Search

Chapter 16. Monitoring performance by using the RHEL system role

download PDF

As a system administrator, you can use the metrics RHEL system role to monitor the performance of a system.

16.1. Introduction to the metrics RHEL system role

RHEL system roles is a collection of Ansible roles and modules that provide a consistent configuration interface to remotely manage multiple RHEL systems. The metrics system role configures performance analysis services for the local system and, optionally, includes a list of remote systems to be monitored by the local system. The metrics system role enables you to use pcp to monitor your systems performance without having to configure pcp separately, as the set-up and deployment of pcp is handled by the playbook.

Additional resources

  • /usr/share/ansible/roles/rhel-system-roles.metrics/README.md file
  • /usr/share/doc/rhel-system-roles/metrics/ directory

16.2. Using the metrics RHEL system role to monitor your local system with visualization

This procedure describes how to use the metrics RHEL system role to monitor your local system while simultaneously provisioning data visualization via Grafana.

Prerequisites

  • You have prepared the control node and the managed nodes.
  • You are logged in to the control node as a user who can run playbooks on the managed nodes.
  • The account you use to connect to the managed nodes has sudo permissions on them.
  • localhost is configured in the inventory file on the control node:

    localhost ansible_connection=local

Procedure

  1. Create a playbook file, for example ~/playbook.yml, with the following content:

    ---
    - name: Manage metrics
      hosts: localhost
      roles:
        - rhel-system-roles.metrics
      vars:
        metrics_graph_service: yes
        metrics_manage_firewall: true
        metrics_manage_selinux: true

    Because the metrics_graph_service boolean is set to value="yes", Grafana is automatically installed and provisioned with pcp added as a data source. Because metrics_manage_firewall and metrics_manage_selinux are both set to true, the metrics role uses the firewall and selinux system roles to manage the ports used by the metrics role.

  2. Validate the playbook syntax:

    $ ansible-playbook --syntax-check ~/playbook.yml

    Note that this command only validates the syntax and does not protect against a wrong but valid configuration.

  3. Run the playbook:

    $ ansible-playbook ~/playbook.yml

Verification

  • To view visualization of the metrics being collected on your machine, access the grafana web interface as described in Accessing the Grafana web UI.

Additional resources

  • /usr/share/ansible/roles/rhel-system-roles.metrics/README.md file
  • /usr/share/doc/rhel-system-roles/metrics/ directory

16.3. Using the metrics RHEL system role to set up a fleet of individual systems to monitor themselves

This procedure describes how to use the metrics system role to set up a fleet of machines to monitor themselves.

Prerequisites

Procedure

  1. Create a playbook file, for example ~/playbook.yml, with the following content:

    ---
    - name: Configure a fleet of machines to monitor themselves
      hosts: managed-node-01.example.com
      roles:
        - rhel-system-roles.metrics
      vars:
        metrics_retention_days: 0
        metrics_manage_firewall: true
        metrics_manage_selinux: true

    Because metrics_manage_firewall and metrics_manage_selinux are both set to true, the metrics role uses the firewall and selinux roles to manage the ports used by the metrics role.

  2. Validate the playbook syntax:

    $ ansible-playbook --syntax-check ~/playbook.yml

    Note that this command only validates the syntax and does not protect against a wrong but valid configuration.

  3. Run the playbook:

    $ ansible-playbook ~/playbook.yml

Additional resources

  • /usr/share/ansible/roles/rhel-system-roles.metrics/README.md file
  • /usr/share/doc/rhel-system-roles/metrics/ directory

16.4. Using the metrics RHEL system role to monitor a fleet of machines centrally using your local machine

This procedure describes how to use the metrics system role to set up your local machine to centrally monitor a fleet of machines while also provisioning visualization of the data via grafana and querying of the data via redis.

Prerequisites

  • You have prepared the control node and the managed nodes.
  • You are logged in to the control node as a user who can run playbooks on the managed nodes.
  • The account you use to connect to the managed nodes has sudo permissions on them.
  • localhost is configured in the inventory file on the control node:

    localhost ansible_connection=local

Procedure

  1. Create a playbook file, for example ~/playbook.yml, with the following content:

    - name: Set up your local machine to centrally monitor a fleet of machines
      hosts: localhost
      roles:
        - rhel-system-roles.metrics
      vars:
        metrics_graph_service: yes
        metrics_query_service: yes
        metrics_retention_days: 10
        metrics_monitored_hosts: ["database.example.com", "webserver.example.com"]
        metrics_manage_firewall: yes
        metrics_manage_selinux: yes

    Because the metrics_graph_service and metrics_query_service booleans are set to value="yes", grafana is automatically installed and provisioned with pcp added as a data source with the pcp data recording indexed into redis, allowing the pcp querying language to be used for complex querying of the data. Because metrics_manage_firewall and metrics_manage_selinux are both set to true, the metrics role uses the firewall and selinux roles to manage the ports used by the metrics role.

