Customizing Anaconda
Changing the installer appearance and creating custom add-ons on Red Hat Enterprise Linux
Abstract
Providing feedback on Red Hat documentation Copy linkLink copied to clipboard!
We appreciate your feedback on our documentation. Let us know how we can improve it.
Submitting feedback through Jira (account required)
- Log in to the Jira website.
- Click Create in the top navigation bar
- Enter a descriptive title in the Summary field.
- Enter your suggestion for improvement in the Description field. Include links to the relevant parts of the documentation.
- Click Create at the bottom of the dialogue.
Chapter 1. Introduction to Anaconda customization Copy linkLink copied to clipboard!
1.1. Introduction to Anaconda Customization Copy linkLink copied to clipboard!
The Red Hat Enterprise Linux and Fedora installation program, Anaconda, brings many improvements in its most recent versions. One of these improvements is enhanced customizability. You can now write add-ons to extend the base installer functionality, and change the appearance of the graphical user interface.
This document will explain how to customize the following:
- Boot menu - pre-configured options, color scheme and background
- Appearance of the graphical interface - logo, backgrounds, product name
- Installer functionality - add-ons which can enhance the installer by adding new Kickstart commands and new screens in the graphical and textual user interfaces
Also note that this document applies only to Red Hat Enterprise Linux 8 and Fedora 17 and later.
Procedures described in this book are written for Red Hat Enterprise Linux 9 or a similar system. On other systems, the tools and applications used (such as genisoimage
for creating custom ISO images) may be different, and procedures may need to be adjusted.
Support Statement
Red Hat supports only customizing the Red Hat Enterprise Linux installation media and images by using Red Hat Enterprise Linux Image Builder. Alternatively, you can use Kickstart to deploy consistent systems in your infrastructure.
Chapter 2. Performing the pre-customization tasks Copy linkLink copied to clipboard!
2.1. Working with ISO images Copy linkLink copied to clipboard!
In this section, you will learn how to:
- Extract a Red Hat ISO.
- Create a new boot image containing your customizations.
2.2. Downloading RH boot images Copy linkLink copied to clipboard!
Before you begin to customize the installer, download the Red Hat-provided boot images. You can obtain Red Hat Enterprise Linux 9 boot media from the Red Hat Customer Portal after login to your account.
- Your account must have sufficient entitlements to download Red Hat Enterprise Linux 9 images.
-
You must download either the
Binary DVD
orBoot ISO
image and can use any of the image variants (Server or ComputeNode). -
You cannot customize the installer using the other available downloads, such as the KVM Guest Image or Supplementary DVD; other available downloads, such as the
KVM Guest Image
orSupplementary DVD
.
For more information about the Binary DVD and Boot ISO downloads, see Product Downloads.
2.3. Extracting Red Hat Enterprise Linux boot images Copy linkLink copied to clipboard!
Perform the following procedure to extract the contents of a boot image.
Procedure
-
Ensure that the directory
/mnt/iso
exists and nothing is currently mounted there. Mount the downloaded image.
mount -t iso9660 -o loop path/to/image.iso /mnt/iso
# mount -t iso9660 -o loop path/to/image.iso /mnt/iso
Copy to Clipboard Copied! Toggle word wrap Toggle overflow Where path/to/image.iso is the path to the downloaded boot image.
Create a working directory where you want to place the contents of the ISO image.
mkdir /tmp/ISO
$ mkdir /tmp/ISO
Copy to Clipboard Copied! Toggle word wrap Toggle overflow Copy all contents of the mounted image to your new working directory. Make sure to use the
-p
option to preserve file and directory permissions and ownership.cp -pRf /mnt/iso /tmp/ISO
# cp -pRf /mnt/iso /tmp/ISO
Copy to Clipboard Copied! Toggle word wrap Toggle overflow Unmount the image.
umount /mnt/iso
# umount /mnt/iso
Copy to Clipboard Copied! Toggle word wrap Toggle overflow
Chapter 4. Branding and chroming the graphical user interface Copy linkLink copied to clipboard!
The customization of Anaconda user interface may include the customization of graphical elements and the customization of product name.
This section provides information about how to customize the graphical elements and the product name.
Prerequisites
- You have downloaded and extracted the ISO image.
- You have created your own branding material.
For information about downloading and extracting boot images, see Extracting Red Hat Enterprise Linux boot images
The user interface customization involves the following high-level tasks:
- Complete the prerequisites.
- Create custom branding material (if you plan to customize the graphical elements)
- Customize the graphical elements (if you plan to customize it)
- Customize the product name (if you plan to customize it)
- Create a product.img file
- Create a custom Boot image
To create the custom branding material, first refer to the default graphical element files type and dimensions. You can accordingly create the custom material. Details about default graphical elements are available in the sample files that are provided in the Customizing graphical elements section.
4.1. Customizing graphical elements Copy linkLink copied to clipboard!
To customize the graphical elements, you can modify or replace the customisable elements with the custom branded material, and update the container files.
