Deploying OpenShift Container Storage using Amazon Web Services
How to install and set up OpenShift Container Storage on OpenShift Container Platform AWS Clusters
Abstract
Preface
Red Hat OpenShift Container Storage 4.6 supports deployment on existing Red Hat OpenShift Container Platform (RHOCP) AWS clusters in connected or disconnected environments along with out-of-the-box support for proxy environments.
Only internal Openshift Container Storage clusters are supported on AWS. See Planning your deployment for more information about deployment requirements.
To deploy OpenShift Container Storage in internal mode, follow the appropriate deployment process for your environment:
- Deploy using dynamic storage devices
- Deploy using local storage devices [Technology Preview]
Chapter 1. Deploy using dynamic storage devices
Deploying OpenShift Container Storage on OpenShift Container Platform using dynamic storage devices provided by AWS EBS (type: gp2) provides you with the option to create internal cluster resources. This will result in the internal provisioning of the base services, which helps to make additional storage classes available to applications.
Only internal Openshift Container Storage clusters are supported on AWS. See Planning your deployment for more information about deployment requirements.
For Red Hat Enterprise Linux based hosts for worker nodes in a user provisioned infrastructure (UPI), enable the container access to the underlying file system. Follow the instructions on enable file system access for containers on Red Hat Enterprise Linux based nodes.
NoteSkip this step for Red Hat Enterprise Linux CoreOS (RHCOS).
- Install the Red Hat OpenShift Container Storage Operator.
- Create the OpenShift Container Storage Cluster Service.
1.1. Enabling file system access for containers on Red Hat Enterprise Linux based nodes
Deploying OpenShift Container Storage on an OpenShift Container Platform with worker nodes on a Red Hat Enterprise Linux base in a user provisioned infrastructure (UPI) does not automatically provide container access to the underlying Ceph file system.
This process is not necessary for hosts based on Red Hat Enterprise Linux CoreOS.
Procedure
Perform the following steps on each node in your cluster.
- Log in to the Red Hat Enterprise Linux based node and open a terminal.
Verify that the node has access to the rhel-7-server-extras-rpms repository.
# subscription-manager repos --list-enabled | grep rhel-7-server
If you do not see both
rhel-7-server-rpms
andrhel-7-server-extras-rpms
in the output, or if there is no output, run the following commands to enable each repository.# subscription-manager repos --enable=rhel-7-server-rpms # subscription-manager repos --enable=rhel-7-server-extras-rpms
Install the required packages.
# yum install -y policycoreutils container-selinux
Persistently enable container use of the Ceph file system in SELinux.
# setsebool -P container_use_cephfs on
1.2. Installing Red Hat OpenShift Container Storage Operator
You can install Red Hat OpenShift Container Storage Operator using the Red Hat OpenShift Container Platform Operator Hub. For information about the hardware and software requirements, see Planning your deployment.
Prerequisites
- You must be logged into the OpenShift Container Platform (RHOCP) cluster.
- You must have at least three worker nodes in the RHOCP cluster.
When you need to override the cluster-wide default node selector for OpenShift Container Storage, you can use the following command in command line interface to specify a blank node selector for the
openshift-storage
namespace:$ oc annotate namespace openshift-storage openshift.io/node-selector=
-
Taint a node as
infra
to ensure only Red Hat OpenShift Container Storage resources are scheduled on that node. This helps you save on subscription costs. For more information, see How to use dedicated worker nodes for Red Hat OpenShift Container Storage chapter in Managing and Allocating Storage Resources guide.
Procedure
- Click Operators → OperatorHub in the left pane of the OpenShift Web Console.
- Use Filter by keyword text box or the filter list to search for OpenShift Container Storage from the list of operators.
- Click OpenShift Container Storage.
- On the OpenShift Container Storage operator page, click Install.
On the Install Operator page, ensure the following options are selected by default::
- Update Channel as stable-4.6
- Installation Mode as A specific namespace on the cluster
-
Installed Namespace as Operator recommended namespace openshift-storage. If Namespace
openshift-storage
does not exist, it will be created during the operator installation. - Select Enable operator recommended cluster monitoring on this namespace checkbox as this is required for cluster monitoring.
Select Approval Strategy as Automatic or Manual. Approval Strategy is set to Automatic by default.
Approval Strategy as Automatic.
NoteWhen you select the Approval Strategy as Automatic, approval is not required either during fresh installation or when updating to the latest version of OpenShift Container Storage.
- Click Install
- Wait for the install to initiate. This may take up to 20 minutes.
- Click Operators → Installed Operators
-
Ensure the Project is
openshift-storage
. By default, the Project isopenshift-storage
. - Wait for the Status of OpenShift Container Storage to change to Succeeded.
Approval Strategy as Manual.
NoteWhen you select the Approval Strategy as Manual, approval is required during fresh installation or when updating to the latest version of OpenShift Container Storage.
- Click Install
On the Manual approval required page, you can either click Approve or View Installed Operators in namespace openshift-storage to install the operator.
ImportantBefore you click either of the options, wait for a few minutes on the Manual approval required page until the install plan gets loaded in the window.
ImportantIf you choose to click Approve, you must review the install plan before you proceed.
If you click Approve.
- Wait for a few minutes while the OpenShift Container Storage Operator is getting installed.
- On the Installed operator - ready for use page, click View Operator.
-
Ensure the Project is
openshift-storage
. By default, the Project isopenshift-storage
. - Click Operators → Installed Operators
- Wait for the Status of OpenShift Container Storage to change to Succeeded.
If you click View Installed Operators in namespace openshift-storage .
- On the Installed Operators page, click ocs-operator.
- On the Subscription Details page, click the Install Plan link.
- On the InstallPlan Details page, click Preview Install Plan.
- Review the install plan and click Approve.
- Wait for the Status of the Components to change from Unknown to either Created or Present.
- Click Operators → Installed Operators
-
Ensure the Project is
openshift-storage
. By default, the Project isopenshift-storage
. - Wait for the Status of OpenShift Container Storage to change to Succeeded.
Verification steps
- Verify that OpenShift Container Storage Operator shows a green tick indicating successful installation.
