
Red Hat Enterprise Linux 9.0

Managing file systems

Creating, modifying, and administering file systems in Red Hat Enterprise Linux 9

Last Updated: 2025-11-26

Red Hat Enterprise Linux 9.0 Managing file systems

Creating, modifying, and administering file systems in Red Hat Enterprise Linux 9

Legal Notice

Copyright © 2025 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Red Hat Enterprise Linux supports a variety of file systems. Each type of file system solves different
problems and their usage is application specific. Use the information about the key differences and
considerations to select and deploy the appropriate file system based on your specific application
requirements. The supported file systems include local on-disk file systems XFS and ext4, network
and client-and-server file systems NFS and SMB, as well as a combined local storage and file
system management solution, Stratis. You can perform several operations with a file system such as
creating, mounting, backing up, restoring, checking and repairing, as well as limiting the storage
space by using quotas.

. .

. .

. .

. .

. .

Table of Contents

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

CHAPTER 1. OVERVIEW OF AVAILABLE FILE SYSTEMS
1.1. TYPES OF FILE SYSTEMS
1.2. LOCAL FILE SYSTEMS
1.3. THE XFS FILE SYSTEM
1.4. THE EXT4 FILE SYSTEM
1.5. COMPARISON OF XFS AND EXT4
1.6. CHOOSING A LOCAL FILE SYSTEM
1.7. NETWORK FILE SYSTEMS
1.8. SHARED STORAGE FILE SYSTEMS
1.9. CHOOSING BETWEEN NETWORK AND SHARED STORAGE FILE SYSTEMS
1.10. VOLUME-MANAGING FILE SYSTEMS

CHAPTER 2. MANAGING LOCAL STORAGE BY USING RHEL SYSTEM ROLES
2.1. CREATING AN XFS FILE SYSTEM ON A BLOCK DEVICE BY USING THE STORAGE RHEL SYSTEM ROLE

2.2. PERSISTENTLY MOUNTING A FILE SYSTEM BY USING THE STORAGE RHEL SYSTEM ROLE
2.3. CREATING OR RESIZING A LOGICAL VOLUME BY USING THE STORAGE RHEL SYSTEM ROLE
2.4. ENABLING ONLINE BLOCK DISCARD BY USING THE STORAGE RHEL SYSTEM ROLE
2.5. CREATING AND MOUNTING A FILE SYSTEM BY USING THE STORAGE RHEL SYSTEM ROLE
2.6. CONFIGURING A RAID VOLUME BY USING THE STORAGE RHEL SYSTEM ROLE
2.7. CONFIGURING AN LVM POOL WITH RAID BY USING THE STORAGE RHEL SYSTEM ROLE
2.8. CONFIGURING A STRIPE SIZE FOR RAID LVM VOLUMES BY USING THE STORAGE RHEL SYSTEM ROLE

2.9. CONFIGURING AN LVM-VDO VOLUME BY USING THE STORAGE RHEL SYSTEM ROLE
2.10. CREATING A LUKS2 ENCRYPTED VOLUME BY USING THE STORAGE RHEL SYSTEM ROLE
2.11. CREATING SHARED LVM DEVICES USING THE STORAGE RHEL SYSTEM ROLE
2.12. RESIZING PHYSICAL VOLUMES BY USING THE STORAGE RHEL SYSTEM ROLE
2.13. CREATING AN ENCRYPTED STRATIS POOL BY USING THE STORAGE RHEL SYSTEM ROLE

CHAPTER 3. MANAGING PARTITIONS USING THE WEB CONSOLE
3.1. DISPLAYING PARTITIONS FORMATTED WITH FILE SYSTEMS IN THE WEB CONSOLE
3.2. CREATING PARTITIONS IN THE WEB CONSOLE
3.3. DELETING PARTITIONS IN THE WEB CONSOLE

CHAPTER 4. MOUNTING NFS SHARES
4.1. SERVICES REQUIRED ON AN NFS CLIENT
4.2. PREPARING AN NFSV3 CLIENT TO RUN BEHIND A FIREWALL
4.3. PREPARING AN NFSV4 CLIENT TO RUN BEHIND A FIREWALL
4.4. MANUALLY MOUNTING AN NFS SHARE
4.5. MOUNTING AN NFS SHARE AUTOMATICALLY WHEN THE SYSTEM BOOTS
4.6. CONNECTING NFS MOUNTS IN THE WEB CONSOLE
4.7. CUSTOMIZING NFS MOUNT OPTIONS IN THE WEB CONSOLE
4.8. SETTING UP AN NFS CLIENT WITH KERBEROS IN A RED HAT ENTERPRISE LINUX IDENTITY
MANAGEMENT DOMAIN
4.9. CONFIGURING AN NFS SERVER WITH TLS SUPPORT
4.10. CONFIGURING AN NFS CLIENT WITH TLS SUPPORT
4.11. CONFIGURING AN NFS CLIENT WITH MUTUAL TLS SUPPORT
4.12. CONFIGURING GNOME TO STORE USER SETTINGS ON HOME DIRECTORIES HOSTED ON AN NFS
SHARE
4.13. FREQUENTLY USED NFS MOUNT OPTIONS
4.14. ENABLING CLIENT-SIDE CACHING OF NFS CONTENT

7

8
8
9
9

10
11

12
13
13
14
14

15

15
16
17
18
19

20
22

23
24
26
28
29
30

33
33
34
36

37
37
38
39
39
40
40
42

43
44
46
46

48
48
49

Table of Contents

1

. .

. .

. .

. .

. .

4.14.1. How NFS caching works
4.14.2. Installing and configuring the cachefilesd service
4.14.3. Sharing NFS cache
4.14.4. NFS cache limitations
4.14.5. How cache culling works

CHAPTER 5. MOUNTING AN SMB SHARE
5.1. SUPPORTED SMB PROTOCOL VERSIONS
5.2. UNIX EXTENSIONS SUPPORT
5.3. MANUALLY MOUNTING AN SMB SHARE
5.4. MOUNTING AN SMB SHARE AUTOMATICALLY WHEN THE SYSTEM BOOTS
5.5. CREATING A CREDENTIALS FILE TO AUTHENTICATE TO AN SMB SHARE
5.6. PERFORMING A MULTI-USER SMB MOUNT

5.6.1. Mounting a share with the multiuser option
5.6.2. Verifying if an SMB share is mounted with the multiuser option
5.6.3. Accessing a share as a user

5.7. FREQUENTLY USED SMB MOUNT OPTIONS

CHAPTER 6. OVERVIEW OF PERSISTENT NAMING ATTRIBUTES
6.1. DISADVANTAGES OF NON-PERSISTENT NAMING ATTRIBUTES
6.2. FILE SYSTEM AND DEVICE IDENTIFIERS

File system identifiers
Device identifiers
Recommendations

6.3. DEVICE NAMES MANAGED BY THE UDEV MECHANISM IN /DEV/DISK/
6.3.1. File system identifiers

The UUID attribute in /dev/disk/by-uuid/
The Label attribute in /dev/disk/by-label/

6.3.2. Device identifiers
The WWID attribute in /dev/disk/by-id/
The Partition UUID attribute in /dev/disk/by-partuuid
The Path attribute in /dev/disk/by-path/

6.4. THE WORLD WIDE IDENTIFIER WITH DM MULTIPATH
6.5. LIMITATIONS OF THE UDEV DEVICE NAMING CONVENTION
6.6. LISTING PERSISTENT NAMING ATTRIBUTES
6.7. MODIFYING PERSISTENT NAMING ATTRIBUTES

CHAPTER 7. PARTITION OPERATIONS WITH PARTED
7.1. VIEWING THE PARTITION TABLE WITH PARTED
7.2. CREATING A PARTITION TABLE ON A DISK WITH PARTED
7.3. CREATING A PARTITION WITH PARTED
7.4. REMOVING A PARTITION WITH PARTED
7.5. RESIZING A PARTITION WITH PARTED

CHAPTER 8. STRATEGIES FOR REPARTITIONING A DISK
8.1. USING UNPARTITIONED FREE SPACE
8.2. USING SPACE FROM AN UNUSED PARTITION
8.3. USING FREE SPACE FROM AN ACTIVE PARTITION

8.3.1. Destructive repartitioning
8.3.2. Non-destructive repartitioning

CHAPTER 9. GETTING STARTED WITH XFS
9.1. THE XFS FILE SYSTEM
9.2. COMPARISON OF TOOLS USED WITH EXT4 AND XFS

50
51
52
52
53

54
54
54
55
56
57
57
58
58
58
59

61
61
61

62
62
62
62
62
62
63
63
63
64
64
64
65
66
67

68
68
69
70
71
73

75
75
75
76
76
77

80
80
81

Red Hat Enterprise Linux 9.0 Managing file systems

2

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

CHAPTER 10. CREATING AN XFS FILE SYSTEM
10.1. CREATING AN XFS FILE SYSTEM WITH MKFS.XFS

CHAPTER 11. BACKING UP AN XFS FILE SYSTEM
11.1. FEATURES OF XFS BACKUP
11.2. BACKING UP AN XFS FILE SYSTEM WITH XFSDUMP

CHAPTER 12. RESTORING AN XFS FILE SYSTEM FROM BACKUP
12.1. FEATURES OF RESTORING XFS FROM BACKUP
12.2. RESTORING AN XFS FILE SYSTEM FROM BACKUP WITH XFSRESTORE
12.3. INFORMATIONAL MESSAGES WHEN RESTORING AN XFS BACKUP FROM A TAPE

CHAPTER 13. INCREASING THE SIZE OF AN XFS FILE SYSTEM
13.1. INCREASING THE SIZE OF AN XFS FILE SYSTEM WITH XFS_GROWFS

CHAPTER 14. CONFIGURING XFS ERROR BEHAVIOR
14.1. CONFIGURABLE ERROR HANDLING IN XFS
14.2. CONFIGURATION FILES FOR SPECIFIC AND UNDEFINED XFS ERROR CONDITIONS
14.3. SETTING XFS BEHAVIOR FOR SPECIFIC CONDITIONS
14.4. SETTING XFS BEHAVIOR FOR UNDEFINED CONDITIONS
14.5. SETTING THE XFS UNMOUNT BEHAVIOR

CHAPTER 15. CHECKING AND REPAIRING A FILE SYSTEM
15.1. SCENARIOS THAT REQUIRE A FILE SYSTEM CHECK
15.2. POTENTIAL SIDE EFFECTS OF RUNNING FSCK
15.3. ERROR-HANDLING MECHANISMS IN XFS

Unclean unmounts
Corruption

15.4. CHECKING AN XFS FILE SYSTEM WITH XFS_REPAIR
15.5. REPAIRING AN XFS FILE SYSTEM WITH XFS_REPAIR
15.6. ERROR HANDLING MECHANISMS IN EXT2, EXT3, AND EXT4
15.7. CHECKING AN EXT2, EXT3, OR EXT4 FILE SYSTEM WITH E2FSCK
15.8. REPAIRING AN EXT2, EXT3, OR EXT4 FILE SYSTEM WITH E2FSCK

CHAPTER 16. MOUNTING FILE SYSTEMS
16.1. THE LINUX MOUNT MECHANISM
16.2. LISTING CURRENTLY MOUNTED FILE SYSTEMS
16.3. MOUNTING A FILE SYSTEM WITH MOUNT
16.4. MOVING A MOUNT POINT
16.5. UNMOUNTING A FILE SYSTEM WITH UMOUNT
16.6. MOUNTING AND UNMOUNTING FILE SYSTEMS IN THE WEB CONSOLE
16.7. COMMON MOUNT OPTIONS

CHAPTER 17. SHARING A MOUNT ON MULTIPLE MOUNT POINTS
17.1. TYPES OF SHARED MOUNTS
17.2. CREATING A PRIVATE MOUNT POINT DUPLICATE
17.3. CREATING A SHARED MOUNT POINT DUPLICATE
17.4. CREATING A SLAVE MOUNT POINT DUPLICATE
17.5. PREVENTING A MOUNT POINT FROM BEING DUPLICATED

CHAPTER 18. PERSISTENTLY MOUNTING FILE SYSTEMS
18.1. THE /ETC/FSTAB FILE
18.2. ADDING A FILE SYSTEM TO /ETC/FSTAB

CHAPTER 19. MOUNTING FILE SYSTEMS ON DEMAND
19.1. THE AUTOFS SERVICE

82
82

83
83
83

85
85
85
86

87
87

88
88
88
89
89
90

91
91
91

92
92
92
93
94
95
95
95

97
97
97
98
99
99

100
101

102
102
102
103
105
106

107
107
108

109
109

Table of Contents

3

. .

. .

. .

. .

. .

. .

19.2. THE AUTOFS CONFIGURATION FILES
19.3. CONFIGURING AUTOFS MOUNT POINTS
19.4. AUTOMOUNTING NFS SERVER USER HOME DIRECTORIES WITH AUTOFS SERVICE
19.5. OVERRIDING OR AUGMENTING AUTOFS SITE CONFIGURATION FILES
19.6. USING LDAP TO STORE AUTOMOUNTER MAPS
19.7. USING SYSTEMD.AUTOMOUNT TO MOUNT A FILE SYSTEM ON DEMAND WITH /ETC/FSTAB
19.8. USING SYSTEMD.AUTOMOUNT TO MOUNT A FILE SYSTEM ON-DEMAND WITH A MOUNT UNIT

CHAPTER 20. USING SSSD COMPONENT FROM IDM TO CACHE THE AUTOFS MAPS
20.1. CONFIGURING AUTOFS MANUALLY TO USE IDM SERVER AS AN LDAP SERVER
20.2. CONFIGURING SSSD TO CACHE AUTOFS MAPS

CHAPTER 21. SETTING READ-ONLY PERMISSIONS FOR THE ROOT FILE SYSTEM
21.1. FILES AND DIRECTORIES THAT ALWAYS RETAIN WRITE PERMISSIONS
21.2. CONFIGURING THE ROOT FILE SYSTEM TO MOUNT WITH READ-ONLY PERMISSIONS ON BOOT

CHAPTER 22. LIMITING STORAGE SPACE USAGE ON XFS WITH QUOTAS
22.1. DISK QUOTAS
22.2. THE XFS_QUOTA TOOL
22.3. FILE SYSTEM QUOTA MANAGEMENT IN XFS
22.4. ENABLING DISK QUOTAS FOR XFS
22.5. REPORTING XFS USAGE
22.6. MODIFYING XFS QUOTA LIMITS
22.7. SETTING PROJECT LIMITS FOR XFS

CHAPTER 23. LIMITING STORAGE SPACE USAGE ON EXT4 WITH QUOTAS
23.1. INSTALLING THE QUOTA TOOL
23.2. ENABLING QUOTA FEATURE ON FILE SYSTEM CREATION
23.3. ENABLING QUOTA FEATURE ON EXISTING FILE SYSTEMS
23.4. ENABLING QUOTA ENFORCEMENT
23.5. ASSIGNING QUOTAS PER USER
23.6. ASSIGNING QUOTAS PER GROUP
23.7. ASSIGNING QUOTAS PER PROJECT
23.8. SETTING THE GRACE PERIOD FOR SOFT LIMITS
23.9. TURNING FILE SYSTEM QUOTAS OFF
23.10. REPORTING ON DISK QUOTAS

CHAPTER 24. DISCARDING UNUSED BLOCKS
Requirements
24.1. TYPES OF BLOCK DISCARD OPERATIONS

Recommendations
24.2. PERFORMING BATCH BLOCK DISCARD
24.3. ENABLING ONLINE BLOCK DISCARD
24.4. ENABLING ONLINE BLOCK DISCARD BY USING THE STORAGE RHEL SYSTEM ROLE
24.5. ENABLING PERIODIC BLOCK DISCARD

CHAPTER 25. SETTING UP STRATIS FILE SYSTEMS
25.1. COMPONENTS OF A STRATIS FILE SYSTEM
25.2. BLOCK DEVICES COMPATIBLE WITH STRATIS

Supported devices
25.3. INSTALLING STRATIS
25.4. CREATING AN UNENCRYPTED STRATIS POOL
25.5. CREATING AN UNENCRYPTED STRATIS POOL BY USING THE WEB CONSOLE
25.6. CREATING AN ENCRYPTED STRATIS POOL USING A KEY IN THE KERNEL KEYRING
25.7. CREATING AN ENCRYPTED STRATIS POOL USING CLEVIS

109
111

112
112
114
115
116

118
118
119

121
121
122

124
124
124
124
125
125
126
127

129
129
129
129
130
131
132
133
134
134
134

136
136
136
136
136
137
137
138

140
140
141
141
141

142
143
143
145

Red Hat Enterprise Linux 9.0 Managing file systems

4

. .

. .

. .

. .

. .

25.8. CREATING AN ENCRYPTED STRATIS POOL BY USING THE STORAGE RHEL SYSTEM ROLE
25.9. CREATING AN ENCRYPTED STRATIS POOL BY USING THE WEB CONSOLE
25.10. RENAMING A STRATIS POOL BY USING THE WEB CONSOLE
25.11. SETTING OVERPROVISIONING MODE IN STRATIS FILE SYSTEM
25.12. BINDING A STRATIS POOL TO NBDE
25.13. BINDING A STRATIS POOL TO TPM
25.14. UNLOCKING AN ENCRYPTED STRATIS POOL WITH KERNEL KEYRING
25.15. UNBINDING A STRATIS POOL FROM SUPPLEMENTARY ENCRYPTION
25.16. STARTING AND STOPPING STRATIS POOL
25.17. CREATING A STRATIS FILE SYSTEM
25.18. CREATING A FILE SYSTEM ON A STRATIS POOL BY USING THE WEB CONSOLE
25.19. MOUNTING A STRATIS FILE SYSTEM
25.20. SETTING UP NON-ROOT STRATIS FILE SYSTEMS IN /ETC/FSTAB USING A SYSTEMD SERVICE

CHAPTER 26. EXTENDING A STRATIS POOL WITH ADDITIONAL BLOCK DEVICES
26.1. ADDING BLOCK DEVICES TO A STRATIS POOL
26.2. ADDING A BLOCK DEVICE TO A STRATIS POOL BY USING THE WEB CONSOLE

CHAPTER 27. MONITORING STRATIS FILE SYSTEMS
27.1. DISPLAYING INFORMATION ABOUT STRATIS FILE SYSTEMS
27.2. VIEWING A STRATIS POOL BY USING THE WEB CONSOLE

CHAPTER 28. USING SNAPSHOTS ON STRATIS FILE SYSTEMS
28.1. CHARACTERISTICS OF STRATIS SNAPSHOTS
28.2. CREATING A STRATIS SNAPSHOT
28.3. ACCESSING THE CONTENT OF A STRATIS SNAPSHOT
28.4. REVERTING A STRATIS FILE SYSTEM TO A PREVIOUS SNAPSHOT
28.5. REMOVING A STRATIS SNAPSHOT

CHAPTER 29. REMOVING STRATIS FILE SYSTEMS
29.1. REMOVING A STRATIS FILE SYSTEM
29.2. DELETING A FILE SYSTEM FROM A STRATIS POOL BY USING THE WEB CONSOLE
29.3. REMOVING A STRATIS POOL
29.4. DELETING A STRATIS POOL BY USING THE WEB CONSOLE

CHAPTER 30. GETTING STARTED WITH AN EXT4 FILE SYSTEM
30.1. FEATURES OF AN EXT4 FILE SYSTEM
30.2. CREATING AN EXT4 FILE SYSTEM
30.3. MOUNTING AN EXT4 FILE SYSTEM
30.4. RESIZING AN EXT4 FILE SYSTEM
30.5. COMPARISON OF TOOLS USED WITH EXT4 AND XFS

146
148
149
150
151
152
152
153
153
154
155
156
157

158
158
158

160
160
161

162
162
162
162
163
165

166
166
166
167
168

169
169
169
171
171
172

Table of Contents

5

Red Hat Enterprise Linux 9.0 Managing file systems

6

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
We appreciate your feedback on our documentation. Let us know how we can improve it.

Submitting feedback through Jira (account required)

1. Log in to the Jira website.

2. Click Create in the top navigation bar

3. Enter a descriptive title in the Summary field.

4. Enter your suggestion for improvement in the Description field. Include links to the relevant
parts of the documentation.

5. Click Create at the bottom of the dialogue.

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

7

https://issues.redhat.com/projects/RHELDOCS/issues

CHAPTER 1. OVERVIEW OF AVAILABLE FILE SYSTEMS
Choosing the file system that is appropriate for your application is an important decision due to the
large number of options available and the trade-offs involved.

The following sections describe the file systems that Red Hat Enterprise Linux 9 includes by default, and
recommendations on the most suitable file system for your application.

1.1. TYPES OF FILE SYSTEMS

Red Hat Enterprise Linux 9 supports a variety of file systems (FS). Different types of file systems solve
different kinds of problems, and their usage is application specific. At the most general level, available
file systems can be grouped into the following major types:

Table 1.1. Types of file systems and their use cases

Type File system Attributes and use cases

Disk or local FS XFS XFS is the default file system in RHEL. Red Hat
recommends deploying XFS as your local file system
unless there are specific reasons to do otherwise: for
example, compatibility or corner cases around
performance.

ext4 ext4 has the benefit of familiarity in Linux, having
evolved from the older ext2 and ext3 file systems. In
many cases, it rivals XFS on performance. Support
limits for ext4 filesystem and file sizes are lower than
those on XFS.

Network or client-and-
server FS

NFS Use NFS to share files between multiple systems on
the same network.

SMB Use SMB for file sharing with Microsoft Windows
systems.

Shared storage or
shared disk FS

GFS2 GFS2 provides shared write access to members of a
compute cluster. The emphasis is on stability and
reliability, with the functional experience of a local
file system as possible. SAS Grid, Tibco MQ, IBM
Websphere MQ, and Red Hat Active MQ have been
deployed successfully on GFS2.

Volume-managing FS Stratis Stratis is a volume manager built on a combination of
XFS and LVM. The purpose of Stratis is to emulate
capabilities offered by volume-managing file systems
like Btrfs and ZFS. It is possible to build this stack
manually, but Stratis reduces configuration
complexity, implements best practices, and
consolidates error information.

Red Hat Enterprise Linux 9.0 Managing file systems

8

1.2. LOCAL FILE SYSTEMS

Local file systems are file systems that run on a single, local server and are directly attached to storage.

For example, a local file system is the only choice for internal SATA or SAS disks, and is used when your
server has internal hardware RAID controllers with local drives. Local file systems are also the most
common file systems used on SAN attached storage when the device exported on the SAN is not
shared.

All local file systems are POSIX-compliant and are fully compatible with all supported Red Hat
Enterprise Linux releases. POSIX-compliant file systems provide support for a well-defined set of
system calls, such as read(), write(), and seek().

When considering a file system choice, choose a file system based on how large the file system needs to
be, what unique features it must have, and how it performs under your workload.

Available local file systems

XFS

ext4

1.3. THE XFS FILE SYSTEM

XFS is a highly scalable, high-performance, robust, and mature 64-bit journaling file system that
supports very large files and file systems on a single host. It is the default file system in Red Hat
Enterprise Linux 9. XFS was originally developed in the early 1990s by SGI and has a long history of
running on extremely large servers and storage arrays.

The features of XFS include:

Reliability

Metadata journaling, which ensures file system integrity after a system crash by keeping a
record of file system operations that can be replayed when the system is restarted and the
file system remounted

Extensive run-time metadata consistency checking

Scalable and fast repair utilities

Quota journaling. This avoids the need for lengthy quota consistency checks after a crash.

Scalability and performance

Supported file system size up to 1024 TiB

Ability to support a large number of concurrent operations

B-tree indexing for scalability of free space management

Sophisticated metadata read-ahead algorithms

Optimizations for streaming video workloads

CHAPTER 1. OVERVIEW OF AVAILABLE FILE SYSTEMS

9

Allocation schemes

Extent-based allocation

Stripe-aware allocation policies

Delayed allocation

Space pre-allocation

Dynamically allocated inodes

Other features

Reflink-based file copies

Tightly integrated backup and restore utilities

Online defragmentation

Online file system growing

Comprehensive diagnostics capabilities

Extended attributes (xattr). This allows the system to associate several additional
name/value pairs per file.

Project or directory quotas. This allows quota restrictions over a directory tree.

Subsecond timestamps

Performance characteristics

XFS has a high performance on large systems with enterprise workloads. A large system is one with a
relatively high number of CPUs, multiple HBAs, and connections to external disk arrays. XFS also
performs well on smaller systems that have a multi-threaded, parallel I/O workload.

XFS has a relatively low performance for single threaded, metadata-intensive workloads: for example, a
workload that creates or deletes large numbers of small files in a single thread.

1.4. THE EXT4 FILE SYSTEM

The ext4 file system is the fourth generation of the ext file system family. It was the default file system
in Red Hat Enterprise Linux 6.

The ext4 driver can read and write to ext2 and ext3 file systems, but the ext4 file system format is not
compatible with ext2 and ext3 drivers.

ext4 adds several new and improved features, such as:

Supported file system size up to 50 TiB

Extent-based metadata

Delayed allocation

Red Hat Enterprise Linux 9.0 Managing file systems

10

Journal checksumming

Large storage support

The extent-based metadata and the delayed allocation features provide a more compact and efficient
way to track utilized space in a file system. These features improve file system performance and reduce
the space consumed by metadata. Delayed allocation allows the file system to postpone selection of the
permanent location for newly written user data until the data is flushed to disk. This enables higher
performance since it can allow for larger, more contiguous allocations, allowing the file system to make
decisions with much better information.

File system repair time using the fsck utility in ext4 is much faster than in ext2 and ext3. Some file
system repairs have demonstrated up to a six-fold increase in performance.

1.5. COMPARISON OF XFS AND EXT4

XFS is the default file system in RHEL. This section compares the usage and features of XFS and ext4.

Metadata error behavior

In ext4, you can configure the behavior when the file system encounters metadata errors. The
default behavior is to simply continue the operation. When XFS encounters an unrecoverable
metadata error, it shuts down the file system and returns the EFSCORRUPTED error.

Quotas

In ext4, you can enable quotas when creating the file system or later on an existing file system. You
can then configure the quota enforcement using a mount option.
XFS quotas are not a remountable option. You must activate quotas on the initial mount.

Running the quotacheck command on an XFS file system has no effect. The first time you turn on
quota accounting, XFS checks quotas automatically.

File system resize

XFS has no utility to reduce the size of a file system. You can only increase the size of an XFS file
system. In comparison, ext4 supports both extending and reducing the size of a file system.

Inode numbers

The ext4 file system does not support more than 232 inodes.
XFS supports dynamic inode allocation. The amount of space inodes can consume on an XFS
filesystem is calculated as a percentage of the total filesystem space. To prevent the system from
running out of inodes, an administrator can tune this percentage after the filesystem has been
created, given there is free space left on the file system.

Certain applications cannot properly handle inode numbers larger than 232 on an XFS file system.
These applications might cause the failure of 32-bit stat calls with the EOVERFLOW return value.

Inode number exceed 232 under the following conditions:

The file system is larger than 1 TiB with 256-byte inodes.

The file system is larger than 2 TiB with 512-byte inodes.

If your application fails with large inode numbers, mount the XFS file system with the -o inode32
option to enforce inode numbers below 232. Note that using inode32 does not affect inodes that are
already allocated with 64-bit numbers.

IMPORTANT

CHAPTER 1. OVERVIEW OF AVAILABLE FILE SYSTEMS

11

IMPORTANT

Do not use the inode32 option unless a specific environment requires it. The inode32
option changes allocation behavior. As a consequence, the ENOSPC error might
occur if no space is available to allocate inodes in the lower disk blocks.

1.6. CHOOSING A LOCAL FILE SYSTEM

To choose a file system that meets your application requirements, you must understand the target
system on which you will deploy the file system. In general, use XFS unless you have a specific use case
for ext4.

XFS

For large-scale deployments, use XFS, particularly when handling large files (hundreds of
megabytes) and high I/O concurrency. XFS performs optimally in environments with high bandwidth
(greater than 200MB/s) and more than 1000 IOPS. However, it consumes more CPU resources for
metadata operations compared to ext4 and does not support file system shrinking.

ext4

For smaller systems or environments with limited I/O bandwidth, ext4 might be a better fit. It
performs better in single-threaded, lower I/O workloads and environments with lower throughput
requirements. ext4 also supports offline shrinking, which can be beneficial if resizing the file system is
a requirement.

Benchmark your application’s performance on your target server and storage system to ensure the
selected file system meets your performance and scalability requirements.

Table 1.2. Summary of local file system recommendations

Scenario Recommended file system

No special use case XFS

Large server XFS

Large storage devices XFS

Large files XFS

Multi-threaded I/O XFS

Single-threaded I/O ext4

Limited I/O capability (under 1000 IOPS) ext4

Limited bandwidth (under 200MB/s) ext4

CPU-bound workload ext4

Support for offline shrinking ext4

Red Hat Enterprise Linux 9.0 Managing file systems

12

1.7. NETWORK FILE SYSTEMS

Network file systems, also referred to as client/server file systems, enable client systems to access files
that are stored on a shared server. This makes it possible for multiple users on multiple systems to share
files and storage resources.

Such file systems are built from one or more servers that export a set of file systems to one or more
clients. The client nodes do not have access to the underlying block storage, but rather interact with the
storage using a protocol that allows for better access control.

Available network file systems

The most common client/server file system for RHEL customers is the NFS file system.
RHEL provides both an NFS server component to export a local file system over the network
and an NFS client to import these file systems.

RHEL also includes a CIFS client that supports the popular Microsoft SMB file servers for
Windows interoperability. The userspace Samba server provides Windows clients with a
Microsoft SMB service from a RHEL server.

1.8. SHARED STORAGE FILE SYSTEMS

Shared storage file systems, sometimes referred to as cluster file systems, give each server in the
cluster direct access to a shared block device over a local storage area network (SAN).

Comparison with network file systems

Like client/server file systems, shared storage file systems work on a set of servers that are all
members of a cluster. Unlike NFS, however, no single server provides access to data or metadata to
other members: each member of the cluster has direct access to the same storage device (the
shared storage), and all cluster member nodes access the same set of files.

Concurrency

Cache coherency is key in a clustered file system to ensure data consistency and integrity. There
must be a single version of all files in a cluster visible to all nodes within a cluster. The file system
must prevent members of the cluster from updating the same storage block at the same time and
causing data corruption. In order to do that, shared storage file systems use a cluster wide-locking
mechanism to arbitrate access to the storage as a concurrency control mechanism. For example,
before creating a new file or writing to a file that is opened on multiple servers, the file system
component on the server must obtain the correct lock.
The requirement of cluster file systems is to provide a highly available service like an Apache web
server. Any member of the cluster will see a fully coherent view of the data stored in their shared disk
file system, and all updates will be arbitrated correctly by the locking mechanisms.

Performance characteristics

Shared disk file systems do not always perform as well as local file systems running on the same
system due to the computational cost of the locking overhead. Shared disk file systems perform well
with workloads where each node writes almost exclusively to a particular set of files that are not
shared with other nodes or where a set of files is shared in an almost exclusively read-only manner
across a set of nodes. This results in a minimum of cross-node cache invalidation and can maximize
performance.
Setting up a shared disk file system is complex, and tuning an application to perform well on a shared
disk file system can be challenging.

Available shared storage file systems

CHAPTER 1. OVERVIEW OF AVAILABLE FILE SYSTEMS

13

Red Hat Enterprise Linux provides the GFS2 file system. GFS2 comes tightly integrated with
the Red Hat Enterprise Linux High Availability Add-On and the Resilient Storage Add-On.

Red Hat Enterprise Linux supports GFS2 on clusters that range in size from 2 to 16 nodes.

1.9. CHOOSING BETWEEN NETWORK AND SHARED STORAGE FILE
SYSTEMS

When choosing between network and shared storage file systems, consider the following points:

NFS-based network file systems are an extremely common and popular choice for
environments that provide NFS servers.

Network file systems can be deployed using very high-performance networking technologies
like Infiniband or 10 Gigabit Ethernet. This means that you should not turn to shared storage file
systems just to get raw bandwidth to your storage. If the speed of access is of prime
importance, then use NFS to export a local file system like XFS.

Shared storage file systems are not easy to set up or to maintain, so you should deploy them
only when you cannot provide your required availability with either local or network file systems.

A shared storage file system in a clustered environment helps reduce downtime by eliminating
the steps needed for unmounting and mounting that need to be done during a typical fail-over
scenario involving the relocation of a high-availability service.

Red Hat recommends that you use network file systems unless you have a specific use case for shared
storage file systems. Use shared storage file systems primarily for deployments that need to provide
high-availability services with minimum downtime and have stringent service-level requirements.

1.10. VOLUME-MANAGING FILE SYSTEMS

Volume-managing file systems integrate the entire storage stack for the purposes of simplicity and in-
stack optimization.

Available volume-managing file systems

Red Hat Enterprise Linux 9 provides the Stratis volume manager. Stratis uses XFS for the
file system layer and integrates it with LVM, Device Mapper, and other components.

Stratis was first released in Red Hat Enterprise Linux 8.0. It is conceived to fill the gap created when
Red Hat deprecated Btrfs. Stratis 1.0 is an intuitive, command line-based volume manager that can
perform significant storage management operations while hiding the complexity from the user:

Volume management

Pool creation

Thin storage pools

Snapshots

Automated read cache

Stratis offers powerful features, but currently lacks certain capabilities of other offerings that it
might be compared to, such as Btrfs or ZFS. Most notably, it does not support CRCs with self healing.

Red Hat Enterprise Linux 9.0 Managing file systems

14

CHAPTER 2. MANAGING LOCAL STORAGE BY USING
RHEL SYSTEM ROLES

To manage LVM and local file systems (FS) by using Ansible, you can use the storage role. Using the
storage role enables you to automate administration of file systems on disks and logical volumes on
multiple machines.

For more information about RHEL system roles and how to apply them, see Introduction to
RHEL system roles.

2.1. CREATING AN XFS FILE SYSTEM ON A BLOCK DEVICE BY USING
THE STORAGE RHEL SYSTEM ROLE

You can use the storage RHEL system role to automate the creation of an XFS file system on block
devices.

NOTE

The storage role can create a file system only on an unpartitioned, whole disk or a logical
volume (LV). It cannot create the file system on a partition.

Prerequisites

You have prepared the control node and the managed nodes .

The account you use to connect to the managed nodes has sudo permissions for these nodes.

Procedure

1. Create a playbook file, for example, ~/playbook.yml, with the following content:

The settings specified in the example playbook include the following:

name: barefs

The volume name (barefs in the example) is currently arbitrary. The storage role identifies
the volume by the disk device listed under the disks attribute.

fs_type: <file_system>

- name: Manage local storage
 hosts: managed-node-01.example.com
 tasks:
 - name: Create an XFS file system on a block device
 ansible.builtin.include_role:
 name: redhat.rhel_system_roles.storage
 vars:
 storage_volumes:
 - name: barefs
 type: disk
 disks:
 - sdb
 fs_type: xfs

CHAPTER 2. MANAGING LOCAL STORAGE BY USING RHEL SYSTEM ROLES

15

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/automating_system_administration_by_using_rhel_system_roles/intro-to-rhel-system-roles_automating-system-administration-by-using-rhel-system-roles
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/automating_system_administration_by_using_rhel_system_roles/assembly_preparing-a-control-node-and-managed-nodes-to-use-rhel-system-roles_automating-system-administration-by-using-rhel-system-roles

You can omit the fs_type parameter if you want to use the default file system XFS.

disks: <list_of_disks_and_volumes>

A YAML list of disk and LV names. To create the file system on an LV, provide the LVM
setup under the disks attribute, including the enclosing volume group. For details, see
Creating or resizing a logical volume by using the storage RHEL system role .
Do not provide the path to the LV device.

For details about all variables used in the playbook, see the /usr/share/ansible/roles/rhel-
system-roles.storage/README.md file on the control node.

2. Validate the playbook syntax:

$ ansible-playbook --syntax-check ~/playbook.yml

Note that this command only validates the syntax and does not protect against a wrong but valid
configuration.

