CHAPTER 36. CONFIGURING HUGE PAGES
36.1. AVAILABLE HUGE PAGE FEATURES
36.2. PARAMETERS FOR RESERVING HUGETLB PAGES AT BOOT TIME
36.3. CONFIGURING HUGETLB AT BOOT TIME
36.4. PARAMETERS FOR RESERVING HUGETLB PAGES AT RUN TIME
36.5. CONFIGURING HUGETLB AT RUN TIME
36.6. ENABLING TRANSPARENT HUGEPAGES
36.7. DISABLING TRANSPARENT HUGEPAGES
36.8. IMPACT OF PAGE SIZE ON TRANSLATION LOOKASIDE BUFFER SIZE

CHAPTER 37. GETTING STARTED WITH SYSTEMTAP

253
255
255
256
257
257
259
259
261
262
262
263
264
266
266
267
268
268
269
269
271

271
272
274
275
276
277
278
279
280
280
284
284

286
286
286
287
290
291
291

293
293
294
294
296
296
297
298
298

300

Table of Contents

7

. .

. .

. .

. .

. .

37.1. THE PURPOSE OF SYSTEMTAP
37.2. INSTALLING SYSTEMTAP
37.3. PRIVILEGES TO RUN SYSTEMTAP
37.4. RUNNING SYSTEMTAP SCRIPTS

CHAPTER 38. CROSS-INSTRUMENTATION OF SYSTEMTAP
38.1. SYSTEMTAP CROSS-INSTRUMENTATION
38.2. INITIALIZING CROSS-INSTRUMENTATION OF SYSTEMTAP

CHAPTER 39. MONITORING NETWORK ACTIVITY WITH SYSTEMTAP
39.1. PROFILING NETWORK ACTIVITY WITH SYSTEMTAP
39.2. TRACING FUNCTIONS CALLED IN NETWORK SOCKET CODE WITH SYSTEMTAP
39.3. MONITORING NETWORK PACKET DROPS WITH SYSTEMTAP

CHAPTER 40. PROFILING KERNEL ACTIVITY WITH SYSTEMTAP
40.1. COUNTING FUNCTION CALLS WITH SYSTEMTAP
40.2. TRACING FUNCTION CALLS WITH SYSTEMTAP
40.3. DETERMINING TIME SPENT IN KERNEL AND USER SPACE WITH SYSTEMTAP
40.4. MONITORING POLLING APPLICATIONS WITH SYSTEMTAP
40.5. TRACKING MOST FREQUENTLY USED SYSTEM CALLS WITH SYSTEMTAP
40.6. TRACKING SYSTEM CALL VOLUME PER PROCESS WITH SYSTEMTAP

CHAPTER 41. MONITORING DISK AND I/O ACTIVITY WITH SYSTEMTAP
41.1. SUMMARIZING DISK READ/WRITE TRAFFIC WITH SYSTEMTAP
41.2. TRACKING I/O TIME FOR EACH FILE READ OR WRITE WITH SYSTEMTAP
41.3. TRACKING CUMULATIVE I/O WITH SYSTEMTAP
41.4. MONITORING I/O ACTIVITY ON A SPECIFIC DEVICE WITH SYSTEMTAP
41.5. MONITORING READS AND WRITES TO A FILE WITH SYSTEMTAP

CHAPTER 42. ANALYZING SYSTEM PERFORMANCE WITH BPF COMPILER COLLECTION
42.1. INSTALLING THE BCC-TOOLS PACKAGE
42.2. USING SELECTED BCC-TOOLS FOR PERFORMANCE ANALYSES

Using execsnoop to examine the system processes
Using opensnoop to track what files a command opens
Using biotop to examine the I/O operations on the disk
Using xfsslower to expose unexpectedly slow file system operations

300
300
301
302

303
303
304

306
306
307
308

309
309
310
311
312
313
313

315
315
316
316
317
318

320
320
320
320
321

322
323

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

8

Table of Contents

9

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
We appreciate your feedback on our documentation. Let us know how we can improve it.

Submitting feedback through Jira (account required)

1. Log in to the Jira website.

2. Click Create in the top navigation bar.

3. Enter a descriptive title in the Summary field.

4. Enter your suggestion for improvement in the Description field. Include links to the relevant
parts of the documentation.

5. Click Create at the bottom of the dialogue.

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

10

https://issues.redhat.com/projects/RHELDOCS/issues

CHAPTER 1. OVERVIEW OF PERFORMANCE MONITORING
OPTIONS

The following are some of the performance monitoring and configuration tools available in Red Hat
Enterprise Linux 8:

Performance Co-Pilot (pcp) is used for monitoring, visualizing, storing, and analyzing system-
level performance measurements. It allows the monitoring and management of real-time data,
and logging and retrieval of historical data.

Red Hat Enterprise Linux 8 provides several tools that can be used from the command line to
monitor a system outside run level 5. The following are the built-in command line tools:

top is provided by the procps-ng package. It gives a dynamic view of the processes in a
running system. It displays a variety of information, including a system summary and a list of
tasks currently being managed by the Linux kernel.

ps is provided by the procps-ng package. It captures a snapshot of a select group of active
processes. By default, the examined group is limited to processes that are owned by the
current user and associated with the terminal where the ps command is executed.

Virtual memory statistics (vmstat) is provided by the procps-ng package. It provides instant
reports of your system’s processes, memory, paging, block input/output, interrupts, and
CPU activity.

System activity reporter (sar) is provided by the sysstat package. It collects and reports
information about system activity that has occurred so far on the current day.

perf uses hardware performance counters and kernel trace-points to track the impact of other
commands and applications on a system.

bcc-tools is used for BPF Compiler Collection (BCC). It provides over 100 eBPF scripts that
monitor kernel activities. For more information about each of this tool, see the man page
describing how to use it and what functions it performs.

turbostat is provided by the kernel-tools package. It reports on processor topology, frequency,
idle power-state statistics, temperature, and power usage on the Intel 64 processors.

iostat is provided by the sysstat package. It monitors and reports on system IO device loading
to help administrators make decisions about how to balance IO load between physical disks.

irqbalance distributes hardware interrupts across processors to improve system performance.

ss prints statistical information about sockets, allowing administrators to assess device
performance over time. Red Hat recommends using ss over netstat in Red Hat
Enterprise Linux 8.

numastat is provided by the numactl package. By default, numastat displays per-node NUMA
hit an miss system statistics from the kernel memory allocator. Optimal performance is
indicated by high numa_hit values and low numa_miss values.

numad is an automatic NUMA affinity management daemon. It monitors NUMA topology and
resource usage within a system that dynamically improves NUMA resource allocation,
management, and therefore system performance.

SystemTap monitors and analyzes operating system activities, especially the kernel activities.

CHAPTER 1. OVERVIEW OF PERFORMANCE MONITORING OPTIONS

11

valgrind analyzes applications by running it on a synthetic CPU and instrumenting existing
application code as it is executed. It then prints commentary that clearly identifies each process
involved in application execution to a user-specified file, file descriptor, or network socket. It is
also useful for finding memory leaks.

pqos is provided by the intel-cmt-cat package. It monitors and controls CPU cache and memory
bandwidth on recent Intel processors.

Additional resources

pcp, top, ps, vmstat, sar, perf, iostat, irqbalance, ss, numastat, numad, valgrind, and pqos
man pages

/usr/share/doc/ directory

What exactly is the meaning of value "await" reported by iostat? Red Hat Knowledgebase article

Monitoring performance with Performance Co-Pilot

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

12

https://access.redhat.com/articles/524353
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/monitoring_and_managing_system_status_and_performance/index#monitoring-performance-with-performance-co-pilot_monitoring-and-managing-system-status-and-performance

CHAPTER 2. GETTING STARTED WITH TUNED
As a system administrator, you can use the TuneD application to optimize the performance profile of
your system for a variety of use cases.

2.1. THE PURPOSE OF TUNED

TuneD is a service that monitors your system and optimizes the performance under certain workloads.
The core of TuneD are profiles, which tune your system for different use cases.

TuneD is distributed with a number of predefined profiles for use cases such as:

High throughput

Low latency

Saving power

It is possible to modify the rules defined for each profile and customize how to tune a particular device.
When you switch to another profile or deactivate TuneD, all changes made to the system settings by the
previous profile revert back to their original state.

You can also configure TuneD to react to changes in device usage and adjusts settings to improve
performance of active devices and reduce power consumption of inactive devices.

2.2. TUNED PROFILES

A detailed analysis of a system can be very time-consuming. TuneD provides a number of predefined
profiles for typical use cases. You can also create, modify, and delete profiles.

The profiles provided with TuneD are divided into the following categories:

Power-saving profiles

Performance-boosting profiles

The performance-boosting profiles include profiles that focus on the following aspects:

Low latency for storage and network

High throughput for storage and network

Virtual machine performance

Virtualization host performance

Syntax of profile configuration
The tuned.conf file can contain one [main] section and other sections for configuring plug-in instances.
However, all sections are optional.

Lines starting with the hash sign (#) are comments.

Additional resources

tuned.conf(5) man page.

CHAPTER 2. GETTING STARTED WITH TUNED

13

2.3. THE DEFAULT TUNED PROFILE

During the installation, the best profile for your system is selected automatically. Currently, the default
profile is selected according to the following customizable rules:

Environment Default profile Goal

Compute nodes throughput-performance The best throughput performance

Virtual machines virtual-guest The best performance. If you are not
interested in the best performance, you can
change it to the balanced or powersave
profile.

Other cases balanced Balanced performance and power
consumption

Additional resources

tuned.conf(5) man page.

2.4. MERGED TUNED PROFILES

As an experimental feature, it is possible to select more profiles at once. TuneD will try to merge them
during the load.

If there are conflicts, the settings from the last specified profile takes precedence.

Example 2.1. Low power consumption in a virtual guest

The following example optimizes the system to run in a virtual machine for the best performance and
concurrently tunes it for low power consumption, while the low power consumption is the priority:

tuned-adm profile virtual-guest powersave

WARNING

Merging is done automatically without checking whether the resulting combination
of parameters makes sense. Consequently, the feature might tune some
parameters the opposite way, which might be counterproductive: for example,
setting the disk for high throughput by using the throughput-performance profile
and concurrently setting the disk spindown to the low value by the spindown-disk
profile.

Additional resources



Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

14

*tuned-adm man page. * tuned.conf(5) man page.

2.5. THE LOCATION OF TUNED PROFILES

TuneD stores profiles in the following directories:

/usr/lib/tuned/

Distribution-specific profiles are stored in the directory. Each profile has its own directory. The profile
consists of the main configuration file called tuned.conf, and optionally other files, for example
helper scripts.

/etc/tuned/

If you need to customize a profile, copy the profile directory into the directory, which is used for
custom profiles. If there are two profiles of the same name, the custom profile located in /etc/tuned/
is used.

Additional resources

tuned.conf(5) man page.

2.6. TUNED PROFILES DISTRIBUTED WITH RHEL

The following is a list of profiles that are installed with TuneD on Red Hat Enterprise Linux.

NOTE

There might be more product-specific or third-party TuneD profiles available. Such
profiles are usually provided by separate RPM packages.

balanced

The default power-saving profile. It is intended to be a compromise between performance and power
consumption. It uses auto-scaling and auto-tuning whenever possible. The only drawback is the
increased latency. In the current TuneD release, it enables the CPU, disk, audio, and video plugins,
and activates the conservative CPU governor. The radeon_powersave option uses the dpm-
balanced value if it is supported, otherwise it is set to auto.
It changes the energy_performance_preference attribute to the normal energy setting. It also
changes the scaling_governor policy attribute to either the conservative or powersave CPU
governor.

powersave

A profile for maximum power saving performance. It can throttle the performance in order to
minimize the actual power consumption. In the current TuneD release it enables USB autosuspend,
WiFi power saving, and Aggressive Link Power Management (ALPM) power savings for SATA host
adapters. It also schedules multi-core power savings for systems with a low wakeup rate and
activates the ondemand governor. It enables AC97 audio power saving or, depending on your
system, HDA-Intel power savings with a 10 seconds timeout. If your system contains a supported
Radeon graphics card with enabled KMS, the profile configures it to automatic power saving. On
ASUS Eee PCs, a dynamic Super Hybrid Engine is enabled.
It changes the energy_performance_preference attribute to the powersave or power energy
setting. It also changes the scaling_governor policy attribute to either the ondemand or
powersave CPU governor.

NOTE

CHAPTER 2. GETTING STARTED WITH TUNED

15

NOTE

In certain cases, the balanced profile is more efficient compared to the powersave
profile.

Consider there is a defined amount of work that needs to be done, for example a video
file that needs to be transcoded. Your machine might consume less energy if the
transcoding is done on the full power, because the task is finished quickly, the
machine starts to idle, and it can automatically step-down to very efficient power save
modes. On the other hand, if you transcode the file with a throttled machine, the
machine consumes less power during the transcoding, but the process takes longer
and the overall consumed energy can be higher.

That is why the balanced profile can be generally a better option.

throughput-performance

A server profile optimized for high throughput. It disables power savings mechanisms and enables
sysctl settings that improve the throughput performance of the disk and network IO. CPU governor
is set to performance.
It changes the energy_performance_preference and scaling_governor attribute to the
performance profile.

accelerator-performance

The accelerator-performance profile contains the same tuning as the throughput-performance
profile. Additionally, it locks the CPU to low C states so that the latency is less than 100us. This
improves the performance of certain accelerators, such as GPUs.

latency-performance

A server profile optimized for low latency. It disables power savings mechanisms and enables sysctl
settings that improve latency. CPU governor is set to performance and the CPU is locked to the low
C states (by PM QoS).
It changes the energy_performance_preference and scaling_governor attribute to the
performance profile.

network-latency

A profile for low latency network tuning. It is based on the latency-performance profile. It
additionally disables transparent huge pages and NUMA balancing, and tunes several other network-
related sysctl parameters.
It inherits the latency-performance profile which changes the energy_performance_preference
and scaling_governor attribute to the performance profile.

hpc-compute

A profile optimized for high-performance computing. It is based on the latency-performance
profile.

network-throughput

A profile for throughput network tuning. It is based on the throughput-performance profile. It
additionally increases kernel network buffers.
It inherits either the latency-performance or throughput-performance profile, and changes the
energy_performance_preference and scaling_governor attribute to the performance profile.

virtual-guest

A profile designed for Red Hat Enterprise Linux 8 virtual machines and VMWare guests based on the

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

16

A profile designed for Red Hat Enterprise Linux 8 virtual machines and VMWare guests based on the
throughput-performance profile that, among other tasks, decreases virtual memory swappiness and
increases disk readahead values. It does not disable disk barriers.
It inherits the throughput-performance profile and changes the energy_performance_preference
and scaling_governor attribute to the performance profile.

virtual-host

A profile designed for virtual hosts based on the throughput-performance profile that, among other
tasks, decreases virtual memory swappiness, increases disk readahead values, and enables a more
aggressive value of dirty pages writeback.
It inherits the throughput-performance profile and changes the energy_performance_preference
and scaling_governor attribute to the performance profile.

oracle

A profile optimized for Oracle databases loads based on throughput-performance profile. It
additionally disables transparent huge pages and modifies other performance-related kernel
parameters. This profile is provided by the tuned-profiles-oracle package.

desktop

A profile optimized for desktops, based on the balanced profile. It additionally enables scheduler
autogroups for better response of interactive applications.

optimize-serial-console

A profile that tunes down I/O activity to the serial console by reducing the printk value. This should
make the serial console more responsive. This profile is intended to be used as an overlay on other
profiles. For example:

tuned-adm profile throughput-performance optimize-serial-console

mssql

A profile provided for Microsoft SQL Server. It is based on the throughput-performance profile.

intel-sst

A profile optimized for systems with user-defined Intel Speed Select Technology configurations. This
profile is intended to be used as an overlay on other profiles. For example:

tuned-adm profile cpu-partitioning intel-sst

2.7. TUNED CPU-PARTITIONING PROFILE

For tuning Red Hat Enterprise Linux 8 for latency-sensitive workloads, Red Hat recommends to use the
cpu-partitioning TuneD profile.

Prior to Red Hat Enterprise Linux 8, the low-latency Red Hat documentation described the numerous
low-level steps needed to achieve low-latency tuning. In Red Hat Enterprise Linux 8, you can perform
low-latency tuning more efficiently by using the cpu-partitioning TuneD profile. This profile is easily
customizable according to the requirements for individual low-latency applications.

The following figure is an example to demonstrate how to use the cpu-partitioning profile. This
example uses the CPU and node layout.

Figure 2.1. Figure cpu-partitioning

CHAPTER 2. GETTING STARTED WITH TUNED

17

Figure 2.1. Figure cpu-partitioning

You can configure the cpu-partitioning profile in the /etc/tuned/cpu-partitioning-variables.conf file
using the following configuration options:

Isolated CPUs with load balancing

In the cpu-partitioning figure, the blocks numbered from 4 to 23, are the default isolated CPUs. The
kernel scheduler’s process load balancing is enabled on these CPUs. It is designed for low-latency
processes with multiple threads that need the kernel scheduler load balancing.
You can configure the cpu-partitioning profile in the /etc/tuned/cpu-partitioning-variables.conf file
using the isolated_cores=cpu-list option, which lists CPUs to isolate that will use the kernel
scheduler load balancing.

The list of isolated CPUs is comma-separated or you can specify a range using a dash, such as 3-5.
This option is mandatory. Any CPU missing from this list is automatically considered a housekeeping
CPU.

Isolated CPUs without load balancing

In the cpu-partitioning figure, the blocks numbered 2 and 3, are the isolated CPUs that do not
provide any additional kernel scheduler process load balancing.
You can configure the cpu-partitioning profile in the /etc/tuned/cpu-partitioning-variables.conf file
using the no_balance_cores=cpu-list option, which lists CPUs to isolate that will not use the kernel
scheduler load balancing.

Specifying the no_balance_cores option is optional, however any CPUs in this list must be a subset
of the CPUs listed in the isolated_cores list.

Application threads using these CPUs need to be pinned individually to each CPU.

Housekeeping CPUs

Any CPU not isolated in the cpu-partitioning-variables.conf file is automatically considered a
housekeeping CPU. On the housekeeping CPUs, all services, daemons, user processes, movable
kernel threads, interrupt handlers, and kernel timers are permitted to execute.

Additional resources

tuned-profiles-cpu-partitioning(7) man page

2.8. USING THE TUNED CPU-PARTITIONING PROFILE FOR LOW-
LATENCY TUNING

This procedure describes how to tune a system for low-latency using the TuneD’s cpu-partitioning

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

18

This procedure describes how to tune a system for low-latency using the TuneD’s cpu-partitioning
profile. It uses the example of a low-latency application that can use cpu-partitioning and the CPU
layout as mentioned in the cpu-partitioning figure.

The application in this case uses:

One dedicated reader thread that reads data from the network will be pinned to CPU 2.

A large number of threads that process this network data will be pinned to CPUs 4-23.

A dedicated writer thread that writes the processed data to the network will be pinned to CPU
3.

Prerequisites

You have installed the cpu-partitioning TuneD profile by using the yum install tuned-profiles-
cpu-partitioning command as root.

Procedure

1. Edit /etc/tuned/cpu-partitioning-variables.conf file and add the following information:

All isolated CPUs:
isolated_cores=2-23
Isolated CPUs without the kernel’s scheduler load balancing:
no_balance_cores=2,3

2. Set the cpu-partitioning TuneD profile:

tuned-adm profile cpu-partitioning

3. Reboot
After rebooting, the system is tuned for low-latency, according to the isolation in the cpu-
partitioning figure. The application can use taskset to pin the reader and writer threads to CPUs
2 and 3, and the remaining application threads on CPUs 4-23.

Additional resources

tuned-profiles-cpu-partitioning(7) man page

2.9. CUSTOMIZING THE CPU-PARTITIONING TUNED PROFILE

You can extend the TuneD profile to make additional tuning changes.

For example, the cpu-partitioning profile sets the CPUs to use cstate=1. In order to use the cpu-
partitioning profile but to additionally change the CPU cstate from cstate1 to cstate0, the following
procedure describes a new TuneD profile named my_profile, which inherits the cpu-partitioning profile
and then sets C state-0.

Procedure

1. Create the /etc/tuned/my_profile directory:

mkdir /etc/tuned/my_profile

CHAPTER 2. GETTING STARTED WITH TUNED

19

2. Create a tuned.conf file in this directory, and add the following content:

vi /etc/tuned/my_profile/tuned.conf
[main]
summary=Customized tuning on top of cpu-partitioning
include=cpu-partitioning
[cpu]
force_latency=cstate.id:0|1

3. Use the new profile:

tuned-adm profile my_profile

NOTE

In the shared example, a reboot is not required. However, if the changes in the my_profile
profile require a reboot to take effect, then reboot your machine.

Additional resources

tuned-profiles-cpu-partitioning(7) man page

2.10. REAL-TIME TUNED PROFILES DISTRIBUTED WITH RHEL

Real-time profiles are intended for systems running the real-time kernel. Without a special kernel build,
they do not configure the system to be real-time. On RHEL, the profiles are available from additional
repositories.

The following real-time profiles are available:

realtime

Use on bare-metal real-time systems.
Provided by the tuned-profiles-realtime package, which is available from the RT or NFV repositories.

realtime-virtual-host

Use in a virtualization host configured for real-time.
Provided by the tuned-profiles-nfv-host package, which is available from the NFV repository.

realtime-virtual-guest

Use in a virtualization guest configured for real-time.
Provided by the tuned-profiles-nfv-guest package, which is available from the NFV repository.

2.11. STATIC AND DYNAMIC TUNING IN TUNED

Understanding the difference between the two categories of system tuning that TuneD applies, static
and dynamic, is important when determining which one to use for a given situation or purpose.

Static tuning

Mainly consists of the application of predefined sysctl and sysfs settings and one-shot activation of
several configuration tools such as ethtool.

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

20

Dynamic tuning

Watches how various system components are used throughout the uptime of your system. TuneD
adjusts system settings dynamically based on that monitoring information.
For example, the hard drive is used heavily during startup and login, but is barely used later when the
user might mainly work with applications such as web browsers or email clients. Similarly, the CPU
and network devices are used differently at different times. TuneD monitors the activity of these
components and reacts to the changes in their use.

By default, dynamic tuning is disabled. To enable it, edit the /etc/tuned/tuned-main.conf file and
change the dynamic_tuning option to 1. TuneD then periodically analyzes system statistics and
uses them to update your system tuning settings. To configure the time interval in seconds between
these updates, use the update_interval option.

Currently implemented dynamic tuning algorithms try to balance the performance and powersave,
and are therefore disabled in the performance profiles. Dynamic tuning for individual plug-ins can be
enabled or disabled in the TuneD profiles.

Example 2.2. Static and dynamic tuning on a workstation

On a typical office workstation, the Ethernet network interface is inactive most of the time. Only a
few emails go in and out or some web pages might be loaded.

For those kinds of loads, the network interface does not have to run at full speed all the time, as it
does by default. TuneD has a monitoring and tuning plug-in for network devices that can detect this
low activity and then automatically lower the speed of that interface, typically resulting in a lower
power usage.

If the activity on the interface increases for a longer period of time, for example because a DVD
image is being downloaded or an email with a large attachment is opened, TuneD detects this and
sets the interface speed to maximum to offer the best performance while the activity level is high.

This principle is used for other plug-ins for CPU and disks as well.

2.12. TUNED NO-DAEMON MODE

You can run TuneD in no-daemon mode, which does not require any resident memory. In this mode,
TuneD applies the settings and exits.

By default, no-daemon mode is disabled because a lot of TuneD functionality is missing in this mode,
including:

D-Bus support

Hot-plug support

Rollback support for settings

To enable no-daemon mode, include the following line in the /etc/tuned/tuned-main.conf file:

daemon = 0

2.13. INSTALLING AND ENABLING TUNED

CHAPTER 2. GETTING STARTED WITH TUNED

21

This procedure installs and enables the TuneD application, installs TuneD profiles, and presets a default
TuneD profile for your system.

Procedure

1. Install the TuneD package:

yum install tuned

2. Enable and start the TuneD service:

systemctl enable --now tuned

3. Optionally, install TuneD profiles for real-time systems:
For the TuneD profiles for real-time systems enable rhel-8 repository.

subscription-manager repos --enable=rhel-8-for-x86_64-nfv-beta-rpms

Install it.

yum install tuned-profiles-realtime tuned-profiles-nfv

4. Verify that a TuneD profile is active and applied:

$ tuned-adm active

Current active profile: throughput-performance

NOTE

The active profile TuneD automatically presets differs based on your machine
type and system settings.

$ tuned-adm verify

Verification succeeded, current system settings match the preset profile.
See tuned log file ('/var/log/tuned/tuned.log') for details.

2.14. LISTING AVAILABLE TUNED PROFILES

This procedure lists all TuneD profiles that are currently available on your system.

Procedure

To list all available TuneD profiles on your system, use:

$ tuned-adm list

Available profiles:
- accelerator-performance - Throughput performance based tuning with disabled higher
latency STOP states

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

22

- balanced - General non-specialized TuneD profile
- desktop - Optimize for the desktop use-case
- latency-performance - Optimize for deterministic performance at the cost of increased
power consumption
- network-latency - Optimize for deterministic performance at the cost of increased
power consumption, focused on low latency network performance
- network-throughput - Optimize for streaming network throughput, generally only
necessary on older CPUs or 40G+ networks
- powersave - Optimize for low power consumption
- throughput-performance - Broadly applicable tuning that provides excellent performance
across a variety of common server workloads
- virtual-guest - Optimize for running inside a virtual guest
- virtual-host - Optimize for running KVM guests
Current active profile: balanced

To display only the currently active profile, use:

$ tuned-adm active

Current active profile: throughput-performance

Additional resources

tuned-adm(8) man page.

2.15. SETTING A TUNED PROFILE

This procedure activates a selected TuneD profile on your system.

Prerequisites

The TuneD service is running. See Installing and Enabling TuneD for details.

Procedure

1. Optionally, you can let TuneD recommend the most suitable profile for your system:

tuned-adm recommend

throughput-performance

2. Activate a profile:

tuned-adm profile selected-profile

Alternatively, you can activate a combination of multiple profiles:

tuned-adm profile selected-profile1 selected-profile2

Example 2.3. A virtual machine optimized for low power consumption

The following example optimizes the system to run in a virtual machine with the best

CHAPTER 2. GETTING STARTED WITH TUNED

23

The following example optimizes the system to run in a virtual machine with the best
performance and concurrently tunes it for low power consumption, while the low power
consumption is the priority:

tuned-adm profile virtual-guest powersave

3. View the current active TuneD profile on your system:

tuned-adm active

Current active profile: selected-profile

4. Reboot the system:

reboot

Verification steps

Verify that the TuneD profile is active and applied:

$ tuned-adm verify

Verification succeeded, current system settings match the preset profile.
See tuned log file ('/var/log/tuned/tuned.log') for details.

Additional resources

tuned-adm(8) man page

2.16. USING THE TUNED D-BUS INTERFACE

You can directly communicate with TuneD at runtime through the TuneD D-Bus interface to control a
variety of TuneD services.

You can use the busctl or dbus-send commands to access the D-Bus API.

NOTE

Although you can use either the busctl or dbus-send command, the busctl command is
a part of systemd and, therefore, present on most hosts already.

2.16.1. Using the TuneD D-Bus interface to show available TuneD D-Bus API
methods

You can see the D-Bus API methods available to use with TuneD by using the TuneD D-Bus interface.

Prerequisites

The TuneD service is running. See Installing and Enabling TuneD for details.

Procedure

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

24

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/getting-started-with-tuned_monitoring-and-managing-system-status-and-performance#installing-and-enabling-tuned_getting-started-with-tuned

To see the available TuneD API methods, run:

$ busctl introspect com.redhat.tuned /Tuned com.redhat.tuned.control

The output should look similar to the following:

NAME TYPE SIGNATURE RESULT/VALUE FLAGS
.active_profile method - s -
.auto_profile method - (bs) -
.disable method - b -
.get_all_plugins method - a{sa{ss}} -
.get_plugin_documentation method s s -
.get_plugin_hints method s a{ss} -
.instance_acquire_devices method ss (bs) -
.is_running method - b -
.log_capture_finish method s s -
.log_capture_start method ii s -
.post_loaded_profile method - s -
.profile_info method s (bsss) -
.profile_mode method - (ss) -
.profiles method - as -
.profiles2 method - a(ss) -
.recommend_profile method - s -
.register_socket_signal_path method s b -
.reload method - b -
.start method - b -
.stop method - b -
.switch_profile method s (bs) -
.verify_profile method - b -
.verify_profile_ignore_missing method - b -
.profile_changed signal sbs - -

You can find descriptions of the different available methods in the TuneD upstream repository .

2.16.2. Using the TuneD D-Bus interface to change the active TuneD profile

You can replace the active TuneD profile with your desired TuneD profile by using the TuneD D-Bus
interface.

Prerequisites

The TuneD service is running. See Installing and Enabling TuneD for details.

Procedure

To change the active TuneD profile, run:

$ busctl call com.redhat.tuned /Tuned com.redhat.tuned.control switch_profile s profile
(bs) true "OK"

Replace profile with the name of your desired profile.

Verification

CHAPTER 2. GETTING STARTED WITH TUNED

25

https://github.com/redhat-performance/tuned/blob/master/com.redhat.tuned.policy
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/getting-started-with-tuned_monitoring-and-managing-system-status-and-performance#installing-and-enabling-tuned_getting-started-with-tuned

To view the current active TuneD profile, run:

$ busctl call com.redhat.tuned /Tuned com.redhat.tuned.control active_profile
s "profile"

2.17. DISABLING TUNED

This procedure disables TuneD and resets all affected system settings to their original state before
TuneD modified them.

Procedure

To disable all tunings temporarily:

tuned-adm off

The tunings are applied again after the TuneD service restarts.

Alternatively, to stop and disable the TuneD service permanently:

systemctl disable --now tuned

Additional resources

tuned-adm(8) man page

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

26

CHAPTER 3. CUSTOMIZING TUNED PROFILES
You can create or modify TuneD profiles to optimize system performance for your intended use case.

Prerequisites

Install and enable TuneD as described in Installing and Enabling TuneD for details.

3.1. TUNED PROFILES

A detailed analysis of a system can be very time-consuming. TuneD provides a number of predefined
profiles for typical use cases. You can also create, modify, and delete profiles.

The profiles provided with TuneD are divided into the following categories:

Power-saving profiles

Performance-boosting profiles

The performance-boosting profiles include profiles that focus on the following aspects:

Low latency for storage and network

High throughput for storage and network

Virtual machine performance

Virtualization host performance

Syntax of profile configuration
The tuned.conf file can contain one [main] section and other sections for configuring plug-in instances.
However, all sections are optional.

Lines starting with the hash sign (#) are comments.

Additional resources

tuned.conf(5) man page.

3.2. THE DEFAULT TUNED PROFILE

During the installation, the best profile for your system is selected automatically. Currently, the default
profile is selected according to the following customizable rules:

Environment Default profile Goal

Compute nodes throughput-performance The best throughput performance

Virtual machines virtual-guest The best performance. If you are not
interested in the best performance, you can
change it to the balanced or powersave
profile.

CHAPTER 3. CUSTOMIZING TUNED PROFILES

27

Other cases balanced Balanced performance and power
consumption

Environment Default profile Goal

Additional resources

tuned.conf(5) man page.

3.3. MERGED TUNED PROFILES

As an experimental feature, it is possible to select more profiles at once. TuneD will try to merge them
during the load.

If there are conflicts, the settings from the last specified profile takes precedence.

Example 3.1. Low power consumption in a virtual guest

The following example optimizes the system to run in a virtual machine for the best performance and
concurrently tunes it for low power consumption, while the low power consumption is the priority:

tuned-adm profile virtual-guest powersave

WARNING

Merging is done automatically without checking whether the resulting combination
of parameters makes sense. Consequently, the feature might tune some
parameters the opposite way, which might be counterproductive: for example,
setting the disk for high throughput by using the throughput-performance profile
and concurrently setting the disk spindown to the low value by the spindown-disk
profile.

Additional resources

*tuned-adm man page. * tuned.conf(5) man page.

3.4. THE LOCATION OF TUNED PROFILES

TuneD stores profiles in the following directories:

/usr/lib/tuned/

Distribution-specific profiles are stored in the directory. Each profile has its own directory. The profile
consists of the main configuration file called tuned.conf, and optionally other files, for example
helper scripts.



Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

28

/etc/tuned/

If you need to customize a profile, copy the profile directory into the directory, which is used for
custom profiles. If there are two profiles of the same name, the custom profile located in /etc/tuned/
is used.

Additional resources

tuned.conf(5) man page.

3.5. INHERITANCE BETWEEN TUNED PROFILES

TuneD profiles can be based on other profiles and modify only certain aspects of their parent profile.

The [main] section of TuneD profiles recognizes the include option:

[main]
include=parent

All settings from the parent profile are loaded in this child profile. In the following sections, the child
profile can override certain settings inherited from the parent profile or add new settings not present in
the parent profile.

You can create your own child profile in the /etc/tuned/ directory based on a pre-installed profile in
/usr/lib/tuned/ with only some parameters adjusted.

If the parent profile is updated, such as after a TuneD upgrade, the changes are reflected in the child
profile.

Example 3.2. A power-saving profile based on balanced

The following is an example of a custom profile that extends the balanced profile and sets
Aggressive Link Power Management (ALPM) for all devices to the maximum powersaving.

[main]
include=balanced

[scsi_host]
alpm=min_power

Additional resources

tuned.conf(5) man page

3.6. STATIC AND DYNAMIC TUNING IN TUNED

Understanding the difference between the two categories of system tuning that TuneD applies, static
and dynamic, is important when determining which one to use for a given situation or purpose.

Static tuning

Mainly consists of the application of predefined sysctl and sysfs settings and one-shot activation of
several configuration tools such as ethtool.

CHAPTER 3. CUSTOMIZING TUNED PROFILES

29

Dynamic tuning

Watches how various system components are used throughout the uptime of your system. TuneD
adjusts system settings dynamically based on that monitoring information.
For example, the hard drive is used heavily during startup and login, but is barely used later when the
user might mainly work with applications such as web browsers or email clients. Similarly, the CPU
and network devices are used differently at different times. TuneD monitors the activity of these
components and reacts to the changes in their use.

By default, dynamic tuning is disabled. To enable it, edit the /etc/tuned/tuned-main.conf file and
change the dynamic_tuning option to 1. TuneD then periodically analyzes system statistics and
uses them to update your system tuning settings. To configure the time interval in seconds between
these updates, use the update_interval option.

Currently implemented dynamic tuning algorithms try to balance the performance and powersave,
and are therefore disabled in the performance profiles. Dynamic tuning for individual plug-ins can be
enabled or disabled in the TuneD profiles.

Example 3.3. Static and dynamic tuning on a workstation

On a typical office workstation, the Ethernet network interface is inactive most of the time. Only a
few emails go in and out or some web pages might be loaded.

For those kinds of loads, the network interface does not have to run at full speed all the time, as it
does by default. TuneD has a monitoring and tuning plug-in for network devices that can detect this
low activity and then automatically lower the speed of that interface, typically resulting in a lower
power usage.

If the activity on the interface increases for a longer period of time, for example because a DVD
image is being downloaded or an email with a large attachment is opened, TuneD detects this and
sets the interface speed to maximum to offer the best performance while the activity level is high.

This principle is used for other plug-ins for CPU and disks as well.

3.7. TUNED PLUG-INS

Plug-ins are modules in TuneD profiles that TuneD uses to monitor or optimize different devices on the
system.

TuneD uses two types of plug-ins:

Monitoring plug-ins

Monitoring plug-ins are used to get information from a running system. The output of the monitoring
plug-ins can be used by tuning plug-ins for dynamic tuning.
Monitoring plug-ins are automatically instantiated whenever their metrics are needed by any of the
enabled tuning plug-ins. If two tuning plug-ins require the same data, only one instance of the
monitoring plug-in is created and the data is shared.

Tuning plug-ins

Each tuning plug-in tunes an individual subsystem and takes several parameters that are populated
from the TuneD profiles. Each subsystem can have multiple devices, such as multiple CPUs or
network cards, that are handled by individual instances of the tuning plug-ins. Specific settings for
individual devices are also supported.

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

30

Syntax for plug-ins in TuneD profiles
Sections describing plug-in instances are formatted in the following way:

[NAME]
type=TYPE
devices=DEVICES

NAME

is the name of the plug-in instance as it is used in the logs. It can be an arbitrary string.

TYPE

is the type of the tuning plug-in.

DEVICES

is the list of devices that this plug-in instance handles.
The devices line can contain a list, a wildcard (*), and negation (!). If there is no devices line, all
devices present or later attached on the system of the TYPE are handled by the plug-in instance.
This is same as using the devices=* option.

Example 3.4. Matching block devices with a plug-in

The following example matches all block devices starting with sd, such as sda or sdb, and does
not disable barriers on them:

[data_disk]
type=disk
devices=sd*
disable_barriers=false

The following example matches all block devices except sda1 and sda2:

[data_disk]
type=disk
devices=!sda1, !sda2
disable_barriers=false

If no instance of a plug-in is specified, the plug-in is not enabled.

If the plug-in supports more options, they can be also specified in the plug-in section. If the option is not
specified and it was not previously specified in the included plug-in, the default value is used.

Short plug-in syntax
If you do not need custom names for the plug-in instance and there is only one definition of the instance
in your configuration file, TuneD supports the following short syntax:

[TYPE]
devices=DEVICES

In this case, it is possible to omit the type line. The instance is then referred to with a name, same as the
type. The previous example could be then rewritten into:

Example 3.5. Matching block devices using the short syntax

CHAPTER 3. CUSTOMIZING TUNED PROFILES

31

[disk]
devices=sdb*
disable_barriers=false

Conflicting plug-in definitions in a profile
If the same section is specified more than once using the include option, the settings are merged. If
they cannot be merged due to a conflict, the last conflicting definition overrides the previous settings. If
you do not know what was previously defined, you can use the replace Boolean option and set it to true.
This causes all the previous definitions with the same name to be overwritten and the merge does not
happen.

You can also disable the plug-in by specifying the enabled=false option. This has the same effect as if
the instance was never defined. Disabling the plug-in is useful if you are redefining the previous
definition from the include option and do not want the plug-in to be active in your custom profile.

NOTE

TuneD includes the ability to run any shell command as part of enabling or disabling a tuning profile.
This enables you to extend TuneD profiles with functionality that has not been integrated into TuneD
yet.
You can specify arbitrary shell commands using the script plug-in.

Additional resources

tuned.conf(5) man page

3.8. AVAILABLE TUNED PLUG-INS

Monitoring plug-ins
Currently, the following monitoring plug-ins are implemented:

disk

Gets disk load (number of IO operations) per device and measurement interval.

net

Gets network load (number of transferred packets) per network card and measurement interval.

load

Gets CPU load per CPU and measurement interval.

Tuning plug-ins
Currently, the following tuning plug-ins are implemented. Only some of these plug-ins implement
dynamic tuning. Options supported by plug-ins are also listed:

cpu

Sets the CPU governor to the value specified by the governor option and dynamically changes the
Power Management Quality of Service (PM QoS) CPU Direct Memory Access (DMA) latency
according to the CPU load.
If the CPU load is lower than the value specified by the load_threshold option, the latency is set to
the value specified by the latency_high option, otherwise it is set to the value specified by
latency_low.

You can also force the latency to a specific value and prevent it from dynamically changing further.

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

32

You can also force the latency to a specific value and prevent it from dynamically changing further.
To do so, set the force_latency option to the required latency value.

eeepc_she

Dynamically sets the front-side bus (FSB) speed according to the CPU load.
This feature can be found on some netbooks and is also known as the ASUS Super Hybrid Engine
(SHE).

If the CPU load is lower or equal to the value specified by the load_threshold_powersave option,
the plug-in sets the FSB speed to the value specified by the she_powersave option. If the CPU load
is higher or equal to the value specified by the load_threshold_normal option, it sets the FSB speed
to the value specified by the she_normal option.

Static tuning is not supported and the plug-in is transparently disabled if TuneD does not detect the
hardware support for this feature.

net

Configures the Wake-on-LAN functionality to the values specified by the wake_on_lan option. It
uses the same syntax as the ethtool utility. It also dynamically changes the interface speed according
to the interface utilization.

sysctl

Sets various sysctl settings specified by the plug-in options.
The syntax is name=value, where name is the same as the name provided by the sysctl utility.

Use the sysctl plug-in if you need to change system settings that are not covered by other plug-ins
available in TuneD. If the settings are covered by some specific plug-ins, prefer these plug-ins.

usb

Sets autosuspend timeout of USB devices to the value specified by the autosuspend parameter.
The value 0 means that autosuspend is disabled.

vm

Enables or disables transparent huge pages depending on the value of the transparent_hugepages
option.
Valid values of the transparent_hugepages option are:

"always"

"never"

"madvise"

audio

Sets the autosuspend timeout for audio codecs to the value specified by the timeout option.
Currently, the snd_hda_intel and snd_ac97_codec codecs are supported. The value 0 means that
the autosuspend is disabled. You can also enforce the controller reset by setting the Boolean option
reset_controller to true.

disk

Sets the disk elevator to the value specified by the elevator option.
It also sets:

CHAPTER 3. CUSTOMIZING TUNED PROFILES

33

APM to the value specified by the apm option

Scheduler quantum to the value specified by the scheduler_quantum option

Disk spindown timeout to the value specified by the spindown option

Disk readahead to the value specified by the readahead parameter

The current disk readahead to a value multiplied by the constant specified by the
readahead_multiply option

In addition, this plug-in dynamically changes the advanced power management and spindown
timeout setting for the drive according to the current drive utilization. The dynamic tuning can be
controlled by the Boolean option dynamic and is enabled by default.

scsi_host

Tunes options for SCSI hosts.
It sets Aggressive Link Power Management (ALPM) to the value specified by the alpm option.

mounts

Enables or disables barriers for mounts according to the Boolean value of the disable_barriers
option.

script

Executes an external script or binary when the profile is loaded or unloaded. You can choose an
arbitrary executable.

IMPORTANT

The script plug-in is provided mainly for compatibility with earlier releases. Prefer
other TuneD plug-ins if they cover the required functionality.

TuneD calls the executable with one of the following arguments:

start when loading the profile

stop when unloading the profile

You need to correctly implement the stop action in your executable and revert all settings that you
changed during the start action. Otherwise, the roll-back step after changing your TuneD profile will
not work.

Bash scripts can import the /usr/lib/tuned/functions Bash library and use the functions defined
there. Use these functions only for functionality that is not natively provided by TuneD. If a function
name starts with an underscore, such as _wifi_set_power_level, consider the function private and do
not use it in your scripts, because it might change in the future.

Specify the path to the executable using the script parameter in the plug-in configuration.

Example 3.6. Running a Bash script from a profile

To run a Bash script named script.sh that is located in the profile directory, use:

[script]
script=${i:PROFILE_DIR}/script.sh

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

34

sysfs

Sets various sysfs settings specified by the plug-in options.
The syntax is name=value, where name is the sysfs path to use.

Use this plugin in case you need to change some settings that are not covered by other plug-ins.
Prefer specific plug-ins if they cover the required settings.

video

Sets various powersave levels on video cards. Currently, only the Radeon cards are supported.
The powersave level can be specified by using the radeon_powersave option. Supported values are:

default

auto

low

mid

high

dynpm

dpm-battery

dpm-balanced

dpm-perfomance

For details, see www.x.org. Note that this plug-in is experimental and the option might change in
future releases.

bootloader

Adds options to the kernel command line. This plug-in supports only the GRUB 2 boot loader.
Customized non-standard location of the GRUB 2 configuration file can be specified by the
grub2_cfg_file option.

The kernel options are added to the current GRUB configuration and its templates. The system
needs to be rebooted for the kernel options to take effect.

Switching to another profile or manually stopping the TuneD service removes the additional options.
If you shut down or reboot the system, the kernel options persist in the grub.cfg file.

The kernel options can be specified by the following syntax:

cmdline=arg1 arg2 ... argN

Example 3.7. Modifying the kernel command line

For example, to add the quiet kernel option to a TuneD profile, include the following lines in the
tuned.conf file:

CHAPTER 3. CUSTOMIZING TUNED PROFILES

35

https://www.x.org/wiki/RadeonFeature/#KMS_Power_Management_Options

[bootloader]
cmdline=quiet

The following is an example of a custom profile that adds the isolcpus=2 option to the kernel
command line:

[bootloader]
cmdline=isolcpus=2

service

Handles various sysvinit, sysv-rc, openrc, and systemd services specified by the plug-in options.
The syntax is service.service_name=command[,file:file].

Supported service-handling commands are:

start

stop

enable

disable

Separate multiple commands using either a comma (,) or a semicolon (;). If the directives conflict, the
service plugin uses the last listed one.

Use the optional file:file directive to install an overlay configuration file, file, for systemd only. Other
init systems ignore this directive. The service plugin copies overlay configuration files to
/etc/systemd/system/service_name.service.d/ directories. Once profiles are unloaded, the service
plugin removes these directories if they are empty.

NOTE

The service plugin only operates on the current runlevel with non- systemd init
systems.

Example 3.8. Starting and enabling the sendmail sendmail service with an overlay file

[service]
service.sendmail=start,enable,file:${i:PROFILE_DIR}/tuned-sendmail.conf

The internal variable ${i:PROFILE_DIR} points to the directory the plugin loads the profile from.

scheduler

Offers a variety of options for the tuning of scheduling priorities, CPU core isolation, and process,
thread, and IRQ affinities.

For specifics of the different options available, see Functionalities of the scheduler TuneD plug-in.

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

36

3.9. FUNCTIONALITIES OF THE SCHEDULER TUNED PLUGIN

Use the scheduler TuneD plugin to control and tune scheduling priorities, CPU core isolation, and
process, thread, and IRQ afinities.

CPU isolation

To prevent processes, threads, and IRQs from using certain CPUs, use the isolated_cores option. It
changes process and thread affinities, IRQ affinities, and sets the default_smp_affinity parameter for
IRQs.

The CPU affinity mask is adjusted for all processes and threads matching the ps_whitelist option,
subject to success of the sched_setaffinity() system call. The default setting of the ps_whitelist
regular expression is .* to match all processes and thread names. To exclude certain processes and
threads, use the ps_blacklist option. The value of this option is also interpreted as a regular expression.
Process and thread names are matched against that expression. Profile rollback enables all matching
processes and threads to run on all CPUs, and restores the IRQ settings prior to the profile application.

Multiple regular expressions separated by ; for the ps_whitelist and ps_blacklist options are
supported. Escaped semicolon \; is taken literally.

Example 3.9. Isolate CPUs 2-4

The following configuration isolates CPUs 2-4. Processes and threads that match the ps_blacklist
regular expression can use any CPUs regardless of the isolation:

[scheduler]
isolated_cores=2-4
ps_blacklist=.*pmd.*;.*PMD.*;^DPDK;.*qemu-kvm.*

IRQ SMP affinity

The /proc/irq/default_smp_affinity file contains a bitmask representing the default target CPU cores
on a system for all inactive interrupt request (IRQ) sources. Once an IRQ is activated or allocated, the
value in the /proc/irq/default_smp_affinity file determines the IRQ’s affinity bitmask.

The default_irq_smp_affinity parameter controls what TuneD writes to the
/proc/irq/default_smp_affinity file. The default_irq_smp_affinity parameter supports the following
values and behaviors:

calc

Calculates the content of the /proc/irq/default_smp_affinity file from the isolated_cores
parameter. An inversion of the isolated_cores parameter calculates the non-isolated cores.
The intersection of the non-isolated cores and the previous content of the
/proc/irq/default_smp_affinity file is then written to the /proc/irq/default_smp_affinity file.

This is the default behavior if the default_irq_smp_affinity parameter is omitted.

ignore

TuneD does not modify the /proc/irq/default_smp_affinity file.

A CPU list

Takes the form of a single number such as 1, a comma separated list such as 1,3, or a range such as 3-
5.

CHAPTER 3. CUSTOMIZING TUNED PROFILES

37

Unpacks the CPU list and writes it directly to the /proc/irq/default_smp_affinity file.

Example 3.10. Setting the default IRQ smp affinity using an explicit CPU list

The following example uses an explicit CPU list to set the default IRQ SMP affinity to CPUs 0 and 2:

[scheduler]
isolated_cores=1,3
default_irq_smp_affinity=0,2

Scheduling policy

To adjust scheduling policy, priority and affinity for a group of processes or threads, use the following
syntax:

group.groupname=rule_prio:sched:prio:affinity:regex

where rule_prio defines internal TuneD priority of the rule. Rules are sorted based on priority. This is
needed for inheritance to be able to reorder previously defined rules. Equal rule_prio rules should be
processed in the order they were defined. However, this is Python interpreter dependent. To disable an
inherited rule for groupname, use:

group.groupname=

sched must be one of the following:

f

for first in, first out (FIFO)

b

for batch

r

for round robin

o

for other

*

for do not change

affinity is CPU affinity in hexadecimal. Use * for no change.

prio is scheduling priority (see chrt -m).

regex is Python regular expression. It is matched against the output of the ps -eo cmd command.

Any given process name can match more than one group. In such cases, the last matching regex
determines the priority and scheduling policy.

Example 3.11. Setting scheduling policies and priorities

The following example sets the scheduling policy and priorities to kernel threads and watchdog:

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

38

[scheduler]
group.kthreads=0:*:1:*:\[.*\]$
group.watchdog=0:f:99:*:\[watchdog.*\]

The scheduler plugin uses a perf event loop to identify newly created processes. By default, it listens to
perf.RECORD_COMM and perf.RECORD_EXIT events.

Setting the perf_process_fork parameter to true tells the plug-in to also listen to
perf.RECORD_FORK events, meaning that child processes created by the fork() system call are
processed.

NOTE

Processing perf events can pose a significant CPU overhead.

The CPU overhead of the scheduler plugin can be mitigated by using the scheduler runtime option and
setting it to 0. This completely disables the dynamic scheduler functionality and the perf events are not
monitored and acted upon. The disadvantage of this is that the process and thread tuning will be done
only at profile application.

Example 3.12. Disabling the dynamic scheduler functionality

The following example disables the dynamic scheduler functionality while also isolating CPUs 1 and 3:

[scheduler]
runtime=0
isolated_cores=1,3

The mmapped buffer is used for perf events. Under heavy loads, this buffer might overflow and as a
result the plugin might start missing events and not processing some newly created processes. In such
cases, use the perf_mmap_pages parameter to increase the buffer size. The value of the
perf_mmap_pages parameter must be a power of 2. If the perf_mmap_pages parameter is not
manually set, a default value of 128 is used.

Confinement using cgroups

The scheduler plugin supports process and thread confinement using cgroups v1.

The cgroup_mount_point option specifies the path to mount the cgroup file system, or, where TuneD
expects it to be mounted. If it is unset, /sys/fs/cgroup/cpuset is expected.

If the cgroup_groups_init option is set to 1, TuneD creates and removes all cgroups defined with the
cgroup* options. This is the default behavior. If the cgroup_mount_point option is set to 0, the
cgroups must be preset by other means.

If the cgroup_mount_point_init option is set to 1, TuneD creates and removes the cgroup mount
point. It implies cgroup_groups_init = 1. If the cgroup_mount_point_init option is set to 0, you must
preset the cgroups mount point by other means. This is the default behavior.

The cgroup_for_isolated_cores option is the cgroup name for the isolated_cores option
functionality. For example, if a system has 4 CPUs, isolated_cores=1 means that Tuned moves all
processes and threads to CPUs 0, 2, and 3. The scheduler plug-in isolates the specified core by writing

CHAPTER 3. CUSTOMIZING TUNED PROFILES

39

the calculated CPU affinity to the cpuset.cpus control file of the specified cgroup and moves all the
matching processes and threads to this group. If this option is unset, classic cpuset affinity using
sched_setaffinity() sets the CPU affinity.

The cgroup.cgroup_name option defines affinities for arbitrary cgroups. You can even use hierarchic
cgroups, but you must specify the hierarchy in the correct order. TuneD does not do any sanity checks
here, with the exception that it forces the cgroup to be in the location specified by the
cgroup_mount_point option.

The syntax of the scheduler option starting with group. has been augmented to use
cgroup.cgroup_name instead of the hexadecimal affinity. The matching processes are moved to the
cgroup cgroup_name. You can also use cgroups not defined by the cgroup. option as described above.
For example, cgroups not managed by TuneD.

All cgroup names are sanitized by replacing all periods (.) with slashes (/). This prevents the plugin from
writing outside the location specified by the cgroup_mount_point option.

Example 3.13. Using cgroups v1 with the scheduler plug-in

The following example creates 2 cgroups, group1 and group2. It sets the cgroup group1 affinity to
CPU 2 and the cgroup group2 to CPUs 0 and 2. Given a 4 CPU setup, the isolated_cores=1 option
moves all processes and threads to CPU cores 0, 2, and 3. Processes and threads specified by the
ps_blacklist regular expression are not moved.

[scheduler]
cgroup_mount_point=/sys/fs/cgroup/cpuset
cgroup_mount_point_init=1
cgroup_groups_init=1
cgroup_for_isolated_cores=group
cgroup.group1=2
cgroup.group2=0,2

group.ksoftirqd=0:f:2:cgroup.group1:ksoftirqd.*
ps_blacklist=ksoftirqd.*;rcuc.*;rcub.*;ktimersoftd.*
isolated_cores=1

The cgroup_ps_blacklist option excludes processes belonging to the specified cgroups. The regular
expression specified by this option is matched against cgroup hierarchies from /proc/PID/cgroups.
Commas (,) separate cgroups v1 hierarchies from /proc/PID/cgroups before regular expression
matching. The following is an example of content the regular expression is matched against:

10:hugetlb:/,9:perf_event:/,8:blkio:/

Multiple regular expressions can be separated by semicolons (;). The semicolon represents a logical 'or'
operator.

Example 3.14. Excluding processes from the scheduler using cgroups

In the following example, the scheduler plug-in moves all processes away from core 1, except for
processes which belong to cgroup /daemons. The \b string is a regular expression metacharacter
that matches a word boundary.

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

40

[scheduler]
isolated_cores=1
cgroup_ps_blacklist=:/daemons\b

In the following example, the scheduler plugin excludes all processes which belong to a cgroup with a
hierarchy-ID of 8 and controller-list blkio.

[scheduler]
isolated_cores=1
cgroup_ps_blacklist=\b8:blkio:

Recent kernels moved some sched_ and numa_balancing_ kernel run-time parameters from the
/proc/sys/kernel directory managed by the sysctl utility, to debugfs, typically mounted under the
/sys/kernel/debug directory. TuneD provides an abstraction mechanism for the following parameters
via the scheduler plugin where, based on the kernel used, TuneD writes the specified value to the
correct location:

sched_min_granularity_ns

sched_latency_ns,

sched_wakeup_granularity_ns

sched_tunable_scaling,

sched_migration_cost_ns

sched_nr_migrate

numa_balancing_scan_delay_ms

numa_balancing_scan_period_min_ms

numa_balancing_scan_period_max_ms

numa_balancing_scan_size_mb

Example 3.15. Set tasks' "cache hot" value for migration decisions.

On the old kernels, setting the following parameter meant that sysctl wrote a value of
500000 to the /proc/sys/kernel/sched_migration_cost_ns file:

[sysctl]
kernel.sched_migration_cost_ns=500000

This is, on more recent kernels, equivalent to setting the following parameter via the
scheduler plugin:

[scheduler]
sched_migration_cost_ns=500000

Meaning TuneD writes a value of 500000 to the
/sys/kernel/debug/sched/migration_cost_ns file.

CHAPTER 3. CUSTOMIZING TUNED PROFILES

41

3.10. VARIABLES IN TUNED PROFILES

Variables expand at run time when a TuneD profile is activated.

Using TuneD variables reduces the amount of necessary typing in TuneD profiles.

There are no predefined variables in TuneD profiles. You can define your own variables by creating the
[variables] section in a profile and using the following syntax:

[variables]

variable_name=value

To expand the value of a variable in a profile, use the following syntax:

${variable_name}

Example 3.16. Isolating CPU cores using variables

In the following example, the ${isolated_cores} variable expands to 1,2; hence the kernel boots with
the isolcpus=1,2 option:

[variables]
isolated_cores=1,2

[bootloader]
cmdline=isolcpus=${isolated_cores}

The variables can be specified in a separate file. For example, you can add the following lines to
tuned.conf:

[variables]
include=/etc/tuned/my-variables.conf

[bootloader]
cmdline=isolcpus=${isolated_cores}

If you add the isolated_cores=1,2 option to the /etc/tuned/my-variables.conf file, the kernel boots
with the isolcpus=1,2 option.

Additional resources

tuned.conf(5) man page

3.11. BUILT-IN FUNCTIONS IN TUNED PROFILES

Built-in functions expand at run time when a TuneD profile is activated.

You can:

Use various built-in functions together with TuneD variables

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

42

Create custom functions in Python and add them to TuneD in the form of plug-ins

To call a function, use the following syntax:

${f:function_name:argument_1:argument_2}

To expand the directory path where the profile and the tuned.conf file are located, use the
PROFILE_DIR function, which requires special syntax:

${i:PROFILE_DIR}

Example 3.17. Isolating CPU cores using variables and built-in functions

In the following example, the ${non_isolated_cores} variable expands to 0,3-5, and the
cpulist_invert built-in function is called with the 0,3-5 argument:

[variables]
non_isolated_cores=0,3-5

[bootloader]
cmdline=isolcpus=${f:cpulist_invert:${non_isolated_cores}}

The cpulist_invert function inverts the list of CPUs. For a 6-CPU machine, the inversion is 1,2, and
the kernel boots with the isolcpus=1,2 command-line option.

Additional resources

tuned.conf(5) man page

3.12. BUILT-IN FUNCTIONS AVAILABLE IN TUNED PROFILES

The following built-in functions are available in all TuneD profiles:

PROFILE_DIR

Returns the directory path where the profile and the tuned.conf file are located.

exec

Executes a process and returns its output.

assertion

Compares two arguments. If they do not match , the function logs text from the first argument and
aborts profile loading.

assertion_non_equal

Compares two arguments. If they match, the function logs text from the first argument and aborts
profile loading.

kb2s

Converts kilobytes to disk sectors.

s2kb

Converts disk sectors to kilobytes.

strip

CHAPTER 3. CUSTOMIZING TUNED PROFILES

43

Creates a string from all passed arguments and deletes both leading and trailing white space.

virt_check

Checks whether TuneD is running inside a virtual machine (VM) or on bare metal:

Inside a VM, the function returns the first argument.

On bare metal, the function returns the second argument, even in case of an error.

cpulist_invert

Inverts a list of CPUs to make its complement. For example, on a system with 4 CPUs, numbered
from 0 to 3, the inversion of the list 0,2,3 is 1.

cpulist2hex

Converts a CPU list to a hexadecimal CPU mask.

cpulist2hex_invert

Converts a CPU list to a hexadecimal CPU mask and inverts it.

hex2cpulist

Converts a hexadecimal CPU mask to a CPU list.

cpulist_online

Checks whether the CPUs from the list are online. Returns the list containing only online CPUs.

cpulist_present

Checks whether the CPUs from the list are present. Returns the list containing only present CPUs.

cpulist_unpack

Unpacks a CPU list in the form of 1-3,4 to 1,2,3,4.

cpulist_pack

Packs a CPU list in the form of 1,2,3,5 to 1-3,5.

3.13. CREATING NEW TUNED PROFILES

This procedure creates a new TuneD profile with custom performance rules.

Prerequisites

The TuneD service is running. See Installing and Enabling TuneD for details.

Procedure

1. In the /etc/tuned/ directory, create a new directory named the same as the profile that you want
to create:

mkdir /etc/tuned/my-profile

2. In the new directory, create a file named tuned.conf. Add a [main] section and plug-in
definitions in it, according to your requirements.
For example, see the configuration of the balanced profile:

[main]
summary=General non-specialized TuneD profile

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

44

[cpu]
governor=conservative
energy_perf_bias=normal

[audio]
timeout=10

[video]
radeon_powersave=dpm-balanced, auto

[scsi_host]
alpm=medium_power

3. To activate the profile, use:

tuned-adm profile my-profile

4. Verify that the TuneD profile is active and the system settings are applied:

$ tuned-adm active

Current active profile: my-profile

$ tuned-adm verify

Verification succeeded, current system settings match the preset profile.
See tuned log file ('/var/log/tuned/tuned.log') for details.

Additional resources

tuned.conf(5) man page

3.14. MODIFYING EXISTING TUNED PROFILES

This procedure creates a modified child profile based on an existing TuneD profile.

Prerequisites

The TuneD service is running. See Installing and Enabling TuneD for details.

Procedure

1. In the /etc/tuned/ directory, create a new directory named the same as the profile that you want
to create:

mkdir /etc/tuned/modified-profile

2. In the new directory, create a file named tuned.conf, and set the [main] section as follows:

[main]
include=parent-profile

Replace parent-profile with the name of the profile you are modifying.

CHAPTER 3. CUSTOMIZING TUNED PROFILES

45

3. Include your profile modifications.

Example 3.18. Lowering swappiness in the throughput-performance profile

To use the settings from the throughput-performance profile and change the value of
vm.swappiness to 5, instead of the default 10, use:

[main]
include=throughput-performance

[sysctl]
vm.swappiness=5

4. To activate the profile, use:

tuned-adm profile modified-profile

5. Verify that the TuneD profile is active and the system settings are applied:

$ tuned-adm active

Current active profile: my-profile

$ tuned-adm verify

Verification succeeded, current system settings match the preset profile.
See tuned log file ('/var/log/tuned/tuned.log') for details.

Additional resources

tuned.conf(5) man page

3.15. SETTING THE DISK SCHEDULER USING TUNED

This procedure creates and enables a TuneD profile that sets a given disk scheduler for selected block
devices. The setting persists across system reboots.

In the following commands and configuration, replace:

device with the name of the block device, for example sdf

selected-scheduler with the disk scheduler that you want to set for the device, for example bfq

Prerequisites

The TuneD service is installed and enabled. For details, see Installing and enabling TuneD .

Procedure

1. Optional: Select an existing TuneD profile on which your profile will be based. For a list of
available profiles, see TuneD profiles distributed with RHEL .
To see which profile is currently active, use:

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

46

$ tuned-adm active

2. Create a new directory to hold your TuneD profile:

mkdir /etc/tuned/my-profile

3. Find the system unique identifier of the selected block device:

$ udevadm info --query=property --name=/dev/device | grep -E '(WWN|SERIAL)'

ID_WWN=0x5002538d00000000_
ID_SERIAL=Generic-_SD_MMC_20120501030900000-0:0
ID_SERIAL_SHORT=20120501030900000

NOTE

The command in the this example will return all values identified as a World Wide
Name (WWN) or serial number associated with the specified block device.
Although it is preferred to use a WWN, the WWN is not always available for a
given device and any values returned by the example command are acceptable to
use as the device system unique ID.

4. Create the /etc/tuned/my-profile/tuned.conf configuration file. In the file, set the following
options:

a. Optional: Include an existing profile:

[main]
include=existing-profile

b. Set the selected disk scheduler for the device that matches the WWN identifier:

[disk]
devices_udev_regex=IDNAME=device system unique id
elevator=selected-scheduler

Here:

Replace IDNAME with the name of the identifier being used (for example, ID_WWN).

Replace device system unique id with the value of the chosen identifier (for example,
0x5002538d00000000).
To match multiple devices in the devices_udev_regex option, enclose the identifiers in
parentheses and separate them with vertical bars:

devices_udev_regex=(ID_WWN=0x5002538d00000000)|
(ID_WWN=0x1234567800000000)

5. Enable your profile:

tuned-adm profile my-profile

CHAPTER 3. CUSTOMIZING TUNED PROFILES

47

Verification steps

1. Verify that the TuneD profile is active and applied:

$ tuned-adm active

Current active profile: my-profile

$ tuned-adm verify

Verification succeeded, current system settings match the preset profile.
See TuneD log file ('/var/log/tuned/tuned.log') for details.

2. Read the contents of the /sys/block/device/queue/scheduler file:

cat /sys/block/device/queue/scheduler

[mq-deadline] kyber bfq none

In the file name, replace device with the block device name, for example sdc.

The active scheduler is listed in square brackets ([]).

Additional resources

Customizing TuneD profiles.

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

48

CHAPTER 4. REVIEWING A SYSTEM USING TUNA INTERFACE
Use the tuna tool to adjust scheduler tunables, tune thread priority, IRQ handlers, and isolate CPU cores
and sockets. Tuna reduces the complexity of performing tuning tasks.

The tuna tool performs the following operations:

Lists the CPUs on a system

Lists the interrupt requests (IRQs) currently running on a system

Changes policy and priority information about threads

Displays the current policies and priorities of a system

4.1. INSTALLING THE TUNA TOOL

The tuna tool is designed to be used on a running system. This allows application-specific measurement
tools to see and analyze system performance immediately after changes have been made.

Procedure

Install the tuna tool:

yum install tuna

Verification steps

Display the available tuna CLI options:

tuna -h

Additional resources

tuna(8) man page

4.2. VIEWING THE SYSTEM STATUS USING TUNA TOOL

This procedure describes how to view the system status using the tuna command-line interface (CLI)
tool.

Prerequisites

The tuna tool is installed. For more information, see Installing tuna tool.

Procedure

To view the current policies and priorities:

tuna --show_threads
 thread
pid SCHED_ rtpri affinity cmd
1 OTHER 0 0,1 init

CHAPTER 4. REVIEWING A SYSTEM USING TUNA INTERFACE

49

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/reviewing-a-system-using-tuna-interface_monitoring-and-managing-system-status-and-performance#installing-tuna-tool_reviewing-a-system-using-tuna-interface

2 FIFO 99 0 migration/0
3 OTHER 0 0 ksoftirqd/0
4 FIFO 99 0 watchdog/0

To view a specific thread corresponding to a PID or matching a command name:

tuna --threads=pid_or_cmd_list --show_threads

The pid_or_cmd_list argument is a list of comma-separated PIDs or command-name patterns.

To tune CPUs using the tuna CLI, see Tuning CPUs using tuna tool .

To tune the IRQs using the tuna tool, see Tuning IRQs using tuna tool .

To save the changed configuration:

tuna --save=filename

This command saves only currently running kernel threads. Processes that are not running are
not saved.

Additional resources

tuna(8) man page

4.3. TUNING CPUS USING TUNA TOOL

The tuna tool commands can target individual CPUs.

Using the tuna tool, you can:

Isolate CPUs

All tasks running on the specified CPU move to the next available CPU. Isolating a CPU makes it
unavailable by removing it from the affinity mask of all threads.

Include CPUs

Allows tasks to run on the specified CPU

Restore CPUs

Restores the specified CPU to its previous configuration.

This procedure describes how to tune CPUs using the tuna CLI.

Prerequisites

The tuna tool is installed. For more information, see Installing tuna tool.

Procedure

To specify the list of CPUs to be affected by a command:

tuna --cpus=cpu_list [command]

The cpu_list argument is a list of comma-separated CPU numbers. For example, --cpus=0,2.

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

50

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/reviewing-a-system-using-tuna-interface_monitoring-and-managing-system-status-and-performance#tuning-cpus-using-tuna-tool_reviewing-a-system-using-tuna-interface
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/reviewing-a-system-using-tuna-interface_monitoring-and-managing-system-status-and-performance#tuning-irqs-using-tuna-tool_reviewing-a-system-using-tuna-interface
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/reviewing-a-system-using-tuna-interface_monitoring-and-managing-system-status-and-performance#installing-tuna-tool_reviewing-a-system-using-tuna-interface

The cpu_list argument is a list of comma-separated CPU numbers. For example, --cpus=0,2.
CPU lists can also be specified in a range, for example --cpus=”1-3”, which would select CPUs 1,
2, and 3.

To add a specific CPU to the current cpu_list, for example, use --cpus=+0.

Replace [command] with, for example, --isolate.

To isolate a CPU:

tuna --cpus=cpu_list --isolate

To include a CPU:

tuna --cpus=cpu_list --include

To use a system with four or more processors, display how to make all the ssh threads run on
CPU 0 and 1, and all the http threads on CPU 2 and 3:

tuna --cpus=0,1 --threads=ssh* \
--move --cpus=2,3 --threads=http* --move

This command performs the following operations sequentially:

1. Selects CPUs 0 and 1.

2. Selects all threads that begin with ssh.

3. Moves the selected threads to the selected CPUs. Tuna sets the affinity mask of threads
starting with ssh to the appropriate CPUs. The CPUs can be expressed numerically as 0
and 1, in hex mask as 0x3, or in binary as 11.

4. Resets the CPU list to 2 and 3.

5. Selects all threads that begin with http.

6. Moves the selected threads to the specified CPUs. Tuna sets the affinity mask of threads
starting with http to the specified CPUs. The CPUs can be expressed numerically as 2 and
3, in hex mask as 0xC, or in binary as 1100.