-
Click View Installed Operators in namespace openshift-storage link to verify that OpenShift Container Storage Operator shows the Status as
Succeeded
on the Installed Operators dashboard.
1.3. Creating an OpenShift Container Storage Cluster Service in internal mode
Use this procedure to create an OpenShift Container Storage Cluster Service after you install the OpenShift Container Storage operator.
Prerequisites
- The OpenShift Container Storage operator must be installed from the Operator Hub. For more information, see Installing OpenShift Container Storage Operator using the Operator Hub.
Procedure
Click Operators → Installed Operators to view all the installed operators.
Ensure that the Project selected is openshift-storage.
Figure 1.1. OpenShift Container Storage Operator page
Click OpenShift Container Storage.
Figure 1.2. Details tab of OpenShift Container Storage
Click Create Instance link of Storage Cluster.
Figure 1.3. Create Storage Cluster page
On the Create Storage Cluster page, ensure that the following options are selected:
-
In the Select Mode section,
Internal
mode is selected by default. -
Storage Class is set by default to
gp2
for AWS. Select OpenShift Container Storage Service Capacity from drop down list.
NoteOnce you select the initial storage capacity, cluster expansion will only be performed using the selected usable capacity (times 3 of raw storage).
-
(Optional) In the Encryption section, set the toggle to
Enabled
to enable data encryption on the cluster. In the Nodes section, select at least three worker nodes from the available list for the use of OpenShift Container Storage service.
For cloud platforms with multiple availability zones, ensure that the Nodes are spread across different Locations/availability zones.
NoteTo find specific worker nodes in the cluster, you can filter nodes on the basis of Name or Label.
- Name allows you to search by name of the node
- Label allows you to search by selecting the predefined label
If the nodes selected do not match the OpenShift Container Storage cluster requirement of an aggregated 30 CPUs and 72 GiB of RAM, a minimal cluster will be deployed. For minimum starting node requirements, see Resource requirements section in Planning guide.
-
In the Select Mode section,
Click Create.
The Create button is enabled only after you select three nodes. A new storage cluster with three storage devices will be created, one per selected node. The default configuration uses a replication factor of 3.
Verification steps
Verify that the final Status of the installed storage cluster shows as
Phase: Ready
with a green tick mark.- Click Operators → Installed Operators → Storage Cluster link to view the storage cluster installation status.
- Alternatively, when you are on the Operator Details tab, you can click on the Storage Cluster tab to view the status.
- To verify that all components for OpenShift Container Storage are successfully installed, see Verifying your OpenShift Container Storage installation.
Chapter 2. Deploying using local storage devices
Deploying OpenShift Container Storage on OpenShift Container Platform using local storage devices provides you with the option to create internal cluster resources. This will result in the internal provisioning of the base services, which helps to make additional storage classes available to applications.
Use this section to deploy OpenShift Container Storage on Amazon EC2 storage optimized I3 where OpenShift Container Platform is already installed.
Installing OpenShift Container Storage on Amazon EC2 storage optimized I3 instances using the Local Storage Operator is a Technology Preview feature. Technology Preview features are not supported with Red Hat production service level agreements (SLAs) and might not be functionally complete. Red Hat does not recommend using them in production. These features provide early access to upcoming product features, enabling customers to test functionality and provide feedback during the development process. Red Hat OpenShift Container Storage deployment assumes a new cluster, without any application or other workload running on the 3 worker nodes. Applications should run on additional worker nodes.
2.1. Overview of deploying with internal local storage
To deploy Red Hat OpenShift Container Storage using local storage, follow these steps:
- Understand the requirements for installing OpenShift Container Storage using local storage devices.
For Red Hat Enterprise Linux based hosts for worker nodes, enable file system access for containers on Red Hat Enterprise Linux based nodes.
NoteSkip this step for Red Hat Enterprise Linux CoreOS (RHCOS).
- Install the Red Hat OpenShift Container Storage Operator.
- Install Local Storage Operator.
- Find the available storage devices.
- Create OpenShift Container Storage cluster service on Amazon EC2 storage optimized - i3en.2xlarge instance type.
2.2. Requirements for installing OpenShift Container Storage using local storage devices
- You must upgrade to a latest version of OpenShift Container Platform 4.6 before deploying OpenShift Container Storage 4.6. For information, see Updating OpenShift Container Platform clusters guide.
- The Local Storage Operator version must match the Red Hat OpenShift Container Platform version in order to have the Local Storage Operator fully supported with Red Hat OpenShift Container Storage. The Local Storage Operator does not get upgraded when Red Hat OpenShift Container Platform is upgraded.
You must have at least three OpenShift Container Platform worker nodes in the cluster with locally attached storage devices on each of them.
- Each of the three selected nodes must have at least one raw block device available to be used by OpenShift Container Storage.
- The devices you use must be empty; the disks must not include physical volumes (PVs), volume groups (VGs), or logical volumes (LVs) remaining on the disk.
- For minimum starting node requirements, see Resource requirements section in Planning guide.
You must have a minimum of three labeled nodes.
- Ensure that the Nodes are spread across different Locations/Availability Zones for a multiple availability zones platform.
Each node that has local storage devices to be used by OpenShift Container Storage must have a specific label to deploy OpenShift Container Storage pods. To label the nodes, use the following command:
$ oc label nodes <NodeNames> cluster.ocs.openshift.io/openshift-storage=''
2.3. Enabling file system access for containers on Red Hat Enterprise Linux based nodes
Deploying OpenShift Container Storage on an OpenShift Container Platform with worker nodes on a Red Hat Enterprise Linux base in a user provisioned infrastructure (UPI) does not automatically provide container access to the underlying Ceph file system.
This process is not necessary for hosts based on Red Hat Enterprise Linux CoreOS.
Procedure
Perform the following steps on each node in your cluster.
- Log in to the Red Hat Enterprise Linux based node and open a terminal.
Verify that the node has access to the rhel-7-server-extras-rpms repository.
# subscription-manager repos --list-enabled | grep rhel-7-server
If you do not see both
rhel-7-server-rpms
andrhel-7-server-extras-rpms
in the output, or if there is no output, run the following commands to enable each repository.# subscription-manager repos --enable=rhel-7-server-rpms # subscription-manager repos --enable=rhel-7-server-extras-rpms
Install the required packages.
