Preface


As a data scientist, you can organize your data science work into a single project. A data science project in OpenShift AI can consist of the following components:

Workbenches
Creating a workbench allows you to work with models in your preferred IDE, such as JupyterLab.
Cluster storage
For data science projects that require data retention, you can add cluster storage to the project.
Connections
Adding a connection to your project allows you to connect data inputs to your workbenches.
Pipelines
Standardize and automate machine learning workflows to enable you to further enhance and deploy your data science models.
Models and model servers
Deploy a trained data science model to serve intelligent applications. Your model is deployed with an endpoint that allows applications to send requests to the model.
Back to top
Red Hat logoGithubredditYoutubeTwitter

Learn

Try, buy, & sell

Communities

About Red Hat Documentation

We help Red Hat users innovate and achieve their goals with our products and services with content they can trust. Explore our recent updates.

Making open source more inclusive

Red Hat is committed to replacing problematic language in our code, documentation, and web properties. For more details, see the Red Hat Blog.

About Red Hat

We deliver hardened solutions that make it easier for enterprises to work across platforms and environments, from the core datacenter to the network edge.

Theme

© 2025 Red Hat, Inc.