Verification steps

Display the current configuration and verify that the changes were performed as expected:

tuna --threads=gnome-sc* --show_threads \
--cpus=0 --move --show_threads --cpus=1 \
--move --show_threads --cpus=+0 --move --show_threads

 thread ctxt_switches
 pid SCHED_ rtpri affinity voluntary nonvoluntary cmd
 3861 OTHER 0 0,1 33997 58 gnome-screensav
 thread ctxt_switches
 pid SCHED_ rtpri affinity voluntary nonvoluntary cmd
 3861 OTHER 0 0 33997 58 gnome-screensav
 thread ctxt_switches
 pid SCHED_ rtpri affinity voluntary nonvoluntary cmd

CHAPTER 4. REVIEWING A SYSTEM USING TUNA INTERFACE

51

 3861 OTHER 0 1 33997 58 gnome-screensav
 thread ctxt_switches
 pid SCHED_ rtpri affinity voluntary nonvoluntary cmd
 3861 OTHER 0 0,1 33997 58 gnome-screensav

This command performs the following operations sequentially:

1. Selects all threads that begin with the gnome-sc threads.

2. Displays the selected threads to enable the user to verify their affinity mask and RT priority.

3. Selects CPU 0.

4. Moves the gnome-sc threads to the specified CPU, CPU 0.

5. Shows the result of the move.

6. Resets the CPU list to CPU 1.

7. Moves the gnome-sc threads to the specified CPU, CPU 1.

8. Displays the result of the move.

9. Adds CPU 0 to the CPU list.

10. Moves the gnome-sc threads to the specified CPUs, CPUs 0 and 1.

11. Displays the result of the move.

Additional resources

/proc/cpuinfo file

tuna(8) man page

4.4. TUNING IRQS USING TUNA TOOL

The /proc/interrupts file records the number of interrupts per IRQ, the type of interrupt, and the name
of the device that is located at that IRQ.

This procedure describes how to tune the IRQs using the tuna tool.

Prerequisites

The tuna tool is installed. For more information, see Installing tuna tool.

Procedure

To view the current IRQs and their affinity:

tuna --show_irqs
users affinity
0 timer 0
1 i8042 0
7 parport0 0

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

52

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/reviewing-a-system-using-tuna-interface_monitoring-and-managing-system-status-and-performance#installing-tuna-tool_reviewing-a-system-using-tuna-interface

To specify the list of IRQs to be affected by a command:

tuna --irqs=irq_list [command]

The irq_list argument is a list of comma-separated IRQ numbers or user-name patterns.

Replace [command] with, for example, --spread.

To move an interrupt to a specified CPU:

tuna --irqs=128 --show_irqs
 # users affinity
 128 iwlwifi 0,1,2,3

tuna --irqs=128 --cpus=3 --move

Replace 128 with the irq_list argument and 3 with the cpu_list argument.

The cpu_list argument is a list of comma-separated CPU numbers, for example, --cpus=0,2. For
more information, see Tuning CPUs using tuna tool .

Verification steps

Compare the state of the selected IRQs before and after moving any interrupt to a specified
CPU:

tuna --irqs=128 --show_irqs
 # users affinity
 128 iwlwifi 3

Additional resources

/procs/interrupts file

tuna(8) man page

CHAPTER 4. REVIEWING A SYSTEM USING TUNA INTERFACE

53

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/reviewing-a-system-using-tuna-interface_monitoring-and-managing-system-status-and-performance#tuning-cpus-using-tuna-tool_reviewing-a-system-using-tuna-interface

CHAPTER 5. MONITORING PERFORMANCE USING
RHEL SYSTEM ROLES

As a system administrator, you can use the metrics RHEL system role with any Ansible Automation
Platform control node to monitor the performance of a system.

5.1. PREPARING A CONTROL NODE AND MANAGED NODES TO USE
RHEL SYSTEM ROLES

Before you can use individual RHEL system roles to manage services and settings, you must prepare the
control node and managed nodes.

5.1.1. Preparing a control node on RHEL 8

Before using RHEL system roles, you must configure a control node. This system then configures the
managed hosts from the inventory according to the playbooks.

Prerequisites

RHEL 8.6 or later is installed. For more information about installing RHEL, see Performing a
standard RHEL 8 installation.

NOTE

In RHEL 8.5 and earlier versions, Ansible packages were provided through Ansible
Engine instead of Ansible Core, and with a different level of support. Do not use
Ansible Engine because the packages might not be compatible with Ansible
automation content in RHEL 8.6 and later. For more information, see Scope of
support for the Ansible Core package included in the RHEL 9 and RHEL 8.6 and
later AppStream repositories.

The system is registered to the Customer Portal.

A Red Hat Enterprise Linux Server subscription is attached to the system.

Optional: An Ansible Automation Platform subscription is attached to the system.

Procedure

1. Create a user named ansible to manage and run playbooks:

[root@control-node]# useradd ansible

2. Switch to the newly created ansible user:

[root@control-node]# su - ansible

Perform the rest of the procedure as this user.

3. Create an SSH public and private key:

[ansible@control-node]$ ssh-keygen

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

54

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/performing_a_standard_rhel_8_installation/index
https://access.redhat.com/articles/6325611

Generating public/private rsa key pair.
Enter file in which to save the key (/home/ansible/.ssh/id_rsa):
Enter passphrase (empty for no passphrase): <password>
Enter same passphrase again: <password>
...

Use the suggested default location for the key file.

4. Optional: To prevent Ansible from prompting you for the SSH key password each time you
establish a connection, configure an SSH agent.

5. Create the ~/.ansible.cfg file with the following content:

[defaults]
inventory = /home/ansible/inventory
remote_user = ansible

[privilege_escalation]
become = True
become_method = sudo
become_user = root
become_ask_pass = True

NOTE

Settings in the ~/.ansible.cfg file have a higher priority and override settings
from the global /etc/ansible/ansible.cfg file.

With these settings, Ansible performs the following actions:

Manages hosts in the specified inventory file.

Uses the account set in the remote_user parameter when it establishes SSH connections to
managed nodes.

Uses the sudo utility to execute tasks on managed nodes as the root user.

Prompts for the root password of the remote user every time you apply a playbook. This is
recommended for security reasons.

6. Create an ~/inventory file in INI or YAML format that lists the hostnames of managed hosts.
You can also define groups of hosts in the inventory file. For example, the following is an
inventory file in the INI format with three hosts and one host group named US:

managed-node-01.example.com

[US]
managed-node-02.example.com ansible_host=192.0.2.100
managed-node-03.example.com

Note that the control node must be able to resolve the hostnames. If the DNS server cannot
resolve certain hostnames, add the ansible_host parameter next to the host entry to specify its
IP address.

7. Install RHEL system roles:

On a RHEL host without Ansible Automation Platform, install the rhel-system-roles

CHAPTER 5. MONITORING PERFORMANCE USING RHEL SYSTEM ROLES

55

On a RHEL host without Ansible Automation Platform, install the rhel-system-roles
package:

[root@control-node]# yum install rhel-system-roles

This command installs the collections in the
/usr/share/ansible/collections/ansible_collections/redhat/rhel_system_roles/ directory,
and the ansible-core package as a dependency.

On Ansible Automation Platform, perform the following steps as the ansible user:

i. Define Red Hat automation hub as the primary source for content in the ~/.ansible.cfg
file.

ii. Install the redhat.rhel_system_roles collection from Red Hat automation hub:

[ansible@control-node]$ ansible-galaxy collection install
redhat.rhel_system_roles

This command installs the collection in the
~/.ansible/collections/ansible_collections/redhat/rhel_system_roles/ directory.

Next steps

Prepare the managed nodes. For more information, see Preparing a managed node .

Additional resources

Scope of support for the Ansible Core package included in the RHEL 9 and RHEL 8.6 and later
AppStream repositories

How to register and subscribe a system to the Red Hat Customer Portal using subscription-
manager

The ssh-keygen(1) manual page

Connecting to remote machines with SSH keys using ssh-agent

Ansible configuration settings

How to build your inventory

Updates to using Ansible in RHEL 8.6 and 9.0

5.1.2. Preparing a managed node

Managed nodes are the systems listed in the inventory and which will be configured by the control node
according to the playbook. You do not have to install Ansible on managed hosts.

Prerequisites

You prepared the control node. For more information, see Preparing a control node on RHEL 8 .

You have SSH access from the control node.

IMPORTANT

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

56

https://access.redhat.com/documentation/en-us/red_hat_ansible_automation_platform/2.4/html/getting_started_with_automation_hub/configure-hub-primary
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/automating_system_administration_by_using_rhel_system_roles/assembly_preparing-a-control-node-and-managed-nodes-to-use-rhel-system-roles_automating-system-administration-by-using-rhel-system-roles#proc_preparing-a-managed-node_assembly_preparing-a-control-node-and-managed-nodes-to-use-rhel-system-roles
https://access.redhat.com/articles/6325611
https://access.redhat.com/solutions/253273
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/securing_networks/assembly_using-secure-communications-between-two-systems-with-openssh_securing-networks#connecting-to-remote-machines-with-ssh-keys-using-ssh-agent_assembly_using-secure-communications-between-two-systems-with-openssh
https://docs.ansible.com/ansible/latest/reference_appendices/config.html
https://docs.ansible.com/ansible/latest/inventory_guide/intro_inventory.html
https://www.redhat.com/en/blog/updates-using-ansible-rhel-86-and-90
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/automating_system_administration_by_using_rhel_system_roles/assembly_preparing-a-control-node-and-managed-nodes-to-use-rhel-system-roles_automating-system-administration-by-using-rhel-system-roles#proc_preparing-a-control-node_assembly_preparing-a-control-node-and-managed-nodes-to-use-rhel-system-roles

IMPORTANT

Direct SSH access as the root user is a security risk. To reduce this risk, you will
create a local user on this node and configure a sudo policy when preparing a
managed node. Ansible on the control node can then use the local user account
to log in to the managed node and run playbooks as different users, such as root.

Procedure

1. Create a user named ansible:

[root@managed-node-01]# useradd ansible

The control node later uses this user to establish an SSH connection to this host.

2. Set a password for the ansible user:

[root@managed-node-01]# passwd ansible
Changing password for user ansible.
New password: <password>
Retype new password: <password>
passwd: all authentication tokens updated successfully.

You must enter this password when Ansible uses sudo to perform tasks as the root user.

3. Install the ansible user’s SSH public key on the managed node:

a. Log in to the control node as the ansible user, and copy the SSH public key to the managed
node:

[ansible@control-node]$ ssh-copy-id managed-node-01.example.com
/usr/bin/ssh-copy-id: INFO: Source of key(s) to be installed:
"/home/ansible/.ssh/id_rsa.pub"
The authenticity of host 'managed-node-01.example.com (192.0.2.100)' can't be
established.
ECDSA key fingerprint is
SHA256:9bZ33GJNODK3zbNhybokN/6Mq7hu3vpBXDrCxe7NAvo.

b. When prompted, connect by entering yes:

Are you sure you want to continue connecting (yes/no/[fingerprint])? yes
/usr/bin/ssh-copy-id: INFO: attempting to log in with the new key(s), to filter out any that
are already installed
/usr/bin/ssh-copy-id: INFO: 1 key(s) remain to be installed -- if you are prompted now it is
to install the new keys

c. When prompted, enter the password:

ansible@managed-node-01.example.com's password: <password>

Number of key(s) added: 1

Now try logging into the machine, with: "ssh 'managed-node-01.example.com'"
and check to make sure that only the key(s) you wanted were added.

CHAPTER 5. MONITORING PERFORMANCE USING RHEL SYSTEM ROLES

57

d. Verify the SSH connection by remotely executing a command on the control node:

[ansible@control-node]$ ssh managed-node-01.example.com whoami
ansible

4. Create a sudo configuration for the ansible user:

a. Create and edit the /etc/sudoers.d/ansible file by using the visudo command:

[root@managed-node-01]# visudo /etc/sudoers.d/ansible

The benefit of using visudo over a normal editor is that this utility provides basic checks,
such as for parse errors, before installing the file.

b. Configure a sudoers policy in the /etc/sudoers.d/ansible file that meets your
requirements, for example:

To grant permissions to the ansible user to run all commands as any user and group on
this host after entering the ansible user’s password, use:

ansible ALL=(ALL) ALL

To grant permissions to the ansible user to run all commands as any user and group on
this host without entering the ansible user’s password, use:

ansible ALL=(ALL) NOPASSWD: ALL

Alternatively, configure a more fine-granular policy that matches your security requirements.
For further details on sudoers policies, see the sudoers(5) manual page.

Verification

1. Verify that you can execute commands from the control node on an all managed nodes:

[ansible@control-node]$ ansible all -m ping
BECOME password: <password>
managed-node-01.example.com | SUCCESS => {
 "ansible_facts": {
 "discovered_interpreter_python": "/usr/bin/python3"
 },
 "changed": false,
 "ping": "pong"
}
...

The hard-coded all group dynamically contains all hosts listed in the inventory file.

2. Verify that privilege escalation works correctly by running the whoami utility on a managed host
by using the Ansible command module:

[ansible@control-node]$ ansible managed-node-01.example.com -m command -a
whoami
BECOME password: <password>

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

58

managed-node-01.example.com | CHANGED | rc=0 >>
root

If the command returns root, you configured sudo on the managed nodes correctly.

Additional resources

Preparing a control node on RHEL 8

sudoers(5) manual page

5.2. INTRODUCTION TO THE METRICS RHEL SYSTEM ROLE

RHEL system roles is a collection of Ansible roles and modules that provide a consistent configuration
interface to remotely manage multiple RHEL systems. The metrics system role configures performance
analysis services for the local system and, optionally, includes a list of remote systems to be monitored
by the local system. The metrics system role enables you to use pcp to monitor your systems
performance without having to configure pcp separately, as the set-up and deployment of pcp is
handled by the playbook.

Additional resources

/usr/share/ansible/roles/rhel-system-roles.metrics/README.md file

/usr/share/doc/rhel-system-roles/metrics/ directory

5.3. USING THE METRICS RHEL SYSTEM ROLE TO MONITOR YOUR
LOCAL SYSTEM WITH VISUALIZATION

This procedure describes how to use the metrics RHEL system role to monitor your local system while
simultaneously provisioning data visualization via Grafana.

Prerequisites

You have prepared the control node and the managed nodes

You are logged in to the control node as a user who can run playbooks on the managed nodes.

The account you use to connect to the managed nodes has sudo permissions on them.

localhost is configured in the inventory file on the control node:

localhost ansible_connection=local

Procedure

1. Create a playbook file, for example ~/playbook.yml, with the following content:

- name: Manage metrics
 hosts: localhost
 roles:
 - rhel-system-roles.metrics

CHAPTER 5. MONITORING PERFORMANCE USING RHEL SYSTEM ROLES

59

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/automating_system_administration_by_using_rhel_system_roles/assembly_preparing-a-control-node-and-managed-nodes-to-use-rhel-system-roles_automating-system-administration-by-using-rhel-system-roles#proc_preparing-a-control-node_assembly_preparing-a-control-node-and-managed-nodes-to-use-rhel-system-roles
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/automating_system_administration_by_using_rhel_system_roles/assembly_preparing-a-control-node-and-managed-nodes-to-use-rhel-system-roles_automating-system-administration-by-using-rhel-system-roles

Because the metrics_graph_service boolean is set to value="yes", Grafana is automatically
installed and provisioned with pcp added as a data source. Because metrics_manage_firewall
and metrics_manage_selinux are both set to true, the metrics role uses the firewall and
selinux system roles to manage the ports used by the metrics role.

2. Validate the playbook syntax:

$ ansible-playbook --syntax-check ~/playbook.yml

Note that this command only validates the syntax and does not protect against a wrong but valid
configuration.

3. Run the playbook:

$ ansible-playbook ~/playbook.yml

Verification

To view visualization of the metrics being collected on your machine, access the grafana web
interface as described in Accessing the Grafana web UI .

Additional resources

/usr/share/ansible/roles/rhel-system-roles.metrics/README.md file

/usr/share/doc/rhel-system-roles/metrics/ directory

5.4. USING THE METRICS RHEL SYSTEM ROLE TO SET UP A FLEET OF
INDIVIDUAL SYSTEMS TO MONITOR THEMSELVES

This procedure describes how to use the metrics system role to set up a fleet of machines to monitor
themselves.

Prerequisites

You have prepared the control node and the managed nodes

You are logged in to the control node as a user who can run playbooks on the managed nodes.

The account you use to connect to the managed nodes has sudo permissions on them.

Procedure

1. Create a playbook file, for example ~/playbook.yml, with the following content:

 vars:
 metrics_graph_service: yes
 metrics_manage_firewall: true
 metrics_manage_selinux: true

- name: Configure a fleet of machines to monitor themselves
 hosts: managed-node-01.example.com
 roles:

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

60

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/monitoring_and_managing_system_status_and_performance/index#accessing-the-grafana-web-ui_setting-up-graphical-representation-of-pcp-metrics
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/automating_system_administration_by_using_rhel_system_roles/assembly_preparing-a-control-node-and-managed-nodes-to-use-rhel-system-roles_automating-system-administration-by-using-rhel-system-roles

Because metrics_manage_firewall and metrics_manage_selinux are both set to true, the
metrics role uses the firewall and selinux roles to manage the ports used by the metrics role.

2. Validate the playbook syntax:

$ ansible-playbook --syntax-check ~/playbook.yml

Note that this command only validates the syntax and does not protect against a wrong but valid
configuration.

3. Run the playbook:

$ ansible-playbook ~/playbook.yml

Additional resources

/usr/share/ansible/roles/rhel-system-roles.metrics/README.md file

/usr/share/doc/rhel-system-roles/metrics/ directory

5.5. USING THE METRICS RHEL SYSTEM ROLE TO MONITOR A FLEET OF
MACHINES CENTRALLY USING YOUR LOCAL MACHINE

This procedure describes how to use the metrics system role to set up your local machine to centrally
monitor a fleet of machines while also provisioning visualization of the data via grafana and querying of
the data via redis.

Prerequisites

You have prepared the control node and the managed nodes

You are logged in to the control node as a user who can run playbooks on the managed nodes.

The account you use to connect to the managed nodes has sudo permissions on them.

localhost is configured in the inventory file on the control node:

localhost ansible_connection=local

Procedure

1. Create a playbook file, for example ~/playbook.yml, with the following content:

 - rhel-system-roles.metrics
 vars:
 metrics_retention_days: 0
 metrics_manage_firewall: true
 metrics_manage_selinux: true

- name: Set up your local machine to centrally monitor a fleet of machines
 hosts: localhost
 roles:
 - rhel-system-roles.metrics

CHAPTER 5. MONITORING PERFORMANCE USING RHEL SYSTEM ROLES

61

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/automating_system_administration_by_using_rhel_system_roles/assembly_preparing-a-control-node-and-managed-nodes-to-use-rhel-system-roles_automating-system-administration-by-using-rhel-system-roles

Because the metrics_graph_service and metrics_query_service booleans are set to
value="yes", grafana is automatically installed and provisioned with pcp added as a data
source with the pcp data recording indexed into redis, allowing the pcp querying language to
be used for complex querying of the data. Because metrics_manage_firewall and
metrics_manage_selinux are both set to true, the metrics role uses the firewall and selinux
roles to manage the ports used by the metrics role.

2. Validate the playbook syntax:

$ ansible-playbook --syntax-check ~/playbook.yml

Note that this command only validates the syntax and does not protect against a wrong but valid
configuration.

3. Run the playbook:

$ ansible-playbook ~/playbook.yml

Verification

To view a graphical representation of the metrics being collected centrally by your machine and
to query the data, access the grafana web interface as described in Accessing the Grafana web
UI.

Additional resources

/usr/share/ansible/roles/rhel-system-roles.metrics/README.md file

/usr/share/doc/rhel-system-roles/metrics/ directory

5.6. SETTING UP AUTHENTICATION WHILE MONITORING A SYSTEM
BY USING THE METRICS RHEL SYSTEM ROLE

PCP supports the scram-sha-256 authentication mechanism through the Simple Authentication
Security Layer (SASL) framework. The metrics RHEL system role automates the steps to setup
authentication by using the scram-sha-256 authentication mechanism. This procedure describes how to
setup authentication by using the metrics RHEL system role.

Prerequisites

You have prepared the control node and the managed nodes

You are logged in to the control node as a user who can run playbooks on the managed nodes.

The account you use to connect to the managed nodes has sudo permissions on them.

 vars:
 metrics_graph_service: yes
 metrics_query_service: yes
 metrics_retention_days: 10
 metrics_monitored_hosts: ["database.example.com", "webserver.example.com"]
 metrics_manage_firewall: yes
 metrics_manage_selinux: yes

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

62

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/monitoring_and_managing_system_status_and_performance/index#accessing-the-grafana-web-ui_setting-up-graphical-representation-of-pcp-metrics
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/automating_system_administration_by_using_rhel_system_roles/assembly_preparing-a-control-node-and-managed-nodes-to-use-rhel-system-roles_automating-system-administration-by-using-rhel-system-roles

Procedure

1. Edit an existing playbook file, for example ~/playbook.yml, and add the authentication-related
variables:

2. Validate the playbook syntax:

$ ansible-playbook --syntax-check ~/playbook.yml

Note that this command only validates the syntax and does not protect against a wrong but valid
configuration.

3. Run the playbook:

$ ansible-playbook ~/playbook.yml

Verification

Verify the sasl configuration:

pminfo -f -h "pcp://managed-node-01.example.com?username=<username>"
disk.dev.read
Password: <password>
disk.dev.read
inst [0 or "sda"] value 19540

Additional resources

/usr/share/ansible/roles/rhel-system-roles.metrics/README.md file

/usr/share/doc/rhel-system-roles/metrics/ directory

5.7. USING THE METRICS RHEL SYSTEM ROLE TO CONFIGURE AND
ENABLE METRICS COLLECTION FOR SQL SERVER

This procedure describes how to use the metrics RHEL system role to automate the configuration and
enabling of metrics collection for Microsoft SQL Server via pcp on your local system.

Prerequisites

You have prepared the control node and the managed nodes

- name: Set up authentication by using the scram-sha-256 authentication mechanism
 hosts: managed-node-01.example.com
 roles:
 - rhel-system-roles.metrics
 vars:
 metrics_retention_days: 0
 metrics_manage_firewall: true
 metrics_manage_selinux: true
 metrics_username: <username>
 metrics_password: <password>

CHAPTER 5. MONITORING PERFORMANCE USING RHEL SYSTEM ROLES

63

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/automating_system_administration_by_using_rhel_system_roles/assembly_preparing-a-control-node-and-managed-nodes-to-use-rhel-system-roles_automating-system-administration-by-using-rhel-system-roles

You are logged in to the control node as a user who can run playbooks on the managed nodes.

The account you use to connect to the managed nodes has sudo permissions on them.

You have installed Microsoft SQL Server for Red Hat Enterprise Linux and established a trusted
connection to an SQL server.

You have installed the Microsoft ODBC driver for SQL Server for Red Hat Enterprise Linux .

localhost is configured in the inventory file on the control node:

localhost ansible_connection=local

Procedure

1. Create a playbook file, for example ~/playbook.yml, with the following content:

Because metrics_manage_firewall and metrics_manage_selinux are both set to true, the
metrics role uses the firewall and selinux roles to manage the ports used by the metrics role.

2. Validate the playbook syntax:

$ ansible-playbook --syntax-check ~/playbook.yml

Note that this command only validates the syntax and does not protect against a wrong but valid
configuration.

3. Run the playbook:

$ ansible-playbook ~/playbook.yml

Verification

Use the pcp command to verify that SQL Server PMDA agent (mssql) is loaded and running:

pcp
platform: Linux sqlserver.example.com 4.18.0-167.el8.x86_64 #1 SMP Sun Dec 15 01:24:23
UTC 2019 x86_64
 hardware: 2 cpus, 1 disk, 1 node, 2770MB RAM
 timezone: PDT+7
 services: pmcd pmproxy
 pmcd: Version 5.0.2-1, 12 agents, 4 clients
 pmda: root pmcd proc pmproxy xfs linux nfsclient mmv kvm mssql

- name: Configure and enable metrics collection for Microsoft SQL Server
 hosts: localhost
 roles:
 - rhel-system-roles.metrics
 vars:
 metrics_from_mssql: true
 metrics_manage_firewall: true
 metrics_manage_selinux: true

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

64

https://learn.microsoft.com/en-us/sql/linux/quickstart-install-connect-red-hat?view=sql-server-ver15
https://learn.microsoft.com/en-us/sql/connect/odbc/linux-mac/installing-the-microsoft-odbc-driver-for-sql-server?view=sql-server-ver15#redhat17

 jbd2 dm
 pmlogger: primary logger: /var/log/pcp/pmlogger/sqlserver.example.com/20200326.16.31
 pmie: primary engine: /var/log/pcp/pmie/sqlserver.example.com/pmie.log

Additional resources

/usr/share/ansible/roles/rhel-system-roles.metrics/README.md file

/usr/share/doc/rhel-system-roles/metrics/ directory

Performance Co-Pilot for Microsoft SQL Server with RHEL 8.2 blog post

CHAPTER 5. MONITORING PERFORMANCE USING RHEL SYSTEM ROLES

65

https://www.redhat.com/en/blog/performance-co-pilot-microsoft-sql-server-rhel-82

CHAPTER 6. SETTING UP PCP
Performance Co-Pilot (PCP) is a suite of tools, services, and libraries for monitoring, visualizing, storing,
and analyzing system-level performance measurements.

6.1. OVERVIEW OF PCP

You can add performance metrics using Python, Perl, C++, and C interfaces. Analysis tools can use the
Python, C++, C client APIs directly, and rich web applications can explore all available performance data
using a JSON interface.

You can analyze data patterns by comparing live results with archived data.

Features of PCP:

Light-weight distributed architecture, which is useful during the centralized analysis of complex
systems.

It allows the monitoring and management of real-time data.

It allows logging and retrieval of historical data.

PCP has the following components:

The Performance Metric Collector Daemon (pmcd) collects performance data from the
installed Performance Metric Domain Agents (pmda). PMDAs can be individually loaded or
unloaded on the system and are controlled by the PMCD on the same host.

Various client tools, such as pminfo or pmstat, can retrieve, display, archive, and process this
data on the same host or over the network.

The pcp package provides the command-line tools and underlying functionality.

The pcp-gui package provides the graphical application. Install the pcp-gui package by
executing the yum install pcp-gui command. For more information, see Visually tracing PCP
log archives with the PCP Charts application.

Additional resources

pcp(1) man page

/usr/share/doc/pcp-doc/ directory

System services and tools distributed with PCP

Index of Performance Co-Pilot (PCP) articles, solutions, tutorials, and white papers fromon
Red Hat Customer Portal

Side-by-side comparison of PCP tools with legacy tools Red Hat Knowledgebase article

PCP upstream documentation

6.2. INSTALLING AND ENABLING PCP

To begin using PCP, install all the required packages and enable the PCP monitoring services.

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

66

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/monitoring_and_managing_system_status_and_performance/monitoring-performance-with-performance-co-pilot_monitoring-and-managing-system-status-and-performance#visually-tracing-pcp-log-archives-with-pcp-charts_monitoring-performance-with-performance-co-pilot
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/monitoring_and_managing_system_status_and_performance/index#system-services-distributed-with-pcp_setting-up-pcp
https://access.redhat.com/articles/1145953
https://access.redhat.com/articles/2372811
http://pcp.io/documentation.html

This procedure describes how to install PCP using the pcp package. If you want to automate the PCP
installation, install it using the pcp-zeroconf package. For more information about installing PCP by
using pcp-zeroconf, see Setting up PCP with pcp-zeroconf.

Procedure

1. Install the pcp package:

yum install pcp

2. Enable and start the pmcd service on the host machine:

systemctl enable pmcd

systemctl start pmcd

Verification steps

Verify if the pmcd process is running on the host:

pcp

Performance Co-Pilot configuration on workstation:

platform: Linux workstation 4.18.0-80.el8.x86_64 #1 SMP Wed Mar 13 12:02:46 UTC 2019
x86_64
hardware: 12 cpus, 2 disks, 1 node, 36023MB RAM
timezone: CEST-2
services: pmcd
pmcd: Version 4.3.0-1, 8 agents
pmda: root pmcd proc xfs linux mmv kvm jbd2

Additional resources

pmcd(1) man page

System services and tools distributed with PCP

6.3. DEPLOYING A MINIMAL PCP SETUP

The minimal PCP setup collects performance statistics on Red Hat Enterprise Linux. The setup involves
adding the minimum number of packages on a production system needed to gather data for further
analysis.

You can analyze the resulting tar.gz file and the archive of the pmlogger output using various PCP
tools and compare them with other sources of performance information.

Prerequisites

PCP is installed. For more information, see Installing and enabling PCP .

Procedure

CHAPTER 6. SETTING UP PCP

67

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/monitoring_and_managing_system_status_and_performance/index#setting-up-pcp-with-pcp-zeroconf_setting-up-graphical-representation-of-pcp-metrics
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/monitoring_and_managing_system_status_and_performance/index#system-services-distributed-with-pcp_setting-up-pcp
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/setting-up-pcp_monitoring-and-managing-system-status-and-performance#installing-and-enabling-pcp_setting-up-pcp

1. Update the pmlogger configuration:

pmlogconf -r /var/lib/pcp/config/pmlogger/config.default

2. Start the pmcd and pmlogger services:

systemctl start pmcd.service

systemctl start pmlogger.service

3. Execute the required operations to record the performance data.

4. Stop the pmcd and pmlogger services:

systemctl stop pmcd.service

systemctl stop pmlogger.service

5. Save the output and save it to a tar.gz file named based on the host name and the current date
and time:

cd /var/log/pcp/pmlogger/

tar -czf $(hostname).$(date +%F-%Hh%M).pcp.tar.gz $(hostname)

Extract this file and analyze the data using PCP tools.

Additional resources

pmlogconf(1), pmlogger(1), and pmcd(1) man pages

System services and tools distributed with PCP

6.4. SYSTEM SERVICES AND TOOLS DISTRIBUTED WITH PCP

Performance Co-Pilot (PCP) includes various system services and tools you can use for measuring
performance. The basic package pcp includes the system services and basic tools. Additional tools are
provided with the pcp-system-tools, pcp-gui, and pcp-devel packages.

Roles of system services distributed with PCP

pmcd

The Performance Metric Collector Daemon (PMCD).

pmie

The Performance Metrics Inference Engine.

pmlogger

The performance metrics logger.

pmproxy

The realtime and historical performance metrics proxy, time series query and REST API service.

Tools distributed with base PCP package

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

68

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/setting-up-pcp_monitoring-and-managing-system-status-and-performance#system-services-distributed-with-pcp_setting-up-pcp

pcp

Displays the current status of a Performance Co-Pilot installation.

pcp-vmstat

Provides a high-level system performance overview every 5 seconds. Displays information about
processes, memory, paging, block IO, traps, and CPU activity.

pmconfig

Displays the values of configuration parameters.

pmdiff

Compares the average values for every metric in either one or two archives, in a given time window,
for changes that are likely to be of interest when searching for performance regressions.

pmdumplog

Displays control, metadata, index, and state information from a Performance Co-Pilot archive file.

pmfind

Finds PCP services on the network.

pmie

An inference engine that periodically evaluates a set of arithmetic, logical, and rule expressions. The
metrics are collected either from a live system, or from a Performance Co-Pilot archive file.

pmieconf

Displays or sets configurable pmie variables.

pmiectl

Manages non-primary instances of pmie.

pminfo

Displays information about performance metrics. The metrics are collected either from a live system,
or from a Performance Co-Pilot archive file.

pmlc

Interactively configures active pmlogger instances.

pmlogcheck

Identifies invalid data in a Performance Co-Pilot archive file.

pmlogconf

Creates and modifies a pmlogger configuration file.

pmlogctl

Manages non-primary instances of pmlogger.

pmloglabel

Verifies, modifies, or repairs the label of a Performance Co-Pilot archive file.

pmlogsummary

Calculates statistical information about performance metrics stored in a Performance Co-Pilot
archive file.

pmprobe

Determines the availability of performance metrics.

pmsocks

Allows access to a Performance Co-Pilot hosts through a firewall.

pmstat

Periodically displays a brief summary of system performance.

CHAPTER 6. SETTING UP PCP

69

pmstore

Modifies the values of performance metrics.

pmtrace

Provides a command line interface to the trace PMDA.

pmval

Displays the current value of a performance metric.

Tools distributed with the separately installed pcp-system-tools package

pcp-atop

Shows the system-level occupation of the most critical hardware resources from the performance
point of view: CPU, memory, disk, and network.

pcp-atopsar

Generates a system-level activity report over a variety of system resource utilization. The report is
generated from a raw logfile previously recorded using pmlogger or the -w option of pcp-atop.

pcp-dmcache

Displays information about configured Device Mapper Cache targets, such as: device IOPs, cache
and metadata device utilization, as well as hit and miss rates and ratios for both reads and writes for
each cache device.

pcp-dstat

Displays metrics of one system at a time. To display metrics of multiple systems, use --host option.

pcp-free

Reports on free and used memory in a system.

pcp-htop

Displays all processes running on a system along with their command line arguments in a manner
similar to the top command, but allows you to scroll vertically and horizontally as well as interact using
a mouse. You can also view processes in a tree format and select and act on multiple processes at
once.

pcp-ipcs

Displays information about the inter-process communication (IPC) facilities that the calling process
has read access for.

pcp-mpstat

Reports CPU and interrupt-related statistics.

pcp-numastat

Displays NUMA allocation statistics from the kernel memory allocator.

pcp-pidstat

Displays information about individual tasks or processes running on the system, such as CPU
percentage, memory and stack usage, scheduling, and priority. Reports live data for the local host by
default.

pcp-shping

Samples and reports on the shell-ping service metrics exported by the pmdashping Performance
Metrics Domain Agent (PMDA).

pcp-ss

Displays socket statistics collected by the pmdasockets PMDA.

pcp-tapestat

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

70

Reports I/O statistics for tape devices.

pcp-uptime

Displays how long the system has been running, how many users are currently logged on, and the
system load averages for the past 1, 5, and 15 minutes.

pcp-verify

Inspects various aspects of a Performance Co-Pilot collector installation and reports on whether it is
configured correctly for certain modes of operation.

pmiostat

Reports I/O statistics for SCSI devices (by default) or device-mapper devices (with the -x device-
mapper option).

pmrep

Reports on selected, easily customizable, performance metrics values.

Tools distributed with the separately installed pcp-gui package

pmchart

Plots performance metrics values available through the facilities of the Performance Co-Pilot.

pmdumptext

Outputs the values of performance metrics collected live or from a Performance Co-Pilot archive.

Tools distributed with the separately installed pcp-devel package

pmclient

Displays high-level system performance metrics by using the Performance Metrics Application
Programming Interface (PMAPI).

pmdbg

Displays available Performance Co-Pilot debug control flags and their values.

pmerr

Displays available Performance Co-Pilot error codes and their corresponding error messages.

6.5. PCP DEPLOYMENT ARCHITECTURES

Performance Co-Pilot (PCP) supports multiple deployment architectures, based on the scale of the
PCP deployment, and offers many options to accomplish advanced setups.

Available scaling deployment setup variants based on the recommended deployment set up by Red Hat,
sizing factors, and configuration options include:

NOTE

Since the PCP version 5.3.0 is unavailable in Red Hat Enterprise Linux 8.4 and the prior
minor versions of Red Hat Enterprise Linux 8, Red Hat recommends localhost and
pmlogger farm architectures.

For more information about known memory leaks in pmproxy in PCP versions before
5.3.0, see Memory leaks in pmproxy in PCP .

Localhost

Each service runs locally on the monitored machine. When you start a service without any

CHAPTER 6. SETTING UP PCP

71

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/8.4_release_notes/index#BZ-1991659

Each service runs locally on the monitored machine. When you start a service without any
configuration changes, this is the default deployment. Scaling beyond the individual node is not
possible in this case.
By default, the deployment setup for Redis is standalone, localhost. However, Redis can optionally
perform in a highly-available and highly scalable clustered fashion, where data is shared across
multiple hosts. Another viable option is to deploy a Redis cluster in the cloud, or to utilize a managed
Redis cluster from a cloud vendor.

Decentralized

The only difference between localhost and decentralized setup is the centralized Redis service. In
this model, the host executes pmlogger service on each monitored host and retrieves metrics from a
local pmcd instance. A local pmproxy service then exports the performance metrics to a central
Redis instance.

Figure 6.1. Decentralized logging

Centralized logging - pmlogger farm

When the resource usage on the monitored hosts is constrained, another deployment option is a
pmlogger farm, which is also known as centralized logging. In this setup, a single logger host executes
multiple pmlogger processes, and each is configured to retrieve performance metrics from a
different remote pmcd host. The centralized logger host is also configured to execute the pmproxy
service, which discovers the resulting PCP archives logs and loads the metric data into a Redis
instance.

Figure 6.2. Centralized logging - pmlogger farm

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

72

Figure 6.2. Centralized logging - pmlogger farm

Federated - multiple pmlogger farms

For large scale deployments, Red Hat recommends to deploy multiple pmlogger farms in a
federated fashion. For example, one pmlogger farm per rack or data center. Each pmlogger farm
loads the metrics into a central Redis instance.

Figure 6.3. Federated - multiple pmlogger farms

CHAPTER 6. SETTING UP PCP

73

Figure 6.3. Federated - multiple pmlogger farms

NOTE

By default, the deployment setup for Redis is standalone, localhost. However, Redis can
optionally perform in a highly-available and highly scalable clustered fashion, where data
is shared across multiple hosts. Another viable option is to deploy a Redis cluster in the
cloud, or to utilize a managed Redis cluster from a cloud vendor.

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

74

Additional resources

pcp(1), pmlogger(1), pmproxy(1), and pmcd(1) man pages

Recommended deployment architecture

6.6. RECOMMENDED DEPLOYMENT ARCHITECTURE

The following table describes the recommended deployment architectures based on the number of
monitored hosts.

Table 6.1. Recommended deployment architecture

Number of hosts (N) 1-10 10-100 100-1000

pmcd servers N N N

pmlogger servers 1 to N N/10 to N N/100 to N

pmproxy servers 1 to N 1 to N N/100 to N

Redis servers 1 to N 1 to N/10 N/100 to N/10

Redis cluster No Maybe Yes

Recommended
deployment setup

Localhost,
Decentralized, or
Centralized logging

Decentralized,
Centralized logging, or
Federated

Decentralized or
Federated

6.7. SIZING FACTORS

The following are the sizing factors required for scaling:

Remote system size

The number of CPUs, disks, network interfaces, and other hardware resources affects the amount of
data collected by each pmlogger on the centralized logging host.

Logged Metrics

The number and types of logged metrics play an important role. In particular, the per-process proc.*
metrics require a large amount of disk space, for example, with the standard pcp-zeroconf setup, 10s
logging interval, 11 MB without proc metrics versus 155 MB with proc metrics - a factor of 10 times
more. Additionally, the number of instances for each metric, for example the number of CPUs, block
devices, and network interfaces also impacts the required storage capacity.

Logging Interval

The interval how often metrics are logged, affects the storage requirements. The expected daily PCP
archive file sizes are written to the pmlogger.log file for each pmlogger instance. These values are
uncompressed estimates. Since PCP archives compress very well, approximately 10:1, the actual long
term disk space requirements can be determined for a particular site.

pmlogrewrite

After every PCP upgrade, the pmlogrewrite tool is executed and rewrites old archives if there were

CHAPTER 6. SETTING UP PCP

75

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/monitoring_and_managing_system_status_and_performance/index#recommended-deployment-architecture_setting-up-pcp

After every PCP upgrade, the pmlogrewrite tool is executed and rewrites old archives if there were
changes in the metric metadata from the previous version and the new version of PCP. This process
duration scales linear with the number of archives stored.

Additional resources

pmlogrewrite(1) and pmlogger(1) man pages

6.8. CONFIGURATION OPTIONS FOR PCP SCALING

The following are the configuration options, which are required for scaling:

sysctl and rlimit settings

When archive discovery is enabled, pmproxy requires four descriptors for every pmlogger that it is
monitoring or log-tailing, along with the additional file descriptors for the service logs and pmproxy
client sockets, if any. Each pmlogger process uses about 20 file descriptors for the remote pmcd
socket, archive files, service logs, and others. In total, this can exceed the default 1024 soft limit on a
system running around 200 pmlogger processes. The pmproxy service in pcp-5.3.0 and later
automatically increases the soft limit to the hard limit. On earlier versions of PCP, tuning is required if
a high number of pmlogger processes are to be deployed, and this can be accomplished by
increasing the soft or hard limits for pmlogger. For more information, see How to set limits (ulimit)
for services run by systemd.

Local Archives

The pmlogger service stores metrics of local and remote pmcds in the /var/log/pcp/pmlogger/
directory. To control the logging interval of the local system, update the
/etc/pcp/pmlogger/control.d/configfile file and add -t X in the arguments, where X is the logging
interval in seconds. To configure which metrics should be logged, execute pmlogconf
/var/lib/pcp/config/pmlogger/config.clienthostname. This command deploys a configuration file
with a default set of metrics, which can optionally be further customized. To specify retention
settings, that is when to purge old PCP archives, update the /etc/sysconfig/pmlogger_timers file
and specify PMLOGGER_DAILY_PARAMS="-E -k X", where X is the amount of days to keep PCP
archives.

Redis

The pmproxy service sends logged metrics from pmlogger to a Redis instance. The following are
the available two options to specify the retention settings in the /etc/pcp/pmproxy/pmproxy.conf
configuration file:

stream.expire specifies the duration when stale metrics should be removed, that is metrics
which were not updated in a specified amount of time in seconds.

stream.maxlen specifies the maximum number of metric values for one metric per host. This
setting should be the retention time divided by the logging interval, for example 20160 for 14
days of retention and 60s logging interval (60*60*24*14/60)

Additional resources

pmproxy(1), pmlogger(1), and sysctl(8) man pages

6.9. EXAMPLE: ANALYZING THE CENTRALIZED LOGGING
DEPLOYMENT

The following results were gathered on a centralized logging setup, also known as pmlogger farm

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

76

https://access.redhat.com/solutions/1346533

The following results were gathered on a centralized logging setup, also known as pmlogger farm
deployment, with a default pcp-zeroconf 5.3.0 installation, where each remote host is an identical
container instance running pmcd on a server with 64 CPU cores, 376 GB RAM, and one disk attached.

The logging interval is 10s, proc metrics of remote nodes are not included, and the memory values refer
to the Resident Set Size (RSS) value.

Table 6.2. Detailed utilization statistics for 10s logging interval

Number of Hosts 10 50

PCP Archives Storage per Day 91 MB 522 MB

pmlogger Memory 160 MB 580 MB

pmlogger Network per Day (In) 2 MB 9 MB

pmproxy Memory 1.4 GB 6.3 GB

Redis Memory per Day 2.6 GB 12 GB

Table 6.3. Used resources depending on monitored hosts for 60s logging interval

Number of Hosts 10 50 100

PCP Archives Storage
per Day

20 MB 120 MB 271 MB

pmlogger Memory 104 MB 524 MB 1049 MB

pmlogger Network per
Day (In)

0.38 MB 1.75 MB 3.48 MB

pmproxy Memory 2.67 GB 5.5GB 9 GB

Redis Memory per Day 0.54 GB 2.65 GB 5.3 GB

NOTE

The pmproxy queues Redis requests and employs Redis pipelining to speed up Redis
queries. This can result in high memory usage. For troubleshooting this issue, see
Troubleshooting high memory usage.

6.10. EXAMPLE: ANALYZING THE FEDERATED SETUP DEPLOYMENT

The following results were observed on a federated setup, also known as multiple pmlogger farms,
consisting of three centralized logging (pmlogger farm) setups, where each pmlogger farm was
monitoring 100 remote hosts, that is 300 hosts in total.

This setup of the pmlogger farms is identical to the configuration mentioned in the

CHAPTER 6. SETTING UP PCP

77

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/monitoring_and_managing_system_status_and_performance/index#troubleshooting-high-memory-usage_setting-up-pcp

Example: Analyzing the centralized logging deployment for 60s logging interval, except that the Redis
servers were operating in cluster mode.

Table 6.4. Used resources depending on federated hosts for 60s logging interval

PCP Archives
Storage per Day

pmlogger
Memory

Network per Day
(In/Out)

pmproxy
Memory

Redis Memory per
Day

277 MB 1058 MB 15.6 MB / 12.3 MB 6-8 GB 5.5 GB

Here, all values are per host. The network bandwidth is higher due to the inter-node communication of
the Redis cluster.

6.11. TROUBLESHOOTING HIGH MEMORY USAGE

The following scenarios can result in high memory usage:

The pmproxy process is busy processing new PCP archives and does not have spare CPU
cycles to process Redis requests and responses.

The Redis node or cluster is overloaded and cannot process incoming requests on time.

The pmproxy service daemon uses Redis streams and supports the configuration parameters, which are
PCP tuning parameters and affects Redis memory usage and key retention. The
/etc/pcp/pmproxy/pmproxy.conf file lists the available configuration options for pmproxy and the
associated APIs.

The following procedure describes how to troubleshoot high memory usage issue.

Prerequisites

1. Install the pcp-pmda-redis package:

yum install pcp-pmda-redis

2. Install the redis PMDA:

cd /var/lib/pcp/pmdas/redis && ./Install

Procedure

To troubleshoot high memory usage, execute the following command and observe the inflight
column:

$ pmrep :pmproxy
 backlog inflight reqs/s resp/s wait req err resp err changed throttled
 byte count count/s count/s s/s count/s count/s count/s count/s
14:59:08 0 0 N/A N/A N/A N/A N/A N/A N/A
14:59:09 0 0 2268.9 2268.9 28 0 0 2.0 4.0
14:59:10 0 0 0.0 0.0 0 0 0 0.0 0.0
14:59:11 0 0 0.0 0.0 0 0 0 0.0 0.0

This column shows how many Redis requests are in-flight, which means they are queued or sent,

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

78

This column shows how many Redis requests are in-flight, which means they are queued or sent,
and no reply was received so far.

A high number indicates one of the following conditions:

The pmproxy process is busy processing new PCP archives and does not have spare CPU
cycles to process Redis requests and responses.

The Redis node or cluster is overloaded and cannot process incoming requests on time.

To troubleshoot the high memory usage issue, reduce the number of pmlogger processes for
this farm, and add another pmlogger farm. Use the federated - multiple pmlogger farms setup.
If the Redis node is using 100% CPU for an extended amount of time, move it to a host with
better performance or use a clustered Redis setup instead.

To view the pmproxy.redis.* metrics, use the following command:

$ pminfo -ftd pmproxy.redis
pmproxy.redis.responses.wait [wait time for responses]
 Data Type: 64-bit unsigned int InDom: PM_INDOM_NULL 0xffffffff
 Semantics: counter Units: microsec
 value 546028367374
pmproxy.redis.responses.error [number of error responses]
 Data Type: 64-bit unsigned int InDom: PM_INDOM_NULL 0xffffffff
 Semantics: counter Units: count
 value 1164
[...]
pmproxy.redis.requests.inflight.bytes [bytes allocated for inflight requests]
 Data Type: 64-bit int InDom: PM_INDOM_NULL 0xffffffff
 Semantics: discrete Units: byte
 value 0

pmproxy.redis.requests.inflight.total [inflight requests]
 Data Type: 64-bit unsigned int InDom: PM_INDOM_NULL 0xffffffff
 Semantics: discrete Units: count
 value 0
[...]

To view how many Redis requests are inflight, see the pmproxy.redis.requests.inflight.total
metric and pmproxy.redis.requests.inflight.bytes metric to view how many bytes are
occupied by all current inflight Redis requests.

In general, the redis request queue would be zero but can build up based on the usage of large
pmlogger farms, which limits scalability and can cause high latency for pmproxy clients.

Use the pminfo command to view information about performance metrics. For example, to view
the redis.* metrics, use the following command:

$ pminfo -ftd redis
redis.redis_build_id [Build ID]
 Data Type: string InDom: 24.0 0x6000000
 Semantics: discrete Units: count
 inst [0 or "localhost:6379"] value "87e335e57cffa755"
redis.total_commands_processed [Total number of commands processed by the server]
 Data Type: 64-bit unsigned int InDom: 24.0 0x6000000
 Semantics: counter Units: count

CHAPTER 6. SETTING UP PCP

79

 inst [0 or "localhost:6379"] value 595627069
[...]

redis.used_memory_peak [Peak memory consumed by Redis (in bytes)]
 Data Type: 32-bit unsigned int InDom: 24.0 0x6000000
 Semantics: instant Units: count
 inst [0 or "localhost:6379"] value 572234920
[...]

To view the peak memory usage, see the redis.used_memory_peak metric.

Additional resources

pmdaredis(1), pmproxy(1), and pminfo(1) man pages

PCP deployment architectures

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

80

CHAPTER 7. LOGGING PERFORMANCE DATA WITH
PMLOGGER

With the PCP tool you can log the performance metric values and replay them later. This allows you to
perform a retrospective performance analysis.

Using the pmlogger tool, you can:

Create the archived logs of selected metrics on the system

Specify which metrics are recorded on the system and how often

7.1. MODIFYING THE PMLOGGER CONFIGURATION FILE WITH
PMLOGCONF

When the pmlogger service is running, PCP logs a default set of metrics on the host.

Use the pmlogconf utility to check the default configuration. If the pmlogger configuration file does
not exist, pmlogconf creates it with a default metric values.

Prerequisites

PCP is installed. For more information, see Installing and enabling PCP .

Procedure

1. Create or modify the pmlogger configuration file:

pmlogconf -r /var/lib/pcp/config/pmlogger/config.default

2. Follow pmlogconf prompts to enable or disable groups of related performance metrics and to
control the logging interval for each enabled group.

Additional resources

pmlogconf(1) and pmlogger(1) man pages

System services and tools distributed with PCP

7.2. EDITING THE PMLOGGER CONFIGURATION FILE MANUALLY

To create a tailored logging configuration with specific metrics and given intervals, edit the pmlogger
configuration file manually. The default pmlogger configuration file is
/var/lib/pcp/config/pmlogger/config.default. The configuration file specifies which metrics are logged
by the primary logging instance.

In manual configuration, you can:

Record metrics which are not listed in the automatic configuration.

Choose custom logging frequencies.

Add PMDA with the application metrics.

CHAPTER 7. LOGGING PERFORMANCE DATA WITH PMLOGGER

81

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/setting-up-pcp_monitoring-and-managing-system-status-and-performance#installing-and-enabling-pcp_setting-up-pcp
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/setting-up-pcp_monitoring-and-managing-system-status-and-performance#system-services-distributed-with-pcp_setting-up-pcp

Prerequisites

PCP is installed. For more information, see Installing and enabling PCP .

Procedure

Open and edit the /var/lib/pcp/config/pmlogger/config.default file to add specific metrics:

It is safe to make additions from here on ...
#

log mandatory on every 5 seconds {
 xfs.write
 xfs.write_bytes
 xfs.read
 xfs.read_bytes
}

log mandatory on every 10 seconds {
 xfs.allocs
 xfs.block_map
 xfs.transactions
 xfs.log

}

[access]
disallow * : all;
allow localhost : enquire;

Additional resources

pmlogger(1) man page

System services and tools distributed with PCP

7.3. ENABLING THE PMLOGGER SERVICE

The pmlogger service must be started and enabled to log the metric values on the local machine.

This procedure describes how to enable the pmlogger service.

Prerequisites

PCP is installed. For more information, see Installing and enabling PCP .

Procedure

Start and enable the pmlogger service:

systemctl start pmlogger

systemctl enable pmlogger

Verification steps

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

82

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/setting-up-pcp_monitoring-and-managing-system-status-and-performance#installing-and-enabling-pcp_setting-up-pcp
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/setting-up-pcp_monitoring-and-managing-system-status-and-performance#system-services-distributed-with-pcp_setting-up-pcp
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/setting-up-pcp_monitoring-and-managing-system-status-and-performance#installing-and-enabling-pcp_setting-up-pcp

Verification steps

Verify if the pmlogger service is enabled:

pcp

Performance Co-Pilot configuration on workstation:

platform: Linux workstation 4.18.0-80.el8.x86_64 #1 SMP Wed Mar 13 12:02:46 UTC 2019
x86_64
hardware: 12 cpus, 2 disks, 1 node, 36023MB RAM
timezone: CEST-2
services: pmcd
pmcd: Version 4.3.0-1, 8 agents, 1 client
pmda: root pmcd proc xfs linux mmv kvm jbd2
pmlogger: primary logger: /var/log/pcp/pmlogger/workstation/20190827.15.54

Additional resources

pmlogger(1) man page

System services and tools distributed with PCP

/var/lib/pcp/config/pmlogger/config.default file

7.4. SETTING UP A CLIENT SYSTEM FOR METRICS COLLECTION

This procedure describes how to set up a client system so that a central server can collect metrics from
clients running PCP.

Prerequisites

PCP is installed. For more information, see Installing and enabling PCP .

Procedure

1. Install the pcp-system-tools package:

yum install pcp-system-tools

2. Configure an IP address for pmcd:

echo "-i 192.168.4.62" >>/etc/pcp/pmcd/pmcd.options

Replace 192.168.4.62 with the IP address, the client should listen on.

By default, pmcd is listening on the localhost.

3. Configure the firewall to add the public zone permanently:

firewall-cmd --permanent --zone=public --add-port=44321/tcp
success

CHAPTER 7. LOGGING PERFORMANCE DATA WITH PMLOGGER

83

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/setting-up-pcp_monitoring-and-managing-system-status-and-performance#system-services-distributed-with-pcp_setting-up-pcp
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/setting-up-pcp_monitoring-and-managing-system-status-and-performance#installing-and-enabling-pcp_setting-up-pcp

firewall-cmd --reload
success

4. Set an SELinux boolean:

setsebool -P pcp_bind_all_unreserved_ports on

5. Enable the pmcd and pmlogger services:

systemctl enable pmcd pmlogger
systemctl restart pmcd pmlogger

Verification steps

Verify if the pmcd is correctly listening on the configured IP address:

ss -tlp | grep 44321
LISTEN 0 5 127.0.0.1:44321 0.0.0.0:* users:(("pmcd",pid=151595,fd=6))
LISTEN 0 5 192.168.4.62:44321 0.0.0.0:* users:(("pmcd",pid=151595,fd=0))
LISTEN 0 5 [::1]:44321 [::]:* users:(("pmcd",pid=151595,fd=7))

Additional resources

pmlogger(1), firewall-cmd(1), ss(8), and setsebool(8) man pages

System services and tools distributed with PCP

/var/lib/pcp/config/pmlogger/config.default file

7.5. SETTING UP A CENTRAL SERVER TO COLLECT DATA

This procedure describes how to create a central server to collect metrics from clients running PCP.

Prerequisites

PCP is installed. For more information, see Installing and enabling PCP .

Client is configured for metrics collection. For more information, see Setting up a client system
for metrics collection.

Procedure

1. Install the pcp-system-tools package:

yum install pcp-system-tools

2. Create the /etc/pcp/pmlogger/control.d/remote file with the following content:

DO NOT REMOVE OR EDIT THE FOLLOWING LINE
$version=1.1

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

84

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/setting-up-pcp_monitoring-and-managing-system-status-and-performance#system-services-distributed-with-pcp_setting-up-pcp
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/setting-up-pcp_monitoring-and-managing-system-status-and-performance#installing-and-enabling-pcp_setting-up-pcp
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/logging-performance-data-with-pmlogger_monitoring-and-managing-system-status-and-performance#setting-up-a-client-system-for-metrics-collection_logging-performance-data-with-pmlogger

192.168.4.13 n n PCP_ARCHIVE_DIR/rhel7u4a -r -T24h10m -c config.rhel7u4a
192.168.4.14 n n PCP_ARCHIVE_DIR/rhel6u10a -r -T24h10m -c config.rhel6u10a
192.168.4.62 n n PCP_ARCHIVE_DIR/rhel8u1a -r -T24h10m -c config.rhel8u1a

Replace 192.168.4.13, 192.168.4.14 and 192.168.4.62 with the client IP addresses.

NOTE

In Red Hat Enterpirse Linux 8.0, 8.1 and 8.2 use the following format for remote
hosts in the control file: PCP_LOG_DIR/pmlogger/host_name.

3. Enable the pmcd and pmlogger services:

systemctl enable pmcd pmlogger
systemctl restart pmcd pmlogger

Verification steps

Ensure that you can access the latest archive file from each directory:

for i in /var/log/pcp/pmlogger/rhel*/*.0; do pmdumplog -L $i; done
Log Label (Log Format Version 2)
Performance metrics from host rhel6u10a.local
 commencing Mon Nov 25 21:55:04.851 2019
 ending Mon Nov 25 22:06:04.874 2019
Archive timezone: JST-9
PID for pmlogger: 24002
Log Label (Log Format Version 2)
Performance metrics from host rhel7u4a
 commencing Tue Nov 26 06:49:24.954 2019
 ending Tue Nov 26 07:06:24.979 2019
Archive timezone: CET-1
PID for pmlogger: 10941
[..]

The archive files from the /var/log/pcp/pmlogger/ directory can be used for further analysis and
graphing.

Additional resources

pmlogger(1) man page

System services and tools distributed with PCP

/var/lib/pcp/config/pmlogger/config.default file

7.6. SYSTEMD UNITS AND PMLOGGER

When you deploy the pmlogger service, either as a single host monitoring itself or a pmlogger farm with
a single host collecting metrics from several remote hosts, there are several associated systemd service
and timer units that are automatically deployed. These services and timers provide routine checks to
ensure that your pmlogger instances are running, restart any missing instances, and perform archive
management such as file compression.

CHAPTER 7. LOGGING PERFORMANCE DATA WITH PMLOGGER

85

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/setting-up-pcp_monitoring-and-managing-system-status-and-performance#system-services-distributed-with-pcp_setting-up-pcp

The checking and housekeeping services typically deployed by pmlogger are:

pmlogger_daily.service

Runs daily, soon after midnight by default, to aggregate, compress, and rotate one or more sets of
PCP archives. Also culls archives older than the limit, 2 weeks by default. Triggered by the
pmlogger_daily.timer unit, which is required by the pmlogger.service unit.

pmlogger_check

Performs half-hourly checks that pmlogger instances are running. Restarts any missing instances
and performs any required compression tasks. Triggered by the pmlogger_check.timer unit, which is
required by the pmlogger.service unit.

pmlogger_farm_check

Checks the status of all configured pmlogger instances. Restarts any missing instances. Migrates all
non–primary instances to the pmlogger_farm service. Triggered by the
pmlogger_farm_check.timer, which is required by the pmlogger_farm.service unit that is itself
required by the pmlogger.service unit.

These services are managed through a series of positive dependencies, meaning that they are all
enabled upon activating the primary pmlogger instance. Note that while pmlogger_daily.service is
disabled by default, pmlogger_daily.timer being active via the dependency with pmlogger.service will
trigger pmlogger_daily.service to run.

pmlogger_daily is also integrated with pmlogrewrite for automatically rewriting archives before
merging. This helps to ensure metadata consistency amid changing production environments and
PMDAs. For example, if pmcd on one monitored host is updated during the logging interval, the
semantics for some metrics on the host might be updated, thus making the new archives incompatible
with the previously recorded archives from that host. For more information see the pmlogrewrite(1)
man page.

Managing systemd services triggered by pmlogger

You can create an automated custom archive management system for data collected by your pmlogger
instances. This is done using control files. These control files are:

For the primary pmlogger instance:

etc/pcp/pmlogger/control

/etc/pcp/pmlogger/control.d/local

For the remote hosts:

/etc/pcp/pmlogger/control.d/remote
Replace remote with your desired file name.

NOTE

The primary pmlogger instance must be running on the same host as the pmcd it
connects to. You do not need to have a primary instance and you might not need it in
your configuration if one central host is collecting data on several pmlogger instances
connected to pmcd instances running on remote host

The file should contain one line for each host to be logged. The default format of the primary logger
instance that is automatically created looks similar to:

=== LOGGER CONTROL SPECIFICATIONS ===
#

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

86

https://man7.org/linux/man-pages/man1/pmlogrewrite.1.html

#Host P? S? directory args

local primary logger
LOCALHOSTNAME y n PCP_ARCHIVE_DIR/LOCALHOSTNAME -r -T24h10m -c
config.default -v 100Mb

The fields are:

Host

The name of the host to be logged

P?

Stands for “Primary?” This field indicates if the host is the primary logger instance, y, or not, n. There
can only be one primary logger across all the files in your configuration and it must be running on the
same host as the pmcd it connects to.

S?

Stands for “Socks?” This field indicates if this logger instance needs to use the SOCKS protocol to
connect to pmcd through a firewall, y, or not, n.

directory

All archives associated with this line are created in this directory.

args

Arguments passed to pmlogger.
The default values for the args field are:

-r

Report the archive sizes and growth rate.

T24h10m

Specifies when to end logging for each day. This is typically the time when
pmlogger_daily.service runs. The default value of 24h10m indicates that logging should end 24
hours and 10 minutes after it begins, at the latest.

-c config.default

Specifies which configuration file to use. This essentially defines what metrics to record.

-v 100Mb

Specifies the size at which point one data volume is filled and another is created. After it switches
to the new archive, the previously recorded one will be compressed by either pmlogger_daily or
pmlogger_check.

Additional resources

pmlogger(1) man page

pmlogger_daily(1) man page

pmlogger_check(1) man page

pmlogger.control(5) man page

pmlogrewrite(1) man page

7.7. REPLAYING THE PCP LOG ARCHIVES WITH PMREP

CHAPTER 7. LOGGING PERFORMANCE DATA WITH PMLOGGER

87

After recording the metric data, you can replay the PCP log archives. To export the logs to text files and
import them into spreadsheets, use PCP utilities such as pcp2csv, pcp2xml, pmrep or
pmlogsummary.

Using the pmrep tool, you can:

View the log files

Parse the selected PCP log archive and export the values into an ASCII table

Extract the entire archive log or only select metric values from the log by specifying individual
metrics on the command line

Prerequisites

PCP is installed. For more information, see Installing and enabling PCP .

The pmlogger service is enabled. For more information, see Enabling the pmlogger service.

Install the pcp-system-tools package:

yum install pcp-gui

Procedure

Display the data on the metric:

$ pmrep --start @3:00am --archive 20211128 --interval 5seconds --samples 10 --output csv
disk.dev.write
Time,"disk.dev.write-sda","disk.dev.write-sdb"
2021-11-28 03:00:00,,
2021-11-28 03:00:05,4.000,5.200
2021-11-28 03:00:10,1.600,7.600
2021-11-28 03:00:15,0.800,7.100
2021-11-28 03:00:20,16.600,8.400
2021-11-28 03:00:25,21.400,7.200
2021-11-28 03:00:30,21.200,6.800
2021-11-28 03:00:35,21.000,27.600
2021-11-28 03:00:40,12.400,33.800
2021-11-28 03:00:45,9.800,20.600

The mentioned example displays the data on the disk.dev.write metric collected in an archive
at a 5 second interval in comma-separated-value format.

NOTE

Replace 20211128 in this example with a filename containing the pmlogger
archive you want to display data for.

Additional resources

pmlogger(1), pmrep(1), and pmlogsummary(1) man pages

System services and tools distributed with PCP

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

88

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/setting-up-pcp_monitoring-and-managing-system-status-and-performance#installing-and-enabling-pcp_setting-up-pcp
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/logging-performance-data-with-pmlogger_monitoring-and-managing-system-status-and-performance#enabling-the-pmlogger-service_logging-performance-data-with-pmlogger
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/setting-up-pcp_monitoring-and-managing-system-status-and-performance#system-services-distributed-with-pcp_setting-up-pcp

CHAPTER 8. MONITORING PERFORMANCE WITH
PERFORMANCE CO-PILOT

Performance Co-Pilot (PCP) is a suite of tools, services, and libraries for monitoring, visualizing, storing,
and analyzing system-level performance measurements.

As a system administrator, you can monitor the system’s performance using the PCP application in
Red Hat Enterprise Linux 8.

8.1. MONITORING POSTFIX WITH PMDA-POSTFIX

This procedure describes how to monitor performance metrics of the postfix mail server with pmda-
postfix. It helps to check how many emails are received per second.

Prerequisites

PCP is installed. For more information, see Installing and enabling PCP .

The pmlogger service is enabled. For more information, see Enabling the pmlogger service.

Procedure

1. Install the following packages:

a. Install the pcp-system-tools:

yum install pcp-system-tools

b. Install the pmda-postfix package to monitor postfix:

yum install pcp-pmda-postfix postfix

c. Install the logging daemon:

yum install rsyslog

d. Install the mail client for testing:

yum install mutt

2. Enable the postfix and rsyslog services:

systemctl enable postfix rsyslog
systemctl restart postfix rsyslog

3. Enable the SELinux boolean, so that pmda-postfix can access the required log files:

setsebool -P pcp_read_generic_logs=on

4. Install the PMDA:

cd /var/lib/pcp/pmdas/postfix/

CHAPTER 8. MONITORING PERFORMANCE WITH PERFORMANCE CO-PILOT

89

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/setting-up-pcp_monitoring-and-managing-system-status-and-performance#installing-and-enabling-pcp_setting-up-pcp
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/logging-performance-data-with-pmlogger_monitoring-and-managing-system-status-and-performance#enabling-the-pmlogger-service_logging-performance-data-with-pmlogger

./Install

Updating the Performance Metrics Name Space (PMNS) ...
Terminate PMDA if already installed ...
Updating the PMCD control file, and notifying PMCD ...
Waiting for pmcd to terminate ...
Starting pmcd ...
Check postfix metrics have appeared ... 7 metrics and 58 values

Verification steps

Verify the pmda-postfix operation:

echo testmail | mutt root

Verify the available metrics:

pminfo postfix

postfix.received
postfix.sent
postfix.queues.incoming
postfix.queues.maildrop
postfix.queues.hold
postfix.queues.deferred
postfix.queues.active

Additional resources

rsyslogd(8), postfix(1), and setsebool(8) man pages

System services and tools distributed with PCP

8.2. VISUALLY TRACING PCP LOG ARCHIVES WITH THE PCP CHARTS
APPLICATION

After recording metric data, you can replay the PCP log archives as graphs. The metrics are sourced
from one or more live hosts with alternative options to use metric data from PCP log archives as a
source of historical data. To customize the PCP Charts application interface to display the data from
the performance metrics, you can use line plot, bar graphs, or utilization graphs.

Using the PCP Charts application, you can:

Replay the data in the PCP Charts application application and use graphs to visualize the
retrospective data alongside live data of the system.

Plot performance metric values into graphs.

Display multiple charts simultaneously.

Prerequisites

PCP is installed. For more information, see Installing and enabling PCP .

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

90

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/setting-up-pcp_monitoring-and-managing-system-status-and-performance#system-services-distributed-with-pcp_setting-up-pcp
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/setting-up-pcp_monitoring-and-managing-system-status-and-performance#installing-and-enabling-pcp_setting-up-pcp

Logged performance data with the pmlogger. For more information, see Logging performance
data with pmlogger.

Install the pcp-gui package:

yum install pcp-gui

Procedure

1. Launch the PCP Charts application from the command line:

pmchart

Figure 8.1. PCP Charts application

The pmtime server settings are located at the bottom. The start and pause button allows you
to control:

The interval in which PCP polls the metric data

The date and time for the metrics of historical data

2. Click File and then New Chart to select metric from both the local machine and remote
machines by specifying their host name or address. Advanced configuration options include the
ability to manually set the axis values for the chart, and to manually choose the color of the
plots.

3. Record the views created in the PCP Charts application:
Following are the options to take images or record the views created in the PCP Charts
application:

Click File and then Export to save an image of the current view.

Click Record and then Start to start a recording. Click Record and then Stop to stop the
recording. After stopping the recording, the recorded metrics are archived to be viewed
later.

CHAPTER 8. MONITORING PERFORMANCE WITH PERFORMANCE CO-PILOT

91

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/logging-performance-data-with-pmlogger_monitoring-and-managing-system-status-and-performance

4. Optional: In the PCP Charts application, the main configuration file, known as the view, allows
the metadata associated with one or more charts to be saved. This metadata describes all chart
aspects, including the metrics used and the chart columns. Save the custom view configuration
by clicking File and then Save View, and load the view configuration later.
The following example of the PCP Charts application view configuration file describes a
stacking chart graph showing the total number of bytes read and written to the given XFS file
system loop1:

#kmchart
version 1

chart title "Filesystem Throughput /loop1" style stacking antialiasing off
 plot legend "Read rate" metric xfs.read_bytes instance "loop1"
 plot legend "Write rate" metric xfs.write_bytes instance "loop1"

Additional resources

pmchart(1) and pmtime(1) man pages

System services and tools distributed with PCP

8.3. COLLECTING DATA FROM SQL SERVER USING PCP

With Red Hat Enterprise Linux 8.2 or later, the SQL Server agent is available in Performance Co-Pilot
(PCP), which helps you to monitor and analyze database performance issues.

This procedure describes how to collect data for Microsoft SQL Server via pcp on your system.

Prerequisites

You have installed Microsoft SQL Server for Red Hat Enterprise Linux and established a
'trusted' connection to an SQL server.

You have installed the Microsoft ODBC driver for SQL Server for Red Hat Enterprise Linux.

Procedure

1. Install PCP:

yum install pcp-zeroconf

2. Install packages required for the pyodbc driver:

yum install gcc-c++ python3-devel unixODBC-devel

yum install python3-pyodbc

3. Install the mssql agent:

a. Install the Microsoft SQL Server domain agent for PCP:

yum install pcp-pmda-mssql

b. Edit the /etc/pcp/mssql/mssql.conf file to configure the SQL server account’s username

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

92

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/setting-up-pcp_monitoring-and-managing-system-status-and-performance#system-services-distributed-with-pcp_setting-up-pcp

b. Edit the /etc/pcp/mssql/mssql.conf file to configure the SQL server account’s username
and password for the mssql agent. Ensure that the account you configure has access rights
to performance data.

username: user_name
password: user_password

Replace user_name with the SQL Server account and user_password with the SQL Server
user password for this account.

4. Install the agent:

cd /var/lib/pcp/pmdas/mssql
./Install
Updating the Performance Metrics Name Space (PMNS) ...
Terminate PMDA if already installed ...
Updating the PMCD control file, and notifying PMCD ...
Check mssql metrics have appeared ... 168 metrics and 598 values
[...]