# yum install -y policycoreutils container-selinux
Persistently enable container use of the Ceph file system in SELinux.
# setsebool -P container_use_cephfs on
2.4. Installing Red Hat OpenShift Container Storage Operator
You can install Red Hat OpenShift Container Storage Operator using the Red Hat OpenShift Container Platform Operator Hub. For information about the hardware and software requirements, see Planning your deployment.
Prerequisites
- You must be logged into the OpenShift Container Platform (RHOCP) cluster.
- You must have at least three worker nodes in the RHOCP cluster.
When you need to override the cluster-wide default node selector for OpenShift Container Storage, you can use the following command in command line interface to specify a blank node selector for the
openshift-storage
namespace:$ oc annotate namespace openshift-storage openshift.io/node-selector=
-
Taint a node as
infra
to ensure only Red Hat OpenShift Container Storage resources are scheduled on that node. This helps you save on subscription costs. For more information, see How to use dedicated worker nodes for Red Hat OpenShift Container Storage chapter in Managing and Allocating Storage Resources guide.
Procedure
- Click Operators → OperatorHub in the left pane of the OpenShift Web Console.
- Use Filter by keyword text box or the filter list to search for OpenShift Container Storage from the list of operators.
- Click OpenShift Container Storage.
- On the OpenShift Container Storage operator page, click Install.
On the Install Operator page, ensure the following options are selected by default::
- Update Channel as stable-4.6
- Installation Mode as A specific namespace on the cluster
-
Installed Namespace as Operator recommended namespace openshift-storage. If Namespace
openshift-storage
does not exist, it will be created during the operator installation. - Select Enable operator recommended cluster monitoring on this namespace checkbox as this is required for cluster monitoring.
Select Approval Strategy as Automatic or Manual. Approval Strategy is set to Automatic by default.
Approval Strategy as Automatic.
NoteWhen you select the Approval Strategy as Automatic, approval is not required either during fresh installation or when updating to the latest version of OpenShift Container Storage.
- Click Install
- Wait for the install to initiate. This may take up to 20 minutes.
- Click Operators → Installed Operators
-
Ensure the Project is
openshift-storage
. By default, the Project isopenshift-storage
. - Wait for the Status of OpenShift Container Storage to change to Succeeded.
Approval Strategy as Manual.
NoteWhen you select the Approval Strategy as Manual, approval is required during fresh installation or when updating to the latest version of OpenShift Container Storage.
- Click Install
On the Manual approval required page, you can either click Approve or View Installed Operators in namespace openshift-storage to install the operator.
ImportantBefore you click either of the options, wait for a few minutes on the Manual approval required page until the install plan gets loaded in the window.
ImportantIf you choose to click Approve, you must review the install plan before you proceed.
If you click Approve.
- Wait for a few minutes while the OpenShift Container Storage Operator is getting installed.
- On the Installed operator - ready for use page, click View Operator.
-
Ensure the Project is
openshift-storage
. By default, the Project isopenshift-storage
. - Click Operators → Installed Operators
- Wait for the Status of OpenShift Container Storage to change to Succeeded.
If you click View Installed Operators in namespace openshift-storage .
- On the Installed Operators page, click ocs-operator.
- On the Subscription Details page, click the Install Plan link.
- On the InstallPlan Details page, click Preview Install Plan.
- Review the install plan and click Approve.
- Wait for the Status of the Components to change from Unknown to either Created or Present.
- Click Operators → Installed Operators
-
Ensure the Project is
openshift-storage
. By default, the Project isopenshift-storage
. - Wait for the Status of OpenShift Container Storage to change to Succeeded.
Verification steps
- Verify that OpenShift Container Storage Operator shows a green tick indicating successful installation.
-
Click View Installed Operators in namespace openshift-storage link to verify that OpenShift Container Storage Operator shows the Status as
Succeeded
on the Installed Operators dashboard.
2.5. Installing Local Storage Operator
Use this procedure to install the Local Storage Operator from the Operator Hub before creating OpenShift Container Storage clusters on local storage devices.
Procedure
- Log in to the OpenShift Web Console.
- Click Operators → OperatorHub.
-
Type
local storage
in the Filter by keyword… box to search forLocal Storage
operator from the list of operators and click on it. Click Install.
Figure 2.1. Install Operator page
Set the following options on the Install Operator page:
- Update Channel as 4.6
- Installation Mode as A specific namespace on the cluster
- Installed Namespace as Operator recommended namespace openshift-local-storage.
- Approval Strategy as Automatic
- Click Install.
-
Verify that the Local Storage Operator shows the Status as
Succeeded
.
2.6. Finding available storage devices
Use this procedure to identify the device names for each of the three or more nodes that you have labeled with the OpenShift Container Storage label cluster.ocs.openshift.io/openshift-storage=''
before creating PVs.
Procedure
List and verify the name of the nodes with the OpenShift Container Storage label.
$ oc get nodes -l cluster.ocs.openshift.io/openshift-storage=
Example output:
NAME STATUS ROLES AGE VERSION ip-10-0-135-71.us-east-2.compute.internal Ready worker 6h45m v1.16.2 ip-10-0-145-125.us-east-2.compute.internal Ready worker 6h45m v1.16.2 ip-10-0-160-91.us-east-2.compute.internal Ready worker 6h45m v1.16.2
Log in to each node that is used for OpenShift Container Storage resources and find the unique
by-id
device name for each available raw block device.$ oc debug node/<node name>
Example output:
$ oc debug node/ip-10-0-135-71.us-east-2.compute.internal Starting pod/ip-10-0-135-71us-east-2computeinternal-debug ... To use host binaries, run `chroot /host` Pod IP: 10.0.135.71 If you don't see a command prompt, try pressing enter. sh-4.2# chroot /host sh-4.4# lsblk NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT xvda 202:0 0 120G 0 disk |-xvda1 202:1 0 384M 0 part /boot |-xvda2 202:2 0 127M 0 part /boot/efi |-xvda3 202:3 0 1M 0 part `-xvda4 202:4 0 119.5G 0 part `-coreos-luks-root-nocrypt 253:0 0 119.5G 0 dm /sysroot nvme0n1 259:0 0 2.3T 0 disk nvme1n1 259:1 0 2.3T 0 disk
In this example, for the selected node, the local devices available are
nvme0n1
andnvme1n1
.Identify the unique ID for each of the devices selected in Step 2.