3. Run the playbook:

$ ansible-playbook ~/playbook.yml

2.2. PERSISTENTLY MOUNTING A FILE SYSTEM BY USING THE
STORAGE RHEL SYSTEM ROLE

You can use the storage RHEL system role to persistently mount file systems to ensure they remain
available across system reboots and are automatically mounted on startup. If the file system on the
device you specified in the playbook does not exist, the role creates it.

Prerequisites

You have prepared the control node and the managed nodes .

The account you use to connect to the managed nodes has sudo permissions for these nodes.

Procedure

1. Create a playbook file, for example, ~/playbook.yml, with the following content:

- name: Manage local storage
 hosts: managed-node-01.example.com
 tasks:
 - name: Persistently mount a file system
 ansible.builtin.include_role:
 name: redhat.rhel_system_roles.storage
 vars:
 storage_volumes:
 - name: barefs
 type: disk
 disks:
 - sdb
 fs_type: xfs

Red Hat Enterprise Linux 9.0 Managing file systems

16

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/9/html/managing_file_systems/managing-local-storage-using-rhel-system-roles_managing-file-systems#creating-or-resizing-logical-volume-using-storage-system-role_managing-local-storage-using-rhel-system-roles
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/automating_system_administration_by_using_rhel_system_roles/assembly_preparing-a-control-node-and-managed-nodes-to-use-rhel-system-roles_automating-system-administration-by-using-rhel-system-roles

For details about all variables used in the playbook, see the /usr/share/ansible/roles/rhel-
system-roles.storage/README.md file on the control node.

2. Validate the playbook syntax:

$ ansible-playbook --syntax-check ~/playbook.yml

Note that this command only validates the syntax and does not protect against a wrong but valid
configuration.

3. Run the playbook:

$ ansible-playbook ~/playbook.yml

2.3. CREATING OR RESIZING A LOGICAL VOLUME BY USING THE
STORAGE RHEL SYSTEM ROLE

You can use the storage RHEL system role to create and resize LVM logical volumes. The role
automatically creates volume groups if they do not exist.

Use the storage role to perform the following tasks:

To create an LVM logical volume in a volume group consisting of many disks

To resize an existing file system on LVM

To express an LVM volume size in percentage of the pool’s total size

If the volume group does not exist, the role creates it. If a logical volume exists in the volume group, it is
resized if the size does not match what is specified in the playbook.

If you are reducing a logical volume, to prevent data loss you must ensure that the file system on that
logical volume is not using the space in the logical volume that is being reduced.

Prerequisites

You have prepared the control node and the managed nodes .

The account you use to connect to the managed nodes has sudo permissions for these nodes.

Procedure

1. Create a playbook file, for example, ~/playbook.yml, with the following content:

 mount_point: /mnt/data
 mount_user: somebody
 mount_group: somegroup
 mount_mode: 0755

- name: Manage local storage
 hosts: managed-node-01.example.com
 tasks:
 - name: Create logical volume

CHAPTER 2. MANAGING LOCAL STORAGE BY USING RHEL SYSTEM ROLES

17

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/automating_system_administration_by_using_rhel_system_roles/assembly_preparing-a-control-node-and-managed-nodes-to-use-rhel-system-roles_automating-system-administration-by-using-rhel-system-roles

The settings specified in the example playbook include the following:

size: <size>

You must specify the size by using units (for example, GiB) or percentage (for example,
60%).

For details about all variables used in the playbook, see the /usr/share/ansible/roles/rhel-
system-roles.storage/README.md file on the control node.

2. Validate the playbook syntax:

$ ansible-playbook --syntax-check ~/playbook.yml

Note that this command only validates the syntax and does not protect against a wrong but valid
configuration.

3. Run the playbook:

$ ansible-playbook ~/playbook.yml

Verification

Verify that specified volume has been created or resized to the requested size:

ansible managed-node-01.example.com -m command -a 'lvs myvg'

2.4. ENABLING ONLINE BLOCK DISCARD BY USING THE STORAGE RHEL
SYSTEM ROLE

You can mount an XFS file system with the online block discard option to automatically discard unused
blocks.

Prerequisites

You have prepared the control node and the managed nodes .

The account you use to connect to the managed nodes has sudo permissions for these nodes.

Procedure

 ansible.builtin.include_role:
 name: redhat.rhel_system_roles.storage
 vars:
 storage_pools:
 - name: myvg
 disks:
 - sda
 - sdb
 - sdc
 volumes:
 - name: mylv
 size: 2G
 fs_type: ext4
 mount_point: /mnt/data

Red Hat Enterprise Linux 9.0 Managing file systems

18

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/automating_system_administration_by_using_rhel_system_roles/assembly_preparing-a-control-node-and-managed-nodes-to-use-rhel-system-roles_automating-system-administration-by-using-rhel-system-roles

Procedure

1. Create a playbook file, for example, ~/playbook.yml, with the following content:

For details about all variables used in the playbook, see the /usr/share/ansible/roles/rhel-
system-roles.storage/README.md file on the control node.

2. Validate the playbook syntax:

$ ansible-playbook --syntax-check ~/playbook.yml

Note that this command only validates the syntax and does not protect against a wrong but valid
configuration.

3. Run the playbook:

$ ansible-playbook ~/playbook.yml

Verification

Verify that online block discard option is enabled:

ansible managed-node-01.example.com -m command -a 'findmnt /mnt/data'

2.5. CREATING AND MOUNTING A FILE SYSTEM BY USING THE
STORAGE RHEL SYSTEM ROLE

You can use the storage RHEL system role to create and mount file systems that persist across
reboots. The role automatically adds entries to /etc/fstab to ensure persistent mounting.

Prerequisites

You have prepared the control node and the managed nodes .

The account you use to connect to the managed nodes has sudo permissions for these nodes.

Procedure

- name: Manage local storage
 hosts: managed-node-01.example.com
 tasks:
 - name: Enable online block discard
 ansible.builtin.include_role:
 name: redhat.rhel_system_roles.storage
 vars:
 storage_volumes:
 - name: barefs
 type: disk
 disks:
 - sdb
 fs_type: xfs
 mount_point: /mnt/data
 mount_options: discard

CHAPTER 2. MANAGING LOCAL STORAGE BY USING RHEL SYSTEM ROLES

19

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/automating_system_administration_by_using_rhel_system_roles/assembly_preparing-a-control-node-and-managed-nodes-to-use-rhel-system-roles_automating-system-administration-by-using-rhel-system-roles

Procedure

1. Create a playbook file, for example, ~/playbook.yml, with the following content:

The settings specified in the example playbook include the following:

disks: <list_of_devices>

A YAML list of device names that the role uses when it creates the volume.

fs_type: <file_system>

Specifies the file system the role should set on the volume. You can select xfs, ext3, ext4,
swap, or unformatted.

label-name: <file_system_label>

Optional: sets the label of the file system.

mount_point: <directory>

Optional: if the volume should be automatically mounted, set the mount_point variable to
the directory to which the volume should be mounted.

For details about all variables used in the playbook, see the /usr/share/ansible/roles/rhel-
system-roles.storage/README.md file on the control node.

2. Validate the playbook syntax:

$ ansible-playbook --syntax-check ~/playbook.yml

Note that this command only validates the syntax and does not protect against a wrong but valid
configuration.

3. Run the playbook:

$ ansible-playbook ~/playbook.yml

2.6. CONFIGURING A RAID VOLUME BY USING THE STORAGE RHEL
SYSTEM ROLE

With the storage system role, you can configure a RAID volume on RHEL by using Red Hat Ansible

- name: Manage local storage
 hosts: managed-node-01.example.com
 tasks:
 -name: Create and mount a file system
 ansible.builtin.include_role:
 name: redhat.rhel_system_roles.storage
 vars:
 storage_volumes:
 - name: barefs
 type: disk
 disks:
 - sdb
 fs_type: ext4
 fs_label: label-name
 mount_point: /mnt/data

Red Hat Enterprise Linux 9.0 Managing file systems

20

With the storage system role, you can configure a RAID volume on RHEL by using Red Hat Ansible
Automation Platform and Ansible-Core. Create an Ansible playbook with the parameters to configure a
RAID volume to suit your requirements.

WARNING

Device names might change in certain circumstances, for example, when you add a
new disk to a system. Therefore, to prevent data loss, use persistent naming
attributes in the playbook. For more information about persistent naming attributes,
see Persistent naming attributes.

Prerequisites

You have prepared the control node and the managed nodes .

The account you use to connect to the managed nodes has sudo permissions for these nodes.

Procedure

1. Create a playbook file, for example, ~/playbook.yml, with the following content:

For details about all variables used in the playbook, see the /usr/share/ansible/roles/rhel-
system-roles.storage/README.md file on the control node.

2. Validate the playbook syntax:

$ ansible-playbook --syntax-check ~/playbook.yml

Note that this command only validates the syntax and does not protect against a wrong but valid
configuration.

3. Run the playbook:



- name: Manage local storage
 hosts: managed-node-01.example.com
 tasks:
 - name: Create a RAID on sdd, sde, sdf, and sdg
 ansible.builtin.include_role:
 name: redhat.rhel_system_roles.storage
 vars:
 storage_safe_mode: false
 storage_volumes:
 - name: data
 type: raid
 disks: [sdd, sde, sdf, sdg]
 raid_level: raid0
 raid_chunk_size: 32 KiB
 mount_point: /mnt/data
 state: present

CHAPTER 2. MANAGING LOCAL STORAGE BY USING RHEL SYSTEM ROLES

21

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/9/html/managing_storage_devices/persistent-naming-attributes_managing-storage-devices#persistent-naming-attributes_managing-storage-devices
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/automating_system_administration_by_using_rhel_system_roles/assembly_preparing-a-control-node-and-managed-nodes-to-use-rhel-system-roles_automating-system-administration-by-using-rhel-system-roles

$ ansible-playbook ~/playbook.yml

Verification

Verify that the array was correctly created:

ansible managed-node-01.example.com -m command -a 'mdadm --detail
/dev/md/data'

2.7. CONFIGURING AN LVM POOL WITH RAID BY USING THE STORAGE

RHEL SYSTEM ROLE

Additional resources

With the storage system role, you can configure an LVM pool with RAID on RHEL by using Red Hat
Ansible Automation Platform. You can set up an Ansible playbook with the available parameters to
configure an LVM pool with RAID.

Prerequisites

You have prepared the control node and the managed nodes .

The account you use to connect to the managed nodes has sudo permissions for these nodes.

Procedure

1. Create a playbook file, for example, ~/playbook.yml, with the following content:

For details about all variables used in the playbook, see the /usr/share/ansible/roles/rhel-
system-roles.storage/README.md file on the control node.

- name: Manage local storage
 hosts: managed-node-01.example.com
 tasks:
 - name: Configure LVM pool with RAID
 ansible.builtin.include_role:
 name: redhat.rhel_system_roles.storage
 vars:
 storage_safe_mode: false
 storage_pools:
 - name: my_pool
 type: lvm
 disks: [sdh, sdi]
 raid_level: raid1
 volumes:
 - name: my_volume
 size: "1 GiB"
 mount_point: "/mnt/app/shared"
 fs_type: xfs
 state: present

Red Hat Enterprise Linux 9.0 Managing file systems

22

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/automating_system_administration_by_using_rhel_system_roles/assembly_preparing-a-control-node-and-managed-nodes-to-use-rhel-system-roles_automating-system-administration-by-using-rhel-system-roles

2. Validate the playbook syntax:

$ ansible-playbook --syntax-check ~/playbook.yml

Note that this command only validates the syntax and does not protect against a wrong but valid
configuration.

3. Run the playbook:

$ ansible-playbook ~/playbook.yml

Verification

Verify that your pool is on RAID:

ansible managed-node-01.example.com -m command -a 'lsblk'

Additional resources

Managing RAID

2.8. CONFIGURING A STRIPE SIZE FOR RAID LVM VOLUMES BY USING
THE STORAGE RHEL SYSTEM ROLE

You can use the storage RHEL system role to configure stripe sizes for RAID LVM volumes.

Prerequisites

You have prepared the control node and the managed nodes .

The account you use to connect to the managed nodes has sudo permissions for these nodes.

Procedure

1. Create a playbook file, for example, ~/playbook.yml, with the following content:

- name: Manage local storage
 hosts: managed-node-01.example.com
 tasks:
 - name: Configure stripe size for RAID LVM volumes
 ansible.builtin.include_role:
 name: redhat.rhel_system_roles.storage
 vars:
 storage_safe_mode: false
 storage_pools:
 - name: my_pool
 type: lvm
 disks: [sdh, sdi]
 volumes:
 - name: my_volume
 size: "1 GiB"
 mount_point: "/mnt/app/shared"

CHAPTER 2. MANAGING LOCAL STORAGE BY USING RHEL SYSTEM ROLES

23

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/managing_storage_devices/index#managing-raid_managing-storage-devices
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/automating_system_administration_by_using_rhel_system_roles/assembly_preparing-a-control-node-and-managed-nodes-to-use-rhel-system-roles_automating-system-administration-by-using-rhel-system-roles

For details about all variables used in the playbook, see the /usr/share/ansible/roles/rhel-
system-roles.storage/README.md file on the control node.

2. Validate the playbook syntax:

$ ansible-playbook --syntax-check ~/playbook.yml

Note that this command only validates the syntax and does not protect against a wrong but valid
configuration.

3. Run the playbook:

$ ansible-playbook ~/playbook.yml

Verification

Verify that stripe size is set to the required size:

ansible managed-node-01.example.com -m command -a 'lvs -o+stripesize
/dev/my_pool/my_volume'

Additional resources

Managing RAID

2.9. CONFIGURING AN LVM-VDO VOLUME BY USING THE STORAGE

RHEL SYSTEM ROLE

You can use the storage RHEL system role to create a VDO volume on LVM (LVM-VDO) with enabled
compression and deduplication.

NOTE

Because of the storage system role use of LVM-VDO, only one volume can be created
per pool.

Prerequisites

You have prepared the control node and the managed nodes .

The account you use to connect to the managed nodes has sudo permissions for these nodes.

Procedure

1. Create a playbook file, for example, ~/playbook.yml, with the following content:

 fs_type: xfs
 raid_level: raid0
 raid_stripe_size: "256 KiB"
 state: present

Red Hat Enterprise Linux 9.0 Managing file systems

24

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux//9/html-single/managing_storage_devices/index#managing-raid_managing-storage-devices
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/automating_system_administration_by_using_rhel_system_roles/assembly_preparing-a-control-node-and-managed-nodes-to-use-rhel-system-roles_automating-system-administration-by-using-rhel-system-roles

The settings specified in the example playbook include the following:

vdo_pool_size: <size>

The actual size that the volume takes on the device. You can specify the size in human-
readable format, such as 10 GiB. If you do not specify a unit, it defaults to bytes.

size: <size>

The virtual size of VDO volume.

For details about all variables used in the playbook, see the /usr/share/ansible/roles/rhel-
system-roles.storage/README.md file on the control node.

2. Validate the playbook syntax:

$ ansible-playbook --syntax-check ~/playbook.yml

Note that this command only validates the syntax and does not protect against a wrong but valid
configuration.

3. Run the playbook:

$ ansible-playbook ~/playbook.yml

Verification

View the current status of compression and deduplication:

$ ansible managed-node-01.example.com -m command -a 'lvs -
o+vdo_compression,vdo_compression_state,vdo_deduplication,vdo_index_state'
 LV VG Attr LSize Pool Origin Data% Meta% Move Log Cpy%Sync Convert
VDOCompression VDOCompressionState VDODeduplication VDOIndexState
 mylv1 myvg vwi-a-v--- 3.00t vpool0 enabled
online enabled online

2.10. CREATING A LUKS2 ENCRYPTED VOLUME BY USING THE

- name: Manage local storage
 hosts: managed-node-01.example.com
 tasks:
 - name: Create LVM-VDO volume under volume group 'myvg'
 ansible.builtin.include_role:
 name: redhat.rhel_system_roles.storage
 vars:
 storage_pools:
 - name: myvg
 disks:
 - /dev/sdb
 volumes:
 - name: mylv1
 compression: true
 deduplication: true
 vdo_pool_size: 10 GiB
 size: 30 GiB
 mount_point: /mnt/app/shared

CHAPTER 2. MANAGING LOCAL STORAGE BY USING RHEL SYSTEM ROLES

25

2.10. CREATING A LUKS2 ENCRYPTED VOLUME BY USING THE
STORAGE RHEL SYSTEM ROLE

You can use the storage role to create and configure a volume encrypted with LUKS by running an
Ansible playbook.

Prerequisites

You have prepared the control node and the managed nodes .

The account you use to connect to the managed nodes has sudo permissions for these nodes.

Procedure

1. Store your sensitive variables in an encrypted file:

a. Create the vault:

$ ansible-vault create ~/vault.yml
New Vault password: <vault_password>
Confirm New Vault password: <vault_password>

b. After the ansible-vault create command opens an editor, enter the sensitive data in the
<key>: <value> format:

c. Save the changes, and close the editor. Ansible encrypts the data in the vault.

2. Create a playbook file, for example, ~/playbook.yml, with the following content:

For details about all variables used in the playbook, see the /usr/share/ansible/roles/rhel-
system-roles.storage/README.md file on the control node.

luks_password: <password>

- name: Manage local storage
 hosts: managed-node-01.example.com
 vars_files:
 - ~/vault.yml
 tasks:
 - name: Create and configure a volume encrypted with LUKS
 ansible.builtin.include_role:
 name: redhat.rhel_system_roles.storage
 vars:
 storage_volumes:
 - name: barefs
 type: disk
 disks:
 - sdb
 fs_type: xfs
 fs_label: <label>
 mount_point: /mnt/data
 encryption: true
 encryption_password: "{{ luks_password }}"

Red Hat Enterprise Linux 9.0 Managing file systems

26

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/automating_system_administration_by_using_rhel_system_roles/assembly_preparing-a-control-node-and-managed-nodes-to-use-rhel-system-roles_automating-system-administration-by-using-rhel-system-roles

3. Validate the playbook syntax:

$ ansible-playbook --ask-vault-pass --syntax-check ~/playbook.yml

Note that this command only validates the syntax and does not protect against a wrong but valid
configuration.

4. Run the playbook:

$ ansible-playbook --ask-vault-pass ~/playbook.yml

Verification

1. Find the luksUUID value of the LUKS encrypted volume:

ansible managed-node-01.example.com -m command -a 'cryptsetup luksUUID
/dev/sdb'

4e4e7970-1822-470e-b55a-e91efe5d0f5c

2. View the encryption status of the volume:

ansible managed-node-01.example.com -m command -a 'cryptsetup status luks-
4e4e7970-1822-470e-b55a-e91efe5d0f5c'

/dev/mapper/luks-4e4e7970-1822-470e-b55a-e91efe5d0f5c is active and is in use.
 type: LUKS2
 cipher: aes-xts-plain64
 keysize: 512 bits
 key location: keyring
 device: /dev/sdb
...

3. Verify the created LUKS encrypted volume:

ansible managed-node-01.example.com -m command -a 'cryptsetup luksDump
/dev/sdb'

LUKS header information
Version: 2
Epoch: 3
Metadata area: 16384 [bytes]
Keyslots area: 16744448 [bytes]
UUID: 4e4e7970-1822-470e-b55a-e91efe5d0f5c
Label: (no label)
Subsystem: (no subsystem)
Flags: (no flags)

Data segments:
 0: crypt
 offset: 16777216 [bytes]
 length: (whole device)

CHAPTER 2. MANAGING LOCAL STORAGE BY USING RHEL SYSTEM ROLES

27

 cipher: aes-xts-plain64
 sector: 512 [bytes]
...

Additional resources

Encrypting block devices by using LUKS

Ansible vault

2.11. CREATING SHARED LVM DEVICES USING THE STORAGE

RHEL SYSTEM ROLE

You can use the storage RHEL system role to create shared LVM devices if you want your multiple
systems to access the same storage at the same time.

This can bring the following notable benefits:

Resource sharing

Flexibility in managing storage resources

Simplification of storage management tasks

Prerequisites

You have prepared the control node and the managed nodes .

The account you use to connect to the managed nodes has sudo permissions for these nodes.

lvmlockd is configured on the managed node. For more information, see Configuring LVM to
share SAN disks among multiple machines.

Procedure

1. Create a playbook file, for example, ~/playbook.yml, with the following content:

- name: Manage local storage
 hosts: managed-node-01.example.com
 become: true
 tasks:
 - name: Create shared LVM device
 ansible.builtin.include_role:
 name: redhat.rhel_system_roles.storage
 vars:
 storage_pools:
 - name: vg1
 disks: /dev/vdb
 type: lvm
 shared: true
 state: present
 volumes:
 - name: lv1

Red Hat Enterprise Linux 9.0 Managing file systems

28

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/9/html/managing_storage_devices/encrypting-block-devices-using-luks_managing-storage-devices
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/9/html/automating_system_administration_by_using_rhel_system_roles/ansible-vault_automating-system-administration-by-using-rhel-system-roles
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/automating_system_administration_by_using_rhel_system_roles/assembly_preparing-a-control-node-and-managed-nodes-to-use-rhel-system-roles_automating-system-administration-by-using-rhel-system-roles
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/9/html/configuring_and_managing_logical_volumes/configuring-lvm-on-shared-storage_configuring-and-managing-logical-volumes#configuring-lvm-on-san-multiple_configuring-lvm-on-shared-storage

For details about all variables used in the playbook, see the /usr/share/ansible/roles/rhel-
system-roles.storage/README.md file on the control node.

2. Validate the playbook syntax:

$ ansible-playbook --syntax-check ~/playbook.yml

Note that this command only validates the syntax and does not protect against a wrong but valid
configuration.

3. Run the playbook:

$ ansible-playbook ~/playbook.yml

2.12. RESIZING PHYSICAL VOLUMES BY USING THE STORAGE

RHEL SYSTEM ROLE

With the storage system role, you can resize LVM physical volumes after resizing the underlying storage
or disks from outside of the host. For example, you increased the size of a virtual disk and want to use
the extra space in an existing LVM.

Prerequisites

You have prepared the control node and the managed nodes .

The account you use to connect to the managed nodes has sudo permissions for these nodes.

The size of the underlying block storage has been changed.

Procedure

1. Create a playbook file, for example, ~/playbook.yml, with the following content:

For details about all variables used in the playbook, see the /usr/share/ansible/roles/rhel-

 size: 4g
 mount_point: /opt/test1
 storage_safe_mode: false
 storage_use_partitions: true

- name: Manage local storage
 hosts: managed-node-01.example.com
 tasks:
 - name: Resize LVM PV size
 ansible.builtin.include_role:
 name: redhat.rhel_system_roles.storage
 vars:
 storage_pools:
 - name: myvg
 disks: ["sdf"]
 type: lvm
 grow_to_fill: true

CHAPTER 2. MANAGING LOCAL STORAGE BY USING RHEL SYSTEM ROLES

29

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/automating_system_administration_by_using_rhel_system_roles/assembly_preparing-a-control-node-and-managed-nodes-to-use-rhel-system-roles_automating-system-administration-by-using-rhel-system-roles

For details about all variables used in the playbook, see the /usr/share/ansible/roles/rhel-
system-roles.storage/README.md file on the control node.

2. Validate the playbook syntax:

$ ansible-playbook --syntax-check ~/playbook.yml

Note that this command only validates the syntax and does not protect against a wrong but valid
configuration.

3. Run the playbook:

$ ansible-playbook ~/playbook.yml

Verification

Display the new physical volume size:

$ ansible managed-node-01.example.com -m command -a 'pvs'
PV VG Fmt Attr PSize PFree
/dev/sdf1 myvg lvm2 a-- 1,99g 1,99g

2.13. CREATING AN ENCRYPTED STRATIS POOL BY USING THE
STORAGE RHEL SYSTEM ROLE

To secure your data, you can create an encrypted Stratis pool with the storage RHEL system role. In
addition to a passphrase, you can use Clevis and Tang or TPM protection as an encryption method.

IMPORTANT

You can configure Stratis encryption only on the entire pool.

Prerequisites

You have prepared the control node and the managed nodes .

The account you use to connect to the managed nodes has sudo permissions for these nodes.

You can connect to the Tang server. For more information, see Deploying a Tang server with
SELinux in enforcing mode.

Procedure

1. Store your sensitive variables in an encrypted file:

a. Create the vault:

$ ansible-vault create ~/vault.yml
New Vault password: <vault_password>
Confirm New Vault password: <vault_password>

b. After the ansible-vault create command opens an editor, enter the sensitive data in the
<key>: <value> format:

Red Hat Enterprise Linux 9.0 Managing file systems

30

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/automating_system_administration_by_using_rhel_system_roles/assembly_preparing-a-control-node-and-managed-nodes-to-use-rhel-system-roles_automating-system-administration-by-using-rhel-system-roles
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/9/html/security_hardening/configuring-automated-unlocking-of-encrypted-volumes-using-policy-based-decryption_security-hardening#deploying-a-tang-server-with-selinux-in-enforcing-mode_configuring-automated-unlocking-of-encrypted-volumes-using-policy-based-decryption

c. Save the changes, and close the editor. Ansible encrypts the data in the vault.

2. Create a playbook file, for example, ~/playbook.yml, with the following content:

The settings specified in the example playbook include the following:

encryption_password

Password or passphrase used to unlock the LUKS volumes.

encryption_clevis_pin

Clevis method that you can use to encrypt the created pool. You can use tang and tpm2.

encryption_tang_url

URL of the Tang server.

For details about all variables used in the playbook, see the /usr/share/ansible/roles/rhel-
system-roles.storage/README.md file on the control node.

3. Validate the playbook syntax:

$ ansible-playbook --ask-vault-pass --syntax-check ~/playbook.yml

Note that this command only validates the syntax and does not protect against a wrong but valid
configuration.

4. Run the playbook:

$ ansible-playbook --ask-vault-pass ~/playbook.yml

Verification

luks_password: <password>

- name: Manage local storage
 hosts: managed-node-01.example.com
 vars_files:
 - ~/vault.yml
 tasks:
 - name: Create a new encrypted Stratis pool with Clevis and Tang
 ansible.builtin.include_role:
 name: redhat.rhel_system_roles.storage
 vars:
 storage_pools:
 - name: mypool
 disks:
 - sdd
 - sde
 type: stratis
 encryption: true
 encryption_password: "{{ luks_password }}"
 encryption_clevis_pin: tang
 encryption_tang_url: tang-server.example.com:7500

CHAPTER 2. MANAGING LOCAL STORAGE BY USING RHEL SYSTEM ROLES

31

Verify that the pool was created with Clevis and Tang configured:

$ ansible managed-node-01.example.com -m command -a 'sudo stratis report'
...
 "clevis_config": {
 "thp": "j-G4ddvdbVfxpnUbgxlpbe3KutSKmcHttILAtAkMTNA",
 "url": "tang-server.example.com:7500"
 },
 "clevis_pin": "tang",
 "in_use": true,
 "key_description": "blivet-mypool",

Additional resources

Ansible vault

Red Hat Enterprise Linux 9.0 Managing file systems

32

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/9/html/automating_system_administration_by_using_rhel_system_roles/ansible-vault_automating-system-administration-by-using-rhel-system-roles

CHAPTER 3. MANAGING PARTITIONS USING THE WEB
CONSOLE

Learn how to manage file systems on RHEL 9 using the web console.

3.1. DISPLAYING PARTITIONS FORMATTED WITH FILE SYSTEMS IN
THE WEB CONSOLE

The Storage section in the web console displays all available file systems in the Filesystems table. In
addition to the list of partitions formatted with file systems, you can also use the page for creating a new
storage.

Prerequisites

The cockpit-storaged package is installed on your system.

You have installed the RHEL 9 web console.

You have enabled the cockpit service.

Your user account is allowed to log in to the web console.
For instructions, see Installing and enabling the web console .

Procedure

1. Log in to the RHEL 9 web console.
For details, see Logging in to the web console .

2. Click the Storage tab.
In the Storage table, you can see all available partitions formatted with file systems, their ID,
types, locations, sizes, and how much space is available on each partition.

You can also use the drop-down menu in the upper-right corner to create new local or
networked storage.

CHAPTER 3. MANAGING PARTITIONS USING THE WEB CONSOLE

33

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/9/html/managing_systems_using_the_rhel_9_web_console/getting-started-with-the-rhel-9-web-console_system-management-using-the-rhel-9-web-console#installing-the-web-console_getting-started-with-the-rhel-9-web-console
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/9/html/managing_systems_using_the_rhel_9_web_console/getting-started-with-the-rhel-9-web-console_system-management-using-the-rhel-9-web-console#logging-in-to-the-web-console_getting-started-with-the-rhel-9-web-console

3.2. CREATING PARTITIONS IN THE WEB CONSOLE

To create a new partition:

Use an existing partition table

Create a partition

Prerequisites

The cockpit-storaged package is installed on your system.

The web console must be installed and accessible. For details, see Installing the web console .

An unformatted volume connected to the system is visible in the Storage table of the Storage
tab.

Procedure

1. Log in to the RHEL 9 web console.
For details, see Logging in to the web console .

2. Click the Storage tab.

3. In the Storage table, click the device which you want to partition to open the page and options
for that device.

4. On the device page, click the menu button, ⋮, and select Create partition table.

5. In the Initialize disk dialog box, select the following:

a. Partitioning:

Compatible with all systems and devices (MBR)

Compatible with modern system and hard disks > 2TB (GPT)

No partitioning

b. Overwrite:

Select the Overwrite existing data with zeros checkbox if you want the RHEL web
console to rewrite the whole disk with zeros. This option is slower because the program
has to go through the whole disk, but it is more secure. Use this option if the disk
includes any data and you need to overwrite it.
If you do not select the Overwrite existing data with zeros checkbox, the RHEL web
console rewrites only the disk header. This increases the speed of formatting.

6. Click Initialize.

7. Click the menu button, ⋮, next to the partition table you created. It is named Free space by
default.

8. Click Create partition.

9. In the Create partition dialog box, enter a Name for the file system.

Red Hat Enterprise Linux 9.0 Managing file systems

34

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_systems_using_the_rhel_9_web_console/getting-started-with-the-rhel-9-web-console_system-management-using-the-rhel-9-web-console#installing-the-web-console_getting-started-with-the-rhel-9-web-console
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/9/html/managing_systems_using_the_rhel_9_web_console/getting-started-with-the-rhel-9-web-console_system-management-using-the-rhel-9-web-console#logging-in-to-the-web-console_getting-started-with-the-rhel-9-web-console

10. Add a Mount point.

11. In the Type drop-down menu, select a file system:

XFS file system supports large logical volumes, switching physical drives online without
outage, and growing an existing file system. Leave this file system selected if you do not
have a different strong preference.

ext4 file system supports:

Logical volumes

Switching physical drives online without outage

Growing a file system

Shrinking a file system

Additional option is to enable encryption of partition done by LUKS (Linux Unified Key Setup),
which allows you to encrypt the volume with a passphrase.

12. Enter the Size of the volume you want to create.

13. Select the Overwrite existing data with zeros checkbox if you want the RHEL web console to
rewrite the whole disk with zeros. This option is slower because the program has to go through
the whole disk, but it is more secure. Use this option if the disk includes any data and you need to
overwrite it.
If you do not select the Overwrite existing data with zeros checkbox, the RHEL web console
rewrites only the disk header. This increases the speed of formatting.

14. If you want to encrypt the volume, select the type of encryption in the Encryption drop-down
menu.
If you do not want to encrypt the volume, select No encryption.

15. In the At boot drop-down menu, select when you want to mount the volume.

16. In Mount options section:

a. Select the Mount read only checkbox if you want the to mount the volume as a read-only
logical volume.

b. Select the Custom mount options checkbox and add the mount options if you want to
change the default mount option.

17. Create the partition:

If you want to create and mount the partition, click the Create and mount button.

If you want to only create the partition, click the Create only button.
Formatting can take several minutes depending on the volume size and which formatting
options are selected.

Verification

To verify that the partition has been successfully added, switch to the Storage tab and check
the Storage table and verify whether the new partition is listed.

CHAPTER 3. MANAGING PARTITIONS USING THE WEB CONSOLE

35

3.3. DELETING PARTITIONS IN THE WEB CONSOLE

You can remove partitions in the web console interface.

Prerequisites

The cockpit-storaged package is installed on your system.

You have installed the RHEL 9 web console.

You have enabled the cockpit service.

Your user account is allowed to log in to the web console.
For instructions, see Installing and enabling the web console .

Procedure

1. Log in to the RHEL 9 web console.
For details, see Logging in to the web console .

2. Click the Storage tab.

3. Click the device from which you want to delete a partition.

4. On the device page and in the GPT partitions section, click the menu button, ⋮ next to the
partition you want to delete.

5. From the drop-down menu, select Delete.
The RHEL web console terminates all processes that are currently using the partition and
unmount the partition before deleting it.

Verification

To verify that the partition has been successfully removed, switch to the Storage tab and check
the Storage table.

Red Hat Enterprise Linux 9.0 Managing file systems

36

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/9/html/managing_systems_using_the_rhel_9_web_console/getting-started-with-the-rhel-9-web-console_system-management-using-the-rhel-9-web-console#installing-the-web-console_getting-started-with-the-rhel-9-web-console
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/9/html/managing_systems_using_the_rhel_9_web_console/getting-started-with-the-rhel-9-web-console_system-management-using-the-rhel-9-web-console#logging-in-to-the-web-console_getting-started-with-the-rhel-9-web-console

CHAPTER 4. MOUNTING NFS SHARES
As a system administrator, you can mount remote NFS shares on your system to access shared data.

4.1. SERVICES REQUIRED ON AN NFS CLIENT

Red Hat Enterprise Linux uses a combination of kernel modules and user-space processes to provide
access to NFS file shares. The nfs-utils package provides the program files for user-space processes.
Install the nfs-utils package to enable NFS client functionality. Principal services used by the NFS client
include the following:

Table 4.1. Services required on an NFS client

Service
name

NFS
version

Description

nfsidmap 4 A program that services upcalls from the NFSv4 client mapping between
NFSv4 names (strings in the form of <user@domain>) and local user and
group IDs. It provides similar functionality that rpc.idmapd provides on
behalf of the NFSv4 server. The difference is that while rpc.idmapd is a
daemon, nfsidmap is invoked on-demand via the kernel request-key
mechanism. nfsidmap uses two configuration files: /etc/idmapd.conf and
/etc/request-key.d/id_resolver.conf. In most cases the defaults are
sufficient and it is unnecessary to modify either of these configuration files.

rpc.statd 3 A daemon that implements the Network Status Monitor protocol. The two
main functions of rpc.statd:

Listen for requests from the local lockd process (the kernel daemon
that implements the Network Lock Manager protocol) to monitor
network peers (in the case of an NFS client, rpc.statd is monitoring
the NFS server).

Listen for reboot notifications from remote peers (NFS servers that
have rebooted) which it then forwards to lockd so it can reclaim any
locks it had from those servers.

Use the [statd] section in the /etc/nfs.conf file to configure rpc.statd.

rpc-
statd.servi
ce

3 A systemd unit file that starts the rpc.statd daemon. Note that it is not
necessary to enable or start the service manually, because the mount.nfs
program will automatically start rpc-statd.service (via the /usr/sbin/start-
statd shell script) the first time it mounts a remote file system using NFSv3.
However, if configuring the NFSv3 client to run behind a firewall, it is typically
necessary to restart the rpc-statd.service.

sm-notify 3 A helper program that sends reboot notifications to remote peers that were
monitored by rpc.statd whenever the local system reboots. In the case of an
NFS client, sm-notify is sending reboot notifications to NFS servers so that
those servers can drop any locks that were held by the client.

CHAPTER 4. MOUNTING NFS SHARES

37

rpc-statd-
notify.ser
vice

3 A systemd unit that triggers sm-notify. It runs automatically at system boot,
so it is not necessary to manually enable or start the service.

rpc.gssd 3, 4 A daemon that acts on behalf of the kernel to establish a Generic Security
Services (GSS) context with a remote peer (typically initiated from the NFS
client to the NFS server, but also initiated from the NFS server to the NFS
client in the case of NFSv4 callbacks). This process is necessary for securing
NFS using Kerberos V5. The rpc.gssd program is configured via the [gssd]
section in the /etc/nfs.conf file.

rpc-
gssd.servi
ce

3, 4 A systemd unit file that starts the rpc.gssd daemon. It is not necessary to
manually enable or start this service, because the service automatically starts
on system boot if the /etc/krb5.keytab file is present on the system.