Verification steps

Using the pcp command, verify if the SQL Server PMDA (mssql) is loaded and running:

$ pcp
Performance Co-Pilot configuration on rhel.local:

platform: Linux rhel.local 4.18.0-167.el8.x86_64 #1 SMP Sun Dec 15 01:24:23 UTC 2019
x86_64
 hardware: 2 cpus, 1 disk, 1 node, 2770MB RAM
 timezone: PDT+7
 services: pmcd pmproxy
 pmcd: Version 5.0.2-1, 12 agents, 4 clients
 pmda: root pmcd proc pmproxy xfs linux nfsclient mmv kvm mssql
 jbd2 dm
 pmlogger: primary logger: /var/log/pcp/pmlogger/rhel.local/20200326.16.31
 pmie: primary engine: /var/log/pcp/pmie/rhel.local/pmie.log

View the complete list of metrics that PCP can collect from the SQL Server:

pminfo mssql

After viewing the list of metrics, you can report the rate of transactions. For example, to report
on the overall transaction count per second, over a five second time window:

pmval -t 1 -T 5 mssql.databases.transactions

View the graphical chart of these metrics on your system by using the pmchart command. For
more information, see Visually tracing PCP log archives with the PCP Charts application .

Additional resources

pcp(1), pminfo(1), pmval(1), pmchart(1), and pmdamssql(1) man pages

CHAPTER 8. MONITORING PERFORMANCE WITH PERFORMANCE CO-PILOT

93

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/monitoring_and_managing_system_status_and_performance/monitoring-performance-with-performance-co-pilot_monitoring-and-managing-system-status-and-performance#visually-tracing-pcp-log-archives-with-pcp-charts_monitoring-performance-with-performance-co-pilot

Performance Co-Pilot for Microsoft SQL Server with RHEL 8.2 Red Hat Developers Blog post

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

94

https://www.redhat.com/en/blog/performance-co-pilot-microsoft-sql-server-rhel-82

CHAPTER 9. PERFORMANCE ANALYSIS OF XFS WITH PCP
The XFS PMDA ships as part of the pcp package and is enabled by default during the installation. It is
used to gather performance metric data of XFS file systems in Performance Co-Pilot (PCP).

You can use PCP to analyze XFS file system’s performance.

9.1. INSTALLING XFS PMDA MANUALLY

If the XFS PMDA is not listed in the pcp configuration output, install the PMDA agent manually.

This procedure describes how to manually install the PMDA agent.

Prerequisites

PCP is installed. For more information, see Installing and enabling PCP .

Procedure

1. Navigate to the xfs directory:

cd /var/lib/pcp/pmdas/xfs/

2. Install the XFS PMDA manually:

xfs]# ./Install

You will need to choose an appropriate configuration for install of
the “xfs” Performance Metrics Domain Agent (PMDA).

 collector collect performance statistics on this system
 monitor allow this system to monitor local and/or remote systems
 both collector and monitor configuration for this system

Please enter c(ollector) or m(onitor) or (both) [b]
Updating the Performance Metrics Name Space (PMNS) ...
Terminate PMDA if already installed ...
Updating the PMCD control file, and notifying PMCD ...
Waiting for pmcd to terminate ...
Starting pmcd ...
Check xfs metrics have appeared ... 149 metrics and 149 values

3. Select the intended PMDA role by entering c for collector, m for monitor, or b for both. The
PMDA installation script prompts you to specify one of the following PMDA roles:

The collector role allows the collection of performance metrics on the current system

The monitor role allows the system to monitor local systems, remote systems, or both
The default option is both collector and monitor, which allows the XFS PMDA to operate
correctly in most scenarios.

Verification steps

Verify that the pmcd process is running on the host and the XFS PMDA is listed as enabled in

CHAPTER 9. PERFORMANCE ANALYSIS OF XFS WITH PCP

95

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/setting-up-pcp_monitoring-and-managing-system-status-and-performance#installing-and-enabling-pcp_setting-up-pcp

Verify that the pmcd process is running on the host and the XFS PMDA is listed as enabled in
the configuration:

pcp

Performance Co-Pilot configuration on workstation:

platform: Linux workstation 4.18.0-80.el8.x86_64 #1 SMP Wed Mar 13 12:02:46 UTC 2019
x86_64
hardware: 12 cpus, 2 disks, 1 node, 36023MB RAM
timezone: CEST-2
services: pmcd
pmcd: Version 4.3.0-1, 8 agents
pmda: root pmcd proc xfs linux mmv kvm jbd2

Additional resources

pmcd(1) man page

System services and tools distributed with PCP

9.2. EXAMINING XFS PERFORMANCE METRICS WITH PMINFO

PCP enables XFS PMDA to allow the reporting of certain XFS metrics per each of the mounted XFS file
systems. This makes it easier to pinpoint specific mounted file system issues and evaluate performance.

The pminfo command provides per-device XFS metrics for each mounted XFS file system.

This procedure displays a list of all available metrics provided by the XFS PMDA.

Prerequisites

PCP is installed. For more information, see Installing and enabling PCP .

Procedure

Display the list of all available metrics provided by the XFS PMDA:

pminfo xfs

Display information for the individual metrics. The following examples examine specific XFS
read and write metrics using the pminfo tool:

Display a short description of the xfs.write_bytes metric:

pminfo --oneline xfs.write_bytes

xfs.write_bytes [number of bytes written in XFS file system write operations]

Display a long description of the xfs.read_bytes metric:

pminfo --helptext xfs.read_bytes

xfs.read_bytes

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

96

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/setting-up-pcp_monitoring-and-managing-system-status-and-performance#system-services-distributed-with-pcp_setting-up-pcp
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/setting-up-pcp_monitoring-and-managing-system-status-and-performance#installing-and-enabling-pcp_setting-up-pcp

Help:
This is the number of bytes read via read(2) system calls to files in
XFS file systems. It can be used in conjunction with the read_calls
count to calculate the average size of the read operations to file in
XFS file systems.

Obtain the current performance value of the xfs.read_bytes metric:

pminfo --fetch xfs.read_bytes

xfs.read_bytes
 value 4891346238

Obtain per-device XFS metrics with pminfo:

pminfo --fetch --oneline xfs.perdev.read xfs.perdev.write

xfs.perdev.read [number of XFS file system read operations]
inst [0 or "loop1"] value 0
inst [0 or "loop2"] value 0

xfs.perdev.write [number of XFS file system write operations]
inst [0 or "loop1"] value 86
inst [0 or "loop2"] value 0

Additional resources

pminfo(1) man page

PCP metric groups for XFS

Per-device PCP metric groups for XFS

9.3. RESETTING XFS PERFORMANCE METRICS WITH PMSTORE

With PCP, you can modify the values of certain metrics, especially if the metric acts as a control variable,
such as the xfs.control.reset metric. To modify a metric value, use the pmstore tool.

This procedure describes how to reset XFS metrics using the pmstore tool.

Prerequisites

PCP is installed. For more information, see Installing and enabling PCP .

Procedure

1. Display the value of a metric:

$ pminfo -f xfs.write

xfs.write
 value 325262

2. Reset all the XFS metrics:

CHAPTER 9. PERFORMANCE ANALYSIS OF XFS WITH PCP

97

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/performance-analysis-of-xfs-with-pcp_monitoring-and-managing-system-status-and-performance#pcp-metric-groups-for-xfs_performance-analysis-of-xfs-with-pcp
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/performance-analysis-of-xfs-with-pcp_monitoring-and-managing-system-status-and-performance#per-device-pcp-metric-groups-for-xfs_performance-analysis-of-xfs-with-pcp
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/setting-up-pcp_monitoring-and-managing-system-status-and-performance#installing-and-enabling-pcp_setting-up-pcp

pmstore xfs.control.reset 1

xfs.control.reset old value=0 new value=1

Verification steps

View the information after resetting the metric:

$ pminfo --fetch xfs.write

xfs.write
 value 0

Additional resources

pmstore(1) and pminfo(1) man pages

System services and tools distributed with PCP

PCP metric groups for XFS

9.4. PCP METRIC GROUPS FOR XFS

The following table describes the available PCP metric groups for XFS.

Table 9.1. Metric groups for XFS

Metric Group Metrics provided

xfs.* General XFS metrics including the read and write
operation counts, read and write byte counts. Along
with counters for the number of times inodes are
flushed, clustered and number of failure to cluster.

xfs.allocs.*

xfs.alloc_btree.*

Range of metrics regarding the allocation of objects
in the file system, these include number of extent and
block creations/frees. Allocation tree lookup and
compares along with extend record creation and
deletion from the btree.

xfs.block_map.*

xfs.bmap_btree.*

Metrics include the number of block map read/write
and block deletions, extent list operations for
insertion, deletions and lookups. Also operations
counters for compares, lookups, insertions and
deletion operations from the blockmap.

xfs.dir_ops.* Counters for directory operations on XFS file
systems for creation, entry deletions, count of
“getdent” operations.

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

98

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/setting-up-pcp_monitoring-and-managing-system-status-and-performance#system-services-distributed-with-pcp_setting-up-pcp
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/performance-analysis-of-xfs-with-pcp_monitoring-and-managing-system-status-and-performance#pcp-metric-groups-for-xfs_performance-analysis-of-xfs-with-pcp

xfs.transactions.* Counters for the number of meta-data transactions,
these include the count for the number of
synchronous and asynchronous transactions along
with the number of empty transactions.

xfs.inode_ops.* Counters for the number of times that the operating
system looked for an XFS inode in the inode cache
with different outcomes. These count cache hits,
cache misses, and so on.

xfs.log.*

xfs.log_tail.*

Counters for the number of log buffer writes over
XFS file sytems includes the number of blocks
written to disk. Metrics also for the number of log
flushes and pinning.

xfs.xstrat.* Counts for the number of bytes of file data flushed
out by the XFS flush deamon along with counters for
number of buffers flushed to contiguous and non-
contiguous space on disk.

xfs.attr.* Counts for the number of attribute get, set, remove
and list operations over all XFS file systems.

xfs.quota.* Metrics for quota operation over XFS file systems,
these include counters for number of quota reclaims,
quota cache misses, cache hits and quota data
reclaims.

xfs.buffer.* Range of metrics regarding XFS buffer objects.
Counters include the number of requested buffer
calls, successful buffer locks, waited buffer locks,
miss_locks, miss_retries and buffer hits when looking
up pages.

xfs.btree.* Metrics regarding the operations of the XFS btree.

xfs.control.reset Configuration metrics which are used to reset the
metric counters for the XFS stats. Control metrics
are toggled by means of the pmstore tool.

9.5. PER-DEVICE PCP METRIC GROUPS FOR XFS

The following table describes the available per-device PCP metric group for XFS.

Table 9.2. Per-device PCP metric groups for XFS

Metric Group Metrics provided

CHAPTER 9. PERFORMANCE ANALYSIS OF XFS WITH PCP

99

xfs.perdev.* General XFS metrics including the read and write
operation counts, read and write byte counts. Along
with counters for the number of times inodes are
flushed, clustered and number of failure to cluster.

xfs.perdev.allocs.*

xfs.perdev.alloc_btree.*

Range of metrics regarding the allocation of objects
in the file system, these include number of extent and
block creations/frees. Allocation tree lookup and
compares along with extend record creation and
deletion from the btree.

xfs.perdev.block_map.*

xfs.perdev.bmap_btree.*

Metrics include the number of block map read/write
and block deletions, extent list operations for
insertion, deletions and lookups. Also operations
counters for compares, lookups, insertions and
deletion operations from the blockmap.

xfs.perdev.dir_ops.* Counters for directory operations of XFS file systems
for creation, entry deletions, count of “getdent”
operations.

xfs.perdev.transactions.* Counters for the number of meta-data transactions,
these include the count for the number of
synchronous and asynchronous transactions along
with the number of empty transactions.

xfs.perdev.inode_ops.* Counters for the number of times that the operating
system looked for an XFS inode in the inode cache
with different outcomes. These count cache hits,
cache misses, and so on.

xfs.perdev.log.*

xfs.perdev.log_tail.*

Counters for the number of log buffer writes over
XFS filesytems includes the number of blocks written
to disk. Metrics also for the number of log flushes
and pinning.

xfs.perdev.xstrat.* Counts for the number of bytes of file data flushed
out by the XFS flush deamon along with counters for
number of buffers flushed to contiguous and non-
contiguous space on disk.

xfs.perdev.attr.* Counts for the number of attribute get, set, remove
and list operations over all XFS file systems.

xfs.perdev.quota.* Metrics for quota operation over XFS file systems,
these include counters for number of quota reclaims,
quota cache misses, cache hits and quota data
reclaims.

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

100

xfs.perdev.buffer.* Range of metrics regarding XFS buffer objects.
Counters include the number of requested buffer
calls, successful buffer locks, waited buffer locks,
miss_locks, miss_retries and buffer hits when looking
up pages.

xfs.perdev.btree.* Metrics regarding the operations of the XFS btree.

CHAPTER 9. PERFORMANCE ANALYSIS OF XFS WITH PCP

101

CHAPTER 10. SETTING UP GRAPHICAL REPRESENTATION OF
PCP METRICS

Using a combination of pcp, grafana, pcp redis, pcp bpftrace, and pcp vector provides provides
graphical representation of the live data or data collected by Performance Co-Pilot (PCP).

10.1. SETTING UP PCP WITH PCP-ZEROCONF

This procedure describes how to set up PCP on a system with the pcp-zeroconf package. Once the
pcp-zeroconf package is installed, the system records the default set of metrics into archived files.

Procedure

Install the pcp-zeroconf package:

yum install pcp-zeroconf

Verification steps

Ensure that the pmlogger service is active, and starts archiving the metrics:

pcp | grep pmlogger
 pmlogger: primary logger: /var/log/pcp/pmlogger/localhost.localdomain/20200401.00.12

Additional resources

pmlogger man page

Monitoring performance with Performance Co-Pilot

10.2. SETTING UP A GRAFANA-SERVER

Grafana generates graphs that are accessible from a browser. The grafana-server is a back-end server
for the Grafana dashboard. It listens, by default, on all interfaces, and provides web services accessed
through the web browser. The grafana-pcp plugin interacts with the pmproxy protocol in the backend.

This procedure describes how to set up a grafana-server.

Prerequisites

PCP is configured. For more information, see Setting up PCP with pcp-zeroconf.

Procedure

1. Install the following packages:

yum install grafana grafana-pcp

2. Restart and enable the following service:

systemctl restart grafana-server
systemctl enable grafana-server

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

102

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/monitoring_and_managing_system_status_and_performance/index#monitoring-performance-with-performance-co-pilot_monitoring-and-managing-system-status-and-performance
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/monitoring_and_managing_system_status_and_performance/setting-up-graphical-representation-of-pcp-metrics_monitoring-and-managing-system-status-and-performance#setting-up-pcp-with-pcp-zeroconf_setting-up-graphical-representation-of-pcp-metrics

3. Open the server’s firewall for network traffic to the Grafana service.

firewall-cmd --permanent --add-service=grafana
success

firewall-cmd --reload
success

Verification steps

Ensure that the grafana-server is listening and responding to requests:

ss -ntlp | grep 3000
LISTEN 0 128 *:3000 *:* users:(("grafana-server",pid=19522,fd=7))

Ensure that the grafana-pcp plugin is installed:

grafana-cli plugins ls | grep performancecopilot-pcp-app

performancecopilot-pcp-app @ 3.1.0

Additional resources

pmproxy(1) and grafana-server man pages

10.3. ACCESSING THE GRAFANA WEB UI

This procedure describes how to access the Grafana web interface.

Using the Grafana web interface, you can:

add PCP Redis, PCP bpftrace, and PCP Vector data sources

create dashboard

view an overview of any useful metrics

create alerts in PCP Redis

Prerequisites

1. PCP is configured. For more information, see Setting up PCP with pcp-zeroconf.

2. The grafana-server is configured. For more information, see Setting up a grafana-server.

Procedure

1. On the client system, open a browser and access the grafana-server on port 3000, using
http://192.0.2.0:3000 link.
Replace 192.0.2.0 with your machine IP.

2. For the first login, enter admin in both the Email or username and Password field.

Grafana prompts to set a New password to create a secured account. If you want to set it later,

CHAPTER 10. SETTING UP GRAPHICAL REPRESENTATION OF PCP METRICS

103

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/monitoring_and_managing_system_status_and_performance/index#setting-up-pcp-with-pcp-zeroconf_setting-up-graphical-representation-of-pcp-metrics
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/monitoring_and_managing_system_status_and_performance/index#setting-up-a-grafana-server_setting-up-graphical-representation-of-pcp-metrics

Grafana prompts to set a New password to create a secured account. If you want to set it later,
click Skip.

3. From the menu, hover over the Configuration icon and then click Plugins.

4. In the Plugins tab, type performance co-pilot in the Search by name or type text box and then
click Performance Co-Pilot (PCP) plugin.

5. In the Plugins / Performance Co-Pilot pane, click Enable.

6. Click Grafana icon. The Grafana Home page is displayed.

Figure 10.1. Home Dashboard

NOTE

The top corner of the screen has a similar icon, but it controls the
general Dashboard settings.

7. In the Grafana Home page, click Add your first data source to add PCP Redis, PCP bpftrace,
and PCP Vector data sources. For more information about adding data source, see:

To add pcp redis data source, view default dashboard, create a panel, and an alert rule, see
Creating panels and alert in PCP Redis data source .

To add pcp bpftrace data source and view the default dashboard, see Viewing the PCP
bpftrace System Analysis dashboard.

To add pcp vector data source, view the default dashboard, and to view the vector checklist,
see Viewing the PCP Vector Checklist.

8. Optional: From the menu, hover over the admin profile icon to change the
Preferences including Edit Profile, Change Password, or to Sign out.

Additional resources

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

104

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/monitoring_and_managing_system_status_and_performance/index#creating-panel-and-alerts-in-pcp-redis-data-source_setting-up-graphical-representation-of-pcp-metrics
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/monitoring_and_managing_system_status_and_performance/index#viewing-the-pcp-bpftrace-system-analysis-dashboard_setting-up-graphical-representation-of-pcp-metrics
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/monitoring_and_managing_system_status_and_performance/index#viewing-the-pcp-vector-checklist_setting-up-graphical-representation-of-pcp-metrics

Additional resources

grafana-cli and grafana-server man pages

10.4. CONFIGURING PCP REDIS

Use the PCP Redis data source to:

View data archives

Query time series using pmseries language

Analyze data across multiple hosts

Prerequisites

1. PCP is configured. For more information, see Setting up PCP with pcp-zeroconf.

2. The grafana-server is configured. For more information, see Setting up a grafana-server.

3. Mail transfer agent, for example, sendmail or postfix is installed and configured.

Procedure

1. Install the redis package:

yum module install redis:6

NOTE

From Red Hat Enterprise Linux 8.4, Redis 6 is supported but the yum update
command does not update Redis 5 to Redis 6. To update from Redis 5 to Redis
6, run:

yum module switch-to redis:6

2. Start and enable the following services:

systemctl start pmproxy redis
systemctl enable pmproxy redis

3. Restart the grafana-server:

systemctl restart grafana-server

Verification steps

Ensure that the pmproxy and redis are working:

pmseries disk.dev.read
2eb3e58d8f1e231361fb15cf1aa26fe534b4d9df

This command does not return any data if the redis package is not installed.

Additional resources

CHAPTER 10. SETTING UP GRAPHICAL REPRESENTATION OF PCP METRICS

105

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/monitoring_and_managing_system_status_and_performance/setting-up-graphical-representation-of-pcp-metrics_monitoring-and-managing-system-status-and-performance#setting-up-pcp-with-pcp-zeroconf_setting-up-graphical-representation-of-pcp-metrics
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/monitoring_and_managing_system_status_and_performance/setting-up-graphical-representation-of-pcp-metrics_monitoring-and-managing-system-status-and-performance#setting-up-a-grafana-server_setting-up-graphical-representation-of-pcp-metrics

Additional resources

pmseries(1) man page

10.5. CREATING PANELS AND ALERT IN PCP REDIS DATA SOURCE

After adding the PCP Redis data source, you can view the dashboard with an overview of useful metrics,
add a query to visualize the load graph, and create alerts that help you to view the system issues after
they occur.

Prerequisites

1. The PCP Redis is configured. For more information, see Configuring PCP Redis.

2. The grafana-server is accessible. For more information, see Accessing the Grafana web UI .

Procedure

1. Log into the Grafana web UI.

2. In the Grafana Home page, click Add your first data source.

3. In the Add data source pane, type redis in the Filter by name or type text box and then click
PCP Redis.

4. In the Data Sources / PCP Redis pane, perform the following:

a. Add http://localhost:44322 in the URL field and then click Save & Test.

b. Click Dashboards tab → Import → PCP Redis: Host Overview to see a dashboard with an
overview of any useful metrics.

Figure 10.2. PCP Redis: Host Overview

5. Add a new panel:

a. From the menu, hover over the Create icon → Dashboard → Add new panel
icon to add a panel.

b. In the Query tab, select the PCP Redis from the query list instead of the selected default

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

106

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/monitoring_and_managing_system_status_and_performance/setting-up-graphical-representation-of-pcp-metrics_monitoring-and-managing-system-status-and-performance#configuring-pcp-redis_setting-up-graphical-representation-of-pcp-metrics
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/monitoring_and_managing_system_status_and_performance/setting-up-graphical-representation-of-pcp-metrics_monitoring-and-managing-system-status-and-performance#accessing-the-grafana-web-ui_setting-up-graphical-representation-of-pcp-metrics

b. In the Query tab, select the PCP Redis from the query list instead of the selected default
option and in the text field of A, enter metric, for example, kernel.all.load to visualize the
kernel load graph.

c. Optional: Add Panel title and Description, and update other options from the Settings.

d. Click Save to apply changes and save the dashboard. Add Dashboard name.

e. Click Apply to apply changes and go back to the dashboard.

Figure 10.3. PCP Redis query panel

6. Create an alert rule:

a. In the PCP Redis query panel, click Alert and then click Create
Alert.

b. Edit the Name, Evaluate query, and For fields from the Rule, and specify the Conditions
for your alert.

c. Click Save to apply changes and save the dashboard. Click Apply to apply changes and go
back to the dashboard.

Figure 10.4. Creating alerts in the PCP Redis panel

CHAPTER 10. SETTING UP GRAPHICAL REPRESENTATION OF PCP METRICS

107

d. Optional: In the same panel, scroll down and click Delete icon to delete the created rule.

e. Optional: From the menu, click Alerting icon to view the created alert rules with
different alert statuses, to edit the alert rule, or to pause the existing rule from the Alert
Rules tab.
To add a notification channel for the created alert rule to receive an alert notification from
Grafana, see Adding notification channels for alerts .

10.6. ADDING NOTIFICATION CHANNELS FOR ALERTS

By adding notification channels, you can receive an alert notification from Grafana whenever the alert
rule conditions are met and the system needs further monitoring.

You can receive these alerts after selecting any one type from the supported list of notifiers, which
includes DingDing, Discord, Email, Google Hangouts Chat, HipChat, Kafka REST Proxy, LINE,
Microsoft Teams, OpsGenie, PagerDuty, Prometheus Alertmanager, Pushover, Sensu, Slack,
Telegram, Threema Gateway, VictorOps, and webhook.

Prerequisites

1. The grafana-server is accessible. For more information, see Accessing the Grafana web UI .

2. An alert rule is created. For more information, see Creating panels and alert in PCP Redis data
source.

3. Configure SMTP and add a valid sender’s email address in the grafana/grafana.ini file:

vi /etc/grafana/grafana.ini

[smtp]
enabled = true
from_address = abc@gmail.com

Replace abc@gmail.com by a valid email address.

4. Restart grafana-server

systemctl restart grafana-server.service

Procedure

1. From the menu, hover over the Alerting icon → click Notification channels → Add
channel.

2. In the Add notification channel details pane, perform the following:

a. Enter your name in the Name text box

b. Select the communication Type, for example, Email and enter the email address. You can
add multiple email addresses using the ; separator.

c. Optional: Configure Optional Email settings and Notification settings.

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

108

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/monitoring_and_managing_system_status_and_performance/setting-up-graphical-representation-of-pcp-metrics_monitoring-and-managing-system-status-and-performance#adding-notification-channels-for-alerts_setting-up-graphical-representation-of-pcp-metrics
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/monitoring_and_managing_system_status_and_performance/setting-up-graphical-representation-of-pcp-metrics_monitoring-and-managing-system-status-and-performance#accessing-the-grafana-web-ui_setting-up-graphical-representation-of-pcp-metrics
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/monitoring_and_managing_system_status_and_performance/setting-up-graphical-representation-of-pcp-metrics_monitoring-and-managing-system-status-and-performance#creating-panel-and-alerts-in-pcp-redis-data-source_setting-up-graphical-representation-of-pcp-metrics

3. Click Save.

4. Select a notification channel in the alert rule:

a. From the menu, hover over the Alerting icon and then click Alert rules.

b. From the Alert Rules tab, click the created alert rule.

c. On the Notifications tab, select your notification channel name from the Send to option,
and then add an alert message.

d. Click Apply.

Additional resources

Upstream Grafana documentation for alert notifications

10.7. SETTING UP AUTHENTICATION BETWEEN PCP COMPONENTS

You can setup authentication using the scram-sha-256 authentication mechanism, which is supported
by PCP through the Simple Authentication Security Layer (SASL) framework.

NOTE

From Red Hat Enterprise Linux 8.3, PCP supports the scram-sha-256 authentication
mechanism.

Procedure

1. Install the sasl framework for the scram-sha-256 authentication mechanism:

yum install cyrus-sasl-scram cyrus-sasl-lib

2. Specify the supported authentication mechanism and the user database path in the pmcd.conf
file:

vi /etc/sasl2/pmcd.conf

mech_list: scram-sha-256

sasldb_path: /etc/pcp/passwd.db

3. Create a new user:

useradd -r metrics

Replace metrics by your user name.

4. Add the created user in the user database:

saslpasswd2 -a pmcd metrics

Password:

CHAPTER 10. SETTING UP GRAPHICAL REPRESENTATION OF PCP METRICS

109

https://grafana.com/docs/grafana/latest/alerting/notifications/

Again (for verification):

To add the created user, you are required to enter the metrics account password.

5. Set the permissions of the user database:

chown root:pcp /etc/pcp/passwd.db
chmod 640 /etc/pcp/passwd.db

6. Restart the pmcd service:

systemctl restart pmcd

Verification steps

Verify the sasl configuration:

pminfo -f -h "pcp://127.0.0.1?username=metrics" disk.dev.read
Password:
disk.dev.read
inst [0 or "sda"] value 19540

Additional resources

saslauthd(8), pminfo(1), and sha256 man pages

How can I setup authentication between PCP components, like PMDAs and pmcd in RHEL 8.2?

10.8. INSTALLING PCP BPFTRACE

Install the PCP bpftrace agent to introspect a system and to gather metrics from the kernel and user-
space tracepoints.

The bpftrace agent uses bpftrace scripts to gather the metrics. The bpftrace scripts use the enhanced
Berkeley Packet Filter (eBPF).

This procedure describes how to install a pcp bpftrace.

Prerequisites

1. PCP is configured. For more information, see Setting up PCP with pcp-zeroconf.

2. The grafana-server is configured. For more information, see Setting up a grafana-server.

3. The scram-sha-256 authentication mechanism is configured. For more information, see Setting
up authentication between PCP components.

Procedure

1. Install the pcp-pmda-bpftrace package:

yum install pcp-pmda-bpftrace

2. Edit the bpftrace.conf file and add the user that you have created in the {setting-up-

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

110

https://access.redhat.com/solutions/5041891
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/monitoring_and_managing_system_status_and_performance/setting-up-graphical-representation-of-pcp-metrics_monitoring-and-managing-system-status-and-performance#setting-up-pcp-with-pcp-zeroconf_setting-up-graphical-representation-of-pcp-metrics
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/monitoring_and_managing_system_status_and_performance/setting-up-graphical-representation-of-pcp-metrics_monitoring-and-managing-system-status-and-performance#setting-up-a-grafana-server_setting-up-graphical-representation-of-pcp-metrics
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/monitoring_and_managing_system_status_and_performance/setting-up-graphical-representation-of-pcp-metrics_monitoring-and-managing-system-status-and-performance#setting-up-authentication-between-pcp-components_setting-up-graphical-representation-of-pcp-metrics

2. Edit the bpftrace.conf file and add the user that you have created in the {setting-up-
authentication-between-pcp-components}:

vi /var/lib/pcp/pmdas/bpftrace/bpftrace.conf

[dynamic_scripts]
enabled = true
auth_enabled = true
allowed_users = root,metrics

Replace metrics by your user name.

3. Install bpftrace PMDA:

cd /var/lib/pcp/pmdas/bpftrace/
./Install
Updating the Performance Metrics Name Space (PMNS) ...
Terminate PMDA if already installed ...
Updating the PMCD control file, and notifying PMCD ...
Check bpftrace metrics have appeared ... 7 metrics and 6 values

The pmda-bpftrace is now installed, and can only be used after authenticating your user. For
more information, see Viewing the PCP bpftrace System Analysis dashboard.

Additional resources

pmdabpftrace(1) and bpftrace man pages

10.9. VIEWING THE PCP BPFTRACE SYSTEM ANALYSIS DASHBOARD

Using the PCP bpftrace data source, you can access the live data from sources which are not available
as normal data from the pmlogger or archives

In the PCP bpftrace data source, you can view the dashboard with an overview of useful metrics.

Prerequisites

1. The PCP bpftrace is installed. For more information, see Installing PCP bpftrace.

2. The grafana-server is accessible. For more information, see Accessing the Grafana web UI .

Procedure

1. Log into the Grafana web UI.

2. In the Grafana Home page, click Add your first data source.

3. In the Add data source pane, type bpftrace in the Filter by name or type text box and then
click PCP bpftrace.

4. In the Data Sources / PCP bpftrace pane, perform the following:

a. Add http://localhost:44322 in the URL field.

b. Toggle the Basic Auth option and add the created user credentials in the User and

CHAPTER 10. SETTING UP GRAPHICAL REPRESENTATION OF PCP METRICS

111

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/monitoring_and_managing_system_status_and_performance/setting-up-graphical-representation-of-pcp-metrics_monitoring-and-managing-system-status-and-performance#viewing-the-pcp-bpftrace-system-analysis-dashboard_setting-up-graphical-representation-of-pcp-metrics
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/monitoring_and_managing_system_status_and_performance/setting-up-graphical-representation-of-pcp-metrics_monitoring-and-managing-system-status-and-performance#installing-pcp-bpftrace_setting-up-graphical-representation-of-pcp-metrics
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/monitoring_and_managing_system_status_and_performance/setting-up-graphical-representation-of-pcp-metrics_monitoring-and-managing-system-status-and-performance#accessing-the-grafana-web-ui_setting-up-graphical-representation-of-pcp-metrics

b. Toggle the Basic Auth option and add the created user credentials in the User and
Password field.

c. Click Save & Test.

Figure 10.5. Adding PCP bpftrace in the data source

d. Click Dashboards tab → Import → PCP bpftrace: System Analysis to see a dashboard
with an overview of any useful metrics.

Figure 10.6. PCP bpftrace: System Analysis

10.10. INSTALLING PCP VECTOR

This procedure describes how to install a pcp vector.

Prerequisites

1. PCP is configured. For more information, see Setting up PCP with pcp-zeroconf.

2. The grafana-server is configured. For more information, see Setting up a grafana-server.

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

112

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/monitoring_and_managing_system_status_and_performance/setting-up-graphical-representation-of-pcp-metrics_monitoring-and-managing-system-status-and-performance#setting-up-pcp-with-pcp-zeroconf_setting-up-graphical-representation-of-pcp-metrics
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/monitoring_and_managing_system_status_and_performance/setting-up-graphical-representation-of-pcp-metrics_monitoring-and-managing-system-status-and-performance#setting-up-a-grafana-server_setting-up-graphical-representation-of-pcp-metrics

Procedure

1. Install the pcp-pmda-bcc package:

yum install pcp-pmda-bcc

2. Install the bcc PMDA:

cd /var/lib/pcp/pmdas/bcc
./Install
[Wed Apr 1 00:27:48] pmdabcc(22341) Info: Initializing, currently in 'notready' state.
[Wed Apr 1 00:27:48] pmdabcc(22341) Info: Enabled modules:
[Wed Apr 1 00:27:48] pmdabcc(22341) Info: ['biolatency', 'sysfork',
[...]
Updating the Performance Metrics Name Space (PMNS) ...
Terminate PMDA if already installed ...
Updating the PMCD control file, and notifying PMCD ...
Check bcc metrics have appeared ... 1 warnings, 1 metrics and 0 values

Additional resources

pmdabcc(1) man page

10.11. VIEWING THE PCP VECTOR CHECKLIST

The PCP Vector data source displays live metrics and uses the pcp metrics. It analyzes data for
individual hosts.

After adding the PCP Vector data source, you can view the dashboard with an overview of useful metrics
and view the related troubleshooting or reference links in the checklist.

Prerequisites

1. The PCP Vector is installed. For more information, see Installing PCP Vector.

2. The grafana-server is accessible. For more information, see Accessing the Grafana web UI .

Procedure

1. Log into the Grafana web UI.

2. In the Grafana Home page, click Add your first data source.

3. In the Add data source pane, type vector in the Filter by name or type text box and then click
PCP Vector.

4. In the Data Sources / PCP Vector pane, perform the following:

a. Add http://localhost:44322 in the URL field and then click Save & Test.

b. Click Dashboards tab → Import → PCP Vector: Host Overview to see a dashboard with an
overview of any useful metrics.

Figure 10.7. PCP Vector: Host Overview

CHAPTER 10. SETTING UP GRAPHICAL REPRESENTATION OF PCP METRICS

113

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/monitoring_and_managing_system_status_and_performance/setting-up-graphical-representation-of-pcp-metrics_monitoring-and-managing-system-status-and-performance#installing-pcp-vector_setting-up-graphical-representation-of-pcp-metrics
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/monitoring_and_managing_system_status_and_performance/setting-up-graphical-representation-of-pcp-metrics_monitoring-and-managing-system-status-and-performance#accessing-the-grafana-web-ui_setting-up-graphical-representation-of-pcp-metrics

Figure 10.7. PCP Vector: Host Overview

5. From the menu, hover over the Performance Co-Pilot plugin and then click PCP
Vector Checklist.

In the PCP checklist, click help or warning icon to view the related
troubleshooting or reference links.

Figure 10.8. Performance Co-Pilot / PCP Vector Checklist

10.12. USING HEATMAPS IN GRAFANA

You can use heatmaps in Grafana to view histograms of your data over time, identify trends and
patterns in your data, and see how they change over time. Each column within a heatmap represents a
single histogram with different colored cells representing the different densities of observation of a
given value within that histogram.

IMPORTANT

This specific workflow is for the heatmaps in Grafana version 9.2.10 and later on RHEL8.

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

114

Prerequisites

PCP Redis is configured. For more information see Configuring PCP Redis.

The grafana-server is accessible. For more information see Accessing the Grafana Web UI.

The PCP Redis data source is configured. For more information see Creating panels and alerts
in PCP Redis data source.

Procedure

1. Hover the cursor over the Dashboards tab and click + New dashboard.

2. In the Add panel menu, click Add a new panel.

3. In the Query tab:

a. Select PCP Redis from the query list instead of the selected default option.

b. In the text field of A, enter a metric, for example, kernel.all.load to visualize the kernel load
graph.

4. Click the visualization dropdown menu, which is set to Time series by default, and then click
Heatmap.

5. Optional: In the Panel Options dropdown menu, add a Panel Title and Description.

6. In the Heatmap dropdown menu, under the Calculate from data setting, click Yes.

Heatmap

7. Optional: In the Colors dropdown menu, change the Scheme from the default Orange and
select the number of steps (color shades).

8. Optional: In the Tooltip dropdown menu, under the Show histogram (Y Axis) setting, click the
toggle to display a cell’s position within its specific histogram when hovering your cursor over a
cell in the heatmap. For example:

Show histogram (Y Axis) cell display

CHAPTER 10. SETTING UP GRAPHICAL REPRESENTATION OF PCP METRICS

115

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/setting-up-graphical-representation-of-pcp-metrics_monitoring-and-managing-system-status-and-performance#configuring-pcp-redis_setting-up-graphical-representation-of-pcp-metrics
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/setting-up-graphical-representation-of-pcp-metrics_monitoring-and-managing-system-status-and-performance#accessing-the-grafana-web-ui_setting-up-graphical-representation-of-pcp-metrics
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/setting-up-graphical-representation-of-pcp-metrics_monitoring-and-managing-system-status-and-performance#creating-panel-and-alerts-in-pcp-redis-data-source_setting-up-graphical-representation-of-pcp-metrics

10.13. TROUBLESHOOTING GRAFANA ISSUES

It is sometimes neccesary to troubleshoot Grafana issues, such as, Grafana does not display any data,
the dashboard is black, or similar issues.

Procedure

Verify that the pmlogger service is up and running by executing the following command:

$ systemctl status pmlogger

Verify if files were created or modified to the disk by executing the following command:

$ ls /var/log/pcp/pmlogger/$(hostname)/ -rlt
total 4024
-rw-r--r--. 1 pcp pcp 45996 Oct 13 2019 20191013.20.07.meta.xz
-rw-r--r--. 1 pcp pcp 412 Oct 13 2019 20191013.20.07.index
-rw-r--r--. 1 pcp pcp 32188 Oct 13 2019 20191013.20.07.0.xz
-rw-r--r--. 1 pcp pcp 44756 Oct 13 2019 20191013.20.30-00.meta.xz
[..]

Verify that the pmproxy service is running by executing the following command:

$ systemctl status pmproxy

Verify that pmproxy is running, time series support is enabled, and a connection to Redis is
established by viewing the /var/log/pcp/pmproxy/pmproxy.log file and ensure that it contains
the following text:

pmproxy(1716) Info: Redis slots, command keys, schema version setup

Here, 1716 is the PID of pmproxy, which will be different for every invocation of pmproxy.

Verify if the Redis database contains any keys by executing the following command:

$ redis-cli dbsize
(integer) 34837

Verify if any PCP metrics are in the Redis database and pmproxy is able to access them by
executing the following commands:

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

116

$ pmseries disk.dev.read
2eb3e58d8f1e231361fb15cf1aa26fe534b4d9df

$ pmseries "disk.dev.read[count:10]"
2eb3e58d8f1e231361fb15cf1aa26fe534b4d9df
 [Mon Jul 26 12:21:10.085468000 2021] 117971
70e83e88d4e1857a3a31605c6d1333755f2dd17c
 [Mon Jul 26 12:21:00.087401000 2021] 117758
70e83e88d4e1857a3a31605c6d1333755f2dd17c
 [Mon Jul 26 12:20:50.085738000 2021] 116688
70e83e88d4e1857a3a31605c6d1333755f2dd17c
[...]

$ redis-cli --scan --pattern "*$(pmseries 'disk.dev.read')"

pcp:metric.name:series:2eb3e58d8f1e231361fb15cf1aa26fe534b4d9df
pcp:values:series:2eb3e58d8f1e231361fb15cf1aa26fe534b4d9df
pcp:desc:series:2eb3e58d8f1e231361fb15cf1aa26fe534b4d9df
pcp:labelvalue:series:2eb3e58d8f1e231361fb15cf1aa26fe534b4d9df
pcp:instances:series:2eb3e58d8f1e231361fb15cf1aa26fe534b4d9df
pcp:labelflags:series:2eb3e58d8f1e231361fb15cf1aa26fe534b4d9df

Verify if there are any errors in the Grafana logs by executing the following command:

$ journalctl -e -u grafana-server
-- Logs begin at Mon 2021-07-26 11:55:10 IST, end at Mon 2021-07-26 12:30:15 IST. --
Jul 26 11:55:17 localhost.localdomain systemd[1]: Starting Grafana instance...
Jul 26 11:55:17 localhost.localdomain grafana-server[1171]: t=2021-07-26T11:55:17+0530
lvl=info msg="Starting Grafana" logger=server version=7.3.6 c>
Jul 26 11:55:17 localhost.localdomain grafana-server[1171]: t=2021-07-26T11:55:17+0530
lvl=info msg="Config loaded from" logger=settings file=/usr/s>
Jul 26 11:55:17 localhost.localdomain grafana-server[1171]: t=2021-07-26T11:55:17+0530
lvl=info msg="Config loaded from" logger=settings file=/etc/g>
[...]

CHAPTER 10. SETTING UP GRAPHICAL REPRESENTATION OF PCP METRICS

117

CHAPTER 11. OPTIMIZING THE SYSTEM PERFORMANCE
USING THE WEB CONSOLE

Learn how to set a performance profile in the RHEL web console to optimize the performance of the
system for a selected task.

11.1. PERFORMANCE TUNING OPTIONS IN THE WEB CONSOLE

Red Hat Enterprise Linux 8 provides several performance profiles that optimize the system for the
following tasks:

Systems using the desktop

Throughput performance

Latency performance

Network performance

Low power consumption

Virtual machines

The TuneD service optimizes system options to match the selected profile.

In the web console, you can set which performance profile your system uses.

Additional resources

Getting started with TuneD

11.2. SETTING A PERFORMANCE PROFILE IN THE WEB CONSOLE

Depending on the task you want to perform, you can use the web console to optimize system
performance by setting a suitable performance profile.

Prerequisites

Make sure the web console is installed and accessible. For details, see Installing the web
console.

Procedure

1. Log into the 8 web console. For details, see Logging in to the web console .

2. Click Overview.

3. In the Configuration section, click the current performance profile.

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

118

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/getting-started-with-tuned_monitoring-and-managing-system-status-and-performance
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_systems_using_the_rhel_8_web_console/getting-started-with-the-rhel-8-web-console_system-management-using-the-rhel-8-web-console#installing-the-web-console_getting-started-with-the-rhel-8-web-console
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_systems_using_the_rhel_8_web_console/getting-started-with-the-rhel-8-web-console_system-management-using-the-rhel-8-web-console#logging-in-to-the-web-console_getting-started-with-the-rhel-8-web-console

4. In the Change Performance Profile dialog box, set the required profile.

5. Click Change Profile.

Verification steps

The Overview tab now shows the selected performance profile in the Configuration section.

11.3. MONITORING PERFORMANCE ON THE LOCAL SYSTEM USING
THE WEB CONSOLE

Red Hat Enterprise Linux web console uses the Utilization Saturation and Errors (USE) Method for
troubleshooting. The new performance metrics page has a historical view of your data organized
chronologically with the newest data at the top.

CHAPTER 11. OPTIMIZING THE SYSTEM PERFORMANCE USING THE WEB CONSOLE

119

In the Metrics and history page, you can view events, errors, and graphical representation for resource
utilization and saturation.

Prerequisites

The web console is installed and accessible. For details, see Installing the web console .

The cockpit-pcp package, which enables collecting the performance metrics, is installed:

a. To install the package from the web console interface:

i. Log in to the web console with administrative privileges. For details, see Logging in to
the web console.

ii. In the Overview page, click View metrics and history.

iii. Click the Install cockpit-pcp button.

iv. In the Install software dialog window, click Install.

b. To install the package from the command-line interface, use:

yum install cockpit-pcp

The Performance Co-Pilot (PCP) service is enabled:

systemctl enable --now pmlogger.service pmproxy.service

Procedure

1. Log into the 8 web console. For details, see Logging in to the web console .

2. Click Overview.

3. In the Usage section, click View metrics and history.

The Metrics and history section opens:

The current system configuration and usage:

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

120

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_systems_using_the_rhel_8_web_console/getting-started-with-the-rhel-8-web-console_system-management-using-the-rhel-8-web-console#installing-the-web-console_getting-started-with-the-rhel-8-web-console
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_systems_using_the_rhel_8_web_console/getting-started-with-the-rhel-8-web-console_system-management-using-the-rhel-8-web-console#logging-in-to-the-web-console_getting-started-with-the-rhel-8-web-console
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_systems_using_the_rhel_8_web_console/getting-started-with-the-rhel-8-web-console_system-management-using-the-rhel-8-web-console#logging-in-to-the-web-console_getting-started-with-the-rhel-8-web-console

The current system configuration and usage:

The performance metrics in a graphical form over a user-specified time interval:

11.4. MONITORING PERFORMANCE ON SEVERAL SYSTEMS USING
THE WEB CONSOLE AND GRAFANA

Grafana enables you to collect data from several systems at once and review a graphical representation
of their collected Performance Co-Pilot (PCP) metrics. You can set up performance metrics monitoring
and export for several systems in the web console interface.

Prerequisites

The web console must be installed and accessible. For details, see link:Installing the web
console.

Install the cockpit-pcp package.

1. From the web console interface:

a. Log in to the web console with administrative privileges. For details, see Logging in to
the web console.

b. In the Overview page, click View details and history.

c. Click the Install cockpit-pcp button.

d. In the Install software dialog window, click Install.

CHAPTER 11. OPTIMIZING THE SYSTEM PERFORMANCE USING THE WEB CONSOLE

121

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_systems_using_the_rhel_8_web_console/getting-started-with-the-rhel-8-web-console_system-management-using-the-rhel-8-web-console#installing-the-web-console_getting-started-with-the-rhel-8-web-console
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_systems_using_the_rhel_8_web_console/getting-started-with-the-rhel-8-web-console_system-management-using-the-rhel-8-web-console#logging-in-to-the-web-console_getting-started-with-the-rhel-8-web-console

e. Log out and in again to see the metrics history.

2. To install the package from the command-line interface, use:

yum install cockpit-pcp

Enable the PCP service:

systemctl enable --now pmlogger.service pmproxy.service

Set up Grafana dashboard. For more information, see Setting up a grafana-server.

Install the redis package.

yum install redis

Alternatively, you can install the package from the web console interface later in the procedure.

Procedure

1. In the Overview page, click View metrics and history in the Usage table.

2. Click the Metrics settings button.

3. Move the Export to network slider to active position.

If you do not have the redis package installed, the web console prompts you to install it.

4. To open the pmproxy service, select a zone from a drop-down list and click the Add pmproxy
button.

5. Click Save.

Verification

1. Click Networking.

2. In the Firewall table, click the Edit rules and zones button.

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

122

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/setting-up-graphical-representation-of-pcp-metrics_monitoring-and-managing-system-status-and-performance#setting-up-a-grafana-server_setting-up-graphical-representation-of-pcp-metrics

3. Search for pmproxy in your selected zone.

IMPORTANT

Repeat this procedure on all the systems you want to watch.

Additional resources

Setting up graphical representation of PCP metrics

CHAPTER 11. OPTIMIZING THE SYSTEM PERFORMANCE USING THE WEB CONSOLE

123

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/setting-up-graphical-representation-of-pcp-metrics_monitoring-and-managing-system-status-and-performance#setting-up-pcp-with-pcp-zeroconf_setting-up-graphical-representation-of-pcp-metrics

CHAPTER 12. SETTING THE DISK SCHEDULER
The disk scheduler is responsible for ordering the I/O requests submitted to a storage device.

You can configure the scheduler in several different ways:

Set the scheduler using TuneD, as described in Setting the disk scheduler using TuneD

Set the scheduler using udev, as described in Setting the disk scheduler using udev rules

Temporarily change the scheduler on a running system, as described in Temporarily setting a
scheduler for a specific disk

NOTE

In Red Hat Enterprise Linux 8, block devices support only multi-queue scheduling. This
enables the block layer performance to scale well with fast solid-state drives (SSDs) and
multi-core systems.

The traditional, single-queue schedulers, which were available in Red Hat
Enterprise Linux 7 and earlier versions, have been removed.

12.1. AVAILABLE DISK SCHEDULERS

The following multi-queue disk schedulers are supported in Red Hat Enterprise Linux 8:

none

Implements a first-in first-out (FIFO) scheduling algorithm. It merges requests at the generic block
layer through a simple last-hit cache.

mq-deadline

Attempts to provide a guaranteed latency for requests from the point at which requests reach the
scheduler.
The mq-deadline scheduler sorts queued I/O requests into a read or write batch and then schedules
them for execution in increasing logical block addressing (LBA) order. By default, read batches take
precedence over write batches, because applications are more likely to block on read I/O operations.
After mq-deadline processes a batch, it checks how long write operations have been starved of
processor time and schedules the next read or write batch as appropriate.

This scheduler is suitable for most use cases, but particularly those in which the write operations are
mostly asynchronous.

bfq

Targets desktop systems and interactive tasks.
The bfq scheduler ensures that a single application is never using all of the bandwidth. In effect, the
storage device is always as responsive as if it was idle. In its default configuration, bfq focuses on
delivering the lowest latency rather than achieving the maximum throughput.

bfq is based on cfq code. It does not grant the disk to each process for a fixed time slice but assigns a
budget measured in number of sectors to the process.

This scheduler is suitable while copying large files and the system does not become unresponsive in
this case.

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

124

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/setting-the-disk-scheduler_monitoring-and-managing-system-status-and-performance#setting-the-disk-scheduler-using-tuned_setting-the-disk-scheduler
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/setting-the-disk-scheduler_monitoring-and-managing-system-status-and-performance#setting-the-disk-scheduler-using-udev-rules_setting-the-disk-scheduler
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/setting-the-disk-scheduler_monitoring-and-managing-system-status-and-performance#temporarily-setting-a-scheduler-for-a-specific-disk_setting-the-disk-scheduler

kyber

The scheduler tunes itself to achieve a latency goal by calculating the latencies of every I/O request
submitted to the block I/O layer. You can configure the target latencies for read, in the case of
cache-misses, and synchronous write requests.
This scheduler is suitable for fast devices, for example NVMe, SSD, or other low latency devices.

12.2. DIFFERENT DISK SCHEDULERS FOR DIFFERENT USE CASES

Depending on the task that your system performs, the following disk schedulers are recommended as a
baseline prior to any analysis and tuning tasks:

Table 12.1. Disk schedulers for different use cases

Use case Disk scheduler

Traditional HDD with a SCSI interface Use mq-deadline or bfq.

High-performance SSD or a CPU-bound system with
fast storage

Use none, especially when running enterprise
applications. Alternatively, use kyber.

Desktop or interactive tasks Use bfq.

Virtual guest Use mq-deadline. With a host bus adapter (HBA)
driver that is multi-queue capable, use none.

12.3. THE DEFAULT DISK SCHEDULER

Block devices use the default disk scheduler unless you specify another scheduler.

NOTE

For non-volatile Memory Express (NVMe) block devices specifically, the default
scheduler is none and Red Hat recommends not changing this.

The kernel selects a default disk scheduler based on the type of device. The automatically selected
scheduler is typically the optimal setting. If you require a different scheduler, Red Hat recommends to
use udev rules or the TuneD application to configure it. Match the selected devices and switch the
scheduler only for those devices.

12.4. DETERMINING THE ACTIVE DISK SCHEDULER

This procedure determines which disk scheduler is currently active on a given block device.

Procedure

Read the content of the /sys/block/device/queue/scheduler file:

cat /sys/block/device/queue/scheduler

[mq-deadline] kyber bfq none

CHAPTER 12. SETTING THE DISK SCHEDULER

125

In the file name, replace device with the block device name, for example sdc.

The active scheduler is listed in square brackets ([]).

12.5. SETTING THE DISK SCHEDULER USING TUNED

This procedure creates and enables a TuneD profile that sets a given disk scheduler for selected block
devices. The setting persists across system reboots.

In the following commands and configuration, replace:

device with the name of the block device, for example sdf

selected-scheduler with the disk scheduler that you want to set for the device, for example bfq

Prerequisites

The TuneD service is installed and enabled. For details, see Installing and enabling TuneD .

Procedure

1. Optional: Select an existing TuneD profile on which your profile will be based. For a list of
available profiles, see TuneD profiles distributed with RHEL .
To see which profile is currently active, use:

$ tuned-adm active

2. Create a new directory to hold your TuneD profile:

mkdir /etc/tuned/my-profile

3. Find the system unique identifier of the selected block device:

$ udevadm info --query=property --name=/dev/device | grep -E '(WWN|SERIAL)'

ID_WWN=0x5002538d00000000_
ID_SERIAL=Generic-_SD_MMC_20120501030900000-0:0
ID_SERIAL_SHORT=20120501030900000

NOTE

The command in the this example will return all values identified as a World Wide
Name (WWN) or serial number associated with the specified block device.
Although it is preferred to use a WWN, the WWN is not always available for a
given device and any values returned by the example command are acceptable to
use as the device system unique ID.

4. Create the /etc/tuned/my-profile/tuned.conf configuration file. In the file, set the following
options:

a. Optional: Include an existing profile:

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

126

[main]
include=existing-profile

b. Set the selected disk scheduler for the device that matches the WWN identifier:

[disk]
devices_udev_regex=IDNAME=device system unique id
elevator=selected-scheduler

Here:

Replace IDNAME with the name of the identifier being used (for example, ID_WWN).

Replace device system unique id with the value of the chosen identifier (for example,
0x5002538d00000000).
To match multiple devices in the devices_udev_regex option, enclose the identifiers in
parentheses and separate them with vertical bars:

devices_udev_regex=(ID_WWN=0x5002538d00000000)|
(ID_WWN=0x1234567800000000)

5. Enable your profile:

tuned-adm profile my-profile

Verification steps

1. Verify that the TuneD profile is active and applied:

$ tuned-adm active

Current active profile: my-profile

$ tuned-adm verify

Verification succeeded, current system settings match the preset profile.
See TuneD log file ('/var/log/tuned/tuned.log') for details.

2. Read the contents of the /sys/block/device/queue/scheduler file:

cat /sys/block/device/queue/scheduler

[mq-deadline] kyber bfq none

In the file name, replace device with the block device name, for example sdc.

The active scheduler is listed in square brackets ([]).

Additional resources

Customizing TuneD profiles.

CHAPTER 12. SETTING THE DISK SCHEDULER

127

12.6. SETTING THE DISK SCHEDULER USING UDEV RULES

This procedure sets a given disk scheduler for specific block devices using udev rules. The setting
persists across system reboots.

In the following commands and configuration, replace:

device with the name of the block device, for example sdf

selected-scheduler with the disk scheduler that you want to set for the device, for example bfq

Procedure

1. Find the system unique identifier of the block device:

$ udevadm info --name=/dev/device | grep -E '(WWN|SERIAL)'
E: ID_WWN=0x5002538d00000000
E: ID_SERIAL=Generic-_SD_MMC_20120501030900000-0:0
E: ID_SERIAL_SHORT=20120501030900000

NOTE

The command in the this example will return all values identified as a World Wide
Name (WWN) or serial number associated with the specified block device.
Although it is preferred to use a WWN, the WWN is not always available for a
given device and any values returned by the example command are acceptable to
use as the device system unique ID.

2. Configure the udev rule. Create the /etc/udev/rules.d/99-scheduler.rules file with the
following content:

ACTION=="add|change", SUBSYSTEM=="block", ENV{IDNAME}=="device system unique
id", ATTR{queue/scheduler}="selected-scheduler"

Here:

Replace IDNAME with the name of the identifier being used (for example, ID_WWN).

Replace device system unique id with the value of the chosen identifier (for example,
0x5002538d00000000).

3. Reload udev rules:

udevadm control --reload-rules

4. Apply the scheduler configuration:

udevadm trigger --type=devices --action=change

Verification steps

Verify the active scheduler:

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

128

cat /sys/block/device/queue/scheduler

12.7. TEMPORARILY SETTING A SCHEDULER FOR A SPECIFIC DISK

This procedure sets a given disk scheduler for specific block devices. The setting does not persist across
system reboots.

Procedure

Write the name of the selected scheduler to the /sys/block/device/queue/scheduler file:

echo selected-scheduler > /sys/block/device/queue/scheduler

In the file name, replace device with the block device name, for example sdc.

Verification steps

Verify that the scheduler is active on the device:

cat /sys/block/device/queue/scheduler

CHAPTER 12. SETTING THE DISK SCHEDULER

129

CHAPTER 13. TUNING THE PERFORMANCE OF A SAMBA
SERVER

Learn what settings can improve the performance of Samba in certain situations, and which settings can
have a negative performance impact.

Parts of this section were adopted from the Performance Tuning documentation published in the Samba
Wiki. License: CC BY 4.0. Authors and contributors: See the history tab on the Wiki page.

Prerequisites

Samba is set up as a file or print server
See Using Samba as a server .

13.1. SETTING THE SMB PROTOCOL VERSION

Each new SMB version adds features and improves the performance of the protocol. The recent
Windows and Windows Server operating systems always supports the latest protocol version. If Samba
also uses the latest protocol version, Windows clients connecting to Samba benefit from the
performance improvements. In Samba, the default value of the server max protocol is set to the latest
supported stable SMB protocol version.

NOTE

To always have the latest stable SMB protocol version enabled, do not set the server
max protocol parameter. If you set the parameter manually, you will need to modify the
setting with each new version of the SMB protocol, to have the latest protocol version
enabled.

The following procedure explains how to use the default value in the server max protocol parameter.

Procedure

1. Remove the server max protocol parameter from the [global] section in the
/etc/samba/smb.conf file.

2. Reload the Samba configuration

smbcontrol all reload-config

13.2. TUNING SHARES WITH DIRECTORIES THAT CONTAIN A LARGE
NUMBER OF FILES

Linux supports case-sensitive file names. For this reason, Samba needs to scan directories for
uppercase and lowercase file names when searching or accessing a file. You can configure a share to
create new files only in lowercase or uppercase, which improves the performance.

Prerequisites

Samba is configured as a file server

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

130

https://wiki.samba.org/index.php/Performance_Tuning
https://creativecommons.org/licenses/by/4.0/
https://wiki.samba.org/index.php?title=Performance_Tuning&action=history
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/deploying_different_types_of_servers/assembly_using-samba-as-a-server_deploying-different-types-of-servers

Procedure

1. Rename all files on the share to lowercase.

NOTE

Using the settings in this procedure, files with names other than in lowercase will
no longer be displayed.

2. Set the following parameters in the share’s section:

case sensitive = true
default case = lower
preserve case = no
short preserve case = no

For details about the parameters, see their descriptions in the smb.conf(5) man page.

3. Verify the /etc/samba/smb.conf file:

testparm

4. Reload the Samba configuration:

smbcontrol all reload-config

After you applied these settings, the names of all newly created files on this share use lowercase.
Because of these settings, Samba no longer needs to scan the directory for uppercase and lowercase,
which improves the performance.

13.3. SETTINGS THAT CAN HAVE A NEGATIVE PERFORMANCE
IMPACT

By default, the kernel in Red Hat Enterprise Linux is tuned for high network performance. For example,
the kernel uses an auto-tuning mechanism for buffer sizes. Setting the socket options parameter in the
/etc/samba/smb.conf file overrides these kernel settings. As a result, setting this parameter decreases
the Samba network performance in most cases.

To use the optimized settings from the Kernel, remove the socket options parameter from the [global]
section in the /etc/samba/smb.conf.

CHAPTER 13. TUNING THE PERFORMANCE OF A SAMBA SERVER

131

CHAPTER 14. OPTIMIZING VIRTUAL MACHINE
PERFORMANCE

Virtual machines (VMs) always experience some degree of performance deterioration in comparison to
the host. The following sections explain the reasons for this deterioration and provide instructions on
how to minimize the performance impact of virtualization in RHEL 8, so that your hardware
infrastructure resources can be used as efficiently as possible.

14.1. WHAT INFLUENCES VIRTUAL MACHINE PERFORMANCE

VMs are run as user-space processes on the host. The hypervisor therefore needs to convert the host’s
system resources so that the VMs can use them. As a consequence, a portion of the resources is
consumed by the conversion, and the VM therefore cannot achieve the same performance efficiency as
the host.

The impact of virtualization on system performance
More specific reasons for VM performance loss include:

Virtual CPUs (vCPUs) are implemented as threads on the host, handled by the Linux scheduler.

VMs do not automatically inherit optimization features, such as NUMA or huge pages, from the
host kernel.

Disk and network I/O settings of the host might have a significant performance impact on the
VM.

Network traffic typically travels to a VM through a software-based bridge.

Depending on the host devices and their models, there might be significant overhead due to
emulation of particular hardware.

The severity of the virtualization impact on the VM performance is influenced by a variety factors, which
include:

The number of concurrently running VMs.

The amount of virtual devices used by each VM.

The device types used by the VMs.

Reducing VM performance loss
RHEL 8 provides a number of features you can use to reduce the negative performance effects of
virtualization. Notably:

The TuneD service can automatically optimize the resource distribution and performance of
your VMs.

Block I/O tuning can improve the performances of the VM’s block devices, such as disks.

NUMA tuning can increase vCPU performance.

Virtual networking can be optimized in various ways.

IMPORTANT

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

132

IMPORTANT

Tuning VM performance can have adverse effects on other virtualization functions. For
example, it can make migrating the modified VM more difficult.

14.2. OPTIMIZING VIRTUAL MACHINE PERFORMANCE BY USING
TUNED

The TuneD utility is a tuning profile delivery mechanism that adapts RHEL for certain workload
characteristics, such as requirements for CPU-intensive tasks or storage-network throughput
responsiveness. It provides a number of tuning profiles that are pre-configured to enhance performance
and reduce power consumption in a number of specific use cases. You can edit these profiles or create
new profiles to create performance solutions tailored to your environment, including virtualized
environments.

To optimize RHEL 8 for virtualization, use the following profiles:

For RHEL 8 virtual machines, use the virtual-guest profile. It is based on the generally
applicable throughput-performance profile, but also decreases the swappiness of virtual
memory.

For RHEL 8 virtualization hosts, use the virtual-host profile. This enables more aggressive
writeback of dirty memory pages, which benefits the host performance.

Prerequisites

The TuneD service is installed and enabled.

Procedure

To enable a specific TuneD profile:

1. List the available TuneD profiles.

tuned-adm list

Available profiles:
- balanced - General non-specialized TuneD profile
- desktop - Optimize for the desktop use-case
[...]
- virtual-guest - Optimize for running inside a virtual guest
- virtual-host - Optimize for running KVM guests
Current active profile: balanced

2. Optional: Create a new TuneD profile or edit an existing TuneD profile.
For more information, see Customizing TuneD profiles.

3. Activate a TuneD profile.

tuned-adm profile selected-profile

To optimize a virtualization host, use the virtual-host profile.

tuned-adm profile virtual-host

CHAPTER 14. OPTIMIZING VIRTUAL MACHINE PERFORMANCE

133

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/getting-started-with-tuned_monitoring-and-managing-system-status-and-performance#installing-and-enabling-tuned_getting-started-with-tuned
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/customizing-tuned-profiles_monitoring-and-managing-system-status-and-performance

On a RHEL guest operating system, use the virtual-guest profile.

tuned-adm profile virtual-guest

Additional resources

Monitoring and managing system status and performance

14.3. CONFIGURING VIRTUAL MACHINE MEMORY

To improve the performance of a virtual machine (VM), you can assign additional host RAM to the VM.
Similarly, you can decrease the amount of memory allocated to a VM so the host memory can be
allocated to other VMs or tasks.

To perform these actions, you can use the web console or the command-line interface.

14.3.1. Adding and removing virtual machine memory by using the web console

To improve the performance of a virtual machine (VM) or to free up the host resources it is using, you
can use the web console to adjust amount of memory allocated to the VM.

Prerequisites

The guest OS is running the memory balloon drivers. To verify this is the case:

1. Ensure the VM’s configuration includes the memballoon device:

virsh dumpxml testguest | grep memballoon
<memballoon model='virtio'>
 </memballoon>

If this commands displays any output and the model is not set to none, the memballoon
device is present.

2. Ensure the balloon drivers are running in the guest OS.

In Windows guests, the drivers are installed as a part of the virtio-win driver package.
For instructions, see Installing paravirtualized KVM drivers for Windows virtual
machines.

In Linux guests, the drivers are generally included by default and activate when the
memballoon device is present.

The web console VM plug-in is installed on your system .

Procedure

1. Optional: Obtain the information about the maximum memory and currently used memory for a
VM. This will serve as a baseline for your changes, and also for verification.

virsh dominfo testguest
Max memory: 2097152 KiB
Used memory: 2097152 KiB

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

134

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_virtualization/installing-and-managing-windows-virtual-machines-on-rhel_configuring-and-managing-virtualization#installing-kvm-paravirtualized-drivers-for-rhel-virtual-machines_optimizing-windows-virtual-machines-on-rhel
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_virtualization/managing-virtual-machines-in-the-web-console_configuring-and-managing-virtualization

2. In the Virtual Machines interface, click the VM whose information you want to see.
A new page opens with an Overview section with basic information about the selected VM and a
Console section to access the VM’s graphical interface.

3. Click edit next to the Memory line in the Overview pane.
The Memory Adjustment dialog appears.

4. Configure the virtual memory for the selected VM.

Maximum allocation - Sets the maximum amount of host memory that the VM can use for
its processes. You can specify the maximum memory when creating the VM or increase it
later. You can specify memory as multiples of MiB or GiB.
Adjusting maximum memory allocation is only possible on a shut-off VM.

Current allocation - Sets the actual amount of memory allocated to the VM. This value can
be less than the Maximum allocation but cannot exceed it. You can adjust the value to
regulate the memory available to the VM for its processes. You can specify memory as
multiples of MiB or GiB.
If you do not specify this value, the default allocation is the Maximum allocation value.

5. Click Save.
The memory allocation of the VM is adjusted.

Additional resources

Adding and removing virtual machine memory by using the command-line interface

Optimizing virtual machine CPU performance

14.3.2. Adding and removing virtual machine memory by using the command-line
interface

To improve the performance of a virtual machine (VM) or to free up the host resources it is using, you
can use the CLI to adjust amount of memory allocated to the VM.

Prerequisites

The guest OS is running the memory balloon drivers. To verify this is the case:

1. Ensure the VM’s configuration includes the memballoon device:

CHAPTER 14. OPTIMIZING VIRTUAL MACHINE PERFORMANCE

135

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_virtualization/optimizing-virtual-machine-performance-in-rhel_configuring-and-managing-virtualization#adding-and-removing-virtual-machine-ram-using-the-command-line-interface_configuring-virtual-machine-ram
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_virtualization/optimizing-virtual-machine-performance-in-rhel_configuring-and-managing-virtualization#optimizing-virtual-machine-cpu-performance_optimizing-virtual-machine-performance-in-rhel

virsh dumpxml testguest | grep memballoon
<memballoon model='virtio'>
 </memballoon>

If this commands displays any output and the model is not set to none, the memballoon
device is present.

2. Ensure the ballon drivers are running in the guest OS.

In Windows guests, the drivers are installed as a part of the virtio-win driver package.
For instructions, see Installing paravirtualized KVM drivers for Windows virtual
machines.

In Linux guests, the drivers are generally included by default and activate when the
memballoon device is present.

Procedure

1. Optional: Obtain the information about the maximum memory and currently used memory for a
VM. This will serve as a baseline for your changes, and also for verification.

virsh dominfo testguest
Max memory: 2097152 KiB
Used memory: 2097152 KiB

2. Adjust the maximum memory allocated to a VM. Increasing this value improves the performance
potential of the VM, and reducing the value lowers the performance footprint the VM has on
your host. Note that this change can only be performed on a shut-off VM, so adjusting a running
VM requires a reboot to take effect.
For example, to change the maximum memory that the testguest VM can use to 4096 MiB:

virt-xml testguest --edit --memory memory=4096,currentMemory=4096
Domain 'testguest' defined successfully.
Changes will take effect after the domain is fully powered off.

To increase the maximum memory of a running VM, you can attach a memory device to the VM.
This is also referred to as memory hot plug. For details, see Attaching devices to virtual
machines,

WARNING

Removing memory devices from a running VM (also referred as a memory
hot unplug) is not supported, and highly discouraged by Red Hat.

3. Optional: You can also adjust the memory currently used by the VM, up to the maximum
allocation. This regulates the memory load that the VM has on the host until the next reboot,
without changing the maximum VM allocation.

virsh setmem testguest --current 2048



Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

136

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_virtualization/installing-and-managing-windows-virtual-machines-on-rhel_configuring-and-managing-virtualization#installing-kvm-paravirtualized-drivers-for-rhel-virtual-machines_optimizing-windows-virtual-machines-on-rhel
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_virtualization/managing-virtual-devices_configuring-and-managing-virtualization#attaching-devices-to-virtual-machines_assembly_managing-virtual-devices-using-the-cli

Verification

1. Confirm that the memory used by the VM has been updated:

virsh dominfo testguest
Max memory: 4194304 KiB
Used memory: 2097152 KiB

2. Optional: If you adjusted the current VM memory, you can obtain the memory balloon statistics
of the VM to evaluate how effectively it regulates its memory use.

 # virsh domstats --balloon testguest
Domain: 'testguest'
 balloon.current=365624
 balloon.maximum=4194304
 balloon.swap_in=0
 balloon.swap_out=0
 balloon.major_fault=306
 balloon.minor_fault=156117
 balloon.unused=3834448
 balloon.available=4035008
 balloon.usable=3746340
 balloon.last-update=1587971682
 balloon.disk_caches=75444
 balloon.hugetlb_pgalloc=0
 balloon.hugetlb_pgfail=0
 balloon.rss=1005456

Additional resources

Adding and removing virtual machine memory by using the web console

Optimizing virtual machine CPU performance

14.3.3. Additional resources

Attaching devices to virtual machines .

14.4. OPTIMIZING VIRTUAL MACHINE I/O PERFORMANCE

The input and output (I/O) capabilities of a virtual machine (VM) can significantly limit the VM’s overall
efficiency. To address this, you can optimize a VM’s I/O by configuring block I/O parameters.

14.4.1. Tuning block I/O in virtual machines

When multiple block devices are being used by one or more VMs, it might be important to adjust the I/O
priority of specific virtual devices by modifying their I/O weights.

Increasing the I/O weight of a device increases its priority for I/O bandwidth, and therefore provides it
with more host resources. Similarly, reducing a device’s weight makes it consume less host resources.