sh-4.4# ls -l /dev/disk/by-id/ | grep Storage lrwxrwxrwx. 1 root root 13 Mar 17 16:24 nvme-Amazon_EC2_NVMe_Instance_Storage_AWS10382E5D7441494EC -> ../../nvme0n1 lrwxrwxrwx. 1 root root 13 Mar 17 16:24 nvme-Amazon_EC2_NVMe_Instance_Storage_AWS60382E5D7441494EC -> ../../nvme1n1
In the example above, the IDs for the two local devices are
- nvme0n1: nvme-Amazon_EC2_NVMe_Instance_Storage_AWS10382E5D7441494EC
- nvme1n1: nvme-Amazon_EC2_NVMe_Instance_Storage_AWS60382E5D7441494EC
- Repeat the above step to identify the device ID for all the other nodes that have the storage devices to be used by OpenShift Container Storage. See this Knowledge Base article for more details.
2.7. Creating OpenShift Container Storage cluster on Amazon EC2 storage optimized - i3en.2xlarge instance type
Use this procedure to create OpenShift Container Storage cluster on Amazon EC2 (storage optimized - i3en.2xlarge instance type) infrastructure, which will:
-
Create PVs by using the
LocalVolume
CR -
Create a new
StorageClass
The Amazon EC2 storage optimized - i3en.2xlarge instance type includes two non-volatile memory express (NVMe) disks. The example in this procedure illustrates the use of both the disks that the instance type comes with.
When you are using the ephemeral storage of Amazon EC2 I3
- Use three availability zones to decrease the risk of losing all the data.
- Limit the number of users with ec2:StopInstances permissions to avoid instance shutdown by mistake.
It is not recommended to use ephemeral storage of Amazon EC2 I3 for OpenShift Container Storage persistent data, because stopping all the three nodes can cause data loss.
It is recommended to use ephemeral storage of Amazon EC2 I3 only in following scenarios:
- Cloud burst where data is copied from another location for a specific data crunching, which is limited in time
- Development or testing environment
Installing OpenShift Container Storage on Amazon EC2 storage optimized - i3en.2xlarge instance using local storage operator is a Technology Preview feature. Technology Preview features are not supported with Red Hat production service level agreements (SLAs) and might not be functionally complete. Red Hat does not recommend using them in production. These features provide early access to upcoming product features, enabling customers to test functionality and provide feedback during the development process.
Prerequisites
- Ensure that all the requirements in the Requirements for installing OpenShift Container Storage using local storage devices section are met.
Verify your OpenShift Container Platform worker nodes are labeled for OpenShift Container Storage, which is used as the
nodeSelector
.oc get nodes -l cluster.ocs.openshift.io/openshift-storage -o jsonpath='{range .items[*]}{.metadata.name}{"\n"}'
Example output:
ip-10-0-135-71.us-east-2.compute.internal ip-10-0-145-125.us-east-2.compute.internal ip-10-0-160-91.us-east-2.compute.internal
Procedure
Create local persistent volumes (PVs) on the storage nodes using
LocalVolume
custom resource (CR).Example of
LocalVolume
CRlocal-storage-block.yaml
using OpenShift Storage Container label as node selector andby-id
device identifier:apiVersion: local.storage.openshift.io/v1 kind: LocalVolume metadata: name: local-block namespace: openshift-local-storage labels: app: ocs-storagecluster spec: tolerations: - key: "node.ocs.openshift.io/storage" value: "true" effect: NoSchedule nodeSelector: nodeSelectorTerms: - matchExpressions: - key: cluster.ocs.openshift.io/openshift-storage operator: In values: - '' storageClassDevices: - storageClassName: localblock volumeMode: Block devicePaths: - /dev/disk/by-id/nvme-Amazon_EC2_NVMe_Instance_Storage_AWS10382E5D7441494EC # <-- modify this line - /dev/disk/by-id/nvme-Amazon_EC2_NVMe_Instance_Storage_AWS1F45C01D7E84FE3E9 # <-- modify this line - /dev/disk/by-id/nvme-Amazon_EC2_NVMe_Instance_Storage_AWS136BC945B4ECB9AE4 # <-- modify this line - /dev/disk/by-id/nvme-Amazon_EC2_NVMe_Instance_Storage_AWS10382E5D7441464EP # <-- modify this line - /dev/disk/by-id/nvme-Amazon_EC2_NVMe_Instance_Storage_AWS1F45C01D7E84F43E7 # <-- modify this line - /dev/disk/by-id/nvme-Amazon_EC2_NVMe_Instance_Storage_AWS136BC945B4ECB9AE8 # <-- modify this line
Each Amazon EC2 I3 instance has two disks and this example uses both disks on each node.
Create the
LocalVolume
CR.$ oc create -f local-storage-block.yaml
Example output:
localvolume.local.storage.openshift.io/local-block created
Check if the pods are created.
$ oc -n openshift-local-storage get pods
Check if the PVs are created.
You must see a new PV for each of the local storage devices on the three worker nodes. Refer to the example in the Finding available storage devices section that shows two available storage devices per worker node with a size 2.3 TiB for each node.