Service
name

NFS
version

Description

Additional resources

nfsidmap(8), rpc.statd(8), sm-notify(8), rpc.gssd(8), and nfs.conf(5) man pages on your
system

4.2. PREPARING AN NFSV3 CLIENT TO RUN BEHIND A FIREWALL

An NFS server notifies clients about file locks and the server status. To establish a connection back to
the client, you must open the relevant ports in the firewall on the client.

Procedure

1. By default, NFSv3 RPC services use random ports. To enable a firewall configuration, configure
fixed port numbers in the /etc/nfs.conf file:

a. In the [lockd] section, set a fixed port number for the nlockmgr RPC service, for example:

port=5555

With this setting, the service automatically uses this port number for both the UDP and TCP
protocol.

b. In the [statd] section, set a fixed port number for the rpc.statd service, for example:

port=6666

With this setting, the service automatically uses this port number for both the UDP and TCP
protocol.

2. Open the relevant ports in firewalld:

firewall-cmd --permanent --add-service=rpc-bind
firewall-cmd --permanent --add-port={5555/tcp,5555/udp,6666/tcp,6666/udp}
firewall-cmd --reload

Red Hat Enterprise Linux 9.0 Managing file systems

38

3. Restart the rpc-statd service:

systemctl restart rpc-statd nfs-server

4.3. PREPARING AN NFSV4 CLIENT TO RUN BEHIND A FIREWALL

An NFS server notifies clients about file locks and the server status. To establish a connection back to
the client, you must open the relevant ports in the firewall on the client.

NOTE

NFS v4.1 and later uses the pre-existing client port for callbacks, so the callback port
cannot be set separately. For more information, see the How do I set the NFS4 client
callback port to a specific port? solution.

Prerequisites

The server uses the NFS 4.0 protocol.

Procedure

Open the relevant ports in firewalld:

firewall-cmd --permanent --add-port=<callback_port>/tcp
firewall-cmd --reload

4.4. MANUALLY MOUNTING AN NFS SHARE

If you do not require that a NFS share is automatically mounted at boot time, you can manually mount it.

WARNING

You can experience conflicts in your NFSv4 clientid and their sudden expiration if
your NFS clients have the same short hostname. To avoid any possible sudden
expiration of your NFSv4 clientid, you must use either unique hostnames for NFS
clients or configure identifier on each container, depending on what system you are
using. For more information, see the Red Hat Knowledgebase solution NFSv4
clientid was expired suddenly due to use same hostname on several NFS clients.

Procedure

Use the following command to mount an NFS share on a client:

mount <nfs_server_ip_or_hostname>:/<exported_share> <mount point>

For example, to mount the /nfs/projects share from the server.example.com NFS server to



CHAPTER 4. MOUNTING NFS SHARES

39

https://access.redhat.com/solutions/2616771
https://access.redhat.com/solutions/6395261

For example, to mount the /nfs/projects share from the server.example.com NFS server to
/mnt, enter:

mount server.example.com:/nfs/projects/ /mnt/

Verification

As a user who has permissions to access the NFS share, display the content of the mounted
share:

$ ls -l /mnt/

4.5. MOUNTING AN NFS SHARE AUTOMATICALLY WHEN THE
SYSTEM BOOTS

Automatic mounting of an NFS share during system boot ensures that critical services reliant on
centralized data, such as /home directories hosted on the NFS server, have seamless and uninterrupted
access from the moment the system starts up.

Procedure

1. Edit the /etc/fstab file and add a line for the share that you want to mount:

<nfs_server_ip_or_hostname>:/<exported_share> <mount point> nfs default 0 0

For example, to mount the /nfs/projects share from the server.example.com NFS server to
/home, enter:

server.example.com:/nfs/projects /home nfs defaults 0 0

2. Mount the share:

mount /home

Verification

As a user who has permissions to access the NFS share, display the content of the mounted
share:

$ ls -l /mnt/

Additional resources

fstab(5) man page on your system

4.6. CONNECTING NFS MOUNTS IN THE WEB CONSOLE

Connect a remote directory to your file system by using NFS.

Prerequisites

Red Hat Enterprise Linux 9.0 Managing file systems

40

You have installed the RHEL 9 web console.

You have enabled the cockpit service.

Your user account is allowed to log in to the web console.
For instructions, see Installing and enabling the web console .

The cockpit-storaged package is installed on your system.

NFS server name or the IP address.

Path to the directory on the remote server.

Procedure

1. Log in to the RHEL 9 web console.
For details, see Logging in to the web console .

2. Click Storage.

3. In the Storage table, click the menu button.

4. From the drop-down menu, select New NFS mount.

5. In the New NFS Mount dialog box, enter the server or IP address of the remote server.

6. In the Path on Server field, enter the path to the directory that you want to mount.

7. In the Local Mount Point field, enter the path to the directory on your local system where you
want to mount the NFS.

8. In the Mount options checkbox list, select how you want to mount the NFS. You can select
multiple options depending on your requirements.

Check the Mount at boot box if you want the directory to be reachable even after you
restart the local system.

Check the Mount read only box if you do not want to change the content of the NFS.

CHAPTER 4. MOUNTING NFS SHARES

41

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/9/html/managing_systems_using_the_rhel_9_web_console/getting-started-with-the-rhel-9-web-console_system-management-using-the-rhel-9-web-console#installing-the-web-console_getting-started-with-the-rhel-9-web-console
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/9/html/managing_systems_using_the_rhel_9_web_console/getting-started-with-the-rhel-9-web-console_system-management-using-the-rhel-9-web-console#logging-in-to-the-web-console_getting-started-with-the-rhel-9-web-console

Check the Custom mount options box and add the mount options if you want to change
the default mount option.

9. Click Add.

Verification

Open the mounted directory and verify that the content is accessible.

4.7. CUSTOMIZING NFS MOUNT OPTIONS IN THE WEB CONSOLE

Edit an existing NFS mount and add custom mount options.

Custom mount options can help you to troubleshoot the connection or change parameters of the NFS
mount such as changing timeout limits or configuring authentication.

Prerequisites

You have installed the RHEL 9 web console.

You have enabled the cockpit service.

Your user account is allowed to log in to the web console.
For instructions, see Installing and enabling the web console .

The cockpit-storaged package is installed on your system.

An NFS mount is added to your system.

Procedure

1. Log in to the RHEL 9 web console. For details, see Logging in to the web console .

2. Click Storage.

3. In the Storage table, click the NFS mount you want to adjust.

4. If the remote directory is mounted, click Unmount.
You must unmount the directory during the custom mount options configuration. Otherwise,
the web console does not save the configuration and this causes an error.

Red Hat Enterprise Linux 9.0 Managing file systems

42

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/9/html/managing_systems_using_the_rhel_9_web_console/getting-started-with-the-rhel-9-web-console_system-management-using-the-rhel-9-web-console#installing-the-web-console_getting-started-with-the-rhel-9-web-console
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_systems_using_the_rhel_9_web_console/getting-started-with-the-rhel-9-web-console_system-management-using-the-rhel-9-web-console#logging-in-to-the-web-console_getting-started-with-the-rhel-9-web-console

5. Click Edit.

6. In the NFS Mount dialog box, select Custom mount option.

7. Enter mount options separated by a comma. For example:

nfsvers=4: The NFS protocol version number

soft: The type of recovery after an NFS request times out

sec=krb5: The files on the NFS server can be secured by Kerberos authentication. Both the
NFS client and server have to support Kerberos authentication.

For a complete list of the NFS mount options, enter man nfs in the command line.

8. Click Apply.

9. Click Mount.

Verification

Open the mounted directory and verify that the content is accessible.

4.8. SETTING UP AN NFS CLIENT WITH KERBEROS IN A RED HAT
ENTERPRISE LINUX IDENTITY MANAGEMENT DOMAIN

If the NFS server uses Kerberos and is enrolled in an Red Hat Enterprise Linux Identity Management
(IdM) domain, your client must also be a member of the domain to be able to mount the shares. This
enables you to centrally manage users and groups and to use Kerberos for authentication, integrity
protection, and traffic encryption.

Prerequisites

The NFS client is enrolled in a Red Hat Enterprise Linux Identity Management (IdM) domain.

The exported NFS share uses Kerberos.

Procedure

1. Obtain a kerberos ticket as an IdM administrator:

kinit admin

2. Retrieve the host principal, and store it in the /etc/krb5.keytab file:

ipa-getkeytab -s idm_server.idm.example.com -p host/nfs_client.idm.example.com -k
/etc/krb5.keytab

IdM automatically created the host principal when you joined the host to the IdM domain.

3. Optional: Display the principals in the /etc/krb5.keytab file:

klist -k /etc/krb5.keytab
Keytab name: FILE:/etc/krb5.keytab

CHAPTER 4. MOUNTING NFS SHARES

43

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/installing_identity_management/assembly_installing-an-idm-client_installing-identity-management

KVNO Principal
---- --
 6 host/nfs_client.idm.example.com@IDM.EXAMPLE.COM
 6 host/nfs_client.idm.example.com@IDM.EXAMPLE.COM
 6 host/nfs_client.idm.example.com@IDM.EXAMPLE.COM
 6 host/nfs_client.idm.example.com@IDM.EXAMPLE.COM

4. Use the ipa-client-automount utility to configure mapping of IdM IDs:

ipa-client-automount
Searching for IPA server...
IPA server: DNS discovery
Location: default
Continue to configure the system with these values? [no]: yes
Configured /etc/idmapd.conf
Restarting sssd, waiting for it to become available.
Started autofs

5. Mount an exported NFS share, for example:

mount -o sec=krb5i server.idm.example.com:/nfs/projects/ /mnt/

The -o sec option specifies the Kerberos security method.

Verification

1. Log in as an IdM user who has permissions to write on the mounted share.

2. Obtain a Kerberos ticket:

$ kinit

3. Create a file on the share, for example:

$ touch /mnt/test.txt

4. List the directory to verify that the file was created:

$ ls -l /mnt/test.txt
-rw-r--r--. 1 admin users 0 Feb 15 11:54 /mnt/test.txt

Additional resources

The AUTH_GSS authentication method

4.9. CONFIGURING AN NFS SERVER WITH TLS SUPPORT

Without the RPCSEC_GSS protocol, NFS traffic is unencrypted by default. Starting with Red Hat
Enterprise Linux 9.6, it is possible to configure NFS with TLS, allowing NFS traffic to be encrypted by
default.

Prerequisites

Red Hat Enterprise Linux 9.0 Managing file systems

44

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/9/html/configuring_and_using_network_file_services/deploying-an-nfs-server_configuring-and-using-network-file-services#the-auth-gss-authentication-method_deploying-an-nfs-server

You have configured an NFSv4 server. For instructions, see Configuring an NFSv4-only server.

You have a Certificate Authority (CA) certificate.

You have installed the ktls-utils package.

Procedure

1. Create a private key and a certificate signing request (CSR):

openssl req -new -newkey rsa:4096 -noenc \
-keyout /etc/pki/tls/private/server.example.com.key \
-out /etc/pki/tls/private/server.example.com.csr \
-subj "/C=US/ST=State/L=City/O=Organization/CN=server.example.com" \
-addext "subjectAltName=DNS:server.example.com,IP:192.0.2.1"

IMPORTANT

Common Name (CN) and DNS must match the hostname. IP must match IP of
the host.

2. Send the /etc/pki/tls/private/server.example.com.csr file to a CA and request a server
certificate. Store the received CA certificate and the server certificate on the host.

3. Import the CA certificate to the systems’s truststore:

cp ca.crt /etc/pki/ca-trust/source/anchors
update-ca-trust

4. Move the server certificate to the /etc/pki/tls/certs/ directory:

mv server.example.com.crt /etc/pki/tls/certs/

5. Ensure the SELinux context is correct on the private key and certificates:

restorecon -Rv /etc/pki/tls/certs/

6. Add the server certificate and private key to the [authenticate.server] section in the
/etc/tlshd.conf file:

x509.certificate= /etc/pki/tls/certs/server.example.com.crt
x509.private_key= /etc/pki/tls/private/server.example.com.key

Leave the x509.truststore parameter unset.

7. Enable and start the tlshd service:

systemctl enable --now tlshd.service

Next steps

Configuring an NFS client with TLS support

CHAPTER 4. MOUNTING NFS SHARES

45

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/9/html/configuring_and_using_network_file_services/deploying-an-nfs-server_configuring-and-using-network-file-services#configuring-an-nfsv4-only-server_deploying-an-nfs-server

Configuring an NFS client with mutual TLS support

4.10. CONFIGURING AN NFS CLIENT WITH TLS SUPPORT

Starting with Red Hat Enterprise Linux 9.6, you can configure the client by using the xprtsec=tls
parameter to mount NFS with TLS support if the server supports NFS with TLS encryption.

Prerequisites

You have configured the NFS server with TLS encryption. For details, see Configuring an NFS
server with TLS support.

You have installed the ktls-utils package.

Procedure

1. Import the Certificate Authority (CA) certificate to the systems’s truststore:

cp ca.crt /etc/pki/ca-trust/source/anchors
update-ca-trust

2. Enable and start the tlshd service:

systemctl enable --now tlshd.service

3. Mount an NFS share by using TLS encryption:

mount -o xprtsec=tls server.example.com:/nfs/projects/ /mnt/

Verification

Verify that the client successfully mounted NFS share with TLS support:

journalctl -u tlshd
…
Apr 01 08:37:56 client.example.com tlshd[10688]: Handshake with server.example.com
(192.0.2.1) was successful

4.11. CONFIGURING AN NFS CLIENT WITH MUTUAL TLS SUPPORT

Starting with Red Hat Enterprise Linux 9.6, you can configure the NFS server and client to authenticate
each other by using TLS protocol if the server supports NFS with TLS encryption.

Prerequisites

You have configured the NFS server with TLS encryption. For details, see Configuring an NFS
server with TLS support.

You have installed the ktls-utils package.

Procedure

Red Hat Enterprise Linux 9.0 Managing file systems

46

1. Create a private key and a certificate signing request (CSR):

openssl req -new -newkey rsa:4096 -noenc \
-keyout /etc/pki/tls/private/client.example.com.key \
-out /etc/pki/tls/private/client.example.com.csr \
-subj "/C=US/ST=State/L=City/O=Organization/CN=client.example.com" \
-addext "subjectAltName=DNS:client.example.com,IP:192.0.2.2"

IMPORTANT

Common Name (CN) and DNS must match the hostname. IP must match IP of
the host.

2. Send the /etc/pki/tls/private/client.example.com.csr file to a Certificate Authority (CA) and
request a client certificate. Store the received CA certificate and the client certificate on the
host.

3. Import the CA certificate to the systems’s truststore:

cp ca.crt /etc/pki/ca-trust/source/anchors
update-ca-trust

4. Move the client certificate to the /etc/pki/tls/certs/ directory:

mv client.example.com.crt /etc/pki/tls/certs/

5. Ensure the SELinux context is correct on the private key and certificates:

restorecon -Rv /etc/pki/tls/certs/

6. Add the client certificate and private key to the [authenticate.client] section in the
/etc/tlshd.conf file:

x509.certificate= /etc/pki/tls/certs/client.example.com.crt
x509.private_key= /etc/pki/tls/private/client.example.com.key

Leave the x509.truststore parameter unset.

7. Enable and start the tlshd service:

systemctl enable --now tlshd.service

8. Mount an NFS share by using TLS encryption:

mount -o xprtsec=mtls server.example.com:/nfs/projects/ /mnt/

Verification

Verify that the client successfully mounted NFS share with TLS support:

journalctl -u tlshd
…

CHAPTER 4. MOUNTING NFS SHARES

47

Apr 01 08:37:56 client.example.com tlshd[10688]: Handshake with server.example.com
(192.0.2.1) was successful

4.12. CONFIGURING GNOME TO STORE USER SETTINGS ON HOME
DIRECTORIES HOSTED ON AN NFS SHARE

If you use GNOME on a system with home directories hosted on an NFS server, you must change the
keyfile backend of the dconf database. Otherwise, dconf might not work correctly.

This change affects all users on the host because it changes how dconf manages user settings and
configurations stored in the home directories.

Procedure

1. Add the following line to the beginning of the /etc/dconf/profile/user file. If the file does not
exist, create it.

service-db:keyfile/user

With this setting, dconf polls the keyfile back end to determine whether updates have been
made, so settings might not be updated immediately.

2. The changes take effect when the users logs out and in.

4.13. FREQUENTLY USED NFS MOUNT OPTIONS

The following are the commonly-used options when mounting NFS shares. You can use these options
with mount commands, in /etc/fstab settings, and the autofs automapper.

lookupcache=mode

Specifies how the kernel should manage its cache of directory entries for a given mount point. Valid
arguments for mode are all, none, or positive.

nfsvers=version

Specifies which version of the NFS protocol to use, where version is 3, 4, 4.0, 4.1, or 4.2. This is useful
for hosts that run multiple NFS servers, or to disable retrying a mount with lower versions. If no
version is specified, the client tries version 4.2 first, then negotiates down until it finds a version
supported by the server.
The option vers is identical to nfsvers, and is included in this release for compatibility reasons.

noacl

Turns off all ACL processing. This can be needed when interfacing with old Red Hat Enterprise Linux
versions that are not compatible with the recent ACL technology.

nolock

Disables file locking. This setting can be required when you connect to very old NFS servers.

noexec

Prevents execution of binaries on mounted file systems. This is useful if the system is mounting a
non-Linux file system containing incompatible binaries.

nosuid

Disables the set-user-identifier and set-group-identifier bits. This prevents remote users from

Red Hat Enterprise Linux 9.0 Managing file systems

48

Disables the set-user-identifier and set-group-identifier bits. This prevents remote users from
gaining higher privileges by running a setuid program.

retrans=num

The number of times the NFS client retries a request before it attempts further recovery action. If
the retrans option is not specified, the NFS client tries each UDP request three times and each TCP
request twice.

timeo=num

The time in tenths of a second the NFS client waits for a response before it retries an NFS request.
For NFS over TCP, the default timeo value is 600 (60 seconds). The NFS client performs linear
backoff: After each retransmission the timeout is increased by timeo up to the maximum of 600
seconds.

port=num

Specifies the numeric value of the NFS server port. For NFSv3, if num is 0 (the default value), or not
specified, then mount queries the rpcbind service on the remote host for the port number to use.
For NFSv4, if num is 0, then mount queries the rpcbind service, but if it is not specified, the standard
NFS port number of TCP 2049 is used instead and the remote rpcbind is not checked anymore.

rsize=num and wsize=num

These options set the maximum number of bytes to be transferred in a single NFS read or write
operation.
There is no fixed default value for rsize and wsize. By default, NFS uses the largest possible value
that both the server and the client support. In Red Hat Enterprise Linux 9, the client and server
maximum is 1,048,576 bytes. For more information, see the Red Hat Knowledgebase solution What
are the default and maximum values for rsize and wsize with NFS mounts?.

sec=options

Security options to use for accessing files on the mounted export. The options value is a colon-
separated list of one or more security options.
By default, the client attempts to find a security option that both the client and the server support. If
the server does not support any of the selected options, the mount operation fails.

Available options:

sec=sys uses local UNIX UIDs and GIDs. These use AUTH_SYS to authenticate NFS
operations.

sec=krb5 uses Kerberos V5 instead of local UNIX UIDs and GIDs to authenticate users.

sec=krb5i uses Kerberos V5 for user authentication and performs integrity checking of NFS
operations using secure checksums to prevent data tampering.

sec=krb5p uses Kerberos V5 for user authentication, integrity checking, and encrypts NFS
traffic to prevent traffic sniffing. This is the most secure setting, but it also involves the most
performance overhead.

Additional resources

mount(8) and `nfs(5)`man pages on your system

4.14. ENABLING CLIENT-SIDE CACHING OF NFS CONTENT

CHAPTER 4. MOUNTING NFS SHARES

49

https://access.redhat.com/solutions/753853

FS-Cache is a persistent local cache on the client that file systems can use to take data retrieved from
over the network and cache it on the local disk. This helps to minimize network traffic.

4.14.1. How NFS caching works

The following diagram is a high-level illustration of how FS-Cache works:

FS-Cache is designed to be as transparent as possible to the users and administrators of a system. FS-
Cache allows a file system on a server to interact directly with a client’s local cache without creating an
over-mounted file system. With NFS, a mount option instructs the client to mount the NFS share with
FS-cache enabled. The mount point will cause automatic upload for two kernel modules: fscache and
cachefiles. The cachefilesd daemon communicates with the kernel modules to implement the cache.

FS-Cache does not alter the basic operation of a file system that works over the network. It merely
provides that file system with a persistent place in which it can cache data. For example, a client can still
mount an NFS share whether or not FS-Cache is enabled. In addition, cached NFS can handle files that
will not fit into the cache (whether individually or collectively) as files can be partially cached and do not
have to be read completely up front. FS-Cache also hides all I/O errors that occur in the cache from the
client file system driver.

To provide caching services, FS-Cache needs a cache back end, the cachefiles service. FS-Cache
requires a mounted block-based file system, that supports block mapping (bmap) and extended
attributes as its cache back end:

XFS

ext3

ext4

FS-Cache cannot arbitrarily cache any file system, whether through the network or otherwise: the

Red Hat Enterprise Linux 9.0 Managing file systems

50

shared file system’s driver must be altered to allow interaction with FS-Cache, data storage or retrieval,
and metadata setup and validation. FS-Cache needs indexing keys and coherency data from the cached
file system to support persistence: indexing keys to match file system objects to cache objects, and
coherency data to determine whether the cache objects are still valid.

Using FS-Cache is a compromise between various factors. If FS-Cache is being used to cache NFS
traffic, it may slow the client down, but can massively reduce the network and server loading by satisfying
read requests locally without consuming network bandwidth.

4.14.2. Installing and configuring the cachefilesd service

Red Hat Enterprise Linux provides only the cachefiles caching back end. The cachefilesd service
initiates and manages cachefiles. The /etc/cachefilesd.conf file controls how cachefiles provides
caching services.

Prerequisites

The file system mounted under the /var/cache/fscache/ directory is ext3, ext4, or xfs.

The file system mounted under /var/cache/fscache/ uses extended attributes, which is the
default if you created the file system on RHEL 8 or later.

Procedure

1. Install the cachefilesd package:

dnf install cachefilesd

2. Enable and start the cachefilesd service:

systemctl enable --now cachefilesd

Verification

1. Mount an NFS share with the fsc option to use the cache:

a. To mount a share temporarily, enter:

mount -o fsc server.example.com:/nfs/projects/ /mnt/

b. To mount a share permanently, add the fsc option to the entry in the /etc/fstab file:

<nfs_server_ip_or_hostname>:/<exported_share> <mount point> nfs fsc 0 0

2. Display the FS-cache statistics:

cat /proc/fs/fscache/stats

Additional resources

/usr/share/doc/cachefilesd/README file

/usr/share/doc/kernel-doc-

CHAPTER 4. MOUNTING NFS SHARES

51

/usr/share/doc/kernel-doc-
<kernel_version>/Documentation/filesystems/caching/fscache.rst provided by the kernel-
doc package

4.14.3. Sharing NFS cache

Because the cache is persistent, blocks of data in the cache are indexed on a sequence of four keys:

Level 1: Server details

Level 2: Some mount options; security type; FSID; a uniquifier string

Level 3: File Handle

Level 4: Page number in file

To avoid coherency management problems between superblocks, all NFS superblocks that require to
cache the data have unique level 2 keys. Normally, two NFS mounts with the same source volume and
options share a superblock, and therefore share the caching, even if they mount different directories
within that volume.

Example 4.1. NFS cache sharing:

The following two mounts likely share the superblock as they have the same mount options,
especially if because they come from the same partition on the NFS server:

mount -o fsc home0:/nfs/projects /projects
mount -o fsc home0:/nfs/home /home/

If the mount options are different, they do not share the superblock:

mount -o fsc,rsize=8192 home0:/nfs/projects /projects
mount -o fsc,rsize=65536 home0:/nfs/home /home/

NOTE

The user cannot share caches between superblocks that have different communications
or protocol parameters. For example, it is not possible to share caches between NFSv4.0
and NFSv3 or between NFSv4.1 and NFSv4.2 because they force different superblocks.
Also setting parameters, such as the read size (rsize), prevents cache sharing because,
again, it forces a different superblock.

4.14.4. NFS cache limitations

There are some cache limitations with NFS:

Opening a file from a shared file system for direct I/O automatically bypasses the cache. This is
because this type of access must be direct to the server.

Opening a file from a shared file system for either direct I/O or writing flushes the cached copy
of the file. FS-Cache will not cache the file again until it is no longer opened for direct I/O or
writing.

Red Hat Enterprise Linux 9.0 Managing file systems

52

Furthermore, this release of FS-Cache only caches regular NFS files. FS-Cache will not cache
directories, symlinks, device files, FIFOs, and sockets.

4.14.5. How cache culling works

The cachefilesd service works by caching remote data from shared file systems to free space on the
local disk. This could potentially consume all available free space, which could cause problems if the disk
also contains the root partition. To control this, cachefilesd tries to maintain a certain amount of free
space by discarding old objects, such as less-recently accessed objects, from the cache. This behavior is
known as cache culling.

Cache culling is done on the basis of the percentage of blocks and the percentage of files available in
the underlying file system. There are settings in /etc/cachefilesd.conf which control six limits:

brun N% (percentage of blocks), frun N% (percentage of files)

If the amount of free space and the number of available files in the cache rises above both these
limits, then culling is turned off.

bcull N% (percentage of blocks), fcull N% (percentage of files)

If the amount of available space or the number of files in the cache falls below either of these limits,
then culling is started.

bstop N% (percentage of blocks), fstop N% (percentage of files)

If the amount of available space or the number of available files in the cache falls below either of
these limits, then no further allocation of disk space or files is permitted until culling has raised things
above these limits again.

The default value of N for each setting is as follows:

brun/frun: 10%

bcull/fcull: 7%

bstop/fstop: 3%

When configuring these settings, the following must hold true:

0 ≤ bstop < bcull < brun < 100

0 ≤ fstop < fcull < frun < 100

These are the percentages of available space and available files and do not appear as 100 minus the
percentage displayed by the df program.

IMPORTANT

Culling depends on both bxxx and fxxx pairs simultaneously; the user cannot treat them
separately.

CHAPTER 4. MOUNTING NFS SHARES

53

CHAPTER 5. MOUNTING AN SMB SHARE
The Server Message Block (SMB) protocol implements an application-layer network protocol used to
access resources on a server, such as file shares and shared printers.

NOTE

In the context of SMB, you can find mentions about the Common Internet File System
(CIFS) protocol, which is a dialect of SMB. Both the SMB and CIFS protocol are
supported, and the kernel module and utilities involved in mounting SMB and CIFS shares
both use the name cifs.

The cifs-utils package provides utilities to:

Mount SMB and CIFS shares

Manage NT LAN Manager (NTLM) credentials in the kernel’s keyring

Set and display Access Control Lists (ACL) in a security descriptor on SMB and CIFS shares

5.1. SUPPORTED SMB PROTOCOL VERSIONS

The cifs.ko kernel module supports the following SMB protocol versions:

SMB 1

WARNING

The SMB1 protocol is deprecated due to known security issues, and is only
safe to use on a private network. The main reason that SMB1 is still
provided as a supported option is that currently it is the only SMB protocol
version that supports UNIX extensions. If you do not need to use UNIX
extensions on SMB, Red Hat strongly recommends using SMB2 or later.

SMB 2.0

SMB 2.1

SMB 3.0

SMB 3.1.1

NOTE

Depending on the protocol version, not all SMB features are implemented.

5.2. UNIX EXTENSIONS SUPPORT



Red Hat Enterprise Linux 9.0 Managing file systems

54

Samba uses the CAP_UNIX capability bit in the SMB protocol to provide the UNIX extensions feature.
These extensions are also supported by the cifs.ko kernel module. However, both Samba and the kernel
module support UNIX extensions only in the SMB 1 protocol.

Prerequisites

The cifs-utils package is installed.

Procedure

1. Set the server min protocol parameter in the [global] section in the /etc/samba/smb.conf file
to NT1.

2. Mount the share using the SMB 1 protocol by providing the -o vers=1.0 option to the mount
command. For example:

mount -t cifs -o vers=1.0,username=<user_name> //<server_name>/<share_name>
/mnt/

By default, the kernel module uses SMB 2 or the highest later protocol version supported by the
server. Passing the -o vers=1.0 option to the mount command forces that the kernel module
uses the SMB 1 protocol that is required for using UNIX extensions.

Verification

Display the options of the mounted share:

mount
...
//<server_name>/<share_name> on /mnt type cifs (...,unix,...)

If the unix entry is displayed in the list of mount options, UNIX extensions are enabled.

5.3. MANUALLY MOUNTING AN SMB SHARE

If you only require an SMB share to be temporary mounted, you can mount it manually using the mount
utility.

NOTE

Manually mounted shares are not mounted automatically again when you reboot the
system. To configure that Red Hat Enterprise Linux automatically mounts the share when
the system boots, see Mounting an SMB share automatically when the system boots .

Prerequisites

The cifs-utils package is installed.

Procedure

Use the mount utility with the -t cifs parameter to mount an SMB share:

CHAPTER 5. MOUNTING AN SMB SHARE

55

mount -t cifs -o username=<user_name> //<server_name>/<share_name> /mnt/
Password for <user_name>@//<server_name>/<share_name>: password

In the -o parameter, you can specify options that are used to mount the share. For details, see
the OPTIONS section in the mount.cifs(8) man page and Frequently used mount options .

Example 5.1. Mounting a share using an encrypted SMB 3.0 connection

To mount the \\server\example\ share as the DOMAIN\Administrator user over an
encrypted SMB 3.0 connection into the /mnt/ directory:

mount -t cifs -o username=DOMAIN\Administrator,seal,vers=3.0 //server/example
/mnt/
Password for DOMAIN\Administrator@//server_name/share_name: password

Verification

List the content of the mounted share:

ls -l /mnt/
total 4
drwxr-xr-x. 2 root root 8748 Dec 4 16:27 test.txt
drwxr-xr-x. 17 root root 4096 Dec 4 07:43 Demo-Directory

5.4. MOUNTING AN SMB SHARE AUTOMATICALLY WHEN THE
SYSTEM BOOTS

If access to a mounted SMB share is permanently required on a server, mount the share automatically at
boot time.

Prerequisites

The cifs-utils package is installed.

Procedure

1. Add an entry for the share to the /etc/fstab file. For example:

//<server_name>/<share_name> /mnt cifs credentials=/root/smb.cred 0 0

IMPORTANT

To enable the system to mount a share automatically, you must store the user
name, password, and domain name in a credentials file. For details, see Creating
a credentials file to authenticate to an SMB share

In the fourth field of the row in the /etc/fstab, specify mount options, such as the path to the
credentials file. For details, see the OPTIONS section in the mount.cifs(8) man page and
Frequently used mount options .

Red Hat Enterprise Linux 9.0 Managing file systems

56

Verification

Mount the share by specifying the mount point:

mount /mnt/

5.5. CREATING A CREDENTIALS FILE TO AUTHENTICATE TO AN SMB
SHARE

In certain situations, such as when mounting a share automatically at boot time, a share should be
mounted without entering the user name and password. To implement this, create a credentials file.

Prerequisites

The cifs-utils package is installed.

Procedure

1. Create a file, such as /root/smb.cred, and specify the user name, password, and domain name
that file:

username=user_name
password=password
domain=domain_name

2. Set the permissions to only allow the owner to access the file:

chown user_name /root/smb.cred
chmod 600 /root/smb.cred

You can now pass the credentials=file_name mount option to the mount utility or use it in the
/etc/fstab file to mount the share without being prompted for the user name and password.

5.6. PERFORMING A MULTI-USER SMB MOUNT

The credentials you provide to mount a share determine the access permissions on the mount point by
default. For example, if you use the DOMAIN\example user when you mount a share, all operations on
the share will be executed as this user, regardless which local user performs the operation.

However, in certain situations, the administrator wants to mount a share automatically when the system
boots, but users should perform actions on the share’s content using their own credentials. The
multiuser mount options lets you configure this scenario.

IMPORTANT

To use the multiuser mount option, you must additionally set the sec mount option to a
security type that supports providing credentials in a non-interactive way, such as krb5 or
the ntlmssp option with a credentials file. For details, see Accessing a share as a user .

The root user mounts the share using the multiuser option and an account that has minimal access to
the contents of the share. Regular users can then provide their user name and password to the current
session’s kernel keyring using the cifscreds utility. If the user accesses the content of the mounted

CHAPTER 5. MOUNTING AN SMB SHARE

57

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/managing_file_systems/index#proc_accessing-a-share-as-a-user_assembly_performing-a-multi-user-smb-mount

share, the kernel uses the credentials from the kernel keyring instead of the one initially used to mount
the share.

Using this feature consists of the following steps:

Mount a share with the multiuser option.

Optionally, verify if the share was successfully mounted with the multiuser option.

Access the share as a user .

Prerequisites

The cifs-utils package is installed.

5.6.1. Mounting a share with the multiuser option

Before users can access the share with their own credentials, mount the share as the root user using an
account with limited permissions.

Procedure

To mount a share automatically with the multiuser option when the system boots:

1. Create the entry for the share in the /etc/fstab file. For example:

//server_name/share_name /mnt cifs multiuser,sec=ntlmssp,credentials=/root/smb.cred
0 0

2. Mount the share:

mount /mnt/

If you do not want to mount the share automatically when the system boots, mount it manually by
passing -o multiuser,sec=security_type to the mount command. For details about mounting an SMB
share manually, see Manually mounting an SMB share .

5.6.2. Verifying if an SMB share is mounted with the multiuser option

To verify if a share is mounted with the multiuser option, display the mount options.

Procedure

mount
...
//server_name/share_name on /mnt type cifs (sec=ntlmssp,multiuser,...)

If the multiuser entry is displayed in the list of mount options, the feature is enabled.

5.6.3. Accessing a share as a user

If an SMB share is mounted with the multiuser option, users can provide their credentials for the server
to the kernel’s keyring:

Red Hat Enterprise Linux 9.0 Managing file systems

58

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/managing_file_systems/index#proc_mounting-a-share-with-the-multiuser-option_assembly_performing-a-multi-user-smb-mount
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/managing_file_systems/index#proc_verifying-if-an-smb-share-is-mounted-with-the-multiuser-option_assembly_performing-a-multi-user-smb-mount
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/managing_file_systems/index#proc_accessing-a-share-as-a-user_assembly_performing-a-multi-user-smb-mount
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/managing_file_systems/index#proc_manually-mounting-an-smb-share_assembly_mounting-an-smb-share-on-red-hat-enterprise-linux

cifscreds add -u SMB_user_name server_name
Password: password

When the user performs operations in the directory that contains the mounted SMB share, the server
applies the file system permissions for this user, instead of the one initially used when the share was
mounted.

NOTE

Multiple users can perform operations using their own credentials on the mounted share
at the same time.

5.7. FREQUENTLY USED SMB MOUNT OPTIONS

When you mount an SMB share, the mount options determine:

How the connection will be established with the server. For example, which SMB protocol
version is used when connecting to the server.

How the share will be mounted into the local file system. For example, if the system overrides
the remote file and directory permissions to enable multiple local users to access the content
on the server.

To set multiple options in the fourth field of the /etc/fstab file or in the -o parameter of a mount
command, separate them with commas. For example, see Mounting a share with the multiuser option .

The following list gives frequently used mount options:

Option Description

credentials=file_name Sets the path to the credentials file. See Authenticating to an SMB share
using a credentials file.

dir_mode=mode Sets the directory mode if the server does not support CIFS UNIX extensions.

file_mode=mode Sets the file mode if the server does not support CIFS UNIX extensions.

password=password Sets the password used to authenticate to the SMB server. Alternatively,
specify a credentials file using the credentials option.

seal Enables encryption support for connections using SMB 3.0 or a later
protocol version. Therefore, use seal together with the vers mount option
set to 3.0 or later. See the example in Manually mounting an SMB share.