NOTE

CHAPTER 14. OPTIMIZING VIRTUAL MACHINE PERFORMANCE

137

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_virtualization/optimizing-virtual-machine-performance-in-rhel_configuring-and-managing-virtualization#adding-and-removing-virtual-machine-ram-using-the-web-console_configuring-virtual-machine-ram
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_virtualization/optimizing-virtual-machine-performance-in-rhel_configuring-and-managing-virtualization#optimizing-virtual-machine-cpu-performance_optimizing-virtual-machine-performance-in-rhel
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_virtualization/managing-virtual-devices_configuring-and-managing-virtualization#attaching-devices-to-virtual-machines_assembly_managing-virtual-devices-using-the-cli

NOTE

Each device’s weight value must be within the 100 to 1000 range. Alternatively, the value
can be 0, which removes that device from per-device listings.

Procedure

To display and set a VM’s block I/O parameters:

1. Display the current <blkio> parameters for a VM:
virsh dumpxml VM-name

2. Edit the I/O weight of a specified device:

virsh blkiotune VM-name --device-weights device, I/O-weight

For example, the following changes the weight of the /dev/sda device in the testguest1 VM to
500.

virsh blkiotune testguest1 --device-weights /dev/sda, 500

14.4.2. Disk I/O throttling in virtual machines

When several VMs are running simultaneously, they can interfere with system performance by using
excessive disk I/O. Disk I/O throttling in KVM virtualization provides the ability to set a limit on disk I/O
requests sent from the VMs to the host machine. This can prevent a VM from over-utilizing shared
resources and impacting the performance of other VMs.

To enable disk I/O throttling, set a limit on disk I/O requests sent from each block device attached to
VMs to the host machine.

Procedure

1. Use the virsh domblklist command to list the names of all the disk devices on a specified VM.

virsh domblklist rollin-coal
Target Source
--

<domain>
 [...]
 <blkiotune>
 <weight>800</weight>
 <device>
 <path>/dev/sda</path>
 <weight>1000</weight>
 </device>
 <device>
 <path>/dev/sdb</path>
 <weight>500</weight>
 </device>
 </blkiotune>
 [...]
</domain>

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

138

vda /var/lib/libvirt/images/rollin-coal.qcow2
sda -
sdb /home/horridly-demanding-processes.iso

2. Find the host block device where the virtual disk that you want to throttle is mounted.
For example, if you want to throttle the sdb virtual disk from the previous step, the following
output shows that the disk is mounted on the /dev/nvme0n1p3 partition.

$ lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
zram0 252:0 0 4G 0 disk [SWAP]
nvme0n1 259:0 0 238.5G 0 disk
├─nvme0n1p1 259:1 0 600M 0 part /boot/efi
├─nvme0n1p2 259:2 0 1G 0 part /boot
└─nvme0n1p3 259:3 0 236.9G 0 part
 └─luks-a1123911-6f37-463c-b4eb-fxzy1ac12fea 253:0 0 236.9G 0 crypt /home

3. Set I/O limits for the block device by using the virsh blkiotune command.

virsh blkiotune VM-name --parameter device,limit

The following example throttles the sdb disk on the rollin-coal VM to 1000 read and write I/O
operations per second and to 50 MB per second read and write throughput.

virsh blkiotune rollin-coal --device-read-iops-sec /dev/nvme0n1p3,1000 --device-
write-iops-sec /dev/nvme0n1p3,1000 --device-write-bytes-sec
/dev/nvme0n1p3,52428800 --device-read-bytes-sec /dev/nvme0n1p3,52428800

Additional information

Disk I/O throttling can be useful in various situations, for example when VMs belonging to
different customers are running on the same host, or when quality of service guarantees are
given for different VMs. Disk I/O throttling can also be used to simulate slower disks.

I/O throttling can be applied independently to each block device attached to a VM and
supports limits on throughput and I/O operations.

Red Hat does not support using the virsh blkdeviotune command to configure I/O throttling in
VMs. For more information about unsupported features when using RHEL 8 as a VM host, see
Unsupported features in RHEL 8 virtualization .

14.4.3. Enabling multi-queue virtio-scsi

When using virtio-scsi storage devices in your virtual machines (VMs), the multi-queue virtio-scsi
feature provides improved storage performance and scalability. It enables each virtual CPU (vCPU) to
have a separate queue and interrupt to use without affecting other vCPUs.

Procedure

To enable multi-queue virtio-scsi support for a specific VM, add the following to the VM’s XML
configuration, where N is the total number of vCPU queues:

CHAPTER 14. OPTIMIZING VIRTUAL MACHINE PERFORMANCE

139

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/configuring_and_managing_virtualization/index#unsupported-features-in-rhel-8-virtualization_feature-support-and-limitations-in-rhel-8-virtualization

14.5. OPTIMIZING VIRTUAL MACHINE CPU PERFORMANCE

Much like physical CPUs in host machines, vCPUs are critical to virtual machine (VM) performance. As a
result, optimizing vCPUs can have a significant impact on the resource efficiency of your VMs. To
optimize your vCPU:

1. Adjust how many host CPUs are assigned to the VM. You can do this using the CLI or the web
console.

2. Ensure that the vCPU model is aligned with the CPU model of the host. For example, to set the
testguest1 VM to use the CPU model of the host:

virt-xml testguest1 --edit --cpu host-model

3. Deactivate kernel same-page merging (KSM) .

4. If your host machine uses Non-Uniform Memory Access (NUMA), you can also configure NUMA
for its VMs. This maps the host’s CPU and memory processes onto the CPU and memory
processes of the VM as closely as possible. In effect, NUMA tuning provides the vCPU with a
more streamlined access to the system memory allocated to the VM, which can improve the
vCPU processing effectiveness.
For details, see Configuring NUMA in a virtual machine and Sample vCPU performance tuning
scenario.

14.5.1. Adding and removing virtual CPUs by using the command-line interface

To increase or optimize the CPU performance of a virtual machine (VM), you can add or remove virtual
CPUs (vCPUs) assigned to the VM.

When performed on a running VM, this is also referred to as vCPU hot plugging and hot unplugging.
However, note that vCPU hot unplug is not supported in RHEL 8, and Red Hat highly discourages its use.

Prerequisites

Optional: View the current state of the vCPUs in the targeted VM. For example, to display the
number of vCPUs on the testguest VM:

virsh vcpucount testguest
maximum config 4
maximum live 2
current config 2
current live 1

This output indicates that testguest is currently using 1 vCPU, and 1 more vCPu can be hot
plugged to it to increase the VM’s performance. However, after reboot, the number of vCPUs
testguest uses will change to 2, and it will be possible to hot plug 2 more vCPUs.

Procedure

1. Adjust the maximum number of vCPUs that can be attached to a VM, which takes effect on the

<controller type='scsi' index='0' model='virtio-scsi'>
 <driver queues='N' />
</controller>

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

140

1. Adjust the maximum number of vCPUs that can be attached to a VM, which takes effect on the
VM’s next boot.
For example, to increase the maximum vCPU count for the testguest VM to 8:

virsh setvcpus testguest 8 --maximum --config

Note that the maximum may be limited by the CPU topology, host hardware, the hypervisor,
and other factors.

2. Adjust the current number of vCPUs attached to a VM, up to the maximum configured in the
previous step. For example:

To increase the number of vCPUs attached to the running testguest VM to 4:

virsh setvcpus testguest 4 --live

This increases the VM’s performance and host load footprint of testguest until the VM’s
next boot.

To permanently decrease the number of vCPUs attached to the testguest VM to 1:

virsh setvcpus testguest 1 --config

This decreases the VM’s performance and host load footprint of testguest after the VM’s
next boot. However, if needed, additional vCPUs can be hot plugged to the VM to
temporarily increase its performance.

Verification

Confirm that the current state of vCPU for the VM reflects your changes.

virsh vcpucount testguest
maximum config 8
maximum live 4
current config 1
current live 4

Additional resources

Managing virtual CPUs by using the web console

14.5.2. Managing virtual CPUs by using the web console

By using the RHEL 8 web console, you can review and configure virtual CPUs used by virtual machines
(VMs) to which the web console is connected.

Prerequisites

The web console VM plug-in is installed on your system .

Procedure

1. In the Virtual Machines interface, click the VM whose information you want to see.

A new page opens with an Overview section with basic information about the selected VM and a

CHAPTER 14. OPTIMIZING VIRTUAL MACHINE PERFORMANCE

141

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_virtualization/optimizing-virtual-machine-performance-in-rhel_configuring-and-managing-virtualization#managing-virtual-cpus-using-the-web-console_optimizing-virtual-machine-cpu-performance
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_virtualization/managing-virtual-machines-in-the-web-console_configuring-and-managing-virtualization

A new page opens with an Overview section with basic information about the selected VM and a
Console section to access the VM’s graphical interface.

2. Click edit next to the number of vCPUs in the Overview pane.
The vCPU details dialog appears.

1. Configure the virtual CPUs for the selected VM.

vCPU Count - The number of vCPUs currently in use.

NOTE

The vCPU count cannot be greater than the vCPU Maximum.

vCPU Maximum - The maximum number of virtual CPUs that can be configured for the
VM. If this value is higher than the vCPU Count, additional vCPUs can be attached to the
VM.

Sockets - The number of sockets to expose to the VM.

Cores per socket - The number of cores for each socket to expose to the VM.

Threads per core - The number of threads for each core to expose to the VM.
Note that the Sockets, Cores per socket, and Threads per core options adjust the CPU
topology of the VM. This may be beneficial for vCPU performance and may impact the
functionality of certain software in the guest OS. If a different setting is not required by your
deployment, keep the default values.

2. Click Apply.
The virtual CPUs for the VM are configured.

NOTE

Changes to virtual CPU settings only take effect after the VM is restarted.

Additional resources

Adding and removing virtual CPUs by using the command-line interface

14.5.3. Configuring NUMA in a virtual machine

The following methods can be used to configure Non-Uniform Memory Access (NUMA) settings of a

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

142

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_virtualization/optimizing-virtual-machine-performance-in-rhel_configuring-and-managing-virtualization#adding-and-removing-virtual-cpus-using-the-command-line-interface_optimizing-virtual-machine-cpu-performance

The following methods can be used to configure Non-Uniform Memory Access (NUMA) settings of a
virtual machine (VM) on a RHEL 8 host.

Prerequisites

The host is a NUMA-compatible machine. To detect whether this is the case, use the virsh
nodeinfo command and see the NUMA cell(s) line:

virsh nodeinfo
CPU model: x86_64
CPU(s): 48
CPU frequency: 1200 MHz
CPU socket(s): 1
Core(s) per socket: 12
Thread(s) per core: 2
NUMA cell(s): 2
Memory size: 67012964 KiB

If the value of the line is 2 or greater, the host is NUMA-compatible.

Procedure

For ease of use, you can set up a VM’s NUMA configuration by using automated utilities and services.
However, manual NUMA setup is more likely to yield a significant performance improvement.

Automatic methods

Set the VM’s NUMA policy to Preferred. For example, to do so for the testguest5 VM:

virt-xml testguest5 --edit --vcpus placement=auto
virt-xml testguest5 --edit --numatune mode=preferred

Enable automatic NUMA balancing on the host:

echo 1 > /proc/sys/kernel/numa_balancing

Start the numad service to automatically align the VM CPU with memory resources.

systemctl start numad

Manual methods

1. Pin specific vCPU threads to a specific host CPU or range of CPUs. This is also possible on non-
NUMA hosts and VMs, and is recommended as a safe method of vCPU performance
improvement.
For example, the following commands pin vCPU threads 0 to 5 of the testguest6 VM to host
CPUs 1, 3, 5, 7, 9, and 11, respectively:

virsh vcpupin testguest6 0 1
virsh vcpupin testguest6 1 3
virsh vcpupin testguest6 2 5
virsh vcpupin testguest6 3 7
virsh vcpupin testguest6 4 9
virsh vcpupin testguest6 5 11

CHAPTER 14. OPTIMIZING VIRTUAL MACHINE PERFORMANCE

143

Afterwards, you can verify whether this was successful:

virsh vcpupin testguest6
VCPU CPU Affinity

0 1
1 3
2 5
3 7
4 9
5 11

2. After pinning vCPU threads, you can also pin QEMU process threads associated with a specified
VM to a specific host CPU or range of CPUs. For example, the following commands pin the
QEMU process thread of testguest6 to CPUs 13 and 15, and verify this was successful:

virsh emulatorpin testguest6 13,15
virsh emulatorpin testguest6
emulator: CPU Affinity

 *: 13,15

3. Finally, you can also specify which host NUMA nodes will be assigned specifically to a certain
VM. This can improve the host memory usage by the VM’s vCPU. For example, the following
commands set testguest6 to use host NUMA nodes 3 to 5, and verify this was successful:

virsh numatune testguest6 --nodeset 3-5
virsh numatune testguest6

NOTE

For best performance results, it is recommended to use all of the manual tuning methods
listed above

Known issues

NUMA tuning currently cannot be performed on IBM Z hosts

Additional resources

Sample vCPU performance tuning scenario

View the current NUMA configuration of your system using the numastat utility

14.5.4. Sample vCPU performance tuning scenario

To obtain the best vCPU performance possible, Red Hat recommends by using manual vcpupin,
emulatorpin, and numatune settings together, for example like in the following scenario.

Starting scenario

Your host has the following hardware specifics:

2 NUMA nodes

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

144

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_virtualization/getting-started-with-virtualization-in-rhel-8-on-ibm-z_configuring-and-managing-virtualization#how-virtualization-on-ibm-z-differs-from-amd64-and-intel64_getting-started-with-virtualization-in-rhel-8-on-ibm-z
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_virtualization/optimizing-virtual-machine-performance-in-rhel_configuring-and-managing-virtualization#sample-vcpu-performance-tuning-scenario_optimizing-virtual-machine-cpu-performance
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_virtualization/optimizing-virtual-machine-performance-in-rhel_configuring-and-managing-virtualization#virtual-machine-performance-monitoring-tools_optimizing-virtual-machine-performance-in-rhel

3 CPU cores on each node

2 threads on each core

The output of virsh nodeinfo of such a machine would look similar to:

virsh nodeinfo
CPU model: x86_64
CPU(s): 12
CPU frequency: 3661 MHz
CPU socket(s): 2
Core(s) per socket: 3
Thread(s) per core: 2
NUMA cell(s): 2
Memory size: 31248692 KiB

You intend to modify an existing VM to have 8 vCPUs, which means that it will not fit in a single
NUMA node.
Therefore, you should distribute 4 vCPUs on each NUMA node and make the vCPU topology
resemble the host topology as closely as possible. This means that vCPUs that run as sibling
threads of a given physical CPU should be pinned to host threads on the same core. For details,
see the Solution below:

Solution

1. Obtain the information about the host topology:

virsh capabilities

The output should include a section that looks similar to the following:

<topology>
 <cells num="2">
 <cell id="0">
 <memory unit="KiB">15624346</memory>
 <pages unit="KiB" size="4">3906086</pages>
 <pages unit="KiB" size="2048">0</pages>
 <pages unit="KiB" size="1048576">0</pages>
 <distances>
 <sibling id="0" value="10" />
 <sibling id="1" value="21" />
 </distances>
 <cpus num="6">
 <cpu id="0" socket_id="0" core_id="0" siblings="0,3" />
 <cpu id="1" socket_id="0" core_id="1" siblings="1,4" />
 <cpu id="2" socket_id="0" core_id="2" siblings="2,5" />
 <cpu id="3" socket_id="0" core_id="0" siblings="0,3" />
 <cpu id="4" socket_id="0" core_id="1" siblings="1,4" />
 <cpu id="5" socket_id="0" core_id="2" siblings="2,5" />
 </cpus>
 </cell>
 <cell id="1">
 <memory unit="KiB">15624346</memory>
 <pages unit="KiB" size="4">3906086</pages>
 <pages unit="KiB" size="2048">0</pages>

CHAPTER 14. OPTIMIZING VIRTUAL MACHINE PERFORMANCE

145

2. Optional: Test the performance of the VM by using the applicable tools and utilities.

3. Set up and mount 1 GiB huge pages on the host:

NOTE

1 GiB huge pages might not be available on some architectures and
configurations, such as ARM 64 hosts.

a. Add the following line to the host’s kernel command line:

default_hugepagesz=1G hugepagesz=1G

b. Create the /etc/systemd/system/hugetlb-gigantic-pages.service file with the following
content:

[Unit]
Description=HugeTLB Gigantic Pages Reservation
DefaultDependencies=no
Before=dev-hugepages.mount
ConditionPathExists=/sys/devices/system/node
ConditionKernelCommandLine=hugepagesz=1G

[Service]
Type=oneshot
RemainAfterExit=yes
ExecStart=/etc/systemd/hugetlb-reserve-pages.sh

[Install]
WantedBy=sysinit.target

c. Create the /etc/systemd/hugetlb-reserve-pages.sh file with the following content:

#!/bin/sh

nodes_path=/sys/devices/system/node/
if [! -d $nodes_path]; then

 <pages unit="KiB" size="1048576">0</pages>
 <distances>
 <sibling id="0" value="21" />
 <sibling id="1" value="10" />
 </distances>
 <cpus num="6">
 <cpu id="6" socket_id="1" core_id="3" siblings="6,9" />
 <cpu id="7" socket_id="1" core_id="4" siblings="7,10" />
 <cpu id="8" socket_id="1" core_id="5" siblings="8,11" />
 <cpu id="9" socket_id="1" core_id="3" siblings="6,9" />
 <cpu id="10" socket_id="1" core_id="4" siblings="7,10" />
 <cpu id="11" socket_id="1" core_id="5" siblings="8,11" />
 </cpus>
 </cell>
 </cells>
</topology>

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

146

 echo "ERROR: $nodes_path does not exist"
 exit 1
fi

reserve_pages()
{
 echo $1 > $nodes_path/$2/hugepages/hugepages-1048576kB/nr_hugepages
}

reserve_pages 4 node1
reserve_pages 4 node2

This reserves four 1GiB huge pages from node1 and four 1GiB huge pages from node2.

d. Make the script created in the previous step executable:

chmod +x /etc/systemd/hugetlb-reserve-pages.sh

e. Enable huge page reservation on boot:

systemctl enable hugetlb-gigantic-pages

4. Use the virsh edit command to edit the XML configuration of the VM you wish to optimize, in
this example super-VM:

virsh edit super-vm

5. Adjust the XML configuration of the VM in the following way:

a. Set the VM to use 8 static vCPUs. Use the <vcpu/> element to do this.

b. Pin each of the vCPU threads to the corresponding host CPU threads that it mirrors in the
topology. To do so, use the <vcpupin/> elements in the <cputune> section.
Note that, as shown by the virsh capabilities utility above, host CPU threads are not
ordered sequentially in their respective cores. In addition, the vCPU threads should be
pinned to the highest available set of host cores on the same NUMA node. For a table
illustration, see the Sample topology section below.

The XML configuration for steps a. and b. can look similar to:

c. Set the VM to use 1 GiB huge pages:

<cputune>
 <vcpupin vcpu='0' cpuset='1'/>
 <vcpupin vcpu='1' cpuset='4'/>
 <vcpupin vcpu='2' cpuset='2'/>
 <vcpupin vcpu='3' cpuset='5'/>
 <vcpupin vcpu='4' cpuset='7'/>
 <vcpupin vcpu='5' cpuset='10'/>
 <vcpupin vcpu='6' cpuset='8'/>
 <vcpupin vcpu='7' cpuset='11'/>
 <emulatorpin cpuset='6,9'/>
</cputune>

CHAPTER 14. OPTIMIZING VIRTUAL MACHINE PERFORMANCE

147

d. Configure the VM’s NUMA nodes to use memory from the corresponding NUMA nodes on
the host. To do so, use the <memnode/> elements in the <numatune/> section:

e. Ensure the CPU mode is set to host-passthrough, and that the CPU uses cache in
passthrough mode:

6. Confirm that the resulting XML configuration of the VM includes a section similar to the
following:

<memoryBacking>
 <hugepages>
 <page size='1' unit='GiB'/>
 </hugepages>
</memoryBacking>

<numatune>
 <memory mode="preferred" nodeset="1"/>
 <memnode cellid="0" mode="strict" nodeset="0"/>
 <memnode cellid="1" mode="strict" nodeset="1"/>
</numatune>

<cpu mode="host-passthrough">
 <topology sockets="2" cores="2" threads="2"/>
 <cache mode="passthrough"/>

[...]
 <memoryBacking>
 <hugepages>
 <page size='1' unit='GiB'/>
 </hugepages>
 </memoryBacking>
 <vcpu placement='static'>8</vcpu>
 <cputune>
 <vcpupin vcpu='0' cpuset='1'/>
 <vcpupin vcpu='1' cpuset='4'/>
 <vcpupin vcpu='2' cpuset='2'/>
 <vcpupin vcpu='3' cpuset='5'/>
 <vcpupin vcpu='4' cpuset='7'/>
 <vcpupin vcpu='5' cpuset='10'/>
 <vcpupin vcpu='6' cpuset='8'/>
 <vcpupin vcpu='7' cpuset='11'/>
 <emulatorpin cpuset='6,9'/>
 </cputune>
 <numatune>
 <memory mode="preferred" nodeset="1"/>
 <memnode cellid="0" mode="strict" nodeset="0"/>
 <memnode cellid="1" mode="strict" nodeset="1"/>
 </numatune>
 <cpu mode="host-passthrough">
 <topology sockets="2" cores="2" threads="2"/>
 <cache mode="passthrough"/>
 <numa>
 <cell id="0" cpus="0-3" memory="2" unit="GiB">
 <distances>
 <sibling id="0" value="10"/>

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

148

7. Optional: Test the performance of the VM by using the applicable tools and utilities to evaluate
the impact of the VM’s optimization.

Sample topology

The following tables illustrate the connections between the vCPUs and the host CPUs they
should be pinned to:

Table 14.1. Host topology

CPU threads 0 3 1 4 2 5 6 9 7 10 8 11

Cores 0 1 2 3 4 5

Sockets 0 1

NUMA nodes 0 1

Table 14.2. VM topology

vCPU threads 0 1 2 3 4 5 6 7

Cores 0 1 2 3

Sockets 0 1

NUMA nodes 0 1

Table 14.3. Combined host and VM topology

vCPU threads 0 1 2 3 4 5 6 7

Host CPU
threads

0 3 1 4 2 5 6 9 7 10 8 11

Cores 0 1 2 3 4 5

 <sibling id="1" value="21"/>
 </distances>
 </cell>
 <cell id="1" cpus="4-7" memory="2" unit="GiB">
 <distances>
 <sibling id="0" value="21"/>
 <sibling id="1" value="10"/>
 </distances>
 </cell>
 </numa>
 </cpu>
</domain>

CHAPTER 14. OPTIMIZING VIRTUAL MACHINE PERFORMANCE

149

Sockets 0 1

NUMA nodes 0 1

In this scenario, there are 2 NUMA nodes and 8 vCPUs. Therefore, 4 vCPU threads should be
pinned to each node.

In addition, Red Hat recommends leaving at least a single CPU thread available on each node
for host system operations.

Because in this example, each NUMA node houses 3 cores, each with 2 host CPU threads, the
set for node 0 translates as follows:

14.5.5. Deactivating kernel same-page merging

Although kernel same-page merging (KSM) improves memory density, it increases CPU utilization, and
might adversely affect overall performance depending on the workload. In such cases, you can improve
the virtual machine (VM) performance by deactivating KSM.

Depending on your requirements, you can either deactivate KSM for a single session or persistently.

Procedure

To deactivate KSM for a single session, use the systemctl utility to stop ksm and ksmtuned
services.

systemctl stop ksm

systemctl stop ksmtuned

To deactivate KSM persistently, use the systemctl utility to disable ksm and ksmtuned
services.

systemctl disable ksm
Removed /etc/systemd/system/multi-user.target.wants/ksm.service.
systemctl disable ksmtuned
Removed /etc/systemd/system/multi-user.target.wants/ksmtuned.service.

NOTE

<vcpupin vcpu='0' cpuset='1'/>
<vcpupin vcpu='1' cpuset='4'/>
<vcpupin vcpu='2' cpuset='2'/>
<vcpupin vcpu='3' cpuset='5'/>

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

150

NOTE

Memory pages shared between VMs before deactivating KSM will remain shared. To stop
sharing, delete all the PageKSM pages in the system by using the following command:

echo 2 > /sys/kernel/mm/ksm/run

After anonymous pages replace the KSM pages, the khugepaged kernel service will
rebuild transparent hugepages on the VM’s physical memory.

14.6. OPTIMIZING VIRTUAL MACHINE NETWORK PERFORMANCE

Due to the virtual nature of a VM’s network interface card (NIC), the VM loses a portion of its allocated
host network bandwidth, which can reduce the overall workload efficiency of the VM. The following tips
can minimize the negative impact of virtualization on the virtual NIC (vNIC) throughput.

Procedure

Use any of the following methods and observe if it has a beneficial effect on your VM network
performance:

Enable the vhost_net module

On the host, ensure the vhost_net kernel feature is enabled:

lsmod | grep vhost
vhost_net 32768 1
vhost 53248 1 vhost_net
tap 24576 1 vhost_net
tun 57344 6 vhost_net

If the output of this command is blank, enable the vhost_net kernel module:

modprobe vhost_net

Set up multi-queue virtio-net

To set up the multi-queue virtio-net feature for a VM, use the virsh edit command to edit to the
XML configuration of the VM. In the XML, add the following to the <devices> section, and replace N
with the number of vCPUs in the VM, up to 16:

<interface type='network'>
 <source network='default'/>
 <model type='virtio'/>
 <driver name='vhost' queues='N'/>
</interface>

If the VM is running, restart it for the changes to take effect.

Batching network packets

In Linux VM configurations with a long transmission path, batching packets before submitting them
to the kernel may improve cache utilization. To set up packet batching, use the following command
on the host, and replace tap0 with the name of the network interface that the VMs use:

ethtool -C tap0 rx-frames 64

CHAPTER 14. OPTIMIZING VIRTUAL MACHINE PERFORMANCE

151

SR-IOV

If your host NIC supports SR-IOV, use SR-IOV device assignment for your vNICs. For more
information, see Managing SR-IOV devices.

Additional resources

Understanding virtual networking

14.7. VIRTUAL MACHINE PERFORMANCE MONITORING TOOLS

To identify what consumes the most VM resources and which aspect of VM performance needs
optimization, performance diagnostic tools, both general and VM-specific, can be used.

Default OS performance monitoring tools

For standard performance evaluation, you can use the utilities provided by default by your host and
guest operating systems:

On your RHEL 8 host, as root, use the top utility or the system monitor application, and look for
qemu and virt in the output. This shows how much host system resources your VMs are
consuming.

If the monitoring tool displays that any of the qemu or virt processes consume a large
portion of the host CPU or memory capacity, use the perf utility to investigate. For details,
see below.

In addition, if a vhost_net thread process, named for example vhost_net-1234, is displayed
as consuming an excessive amount of host CPU capacity, consider using virtual network
optimization features, such as multi-queue virtio-net.

On the guest operating system, use performance utilities and applications available on the
system to evaluate which processes consume the most system resources.

On Linux systems, you can use the top utility.

On Windows systems, you can use the Task Manager application.

perf kvm

You can use the perf utility to collect and analyze virtualization-specific statistics about the
performance of your RHEL 8 host. To do so:

1. On the host, install the perf package:

yum install perf

2. Use one of the perf kvm stat commands to display perf statistics for your virtualization host:

For real-time monitoring of your hypervisor, use the perf kvm stat live command.

To log the perf data of your hypervisor over a period of time, activate the logging by using
the perf kvm stat record command. After the command is canceled or interrupted, the
data is saved in the perf.data.guest file, which can be analyzed by using the perf kvm stat
report command.

3. Analyze the perf output for types of VM-EXIT events and their distribution. For example, the
PAUSE_INSTRUCTION events should be infrequent, but in the following output, the high

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

152

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_virtualization/managing-virtual-devices_configuring-and-managing-virtualization#managing-sr-iov-devices_managing-virtual-devices
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_virtualization/configuring-virtual-machine-network-connections_configuring-and-managing-virtualization#understanding-virtual-networking-overview_configuring-virtual-machine-network-connections

occurrence of this event suggests that the host CPUs are not handling the running vCPUs well.
In such a scenario, consider shutting down some of your active VMs, removing vCPUs from
these VMs, or tuning the performance of the vCPUs.

perf kvm stat report

Analyze events for all VMs, all VCPUs:

 VM-EXIT Samples Samples% Time% Min Time Max Time Avg time

 EXTERNAL_INTERRUPT 365634 31.59% 18.04% 0.42us 58780.59us
204.08us (+- 0.99%)
 MSR_WRITE 293428 25.35% 0.13% 0.59us 17873.02us 1.80us (+-
4.63%)
 PREEMPTION_TIMER 276162 23.86% 0.23% 0.51us 21396.03us 3.38us (
+- 5.19%)
 PAUSE_INSTRUCTION 189375 16.36% 11.75% 0.72us 29655.25us 256.77us
(+- 0.70%)
 HLT 20440 1.77% 69.83% 0.62us 79319.41us 14134.56us (+- 0.79%
)
 VMCALL 12426 1.07% 0.03% 1.02us 5416.25us 8.77us (+- 7.36%
)
 EXCEPTION_NMI 27 0.00% 0.00% 0.69us 1.34us 0.98us (+-
3.50%)
 EPT_MISCONFIG 5 0.00% 0.00% 5.15us 10.85us 7.88us (+-
11.67%)

Total Samples:1157497, Total events handled time:413728274.66us.

Other event types that can signal problems in the output of perf kvm stat include:

INSN_EMULATION - suggests suboptimal VM I/O configuration .

For more information about using perf to monitor virtualization performance, see the perf-kvm man
page.

numastat

To see the current NUMA configuration of your system, you can use the numastat utility, which is
provided by installing the numactl package.

The following shows a host with 4 running VMs, each obtaining memory from multiple NUMA nodes. This
is not optimal for vCPU performance, and warrants adjusting:

numastat -c qemu-kvm

Per-node process memory usage (in MBs)
PID Node 0 Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Node 7 Total
--------------- ------ ------ ------ ------ ------ ------ ------ ------ -----
51722 (qemu-kvm) 68 16 357 6936 2 3 147 598 8128
51747 (qemu-kvm) 245 11 5 18 5172 2532 1 92 8076
53736 (qemu-kvm) 62 432 1661 506 4851 136 22 445 8116
53773 (qemu-kvm) 1393 3 1 2 12 0 0 6702 8114
--------------- ------ ------ ------ ------ ------ ------ ------ ------ -----
Total 1769 463 2024 7462 10037 2672 169 7837 32434

CHAPTER 14. OPTIMIZING VIRTUAL MACHINE PERFORMANCE

153

In contrast, the following shows memory being provided to each VM by a single node, which is
significantly more efficient.

numastat -c qemu-kvm

Per-node process memory usage (in MBs)
PID Node 0 Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Node 7 Total
--------------- ------ ------ ------ ------ ------ ------ ------ ------ -----
51747 (qemu-kvm) 0 0 7 0 8072 0 1 0 8080
53736 (qemu-kvm) 0 0 7 0 0 0 8113 0 8120
53773 (qemu-kvm) 0 0 7 0 0 0 1 8110 8118
59065 (qemu-kvm) 0 0 8050 0 0 0 0 0 8051
--------------- ------ ------ ------ ------ ------ ------ ------ ------ -----
Total 0 0 8072 0 8072 0 8114 8110 32368

14.8. ADDITIONAL RESOURCES

Optimizing Windows virtual machines

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

154

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_virtualization/installing-and-managing-windows-virtual-machines-on-rhel_configuring-and-managing-virtualization#optimizing-windows-virtual-machines-on-rhel_installing-and-managing-windows-virtual-machines-on-rhel

CHAPTER 15. IMPORTANCE OF POWER MANAGEMENT
Reducing the overall power consumption of computer systems helps to save cost. Effectively optimizing
energy consumption of each system component includes studying different tasks that your system
performs, and configuring each component to ensure that its performance is correct for that job.
Lowering the power consumption of a specific component or of the system as a whole leads to lower
heat and performance.

Proper power management results in:

heat reduction for servers and computing centers

reduced secondary costs, including cooling, space, cables, generators, and uninterruptible
power supplies (UPS)

extended battery life for laptops

lower carbon dioxide output

meeting government regulations or legal requirements regarding Green IT, for example, Energy
Star

meeting company guidelines for new systems

This section describes the information regarding power management of your Red Hat Enterprise Linux
systems.

15.1. POWER MANAGEMENT BASICS

Effective power management is built on the following principles:

An idle CPU should only wake up when needed

Since Red Hat Enterprise Linux 6, the kernel runs tickless, which means the previous periodic timer
interrupts have been replaced with on-demand interrupts. Therefore, idle CPUs are allowed to
remain idle until a new task is queued for processing, and CPUs that have entered lower power states
can remain in these states longer. However, benefits from this feature can be offset if your system
has applications that create unnecessary timer events. Polling events, such as checks for volume
changes or mouse movement, are examples of such events.
Red Hat Enterprise Linux includes tools using which you can identify and audit applications on the
basis of their CPU usage. For more information see, Audit and analysis overview and Tools for
auditing.

Unused hardware and devices should be disabled completely

This is true for devices that have moving parts, for example, hard disks. In addition to this, some
applications may leave an unused but enabled device "open"; when this occurs, the kernel assumes
that the device is in use, which can prevent the device from going into a power saving state.

Low activity should translate to low wattage

In many cases, however, this depends on modern hardware and correct BIOS configuration or UEFI
on modern systems, including non-x86 architectures. Make sure that you are using the latest official
firmware for your systems and that in the power management or device configuration sections of the
BIOS the power management features are enabled. Some features to look for include:

Collaborative Processor Performance Controls (CPPC) support for ARM64

CHAPTER 15. IMPORTANCE OF POWER MANAGEMENT

155

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/monitoring_and_managing_system_status_and_performance/index#audit-and-analysis-overview_importance-of-power-management
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/monitoring_and_managing_system_status_and_performance/index#tools-for-auditing_importance-of-power-management

PowerNV support for IBM Power Systems

SpeedStep

PowerNow!

Cool’n’Quiet

ACPI (C-state)

Smart
If your hardware has support for these features and they are enabled in the BIOS, Red Hat
Enterprise Linux uses them by default.

Different forms of CPU states and their effects

Modern CPUs together with Advanced Configuration and Power Interface (ACPI) provide different
power states. The three different states are:

Sleep (C-states)

Frequency and voltage (P-states)

Heat output (T-states or thermal states)
A CPU running on the lowest sleep state, consumes the least amount of watts, but it also
takes considerably more time to wake it up from that state when needed. In very rare cases
this can lead to the CPU having to wake up immediately every time it just went to sleep. This
situation results in an effectively permanently busy CPU and loses some of the potential
power saving if another state had been used.

A turned off machine uses the least amount of power

One of the best ways to save power is to turn off systems. For example, your company can develop a
corporate culture focused on "green IT" awareness with a guideline to turn off machines during lunch
break or when going home. You also might consolidate several physical servers into one bigger server
and virtualize them using the virtualization technology, which is shipped with Red Hat
Enterprise Linux.

15.2. AUDIT AND ANALYSIS OVERVIEW

The detailed manual audit, analysis, and tuning of a single system is usually the exception because the
time and cost spent to do so typically outweighs the benefits gained from these last pieces of system
tuning.

However, performing these tasks once for a large number of nearly identical systems where you can
reuse the same settings for all systems can be very useful. For example, consider the deployment of
thousands of desktop systems, or an HPC cluster where the machines are nearly identical. Another
reason to do auditing and analysis is to provide a basis for comparison against which you can identify
regressions or changes in system behavior in the future. The results of this analysis can be very helpful in
cases where hardware, BIOS, or software updates happen regularly and you want to avoid any surprises
with regard to power consumption. Generally, a thorough audit and analysis gives you a much better idea
of what is really happening on a particular system.

Auditing and analyzing a system with regard to power consumption is relatively hard, even with the most
modern systems available. Most systems do not provide the necessary means to measure power use via
software. Exceptions exist though:

iLO management console of Hewlett Packard server systems has a power management module

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

156

iLO management console of Hewlett Packard server systems has a power management module
that you can access through the web.

IBM provides a similar solution in their BladeCenter power management module.

On some Dell systems, the IT Assistant offers power monitoring capabilities as well.

Other vendors are likely to offer similar capabilities for their server platforms, but as can be seen there is
no single solution available that is supported by all vendors. Direct measurements of power consumption
are often only necessary to maximize savings as far as possible.

15.3. TOOLS FOR AUDITING

Red Hat Enterprise Linux 8 offers tools using which you can perform system auditing and analysis. Most
of them can be used as supplementary sources of information in case you want to verify what you have
discovered already or in case you need more in-depth information about certain parts.

Many of these tools are used for performance tuning as well, which include:

PowerTOP

It identifies specific components of kernel and user-space applications that frequently wake up the
CPU. Use the powertop command as root to start the PowerTop tool and powertop --calibrate to
calibrate the power estimation engine. For more information about PowerTop, see Managing power
consumption with PowerTOP.

Diskdevstat and netdevstat

They are SystemTap tools that collect detailed information about the disk activity and network
activity of all applications running on a system. Using the collected statistics by these tools, you can
identify applications that waste power with many small I/O operations rather than fewer, larger
operations. Using the yum install tuned-utils-systemtap kernel-debuginfo command as root,
install the diskdevstat and netdevstat tool.
To view the detailed information about the disk and network activity, use:

diskdevstat

PID UID DEV WRITE_CNT WRITE_MIN WRITE_MAX WRITE_AVG READ_CNT
READ_MIN READ_MAX READ_AVG COMMAND

3575 1000 dm-2 59 0.000 0.365 0.006 5 0.000 0.000 0.000
mozStorage #5
3575 1000 dm-2 7 0.000 0.000 0.000 0 0.000 0.000 0.000
localStorage DB
[...]

netdevstat

PID UID DEV XMIT_CNT XMIT_MIN XMIT_MAX XMIT_AVG RECV_CNT
RECV_MIN RECV_MAX RECV_AVG COMMAND
3572 991 enp0s31f6 40 0.000 0.882 0.108 0 0.000 0.000 0.000
openvpn
3575 1000 enp0s31f6 27 0.000 1.363 0.160 0 0.000 0.000 0.000
Socket Thread
[...]

With these commands, you can specify three parameters: update_interval, total_duration, and

CHAPTER 15. IMPORTANCE OF POWER MANAGEMENT

157

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/monitoring_and_managing_system_status_and_performance/index#managing-power-consumption-with-powertop_monitoring-and-managing-system-status-and-performance

With these commands, you can specify three parameters: update_interval, total_duration, and
display_histogram.

TuneD

It is a profile-based system tuning tool that uses the udev device manager to monitor connected
devices, and enables both static and dynamic tuning of system settings. You can use the tuned-adm
recommend command to determine which profile Red Hat recommends as the most suitable for a
particular product. For more information about TuneD, see Getting started with TuneD and
Customizing TuneD profiles. Using the powertop2tuned utility, you can create custom TuneD
profiles from PowerTOP suggestions. For information about the powertop2tuned utility, see
Optimizing power consumption.

Virtual memory statistics (vmstat)

It is provided by the procps-ng package. Using this tool, you can view the detailed information about
processes, memory, paging, block I/O, traps, and CPU activity.
To view this information, use:

$ vmstat
procs -----------memory---------- ---swap-- -----io---- -system-- ------cpu-----
r b swpd free buff cache si so bi bo in cs us sy id wa st
1 0 0 5805576 380856 4852848 0 0 119 73 814 640 2 2 96 0 0

Using the vmstat -a command, you can display active and inactive memory. For more information
about other vmstat options, see the vmstat man page.

iostat

It is provided by the sysstat package. This tool is similar to vmstat, but only for monitoring I/O on
block devices. It also provides more verbose output and statistics.
To monitor the system I/O, use:

$ iostat
avg-cpu: %user %nice %system %iowait %steal %idle
 2.05 0.46 1.55 0.26 0.00 95.67

Device tps kB_read/s kB_wrtn/s kB_read kB_wrtn
nvme0n1 53.54 899.48 616.99 3445229 2363196
dm-0 42.84 753.72 238.71 2886921 914296
dm-1 0.03 0.60 0.00 2292 0
dm-2 24.15 143.12 379.80 548193 1454712

blktrace

It provides detailed information about how time is spent in the I/O subsystem.
To view this information in human readable format, use:

blktrace -d /dev/dm-0 -o - | blkparse -i -

253,0 1 1 0.000000000 17694 Q W 76423384 + 8 [kworker/u16:1]
253,0 2 1 0.001926913 0 C W 76423384 + 8 [0]
[...]

Here, The first column, 253,0 is the device major and minor tuple. The second column, 1, gives
information about the CPU, followed by columns for timestamps and PID of the process issuing the
IO process.

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

158

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/monitoring_and_managing_system_status_and_performance/index#getting-started-with-tuned_monitoring-and-managing-system-status-and-performance
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/monitoring_and_managing_system_status_and_performance/index#customizing-tuned-profiles_monitoring-and-managing-system-status-and-performance
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/monitoring_and_managing_system_status_and_performance/index#optimizing-power-consumption_managing-power-consumption-with-powertop

The sixth column, Q, shows the event type, the 7th column, W for write operation, the 8th column,
76423384, is the block number, and the + 8 is the number of requested blocks.

The last field, [kworker/u16:1], is the process name.

By default, the blktrace command runs forever until the process is explicitly killed. Use the -w option
to specify the run-time duration.

turbostat

It is provided by the kernel-tools package. It reports on processor topology, frequency, idle power-
state statistics, temperature, and power usage on x86-64 processors.
To view this summary, use:

turbostat

CPUID(0): GenuineIntel 0x16 CPUID levels; 0x80000008 xlevels; family:model:stepping 0x6:8e:a
(6:142:10)
CPUID(1): SSE3 MONITOR SMX EIST TM2 TSC MSR ACPI-TM HT TM
CPUID(6): APERF, TURBO, DTS, PTM, HWP, HWPnotify, HWPwindow, HWPepp, No-HWPpkg,
EPB
[...]

By default, turbostat prints a summary of counter results for the entire screen, followed by counter
results every 5 seconds. Specify a different period between counter results with the -i option, for
example, execute turbostat -i 10 to print results every 10 seconds instead.

Turbostat is also useful for identifying servers that are inefficient in terms of power usage or idle
time. It also helps to identify the rate of system management interrupts (SMIs) occurring on the
system. It can also be used to verify the effects of power management tuning.

cpupower

IT is a collection of tools to examine and tune power saving related features of processors. Use the
cpupower command with the frequency-info, frequency-set, idle-info, idle-set, set, info, and
monitor options to display and set processor related values.
For example, to view available cpufreq governors, use:

$ cpupower frequency-info --governors
analyzing CPU 0:
 available cpufreq governors: performance powersave

For more information about cpupower, see Viewing CPU related information.

GNOME Power Manager

It is a daemon that is installed as part of the GNOME desktop environment. GNOME Power Manager
notifies you of changes in your system’s power status; for example, a change from battery to AC
power. It also reports battery status, and warns you when battery power is low.

Additional resources

powertop(1), diskdevstat(8), netdevstat(8), tuned(8), vmstat(8), iostat(1), blktrace(8),
blkparse(8), and turbostat(8) man pages

cpupower(1), cpupower-set(1), cpupower-info(1), cpupower-idle(1), cpupower-frequency-

CHAPTER 15. IMPORTANCE OF POWER MANAGEMENT

159

cpupower(1), cpupower-set(1), cpupower-info(1), cpupower-idle(1), cpupower-frequency-
set(1), cpupower-frequency-info(1), and cpupower-monitor(1) man pages

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

160

CHAPTER 16. MANAGING POWER CONSUMPTION WITH
POWERTOP

As a system administrator, you can use the PowerTOP tool to analyze and manage power consumption.

16.1. THE PURPOSE OF POWERTOP

PowerTOP is a program that diagnoses issues related to power consumption and provides suggestions
on how to extend battery lifetime.

The PowerTOP tool can provide an estimate of the total power usage of the system and also individual
power usage for each process, device, kernel worker, timer, and interrupt handler. The tool can also
identify specific components of kernel and user-space applications that frequently wake up the CPU.

Red Hat Enterprise Linux 8 uses version 2.x of PowerTOP.

16.2. USING POWERTOP

Prerequisites

To be able to use PowerTOP, make sure that the powertop package has been installed on your
system:

yum install powertop

16.2.1. Starting PowerTOP

Procedure

To run PowerTOP, use the following command:

powertop

IMPORTANT

Laptops should run on battery power when running the powertop command.

16.2.2. Calibrating PowerTOP

Procedure

1. On a laptop, you can calibrate the power estimation engine by running the following command:

powertop --calibrate

2. Let the calibration finish without interacting with the machine during the process.
Calibration takes time because the process performs various tests, cycles through brightness
levels and switches devices on and off.

3. When the calibration process is completed, PowerTOP starts as normal. Let it run for

CHAPTER 16. MANAGING POWER CONSUMPTION WITH POWERTOP

161

3. When the calibration process is completed, PowerTOP starts as normal. Let it run for
approximately an hour to collect data.
When enough data is collected, power estimation figures will be displayed in the first column of
the output table.

NOTE

Note that powertop --calibrate can only be used on laptops.

16.2.3. Setting the measuring interval

By default, PowerTOP takes measurements in 20 seconds intervals.

If you want to change this measuring frequency, use the following procedure:

Procedure

Run the powertop command with the --time option:

powertop --time=time in seconds

16.2.4. Additional resources

For more details on how to use PowerTOP, see the powertop man page.

16.3. POWERTOP STATISTICS

While it runs, PowerTOP gathers statistics from the system.

PowerTOP's output provides multiple tabs:

Overview

Idle stats

Frequency stats

Device stats

Tunables

WakeUp

You can use the Tab and Shift+Tab keys to cycle through these tabs.

16.3.1. The Overview tab

In the Overview tab, you can view a list of the components that either send wakeups to the CPU most
frequently or consume the most power. The items within the Overview tab, including processes,
interrupts, devices, and other resources, are sorted according to their utilization.

The adjacent columns within the Overview tab provide the following pieces of information:

Usage

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

162

Power estimation of how the resource is being used.

Events/s

Wakeups per second. The number of wakeups per second indicates how efficiently the services or
the devices and drivers of the kernel are performing. Less wakeups means that less power is
consumed. Components are ordered by how much further their power usage can be optimized.

Category

Classification of the component; such as process, device, or timer.

Description

Description of the component.

If properly calibrated, a power consumption estimation for every listed item in the first column is shown
as well.

Apart from this, the Overview tab includes the line with summary statistics such as:

Total power consumption

Remaining battery life (only if applicable)

Summary of total wakeups per second, GPU operations per second, and virtual file system
operations per second

16.3.2. The Idle stats tab

The Idle stats tab shows usage of C-states for all processors and cores, while the Frequency stats tab
shows usage of P-states including the Turbo mode, if applicable, for all processors and cores. The
duration of C- or P-states is an indication of how well the CPU usage has been optimized. The longer
the CPU stays in the higher C- or P-states (for example C4 is higher than C3), the better the CPU
usage optimization is. Ideally, residency is 90% or more in the highest C- or P-state when the system is
idle.

16.3.3. The Device stats tab

The Device stats tab provides similar information to the Overview tab but only for devices.

16.3.4. The Tunables tab

The Tunables tab contains PowerTOP's suggestions for optimizing the system for lower power
consumption.

Use the up and down keys to move through suggestions, and the enter key to toggle the suggestion on
or off.

16.3.5. The WakeUp tab

The WakeUp tab displays the device wakeup settings available for users to change as and when
required.

Use the up and down keys to move through the available settings, and the enter key to enable or
disable a setting.

Figure 16.1. PowerTOP output

CHAPTER 16. MANAGING POWER CONSUMPTION WITH POWERTOP

163

Figure 16.1. PowerTOP output

Additional resources

For more details on PowerTOP, see PowerTOP’s home page.

16.4. WHY POWERTOP DOES NOT DISPLAY FREQUENCY STATS
VALUES IN SOME INSTANCES

While using the Intel P-State driver, PowerTOP only displays values in the Frequency Stats tab if the
driver is in passive mode. But, even in this case, the values may be incomplete.

In total, there are three possible modes of the Intel P-State driver:

Active mode with Hardware P-States (HWP)

Active mode without HWP

Passive mode

Switching to the ACPI CPUfreq driver results in complete information being displayed by PowerTOP.
However, it is recommended to keep your system on the default settings.

To see what driver is loaded and in what mode, run:

cat /sys/devices/system/cpu/cpu0/cpufreq/scaling_driver

intel_pstate is returned if the Intel P-State driver is loaded and in active mode.

intel_cpufreq is returned if the Intel P-State driver is loaded and in passive mode.

acpi-cpufreq is returned if the ACPI CPUfreq driver is loaded.

While using the Intel P-State driver, add the following argument to the kernel boot command line to
force the driver to run in passive mode:

intel_pstate=passive

To disable the Intel P-State driver and use, instead, the ACPI CPUfreq driver, add the following

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

164

https://01.org/powertop/

To disable the Intel P-State driver and use, instead, the ACPI CPUfreq driver, add the following
argument to the kernel boot command line:

intel_pstate=disable

16.5. GENERATING AN HTML OUTPUT

Apart from the powertop’s output in terminal, you can also generate an HTML report.

Procedure

Run the powertop command with the --html option:

powertop --html=htmlfile.html

Replace the htmlfile.html parameter with the required name for the output file.

16.6. OPTIMIZING POWER CONSUMPTION

To optimize power consumption, you can use either the powertop service or the powertop2tuned
utility.

16.6.1. Optimizing power consumption using the powertop service

You can use the powertop service to automatically enable all PowerTOP's suggestions from the
Tunables tab on the boot:

Procedure

Enable the powertop service:

systemctl enable powertop

16.6.2. The powertop2tuned utility

The powertop2tuned utility allows you to create custom TuneD profiles from PowerTOP suggestions.

By default, powertop2tuned creates profiles in the /etc/tuned/ directory, and bases the custom profile
on the currently selected TuneD profile. For safety reasons, all PowerTOP tunings are initially disabled
in the new profile.

To enable the tunings, you can:

Uncomment them in the /etc/tuned/profile_name/tuned.conf file.

Use the --enable or -e option to generate a new profile that enables most of the tunings
suggested by PowerTOP.
Certain potentially problematic tunings, such as the USB autosuspend, are disabled by default
and need to be uncommented manually.

16.6.3. Optimizing power consumption using the powertop2tuned utility

CHAPTER 16. MANAGING POWER CONSUMPTION WITH POWERTOP

165

Prerequisites

The powertop2tuned utility is installed on the system:

yum install tuned-utils

Procedure

1. Create a custom profile:

powertop2tuned new_profile_name

2. Activate the new profile:

tuned-adm profile new_profile_name

Additional information

For a complete list of options that powertop2tuned supports, use:

$ powertop2tuned --help

16.6.4. Comparison of powertop.service and powertop2tuned

Optimizing power consumption with powertop2tuned is preferred over powertop.service for the
following reasons:

The powertop2tuned utility represents integration of PowerTOP into TuneD, which enables to
benefit of advantages of both tools.

The powertop2tuned utility allows for fine-grained control of enabled tuning.

With powertop2tuned, potentially dangerous tuning are not automatically enabled.

With powertop2tuned, rollback is possible without reboot.

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

166

CHAPTER 17. TUNING CPU FREQUENCY TO OPTIMIZE
ENERGY CONSUMPTION

You can optimize the power consumption of your system by using the available cpupower commands to
set CPU speed on a system according to your requirements after setting up the required CPUfreq
governor.

17.1. SUPPORTED CPUPOWER TOOL COMMANDS

The cpupower tool is a collection of tools to examine and tune power saving related features of
processors.

The cpupower tool supports the following commands:

idle-info

Displays the available idle states and other statistics for the CPU idle driver using the cpupower
idle-info command. For more information, see CPU Idle States .

idle-set

Enables or disables specific CPU idle state using the cpupower idle-set command as root. Use -d to
disable and -e to enable a specific CPU idle state.

frequency-info

Displays the current cpufreq driver and available cpufreq governors using the cpupower frequency-
info command. For more information, see CPUfreq drivers, Core CPUfreq Governors, and Intel P-
state CPUfreq governors.

frequency-set

Sets the cpufreq and governors using the cpupower frequency-set command as root. For more
information, see Setting up CPUfreq governor.

set

Sets processor power saving policies using the cpupower set command as root.
Using the --perf-bias option, you can enable software on supported Intel processors to determine
the balance between optimum performance and saving power. Assigned values range from 0 to 15,
where 0 is optimum performance and 15 is optimum power efficiency. By default, the --perf-bias
option applies to all cores. To apply it only to individual cores, add the --cpu cpulist option.

info

Displays processor power related and hardware configurations, which you have enabled using the
cpupower set command. For example, if you assign the --perf-bias value as 5:

cpupower set --perf-bias 5
cpupower info
analyzing CPU 0:
perf-bias: 5

monitor

Displays the idle statistics and CPU demands using the cpupower monitor command.

cpupower monitor
 | Nehalem || Mperf ||Idle_Stats
 CPU| C3 | C6 | PC3 | PC6 || C0 | Cx | Freq || POLL | C1 | C1E | C3 | C6 | C7s | C8 |
C9 | C10

CHAPTER 17. TUNING CPU FREQUENCY TO OPTIMIZE ENERGY CONSUMPTION

167

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/monitoring_and_managing_system_status_and_performance/index#cpu-idle-states_tuning-cpu-frequency-to-optimize-energy-consumption
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/monitoring_and_managing_system_status_and_performance/index#cpufreq-drivers_tuning-cpu-frequency-to-optimize-energy-consumption
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/monitoring_and_managing_system_status_and_performance/index#core-cpufreq-governors_tuning-cpu-frequency-to-optimize-energy-consumption
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/monitoring_and_managing_system_status_and_performance/index#intel-p-state-cpufreq-governors_tuning-cpu-frequency-to-optimize-energy-consumption
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/monitoring_and_managing_system_status_and_performance/index#setting-up-cpufreq-governor_tuning-cpu-frequency-to-optimize-energy-consumption

 0| 1.95| 55.12| 0.00| 0.00|| 4.21| 95.79| 3875|| 0.00| 0.68| 2.07| 3.39| 88.77| 0.00| 0.00|
0.00| 0.00
[...]

Using the -l option, you can list all available monitors on your system and the -m option to display
information related to specific monitors. For example, to monitor information related to the Mperf
monitor, use the cpupower monitor -m Mperf command as root.

Additional resources

cpupower(1), cpupower-idle-info(1), cpupower-idle-set(1), cpupower-frequency-set(1),
cpupower-frequency-info(1), cpupower-set(1), cpupower-info(1), and cpupower-monitor(1)
man pages

17.2. CPU IDLE STATES

CPUs with the x86 architecture support various states, such as, few parts of the CPU are deactivated or
using lower performance settings, known as C-states.

With this state, you can save power by partially deactivating CPUs that are not in use. There is no need
to configure the C-state, unlike P-states that require a governor and potentially some set up to avoid
undesirable power or performance issues. C-states are numbered from C0 upwards, with higher
numbers representing decreased CPU functionality and greater power saving. C-states of a given
number are broadly similar across processors, although the exact details of the specific feature sets of
the state may vary between processor families. C-states 0–3 are defined as follows:

C0

In this state, the CPU is working and not idle at all.

C1, Halt

In this state, the processor is not executing any instructions but is typically not in a lower power state.
The CPU can continue processing with practically no delay. All processors offering C-states need to
support this state. Pentium 4 processors support an enhanced C1 state called C1E that actually is a
state for lower power consumption.

C2, Stop-Clock

In this state, the clock is frozen for this processor but it keeps the complete state for its registers and
caches, so after starting the clock again it can immediately start processing again. This is an optional
state.

C3, Sleep

In this state, the processor goes to sleep and does not need to keep its cache up to date. Due to this
reason, waking up from this state needs considerably more time than from the C2 state. This is an
optional state.

You can view the available idle states and other statistics for the CPUidle driver using the following
command:

$ cpupower idle-info
CPUidle governor: menu
analyzing CPU 0:

Number of idle states: 9
Available idle states: POLL C1 C1E C3 C6 C7s C8 C9 C10
[...]

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

168

Intel CPUs with the "Nehalem" microarchitecture features a C6 state, which can reduce the voltage
supply of a CPU to zero, but typically reduces power consumption by between 80% and 90%. The kernel
in Red Hat Enterprise Linux 8 includes optimizations for this new C-state.

Additional resources

cpupower(1) and cpupower-idle(1) man pages

17.3. OVERVIEW OF CPUFREQ

One of the most effective ways to reduce power consumption and heat output on your system is
CPUfreq, which is supported by x86 and ARM64 architectures in Red Hat Enterprise Linux 8. CPUfreq,
also referred to as CPU speed scaling, is the infrastructure in the Linux kernel that enables it to scale the
CPU frequency in order to save power.

CPU scaling can be done automatically depending on the system load, in response to Advanced
Configuration and Power Interface (ACPI) events, or manually by user-space programs, and it allows the
clock speed of the processor to be adjusted on the fly. This enables the system to run at a reduced clock
speed to save power. The rules for shifting frequencies, whether to a faster or slower clock speed and
when to shift frequencies, are defined by the CPUfreq governor.

You can view the cpufreq information using the cpupower frequency-info command as root.

17.3.1. CPUfreq drivers

Using the cpupower frequency-info --driver command as root, you can view the current CPUfreq
driver.

The following are the two available drivers for CPUfreq that can be used:

ACPI CPUfreq

Advanced Configuration and Power Interface (ACPI) CPUfreq driver is a kernel driver that controls
the frequency of a particular CPU through ACPI, which ensures the communication between the
kernel and the hardware.

Intel P-state

In Red Hat Enterprise Linux 8, Intel P-state driver is supported. The driver provides an interface for
controlling the P-state selection on processors based on the Intel Xeon E series architecture or
newer architectures.
Currently, Intel P-state is used by default for supported CPUs. You can switch to using ACPI CPUfreq
by adding the intel_pstate=disable command to the kernel command line.

Intel P-state implements the setpolicy() callback. The driver decides what P-state to use based on
the policy requested from the cpufreq core. If the processor is capable of selecting its next P-state
internally, the driver offloads this responsibility to the processor. If not, the driver implements
algorithms to select the next P-state.

Intel P-state provides its own sysfs files to control the P-state selection. These files are located in
the /sys/devices/system/cpu/intel_pstate/ directory. Any changes made to the files are applicable
to all CPUs.

This directory contains the following files that are used for setting P-state parameters:

max_perf_pct limits the maximum P-state requested by the driver expressed in a

CHAPTER 17. TUNING CPU FREQUENCY TO OPTIMIZE ENERGY CONSUMPTION

169

max_perf_pct limits the maximum P-state requested by the driver expressed in a
percentage of available performance. The available P-state performance can be reduced by
the no_turbo setting.

min_perf_pct limits the minimum P-state requested by the driver, expressed in a percentage
of the maximum no-turbo performance level.

no_turbo limits the driver to selecting P-state below the turbo frequency range.

turbo_pct displays the percentage of the total performance supported by hardware that is in
the turbo range. This number is independent of whether turbo has been disabled or not.

num_pstates displays the number of P-states that are supported by hardware. This number
is independent of whether turbo has been disabled or not.

Additional resources

cpupower-frequency-info(1) man page

17.3.2. Core CPUfreq governors

A CPUfreq governor defines the power characteristics of the system CPU, which in turn affects the CPU
performance. Each governor has its own unique behavior, purpose, and suitability in terms of workload.
Using the cpupower frequency-info --governor command as root, you can view the available CPUfreq
governors.

Red Hat Enterprise Linux 8 includes multiple core CPUfreq governors:

cpufreq_performance

It forces the CPU to use the highest possible clock frequency. This frequency is statically set and
does not change. As such, this particular governor offers no power saving benefit. It is only suitable
for hours of a heavy workload, and only during times wherein the CPU is rarely or never idle.

cpufreq_powersave

It forces the CPU to use the lowest possible clock frequency. This frequency is statically set and
does not change. This governor offers maximum power savings, but at the cost of the lowest CPU
performance. The term "powersave" can sometimes be deceiving though, since in principle a slow
CPU on full load consumes more power than a fast CPU that is not loaded. As such, while it may be
advisable to set the CPU to use the powersave governor during times of expected low activity, any
unexpected high loads during that time can cause the system to actually consume more power. The
Powersave governor is more of a speed limiter for the CPU than a power saver. It is most useful in
systems and environments where overheating can be a problem.

cpufreq_ondemand

It is a dynamic governor, using which you can enable the CPU to achieve maximum clock frequency
when the system load is high, and also minimum clock frequency when the system is idle. While this
allows the system to adjust power consumption accordingly with respect to system load, it does so at
the expense of latency between frequency switching. As such, latency can offset any performance or
power saving benefits offered by the ondemand governor if the system switches between idle and
heavy workloads too often. For most systems, the ondemand governor can provide the best
compromise between heat emission, power consumption, performance, and manageability. When
the system is only busy at specific times of the day, the ondemand governor automatically switches
between maximum and minimum frequency depending on the load without any further intervention.

cpufreq_userspace

It allows user-space programs, or any process running as root, to set the frequency. Of all the

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

170

It allows user-space programs, or any process running as root, to set the frequency. Of all the
governors, userspace is the most customizable and depending on how it is configured, it can offer
the best balance between performance and consumption for your system.

cpufreq_conservative

Similar to the ondemand governor, the conservative governor also adjusts the clock frequency
according to usage. However, the conservative governor switches between frequencies more
gradually. This means that the conservative governor adjusts to a clock frequency that it considers
best for the load, rather than simply choosing between maximum and minimum. While this can
possibly provide significant savings in power consumption, it does so at an ever greater latency than
the ondemand governor.

NOTE

You can enable a governor using cron jobs. This allows you to automatically set specific
governors during specific times of the day. As such, you can specify a low-frequency
governor during idle times, for example, after work hours, and return to a higher-
frequency governor during hours of heavy workload.

For instructions on how to enable a specific governor, see Setting up CPUfreq governor.

17.3.3. Intel P-state CPUfreq governors

By default, the Intel P-state driver operates in active mode with or without Hardware p-state (HWP)
depending on whether the CPU supports HWP.

Using the cpupower frequency-info --governor command as root, you can view the available CPUfreq
governors.

NOTE

The functionality of performance and powersave Intel P-state CPUfreq governors is
different compared to core CPUfreq governors of the same names.

The Intel P-state driver can operate in the following three different modes:

Active mode with hardware-managed P-states

When active mode with HWP is used, the Intel P-state driver instructs the CPU to perform the P-
state selection. The driver can provide frequency hints. However, the final selection depends on CPU
internal logic. In active mode with HWP, the Intel P-state driver provides two P-state selection
algorithms:

performance: With the performance governor, the driver instructs internal CPU logic to be
performance-oriented. The range of allowed P-states is restricted to the upper boundary of
the range that the driver is allowed to use.

powersave: With the powersave governor, the driver instructs internal CPU logic to be
powersave-oriented.

Active mode without hardware-managed P-states

When active mode without HWP is used, the Intel P-state driver provides two P-state selection
algorithms:

performance: With the performance governor, the driver chooses the maximum P-state it

CHAPTER 17. TUNING CPU FREQUENCY TO OPTIMIZE ENERGY CONSUMPTION

171

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/monitoring_and_managing_system_status_and_performance/index#setting-up-cpufreq-governor_tuning-cpu-frequency-to-optimize-energy-consumption

performance: With the performance governor, the driver chooses the maximum P-state it
is allowed to use.

powersave: With the powersave governor, the driver chooses P-states proportional to the
current CPU utilization. The behavior is similar to the ondemand CPUfreq core governor.

Passive mode

When the passive mode is used, the Intel P-state driver functions the same as the traditional
CPUfreq scaling driver. All available generic CPUFreq core governors can be used.

17.3.4. Setting up CPUfreq governor

All CPUfreq drivers are built in as part of the kernel-tools package, and selected automatically. To set
up CPUfreq, you need to select a governor.

Prerequisites

To use cpupower, install the kernel-tools package:

yum install kernel-tools

Procedure

1. View which governors are available for use for a specific CPU:

cpupower frequency-info --governors
analyzing CPU 0:
 available cpufreq governors: performance powersave

2. Enable one of the governors on all CPUs:

cpupower frequency-set --governor performance

Replace the performance governor with the cpufreq governor name as per your requirement.

To only enable a governor on specific cores, use -c with a range or comma-separated list of
CPU numbers. For example, to enable the userspace governor for CPUs 1-3 and 5, use:

cpupower -c 1-3,5 frequency-set --governor cpufreq_userspace

NOTE

If the kernel-tools package is not installed, the CPUfreq settings can be viewed in the
/sys/devices/system/cpu/cpuid/cpufreq/ directory. Settings and values can be changed
by writing to these tunables. For example, to set the minimum clock speed of cpu0 to
360 MHz, use:

echo 360000 > /sys/devices/system/cpu/cpu0/cpufreq/scaling_min_freq

Verification

Verify that the governor is enabled:

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

172

cpupower frequency-info
analyzing CPU 0:
 driver: intel_pstate
 CPUs which run at the same hardware frequency: 0
 CPUs which need to have their frequency coordinated by software: 0
 maximum transition latency: Cannot determine or is not supported.
 hardware limits: 400 MHz - 4.20 GHz
 available cpufreq governors: performance powersave
 current policy: frequency should be within 400 MHz and 4.20 GHz.
 The governor "performance" may decide which speed to use within this range.
 current CPU frequency: Unable to call hardware
 current CPU frequency: 3.88 GHz (asserted by call to kernel)
 boost state support:
 Supported: yes
 Active: yes

The current policy displays the recently enabled cpufreq governor. In this case, it is
performance.

Additional resources

cpupower-frequency-info(1) and cpupower-frequency-set(1) man pages

CHAPTER 17. TUNING CPU FREQUENCY TO OPTIMIZE ENERGY CONSUMPTION

173

CHAPTER 18. GETTING STARTED WITH PERF
As a system administrator, you can use the perf tool to collect and analyze performance data of your
system.

18.1. INTRODUCTION TO PERF

The perf user-space tool interfaces with the kernel-based subsystem Performance Counters for Linux
(PCL). perf is a powerful tool that uses the Performance Monitoring Unit (PMU) to measure, record,
and monitor a variety of hardware and software events. perf also supports tracepoints, kprobes, and
uprobes.

18.2. INSTALLING PERF

This procedure installs the perf user-space tool.

Procedure

Install the perf tool:

yum install perf

18.3. COMMON PERF COMMANDS

perf stat

This command provides overall statistics for common performance events, including instructions
executed and clock cycles consumed. Options allow for selection of events other than the default
measurement events.

perf record

This command records performance data into a file, perf.data, which can be later analyzed using the
perf report command.

perf report

This command reads and displays the performance data from the perf.data file created by perf
record.

perf list

This command lists the events available on a particular machine. These events will vary based on
performance monitoring hardware and software configuration of the system.

perf top

This command performs a similar function to the top utility. It generates and displays a performance
counter profile in realtime.

perf trace

This command performs a similar function to the strace tool. It monitors the system calls used by a
specified thread or process and all signals received by that application.

perf help

This command displays a complete list of perf commands.

Additional resources

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

174

Add the --help option to a subcommand to open the man page.

CHAPTER 18. GETTING STARTED WITH PERF

175

CHAPTER 19. PROFILING CPU USAGE IN REAL TIME WITH
PERF TOP

You can use the perf top command to measure CPU usage of different functions in real time.

Prerequisites

You have the perf user space tool installed as described in Installing perf.

19.1. THE PURPOSE OF PERF TOP

The perf top command is used for real time system profiling and functions similarly to the top utility.
However, where the top utility generally shows you how much CPU time a given process or thread is
using, perf top shows you how much CPU time each specific function uses. In its default state, perf top
tells you about functions being used across all CPUs in both the user-space and the kernel-space. To
use perf top you need root access.

19.2. PROFILING CPU USAGE WITH PERF TOP

This procedure activates perf top and profiles CPU usage in real time.

Prerequisites

You have the perf user space tool installed as described in Installing perf.

You have root access

Procedure

Start the perf top monitoring interface:

perf top

The monitoring interface looks similar to the following:

Samples: 8K of event 'cycles', 2000 Hz, Event count (approx.): 4579432780 lost: 0/0 drop:
0/0
Overhead Shared Object Symbol
 2.20% [kernel] [k] do_syscall_64
 2.17% [kernel] [k] module_get_kallsym
 1.49% [kernel] [k] copy_user_enhanced_fast_string
 1.37% libpthread-2.29.so [.] pthread_mutex_lock 1.31% [unknown] [.] 0000000000000000
1.07% [kernel] [k] psi_task_change 1.04% [kernel] [k] switch_mm_irqs_off 0.94% [kernel] [k]
fget
 0.74% [kernel] [k] entry_SYSCALL_64
 0.69% [kernel] [k] syscall_return_via_sysret
 0.69% libxul.so [.] 0x000000000113f9b0
 0.67% [kernel] [k] kallsyms_expand_symbol.constprop.0
 0.65% firefox [.] moz_xmalloc
 0.65% libpthread-2.29.so [.] __pthread_mutex_unlock_usercnt
 0.60% firefox [.] free
 0.60% libxul.so [.] 0x000000000241d1cd
 0.60% [kernel] [k] do_sys_poll

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

176

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/getting-started-with-perf_monitoring-and-managing-system-status-and-performance#installing-perf_getting-started-with-perf

 0.58% [kernel] [k] menu_select
 0.56% [kernel] [k] _raw_spin_lock_irqsave
 0.55% perf [.] 0x00000000002ae0f3

In this example, the kernel function do_syscall_64 is using the most CPU time.

Additional resources

perf-top(1) man page

19.3. INTERPRETATION OF PERF TOP OUTPUT

The perf top monitoring interface displays the data in several columns:

The "Overhead" column

Displays the percent of CPU a given function is using.

The "Shared Object" column

Displays name of the program or library which is using the function.