$ oc get pv
Example output:
NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON AGE local-pv-1a46bc79 2328Gi RWO Delete Available localblock 14m local-pv-429d90ee 2328Gi RWO Delete Available localblock 14m local-pv-4d0a62e3 2328Gi RWO Delete Available localblock 14m local-pv-55c05d76 2328Gi RWO Delete Available localblock 14m local-pv-5c7b0990 2328Gi RWO Delete Available localblock 14m local-pv-a6b283b 2328Gi RWO Delete Available localblock 14m
Check for the new
StorageClass
that is now present when theLocalVolume
CR is created. ThisStorageClass
is used to provide theStorageCluster
PVCs in the following steps.$ oc get sc | grep localblock
Example output:
NAME PROVISIONER RECLAIMPOLICY VOLUMEBINDINGMODE ALLOWVOLUMEEXPANSION AGE localblock kubernetes.io/no-provisioner Delete WaitForFirstConsumer false 15m
Create the
StorageCluster
CR that uses thelocalblock
StorageClass to consume the PVs created by the Local Storage Operator.Example of
StorageCluster
CRocs-cluster-service.yaml
usingmonDataDirHostPath
andlocalblock
StorageClass.apiVersion: ocs.openshift.io/v1 kind: StorageCluster metadata: name: ocs-storagecluster namespace: openshift-storage spec: manageNodes: false resources: mds: limits: cpu: 3 memory: 8Gi requests: cpu: 1 memory: 8Gi monDataDirHostPath: /var/lib/rook storageDeviceSets: - count: 2 dataPVCTemplate: spec: accessModes: - ReadWriteOnce resources: requests: storage: 2328Gi storageClassName: localblock volumeMode: Block name: ocs-deviceset placement: {} portable: false replica: 3 resources: limits: cpu: 2 memory: 5Gi requests: cpu: 1 memory: 5Gi
ImportantTo ensure that the OSDs have a guaranteed size across the nodes, the storage size for
storageDeviceSets
must be specified as less than or equal to the size of the PVs created on the nodes.Create
StorageCluster
CR.$ oc create -f ocs-cluster-service.yaml
Example output
storagecluster.ocs.openshift.io/ocs-cluster-service created
Verification steps
See Verifying your OpenShift Container Storage installation.
Chapter 3. Verifying OpenShift Container Storage deployment for internal mode
Use this section to verify that OpenShift Container Storage is deployed correctly.
3.1. Verifying the state of the pods
To determine if OpenShift Container storage is deployed successfully, you can verify that the pods are in Running
state.
Procedure
- Click Workloads → Pods from the left pane of the OpenShift Web Console.
Select openshift-storage from the Project drop down list.
For more information on the expected number of pods for each component and how it varies depending on the number of nodes, see Table 3.1, “Pods corresponding to OpenShift Container storage cluster”.
Verify that the following pods are in running and completed state by clicking on the Running and the Completed tabs:
Table 3.1. Pods corresponding to OpenShift Container storage cluster Component Corresponding pods OpenShift Container Storage Operator
-
ocs-operator-*
(1 pod on any worker node) -
ocs-metrics-exporter-*
Rook-ceph Operator
rook-ceph-operator-*
(1 pod on any worker node)
Multicloud Object Gateway
-
noobaa-operator-*
(1 pod on any worker node) -
noobaa-core-*
(1 pod on any storage node) -
noobaa-db-*
(1 pod on any storage node) -
noobaa-endpoint-*
(1 pod on any storage node)
MON
rook-ceph-mon-*
(3 pods distributed across storage nodes)
MGR
rook-ceph-mgr-*
(1 pod on any storage node)
MDS
rook-ceph-mds-ocs-storagecluster-cephfilesystem-*
(2 pods distributed across storage nodes)
CSI
cephfs
-
csi-cephfsplugin-*
(1 pod on each worker node) -
csi-cephfsplugin-provisioner-*
(2 pods distributed across worker nodes)
-
rbd
-
csi-rbdplugin-*
(1 pod on each worker node) -
csi-rbdplugin-provisioner-*
(2 pods distributed across worker nodes)
-
rook-ceph-crashcollector
rook-ceph-crashcollector-*
(1 pod on each storage node)
OSD
-
rook-ceph-osd-*
(1 pod for each device) -
rook-ceph-osd-prepare-ocs-deviceset-*
(1 pod for each device)
-
3.2. Verifying the OpenShift Container Storage cluster is healthy
- Click Home → Overview from the left pane of the OpenShift Web Console and click Persistent Storage tab.
In the Status card, verify that OCS Cluster and Data Resiliency has a green tick mark as shown in the following image:
Figure 3.1. Health status card in Persistent Storage Overview Dashboard
In the Details card, verify that the cluster information is displayed as follows:
- Service Name
- OpenShift Container Storage
- Cluster Name
- ocs-storagecluster
- Provider
- AWS
- Mode
- Internal
- Version
- ocs-operator-4.6.0
For more information on the health of OpenShift Container Storage cluster using the persistent storage dashboard, see Monitoring OpenShift Container Storage.
3.3. Verifying the Multicloud Object Gateway is healthy
- Click Home → Overview from the left pane of the OpenShift Web Console and click the Object Service tab.
In the Status card, verify that both Object Service and Data Resiliency are in
Ready
state (green tick).Figure 3.2. Health status card in Object Service Overview Dashboard
In the Details card, verify that the MCG information is displayed as follows:
- Service Name
- OpenShift Container Storage
- System Name
- Multicloud Object Gateway
- Provider
- AWS
- Version
- ocs-operator-4.6.0
For more information on the health of the OpenShift Container Storage cluster using the object service dashboard, see Monitoring OpenShift Container Storage.
3.4. Verifying that the OpenShift Container Storage specific storage classes exist
To verify the storage classes exists in the cluster:
- Click Storage → Storage Classes from the left pane of the OpenShift Web Console.
Verify that the following storage classes are created with the OpenShift Container Storage cluster creation:
-
ocs-storagecluster-ceph-rbd
-
ocs-storagecluster-cephfs
-
openshift-storage.noobaa.io
-
Chapter 4. Uninstalling OpenShift Container Storage
4.1. Uninstalling OpenShift Container Storage in Internal mode
Use the steps in this section to uninstall OpenShift Container Storage.