The customisable graphical elements of the installer are stored in the /usr/share/anaconda/pixmaps/
directory in the installer runtime file system. This directory contains the following customisable files:
Additionally, the /usr/share/anaconda/
directory contains a CSS stylesheet named anaconda-gtk.css
, which determines the file names and parameters of the main UI elements - the logo and the backgrounds for the sidebar and top bar. The file has the following contents that can be customized as per your requirement:
The most important part of the CSS file is the way in which it handles scaling based on resolution. The PNG image backgrounds do not scale, they are always displayed in their true dimensions. Instead, the backgrounds have a transparent background, and the stylesheet defines a matching background color on the @define-color
line. Therefore, the background images "fade" into the background color, which means that the backgrounds work on all resolutions without a need for image scaling.
You could also change the background-repeat
parameters to tile the background, or, if you are confident that every system you will be installing on will have the same display resolution, you can use background images which fill the entire bar.
Any of the files listed above can be customized. Once you do so, follow the instructions in Section 2.2, “Creating a product.img File” to create your own product.img with custom graphics, and then Section 2.3, “Creating Custom Boot Images” to create a new bootable ISO image with your changes included.
4.2. Customizing the product name Copy linkLink copied to clipboard!
To customize the product name, you must create a custom .buildstamp file
. To do so, create a new file .buildstamp.py
with the following content:
Change My Distribution to the name which you want to display in the installer.
After you create the custom .buildstamp file, follow the steps in Creating a product.img file section to create a new product.img file containing your customizations, and the Creating custom boot images section to create a new bootable ISO file with your changes included.
4.3. Customizing the Default Configuration Copy linkLink copied to clipboard!
You can create your own configuration file and use it to customize the configuration of the installer.
4.3.1. Configuring the default configuration files Copy linkLink copied to clipboard!
You can write the Anaconda configuration files in the .ini
file format. The Anaconda configuration file consists of sections, options and comments. Each section is defined by a [section]
header, the comments starting with a #
character and the keys to define the options
. The resulting configuration file is processed with the configparser
configuration file parser.
The default configuration file, located at /etc/anaconda/anaconda.conf
, contains the documented sections and options that are supported. The file provides a full default configuration of the installer. You can modify the configuration of the product configuration files from /etc/anaconda/product.d/
and the custom configuration files from /etc/anaconda/conf.d/
.
The following configuration file describes the default configuration of RHEL 9:
4.3.2. Configuring the product configuration files Copy linkLink copied to clipboard!
The product configuration files have one or two extra sections that identify the product. The [Product]
section specifies the product name of a product. The [Base Product]
section specifies the product name of a base product if any. For example, Red Hat Enterprise Linux is a base product of Red Hat Virtualization.
The installer loads configuration files of the base products before it loads the configuration file of the specified product. For example, it will first load the configuration for Red Hat Enterprise Linux and then the configuration for Red Hat Virtualization.
See an example of the product configuration file for Red Hat Enterprise Linux:
See an example of the product configuration file for Red Hat Virtualization:
To customize the installer configuration for your product, you must create a product configuration file. Create a new file named my-distribution.conf
, with content similar to the example above. Change product_name in the [Product]
section to the name of your product, for example My Distribution. The product name should be the same as the name used in the .buildstamp
file.
After you create the custom configuration file, follow the steps in Creating a product.img file section to create a new product.img
file containing your customizations, and the Creating custom boot images to create a new bootable ISO file with your changes included.
4.3.3. Configuring the custom configuration files Copy linkLink copied to clipboard!
To customize the installer configuration independently of the product name, you must create a custom configuration file. To do so, create a new file named 100-my-configuration.conf
with the content similar to the example in Configuring the default configuration files and omit the [Product]
and [Base Product]
sections.
After you create the custom configuration file, follow the steps in Creating a product.img file section to create a new product.img
file containing your customizations, and the Creating custom boot images to create a new bootable ISO file with your changes included.
Chapter 5. Developing installer add-ons Copy linkLink copied to clipboard!
This section provides details about Anaconda and it’s architecture, and how to develop your own add-ons. The details about Anaconda and its architecture helps you to understand Anaconda backend and various plug points for the add-ons to work. It also helps to accordingly develop the add-ons.
5.1. Introduction to Anaconda and add-ons Copy linkLink copied to clipboard!
Anaconda is the operating system installer used in Fedora, Red Hat Enterprise Linux, and their derivatives. It is a set of Python modules and scripts together with some additional files like Gtk
widgets (written in C), systemd
units, and dracut
libraries. Together, they form a tool that allows users to set parameters of the resulting (target) system and then set up this system on a machine. The installation process has four major steps:
- Prepare installation destination (usually disk partitioning)
- Install package and data
- Install and configure boot loader
- Configure newly installed system
Using Anaconda enables you to install Fedora, Red Hat Enterprise Linux, and their derivatives, in the following three ways:
Using graphical user interface (GUI):
This is the most common installation method. The interface allows users to install the system interactively with little or no configuration required before starting the installation. This method covers all common use cases, including setting up complicated partitioning layouts.
The graphical interface supports remote access over VNC
, which allows you to use the GUI even on systems with no graphics cards or attached monitor.
Using text user interface (TUI):
The TUI works similar to a monochrome line printer, which allows it to work on serial consoles that do not support cursor movement, colors and other advanced features. The text mode is limited and allows you to customize only the most common options, such as network settings, language options or installation (package) source; advanced features such as manual partitioning are not available in this interface.