The "Symbol" column

Displays the function name or symbol. Functions executed in the kernel-space are identified by [k]
and functions executed in the user-space are identified by [.].

19.4. WHY PERF DISPLAYS SOME FUNCTION NAMES AS RAW
FUNCTION ADDRESSES

For kernel functions, perf uses the information from the /proc/kallsyms file to map the samples to their
respective function names or symbols. For functions executed in the user space, however, you might see
raw function addresses because the binary is stripped.

The debuginfo package of the executable must be installed or, if the executable is a locally developed
application, the application must be compiled with debugging information turned on (the -g option in
GCC) to display the function names or symbols in such a situation.

NOTE

It is not necessary to re-run the perf record command after installing the debuginfo
associated with an executable. Simply re-run the perf report command.

Additional Resources

Enabling debugging with debugging information

19.5. ENABLING DEBUG AND SOURCE REPOSITORIES

A standard installation of Red Hat Enterprise Linux does not enable the debug and source repositories.
These repositories contain information needed to debug the system components and measure their
performance.

Procedure

Enable the source and debug information package channels:

CHAPTER 19. PROFILING CPU USAGE IN REAL TIME WITH PERF TOP

177

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/developing_c_and_cpp_applications_in_rhel_8/debugging-applications_developing-applications#enabling-debugging-with-debugging-information_debugging-applications

subscription-manager repos --enable rhel-8-for-$(uname -i)-baseos-debug-rpms
subscription-manager repos --enable rhel-8-for-$(uname -i)-baseos-source-rpms
subscription-manager repos --enable rhel-8-for-$(uname -i)-appstream-debug-rpms
subscription-manager repos --enable rhel-8-for-$(uname -i)-appstream-source-rpms

The $(uname -i) part is automatically replaced with a matching value for architecture of your
system:

Architecture name Value

64-bit Intel and AMD x86_64

64-bit ARM aarch64

IBM POWER ppc64le

64-bit IBM Z s390x

19.6. GETTING DEBUGINFO PACKAGES FOR AN APPLICATION OR
LIBRARY USING GDB

Debugging information is required to debug code. For code that is installed from a package, the GNU
Debugger (GDB) automatically recognizes missing debug information, resolves the package name and
provides concrete advice on how to get the package.

Prerequisites

The application or library you want to debug must be installed on the system.

GDB and the debuginfo-install tool must be installed on the system. For details, see Setting up
to debug applications.

Repositories providing debuginfo and debugsource packages must be configured and enabled
on the system. For details, see Enabling debug and source repositories.

Procedure

1. Start GDB attached to the application or library you want to debug. GDB automatically
recognizes missing debugging information and suggests a command to run.

$ gdb -q /bin/ls
Reading symbols from /bin/ls...Reading symbols from .gnu_debugdata for /usr/bin/ls...(no
debugging symbols found)...done.
(no debugging symbols found)...done.
Missing separate debuginfos, use: dnf debuginfo-install coreutils-8.30-6.el8.x86_64
(gdb)

2. Exit GDB: type q and confirm with Enter.

(gdb) q

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

178

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/developing_c_and_cpp_applications_in_rhel_8/setting-up-a-development-workstation_developing-applications#setting-up-to-debug-applications_setting-up-a-development-workstation
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/developing_c_and_cpp_applications_in_rhel_8/index#enabling-debug-and-source-repositories_setting-up-a-development-workstation

3. Run the command suggested by GDB to install the required debuginfo packages:

dnf debuginfo-install coreutils-8.30-6.el8.x86_64

The dnf package management tool provides a summary of the changes, asks for confirmation
and once you confirm, downloads and installs all the necessary files.

4. In case GDB is not able to suggest the debuginfo package, follow the procedure described in
Getting debuginfo packages for an application or library manually .

Additional resources

How can I download or install debuginfo packages for RHEL systems? — Red Hat
Knowledgebase solution

CHAPTER 19. PROFILING CPU USAGE IN REAL TIME WITH PERF TOP

179

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/developing_c_and_cpp_applications_in_rhel_8/index#getting-debuginfo-packages-for-an-application-or-library-manually_enabling-debugging-with-debugging-information
https://access.redhat.com/solutions/9907

CHAPTER 20. COUNTING EVENTS DURING PROCESS
EXECUTION WITH PERF STAT

You can use the perf stat command to count hardware and software events during process execution.

Prerequisites

You have the perf user space tool installed as described in Installing perf.

20.1. THE PURPOSE OF PERF STAT

The perf stat command executes a specified command, keeps a running count of hardware and
software event occurrences during the commands execution, and generates statistics of these counts. If
you do not specify any events, then perf stat counts a set of common hardware and software events.

20.2. COUNTING EVENTS WITH PERF STAT

You can use perf stat to count hardware and software event occurrences during command execution
and generate statistics of these counts. By default, perf stat operates in per-thread mode.

Prerequisites

You have the perf user space tool installed as described in Installing perf.

Procedure

Count the events.

Running the perf stat command without root access will only count events occurring in the
user space:

$ perf stat ls

Example 20.1. Output of perf stat ran without root access

Desktop Documents Downloads Music Pictures Public Templates Videos

 Performance counter stats for 'ls':

 1.28 msec task-clock:u # 0.165 CPUs utilized
 0 context-switches:u # 0.000 M/sec
 0 cpu-migrations:u # 0.000 K/sec
 104 page-faults:u # 0.081 M/sec
 1,054,302 cycles:u # 0.823 GHz
 1,136,989 instructions:u # 1.08 insn per cycle
 228,531 branches:u # 178.447 M/sec
 11,331 branch-misses:u # 4.96% of all branches

 0.007754312 seconds time elapsed

 0.000000000 seconds user
 0.007717000 seconds sys

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

180

As you can see in the previous example, when perf stat runs without root access the event
names are followed by :u, indicating that these events were counted only in the user-space.

To count both user-space and kernel-space events, you must have root access when
running perf stat:

perf stat ls

Example 20.2. Output of perf stat ran with root access

Desktop Documents Downloads Music Pictures Public Templates Videos

 Performance counter stats for 'ls':

 3.09 msec task-clock # 0.119 CPUs utilized
 18 context-switches # 0.006 M/sec
 3 cpu-migrations # 0.969 K/sec
 108 page-faults # 0.035 M/sec
 6,576,004 cycles # 2.125 GHz
 5,694,223 instructions # 0.87 insn per cycle
 1,092,372 branches # 352.960 M/sec
 31,515 branch-misses # 2.89% of all branches

 0.026020043 seconds time elapsed

 0.000000000 seconds user
 0.014061000 seconds sys

By default, perf stat operates in per-thread mode. To change to CPU-wide event
counting, pass the -a option to perf stat. To count CPU-wide events, you need root
access:

perf stat -a ls

Additional resources

perf-stat(1) man page

20.3. INTERPRETATION OF PERF STAT OUTPUT

perf stat executes a specified command and counts event occurrences during the commands execution
and displays statistics of these counts in three columns:

1. The number of occurrences counted for a given event

2. The name of the event that was counted

3. When related metrics are available, a ratio or percentage is displayed after the hash sign (#) in
the right-most column.
For example, when running in default mode, perf stat counts both cycles and instructions and,
therefore, calculates and displays instructions per cycle in the right-most column. You can see
similar behavior with regard to branch-misses as a percent of all branches since both events are

CHAPTER 20. COUNTING EVENTS DURING PROCESS EXECUTION WITH PERF STAT

181

counted by default.

20.4. ATTACHING PERF STAT TO A RUNNING PROCESS

You can attach perf stat to a running process. This will instruct perf stat to count event occurrences
only in the specified processes during the execution of a command.

Prerequisites

You have the perf user space tool installed as described in Installing perf.

Procedure

Attach perf stat to a running process:

$ perf stat -p ID1,ID2 sleep seconds

The previous example counts events in the processes with the IDs of ID1 and ID2 for a time
period of seconds seconds as dictated by using the sleep command.

Additional resources

perf-stat(1) man page

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

182

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/getting-started-with-perf_monitoring-and-managing-system-status-and-performance#installing-perf_getting-started-with-perf

CHAPTER 21. RECORDING AND ANALYZING PERFORMANCE
PROFILES WITH PERF

The perf tool allows you to record performance data and analyze it at a later time.

Prerequisites

You have the perf user space tool installed as described in Installing perf.

21.1. THE PURPOSE OF PERF RECORD

The perf record command samples performance data and stores it in a file, perf.data, which can be read
and visualized with other perf commands. perf.data is generated in the current directory and can be
accessed at a later time, possibly on a different machine.

If you do not specify a command for perf record to record during, it will record until you manually stop
the process by pressing Ctrl+C. You can attach perf record to specific processes by passing the -p
option followed by one or more process IDs. You can run perf record without root access, however,
doing so will only sample performance data in the user space. In the default mode, perf record uses
CPU cycles as the sampling event and operates in per-thread mode with inherit mode enabled.

21.2. RECORDING A PERFORMANCE PROFILE WITHOUT ROOT
ACCESS

You can use perf record without root access to sample and record performance data in the user-space
only.

Prerequisites

You have the perf user space tool installed as described in Installing perf.

Procedure

Sample and record the performance data:

$ perf record command

Replace command with the command you want to sample data during. If you do not specify a
command, then perf record will sample data until you manually stop it by pressing Ctrl+C.

Additional resources

perf-record(1) man page

21.3. RECORDING A PERFORMANCE PROFILE WITH ROOT ACCESS

You can use perf record with root access to sample and record performance data in both the user-
space and the kernel-space simultaneously.

Prerequisites

You have the perf user space tool installed as described in Installing perf.

CHAPTER 21. RECORDING AND ANALYZING PERFORMANCE PROFILES WITH PERF

183

You have root access.

Procedure

Sample and record the performance data:

perf record command

Replace command with the command you want to sample data during. If you do not specify a
command, then perf record will sample data until you manually stop it by pressing Ctrl+C.

Additional resources

perf-record(1) man page

21.4. RECORDING A PERFORMANCE PROFILE IN PER-CPU MODE

You can use perf record in per-CPU mode to sample and record performance data in both and user-
space and the kernel-space simultaneously across all threads on a monitored CPU. By default, per-CPU
mode monitors all online CPUs.

Prerequisites

You have the perf user space tool installed as described in Installing perf.

Procedure

Sample and record the performance data:

perf record -a command

Replace command with the command you want to sample data during. If you do not specify a
command, then perf record will sample data until you manually stop it by pressing Ctrl+C.

Additional resources

perf-record(1) man page

21.5. CAPTURING CALL GRAPH DATA WITH PERF RECORD

You can configure the perf record tool so that it records which function is calling other functions in the
performance profile. This helps to identify a bottleneck if several processes are calling the same
function.

Prerequisites

You have the perf user space tool installed as described in Installing perf.

Procedure

Sample and record performance data with the --call-graph option:

$ perf record --call-graph method command

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

184

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/getting-started-with-perf_monitoring-and-managing-system-status-and-performance#installing-perf_getting-started-with-perf

Replace command with the command you want to sample data during. If you do not specify
a command, then perf record will sample data until you manually stop it by pressing Ctrl+C.

Replace method with one of the following unwinding methods:

fp

Uses the frame pointer method. Depending on compiler optimization, such as with
binaries built with the GCC option --fomit-frame-pointer, this may not be able to unwind
the stack.

dwarf

Uses DWARF Call Frame Information to unwind the stack.

lbr

Uses the last branch record hardware on Intel processors.

Additional resources

perf-record(1) man page

21.6. ANALYZING PERF.DATA WITH PERF REPORT

You can use perf report to display and analyze a perf.data file.

Prerequisites

You have the perf user space tool installed as described in Installing perf.

There is a perf.data file in the current directory.

If the perf.data file was created with root access, you need to run perf report with root access
too.

Procedure

Display the contents of the perf.data file for further analysis:

perf report

This command displays output similar to the following:

Samples: 2K of event 'cycles', Event count (approx.): 235462960
Overhead Command Shared Object Symbol
 2.36% kswapd0 [kernel.kallsyms] [k] page_vma_mapped_walk
 2.13% sssd_kcm libc-2.28.so [.] memset_avx2_erms 2.13% perf
[kernel.kallsyms] [k] smp_call_function_single 1.53% gnome-shell libc-2.28.so [.]
strcmp_avx2
 1.17% gnome-shell libglib-2.0.so.0.5600.4 [.] g_hash_table_lookup
 0.93% Xorg libc-2.28.so [.] memmove_avx_unaligned_erms 0.89%
gnome-shell libgobject-2.0.so.0.5600.4 [.] g_object_unref 0.87% kswapd0 [kernel.kallsyms]
[k] page_referenced_one 0.86% gnome-shell libc-2.28.so [.] memmove_avx_unaligned_erms
 0.83% Xorg [kernel.kallsyms] [k] alloc_vmap_area
 0.63% gnome-shell libglib-2.0.so.0.5600.4 [.] g_slice_alloc
 0.53% gnome-shell libgirepository-1.0.so.1.0.0 [.] g_base_info_unref

CHAPTER 21. RECORDING AND ANALYZING PERFORMANCE PROFILES WITH PERF

185

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/getting-started-with-perf_monitoring-and-managing-system-status-and-performance#installing-perf_getting-started-with-perf

 0.53% gnome-shell ld-2.28.so [.] _dl_find_dso_for_object
 0.49% kswapd0 [kernel.kallsyms] [k] vma_interval_tree_iter_next
 0.48% gnome-shell libpthread-2.28.so [.] pthread_getspecific 0.47% gnome-
shell libgirepository-1.0.so.1.0.0 [.] 0x0000000000013b1d 0.45% gnome-shell libglib-
2.0.so.0.5600.4 [.] g_slice_free1 0.45% gnome-shell libgobject-2.0.so.0.5600.4 [.]
g_type_check_instance_is_fundamentally_a 0.44% gnome-shell libc-2.28.so [.] malloc 0.41%
swapper [kernel.kallsyms] [k] apic_timer_interrupt 0.40% gnome-shell ld-2.28.so [.]
_dl_lookup_symbol_x 0.39% kswapd0 [kernel.kallsyms] [k]
raw_callee_save___pv_queued_spin_unlock

Additional resources

perf-report(1) man page

21.7. INTERPRETATION OF PERF REPORT OUTPUT

The table displayed by running the perf report command sorts the data into several columns:

The 'Overhead' column

Indicates what percentage of overall samples were collected in that particular function.

The 'Command' column

Tells you which process the samples were collected from.

The 'Shared Object' column

Displays the name of the ELF image where the samples come from (the name [kernel.kallsyms] is
used when the samples come from the kernel).

The 'Symbol' column

Displays the function name or symbol.

In default mode, the functions are sorted in descending order with those with the highest overhead
displayed first.

21.8. GENERATING A PERF.DATA FILE THAT IS READABLE ON A
DIFFERENT DEVICE

You can use the perf tool to record performance data into a perf.data file to be analyzed on a different
device.

Prerequisites

You have the perf user space tool installed as described in Installing perf.

The kernel debuginfo package is installed. For more information, see Getting debuginfo
packages for an application or library using GDB.

Procedure

1. Capture performance data you are interested in investigating further:

perf record -a --call-graph fp sleep seconds

This example would generate a perf.data over the entire system for a period of seconds

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

186

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/developing_c_and_cpp_applications_in_rhel_8/index#getting-debuginfo-packages-for-an-application-or-library-using-gdb_enabling-debugging-with-debugging-information

This example would generate a perf.data over the entire system for a period of seconds
seconds as dictated by the use of the sleep command. It would also capture call graph data
using the frame pointer method.

2. Generate an archive file containing debug symbols of the recorded data:

perf archive

Verification steps

Verify that the archive file has been generated in your current active directory:

ls perf.data*

The output will display every file in your current directory that begins with perf.data. The archive
file will be named either:

perf.data.tar.gz

or

perf.data.tar.bz2

Additional resources

Recording and analyzing performance profiles with perf

Capturing call graph data with perf record

21.9. ANALYZING A PERF.DATA FILE THAT WAS CREATED ON A
DIFFERENT DEVICE

You can use the perf tool to analyze a perf.data file that was generated on a different device.

Prerequisites

You have the perf user space tool installed as described in Installing perf.

A perf.data file and associated archive file generated on a different device are present on the
current device being used.

Procedure

1. Copy both the perf.data file and the archive file into your current active directory.

2. Extract the archive file into ~/.debug:

mkdir -p ~/.debug
tar xf perf.data.tar.bz2 -C ~/.debug

NOTE

CHAPTER 21. RECORDING AND ANALYZING PERFORMANCE PROFILES WITH PERF

187

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/getting-started-with-perf_monitoring-and-managing-system-status-and-performance#installing-perf_getting-started-with-perf

NOTE

The archive file might also be named perf.data.tar.gz.

3. Open the perf.data file for further analysis:

perf report

21.10. WHY PERF DISPLAYS SOME FUNCTION NAMES AS RAW
FUNCTION ADDRESSES

For kernel functions, perf uses the information from the /proc/kallsyms file to map the samples to their
respective function names or symbols. For functions executed in the user space, however, you might see
raw function addresses because the binary is stripped.

The debuginfo package of the executable must be installed or, if the executable is a locally developed
application, the application must be compiled with debugging information turned on (the -g option in
GCC) to display the function names or symbols in such a situation.

NOTE

It is not necessary to re-run the perf record command after installing the debuginfo
associated with an executable. Simply re-run the perf report command.

Additional Resources

Enabling debugging with debugging information

21.11. ENABLING DEBUG AND SOURCE REPOSITORIES

A standard installation of Red Hat Enterprise Linux does not enable the debug and source repositories.
These repositories contain information needed to debug the system components and measure their
performance.

Procedure

Enable the source and debug information package channels:

subscription-manager repos --enable rhel-8-for-$(uname -i)-baseos-debug-rpms
subscription-manager repos --enable rhel-8-for-$(uname -i)-baseos-source-rpms
subscription-manager repos --enable rhel-8-for-$(uname -i)-appstream-debug-rpms
subscription-manager repos --enable rhel-8-for-$(uname -i)-appstream-source-rpms

The $(uname -i) part is automatically replaced with a matching value for architecture of your
system:

Architecture name Value

64-bit Intel and AMD x86_64

64-bit ARM aarch64

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

188

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/developing_c_and_cpp_applications_in_rhel_8/debugging-applications_developing-applications#enabling-debugging-with-debugging-information_debugging-applications

IBM POWER ppc64le

64-bit IBM Z s390x

Architecture name Value

21.12. GETTING DEBUGINFO PACKAGES FOR AN APPLICATION OR
LIBRARY USING GDB

Debugging information is required to debug code. For code that is installed from a package, the GNU
Debugger (GDB) automatically recognizes missing debug information, resolves the package name and
provides concrete advice on how to get the package.

Prerequisites

The application or library you want to debug must be installed on the system.

GDB and the debuginfo-install tool must be installed on the system. For details, see Setting up
to debug applications.

Repositories providing debuginfo and debugsource packages must be configured and enabled
on the system. For details, see Enabling debug and source repositories.

Procedure

1. Start GDB attached to the application or library you want to debug. GDB automatically
recognizes missing debugging information and suggests a command to run.

$ gdb -q /bin/ls
Reading symbols from /bin/ls...Reading symbols from .gnu_debugdata for /usr/bin/ls...(no
debugging symbols found)...done.
(no debugging symbols found)...done.
Missing separate debuginfos, use: dnf debuginfo-install coreutils-8.30-6.el8.x86_64
(gdb)

2. Exit GDB: type q and confirm with Enter.

(gdb) q

3. Run the command suggested by GDB to install the required debuginfo packages:

dnf debuginfo-install coreutils-8.30-6.el8.x86_64

The dnf package management tool provides a summary of the changes, asks for confirmation
and once you confirm, downloads and installs all the necessary files.

4. In case GDB is not able to suggest the debuginfo package, follow the procedure described in
Getting debuginfo packages for an application or library manually .

Additional resources

How can I download or install debuginfo packages for RHEL systems? — Red Hat

CHAPTER 21. RECORDING AND ANALYZING PERFORMANCE PROFILES WITH PERF

189

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/developing_c_and_cpp_applications_in_rhel_8/setting-up-a-development-workstation_developing-applications#setting-up-to-debug-applications_setting-up-a-development-workstation
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/developing_c_and_cpp_applications_in_rhel_8/index#enabling-debug-and-source-repositories_setting-up-a-development-workstation
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/developing_c_and_cpp_applications_in_rhel_8/index#getting-debuginfo-packages-for-an-application-or-library-manually_enabling-debugging-with-debugging-information

How can I download or install debuginfo packages for RHEL systems? — Red Hat
Knowledgebase solution

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

190

https://access.redhat.com/solutions/9907

CHAPTER 22. INVESTIGATING BUSY CPUS WITH PERF
When investigating performance issues on a system, you can use the perf tool to identify and monitor
the busiest CPUs in order to focus your efforts.

22.1. DISPLAYING WHICH CPU EVENTS WERE COUNTED ON WITH
PERF STAT

You can use perf stat to display which CPU events were counted on by disabling CPU count
aggregation. You must count events in system-wide mode by using the -a flag in order to use this
functionality.

Prerequisites

You have the perf user space tool installed as described in Installing perf.

Procedure

Count the events with CPU count aggregation disabled:

perf stat -a -A sleep seconds

The previous example displays counts of a default set of common hardware and software
events recorded over a time period of seconds seconds, as dictated by using the sleep
command, over each individual CPU in ascending order, starting with CPU0. As such, it may be
useful to specify an event such as cycles:

perf stat -a -A -e cycles sleep seconds

22.2. DISPLAYING WHICH CPU SAMPLES WERE TAKEN ON WITH PERF
REPORT

The perf record command samples performance data and stores this data in a perf.data file which can
be read with the perf report command. The perf record command always records which CPU samples
were taken on. You can configure perf report to display this information.

Prerequisites

You have the perf user space tool installed as described in Installing perf.

There is a perf.data file created with perf record in the current directory. If the perf.data file
was created with root access, you need to run perf report with root access too.

Procedure

Display the contents of the perf.data file for further analysis while sorting by CPU:

perf report --sort cpu

You can sort by CPU and command to display more detailed information about where CPU
time is being spent:

CHAPTER 22. INVESTIGATING BUSY CPUS WITH PERF

191

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/getting-started-with-perf_monitoring-and-managing-system-status-and-performance#installing-perf_getting-started-with-perf
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/getting-started-with-perf_monitoring-and-managing-system-status-and-performance#installing-perf_getting-started-with-perf

perf report --sort cpu,comm

This example will list commands from all monitored CPUs by total overhead in descending
order of overhead usage and identify the CPU the command was executed on.

Additional resources

Recording and analyzing performance profiles with perf

22.3. DISPLAYING SPECIFIC CPUS DURING PROFILING WITH PERF
TOP

You can configure perf top to display specific CPUs and their relative usage while profiling your system
in real time.

Prerequisites

You have the perf user space tool installed as described in Installing perf.

Procedure

Start the perf top interface while sorting by CPU:

perf top --sort cpu

This example will list CPUs and their respective overhead in descending order of overhead
usage in real time.

You can sort by CPU and command for more detailed information of where CPU time is
being spent:

perf top --sort cpu,comm

This example will list commands by total overhead in descending order of overhead usage
and identify the CPU the command was executed on in real time.

22.4. MONITORING SPECIFIC CPUS WITH PERF RECORD AND PERF
REPORT

You can configure perf record to only sample specific CPUs of interest and analyze the generated
perf.data file with perf report for further analysis.

Prerequisites

You have the perf user space tool installed as described in Installing perf.

Procedure

1. Sample and record the performance data in the specific CPU’s, generating a perf.data file:

Using a comma separated list of CPUs:

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

192

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/recording-and-analyzing-performance-profiles-with-perf_monitoring-and-managing-system-status-and-performance
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/getting-started-with-perf_monitoring-and-managing-system-status-and-performance#installing-perf_getting-started-with-perf
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/getting-started-with-perf_monitoring-and-managing-system-status-and-performance#installing-perf_getting-started-with-perf

perf record -C 0,1 sleep seconds

The previous example samples and records data in CPUs 0 and 1 for a period of seconds
seconds as dictated by the use of the sleep command.

Using a range of CPUs:

perf record -C 0-2 sleep seconds

The previous example samples and records data in all CPUs from CPU 0 to 2 for a period of
seconds seconds as dictated by the use of the sleep command.

2. Display the contents of the perf.data file for further analysis:

perf report

This example will display the contents of perf.data. If you are monitoring several CPUs and want
to know which CPU data was sampled on, see Displaying which CPU samples were taken on with
perf report.

CHAPTER 22. INVESTIGATING BUSY CPUS WITH PERF

193

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/investigating-busy-cpus-with-perf_monitoring-and-managing-system-status-and-performance#displaying-which-cpu-samples-were-taken-on-with-perf-report_investigating-busy-cpus-with-perf

CHAPTER 23. MONITORING APPLICATION PERFORMANCE
WITH PERF

You can use the perf tool to monitor and analyze application performance.

23.1. ATTACHING PERF RECORD TO A RUNNING PROCESS

You can attach perf record to a running process. This will instruct perf record to only sample and
record performance data in the specified processes.

Prerequisites

You have the perf user space tool installed as described in Installing perf.

Procedure

Attach perf record to a running process:

$ perf record -p ID1,ID2 sleep seconds

The previous example samples and records performance data of the processes with the process
ID’s ID1 and ID2 for a time period of seconds seconds as dictated by using the sleep
command. You can also configure perf to record events in specific threads:

$ perf record -t ID1,ID2 sleep seconds

NOTE

When using the -t flag and stipulating thread ID’s, perf disables inheritance by
default. You can enable inheritance by adding the --inherit option.

23.2. CAPTURING CALL GRAPH DATA WITH PERF RECORD

You can configure the perf record tool so that it records which function is calling other functions in the
performance profile. This helps to identify a bottleneck if several processes are calling the same
function.

Prerequisites

You have the perf user space tool installed as described in Installing perf.

Procedure

Sample and record performance data with the --call-graph option:

$ perf record --call-graph method command

Replace command with the command you want to sample data during. If you do not specify
a command, then perf record will sample data until you manually stop it by pressing Ctrl+C.

Replace method with one of the following unwinding methods:

fp

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

194

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/getting-started-with-perf_monitoring-and-managing-system-status-and-performance#installing-perf_getting-started-with-perf
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/getting-started-with-perf_monitoring-and-managing-system-status-and-performance#installing-perf_getting-started-with-perf

fp

Uses the frame pointer method. Depending on compiler optimization, such as with
binaries built with the GCC option --fomit-frame-pointer, this may not be able to unwind
the stack.

dwarf

Uses DWARF Call Frame Information to unwind the stack.

lbr

Uses the last branch record hardware on Intel processors.

Additional resources

perf-record(1) man page

23.3. ANALYZING PERF.DATA WITH PERF REPORT

You can use perf report to display and analyze a perf.data file.

Prerequisites

You have the perf user space tool installed as described in Installing perf.

There is a perf.data file in the current directory.

If the perf.data file was created with root access, you need to run perf report with root access
too.

Procedure

Display the contents of the perf.data file for further analysis:

perf report

This command displays output similar to the following:

Samples: 2K of event 'cycles', Event count (approx.): 235462960
Overhead Command Shared Object Symbol
 2.36% kswapd0 [kernel.kallsyms] [k] page_vma_mapped_walk
 2.13% sssd_kcm libc-2.28.so [.] memset_avx2_erms 2.13% perf
[kernel.kallsyms] [k] smp_call_function_single 1.53% gnome-shell libc-2.28.so [.]
strcmp_avx2
 1.17% gnome-shell libglib-2.0.so.0.5600.4 [.] g_hash_table_lookup
 0.93% Xorg libc-2.28.so [.] memmove_avx_unaligned_erms 0.89%
gnome-shell libgobject-2.0.so.0.5600.4 [.] g_object_unref 0.87% kswapd0 [kernel.kallsyms]
[k] page_referenced_one 0.86% gnome-shell libc-2.28.so [.] memmove_avx_unaligned_erms
 0.83% Xorg [kernel.kallsyms] [k] alloc_vmap_area
 0.63% gnome-shell libglib-2.0.so.0.5600.4 [.] g_slice_alloc
 0.53% gnome-shell libgirepository-1.0.so.1.0.0 [.] g_base_info_unref
 0.53% gnome-shell ld-2.28.so [.] _dl_find_dso_for_object
 0.49% kswapd0 [kernel.kallsyms] [k] vma_interval_tree_iter_next
 0.48% gnome-shell libpthread-2.28.so [.] pthread_getspecific 0.47% gnome-
shell libgirepository-1.0.so.1.0.0 [.] 0x0000000000013b1d 0.45% gnome-shell libglib-
2.0.so.0.5600.4 [.] g_slice_free1 0.45% gnome-shell libgobject-2.0.so.0.5600.4 [.]
g_type_check_instance_is_fundamentally_a 0.44% gnome-shell libc-2.28.so [.] malloc 0.41%

CHAPTER 23. MONITORING APPLICATION PERFORMANCE WITH PERF

195

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/getting-started-with-perf_monitoring-and-managing-system-status-and-performance#installing-perf_getting-started-with-perf

swapper [kernel.kallsyms] [k] apic_timer_interrupt 0.40% gnome-shell ld-2.28.so [.]
_dl_lookup_symbol_x 0.39% kswapd0 [kernel.kallsyms] [k]
raw_callee_save___pv_queued_spin_unlock

Additional resources

perf-report(1) man page

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

196

CHAPTER 24. CREATING UPROBES WITH PERF

24.1. CREATING UPROBES AT THE FUNCTION LEVEL WITH PERF

You can use the perf tool to create dynamic tracepoints at arbitrary points in a process or application.
These tracepoints can then be used in conjunction with other perf tools such as perf stat and perf
record to better understand the process or applications behavior.

Prerequisites

You have the perf user space tool installed as described in Installing perf.

Procedure

1. Create the uprobe in the process or application you are interested in monitoring at a location of
interest within the process or application:

perf probe -x /path/to/executable -a function
Added new event:
 probe_executable:function (on function in /path/to/executable)

You can now use it in all perf tools, such as:

 perf record -e probe_executable:function -aR sleep 1

Additional resources

perf-probe man page

Recording and analyzing performance profiles with perf

Counting events during process execution with perf stat

24.2. CREATING UPROBES ON LINES WITHIN A FUNCTION WITH PERF

These tracepoints can then be used in conjunction with other perf tools such as perf stat and perf
record to better understand the process or applications behavior.

Prerequisites

You have the perf user space tool installed as described in Installing perf.

You have gotten the debugging symbols for your executable:

objdump -t ./your_executable | head

NOTE

To do this, the debuginfo package of the executable must be installed or, if the
executable is a locally developed application, the application must be compiled
with debugging information, the -g option in GCC.

CHAPTER 24. CREATING UPROBES WITH PERF

197

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/getting-started-with-perf_monitoring-and-managing-system-status-and-performance#installing-perf_getting-started-with-perf
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/recording-and-analyzing-performance-profiles-with-perf_monitoring-and-managing-system-status-and-performance
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/counting-events-during-process-execution-with-perf-stat_monitoring-and-managing-system-status-and-performance
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/getting-started-with-perf_monitoring-and-managing-system-status-and-performance#installing-perf_getting-started-with-perf

Procedure

1. View the function lines where you can place a uprobe:

$ perf probe -x ./your_executable -L main

Output of this command looks similar to:

<main@/home/user/my_executable:0>
 0 int main(int argc, const char **argv)
 1 {
 int err;
 const char *cmd;
 char sbuf[STRERR_BUFSIZE];

 /* libsubcmd init */
 7 exec_cmd_init("perf", PREFIX, PERF_EXEC_PATH,
EXEC_PATH_ENVIRONMENT);
 8 pager_init(PERF_PAGER_ENVIRONMENT);

2. Create the uprobe for the desired function line:

perf probe -x ./my_executable main:8
Added new event:
 probe_my_executable:main_L8 (on main:8 in /home/user/my_executable)

 You can now use it in all perf tools, such as:

 perf record -e probe_my_executable:main_L8 -aR sleep 1

24.3. PERF SCRIPT OUTPUT OF DATA RECORDED OVER UPROBES

A common method to analyze data collected using uprobes is using the perf script command to read a
perf.data file and display a detailed trace of the recorded workload.

In the perf script example output:

A uprobe is added to the function isprime() in a program called my_prog

a is a function argument added to the uprobe. Alternatively, a could be an arbitrary variable
visible in the code scope of where you add your uprobe:

perf script
 my_prog 1367 [007] 10802159.906593: probe_my_prog:isprime: (400551) a=2
 my_prog 1367 [007] 10802159.906623: probe_my_prog:isprime: (400551) a=3
 my_prog 1367 [007] 10802159.906625: probe_my_prog:isprime: (400551) a=4
 my_prog 1367 [007] 10802159.906627: probe_my_prog:isprime: (400551) a=5
 my_prog 1367 [007] 10802159.906629: probe_my_prog:isprime: (400551) a=6
 my_prog 1367 [007] 10802159.906631: probe_my_prog:isprime: (400551) a=7
 my_prog 1367 [007] 10802159.906633: probe_my_prog:isprime: (400551) a=13
 my_prog 1367 [007] 10802159.906635: probe_my_prog:isprime: (400551) a=17
 my_prog 1367 [007] 10802159.906637: probe_my_prog:isprime: (400551) a=19

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

198

CHAPTER 25. PROFILING MEMORY ACCESSES WITH PERF
MEM

You can use the perf mem command to sample memory accesses on your system.

25.1. THE PURPOSE OF PERF MEM

The mem subcommand of the perf tool enables the sampling of memory accesses (loads and stores).
The perf mem command provides information about memory latency, types of memory accesses,
functions causing cache hits and misses, and, by recording the data symbol, the memory locations where
these hits and misses occur.

25.2. SAMPLING MEMORY ACCESS WITH PERF MEM

This procedure describes how to use the perf mem command to sample memory accesses on your
system. The command takes the same options as perf record and perf report as well as some options
exclusive to the mem subcommand. The recorded data is stored in a perf.data file in the current
directory for later analysis.

Prerequisites

You have the perf user space tool installed as described in Installing perf.

Procedure

1. Sample the memory accesses:

perf mem record -a sleep seconds

This example samples memory accesses across all CPUs for a period of seconds seconds as
dictated by the sleep command. You can replace the sleep command for any command during
which you want to sample memory access data. By default, perf mem samples both memory
loads and stores. You can select only one memory operation by using the -t option and
specifying either "load" or "store" between perf mem and record. For loads, information over
the memory hierarchy level, TLB memory accesses, bus snoops, and memory locks is captured.

2. Open the perf.data file for analysis:

perf mem report

If you have used the example commands, the output is:

Available samples
35k cpu/mem-loads,ldlat=30/P
54k cpu/mem-stores/P

The cpu/mem-loads,ldlat=30/P line denotes data collected over memory loads and the
cpu/mem-stores/P line denotes data collected over memory stores. Highlight the category of
interest and press Enter to view the data:

Samples: 35K of event 'cpu/mem-loads,ldlat=30/P', Event count (approx.): 4067062
Overhead Samples Local Weight Memory access Symbol

CHAPTER 25. PROFILING MEMORY ACCESSES WITH PERF MEM

199

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/getting-started-with-perf_monitoring-and-managing-system-status-and-performance#installing-perf_getting-started-with-perf

Shared Object Data Symbol Data Object
Snoop TLB access Locked
 0.07% 29 98 L1 or L1 hit [.] 0x000000000000a255
libspeexdsp.so.1.5.0 [.] 0x00007f697a3cd0f0 anon
None L1 or L2 hit No
 0.06% 26 97 L1 or L1 hit [.] 0x000000000000a255
libspeexdsp.so.1.5.0 [.] 0x00007f697a3cd0f0 anon
None L1 or L2 hit No
 0.06% 25 96 L1 or L1 hit [.] 0x000000000000a255
libspeexdsp.so.1.5.0 [.] 0x00007f697a3cd0f0 anon
None L1 or L2 hit No
 0.06% 1 2325 Uncached or N/A hit [k] pci_azx_readl
[kernel.kallsyms] [k] 0xffffb092c06e9084 [kernel.kallsyms]
None L1 or L2 hit No
 0.06% 1 2247 Uncached or N/A hit [k] pci_azx_readl
[kernel.kallsyms] [k] 0xffffb092c06e8164 [kernel.kallsyms]
None L1 or L2 hit No
 0.05% 1 2166 L1 or L1 hit [.] 0x00000000038140d6
libxul.so [.] 0x00007ffd7b84b4a8 [stack]
None L1 or L2 hit No
 0.05% 1 2117 Uncached or N/A hit [k] check_for_unclaimed_mmio
[kernel.kallsyms] [k] 0xffffb092c1842300 [kernel.kallsyms]
None L1 or L2 hit No
 0.05% 22 95 L1 or L1 hit [.] 0x000000000000a255
libspeexdsp.so.1.5.0 [.] 0x00007f697a3cd0f0 anon
None L1 or L2 hit No
 0.05% 1 1898 L1 or L1 hit [.] 0x0000000002a30e07
libxul.so [.] 0x00007f610422e0e0 anon
None L1 or L2 hit No
 0.05% 1 1878 Uncached or N/A hit [k] pci_azx_readl
[kernel.kallsyms] [k] 0xffffb092c06e8164 [kernel.kallsyms]
None L2 miss No
 0.04% 18 94 L1 or L1 hit [.] 0x000000000000a255
libspeexdsp.so.1.5.0 [.] 0x00007f697a3cd0f0 anon
None L1 or L2 hit No
 0.04% 1 1593 Local RAM or RAM hit [.] 0x00000000026f907d
libxul.so [.] 0x00007f3336d50a80 anon
Hit L2 miss No
 0.03% 1 1399 L1 or L1 hit [.] 0x00000000037cb5f1
libxul.so [.] 0x00007fbe81ef5d78 libxul.so
None L1 or L2 hit No
 0.03% 1 1229 LFB or LFB hit [.] 0x0000000002962aad
libxul.so [.] 0x00007fb6f1be2b28 anon
None L2 miss No
 0.03% 1 1202 LFB or LFB hit [.] __pthread_mutex_lock
libpthread-2.29.so [.] 0x00007fb75583ef20 anon
None L1 or L2 hit No
 0.03% 1 1193 Uncached or N/A hit [k] pci_azx_readl
[kernel.kallsyms] [k] 0xffffb092c06e9164 [kernel.kallsyms]
None L2 miss No
 0.03% 1 1191 L1 or L1 hit [k] azx_get_delay_from_lpib
[kernel.kallsyms] [k] 0xffffb092ca7efcf0 [kernel.kallsyms]
None L1 or L2 hit No

Alternatively, you can sort your results to investigate different aspects of interest when

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

200

Alternatively, you can sort your results to investigate different aspects of interest when
displaying the data. For example, to sort data over memory loads by type of memory accesses
occurring during the sampling period in descending order of overhead they account for:

perf mem -t load report --sort=mem

For example, the output can be:

Samples: 35K of event 'cpu/mem-loads,ldlat=30/P', Event count (approx.): 40670
Overhead Samples Memory access
 31.53% 9725 LFB or LFB hit
 29.70% 12201 L1 or L1 hit
 23.03% 9725 L3 or L3 hit
 12.91% 2316 Local RAM or RAM hit
 2.37% 743 L2 or L2 hit
 0.34% 9 Uncached or N/A hit
 0.10% 69 I/O or N/A hit
 0.02% 825 L3 miss

Additional resources

perf-mem(1) man page.

25.3. INTERPRETATION OF PERF MEM REPORT OUTPUT

The table displayed by running the perf mem report command without any modifiers sorts the data into
several columns:

The 'Overhead' column

Indicates percentage of overall samples collected in that particular function.

The 'Samples' column

Displays the number of samples accounted for by that row.

The 'Local Weight' column

Displays the access latency in processor core cycles.

The 'Memory Access' column

Displays the type of memory access that occurred.

The 'Symbol' column

Displays the function name or symbol.

The 'Shared Object' column

Displays the name of the ELF image where the samples come from (the name [kernel.kallsyms] is
used when the samples come from the kernel).

The 'Data Symbol' column

Displays the address of the memory location that row was targeting.

IMPORTANT

Oftentimes, due to dynamic allocation of memory or stack memory being accessed, the
'Data Symbol' column will display a raw address.

CHAPTER 25. PROFILING MEMORY ACCESSES WITH PERF MEM

201

The "Snoop" column

Displays bus transactions.

The 'TLB Access' column

Displays TLB memory accesses.

The 'Locked' column

Indicates if a function was or was not memory locked.

In default mode, the functions are sorted in descending order with those with the highest overhead
displayed first.

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

202

CHAPTER 26. DETECTING FALSE SHARING
False sharing occurs when a processor core on a Symmetric Multi Processing (SMP) system modifies
data items on the same cache line that is in use by other processors to access other data items that are
not being shared between the processors.

This initial modification requires that the other processors using the cache line invalidate their copy and
request an updated one despite the processors not needing, or even necessarily having access to, an
updated version of the modified data item.

You can use the perf c2c command to detect false sharing.

26.1. THE PURPOSE OF PERF C2C

The c2c subcommand of the perf tool enables Shared Data Cache-to-Cache (C2C) analysis. You can
use the perf c2c command to inspect cache-line contention to detect both true and false sharing.

Cache-line contention occurs when a processor core on a Symmetric Multi Processing (SMP) system
modifies data items on the same cache line that is in use by other processors. All other processors using
this cache-line must then invalidate their copy and request an updated one. This can lead to degraded
performance.

The perf c2c command provides the following information:

Cache lines where contention has been detected

Processes reading and writing the data

Instructions causing the contention

The Non-Uniform Memory Access (NUMA) nodes involved in the contention

26.2. DETECTING CACHE-LINE CONTENTION WITH PERF C2C

Use the perf c2c command to detect cache-line contention in a system.

The perf c2c command supports the same options as perf record as well as some options exclusive to
the c2c subcommand. The recorded data is stored in a perf.data file in the current directory for later
analysis.

Prerequisites

The perf user space tool is installed. For more information, see installing perf.

Procedure

Use perf c2c to detect cache-line contention:

perf c2c record -a sleep seconds

This example samples and records cache-line contention data across all CPU’s for a period of
seconds as dictated by the sleep command. You can replace the sleep command with any
command you want to collect cache-line contention data over.

CHAPTER 26. DETECTING FALSE SHARING

203

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/getting-started-with-perf_monitoring-and-managing-system-status-and-performance#installing-perf_getting-started-with-perf

Additional resources

perf-c2c(1) man page

26.3. VISUALIZING A PERF.DATA FILE RECORDED WITH PERF C2C
RECORD

This procedure describes how to visualize the perf.data file, which is recorded using the perf c2c
command.

Prerequisites

The perf user space tool is installed. For more information, see Installing perf.

A perf.data file recorded using the perf c2c command is available in the current directory. For
more information, see Detecting cache-line contention with perf c2c.

Procedure

1. Open the perf.data file for further analysis:

perf c2c report --stdio

This command visualizes the perf.data file into several graphs within the terminal:

===
 Trace Event Information
===
 Total records : 329219
 Locked Load/Store Operations : 14654
 Load Operations : 69679
 Loads - uncacheable : 0
 Loads - IO : 0
 Loads - Miss : 3972
 Loads - no mapping : 0
 Load Fill Buffer Hit : 11958
 Load L1D hit : 17235
 Load L2D hit : 21
 Load LLC hit : 14219
 Load Local HITM : 3402
 Load Remote HITM : 12757
 Load Remote HIT : 5295
 Load Local DRAM : 976
 Load Remote DRAM : 3246
 Load MESI State Exclusive : 4222
 Load MESI State Shared : 0
 Load LLC Misses : 22274
 LLC Misses to Local DRAM : 4.4%
 LLC Misses to Remote DRAM : 14.6%
 LLC Misses to Remote cache (HIT) : 23.8%
 LLC Misses to Remote cache (HITM) : 57.3%
 Store Operations : 259539
 Store - uncacheable : 0
 Store - no mapping : 11

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

204

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/getting-started-with-perf_monitoring-and-managing-system-status-and-performance#installing-perf_getting-started-with-perf
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/monitoring_and_managing_system_status_and_performance/detecting-false-sharing_monitoring-and-managing-system-status-and-performance#detecting-cache-line-contention-with-perf-c2c_detecting-false-sharing

 Store L1D Hit : 256696
 Store L1D Miss : 2832
 No Page Map Rejects : 2376
 Unable to parse data source : 1

===
 Global Shared Cache Line Event Information
===
 Total Shared Cache Lines : 55
 Load HITs on shared lines : 55454
 Fill Buffer Hits on shared lines : 10635
 L1D hits on shared lines : 16415
 L2D hits on shared lines : 0
 LLC hits on shared lines : 8501
 Locked Access on shared lines : 14351
 Store HITs on shared lines : 109953
 Store L1D hits on shared lines : 109449
 Total Merged records : 126112

===
 c2c details
===
 Events : cpu/mem-loads,ldlat=30/P
 : cpu/mem-stores/P
 Cachelines sort on : Remote HITMs
 Cacheline data groupping : offset,pid,iaddr

===
 Shared Data Cache Line Table
===
#
Total Rmt ----- LLC Load Hitm ----- ---- Store Reference ---- --- Load
Dram ---- LLC Total ----- Core Load Hit ----- -- LLC Load Hit --
Index Cacheline records Hitm Total Lcl Rmt Total L1Hit L1Miss
Lcl Rmt Ld Miss Loads FB L1 L2 Llc Rmt
.....
.......
#
 0 0x602180 149904 77.09% 12103 2269 9834 109504 109036 468
727 2657 13747 40400 5355 16154 0 2875 529
 1 0x602100 12128 22.20% 3951 1119 2832 0 0 0 65
200 3749 12128 5096 108 0 2056 652
 2 0xffff883ffb6a7e80 260 0.09% 15 3 12 161 161 0 1
1 15 99 25 50 0 6 1
 3 0xffffffff81aec000 157 0.07% 9 0 9 1 0 1 0 7
20 156 50 59 0 27 4
 4 0xffffffff81e3f540 179 0.06% 9 1 8 117 97 20 0 10
25 62 11 1 0 24 7

===
 Shared Cache Line Distribution Pareto
===
#
----- HITM ----- -- Store Refs -- Data address ---------- cycles --
-------- cpu Shared
Num Rmt Lcl L1 Hit L1 Miss Offset Pid Code address rmt hitm lcl

CHAPTER 26. DETECTING FALSE SHARING

205

hitm load cnt Symbol Object Source:Line Node{cpu list}
.....
...................
#

 0 9834 2269 109036 468 0x602180

 65.51% 55.88% 75.20% 0.00% 0x0 14604 0x400b4f 27161
26039 26017 9 [.] read_write_func no_false_sharing.exe
false_sharing_example.c:144 0{0-1,4} 1{24-25,120} 2{48,54} 3{169}
 0.41% 0.35% 0.00% 0.00% 0x0 14604 0x400b56 18088
12601 26671 9 [.] read_write_func no_false_sharing.exe
false_sharing_example.c:145 0{0-1,4} 1{24-25,120} 2{48,54} 3{169}
 0.00% 0.00% 24.80% 100.00% 0x0 14604 0x400b61 0 0
0 9 [.] read_write_func no_false_sharing.exe false_sharing_example.c:145 0{0-1,4}
1{24-25,120} 2{48,54} 3{169}
 7.50% 9.92% 0.00% 0.00% 0x20 14604 0x400ba7 2470
1729 1897 2 [.] read_write_func no_false_sharing.exe
false_sharing_example.c:154 1{122} 2{144}
 17.61% 20.89% 0.00% 0.00% 0x28 14604 0x400bc1 2294
1575 1649 2 [.] read_write_func no_false_sharing.exe
false_sharing_example.c:158 2{53} 3{170}
 8.97% 12.96% 0.00% 0.00% 0x30 14604 0x400bdb 2325
1897 1828 2 [.] read_write_func no_false_sharing.exe
false_sharing_example.c:162 0{96} 3{171}

 1 2832 1119 0 0 0x602100

 29.13% 36.19% 0.00% 0.00% 0x20 14604 0x400bb3 1964
1230 1788 2 [.] read_write_func no_false_sharing.exe
false_sharing_example.c:155 1{122} 2{144}
 43.68% 34.41% 0.00% 0.00% 0x28 14604 0x400bcd 2274
1566 1793 2 [.] read_write_func no_false_sharing.exe
false_sharing_example.c:159 2{53} 3{170}
 27.19% 29.40% 0.00% 0.00% 0x30 14604 0x400be7 2045
1247 2011 2 [.] read_write_func no_false_sharing.exe
false_sharing_example.c:163 0{96} 3{171}

26.4. INTERPRETATION OF PERF C2C REPORT OUTPUT

The visualization displayed by running the perf c2c report --stdio command sorts the data into several
tables:

Trace Events Information

This table provides a high level summary of all the load and store samples, which are collected by the
perf c2c record command.

Global Shared Cache Line Event Information

This table provides statistics over the shared cache lines.

c2c Details

This table provides information about what events were sampled and how the perf c2c report data is
organized within the visualization.

Shared Data Cache Line Table

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

206

This table provides a one line summary for the hottest cache lines where false sharing is detected
and is sorted in descending order by the amount of remote Hitm detected per cache line by default.

Shared Cache Line Distribution Pareto

This tables provides a variety of information about each cache line experiencing contention:

The cache lines are numbered in the NUM column, starting at 0.

The virtual address of each cache line is contained in the Data address Offset column and
followed subsequently by the offset into the cache line where different accesses occurred.

The Pid column contains the process ID.

The Code Address column contains the instruction pointer code address.

The columns under the cycles label show average load latencies.

The cpu cnt column displays how many different CPUs samples came from (essentially, how
many different CPUs were waiting for the data indexed at that given location).

The Symbol column displays the function name or symbol.

The Shared Object column displays the name of the ELF image where the samples come
from (the name [kernel.kallsyms] is used when the samples come from the kernel).

The Source:Line column displays the source file and line number.

The Node{cpu list} column displays which specific CPUs samples came from for each node.

26.5. DETECTING FALSE SHARING WITH PERF C2C

This procedure describes how to detect false sharing using the perf c2c command.

Prerequisites

The perf user space tool is installed. For more information, see installing perf.

A perf.data file recorded using the perf c2c command is available in the current directory. For
more information, see Detecting cache-line contention with perf c2c.

Procedure

1. Open the perf.data file for further analysis:

perf c2c report --stdio

This opens the perf.data file in the terminal.

2. In the "Trace Event Information" table, locate the row containing the values for LLC Misses to
Remote Cache (HITM):
The percentage in the value column of the LLC Misses to Remote Cache (HITM) row
represents the percentage of LLC misses that were occurring across NUMA nodes in modified
cache-lines and is a key indicator false sharing has occurred.

===

CHAPTER 26. DETECTING FALSE SHARING

207

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/getting-started-with-perf_monitoring-and-managing-system-status-and-performance#installing-perf_getting-started-with-perf
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/monitoring_and_managing_system_status_and_performance/detecting-false-sharing_monitoring-and-managing-system-status-and-performance#detecting-cache-line-contention-with-perf-c2c_detecting-false-sharing

 Trace Event Information
===
 Total records : 329219
 Locked Load/Store Operations : 14654
 Load Operations : 69679
 Loads - uncacheable : 0
 Loads - IO : 0
 Loads - Miss : 3972
 Loads - no mapping : 0
 Load Fill Buffer Hit : 11958
 Load L1D hit : 17235
 Load L2D hit : 21
 Load LLC hit : 14219
 Load Local HITM : 3402
 Load Remote HITM : 12757
 Load Remote HIT : 5295
 Load Local DRAM : 976
 Load Remote DRAM : 3246
 Load MESI State Exclusive : 4222
 Load MESI State Shared : 0
 Load LLC Misses : 22274
 LLC Misses to Local DRAM : 4.4%
 LLC Misses to Remote DRAM : 14.6%
 LLC Misses to Remote cache (HIT) : 23.8%
 LLC Misses to Remote cache (HITM) : 57.3%
 Store Operations : 259539
 Store - uncacheable : 0
 Store - no mapping : 11
 Store L1D Hit : 256696
 Store L1D Miss : 2832
 No Page Map Rejects : 2376
 Unable to parse data source : 1

3. Inspect the Rmt column of the LLC Load Hitm field of the Shared Data Cache Line Table:

 ===
 Shared Data Cache Line Table
 ===
 #
 # Total Rmt ----- LLC Load Hitm ----- ---- Store Reference ---- ---
Load Dram ---- LLC Total ----- Core Load Hit ----- -- LLC Load Hit --
 # Index Cacheline records Hitm Total Lcl Rmt Total L1Hit L1Miss
Lcl Rmt Ld Miss Loads FB L1 L2 Llc Rmt
 #
.......
 #
 0 0x602180 149904 77.09% 12103 2269 9834 109504 109036
468 727 2657 13747 40400 5355 16154 0 2875 529
 1 0x602100 12128 22.20% 3951 1119 2832 0 0 0 65
200 3749 12128 5096 108 0 2056 652
 2 0xffff883ffb6a7e80 260 0.09% 15 3 12 161 161 0 1
1 15 99 25 50 0 6 1
 3 0xffffffff81aec000 157 0.07% 9 0 9 1 0 1 0 7
20 156 50 59 0 27 4
 4 0xffffffff81e3f540 179 0.06% 9 1 8 117 97 20 0
10 25 62 11 1 0 24 7

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

208

This table is sorted in descending order by the amount of remote Hitm detected per cache line.
A high number in the Rmt column of the LLC Load Hitm section indicates false sharing and
requires further inspection of the cache line on which it occurred to debug the false sharing
activity.

CHAPTER 26. DETECTING FALSE SHARING

209

CHAPTER 27. GETTING STARTED WITH FLAMEGRAPHS
As a system administrator, you can use flamegraphs to create visualizations of system performance
data recorded with the perf tool. As a software developer, you can use flamegraphs to create
visualizations of application performance data recorded with the perf tool.

Sampling stack traces is a common technique for profiling CPU performance with the perf tool.
Unfortunately, the results of profiling stack traces with perf can be extremely verbose and labor-
intensive to analyze. flamegraphs are visualizations created from data recorded with perf to make
identifying hot code-paths faster and easier.

27.1. INSTALLING FLAMEGRAPHS

To begin using flamegraphs, install the required package.

Procedure

Install the flamegraphs package:

yum install js-d3-flame-graph

27.2. CREATING FLAMEGRAPHS OVER THE ENTIRE SYSTEM

This procedure describes how to visualize performance data recorded over an entire system using
flamegraphs.

Prerequisites

flamegraphs are installed as described in installing flamegraphs.

The perf tool is installed as described in installing perf.

Procedure

Record the data and create the visualization:

perf script flamegraph -a -F 99 sleep 60

This command samples and records performance data over the entire system for 60 seconds,
as stipulated by use of the sleep command, and then constructs the visualization which will be
stored in the current active directory as flamegraph.html. The command samples call-graph
data by default and takes the same arguments as the perf tool, in this particular case:

-a

Stipulates to record data over the entire system.

-F

To set the sampling frequency per second.

Verification steps

For analysis, view the generated visualization:

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

210

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/getting-started-with-flamegraphs_monitoring-and-managing-system-status-and-performance#installing-flamegraphs_getting-started-with-flamegraphs
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/getting-started-with-perf_monitoring-and-managing-system-status-and-performance#installing-perf_getting-started-with-perf

xdg-open flamegraph.html

This command opens the visualization in the default browser:

27.3. CREATING FLAMEGRAPHS OVER SPECIFIC PROCESSES

You can use flamegraphs to visualize performance data recorded over specific running processes.

Prerequisites

flamegraphs are installed as described in installing flamegraphs.

The perf tool is installed as described in installing perf.

Procedure

Record the data and create the visualization:

perf script flamegraph -a -F 99 -p ID1,ID2 sleep 60

This command samples and records performance data of the processes with the process ID’s
ID1 and ID2 for 60 seconds, as stipulated by use of the sleep command, and then constructs
the visualization which will be stored in the current active directory as flamegraph.html. The
command samples call-graph data by default and takes the same arguments as the perf tool, in
this particular case:

-a

Stipulates to record data over the entire system.

-F

To set the sampling frequency per second.

-p

To stipulate specific process ID’s to sample and record data over.

Verification steps

For analysis, view the generated visualization:

xdg-open flamegraph.html

This command opens the visualization in the default browser:

CHAPTER 27. GETTING STARTED WITH FLAMEGRAPHS

211

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/getting-started-with-flamegraphs_monitoring-and-managing-system-status-and-performance#installing-flamegraphs_getting-started-with-flamegraphs
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/getting-started-with-perf_monitoring-and-managing-system-status-and-performance#installing-perf_getting-started-with-perf

27.4. INTERPRETING FLAMEGRAPHS

Each box in the flamegraph represents a different function in the stack. The y-axis shows the depth of
the stack with the topmost box in each stack being the function that was actually on-CPU and
everything below it being ancestry. The x-axis displays the population of the sampled call-graph data.

The children of a stack in a given row are displayed based on the number of samples taken of each
respective function in descending order along the x-axis; the x-axis does not represent the passing of
time. The wider an individual box is, the more frequent it was on-CPU or part of an on-CPU ancestry at
the time the data was being sampled.

Procedure

To reveal the names of functions which may have not been displayed previously and further
investigate the data click on a box within the flamegraph to zoom into the stack at that given
location:

To return to the default view of the flamegraph, click Reset Zoom.

IMPORTANT

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

212

IMPORTANT

Boxes representing user-space functions may be labeled as Unknown in flamegraphs
because the binary of the function is stripped. The debuginfo package of the executable
must be installed or, if the executable is a locally developed application, the application
must be compiled with debugging information. Use the -g option in GCC, to display the
function names or symbols in such a situation.

Additional resources

Why perf displays some function names as raw functions addresses

Enabling debugging with debugging information

CHAPTER 27. GETTING STARTED WITH FLAMEGRAPHS

213

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/monitoring_and_managing_system_status_and_performance/index#why-perf-displays-some-function-names-as-raw-function-addresses_profiling-cpu-usage-in-real-time-with-top
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/developing_c_and_cpp_applications_in_rhel_8/debugging-applications_developing-applications#enabling-debugging-with-debugging-information_debugging-applications

CHAPTER 28. MONITORING PROCESSES FOR
PERFORMANCE BOTTLENECKS USING PERF CIRCULAR

BUFFERS
You can create circular buffers that take event-specific snapshots of data with the perf tool in order to
monitor performance bottlenecks in specific processes or parts of applications running on your system.
In such cases, perf only writes data to a perf.data file for later analysis if a specified event is detected.

28.1. CIRCULAR BUFFERS AND EVENT-SPECIFIC SNAPSHOTS WITH
PERF

When investigating performance issues in a process or application with perf, it may not be affordable or
appropriate to record data for hours preceding a specific event of interest occurring. In such cases, you
can use perf record to create custom circular buffers that take snapshots after specific events.

The --overwrite option makes perf record store all data in an overwritable circular buffer. When the
buffer gets full, perf record automatically overwrites the oldest records which, therefore, never get
written to a perf.data file.

Using the --overwrite and --switch-output-event options together configures a circular buffer that
records and dumps data continuously until it detects the --switch-output-event trigger event. The
trigger event signals to perf record that something of interest to the user has occurred and to write the
data in the circular buffer to a perf.data file. This collects specific data you are interested in while
simultaneously reducing the overhead of the running perf process by not writing data you do not want
to a perf.data file.

28.2. COLLECTING SPECIFIC DATA TO MONITOR FOR
PERFORMANCE BOTTLENECKS USING PERF CIRCULAR BUFFERS

With the perf tool, you can create circular buffers that are triggered by events you specify in order to
only collect data you are interested in. To create circular buffers that collect event-specific data, use the
--overwrite and --switch-output-event options for perf.

Prerequisites

You have the perf user space tool installed as described in Installing perf.

You have placed a uprobe in the process or application you are interested in monitoring at a
location of interest within the process or application:

perf probe -x /path/to/executable -a function
Added new event:
 probe_executable:function (on function in /path/to/executable)

You can now use it in all perf tools, such as:

 perf record -e probe_executable:function -aR sleep 1

Procedure

Create the circular buffer with the uprobe as the trigger event:

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

214

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/getting-started-with-perf_monitoring-and-managing-system-status-and-performance#installing-perf_getting-started-with-perf

perf record --overwrite -e cycles --switch-output-event probe_executable:function
./executable
[perf record: dump data: Woken up 1 times]
[perf record: Dump perf.data.2021021012231959]
[perf record: dump data: Woken up 1 times]
[perf record: Dump perf.data.2021021012232008]
^C[perf record: dump data: Woken up 1 times]
[perf record: Dump perf.data.2021021012232082]
[perf record: Captured and wrote 5.621 MB perf.data.<timestamp>]

This example initiates the executable and collects cpu cycles, specified after the -e option, until
perf detects the uprobe, the trigger event specified after the --switch-output-event option. At
that point, perf takes a snapshot of all the data in the circular buffer and stores it in a unique
perf.data file identified by timestamp. This example produced a total of 2 snapshots, the last
perf.data file was forced by pressing Ctrl+c.

CHAPTER 28. MONITORING PROCESSES FOR PERFORMANCE BOTTLENECKS USING PERF CIRCULAR BUFFERS

215

CHAPTER 29. ADDING AND REMOVING TRACEPOINTS FROM
A RUNNING PERF COLLECTOR WITHOUT STOPPING OR

RESTARTING PERF
By using the control pipe interface to enable and disable different tracepoints in a running perf
collector, you can dynamically adjust what data you are collecting without having to stop or restart perf.
This ensures you do not lose performance data that would have otherwise been recorded during the
stopping or restarting process.

29.1. ADDING TRACEPOINTS TO A RUNNING PERF COLLECTOR
WITHOUT STOPPING OR RESTARTING PERF

Add tracepoints to a running perf collector using the control pipe interface to adjust the data you are
recording without having to stop perf and losing performance data.

Prerequisites

You have the perf user space tool installed as described in Installing perf.

Procedure

1. Configure the control pipe interface:

mkfifo control ack perf.pipe

2. Run perf record with the control file setup and events you are interested in enabling:

perf record --control=fifo:control,ack -D -1 --no-buffering -e 'sched:*' -o - > perf.pipe

In this example, declaring 'sched:*' after the -e option starts perf record with scheduler events.

3. In a second terminal, start the read side of the control pipe:

cat perf.pipe | perf --no-pager script -i -

Starting the read side of the control pipe triggers the following message in the first terminal:

Events disabled

4. In a third terminal, enable a tracepoint using the control file:

echo 'enable sched:sched_process_fork' > control

This command triggers perf to scan the current event list in the control file for the declared
event. If the event is present, the tracepoint is enabled and the following message appears in
the first terminal:

event sched:sched_process_fork enabled

Once the tracepoint is enabled, the second terminal displays the output from perf detecting the
tracepoint:

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

216

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/getting-started-with-perf_monitoring-and-managing-system-status-and-performance#installing-perf_getting-started-with-perf

bash 33349 [034] 149587.674295: sched:sched_process_fork: comm=bash pid=33349
child_comm=bash child_pid=34056

29.2. REMOVING TRACEPOINTS FROM A RUNNING PERF COLLECTOR
WITHOUT STOPPING OR RESTARTING PERF

Remove tracepoints from a running perf collector using the control pipe interface to reduce the scope
of data you are collecting without having to stop perf and losing performance data.

Prerequisites

You have the perf user space tool installed as described in Installing perf.

You have added tracepoints to a running perf collector via the control pipe interface. For more
information, see Adding tracepoints to a running perf collector without stopping or restarting
perf.

Procedure

Remove the tracepoint:

echo 'disable sched:sched_process_fork' > control

NOTE

This example assumes you have previously loaded scheduler events into the
control file and enabled the tracepoint sched:sched_process_fork.

This command triggers perf to scan the current event list in the control file for the declared
event. If the event is present, the tracepoint is disabled and the following message appears in
the terminal used to configure the control pipe:

event sched:sched_process_fork disabled

CHAPTER 29. ADDING AND REMOVING TRACEPOINTS FROM A RUNNING PERF COLLECTOR WITHOUT STOPPING OR RESTARTING PERF

217

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/getting-started-with-perf_monitoring-and-managing-system-status-and-performance#installing-perf_getting-started-with-perf
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/turning-tracepoints-on-and-off-without-stopping-or-restarting-perf_monitoring-and-managing-system-status-and-performance#adding-tracepoints-to-a-running-perf-collector-without-stopping-or-restarting-perf_turning-tracepoints-on-and-off-without-stopping-or-restarting-perf

CHAPTER 30. PROFILING MEMORY ALLOCATION WITH
NUMASTAT

With the numastat tool, you can display statistics over memory allocations in a system.

The numastat tool displays data for each NUMA node separately. You can use this information to
investigate memory performance of your system or the effectiveness of different memory policies on
your system.

30.1. DEFAULT NUMASTAT STATISTICS

By default, the numastat tool displays statistics over these categories of data for each NUMA node:

numa_hit

The number of pages that were successfully allocated to this node.

numa_miss

The number of pages that were allocated on this node because of low memory on the intended node.
Each numa_miss event has a corresponding numa_foreign event on another node.

numa_foreign

The number of pages initially intended for this node that were allocated to another node instead.
Each numa_foreign event has a corresponding numa_miss event on another node.

interleave_hit

The number of interleave policy pages successfully allocated to this node.

local_node

The number of pages successfully allocated on this node by a process on this node.

other_node

The number of pages allocated on this node by a process on another node.

NOTE

High numa_hit values and low numa_miss values (relative to each other) indicate
optimal performance.

30.2. VIEWING MEMORY ALLOCATION WITH NUMASTAT

You can view the memory allocation of the system by using the numastat tool.

Prerequisites

Install the numactl package:

yum install numactl

Procedure

View the memory allocation of your system:

$ numastat
 node0 node1

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

218

numa_hit 76557759 92126519
numa_miss 30772308 30827638
numa_foreign 30827638 30772308
interleave_hit 106507 103832
local_node 76502227 92086995
other_node 30827840 30867162

Additional resources

numastat(8) man page

CHAPTER 30. PROFILING MEMORY ALLOCATION WITH NUMASTAT

219

CHAPTER 31. CONFIGURING AN OPERATING SYSTEM TO
OPTIMIZE CPU UTILIZATION

You can configure the operating system to optimize CPU utilization across their workloads.

31.1. TOOLS FOR MONITORING AND DIAGNOSING PROCESSOR
ISSUES

The following are the tools available in Red Hat Enterprise Linux 8 to monitor and diagnose processor-
related performance issues:

turbostat tool prints counter results at specified intervals to help administrators identify
unexpected behavior in servers, such as excessive power usage, failure to enter deep sleep
states, or system management interrupts (SMIs) being created unnecessarily.

numactl utility provides a number of options to manage processor and memory affinity. The
numactl package includes the libnuma library which offers a simple programming interface to
the NUMA policy supported by the kernel, and can be used for more fine-grained tuning than
the numactl application.

numastat tool displays per-NUMA node memory statistics for the operating system and its
processes, and shows administrators whether the process memory is spread throughout a
system or is centralized on specific nodes. This tool is provided by the numactl package.

numad is an automatic NUMA affinity management daemon. It monitors NUMA topology and
resource usage within a system in order to dynamically improve NUMA resource allocation and
management.

/proc/interrupts file displays the interrupt request (IRQ) number, the number of similar
interrupt requests handled by each processor in the system, the type of interrupt sent, and a
comma-separated list of devices that respond to the listed interrupt request.

pqos utility is available in the intel-cmt-cat package. It monitors CPU cache and memory
bandwidth on recent Intel processors. It monitors:

The instructions per cycle (IPC).

The count of last level cache MISSES.

The size in kilobytes that the program executing in a given CPU occupies in the LLC.

The bandwidth to local memory (MBL).

The bandwidth to remote memory (MBR).

x86_energy_perf_policy tool allows administrators to define the relative importance of
performance and energy efficiency. This information can then be used to influence processors
that support this feature when they select options that trade off between performance and
energy efficiency.

taskset tool is provided by the util-linux package. It allows administrators to retrieve and set
the processor affinity of a running process, or launch a process with a specified processor
affinity.

Additional resources

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

220

turbostat(8), numactl(8), numastat(8), numa(7), numad(8), pqos(8),
x86_energy_perf_policy(8), and taskset(1) man pages

31.2. TYPES OF SYSTEM TOPOLOGY

In modern computing, the idea of a CPU is a misleading one, as most modern systems have multiple
processors. The topology of the system is the way these processors are connected to each other and to
other system resources. This can affect system and application performance, and the tuning
considerations for a system.

The following are the two primary types of topology used in modern computing:

Symmetric Multi-Processor (SMP) topology

SMP topology allows all processors to access memory in the same amount of time. However,
because shared and equal memory access inherently forces serialized memory accesses from all the
CPUs, SMP system scaling constraints are now generally viewed as unacceptable. For this reason,
practically all modern server systems are NUMA machines.

Non-Uniform Memory Access (NUMA) topology

NUMA topology was developed more recently than SMP topology. In a NUMA system, multiple
processors are physically grouped on a socket. Each socket has a dedicated area of memory and
processors that have local access to that memory, these are referred to collectively as a node.
Processors on the same node have high speed access to that node’s memory bank, and slower
access to memory banks not on their node.
Therefore, there is a performance penalty when accessing non-local memory. Thus, performance
sensitive applications on a system with NUMA topology should access memory that is on the same
node as the processor executing the application, and should avoid accessing remote memory
wherever possible.

Multi-threaded applications that are sensitive to performance may benefit from being configured to
execute on a specific NUMA node rather than a specific processor. Whether this is suitable depends
on your system and the requirements of your application. If multiple application threads access the
same cached data, then configuring those threads to execute on the same processor may be
suitable. However, if multiple threads that access and cache different data execute on the same
processor, each thread may evict cached data accessed by a previous thread. This means that each
thread 'misses' the cache and wastes execution time fetching data from memory and replacing it in
the cache. Use the perf tool to check for an excessive number of cache misses.