Uninstall Annotations
Annotations on the Storage Cluster are used to change the behavior of the uninstall process. To define the uninstall behavior, the following two annotations have been introduced in the storage cluster:
-
uninstall.ocs.openshift.io/cleanup-policy: delete
-
uninstall.ocs.openshift.io/mode: graceful
The below table provides information on the different values that can used with these annotations:
Annotation | Value | Default | Behavior |
---|---|---|---|
cleanup-policy | delete | Yes |
Rook cleans up the physical drives and the |
cleanup-policy | retain | No |
Rook does not clean up the physical drives and the |
mode | graceful | Yes | Rook and NooBaa pauses the uninstall process until the PVCs and the OBCs are removed by the administrator/user |
mode | forced | No | Rook and NooBaa proceeds with uninstall even if PVCs/OBCs provisioned using Rook and NooBaa exist respectively. |
You can change the cleanup policy or the uninstall mode by editing the value of the annotation by using the following commands:
$ oc annotate storagecluster -n openshift-storage ocs-storagecluster uninstall.ocs.openshift.io/cleanup-policy="retain" --overwrite storagecluster.ocs.openshift.io/ocs-storagecluster annotated
$ oc annotate storagecluster -n openshift-storage ocs-storagecluster uninstall.ocs.openshift.io/mode="forced" --overwrite storagecluster.ocs.openshift.io/ocs-storagecluster annotated
Prerequisites
- Ensure that the OpenShift Container Storage cluster is in a healthy state. The uninstall process can fail when some of the pods are not terminated successfully due to insufficient resources or nodes. In case the cluster is in an unhealthy state, contact Red Hat Customer Support before uninstalling OpenShift Container Storage.
- Ensure that applications are not consuming persistent volume claims (PVCs) or object bucket claims (OBCs) using the storage classes provided by OpenShift Container Storage.
- If any custom resources (such as custom storage classes, cephblockpools) were created by the admin, they must be deleted by the admin after removing the resources which consumed them.
Procedure
Delete the volume snapshots that are using OpenShift Container Storage.
List the volume snapshots from all the namespaces.
$ oc get volumesnapshot --all-namespaces
From the output of the previous command, identify and delete the volume snapshots that are using OpenShift Container Storage.
$ oc delete volumesnapshot <VOLUME-SNAPSHOT-NAME> -n <NAMESPACE>
Delete PVCs and OBCs that are using OpenShift Container Storage.
In the default uninstall mode (graceful), the uninstaller waits till all the PVCs and OBCs that use OpenShift Container Storage are deleted.
If you wish to delete the Storage Cluster without deleting the PVCs beforehand, you may set the uninstall mode annotation to "forced" and skip this step. Doing so will result in orphan PVCs and OBCs in the system.
Delete OpenShift Container Platform monitoring stack PVCs using OpenShift Container Storage.
See Section 4.2, “Removing monitoring stack from OpenShift Container Storage”
Delete OpenShift Container Platform Registry PVCs using OpenShift Container Storage.
See Section 4.3, “Removing OpenShift Container Platform registry from OpenShift Container Storage”
Delete OpenShift Container Platform logging PVCs using OpenShift Container Storage.
See Section 4.4, “Removing the cluster logging operator from OpenShift Container Storage”
Delete other PVCs and OBCs provisioned using OpenShift Container Storage.
Given below is a sample script to identify the PVCs and OBCs provisioned using OpenShift Container Storage. The script ignores the PVCs that are used internally by Openshift Container Storage.
#!/bin/bash RBD_PROVISIONER="openshift-storage.rbd.csi.ceph.com" CEPHFS_PROVISIONER="openshift-storage.cephfs.csi.ceph.com" NOOBAA_PROVISIONER="openshift-storage.noobaa.io/obc" RGW_PROVISIONER="openshift-storage.ceph.rook.io/bucket" NOOBAA_DB_PVC="noobaa-db" NOOBAA_BACKINGSTORE_PVC="noobaa-default-backing-store-noobaa-pvc" # Find all the OCS StorageClasses OCS_STORAGECLASSES=$(oc get storageclasses | grep -e "$RBD_PROVISIONER" -e "$CEPHFS_PROVISIONER" -e "$NOOBAA_PROVISIONER" -e "$RGW_PROVISIONER" | awk '{print $1}') # List PVCs in each of the StorageClasses for SC in $OCS_STORAGECLASSES do echo "======================================================================" echo "$SC StorageClass PVCs and OBCs" echo "======================================================================" oc get pvc --all-namespaces --no-headers 2>/dev/null | grep $SC | grep -v -e "$NOOBAA_DB_PVC" -e "$NOOBAA_BACKINGSTORE_PVC" oc get obc --all-namespaces --no-headers 2>/dev/null | grep $SC echo done
NoteOmit
RGW_PROVISIONER
for cloud platforms.Delete the OBCs.
$ oc delete obc <obc name> -n <project name>
Delete the PVCs.
$ oc delete pvc <pvc name> -n <project-name>
NoteEnsure that you have removed any custom backing stores, bucket classes, etc., created in the cluster.
Delete the Storage Cluster object and wait for the removal of the associated resources.
$ oc delete -n openshift-storage storagecluster --all --wait=true
Check for cleanup pods if the
uninstall.ocs.openshift.io/cleanup-policy
was set todelete
(default) and ensure that their status isCompleted
.$ oc get pods -n openshift-storage | grep -i cleanup NAME READY STATUS RESTARTS AGE cluster-cleanup-job-<xx> 0/1 Completed 0 8m35s cluster-cleanup-job-<yy> 0/1 Completed 0 8m35s cluster-cleanup-job-<zz> 0/1 Completed 0 8m35s
Confirm that the directory
/var/lib/rook
is now empty. This directory will be empty only if theuninstall.ocs.openshift.io/cleanup-policy
annotation was set todelete
(default).$ for i in $(oc get node -l cluster.ocs.openshift.io/openshift-storage= -o jsonpath='{ .items[*].metadata.name }'); do oc debug node/${i} -- chroot /host ls -l /var/lib/rook; done
If encryption was enabled at the time of install, remove
dm-crypt
manageddevice-mapper
mapping from OSD devices on all the OpenShift Container Storage nodes.Create a
debug
pod andchroot
to the host on the storage node.$ oc debug node/<node name> $ chroot /host
Get Device names and make note of the OpenShift Container Storage devices.
$ dmsetup ls ocs-deviceset-0-data-0-57snx-block-dmcrypt (253:1)
Remove the mapped device.