Using Kickstart file:
A Kickstart file is a plain text file with shell-like syntax that can contain data to drive the installation process. A Kickstart file allows you to partially or completely automate the installation. A set of commands which configures all required areas is necessary to completely automate the installation. If one or more commands are missed, the installation requires interaction.
Apart from automation of the installer itself, Kickstart files can contain custom scripts that are run at specific moments during the installation process.
5.2. Anaconda Architecture Copy linkLink copied to clipboard!
Anaconda is a set of Python modules and scripts. It also uses several external packages and libraries. The major components of this toolset include the following packages:
-
pykickstart
- parses and validates the Kickstart files. Also, provides data structure that stores values that drive the installation. -
dnf
- the package manager that installs packages and resolves dependencies -
blivet
- handles all activities related to storage management -
pyanaconda
- contains the user interface and modules for Anaconda, such as keyboard and timezone selection, network configuration, and user creation. Also provides various utilities to perform system-oriented functions -
python-meh
- contains an exception handler that gathers and stores additional system information in case of a crash and passes this information to thelibreport
library, which itself is a part of the ABRT Project -
dasbus
- enables communication between theD-Bus
library with modules of anaconda and with external components -
python-simpleline
- text UI framework library to manage user interaction in the Anaconda text mode -
gtk
- the Gnome toolkit library for creating and managing GUI
Apart from the division into packages previously mentioned, Anaconda is internally divided into the user interface and a set of modules that run as separate processes and communicate using the D-Bus
library. These modules are:
-
Boss
- manages the internal module discovery, lifecycle, and coordination -
Localization
- manages locales -
Network
- handles network -
Payloads
- handles data for installation in different formats, such asrpm
,ostree
,tar
and other installation formats. Payloads manage the sources of data for installation; sources can vary in format such as CD-ROM, HDD, NFS, URLs, and other sources -
Security
- manages security related aspects -
Services
- handles services -
Storage
- manages storage usingblivet
-
Subscription
- handles thesubscription-manager
tool and Insights. -
Timezone
- deals with time, date, zones, and time synchronization. -
Users
- creates users and groups.
Each module declares which parts of Kickstart it handles, and has methods to apply the configuration from Kickstart to the installation environment and to the installed system.
The Python code portion of Anaconda (pyanaconda
) starts as a “main” process that owns the user interface. Any Kickstart data you provide are parsed using the pykickstart
module and the Boss
module is started, it discovers all other modules, and starts them. Main process then sends Kickstart data to the modules according to their declared capabilities. Modules process the data, apply the configuration to the installation environment, and the UI validates if all required choices have been made. If not, you must supply the data in an interactive installation mode. Once all required choices have been made, the installation can start - the modules write data to the installed system.
5.3. Anaconda user interface Copy linkLink copied to clipboard!
The Anaconda user interface (UI) has a non-linear structure, also known as hub and spoke model.
The advantages of Anaconda hub and spoke model are:
- Flexibility to follow the installer screens.
- Flexibility to retain the default settings.
- Provides an overview of the configured values.
- Supports extensibility. You can add hubs without the need to reorder anything and can resolve some complex ordering dependencies.
- Supports installation in graphical and text mode.
The following diagram shows the installer layout and the possible interactions between hubs and spokes (screens):
Figure 5.1. Hub and spoke model
In the diagram, screens 2-13 are called normal spokes, and screens 1 and 14 are standalone spokes. Standalone spokes are the screens that can be used before or after the standalone spoke or hub. For example, the Welcome
screen at the beginning of the installation which prompts you to choose your language for the rest of the installation.
-
The
Installation Summary
is the only hub in Anaconda. It shows a summary of configured options before the installation begins
Each spoke has the following predefined properties that reflect the hub.
-
ready
- states whether or not you can visit a spoke. For example, when the installer is configuring a package source, the spoke is colored in gray, and you cannot access it until the configuration is complete. -
completed
- marks whether or not the spoke is complete (all required values are set). -
mandatory
- determines whether you must visit the spoke before continuing the installation; for example, you must visit theInstallation Destination
spoke, even if you want to use automatic disk partitioning -
status
- provides a short summary of values configured within the spoke (displayed under the spoke name in the hub)
To make the user interface clearer, spokes are grouped together into categories. For example, the Localization
category groups together spokes for keyboard layout selection, language support and time zone settings.
Each spoke contains UI controls which display and allow you to modify values from one or more modules. The same applies to spokes that add-ons provide.
5.4. Communication across Anaconda threads Copy linkLink copied to clipboard!
Some of the actions that you need to perform during the installation process may take a long time. For example, scanning disks for existing partitions or downloading package metadata. To prevent you from waiting and remaining responsive, Anaconda runs these actions in separate threads.
The Gtk toolkit does not support element changes from multiple threads. The main event loop of Gtk runs in the main thread of the Anaconda process. Therefore, all actions pertaining to the GUI must be performed in the main thread. To do so, use GLib.idle_add
, which is not always easy or desired. Several helper functions and decorators that are defined in the pyanaconda.ui.gui.utils module may add to the difficulty.
The @gtk_action_wait
and @gtk_action_nowait
decorators change the decorated function or method in such a way that when this function or method is called, it is automatically queued into Gtk’s main loop that runs in the main thread. The return value is either returned to the caller or dropped, respectively.