CHAPTER 5. MOUNTING AN SMB SHARE

59

sec=security_mode Sets the security mode, such as ntlmsspi, to enable NTLMv2 password
hashing and enabled packet signing. For a list of supported values, see the
option’s description in the mount.cifs(8) man page on your system.

If the server does not support the ntlmv2 security mode, use sec=ntlmssp,
which is the default.

For security reasons, do not use the insecure ntlm security mode.

username=user_name Sets the user name used to authenticate to the SMB server. Alternatively,
specify a credentials file using the credentials option.

vers=SMB_protocol_version Sets the SMB protocol version used for the communication with the server.

Option Description

For a complete list, see the OPTIONS section in the mount.cifs(8) man page on your system.

Red Hat Enterprise Linux 9.0 Managing file systems

60

CHAPTER 6. OVERVIEW OF PERSISTENT NAMING
ATTRIBUTES

As a system administrator, you need to refer to storage volumes using persistent naming attributes to
build storage setups that are reliable over multiple system boots.

6.1. DISADVANTAGES OF NON-PERSISTENT NAMING ATTRIBUTES

Red Hat Enterprise Linux provides a number of ways to identify storage devices. It is important to use
the correct option to identify each device when used in order to avoid inadvertently accessing the wrong
device, particularly when installing to or reformatting drives.

Traditionally, non-persistent names in the form of /dev/sd(major number)(minor number) are used on
Linux to refer to storage devices. The major and minor number range and associated sd names are
allocated for each device when it is detected. This means that the association between the major and
minor number range and associated sd names can change if the order of device detection changes.

Such a change in the ordering might occur in the following situations:

The parallelization of the system boot process detects storage devices in a different order with
each system boot.

A disk fails to power up or respond to the SCSI controller. This results in it not being detected by
the normal device probe. The disk is not accessible to the system and subsequent devices will
have their major and minor number range, including the associated sd names shifted down. For
example, if a disk normally referred to as sdb is not detected, a disk that is normally referred to
as sdc would instead appear as sdb.

A SCSI controller (host bus adapter, or HBA) fails to initialize, causing all disks connected to that
HBA to not be detected. Any disks connected to subsequently probed HBAs are assigned
different major and minor number ranges, and different associated sd names.

The order of driver initialization changes if different types of HBAs are present in the system.
This causes the disks connected to those HBAs to be detected in a different order. This might
also occur if HBAs are moved to different PCI slots on the system.

Disks connected to the system with Fibre Channel, iSCSI, or FCoE adapters might be
inaccessible at the time the storage devices are probed, due to a storage array or intervening
switch being powered off, for example. This might occur when a system reboots after a power
failure, if the storage array takes longer to come online than the system take to boot. Although
some Fibre Channel drivers support a mechanism to specify a persistent SCSI target ID to
WWPN mapping, this does not cause the major and minor number ranges, and the associated sd
names to be reserved; it only provides consistent SCSI target ID numbers.

These reasons make it undesirable to use the major and minor number range or the associated sd
names when referring to devices, such as in the /etc/fstab file. There is the possibility that the wrong
device will be mounted and data corruption might result.

Occasionally, however, it is still necessary to refer to the sd names even when another mechanism is
used, such as when errors are reported by a device. This is because the Linux kernel uses sd names (and
also SCSI host/channel/target/LUN tuples) in kernel messages regarding the device.

6.2. FILE SYSTEM AND DEVICE IDENTIFIERS

CHAPTER 6. OVERVIEW OF PERSISTENT NAMING ATTRIBUTES

61

File system identifiers are tied to the file system itself, while device identifiers are linked to the physical
block device. Understanding the difference is important for proper storage management.

File system identifiers
File system identifiers are tied to a particular file system created on a block device. The identifier is also
stored as part of the file system. If you copy the file system to a different device, it still carries the same
file system identifier. However, if you rewrite the device, such as by formatting it with the mkfs utility,
the device loses the attribute.

File system identifiers include:

Unique identifier (UUID)

Label

Device identifiers
Device identifiers are tied to a block device: for example, a disk or a partition. If you rewrite the device,
such as by formatting it with the mkfs utility, the device keeps the attribute, because it is not stored in
the file system.

Device identifiers include:

World Wide Identifier (WWID)

Partition UUID

Serial number

Recommendations

Some file systems, such as logical volumes, span multiple devices. Red Hat recommends
accessing these file systems using file system identifiers rather than device identifiers.

6.3. DEVICE NAMES MANAGED BY THE UDEV MECHANISM IN
/DEV/DISK/

The udev mechanism is used for all types of devices in Linux, and is not limited only for storage devices.
It provides different kinds of persistent naming attributes in the /dev/disk/ directory. In the case of
storage devices, Red Hat Enterprise Linux contains udev rules that create symbolic links in the
/dev/disk/ directory. This enables you to refer to storage devices by:

Their content

A unique identifier

Their serial number.

Although udev naming attributes are persistent, in that they do not change on their own across system
reboots, some are also configurable.

6.3.1. File system identifiers

The UUID attribute in /dev/disk/by-uuid/
Entries in this directory provide a symbolic name that refers to the storage device by a unique identifier
(UUID) in the content (that is, the data) stored on the device. For example:

Red Hat Enterprise Linux 9.0 Managing file systems

62

/dev/disk/by-uuid/3e6be9de-8139-11d1-9106-a43f08d823a6

You can use the UUID to refer to the device in the /etc/fstab file using the following syntax:

UUID=3e6be9de-8139-11d1-9106-a43f08d823a6

You can configure the UUID attribute when creating a file system, and you can also change it later on.

The Label attribute in /dev/disk/by-label/
Entries in this directory provide a symbolic name that refers to the storage device by a label in the
content (that is, the data) stored on the device.

For example:

/dev/disk/by-label/Boot

You can use the label to refer to the device in the /etc/fstab file using the following syntax:

LABEL=Boot

You can configure the Label attribute when creating a file system, and you can also change it later on.

6.3.2. Device identifiers

The WWID attribute in /dev/disk/by-id/
The World Wide Identifier (WWID) is a persistent, system-independent identifier that the SCSI
Standard requires from all SCSI devices. The WWID identifier is guaranteed to be unique for every
storage device, and independent of the path that is used to access the device. The identifier is a
property of the device but is not stored in the content (that is, the data) on the devices.

This identifier can be obtained by issuing a SCSI Inquiry to retrieve the Device Identification Vital
Product Data (page 0x83) or Unit Serial Number (page 0x80).

Red Hat Enterprise Linux automatically maintains the proper mapping from the WWID-based device
name to a current /dev/sd name on that system. Applications can use the /dev/disk/by-id/ name to
reference the data on the disk, even if the path to the device changes, and even when accessing the
device from different systems.

NOTE

If your are using an NVMe device, you might run into a disk by-id naming change for some
vendors, if the serial number of your device has leading whitespace.

Example 6.1. WWID mappings

WWID symlink Non-persistent device Note

/dev/disk/by-id/scsi-
3600508b400105e210000900000490000

/dev/sda A device with a page
0x83 identifier

CHAPTER 6. OVERVIEW OF PERSISTENT NAMING ATTRIBUTES

63

/dev/disk/by-id/scsi-
SSEAGATE_ST373453LW_3HW1RHM6

/dev/sdb A device with a page
0x80 identifier

/dev/disk/by-id/ata-
SAMSUNG_MZNLN256HMHQ-
000L7_S2WDNX0J336519-part3

/dev/sdc3 A disk partition

WWID symlink Non-persistent device Note

In addition to these persistent names provided by the system, you can also use udev rules to implement
persistent names of your own, mapped to the WWID of the storage.

The Partition UUID attribute in /dev/disk/by-partuuid
The Partition UUID (PARTUUID) attribute identifies partitions as defined by GPT partition table.

Example 6.2. Partition UUID mappings

PARTUUID symlink Non-persistent device

/dev/disk/by-partuuid/4cd1448a-01 /dev/sda1

/dev/disk/by-partuuid/4cd1448a-02 /dev/sda2

/dev/disk/by-partuuid/4cd1448a-03 /dev/sda3

The Path attribute in /dev/disk/by-path/
This attribute provides a symbolic name that refers to the storage device by the hardware path used to
access the device.

The Path attribute fails if any part of the hardware path (for example, the PCI ID, target port, or LUN
number) changes. The Path attribute is therefore unreliable. However, the Path attribute may be useful
in one of the following scenarios:

You need to identify a disk that you are planning to replace later.

You plan to install a storage service on a disk in a specific location.

6.4. THE WORLD WIDE IDENTIFIER WITH DM MULTIPATH

You can configure Device Mapper (DM) Multipath to map between the World Wide Identifier (WWID)
and non-persistent device names.

If there are multiple paths from a system to a device, DM Multipath uses the WWID to detect this. DM
Multipath then presents a single "pseudo-device" in the /dev/mapper/wwid directory, such as
/dev/mapper/3600508b400105df70000e00000ac0000.

The command multipath -l shows the mapping to the non-persistent identifiers:

Red Hat Enterprise Linux 9.0 Managing file systems

64

Host:Channel:Target:LUN

/dev/sd name

major:minor number

Example 6.3. WWID mappings in a multipath configuration

An example output of the multipath -l command:

3600508b400105df70000e00000ac0000 dm-2 vendor,product
[size=20G][features=1 queue_if_no_path][hwhandler=0][rw]
_ round-robin 0 [prio=0][active]
 _ 5:0:1:1 sdc 8:32 [active][undef]
 _ 6:0:1:1 sdg 8:96 [active][undef]
_ round-robin 0 [prio=0][enabled]
 _ 5:0:0:1 sdb 8:16 [active][undef]
 _ 6:0:0:1 sdf 8:80 [active][undef]

DM Multipath automatically maintains the proper mapping of each WWID-based device name to its
corresponding /dev/sd name on the system. These names are persistent across path changes, and they
are consistent when accessing the device from different systems.

When the user_friendly_names feature of DM Multipath is used, the WWID is mapped to a name of the
form /dev/mapper/mpathN. By default, this mapping is maintained in the file /etc/multipath/bindings.
These mpathN names are persistent as long as that file is maintained.

IMPORTANT

If you use user_friendly_names, then additional steps are required to obtain consistent
names in a cluster.

6.5. LIMITATIONS OF THE UDEV DEVICE NAMING CONVENTION

The following are some limitations of the udev naming convention:

It is possible that the device might not be accessible at the time the query is performed
because the udev mechanism might rely on the ability to query the storage device when the
udev rules are processed for a udev event. This is more likely to occur with Fibre Channel, iSCSI
or FCoE storage devices when the device is not located in the server chassis.

The kernel might send udev events at any time, causing the rules to be processed and possibly
causing the /dev/disk/by-*/ links to be removed if the device is not accessible.

There might be a delay between when the udev event is generated and when it is processed,
such as when a large number of devices are detected and the user-space udevd service takes
some amount of time to process the rules for each one. This might cause a delay between when
the kernel detects the device and when the /dev/disk/by-*/ names are available.

External programs such as blkid invoked by the rules might open the device for a brief period of
time, making the device inaccessible for other uses.

The device names managed by the udev mechanism in /dev/disk/ may change between major

CHAPTER 6. OVERVIEW OF PERSISTENT NAMING ATTRIBUTES

65

The device names managed by the udev mechanism in /dev/disk/ may change between major
releases, requiring you to update the links.

6.6. LISTING PERSISTENT NAMING ATTRIBUTES

You can find out the persistent naming attributes of non-persistent storage devices.

Procedure

To list the UUID and Label attributes, use the lsblk utility:

$ lsblk --fs storage-device

For example:

Example 6.4. Viewing the UUID and Label of a file system

$ lsblk --fs /dev/sda1

NAME FSTYPE LABEL UUID MOUNTPOINT
sda1 xfs Boot afa5d5e3-9050-48c3-acc1-bb30095f3dc4 /boot

To list the PARTUUID attribute, use the lsblk utility with the --output +PARTUUID option:

$ lsblk --output +PARTUUID

For example:

Example 6.5. Viewing the PARTUUID attribute of a partition

$ lsblk --output +PARTUUID /dev/sda1

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT PARTUUID
sda1 8:1 0 512M 0 part /boot 4cd1448a-01

To list the WWID attribute, examine the targets of symbolic links in the /dev/disk/by-id/
directory. For example:

Example 6.6. Viewing the WWID of all storage devices on the system

$ file /dev/disk/by-id/*

/dev/disk/by-id/ata-QEMU_HARDDISK_QM00001
symbolic link to ../../sda
/dev/disk/by-id/ata-QEMU_HARDDISK_QM00001-part1
symbolic link to ../../sda1
/dev/disk/by-id/ata-QEMU_HARDDISK_QM00001-part2
symbolic link to ../../sda2
/dev/disk/by-id/dm-name-rhel_rhel8-root
symbolic link to ../../dm-0
/dev/disk/by-id/dm-name-rhel_rhel8-swap

Red Hat Enterprise Linux 9.0 Managing file systems

66

symbolic link to ../../dm-1
/dev/disk/by-id/dm-uuid-LVM-
QIWtEHtXGobe5bewlIUDivKOz5ofkgFhP0RMFsNyySVihqEl2cWWbR7MjXJolD6g
symbolic link to ../../dm-1
/dev/disk/by-id/dm-uuid-LVM-
QIWtEHtXGobe5bewlIUDivKOz5ofkgFhXqH2M45hD2H9nAf2qfWSrlRLhzfMyOKd
symbolic link to ../../dm-0
/dev/disk/by-id/lvm-pv-uuid-atlr2Y-vuMo-ueoH-CpMG-4JuH-AhEF-wu4QQm
symbolic link to ../../sda2

6.7. MODIFYING PERSISTENT NAMING ATTRIBUTES

You can change the UUID or Label persistent naming attribute of a file system.

NOTE

Changing udev attributes happens in the background and might take a long time. The
udevadm settle command waits until the change is fully registered, which ensures that
your next command will be able to use the new attribute correctly.

In the following commands:

Replace new-uuid with the UUID you want to set; for example, 1cdfbc07-1c90-4984-b5ec-
f61943f5ea50. You can generate a UUID using the uuidgen command.

Replace new-label with a label; for example, backup_data.

Prerequisites

If you are modifying the attributes of an XFS file system, unmount it first.

Procedure

To change the UUID or Label attributes of an XFS file system, use the xfs_admin utility:

xfs_admin -U new-uuid -L new-label storage-device
udevadm settle

To change the UUID or Label attributes of an ext4, ext3, or ext2 file system, use the tune2fs
utility:

tune2fs -U new-uuid -L new-label storage-device
udevadm settle

To change the UUID or Label attributes of a swap volume, use the swaplabel utility:

swaplabel --uuid new-uuid --label new-label swap-device
udevadm settle

CHAPTER 6. OVERVIEW OF PERSISTENT NAMING ATTRIBUTES

67

CHAPTER 7. PARTITION OPERATIONS WITH PARTED
parted is a program to manipulate disk partitions. It supports multiple partition table formats, including
MS-DOS and GPT. It is useful for creating space for new operating systems, reorganizing disk usage,
and copying data to new hard disks.

7.1. VIEWING THE PARTITION TABLE WITH PARTED

Display the partition table of a block device to see the partition layout and details about individual
partitions. You can view the partition table on a block device using the parted utility.

Procedure

1. Start the parted utility. For example, the following output lists the device /dev/sda:

parted /dev/sda

2. View the partition table:

(parted) print

Model: ATA SAMSUNG MZNLN256 (scsi)
Disk /dev/sda: 256GB
Sector size (logical/physical): 512B/512B
Partition Table: msdos
Disk Flags:

Number Start End Size Type File system Flags
 1 1049kB 269MB 268MB primary xfs boot
 2 269MB 34.6GB 34.4GB primary
 3 34.6GB 45.4GB 10.7GB primary
 4 45.4GB 256GB 211GB extended
 5 45.4GB 256GB 211GB logical

3. Optional: Switch to the device you want to examine next:

(parted) select block-device

For a detailed description of the print command output, see the following:

Model: ATA SAMSUNG MZNLN256 (scsi)

The disk type, manufacturer, model number, and interface.

Disk /dev/sda: 256GB

The file path to the block device and the storage capacity.

Partition Table: msdos

The disk label type.

Number

The partition number. For example, the partition with minor number 1 corresponds to /dev/sda1.

Start and End

The location on the device where the partition starts and ends.

Red Hat Enterprise Linux 9.0 Managing file systems

68

Type

Valid types are metadata, free, primary, extended, or logical.

File system

The file system type. If the File system field of a device shows no value, this means that its file
system type is unknown. The parted utility cannot recognize the file system on encrypted devices.

Flags

Lists the flags set for the partition. Available flags are boot, root, swap, hidden, raid, lvm, or lba.

Additional resources

parted(8) man page on your system

7.2. CREATING A PARTITION TABLE ON A DISK WITH PARTED

Use the parted utility to format a block device with a partition table more easily.

WARNING

Formatting a block device with a partition table deletes all data stored on the
device.

Procedure

1. Start the interactive parted shell:

parted block-device

2. Determine if there already is a partition table on the device:

(parted) print

If the device already contains partitions, they will be deleted in the following steps.

3. Create the new partition table:

(parted) mklabel table-type

Replace table-type with with the intended partition table type:

msdos for MBR

gpt for GPT

Example 7.1. Creating a GUID Partition Table (GPT) table

To create a GPT table on the disk, use:



CHAPTER 7. PARTITION OPERATIONS WITH PARTED

69

(parted) mklabel gpt

The changes start applying after you enter this command.

4. View the partition table to confirm that it is created:

(parted) print

5. Exit the parted shell:

(parted) quit

Additional resources

parted(8) man page on your system

7.3. CREATING A PARTITION WITH PARTED

As a system administrator, you can create new partitions on a disk by using the parted utility.

NOTE

The required partitions are swap, /boot/, and / (root).

Prerequisites

A partition table on the disk.

If the partition you want to create is larger than 2TiB, format the disk with the GUID Partition
Table (GPT).

Procedure

1. Start the parted utility:

parted block-device

2. View the current partition table to determine if there is enough free space:

(parted) print

Resize the partition in case there is not enough free space.

From the partition table, determine:

The start and end points of the new partition.

On MBR, what partition type it should be.

3. Create the new partition:

Red Hat Enterprise Linux 9.0 Managing file systems

70

(parted) mkpart part-type name fs-type start end

Replace part-type with with primary, logical, or extended. This applies only to the MBR
partition table.

Replace name with an arbitrary partition name. This is required for GPT partition tables.

Replace fs-type with xfs, ext2, ext3, ext4, fat16, fat32, hfs, hfs+, linux-swap, ntfs, or
reiserfs. The fs-type parameter is optional. Note that the parted utility does not create the
file system on the partition.

Replace start and end with the sizes that determine the starting and ending points of the
partition, counting from the beginning of the disk. You can use size suffixes, such as 512MiB,
20GiB, or 1.5TiB. The default size is in megabytes.

Example 7.2. Creating a small primary partition

To create a primary partition from 1024MiB until 2048MiB on an MBR table, use:

(parted) mkpart primary 1024MiB 2048MiB

The changes start applying after you enter the command.

4. View the partition table to confirm that the created partition is in the partition table with the
correct partition type, file system type, and size:

(parted) print

5. Exit the parted shell:

(parted) quit

6. Register the new device node:

udevadm settle

7. Verify that the kernel recognizes the new partition:

cat /proc/partitions

Additional resources

parted(8) man page on your system

Creating a partition table on a disk with parted

Resizing a partition with parted

7.4. REMOVING A PARTITION WITH PARTED

Using the parted utility, you can remove a disk partition to free up disk space.

CHAPTER 7. PARTITION OPERATIONS WITH PARTED

71

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/9/html/managing_file_systems/partition-operations-with-parted_managing-file-systems#proc_creating-a-partition-table-on-a-disk-with-parted_partition-operations-with-parted
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/9/html/managing_file_systems/partition-operations-with-parted_managing-file-systems#proc_resizing-a-partition-with-parted_partition-operations-with-parted

Procedure

1. Start the interactive parted shell:

parted block-device

Replace block-device with the path to the device where you want to remove a partition: for
example, /dev/sda.

2. View the current partition table to determine the minor number of the partition to remove:

(parted) print

3. Remove the partition:

(parted) rm minor-number

Replace minor-number with the minor number of the partition you want to remove.

The changes start applying as soon as you enter this command.

4. Verify that you have removed the partition from the partition table:

(parted) print

5. Exit the parted shell:

(parted) quit

6. Verify that the kernel registers that the partition is removed:

cat /proc/partitions

7. Remove the partition from the /etc/fstab file, if it is present. Find the line that declares the
removed partition, and remove it from the file.

8. Regenerate mount units so that your system registers the new /etc/fstab configuration:

systemctl daemon-reload

9. If you have deleted a swap partition or removed pieces of LVM, remove all references to the
partition from the kernel command line:

a. List active kernel options and see if any option references the removed partition:

grubby --info=ALL

b. Remove the kernel options that reference the removed partition:

grubby --update-kernel=ALL --remove-args="option"

10. To register the changes in the early boot system, rebuild the initramfs file system:

Red Hat Enterprise Linux 9.0 Managing file systems

72

dracut --force --verbose

Additional resources

parted(8) man page on your system

7.5. RESIZING A PARTITION WITH PARTED

Using the parted utility, extend a partition to use unused disk space, or shrink a partition to use its
capacity for different purposes.

Prerequisites

Back up the data before shrinking a partition.

If the partition you want to create is larger than 2TiB, format the disk with the GUID Partition
Table (GPT).

If you want to shrink the partition, first shrink the file system so that it is not larger than the
resized partition.

NOTE

XFS does not support shrinking.

Procedure

1. Start the parted utility:

parted block-device

2. View the current partition table:

(parted) print

From the partition table, determine:

The minor number of the partition.

The location of the existing partition and its new ending point after resizing.

3. Resize the partition:

(parted) resizepart 1 2GiB

Replace 1 with the minor number of the partition that you are resizing.

Replace 2 with the size that determines the new ending point of the resized partition,
counting from the beginning of the disk. You can use size suffixes, such as 512MiB, 20GiB,
or 1.5TiB. The default size is in megabytes.

4. View the partition table to confirm that the resized partition is in the partition table with the
correct size:

CHAPTER 7. PARTITION OPERATIONS WITH PARTED

73

(parted) print

5. Exit the parted shell:

(parted) quit

6. Verify that the kernel registers the new partition:

cat /proc/partitions

7. Optional: If you extended the partition, extend the file system on it as well.

Additional resources

parted(8) man page on your system

Red Hat Enterprise Linux 9.0 Managing file systems

74

CHAPTER 8. STRATEGIES FOR REPARTITIONING A DISK
There are different approaches to repartitioning a disk. These include:

Unpartitioned free space is available.

An unused partition is available.

Free space in an actively used partition is available.

NOTE

The following examples are simplified for clarity and do not reflect the exact partition
layout when actually installing Red Hat Enterprise Linux.

8.1. USING UNPARTITIONED FREE SPACE

Partitions that are already defined and do not span the entire hard disk, leave unallocated space that is
not part of any defined partition. The following diagram shows what this might look like.

Figure 8.1. Disk with unpartitioned free space

The first diagram represents a disk with one primary partition and an undefined partition with
unallocated space. The second diagram represents a disk with two defined partitions with allocated
space.

An unused hard disk also falls into this category. The only difference is that all the space is not part of
any defined partition.

On a new disk, you can create the necessary partitions from the unused space. Most preinstalled
operating systems are configured to take up all available space on a disk drive.

8.2. USING SPACE FROM AN UNUSED PARTITION

In the following example, the first diagram represents a disk with an unused partition. The second
diagram represents reallocating an unused partition for Linux.

Figure 8.2. Disk with an unused partition

CHAPTER 8. STRATEGIES FOR REPARTITIONING A DISK

75

Figure 8.2. Disk with an unused partition

To use the space allocated to the unused partition, delete the partition and then create the appropriate
Linux partition instead. Alternatively, during the installation process, delete the unused partition and
manually create new partitions.

8.3. USING FREE SPACE FROM AN ACTIVE PARTITION

This process can be difficult to manage because an active partition, that is already in use, contains the
required free space. In most cases, hard disks of computers with preinstalled software contain one larger
partition holding the operating system and data.

WARNING

If you want to use an operating system (OS) on an active partition, you must
reinstall the OS. Be aware that some computers, which include pre-installed
software, do not include installation media to reinstall the original OS. Check
whether this applies to your OS before you destroy an original partition and the OS
installation.

To optimise the use of available free space, you can use the methods of destructive or non-destructive
repartitioning.

8.3.1. Destructive repartitioning

Destructive repartitioning destroys the partition on your hard drive and creates several smaller partitions
instead. Backup any needed data from the original partition as this method deletes the complete
contents.

After creating a smaller partition for your existing operating system, you can:

Reinstall software.

Restore your data.



Red Hat Enterprise Linux 9.0 Managing file systems

76

Start your Red Hat Enterprise Linux installation.

The following diagram is a simplified representation of using the destructive repartitioning method.

Figure 8.3. Destructive repartitioning action on disk

WARNING

This method deletes all data previously stored in the original partition.

8.3.2. Non-destructive repartitioning

Non-destructive repartitioning resizes partitions, without any data loss. This method is reliable, however
it takes longer processing time on large drives.

The following is a list of methods, which can help initiate non-destructive repartitioning.

Compress existing data

The storage location of some data cannot be changed. This can prevent the resizing of a partition to the
required size, and ultimately lead to a destructive repartition process. Compressing data in an already
existing partition can help you resize your partitions as needed. It can also help to maximize the free
space available.

The following diagram is a simplified representation of this process.

Figure 8.4. Data compression on a disk



CHAPTER 8. STRATEGIES FOR REPARTITIONING A DISK

77

Figure 8.4. Data compression on a disk

To avoid any possible data loss, create a backup before continuing with the compression process.

Resize the existing partition

By resizing an already existing partition, you can free up more space. Depending on your resizing
software, the results may vary. In the majority of cases, you can create a new unformatted partition of
the same type, as the original partition.

The steps you take after resizing can depend on the software you use. In the following example, the best
practice is to delete the new DOS (Disk Operating System) partition, and create a Linux partition
instead. Verify what is most suitable for your disk before initiating the resizing process.

Figure 8.5. Partition resizing on a disk

Optional: Create new partitions

Some pieces of resizing software support Linux based systems. In such cases, there is no need to delete
the newly created partition after resizing. Creating a new partition afterwards depends on the software
you use.

The following diagram represents the disk state, before and after creating a new partition.

Figure 8.6. Disk with final partition configuration

Red Hat Enterprise Linux 9.0 Managing file systems

78

Figure 8.6. Disk with final partition configuration

CHAPTER 8. STRATEGIES FOR REPARTITIONING A DISK

79

CHAPTER 9. GETTING STARTED WITH XFS
This is an overview of how to create and maintain XFS file systems.

9.1. THE XFS FILE SYSTEM

XFS is a highly scalable, high-performance, robust, and mature 64-bit journaling file system that
supports very large files and file systems on a single host. It is the default file system in Red Hat
Enterprise Linux 9. XFS was originally developed in the early 1990s by SGI and has a long history of
running on extremely large servers and storage arrays.

The features of XFS include:

Reliability

Metadata journaling, which ensures file system integrity after a system crash by keeping a
record of file system operations that can be replayed when the system is restarted and the
file system remounted

Extensive run-time metadata consistency checking

Scalable and fast repair utilities

Quota journaling. This avoids the need for lengthy quota consistency checks after a crash.

Scalability and performance

Supported file system size up to 1024 TiB

Ability to support a large number of concurrent operations

B-tree indexing for scalability of free space management

Sophisticated metadata read-ahead algorithms

Optimizations for streaming video workloads

Allocation schemes

Extent-based allocation

Stripe-aware allocation policies

Delayed allocation

Space pre-allocation

Dynamically allocated inodes

Other features

Reflink-based file copies

Tightly integrated backup and restore utilities

Online defragmentation

Red Hat Enterprise Linux 9.0 Managing file systems

80

Online file system growing

Comprehensive diagnostics capabilities

Extended attributes (xattr). This allows the system to associate several additional
name/value pairs per file.

Project or directory quotas. This allows quota restrictions over a directory tree.

Subsecond timestamps

Performance characteristics

XFS has a high performance on large systems with enterprise workloads. A large system is one with a
relatively high number of CPUs, multiple HBAs, and connections to external disk arrays. XFS also
performs well on smaller systems that have a multi-threaded, parallel I/O workload.

XFS has a relatively low performance for single threaded, metadata-intensive workloads: for example, a
workload that creates or deletes large numbers of small files in a single thread.

9.2. COMPARISON OF TOOLS USED WITH EXT4 AND XFS

This section compares which tools to use to accomplish common tasks on the ext4 and XFS file
systems.

Task ext4 XFS

Create a file system mkfs.ext4 mkfs.xfs

File system check e2fsck xfs_repair

Resize a file system resize2fs xfs_growfs

Save an image of a file system e2image xfs_metadump and
xfs_mdrestore

Label or tune a file system tune2fs xfs_admin

Back up a file system tar and rsync xfsdump and xfsrestore

Quota management quota xfs_quota

File mapping filefrag xfs_bmap

NOTE

If you want a complete client-server solution for backups over network, you can use
bacula backup utility that is available in RHEL 9. For more information about Bacula, see
Bacula backup solution .

CHAPTER 9. GETTING STARTED WITH XFS

81

https://www.bacula.org/documentation/documentation/

CHAPTER 10. CREATING AN XFS FILE SYSTEM
As a system administrator, you can create an XFS file system on a block device to enable it to store files
and directories.

10.1. CREATING AN XFS FILE SYSTEM WITH MKFS.XFS

This procedure describes how to create an XFS file system on a block device.

Procedure

1. To create the file system:

If the device is a regular partition, an LVM volume, an MD volume, a disk, or a similar device,
use the following command:

mkfs.xfs block-device

Replace block-device with the path to the block device. For example, /dev/sdb1,
/dev/disk/by-uuid/05e99ec8-def1-4a5e-8a9d-5945339ceb2a, or /dev/my-
volgroup/my-lv.

In general, the default options are optimal for common use.

When using mkfs.xfs on a block device containing an existing file system, add the -f
option to overwrite that file system.

To create the file system on a hardware RAID device, check if the system correctly detects
the stripe geometry of the device:

If the stripe geometry information is correct, no additional options are needed. Create
the file system:

mkfs.xfs block-device

If the information is incorrect, specify stripe geometry manually with the su and sw
parameters of the -d option. The su parameter specifies the RAID chunk size, and the
sw parameter specifies the number of data disks in the RAID device.
For example:

mkfs.xfs -d su=64k,sw=4 /dev/sda3

2. Use the following command to wait for the system to register the new device node:

udevadm settle

Additional resources

mkfs.xfs(8) man page on your system

Red Hat Enterprise Linux 9.0 Managing file systems

82

CHAPTER 11. BACKING UP AN XFS FILE SYSTEM
As a system administrator, you can use the xfsdump to back up an XFS file system into a file or on a
tape. This provides a simple backup mechanism.

11.1. FEATURES OF XFS BACKUP

This section describes key concepts and features of backing up an XFS file system with the xfsdump
utility.

You can use the xfsdump utility to:

Perform backups to regular file images.
Only one backup can be written to a regular file.

Perform backups to tape drives.
The xfsdump utility also enables you to write multiple backups to the same tape. A backup can
span multiple tapes.

To back up multiple file systems to a single tape device, simply write the backup to a tape that
already contains an XFS backup. This appends the new backup to the previous one. By default,
xfsdump never overwrites existing backups.

Create incremental backups.
The xfsdump utility uses dump levels to determine a base backup to which other backups are
relative. Numbers from 0 to 9 refer to increasing dump levels. An incremental backup only backs
up files that have changed since the last dump of a lower level:

To perform a full backup, perform a level 0 dump on the file system.

A level 1 dump is the first incremental backup after a full backup. The next incremental
backup would be level 2, which only backs up files that have changed since the last level
1 dump; and so on, to a maximum of level 9.

Exclude files from a backup using size, subtree, or inode flags to filter them.

Additional resources

xfsdump(8) man page on your system

11.2. BACKING UP AN XFS FILE SYSTEM WITH XFSDUMP

This procedure describes how to back up the content of an XFS file system into a file or a tape.

Prerequisites

An XFS file system that you can back up.

Another file system or a tape drive where you can store the backup.

Procedure

Use the following command to back up an XFS file system:

CHAPTER 11. BACKING UP AN XFS FILE SYSTEM

83

xfsdump -l level [-L label] \ -f backup-destination path-to-xfs-filesystem

Replace level with the dump level of your backup. Use 0 to perform a full backup or 1 to 9 to
perform consequent incremental backups.

Replace backup-destination with the path where you want to store your backup. The
destination can be a regular file, a tape drive, or a remote tape device. For example,
/backup-files/Data.xfsdump for a file or /dev/st0 for a tape drive.

Replace path-to-xfs-filesystem with the mount point of the XFS file system you want to
back up. For example, /mnt/data/. The file system must be mounted.

When backing up multiple file systems and saving them on a single tape device, add a
session label to each backup using the -L label option so that it is easier to identify them
when restoring. Replace label with any name for your backup: for example, backup_data.

Example 11.1. Backing up multiple XFS file systems

To back up the content of XFS file systems mounted on the /boot/ and /data/ directories
and save them as files in the /backup-files/ directory:

xfsdump -l 0 -f /backup-files/boot.xfsdump /boot
xfsdump -l 0 -f /backup-files/data.xfsdump /data

To back up multiple file systems on a single tape device, add a session label to each backup
using the -L label option:

xfsdump -l 0 -L "backup_boot" -f /dev/st0 /boot
xfsdump -l 0 -L "backup_data" -f /dev/st0 /data

Additional resources

xfsdump(8) man page on your system

Red Hat Enterprise Linux 9.0 Managing file systems

84

CHAPTER 12. RESTORING AN XFS FILE SYSTEM FROM
BACKUP

As a system administrator, you can use the xfsrestore utility to restore XFS backup created with the
xfsdump utility and stored in a file or on a tape.

12.1. FEATURES OF RESTORING XFS FROM BACKUP

The xfsrestore utility restores file systems from backups produced by xfsdump. The xfsrestore utility
has two modes:

The simple mode enables users to restore an entire file system from a level 0 dump. This is the
default mode.

The cumulative mode enables file system restoration from an incremental backup: that is,
level 1 to level 9.

A unique session ID or session label identifies each backup. Restoring a backup from a tape containing
multiple backups requires its corresponding session ID or label.

To extract, add, or delete specific files from a backup, enter the xfsrestore interactive mode. The
interactive mode provides a set of commands to manipulate the backup files.

Additional resources

xfsrestore(8) man page on your system

12.2. RESTORING AN XFS FILE SYSTEM FROM BACKUP WITH
XFSRESTORE

This procedure describes how to restore the content of an XFS file system from a file or tape backup.

Prerequisites

A file or tape backup of XFS file systems, as described in Backing up an XFS file system .

A storage device where you can restore the backup.

Procedure

The command to restore the backup varies depending on whether you are restoring from a full
backup or an incremental one, or are restoring multiple backups from a single tape device:

xfsrestore [-r] [-S session-id] [-L session-label] [-i] -f backup-location restoration-path

Replace backup-location with the location of the backup. This can be a regular file, a tape
drive, or a remote tape device. For example, /backup-files/Data.xfsdump for a file or
/dev/st0 for a tape drive.

Replace restoration-path with the path to the directory where you want to restore the file
system. For example, /mnt/data/.

To restore a file system from an incremental (level 1 to level 9) backup, add the -r option.

CHAPTER 12. RESTORING AN XFS FILE SYSTEM FROM BACKUP

85

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_file_systems/backing-up-an-xfs-file-system_managing-file-systems

To restore a backup from a tape device that contains multiple backups, specify the backup
using the -S or -L options.
The -S option lets you choose a backup by its session ID, while the -L option lets you choose
by the session label. To obtain the session ID and session labels, use the xfsrestore -I
command.

Replace session-id with the session ID of the backup. For example, b74a3586-e52e-4a4a-
8775-c3334fa8ea2c. Replace session-label with the session label of the backup. For
example, my_backup_session_label.

To use xfsrestore interactively, use the -i option.
The interactive dialog begins after xfsrestore finishes reading the specified device.
Available commands in the interactive xfsrestore shell include cd, ls, add, delete, and
extract; for a complete list of commands, use the help command.