  2. Validate the playbook syntax:

    $ ansible-playbook --syntax-check ~/playbook.yml

    Note that this command only validates the syntax and does not protect against a wrong but valid configuration.

  3. Run the playbook:

    $ ansible-playbook ~/playbook.yml

Verification

  • To view a graphical representation of the metrics being collected centrally by your machine and to query the data, access the grafana web interface as described in Accessing the Grafana web UI.

Additional resources

  • /usr/share/ansible/roles/rhel-system-roles.metrics/README.md file
  • /usr/share/doc/rhel-system-roles/metrics/ directory

16.5. Setting up authentication while monitoring a system by using the metrics RHEL system role

PCP supports the scram-sha-256 authentication mechanism through the Simple Authentication Security Layer (SASL) framework. The metrics RHEL system role automates the steps to setup authentication by using the scram-sha-256 authentication mechanism. This procedure describes how to setup authentication by using the metrics RHEL system role.

Prerequisites

Procedure

  1. Edit an existing playbook file, for example ~/playbook.yml, and add the authentication-related variables:

    ---
    - name: Set up authentication by using the scram-sha-256 authentication mechanism
      hosts: managed-node-01.example.com
      roles:
        - rhel-system-roles.metrics
      vars:
        metrics_retention_days: 0
        metrics_manage_firewall: true
        metrics_manage_selinux: true
        metrics_username: <username>
        metrics_password: <password>
  2. Validate the playbook syntax:

    $ ansible-playbook --syntax-check ~/playbook.yml

    Note that this command only validates the syntax and does not protect against a wrong but valid configuration.

  3. Run the playbook:

    $ ansible-playbook ~/playbook.yml

Verification

  • Verify the sasl configuration:

    # pminfo -f -h "pcp://managed-node-01.example.com?username=<username>" disk.dev.read
    Password: <password>
    disk.dev.read
    inst [0 or "sda"] value 19540

Additional resources

  • /usr/share/ansible/roles/rhel-system-roles.metrics/README.md file
  • /usr/share/doc/rhel-system-roles/metrics/ directory

16.6. Using the metrics RHEL system role to configure and enable metrics collection for SQL Server

This procedure describes how to use the metrics RHEL system role to automate the configuration and enabling of metrics collection for Microsoft SQL Server via pcp on your local system.

Prerequisites

Procedure

  1. Create a playbook file, for example ~/playbook.yml, with the following content:

    ---
    - name: Configure and enable metrics collection for Microsoft SQL Server
      hosts: localhost
      roles:
        - rhel-system-roles.metrics
      vars:
        metrics_from_mssql: true
        metrics_manage_firewall: true
        metrics_manage_selinux: true

    Because metrics_manage_firewall and metrics_manage_selinux are both set to true, the metrics role uses the firewall and selinux roles to manage the ports used by the metrics role.

  2. Validate the playbook syntax:

    $ ansible-playbook --syntax-check ~/playbook.yml

    Note that this command only validates the syntax and does not protect against a wrong but valid configuration.

  3. Run the playbook:

    $ ansible-playbook ~/playbook.yml

Verification

  • Use the pcp command to verify that SQL Server PMDA agent (mssql) is loaded and running:

    # pcp
    platform: Linux sqlserver.example.com 4.18.0-167.el8.x86_64 #1 SMP Sun Dec 15 01:24:23 UTC 2019 x86_64
     hardware: 2 cpus, 1 disk, 1 node, 2770MB RAM
     timezone: PDT+7
     services: pmcd pmproxy
         pmcd: Version 5.0.2-1, 12 agents, 4 clients
         pmda: root pmcd proc pmproxy xfs linux nfsclient mmv kvm mssql
               jbd2 dm
     pmlogger: primary logger: /var/log/pcp/pmlogger/sqlserver.example.com/20200326.16.31
         pmie: primary engine: /var/log/pcp/pmie/sqlserver.example.com/pmie.log

Additional resources

  • /usr/share/ansible/roles/rhel-system-roles.metrics/README.md file
  • /usr/share/doc/rhel-system-roles/metrics/ directory
Red Hat logoGithubRedditYoutubeTwitter

Learn

Try, buy, & sell

Communities

About Red Hat Documentation

We help Red Hat users innovate and achieve their goals with our products and services with content they can trust.

Making open source more inclusive

Red Hat is committed to replacing problematic language in our code, documentation, and web properties. For more details, see the Red Hat Blog.

About Red Hat

We deliver hardened solutions that make it easier for enterprises to work across platforms and environments, from the core datacenter to the network edge.

© 2024 Red Hat, Inc.