In a spoke and hub communication, a spoke announces when it is ready and is not blocked. The hubQ
message queue handles this function, and periodically checks the main event loop. When a spoke becomes accessible, it sends a message to the queue announcing the change and that it should no longer be blocked.
The same applies in a situation where a spoke needs to refresh its status or complete a flag. The Configuration and Progress
hub has a different queue called progressQ
which serves as a medium to transfer installation progress updates.
These mechanisms are also used for the text-based interface. In the text mode, there is no main loop, but the keyboard input takes most of the time.
5.5. Anaconda modules and D-Bus library Copy linkLink copied to clipboard!
Anaconda’s modules run as independent processes. To communicate with these processes via their D-Bus
API, use the dasbus
library.
Calls to methods via D-Bus
API are asynchronous, but with the dasbus
library you can convert them to synchronous method calls in Python. You can also write either of the following programs:
- program with asynchronous calls and return handlers
- A program with synchronous calls that makes the caller wait until the call is complete.
For more information about threads and communication, see Communication across Anaconda threads.
Additionally, Anaconda uses Task objects running in modules. Tasks have a D-Bus
API and methods that are automatically executed in additional threads. To successfully run the tasks, use the sync_run_task
and async_run_task
helper functions.
5.6. The Hello World addon example Copy linkLink copied to clipboard!
Anaconda developers publish an example addon called “Hello World”, available on GitHub: https://github.com/rhinstaller/hello-world-anaconda-addon/ The descriptions in further sections are reproduced in this.
5.7. Anaconda add-on structure Copy linkLink copied to clipboard!
An Anaconda add-on is a Python package that contains a directory with an __init__.py
and other source directories (subpackages). Because Python allows you to import each package name only once, specify a unique name for the package top-level directory. You can use an arbitrary name, because add-ons are loaded regardless of their name - the only requirement is that they must be placed in a specific directory.
The suggested naming convention for add-ons is similar to Java packages or D-Bus service names.
To make the directory name a unique identifier for a Python package, prefix the add-on name with the reversed domain name of your organization, using underscores (_
) instead of dots. For example, com_example_hello_world
.
Make sure to create an __init__.py
file in each directory. Directories missing this file are considered as invalid Python packages.
When writing an add-on, ensure the following:
-
Support for each interface (graphical interface and text interface) is available in a separate subpackage and these subpackages are named
gui
for the graphical interface andtui
for the text-based interface. -
The
gui
andtui
packages contain aspokes
subpackage. [1] - Modules contained in the packages have an arbitrary name.
-
The
gui/
andtui/
directories contain Python modules with any name. - There is a service that performs the actual work of the addon. This service can be written in Python or any other language.
- The service implements support for D-Bus and Kickstart.
- The addon contains files that enable automatic startup of the service.
Following is a sample directory structure for an add-on which supports every interface (Kickstart, GUI and TUI):
Example 5.1. Sample add-on structure
Each package must contain at least one module with an arbitrary name defining the classes that are inherited from one or more classes defined in the API.
For all add-ons, follow Python’s PEP 8 and PEP 257 guidelines for docstring conventions. There is no consensus on the format of the actual content of docstrings in Anaconda; the only requirement is that they are human-readable. If you plan to use auto-generated documentation for your add-on, docstrings should follow the guidelines for the toolkit you use to accomplish this.
You can include a category subpackage if an add-on needs to define a new category, but this is not recommended.
5.8. Anaconda services and configuration files Copy linkLink copied to clipboard!
Anaconda services and configuration files are included in data/ directory. These files are required to start the add-ons service and to configure D-Bus.
Following are some examples of Anaconda Hello World add-on:
Example 5.2. Example of addon-name.conf:
This file must be placed in the /usr/share/anaconda/dbus/confs/
directory in the installation environment. The string org.fedoraproject.Anaconda.Addons.HelloWorld
must correspond to the location of addon’s service on D-Bus.
Example 5.3. Example of addon-name.service:
This file must be placed in the /usr/share/anaconda/dbus/services/
directory in the installation environment. The string org.fedoraproject.Anaconda.Addons.HelloWorld
must correspond to the location of addon’s service on D-Bus. The value on the line starting with Exec=
must be a valid command that starts the service in the installation environment.
5.9. GUI Add-on basic features Copy linkLink copied to clipboard!
Similarly to Kickstart support in add-ons, GUI support requires that every part of the add-on must contain at least one module with a definition of a class inherited from a particular class defined by the API. For the graphical add-on support, the only class you should add is the NormalSpoke
class, defined in pyanaconda.ui.gui.spokes
, as a class for the normal spoke type of screen. To learn more about it, see Anaconda user interface.
To implement a new class inherited from NormalSpoke
, you must define the following class attributes that the API requires:
-
builderObjects
- lists all top-level objects from the spoke’s.glade
file that should be exposed to the spoke with their children objects (recursively). In case everything should be exposed to the spoke, which is not recommended, the list should be empty. -
mainWidgetName
- contains the id of the main window widget (Add Link) as defined in the.glade
file. -
uiFile
- contains the name of the.glade
file. -
category
- contains the class of the category the spoke belongs to. -
icon
- contains the identifier of the icon that will be used for the spoke on the hub. -
title
- defines the title that will be used for the spoke on the hub.