Example 12.1. Restoring Multiple XFS File Systems

To restore the XFS backup files and save their content into directories under /mnt/:

xfsrestore -f /backup-files/boot.xfsdump /mnt/boot/
xfsrestore -f /backup-files/data.xfsdump /mnt/data/

To restore from a tape device containing multiple backups, specify each backup by its
session label or session ID:

xfsrestore -L "backup_boot" -f /dev/st0 /mnt/boot/
xfsrestore -S "45e9af35-efd2-4244-87bc-4762e476cbab" \ -f /dev/st0 /mnt/data/

Additional resources

xfsrestore(8) man page on your system

12.3. INFORMATIONAL MESSAGES WHEN RESTORING AN XFS
BACKUP FROM A TAPE

When restoring a backup from a tape with backups from multiple file systems, the xfsrestore utility
might issue messages. The messages inform you whether a match of the requested backup has been
found when xfsrestore examines each backup on the tape in sequential order. For example:

xfsrestore: preparing drive
xfsrestore: examining media file 0
xfsrestore: inventory session uuid (8590224e-3c93-469c-a311-fc8f23029b2a) does not match the
media header's session uuid (7eda9f86-f1e9-4dfd-b1d4-c50467912408)
xfsrestore: examining media file 1
xfsrestore: inventory session uuid (8590224e-3c93-469c-a311-fc8f23029b2a) does not match the
media header's session uuid (7eda9f86-f1e9-4dfd-b1d4-c50467912408)
[...]

The informational messages keep appearing until the matching backup is found.

Red Hat Enterprise Linux 9.0 Managing file systems

86

CHAPTER 13. INCREASING THE SIZE OF AN XFS FILE SYSTEM
As a system administrator, you can increase the size of an XFS file system to make a complete use of a
larger storage capacity.

IMPORTANT

It is not currently possible to decrease the size of XFS file systems.

13.1. INCREASING THE SIZE OF AN XFS FILE SYSTEM WITH
XFS_GROWFS

This procedure describes how to grow an XFS file system using the xfs_growfs utility.

Prerequisites

Ensure that the underlying block device is of an appropriate size to hold the resized file system
later. Use the appropriate resizing methods for the affected block device.

Mount the XFS file system.

Procedure

While the XFS file system is mounted, use the xfs_growfs utility to increase its size:

xfs_growfs file-system -D new-size

Replace file-system with the mount point of the XFS file system.

With the -D option, replace new-size with the desired new size of the file system specified in
the number of file system blocks.
To find out the block size in kB of a given XFS file system, use the xfs_info utility:

xfs_info block-device

...
data = bsize=4096
...

Without the -D option, xfs_growfs grows the file system to the maximum size supported by
the underlying device.

Additional resources

xfs_growfs(8) man page on your system.

CHAPTER 13. INCREASING THE SIZE OF AN XFS FILE SYSTEM

87

CHAPTER 14. CONFIGURING XFS ERROR BEHAVIOR
You can configure how an XFS file system behaves when it encounters different I/O errors.

14.1. CONFIGURABLE ERROR HANDLING IN XFS

The XFS file system responds in one of the following ways when an error occurs during an I/O operation:

XFS repeatedly retries the I/O operation until the operation succeeds or XFS reaches a set limit.
The limit is based either on a maximum number of retries or a maximum time for retries.

XFS considers the error permanent and stops the operation on the file system.

You can configure how XFS reacts to the following error conditions:

EIO

Error when reading or writing

ENOSPC

No space left on the device

ENODEV

Device cannot be found

You can set the maximum number of retries and the maximum time in seconds until XFS considers an
error permanent. XFS stops retrying the operation when it reaches either of the limits.

You can also configure XFS so that when unmounting a file system, XFS immediately cancels the retries
regardless of any other configuration. This configuration enables the unmount operation to succeed
despite persistent errors.

Default behavior

The default behavior for each XFS error condition depends on the error context. Some XFS errors such
as ENODEV are considered to be fatal and unrecoverable, regardless of the retry count. Their default
retry limit is 0.

14.2. CONFIGURATION FILES FOR SPECIFIC AND UNDEFINED XFS
ERROR CONDITIONS

The following directories store configuration files that control XFS error behavior for different error
conditions:

/sys/fs/xfs/device/error/metadata/EIO/

For the EIO error condition

/sys/fs/xfs/device/error/metadata/ENODEV/

For the ENODEV error condition

/sys/fs/xfs/device/error/metadata/ENOSPC/

For the ENOSPC error condition

/sys/fs/xfs/device/error/default/

Common configuration for all other, undefined error conditions

Red Hat Enterprise Linux 9.0 Managing file systems

88

Each directory contains the following configuration files for configuring retry limits:

max_retries

Controls the maximum number of times that XFS retries the operation.

retry_timeout_seconds

Specifies the time limit in seconds after which XFS stops retrying the operation.

14.3. SETTING XFS BEHAVIOR FOR SPECIFIC CONDITIONS

This procedure configures how XFS reacts to specific error conditions.

Procedure

Set the maximum number of retries, the retry time limit, or both:

To set the maximum number of retries, write the desired number to the max_retries file:

echo value > /sys/fs/xfs/device/error/metadata/condition/max_retries

To set the time limit, write the desired number of seconds to the retry_timeout_seconds
file:

echo value > /sys/fs/xfs/device/error/metadata/condition/retry_timeout_second

value is a number between -1 and the maximum possible value of the C signed integer type. This
is 2147483647 on 64-bit Linux.

In both limits, the value -1 is used for continuous retries and 0 to stop immediately.

device is the name of the device, as found in the /dev/ directory; for example, sda.

14.4. SETTING XFS BEHAVIOR FOR UNDEFINED CONDITIONS

This procedure configures how XFS reacts to all undefined error conditions, which share a common
configuration.

Procedure

Set the maximum number of retries, the retry time limit, or both:

To set the maximum number of retries, write the desired number to the max_retries file:

echo value > /sys/fs/xfs/device/error/metadata/default/max_retries

To set the time limit, write the desired number of seconds to the retry_timeout_seconds
file:

echo value > /sys/fs/xfs/device/error/metadata/default/retry_timeout_seconds

value is a number between -1 and the maximum possible value of the C signed integer type. This
is 2147483647 on 64-bit Linux.

CHAPTER 14. CONFIGURING XFS ERROR BEHAVIOR

89

In both limits, the value -1 is used for continuous retries and 0 to stop immediately.

device is the name of the device, as found in the /dev/ directory; for example, sda.

14.5. SETTING THE XFS UNMOUNT BEHAVIOR

This procedure configures how XFS reacts to error conditions when unmounting the file system.

If you set the fail_at_unmount option in the file system, it overrides all other error configurations during
unmount, and immediately unmounts the file system without retrying the I/O operation. This allows the
unmount operation to succeed even in case of persistent errors.

WARNING

You cannot change the fail_at_unmount value after the unmount process starts,
because the unmount process removes the configuration files from the sysfs
interface for the respective file system. You must configure the unmount behavior
before the file system starts unmounting.

Procedure

Enable or disable the fail_at_unmount option:

To cancel retrying all operations when the file system unmounts, enable the option:

echo 1 > /sys/fs/xfs/device/error/fail_at_unmount

To respect the max_retries and retry_timeout_seconds retry limits when the file system
unmounts, disable the option:

echo 0 > /sys/fs/xfs/device/error/fail_at_unmount

device is the name of the device, as found in the /dev/ directory; for example, sda.



Red Hat Enterprise Linux 9.0 Managing file systems

90

CHAPTER 15. CHECKING AND REPAIRING A FILE SYSTEM
RHEL provides file system administration utilities which are capable of checking and repairing file
systems. These tools are often referred to as fsck tools, where fsck is a shortened version of file system
check. In most cases, these utilities are run automatically during system boot, if needed, but can also be
manually invoked if required.

IMPORTANT

File system checkers guarantee only metadata consistency across the file system. They
have no awareness of the actual data contained within the file system and are not data
recovery tools.

15.1. SCENARIOS THAT REQUIRE A FILE SYSTEM CHECK

The relevant fsck tools can be used to check your system if any of the following occurs:

System fails to boot

Files on a specific disk become corrupt

The file system shuts down or changes to read-only due to inconsistencies

A file on the file system is inaccessible

File system inconsistencies can occur for various reasons, including but not limited to hardware errors,
storage administration errors, and software bugs.

IMPORTANT

File system check tools cannot repair hardware problems. A file system must be fully
readable and writable if repair is to operate successfully. If a file system was corrupted
due to a hardware error, the file system must first be moved to a good disk, for example
with the dd(8) utility.

For journaling file systems, all that is normally required at boot time is to replay the journal if required
and this is usually a very short operation.

However, if a file system inconsistency or corruption occurs, even for journaling file systems, then the
file system checker must be used to repair the file system.

IMPORTANT

It is possible to disable file system check at boot by setting the sixth field in /etc/fstab to
0. However, Red Hat does not recommend doing so unless you are having issues with fsck
at boot time, for example with extremely large or remote file systems.

Additional resources

fstab(5), fsck(8), and dd(8) man pages on your system

15.2. POTENTIAL SIDE EFFECTS OF RUNNING FSCK

CHAPTER 15. CHECKING AND REPAIRING A FILE SYSTEM

91

Generally, running the file system check and repair tool can be expected to automatically repair at least
some of the inconsistencies it finds. In some cases, the following issues can arise:

Severely damaged inodes or directories may be discarded if they cannot be repaired.

Significant changes to the file system may occur.

To ensure that unexpected or undesirable changes are not permanently made, ensure you follow any
precautionary steps outlined in the procedure.

15.3. ERROR-HANDLING MECHANISMS IN XFS

This section describes how XFS handles various kinds of errors in the file system.

Unclean unmounts
Journalling maintains a transactional record of metadata changes that happen on the file system.

In the event of a system crash, power failure, or other unclean unmount, XFS uses the journal (also
called log) to recover the file system. The kernel performs journal recovery when mounting the XFS file
system.

Corruption
In this context, corruption means errors on the file system caused by, for example:

Hardware faults

Bugs in storage firmware, device drivers, the software stack, or the file system itself

Problems that cause parts of the file system to be overwritten by something outside of the file
system

When XFS detects corruption in the file system or the file-system metadata, it may shut down the file
system and report the incident in the system log. Note that if the corruption occurred on the file system
hosting the /var directory, these logs will not be available after a reboot.

Example 15.1. System log entry reporting an XFS corruption

dmesg --notime | tail -15

XFS (loop0): Mounting V5 Filesystem
XFS (loop0): Metadata CRC error detected at xfs_agi_read_verify+0xcb/0xf0 [xfs], xfs_agi block
0x2
XFS (loop0): Unmount and run xfs_repair
XFS (loop0): First 128 bytes of corrupted metadata buffer:
00000000027b3b56: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000000005f9abc7a: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000000005b0aef35: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000000da9d2ded: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000000001e265b07: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000000006a40df69: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000000000b272907: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000000e484aac5: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
XFS (loop0): metadata I/O error in "xfs_trans_read_buf_map" at daddr 0x2 len 1 error 74
XFS (loop0): xfs_imap_lookup: xfs_ialloc_read_agi() returned error -117, agno 0
XFS (loop0): Failed to read root inode 0x80, error 11

Red Hat Enterprise Linux 9.0 Managing file systems

92

User-space utilities usually report the Input/output error message when trying to access a corrupted
XFS file system. Mounting an XFS file system with a corrupted log results in a failed mount and the
following error message:

mount: /mount-point: mount(2) system call failed: Structure needs cleaning.

You must manually use the xfs_repair utility to repair the corruption.

Additional resources

xfs_repair(8) man page on your system

15.4. CHECKING AN XFS FILE SYSTEM WITH XFS_REPAIR

Perform a read-only check of an XFS file system by using the xfs_repair utility. Unlike other file system
repair utilities, xfs_repair does not run at boot time, even when an XFS file system was not cleanly
unmounted. In case of an unclean unmount, XFS simply replays the log at mount time, ensuring a
consistent file system; xfs_repair cannot repair an XFS file system with a dirty log without remounting it
first.

NOTE

Although an fsck.xfs binary is present in the xfsprogs package, this is present only to
satisfy initscripts that look for an fsck.file system binary at boot time. fsck.xfs
immediately exits with an exit code of 0.

Procedure

1. Replay the log by mounting and unmounting the file system:

mount file-system
umount file-system

NOTE

If the mount fails with a structure needs cleaning error, the log is corrupted and
cannot be replayed. The dry run should discover and report more on-disk
corruption as a result.

2. Use the xfs_repair utility to perform a dry run to check the file system. Any errors are printed
and an indication of the actions that would be taken, without modifying the file system.

xfs_repair -n block-device

3. Mount the file system:

mount file-system

Additional resources

CHAPTER 15. CHECKING AND REPAIRING A FILE SYSTEM

93

xfs_repair(8) and xfs_metadump(8) man pages on your system

15.5. REPAIRING AN XFS FILE SYSTEM WITH XFS_REPAIR

This procedure repairs a corrupted XFS file system using the xfs_repair utility.

Procedure

1. Create a metadata image prior to repair for diagnostic or testing purposes using the
xfs_metadump utility. A pre-repair file system metadata image can be useful for support
investigations if the corruption is due to a software bug. Patterns of corruption present in the
pre-repair image can aid in root-cause analysis.

Use the xfs_metadump debugging tool to copy the metadata from an XFS file system to a
file. The resulting metadump file can be compressed using standard compression utilities to
reduce the file size if large metadump files need to be sent to support.

xfs_metadump block-device metadump-file

2. Replay the log by remounting the file system:

mount file-system
umount file-system

3. Use the xfs_repair utility to repair the unmounted file system:

If the mount succeeded, no additional options are required:

xfs_repair block-device

If the mount failed with the Structure needs cleaning error, the log is corrupted and cannot
be replayed. Use the -L option (force log zeroing) to clear the log:

WARNING

This command causes all metadata updates in progress at the time of
the crash to be lost, which might cause significant file system damage
and data loss. This should be used only as a last resort if the log cannot
be replayed.

xfs_repair -L block-device

4. Mount the file system:

mount file-system

Additional resources



Red Hat Enterprise Linux 9.0 Managing file systems

94

xfs_repair(8) man page on your system

15.6. ERROR HANDLING MECHANISMS IN EXT2, EXT3, AND EXT4

The ext2, ext3, and ext4 file systems use the e2fsck utility to perform file system checks and repairs.
The file names fsck.ext2, fsck.ext3, and fsck.ext4 are hardlinks to the e2fsck utility. These binaries are
run automatically at boot time and their behavior differs based on the file system being checked and the
state of the file system.

A full file system check and repair is invoked for ext2, which is not a metadata journaling file system, and
for ext4 file systems without a journal.

For ext3 and ext4 file systems with metadata journaling, the journal is replayed in userspace and the
utility exits. This is the default action because journal replay ensures a consistent file system after a
crash.

If these file systems encounter metadata inconsistencies while mounted, they record this fact in the file
system superblock. If e2fsck finds that a file system is marked with such an error, e2fsck performs a full
check after replaying the journal (if present).

Additional resources

fsck(8) and e2fsck(8) man pages on your system

15.7. CHECKING AN EXT2, EXT3, OR EXT4 FILE SYSTEM WITH E2FSCK

This procedure checks an ext2, ext3, or ext4 file system using the e2fsck utility.

Procedure

1. Replay the log by remounting the file system:

mount file-system
umount file-system

2. Perform a dry run to check the file system.

e2fsck -n block-device

NOTE

Any errors are printed and an indication of the actions that would be taken,
without modifying the file system. Later phases of consistency checking may
print extra errors as it discovers inconsistencies which would have been fixed in
early phases if it were running in repair mode.

Additional resources

e2image(8) and e2fsck(8) man pages on your system

15.8. REPAIRING AN EXT2, EXT3, OR EXT4 FILE SYSTEM WITH E2FSCK

CHAPTER 15. CHECKING AND REPAIRING A FILE SYSTEM

95

This procedure repairs a corrupted ext2, ext3, or ext4 file system using the e2fsck utility.

Procedure

1. Save a file system image for support investigations. A pre-repair file system metadata image
can be useful for support investigations if the corruption is due to a software bug. Patterns of
corruption present in the pre-repair image can aid in root-cause analysis.

NOTE

Severely damaged file systems may cause problems with metadata image
creation.

If you are creating the image for testing purposes, use the -r option to create a sparse file of
the same size as the file system itself. e2fsck can then operate directly on the resulting file.

e2image -r block-device image-file

If you are creating the image to be archived or provided for diagnostic, use the -Q option,
which creates a more compact file format suitable for transfer.

e2image -Q block-device image-file

2. Replay the log by remounting the file system:

mount file-system
umount file-system

3. Automatically repair the file system. If user intervention is required, e2fsck indicates the unfixed
problem in its output and reflects this status in the exit code.

e2fsck -p block-device

Additional resources

e2image(8) man page on your system

e2fsck(8) man page on your system

Red Hat Enterprise Linux 9.0 Managing file systems

96

CHAPTER 16. MOUNTING FILE SYSTEMS
As a system administrator, you can mount file systems on your system to access data on them.

16.1. THE LINUX MOUNT MECHANISM

These are the basic concepts of mounting file systems on Linux.

On Linux, UNIX, and similar operating systems, file systems on different partitions and removable
devices (CDs, DVDs, or USB flash drives for example) can be attached to a certain point (the mount
point) in the directory tree, and then detached again. While a file system is mounted on a directory, the
original content of the directory is not accessible.

Note that Linux does not prevent you from mounting a file system to a directory with a file system
already attached to it.

When mounting, you can identify the device by:

a universally unique identifier (UUID): for example, UUID=34795a28-ca6d-4fd8-a347-
73671d0c19cb

a volume label: for example, LABEL=home

a full path to a non-persistent block device: for example, /dev/sda3

When you mount a file system using the mount command without all required information, that is
without the device name, the target directory, or the file system type, the mount utility reads the
content of the /etc/fstab file to check if the given file system is listed there. The /etc/fstab file contains
a list of device names and the directories in which the selected file systems are set to be mounted as
well as the file system type and mount options. Therefore, when mounting a file system that is specified
in /etc/fstab, the following command syntax is sufficient:

Mounting by the mount point:

mount directory

Mounting by the block device:

mount device

Additional resources

mount(8) man page on your system

How to list persistent naming attributes such as the UUID .

16.2. LISTING CURRENTLY MOUNTED FILE SYSTEMS

List all currently mounted file systems on the command line by using the findmnt utility.

Procedure

To list all mounted file systems, use the findmnt utility:

CHAPTER 16. MOUNTING FILE SYSTEMS

97

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/managing_file_systems/index#proc_listing-persistent-naming-attributes_assembly_overview-of-persistent-naming-attributes

$ findmnt

To limit the listed file systems only to a certain file system type, add the --types option:

$ findmnt --types fs-type

For example:

Example 16.1. Listing only XFS file systems

$ findmnt --types xfs

TARGET SOURCE FSTYPE OPTIONS
/ /dev/mapper/luks-5564ed00-6aac-4406-bfb4-c59bf5de48b5 xfs rw,relatime
├─/boot /dev/sda1 xfs rw,relatime
└─/home /dev/mapper/luks-9d185660-7537-414d-b727-d92ea036051e xfs rw,relatime

Additional resources

findmnt(8) man page on your system

16.3. MOUNTING A FILE SYSTEM WITH MOUNT

Mount a file system by using the mount utility.

Prerequisites

Verify that no file system is already mounted on your chosen mount point:

$ findmnt mount-point

Procedure

1. To attach a certain file system, use the mount utility:

mount device mount-point

Example 16.2. Mounting an XFS file system

For example, to mount a local XFS file system identified by UUID:

mount UUID=ea74bbec-536d-490c-b8d9-5b40bbd7545b /mnt/data

2. If mount cannot recognize the file system type automatically, specify it using the --types
option:

mount --types type device mount-point

Red Hat Enterprise Linux 9.0 Managing file systems

98

Example 16.3. Mounting an NFS file system

For example, to mount a remote NFS file system:

mount --types nfs4 host:/remote-export /mnt/nfs

Additional resources

mount(8) man page on your system

16.4. MOVING A MOUNT POINT

Change the mount point of a mounted file system to a different directory by using the mount utility.

Procedure

1. To change the directory in which a file system is mounted:

mount --move old-directory new-directory

Example 16.4. Moving a home file system

For example, to move the file system mounted in the /mnt/userdirs/ directory to the /home/
mount point:

mount --move /mnt/userdirs /home

2. Verify that the file system has been moved as expected:

$ findmnt
$ ls old-directory
$ ls new-directory

Additional resources

mount(8) man page on your system

16.5. UNMOUNTING A FILE SYSTEM WITH UMOUNT

Unmount a file system by using the umount utility.

Procedure

1. Try unmounting the file system using either of the following commands:

By mount point:

umount mount-point

CHAPTER 16. MOUNTING FILE SYSTEMS

99

By device:

umount device

If the command fails with an error similar to the following, it means that the file system is in use
because of a process is using resources on it:

umount: /run/media/user/FlashDrive: target is busy.

2. If the file system is in use, use the fuser utility to determine which processes are accessing it.
For example:

$ fuser --mount /run/media/user/FlashDrive /run/media/user/FlashDrive: 18351

Afterwards, stop the processes using the file system and try unmounting it again.

16.6. MOUNTING AND UNMOUNTING FILE SYSTEMS IN THE WEB
CONSOLE

To be able to use partitions on RHEL systems, you need to mount a file system on the partition as a
device.

NOTE

You also can unmount a file system and the RHEL system will stop using it. Unmounting
the file system enables you to delete, remove, or re-format devices.

Prerequisites

The cockpit-storaged package is installed on your system.

You have installed the RHEL 9 web console.

You have enabled the cockpit service.

Your user account is allowed to log in to the web console.
For instructions, see Installing and enabling the web console .

If you want to unmount a file system, ensure that the system does not use any file, service, or
application stored in the partition.

Procedure

1. Log in to the RHEL 9 web console.
For details, see Logging in to the web console .

2. Click the Storage tab.

3. In the Storage table, select a volume from which you want to delete the partition.

4. In the GPT partitions section, click the menu button, ⋮ next to the partition whose file system
you want to mount or unmount.

Red Hat Enterprise Linux 9.0 Managing file systems

100

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/9/html/managing_systems_using_the_rhel_9_web_console/getting-started-with-the-rhel-9-web-console_system-management-using-the-rhel-9-web-console#installing-the-web-console_getting-started-with-the-rhel-9-web-console
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/9/html/managing_systems_using_the_rhel_9_web_console/getting-started-with-the-rhel-9-web-console_system-management-using-the-rhel-9-web-console#logging-in-to-the-web-console_getting-started-with-the-rhel-9-web-console

5. Click Mount or Unmount.

16.7. COMMON MOUNT OPTIONS

The following table lists the most common options of the mount utility. You can apply these mount
options using the following syntax:

mount --options option1,option2,option3 device mount-point

Table 16.1. Common mount options

Option Description

async Enables asynchronous input and output operations on the file system.

auto Enables the file system to be mounted automatically using the mount -a
command.

defaults Provides an alias for the async,auto,dev,exec,nouser,rw,suid options.

exec Allows the execution of binary files on the particular file system.

loop Mounts an image as a loop device.

noauto Default behavior disables the automatic mount of the file system using the
mount -a command.

noexec Disallows the execution of binary files on the particular file system.

nouser Disallows an ordinary user (that is, other than root) to mount and unmount the file
system.

remount Remounts the file system in case it is already mounted.

ro Mounts the file system for reading only.

rw Mounts the file system for both reading and writing.

user Allows an ordinary user (that is, other than root) to mount and unmount the file
system.

CHAPTER 16. MOUNTING FILE SYSTEMS

101

CHAPTER 17. SHARING A MOUNT ON MULTIPLE MOUNT
POINTS

As a system administrator, you can duplicate mount points to make the file systems accessible from
multiple directories.

17.1. TYPES OF SHARED MOUNTS

There are multiple types of shared mounts that you can use. The difference between them is what
happens when you mount another file system under one of the shared mount points. The shared mounts
are implemented using the shared subtrees functionality.

The following mount types are available:

private

This type does not receive or forward any propagation events.
When you mount another file system under either the duplicate or the original mount point, it is not
reflected in the other.

shared

This type creates an exact replica of a given mount point.
When a mount point is marked as a shared mount, any mount within the original mount point is
reflected in it, and vice versa.

This is the default mount type of the root file system.

slave

This type creates a limited duplicate of a given mount point.
When a mount point is marked as a slave mount, any mount within the original mount point is
reflected in it, but no mount within a slave mount is reflected in its original.

unbindable

This type prevents the given mount point from being duplicated whatsoever.

Additional resources

The Shared subtrees article on Linux Weekly News

17.2. CREATING A PRIVATE MOUNT POINT DUPLICATE

Duplicate a mount point as a private mount. File systems that you later mount under the duplicate or the
original mount point are not reflected in the other.

Procedure

1. Create a virtual file system (VFS) node from the original mount point:

mount --bind original-dir original-dir

2. Mark the original mount point as private:

Red Hat Enterprise Linux 9.0 Managing file systems

102

https://lwn.net/Articles/159077/

mount --make-private original-dir

Alternatively, to change the mount type for the selected mount point and all mount points
under it, use the --make-rprivate option instead of --make-private.

3. Create the duplicate:

mount --bind original-dir duplicate-dir

Example 17.1. Duplicating /media into /mnt as a private mount point

1. Create a VFS node from the /media directory:

mount --bind /media /media

2. Mark the /media directory as private:

mount --make-private /media

3. Create its duplicate in /mnt:

mount --bind /media /mnt

4. It is now possible to verify that /media and /mnt share content but none of the mounts within
/media appear in /mnt. For example, if the CD-ROM drive contains non-empty media and
the /media/cdrom/ directory exists, use:

mount /dev/cdrom /media/cdrom
ls /media/cdrom
EFI GPL isolinux LiveOS
ls /mnt/cdrom
#

5. It is also possible to verify that file systems mounted in the /mnt directory are not reflected
in /media. For example, if a non-empty USB flash drive that uses the /dev/sdc1 device is
plugged in and the /mnt/flashdisk/ directory is present, use:

mount /dev/sdc1 /mnt/flashdisk
ls /media/flashdisk
ls /mnt/flashdisk
en-US publican.cfg

Additional resources

mount(8) man page on your system

17.3. CREATING A SHARED MOUNT POINT DUPLICATE

Duplicate a mount point as a shared mount. File systems that you later mount under the original
directory or the duplicate are always reflected in the other.

CHAPTER 17. SHARING A MOUNT ON MULTIPLE MOUNT POINTS

103

Procedure

1. Create a virtual file system (VFS) node from the original mount point:

mount --bind original-dir original-dir

2. Mark the original mount point as shared:

mount --make-shared original-dir

Alternatively, to change the mount type for the selected mount point and all mount points
under it, use the --make-rshared option instead of --make-shared.

3. Create the duplicate:

mount --bind original-dir duplicate-dir

Example 17.2. Duplicating /media into /mnt as a shared mount point

To make the /media and /mnt directories share the same content:

1. Create a VFS node from the /media directory:

mount --bind /media /media

2. Mark the /media directory as shared:

mount --make-shared /media

3. Create its duplicate in /mnt:

mount --bind /media /mnt

4. It is now possible to verify that a mount within /media also appears in /mnt. For example, if
the CD-ROM drive contains non-empty media and the /media/cdrom/ directory exists, use:

mount /dev/cdrom /media/cdrom
ls /media/cdrom
EFI GPL isolinux LiveOS
ls /mnt/cdrom
EFI GPL isolinux LiveOS

5. Similarly, it is possible to verify that any file system mounted in the /mnt directory is
reflected in /media. For example, if a non-empty USB flash drive that uses the /dev/sdc1
device is plugged in and the /mnt/flashdisk/ directory is present, use:

mount /dev/sdc1 /mnt/flashdisk
ls /media/flashdisk
en-US publican.cfg
ls /mnt/flashdisk
en-US publican.cfg

Red Hat Enterprise Linux 9.0 Managing file systems

104

Additional resources

mount(8) man page on your system

17.4. CREATING A SLAVE MOUNT POINT DUPLICATE

Duplicate a mount point as a slave mount type. File systems that you later mount under the original
mount point are reflected in the duplicate but not the other way around.

Procedure

1. Create a virtual file system (VFS) node from the original mount point:

mount --bind original-dir original-dir

2. Mark the original mount point as shared:

mount --make-shared original-dir

Alternatively, to change the mount type for the selected mount point and all mount points
under it, use the --make-rshared option instead of --make-shared.

3. Create the duplicate and mark it as the slave type:

mount --bind original-dir duplicate-dir
mount --make-slave duplicate-dir

Example 17.3. Duplicating /media into /mnt as a slave mount point

This example shows how to get the content of the /media directory to appear in /mnt as well, but
without any mounts in the /mnt directory to be reflected in /media.

1. Create a VFS node from the /media directory:

mount --bind /media /media

2. Mark the /media directory as shared:

mount --make-shared /media

3. Create its duplicate in /mnt and mark it as slave:

mount --bind /media /mnt
mount --make-slave /mnt

4. Verify that a mount within /media also appears in /mnt. For example, if the CD-ROM drive
contains non-empty media and the /media/cdrom/ directory exists, use:

mount /dev/cdrom /media/cdrom
ls /media/cdrom
EFI GPL isolinux LiveOS

CHAPTER 17. SHARING A MOUNT ON MULTIPLE MOUNT POINTS

105

ls /mnt/cdrom
EFI GPL isolinux LiveOS

5. Also verify that file systems mounted in the /mnt directory are not reflected in /media. For
example, if a non-empty USB flash drive that uses the /dev/sdc1 device is plugged in and
the /mnt/flashdisk/ directory is present, use:

mount /dev/sdc1 /mnt/flashdisk
ls /media/flashdisk
ls /mnt/flashdisk
en-US publican.cfg

Additional resources

mount(8) man page on your system

17.5. PREVENTING A MOUNT POINT FROM BEING DUPLICATED

Mark a mount point as unbindable so that it is not possible to duplicate it in another mount point.

Procedure

To change the type of a mount point to an unbindable mount, use:

mount --bind mount-point mount-point
mount --make-unbindable mount-point

Alternatively, to change the mount type for the selected mount point and all mount points
under it, use the --make-runbindable option instead of --make-unbindable.

Any subsequent attempt to make a duplicate of this mount fails with the following error:

mount --bind mount-point duplicate-dir

mount: wrong fs type, bad option, bad superblock on mount-point,
missing codepage or helper program, or other error
In some cases useful info is found in syslog - try
dmesg | tail or so

Example 17.4. Preventing /media from being duplicated

To prevent the /media directory from being shared, use:

mount --bind /media /media
mount --make-unbindable /media

Additional resources

mount(8) man page on your system

Red Hat Enterprise Linux 9.0 Managing file systems

106

CHAPTER 18. PERSISTENTLY MOUNTING FILE SYSTEMS
As a system administrator, you can persistently mount file systems to configure non-removable storage.

18.1. THE /ETC/FSTAB FILE

Use the /etc/fstab configuration file to control persistent mount points of file systems. Each line in the
/etc/fstab file defines a mount point of a file system.

It includes six fields separated by white space:

1. The block device identified by a persistent attribute or a path in the /dev directory.

2. The directory where the device will be mounted.

3. The file system on the device.

4. Mount options for the file system, which includes the defaults option to mount the partition at
boot time with default options. The mount option field also recognizes the systemd mount unit
options in the x-systemd.option format.

5. Backup option for the dump utility.

6. Check order for the fsck utility.

NOTE

The systemd-fstab-generator dynamically converts the entries from the /etc/fstab file
to the systemd-mount units. The systemd auto mounts LVM volumes from /etc/fstab
during manual activation unless the systemd-mount unit is masked.

NOTE

The dump utility used for backup of file systems has been removed in RHEL 9, and is
available in the EPEL 9 repository.

Example 18.1. The /boot file system in /etc/fstab

Block device Mount
point

File system Options Backup Check

UUID=ea74bbec-536d-
490c-b8d9-
5b40bbd7545b

/boot xfs defaults 0 0

The systemd service automatically generates mount units from entries in /etc/fstab.

Additional resources

fstab(5) and systemd.mount(5) man pages on your system

CHAPTER 18. PERSISTENTLY MOUNTING FILE SYSTEMS

107

18.2. ADDING A FILE SYSTEM TO /ETC/FSTAB

Configure persistent mount point for a file system in the /etc/fstab configuration file.

Procedure

1. Find out the UUID attribute of the file system:

$ lsblk --fs storage-device

For example:

Example 18.2. Viewing the UUID of a partition

$ lsblk --fs /dev/sda1

NAME FSTYPE LABEL UUID MOUNTPOINT
sda1 xfs Boot ea74bbec-536d-490c-b8d9-5b40bbd7545b /boot

2. If the mount point directory does not exist, create it:

mkdir --parents mount-point

3. As root, edit the /etc/fstab file and add a line for the file system, identified by the UUID.
For example:

Example 18.3. The /boot mount point in /etc/fstab

UUID=ea74bbec-536d-490c-b8d9-5b40bbd7545b /boot xfs defaults 0 0

4. Regenerate mount units so that your system registers the new configuration:

systemctl daemon-reload

5. Try mounting the file system to verify that the configuration works:

mount mount-point

Additional resources

Overview of persistent naming attributes

Red Hat Enterprise Linux 9.0 Managing file systems

108

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/managing_file_systems/index#con_device-names-managed-by-the-udev-mechanism-in-dev-disk-_assembly_overview-of-persistent-naming-attributes

CHAPTER 19. MOUNTING FILE SYSTEMS ON DEMAND
As a system administrator, you can configure file systems, such as NFS, to mount automatically on
demand.

19.1. THE AUTOFS SERVICE

The autofs service can mount and unmount file systems automatically (on-demand), therefore saving
system resources. It can be used to mount file systems such as NFS, AFS, SMBFS, CIFS, and local file
systems.

One drawback of permanent mounting using the /etc/fstab configuration is that, regardless of how
infrequently a user accesses the mounted file system, the system must dedicate resources to keep the
mounted file system in place. This might affect system performance when, for example, the system is
maintaining NFS mounts to many systems at one time.

An alternative to /etc/fstab is to use the kernel-based autofs service. It consists of the following
components:

A kernel module that implements a file system, and

A user-space service that performs all of the other functions.

Additional resources

autofs(8) man page on your system

19.2. THE AUTOFS CONFIGURATION FILES

This section describes the usage and syntax of configuration files used by the autofs service.

The master map file

The autofs service uses /etc/auto.master (master map) as its default primary configuration file. This can
be changed to use another supported network source and name using the autofs configuration in the
/etc/autofs.conf configuration file in conjunction with the Name Service Switch (NSS) mechanism.

All on-demand mount points must be configured in the master map. Mount point, host name, exported
directory, and options can all be specified in a set of files (or other supported network sources) rather
than configuring them manually for each host.

The master map file lists mount points controlled by autofs, and their corresponding configuration files
or network sources known as automount maps. The format of the master map is as follows:

mount-point map-name options

The variables used in this format are:

mount-point

The autofs mount point; for example, /mnt/data.

map-file

The map source file, which contains a list of mount points and the file system location from which
those mount points should be mounted.

CHAPTER 19. MOUNTING FILE SYSTEMS ON DEMAND

109

options

If supplied, these apply to all entries in the given map, if they do not themselves have options
specified.

Example 19.1. The /etc/auto.master file

The following is a sample line from /etc/auto.master file:

/mnt/data /etc/auto.data

Map files

Map files configure the properties of individual on-demand mount points.

The automounter creates the directories if they do not exist. If the directories exist before the
automounter was started, the automounter will not remove them when it exits. If a timeout is specified,
the directory is automatically unmounted if the directory is not accessed for the timeout period.