$ cryptsetup luksClose --debug --verbose ocs-deviceset-0-data-0-57snx-block-dmcrypt
If the above command gets stuck due to insufficient privileges, run the following commands:
-
Press
CTRL+Z
to exit the above command. Find PID of the
cryptsetup
process which was stuck.$ ps
Example output:
PID TTY TIME CMD 778825 ? 00:00:00 cryptsetup
Take a note of the
PID
number to kill. In this example,PID
is778825
.Terminate the process using
kill
command.$ kill -9 <PID>
Verify that the device name is removed.
$ dmsetup ls
-
Press
Delete the namespace and wait till the deletion is complete. You will need to switch to another project if
openshift-storage
is the active project.For example:
$ oc project default $ oc delete project openshift-storage --wait=true --timeout=5m
The project is deleted if the following command returns a
NotFound
error.$ oc get project openshift-storage
NoteWhile uninstalling OpenShift Container Storage, if namespace is not deleted completely and remains in
Terminating
state, perform the steps in Troubleshooting and deleting remaining resources during Uninstall to identify objects that are blocking the namespace from being terminated.- Delete local storage operator configurations if you have deployed OpenShift Container Storage using local storage devices. See Removing local storage operator configurations.
Unlabel the storage nodes.
$ oc label nodes --all cluster.ocs.openshift.io/openshift-storage- $ oc label nodes --all topology.rook.io/rack-
Remove the OpenShift Container Storage taint if the nodes were tainted.
$ oc adm taint nodes --all node.ocs.openshift.io/storage-
Confirm all PVs provisioned using OpenShift Container Storage are deleted. If there is any PV left in the
Released
state, delete it.$ oc get pv $ oc delete pv <pv name>
Delete the Multicloud Object Gateway storageclass.
$ oc delete storageclass openshift-storage.noobaa.io --wait=true --timeout=5m
Remove
CustomResourceDefinitions
.$ oc delete crd backingstores.noobaa.io bucketclasses.noobaa.io cephblockpools.ceph.rook.io cephclusters.ceph.rook.io cephfilesystems.ceph.rook.io cephnfses.ceph.rook.io cephobjectstores.ceph.rook.io cephobjectstoreusers.ceph.rook.io noobaas.noobaa.io ocsinitializations.ocs.openshift.io storageclusters.ocs.openshift.io cephclients.ceph.rook.io cephobjectrealms.ceph.rook.io cephobjectzonegroups.ceph.rook.io cephobjectzones.ceph.rook.io cephrbdmirrors.ceph.rook.io --wait=true --timeout=5m
To ensure that OpenShift Container Storage is uninstalled completely, on the OpenShift Container Platform Web Console,
- Click Home → Overview to access the dashboard.
- Verify that the Persistent Storage and Object Service tabs no longer appear next to the Cluster tab.
4.1.1. Removing local storage operator configurations
Use the instructions in this section only if you have deployed OpenShift Container Storage using local storage devices.
For OpenShift Container Storage deployments only using localvolume
resources, go directly to step 8.
Procedure
-
Identify the
LocalVolumeSet
and the correspondingStorageClassName
being used by OpenShift Container Storage. Set the variable SC to the
StorageClass
providing theLocalVolumeSet
.$ export SC="<StorageClassName>"
Delete the
LocalVolumeSet
.$ oc delete localvolumesets.local.storage.openshift.io <name-of-volumeset> -n openshift-local-storage
Delete the local storage PVs for the given
StorageClassName
.$ oc get pv | grep $SC | awk '{print $1}'| xargs oc delete pv
Delete the
StorageClassName
.$ oc delete sc $SC
Delete the symlinks created by the
LocalVolumeSet
.[[ ! -z $SC ]] && for i in $(oc get node -l cluster.ocs.openshift.io/openshift-storage= -o jsonpath='{ .items[*].metadata.name }'); do oc debug node/${i} -- chroot /host rm -rfv /mnt/local-storage/${SC}/; done
Delete
LocalVolumeDiscovery
.$ oc delete localvolumediscovery.local.storage.openshift.io/auto-discover-devices -n openshift-local-storage
Removing
LocalVolume
resources (if any).Use the following steps to remove the
LocalVolume
resources that were used to provision PVs in the current or previous OpenShift Container Storage version. Also, ensure that these resources are not being used by other tenants on the cluster.For each of the local volumes, do the following:
-
Identify the
LocalVolume
and the correspondingStorageClassName
being used by OpenShift Container Storage. Set the variable LV to the name of the LocalVolume and variable SC to the name of the StorageClass
For example:
$ LV=local-block $ SC=localblock
Delete the local volume resource.
$ oc delete localvolume -n openshift-local-storage --wait=true $LV
Delete the remaining PVs and StorageClasses if they exist.
$ oc delete pv -l storage.openshift.com/local-volume-owner-name=${LV} --wait --timeout=5m $ oc delete storageclass $SC --wait --timeout=5m
Clean up the artifacts from the storage nodes for that resource.
$ [[ ! -z $SC ]] && for i in $(oc get node -l cluster.ocs.openshift.io/openshift-storage= -o jsonpath='{ .items[*].metadata.name }'); do oc debug node/${i} -- chroot /host rm -rfv /mnt/local-storage/${SC}/; done
Example output:
Starting pod/node-xxx-debug ... To use host binaries, run `chroot /host` removed '/mnt/local-storage/localblock/nvme2n1' removed directory '/mnt/local-storage/localblock' Removing debug pod ... Starting pod/node-yyy-debug ... To use host binaries, run `chroot /host` removed '/mnt/local-storage/localblock/nvme2n1' removed directory '/mnt/local-storage/localblock' Removing debug pod ... Starting pod/node-zzz-debug ... To use host binaries, run `chroot /host` removed '/mnt/local-storage/localblock/nvme2n1' removed directory '/mnt/local-storage/localblock' Removing debug pod ...
-
Identify the
4.2. Removing monitoring stack from OpenShift Container Storage
Use this section to clean up the monitoring stack from OpenShift Container Storage.
The PVCs that are created as a part of configuring the monitoring stack are in the openshift-monitoring
namespace.
Prerequisites
PVCs are configured to use OpenShift Container Platform monitoring stack.
For information, see configuring monitoring stack.