5.10. Adding support for the Add-on graphical user interface (GUI) Copy linkLink copied to clipboard!
This section describes how to add support to the graphical user interface (GUI) of your add-on by performing the following high-level steps:
- Define Attributes Required for the Normalspoke Class
-
Define the
__init__
andinitialize
Methods -
Define the
refresh
,apply
, andexecute
Methods -
Define the
status
and theready
,completed
andmandatory
Properties
Prerequisites
- Your add-on includes support for Kickstart. See Anaconda add-on structure.
-
Install the anaconda-widgets and anaconda-widgets-devel packages, which contain Gtk widgets specific for
Anaconda
, such asSpokeWindow
.
Procedure
- Create the following modules with all required definitions to add support for the Add-on graphical user interface (GUI), according to the following examples.
Example 5.4. Defining Attributes Required for the Normalspoke Class:
The __all__
attribute exports the spoke
class, followed by the first lines of its definition including definitions of attributes previously mentioned in GUI Add-on basic features. These attribute values are referencing widgets defined in the com_example_hello_world/gui/spokes/hello.glade
file. Two other notable attributes are present:
-
category
, which has its value imported from theHelloWorldCategory
class from thecom_example_hello_world.gui.categories
module. TheHelloWorldCategory
that the path to add-ons is insys.path
so that values can be imported from thecom_example_hello_world
package. Thecategory
attribute is part of theN_ function
name, which marks the string for translation; but returns the non-translated version of the string, as the translation happens in a later stage. -
title
, which contains one underscore in its definition. Thetitle
attribute underscore marks the beginning of the title itself and makes the spoke reachable by using theAlt+H
keyboard shortcut.
What usually follows the header of the class definition and the class attributes
definitions is the constructor that initializes an instance of the class. In case of the Anaconda graphical interface objects, there are two methods initializing a new instance: the __init__
method and the initialize
method.
The reason behind two such functions is that the GUI objects may be created in memory at one time and fully initialized at a different time, as the spoke
initialization could be time consuming. Therefore, the __init__
method should only call the parent’s __init__
method and, for example, initialize non-GUI attributes. On the other hand, the initialize
method that is called when the installer’s graphical user interface initializes should finish the full initialization of the spoke.
In the Hello World add-on
example, define these two methods as follows. Note the number and description of the arguments passed to the __init__
method.
Example 5.5. Defining the __init__
and initialize Methods:
The data parameter passed to the __init__
method is the in-memory tree-like representation of the Kickstart file where all data is stored. In one of the ancestors' __init__
methods it is stored in the self.data
attribute, which allows all other methods in the class to read and modify the structure.
The storage object
is no longer usable as of RHEL9. If your add-on needs to interact with storage configuration, use the Storage DBus
module.
Because the HelloWorldData class has already been defined in The Hello World addon example, there already is a subtree in self.data for this add-on. Its root, an instance of the class, is available as self.data.addons.com_example_hello_world
.
Another action that an ancestor’s __init__
does is initializing an instance of the GtkBuilder with the spoke’s .glade
file and storing it as self.builder
. The initialize
method uses this to get the GtkTextEntry
used to show and modify the text from the kickstart file’s %addon section.
The __init__
and initialize
methods are both important when the spoke is created. However, the main role of the spoke is to be visited by a user who wants to change or review the spoke’s values shows and sets. To enable this, three other methods are available:
-
refresh
- called when the spoke is about to be visited; this method refreshes the state of the spoke, mainly its UI elements, to ensure that the displayed data matches internal data structures and, with that, to ensure that current values stored in the self.data structure are displayed. -
apply
- called when the spoke is left and used to store values from UI elements back into theself.data
structure. -
execute
- called when users leave the spoke and used to perform any runtime changes based on the new state of the spoke.
These functions are implemented in the sample Hello World add-on in the following way:
Example 5.6. Defining the refresh, apply and execute Methods
You can use several additional methods to control the spoke’s state:
-
ready
- determines whether the spoke is ready to be visited; if the value is "False", thespoke
is not accessible, for example, thePackage Selection
spoke before a package source is configured. -
completed
- determines if the spoke has been completed. -
mandatory
- determines if the spoke is mandatory or not, for example, theInstallation Destination
spoke, which must always be visited, even if you want to use automatic partitioning.
All of these attributes need to be dynamically determined based on the current state of the installation process.
Below is a sample implementation of these methods in the Hello World add-on, which requires a certain value to be set in the text attribute of the HelloWorldData
class:
Example 5.7. Defining the ready, completed and mandatory Methods
After these properties are defined, the spoke can control its accessibility and completeness, but it cannot provide a summary of the values configured within - you must visit the spoke to see how it is configured, which may not be desired. For this reason, an additional property called status
exists. This property contains a single line of text with a short summary of configured values, which can then be displayed in the hub under the spoke title.
The status property is defined in the Hello World
example add-on as follows:
Example 5.8. Defining the status
Property
After defining all properties described in the examples, the add-on has full support for showing a graphical user interface (GUI) as well as Kickstart.
The example demonstrated here is very simple and does not contain any controls; knowledge of Python Gtk programming is required to develop a functional, interactive spoke in the GUI.
One notable restriction is that each spoke must have its own main window - an instance of the SpokeWindow
widget. This widget, along with other widgets specific to Anaconda, is found in the anaconda-widgets
package. You can find other files required for development of add-ons with GUI support, such as Glade
definitions, in the anaconda-widgets-devel
package.