The general format of maps is similar to the master map. However, the options field appears between
the mount point and the location instead of at the end of the entry as in the master map:

mount-point options location

The variables used in this format are:

mount-point

This refers to the autofs mount point. This can be a single directory name for an indirect mount or
the full path of the mount point for direct mounts. Each direct and indirect map entry key (mount-
point) can be followed by a space separated list of offset directories (subdirectory names each
beginning with /) making them what is known as a multi-mount entry.

options

When supplied, these options are appended to the master map entry options, if any, or used instead
of the master map options if the configuration entry append_options is set to no.

location

This refers to the file system location such as a local file system path (preceded with the Sun map
format escape character : for map names beginning with /), an NFS file system or other valid file
system location.

Example 19.2. A map file

The following is a sample from a map file; for example, /etc/auto.misc:

payroll -fstype=nfs4 personnel:/exports/payroll
sales -fstype=xfs :/dev/hda4

The first column in the map file indicates the autofs mount point: sales and payroll from the server
called personnel. The second column indicates the options for the autofs mount. The third column
indicates the source of the mount.

Following the given configuration, the autofs mount points will be /home/payroll and /home/sales.

Red Hat Enterprise Linux 9.0 Managing file systems

110

Following the given configuration, the autofs mount points will be /home/payroll and /home/sales.
The -fstype= option is often omitted and is not needed if the file system is NFS, including mounts for
NFSv4 if the system default is NFSv4 for NFS mounts.

Using the given configuration, if a process requires access to an autofs unmounted directory such as
/home/payroll/2006/July.sxc, the autofs service automatically mounts the directory.

The amd map format

The autofs service recognizes map configuration in the amd format as well. This is useful if you want to
reuse existing automounter configuration written for the am-utils service, which has been removed from
Red Hat Enterprise Linux.

However, Red Hat recommends using the simpler autofs format described in the previous sections.

Additional resources

autofs(5), autofs.conf(5), and auto.master(5) man pages on your system

/usr/share/doc/autofs/README.amd-maps file

19.3. CONFIGURING AUTOFS MOUNT POINTS

Configure on-demand mount points by using the autofs service.

Prerequisites

Install the autofs package:

dnf install autofs

Start and enable the autofs service:

systemctl enable --now autofs

Procedure

1. Create a map file for the on-demand mount point, located at /etc/auto.identifier. Replace
identifier with a name that identifies the mount point.

2. In the map file, enter the mount point, options, and location fields as described in The autofs
configuration files section.

3. Register the map file in the master map file, as described in The autofs configuration files
section.

4. Allow the service to re-read the configuration, so it can manage the newly configured autofs
mount:

systemctl reload autofs.service

5. Try accessing content in the on-demand directory:

CHAPTER 19. MOUNTING FILE SYSTEMS ON DEMAND

111

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_file_systems/mounting-file-systems-on-demand_managing-file-systems#the-autofs-configuration-files_mounting-file-systems-on-demand
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_file_systems/mounting-file-systems-on-demand_managing-file-systems#the-autofs-configuration-files_mounting-file-systems-on-demand

ls automounted-directory

19.4. AUTOMOUNTING NFS SERVER USER HOME DIRECTORIES WITH
AUTOFS SERVICE

Configure the autofs service to mount user home directories automatically.

Prerequisites

The autofs package is installed.

The autofs service is enabled and running.

Procedure

1. Specify the mount point and location of the map file by editing the /etc/auto.master file on a
server on which you need to mount user home directories. To do so, add the following line into
the /etc/auto.master file:

/home /etc/auto.home

2. Create a map file with the name of /etc/auto.home on a server on which you need to mount
user home directories, and edit the file with the following parameters:

* -fstype=nfs,rw,sync host.example.com:/home/&

You can skip fstype parameter, as it is nfs by default. For more information, see autofs(5) man
page on your system.

3. Reload the autofs service:

systemctl reload autofs

19.5. OVERRIDING OR AUGMENTING AUTOFS SITE CONFIGURATION
FILES

It is sometimes useful to override site defaults for a specific mount point on a client system.

Example 19.3. Initial conditions

For example, consider the following conditions:

Automounter maps are stored in NIS and the /etc/nsswitch.conf file has the following
directive:

automount: files nis

The auto.master file contains:

+auto.master

Red Hat Enterprise Linux 9.0 Managing file systems

112

The NIS auto.master map file contains:

/home auto.home

The NIS auto.home map contains:

beth fileserver.example.com:/export/home/beth
joe fileserver.example.com:/export/home/joe
* fileserver.example.com:/export/home/&

The autofs configuration option BROWSE_MODE is set to yes:

BROWSE_MODE="yes"

The file map /etc/auto.home does not exist.

Procedure

This section describes the examples of mounting home directories from a different server and
augmenting auto.home with only selected entries.

Example 19.4. Mounting home directories from a different server

Given the preceding conditions, let’s assume that the client system needs to override the NIS map
auto.home and mount home directories from a different server.

In this case, the client needs to use the following /etc/auto.master map:

/home ​/etc/auto.home
+auto.master

The /etc/auto.home map contains the entry:

* host.example.com:/export/home/&

Because the automounter only processes the first occurrence of a mount point, the /home directory
contains the content of /etc/auto.home instead of the NIS auto.home map.

Example 19.5. Augmenting auto.home with only selected entries

Alternatively, to augment the site-wide auto.home map with just a few entries:

1. Create an /etc/auto.home file map, and in it put the new entries. At the end, include the NIS
auto.home map. Then the /etc/auto.home file map looks similar to:

mydir someserver:/export/mydir
+auto.home

2. With these NIS auto.home map conditions, listing the content of the /home directory
outputs:

CHAPTER 19. MOUNTING FILE SYSTEMS ON DEMAND

113

$ ls /home

beth joe mydir

This last example works as expected because autofs does not include the contents of a file map of
the same name as the one it is reading. As such, autofs moves on to the next map source in the
nsswitch configuration.

19.6. USING LDAP TO STORE AUTOMOUNTER MAPS

Configure autofs to store automounter maps in LDAP configuration rather than in autofs map files.

Prerequisites

LDAP client libraries must be installed on all systems configured to retrieve automounter maps
from LDAP. On Red Hat Enterprise Linux, the openldap package should be installed
automatically as a dependency of the autofs package.

Procedure

1. To configure LDAP access, modify the /etc/openldap/ldap.conf file. Ensure that the BASE,
URI, and schema options are set appropriately for your site.

2. The most recently established schema for storing automount maps in LDAP is described by the
rfc2307bis draft. To use this schema, set it in the /etc/autofs.conf configuration file by
removing the comment characters from the schema definition. For example:

Example 19.6. Setting autofs configuration

DEFAULT_MAP_OBJECT_CLASS="automountMap"
DEFAULT_ENTRY_OBJECT_CLASS="automount"
DEFAULT_MAP_ATTRIBUTE="automountMapName"
DEFAULT_ENTRY_ATTRIBUTE="automountKey"
DEFAULT_VALUE_ATTRIBUTE="automountInformation"

3. Ensure that all other schema entries are commented in the configuration. The automountKey
attribute of the rfc2307bis schema replaces the cn attribute of the rfc2307 schema. Following
is an example of an LDAP Data Interchange Format (LDIF) configuration:

Example 19.7. LDIF Configuration

auto.master, example.com
dn: automountMapName=auto.master,dc=example,dc=com
objectClass: top
objectClass: automountMap
automountMapName: auto.master

/home, auto.master, example.com
dn: automountMapName=auto.master,dc=example,dc=com
objectClass: automount
automountKey: /home
automountInformation: auto.home

Red Hat Enterprise Linux 9.0 Managing file systems

114

auto.home, example.com
dn: automountMapName=auto.home,dc=example,dc=com
objectClass: automountMap
automountMapName: auto.home

foo, auto.home, example.com
dn: automountKey=foo,automountMapName=auto.home,dc=example,dc=com
objectClass: automount
automountKey: foo
automountInformation: filer.example.com:/export/foo

/, auto.home, example.com
dn: automountKey=/,automountMapName=auto.home,dc=example,dc=com
objectClass: automount
automountKey: /
automountInformation: filer.example.com:/export/&

Additional resources

The rfc2307bis draft

19.7. USING SYSTEMD.AUTOMOUNT TO MOUNT A FILE SYSTEM ON
DEMAND WITH /ETC/FSTAB

Mount a file system on demand using the automount systemd units when mount point is defined in
/etc/fstab. You have to add an automount unit for each mount and enable it.

Procedure

1. Add desired fstab entry as documented in Persistently mounting file systems . For example:

/dev/disk/by-id/da875760-edb9-4b82-99dc-5f4b1ff2e5f4 /mount/point xfs defaults 0 0

2. Add x-systemd.automount to the options field of entry created in the previous step.

3. Load newly created units so that your system registers the new configuration:

systemctl daemon-reload

4. Start the automount unit:

systemctl start mount-point.automount

Verification

1. Check that mount-point.automount is running:

systemctl status mount-point.automount

2. Check that automounted directory has desired content:

CHAPTER 19. MOUNTING FILE SYSTEMS ON DEMAND

115

https://tools.ietf.org/html/draft-howard-rfc2307bis
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/managing_file_systems/index#assembly_persistently-mounting-file-systems_managing-file-systems

ls /mount/point

Additional resources

systemd.automount(5) and systemd.mount(5) man pages on your system

Managing systemd

19.8. USING SYSTEMD.AUTOMOUNT TO MOUNT A FILE SYSTEM ON-
DEMAND WITH A MOUNT UNIT

Mount a file system on-demand using the automount systemd units when mount point is defined by a
mount unit. You have to add an automount unit for each mount and enable it.

Procedure

1. Create a mount unit. For example:

mount-point.mount
[Mount]
What=/dev/disk/by-uuid/f5755511-a714-44c1-a123-cfde0e4ac688
Where=/mount/point
Type=xfs

2. Create a unit file with the same name as the mount unit, but with extension .automount.

3. Open the file and create an [Automount] section. Set the Where= option to the mount path:

[Automount]
Where=/mount/point
[Install]
WantedBy=multi-user.target

4. Load newly created units so that your system registers the new configuration:

systemctl daemon-reload

5. Enable and start the automount unit instead:

systemctl enable --now mount-point.automount

Verification

1. Check that mount-point.automount is running:

systemctl status mount-point.automount

2. Check that automounted directory has desired content:

ls /mount/point

Additional resources

Red Hat Enterprise Linux 9.0 Managing file systems

116

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/configuring_basic_system_settings/managing-systemd_configuring-basic-system-settings#doc-wrapper

Additional resources

systemd.automount(5) and systemd.mount(5) man pages on your system

Managing systemd

CHAPTER 19. MOUNTING FILE SYSTEMS ON DEMAND

117

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/configuring_basic_system_settings/managing-systemd_configuring-basic-system-settings

CHAPTER 20. USING SSSD COMPONENT FROM IDM TO
CACHE THE AUTOFS MAPS

The System Security Services Daemon (SSSD) is a system service to access remote service directories
and authentication mechanisms. The data caching is useful in case of the slow network connection. To
configure the SSSD service to cache the autofs map, follow the procedures below in this section.

20.1. CONFIGURING AUTOFS MANUALLY TO USE IDM SERVER AS AN
LDAP SERVER

Configure autofs to use IdM server as an LDAP server.

Procedure

1. Edit the /etc/autofs.conf file to specify the schema attributes that autofs searches for:

#
Other common LDAP naming
#
map_object_class = "automountMap"
entry_object_class = "automount"
map_attribute = "automountMapName"
entry_attribute = "automountKey"
value_attribute = "automountInformation"

NOTE

User can write the attributes in both lower and upper cases in the
/etc/autofs.conf file.

2. Optional: Specify the LDAP configuration. There are two ways to do this. The simplest is to let
the automount service discover the LDAP server and locations on its own:

ldap_uri = "ldap:///dc=example,dc=com"

This option requires DNS to contain SRV records for the discoverable servers.

Alternatively, explicitly set which LDAP server to use and the base DN for LDAP searches:

ldap_uri = "ldap://ipa.example.com"
search_base = "cn=location,cn=automount,dc=example,dc=com"

3. Edit the /etc/autofs_ldap_auth.conf file so that autofs allows client authentication with the IdM
LDAP server.

Change authrequired to yes.

Set the principal to the Kerberos host principal for the IdM LDAP server,
host/FQDN@REALM. The principal name is used to connect to the IdM directory as part of
GSS client authentication.

<autofs_ldap_sasl_conf

Red Hat Enterprise Linux 9.0 Managing file systems

118

 usetls="no"
 tlsrequired="no"
 authrequired="yes"
 authtype="GSSAPI"
 clientprinc="host/server.example.com@EXAMPLE.COM"
 />

For more information about host principal, see Using canonicalized DNS host names in IdM .

If necessary, run klist -k to get the exact host principal information.

20.2. CONFIGURING SSSD TO CACHE AUTOFS MAPS

The SSSD service can be used to cache autofs maps stored on an IdM server without having to
configure autofs to use the IdM server at all.

Prerequisites

The sssd package is installed.

Procedure

1. Open the SSSD configuration file:

vim /etc/sssd/sssd.conf

2. Add the autofs service to the list of services handled by SSSD.

[sssd]
domains = ldap
services = nss,pam,autofs

3. Create a new [autofs] section. You can leave this blank, because the default settings for an
autofs service work with most infrastructures.

[nss]

[pam]

[sudo]

[autofs]

[ssh]

[pac]

For more information, see the sssd.conf man page on your system.

4. Optional: Set a search base for the autofs entries. By default, this is the LDAP search base, but
a subtree can be specified in the ldap_autofs_search_base parameter.

[domain/EXAMPLE]

CHAPTER 20. USING SSSD COMPONENT FROM IDM TO CACHE THE AUTOFS MAPS

119

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/working_with_dns_in_identity_management/using-canonicalized-dns-host-names-in-idm_working-with-dns-in-identity-management

ldap_search_base = "dc=example,dc=com"
ldap_autofs_search_base = "ou=automount,dc=example,dc=com"

5. Restart SSSD service:

systemctl restart sssd.service

6. Check the /etc/nsswitch.conf file, so that SSSD is listed as a source for automount
configuration:

automount: sss files

7. Restart autofs service:

systemctl restart autofs.service

8. Test the configuration by listing a user’s /home directory, assuming there is a master map entry
for /home:

ls /home/userName

If this does not mount the remote file system, check the /var/log/messages file for errors. If
necessary, increase the debug level in the /etc/sysconfig/autofs file by setting the logging
parameter to debug.

Red Hat Enterprise Linux 9.0 Managing file systems

120

CHAPTER 21. SETTING READ-ONLY PERMISSIONS FOR THE
ROOT FILE SYSTEM

Sometimes, you need to mount the root file system (/) with read-only permissions. Example use cases
include enhancing security or ensuring data integrity after an unexpected system power-off.

21.1. FILES AND DIRECTORIES THAT ALWAYS RETAIN WRITE
PERMISSIONS

For the system to function properly, some files and directories need to retain write permissions. When
the root file system is mounted in read-only mode, these files are mounted in RAM using the tmpfs
temporary file system.

The default set of such files and directories is read from the /etc/rwtab file. Note that the readonly-root
package is required to have this file present in your system.

dirs /var/cache/man
dirs /var/gdm
<content truncated>

empty /tmp
empty /var/cache/foomatic
<content truncated>

files /etc/adjtime
files /etc/ntp.conf
<content truncated>

Entries in the /etc/rwtab file follow this format:

copy-method path

In this syntax:

Replace copy-method with one of the keywords specifying how the file or directory is copied to
tmpfs.

Replace path with the path to the file or directory.

The /etc/rwtab file recognizes the following ways in which a file or directory can be copied to tmpfs:

empty

An empty path is copied to tmpfs. For example:

empty /tmp

dirs

A directory tree is copied to tmpfs, empty. For example:

dirs /var/run

CHAPTER 21. SETTING READ-ONLY PERMISSIONS FOR THE ROOT FILE SYSTEM

121

files

A file or a directory tree is copied to tmpfs intact. For example:

files /etc/resolv.conf

The same format applies when adding custom paths to /etc/rwtab.d/.

21.2. CONFIGURING THE ROOT FILE SYSTEM TO MOUNT WITH READ-
ONLY PERMISSIONS ON BOOT

With this procedure, the root file system is mounted read-only on all following boots.

Procedure

1. In the /etc/sysconfig/readonly-root file, set the READONLY option to yes to mount the file
systems as read-only:

READONLY=yes

2. Add the ro option in the root entry (/) in the /etc/fstab file:

/dev/mapper/luks-c376919e... / xfs x-systemd.device-timeout=0,ro 1 1

3. Enable the ro kernel option:

grubby --update-kernel=ALL --args="ro"

4. Ensure that the rw kernel option is disabled:

grubby --update-kernel=ALL --remove-args="rw"

5. If you need to add files and directories to be mounted with write permissions in the tmpfs file
system, create a text file in the /etc/rwtab.d/ directory and put the configuration there.
For example, to mount the /etc/example/file file with write permissions, add this line to the
/etc/rwtab.d/example file:

files /etc/example/file

IMPORTANT

Changes made to files and directories in tmpfs do not persist across boots.

6. Reboot the system to apply the changes.

Troubleshooting

If you mount the root file system with read-only permissions by mistake, you can remount it with
read-and-write permissions again using the following command:

Red Hat Enterprise Linux 9.0 Managing file systems

122

mount -o remount,rw /

CHAPTER 21. SETTING READ-ONLY PERMISSIONS FOR THE ROOT FILE SYSTEM

123

CHAPTER 22. LIMITING STORAGE SPACE USAGE ON XFS
WITH QUOTAS

You can restrict the amount of disk space available to users or groups by implementing disk quotas. You
can also define a warning level at which system administrators are informed before a user consumes too
much disk space or a partition becomes full.

The XFS quota subsystem manages limits on disk space (blocks) and file (inode) usage. XFS quotas
control or report on usage of these items on a user, group, or directory or project level. Group and
project quotas are only mutually exclusive on older non-default XFS disk formats.

When managing on a per-directory or per-project basis, XFS manages the disk usage of directory
hierarchies associated with a specific project.

22.1. DISK QUOTAS

In most computing environments, disk space is not infinite. The quota subsystem provides a mechanism
to control usage of disk space.

You can configure disk quotas for individual users as well as user groups on the local file systems. This
makes it possible to manage the space allocated for user-specific files (such as email) separately from
the space allocated to the projects that a user works on. The quota subsystem warns users when they
exceed their allotted limit, but allows some extra space for current work (hard limit/soft limit).

If quotas are implemented, you need to check if the quotas are exceeded and make sure the quotas are
accurate. If users repeatedly exceed their quotas or consistently reach their soft limits, a system
administrator can either help the user determine how to use less disk space or increase the user’s disk
quota.

You can set quotas to control:

The number of consumed disk blocks.

The number of inodes, which are data structures that contain information about files in UNIX file
systems. Because inodes store file-related information, this allows control over the number of
files that can be created.

22.2. THE XFS_QUOTA TOOL

You can use the xfs_quota tool to manage quotas on XFS file systems. In addition, you can use XFS file
systems with limit enforcement turned off as an effective disk usage accounting system.

The XFS quota system differs from other file systems in a number of ways. Most importantly, XFS
considers quota information as file system metadata and uses journaling to provide a higher level
guarantee of consistency.

Additional resources

xfs_quota(8) man page on your system

22.3. FILE SYSTEM QUOTA MANAGEMENT IN XFS

The XFS quota subsystem manages limits on disk space (blocks) and file (inode) usage. XFS quotas

Red Hat Enterprise Linux 9.0 Managing file systems

124

The XFS quota subsystem manages limits on disk space (blocks) and file (inode) usage. XFS quotas
control or report on usage of these items on a user, group, or directory or project level. Group and
project quotas are only mutually exclusive on older non-default XFS disk formats.

When managing on a per-directory or per-project basis, XFS manages the disk usage of directory
hierarchies associated with a specific project.

22.4. ENABLING DISK QUOTAS FOR XFS

Enable disk quotas for users, groups, and projects on an XFS file system. Once quotas are enabled, the
xfs_quota tool can be used to set limits and report on disk usage.

Procedure

1. Enable quotas for users:

mount -o uquota /dev/xvdb1 /xfs

Replace uquota with uqnoenforce to allow usage reporting without enforcing any limits.

2. Enable quotas for groups:

mount -o gquota /dev/xvdb1 /xfs

Replace gquota with gqnoenforce to allow usage reporting without enforcing any limits.

3. Enable quotas for projects:

mount -o pquota /dev/xvdb1 /xfs

Replace pquota with pqnoenforce to allow usage reporting without enforcing any limits.

4. Alternatively, include the quota mount options in the /etc/fstab file. The following example
shows entries in the /etc/fstab file to enable quotas for users, groups, and projects, respectively,
on an XFS file system. These examples also mount the file system with read/write permissions:

vim /etc/fstab
/dev/xvdb1 /xfs xfs rw,quota 0 0
/dev/xvdb1 /xfs xfs rw,gquota 0 0
/dev/xvdb1 /xfs xfs rw,prjquota 0 0

Additional resources

xfs(5) and xfs_quota(8) man pages on your system

22.5. REPORTING XFS USAGE

Use the xfs_quota tool to set limits and report on disk usage. By default, xfs_quota is run interactively,
and in basic mode. Basic mode subcommands simply report usage, and are available to all users.

Prerequisites

Quotas have been enabled for the XFS file system. See Enabling disk quotas for XFS .

CHAPTER 22. LIMITING STORAGE SPACE USAGE ON XFS WITH QUOTAS

125

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/managing_file_systems/index#enabling-disk-quotas-for-xfs_assembly_limiting-storage-space-usage-on-xfs-with-quotas

Procedure

1. Start the xfs_quota shell:

xfs_quota

2. Show usage and limits for the given user:

xfs_quota> quota username

3. Show free and used counts for blocks and inodes:

xfs_quota> df

4. Run the help command to display the basic commands available with xfs_quota.

xfs_quota> help

5. Specify q to exit xfs_quota.

xfs_quota> q

Additional resources

xfs_quota(8) man page on your system

22.6. MODIFYING XFS QUOTA LIMITS

Start the xfs_quota tool with the -x option to enable expert mode and run the administrator
commands, which allow modifications to the quota system. The subcommands of this mode allow actual
configuration of limits, and are available only to users with elevated privileges.

Prerequisites

Quotas have been enabled for the XFS file system. See Enabling disk quotas for XFS .

Procedure

1. Start the xfs_quota shell with the -x option to enable expert mode:

xfs_quota -x /path

2. Report quota information for a specific file system:

xfs_quota> report /path

For example, to display a sample quota report for /home (on /dev/blockdevice), use the
command report -h /home. This displays output similar to the following:

User quota on /home (/dev/blockdevice)
Blocks

Red Hat Enterprise Linux 9.0 Managing file systems

126

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/managing_file_systems/index#enabling-disk-quotas-for-xfs_assembly_limiting-storage-space-usage-on-xfs-with-quotas

User ID Used Soft Hard Warn/Grace
---------- ---------------------------------
root 0 0 0 00 [------]
testuser 103.4G 0 0 00 [------]

3. Modify quota limits:

xfs_quota> limit isoft=500m ihard=700m user

For example, to set a soft and hard inode count limit of 500 and 700 respectively for user john,
whose home directory is /home/john, use the following command:

xfs_quota -x -c 'limit isoft=500 ihard=700 john' /home/

In this case, pass mount_point which is the mounted xfs file system.

4. Display the expert commands available with xfs_quota -x:

xfs_quota> help

Verification

Verify that the quota limits have been modified:

xfs_quota> report -i -u
User quota on /home (/dev/loop0)
 Inodes
User ID Used Soft Hard Warn/ Grace
---------- --
root 3 0 0 00 [------]
testuser 2 500 700 00 [------]

Additional resources

xfs_quota(8) man page on your system

22.7. SETTING PROJECT LIMITS FOR XFS

Configure limits for project-controlled directories.

Procedure

1. Add the project-controlled directories to /etc/projects. For example, the following adds the
/var/log path with a unique ID of 11 to /etc/projects. Your project ID can be any numerical value
mapped to your project.

echo 11:/var/log >> /etc/projects

2. Add project names to /etc/projid to map project IDs to project names. For example, the
following associates a project called logfiles with the project ID of 11 as defined in the previous
step.

CHAPTER 22. LIMITING STORAGE SPACE USAGE ON XFS WITH QUOTAS

127

echo logfiles:11 >> /etc/projid

3. Initialize the project directory. For example, the following initializes the project directory /var:

xfs_quota -x -c 'project -s logfiles' /var

4. Configure quotas for projects with initialized directories:

xfs_quota -x -c 'limit -p bhard=1g logfiles' /var

Additional resources

xfs_quota(8), projid(5), and projects(5) man pages on your system

Red Hat Enterprise Linux 9.0 Managing file systems

128

CHAPTER 23. LIMITING STORAGE SPACE USAGE ON EXT4
WITH QUOTAS

You have to enable disk quotas on your system before you can assign them. You can assign disk quotas
per user, per group or per project. However, if there is a soft limit set, you can exceed these quotas for a
configurable period of time, known as the grace period.

23.1. INSTALLING THE QUOTA TOOL

You must install the quota RPM package to implement disk quotas.

Procedure

Install the quota package:

dnf install quota

23.2. ENABLING QUOTA FEATURE ON FILE SYSTEM CREATION

Enable quotas on file system creation.

Procedure

1. Enable quotas on file system creation:

mkfs.ext4 -O quota /dev/sda

NOTE

Only user and group quotas are enabled and initialized by default.

2. Change the defaults on file system creation:

mkfs.ext4 -O quota -E quotatype=usrquota:grpquota:prjquota /dev/sda

3. Mount the file system:

mount /dev/sda

Additional resources

ext4(5) man page on your system.

23.3. ENABLING QUOTA FEATURE ON EXISTING FILE SYSTEMS

Enable the quota feature on existing file system by using the tune2fs command.

Procedure

1. Unmount the file system:

CHAPTER 23. LIMITING STORAGE SPACE USAGE ON EXT4 WITH QUOTAS

129

umount /dev/sda

2. Enable quotas on existing file system:

tune2fs -O quota /dev/sda

NOTE

Only user and group quotas are initialized by default.

3. Change the defaults:

tune2fs -Q usrquota,grpquota,prjquota /dev/sda

4. Mount the file system:

mount /dev/sda

Additional resources

ext4(5) man page on your system.

23.4. ENABLING QUOTA ENFORCEMENT

The quota accounting is enabled by default after mounting the file system without any additional
options, but quota enforcement is not.

Prerequisites

Quota feature is enabled and the default quotas are initialized.

Procedure

Enable quota enforcement by quotaon for the user quota:

mount /dev/sda /mnt

quotaon /mnt

NOTE

The quota enforcement can be enabled at mount time using usrquota,
grpquota, or prjquota mount options.

mount -o usrquota,grpquota,prjquota /dev/sda /mnt

Enable user, group, and project quotas for all file systems:

quotaon -vaugP

Red Hat Enterprise Linux 9.0 Managing file systems

130

If neither of the -u, -g, or -P options are specified, only the user quotas are enabled.

If only -g option is specified, only group quotas are enabled.

If only -P option is specified, only project quotas are enabled.

Enable quotas for a specific file system, such as /home:

quotaon -vugP /home

Additional resources

quotaon(8) man page on your system

23.5. ASSIGNING QUOTAS PER USER

The disk quotas are assigned to users with the edquota command.

NOTE

The text editor defined by the EDITOR environment variable is used by edquota. To
change the editor, set the EDITOR environment variable in your ~/.bash_profile file to
the full path of the editor of your choice.

Prerequisites

User must exist prior to setting the user quota.

Procedure

1. Assign the quota for a user:

edquota username

Replace username with the user to which you want to assign the quotas.

For example, if you enable a quota for the /dev/sda partition and execute the command
edquota testuser, the following is displayed in the default editor configured on the system:

Disk quotas for user testuser (uid 501):
Filesystem blocks soft hard inodes soft hard
/dev/sda 44043 0 0 37418 0 0

2. Change the desired limits.
If any of the values are set to 0, limit is not set. Change them in the text editor.

For example, the following shows the soft and hard block limits for the testuser have been set to
50000 and 55000 respectively.

Disk quotas for user testuser (uid 501):
Filesystem blocks soft hard inodes soft hard
/dev/sda 44043 50000 55000 37418 0 0

CHAPTER 23. LIMITING STORAGE SPACE USAGE ON EXT4 WITH QUOTAS

131

The first column is the name of the file system that has a quota enabled for it.

The second column shows how many blocks the user is currently using.

The next two columns are used to set soft and hard block limits for the user on the file
system.

The inodes column shows how many inodes the user is currently using.

The last two columns are used to set the soft and hard inode limits for the user on the file
system.

The hard block limit is the absolute maximum amount of disk space that a user or group
can use. Once this limit is reached, no further disk space can be used.

The soft block limit defines the maximum amount of disk space that can be used.
However, unlike the hard limit, the soft limit can be exceeded for a certain amount of
time. That time is known as the grace period. The grace period can be expressed in
seconds, minutes, hours, days, weeks, or months.

Verification

Verify that the quota for the user has been set:

quota -v testuser
Disk quotas for user testuser:
Filesystem blocks quota limit grace files quota limit grace
/dev/sda 1000* 1000 1000 0 0 0

23.6. ASSIGNING QUOTAS PER GROUP

You can assign quotas on a per-group basis.

Prerequisites

Group must exist prior to setting the group quota.

Procedure

1. Set a group quota:

edquota -g groupname

For example, to set a group quota for the devel group:

edquota -g devel

This command displays the existing quota for the group in the text editor:

Disk quotas for group devel (gid 505):
Filesystem blocks soft hard inodes soft hard
/dev/sda 440400 0 0 37418 0 0

2. Modify the limits and save the file.

Red Hat Enterprise Linux 9.0 Managing file systems

132

Verification

Verify that the group quota is set:

quota -vg groupname

23.7. ASSIGNING QUOTAS PER PROJECT

You can assign quotas per project.

Prerequisites

Project quota is enabled on your file system.

Procedure

1. Add the project-controlled directories to /etc/projects. For example, the following adds the
/var/log path with a unique ID of 11 to /etc/projects. Your project ID can be any numerical value
mapped to your project.

echo 11:/var/log >> /etc/projects

2. Add project names to /etc/projid to map project IDs to project names. For example, the
following associates a project called Logs with the project ID of 11 as defined in the previous
step.

echo Logs:11 >> /etc/projid

3. Set the desired limits:

edquota -P 11

NOTE

You can choose the project either by its project ID (11 in this case), or by its
name (Logs in this case).

4. Using quotaon, enable quota enforcement:
See Enabling quota enforcement.

Verification

Verify that the project quota is set:

quota -vP 11

NOTE

You can verify either by the project ID, or by the project name.

Additional resources

CHAPTER 23. LIMITING STORAGE SPACE USAGE ON EXT4 WITH QUOTAS

133

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_file_systems/limiting-storage-space-usage-on-ext4-with-quotas_managing-file-systems#enabling-quota-enforcement_limiting-storage-space-usage-on-ext4-with-quotas

edquota(8), projid(5), and projects(5) man pages on your system

23.8. SETTING THE GRACE PERIOD FOR SOFT LIMITS

If a given quota has soft limits, you can edit the grace period, which is the amount of time for which a soft
limit can be exceeded. You can set the grace period for users, groups, or projects.

Procedure

Edit the grace period:

edquota -t

IMPORTANT

While other edquota commands operate on quotas for a particular user, group, or project,
the -t option operates on every file system with quotas enabled.

Additional resources

edquota(8) man page on your system

23.9. TURNING FILE SYSTEM QUOTAS OFF

Use quotaoff to turn disk quota enforcement off on the specified file systems. Quota accounting stays
enabled after executing this command.

Procedure

To turn all user and group quotas off:

quotaoff -vaugP

If neither of the -u, -g, or -P options are specified, only the user quotas are disabled.

If only -g option is specified, only group quotas are disabled.

If only -P option is specified, only project quotas are disabled.

The -v switch causes verbose status information to display as the command executes.

Additional resources

quotaoff(8) man page on your system

23.10. REPORTING ON DISK QUOTAS

Create a disk quota report by using the repquota utility.

Procedure

1. Run the repquota command:

Red Hat Enterprise Linux 9.0 Managing file systems

134

repquota

For example, the command repquota /dev/sda produces this output:

*** Report for user quotas on device /dev/sda
Block grace time: 7days; Inode grace time: 7days
 Block limits File limits
User used soft hard grace used soft hard grace
--
root -- 36 0 0 4 0 0
kristin -- 540 0 0 125 0 0
testuser -- 440400 500000 550000 37418 0 0

2. View the disk usage report for all quota-enabled file systems:

repquota -augP

The -- symbol displayed after each user determines whether the block or inode limits have been
exceeded. If either soft limit is exceeded, a + character appears in place of the corresponding -
character. The first - character represents the block limit, and the second represents the inode limit.

The grace columns are normally blank. If a soft limit has been exceeded, the column contains a time
specification equal to the amount of time remaining on the grace period. If the grace period has expired,
none appears in its place.

Additional resources

The repquota(8) man page for more information.

CHAPTER 23. LIMITING STORAGE SPACE USAGE ON EXT4 WITH QUOTAS

135

CHAPTER 24. DISCARDING UNUSED BLOCKS
You can perform or schedule discard operations on block devices that support them. The block discard
operation communicates to the underlying storage which file system blocks are no longer in use by the
mounted file system. Block discard operations allow SSDs to optimize garbage collection routines, and
they can inform thinly-provisioned storage to repurpose unused physical blocks.

Requirements

The block device underlying the file system must support physical discard operations.
Physical discard operations are supported if the value in the
/sys/block/<device>/queue/discard_max_bytes file is not zero.

24.1. TYPES OF BLOCK DISCARD OPERATIONS

You can run discard operations using different methods:

Batch discard

Is triggered explicitly by the user and discards all unused blocks in the selected file systems.

Online discard

Is specified at mount time and triggers in real time without user intervention. Online discard
operations discard only blocks that are transitioning from the used to the free state.

Periodic discard

Are batch operations that are run regularly by a systemd service.

All types are supported by the XFS and ext4 file systems.

Recommendations
Red Hat recommends that you use batch or periodic discard.

Use online discard only if:

the system’s workload is such that batch discard is not feasible, or

online discard operations are necessary to maintain performance.

24.2. PERFORMING BATCH BLOCK DISCARD

You can perform a batch block discard operation to discard unused blocks on a mounted file system.

Prerequisites

The file system is mounted.

The block device underlying the file system supports physical discard operations.

Procedure

Use the fstrim utility:

To perform discard only on a selected file system, use:

fstrim mount-point

Red Hat Enterprise Linux 9.0 Managing file systems

136

To perform discard on all mounted file systems, use:

fstrim --all

If you execute the fstrim command on:

a device that does not support discard operations, or

a logical device (LVM or MD) composed of multiple devices, where any one of the device does
not support discard operations,

the following message displays:

fstrim /mnt/non_discard

fstrim: /mnt/non_discard: the discard operation is not supported

Additional resources

fstrim(8) man page on your system

24.3. ENABLING ONLINE BLOCK DISCARD

You can perform online block discard operations to automatically discard unused blocks on all supported
file systems.

Procedure

Enable online discard at mount time:

When mounting a file system manually, add the -o discard mount option:

mount -o discard device mount-point

When mounting a file system persistently, add the discard option to the mount entry in the
/etc/fstab file.

Additional resources

mount(8) and fstab(5) man pages on your system

24.4. ENABLING ONLINE BLOCK DISCARD BY USING THE STORAGE

RHEL SYSTEM ROLE

You can mount an XFS file system with the online block discard option to automatically discard unused
blocks.

Prerequisites

You have prepared the control node and the managed nodes .

CHAPTER 24. DISCARDING UNUSED BLOCKS

137

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/automating_system_administration_by_using_rhel_system_roles/assembly_preparing-a-control-node-and-managed-nodes-to-use-rhel-system-roles_automating-system-administration-by-using-rhel-system-roles

The account you use to connect to the managed nodes has sudo permissions for these nodes.

Procedure

1. Create a playbook file, for example, ~/playbook.yml, with the following content:

For details about all variables used in the playbook, see the /usr/share/ansible/roles/rhel-
system-roles.storage/README.md file on the control node.

2. Validate the playbook syntax:

$ ansible-playbook --syntax-check ~/playbook.yml

Note that this command only validates the syntax and does not protect against a wrong but valid
configuration.