Procedure
List the pods and PVCs that are currently running in the
openshift-monitoring
namespace.$ oc get pod,pvc -n openshift-monitoring NAME READY STATUS RESTARTS AGE pod/alertmanager-main-0 3/3 Running 0 8d pod/alertmanager-main-1 3/3 Running 0 8d pod/alertmanager-main-2 3/3 Running 0 8d pod/cluster-monitoring- operator-84457656d-pkrxm 1/1 Running 0 8d pod/grafana-79ccf6689f-2ll28 2/2 Running 0 8d pod/kube-state-metrics- 7d86fb966-rvd9w 3/3 Running 0 8d pod/node-exporter-25894 2/2 Running 0 8d pod/node-exporter-4dsd7 2/2 Running 0 8d pod/node-exporter-6p4zc 2/2 Running 0 8d pod/node-exporter-jbjvg 2/2 Running 0 8d pod/node-exporter-jj4t5 2/2 Running 0 6d18h pod/node-exporter-k856s 2/2 Running 0 6d18h pod/node-exporter-rf8gn 2/2 Running 0 8d pod/node-exporter-rmb5m 2/2 Running 0 6d18h pod/node-exporter-zj7kx 2/2 Running 0 8d pod/openshift-state-metrics- 59dbd4f654-4clng 3/3 Running 0 8d pod/prometheus-adapter- 5df5865596-k8dzn 1/1 Running 0 7d23h pod/prometheus-adapter- 5df5865596-n2gj9 1/1 Running 0 7d23h pod/prometheus-k8s-0 6/6 Running 1 8d pod/prometheus-k8s-1 6/6 Running 1 8d pod/prometheus-operator- 55cfb858c9-c4zd9 1/1 Running 0 6d21h pod/telemeter-client- 78fc8fc97d-2rgfp 3/3 Running 0 8d NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE persistentvolumeclaim/my-alertmanager-claim-alertmanager-main-0 Bound pvc-0d519c4f-15a5-11ea-baa0-026d231574aa 40Gi RWO ocs-storagecluster-ceph-rbd 8d persistentvolumeclaim/my-alertmanager-claim-alertmanager-main-1 Bound pvc-0d5a9825-15a5-11ea-baa0-026d231574aa 40Gi RWO ocs-storagecluster-ceph-rbd 8d persistentvolumeclaim/my-alertmanager-claim-alertmanager-main-2 Bound pvc-0d6413dc-15a5-11ea-baa0-026d231574aa 40Gi RWO ocs-storagecluster-ceph-rbd 8d persistentvolumeclaim/my-prometheus-claim-prometheus-k8s-0 Bound pvc-0b7c19b0-15a5-11ea-baa0-026d231574aa 40Gi RWO ocs-storagecluster-ceph-rbd 8d persistentvolumeclaim/my-prometheus-claim-prometheus-k8s-1 Bound pvc-0b8aed3f-15a5-11ea-baa0-026d231574aa 40Gi RWO ocs-storagecluster-ceph-rbd 8d
Edit the monitoring
configmap
.$ oc -n openshift-monitoring edit configmap cluster-monitoring-config
Remove any
config
sections that reference the OpenShift Container Storage storage classes as shown in the following example and save it.Before editing
. . . apiVersion: v1 data: config.yaml: | alertmanagerMain: volumeClaimTemplate: metadata: name: my-alertmanager-claim spec: resources: requests: storage: 40Gi storageClassName: ocs-storagecluster-ceph-rbd prometheusK8s: volumeClaimTemplate: metadata: name: my-prometheus-claim spec: resources: requests: storage: 40Gi storageClassName: ocs-storagecluster-ceph-rbd kind: ConfigMap metadata: creationTimestamp: "2019-12-02T07:47:29Z" name: cluster-monitoring-config namespace: openshift-monitoring resourceVersion: "22110" selfLink: /api/v1/namespaces/openshift-monitoring/configmaps/cluster-monitoring-config uid: fd6d988b-14d7-11ea-84ff-066035b9efa8 . . .
After editing
. . . apiVersion: v1 data: config.yaml: | kind: ConfigMap metadata: creationTimestamp: "2019-11-21T13:07:05Z" name: cluster-monitoring-config namespace: openshift-monitoring resourceVersion: "404352" selfLink: /api/v1/namespaces/openshift-monitoring/configmaps/cluster-monitoring-config uid: d12c796a-0c5f-11ea-9832-063cd735b81c . . .
In this example,
alertmanagerMain
andprometheusK8s
monitoring components are using the OpenShift Container Storage PVCs.Delete relevant PVCs. Make sure you delete all the PVCs that are consuming the storage classes.
$ oc delete -n openshift-monitoring pvc <pvc-name> --wait=true --timeout=5m
4.3. Removing OpenShift Container Platform registry from OpenShift Container Storage
Use this section to clean up OpenShift Container Platform registry from OpenShift Container Storage. If you want to configure an alternative storage, see image registry
The PVCs that are created as a part of configuring OpenShift Container Platform registry are in the openshift-image-registry
namespace.
Prerequisites
- The image registry should have been configured to use an OpenShift Container Storage PVC.
Procedure
Edit the
configs.imageregistry.operator.openshift.io
object and remove the content in the storage section.$ oc edit configs.imageregistry.operator.openshift.io
Before editing
. . . storage: pvc: claim: registry-cephfs-rwx-pvc . . .
After editing
. . . storage: . . .
In this example, the PVC is called
registry-cephfs-rwx-pvc
, which is now safe to delete.Delete the PVC.
$ oc delete pvc <pvc-name> -n openshift-image-registry --wait=true --timeout=5m
4.4. Removing the cluster logging operator from OpenShift Container Storage
Use this section to clean up the cluster logging operator from OpenShift Container Storage.
The PVCs that are created as a part of configuring cluster logging operator are in the openshift-logging
namespace.
Prerequisites
- The cluster logging instance should have been configured to use OpenShift Container Storage PVCs.
Procedure
Remove the
ClusterLogging
instance in the namespace.$ oc delete clusterlogging instance -n openshift-logging --wait=true --timeout=5m
The PVCs in the
openshift-logging
namespace are now safe to delete.Delete PVCs.
$ oc delete pvc <pvc-name> -n openshift-logging --wait=true --timeout=5m