31.2.1. Displaying system topologies

There are a number of commands that help understand the topology of a system. This procedure
describes how to determine the system topology.

Procedure

To display an overview of your system topology:

$ numactl --hardware
available: 4 nodes (0-3)
node 0 cpus: 0 4 8 12 16 20 24 28 32 36
node 0 size: 65415 MB
node 0 free: 43971 MB
[...]

To gather the information about the CPU architecture, such as the number of CPUs, threads,

CHAPTER 31. CONFIGURING AN OPERATING SYSTEM TO OPTIMIZE CPU UTILIZATION

221

To gather the information about the CPU architecture, such as the number of CPUs, threads,
cores, sockets, and NUMA nodes:

$ lscpu
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 40
On-line CPU(s) list: 0-39
Thread(s) per core: 1
Core(s) per socket: 10
Socket(s): 4
NUMA node(s): 4
Vendor ID: GenuineIntel
CPU family: 6
Model: 47
Model name: Intel(R) Xeon(R) CPU E7- 4870 @ 2.40GHz
Stepping: 2
CPU MHz: 2394.204
BogoMIPS: 4787.85
Virtualization: VT-x
L1d cache: 32K
L1i cache: 32K
L2 cache: 256K
L3 cache: 30720K
NUMA node0 CPU(s): 0,4,8,12,16,20,24,28,32,36
NUMA node1 CPU(s): 2,6,10,14,18,22,26,30,34,38
NUMA node2 CPU(s): 1,5,9,13,17,21,25,29,33,37
NUMA node3 CPU(s): 3,7,11,15,19,23,27,31,35,39

To view a graphical representation of your system:

yum install hwloc-gui
lstopo

Figure 31.1. The lstopo output

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

222

Figure 31.1. The lstopo output

To view the detailed textual output:

yum install hwloc
lstopo-no-graphics
Machine (15GB)
 Package L#0 + L3 L#0 (8192KB)
 L2 L#0 (256KB) + L1d L#0 (32KB) + L1i L#0 (32KB) + Core L#0
 PU L#0 (P#0)
 PU L#1 (P#4)
 HostBridge L#0
 PCI 8086:5917
 GPU L#0 "renderD128"
 GPU L#1 "controlD64"
 GPU L#2 "card0"
 PCIBridge
 PCI 8086:24fd
 Net L#3 "wlp61s0"
 PCIBridge
 PCI 8086:f1a6
 PCI 8086:15d7
 Net L#4 "enp0s31f6"

Additional resources

numactl(8), lscpu(1), and lstopo(1) man pages

31.3. CONFIGURING KERNEL TICK TIME

By default, Red Hat Enterprise Linux 8 uses a tickless kernel, which does not interrupt idle CPUs in order

CHAPTER 31. CONFIGURING AN OPERATING SYSTEM TO OPTIMIZE CPU UTILIZATION

223

By default, Red Hat Enterprise Linux 8 uses a tickless kernel, which does not interrupt idle CPUs in order
to reduce power usage and allow new processors to take advantage of deep sleep states.

Red Hat Enterprise Linux 8 also offers a dynamic tickless option, which is useful for latency-sensitive
workloads, such as high performance computing or realtime computing. By default, the dynamic tickless
option is disabled. Red Hat recommends using the cpu-partitioning TuneD profile to enable the
dynamic tickless option for cores specified as isolated_cores.

This procedure describes how to manually persistently enable dynamic tickless behavior.

Procedure

1. To enable dynamic tickless behavior in certain cores, specify those cores on the kernel
command line with the nohz_full parameter. On a 16 core system, enable the nohz_full=1-15
kernel option:

grubby --update-kernel=ALL --args="nohz_full=1-15"

This enables dynamic tickless behavior on cores 1 through 15, moving all timekeeping to the
only unspecified core (core 0).

2. When the system boots, manually move the rcu threads to the non-latency-sensitive core, in
this case core 0:

for i in `pgrep rcu[^c]` ; do taskset -pc 0 $i ; done

3. Optional: Use the isolcpus parameter on the kernel command line to isolate certain cores from
user-space tasks.

4. Optional: Set the CPU affinity for the kernel’s write-back bdi-flush threads to the
housekeeping core:

echo 1 > /sys/bus/workqueue/devices/writeback/cpumask

Verification steps

Once the system is rebooted, verify if dynticks are enabled:

journalctl -xe | grep dynticks
Mar 15 18:34:54 rhel-server kernel: NO_HZ: Full dynticks CPUs: 1-15.

Verify that the dynamic tickless configuration is working correctly:

perf stat -C 1 -e irq_vectors:local_timer_entry taskset -c 1 sleep 3

This command measures ticks on CPU 1 while telling CPU 1 to sleep for 3 seconds.

The default kernel timer configuration shows around 3100 ticks on a regular CPU:

perf stat -C 0 -e irq_vectors:local_timer_entry taskset -c 0 sleep 3

 Performance counter stats for 'CPU(s) 0':

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

224

 3,107 irq_vectors:local_timer_entry

 3.001342790 seconds time elapsed

With the dynamic tickless kernel configured, you should see around 4 ticks instead:

perf stat -C 1 -e irq_vectors:local_timer_entry taskset -c 1 sleep 3

 Performance counter stats for 'CPU(s) 1':

 4 irq_vectors:local_timer_entry

 3.001544078 seconds time elapsed

Additional resources

perf(1) and cpuset(7) man pages

All about nohz_full kernel parameter Red Hat Knowledgebase article

How to verify the list of "isolated" and "nohz_full" CPU information from sysfs? Red Hat
Knowledgebase article

31.4. OVERVIEW OF AN INTERRUPT REQUEST

An interrupt request or IRQ is a signal for immediate attention sent from a piece of hardware to a
processor. Each device in a system is assigned one or more IRQ numbers which allow it to send unique
interrupts. When interrupts are enabled, a processor that receives an interrupt request immediately
pauses execution of the current application thread in order to address the interrupt request.

Because interrupt halts normal operation, high interrupt rates can severely degrade system
performance. It is possible to reduce the amount of time taken by interrupts by configuring interrupt
affinity or by sending a number of lower priority interrupts in a batch (coalescing a number of interrupts).

Interrupt requests have an associated affinity property, smp_affinity, which defines the processors that
handle the interrupt request. To improve application performance, assign interrupt affinity and process
affinity to the same processor, or processors on the same core. This allows the specified interrupt and
application threads to share cache lines.

On systems that support interrupt steering, modifying the smp_affinity property of an interrupt request
sets up the hardware so that the decision to service an interrupt with a particular processor is made at
the hardware level with no intervention from the kernel.

31.4.1. Balancing interrupts manually

If your BIOS exports its NUMA topology, the irqbalance service can automatically serve interrupt
requests on the node that is local to the hardware requesting service.

Procedure

1. Check which devices correspond to the interrupt requests that you want to configure.

2. Find the hardware specification for your platform. Check if the chipset on your system supports
distributing interrupts.

a. If it does, you can configure interrupt delivery as described in the following steps.

CHAPTER 31. CONFIGURING AN OPERATING SYSTEM TO OPTIMIZE CPU UTILIZATION

225

https://access.redhat.com/solutions/2273531
https://access.redhat.com/solutions/3875421

a. If it does, you can configure interrupt delivery as described in the following steps.
Additionally, check which algorithm your chipset uses to balance interrupts. Some BIOSes
have options to configure interrupt delivery.

b. If it does not, your chipset always routes all interrupts to a single, static CPU. You cannot
configure which CPU is used.

3. Check which Advanced Programmable Interrupt Controller (APIC) mode is in use on your
system:

$ journalctl --dmesg | grep APIC

Here,

If your system uses a mode other than flat, you can see a line similar to Setting APIC
routing to physical flat.

If you can see no such message, your system uses flat mode.
If your system uses x2apic mode, you can disable it by adding the nox2apic option to the
kernel command line in the bootloader configuration.

Only non-physical flat mode (flat) supports distributing interrupts to multiple CPUs. This
mode is available only for systems that have up to 8 CPUs.

4. Calculate the smp_affinity mask. For more information about how to calculate the
smp_affinity mask, see Setting the smp_affinity mask.

Additional resources

journalctl(1) and taskset(1) man pages

31.4.2. Setting the smp_affinity mask

The smp_affinity value is stored as a hexadecimal bit mask representing all processors in the system.
Each bit configures a different CPU. The least significant bit is CPU 0.

The default value of the mask is f, which means that an interrupt request can be handled on any
processor in the system. Setting this value to 1 means that only processor 0 can handle the interrupt.

Procedure

1. In binary, use the value 1 for CPUs that handle the interrupts. For example, to set CPU 0 and
CPU 7 to handle interrupts, use 0000000010000001 as the binary code:

Table 31.1. Binary Bits for CPUs

CPU 1
5

1
4

1
3

1
2

11 1
0

9 8 7 6 5 4 3 2 1 0

Binary 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1

2. Convert the binary code to hexadecimal:
For example, to convert the binary code using Python:

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

226

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/monitoring_and_managing_system_status_and_performance/configuring-an-operating-system-to-optimize-cpu-utilization_monitoring-and-managing-system-status-and-performance#setting-the-smp_affinity-mask_configuring-an-operating-system-to-optimize-cpu-utilization

>>> hex(int('0000000010000001', 2))

'0x81'

On systems with more than 32 processors, you must delimit the smp_affinity values for
discrete 32 bit groups. For example, if you want only the first 32 processors of a 64 processor
system to service an interrupt request, use 0xffffffff,00000000.

3. The interrupt affinity value for a particular interrupt request is stored in the associated
/proc/irq/irq_number/smp_affinity file. Set the smp_affinity mask in this file:

echo mask > /proc/irq/irq_number/smp_affinity

Additional resources

journalctl(1), irqbalance(1), and taskset(1) man pages

CHAPTER 31. CONFIGURING AN OPERATING SYSTEM TO OPTIMIZE CPU UTILIZATION

227

CHAPTER 32. TUNING SCHEDULING POLICY
In Red Hat Enterprise Linux, the smallest unit of process execution is called a thread. The system
scheduler determines which processor runs a thread, and for how long the thread runs. However,
because the scheduler’s primary concern is to keep the system busy, it may not schedule threads
optimally for application performance.

For example, say an application on a NUMA system is running on Node A when a processor on Node B
becomes available. To keep the processor on Node B busy, the scheduler moves one of the
application’s threads to Node B. However, the application thread still requires access to memory on
Node A. But, this memory will take longer to access because the thread is now running on Node B and
Node A memory is no longer local to the thread. Thus, it may take longer for the thread to finish running
on Node B than it would have taken to wait for a processor on Node A to become available, and then to
execute the thread on the original node with local memory access.

32.1. CATEGORIES OF SCHEDULING POLICIES

Performance sensitive applications often benefit from the designer or administrator determining where
threads are run. The Linux scheduler implements a number of scheduling policies which determine where
and for how long a thread runs.

The following are the two major categories of scheduling policies:

Normal policies

Normal threads are used for tasks of normal priority.

Realtime policies

Realtime policies are used for time-sensitive tasks that must complete without interruptions.
Realtime threads are not subject to time slicing. This means the thread runs until they block, exit,
voluntarily yield, or are preempted by a higher priority thread.
The lowest priority realtime thread is scheduled before any thread with a normal policy. For more
information, see Static priority scheduling with SCHED_FIFO and Round robin priority scheduling
with SCHED_RR.

Additional resources

sched(7), sched_setaffinity(2), sched_getaffinity(2), sched_setscheduler(2), and
sched_getscheduler(2) man pages

32.2. STATIC PRIORITY SCHEDULING WITH SCHED_FIFO

The SCHED_FIFO, also called static priority scheduling, is a realtime policy that defines a fixed priority
for each thread. This policy allows administrators to improve event response time and reduce latency. It
is recommended to not execute this policy for an extended period of time for time sensitive tasks.

When SCHED_FIFO is in use, the scheduler scans the list of all the SCHED_FIFO threads in order of
priority and schedules the highest priority thread that is ready to run. The priority level of a
SCHED_FIFO thread can be any integer from 1 to 99, where 99 is treated as the highest priority.
Red Hat recommends starting with a lower number and increasing priority only when you identify latency
issues.

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

228

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/monitoring_and_managing_system_status_and_performance/tuning-scheduling-policy_monitoring-and-managing-system-status-and-performance#static-priority-scheduling-with-SCHED_FIFO_tuning-scheduling-policy
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/monitoring_and_managing_system_status_and_performance/tuning-scheduling-policy_monitoring-and-managing-system-status-and-performance#round-robin-priority-scheduling-with-sched_rr_tuning-scheduling-policy

WARNING

Because realtime threads are not subject to time slicing, Red Hat does not
recommend setting a priority as 99. This keeps your process at the same priority
level as migration and watchdog threads; if your thread goes into a computational
loop and these threads are blocked, they will not be able to run. Systems with a
single processor will eventually hang in this situation.

Administrators can limit SCHED_FIFO bandwidth to prevent realtime application programmers from
initiating realtime tasks that monopolize the processor.

The following are some of the parameters used in this policy:

/proc/sys/kernel/sched_rt_period_us

This parameter defines the time period, in microseconds, that is considered to be one hundred
percent of the processor bandwidth. The default value is 1000000 µs, or 1 second.

/proc/sys/kernel/sched_rt_runtime_us

This parameter defines the time period, in microseconds, that is devoted to running real-time
threads. The default value is 950000 µs, or 0.95 seconds.

32.3. ROUND ROBIN PRIORITY SCHEDULING WITH SCHED_RR

The SCHED_RR is a round-robin variant of the SCHED_FIFO. This policy is useful when multiple
threads need to run at the same priority level.

Like SCHED_FIFO, SCHED_RR is a realtime policy that defines a fixed priority for each thread. The
scheduler scans the list of all SCHED_RR threads in order of priority and schedules the highest priority
thread that is ready to run. However, unlike SCHED_FIFO, threads that have the same priority are
scheduled in a round-robin style within a certain time slice.

You can set the value of this time slice in milliseconds with the sched_rr_timeslice_ms kernel
parameter in the /proc/sys/kernel/sched_rr_timeslice_ms file. The lowest value is 1 millisecond.

32.4. NORMAL SCHEDULING WITH SCHED_OTHER

The SCHED_OTHER is the default scheduling policy in Red Hat Enterprise Linux 8. This policy uses the
Completely Fair Scheduler (CFS) to allow fair processor access to all threads scheduled with this policy.
This policy is most useful when there are a large number of threads or when data throughput is a priority,
as it allows more efficient scheduling of threads over time.

When this policy is in use, the scheduler creates a dynamic priority list based partly on the niceness value
of each process thread. Administrators can change the niceness value of a process, but cannot change
the scheduler’s dynamic priority list directly.

32.5. SETTING SCHEDULER POLICIES

Check and adjust scheduler policies and priorities by using the chrt command line tool. It can start new
processes with the desired properties, or change the properties of a running process. It can also be used
for setting the policy at runtime.



CHAPTER 32. TUNING SCHEDULING POLICY

229

Procedure

1. View the process ID (PID) of the active processes:

ps

Use the --pid or -p option with the ps command to view the details of the particular PID.

2. Check the scheduling policy, PID, and priority of a particular process:

chrt -p 468
pid 468's current scheduling policy: SCHED_FIFO
pid 468's current scheduling priority: 85

chrt -p 476
pid 476's current scheduling policy: SCHED_OTHER
pid 476's current scheduling priority: 0

Here, 468 and 476 are PID of a process.

3. Set the scheduling policy of a process:

a. For example, to set the process with PID 1000 to SCHED_FIFO, with a priority of 50:

chrt -f -p 50 1000

b. For example, to set the process with PID 1000 to SCHED_OTHER, with a priority of 0:

chrt -o -p 0 1000

c. For example, to set the process with PID 1000 to SCHED_RR, with a priority of 10:

chrt -r -p 10 1000

d. To start a new application with a particular policy and priority, specify the name of the
application:

chrt -f 36 /bin/my-app

Additional resources

chrt(1) man page

Policy Options for the chrt command

Changing the priority of services during the boot process

32.6. POLICY OPTIONS FOR THE CHRT COMMAND

Using the chrt command, you can view and set the scheduling policy of a process.

The following table describes the appropriate policy options, which can be used to set the scheduling
policy of a process.

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

230

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/monitoring_and_managing_system_status_and_performance/tuning-scheduling-policy_monitoring-and-managing-system-status-and-performance#policy-options-for-the-chrt-command_tuning-scheduling-policy
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/monitoring_and_managing_system_status_and_performance/tuning-scheduling-policy_monitoring-and-managing-system-status-and-performance#changing-the-priority-of-service-during-the-boot-process_tuning-scheduling-policy

Table 32.1. Policy Options for the chrt Command

Short option Long option Description

-f --fifo Set schedule to SCHED_FIFO

-o --other Set schedule to
SCHED_OTHER

-r --rr Set schedule to SCHED_RR

32.7. CHANGING THE PRIORITY OF SERVICES DURING THE BOOT
PROCESS

Using the systemd service, it is possible to set up real-time priorities for services launched during the
boot process. The unit configuration directives are used to change the priority of a service during the
boot process.

The boot process priority change is done by using the following directives in the service section:

CPUSchedulingPolicy=

Sets the CPU scheduling policy for executed processes. It is used to set other, fifo, and rr policies.

CPUSchedulingPriority=

Sets the CPU scheduling priority for executed processes. The available priority range depends on
the selected CPU scheduling policy. For real-time scheduling policies, an integer between 1 (lowest
priority) and 99 (highest priority) can be used.

The following procedure describes how to change the priority of a service, during the boot process,
using the mcelog service.

Prerequisites

1. Install the TuneD package:

yum install tuned

2. Enable and start the TuneD service:

systemctl enable --now tuned

Procedure

1. View the scheduling priorities of running threads:

tuna --show_threads
 thread ctxt_switches
 pid SCHED_ rtpri affinity voluntary nonvoluntary cmd
 1 OTHER 0 0xff 3181 292 systemd
 2 OTHER 0 0xff 254 0 kthreadd
 3 OTHER 0 0xff 2 0 rcu_gp
 4 OTHER 0 0xff 2 0 rcu_par_gp

CHAPTER 32. TUNING SCHEDULING POLICY

231

 6 OTHER 0 0 9 0 kworker/0:0H-kblockd
 7 OTHER 0 0xff 1301 1 kworker/u16:0-events_unbound
 8 OTHER 0 0xff 2 0 mm_percpu_wq
 9 OTHER 0 0 266 0 ksoftirqd/0
[...]

2. Create a supplementary mcelog service configuration directory file and insert the policy name
and priority in this file:

cat << EOF > /etc/systemd/system/mcelog.service.d/priority.conf

[Service]
CPUSchedulingPolicy=fifo
CPUSchedulingPriority=20
EOF

3. Reload the systemd scripts configuration:

systemctl daemon-reload

4. Restart the mcelog service:

systemctl restart mcelog

Verification steps

Display the mcelog priority set by systemd issue:

tuna -t mcelog -P
thread ctxt_switches
 pid SCHED_ rtpri affinity voluntary nonvoluntary cmd
826 FIFO 20 0,1,2,3 13 0 mcelog

Additional resources

systemd(1) and tuna(8) man pages

Description of the priority range

32.8. PRIORITY MAP

Priorities are defined in groups, with some groups dedicated to certain kernel functions. For real-time
scheduling policies, an integer between 1 (lowest priority) and 99 (highest priority) can be used.

The following table describes the priority range, which can be used while setting the scheduling policy of
a process.

Table 32.2. Description of the priority range

Priority Threads Description

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

232

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/monitoring_and_managing_system_status_and_performance/tuning-scheduling-policy_monitoring-and-managing-system-status-and-performance#priority-map_tuning-scheduling-policy

1 Low priority kernel threads This priority is usually reserved for
the tasks that need to be just
above SCHED_OTHER.

2 - 49 Available for use The range used for typical
application priorities.

50 Default hard-IRQ value

51 - 98 High priority threads Use this range for threads that
execute periodically and must
have quick response times. Do not
use this range for CPU-bound
threads as you will starve
interrupts.

99 Watchdogs and migration System threads that must run at
the highest priority.

Priority Threads Description

32.9. TUNED CPU-PARTITIONING PROFILE

For tuning Red Hat Enterprise Linux 8 for latency-sensitive workloads, Red Hat recommends to use the
cpu-partitioning TuneD profile.

Prior to Red Hat Enterprise Linux 8, the low-latency Red Hat documentation described the numerous
low-level steps needed to achieve low-latency tuning. In Red Hat Enterprise Linux 8, you can perform
low-latency tuning more efficiently by using the cpu-partitioning TuneD profile. This profile is easily
customizable according to the requirements for individual low-latency applications.

The following figure is an example to demonstrate how to use the cpu-partitioning profile. This
example uses the CPU and node layout.

Figure 32.1. Figure cpu-partitioning

You can configure the cpu-partitioning profile in the /etc/tuned/cpu-partitioning-variables.conf file
using the following configuration options:

CHAPTER 32. TUNING SCHEDULING POLICY

233

Isolated CPUs with load balancing

In the cpu-partitioning figure, the blocks numbered from 4 to 23, are the default isolated CPUs. The
kernel scheduler’s process load balancing is enabled on these CPUs. It is designed for low-latency
processes with multiple threads that need the kernel scheduler load balancing.
You can configure the cpu-partitioning profile in the /etc/tuned/cpu-partitioning-variables.conf file
using the isolated_cores=cpu-list option, which lists CPUs to isolate that will use the kernel
scheduler load balancing.

The list of isolated CPUs is comma-separated or you can specify a range using a dash, such as 3-5.
This option is mandatory. Any CPU missing from this list is automatically considered a housekeeping
CPU.

Isolated CPUs without load balancing

In the cpu-partitioning figure, the blocks numbered 2 and 3, are the isolated CPUs that do not
provide any additional kernel scheduler process load balancing.
You can configure the cpu-partitioning profile in the /etc/tuned/cpu-partitioning-variables.conf file
using the no_balance_cores=cpu-list option, which lists CPUs to isolate that will not use the kernel
scheduler load balancing.

Specifying the no_balance_cores option is optional, however any CPUs in this list must be a subset
of the CPUs listed in the isolated_cores list.

Application threads using these CPUs need to be pinned individually to each CPU.

Housekeeping CPUs

Any CPU not isolated in the cpu-partitioning-variables.conf file is automatically considered a
housekeeping CPU. On the housekeeping CPUs, all services, daemons, user processes, movable
kernel threads, interrupt handlers, and kernel timers are permitted to execute.

Additional resources

tuned-profiles-cpu-partitioning(7) man page

32.10. USING THE TUNED CPU-PARTITIONING PROFILE FOR LOW-
LATENCY TUNING

This procedure describes how to tune a system for low-latency using the TuneD’s cpu-partitioning
profile. It uses the example of a low-latency application that can use cpu-partitioning and the CPU
layout as mentioned in the cpu-partitioning figure.

The application in this case uses:

One dedicated reader thread that reads data from the network will be pinned to CPU 2.

A large number of threads that process this network data will be pinned to CPUs 4-23.

A dedicated writer thread that writes the processed data to the network will be pinned to CPU
3.

Prerequisites

You have installed the cpu-partitioning TuneD profile by using the yum install tuned-profiles-
cpu-partitioning command as root.

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

234

Procedure

1. Edit /etc/tuned/cpu-partitioning-variables.conf file and add the following information:

All isolated CPUs:
isolated_cores=2-23
Isolated CPUs without the kernel’s scheduler load balancing:
no_balance_cores=2,3

2. Set the cpu-partitioning TuneD profile:

tuned-adm profile cpu-partitioning

3. Reboot
After rebooting, the system is tuned for low-latency, according to the isolation in the cpu-
partitioning figure. The application can use taskset to pin the reader and writer threads to CPUs
2 and 3, and the remaining application threads on CPUs 4-23.

Additional resources

tuned-profiles-cpu-partitioning(7) man page

32.11. CUSTOMIZING THE CPU-PARTITIONING TUNED PROFILE

You can extend the TuneD profile to make additional tuning changes.

For example, the cpu-partitioning profile sets the CPUs to use cstate=1. In order to use the cpu-
partitioning profile but to additionally change the CPU cstate from cstate1 to cstate0, the following
procedure describes a new TuneD profile named my_profile, which inherits the cpu-partitioning profile
and then sets C state-0.

Procedure

1. Create the /etc/tuned/my_profile directory:

mkdir /etc/tuned/my_profile

2. Create a tuned.conf file in this directory, and add the following content:

vi /etc/tuned/my_profile/tuned.conf
[main]
summary=Customized tuning on top of cpu-partitioning
include=cpu-partitioning
[cpu]
force_latency=cstate.id:0|1

3. Use the new profile:

tuned-adm profile my_profile

NOTE

CHAPTER 32. TUNING SCHEDULING POLICY

235

NOTE

In the shared example, a reboot is not required. However, if the changes in the my_profile
profile require a reboot to take effect, then reboot your machine.

Additional resources

tuned-profiles-cpu-partitioning(7) man page

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

236

CHAPTER 33. FACTORS AFFECTING I/O AND FILE SYSTEM
PERFORMANCE

The appropriate settings for storage and file system performance are highly dependent on the storage
purpose.

I/O and file system performance can be affected by any of the following factors:

Data write or read patterns

Sequential or random

Buffered or Direct IO

Data alignment with underlying geometry

Block size

File system size

Journal size and location

Recording access times

Ensuring data reliability

Pre-fetching data

Pre-allocating disk space

File fragmentation

Resource contention

33.1. TOOLS FOR MONITORING AND DIAGNOSING I/O AND FILE
SYSTEM ISSUES

The following tools are available in Red Hat Enterprise Linux 8 for monitoring system performance and
diagnosing performance problems related to I/O, file systems, and their configuration:

vmstat tool reports on processes, memory, paging, block I/O, interrupts, and CPU activity
across the entire system. It can help administrators determine whether the I/O subsystem is
responsible for any performance issues. If analysis with vmstat shows that the I/O subsystem is
responsible for reduced performance, administrators can use the iostat tool to determine the
responsible I/O device.

iostat reports on I/O device load in your system. It is provided by the sysstat package.

blktrace provides detailed information about how time is spent in the I/O subsystem. The
companion utility blkparse reads the raw output from blktrace and produces a human readable
summary of input and output operations recorded by blktrace.

btt analyzes blktrace output and displays the amount of time that data spends in each area of
the I/O stack, making it easier to spot bottlenecks in the I/O subsystem. This utility is provided
as part of the blktrace package. Some of the important events tracked by the blktrace
mechanism and analyzed by btt are:

CHAPTER 33. FACTORS AFFECTING I/O AND FILE SYSTEM PERFORMANCE

237

Queuing of the I/O event (Q)

Dispatch of the I/O to the driver event (D)

Completion of I/O event (C)

iowatcher can use the blktrace output to graph I/O over time. It focuses on the Logical Block
Address (LBA) of disk I/O, throughput in megabytes per second, the number of seeks per
second, and I/O operations per second. This can help to identify when you are hitting the
operations-per-second limit of a device.

BPF Compiler Collection (BCC) is a library, which facilitates the creation of the extended
Berkeley Packet Filter (eBPF) programs. The eBPF programs are triggered on events, such as
disk I/O, TCP connections, and process creations. The BCC tools are installed in the
/usr/share/bcc/tools/ directory. The following bcc-tools helps to analyze performance:

biolatency summarizes the latency in block device I/O (disk I/O) in histogram. This allows
the distribution to be studied, including two modes for device cache hits and for cache
misses, and latency outliers.

biosnoop is a basic block I/O tracing tool for displaying each I/O event along with the
issuing process ID, and the I/O latency. Using this tool, you can investigate disk I/O
performance issues.

biotop is used for block i/o operations in the kernel.

filelife tool traces the stat() syscalls.

fileslower traces slow synchronous file reads and writes.

filetop displays file reads and writes by process.

ext4slower, nfsslower, and xfsslower are tools that show file system operations slower
than a certain threshold, which defaults to 10ms.
For more information, see the Analyzing system performance with BPF Compiler Collection .

bpftace is a tracing language for eBPF used for analyzing performance issues. It also provides
trace utilities like BCC for system observation, which is useful for investigating I/O performance
issues.

The following SystemTap scripts may be useful in diagnosing storage or file system
performance problems:

disktop.stp: Checks the status of reading or writing disk every 5 seconds and outputs the
top ten entries during that period.

iotime.stp: Prints the amount of time spent on read and write operations, and the number
of bytes read and written.

traceio.stp: Prints the top ten executable based on cumulative I/O traffic observed, every
second.

traceio2.stp: Prints the executable name and process identifier as reads and writes to the
specified device occur.

Inodewatch.stp: Prints the executable name and process identifier each time a read or
write occurs to the specified inode on the specified major or minor device.

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

238

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_monitoring_and_updating_the_kernel/analyzing-system-performance-with-bpf-compiler_collection_managing-monitoring-and-updating-the-kernel

inodewatch2.stp: Prints the executable name, process identifier, and attributes each time
the attributes are changed on the specified inode on the specified major or minor device.

Additional resources

vmstat(8), iostat(1), blktrace(8), blkparse(1), btt(1), bpftrace, and iowatcher(1) man pages

Analyzing system performance with BPF Compiler Collection

33.2. AVAILABLE TUNING OPTIONS FOR FORMATTING A FILE
SYSTEM

Some file system configuration decisions cannot be changed after the device is formatted.

The following are the options available before formatting a storage device:

Size

Create an appropriately-sized file system for your workload. Smaller file systems require less time
and memory for file system checks. However, if a file system is too small, its performance suffers
from high fragmentation.

Block size

The block is the unit of work for the file system. The block size determines how much data can be
stored in a single block, and therefore the smallest amount of data that is written or read at one time.
The default block size is appropriate for most use cases. However, your file system performs better
and stores data more efficiently if the block size or the size of multiple blocks is the same as or
slightly larger than the amount of data that is typically read or written at one time. A small file still
uses an entire block. Files can be spread across multiple blocks, but this can create additional runtime
overhead.

Additionally, some file systems are limited to a certain number of blocks, which in turn limits the
maximum size of the file system. Block size is specified as part of the file system options when
formatting a device with the mkfs command. The parameter that specifies the block size varies with
the file system.

Geometry

File system geometry is concerned with the distribution of data across a file system. If your system
uses striped storage, like RAID, you can improve performance by aligning data and metadata with the
underlying storage geometry when you format the device.
Many devices export recommended geometry, which is then set automatically when the devices are
formatted with a particular file system. If your device does not export these recommendations, or you
want to change the recommended settings, you must specify geometry manually when you format
the device with the mkfs command.

The parameters that specify file system geometry vary with the file system.

External journals

Journaling file systems document the changes that will be made during a write operation in a journal
file prior to the operation being executed. This reduces the likelihood that a storage device will
become corrupted in the event of a system crash or power failure, and speeds up the recovery
process.

NOTE

CHAPTER 33. FACTORS AFFECTING I/O AND FILE SYSTEM PERFORMANCE

239

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/monitoring_and_managing_system_status_and_performance/index#configuring-an-operating-system-to-optimize-memory-access_monitoring-and-managing-system-status-and-performance

NOTE

Red Hat does not recommend using the external journals option.

Metadata-intensive workloads involve very frequent updates to the journal. A larger journal uses more
memory, but reduces the frequency of write operations. Additionally, you can improve the seek time of a
device with a metadata-intensive workload by placing its journal on dedicated storage that is as fast as,
or faster than, the primary storage.

WARNING

Ensure that external journals are reliable. Losing an external journal device causes
file system corruption. External journals must be created at format time, with
journal devices being specified at mount time.

Additional resources

mkfs(8) and mount(8) man pages

Overview of available file systems

33.3. AVAILABLE TUNING OPTIONS FOR MOUNTING A FILE SYSTEM

The following are the options available to most file systems and can be specified as the device is
mounted:

Access Time

Every time a file is read, its metadata is updated with the time at which access occurred (atime). This
involves additional write I/O. The relatime is the default atime setting for most file systems.
However, if updating this metadata is time consuming, and if accurate access time data is not
required, you can mount the file system with the noatime mount option. This disables updates to
metadata when a file is read. It also enables nodiratime behavior, which disables updates to metadata
when a directory is read.

NOTE

Disabling atime updates by using the noatime mount option can break applications that
rely on them, for example, backup programs.

Read-ahead

Read-ahead behavior speeds up file access by pre-fetching data that is likely to be needed soon
and loading it into the page cache, where it can be retrieved more quickly than if it were on disk. The
higher the read-ahead value, the further ahead the system pre-fetches data.
Red Hat Enterprise Linux attempts to set an appropriate read-ahead value based on what it detects
about your file system. However, accurate detection is not always possible. For example, if a storage
array presents itself to the system as a single LUN, the system detects the single LUN, and does not
set the appropriate read-ahead value for an array.



Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

240

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/managing_file_systems/index#overview-of-available-file-systems_managing-file-systems

Workloads that involve heavy streaming of sequential I/O often benefit from high read-ahead values.
The storage-related tuned profiles provided with Red Hat Enterprise Linux raise the read-ahead
value, as does using LVM striping, but these adjustments are not always sufficient for all workloads.

Additional resources

mount(8), xfs(5), and ext4(5) man pages

33.4. TYPES OF DISCARDING UNUSED BLOCKS

Regularly discarding blocks that are not in use by the file system is a recommended practice for both
solid-state disks and thinly-provisioned storage.

The following are the two methods of discarding unused blocks:

Batch discard

This type of discard is part of the fstrim command. It discards all unused blocks in a file system that
match criteria specified by the administrator. Red Hat Enterprise Linux 8 supports batch discard on
XFS and ext4 formatted devices that support physical discard operations.

Online discard

This type of discard operation is configured at mount time with the discard option, and runs in real
time without user intervention. However, it only discards blocks that are transitioning from used to
free. Red Hat Enterprise Linux 8 supports online discard on XFS and ext4 formatted devices.
Red Hat recommends batch discard, except where online discard is required to maintain
performance, or where batch discard is not feasible for the system’s workload.

Pre-allocation marks disk space as being allocated to a file without writing any data into that space. This
can be useful in limiting data fragmentation and poor read performance. Red Hat Enterprise Linux 8
supports pre-allocating space on XFS, ext4, and GFS2 file systems. Applications can also benefit from
pre-allocating space by using the fallocate(2) glibc call.

Additional resources

mount(8) and fallocate(2) man pages

33.5. SOLID-STATE DISKS TUNING CONSIDERATIONS

Solid-state disks (SSD) use NAND flash chips rather than rotating magnetic platters to store persistent
data. SSD provides a constant access time for data across their full Logical Block Address range, and
does not incur measurable seek costs like their rotating counterparts. They are more expensive per
gigabyte of storage space and have a lesser storage density, but they also have lower latency and
greater throughput than HDDs.

Performance generally degrades as the used blocks on an SSD approach the capacity of the disk. The
degree of degradation varies by vendor, but all devices experience degradation in this circumstance.
Enabling discard behavior can help to alleviate this degradation. For more information, see Types of
discarding unused blocks.

The default I/O scheduler and virtual memory options are suitable for use with SSDs. Consider the
following factors when configuring settings that can affect SSD performance:

I/O Scheduler

CHAPTER 33. FACTORS AFFECTING I/O AND FILE SYSTEM PERFORMANCE

241

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/monitoring_and_managing_system_status_and_performance/setting-up-graphical-representation-of-pcp-metrics_monitoring-and-managing-system-status-and-performance#types-of-discarding-unused-blocks_factors-affecting-i-o-and-file-system-performance

Any I/O scheduler is expected to perform well with most SSDs. However, as with any other storage
type, Red Hat recommends benchmarking to determine the optimal configuration for a given
workload. When using SSDs, Red Hat advises changing the I/O scheduler only for benchmarking
particular workloads. For instructions on how to switch between I/O schedulers, see the
/usr/share/doc/kernel-version/Documentation/block/switching-sched.txt file.
For single queue HBA, the default I/O scheduler is deadline. For multiple queue HBA, the default
I/O scheduler is none. For information about how to set the I/O scheduler, see Setting the disk
scheduler.

Virtual Memory

Like the I/O scheduler, virtual memory (VM) subsystem requires no special tuning. Given the fast
nature of I/O on SSD, try turning down the vm_dirty_background_ratio and vm_dirty_ratio
settings, as increased write-out activity does not usually have a negative impact on the latency of
other operations on the disk. However, this tuning can generate more overall I/O, and is therefore
not generally recommended without workload-specific testing.

Swap

An SSD can also be used as a swap device, and is likely to produce good page-out and page-in
performance.

33.6. GENERIC BLOCK DEVICE TUNING PARAMETERS

The generic tuning parameters listed here are available in the /sys/block/sdX/queue/ directory.

The following listed tuning parameters are separate from I/O scheduler tuning, and are applicable to all
I/O schedulers:

add_random

Some I/O events contribute to the entropy pool for the /dev/random. This parameter can be set to 0
if the overhead of these contributions become measurable.

iostats

By default, iostats is enabled and the default value is 1. Setting iostats value to 0 disables the
gathering of I/O statistics for the device, which removes a small amount of overhead with the I/O
path. Setting iostats to 0 might slightly improve performance for very high performance devices,
such as certain NVMe solid-state storage devices. It is recommended to leave iostats enabled unless
otherwise specified for the given storage model by the vendor.
If you disable iostats, the I/O statistics for the device are no longer present within the
/proc/diskstats file. The content of /sys/diskstats file is the source of I/O information for
monitoring I/O tools, such as sar or iostats. Therefore, if you disable the iostats parameter for a
device, the device is no longer present in the output of I/O monitoring tools.

max_sectors_kb

Specifies the maximum size of an I/O request in kilobytes. The default value is 512 KB. The minimum
value for this parameter is determined by the logical block size of the storage device. The maximum
value for this parameter is determined by the value of the max_hw_sectors_kb.
Red Hat recommends max_sectors_kb to always be a multiple of the optimal I/O size and the
internal erase block size. Use a value of logical_block_size for either parameter if they are zero or
not specified by the storage device.

nomerges

Most workloads benefit from request merging. However, disabling merges can be useful for
debugging purposes. By default, the nomerges parameter is set to 0, which enables merging. To
disable simple one-hit merging, set nomerges to 1. To disable all types of merging, set nomerges

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

242

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/setting-the-disk-scheduler_monitoring-and-managing-system-status-and-performance

to 2.

nr_requests

It is the maximum allowed number of the queued I/O. If the current I/O scheduler is none, this
number can only be reduced; otherwise the number can be increased or reduced.

optimal_io_size

Some storage devices report an optimal I/O size through this parameter. If this value is reported,
Red Hat recommends that applications issue I/O aligned to and in multiples of the optimal I/O size
wherever possible.

read_ahead_kb

Defines the maximum number of kilobytes that the operating system may read ahead during a
sequential read operation. As a result, the necessary information is already present within the kernel
page cache for the next sequential read, which improves read I/O performance.
Device mappers often benefit from a high read_ahead_kb value. 128 KB for each device to be
mapped is a good starting point, but increasing the read_ahead_kb value up to request queue’s
max_sectors_kb of the disk might improve performance in application environments where
sequential reading of large files takes place.

rotational

Some solid-state disks do not correctly advertise their solid-state status, and are mounted as
traditional rotational disks. Manually set the rotational value to 0 to disable unnecessary seek-
reducing logic in the scheduler.

rq_affinity

The default value of the rq_affinity is 1. It completes the I/O operations on one CPU core, which is in
the same CPU group of the issued CPU core. To perform completions only on the processor that
issued the I/O request, set the rq_affinity to 2. To disable the mentioned two abilities, set it to 0.

scheduler

To set the scheduler or scheduler preference order for a particular storage device, edit the
/sys/block/devname/queue/scheduler file, where devname is the name of the device you want to
configure.

CHAPTER 33. FACTORS AFFECTING I/O AND FILE SYSTEM PERFORMANCE

243

CHAPTER 34. TUNING THE NETWORK PERFORMANCE
Tuning the network settings is a complex process with many factors to consider. For example, this
includes the CPU-to-memory architecture, the amount of CPU cores, and more. Red Hat
Enterprise Linux uses default settings that are optimized for most scenarios. However, in certain cases,
it can be necessary to tune network settings to increase the throughput or latency or to solve problems,
such as packet drops.

34.1. TUNING NETWORK ADAPTER SETTINGS

In high-speed networks with 40 Gbps and faster, certain default values of network adapter-related
kernel settings can be a cause of packet drops and performance degradation. Tuning these settings can
prevent such problems.

34.1.1. Increasing the ring buffer size to reduce a high packet drop rate by using nmcli

Increase the size of an Ethernet device’s ring buffers if the packet drop rate causes applications to
report a loss of data, timeouts, or other issues.

Receive ring buffers are shared between the device driver and network interface controller (NIC). The
card assigns a transmit (TX) and receive (RX) ring buffer. As the name implies, the ring buffer is a
circular buffer where an overflow overwrites existing data. There are two ways to move data from the
NIC to the kernel, hardware interrupts and software interrupts, also called SoftIRQs.

The kernel uses the RX ring buffer to store incoming packets until the device driver can process them.
The device driver drains the RX ring, typically by using SoftIRQs, which puts the incoming packets into a
kernel data structure called an sk_buff or skb to begin its journey through the kernel and up to the
application that owns the relevant socket.

The kernel uses the TX ring buffer to hold outgoing packets which should be sent to the network. These
ring buffers reside at the bottom of the stack and are a crucial point at which packet drop can occur,
which in turn will adversely affect network performance.

Procedure

1. Display the packet drop statistics of the interface:

ethtool -S enp1s0
 ...
 rx_queue_0_drops: 97326
 rx_queue_1_drops: 63783
 ...

Note that the output of the command depends on the network card and the driver.

High values in discard or drop counters indicate that the available buffer fills up faster than the
kernel can process the packets. Increasing the ring buffers can help to avoid such loss.

2. Display the maximum ring buffer sizes:

ethtool -g enp1s0
 Ring parameters for enp1s0:
 Pre-set maximums:
 RX: 4096

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

244

 RX Mini: 0
 RX Jumbo: 16320
 TX: 4096
 Current hardware settings:
 RX: 255
 RX Mini: 0
 RX Jumbo: 0
 TX: 255

If the values in the Pre-set maximums section are higher than in the Current hardware
settings section, you can change the settings in the next steps.

3. Identify the NetworkManager connection profile that uses the interface:

nmcli connection show
NAME UUID TYPE DEVICE
Example-Connection a5eb6490-cc20-3668-81f8-0314a27f3f75 ethernet enp1s0

4. Update the connection profile, and increase the ring buffers:

To increase the RX ring buffer, enter:

nmcli connection modify Example-Connection ethtool.ring-rx 4096

To increase the TX ring buffer, enter:

nmcli connection modify Example-Connection ethtool.ring-tx 4096

5. Reload the NetworkManager connection:

nmcli connection up Example-Connection

IMPORTANT

Depending on the driver your NIC uses, changing in the ring buffer can shortly
interrupt the network connection.

Additional resources

ifconfig and ip commands report packet drops

Should I be concerned about a 0.05% packet drop rate?

ethtool(8) man page

34.1.2. Tuning the network device backlog queue to avoid packet drops

When a network card receives packets and before the kernel protocol stack processes them, the kernel
stores these packets in backlog queues. The kernel maintains a separate queue for each CPU core.

If the backlog queue for a core is full, the kernel drops all further incoming packets that the
netif_receive_skb() kernel function assigns to this queue. If the server contains a 10 Gbps or faster
network adapter or multiple 1 Gbps adapters, tune the backlog queue size to avoid this problem.

CHAPTER 34. TUNING THE NETWORK PERFORMANCE

245

https://access.redhat.com/solutions/2073223
https://access.redhat.com/solutions/742043

Prerequisites

A 10 Gbps or faster or multiple 1 Gbps network adapters

Procedure

1. Determine whether tuning the backlog queue is needed, display the counters in the
/proc/net/softnet_stat file:

awk '{for (i=1; i<=NF; i++) printf strtonum("0x" $i) (i==NF?"\n":" ")}'
/proc/net/softnet_stat | column -t
221951548 0 0 0 0 0 0 0 0 0 0 0 0
192058677 18862 0 0 0 0 0 0 0 0 0 0 1
455324886 0 0 0 0 0 0 0 0 0 0 0 2
...

This awk command converts the values in /proc/net/softnet_stat from hexadecimal to decimal
format and displays them in table format. Each line represents a CPU core starting with core 0.

The relevant columns are:

First column: The total number of received frames

Second column: The number of dropped frames because of a full backlog queue

Last column: The CPU core number

2. If the values in the second column of the /proc/net/softnet_stat file increment over time,
increase the size of the backlog queue:

a. Display the current backlog queue size:

sysctl net.core.netdev_max_backlog
net.core.netdev_max_backlog = 1000

b. Create the /etc/sysctl.d/10-netdev_max_backlog.conf file with the following content:

net.core.netdev_max_backlog = 2000

Set the net.core.netdev_max_backlog parameter to a double of the current value.

c. Load the settings from the /etc/sysctl.d/10-netdev_max_backlog.conf file:

sysctl -p /etc/sysctl.d/10-netdev_max_backlog.conf

Verification

Monitor the second column in the /proc/net/softnet_stat file:

awk '{for (i=1; i<=NF; i++) printf strtonum("0x" $i) (i==NF?"\n":" ")}'
/proc/net/softnet_stat | column -t

If the values still increase, double the net.core.netdev_max_backlog value again. Repeat this
process until the packet drop counters no longer increase.

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

246

34.1.3. Increasing the transmit queue length of a NIC to reduce the number of
transmit errors

The kernel stores packets in a transmit queue before transmitting them. The default length (1000
packets) is typically sufficient for 10 Gbps, and often also for 40 Gbps networks. However, in faster
networks, or if you encounter an increasing number of transmit errors on an adapter, increase the queue
length.

Procedure

1. Display the current transmit queue length:

ip -s link show enp1s0
2: enp1s0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP
mode DEFAULT group default qlen 1000
...

In this example, the transmit queue length (qlen) of the enp1s0 interface is 1000.

2. Monitor the dropped packets counter of a network interface’s software transmit queue:

tc -s qdisc show dev enp1s0
qdisc fq_codel 0: root refcnt 2 limit 10240p flows 1024 quantum 1514 target 5ms interval
100ms memory_limit 32Mb ecn drop_batch 64
 Sent 16889923 bytes 426862765 pkt (dropped 191980, overlimits 0 requeues 2)
...

3. If you encounter a high or increasing transmit error count, set a higher transmit queue length:

a. Identify the NetworkManager connection profile that uses this interface:

nmcli connection show
NAME UUID TYPE DEVICE
Example-Connection a5eb6490-cc20-3668-81f8-0314a27f3f75 ethernet enp1s0

b. Create the /etc/NetworkManager/dispatcher.d/99-set-tx-queue-length-up
NetworkManager dispatcher script with the following content:

c. Set the executable bit on the /etc/NetworkManager/dispatcher.d/99-set-tx-queue-
length-up file:

chmod +x /etc/NetworkManager/dispatcher.d/99-set-tx-queue-length-up

d. Apply the changes:

nmcli connection up Example-Connection

#!/bin/bash
Set TX queue length on enp1s0 to 2000

if ["$1" == "enp1s0"] && ["$2" == "up"] ; then
 ip link set dev enp1s0 txqueuelen 2000
fi

CHAPTER 34. TUNING THE NETWORK PERFORMANCE

247

Verification

1. Display the transmit queue length:

ip -s link show enp1s0
2: enp1s0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP
mode DEFAULT group default qlen 2000
...

2. Monitor the dropped packets counter:

tc -s qdisc show dev enp1s0

If the dropped counter still increases, double the transmit queue length again. Repeat this
process until the counter no longer increases.

34.2. TUNING IRQ BALANCING

On multi-core hosts, you can increase the performance by ensuring that Red Hat Enterprise Linux
balances interrupt queues (IRQs) to distribute the interrupts across CPU cores.

34.2.1. Interrupts and interrupt handlers

When a network interface controller (NIC) receives incoming data, it copies the data into kernel buffers
by using Direct Memory Access (DMA). The NIC then notifies the kernel about this data by triggering a
hard interrupt. These interrupts are processed by interrupt handlers which do minimal work, as they have
already interrupted another task and the handlers cannot interrupt themselves. Hard interrupts can be
costly in terms of CPU usage, especially if they use kernel locks.

The hard interrupt handler then leaves the majority of packet reception to a software interrupt request
(SoftIRQ) process. The kernel can schedule these processes more fairly.

Example 34.1. Displaying hardware interrupts

The kernel stores the interrupt counters in the /proc/interrupts file. To display the counters for a
specific NIC, such as enp1s0, enter:

egrep "CPU|enp1s0" /proc/interrupts
 CPU0 CPU1 CPU2 CPU3 CPU4 CPU5
 105: 141606 0 0 0 0 0 IR-PCI-MSI-edge enp1s0-rx-0
 106: 0 141091 0 0 0 0 IR-PCI-MSI-edge enp1s0-rx-1
 107: 2 0 163785 0 0 0 IR-PCI-MSI-edge enp1s0-rx-2
 108: 3 0 0 194370 0 0 IR-PCI-MSI-edge enp1s0-rx-3
 109: 0 0 0 0 0 0 IR-PCI-MSI-edge enp1s0-tx

Each queue has an interrupt vector in the first column assigned to it. The kernel initializes these
vectors when the system boots or when a user loads the NIC driver module. Each receive (RX) and
transmit (TX) queue is assigned a unique vector that informs the interrupt handler which NIC or
queue the interrupt is coming from. The columns represent the number of incoming interrupts for
every CPU core.

34.2.2. Software interrupt requests

Software interrupt requests (SoftIRQs) clear the receive ring buffers of network adapters. The kernel

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

248

Software interrupt requests (SoftIRQs) clear the receive ring buffers of network adapters. The kernel
schedules SoftIRQ routines to run at a time when other tasks will not be interrupted. On Red Hat
Enterprise Linux, processes named ksoftirqd/cpu-number run these routines and call driver-specific
code functions.

To monitor the SoftIRQ counters for each CPU core, enter:

watch -n1 'egrep "CPU|NET_RX|NET_TX" /proc/softirqs'
 CPU0 CPU1 CPU2 CPU3 CPU4 CPU5 CPU6 CPU7
 NET_TX: 49672 52610 28175 97288 12633 19843 18746 220689
 NET_RX: 96 1615 789 46 31 1735 1315 470798

The command dynamically updates the output. Press Ctrl+C to interrupt the output.

34.2.3. NAPI Polling

New API (NAPI) is an extension to the device driver packet processing framework to improve the
efficiency of incoming network packets. Hard interrupts are expensive because they usually cause a
context switch from the kernel space to the user space and back again, and cannot interrupt
themselves. Even with interrupt coalescence, the interrupt handler monopolizes a CPU core completely.
With NAPI, the driver can use a polling mode instead of being hard-interrupted by the kernel for every
packet that is received.

Under normal operation, the kernel issues an initial hard interrupt, followed by a soft interrupt request
(SoftIRQ) handler that polls the network card using NAPI routines. To prevent SoftIRQs from
monopolizing a CPU core, the polling routine has a budget that determines the CPU time the SoftIRQ
can consume. On completion of the SoftIRQ poll routine, the kernel exits the routine and schedules it to
run again at a later time to repeat the process of receiving packets from the network card.

34.2.4. The irqbalance service

On systems both with and without Non-Uniform Memory Access (NUMA) architecture, the irqbalance
service balances interrupts effectively across CPU cores, based on system conditions. The irqbalance
service runs in the background and monitors the CPU load every 10 seconds. The service moves
interrupts to other CPU cores when a CPU’s load is too high. As a result, the system performs well and
handles load more efficiently.

If irqbalance is not running, usually the CPU core 0 handles most of the interrupts. Even at moderate
load, this CPU core can become busy trying to handle the workload of all the hardware in the system. As
a consequence, interrupts or interrupt-based work can be missed or delayed. This can result in low
network and storage performance, packet loss, and potentially other issues.

IMPORTANT

Disabling irqbalance can negatively impact the network throughput.

On systems with only a single CPU core, the irqbalance service provides no benefit and exits on its own.

By default, the irqbalance service is enabled and running on Red Hat Enterprise Linux. To re-enable the
service if you disabled it, enter:

systemctl enable --now irqbalance

CHAPTER 34. TUNING THE NETWORK PERFORMANCE

249

Additional resources

Do we need irqbalance? solution

How should I configure network interface IRQ channels? solution

34.2.5. Increasing the time SoftIRQs can run on the CPU

If SoftIRQs do not run long enough, the rate of incoming data could exceed the kernel’s capability to
drain the buffer fast enough. As a result, the network interface controller (NIC) buffers overflow and
packets are lost.

If softirqd processes could not retrieve all packets from interfaces in one NAPI polling cycle, it is an
indicator that the SoftIRQs do not have enough CPU time. This could be the case on hosts with fast
NICs, such as 10 Gbps and faster. If you increase the values of the net.core.netdev_budget and
net.core.netdev_budget_usecs kernel parameters, you can control the time and number of packets
softirqd can process in a polling cycle.

Procedure

1. To determine whether tuning the net.core.netdev_budget parameter is needed, display the
counters in the /proc/net/softnet_stat file:

awk '{for (i=1; i<=NF; i++) printf strtonum("0x" $i) (i==NF?"\n":" ")}'
/proc/net/softnet_stat | column -t
221951548 0 0 0 0 0 0 0 0 0 0 0 0
192058677 0 20380 0 0 0 0 0 0 0 0 0 1
455324886 0 0 0 0 0 0 0 0 0 0 0 2
...

This awk command converts the values in /proc/net/softnet_stat from hexadecimal to decimal
format and displays them in the table format. Each line represents a CPU core starting with core
0.

The relevant columns are:

First column: The total number of received frames.

Third column: The number times softirqd processes that could not retrieve all packets from
interfaces in one NAPI polling cycle.

Last column: The CPU core number.

2. If the counters in the third column of the /proc/net/softnet_stat file increment over time, tune
the system:

a. Display the current values of the net.core.netdev_budget_usecs and
net.core.netdev_budget parameters:

sysctl net.core.netdev_budget_usecs net.core.netdev_budget
net.core.netdev_budget_usecs = 2000
net.core.netdev_budget = 300

With these settings, softirqd processes have up to 2000 microseconds to process up to
300 messages from the NIC in one polling cycle. Polling ends based on which condition is
met first.

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

250

https://access.redhat.com/solutions/41535
https://access.redhat.com/solutions/4367191

b. Create the /etc/sysctl.d/10-netdev_budget.conf file with the following content:

net.core.netdev_budget = 600
net.core.netdev_budget_usecs = 4000

Set the parameters to a double of their current values.

c. Load the settings from the /etc/sysctl.d/10-netdev_budget.conf file:

sysctl -p /etc/sysctl.d/10-netdev_budget.conf

Verification

Monitor the third column in the /proc/net/softnet_stat file:

awk '{for (i=1; i<=NF; i++) printf strtonum("0x" $i) (i==NF?"\n":" ")}'
/proc/net/softnet_stat | column -t

If the values still increase, set net.core.netdev_budget_usecs and net.core.netdev_budget to
higher values. Repeat this process until the counters no longer increase.

34.3. IMPROVING THE NETWORK LATENCY

CPU power management features can cause unwanted delays in time-sensitive application processing.
You can disable some or all of these power management features to improve the network latency.

For example, if the latency is higher when the server is idle than under heavy load, CPU power
management settings could influence the latency.

IMPORTANT

Disabling CPU power management features can cause a higher power consumption and
heat loss.

34.3.1. How the CPU power states influence the network latency

The consumption state (C-states) of CPUs optimize and reduce the power consumption of computers.
The C-states are numbered, starting at C0. In C0, the processor is fully powered and executing. In C1,
the processor is fully powered but not executing. The higher the number of the C-state, the more
components the CPU turns off.

Whenever a CPU core is idle, the built-in power saving logic steps in and attempts to move the core
from the current C-state to a higher one by turning off various processor components. If the CPU core
must process data, Red Hat Enterprise Linux (RHEL) sends an interrupt to the processor to wake up the
core and set its C-state back to C0.

Moving out of deep C-states back to C0 takes time due to turning power back on to various
components of the processor. On multi-core systems, it can also happen that many of the cores are
simultaneously idle and, therefore, in deeper C-states. If RHEL tries to wake them up at the same time,
the kernel can generate a large number of Inter-Processor Interrupts (IPIs) while all cores return from
deep C-states. Due to locking that is required while processing interrupts, the system can then stall for
some time while handling all the interrupts. This can result in large delays in the application response to
events.

CHAPTER 34. TUNING THE NETWORK PERFORMANCE

251

Example 34.2. Displaying times in C-state per core

The Idle Stats page in the PowerTOP application displays how much time the CPU cores spend in
each C-state:

 Pkg(HW) | Core(HW) | CPU(OS) 0 CPU(OS) 4
 | | C0 active 2.5% 2.2%
 | | POLL 0.0% 0.0 ms 0.0% 0.1 ms
 | | C1 0.1% 0.2 ms 0.0% 0.1 ms
C2 (pc2) 63.7% | |
C3 (pc3) 0.0% | C3 (cc3) 0.1% | C3 0.1% 0.1 ms 0.1% 0.1 ms
C6 (pc6) 0.0% | C6 (cc6) 8.3% | C6 5.2% 0.6 ms 6.0% 0.6 ms
C7 (pc7) 0.0% | C7 (cc7) 76.6% | C7s 0.0% 0.0 ms 0.0% 0.0 ms
C8 (pc8) 0.0% | | C8 6.3% 0.9 ms 5.8% 0.8 ms
C9 (pc9) 0.0% | | C9 0.4% 3.7 ms 2.2% 2.2 ms
C10 (pc10) 0.0% | |
 | | C10 80.8% 3.7 ms 79.4% 4.4 ms
 | | C1E 0.1% 0.1 ms 0.1% 0.1 ms
...

Additional resources

Managing power consumption with PowerTOP

34.3.2. C-state settings in the EFI firmware

In most systems with an EFI firmware, you can enable and disable the individual consumption states (C-
states). However, on Red Hat Enterprise Linux (RHEL), the idle driver determines whether the kernel
uses the settings from the firmware:

intel_idle: This is the default driver on hosts with an Intel CPU and ignores the C-state settings
from the EFI firmware.

acpi_idle: RHEL uses this driver on hosts with CPUs from vendors other than Intel and if
intel_idle is disabled. By default, the acpi_idle driver uses the C-state settings from the EFI
firmware.

Additional resources

/usr/share/doc/kernel-doc-<version>/Documentation/admin-guide/pm/cpuidle.rst provided
by the kernel-doc package

34.3.3. Disabling C-states by using a custom TuneD profile

The TuneD service uses the Power Management Quality of Service (PMQOS) interface of the kernel to
set consumption states (C-states) locking. The kernel idle driver can communicate with this interface to
dynamically limit the C-states. This prevents that administrators must hard code a maximum C-state
value by using kernel command line parameters.

Prerequisites

The tuned package is installed.

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

252

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/managing-power-consumption-with-powertop_monitoring-and-managing-system-status-and-performance

The tuned service is enabled and running.

Procedure

1. Display the active profile:

tuned-adm active
Current active profile: network-latency

2. Create a directory for the custom TuneD profile:

mkdir /etc/tuned/network-latency-custom/

3. Create the /etc/tuned/network-latency-custom/tuned.conf file with the following content:

[main]
include=network-latency

[cpu]
force_latency=cstate.id:1|2

This custom profile inherits all settings from the network-latency profile. The force_latency
TuneD parameter specifies the latency in microseconds (µs). If the C-state latency is higher
than the specified value, the idle driver in Red Hat Enterprise Linux prevents the CPU from
moving to a higher C-state. With force_latency=cstate.id:1|2, TuneD first checks if the
/sys/devices/system/cpu/cpu_<number>_/cpuidle/state_<cstate.id>_/ directory exists. In
this case, TuneD reads the latency value from the latency file in this directory. If the directory
does not exist, TuneD uses 2 microseconds as a fallback value.

4. Activate the network-latency-custom profile:

tuned-adm profile network-latency-custom

Additional resources

Getting started with TuneD

Customizing TuneD profiles

34.3.4. Disabling C-states by using a kernel command line option

The processor.max_cstate and intel_idle.max_cstat kernel command line parameters configure the
maximum consumption states (C-state) CPU cores can use. For example, setting the parameters to 1
ensures that the CPU will never request a C-state below C1.

Use this method to test whether the latency of applications on a host are being affected by C-states. To
not hard code a specific state, consider using a more dynamic solution. See Disabling C-states by using a
custom TuneD profile.

Prerequisites

The tuned service is not running or configured to not update C-state settings.

CHAPTER 34. TUNING THE NETWORK PERFORMANCE

253

Procedure

1. Display the idle driver the system uses:

cat /sys/devices/system/cpu/cpuidle/current_driver
intel_idle

2. If the host uses the intel_idle driver, set the intel_idle.max_cstate kernel parameter to define
the highest C-state that CPU cores should be able to use:

grubby --update-kernel=ALL --args="intel_idle.max_cstate=0"

Setting intel_idle.max_cstate=0 disables the intel_idle driver. Consequently, the kernel uses
the acpi_idle driver that uses the C-state values set in the EFI firmware. For this reason, also
set processor.max_cstate to override these C-state settings.

3. On every host, independent from the CPU vendor, set the highest C-state that CPU cores
should be able to use:

grubby --update-kernel=ALL --args="processor.max_cstate=0"

IMPORTANT

If you set processor.max_cstate=0 in addition to intel_idle.max_cstate=0, the
acpi_idle driver overrides the value of processor.max_cstate and sets it to 1. As
a result, with processor.max_cstate=0 intel_idle.max_cstate=0, the highest C-
state the kernel will use is C1, not C0.

4. Restart the host for the changes to take effect:

reboot

Verification

1. Display the maximum C-state:

cat /sys/module/processor/parameters/max_cstate
1

2. If the host uses the intel_idle driver, display the maximum C-state:

cat /sys/module/intel_idle/parameters/max_cstate
0

Additional resources

What are CPU "C-states" and how to disable them if needed?

/usr/share/doc/kernel-doc-<version>/Documentation/admin-guide/pm/cpuidle.rst provided
by the kernel-doc package

34.4. IMPROVING THE THROUGHPUT OF LARGE AMOUNTS OF

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

254

https://access.redhat.com/solutions/202743

34.4. IMPROVING THE THROUGHPUT OF LARGE AMOUNTS OF
CONTIGUOUS DATA STREAMS

According to the IEEE 802.3 standard, a default Ethernet frame without Virtual Local Area Network
(VLAN) tag has a maximum size of 1518 bytes. Each of these frames includes an 18 bytes header, leaving
1500 bytes for payload. Consequently, for every 1500 bytes of data the server transmits over the
network, 18 bytes (1.2%) Ethernet frame header are overhead and transmitted as well. Headers from
layer 3 and 4 protocols increase the overhead per packet further.

Consider employing jumbo frames to save overhead if hosts on your network often send numerous
contiguous data streams, such as backup servers or file servers hosting numerous huge files. Jumbo
frames are non-standardized frames that have a larger Maximum Transmission Unit (MTU) than the
standard Ethernet payload size of 1500 bytes. For example, if you configure jumbo frames with the
maximum allowed MTU of 9000 bytes payload, the overhead of each frame reduces to 0.2%.

Depending on the network and services, it can be beneficial to enable jumbo frames only in specific
parts of a network, such as the storage backend of a cluster. This avoids packet fragmentation.

34.4.1. Considerations before configuring jumbo frames

Depending on your hardware, applications, and services in your network, jumbo frames can have
different impacts. Decide carefully whether enabling jumbo frames provides a benefit in your scenario.

Prerequisites

All network devices on the transmission path must support jumbo frames and use the same Maximum
Transmission Unit (MTU) size. In the opposite case, you can face the following problems:

Dropped packets.

Higher latency due to fragmented packets.

Increased risk of packet loss caused by fragmentation. For example, if a router fragments a
single 9000-bytes frame into six 1500-bytes frames, and any of those 1500-byte frames are
lost, the whole frame is lost because it cannot be reassembled.

In the following diagram, all hosts in the three subnets must use the same MTU if a host from network A
sends a packet to a host in network C:

Benefits of jumbo frames

CHAPTER 34. TUNING THE NETWORK PERFORMANCE

255

Higher throughput: Each frame contains more user data while the protocol overhead is fixed.

Lower CPU utilization: Jumbo frames cause fewer interrupts and, therefore, save CPU cycles.

Drawbacks of jumbo frames

Higher latency: Larger frames delay packets that follow.

Increased memory buffer usage: Larger frames can fill buffer queue memory more quickly.

34.4.2. Configuring the MTU in an existing NetworkManager connection profile

If your network requires a different Maximum Transmission Unit (MTU) than the default, you can
configure this setting in the corresponding NetworkManager connection profile.

Jumbo frames are network packets with a payload of between 1500 and 9000 bytes. All devices in the
same broadcast domain have to support those frames.

Prerequisites

All devices in the broadcast domain use the same MTU.

You know the MTU of the network.

You already configured a connection profile for the network with the divergent MTU.

Procedure

1. Optional: Display the current MTU:

ip link show
...
3: enp1s0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP
mode DEFAULT group default qlen 1000
 link/ether 52:54:00:74:79:56 brd ff:ff:ff:ff:ff:ff
...

2. Optional: Display the NetworkManager connection profiles:

nmcli connection show
NAME UUID TYPE DEVICE
Example f2f33f29-bb5c-3a07-9069-be72eaec3ecf ethernet enp1s0
...

3. Set the MTU in the profile that manages the connection to the network with the divergent MTU:

nmcli connection modify Example mtu 9000

4. Reactivate the connection:

nmcli connection up Example

Verification

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

256

1. Display the MTU setting:

ip link show
...
3: enp1s0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 9000 qdisc fq_codel state UP
mode DEFAULT group default qlen 1000
 link/ether 52:54:00:74:79:56 brd ff:ff:ff:ff:ff:ff
...

2. Verify that no host on the transmission paths fragments the packets:

On the receiver side, display the IP reassembly statistics of the kernel:

nstat -az IpReasm*
#kernel
IpReasmTimeout 0 0.0
IpReasmReqds 0 0.0
IpReasmOKs 0 0.0
IpReasmFails 0 0.0

If the counters return 0, packets were not reassembled.

On the sender side, transmit an ICMP request with the prohibit-fragmentation-bit:

ping -c1 -Mdo -s 8972 destination_host

If the command succeeds, the packet was not fragmented.

Calculate the value for the -s packet size option as follows: MTU size - 8 bytes ICMP header
- 20 bytes IPv4 header = packet size

34.5. TUNING TCP CONNECTIONS FOR HIGH THROUGHPUT

Tune TCP-related settings on Red Hat Enterprise Linux to increase the throughput, reduce the latency,
or prevent problems, such as packet loss.

34.5.1. Testing the TCP throughput using iperf3

The iperf3 utility provides a server and client mode to perform network throughput tests between two
hosts.

NOTE

The throughput of applications depends on many factors, such as the buffer sizes that
the application uses. Therefore, the results measured with testing utilities, such as iperf3,
can be significantly different from those of applications on a server under production
workload.

Prerequisites

The iperf3 package is installed on both the client and server.

No other services on either host cause network traffic that substantially affects the test result.

For 40 Gbps and faster connections, the network card supports Accelerated Receive Flow

CHAPTER 34. TUNING THE NETWORK PERFORMANCE

257

For 40 Gbps and faster connections, the network card supports Accelerated Receive Flow
Steering (ARFS) and the feature is enabled on the interface.

Procedure

1. Optional: Display the maximum network speed of the network interface controller (NIC) on both
the server and client:

ethtool enp1s0 | grep "Speed"
 Speed: 100000Mb/s

2. On the server:

a. Temporarily open the default iperf3 TCP port 5201 in the firewalld service:

firewall-cmd --add-port=5201/tcp
firewall-cmd --reload

b. Start iperf3 in server mode:

iperf3 --server

The service now is waiting for incoming client connections.

3. On the client:

a. Start measuring the throughput:

iperf3 --time 60 --zerocopy --client 192.0.2.1

--time <seconds>: Defines the time in seconds when the client stops the transmission.
Set this parameter to a value that you expect to work and increase it in later
measurements. If the server sends packets at a faster rate than the devices on the
transmit path or the client can process, packets can be dropped.

--zerocopy: Enables a zero copy method instead of using the write() system call. You
require this option only if you want to simulate a zero-copy-capable application or to
reach 40 Gbps and more on a single stream.

--client <server>: Enables the client mode and sets the IP address or name of the
server that runs the iperf3 server.

4. Wait until iperf3 completes the test. Both the server and the client display statistics every
second and a summary at the end. For example, the following is a summary displayed on a client:

[ID] Interval Transfer Bitrate Retr
[5] 0.00-60.00 sec 101 GBytes 14.4 Gbits/sec 0 sender
[5] 0.00-60.04 sec 101 GBytes 14.4 Gbits/sec receiver

In this example, the average bitrate was 14.4 Gbps.

5. On the server:

a. Press Ctrl+C to stop the iperf3 server.

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

258

b. Close the TCP port 5201 in firewalld:

firewall-cmd --remove-port=5201/tcp
firewall-cmd --reload

Additional resources

iperf3(1) man page

34.5.2. The system-wide TCP socket buffer settings

Socket buffers temporarily store data that the kernel has received or should send:

The read socket buffer holds packets that the kernel has received but which the application has
not read yet.

The write socket buffer holds packets that an application has written to the buffer but which the
kernel has not passed to the IP stack and network driver yet.

If a TCP packet is too large and exceeds the buffer size or packets are sent or received at a too fast
rate, the kernel drops any new incoming TCP packet until the data is removed from the buffer. In this
case, increasing the socket buffers can prevent packet loss.