Once your graphical interface support module contains all necessary methods you can continue with the following section to add support for the text-based user interface, or you can continue with Deploying and testing an Anaconda add-on and test the add-on.
5.11. Add-on GUI advanced features Copy linkLink copied to clipboard!
The pyanaconda
package contains several helper and utility functions, as well as constructs which may be used by hubs and spokes. Most of them are located in the pyanaconda.ui.gui.utils
package.
The sample Hello World
add-on demonstrates usage of the englightbox
content manager which Anaconda also uses. This content manager can put a window into a lightbox to increase its visibility and focus it to prevent users interacting with the underlying window. To demonstrate this function, the sample add-on contains a button which opens a new dialog window; the dialog itself is a special HelloWorldDialog inheriting from the GUIObject class, which is defined in pyanaconda.ui.gui.init.
The dialog class defines the run method that runs and destroys an internal Gtk dialog accessible through the self.window attribute, which is populated using a mainWidgetName class attribute with the same meaning. Therefore, the code defining the dialog is very simple, as demonstrated in the following example:
Example 5.9. Defining a englightbox Dialog
The Defining an englightbox Dialog
example code creates an instance of the dialog and then uses the enlightbox context manager to run the dialog within a lightbox. The context manager has a reference to the window of the spoke and only needs the dialog’s window to instantiate the lightbox for the dialog.
Another useful feature provided by Anaconda is the ability to define a spoke that will appear both during the installation and after the first reboot. The Initial Setup
utility is described in Adding support for the Add-on graphical user interface (GUI). To make a spoke available in both Anaconda and Initial Setup, it must inherit the special FirstbootSpokeMixIn
class, also known as mixin
, as the first inherited class defined in the pyanaconda.ui.common
module.
To make a spoke available in Anaconda and the reconfiguration mode of the Initial Setup, it must inherit the special FirstbootSpokeMixIn
class, also known as mixin
, as the first inherited class defined in the pyanaconda.ui.common
module.
If you want to make a certain spoke available only in Initial Setup, this spoke should instead inherit the FirstbootOnlySpokeMixIn
class.
To make a spoke always available in both Anaconda and Initial Setup, the spoke should redefine the should_run
method, as demonstrated in the following example:
Example 5.10. Redefining the should_run method
@classmethod def should_run(cls, environment, data): """Run this spoke for Anaconda and Initial Setup""" return True
@classmethod
def should_run(cls, environment, data):
"""Run this spoke for Anaconda and Initial Setup"""
return True
The pyanaconda
package provides many more advanced features, such as the @gtk_action_wait
and @gtk_action_nowait
decorators, but they are out of scope of this guide. For more examples, refer to the installer’s sources.
5.12. TUI Add-on basic features Copy linkLink copied to clipboard!
Anaconda also supports a text-based interface (TUI). This interface is more limited in its capabilities, but on some systems it might be the only choice for an interactive installation. For more information about differences between the text-based interface and graphical interface and about limitations of the TUI, see Introduction to Anaconda and add-ons.
To add support for the text interface into your add-on, create a new set of subpackages under the tui directory as described in Anaconda add-on structure.
The text mode support in the installer is based on the simpleline
library, which only allows very simple user interaction. The text mode interface:
- Does not support cursor movement - instead, it acts like a line printer.
- Does not support any visual enhancements, such as using different colors or fonts, for example.
Internally, the simpleline
toolkit has three main classes: App
, UIScreen
and Widget
. Widgets are units containing information to be printed on the screen. They are placed on UIScreens that are switched by a single instance of the App class. On top of the basic elements, hubs
, spoke`s and `dialogs
all contain various widgets in a way similar to the graphical interface.
The most important classes for an add-on are NormalTUISpoke
and various other classes defined in the pyanaconda.ui.tui.spokes
package. All those classes are based on the TUIObject
class, which itself is an equivalent of the GUIObject
class discussed in Add-on GUI advanced features. Each TUI spoke is a Python class inheriting from the NormalTUISpoke
class, overriding special arguments and methods defined by the API. Because the text interface is simpler than the GUI, there are only two such arguments:
-
title
- determines the title of the spoke, similar as the title argument in the GUI. -
category
- determines the category of the spoke as a string; the category name is not displayed anywhere, it is only used for grouping.
The TUI handles categories differently than the GUI. It is recommended to assign a pre-existing category to your new spoke. Creating a new category would require patching Anaconda, and brings little benefit.
Each spoke is also expected to override several methods, namely init
, initialize
, refresh
, apply
, execute
, input
, prompt
, and properties
(ready
, completed
, mandatory
, and status
).
5.13. Defining a Simple TUI Spoke Copy linkLink copied to clipboard!
The following example shows the implementation of a simple Text User Interface (TUI) spoke in the Hello World sample add-on:
Prerequisites
- You have created a new set of subpackages under the tui directory as described in Anaconda add-on structure.
Procedure
- Create modules with all required definitions to add support for the add-on text user interface (TUI), according to the following examples:
Example 5.11. Defining a Simple TUI Spoke
It is not necessary to override the init
method if it only calls the ancestor’s init
, but the comments in the example describe the arguments passed to constructors of spoke classes in an understandable way.