3. Run the playbook:

$ ansible-playbook ~/playbook.yml

Verification

Verify that online block discard option is enabled:

ansible managed-node-01.example.com -m command -a 'findmnt /mnt/data'

24.5. ENABLING PERIODIC BLOCK DISCARD

You can enable a systemd timer to regularly discard unused blocks on all supported file systems.

Procedure

Enable and start the systemd timer:

- name: Manage local storage
 hosts: managed-node-01.example.com
 tasks:
 - name: Enable online block discard
 ansible.builtin.include_role:
 name: redhat.rhel_system_roles.storage
 vars:
 storage_volumes:
 - name: barefs
 type: disk
 disks:
 - sdb
 fs_type: xfs
 mount_point: /mnt/data
 mount_options: discard

Red Hat Enterprise Linux 9.0 Managing file systems

138

systemctl enable --now fstrim.timer
Created symlink /etc/systemd/system/timers.target.wants/fstrim.timer →
/usr/lib/systemd/system/fstrim.timer.

Verification

Verify the status of the timer:

systemctl status fstrim.timer
fstrim.timer - Discard unused blocks once a week
 Loaded: loaded (/usr/lib/systemd/system/fstrim.timer; enabled; vendor preset: disabled)
 Active: active (waiting) since Wed 2023-05-17 13:24:41 CEST; 3min 15s ago
 Trigger: Mon 2023-05-22 01:20:46 CEST; 4 days left
 Docs: man:fstrim

May 17 13:24:41 localhost.localdomain systemd[1]: Started Discard unused blocks once a
week.

CHAPTER 24. DISCARDING UNUSED BLOCKS

139

CHAPTER 25. SETTING UP STRATIS FILE SYSTEMS
Stratis is a local storage-management solution for Red Hat Enterprise Linux. It is focused on simplicity,
ease of use, and gives you access to advanced storage features.

Stratis runs as a service to manage pools of physical storage devices, simplifying local storage
management with ease of use while helping you set up and manage complex storage configurations.

Stratis can help you with:

Initial configuration of storage

Making changes later

Using advanced storage features

The central concept of Stratis is a storage pool. This pool is created from one or more local disks or
partitions, and file systems are created from the pool. The pool enables features such as:

File system snapshots

Thin provisioning

Caching

Encryption

25.1. COMPONENTS OF A STRATIS FILE SYSTEM

Externally, Stratis presents the following file system components on the command line and through the
API:

blockdev

Block devices, such as disks or disk partitions.

pool

Composed of one or more block devices.
A pool has a fixed total size, equal to the size of the block devices.

The pool contains most Stratis layers, such as the non-volatile data cache using the dm-cache
target.

Stratis creates a /dev/stratis/my-pool/ directory for each pool. This directory contains links to
devices that represent Stratis file systems in the pool.

filesystem

Each pool can contain zero or more file systems. A pool containing file systems can store any number
of files.
File systems are thinly provisioned and do not have a fixed total size. The actual size of a file system
grows with the data stored on it. If the size of the data approaches the virtual size of the file system,
Stratis grows the thin volume and the file system automatically.

The file systems are formatted with the XFS file system.

IMPORTANT

Red Hat Enterprise Linux 9.0 Managing file systems

140

IMPORTANT

Stratis tracks information about file systems that it created which XFS is not aware of,
and changes made using XFS do not automatically create updates in Stratis. Users
must not reformat or reconfigure XFS file systems that are managed by Stratis.

Stratis creates links to file systems at the /dev/stratis/my-pool/my-fs path.

Stratis uses many Device Mapper devices, which appear in dmsetup listings and the /proc/partitions
file. Similarly, the lsblk command output reflects the internal workings and layers of Stratis.

25.2. BLOCK DEVICES COMPATIBLE WITH STRATIS

Storage devices that can be used with Stratis.

Supported devices
Stratis pools have been tested to work on these types of block devices:

LUKS

LVM logical volumes

MD RAID

DM Multipath

iSCSI

HDDs and SSDs

NVMe devices

25.3. INSTALLING STRATIS

Install the required packages for Stratis.

Procedure

1. Install packages that provide the Stratis service and command-line utilities:

dnf install stratisd stratis-cli

2. To start the stratisd service and enable it to launch at boot:

systemctl enable --now stratisd

Verification

Verify that the stratisd service is enabled and is running:

systemctl status stratisd
stratisd.service - Stratis daemon
Loaded: loaded (/usr/lib/systemd/system/stratisd.service; enabled; preset:>

CHAPTER 25. SETTING UP STRATIS FILE SYSTEMS

141

Active: active (running) since Tue 2025-03-25 14:04:42 CET; 30min ago
Docs: man:stratisd(8)
Main PID: 24141 (stratisd)
Tasks: 22 (limit: 99365)
Memory: 10.4M
CPU: 1.436s
CGroup: /system.slice/stratisd.service
└─24141 /usr/libexec/stratisd --log-level debug

25.4. CREATING AN UNENCRYPTED STRATIS POOL

You can create an unencrypted Stratis pool from one or more block devices.

Prerequisites

Stratis is installed and the stratisd service is running. For more information, see Installing
Stratis.

The block device on which you are creating a Stratis pool is not in use, unmounted, and is at
least 1 GB in space.

On the IBM Z architecture, the /dev/dasd* block devices must be partitioned. Use the partition
device for creating the Stratis pool.
For information about partitioning DASD devices, see Configuring a Linux instance on IBM Z .

NOTE

You can only encrypt a Stratis pool during creation, and not later.

Procedure

1. Erase any file system, partition table, or RAID signatures that exist on each block device that
you want to use in the Stratis pool:

wipefs --all block-device

The block-device value is the path to the block device; for example, /dev/sdb.

2. Create the new unencrypted Stratis pool on the selected block device:

stratis pool create my-pool block-device

The block-device value is the path to an empty or wiped block device.

You can also specify multiple block devices on a single line by using the following command:

stratis pool create my-pool block-device-1 block-device-2

Verification

Verify that the new Stratis pool was created:

stratis pool list

Red Hat Enterprise Linux 9.0 Managing file systems

142

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/9/html/interactively_installing_rhel_over_the_network/configuring-a-linux-instance-on-ibm-z_rhel-installer

25.5. CREATING AN UNENCRYPTED STRATIS POOL BY USING THE
WEB CONSOLE

You can use the web console to create an unencrypted Stratis pool from one or more block devices.

Prerequisites

You have installed the RHEL 9 web console.

You have enabled the cockpit service.

Your user account is allowed to log in to the web console.
For instructions, see Installing and enabling the web console .

Stratis is installed and the stratisd service is running. For more information, see Installing
Stratis.

The block device on which you are creating a Stratis pool is not in use, unmounted, and is at
least 1 GB in space.

NOTE

You cannot encrypt an unencrypted Stratis pool after it is created.

Procedure

1. Log in to the RHEL 9 web console.
For details, see Logging in to the web console .

2. Click Storage.

3. In the Storage table, click the menu button and select Create Stratis pool.

4. In the Name field, enter a name for the Stratis pool.

5. Select the Block devices from which you want to create the Stratis pool.

6. Optional: If you want to specify the maximum size for each file system that is created in the
pool, select Manage filesystem sizes.

7. Click Create.

Verification

Go to the Storage section and verify that you can see the new Stratis pool in the Devices table.

25.6. CREATING AN ENCRYPTED STRATIS POOL USING A KEY IN THE
KERNEL KEYRING

To secure your data, you can use the kernel keyring to create an encrypted Stratis pool from one or
more block devices.

When you create an encrypted Stratis pool this way, the kernel keyring is used as the primary encryption

CHAPTER 25. SETTING UP STRATIS FILE SYSTEMS

143

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/9/html/managing_systems_using_the_rhel_9_web_console/getting-started-with-the-rhel-9-web-console_system-management-using-the-rhel-9-web-console#installing-the-web-console_getting-started-with-the-rhel-9-web-console
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/9/html/managing_systems_using_the_rhel_9_web_console/getting-started-with-the-rhel-9-web-console_system-management-using-the-rhel-9-web-console#logging-in-to-the-web-console_getting-started-with-the-rhel-9-web-console

When you create an encrypted Stratis pool this way, the kernel keyring is used as the primary encryption
mechanism. After subsequent system reboots this kernel keyring is used to unlock the encrypted Stratis
pool.

When creating an encrypted Stratis pool from one or more block devices, note the following:

Each block device is encrypted using the cryptsetup library and implements the LUKS2 format.

Each Stratis pool can either have a unique key or share the same key with other pools. These
keys are stored in the kernel keyring.

The block devices that comprise a Stratis pool must be either all encrypted or all unencrypted. It
is not possible to have both encrypted and unencrypted block devices in the same Stratis pool.

Block devices added to the data cache of an encrypted Stratis pool are automatically
encrypted.

Prerequisites

Stratis v2.1.0 or later is installed and the stratisd service is running. For more information, see
Installing Stratis.

The block device on which you are creating a Stratis pool is not in use, unmounted, and is at
least 1 GB in space.

On the IBM Z architecture, the /dev/dasd* block devices must be partitioned. Use the partition
in the Stratis pool.
For information about partitioning DASD devices, see Configuring a Linux instance on IBM Z .

Procedure

1. Erase any file system, partition table, or RAID signatures that exist on each block device that
you want to use in the Stratis pool:

wipefs --all block-device

The block-device value is the path to the block device; for example, /dev/sdb.

2. If you have not set a key already, run the following command and follow the prompts to create a
key set to use for the encryption:

stratis key set --capture-key key-description

The key-description is a reference to the key that gets created in the kernel keyring. You will
be prompted to enter a key value at the command-line. You can also place the key value in a file
and use the --keyfile-path option instead of the --capture-key option.

3. Create the encrypted Stratis pool and specify the key description to use for the encryption:

stratis pool create --key-desc key-description my-pool block-device

key-description

References the key that exists in the kernel keyring, which you created in the previous step.

my-pool

Red Hat Enterprise Linux 9.0 Managing file systems

144

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/9/html/interactively_installing_rhel_over_the_network/configuring-a-linux-instance-on-ibm-z_rhel-installer

Specifies the name of the new Stratis pool.

block-device

Specifies the path to an empty or wiped block device.
You can also specify multiple block devices on a single line by using the following command:

stratis pool create --key-desc key-description my-pool block-device-1 block-device-2

Verification

Verify that the new Stratis pool was created:

stratis pool list

25.7. CREATING AN ENCRYPTED STRATIS POOL USING CLEVIS

Starting with Stratis 2.4.0, you can create an encrypted pool using the Clevis mechanism by specifying
Clevis options at the command line.

Prerequisites

Stratis v2.3.0 or later is installed and the stratisd service is running. For more information, see
Installing Stratis.

An encrypted Stratis pool is created. For more information, see Creating an encrypted Stratis
pool using a key in the kernel keyring.

Your system supports TPM 2.0.

Procedure

1. Erase any file system, partition table, or RAID signatures that exist on each block device that
you want to use in the Stratis pool:

wipefs --all block-device

The block-device value is the path to the block device; for example, /dev/sdb.

2. Create the encrypted Stratis pool and specify the Clevis mechanism to use for the encryption:

stratis pool create --clevis tpm2 my-pool block-device

tpm2

Specifies the Clevis mechanism to use.

my-pool

Specifies the name of the new Stratis pool.

block-device

Specifies the path to an empty or wiped block device.
Alternatively, use the Clevis tang server mechanism by using the following command:

CHAPTER 25. SETTING UP STRATIS FILE SYSTEMS

145

stratis pool create --clevis tang --tang-url my-url --thumbprint thumbprint my-pool block-
device

tang

Specifies the Clevis mechanism to use.

my-url

Specifies the URL of the tang server.

thumbprint

References the thumbprint of the tang server.
You can also specify multiple block devices on a single line by using the following command:

stratis pool create --clevis tpm2 my-pool block-device-1 block-device-2

Verification

Verify that the new Stratis pool was created:

stratis pool list

NOTE

You can also create an encrypted pool using both Clevis and keyring mechanisms
by specifying both Clevis and keyring options at the same time during pool
creation.

25.8. CREATING AN ENCRYPTED STRATIS POOL BY USING THE
STORAGE RHEL SYSTEM ROLE

To secure your data, you can create an encrypted Stratis pool with the storage RHEL system role. In
addition to a passphrase, you can use Clevis and Tang or TPM protection as an encryption method.

IMPORTANT

You can configure Stratis encryption only on the entire pool.

Prerequisites

You have prepared the control node and the managed nodes .

The account you use to connect to the managed nodes has sudo permissions for these nodes.

You can connect to the Tang server. For more information, see Deploying a Tang server with
SELinux in enforcing mode.

Procedure

1. Store your sensitive variables in an encrypted file:

a. Create the vault:

Red Hat Enterprise Linux 9.0 Managing file systems

146

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/automating_system_administration_by_using_rhel_system_roles/assembly_preparing-a-control-node-and-managed-nodes-to-use-rhel-system-roles_automating-system-administration-by-using-rhel-system-roles
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/9/html/security_hardening/configuring-automated-unlocking-of-encrypted-volumes-using-policy-based-decryption_security-hardening#deploying-a-tang-server-with-selinux-in-enforcing-mode_configuring-automated-unlocking-of-encrypted-volumes-using-policy-based-decryption

$ ansible-vault create ~/vault.yml
New Vault password: <vault_password>
Confirm New Vault password: <vault_password>

b. After the ansible-vault create command opens an editor, enter the sensitive data in the
<key>: <value> format:

c. Save the changes, and close the editor. Ansible encrypts the data in the vault.

2. Create a playbook file, for example, ~/playbook.yml, with the following content:

The settings specified in the example playbook include the following:

encryption_password

Password or passphrase used to unlock the LUKS volumes.

encryption_clevis_pin

Clevis method that you can use to encrypt the created pool. You can use tang and tpm2.

encryption_tang_url

URL of the Tang server.

For details about all variables used in the playbook, see the /usr/share/ansible/roles/rhel-
system-roles.storage/README.md file on the control node.

3. Validate the playbook syntax:

$ ansible-playbook --ask-vault-pass --syntax-check ~/playbook.yml

Note that this command only validates the syntax and does not protect against a wrong but valid
configuration.

luks_password: <password>

- name: Manage local storage
 hosts: managed-node-01.example.com
 vars_files:
 - ~/vault.yml
 tasks:
 - name: Create a new encrypted Stratis pool with Clevis and Tang
 ansible.builtin.include_role:
 name: redhat.rhel_system_roles.storage
 vars:
 storage_pools:
 - name: mypool
 disks:
 - sdd
 - sde
 type: stratis
 encryption: true
 encryption_password: "{{ luks_password }}"
 encryption_clevis_pin: tang
 encryption_tang_url: tang-server.example.com:7500

CHAPTER 25. SETTING UP STRATIS FILE SYSTEMS

147

4. Run the playbook:

$ ansible-playbook --ask-vault-pass ~/playbook.yml

Verification

Verify that the pool was created with Clevis and Tang configured:

$ ansible managed-node-01.example.com -m command -a 'sudo stratis report'
...
 "clevis_config": {
 "thp": "j-G4ddvdbVfxpnUbgxlpbe3KutSKmcHttILAtAkMTNA",
 "url": "tang-server.example.com:7500"
 },
 "clevis_pin": "tang",
 "in_use": true,
 "key_description": "blivet-mypool",

Additional resources

Ansible vault

25.9. CREATING AN ENCRYPTED STRATIS POOL BY USING THE WEB
CONSOLE

To secure your data, you can use the web console to create an encrypted Stratis pool from one or more
block devices.

When creating an encrypted Stratis pool from one or more block devices, note the following:

Each block device is encrypted using the cryptsetup library and implements the LUKS2 format.

Each Stratis pool can either have a unique key or share the same key with other pools. These
keys are stored in the kernel keyring.

The block devices that comprise a Stratis pool must be either all encrypted or all unencrypted. It
is not possible to have both encrypted and unencrypted block devices in the same Stratis pool.

Block devices added to the data tier of an encrypted Stratis pool are automatically encrypted.

Prerequisites

You have installed the RHEL 9 web console.

You have enabled the cockpit service.

Your user account is allowed to log in to the web console.
For instructions, see Installing and enabling the web console .

Stratis v2.1.0 or later is installed and the the stratisd service is running.

The block device on which you are creating a Stratis pool is not in use, unmounted, and is at
least 1 GB in space.

Procedure

Red Hat Enterprise Linux 9.0 Managing file systems

148

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/9/html/automating_system_administration_by_using_rhel_system_roles/ansible-vault_automating-system-administration-by-using-rhel-system-roles
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/9/html/managing_systems_using_the_rhel_9_web_console/getting-started-with-the-rhel-9-web-console_system-management-using-the-rhel-9-web-console#installing-the-web-console_getting-started-with-the-rhel-9-web-console

Procedure

1. Log in to the RHEL 9 web console.
For details, see Logging in to the web console .

2. Click Storage.

3. In the Storage table, click the menu button and select Create Stratis pool.

4. In the Name field, enter a name for the Stratis pool.

5. Select the Block devices from which you want to create the Stratis pool.

6. Select the type of encryption, you can use a passphrase, a Tang keyserver, or both:

Passphrase:

i. Enter a passphrase.

ii. Confirm the passphrase.

Tang keyserver:

i. Enter the keyserver address. For more information, see Deploying a Tang server with
SELinux in enforcing mode.

7. Optional: If you want to specify the maximum size for each file system that is created in pool,
select Manage filesystem sizes.

8. Click Create.

Verification

Go to the Storage section and verify that you can see the new Stratis pool in the Devices table.

25.10. RENAMING A STRATIS POOL BY USING THE WEB CONSOLE

You can use the web console to rename an existing Stratis pool.

Prerequisites

You have installed the RHEL 9 web console.

You have enabled the cockpit service.

Your user account is allowed to log in to the web console.
For instructions, see Installing and enabling the web console .

Stratis is installed and the stratisd service is running.
The web console detects and installs Stratis by default. However, for manually installing Stratis,
see Installing Stratis.

A Stratis pool is created.

Procedure

CHAPTER 25. SETTING UP STRATIS FILE SYSTEMS

149

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/9/html/managing_systems_using_the_rhel_9_web_console/getting-started-with-the-rhel-9-web-console_system-management-using-the-rhel-9-web-console#logging-in-to-the-web-console_getting-started-with-the-rhel-9-web-console
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/9/html/security_hardening/configuring-automated-unlocking-of-encrypted-volumes-using-policy-based-decryption_security-hardening#deploying-a-tang-server-with-selinux-in-enforcing-mode_configuring-automated-unlocking-of-encrypted-volumes-using-policy-based-decryption
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/9/html/managing_systems_using_the_rhel_9_web_console/getting-started-with-the-rhel-9-web-console_system-management-using-the-rhel-9-web-console#installing-the-web-console_getting-started-with-the-rhel-9-web-console

1. Log in to the RHEL 9 web console.
For details, see Logging in to the web console .

2. Click Storage.

3. In the Storage table, click the Stratis pool you want to rename.

4. On the Stratis pool page, click edit next to the Name field.

5. In the Rename Stratis pool dialog box, enter a new name.

6. Click Rename.

25.11. SETTING OVERPROVISIONING MODE IN STRATIS FILE SYSTEM

By default, every Stratis pool is overprovisioned meaning the logical file system size can exceed the
physically allocated space. Stratis monitors the file system usage, and automatically increases the
allocation by using available space when needed. However, if all the available space is already allocated
and the pool is full, no additional space can be assigned to the file system.

NOTE

If the file system runs out of space, users might lose data. For applications where the risk
of data loss outweighs the benefits of overprovisioning, this feature can be disabled.

Stratis continuously monitors the pool usage and reports the values using the D-Bus API. Storage
administrators must monitor these values and add devices to the pool as needed to prevent it from
reaching capacity.

Prerequisites

Stratis is installed. For more information, see Installing Stratis.

Procedure

To set up the pool correctly, you have two possibilities:

1. Create a pool from one or more block devices to make the pool fully provisioned at the time of
creation:

stratis pool create --no-overprovision pool-name /dev/sdb

By using the --no-overprovision option, the pool cannot allocate more logical space than
actual available physical space.

2. Set overprovisioning mode in the existing pool:

stratis pool overprovision pool-name <yes|no>

If set to "yes", you enable overprovisioning to the pool. This means that the sum of the
logical sizes of the Stratis file systems, supported by the pool, can exceed the amount of
available data space. If the pool is overprovisioned and the sum of the logical sizes of all the
file systems exceeds the space available on the pool, then the system cannot turn off
overprovisioning and returns an error.

Red Hat Enterprise Linux 9.0 Managing file systems

150

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/9/html/managing_systems_using_the_rhel_9_web_console/getting-started-with-the-rhel-9-web-console_system-management-using-the-rhel-9-web-console#logging-in-to-the-web-console_getting-started-with-the-rhel-9-web-console

Verification

1. View the full list of Stratis pools:

stratis pool list

Name Total Physical Properties UUID Alerts
pool-name 1.42 TiB / 23.96 MiB / 1.42 TiB ~Ca,~Cr,~Op cb7cb4d8-9322-4ac4-a6fd-
eb7ae9e1e540

2. Check if there is an indication of the pool overprovisioning mode flag in the stratis pool list
output. The " ~ " is a math symbol for "NOT", so ~Op means no-overprovisioning.

3. Optional: Check overprovisioning on a specific pool:

stratis pool overprovision pool-name yes

stratis pool list

Name Total Physical Properties UUID Alerts
pool-name 1.42 TiB / 23.96 MiB / 1.42 TiB ~Ca,~Cr,~Op cb7cb4d8-9322-4ac4-a6fd-
eb7ae9e1e540

25.12. BINDING A STRATIS POOL TO NBDE

Binding an encrypted Stratis pool to Network Bound Disk Encryption (NBDE) requires a Tang server.
When a system containing the Stratis pool reboots, it connects with the Tang server to automatically
unlock the encrypted pool without you having to provide the kernel keyring description.

NOTE

Binding a Stratis pool to a supplementary Clevis encryption mechanism does not remove
the primary kernel keyring encryption.

Prerequisites

Stratis v2.3.0 or later is installed and the stratisd service is running. For more information, see
Installing Stratis.

An encrypted Stratis pool is created, and you have the key description of the key that was used
for the encryption. For more information, see Creating an encrypted Stratis pool using a key in
the kernel keyring.

You can connect to the Tang server. For more information, see Deploying a Tang server with
SELinux in enforcing mode.

Procedure

Bind an encrypted Stratis pool to NBDE:

stratis pool bind nbde --trust-url my-pool tang-server

my-pool

CHAPTER 25. SETTING UP STRATIS FILE SYSTEMS

151

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/9/html/security_hardening/configuring-automated-unlocking-of-encrypted-volumes-using-policy-based-decryption_security-hardening#deploying-a-tang-server-with-selinux-in-enforcing-mode_configuring-automated-unlocking-of-encrypted-volumes-using-policy-based-decryption

Specifies the name of the encrypted Stratis pool.

tang-server

Specifies the IP address or URL of the Tang server.

Additional resources

Configuring automated unlocking of encrypted volumes using policy-based decryption

25.13. BINDING A STRATIS POOL TO TPM

When you bind an encrypted Stratis pool to the Trusted Platform Module (TPM) 2.0, the system
containing the pool reboots, and the pool is automatically unlocked without you having to provide the
kernel keyring description.

Prerequisites

Stratis v2.3.0 or later is installed and the stratisd service is running. For more information, see
Installing Stratis.

An encrypted Stratis pool is created, and you have the key description of the key that was used
for the encryption. For more information, see Creating an encrypted Stratis pool using a key in
the kernel keyring.

Your system supports TPM 2.0.

Procedure

Bind an encrypted Stratis pool to TPM:

stratis pool bind tpm my-pool

my-pool

Specifies the name of the encrypted Stratis pool.

key-description

References the key that exists in the kernel keyring, which was generated when you created
the encrypted Stratis pool.

25.14. UNLOCKING AN ENCRYPTED STRATIS POOL WITH KERNEL
KEYRING

After a system reboot, your encrypted Stratis pool or the block devices that comprise it might not be
visible. You can unlock the pool using the kernel keyring that was used to encrypt the pool.

Prerequisites

Stratis v2.1.0 is installed and the stratisd service is running. For more information, see Installing
Stratis.

An encrypted Stratis pool is created. For more information, see Creating an encrypted Stratis
pool using a key in the kernel keyring.

Red Hat Enterprise Linux 9.0 Managing file systems

152

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/9/html/security_hardening/configuring-automated-unlocking-of-encrypted-volumes-using-policy-based-decryption_security-hardening

Procedure

1. Re-create the key set using the same key description that was used previously:

stratis key set --capture-key key-description

key-description references the key that exists in the kernel keyring, which was generated when
you created the encrypted Stratis pool.

2. Verify that the Stratis pool is visible:

stratis pool list

25.15. UNBINDING A STRATIS POOL FROM SUPPLEMENTARY
ENCRYPTION

When you unbind an encrypted Stratis pool from a supported supplementary encryption mechanism, the
primary kernel keyring encryption remains in place. This is not true for pools that are created with Clevis
encryption from the start.

Prerequisites

Stratis v2.3.0 or later is installed on your system. For more information, see Installing Stratis.

An encrypted Stratis pool is created. For more information, see Creating an encrypted Stratis
pool using a key in the kernel keyring.

The encrypted Stratis pool is bound to a supported supplementary encryption mechanism.

Procedure

Unbind an encrypted Stratis pool from a supplementary encryption mechanism:

stratis pool unbind clevis my-pool

my-pool specifies the name of the Stratis pool you want to unbind.

Additional resources

Binding an encrypted Stratis pool to NBDE

Binding an encrypted Stratis pool to TPM

25.16. STARTING AND STOPPING STRATIS POOL

You can start and stop Stratis pools. This gives you the option to disassemble or bring down all the
objects that were used to construct the pool, such as file systems, cache devices, thin pool, and
encrypted devices. Note that if the pool actively uses any device or file system, it might issue a warning
and not be able to stop.

The stopped state is recorded in the pool’s metadata. These pools do not start on the following boot,
until the pool receives a start command.

Prerequisites

CHAPTER 25. SETTING UP STRATIS FILE SYSTEMS

153

Prerequisites

Stratis is installed and the stratisd service is running. For more information, see Installing
Stratis.

An unencrypted or an encrypted Stratis pool is created. For more information, see Creating an
unencrypted Stratis pool or Creating an encrypted Stratis pool using a key in the kernel keyring .

Procedure

Use the following command to stop the Stratis pool. This tears down the storage stack but
leaves all metadata intact:

stratis pool stop --name pool-name

Use the following command to start the Stratis pool. The --unlock-method option specifies the
method of unlocking the pool if it is encrypted:

stratis pool start --unlock-method <keyring|clevis> --name pool-name

NOTE

You can start the pool by using either the pool name or the pool UUID.

Verification

Use the following command to list all active pools on the system:

stratis pool list

Use the following command to list all the stopped pools:

stratis pool list --stopped

Use the following command to view detailed information for a stopped pool. If the UUID is
specified, the command prints detailed information about the pool corresponding to the UUID:

stratis pool list --stopped --uuid UUID

25.17. CREATING A STRATIS FILE SYSTEM

Create a Stratis file system on an existing Stratis pool.

Prerequisites

Stratis is installed and the stratisd service is running. For more information, see Installing
Stratis.

A Stratis pool is created. For more information, see Creating an unencrypted Stratis pool or
using a key in the kernel keyring .

Procedure

Red Hat Enterprise Linux 9.0 Managing file systems

154

1. Create a Stratis file system on a pool:

stratis filesystem create --size number-and-unit my-pool my-fs

number-and-unit

Specifies the size of a file system. The specification format must follow the standard size
specification format for input, that is B, KiB, MiB, GiB, TiB or PiB.

my-pool

Specifies the name of the Stratis pool.

my-fs

Specifies an arbitrary name for the file system.
For example:

Example 25.1. Creating a Stratis file system

stratis filesystem create --size 10GiB pool1 filesystem1

2. Set a size limit of a file system:

stratis filesystem create --size number-and-unit --size-limit number-and-unit my-pool my-fs

NOTE

This option is available starting with Stratis 3.6.0.

You can also remove the size limit later, if needed:

stratis filesystem unset-size-limit my-pool my-fs

Verification

List file systems within the pool to check if the Stratis file system is created:

stratis fs list my-pool

Additional resources

Mounting a Stratis file system

25.18. CREATING A FILE SYSTEM ON A STRATIS POOL BY USING THE
WEB CONSOLE

You can use the web console to create a file system on an existing Stratis pool.

Prerequisites

You have installed the RHEL 9 web console.

CHAPTER 25. SETTING UP STRATIS FILE SYSTEMS

155

You have enabled the cockpit service.

Your user account is allowed to log in to the web console.
For instructions, see Installing and enabling the web console .

The stratisd service is running.

A Stratis pool is created.

Procedure

1. Log in to the RHEL 9 web console.
For details, see Logging in to the web console .

2. Click Storage.

3. Click the Stratis pool on which you want to create a file system.

4. On the Stratis pool page, scroll to the Stratis filesystems section and click Create new
filesystem.

5. Enter a name for the file system.

6. Enter a mount point for the file system.

7. Select the mount option.

8. In the At boot drop-down menu, select when you want to mount your file system.

9. Create the file system:

If you want to create and mount the file system, click Create and mount.

If you want to only create the file system, click Create only.

Verification

The new file system is visible on the Stratis pool page under the Stratis filesystems tab.

25.19. MOUNTING A STRATIS FILE SYSTEM

Mount an existing Stratis file system to access the content.

Prerequisites

Stratis is installed and the stratisd service is running. For more information, see Installing
Stratis.

A Stratis file system is created. For more information, see Creating a Stratis file system .

Procedure

To mount the file system, use the entries that Stratis maintains in the /dev/stratis/ directory:

mount /dev/stratis/my-pool/my-fs mount-point

Red Hat Enterprise Linux 9.0 Managing file systems

156

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/9/html/managing_systems_using_the_rhel_9_web_console/getting-started-with-the-rhel-9-web-console_system-management-using-the-rhel-9-web-console#installing-the-web-console_getting-started-with-the-rhel-9-web-console
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/9/html/managing_systems_using_the_rhel_9_web_console/getting-started-with-the-rhel-9-web-console_system-management-using-the-rhel-9-web-console#logging-in-to-the-web-console_getting-started-with-the-rhel-9-web-console

The file system is now mounted on the mount-point directory and ready to use.

NOTE

Unmount all file systems belonging to a pool before stopping it. The pool will not stop if
any file system is still mounted.

25.20. SETTING UP NON-ROOT STRATIS FILE SYSTEMS IN
/ETC/FSTAB USING A SYSTEMD SERVICE

You can manage setting up non-root file systems in /etc/fstab using a systemd service.

Prerequisites

Stratis is installed and the stratisd service is running. For more information, see Installing
Stratis.

A Stratis file system is created. For more information, see Creating a Stratis file system .

Procedure

As root, edit the /etc/fstab file and add a line to set up non-root file systems:

/dev/stratis/my-pool/my-fs mount-point xfs defaults,x-systemd.requires=stratis-fstab-
setup@pool-uuid.service,x-systemd.after=stratis-fstab-setup@pool-uuid.service dump-value
fsck_value

IMPORTANT

Persistently mounting a Stratis filesystem from an encrypted Stratis pool can cause the
boot process to stop until a password is provided. If the pool is encrypted using any
unattended mechanism, for example, NBDE or TPM2, the Stratis pool will be unlocked
automatically. If not, the user will need to enter a password in the console.

Additional resources

Persistently mounting file systems

CHAPTER 25. SETTING UP STRATIS FILE SYSTEMS

157

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/9/html/managing_file_systems/assembly_persistently-mounting-file-systems_managing-file-systems

CHAPTER 26. EXTENDING A STRATIS POOL WITH
ADDITIONAL BLOCK DEVICES

You can attach additional block devices to a Stratis pool to provide more storage capacity for Stratis file
systems. You can do it manually or by using the web console.

26.1. ADDING BLOCK DEVICES TO A STRATIS POOL

You can add one or more block devices to a Stratis pool.

Prerequisites

Stratis is installed and the stratisd service is running. For more information, see Installing
Stratis.

The block device on which you are creating a Stratis pool is not in use, unmounted, and is at
least 1 GB in space.

Procedure

To add one or more block devices to the pool, use:

stratis pool add-data my-pool device-1 device-2 device-n

Additional resources

stratis(8) man page on your system

26.2. ADDING A BLOCK DEVICE TO A STRATIS POOL BY USING THE
WEB CONSOLE

You can use the web console to add a block device to an existing Stratis pool. You can also add caches
as a block device.

Prerequisites

You have installed the RHEL 9 web console.

You have enabled the cockpit service.

Your user account is allowed to log in to the web console.
For instructions, see Installing and enabling the web console .

The stratisd service is running.

A Stratis pool is created.

The block device on which you are creating a Stratis pool is not in use, unmounted, and is at
least 1 GB in space.

Procedure

Red Hat Enterprise Linux 9.0 Managing file systems

158

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/9/html/managing_systems_using_the_rhel_9_web_console/getting-started-with-the-rhel-9-web-console_system-management-using-the-rhel-9-web-console#installing-the-web-console_getting-started-with-the-rhel-9-web-console

1. Log in to the RHEL 9 web console.
For details, see Logging in to the web console .

2. Click Storage.

3. In the Storage table, click the Stratis pool to which you want to add a block device.

4. On the Stratis pool page, click Add block devices and select the Tier where you want to add a
block device as data or cache.

5. If you are adding the block device to a Stratis pool that is encrypted with a passphrase, enter the
passphrase.

6. Under Block devices, select the devices you want to add to the pool.

7. Click Add.

CHAPTER 26. EXTENDING A STRATIS POOL WITH ADDITIONAL BLOCK DEVICES

159

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/9/html/managing_systems_using_the_rhel_9_web_console/getting-started-with-the-rhel-9-web-console_system-management-using-the-rhel-9-web-console#logging-in-to-the-web-console_getting-started-with-the-rhel-9-web-console

CHAPTER 27. MONITORING STRATIS FILE SYSTEMS
As a Stratis user, you can view information about Stratis file systems on your system to monitor their
state and free space.

27.1. DISPLAYING INFORMATION ABOUT STRATIS FILE SYSTEMS

You can list statistics about your Stratis file systems, such as the total, used, and free size or file systems
and block devices belonging to a pool, by using the stratis utility.

The size of an XFS file system is the total amount of user data that it can manage. On a thinly
provisioned Stratis pool, a Stratis file system can appear to have a size that is larger than the space
allocated to it. The XFS file system is sized to match this apparent size, which means it is usually larger
than the allocated space. Standard Linux utilities, such as df, report the size of the XFS file system. This
value generally overestimates the space required by the XFS file system and hence the space allocated
for it by Stratis.

IMPORTANT

Regularly monitor the usage of your overprovisioned Stratis pools. If a file system usage
approaches the allocated space, Stratis automatically increases the allocation using
available space in the pool. However, if all the available space is already allocated and the
pool is full, no additional space can be assigned causing the file system to run out of
space. This may lead to the risk of data loss in the application using the Stratis file system.

Prerequisites

Stratis is installed and the stratisd service is running. For more information, See Installing
Stratis.

Procedure

To display information about all block devices used for Stratis on your system:

stratis blockdev
Pool Name Device Node Physical Size Tier UUID
my-pool /dev/sdb 9.10 TiB Data ec9fb718-f83c-11ef-861e-7446a09dccfb

To display information about all Stratis pools on your system:

stratis pool

Name Total/Used/Free Properties UUID Alerts
my-pool 8.00 GiB / 800.99 MiB / 7.22 GiB -Ca,-Cr,Op e22772c2-afe9-446c-9be5-
2f78f682284e WS001

To display information about all Stratis file systems on your system:

stratis filesystem

Pool Filesystem Total/Used/Free/Limit Device UUID
Spool1 sfs1 1 TiB / 546 MiB / 1023.47 GiB / None /dev/stratis/spool1/sfs1 223265f5-8f17-
4cc2-bf12-c3e9e71ff7bf

Red Hat Enterprise Linux 9.0 Managing file systems

160

You can also display detailed information about a Stratis file system on your system by specifying the
file system name or UUID:

stratis filesystem list my-pool --name my-fs

UUID: 47255008-9bc7-4bd2-8294-e9d25cd9e7ba
Name: my-fs
Pool: my-pool
Device: /dev/stratis/my-pool/my-fs
Created: Nov 08 2018 08:03
Snapshot origin: None
Sizes:
 Logical size of thin device: 1 TiB
 Total used (including XFS metadata): 546 MiB
 Free: 1023.47 GiB
 Size Limit: None

Additional resources

stratis(8) man page on your system

27.2. VIEWING A STRATIS POOL BY USING THE WEB CONSOLE

You can use the web console to view an existing Stratis pool and the file systems it contains.