Both the net.ipv4.tcp_rmem (read) and net.ipv4.tcp_wmem (write) socket buffer kernel settings
contain three values:

net.ipv4.tcp_rmem = 4096 131072 6291456
net.ipv4.tcp_wmem = 4096 16384 4194304

The displayed values are in bytes and Red Hat Enterprise Linux uses them in the following way:

The first value is the minimum buffer size. New sockets cannot have a smaller size.

The second value is the default buffer size. If an application sets no buffer size, this is the
default value.

The third value is the maximum size of automatically tuned buffers. Using the setsockopt()
function with the SO_SNDBUF socket option in an application disables this maximum buffer
size.

Note that the net.ipv4.tcp_rmem and net.ipv4.tcp_wmem parameters set the socket sizes for both
the IPv4 and IPv6 protocols.

34.5.3. Increasing the system-wide TCP socket buffers

The system-wide TCP socket buffers temporarily store data that the kernel has received or should
send. Both net.ipv4.tcp_rmem (read) and net.ipv4.tcp_wmem (write) socket buffer kernel settings
each contain three settings: A minimum, default, and maximum value.

IMPORTANT

CHAPTER 34. TUNING THE NETWORK PERFORMANCE

259

IMPORTANT

Setting too large buffer sizes wastes memory. Each socket can be set to the size that the
application requests, and the kernel doubles this value. For example, if an application
requests a 256 KiB socket buffer size and opens 1 million sockets, the system can use up
to 512 GB RAM (512 KiB x 1 million) only for the potential socket buffer space.

Additionally, a too large value for the maximum buffer size can increase the latency.

Prerequisites

You encountered a significant rate of dropped TCP packets.

Procedure

1. Determine the latency of the connection. For example, ping from the client to server to measure
the average Round Trip Time (RTT):

ping -c 10 server.example.com
...
--- server.example.com ping statistics ---
10 packets transmitted, 10 received, 0% packet loss, time 9014ms
rtt min/avg/max/mdev = 117.208/117.056/119.333/0.616 ms

In this example, the latency is 117 ms.

2. Use the following formula to calculate the Bandwidth Delay Product (BDP) for the traffic you
want to tune:

connection speed in bytes * latency in ms = BDP in bytes

For example, to calculate the BDP for a 10 Gbps connection that has a 117 ms latency:

(10 * 1000 * 1000 * 1000 / 8) * 117 = 10683760 bytes

3. Create the /etc/sysctl.d/10-tcp-socket-buffers.conf file and either set the maximum read or
write buffer size, or both, based on your requirements:

net.ipv4.tcp_rmem = 4096 262144 21367520
net.ipv4.tcp_wmem = 4096 24576 21367520

Specify the values in bytes. Use the following rule of thumb when you try to identify optimized
values for your environment:

Default buffer size (second value): Increase this value only slightly or set it to 524288 (512
KiB) at most. A too high default buffer size can cause buffer collapsing and, consequently,
latency spikes.

Maximum buffer size (third value): A value double to triple of the BDP is often sufficient.

4. Load the settings from the /etc/sysctl.d/10-tcp-socket-buffers.conf file:

sysctl -p /etc/sysctl.d/10-tcp-socket-buffers.conf

5. Configure your applications to use a larger socket buffer size. The third value in the

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

260

5. Configure your applications to use a larger socket buffer size. The third value in the
net.ipv4.tcp_rmem and net.ipv4.tcp_wmem parameters defines the maximum buffer size that
the setsockopt() function in an application can request.
For further details, see the documentation of the programming language of your application. If
you are not the developer of the application, contact the developer.

6. If you have changed the second value in the net.ipv4.tcp_rmem or net.ipv4.tcp_wmem
parameter, restart the applications to use the new TCP buffer sizes.
If you have changed only the third value, you do not need to restart the application because
auto-tuning applies these settings dynamically.

Verification

1. Optional: Test the TCP throughput using iperf3 .

2. Monitor the packet drop statistics using the same method that you used when you encountered
the packet drops.
If packet drops still occur but at a lower rate, increase the buffer sizes further.

Additional resources

What are the implications of changing socket buffer sizes? solution

tcp(7) man page

socket(7) man page

34.5.4. TCP Window Scaling

The TCP Window Scaling feature, which is enabled by default in Red Hat Enterprise Linux, is an
extension of the TCP protocol that significantly improves the throughput.

For example, on a 1 Gbps connection with 1.5 ms Round Trip Time (RTT):

With TCP Window Scaling enabled, approximately 630 Mbps are realistic.

With TCP Window Scaling disabled, the throughput goes down to 380 Mbps.

One of the features TCP provides is flow control. With flow control, a sender can send as much data as
the receiver can receive, but no more. To achieve this, the receiver advertises a window value, which is
the amount of data a sender can send.

TCP originally supported window sizes up to 64 KiB, but at high Bandwidth Delay Products (BDP), this
value becomes a restriction because the sender cannot send more than 64 KiB at a time. High-speed
connections can transfer much more than 64 KiB of data at a given time. For example, a 10 Gbps link
with 1 ms of latency between systems can have more than 1 MiB of data in transit at a given time. It
would be inefficient if a host sends only 64 KiB, then pauses until the other host receives that 64 KiB.

To remove this bottleneck, the TCP Window Scaling extension allows the TCP window value to be
arithmetically shifted left to increase the window size beyond 64 KiB. For example, the largest window
value of 65535 shifted 7 places to the left, resulting in a window size of almost 8 MiB. This enables
transferring much more data at a given time.

TCP Window Scaling is negotiated during the three-way TCP handshake that opens every TCP
connection. Both sender and receiver must support TCP Window Scaling for the feature to work. If
either or both participants do not advertise window scaling ability in their handshake, the connection

CHAPTER 34. TUNING THE NETWORK PERFORMANCE

261

https://access.redhat.com/solutions/85913

reverts to using the original 16-bit TCP window size.

By default, TCP Window Scaling is enabled in Red Hat Enterprise Linux:

sysctl net.ipv4.tcp_window_scaling
net.ipv4.tcp_window_scaling = 1

If TCP Window Scaling is disabled (0) on your server, revert the setting in the same way as you set it.

Additional resources

RFC 1323: TCP Extensions for High Performance

Configuring kernel parameters at runtime

34.5.5. How TCP SACK reduces the packet drop rate

The TCP Selective Acknowledgment (TCP SACK) feature, which is enabled by default in Red Hat
Enterprise Linux (RHEL), is an enhancement of the TCP protocol and increases the efficiency of TCP
connections.

In TCP transmissions, the receiver sends an ACK packet to the sender for every packet it receives. For
example, a client sends the TCP packets 1-10 to the server but the packets number 5 and 6 get lost.
Without TCP SACK, the server drops packets 7-10, and the client must retransmit all packets from the
point of loss, which is inefficient. With TCP SACK enabled on both hosts, the client must re-transmit
only the lost packets 5 and 6.

IMPORTANT

Disabling TCP SACK decreases the performance and causes a higher packet drop rate on
the receiver side in a TCP connection.

By default, TCP SACK is enabled in RHEL. To verify:

sysctl net.ipv4.tcp_sack
1

If TCP SACK is disabled (0) on your server, revert the setting in the same way as you set it.

Additional resources

RFC 2018: TCP Selective Acknowledgment Options

Should I be concerned about a 0.05% packet drop rate? solution

Configuring kernel parameters at runtime

34.6. TUNING UDP CONNECTIONS

Before you start tuning Red Hat Enterprise Linux to improve the throughput of UDP traffic, it is
important to have the realistic expectations. UDP is a simple protocol. Compared to TCP, UDP does not
contain features, such as flow control, congestion control, and data reliability. This makes it difficult to

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

262

https://www.rfc-editor.org/rfc/rfc1323
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_monitoring_and_updating_the_kernel/configuring-kernel-parameters-at-runtime_managing-monitoring-and-updating-the-kernel
http://tools.ietf.org/html/rfc2018
https://access.redhat.com/solutions/742043
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_monitoring_and_updating_the_kernel/configuring-kernel-parameters-at-runtime_managing-monitoring-and-updating-the-kernel

reach reliable communication over UDP with a throughput rate that is close to the maximum speed of
the network interface controller (NIC).

34.6.1. Detecting packet drops

There are multiple levels in the network stack in which the kernel can drop packets. Red Hat
Enterprise Linux provides different utilities to display statistics of these levels. Use them to identify
potential problems.

Note that you can ignore a very small rate of dropped packets. However, if you encounter a significant
rate, consider tuning measures.

NOTE

The kernel drops network packets if the networking stack cannot handle the incoming
traffic.

Procedure

1. Identify if the network interface controller (NIC) drops packets:

a. Display the NIC and driver-specific statistics:

ethtool -S enp1s0
NIC statistics:
 ...
 rx_queue_0_drops: 17657
 ...

The naming of the statistics and if they are available depend on the NIC and the driver.

b. Display the interface statistics:

ip -s link show enp1s0
2: enp1s0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state
UP mode DEFAULT group default qlen 1000
 link/ether 52:54:00:74:79:56 brd ff:ff:ff:ff:ff:ff
 RX: bytes packets errors dropped missed mcast_
 84697611107 56866482 0 10904 0 0
 TX: bytes packets errors dropped carrier collsns_
 5540028184 3722234 0 0 0 0

RX represents the statistics of received packets and TX of transmitted packets.

2. Identify UDP protocol-specific packet drops due to too small socket buffers or slow application
processing:

nstat -az UdpSndbufErrors UdpRcvbufErrors
#kernel
UdpSndbufErrors 4 0.0
UdpRcvbufErrors 45716659 0.0

The second column in the output lists the counters.

CHAPTER 34. TUNING THE NETWORK PERFORMANCE

263

Additional resources

RHEL network interface dropping packets solution

Should I be concerned about a 0.05% packet drop rate? solution

34.6.2. Testing the UDP throughput using iperf3

The iperf3 utility provides a server and client mode to perform network throughput tests between two
hosts.

NOTE

The throughput of applications depend on many factors, such as the buffer sizes that the
application uses. Therefore, the results measured with testing utilities, such as iperf3, can
significantly be different from those of applications on a server under production
workload.

Prerequisites

The iperf3 package is installed on both the client and server.

No other services on both hosts cause network traffic that substantially affects the test result.

Optional: You increased the maximum UDP socket sizes on both the server and the client. For
details, see Increasing the system-wide UDP socket buffers .

Procedure

1. Optional: Display the maximum network speed of the network interface controller (NIC) on both
the server and client:

ethtool enp1s0 | grep "Speed"
 Speed: 10000Mb/s

2. On the server:

a. Display the maximum UDP socket read buffer size, and note the value:

sysctl net.core.rmem_max
net.core.rmem_max = 16777216

The displayed value is in bytes.

b. Temporarily open the default iperf3 port 5201 in the firewalld service:

firewall-cmd --add-port=5201/tcp --add-port=5201/udp
firewall-cmd --reload

Note that, iperf3 opens only a TCP socket on the server. If a clients wants to use UDP, it
first connects to this TCP port, and then the server opens a UDP socket on the same port
number for performing the UDP traffic throughput test. For this reason, you must open port
5201 for both the TCP and UDP protocol in the local firewall.

c. Start iperf3 in server mode:

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

264

https://access.redhat.com/solutions/21301
https://access.redhat.com/solutions/742043

iperf3 --server

The service now waits for incoming client connections.

3. On the client:

a. Display the Maximum Transmission Unit (MTU) of the interface that the client will use for
the connection to the server, and note the value:

ip link show enp1s0
2: enp1s0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state
UP mode DEFAULT group default qlen 1000
...

b. Display the maximum UDP socket write buffer size, and note the value:

sysctl net.core.wmem_max
net.core.wmem_max = 16777216

The displayed value is in bytes.

c. Start measuring the throughput:

iperf3 --udp --time 60 --window 16777216 --length 1472 --bitrate 2G --client
192.0.2.1

--udp: Use the UDP protocol for the test.

--time <seconds>: Defines the time in seconds when the client stops the transmission.

--window <size>: Sets the UDP socket buffer size. Ideally, the sizes are the same on
both the client and server. In case that they are different, set this parameter to the value
that is smaller: net.core.wmem_max on the client or net.core.rmem_max on the
server.

--length <size>: Sets the length of the buffer to read and write. Set this option to the
largest unfragmented payload. Calculate the ideal value as follows: MTU - IP header
(20 bytes for IPv4 and 40 bytes for IPv6) - 8 bytes UDP header.

--bitrate <rate>: Limits the bit rate to the specified value in bits per second. You can
specify units, such as 2G for 2 Gbps.
Set this parameter to a value that you expect to work and increase it in later
measurements. If the server sends packets at a faster rate than the devices on the
transmit path or the client can process them, packets can be dropped.

--client <server>: Enables the client mode and sets the IP address or name of the
server that runs the iperf3 server.

4. Wait until iperf3 completes the test. Both the server and the client display statistics every
second and a summary at the end. For example, the following is a summary displayed on a client:

[ID] Interval Transfer Bitrate Jitter Lost/Total Datagrams
[5] 0.00-60.00 sec 14.0 GBytes 2.00 Gbits/sec 0.000 ms 0/10190216 (0%) sender
[5] 0.00-60.04 sec 14.0 GBytes 2.00 Gbits/sec 0.002 ms 0/10190216 (0%) receiver

CHAPTER 34. TUNING THE NETWORK PERFORMANCE

265

In this example, the average bit rate was 2 Gbps, and no packets were lost.

5. On the server:

a. Press Ctrl+C to stop the iperf3 server.

b. Close port 5201 in firewalld:

firewall-cmd --remove-port=5201/tcp --remove-port=5201/udp
firewall-cmd --reload

Additional resources

iperf3(1) man page

34.6.3. Impact of the MTU size on UDP traffic throughput

If your application uses a large UDP message size, using jumbo frames can improve the throughput.
According to the IEEE 802.3 standard, a default Ethernet frame without Virtual Local Area Network
(VLAN) tag has a maximum size of 1518 bytes. Each of these frames includes an 18 bytes header, leaving
1500 bytes for payload. Consequently, for every 1500 bytes of data the server transmits over the
network, 18 bytes (1.2%) are overhead.

Jumbo frames are non-standardized frames that have a larger Maximum Transmission Unit (MTU) than
the standard Ethernet payload size of 1500 bytes. For example, if you configure jumbo Frames with the
maximum allowed MTU of 9000 bytes payload, the overhead of each frame reduces to 0.2%.

IMPORTANT

All network devices on the transmission path and the involved broadcast domains must
support jumbo frames and use the same MTU. Packet fragmentation and reassembly due
to inconsistent MTU settings on the transmission path reduces the network throughput.

Different connection types have certain MTU limitations:

Ethernet: the MTU is limited to 9000 bytes.

IP over InfiniBand (IPoIB) in datagram mode: The MTU is limited to 4 bytes less than the
InfiniBand MTU.

In-memory networking commonly supports larger MTUs. For details, see the respective
documentation.

34.6.4. Impact of the CPU speed on UDP traffic throughput

In bulk transfers, the UDP protocol is much less efficient than TCP, mainly due to the missing packet
aggregation in UDP. By default, the Generic Receive Offload (GRO) and Transmit Segmentation
Offload (TSO) features are not enabled. Consequently, the CPU frequency can limit the UDP
throughput for bulk transfer on high speed links.

For example, on a tuned host with a high Maximum Transmission Unit (MTU) and large socket buffers, a
3 GHz CPU can process the traffic of a 10 GBit NIC that sends or receives UDP traffic at full speed.
However, you can expect about 1-2 Gbps speed loss for every 100 MHz CPU speed under 3 GHz when
you transmit UDP traffic. Also, if a CPU speed of 3 GHz can closely achieve 10 Gbps, the same CPU
restricts UDP traffic on a 40 GBit NIC to roughly 20-25 Gbps.

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

266

34.6.5. Increasing the system-wide UDP socket buffers

Socket buffers temporarily store data that the kernel has received or should send:

The read socket buffer holds packets that the kernel has received but which the application has
not read yet.

The write socket buffer holds packets that an application has written to the buffer but which the
kernel has not passed to the IP stack and network driver yet.

If a UDP packet is too large and exceeds the buffer size or packets are sent or received at a too fast
rate, the kernel drops any new incoming UDP packet until the data is removed from the buffer. In this
case, increasing the socket buffers can prevent packet loss.

IMPORTANT

Setting too large buffer sizes wastes memory. Each socket can be set to the size that the
application requests, and the kernel doubles this value. For example, if an application
requests a 256 KiB socket buffer size and opens 1 million sockets, the system requires 512
GB RAM (512 KiB x 1 million) only for the potential socket buffer space.

Prerequisites

You encountered a significant rate of dropped UDP packets.

Procedure

1. Create the /etc/sysctl.d/10-udp-socket-buffers.conf file and either set the maximum read or
write buffer size, or both, based on your requirements:

net.core.rmem_max = 16777216
net.core.wmem_max = 16777216

Specify the values in bytes. The values in this example set the maximum size of buffers to 16
MiB. The default values of both parameters are 212992 bytes (208 KiB).

2. Load the settings from the /etc/sysctl.d/10-udp-socket-buffers.conf file:

sysctl -p /etc/sysctl.d/10-udp-socket-buffers.conf

3. Configure your applications to use the larger socket buffer sizes.
The net.core.rmem_max and net.core.wmem_max parameters define the maximum buffer
size that the setsockopt() function in an application can request. Note that, if you configure
your application to not use the setsockopt() function, the kernel uses the values from the
rmem_default and wmem_default parameters.

For further details, see the documentation of the programming language of your application. If
you are not the developer of the application, contact the developer.

4. Restart the applications to use the new UDP buffer sizes.

Verification

Monitor the packet drop statistics using the same method as you used when you encountered
the packet drops.

CHAPTER 34. TUNING THE NETWORK PERFORMANCE

267

If packet drops still occur but at a lower rate, increase the buffer sizes further.

Additional resources

What are the implications of changing socket buffer sizes? solution

udp(7) man page

socket(7) man page

34.7. IDENTIFYING APPLICATION READ SOCKET BUFFER
BOTTLENECKS

If TCP applications do not clear the read socket buffers frequently enough, performance can suffer and
packets can be lost. Red Hat Enterprise Linux provides different utilities to identify such problems.

34.7.1. Identifying receive buffer collapsing and pruning

When the data in the receive queue exceeds the receive buffer size, the TCP stack tries to free some
space by removing unnecessary metadata from the socket buffer. This step is known as collapsing.

If collapsing fails to free sufficient space for additional traffic, the kernel prunes new data that arrives.
This means that the kernel removes the data from the memory and the packet is lost.

To avoid collapsing and pruning operations, monitor whether TCP buffer collapsing and pruning
happens on your server and, in this case, tune the TCP buffers.

Procedure

1. Use the nstat utility to query the TcpExtTCPRcvCollapsed and TcpExtRcvPruned counters:

nstat -az TcpExtTCPRcvCollapsed TcpExtRcvPruned
#kernel
TcpExtRcvPruned 0 0.0
TcpExtTCPRcvCollapsed 612859 0.0

2. Wait some time and re-run the nstat command:

nstat -az TcpExtTCPRcvCollapsed TcpExtRcvPruned
#kernel
TcpExtRcvPruned 0 0.0
TcpExtTCPRcvCollapsed 620358 0.0

3. If the values of the counters have increased compared to the first run, tuning is required:

If the application uses the setsockopt(SO_RCVBUF) call, consider removing it. With this
call, the application only uses the receive buffer size specified in the call and turns off the
socket’s ability to auto-tune its size.

If the application does not use the setsockopt(SO_RCVBUF) call, tune the default and
maximum values of the TCP read socket buffer.

4. Display the receive backlog queue (Recv-Q):

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

268

https://access.redhat.com/solutions/85913

ss -nti
State Recv-Q Send-Q Local Address:Port Peer Address:Port Process
ESTAB 0 0 192.0.2.1:443 192.0.2.125:41574
 :7,7 ... lastrcv:543 ...
ESTAB 78 0 192.0.2.1:443 192.0.2.56:42612
 :7,7 ... lastrcv:658 ...
ESTAB 88 0 192.0.2.1:443 192.0.2.97:40313
 :7,7 ... lastrcv:5764 ...
...

5. Run the ss -nt command multiple times with a few seconds waiting time between each run.
If the output lists only one case of a high value in the Recv-Q column, the application was
between two receive operations. However, if the values in Recv-Q stays constant while lastrcv
continually grows, or Recv-Q continually increases over time, one of the following problems can
be the cause:

The application does not check its socket buffers often enough. Contact the application
vendor for details about how you can solve this problem.

The application does not get enough CPU time. To further debug this problem:

i. Display on which CPU cores the application runs:

ps -eo pid,tid,psr,pcpu,stat,wchan:20,comm
 PID TID PSR %CPU STAT WCHAN COMMAND
...
 44594 44594 5 0.0 Ss do_select httpd
 44595 44595 3 0.0 S skb_wait_for_more_pa httpd
 44596 44596 5 0.0 Sl pipe_read httpd
 44597 44597 5 0.0 Sl pipe_read httpd
 44602 44602 5 0.0 Sl pipe_read httpd
...

The PSR column displays the CPU cores the process is currently assigned to.

ii. Identify other processes running on the same cores and consider assigning them to
other cores.

Additional resources

Increasing the system-wide TCP socket buffers

34.8. TUNING APPLICATIONS WITH A LARGE NUMBER OF INCOMING
REQUESTS

If you run an application that handles a large number of incoming requests, such as web servers, it can be
necessary to tune Red Hat Enterprise Linux to optimize the performance.

34.8.1. Tuning the TCP listen backlog to process a high number of TCP connection
attempts

When an application opens a TCP socket in LISTEN state, the kernel limits the number of accepted
client connections this socket can handle. If clients try to establish more connections than the
application can process, the new connections get lost or the kernel sends SYN cookies to the client.

CHAPTER 34. TUNING THE NETWORK PERFORMANCE

269

If the system is under normal workload and too many connections from legitimate clients cause the
kernel to send SYN cookies, tune Red Hat Enterprise Linux (RHEL) to avoid them.

Prerequisites

RHEL logs possible SYN flooding on port <ip_address>:<port_number> error messages in
the Systemd journal.

The high number of connection attempts are from valid sources and not caused by an attack.

Procedure

1. To verify whether tuning is required, display the statistics for the affected port:

ss -ntl '(sport = :443)'
State Recv-Q Send-Q Local Address:Port Peer Address:Port Process
LISTEN 650 500 192.0.2.1:443 0.0.0.0:*

If the current number of connections in the backlog (Recv-Q) is larger than the socket backlog
(Send-Q), the listen backlog is still not large enough and tuning is required.

2. Optional: Display the current TCP listen backlog limit:

sysctl net.core.somaxconn
net.core.somaxconn = 4096

3. Create the /etc/sysctl.d/10-socket-backlog-limit.conf file, and set a larger listen backlog limit:

net.core.somaxconn = 8192

Note that applications can request a larger listen backlog than specified in the
net.core.somaxconn kernel parameter but the kernel limits the application to the number you
set in this parameter.

4. Load the setting from the /etc/sysctl.d/10-socket-backlog-limit.conf file:

sysctl -p /etc/sysctl.d/10-socket-backlog-limit.conf

5. Reconfigure the application to use the new listen backlog limit:

If the application provides a config option for the limit, update it. For example, the Apache
HTTP Server provides the ListenBacklog configuration option to set the listen backlog
limit for this service.

If you cannot configure the limit, recompile the application.

6. Restart the application.

Verification

1. Monitor the Systemd journal for further occurrences of possible SYN flooding on port
<port_number> error messages.

2. Monitor the current number of connections in the backlog and compare it with the socket
backlog:

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

270

ss -ntl '(sport = :443)'
State Recv-Q Send-Q Local Address:Port Peer Address:Port Process
LISTEN 0 500 192.0.2.1:443 0.0.0.0:*

If the current number of connections in the backlog (Recv-Q) is larger than the socket backlog
(Send-Q), the listen backlog is not large enough and further tuning is required.

Additional resources

kernel: Possible SYN flooding on port #. Sending cookies solution

Listening TCP server ignores SYN or ACK for new connection handshake solution

listen(2) man page

34.9. AVOIDING LISTEN QUEUE LOCK CONTENTION

Queue lock contention can cause packet drops and higher CPU usage and, consequently, a higher
latency. You can avoid queue lock contention on the receive (RX) and transmit (TX) queue by tuning
your application and using transmit packet steering.

34.9.1. Avoiding RX queue lock contention: The SO_REUSEPORT and
SO_REUSEPORT_BPF socket options

On a multi-core system, you can improve the performance of multi-threaded network server
applications if the application opens the port by using the SO_REUSEPORT or SO_REUSEPORT_BPF
socket option. If the application does not use one of these socket options, all threads are forced to share
a single socket to receive the incoming traffic. Using a single socket causes:

Significant contention on the receive buffer, which can cause packet drops and higher CPU
usage.

A significant increase of CPU usage

Possibly packet drops

With the SO_REUSEPORT or SO_REUSEPORT_BPF socket option, multiple sockets on one host can
bind to the same port:

CHAPTER 34. TUNING THE NETWORK PERFORMANCE

271

https://access.redhat.com/articles/1391433
https://access.redhat.com/solutions/3193562

Red Hat Enterprise Linux provides a code example of how to use the SO_REUSEPORT socket options
in the kernel sources. To access the code example:

1. Enable the rhel-8-for-x86_64-baseos-debug-rpms repository:

subscription-manager repos --enable rhel-8-for-x86_64-baseos-debug-rpms

2. Install the kernel-debuginfo-common-x86_64 package:

yum install kernel-debuginfo-common-x86_64

3. The code example is now available in the /usr/src/debug/kernel-<version>/linux-
<version>/tools/testing/selftests/net/reuseport_bpf_cpu.c file.

Additional resources

socket(7) man page

/usr/src/debug/kernel-<version>/linux-
<version>/tools/testing/selftests/net/reuseport_bpf_cpu.c

34.9.2. Avoiding TX queue lock contention: Transmit packet steering

In hosts with a network interface controller (NIC) that supports multiple queues, transmit packet
steering (XPS) distributes the processing of outgoing network packets among several queues. This
enables multiple CPUs to process the outgoing network traffic and to avoid transmit queue lock
contention and, consequently, packet drops.

Certain drivers, such as ixgbe, i40e, and mlx5 automatically configure XPS. To identify if the driver
supports this capability, consult the documentation of your NIC driver. Consult your NIC driver’s
documentation to identify if the driver supports this capability. If the driver does not support XPS auto-
tuning, you can manually assign CPU cores to the transmit queues.

NOTE

Red Hat Enterprise Linux does not provide an option to permanently assign transmit
queues to CPU cores. Use the commands in a script and run it when the system boots.

Prerequisites

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

272

The NIC supports multiple queues.

The numactl package is installed.

Procedure

1. Display the count of available queues:

ethtool -l enp1s0
Channel parameters for enp1s0:
Pre-set maximums:
RX: 0
TX: 0
Other: 0
Combined: 4
Current hardware settings:
RX: 0
TX: 0
Other: 0
Combined: 1

The Pre-set maximums section shows the total number of queues and Current hardware
settings the number of queues that are currently assigned to the receive, transmit, other, or
combined queues.

2. Optional: If you require queues on specific channels, assign them accordingly. For example, to
assign the 4 queues to the Combined channel, enter:

ethtool -L enp1s0 combined 4

3. Display to which Non-Uniform Memory Access (NUMA) node the NIC is assigned:

cat /sys/class/net/enp1s0/device/numa_node
0

If the file is not found or the command returns -1, the host is not a NUMA system.

4. If the host is a NUMA system, display which CPUs are assigned to which NUMA node:

lscpu | grep NUMA
NUMA node(s): 2
NUMA node0 CPU(s): 0-3
NUMA node1 CPU(s): 4-7

5. In the example above, the NIC has 4 queues and the NIC is assigned to NUMA node 0. This node
uses the CPU cores 0-3. Consequently, map each transmit queue to one of the CPU cores from
0-3:

echo 1 > /sys/class/net/enp1s0/queues/tx-0/xps_cpus
echo 2 > /sys/class/net/enp1s0/queues/tx-1/xps_cpus
echo 4 > /sys/class/net/enp1s0/queues/tx-2/xps_cpus
echo 8 > /sys/class/net/enp1s0/queues/tx-3/xps_cpus

If the number of CPU cores and transmit (TX) queues is the same, use a 1 to 1 mapping to avoid

CHAPTER 34. TUNING THE NETWORK PERFORMANCE

273

any kind of contention on the TX queue. Otherwise, if you map multiple CPUs on the same TX
queue, transmit operations on different CPUs will cause TX queue lock contention and
negatively impacts the transmit throughput.

Note that you must pass the bitmap, containing the CPU’s core numbers, to the queues. Use
the following command to calculate the bitmap:

printf %x $((1 << <core_number>))

Verification

1. Identify the process IDs (PIDs) of services that send traffic:

pidof <process_name>
12345 98765

2. Pin the PIDs to cores that use XPS:

numactl -C 0-3 12345 98765

3. Monitor the requeues counter while the process send traffic:

tc -s qdisc
qdisc fq_codel 0: dev enp10s0u1 root refcnt 2 limit 10240p flows 1024 quantum 1514 target
5ms interval 100ms memory_limit 32Mb ecn drop_batch 64
 Sent 125728849 bytes 1067587 pkt (dropped 0, overlimits 0 requeues 30)
 backlog 0b 0p requeues 30
 ...

If the requeues counter no longer increases at a significant rate, TX queue lock contention no
longer happens.

Additional resources

/usr/share/doc/kernel-doc-_<version>/Documentation/networking/scaling.rst

34.9.3. Disabling the Generic Receive Offload feature on servers with high UDP
traffic

Applications that use high-speed UDP bulk transfer should enable and use UDP Generic Receive
Offload (GRO) on the UDP socket. However, you can disable GRO to increase the throughput if the
following conditions apply:

The application does not support GRO and the feature cannot be added.

TCP throughput is not relevant.

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

274

WARNING

Disabling GRO significantly reduces the receive throughput of TCP traffic.
Therefore, do not disable GRO on hosts where TCP performance is
relevant.

Prerequisites

The host mainly processes UDP traffic.

The application does not use GRO.

The host does not use UDP tunnel protocols, such as VXLAN.

The host does not run virtual machines (VMs) or containers.

Procedure

1. Optional: Display the NetworkManager connection profiles:

nmcli connection show
NAME UUID TYPE DEVICE
example f2f33f29-bb5c-3a07-9069-be72eaec3ecf ethernet enp1s0

2. Disable GRO support in the connection profile:

nmcli connection modify example ethtool.feature-gro off

3. Reactivate the connection profile:

nmcli connection up example

Verification

1. Verify that GRO is disabled:

ethtool -k enp1s0 | grep generic-receive-offload
generic-receive-offload: off

2. Monitor the throughput on the server. Re-enable GRO in the NetworkManager profile if the
setting has negative side effects to other applications on the host.

Additional resources

Improve UDP performance in RHEL 8.5

34.10. TUNING THE DEVICE DRIVER AND NIC

In RHEL, kernel modules provide drivers for network interface controllers (NICs). These modules



CHAPTER 34. TUNING THE NETWORK PERFORMANCE

275

https://developers.redhat.com/articles/2021/11/05/improve-udp-performance-rhel-85

support parameters to tune and optimize the device driver and the NIC. For example, if the driver
supports delaying the generation of receive interrupts, you can reduce the value of the corresponding
parameter to avoid running out of receive descriptors.

NOTE

Not all modules support custom parameters, and the features depend on the hardware,
as well as the driver and firmware version.

34.10.1. Configuring custom NIC driver parameters

Many kernel modules support setting parameters to tune the driver and the network interface controller
(NIC). You can customize the settings according to the hardware and the driver.

IMPORTANT

If you set parameters on a kernel module, RHEL applies these settings to all devices that
use this driver.

Prerequisites

A NIC is installed in the host.

The kernel module that provides the driver for the NIC supports the required tuning feature.

You are logged in locally or using a network interface that is different from the one that uses the
driver for which you want to change the parameters.

Procedure

1. Identify the driver:

ethtool -i enp0s31f6
driver: e1000e
version: ...
firmware-version: ...
...

Note that certain features can require a specific driver and firmware version.

2. Display the available parameters of the kernel module:

modinfo -p e1000e
...
SmartPowerDownEnable:Enable PHY smart power down (array of int)
parm:RxIntDelay:Receive Interrupt Delay (array of int)

For further details on the parameters, see the kernel module’s documentation. For modules in
RHEL, see the documentation in the /usr/share/doc/kernel-
doc-<version>/Documentation/networking/device_drivers/ directory that is provided by the
kernel-doc package.

3. Create the /etc/modprobe.d/nic-parameters.conf file and specify the parameters for the
module:

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

276

options <module_name> <parameter1>=<value> <parameter2>=<value>

For example, to enable the port power saving mechanism and set the generation of receive
interrupts to 4 units, enter:

options e1000e SmartPowerDownEnable=1 RxIntDelay=4

4. Unload the module:

modprobe -r e1000e

WARNING

Unloading a module that an active network interface uses, immediately
terminates the connection and you can lock yourself out of the server.

5. Load the module:

modprobe e1000e

6. Reactivate the network connections:

nmcli connection up <profile_name>

Verification

1. Display the kernel messages:

dmesg
...
[35309.225765] e1000e 0000:00:1f.6: Transmit Interrupt Delay set to 16
[35309.225769] e1000e 0000:00:1f.6: PHY Smart Power Down Enabled
...

Note that not all modules log parameter settings to the kernel ring buffer.

2. Certain kernel modules create files for each module parameter in the
/sys/module/<driver>/parameters/ directory. Each of these files contain the current value of
this parameter. You can display these files to verify a setting:

cat /sys/module/<driver_name>/parameters/<parameter_name>

34.11. CONFIGURING NETWORK ADAPTER OFFLOAD SETTINGS

To reduce CPU load, certain network adapters use offloading features which move the network
processing load to the network interface controller (NIC). For example, with Encapsulating Security
Payload (ESP) offload, the NIC performs ESP operations to accelerate IPsec connections and reduce



CHAPTER 34. TUNING THE NETWORK PERFORMANCE

277

CPU load.

By default, most offloading features in Red Hat Enterprise Linux are enabled. Only disable them in the
following cases:

Temporarily disable offload features for troubleshooting purposes.

Permanently disable offload features when a specific feature negatively impacts your host.

If a performance-related offload feature is not enabled by default in a network driver, you can enable it
manually.

34.11.1. Temporarily setting an offload feature

If you expect that an offload feature causes problems or reduces the performance of your host, you can
attempt to narrow down the cause by temporarily enabling or disabling it, depending on its current state.

If you temporarily enable or disable an offload feature, it returns to its previous value on the next reboot.

Prerequisites

The network card supports offload features.

Procedure

1. Display the interface’s available offload features and their current state:

ethtool -k enp1s0
...
esp-hw-offload: on
ntuple-filters: off
rx-vlan-filter: off [fixed]
...

The output depends on the capabilities of the hardware and its driver. Note that you cannot
change the state of features that are flagged with [fixed].

2. Temporarily disable an offload feature:

ethtool -K <interface> <feature> [on|off]

For example, to temporarily disable IPsec Encapsulating Security Payload (ESP) offload on
the enp10s0u1 interface, enter:

ethtool -K enp10s0u1 esp-hw-offload off

For example, to temporarily enable accelerated Receive Flow Steering (aRFS) filtering on
the enp10s0u1 interface, enter:

ethtool -K enp10s0u1 ntuple-filters on

Verification

1. Display the states of the offload features:

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

278

ethtool -k enp1s0
...
esp-hw-offload: off
ntuple-filters: on
...

2. Test whether the problem you encountered before changing the offload feature still exists.

If the problem no longer exists after changing a specific offload feature:

i. Contact Red Hat Support and report the problem.

ii. Consider permanently setting the offload feature until a fix is available.

If the problem still exists after disabling a specific offload feature:

i. Reset the setting to its previous state by using the ethtool -K <interface> <feature>
[on|off] command.

ii. Enable or disable a different offload feature to narrow down the problem.

Additional resources

ethtool(8) man page

34.11.2. Permanently setting an offload feature

If you have identified a specific offload feature that limits the performance on your host, you can
permanently enable or disable it, depending on its current state.

If you permanently enable or disable an offload feature, NetworkManager ensures that the feature still
has this state after a reboot.

Prerequisites

You identified a specific offload feature to limit the performance on your host.

Procedure

1. Identify the connection profile that uses the network interface on which you want to change the
state of the offload feature:

nmcli connection show
NAME UUID TYPE DEVICE
Example a5eb6490-cc20-3668-81f8-0314a27f3f75 ethernet enp1ss0
...

2. Permanently change the state of the offload feature:

nmcli connection modify <connection_name> <feature> [on|off]

For example, to permanently disable IPsec Encapsulating Security Payload (ESP) offload in
the Example connection profile, enter:

nmcli connection modify Example ethtool.feature-esp-hw-offload off

CHAPTER 34. TUNING THE NETWORK PERFORMANCE

279

https://access.redhat.com/support

For example, to permanently enable accelerated Receive Flow Steering (aRFS) filtering in
the Example connection profile, enter:

nmcli connection modify Example ethtool.feature-ntuple on

3. Reactivate the connection profile:

nmcli connection up Example

Verification

Display the output states of the offload features:

ethtool -k enp1s0
...
esp-hw-offload: off
ntuple-filters: on
...

Additional resources

nm-settings-nmcli(5) man page

34.12. TUNING INTERRUPT COALESCENCE SETTINGS

Interrupt coalescence is a mechanism for reducing the number of interrupts generated by a network
card. Generally, fewer interrupts can enhance the latency and overall performance of your network.

Tuning the interrupt coalescence settings involves adjusting the parameters that control:

The number of packets that are combined into a single interrupt.

The delay before generating an interrupt.

IMPORTANT

The optimal coalescence settings depend on the specific network conditions and
hardware in use. Therefore, it might take several attempts to find the settings that work
best for your environment and needs.

34.12.1. Optimizing RHEL for latency or throughput-sensitive services

The goal of coalesce tuning is to minimize the number of interrupts required for a given workload. In
high-throughput situations, the goal is to have as few interrupts as possible while maintaining a high data
rate. In low-latency situations, more interrupts can be used to handle traffic quickly.

You can adjust the settings on your network card to increase or decrease the number of packets that
are combined into a single interrupt. As a result, you can achieve improved throughput or latency for
your traffic.

Procedure

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

280

1. Identify the network interface that is experiencing the bottleneck:

ethtool -S enp1s0
NIC statistics:
 rx_packets: 1234
 tx_packets: 5678
 rx_bytes: 12345678
 tx_bytes: 87654321
 rx_errors: 0
 tx_errors: 0
 rx_missed: 0
 tx_dropped: 0
 coalesced_pkts: 0
 coalesced_events: 0
 coalesced_aborts: 0

Identify the packet counters containing "drop", "discard", or "error" in their name. These
particular statistics measure the actual packet loss at the network interface card (NIC) packet
buffer, which can be caused by NIC coalescence.

2. Monitor values of packet counters you identified in the previous step.
Compare them to the expected values for your network to determine whether any particular
interface experiences a bottleneck. Some common signs of a network bottleneck include, but
are not limited to:

Many errors on a network interface

High packet loss

Heavy usage of the network interface

NOTE

Other important factors are for example CPU usage, memory usage, and disk
I/O when identifying a network bottleneck.

3. View the current coalescence settings:

ethtool enp1s0
Settings for enp1s0:
 Supported ports: [TP]
 Supported link modes: 10baseT/Half 10baseT/Full
 100baseT/Half 100baseT/Full
 1000baseT/Full
 Supported pause frame use: No
 Supports auto-negotiation: Yes
 Advertised link modes: 10baseT/Half 10baseT/Full
 100baseT/Half 100baseT/Full
 1000baseT/Full
 Advertised pause frame use: No
 Advertised auto-negotiation: Yes
 Speed: 1000Mb/s
 Duplex: Full
 Port: Twisted Pair
 PHYAD: 0

CHAPTER 34. TUNING THE NETWORK PERFORMANCE

281

 Transceiver: internal
 Auto-negotiation: on
 MDI-X: Unknown
 Supports Wake-on: g
 Wake-on: g
 Current message level: 0x00000033 (51)
 drv probe link
 Link detected: yes

In this output, monitor the Speed and Duplex fields. These fields display information about the
network interface operation and whether it is running at its expected values.

4. Check the current interrupt coalescence settings:

ethtool -c enp1s0
Coalesce parameters for enp1s0:
 Adaptive RX: off
 Adaptive TX: off
 RX usecs: 100
 RX frames: 8
 RX usecs irq: 100
 RX frames irq: 8
 TX usecs: 100
 TX frames: 8
 TX usecs irq: 100
 TX frames irq: 8

The usecs values refer to the number of microseconds that the receiver or transmitter
waits before generating an interrupt.

The frames values refer to the number of frames that the receiver or transmitter waits
before generating an interrupt.

The irq values are used to configure the interrupt moderation when the network interface is
already handling an interrupt.

NOTE

Not all network interface cards support reporting and changing all values
from the example output.

The Adaptive RX/TX value represents the adaptive interrupt coalescence mechanism,
which adjusts the interrupt coalescence settings dynamically. Based on the packet
conditions, the NIC driver auto-calculates coalesce values when Adaptive RX/TX are
enabled (the algorithm differs for every NIC driver).

5. Modify the coalescence settings as needed. For example:

While ethtool.coalesce-adaptive-rx is disabled, configure ethtool.coalesce-rx-usecs to
set the delay before generating an interrupt to 100 microseconds for the RX packets:

nmcli connection modify enp1s0 ethtool.coalesce-rx-usecs 100

Enable ethtool.coalesce-adaptive-rx while ethtool.coalesce-rx-usecs is set to its default
value:

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

282

nmcli connection modify enp1s0 ethtool.coalesce-adaptive-rx on

Modify the Adaptive-RX setting as follows:

Users concerned with low latency (sub-50us) should not enable Adaptive-RX.

Users concerned with throughput can probably enable Adaptive-RX with no harm. If
they do not want to use the adaptive interrupt coalescence mechanism, they can try
setting large values like 100us, or 250us to ethtool.coalesce-rx-usecs.

Users unsure about their needs should not modify this setting until an issue occurs.

6. Re-activate the connection:

nmcli connection up enp1s0

Verification steps

Monitor the network performance and check for dropped packets:

ethtool -S enp1s0
NIC statistics:
 rx_packets: 1234
 tx_packets: 5678
 rx_bytes: 12345678
 tx_bytes: 87654321
 rx_errors: 0
 tx_errors: 0
 rx_missed: 0
 tx_dropped: 0
 coalesced_pkts: 12
 coalesced_events: 34
 coalesced_aborts: 56
...

The value of the rx_errors, rx_dropped, tx_errors, and tx_dropped fields should be 0 or close
to it (up to few hundreds, depending on the network traffic and system resources). A high value
in these fields indicates a network problem. Your counters can have different names. Closely
monitor packet counters containing "drop", "discard", or "error" in their name.

The value of the rx_packets, tx_packets, rx_bytes, and tx_bytes should increase over time. If
the values do not increase, there might be a network problem. The packet counters can have
different names, depending on your NIC driver.

IMPORTANT

The ethtool command output can vary depending on the NIC and driver in use.

Users with focus on extremely low latency can use application-level metrics or the kernel packet
time-stamping API for their monitoring purposes.

Additional resources

Initial investigation for any performance issue

CHAPTER 34. TUNING THE NETWORK PERFORMANCE

283

https://access.redhat.com/articles/1162133

What are the kernel parameters available for network tuning?

How to make NIC ethtool settings persistent (apply automatically at boot)

Timestamping

34.13. BENEFITS OF TCP TIMESTAMPS

TCP Timestamps are optional information in the TCP header and an extension of the TCP protocol. By
default, TCP Timestamps are enabled in Red Hat Enterprise Linux, and the kernel uses TCP
Timestamps to better estimate the round trip time (RTT) in TCP connections. This results in more
accurate TCP window and buffer calculations.

Additionally, TCP Timestamps provide an alternative method to determine the age and order of a
segment, and protect against wrapped sequence numbers. TCP packet headers record the sequence
number in a 32-bit field. On a 10 Gbps connection, the value of this field can wrap after 1.7 seconds.
Without TCP Timestamps, the receiver could not determine whether a segment with a wrapped
sequence number is a new segment or an old duplicate. With TCP Timestamps, however, the receiver
can make the correct choice to receive or discard the segment. Therefore, enabling TCP Timestamps on
systems with fast network interfaces is essential.

The net.ipv4.tcp_timestamps kernel parameter can have one of the following values:

0: TCP Timestamps are disabled.

1: TCP Timestamps are enabled (default).

2: TCP Timestamps are enabled but without random offsets.

IMPORTANT

Without random offsets for each connection, it is possible to approximately
determine the host’s uptime and fingerprint and use this information in attacks.

By default, TCP Timestamps are enabled in Red Hat Enterprise Linux and use random offsets for each
connection instead of only storing the current time:

sysctl net.ipv4.tcp_timestamps
net.ipv4.tcp_timestamps = 1

If the net.ipv4.tcp_timestamps parameter has a different value than the default (1), revert the setting
in the same way as you set it.

Additional resources

RFC 1323: TCP Extensions for High Performance

34.14. FLOW CONTROL FOR ETHERNET NETWORKS

On an Ethernet link, continuous data transmission between a network interface and a switch port can
lead to full buffer capacity. Full buffer capacity results in network congestion. In this case, when the
sender transmits data at a higher rate than the processing capacity of the receiver, packet loss can
occur due to the lower data processing capacity of a network interface on the other end of the link
which is a switch port.

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

284

https://access.redhat.com/solutions/108513
https://access.redhat.com/solutions/2127401
https://www.kernel.org/doc/html/latest/networking/timestamping.html
https://www.rfc-editor.org/rfc/rfc1323

The flow control mechanism manages data transmission across the Ethernet link where each sender and
receiver has different sending and receiving capacities. To avoid packet loss, the Ethernet flow control
mechanism temporarily suspends the packet transmission to manage a higher transmission rate from a
switch port. Note that routers do not forward pause frames beyond a switch port.

When receive (RX) buffers become full, a receiver sends pause frames to the transmitter. The
transmitter then stops data transmission for a short sub-second time frame, while continuing to buffer
incoming data during this pause period. This duration provides enough time for the receiver to empty its
interface buffers and prevent buffer overflow.

NOTE

Either end of the Ethernet link can send pause frames to another end. If the receive
buffers of a network interface are full, the network interface will send pause frames to the
switch port. Similarly, when the receive buffers of a switch port are full, the switch port
sends pause frames to the network interface.

By default, most of the network drivers in Red Hat Enterprise Linux have pause frame support enabled.
To display the current settings of a network interface, enter:

ethtool --show-pause enp1s0
Pause parameters for enp1s0:
...
RX: on
TX: on
...

Verify with your switch vendor to confirm if your switch supports pause frames.

Additional resources

ethtool(8) man page

What is network link flow control and how does it work in Red Hat Enterprise Linux?

CHAPTER 34. TUNING THE NETWORK PERFORMANCE

285

https://access.redhat.com/solutions/68817

CHAPTER 35. CONFIGURING AN OPERATING SYSTEM TO
OPTIMIZE MEMORY ACCESS

You can configure the operating system to optimize memory access across workloads with the tools
that are included in RHEL

35.1. TOOLS FOR MONITORING AND DIAGNOSING SYSTEM MEMORY
ISSUES

The following tools are available in Red Hat Enterprise Linux 8 for monitoring system performance and
diagnosing performance problems related to system memory:

vmstat tool, provided by the procps-ng package, displays reports of a system’s processes,
memory, paging, block I/O, traps, disks, and CPU activity. It provides an instantaneous report of
the average of these events since the machine was last turned on, or since the previous report.

valgrind framework provides instrumentation to user-space binaries. Install this tool, using the
yum install valgrind command. It includes a number of tools, that you can use to profile and
analyze program performance, such as:

memcheck option is the default valgrind tool. It detects and reports on a number of
memory errors that can be difficult to detect and diagnose, such as:

Memory access that should not occur

Undefined or uninitialized value use

Incorrectly freed heap memory

Pointer overlap

Memory leaks

NOTE

Memcheck can only report these errors, it cannot prevent them from
occurring. However, memcheck logs an error message immediately
before the error occurs.

cachegrind option simulates application interaction with a system’s cache hierarchy and
branch predictor. It gathers statistics for the duration of application’s execution and outputs
a summary to the console.

massif option measures the heap space used by a specified application. It measures both
useful space and any additional space allocated for bookkeeping and alignment purposes.

Additional resources

vmstat(8) and valgrind(1) man pages

/usr/share/doc/valgrind-version/valgrind_manual.pdf file

35.2. OVERVIEW OF A SYSTEM’S MEMORY

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

286

The Linux Kernel is designed to maximize the utilization of a system’s memory resources (RAM). Due to
these design characteristics, and depending on the memory requirements of the workload, part of the
system’s memory is in use within the kernel on behalf of the workload, while a small part of the memory is
free. This free memory is reserved for special system allocations, and for other low or high priority
system services.

The rest of the system’s memory is dedicated to the workload itself, and divided into the following two
categories:

File memory

Pages added in this category represent parts of files in permanent storage. These pages, from the
page cache, can be mapped or unmapped in an application’s address spaces. You can use
applications to map files into their address space using the mmap system calls, or to operate on files
via the buffered I/O read or write system calls.
Buffered I/O system calls, as well as applications that map pages directly, can re-utilize unmapped
pages. As a result, these pages are stored in the cache by the kernel, especially when the system is
not running any memory intensive tasks, to avoid re-issuing costly I/O operations over the same set
of pages.

Anonymous memory

Pages in this category are in use by a dynamically allocated process, or are not related to files in
permanent storage. This set of pages back up the in-memory control structures of each task, such as
the application stack and heap areas.

Figure 35.1. Memory usage patterns

35.3. VIRTUAL MEMORY PARAMETERS

The virtual memory parameters are listed in the /proc/sys/vm directory.

The following are the available virtual memory parameters:

vm.dirty_ratio

Is a percentage value. When this percentage of the total system memory is modified, the system
begins writing the modifications to the disk with the pdflush operation. The default value is 20
percent.

vm.dirty_background_ratio

A percentage value. When this percentage of total system memory is modified, the system begins
writing the modifications to the disk in the background. The default value is 10 percent.

vm.overcommit_memory

Defines the conditions that determine whether a large memory request is accepted or denied.The

CHAPTER 35. CONFIGURING AN OPERATING SYSTEM TO OPTIMIZE MEMORY ACCESS

287

Defines the conditions that determine whether a large memory request is accepted or denied.The
default value is 0.
By default, the kernel performs checks if a virtual memory allocation request fits into the present
amount of memory (total + swap) and rejects only large requests. Otherwise virtual memory
allocations are granted, and this means they allow memory overcommitment.

Setting the overcommit_memory parameter’s value:

When this parameter is set to 1, the kernel performs no memory overcommit handling. This
increases the possibility of memory overload, but improves performance for memory-
intensive tasks.

When this parameter is set to 2, the kernel denies requests for memory equal to or larger
than the sum of the total available swap space and the percentage of physical RAM specified
in the overcommit_ratio. This reduces the risk of overcommitting memory, but is
recommended only for systems with swap areas larger than their physical memory.

vm.overcommit_ratio

Specifies the percentage of physical RAM considered when overcommit_memory is set to 2. The
default value is 50.

vm.max_map_count

Defines the maximum number of memory map areas that a process can use. The default value is
65530. Increase this value if your application needs more memory map areas.

vm.min_free_kbytes

Sets the size of the reserved free pages pool. It is also responsible for setting the min_page,
low_page, and high_page thresholds that govern the behavior of the Linux kernel’s page reclaim
algorithms. It also specifies the minimum number of kilobytes to keep free across the system. This
calculates a specific value for each low memory zone, each of which is assigned a number of reserved
free pages in proportion to their size.
Setting the vm.min_free_kbytes parameter’s value:

Increasing the parameter value effectively reduces the application working set usable
memory. Therefore, you might want to use it for only kernel-driven workloads, where driver
buffers need to be allocated in atomic contexts.

Decreasing the parameter value might render the kernel unable to service system requests,
if memory becomes heavily contended in the system.

WARNING

Extreme values can be detrimental to the system’s performance. Setting
the vm.min_free_kbytes to an extremely low value prevents the system
from reclaiming memory effectively, which can result in system crashes
and failure to service interrupts or other kernel services. However,
setting vm.min_free_kbytes too high considerably increases system
reclaim activity, causing allocation latency due to a false direct reclaim
state. This might cause the system to enter an out-of-memory state
immediately.

The vm.min_free_kbytes parameter also sets a page reclaim watermark, called min_pages.



Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

288

The vm.min_free_kbytes parameter also sets a page reclaim watermark, called min_pages.
This watermark is used as a factor when determining the two other memory watermarks,
low_pages, and high_pages, that govern page reclaim algorithms.

/proc/PID/oom_adj

In the event that a system runs out of memory, and the panic_on_oom parameter is set to 0, the
oom_killer function kills processes, starting with the process that has the highest oom_score, until
the system recovers.
The oom_adj parameter determines the oom_score of a process. This parameter is set per process
identifier. A value of -17 disables the oom_killer for that process. Other valid values range from -16
to 15.

NOTE

Processes created by an adjusted process inherit the oom_score of that process.

vm.swappiness

The swappiness value, ranging from 0 to 200, controls the degree to which the system favors
reclaiming memory from the anonymous memory pool, or the page cache memory pool.
Setting the swappiness parameter’s value:

Higher values favor file-mapped driven workloads while swapping out the less actively
accessed processes’ anonymous mapped memory of RAM. This is useful for file-servers or
streaming applications that depend on data, from files in the storage, to reside on memory to
reduce I/O latency for the service requests.

Low values favor anonymous-mapped driven workloads while reclaiming the page cache (file
mapped memory). This setting is useful for applications that do not depend heavily on the
file system information, and heavily utilize dynamically allocated and private memory, such as
mathematical and number crunching applications, and few hardware virtualization
supervisors like QEMU.
The default value of the vm.swappiness parameter is 60.

CHAPTER 35. CONFIGURING AN OPERATING SYSTEM TO OPTIMIZE MEMORY ACCESS

289

WARNING

Setting the vm.swappiness to 0 aggressively avoids swapping
anonymous memory out to a disk, this increases the risk of processes
being killed by the oom_killer function when under memory or I/O
intensive workloads.

If you are using cgroupsV1, the per-cgroup swappiness value
exclusive to cgroupsV1 will result in the system-wide swappiness
configured by the vm.swappiness parameter having little-to-no
effect on the swap behavior of the system. This issue might lead to
unexpected and inconsistent swap behavior.
In such cases, consider using the
vm.force_cgroup_v2_swappiness parameter.

For more information, see the Premature swapping with
swappiness=0 while there is still plenty of pagecache to be
reclaimed KCS solution.

force_cgroup_v2_swappiness

This control is used to deprecate the per-cgroup swappiness value available only in cgroupsV1. Most
of all system and user processes are run within a cgroup. Cgroup swappiness values default to 60.
This can lead to effects where systems swappiness value has little effect on the swap behavior of
their system. If a user does not care about the per-cgroup swappiness feature they can configure
their system with force_cgroup_v2_swappiness=1 to have more consistent swappiness behavior
across their whole system.

Additional resources

sysctl(8) man page

Setting memory-related kernel parameters

35.4. FILE SYSTEM PARAMETERS

The file system parameters are listed in the /proc/sys/fs directory. The following are the available file
system parameters:

aio-max-nr

Defines the maximum allowed number of events in all active asynchronous input/output contexts.
The default value is 65536, and modifying this value does not pre-allocate or resize any kernel data
structures.

file-max

Determines the maximum number of file handles for the entire system. The default value on Red Hat
Enterprise Linux 8 is either 8192 or one tenth of the free memory pages available at the time the
kernel starts, whichever is higher.
Raising this value can resolve errors caused by a lack of available file handles.

Additional resources



Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

290

https://access.redhat.com/solutions/6785021
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/monitoring_and_managing_system_status_and_performance/index#setting-memory-related-kernel-parameters_configuring-an-operating-system-to-optimize-memory-access

Additional resources

sysctl(8) man page

35.5. KERNEL PARAMETERS

The default values for the kernel parameters are located in the /proc/sys/kernel/ directory. These are
set default values provided by the kernel or values specified by a user via sysctl.

The following are the available kernel parameters used to set up limits for the msg* and shm* System V
IPC (sysvipc) system calls:

msgmax

Defines the maximum allowed size in bytes of any single message in a message queue. This value
must not exceed the size of the queue (msgmnb). Use the sysctl msgmax command to determine
the current msgmax value on your system.

msgmnb

Defines the maximum size in bytes of a single message queue. Use the sysctl msgmnb command to
determine the current msgmnb value on your system.

msgmni

Defines the maximum number of message queue identifiers, and therefore the maximum number of
queues. Use the sysctl msgmni command to determine the current msgmni value on your system.

shmall

Defines the total amount of shared memory pages that can be used on the system at one time. For
example, a page is 4096 bytes on the AMD64 and Intel 64 architecture. Use the sysctl shmall
command to determine the current shmall value on your system.

shmmax

Defines the maximum size in bytes of a single shared memory segment allowed by the kernel. Shared
memory segments up to 1Gb are now supported in the kernel. Use the sysctl shmmax command to
determine the current shmmax value on your system.

shmmni

Defines the system-wide maximum number of shared memory segments. The default value is 4096
on all systems.

Additional resources

sysvipc(7) and sysctl(8) man pages

35.6. SETTING MEMORY-RELATED KERNEL PARAMETERS

Setting a parameter temporarily is useful for determining the effect the parameter has on a system. You
can later set the parameter persistently when you are sure that the parameter value has the desired
effect.

This procedure describes how to set a memory-related kernel parameter temporarily and persistently.

Procedure

To temporarily set the memory-related kernel parameters, edit the respective files in the /proc
file system or the sysctl tool.
For example, to temporarily set the vm.overcommit_memory parameter to 1:

CHAPTER 35. CONFIGURING AN OPERATING SYSTEM TO OPTIMIZE MEMORY ACCESS

291

echo 1 > /proc/sys/vm/overcommit_memory
sysctl -w vm.overcommit_memory=1

To persistently set the memory-related kernel parameter, edit the /etc/sysctl.conf file and
reload the settings.
For example, to persistently set the vm.overcommit_memory parameter to 1:

Add the following content in the /etc/sysctl.conf file:

vm.overcommit_memory=1

Reload the sysctl settings from the /etc/sysctl.conf file:

sysctl -p

Additional resources

sysctl(8) man page

proc(5) man page

Additional resources

Tuning Red Hat Enterprise Linux for IBM DB2

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

292

https://access.redhat.com/solutions/3530941

CHAPTER 36. CONFIGURING HUGE PAGES
Physical memory is managed in fixed-size chunks called pages. On the x86_64 architecture, supported
by Red Hat Enterprise Linux 8, the default size of a memory page is 4 KB. This default page size has
proved to be suitable for general-purpose operating systems, such as Red Hat Enterprise Linux, which
supports many different kinds of workloads.

However, specific applications can benefit from using larger page sizes in certain cases. For example, an
application that works with a large and relatively fixed data set of hundreds of megabytes or even
dozens of gigabytes can have performance issues when using 4 KB pages. Such data sets can require a
huge amount of 4 KB pages, which can lead to overhead in the operating system and the CPU.

This section provides information about huge pages available in RHEL 8 and how you can configure
them.

36.1. AVAILABLE HUGE PAGE FEATURES

With Red Hat Enterprise Linux 8, you can use huge pages for applications that work with big data sets,
and improve the performance of such applications.

The following are the huge page methods, which are supported in RHEL 8:

HugeTLB pages

HugeTLB pages are also called static huge pages. There are two ways of reserving HugeTLB pages:

At boot time: It increases the possibility of success because the memory has not yet been
significantly fragmented. However, on NUMA machines, the number of pages is automatically
split among the NUMA nodes.

For more information about parameters that influence HugeTLB page behavior at boot time, see
Parameters for reserving HugeTLB pages at boot time and how to use these parameters to configure
HugeTLB pages at boot time, see Configuring HugeTLB at boot time.

At run time: It allows you to reserve the huge pages per NUMA node. If the run-time reservation
is done as early as possible in the boot process, the probability of memory fragmentation is
lower.

For more information about parameters that influence HugeTLB page behavior at run time, see
Parameters for reserving HugeTLB pages at run time and how to use these parameters to configure
HugeTLB pages at run time, see Configuring HugeTLB at run time .

Transparent HugePages (THP)

With THP, the kernel automatically assigns huge pages to processes, and therefore there is no need
to manually reserve the static huge pages. The following are the two modes of operation in THP:

system-wide: Here, the kernel tries to assign huge pages to a process whenever it is possible
to allocate the huge pages and the process is using a large contiguous virtual memory area.

per-process: Here, the kernel only assigns huge pages to the memory areas of individual
processes which you can specify using the madvise() system call.

NOTE

The THP feature only supports 2 MB pages.

CHAPTER 36. CONFIGURING HUGE PAGES

293

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/monitoring_and_managing_system_status_and_performance/configuring-huge-pages_monitoring-and-managing-system-status-and-performance#parameters-for-reserving-hugetlb-pages-at-boot-time_configuring-huge-pages
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/monitoring_and_managing_system_status_and_performance/configuring-huge-pages_monitoring-and-managing-system-status-and-performance#configuring-hugetlb-at-boot-time_configuring-huge-pages
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/monitoring_and_managing_system_status_and_performance/configuring-huge-pages_monitoring-and-managing-system-status-and-performance#parameters-for-reserving-hugetlb-pages-at-run-time_configuring-huge-pages
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/monitoring_and_managing_system_status_and_performance/configuring-huge-pages_monitoring-and-managing-system-status-and-performance#configuring-hugetlb-at-run-time_configuring-huge-pages

For more information about parameters that influence HugeTLB page behavior at boot time, see
Enabling transparent hugepages and Disabling transparent hugepages.

36.2. PARAMETERS FOR RESERVING HUGETLB PAGES AT BOOT TIME

Use the following parameters to influence HugeTLB page behavior at boot time.

For more infomration on how to use these parameters to configure HugeTLB pages at boot time, see
Configuring HugeTLB at boot time.

Table 36.1. Parameters used to configure HugeTLB pages at boot time

Parameter Description Default value

hugepages Defines the number of persistent
huge pages configured in the
kernel at boot time.

In a NUMA system, huge pages,
that have this parameter defined,
are divided equally between
nodes.

You can assign huge pages to
specific nodes at runtime by
changing the value of the nodes
in the
/sys/devices/system/node/no
de_id/hugepages/hugepages
-size/nr_hugepages file.

The default value is 0.

To update this value at boot,
change the value of this
parameter in the
/proc/sys/vm/nr_hugepages
file.

hugepagesz Defines the size of persistent
huge pages configured in the
kernel at boot time.

Valid values are 2 MB and 1 GB.
The default value is 2 MB.

default_hugepagesz Defines the default size of
persistent huge pages configured
in the kernel at boot time.

Valid values are 2 MB and 1 GB.
The default value is 2 MB.

36.3. CONFIGURING HUGETLB AT BOOT TIME

The page size, which the HugeTLB subsystem supports, depends on the architecture. The x86_64
architecture supports 2 MB huge pages and 1 GB gigantic pages.

This procedure describes how to reserve a 1 GB page at boot time.

Procedure

1. To create a HugeTLB pool for 1 GB pages, enable the default_hugepagesz=1G and
hugepagesz=1G kernel options:

grubby --update-kernel=ALL --args="default_hugepagesz=1G hugepagesz=1G"

2. Create a new file called hugetlb-gigantic-pages.service in the /usr/lib/systemd/system/

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

294

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/monitoring_and_managing_system_status_and_performance/configuring-huge-pages_monitoring-and-managing-system-status-and-performance#enabling-transparent-hugepages_configuring-huge-pages
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/monitoring_and_managing_system_status_and_performance/configuring-huge-pages_monitoring-and-managing-system-status-and-performance#disabling-transparent-hugepages_configuring-huge-pages
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/monitoring_and_managing_system_status_and_performance/configuring-huge-pages_monitoring-and-managing-system-status-and-performance#configuring-hugetlb-at-boot-time_configuring-huge-pages

2. Create a new file called hugetlb-gigantic-pages.service in the /usr/lib/systemd/system/
directory and add the following content:

[Unit]
Description=HugeTLB Gigantic Pages Reservation
DefaultDependencies=no
Before=dev-hugepages.mount
ConditionPathExists=/sys/devices/system/node
ConditionKernelCommandLine=hugepagesz=1G

[Service]
Type=oneshot
RemainAfterExit=yes
ExecStart=/usr/lib/systemd/hugetlb-reserve-pages.sh

[Install]
WantedBy=sysinit.target

3. Create a new file called hugetlb-reserve-pages.sh in the /usr/lib/systemd/ directory and add
the following content:
While adding the following content, replace number_of_pages with the number of 1GB pages
you want to reserve, and node with the name of the node on which to reserve these pages.

#!/bin/sh

nodes_path=/sys/devices/system/node/
if [! -d $nodes_path]; then
 echo "ERROR: $nodes_path does not exist"
 exit 1
fi

reserve_pages()
{
 echo $1 > $nodes_path/$2/hugepages/hugepages-1048576kB/nr_hugepages
}

reserve_pages number_of_pages node

For example, to reserve two 1 GB pages on node0 and one 1GB page on node1, replace the
number_of_pages with 2 for node0 and 1 for node1:

reserve_pages 2 node0
reserve_pages 1 node1

4. Create an executable script:

chmod +x /usr/lib/systemd/hugetlb-reserve-pages.sh

5. Enable early boot reservation:

systemctl enable hugetlb-gigantic-pages

NOTE

CHAPTER 36. CONFIGURING HUGE PAGES

295

NOTE

You can try reserving more 1 GB pages at runtime by writing to nr_hugepages
at any time. However, to prevent failures due to memory fragmentation, reserve
1 GB pages early during the boot process.

Reserving static huge pages can effectively reduce the amount of memory
available to the system, and prevents it from properly utilizing its full memory
capacity. Although a properly sized pool of reserved huge pages can be
beneficial to applications that utilize it, an oversized or unused pool of reserved
huge pages will eventually be detrimental to overall system performance. When
setting a reserved huge page pool, ensure that the system can properly utilize its
full memory capacity.

Additional resources

systemd.service(5) man page

/usr/share/doc/kernel-doc-kernel_version/Documentation/vm/hugetlbpage.txt file

36.4. PARAMETERS FOR RESERVING HUGETLB PAGES AT RUN TIME

Use the following parameters to influence HugeTLB page behavior at run time.

For more information about how to use these parameters to configure HugeTLB pages at run time, see
Configuring HugeTLB at run time .

Table 36.2. Parameters used to configure HugeTLB pages at run time

Parameter Description File name

nr_hugepages Defines the number of huge
pages of a specified size assigned
to a specified NUMA node.

/sys/devices/system/node/no
de_id/hugepages/hugepages
-size/nr_hugepages

nr_overcommit_hugepages Defines the maximum number of
additional huge pages that can be
created and used by the system
through overcommitting memory.

Writing any non-zero value into
this file indicates that the system
obtains that number of huge
pages from the kernel’s normal
page pool if the persistent huge
page pool is exhausted. As these
surplus huge pages become
unused, they are then freed and
returned to the kernel’s normal
page pool.

/proc/sys/vm/nr_overcommit
_hugepages

36.5. CONFIGURING HUGETLB AT RUN TIME

This procedure describes how to add 20 2048 kB huge pages to node2.

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

296

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/monitoring_and_managing_system_status_and_performance/configuring-huge-pages_monitoring-and-managing-system-status-and-performance#configuring-hugetlb-at-run-time_configuring-huge-pages

To reserve pages based on your requirements, replace:

20 with the number of huge pages you wish to reserve,

2048kB with the size of the huge pages,

node2 with the node on which you wish to reserve the pages.

Procedure

1. Display the memory statistics:

numastat -cm | egrep 'Node|Huge'
 Node 0 Node 1 Node 2 Node 3 Total add
AnonHugePages 0 2 0 8 10
HugePages_Total 0 0 0 0 0
HugePages_Free 0 0 0 0 0
HugePages_Surp 0 0 0 0 0

2. Add the number of huge pages of a specified size to the node:

echo 20 > /sys/devices/system/node/node2/hugepages/hugepages-2048kB/nr_hugepages

Verification steps

Ensure that the number of huge pages are added:

numastat -cm | egrep 'Node|Huge'
 Node 0 Node 1 Node 2 Node 3 Total
AnonHugePages 0 2 0 8 10
HugePages_Total 0 0 40 0 40
HugePages_Free 0 0 40 0 40
HugePages_Surp 0 0 0 0 0

Additional resources

numastat(8) man page

36.6. ENABLING TRANSPARENT HUGEPAGES

THP is enabled by default in Red Hat Enterprise Linux 8. However, you can enable or disable THP.

This procedure describes how to enable THP.

Procedure

1. Check the current status of THP:

cat /sys/kernel/mm/transparent_hugepage/enabled

2. Enable THP:

echo always > /sys/kernel/mm/transparent_hugepage/enabled

CHAPTER 36. CONFIGURING HUGE PAGES

297

3. To prevent applications from allocating more memory resources than necessary, disable the
system-wide transparent huge pages and only enable them for the applications that explicitly
request it through the madvise:

echo madvise > /sys/kernel/mm/transparent_hugepage/enabled

NOTE

Sometimes, providing low latency to short-lived allocations has higher priority than
immediately achieving the best performance with long-lived allocations. In such cases,
you can disable direct compaction while leaving THP enabled.