In the previous example:
-
The
setup
method sets up a default value for the internal attribute of the spoke on every entry, which is then displayed by therefresh
method, updated by theinput
method and used by theapply
method to update internal data structures. -
The
execute
method has the same purpose as the equivalent method in the GUI; in this case, the method has no effect. -
The
input
method is specific to the text interface; there are no equivalents in Kickstart or GUI. Theinput
methods are responsible for user interaction. -
The
input
method processes the entered string and takes action depending on its type and value. The above example asks for any value and then stores it as an internal attribute (key). In more complex add-ons, you typically need to perform some non-trivial actions, such as parse letters as actions, convert numbers into integers, show additional screens or toggle boolean values. -
The
return
value of the input class must be either theInputState
enum or theinput
string itself, in case this input should be processed by a different screen. In contrast to the graphical mode, theapply
andexecute
methods are not called automatically when leaving the spoke; they must be called explicitly from the input method. The same applies to closing (hiding) the spoke’s screen: it must be called explicitly from theclose
method.
To show another screen, for example if you need additional information that was entered in a different spoke, you can instantiate another TUIObject
and use ScreenHandler.push_screen_modal()
to show it.
Due to restrictions of the text-based interface, TUI spokes tend to have a very similar structure, that consists of a list of checkboxes or entries that should be checked or unchecked and populated by the user.
5.14. Using NormalTUISpoke to Define a Text Interface Spoke Copy linkLink copied to clipboard!
The Defining a Simple TUI Spoke example showed a way to implement a TUI spoke where its methods handle printing and processing the available and provided data. However, there is a different way to accomplish this using the NormalTUISpoke
class from the pyanaconda.ui.tui.spokes
package. By inheriting this class, you can implement a typical TUI spoke by only specifying fields and attributes that should be set in it. The following example demonstrates this:
Prerequisites
-
You have added a new set of subpackages under the
TUI
directory, as described in Anaconda add-on structure.
Procedure
- Create modules with all required definitions to add support for the Add-on text user interface (TUI), according to the following examples.
Example 5.12. Using NormalTUISpoke to Define a Text Interface Spoke
5.15. Deploying and testing an Anaconda add-on Copy linkLink copied to clipboard!
You can deploy and test your own Anaconda add-on into the installation environment. To do so, follow the steps:
Prerequisites
- You created an Add-on.
-
You have access to your
D-Bus
files.
Procedure
-
Create a directory
DIR
at the place of your preference. -
Add the
Add-on
python files intoDIR/usr/share/anaconda/addons/
. -
Copy your
D-Bus
service file intoDIR/usr/share/anaconda/dbus/services/
. -
Copy your
D-Bus
service configuration file to/usr/share/anaconda/dbus/confs/
. Create the updates image.
Access the
DIR
directory:cd DIR
cd DIR
Copy to Clipboard Copied! Toggle word wrap Toggle overflow Locate the updates image.
find . | cpio -c -o | pigz -9cv > DIR/updates.img
find . | cpio -c -o | pigz -9cv > DIR/updates.img
Copy to Clipboard Copied! Toggle word wrap Toggle overflow - Extract the contents of the ISO boot image.
Use the resulting
updates
image:-
Add the
updates.img
file into the images directory of your unpacked ISO contents. - Repack the image.
-
Set up a web server to provide the
updates
.img file to the Anaconda installer via HTTP. Load
updates
.img file at boot time by adding the following specification to the boot options.inst.updates=http://your-server/whatever/updates.img to boot options.
inst.updates=http://your-server/whatever/updates.img to boot options.
Copy to Clipboard Copied! Toggle word wrap Toggle overflow
-
Add the
For specific instructions on unpacking an existing boot image, creating a product.img
file and repackaging the image, see Extracting Red Hat Enterprise Linux boot images.
Chapter 6. Completing post customization tasks Copy linkLink copied to clipboard!
To complete the customizations made, perform the following tasks:
- Create a product.img image file (applies only for graphical customizations).
- Create a custom boot image.
This section provides information about how to create a product.img image file and to create a custom boot image.
6.1. Creating a product.img file Copy linkLink copied to clipboard!
A product.img
image file is an archive containing new installer files that replace the existing ones at runtime.
During a system boot, Anaconda loads the product.img file from the images/ directory on the boot media. It then uses the files that are present in this directory to replace identically named files in the installer’s file system. The files when replaced customizes the installer (for example, for replacing default images with custom ones).
Note: The product.img
image must contain a directory structure identical to the installer. For more information about the installer directory structure, see the table below.
Type of custom content | File system location |
---|---|
Pixmaps (logo, sidebar, top bar, and so on.) |
|
GUI stylesheet |
|
Anaconda add-ons |
|
Product configuration files |
|
Custom configuration files |
|
Anaconda DBus service conf files |
|
Anaconda DBus service files |
|
The procedure below explains how to create a product.img
file.