Prerequisites

You have installed the RHEL 9 web console.

You have enabled the cockpit service.

Your user account is allowed to log in to the web console.
For instructions, see Installing and enabling the web console .

The stratisd service is running.

You have an existing Stratis pool.

Procedure

1. Log in to the RHEL 9 web console.

2. Click Storage.

3. In the Storage table, click the Stratis pool you want to view.
The Stratis pool page displays all the information about the pool and the file systems that you
created in the pool.

CHAPTER 27. MONITORING STRATIS FILE SYSTEMS

161

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/9/html/managing_systems_using_the_rhel_9_web_console/getting-started-with-the-rhel-9-web-console_system-management-using-the-rhel-9-web-console#installing-the-web-console_getting-started-with-the-rhel-9-web-console

CHAPTER 28. USING SNAPSHOTS ON STRATIS FILE
SYSTEMS

You can use snapshots on Stratis file systems to capture file system state at arbitrary times and restore
it in the future.

28.1. CHARACTERISTICS OF STRATIS SNAPSHOTS

In Stratis, a snapshot is a regular Stratis file system created as a copy of another Stratis file system.

The current snapshot implementation in Stratis is characterized by the following:

A snapshot of a file system is another file system.

A snapshot and its origin are not linked in lifetime. A snapshotted file system can live longer than
the file system it was created from.

A file system does not have to be mounted to create a snapshot from it.

Each snapshot uses around half a gigabyte of actual backing storage, which is needed for the
XFS log.

28.2. CREATING A STRATIS SNAPSHOT

You can create a Stratis file system as a snapshot of an existing Stratis file system.

Prerequisites

Stratis is installed and the stratisd service is running. For more information, see Installing
Stratis.

You have created a Stratis file system. For more information, see Creating a Stratis file system .

Procedure

Create a Stratis snapshot:

stratis fs snapshot my-pool my-fs my-fs-snapshot

A snapshot is a first class Stratis file system. You can create multiple Stratis snapshots. These include
snapshots of a single origin file system or another snapshot file system. If a file system is a snapshot,
then its origin field will display the UUID of its origin file system in the detailed file system listing.

Additional resources

stratis(8) man page on your system

28.3. ACCESSING THE CONTENT OF A STRATIS SNAPSHOT

You can mount a snapshot of a Stratis file system to make it accessible for read and write operations.

Prerequisites

Red Hat Enterprise Linux 9.0 Managing file systems

162

Stratis is installed and the stratisd service is running. For more information, see Installing
Stratis.

You have created a Stratis snapshot. For more information, see Creating a Stratis snapshot .

Procedure

To access the snapshot, mount it as a regular file system from the /dev/stratis/my-pool/
directory:

mount /dev/stratis/my-pool/my-fs-snapshot mount-point

Additional resources

Mounting a Stratis file system

mount(8) man page on your system

28.4. REVERTING A STRATIS FILE SYSTEM TO A PREVIOUS
SNAPSHOT

You can revert the content of a Stratis file system to the state captured in a Stratis snapshot.

Prerequisites

Stratis is installed and the stratisd service is running. For more information, see Installing
Stratis.

You have created a Stratis snapshot. For more information, see Creating a Stratis snapshot .

Procedure

1. Optional: Back up the current state of the file system to be able to access it later:

stratis filesystem snapshot my-pool my-fs my-fs-backup

2. Schedule a revert of your file system to the previously taken snapshot:

stratis filesystem schedule-revert my-pool my-fs-snapshot

3. Optional: Run the following to check if the revert is scheduled successfully:

stratis filesystem list my-pool --name my-fs-snapshot
UUID: b14987eb-b735-4c68-8962-f53f6b644cbc
Name: my-fs-snapshot
Pool: my-pool

Device: /dev/stratis/p1/my-fs-snapshot

Created: Mar 18 2025 12:29

Snapshot origin: f5a881b1-299d-4147-8ead-b4a56c623692
Revert scheduled: Yes

CHAPTER 28. USING SNAPSHOTS ON STRATIS FILE SYSTEMS

163

Sizes:
Logical size of thin device: 1 TiB
Total used (including XFS metadata): 5.42 GiB
Free: 1018.58 GiB

NOTE

It is not possible to schedule more than one revert operation into the same origin
filesystem. Also, if you try to destroy either the origin file system, or the snapshot
to which the revert is scheduled, the destroy operation fails.

You can also cancel the revert operation any time before you restart the pool:

stratis filesystem cancel-revert my-pool my-fs-snapshot

You can run the following to check if the cancellation is scheduled successfully:

stratis filesystem list my-pool --name my-fs-snapshot
UUID: b14987eb-b735-4c68-8962-f53f6b644cbc
Name: my-fs-snapshot
Pool: my-pool

Device: /dev/stratis/p1/my-fs-snapshot

Created: Mar 18 2025 12:29

Snapshot origin: f5a881b1-299d-4147-8ead-b4a56c623692
Revert scheduled: No

Sizes:
Logical size of thin device: 1 TiB
Total used (including XFS metadata): 5.42 GiB
Free: 1018.58 GiB

Size Limit: None

If not cancelled, the scheduled revert will proceed when you restart the pool:

stratis pool stop --name my-pool
stratis pool start --name my-pool

Verification

1. List the file system belonging to the pool:

stratis filesystem list my-pool

The my-fs-snapshot now does not appear in the list of file systems in the pool as it is reverted to the
previously copied my-fs-snapshot state. The content of the file system named my-fs is now identical
to the snapshot my-fs-snapshot.

Additional resources

Red Hat Enterprise Linux 9.0 Managing file systems

164

Additional resources

stratis(8) man page on your system

28.5. REMOVING A STRATIS SNAPSHOT

You can remove a Stratis snapshot from a pool. Data on the snapshot are lost.

Prerequisites

Stratis is installed and the stratisd service is running. For more information,see Installing Stratis.

You have created a Stratis snapshot. For more information, see Creating a Stratis snapshot .

Procedure

1. Unmount the snapshot:

umount /dev/stratis/my-pool/my-fs-snapshot

2. Destroy the snapshot:

stratis filesystem destroy my-pool my-fs-snapshot

Additional resources

stratis(8) man page on your system

CHAPTER 28. USING SNAPSHOTS ON STRATIS FILE SYSTEMS

165

CHAPTER 29. REMOVING STRATIS FILE SYSTEMS
You can remove an existing Stratis file system or pool. Once a Stratis file system or pool is removed, it
cannot be recovered.

29.1. REMOVING A STRATIS FILE SYSTEM

You can remove an existing Stratis file system. Data stored on it are lost.

Prerequisites

Stratis is installed and the stratisd service is running. For more information, see Installing
Stratis.

You have created a Stratis file system. For more information, see Creating a Stratis file system .

Procedure

1. Unmount the file system:

umount /dev/stratis/my-pool/my-fs

2. Destroy the file system:

stratis filesystem destroy my-pool my-fs

Verification

Verify that the file system no longer exists:

stratis filesystem list my-pool

Additional resources

stratis(8) man page on your system

29.2. DELETING A FILE SYSTEM FROM A STRATIS POOL BY USING
THE WEB CONSOLE

You can use the web console to delete a file system from an existing Stratis pool.

NOTE

Deleting a Stratis pool file system erases all the data it contains.

Prerequisites

You have installed the RHEL 9 web console.

You have enabled the cockpit service.

Red Hat Enterprise Linux 9.0 Managing file systems

166

Your user account is allowed to log in to the web console.
For instructions, see Installing and enabling the web console .

Stratis is installed and the stratisd service is running..
The web console detects and installs Stratis by default. However, for manually installing Stratis,
see Installing Stratis.

You have an existing Stratis pool and a file system is created on the Stratis pool.

Procedure

1. Log in to the RHEL 9 web console.
For details, see Logging in to the web console .

2. Click Storage.

3. In the Storage table, click the Stratis pool from which you want to delete a file system.

4. On the Stratis pool page, scroll to the Stratis filesystems section and click the menu button ⋮
for the file system you want to delete.

5. From the drop-down menu, select Delete.

6. In the Confirm deletion dialog box, click Delete.

29.3. REMOVING A STRATIS POOL

You can remove an existing Stratis pool. Data stored on it are lost.

Prerequisites

Stratis is installed and the stratisd service is running. For more information, see Installing
Stratis.

You have created a Stratis pool:

To create an unencrypted pool, see Creating an unencrypted Stratis pool .

To create an encrypted pool, see Creating an encrypted Stratis pool using a key in the
kernel keyring.

Procedure

1. List file systems on the pool:

stratis filesystem list my-pool

2. Unmount all file systems on the pool:

umount /dev/stratis/my-pool/my-fs-1 \
 /dev/stratis/my-pool/my-fs-2 \
 /dev/stratis/my-pool/my-fs-n

3. Destroy the file systems:

CHAPTER 29. REMOVING STRATIS FILE SYSTEMS

167

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/9/html/managing_systems_using_the_rhel_9_web_console/getting-started-with-the-rhel-9-web-console_system-management-using-the-rhel-9-web-console#installing-the-web-console_getting-started-with-the-rhel-9-web-console
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/9/html/managing_systems_using_the_rhel_9_web_console/getting-started-with-the-rhel-9-web-console_system-management-using-the-rhel-9-web-console#logging-in-to-the-web-console_getting-started-with-the-rhel-9-web-console

stratis filesystem destroy my-pool my-fs-1 my-fs-2

4. Destroy the pool:

stratis pool destroy my-pool

Verification

Verify that the pool no longer exists:

stratis pool list

Additional resources

stratis(8) man page on your system

29.4. DELETING A STRATIS POOL BY USING THE WEB CONSOLE

You can use the web console to delete an existing Stratis pool.

NOTE

Deleting a Stratis pool erases all the data it contains.

Prerequisites

You have installed the RHEL 9 web console.

You have enabled the cockpit service.

Your user account is allowed to log in to the web console.
For instructions, see Installing and enabling the web console .

The stratisd service is running.

You have an existing Stratis pool.

Procedure

1. Log in to the RHEL 9 web console.
For details, see Logging in to the web console .

2. Click Storage.

3. In the Storage table, click the menu button ⋮ for the Stratis pool you want to delete.

4. From the drop-down menu, select Delete pool.

5. In the Permanently delete pool dialog box, click Delete.

Red Hat Enterprise Linux 9.0 Managing file systems

168

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/9/html/managing_systems_using_the_rhel_9_web_console/getting-started-with-the-rhel-9-web-console_system-management-using-the-rhel-9-web-console#installing-the-web-console_getting-started-with-the-rhel-9-web-console
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/9/html/managing_systems_using_the_rhel_9_web_console/getting-started-with-the-rhel-9-web-console_system-management-using-the-rhel-9-web-console#logging-in-to-the-web-console_getting-started-with-the-rhel-9-web-console

CHAPTER 30. GETTING STARTED WITH AN EXT4 FILE
SYSTEM

As a system administrator, you can create, mount, resize, backup, and restore an ext4 file system. The
ext4 file system is a scalable extension of the ext3 file system. With Red Hat Enterprise Linux 9, it can
support a maximum individual file size of 16 terabytes, and file system to a maximum of 50 terabytes.

30.1. FEATURES OF AN EXT4 FILE SYSTEM

Following are the features of an ext4 file system:

Using extents: The ext4 file system uses extents, which improves performance when using large
files and reduces metadata overhead for large files.

Ext4 labels unallocated block groups and inode table sections accordingly, which allows the
block groups and table sections to be skipped during a file system check. It leads to a quick file
system check, which becomes more beneficial as the file system grows in size.

Metadata checksum: By default, this feature is enabled in Red Hat Enterprise Linux 9.

Allocation features of an ext4 file system:

Persistent pre-allocation

Delayed allocation

Multi-block allocation

Stripe-aware allocation

Extended attributes (xattr): This allows the system to associate several additional name and
value pairs per file.

Quota journaling: This avoids the need for lengthy quota consistency checks after a crash.

NOTE

The only supported journaling mode in ext4 is data=ordered (default). For more
information, see the Red Hat Knowledgebase solution Is the EXT journaling
option "data=writeback" supported in RHEL?.

Subsecond timestamps - This gives timestamps to the subsecond.

Additional resources

ext4 man page on your system

30.2. CREATING AN EXT4 FILE SYSTEM

As a system administrator, you can create an ext4 file system on a block device using mkfs.ext4
command.

Prerequisites

CHAPTER 30. GETTING STARTED WITH AN EXT4 FILE SYSTEM

169

https://access.redhat.com/solutions/424073

A partition on your disk. For information about creating MBR or GPT partitions, see Creating a
partition table on a disk with parted.

Alternatively, use an LVM or MD volume.

Procedure

1. To create an ext4 file system:

For a regular-partition device, an LVM volume, an MD volume, or a similar device, use the
following command:

mkfs.ext4 /dev/block_device

Replace /dev/block_device with the path to a block device.

For example, /dev/sdb1, /dev/disk/by-uuid/05e99ec8-def1-4a5e-8a9d-5945339ceb2a, or
/dev/my-volgroup/my-lv. In general, the default options are optimal for most usage
scenarios.

For striped block devices (for example, RAID5 arrays), the stripe geometry can be specified
at the time of file system creation. Using proper stripe geometry enhances the performance
of an ext4 file system. For example, to create a file system with a 64k stride (that is, 16 x
4096) on a 4k-block file system, use the following command:

mkfs.ext4 -E stride=16,stripe-width=64 /dev/block_device

In the given example:

stride=value: Specifies the RAID chunk size

stripe-width=value: Specifies the number of data disks in a RAID device, or the number
of stripe units in the stripe.

NOTE

To specify a UUID when creating a file system:

mkfs.ext4 -U UUID /dev/block_device

Replace UUID with the UUID you want to set: for example, 7cd65de3-e0be-
41d9-b66d-96d749c02da7.

Replace /dev/block_device with the path to an ext4 file system to have the
UUID added to it: for example, /dev/sda8.

To specify a label when creating a file system:

mkfs.ext4 -L label-name /dev/block_device

2. To view the created ext4 file system:

blkid

Red Hat Enterprise Linux 9.0 Managing file systems

170

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_file_systems/partition-operations-with-parted_managing-file-systems#proc_creating-a-partition-table-on-a-disk-with-parted_partition-operations-with-parted

Additional resources

ext4 and mkfs.ext4 man pages on your system

30.3. MOUNTING AN EXT4 FILE SYSTEM

As a system administrator, you can mount an ext4 file system using the mount utility.

Prerequisites

An ext4 file system. For information about creating an ext4 file system, see Creating an ext4 file
system.

Procedure

1. To create a mount point to mount the file system:

mkdir /mount/point

Replace /mount/point with the directory name where mount point of the partition must be
created.

2. To mount an ext4 file system:

To mount an ext4 file system with no extra options:

mount /dev/block_device /mount/point

To mount the file system persistently, see Persistently mounting file systems .

3. To view the mounted file system:

df -h

Additional resources

mount, ext4, and fstab man pages on your system

Mounting file systems

30.4. RESIZING AN EXT4 FILE SYSTEM

As a system administrator, you can resize an ext4 file system using the resize2fs utility. The resize2fs
utility reads the size in units of file system block size, unless a suffix indicating a specific unit is used. The
following suffixes indicate specific units:

s (sectors) - 512 byte sectors

K (kilobytes) - 1,024 bytes

M (megabytes) - 1,048,576 bytes

G (gigabytes) - 1,073,741,824 bytes

CHAPTER 30. GETTING STARTED WITH AN EXT4 FILE SYSTEM

171

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/managing_file_systems/index#creating-an-ext4-file-system_getting-started-with-an-ext4-file-system
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_file_systems/assembly_persistently-mounting-file-systems_managing-file-systems
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_file_systems/mounting-file-systems_managing-file-systems

T (terabytes) - 1,099,511,627,776 bytes

Prerequisites

An ext4 file system. For information about creating an ext4 file system, see Creating an ext4 file
system.

An underlying block device of an appropriate size to hold the file system after resizing.

Procedure

1. To resize an ext4 file system, take the following steps:

To shrink and grow the size of an unmounted ext4 file system:

umount /dev/block_device
e2fsck -f /dev/block_device
resize2fs /dev/block_device size

Replace /dev/block_device with the path to the block device, for example /dev/sdb1.

Replace size with the required resize value using s, K, M, G, and T suffixes.

An ext4 file system may be grown while mounted using the resize2fs command:

resize2fs /mount/device size

NOTE

The size parameter is optional (and often redundant) when expanding. The
resize2fs automatically expands to fill the available space of the container,
usually a logical volume or partition.

2. To view the resized file system:

df -h

Additional resources

resize2fs, e2fsck, and ext4 man pages on your system

30.5. COMPARISON OF TOOLS USED WITH EXT4 AND XFS

This section compares which tools to use to accomplish common tasks on the ext4 and XFS file
systems.

Task ext4 XFS

Create a file system mkfs.ext4 mkfs.xfs

File system check e2fsck xfs_repair

Red Hat Enterprise Linux 9.0 Managing file systems

172

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/managing_file_systems/index#creating-an-ext4-file-system_getting-started-with-an-ext4-file-system

Resize a file system resize2fs xfs_growfs

Save an image of a file system e2image xfs_metadump and
xfs_mdrestore

Label or tune a file system tune2fs xfs_admin

Back up a file system tar and rsync xfsdump and xfsrestore

Quota management quota xfs_quota

File mapping filefrag xfs_bmap

Task ext4 XFS

NOTE

If you want a complete client-server solution for backups over network, you can use
bacula backup utility that is available in RHEL 9. For more information about Bacula, see
Bacula backup solution .

CHAPTER 30. GETTING STARTED WITH AN EXT4 FILE SYSTEM

173

https://www.bacula.org/documentation/documentation/

	Table of Contents
	PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
	CHAPTER 1. OVERVIEW OF AVAILABLE FILE SYSTEMS
	1.1. TYPES OF FILE SYSTEMS
	1.2. LOCAL FILE SYSTEMS
	1.3. THE XFS FILE SYSTEM
	1.4. THE EXT4 FILE SYSTEM
	1.5. COMPARISON OF XFS AND EXT4
	1.6. CHOOSING A LOCAL FILE SYSTEM
	1.7. NETWORK FILE SYSTEMS
	1.8. SHARED STORAGE FILE SYSTEMS
	1.9. CHOOSING BETWEEN NETWORK AND SHARED STORAGE FILE SYSTEMS
	1.10. VOLUME-MANAGING FILE SYSTEMS

	CHAPTER 2. MANAGING LOCAL STORAGE BY USING RHEL SYSTEM ROLES
	2.1. CREATING AN XFS FILE SYSTEM ON A BLOCK DEVICE BY USING THE STORAGE RHEL SYSTEM ROLE
	2.2. PERSISTENTLY MOUNTING A FILE SYSTEM BY USING THE STORAGE RHEL SYSTEM ROLE
	2.3. CREATING OR RESIZING A LOGICAL VOLUME BY USING THE STORAGE RHEL SYSTEM ROLE
	2.4. ENABLING ONLINE BLOCK DISCARD BY USING THE STORAGE RHEL SYSTEM ROLE
	2.5. CREATING AND MOUNTING A FILE SYSTEM BY USING THE STORAGE RHEL SYSTEM ROLE
	2.6. CONFIGURING A RAID VOLUME BY USING THE STORAGE RHEL SYSTEM ROLE
	2.7. CONFIGURING AN LVM POOL WITH RAID BY USING THE STORAGE RHEL SYSTEM ROLE
	2.8. CONFIGURING A STRIPE SIZE FOR RAID LVM VOLUMES BY USING THE STORAGE RHEL SYSTEM ROLE
	2.9. CONFIGURING AN LVM-VDO VOLUME BY USING THE STORAGE RHEL SYSTEM ROLE
	2.10. CREATING A LUKS2 ENCRYPTED VOLUME BY USING THE STORAGE RHEL SYSTEM ROLE
	2.11. CREATING SHARED LVM DEVICES USING THE STORAGE RHEL SYSTEM ROLE
	2.12. RESIZING PHYSICAL VOLUMES BY USING THE STORAGE RHEL SYSTEM ROLE
	2.13. CREATING AN ENCRYPTED STRATIS POOL BY USING THE STORAGE RHEL SYSTEM ROLE

	CHAPTER 3. MANAGING PARTITIONS USING THE WEB CONSOLE
	3.1. DISPLAYING PARTITIONS FORMATTED WITH FILE SYSTEMS IN THE WEB CONSOLE
	3.2. CREATING PARTITIONS IN THE WEB CONSOLE
	3.3. DELETING PARTITIONS IN THE WEB CONSOLE

	CHAPTER 4. MOUNTING NFS SHARES
	4.1. SERVICES REQUIRED ON AN NFS CLIENT
	4.2. PREPARING AN NFSV3 CLIENT TO RUN BEHIND A FIREWALL
	4.3. PREPARING AN NFSV4 CLIENT TO RUN BEHIND A FIREWALL
	4.4. MANUALLY MOUNTING AN NFS SHARE
	4.5. MOUNTING AN NFS SHARE AUTOMATICALLY WHEN THE SYSTEM BOOTS
	4.6. CONNECTING NFS MOUNTS IN THE WEB CONSOLE
	4.7. CUSTOMIZING NFS MOUNT OPTIONS IN THE WEB CONSOLE
	4.8. SETTING UP AN NFS CLIENT WITH KERBEROS IN A RED HAT ENTERPRISE LINUX IDENTITY MANAGEMENT DOMAIN
	4.9. CONFIGURING AN NFS SERVER WITH TLS SUPPORT
	4.10. CONFIGURING AN NFS CLIENT WITH TLS SUPPORT
	4.11. CONFIGURING AN NFS CLIENT WITH MUTUAL TLS SUPPORT
	4.12. CONFIGURING GNOME TO STORE USER SETTINGS ON HOME DIRECTORIES HOSTED ON AN NFS SHARE
	4.13. FREQUENTLY USED NFS MOUNT OPTIONS
	4.14. ENABLING CLIENT-SIDE CACHING OF NFS CONTENT
	4.14.1. How NFS caching works
	4.14.2. Installing and configuring the cachefilesd service
	4.14.3. Sharing NFS cache
	4.14.4. NFS cache limitations
	4.14.5. How cache culling works

	CHAPTER 5. MOUNTING AN SMB SHARE
	5.1. SUPPORTED SMB PROTOCOL VERSIONS
	5.2. UNIX EXTENSIONS SUPPORT
	5.3. MANUALLY MOUNTING AN SMB SHARE
	5.4. MOUNTING AN SMB SHARE AUTOMATICALLY WHEN THE SYSTEM BOOTS
	5.5. CREATING A CREDENTIALS FILE TO AUTHENTICATE TO AN SMB SHARE
	5.6. PERFORMING A MULTI-USER SMB MOUNT
	5.6.1. Mounting a share with the multiuser option
	5.6.2. Verifying if an SMB share is mounted with the multiuser option
	5.6.3. Accessing a share as a user

	5.7. FREQUENTLY USED SMB MOUNT OPTIONS

	CHAPTER 6. OVERVIEW OF PERSISTENT NAMING ATTRIBUTES
	6.1. DISADVANTAGES OF NON-PERSISTENT NAMING ATTRIBUTES
	6.2. FILE SYSTEM AND DEVICE IDENTIFIERS
	File system identifiers
	Device identifiers
	Recommendations

	6.3. DEVICE NAMES MANAGED BY THE UDEV MECHANISM IN /DEV/DISK/
	6.3.1. File system identifiers
	The UUID attribute in /dev/disk/by-uuid/
	The Label attribute in /dev/disk/by-label/

	6.3.2. Device identifiers
	The WWID attribute in /dev/disk/by-id/
	The Partition UUID attribute in /dev/disk/by-partuuid
	The Path attribute in /dev/disk/by-path/

	6.4. THE WORLD WIDE IDENTIFIER WITH DM MULTIPATH
	6.5. LIMITATIONS OF THE UDEV DEVICE NAMING CONVENTION
	6.6. LISTING PERSISTENT NAMING ATTRIBUTES
	6.7. MODIFYING PERSISTENT NAMING ATTRIBUTES

	CHAPTER 7. PARTITION OPERATIONS WITH PARTED
	7.1. VIEWING THE PARTITION TABLE WITH PARTED
	7.2. CREATING A PARTITION TABLE ON A DISK WITH PARTED
	7.3. CREATING A PARTITION WITH PARTED
	7.4. REMOVING A PARTITION WITH PARTED
	7.5. RESIZING A PARTITION WITH PARTED

	CHAPTER 8. STRATEGIES FOR REPARTITIONING A DISK
	8.1. USING UNPARTITIONED FREE SPACE
	8.2. USING SPACE FROM AN UNUSED PARTITION
	8.3. USING FREE SPACE FROM AN ACTIVE PARTITION
	8.3.1. Destructive repartitioning
	8.3.2. Non-destructive repartitioning

	CHAPTER 9. GETTING STARTED WITH XFS
	9.1. THE XFS FILE SYSTEM
	9.2. COMPARISON OF TOOLS USED WITH EXT4 AND XFS

	CHAPTER 10. CREATING AN XFS FILE SYSTEM
	10.1. CREATING AN XFS FILE SYSTEM WITH MKFS.XFS

	CHAPTER 11. BACKING UP AN XFS FILE SYSTEM
	11.1. FEATURES OF XFS BACKUP
	11.2. BACKING UP AN XFS FILE SYSTEM WITH XFSDUMP

	CHAPTER 12. RESTORING AN XFS FILE SYSTEM FROM BACKUP
	12.1. FEATURES OF RESTORING XFS FROM BACKUP
	12.2. RESTORING AN XFS FILE SYSTEM FROM BACKUP WITH XFSRESTORE
	12.3. INFORMATIONAL MESSAGES WHEN RESTORING AN XFS BACKUP FROM A TAPE

	CHAPTER 13. INCREASING THE SIZE OF AN XFS FILE SYSTEM
	13.1. INCREASING THE SIZE OF AN XFS FILE SYSTEM WITH XFS_GROWFS

	CHAPTER 14. CONFIGURING XFS ERROR BEHAVIOR
	14.1. CONFIGURABLE ERROR HANDLING IN XFS
	14.2. CONFIGURATION FILES FOR SPECIFIC AND UNDEFINED XFS ERROR CONDITIONS
	14.3. SETTING XFS BEHAVIOR FOR SPECIFIC CONDITIONS
	14.4. SETTING XFS BEHAVIOR FOR UNDEFINED CONDITIONS
	14.5. SETTING THE XFS UNMOUNT BEHAVIOR

	CHAPTER 15. CHECKING AND REPAIRING A FILE SYSTEM
	15.1. SCENARIOS THAT REQUIRE A FILE SYSTEM CHECK
	15.2. POTENTIAL SIDE EFFECTS OF RUNNING FSCK
	15.3. ERROR-HANDLING MECHANISMS IN XFS
	Unclean unmounts
	Corruption

	15.4. CHECKING AN XFS FILE SYSTEM WITH XFS_REPAIR
	15.5. REPAIRING AN XFS FILE SYSTEM WITH XFS_REPAIR
	15.6. ERROR HANDLING MECHANISMS IN EXT2, EXT3, AND EXT4
	15.7. CHECKING AN EXT2, EXT3, OR EXT4 FILE SYSTEM WITH E2FSCK
	15.8. REPAIRING AN EXT2, EXT3, OR EXT4 FILE SYSTEM WITH E2FSCK

	CHAPTER 16. MOUNTING FILE SYSTEMS
	16.1. THE LINUX MOUNT MECHANISM
	16.2. LISTING CURRENTLY MOUNTED FILE SYSTEMS
	16.3. MOUNTING A FILE SYSTEM WITH MOUNT
	16.4. MOVING A MOUNT POINT
	16.5. UNMOUNTING A FILE SYSTEM WITH UMOUNT
	16.6. MOUNTING AND UNMOUNTING FILE SYSTEMS IN THE WEB CONSOLE
	16.7. COMMON MOUNT OPTIONS

	CHAPTER 17. SHARING A MOUNT ON MULTIPLE MOUNT POINTS
	17.1. TYPES OF SHARED MOUNTS
	17.2. CREATING A PRIVATE MOUNT POINT DUPLICATE
	17.3. CREATING A SHARED MOUNT POINT DUPLICATE
	17.4. CREATING A SLAVE MOUNT POINT DUPLICATE
	17.5. PREVENTING A MOUNT POINT FROM BEING DUPLICATED

	CHAPTER 18. PERSISTENTLY MOUNTING FILE SYSTEMS
	18.1. THE /ETC/FSTAB FILE
	18.2. ADDING A FILE SYSTEM TO /ETC/FSTAB

	CHAPTER 19. MOUNTING FILE SYSTEMS ON DEMAND
	19.1. THE AUTOFS SERVICE
	19.2. THE AUTOFS CONFIGURATION FILES
	19.3. CONFIGURING AUTOFS MOUNT POINTS
	19.4. AUTOMOUNTING NFS SERVER USER HOME DIRECTORIES WITH AUTOFS SERVICE
	19.5. OVERRIDING OR AUGMENTING AUTOFS SITE CONFIGURATION FILES
	19.6. USING LDAP TO STORE AUTOMOUNTER MAPS
	19.7. USING SYSTEMD.AUTOMOUNT TO MOUNT A FILE SYSTEM ON DEMAND WITH /ETC/FSTAB
	19.8. USING SYSTEMD.AUTOMOUNT TO MOUNT A FILE SYSTEM ON-DEMAND WITH A MOUNT UNIT

	CHAPTER 20. USING SSSD COMPONENT FROM IDM TO CACHE THE AUTOFS MAPS
	20.1. CONFIGURING AUTOFS MANUALLY TO USE IDM SERVER AS AN LDAP SERVER
	20.2. CONFIGURING SSSD TO CACHE AUTOFS MAPS

	CHAPTER 21. SETTING READ-ONLY PERMISSIONS FOR THE ROOT FILE SYSTEM
	21.1. FILES AND DIRECTORIES THAT ALWAYS RETAIN WRITE PERMISSIONS
	21.2. CONFIGURING THE ROOT FILE SYSTEM TO MOUNT WITH READ-ONLY PERMISSIONS ON BOOT

	CHAPTER 22. LIMITING STORAGE SPACE USAGE ON XFS WITH QUOTAS
	22.1. DISK QUOTAS
	22.2. THE XFS_QUOTA TOOL
	22.3. FILE SYSTEM QUOTA MANAGEMENT IN XFS
	22.4. ENABLING DISK QUOTAS FOR XFS
	22.5. REPORTING XFS USAGE
	22.6. MODIFYING XFS QUOTA LIMITS
	22.7. SETTING PROJECT LIMITS FOR XFS

	CHAPTER 23. LIMITING STORAGE SPACE USAGE ON EXT4 WITH QUOTAS
	23.1. INSTALLING THE QUOTA TOOL
	23.2. ENABLING QUOTA FEATURE ON FILE SYSTEM CREATION
	23.3. ENABLING QUOTA FEATURE ON EXISTING FILE SYSTEMS
	23.4. ENABLING QUOTA ENFORCEMENT
	23.5. ASSIGNING QUOTAS PER USER
	23.6. ASSIGNING QUOTAS PER GROUP
	23.7. ASSIGNING QUOTAS PER PROJECT
	23.8. SETTING THE GRACE PERIOD FOR SOFT LIMITS
	23.9. TURNING FILE SYSTEM QUOTAS OFF
	23.10. REPORTING ON DISK QUOTAS

	CHAPTER 24. DISCARDING UNUSED BLOCKS
	Requirements
	24.1. TYPES OF BLOCK DISCARD OPERATIONS
	Recommendations

	24.2. PERFORMING BATCH BLOCK DISCARD
	24.3. ENABLING ONLINE BLOCK DISCARD
	24.4. ENABLING ONLINE BLOCK DISCARD BY USING THE STORAGE RHEL SYSTEM ROLE
	24.5. ENABLING PERIODIC BLOCK DISCARD

	CHAPTER 25. SETTING UP STRATIS FILE SYSTEMS
	25.1. COMPONENTS OF A STRATIS FILE SYSTEM
	25.2. BLOCK DEVICES COMPATIBLE WITH STRATIS
	Supported devices

	25.3. INSTALLING STRATIS
	25.4. CREATING AN UNENCRYPTED STRATIS POOL
	25.5. CREATING AN UNENCRYPTED STRATIS POOL BY USING THE WEB CONSOLE
	25.6. CREATING AN ENCRYPTED STRATIS POOL USING A KEY IN THE KERNEL KEYRING
	25.7. CREATING AN ENCRYPTED STRATIS POOL USING CLEVIS
	25.8. CREATING AN ENCRYPTED STRATIS POOL BY USING THE STORAGE RHEL SYSTEM ROLE
	25.9. CREATING AN ENCRYPTED STRATIS POOL BY USING THE WEB CONSOLE
	25.10. RENAMING A STRATIS POOL BY USING THE WEB CONSOLE
	25.11. SETTING OVERPROVISIONING MODE IN STRATIS FILE SYSTEM
	25.12. BINDING A STRATIS POOL TO NBDE
	25.13. BINDING A STRATIS POOL TO TPM
	25.14. UNLOCKING AN ENCRYPTED STRATIS POOL WITH KERNEL KEYRING
	25.15. UNBINDING A STRATIS POOL FROM SUPPLEMENTARY ENCRYPTION
	25.16. STARTING AND STOPPING STRATIS POOL
	25.17. CREATING A STRATIS FILE SYSTEM
	25.18. CREATING A FILE SYSTEM ON A STRATIS POOL BY USING THE WEB CONSOLE
	25.19. MOUNTING A STRATIS FILE SYSTEM
	25.20. SETTING UP NON-ROOT STRATIS FILE SYSTEMS IN /ETC/FSTAB USING A SYSTEMD SERVICE

	CHAPTER 26. EXTENDING A STRATIS POOL WITH ADDITIONAL BLOCK DEVICES
	26.1. ADDING BLOCK DEVICES TO A STRATIS POOL
	26.2. ADDING A BLOCK DEVICE TO A STRATIS POOL BY USING THE WEB CONSOLE

	CHAPTER 27. MONITORING STRATIS FILE SYSTEMS
	27.1. DISPLAYING INFORMATION ABOUT STRATIS FILE SYSTEMS
	27.2. VIEWING A STRATIS POOL BY USING THE WEB CONSOLE

	CHAPTER 28. USING SNAPSHOTS ON STRATIS FILE SYSTEMS
	28.1. CHARACTERISTICS OF STRATIS SNAPSHOTS
	28.2. CREATING A STRATIS SNAPSHOT
	28.3. ACCESSING THE CONTENT OF A STRATIS SNAPSHOT
	28.4. REVERTING A STRATIS FILE SYSTEM TO A PREVIOUS SNAPSHOT
	28.5. REMOVING A STRATIS SNAPSHOT

	CHAPTER 29. REMOVING STRATIS FILE SYSTEMS
	29.1. REMOVING A STRATIS FILE SYSTEM
	29.2. DELETING A FILE SYSTEM FROM A STRATIS POOL BY USING THE WEB CONSOLE
	29.3. REMOVING A STRATIS POOL
	29.4. DELETING A STRATIS POOL BY USING THE WEB CONSOLE

	CHAPTER 30. GETTING STARTED WITH AN EXT4 FILE SYSTEM
	30.1. FEATURES OF AN EXT4 FILE SYSTEM
	30.2. CREATING AN EXT4 FILE SYSTEM
	30.3. MOUNTING AN EXT4 FILE SYSTEM
	30.4. RESIZING AN EXT4 FILE SYSTEM
	30.5. COMPARISON OF TOOLS USED WITH EXT4 AND XFS