Direct compaction is a synchronous memory compaction during the huge page allocation.
Disabling direct compaction provides no guarantee of saving memory, but can decrease
the risk of higher latencies during frequent page faults. Note that if the workload benefits
significantly from THP, the performance decreases. Disable direct compaction:

echo madvise > /sys/kernel/mm/transparent_hugepage/defrag

Additional resources

madvise(2) man page

Disabling transparent hugepages.

36.7. DISABLING TRANSPARENT HUGEPAGES

THP is enabled by default in Red Hat Enterprise Linux 8. However, you can enable or disable THP.

This procedure describes how to disable THP.

Procedure

1. Check the current status of THP:

cat /sys/kernel/mm/transparent_hugepage/enabled

2. Disable THP:

echo never > /sys/kernel/mm/transparent_hugepage/enabled

36.8. IMPACT OF PAGE SIZE ON TRANSLATION LOOKASIDE BUFFER
SIZE

Reading address mappings from the page table is time-consuming and resource-expensive, so CPUs
are built with a cache for recently-used addresses, called the Translation Lookaside Buffer (TLB).
However, the default TLB can only cache a certain number of address mappings.

If a requested address mapping is not in the TLB, called a TLB miss, the system still needs to read the
page table to determine the physical to virtual address mapping. Because of the relationship between
application memory requirements and the size of pages used to cache address mappings, applications

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

298

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/monitoring_and_managing_system_status_and_performance/index#disabling-transparent-hugepages_configuring-huge-pages

with large memory requirements are more likely to suffer performance degradation from TLB misses
than applications with minimal memory requirements. It is therefore important to avoid TLB misses
wherever possible.

Both HugeTLB and Transparent Huge Page features allow applications to use pages larger than 4 KB.
This allows addresses stored in the TLB to reference more memory, which reduces TLB misses and
improves application performance.

CHAPTER 36. CONFIGURING HUGE PAGES

299

CHAPTER 37. GETTING STARTED WITH SYSTEMTAP
As a system administrator, you can use SystemTap to identify underlying causes of a bug or
performance problem on a running Linux system.

As an application developer, you can use SystemTap to monitor in fine detail how your application
behaves within the Linux system.

37.1. THE PURPOSE OF SYSTEMTAP

SystemTap is a tracing and probing tool that you can use to study and monitor the activities of your
operating system (particularly, the kernel) in fine detail. SystemTap provides information similar to the
output of tools such as netstat, ps, top, and iostat. However, SystemTap provides more filtering and
analysis options for collected information. In SystemTap scripts, you specify the information that
SystemTap gathers.

SystemTap aims to supplement the existing suite of Linux monitoring tools by providing users with the
infrastructure to track kernel activity and combining this capability with two attributes:

Flexibility

the SystemTap framework enables you to develop simple scripts for investigating and monitoring a
wide variety of kernel functions, system calls, and other events that occur in kernel space. With this,
SystemTap is not so much a tool as it is a system that allows you to develop your own kernel-specific
forensic and monitoring tools.

Ease-of-Use

SystemTap enables you to monitor kernel activity without having to recompile the kernel or reboot
the system.

37.2. INSTALLING SYSTEMTAP

To begin using SystemTap, install the required packages. To use SystemTap on more than one kernel
where a system has multiple kernels installed, install the corresponding required kernel packages for
each kernel version.

Prerequisites

You have enabled debug repositories as described in Enabling debug and source repositories.

Procedure

1. Install the required SystemTap packages:

yum install systemtap

2. Install the required kernel packages:

a. Using stap-prep:

stap-prep

b. If stap-prep does not work, install the required kernel packages manually:

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

300

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/developing_c_and_cpp_applications_in_rhel_8/setting-up-a-development-workstation_developing-applications#enabling-debug-and-source-repositories_setting-up-a-development-workstation

1

2

3

yum install kernel-debuginfo-$(uname -r) kernel-debuginfo-common-$(uname -i)-
$(uname -r) kernel-devel-$(uname -r)

$(uname -i) is automatically replaced with the hardware platform of your system and
$(uname -r) is automatically replaced with the version of your running kernel.

Verification steps

If the kernel to be probed with SystemTap is currently in use, test if your installation was
successful:

stap -v -e 'probe kernel.function("vfs_read") {printf("read performed\n"); exit()}'

A successful SystemTap deployment results in an output similar to the following:

Pass 1: parsed user script and 45 library script(s) in 340usr/0sys/358real ms.
Pass 2: analyzed script: 1 probe(s), 1 function(s), 0 embed(s), 0 global(s) in
290usr/260sys/568real ms.
Pass 3: translated to C into
"/tmp/stapiArgLX/stap_e5886fa50499994e6a87aacdc43cd392_399.c" in
490usr/430sys/938real ms.
Pass 4: compiled C into "stap_e5886fa50499994e6a87aacdc43cd392_399.ko" in
3310usr/430sys/3714real ms.
Pass 5: starting run. 1
read performed 2
Pass 5: run completed in 10usr/40sys/73real ms. 3

The last three lines of output (beginning with Pass 5) indicate that:

SystemTap successfully created the instrumentation to probe the kernel and ran the
instrumentation.

SystemTap detected the specified event (in this case, A VFS read).

SystemTap executed a valid handler (printed text and then closed it with no errors).

37.3. PRIVILEGES TO RUN SYSTEMTAP

Running SystemTap scripts requires elevated system privileges but, in some instances, non-privileged
users might need to run SystemTap instrumentation on their machine.

To allow users to run SystemTap without root access, add users to both of these user groups:

stapdev

Members of this group can use stap to run SystemTap scripts, or staprun to run SystemTap
instrumentation modules.
Running stap involves compiling SystemTap scripts into kernel modules and loading them into the
kernel. This requires elevated privileges to the system, which are granted to stapdev members.
Unfortunately, such privileges also grant effective root access to stapdev members. As such, only
grant stapdev group membership to users who can be trusted with root access.

stapusr

Members of this group can only use staprun to run SystemTap instrumentation modules. In addition,

CHAPTER 37. GETTING STARTED WITH SYSTEMTAP

301

Members of this group can only use staprun to run SystemTap instrumentation modules. In addition,
they can only run those modules from the /lib/modules/kernel_version/systemtap/ directory. This
directory must be owned only by the root user, and must only be writable by the root user.

37.4. RUNNING SYSTEMTAP SCRIPTS

You can run SystemTap scripts from standard input or from a file.

Sample scripts that are distributed with the installation of SystemTap can be found in the
/usr/share/systemtap/examples directory.

Prerequisites

1. SystemTap and the associated required kernel packages are installed as described in Installing
Systemtap.

2. To run SystemTap scripts as a normal user, add the user to the SystemTap groups:

usermod --append --groups
stapdev,stapusr user-name

Procedure

Run the SystemTap script:

From standard input:

echo "probe timer.s(1) {exit()}" | stap -

This command instructs stap to run the script passed by echo to standard input. To add
stap options, insert them before the - character. For example, to make the results from this
command more verbose, the command is:

echo "probe timer.s(1) {exit()}" | stap -v -

From a file:

stap file_name

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

302

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/getting-started-with-systemtap_monitoring-and-managing-system-status-and-performance#installing-systemtap_getting-started-with-systemtap

CHAPTER 38. CROSS-INSTRUMENTATION OF SYSTEMTAP
Cross-instrumentation of SystemTap is creating SystemTap instrumentation modules from a
SystemTap script on one system to be used on another system that does not have SystemTap fully
deployed.

38.1. SYSTEMTAP CROSS-INSTRUMENTATION

When you run a SystemTap script, a kernel module is built out of that script. SystemTap then loads the
module into the kernel.

Normally, SystemTap scripts can run only on systems where SystemTap is deployed. To run SystemTap
on ten systems, SystemTap needs to be deployed on all those systems. In some cases, this might be
neither feasible nor desired. For example, corporate policy might prohibit you from installing packages
that provide compilers or debug information about specific machines, which will prevent the deployment
of SystemTap.

To work around this, use cross-instrumentation. Cross-instrumentation is the process of generating
SystemTap instrumentation modules from a SystemTap script on one system to be used on another
system. This process offers the following benefits:

The kernel information packages for various machines can be installed on a single host machine.

IMPORTANT

Kernel packaging bugs may prevent the installation. In such cases, the kernel-
debuginfo and kernel-devel packages for the host system and target system
must match. If a bug occurs, report the bug at https://bugzilla.redhat.com/.

Each target machine needs only one package to be installed to use the generated SystemTap
instrumentation module: systemtap-runtime.

IMPORTANT

The host system must be the same architecture and running the same
distribution of Linux as the target system in order for the built instrumentation
module to work.

TERMINOLOGY

CHAPTER 38. CROSS-INSTRUMENTATION OF SYSTEMTAP

303

https://bugzilla.redhat.com/

TERMINOLOGY

instrumentation module

The kernel module built from a SystemTap script; the SystemTap module is built on
the host system, and will be loaded on the target kernel of the target system.

host system

The system on which the instrumentation modules (from SystemTap scripts) are
compiled, to be loaded on target systems.

target system

The system in which the instrumentation module is being built (from SystemTap
scripts).

target kernel

The kernel of the target system. This is the kernel that loads and runs the
instrumentation module .

38.2. INITIALIZING CROSS-INSTRUMENTATION OF SYSTEMTAP

Initialize cross-instrumentation of SystemTap to build SystemTap instrumentation modules from a
SystemTap script on one system and use them on another system that does not have SystemTap fully
deployed.

Prerequisites

SystemTap is installed on the host system as described in Installing Systemtap.

The systemtap-runtime package is installed on each target system:

yum install systemtap-runtime

Both the host system and target system are the same architecture.

Both the host system and target system are running the same major version of Red Hat
Enterprise Linux (such as Red Hat Enterprise Linux 8), they can be running different minor
versions (such as 8.1 and 8.2).

IMPORTANT

Kernel packaging bugs may prevent multiple kernel-debuginfo and kernel-devel
packages from being installed on one system. In such cases, the minor version for the host
system and target system must match. If a bug occurs, report it at
https://bugzilla.redhat.com/.

Procedure

1. Determine the kernel running on each target system:

$ uname -r

Repeat this step for each target system.

2. On the host system, install the target kernel and related packages for each target system by the
method described in Installing Systemtap.

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

304

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/getting-started-with-systemtap_monitoring-and-managing-system-status-and-performance#installing-systemtap_getting-started-with-systemtap
https://bugzilla.redhat.com/
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/getting-started-with-systemtap_monitoring-and-managing-system-status-and-performance#installing-systemtap_getting-started-with-systemtap

3. Build an instrumentation module on the host system, copy this module to and run this module on
on the target system either:

a. Using remote implementation:

stap --remote target_system script

This command remotely implements the specified script on the target system. You must
ensure an SSH connection can be made to the target system from the host system for this
to be successful.

b. Manually:

i. Build the instrumentation module on the host system:

stap -r kernel_version script -m module_name -p 4

Here, kernel_version refers to the version of the target kernel determined in step 1,
script refers to the script to be converted into an instrumentation module , and
module_name is the desired name of the instrumentation module . The -p4 option tells
SystemTap to not load and run the compiled module.

ii. Once the instrumentation module is compiled, copy it to the target system and load it
using the following command:

staprun module_name.ko

CHAPTER 38. CROSS-INSTRUMENTATION OF SYSTEMTAP

305

CHAPTER 39. MONITORING NETWORK ACTIVITY WITH
SYSTEMTAP

You can use helpful example SystemTap scripts available in the
/usr/share/systemtap/testsuite/systemtap.examples/ directory, upon installing the systemtap-
testsuite package, to monitor and investigate the network activity of your system.

39.1. PROFILING NETWORK ACTIVITY WITH SYSTEMTAP

You can use the nettop.stp example SystemTap script to profile network activity. The script tracks
which processes are generating network traffic on the system, and provides the following information
about each process:

PID

The ID of the listed process.

UID

User ID. A user ID of 0 refers to the root user.

DEV

Which ethernet device the process used to send or receive data (for example, eth0, eth1).

XMIT_PK

The number of packets transmitted by the process.

RECV_PK

The number of packets received by the process.

XMIT_KB

The amount of data sent by the process, in kilobytes.

RECV_KB

The amount of data received by the service, in kilobytes.

Prerequisites

You have installed SystemTap as described in Installing SystemTap.

Procedure

Run the nettop.stp script:

stap --example nettop.stp

The nettop.stp script provides network profile sampling every 5 seconds.

Output of the nettop.stp script looks similar to the following:

[...]
 PID UID DEV XMIT_PK RECV_PK XMIT_KB RECV_KB COMMAND
 0 0 eth0 0 5 0 0 swapper
11178 0 eth0 2 0 0 0 synergyc
 PID UID DEV XMIT_PK RECV_PK XMIT_KB RECV_KB COMMAND
 2886 4 eth0 79 0 5 0 cups-polld
11362 0 eth0 0 61 0 5 firefox

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

306

 0 0 eth0 3 32 0 3 swapper
 2886 4 lo 4 4 0 0 cups-polld
11178 0 eth0 3 0 0 0 synergyc
 PID UID DEV XMIT_PK RECV_PK XMIT_KB RECV_KB COMMAND
 0 0 eth0 0 6 0 0 swapper
 2886 4 lo 2 2 0 0 cups-polld
11178 0 eth0 3 0 0 0 synergyc
 3611 0 eth0 0 1 0 0 Xorg
 PID UID DEV XMIT_PK RECV_PK XMIT_KB RECV_KB COMMAND
 0 0 eth0 3 42 0 2 swapper
11178 0 eth0 43 1 3 0 synergyc
11362 0 eth0 0 7 0 0 firefox
 3897 0 eth0 0 1 0 0 multiload-apple

39.2. TRACING FUNCTIONS CALLED IN NETWORK SOCKET CODE
WITH SYSTEMTAP

You can use the socket-trace.stp example SystemTap script to trace functions called from the kernel’s
net/socket.c file. This helps you identify, in finer detail, how each process interacts with the network at
the kernel level.

Prerequisites

You have installed SystemTap as described in Installing SystemTap.

Procedure

Run the socket-trace.stp script:

stap --example socket-trace.stp

A 3-second excerpt of the output of the socket-trace.stp script looks similar to the following:

[...]
0 Xorg(3611): -> sock_poll
3 Xorg(3611): <- sock_poll
0 Xorg(3611): -> sock_poll
3 Xorg(3611): <- sock_poll
0 gnome-terminal(11106): -> sock_poll
5 gnome-terminal(11106): <- sock_poll
0 scim-bridge(3883): -> sock_poll
3 scim-bridge(3883): <- sock_poll
0 scim-bridge(3883): -> sys_socketcall
4 scim-bridge(3883): -> sys_recv
8 scim-bridge(3883): -> sys_recvfrom
12 scim-bridge(3883):-> sock_from_file
16 scim-bridge(3883):<- sock_from_file
20 scim-bridge(3883):-> sock_recvmsg
24 scim-bridge(3883):<- sock_recvmsg
28 scim-bridge(3883): <- sys_recvfrom
31 scim-bridge(3883): <- sys_recv
35 scim-bridge(3883): <- sys_socketcall
[...]

CHAPTER 39. MONITORING NETWORK ACTIVITY WITH SYSTEMTAP

307

39.3. MONITORING NETWORK PACKET DROPS WITH SYSTEMTAP

The network stack in Linux can discard packets for various reasons. Some Linux kernels include a
tracepoint, kernel.trace("kfree_skb"), which tracks where packets are discarded.

The dropwatch.stp SystemTap script uses kernel.trace("kfree_skb") to trace packet discards; the
script summarizes what locations discard packets in every 5-second interval.

Prerequisites

You have installed SystemTap as described in Installing SystemTap.

Procedure

Run the dropwatch.stp script:

stap --example dropwatch.stp

Running the dropwatch.stp script for 15 seconds results in output similar to the following:

Monitoring for dropped packets
51 packets dropped at location 0xffffffff8024cd0f
2 packets dropped at location 0xffffffff8044b472
51 packets dropped at location 0xffffffff8024cd0f
1 packets dropped at location 0xffffffff8044b472
97 packets dropped at location 0xffffffff8024cd0f
1 packets dropped at location 0xffffffff8044b472
Stopping dropped packet monitor

NOTE

To make the location of packet drops more meaningful, see the
/boot/System.map-$(uname -r) file. This file lists the starting addresses for each
function, enabling you to map the addresses in the output of the dropwatch.stp
script to a specific function name. Given the following snippet of the
/boot/System.map-$(uname -r) file, the address 0xffffffff8024cd0f maps to the
function unix_stream_recvmsg and the address 0xffffffff8044b472 maps to the
function arp_rcv:

[...]
ffffffff8024c5cd T unlock_new_inode
ffffffff8024c5da t unix_stream_sendmsg
ffffffff8024c920 t unix_stream_recvmsg
ffffffff8024cea1 t udp_v4_lookup_longway
[...]
ffffffff8044addc t arp_process
ffffffff8044b360 t arp_rcv
ffffffff8044b487 t parp_redo
ffffffff8044b48c t arp_solicit
[...]

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

308

CHAPTER 40. PROFILING KERNEL ACTIVITY WITH
SYSTEMTAP

You can profile the kernel activity by monitoring function calls with the following scripts.

40.1. COUNTING FUNCTION CALLS WITH SYSTEMTAP

You can use the functioncallcount.stp SystemTap script to count specific kernel function calls. You can
also use this script to target multiple kernel functions.

Prerequisites

You have installed SystemTap as described in Installing Systemtap.

Procedure

Run the functioncallcount.stp script:

stap --example functioncallcount.stp 'argument'

This script takes the targeted kernel function as an argument. You can use the argument
wildcards to target multiple kernel functions up to a certain extent.

The output of the script, in alphabetical order, contains the names of the functions called and
how many times it was called during the sample time.

Consider the following example:

stap -w -v --example functioncallcount.stp "*@mm*.c" -c /bin/true

where:

-w : Suppresses warnings.

-v : Makes the output of starting kernel visible.

-c command : Tells SystemTap to count function calls during the execution of a command, in
this example being /bin/true.
The output should look similar to the following:

[...]
__vma_link 97
__vma_link_file 66
__vma_link_list 97
__vma_link_rb 97
__xchg 103
add_page_to_active_list 102
add_page_to_inactive_list 19
add_to_page_cache 19
add_to_page_cache_lru 7
all_vm_events 6
alloc_pages_node 4630
alloc_slabmgmt 67

CHAPTER 40. PROFILING KERNEL ACTIVITY WITH SYSTEMTAP

309

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/getting-started-with-systemtap_monitoring-and-managing-system-status-and-performance#installing-systemtap_getting-started-with-systemtap

anon_vma_alloc 62
anon_vma_free 62
anon_vma_lock 66
anon_vma_prepare 98
anon_vma_unlink 97
anon_vma_unlock 66
arch_get_unmapped_area_topdown 94
arch_get_unmapped_exec_area 3
arch_unmap_area_topdown 97
atomic_add 2
atomic_add_negative 97
atomic_dec_and_test 5153
atomic_inc 470
atomic_inc_and_test 1
[...]

40.2. TRACING FUNCTION CALLS WITH SYSTEMTAP

You can use the para-callgraph.stp SystemTap script to trace function calls and function returns.

Prerequisites

You have installed SystemTap as described in Installing Systemtap.

Procedure

Run the para-callgraph.stp script.

stap --example para-callgraph.stp 'argument1' 'argument2'

The script para-callgraph.stp takes two command-line arguments:

1. The name of the function(s) whose entry/exit you’d like to trace.

2. An optional trigger function, which enables or disables tracing on a per-thread basis. Tracing in
each thread will continue as long as the trigger function has not exited yet.

Consider the following example:

stap -wv --example para-callgraph.stp 'kernel.function("*@fs/proc.c*")' 'kernel.function("vfs_read")' -
c "cat /proc/sys/vm/* || true"

where:

-w : Suppresses warnings.

-v : Makes the output of starting kernel visible.

-c command : Tells SystemTap to count function calls during the execution of a command, in
this example being /bin/true.

The output should look similar to the following:

[...]

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

310

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/getting-started-with-systemtap_monitoring-and-managing-system-status-and-performance#installing-systemtap_getting-started-with-systemtap

 267 gnome-terminal(2921): <-do_sync_read return=0xfffffffffffffff5
 269 gnome-terminal(2921):<-vfs_read return=0xfffffffffffffff5
 0 gnome-terminal(2921):->fput file=0xffff880111eebbc0
 2 gnome-terminal(2921):<-fput
 0 gnome-terminal(2921):->fget_light fd=0x3 fput_needed=0xffff88010544df54
 3 gnome-terminal(2921):<-fget_light return=0xffff8801116ce980
 0 gnome-terminal(2921):->vfs_read file=0xffff8801116ce980 buf=0xc86504 count=0x1000
pos=0xffff88010544df48
 4 gnome-terminal(2921): ->rw_verify_area read_write=0x0 file=0xffff8801116ce980
ppos=0xffff88010544df48 count=0x1000
 7 gnome-terminal(2921): <-rw_verify_area return=0x1000
 12 gnome-terminal(2921): ->do_sync_read filp=0xffff8801116ce980 buf=0xc86504 len=0x1000
ppos=0xffff88010544df48
 15 gnome-terminal(2921): <-do_sync_read return=0xfffffffffffffff5
 18 gnome-terminal(2921):<-vfs_read return=0xfffffffffffffff5
 0 gnome-terminal(2921):->fput file=0xffff8801116ce980

40.3. DETERMINING TIME SPENT IN KERNEL AND USER SPACE WITH
SYSTEMTAP

You can use the thread-times.stp SystemTap script to determine the amount of time any given thread
is spending in either the kernel or user-space.

Prerequisites

You have installed SystemTap as described in Installing Systemtap.

Procedure

Run the thread-times.stp script:

stap --example thread-times.stp

This script will display the top 20 processes taking up CPU time during a 5-second period, along
with the total number of CPU ticks made during the sample. The output of this script also notes
the percentage of CPU time each process used, as well as whether that time was spent in kernel
space or user space.

tid %user %kernel (of 20002 ticks)
 0 0.00% 87.88%
32169 5.24% 0.03%
9815 3.33% 0.36%
9859 0.95% 0.00%
3611 0.56% 0.12%
9861 0.62% 0.01%
11106 0.37% 0.02%
32167 0.08% 0.08%
3897 0.01% 0.08%
3800 0.03% 0.00%
2886 0.02% 0.00%
3243 0.00% 0.01%
3862 0.01% 0.00%
3782 0.00% 0.00%
21767 0.00% 0.00%

CHAPTER 40. PROFILING KERNEL ACTIVITY WITH SYSTEMTAP

311

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/getting-started-with-systemtap_monitoring-and-managing-system-status-and-performance#installing-systemtap_getting-started-with-systemtap

2522 0.00% 0.00%
3883 0.00% 0.00%
3775 0.00% 0.00%
3943 0.00% 0.00%
3873 0.00% 0.00%

40.4. MONITORING POLLING APPLICATIONS WITH SYSTEMTAP

You can use timeout.stp SystemTap script to identify and monitor which applications are polling. Doing
so allows you to track unnecessary or excessive polling, which helps you pinpoint areas for improvement
in terms of CPU usage and power savings.

Prerequisites

You have installed SystemTap as described in Installing Systemtap.

Procedure

Run the timeout.stp script:

stap --example timeout.stp

This script will track how many times each application uses the following system calls over time:

poll

select

epoll

itimer

futex

nanosleep

signal

In this example output you can see which process used which system call and how many times.

uid | poll select epoll itimer futex nanosle signal| process
28937 | 148793 0 0 4727 37288 0 0| firefox
22945 | 0 56949 0 1 0 0 0| scim-bridge
 0 | 0 0 0 36414 0 0 0| swapper
4275 | 23140 0 0 1 0 0 0| mixer_applet2
4191 | 0 14405 0 0 0 0 0| scim-launcher
22941 | 7908 1 0 62 0 0 0| gnome-terminal
4261 | 0 0 0 2 0 7622 0| escd
3695 | 0 0 0 0 0 7622 0| gdm-binary
3483 | 0 7206 0 0 0 0 0| dhcdbd
4189 | 6916 0 0 2 0 0 0| scim-panel-gtk
1863 | 5767 0 0 0 0 0 0| iscsid

40.5. TRACKING MOST FREQUENTLY USED SYSTEM CALLS WITH

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

312

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/getting-started-with-systemtap_monitoring-and-managing-system-status-and-performance#installing-systemtap_getting-started-with-systemtap

40.5. TRACKING MOST FREQUENTLY USED SYSTEM CALLS WITH
SYSTEMTAP

You can use the topsys.stp SystemTap script to list the top 20 system calls used by the system per 5-
second interval. It also lists how many times each system call was used during that period.

Prerequisites

You have installed SystemTap as described in Installing Systemtap.

Procedure

Run the topsys.stp script:

stap --example topsys.stp

Consider the following example:

stap -v --example topsys.stp

where -v makes the output of starting kernel visible.

The output should look similar to the following:

--
 SYSCALL COUNT
 gettimeofday 1857
 read 1821
 ioctl 1568
 poll 1033
 close 638
 open 503
 select 455
 write 391
 writev 335
 futex 303
 recvmsg 251
 socket 137
 clock_gettime 124
 rt_sigprocmask 121
 sendto 120
 setitimer 106
 stat 90
 time 81
 sigreturn 72
 fstat 66
--

40.6. TRACKING SYSTEM CALL VOLUME PER PROCESS WITH
SYSTEMTAP

You can use the syscalls_by_proc.stp SystemTap script to see which processes are performing the
highest volume of system calls. It displays 20 processes performing the most of system calls.

CHAPTER 40. PROFILING KERNEL ACTIVITY WITH SYSTEMTAP

313

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/getting-started-with-systemtap_monitoring-and-managing-system-status-and-performance#installing-systemtap_getting-started-with-systemtap

Prerequisites

You have installed SystemTap as described in Installing Systemtap.

Procedure

Run the syscalls_by_proc.stp script:

stap --example syscalls_by_proc.stp

Output of the syscalls_by_proc.stp script looks similar to the following:

Collecting data... Type Ctrl-C to exit and display results
#SysCalls Process Name
1577 multiload-apple
692 synergyc
408 pcscd
376 mixer_applet2
299 gnome-terminal
293 Xorg
206 scim-panel-gtk
95 gnome-power-man
90 artsd
85 dhcdbd
84 scim-bridge
78 gnome-screensav
66 scim-launcher
[...]

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

314

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/getting-started-with-systemtap_monitoring-and-managing-system-status-and-performance#installing-systemtap_getting-started-with-systemtap

CHAPTER 41. MONITORING DISK AND I/O ACTIVITY WITH
SYSTEMTAP

You can monitor disk and I/O activity with the following scripts.

41.1. SUMMARIZING DISK READ/WRITE TRAFFIC WITH SYSTEMTAP

You can use the disktop.stp SystemTap script to identify which processes are performing the heaviest
disk reads and writes to the system.

Prerequisites

You have installed SystemTap as described in Installing Systemtap.

Procedure

Run the disktop.stp script:

stap --example disktop.stp

The script displays the top ten processes responsible for the heaviest reads or writes to a disk.

The output includes the following data per listed process:

UID

User ID. A user ID of 0 refers to the root user.

PID

The ID of the listed process.

PPID

The process ID of the listed process’s parent process.

CMD

The name of the listed process.

DEVICE

Which storage device the listed process is reading from or writing to.

T

The type of action performed by the listed process, where W refers to write, and R refers to
read.

BYTES

The amount of data read to or written from disk.

Output of the disktop.stp script looks similar to the following:

[...]
Mon Sep 29 03:38:28 2008 , Average: 19Kb/sec, Read: 7Kb, Write: 89Kb
UID PID PPID CMD DEVICE T BYTES
0 26319 26294 firefox sda5 W 90229
0 2758 2757 pam_timestamp_c sda5 R 8064
0 2885 1 cupsd sda5 W 1678
Mon Sep 29 03:38:38 2008 , Average: 1Kb/sec, Read: 7Kb, Write: 1Kb

CHAPTER 41. MONITORING DISK AND I/O ACTIVITY WITH SYSTEMTAP

315

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/getting-started-with-systemtap_monitoring-and-managing-system-status-and-performance#installing-systemtap_getting-started-with-systemtap

UID PID PPID CMD DEVICE T BYTES
0 2758 2757 pam_timestamp_c sda5 R 8064
0 2885 1 cupsd sda5 W 1678

41.2. TRACKING I/O TIME FOR EACH FILE READ OR WRITE WITH
SYSTEMTAP

You can use the iotime.stp SystemTap script to monitor the amount of time it takes for each process to
read from or write to any file. This helps you to determine what files are slow to load on a system.

Prerequisites

You have installed SystemTap as described in Installing Systemtap.

Procedure

Run the iotime.stp script:

stap --example iotime.stp

The script tracks each time a system call opens, closes, reads from, and writes to a file. For each
file any system call accesses, It counts the number of microseconds it takes for any reads or
writes to finish and tracks the amount of data , in bytes, read from or written to the file.

The output contains:

A timestamp, in microseconds

Process ID and process name

An access or iotime flag

The file accessed
If a process was able to read or write any data, a pair of access and iotime lines should appear
together. The access line refers to the time that a given process started accessing a file. The
end of the access line will show the amount of data read or written. The iotime line will show the
amount of time, in microseconds, that the process took in order to perform the read or write.

Output of the iotime.stp script looks similar to the following:

[...]
825946 3364 (NetworkManager) access /sys/class/net/eth0/carrier read: 8190 write: 0
825955 3364 (NetworkManager) iotime /sys/class/net/eth0/carrier time: 9
[...]
117061 2460 (pcscd) access /dev/bus/usb/003/001 read: 43 write: 0
117065 2460 (pcscd) iotime /dev/bus/usb/003/001 time: 7
[...]
3973737 2886 (sendmail) access /proc/loadavg read: 4096 write: 0
3973744 2886 (sendmail) iotime /proc/loadavg time: 11
[...]

41.3. TRACKING CUMULATIVE I/O WITH SYSTEMTAP

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

316

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/getting-started-with-systemtap_monitoring-and-managing-system-status-and-performance#installing-systemtap_getting-started-with-systemtap

You can use the traceio.stp SystemTap script to track the cumulative amount of I/O to the system.

Prerequisites

You have installed SystemTap as described in Installing Systemtap.

Procedure

Run the traceio.stp script:

stap --example traceio.stp

The script prints the top ten executables generating I/O traffic over time. It also tracks the
cumulative amount of I/O reads and writes done by those executables. This information is
tracked and printed out in 1-second intervals, and in descending order.

Output of the traceio.stp script looks similar to the following:

[...]
 Xorg r: 583401 KiB w: 0 KiB
 floaters r: 96 KiB w: 7130 KiB
multiload-apple r: 538 KiB w: 537 KiB
 sshd r: 71 KiB w: 72 KiB
pam_timestamp_c r: 138 KiB w: 0 KiB
 staprun r: 51 KiB w: 51 KiB
 snmpd r: 46 KiB w: 0 KiB
 pcscd r: 28 KiB w: 0 KiB
 irqbalance r: 27 KiB w: 4 KiB
 cupsd r: 4 KiB w: 18 KiB
 Xorg r: 588140 KiB w: 0 KiB
 floaters r: 97 KiB w: 7143 KiB
multiload-apple r: 543 KiB w: 542 KiB
 sshd r: 72 KiB w: 72 KiB
pam_timestamp_c r: 138 KiB w: 0 KiB
 staprun r: 51 KiB w: 51 KiB
 snmpd r: 46 KiB w: 0 KiB
 pcscd r: 28 KiB w: 0 KiB
 irqbalance r: 27 KiB w: 4 KiB
 cupsd r: 4 KiB w: 18 KiB

41.4. MONITORING I/O ACTIVITY ON A SPECIFIC DEVICE WITH
SYSTEMTAP

You can use the traceio2.stp SystemTap script to monitor I/O activity on a specific device.

Prerequisites

You have installed SystemTap as described in Installing Systemtap.

Procedure

Run the traceio2.stp script.

CHAPTER 41. MONITORING DISK AND I/O ACTIVITY WITH SYSTEMTAP

317

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/getting-started-with-systemtap_monitoring-and-managing-system-status-and-performance#installing-systemtap_getting-started-with-systemtap
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/getting-started-with-systemtap_monitoring-and-managing-system-status-and-performance#installing-systemtap_getting-started-with-systemtap

stap --example traceio2.stp 'argument'

This script takes the whole device number as an argument. To find this number you can use:

stat -c "0x%D" directory

Where directory is located on the device you want to monitor.

The output contains following:

The name and ID of any process performing a read or write

The function it is performing (vfs_read or vfs_write)

The kernel device number

Consider following output of # stap traceio2.stp 0x805

[...]
synergyc(3722) vfs_read 0x800005
synergyc(3722) vfs_read 0x800005
cupsd(2889) vfs_write 0x800005
cupsd(2889) vfs_write 0x800005
cupsd(2889) vfs_write 0x800005
[...]

41.5. MONITORING READS AND WRITES TO A FILE WITH SYSTEMTAP

You can use the inodewatch.stp SystemTap script to monitor reads from and writes to a file in real
time.

Prerequisites

You have installed SystemTap as described in Installing Systemtap.

Procedure

Run the inodewatch.stp script.

stap --example inodewatch.stp 'argument1' 'argument2' 'argument3'

The script inodewatch.stp takes three command-line arguments:

1. The file’s major device number.

2. The file’s minor device number.

3. The file’s inode number.

You can get these numbers using:

stat -c '%D %i' filename

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

318

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/getting-started-with-systemtap_monitoring-and-managing-system-status-and-performance#installing-systemtap_getting-started-with-systemtap

Where filename is an absolute path.

Consider following example:

stat -c '%D %i' /etc/crontab

The output should look like:

805 1078319

where:

805 is the base-16 (hexadecimal) device number. The last two digits are the minor device
number, and the remaining digits are the major number.

1078319 is the inode number.

To start monitoring /etc/crontab, run:

stap inodewatch.stp 0x8 0x05 1078319

In the first two arguments you must use 0x prefixes for base-16 numbers.

The output contains following:

The name and ID of any process performing a read or write

The function it is performing (vfs_read or vfs_write)

The kernel device number

The output of this example should look like:

cat(16437) vfs_read 0x800005/1078319
cat(16437) vfs_read 0x800005/1078319

CHAPTER 41. MONITORING DISK AND I/O ACTIVITY WITH SYSTEMTAP

319

CHAPTER 42. ANALYZING SYSTEM PERFORMANCE WITH
BPF COMPILER COLLECTION

As a system administrator, you can use the BPF Compiler Collection (BCC) library to create tools for
analyzing the performance of your Linux operating system and gathering information, which could be
difficult to obtain through other interfaces.

42.1. INSTALLING THE BCC-TOOLS PACKAGE

Install the bcc-tools package, which also installs the BPF Compiler Collection (BCC) library as a
dependency.

Procedure

1. Install bcc-tools.

yum install bcc-tools

The BCC tools are installed in the /usr/share/bcc/tools/ directory.

2. Optionally, inspect the tools:

ll /usr/share/bcc/tools/
...
-rwxr-xr-x. 1 root root 4198 Dec 14 17:53 dcsnoop
-rwxr-xr-x. 1 root root 3931 Dec 14 17:53 dcstat
-rwxr-xr-x. 1 root root 20040 Dec 14 17:53 deadlock_detector
-rw-r--r--. 1 root root 7105 Dec 14 17:53 deadlock_detector.c
drwxr-xr-x. 3 root root 8192 Mar 11 10:28 doc
-rwxr-xr-x. 1 root root 7588 Dec 14 17:53 execsnoop
-rwxr-xr-x. 1 root root 6373 Dec 14 17:53 ext4dist
-rwxr-xr-x. 1 root root 10401 Dec 14 17:53 ext4slower
...

The doc directory in the listing above contains documentation for each tool.

42.2. USING SELECTED BCC-TOOLS FOR PERFORMANCE ANALYSES

Use certain pre-created programs from the BPF Compiler Collection (BCC) library to efficiently and
securely analyze the system performance on the per-event basis. The set of pre-created programs in
the BCC library can serve as examples for creation of additional programs.

Prerequisites

Installed bcc-tools package

Root permissions

Using execsnoop to examine the system processes

1. Run the execsnoop program in one terminal:

/usr/share/bcc/tools/execsnoop

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

320

2. In another terminal run, for example:

$ ls /usr/share/bcc/tools/doc/

The above creates a short-lived process of the ls command.

3. The terminal running execsnoop shows the output similar to the following:

PCOMM PID PPID RET ARGS
ls 8382 8287 0 /usr/bin/ls --color=auto /usr/share/bcc/tools/doc/
...

The execsnoop program prints a line of output for each new process, which consumes system
resources. It even detects processes of programs that run very shortly, such as ls, and most
monitoring tools would not register them.

The execsnoop output displays the following fields:

PCOMM

The parent process name. (ls)

PID

The process ID. (8382)

PPID

The parent process ID. (8287)

RET

The return value of the exec() system call (0), which loads program code into new processes.

ARGS

The location of the started program with arguments.

To see more details, examples, and options for execsnoop, refer to the
/usr/share/bcc/tools/doc/execsnoop_example.txt file.

For more information about exec(), see exec(3) manual pages.

Using opensnoop to track what files a command opens

1. Run the opensnoop program in one terminal:

/usr/share/bcc/tools/opensnoop -n uname

The above prints output for files, which are opened only by the process of the uname command.

2. In another terminal, enter:

$ uname

The command above opens certain files, which are captured in the next step.

3. The terminal running opensnoop shows the output similar to the following:

PID COMM FD ERR PATH
8596 uname 3 0 /etc/ld.so.cache

CHAPTER 42. ANALYZING SYSTEM PERFORMANCE WITH BPF COMPILER COLLECTION

321

8596 uname 3 0 /lib64/libc.so.6
8596 uname 3 0 /usr/lib/locale/locale-archive
...

The opensnoop program watches the open() system call across the whole system, and prints a
line of output for each file that uname tried to open along the way.

The opensnoop output displays the following fields:

PID

The process ID. (8596)

COMM

The process name. (uname)

FD

The file descriptor - a value that open() returns to refer to the open file. (3)

ERR

Any errors.

PATH

The location of files that open() tried to open.

If a command tries to read a non-existent file, then the FD column returns -1 and the ERR
column prints a value corresponding to the relevant error. As a result, opensnoop can help you
identify an application that does not behave properly.

To see more details, examples, and options for opensnoop, refer to the
/usr/share/bcc/tools/doc/opensnoop_example.txt file.

For more information about open(), see open(2) manual pages.

Using biotop to examine the I/O operations on the disk

1. Run the biotop program in one terminal:

/usr/share/bcc/tools/biotop 30

The command enables you to monitor the top processes, which perform I/O operations on the
disk. The argument ensures that the command will produce a 30 second summary.

NOTE

When no argument provided, the output screen by default refreshes every 1
second.

2. In another terminal enter, for example :

dd if=/dev/vda of=/dev/zero

The command above reads the content from the local hard disk device and writes the output to
the /dev/zero file. This step generates certain I/O traffic to illustrate biotop.

3. The terminal running biotop shows the output similar to the following:

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

322

PID COMM D MAJ MIN DISK I/O Kbytes AVGms
9568 dd R 252 0 vda 16294 14440636.0 3.69
48 kswapd0 W 252 0 vda 1763 120696.0 1.65
7571 gnome-shell R 252 0 vda 834 83612.0 0.33
1891 gnome-shell R 252 0 vda 1379 19792.0 0.15
7515 Xorg R 252 0 vda 280 9940.0 0.28
7579 llvmpipe-1 R 252 0 vda 228 6928.0 0.19
9515 gnome-control-c R 252 0 vda 62 6444.0 0.43
8112 gnome-terminal- R 252 0 vda 67 2572.0 1.54
7807 gnome-software R 252 0 vda 31 2336.0 0.73
9578 awk R 252 0 vda 17 2228.0 0.66
7578 llvmpipe-0 R 252 0 vda 156 2204.0 0.07
9581 pgrep R 252 0 vda 58 1748.0 0.42
7531 InputThread R 252 0 vda 30 1200.0 0.48
7504 gdbus R 252 0 vda 3 1164.0 0.30
1983 llvmpipe-1 R 252 0 vda 39 724.0 0.08
1982 llvmpipe-0 R 252 0 vda 36 652.0 0.06
...

The biotop output displays the following fields:

PID

The process ID. (9568)

COMM

The process name. (dd)

DISK

The disk performing the read operations. (vda)

I/O

The number of read operations performed. (16294)

Kbytes

The amount of Kbytes reached by the read operations. (14,440,636)

AVGms

The average I/O time of read operations. (3.69)

To see more details, examples, and options for biotop, refer to the
/usr/share/bcc/tools/doc/biotop_example.txt file.

For more information about dd, see dd(1) manual pages.

Using xfsslower to expose unexpectedly slow file system operations

1. Run the xfsslower program in one terminal:

/usr/share/bcc/tools/xfsslower 1

The command above measures the time the XFS file system spends in performing read, write,
open or sync (fsync) operations. The 1 argument ensures that the program shows only the
operations that are slower than 1 ms.

NOTE

CHAPTER 42. ANALYZING SYSTEM PERFORMANCE WITH BPF COMPILER COLLECTION

323

NOTE

When no arguments provided, xfsslower by default displays operations slower
than 10 ms.

2. In another terminal enter, for example, the following:

$ vim text

The command above creates a text file in the vim editor to initiate certain interaction with the
XFS file system.

3. The terminal running xfsslower shows something similar upon saving the file from the previous
step:

TIME COMM PID T BYTES OFF_KB LAT(ms) FILENAME
13:07:14 b'bash' 4754 R 256 0 7.11 b'vim'
13:07:14 b'vim' 4754 R 832 0 4.03 b'libgpm.so.2.1.0'
13:07:14 b'vim' 4754 R 32 20 1.04 b'libgpm.so.2.1.0'
13:07:14 b'vim' 4754 R 1982 0 2.30 b'vimrc'
13:07:14 b'vim' 4754 R 1393 0 2.52 b'getscriptPlugin.vim'
13:07:45 b'vim' 4754 S 0 0 6.71 b'text'
13:07:45 b'pool' 2588 R 16 0 5.58 b'text'
...

Each line above represents an operation in the file system, which took more time than a certain
threshold. xfsslower is good at exposing possible file system problems, which can take form of
unexpectedly slow operations.

The xfsslower output displays the following fields:

COMM

The process name. (b’bash')

T

The operation type. (R)

Read

Write

Sync

OFF_KB

The file offset in KB. (0)

FILENAME

The file being read, written, or synced.

To see more details, examples, and options for xfsslower, refer to the
/usr/share/bcc/tools/doc/xfsslower_example.txt file.

For more information about fsync, see fsync(2) manual pages.

Red Hat Enterprise Linux 8 Monitoring and managing system status and performance

324

CHAPTER 42. ANALYZING SYSTEM PERFORMANCE WITH BPF COMPILER COLLECTION

325

	Table of Contents
	PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
	CHAPTER 1. OVERVIEW OF PERFORMANCE MONITORING OPTIONS
	CHAPTER 2. GETTING STARTED WITH TUNED
	2.1. THE PURPOSE OF TUNED
	2.2. TUNED PROFILES
	Syntax of profile configuration

	2.3. THE DEFAULT TUNED PROFILE
	2.4. MERGED TUNED PROFILES
	2.5. THE LOCATION OF TUNED PROFILES
	2.6. TUNED PROFILES DISTRIBUTED WITH RHEL
	2.7. TUNED CPU-PARTITIONING PROFILE
	2.8. USING THE TUNED CPU-PARTITIONING PROFILE FOR LOW-LATENCY TUNING
	2.9. CUSTOMIZING THE CPU-PARTITIONING TUNED PROFILE
	2.10. REAL-TIME TUNED PROFILES DISTRIBUTED WITH RHEL
	2.11. STATIC AND DYNAMIC TUNING IN TUNED
	2.12. TUNED NO-DAEMON MODE
	2.13. INSTALLING AND ENABLING TUNED
	2.14. LISTING AVAILABLE TUNED PROFILES
	2.15. SETTING A TUNED PROFILE
	2.16. USING THE TUNED D-BUS INTERFACE
	2.16.1. Using the TuneD D-Bus interface to show available TuneD D-Bus API methods
	2.16.2. Using the TuneD D-Bus interface to change the active TuneD profile

	2.17. DISABLING TUNED

	CHAPTER 3. CUSTOMIZING TUNED PROFILES
	3.1. TUNED PROFILES
	Syntax of profile configuration

	3.2. THE DEFAULT TUNED PROFILE
	3.3. MERGED TUNED PROFILES
	3.4. THE LOCATION OF TUNED PROFILES
	3.5. INHERITANCE BETWEEN TUNED PROFILES
	3.6. STATIC AND DYNAMIC TUNING IN TUNED
	3.7. TUNED PLUG-INS
	Syntax for plug-ins in TuneD profiles
	Short plug-in syntax
	Conflicting plug-in definitions in a profile

	3.8. AVAILABLE TUNED PLUG-INS
	Monitoring plug-ins
	Tuning plug-ins

	3.9. FUNCTIONALITIES OF THE SCHEDULER TUNED PLUGIN
	3.10. VARIABLES IN TUNED PROFILES
	3.11. BUILT-IN FUNCTIONS IN TUNED PROFILES
	3.12. BUILT-IN FUNCTIONS AVAILABLE IN TUNED PROFILES
	3.13. CREATING NEW TUNED PROFILES
	3.14. MODIFYING EXISTING TUNED PROFILES
	3.15. SETTING THE DISK SCHEDULER USING TUNED

	CHAPTER 4. REVIEWING A SYSTEM USING TUNA INTERFACE
	4.1. INSTALLING THE TUNA TOOL
	4.2. VIEWING THE SYSTEM STATUS USING TUNA TOOL
	4.3. TUNING CPUS USING TUNA TOOL
	4.4. TUNING IRQS USING TUNA TOOL

	CHAPTER 5. MONITORING PERFORMANCE USING RHEL SYSTEM ROLES
	5.1. PREPARING A CONTROL NODE AND MANAGED NODES TO USE RHEL SYSTEM ROLES
	5.1.1. Preparing a control node on RHEL 8
	5.1.2. Preparing a managed node

	5.2. INTRODUCTION TO THE METRICS RHEL SYSTEM ROLE
	5.3. USING THE METRICS RHEL SYSTEM ROLE TO MONITOR YOUR LOCAL SYSTEM WITH VISUALIZATION
	5.4. USING THE METRICS RHEL SYSTEM ROLE TO SET UP A FLEET OF INDIVIDUAL SYSTEMS TO MONITOR THEMSELVES
	5.5. USING THE METRICS RHEL SYSTEM ROLE TO MONITOR A FLEET OF MACHINES CENTRALLY USING YOUR LOCAL MACHINE
	5.6. SETTING UP AUTHENTICATION WHILE MONITORING A SYSTEM BY USING THE METRICS RHEL SYSTEM ROLE
	5.7. USING THE METRICS RHEL SYSTEM ROLE TO CONFIGURE AND ENABLE METRICS COLLECTION FOR SQL SERVER

	CHAPTER 6. SETTING UP PCP
	6.1. OVERVIEW OF PCP
	6.2. INSTALLING AND ENABLING PCP
	6.3. DEPLOYING A MINIMAL PCP SETUP
	6.4. SYSTEM SERVICES AND TOOLS DISTRIBUTED WITH PCP
	6.5. PCP DEPLOYMENT ARCHITECTURES
	6.6. RECOMMENDED DEPLOYMENT ARCHITECTURE
	6.7. SIZING FACTORS
	6.8. CONFIGURATION OPTIONS FOR PCP SCALING
	6.9. EXAMPLE: ANALYZING THE CENTRALIZED LOGGING DEPLOYMENT
	6.10. EXAMPLE: ANALYZING THE FEDERATED SETUP DEPLOYMENT
	6.11. TROUBLESHOOTING HIGH MEMORY USAGE

	CHAPTER 7. LOGGING PERFORMANCE DATA WITH PMLOGGER
	7.1. MODIFYING THE PMLOGGER CONFIGURATION FILE WITH PMLOGCONF
	7.2. EDITING THE PMLOGGER CONFIGURATION FILE MANUALLY
	7.3. ENABLING THE PMLOGGER SERVICE
	7.4. SETTING UP A CLIENT SYSTEM FOR METRICS COLLECTION
	7.5. SETTING UP A CENTRAL SERVER TO COLLECT DATA
	7.6. SYSTEMD UNITS AND PMLOGGER
	7.7. REPLAYING THE PCP LOG ARCHIVES WITH PMREP

	CHAPTER 8. MONITORING PERFORMANCE WITH PERFORMANCE CO-PILOT
	8.1. MONITORING POSTFIX WITH PMDA-POSTFIX
	8.2. VISUALLY TRACING PCP LOG ARCHIVES WITH THE PCP CHARTS APPLICATION
	8.3. COLLECTING DATA FROM SQL SERVER USING PCP

	CHAPTER 9. PERFORMANCE ANALYSIS OF XFS WITH PCP
	9.1. INSTALLING XFS PMDA MANUALLY
	9.2. EXAMINING XFS PERFORMANCE METRICS WITH PMINFO
	9.3. RESETTING XFS PERFORMANCE METRICS WITH PMSTORE
	9.4. PCP METRIC GROUPS FOR XFS
	9.5. PER-DEVICE PCP METRIC GROUPS FOR XFS

	CHAPTER 10. SETTING UP GRAPHICAL REPRESENTATION OF PCP METRICS
	10.1. SETTING UP PCP WITH PCP-ZEROCONF
	10.2. SETTING UP A GRAFANA-SERVER
	10.3. ACCESSING THE GRAFANA WEB UI
	10.4. CONFIGURING PCP REDIS
	10.5. CREATING PANELS AND ALERT IN PCP REDIS DATA SOURCE
	10.6. ADDING NOTIFICATION CHANNELS FOR ALERTS
	10.7. SETTING UP AUTHENTICATION BETWEEN PCP COMPONENTS
	10.8. INSTALLING PCP BPFTRACE
	10.9. VIEWING THE PCP BPFTRACE SYSTEM ANALYSIS DASHBOARD
	10.10. INSTALLING PCP VECTOR
	10.11. VIEWING THE PCP VECTOR CHECKLIST
	10.12. USING HEATMAPS IN GRAFANA
	10.13. TROUBLESHOOTING GRAFANA ISSUES

	CHAPTER 11. OPTIMIZING THE SYSTEM PERFORMANCE USING THE WEB CONSOLE
	11.1. PERFORMANCE TUNING OPTIONS IN THE WEB CONSOLE
	11.2. SETTING A PERFORMANCE PROFILE IN THE WEB CONSOLE
	11.3. MONITORING PERFORMANCE ON THE LOCAL SYSTEM USING THE WEB CONSOLE
	11.4. MONITORING PERFORMANCE ON SEVERAL SYSTEMS USING THE WEB CONSOLE AND GRAFANA

	CHAPTER 12. SETTING THE DISK SCHEDULER
	12.1. AVAILABLE DISK SCHEDULERS
	12.2. DIFFERENT DISK SCHEDULERS FOR DIFFERENT USE CASES
	12.3. THE DEFAULT DISK SCHEDULER
	12.4. DETERMINING THE ACTIVE DISK SCHEDULER
	12.5. SETTING THE DISK SCHEDULER USING TUNED
	12.6. SETTING THE DISK SCHEDULER USING UDEV RULES
	12.7. TEMPORARILY SETTING A SCHEDULER FOR A SPECIFIC DISK

	CHAPTER 13. TUNING THE PERFORMANCE OF A SAMBA SERVER
	13.1. SETTING THE SMB PROTOCOL VERSION
	13.2. TUNING SHARES WITH DIRECTORIES THAT CONTAIN A LARGE NUMBER OF FILES
	13.3. SETTINGS THAT CAN HAVE A NEGATIVE PERFORMANCE IMPACT

	CHAPTER 14. OPTIMIZING VIRTUAL MACHINE PERFORMANCE
	14.1. WHAT INFLUENCES VIRTUAL MACHINE PERFORMANCE
	The impact of virtualization on system performance
	Reducing VM performance loss

	14.2. OPTIMIZING VIRTUAL MACHINE PERFORMANCE BY USING TUNED
	14.3. CONFIGURING VIRTUAL MACHINE MEMORY
	14.3.1. Adding and removing virtual machine memory by using the web console
	14.3.2. Adding and removing virtual machine memory by using the command-line interface
	14.3.3. Additional resources

	14.4. OPTIMIZING VIRTUAL MACHINE I/O PERFORMANCE
	14.4.1. Tuning block I/O in virtual machines
	14.4.2. Disk I/O throttling in virtual machines
	14.4.3. Enabling multi-queue virtio-scsi

	14.5. OPTIMIZING VIRTUAL MACHINE CPU PERFORMANCE
	14.5.1. Adding and removing virtual CPUs by using the command-line interface
	14.5.2. Managing virtual CPUs by using the web console
	14.5.3. Configuring NUMA in a virtual machine
	14.5.4. Sample vCPU performance tuning scenario
	14.5.5. Deactivating kernel same-page merging

	14.6. OPTIMIZING VIRTUAL MACHINE NETWORK PERFORMANCE
	14.7. VIRTUAL MACHINE PERFORMANCE MONITORING TOOLS
	14.8. ADDITIONAL RESOURCES

	CHAPTER 15. IMPORTANCE OF POWER MANAGEMENT
	15.1. POWER MANAGEMENT BASICS
	15.2. AUDIT AND ANALYSIS OVERVIEW
	15.3. TOOLS FOR AUDITING

	CHAPTER 16. MANAGING POWER CONSUMPTION WITH POWERTOP
	16.1. THE PURPOSE OF POWERTOP
	16.2. USING POWERTOP
	16.2.1. Starting PowerTOP
	16.2.2. Calibrating PowerTOP
	16.2.3. Setting the measuring interval
	16.2.4. Additional resources

	16.3. POWERTOP STATISTICS
	16.3.1. The Overview tab
	16.3.2. The Idle stats tab
	16.3.3. The Device stats tab
	16.3.4. The Tunables tab
	16.3.5. The WakeUp tab

	16.4. WHY POWERTOP DOES NOT DISPLAY FREQUENCY STATS VALUES IN SOME INSTANCES
	16.5. GENERATING AN HTML OUTPUT
	16.6. OPTIMIZING POWER CONSUMPTION
	16.6.1. Optimizing power consumption using the powertop service
	16.6.2. The powertop2tuned utility
	16.6.3. Optimizing power consumption using the powertop2tuned utility
	16.6.4. Comparison of powertop.service and powertop2tuned

	CHAPTER 17. TUNING CPU FREQUENCY TO OPTIMIZE ENERGY CONSUMPTION
	17.1. SUPPORTED CPUPOWER TOOL COMMANDS
	17.2. CPU IDLE STATES
	17.3. OVERVIEW OF CPUFREQ
	17.3.1. CPUfreq drivers
	17.3.2. Core CPUfreq governors
	17.3.3. Intel P-state CPUfreq governors
	17.3.4. Setting up CPUfreq governor

	CHAPTER 18. GETTING STARTED WITH PERF
	18.1. INTRODUCTION TO PERF
	18.2. INSTALLING PERF
	18.3. COMMON PERF COMMANDS

	CHAPTER 19. PROFILING CPU USAGE IN REAL TIME WITH PERF TOP
	19.1. THE PURPOSE OF PERF TOP
	19.2. PROFILING CPU USAGE WITH PERF TOP
	19.3. INTERPRETATION OF PERF TOP OUTPUT
	19.4. WHY PERF DISPLAYS SOME FUNCTION NAMES AS RAW FUNCTION ADDRESSES
	19.5. ENABLING DEBUG AND SOURCE REPOSITORIES
	19.6. GETTING DEBUGINFO PACKAGES FOR AN APPLICATION OR LIBRARY USING GDB

	CHAPTER 20. COUNTING EVENTS DURING PROCESS EXECUTION WITH PERF STAT
	20.1. THE PURPOSE OF PERF STAT
	20.2. COUNTING EVENTS WITH PERF STAT
	20.3. INTERPRETATION OF PERF STAT OUTPUT
	20.4. ATTACHING PERF STAT TO A RUNNING PROCESS

	CHAPTER 21. RECORDING AND ANALYZING PERFORMANCE PROFILES WITH PERF
	21.1. THE PURPOSE OF PERF RECORD
	21.2. RECORDING A PERFORMANCE PROFILE WITHOUT ROOT ACCESS
	21.3. RECORDING A PERFORMANCE PROFILE WITH ROOT ACCESS
	21.4. RECORDING A PERFORMANCE PROFILE IN PER-CPU MODE
	21.5. CAPTURING CALL GRAPH DATA WITH PERF RECORD
	21.6. ANALYZING PERF.DATA WITH PERF REPORT
	21.7. INTERPRETATION OF PERF REPORT OUTPUT
	21.8. GENERATING A PERF.DATA FILE THAT IS READABLE ON A DIFFERENT DEVICE
	21.9. ANALYZING A PERF.DATA FILE THAT WAS CREATED ON A DIFFERENT DEVICE
	21.10. WHY PERF DISPLAYS SOME FUNCTION NAMES AS RAW FUNCTION ADDRESSES
	21.11. ENABLING DEBUG AND SOURCE REPOSITORIES
	21.12. GETTING DEBUGINFO PACKAGES FOR AN APPLICATION OR LIBRARY USING GDB

	CHAPTER 22. INVESTIGATING BUSY CPUS WITH PERF
	22.1. DISPLAYING WHICH CPU EVENTS WERE COUNTED ON WITH PERF STAT
	22.2. DISPLAYING WHICH CPU SAMPLES WERE TAKEN ON WITH PERF REPORT
	22.3. DISPLAYING SPECIFIC CPUS DURING PROFILING WITH PERF TOP
	22.4. MONITORING SPECIFIC CPUS WITH PERF RECORD AND PERF REPORT

	CHAPTER 23. MONITORING APPLICATION PERFORMANCE WITH PERF
	23.1. ATTACHING PERF RECORD TO A RUNNING PROCESS
	23.2. CAPTURING CALL GRAPH DATA WITH PERF RECORD
	23.3. ANALYZING PERF.DATA WITH PERF REPORT

	CHAPTER 24. CREATING UPROBES WITH PERF
	24.1. CREATING UPROBES AT THE FUNCTION LEVEL WITH PERF
	24.2. CREATING UPROBES ON LINES WITHIN A FUNCTION WITH PERF
	24.3. PERF SCRIPT OUTPUT OF DATA RECORDED OVER UPROBES

	CHAPTER 25. PROFILING MEMORY ACCESSES WITH PERF MEM
	25.1. THE PURPOSE OF PERF MEM
	25.2. SAMPLING MEMORY ACCESS WITH PERF MEM
	25.3. INTERPRETATION OF PERF MEM REPORT OUTPUT

	CHAPTER 26. DETECTING FALSE SHARING
	26.1. THE PURPOSE OF PERF C2C
	26.2. DETECTING CACHE-LINE CONTENTION WITH PERF C2C
	26.3. VISUALIZING A PERF.DATA FILE RECORDED WITH PERF C2C RECORD
	26.4. INTERPRETATION OF PERF C2C REPORT OUTPUT
	26.5. DETECTING FALSE SHARING WITH PERF C2C

	CHAPTER 27. GETTING STARTED WITH FLAMEGRAPHS
	27.1. INSTALLING FLAMEGRAPHS
	27.2. CREATING FLAMEGRAPHS OVER THE ENTIRE SYSTEM
	27.3. CREATING FLAMEGRAPHS OVER SPECIFIC PROCESSES
	27.4. INTERPRETING FLAMEGRAPHS

	CHAPTER 28. MONITORING PROCESSES FOR PERFORMANCE BOTTLENECKS USING PERF CIRCULAR BUFFERS
	28.1. CIRCULAR BUFFERS AND EVENT-SPECIFIC SNAPSHOTS WITH PERF
	28.2. COLLECTING SPECIFIC DATA TO MONITOR FOR PERFORMANCE BOTTLENECKS USING PERF CIRCULAR BUFFERS

	CHAPTER 29. ADDING AND REMOVING TRACEPOINTS FROM A RUNNING PERF COLLECTOR WITHOUT STOPPING OR RESTARTING PERF
	29.1. ADDING TRACEPOINTS TO A RUNNING PERF COLLECTOR WITHOUT STOPPING OR RESTARTING PERF
	29.2. REMOVING TRACEPOINTS FROM A RUNNING PERF COLLECTOR WITHOUT STOPPING OR RESTARTING PERF

	CHAPTER 30. PROFILING MEMORY ALLOCATION WITH NUMASTAT
	30.1. DEFAULT NUMASTAT STATISTICS
	30.2. VIEWING MEMORY ALLOCATION WITH NUMASTAT

	CHAPTER 31. CONFIGURING AN OPERATING SYSTEM TO OPTIMIZE CPU UTILIZATION
	31.1. TOOLS FOR MONITORING AND DIAGNOSING PROCESSOR ISSUES
	31.2. TYPES OF SYSTEM TOPOLOGY
	31.2.1. Displaying system topologies

	31.3. CONFIGURING KERNEL TICK TIME
	31.4. OVERVIEW OF AN INTERRUPT REQUEST
	31.4.1. Balancing interrupts manually
	31.4.2. Setting the smp_affinity mask

	CHAPTER 32. TUNING SCHEDULING POLICY
	32.1. CATEGORIES OF SCHEDULING POLICIES
	32.2. STATIC PRIORITY SCHEDULING WITH SCHED_FIFO
	32.3. ROUND ROBIN PRIORITY SCHEDULING WITH SCHED_RR
	32.4. NORMAL SCHEDULING WITH SCHED_OTHER
	32.5. SETTING SCHEDULER POLICIES
	32.6. POLICY OPTIONS FOR THE CHRT COMMAND
	32.7. CHANGING THE PRIORITY OF SERVICES DURING THE BOOT PROCESS
	32.8. PRIORITY MAP
	32.9. TUNED CPU-PARTITIONING PROFILE
	32.10. USING THE TUNED CPU-PARTITIONING PROFILE FOR LOW-LATENCY TUNING
	32.11. CUSTOMIZING THE CPU-PARTITIONING TUNED PROFILE

	CHAPTER 33. FACTORS AFFECTING I/O AND FILE SYSTEM PERFORMANCE
	33.1. TOOLS FOR MONITORING AND DIAGNOSING I/O AND FILE SYSTEM ISSUES
	33.2. AVAILABLE TUNING OPTIONS FOR FORMATTING A FILE SYSTEM
	33.3. AVAILABLE TUNING OPTIONS FOR MOUNTING A FILE SYSTEM
	33.4. TYPES OF DISCARDING UNUSED BLOCKS
	33.5. SOLID-STATE DISKS TUNING CONSIDERATIONS
	33.6. GENERIC BLOCK DEVICE TUNING PARAMETERS

	CHAPTER 34. TUNING THE NETWORK PERFORMANCE
	34.1. TUNING NETWORK ADAPTER SETTINGS
	34.1.1. Increasing the ring buffer size to reduce a high packet drop rate by using nmcli
	34.1.2. Tuning the network device backlog queue to avoid packet drops
	34.1.3. Increasing the transmit queue length of a NIC to reduce the number of transmit errors

	34.2. TUNING IRQ BALANCING
	34.2.1. Interrupts and interrupt handlers
	34.2.2. Software interrupt requests
	34.2.3. NAPI Polling
	34.2.4. The irqbalance service
	34.2.5. Increasing the time SoftIRQs can run on the CPU

	34.3. IMPROVING THE NETWORK LATENCY
	34.3.1. How the CPU power states influence the network latency
	34.3.2. C-state settings in the EFI firmware
	34.3.3. Disabling C-states by using a custom TuneD profile
	34.3.4. Disabling C-states by using a kernel command line option

	34.4. IMPROVING THE THROUGHPUT OF LARGE AMOUNTS OF CONTIGUOUS DATA STREAMS
	34.4.1. Considerations before configuring jumbo frames
	34.4.2. Configuring the MTU in an existing NetworkManager connection profile

	34.5. TUNING TCP CONNECTIONS FOR HIGH THROUGHPUT
	34.5.1. Testing the TCP throughput using iperf3
	34.5.2. The system-wide TCP socket buffer settings
	34.5.3. Increasing the system-wide TCP socket buffers
	34.5.4. TCP Window Scaling
	34.5.5. How TCP SACK reduces the packet drop rate

	34.6. TUNING UDP CONNECTIONS
	34.6.1. Detecting packet drops
	34.6.2. Testing the UDP throughput using iperf3
	34.6.3. Impact of the MTU size on UDP traffic throughput
	34.6.4. Impact of the CPU speed on UDP traffic throughput
	34.6.5. Increasing the system-wide UDP socket buffers

	34.7. IDENTIFYING APPLICATION READ SOCKET BUFFER BOTTLENECKS
	34.7.1. Identifying receive buffer collapsing and pruning

	34.8. TUNING APPLICATIONS WITH A LARGE NUMBER OF INCOMING REQUESTS
	34.8.1. Tuning the TCP listen backlog to process a high number of TCP connection attempts

	34.9. AVOIDING LISTEN QUEUE LOCK CONTENTION
	34.9.1. Avoiding RX queue lock contention: The SO_REUSEPORT and SO_REUSEPORT_BPF socket options
	34.9.2. Avoiding TX queue lock contention: Transmit packet steering
	34.9.3. Disabling the Generic Receive Offload feature on servers with high UDP traffic

	34.10. TUNING THE DEVICE DRIVER AND NIC
	34.10.1. Configuring custom NIC driver parameters

	34.11. CONFIGURING NETWORK ADAPTER OFFLOAD SETTINGS
	34.11.1. Temporarily setting an offload feature
	34.11.2. Permanently setting an offload feature

	34.12. TUNING INTERRUPT COALESCENCE SETTINGS
	34.12.1. Optimizing RHEL for latency or throughput-sensitive services

	34.13. BENEFITS OF TCP TIMESTAMPS
	34.14. FLOW CONTROL FOR ETHERNET NETWORKS

	CHAPTER 35. CONFIGURING AN OPERATING SYSTEM TO OPTIMIZE MEMORY ACCESS
	35.1. TOOLS FOR MONITORING AND DIAGNOSING SYSTEM MEMORY ISSUES
	35.2. OVERVIEW OF A SYSTEM’S MEMORY
	35.3. VIRTUAL MEMORY PARAMETERS
	35.4. FILE SYSTEM PARAMETERS
	35.5. KERNEL PARAMETERS
	35.6. SETTING MEMORY-RELATED KERNEL PARAMETERS

	CHAPTER 36. CONFIGURING HUGE PAGES
	36.1. AVAILABLE HUGE PAGE FEATURES
	36.2. PARAMETERS FOR RESERVING HUGETLB PAGES AT BOOT TIME
	36.3. CONFIGURING HUGETLB AT BOOT TIME
	36.4. PARAMETERS FOR RESERVING HUGETLB PAGES AT RUN TIME
	36.5. CONFIGURING HUGETLB AT RUN TIME
	36.6. ENABLING TRANSPARENT HUGEPAGES
	36.7. DISABLING TRANSPARENT HUGEPAGES
	36.8. IMPACT OF PAGE SIZE ON TRANSLATION LOOKASIDE BUFFER SIZE

	CHAPTER 37. GETTING STARTED WITH SYSTEMTAP
	37.1. THE PURPOSE OF SYSTEMTAP
	37.2. INSTALLING SYSTEMTAP
	37.3. PRIVILEGES TO RUN SYSTEMTAP
	37.4. RUNNING SYSTEMTAP SCRIPTS

	CHAPTER 38. CROSS-INSTRUMENTATION OF SYSTEMTAP
	38.1. SYSTEMTAP CROSS-INSTRUMENTATION
	38.2. INITIALIZING CROSS-INSTRUMENTATION OF SYSTEMTAP

	CHAPTER 39. MONITORING NETWORK ACTIVITY WITH SYSTEMTAP
	39.1. PROFILING NETWORK ACTIVITY WITH SYSTEMTAP
	39.2. TRACING FUNCTIONS CALLED IN NETWORK SOCKET CODE WITH SYSTEMTAP
	39.3. MONITORING NETWORK PACKET DROPS WITH SYSTEMTAP

	CHAPTER 40. PROFILING KERNEL ACTIVITY WITH SYSTEMTAP
	40.1. COUNTING FUNCTION CALLS WITH SYSTEMTAP
	40.2. TRACING FUNCTION CALLS WITH SYSTEMTAP
	40.3. DETERMINING TIME SPENT IN KERNEL AND USER SPACE WITH SYSTEMTAP
	40.4. MONITORING POLLING APPLICATIONS WITH SYSTEMTAP
	40.5. TRACKING MOST FREQUENTLY USED SYSTEM CALLS WITH SYSTEMTAP
	40.6. TRACKING SYSTEM CALL VOLUME PER PROCESS WITH SYSTEMTAP

	CHAPTER 41. MONITORING DISK AND I/O ACTIVITY WITH SYSTEMTAP
	41.1. SUMMARIZING DISK READ/WRITE TRAFFIC WITH SYSTEMTAP
	41.2. TRACKING I/O TIME FOR EACH FILE READ OR WRITE WITH SYSTEMTAP
	41.3. TRACKING CUMULATIVE I/O WITH SYSTEMTAP
	41.4. MONITORING I/O ACTIVITY ON A SPECIFIC DEVICE WITH SYSTEMTAP
	41.5. MONITORING READS AND WRITES TO A FILE WITH SYSTEMTAP

	CHAPTER 42. ANALYZING SYSTEM PERFORMANCE WITH BPF COMPILER COLLECTION
	42.1. INSTALLING THE BCC-TOOLS PACKAGE
	42.2. USING SELECTED BCC-TOOLS FOR PERFORMANCE ANALYSES
	Using execsnoop to examine the system processes
	Using opensnoop to track what files a command opens
	Using biotop to examine the I/O operations on the disk
	Using xfsslower to expose unexpectedly slow file system operations