Procedure
Navigate to a working directory such as
/tmp
, and create a subdirectory namedproduct/
:cd /tmp
$ cd /tmp
Copy to Clipboard Copied! Toggle word wrap Toggle overflow Create a subdirectory product/
mkdir product/
$ mkdir product/
Copy to Clipboard Copied! Toggle word wrap Toggle overflow Create a directory structure identical to the location of the file you want to replace. For example, if you want to test an add-on that is present in the
/usr/share/anaconda/addons
directory on the installation system, create the same structure in your working directory:mkdir -p product/usr/share/anaconda/addons
$ mkdir -p product/usr/share/anaconda/addons
Copy to Clipboard Copied! Toggle word wrap Toggle overflow NoteTo view the installer’s runtime file, boot the installation and switch to virtual console 1 (Ctrl+Alt+F1) and then switch to the second tmux window (Ctrl+b+2). A shell prompt that can be used to browse a file system opens.
Place your customized files (in this example, custom add-on for Anaconda) into the newly created directory:
cp -r ~/path/to/custom/addon/ product/usr/share/anaconda/addons/
$ cp -r ~/path/to/custom/addon/ product/usr/share/anaconda/addons/cp -r ~/path/to/custom/addon/ product/usr/share/anaconda/addons/cp -r ~/path/to/custom/addon/ product/usr/share/anaconda/addons/
Copy to Clipboard Copied! Toggle word wrap Toggle overflow - Repeat steps 3 and 4 (create a directory structure and place the custom files into it) for every file you want to add to the installer.
Create a
.buildstamp
file in the root of the directory. The.buildstamp
file describes the system version, the product and several other parameters. The following is an example of a.buildstamp
file from Red Hat Enterprise Linux 8.4:Copy to Clipboard Copied! Toggle word wrap Toggle overflow The
IsFinal
parameter specifies whether the image is for a release (GA) version of the product (True
), or a pre-release such as Alpha, Beta, or an internal milestone (False
).Navigate to the
product/
directory, and create theproduct.img
archive:cd product
$ cd product
Copy to Clipboard Copied! Toggle word wrap Toggle overflow find . | cpio -c -o | gzip -9cv > ../product.img
$ find . | cpio -c -o | gzip -9cv > ../product.img
Copy to Clipboard Copied! Toggle word wrap Toggle overflow This creates a
product.img
file one level above theproduct/
directory.-
Move the
product.img
file to theimages/
directory of the extracted ISO image.
The product.img file is now created and the customizations that you want to make are placed in the respective directories.
Instead of adding the product.img
file on the boot media, you can place this file into a different location and use the inst.updates=
boot option at the boot menu to load it. In that case, the image file can have any name, and it can be placed in any location (USB flash drive, hard disk, HTTP, FTP or NFS server), as long as this location is reachable from the installation system.
6.2. Creating custom boot images Copy linkLink copied to clipboard!
After you customize the boot images and the GUI layout, create a new image that includes the changes you made.
To create custom boot images, follow the procedure below.
Procedure
-
Make sure that all of your changes are included in the working directory. For example, if you are testing an add-on, make sure to place the
product.img
in theimages/
directory. -
Make sure your current working directory is the top-level directory of the extracted ISO image, for example,
/tmp/ISO/iso/
. Create a new ISO image using the
genisoimage
:genisoimage -U -r -v -T -J -joliet-long -V "RHEL-9 Server.x86_64" -volset "RHEL-9 Server.x86_64" -A "RHEL-9 Server.x86_64" -b isolinux/isolinux.bin -c isolinux/boot.cat -no-emul-boot -boot-load-size 4 -boot-info-table -eltorito-alt-boot -e images/efiboot.img -no-emul-boot -o ../NEWISO.iso .
# genisoimage -U -r -v -T -J -joliet-long -V "RHEL-9 Server.x86_64" -volset "RHEL-9 Server.x86_64" -A "RHEL-9 Server.x86_64" -b isolinux/isolinux.bin -c isolinux/boot.cat -no-emul-boot -boot-load-size 4 -boot-info-table -eltorito-alt-boot -e images/efiboot.img -no-emul-boot -o ../NEWISO.iso .
Copy to Clipboard Copied! Toggle word wrap Toggle overflow In the above example:
Make sure that the values for
-V
,-volset
, and-A
options match the image’s boot loader configuration, if you are using theLABEL=
directive for options that require a location to load a file on the same disk. If your boot loader configuration (isolinux/isolinux.cfg
for BIOS andEFI/BOOT/grub.cfg
for UEFI) uses theinst.stage2=LABEL=disk_label
stanza to load the second stage of the installer from the same disk, then the disk labels must match.ImportantIn boot loader configuration files, replace all spaces in disk labels with
\x20
. For example, if you create an ISO image with aRHEL 9.0
label, boot loader configuration should useRHEL\x209.0
.Replace the value of the
-o
option (-o ../NEWISO.iso
) with the file name of your new image. The value in the example creates theNEWISO.iso
file in the directory above the current one.For more information about this command, see the
genisoimage(1)
man page on your system.
Implant an MD5 checksum into the image. Note that without an MD5 checksu, the image verification check might fail (the
rd.live.check
option in the boot loader configuration) and the installation can hang.implantisomd5 ../NEWISO.iso
# implantisomd5 ../NEWISO.iso
Copy to Clipboard Copied! Toggle word wrap Toggle overflow In the above example, replace ../NEWISO.iso with the file name and the location of the ISO image that you have created in the previous step.
You can now write the new ISO image to physical media or a network server to boot it on physical hardware, or you can use it to start installing a virtual machine.