Deploying OpenShift Container Storage using IBM Power Systems
How to install and set up your IBM Power Systems environment
Abstract
Making open source more inclusive
Red Hat is committed to replacing problematic language in our code, documentation, and web properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the enormity of this endeavor, these changes will be implemented gradually over several upcoming releases. For more details, see our CTO Chris Wright’s message.
Providing feedback on Red Hat documentation
We appreciate your input on our documentation. Do let us know how we can make it better. To give feedback:
For simple comments on specific passages:
- Make sure you are viewing the documentation in the Multi-page HTML format. In addition, ensure you see the Feedback button in the upper right corner of the document.
- Use your mouse cursor to highlight the part of text that you want to comment on.
- Click the Add Feedback pop-up that appears below the highlighted text.
- Follow the displayed instructions.
For submitting more complex feedback, create a Bugzilla ticket:
- Go to the Bugzilla website.
- As the Component, use Documentation.
- Fill in the Description field with your suggestion for improvement. Include a link to the relevant part(s) of documentation.
- Click Submit Bug.
Preface
Red Hat OpenShift Container Storage 4.8 supports deployment on existing Red Hat OpenShift Container Platform (RHOCP) IBM Power clusters in connected or disconnected environments along with out-of-the-box support for proxy environments.
Only internal Openshift Container Storage clusters are supported on IBM Power Systems. See Planning your deployment and Preparing to deploy OpenShift Container Storage for more information about deployment requirements.
To deploy OpenShift Container Storage, follow the appropriate deployment process:
Internal-Attached Devices mode
Chapter 1. Preparing to deploy OpenShift Container Storage
Deploying OpenShift Container Storage on OpenShift Container Platform using local storage devices provided by IBM Power Systems enables you to create internal cluster resources. This approach internally provisions base services. Then, all applications can access additional storage classes.
Only internal Openshift Container Storage clusters are supported on IBM Power Systems. See Planning your deployment for more information about deployment requirements.
Before you begin the deployment of Red Hat OpenShift Container Storage using local storage, ensure that your resource requirements are met. See requirements for installing OpenShift Container Storage using local storage devices.
On the external key management system (KMS),
- Ensure that a policy with a token exists and the key value backend path in Vault is enabled. see enabling key value backend path and policy in vault.
- Ensure that you are using signed certificates on your Vault servers.
After you have addressed the above, follow the below steps in the order given:
1.1. Requirements for installing OpenShift Container Storage using local storage devices
Node requirements
The cluster must consist of at least three OpenShift Container Platform worker nodes in the cluster with locally attached storage devices on each of them.
- Each of the three selected nodes must have at least one raw block device available to be used by OpenShift Container Storage.
- The devices to be used must be empty, that is, there should be no persistent volumes (PVs), volume groups (VGs), or local volumes (LVs) remaining on the disks.
You must have a minimum of three labeled nodes.
Each node that has local storage devices to be used by OpenShift Container Storage must have a specific label to deploy OpenShift Container Storage pods. To label the nodes, use the following command:
$ oc label nodes <NodeNames> cluster.ocs.openshift.io/openshift-storage=''
See the Resource requirements section in Planning guide.
1.2. Enabling key value backend path and policy in Vault
Prerequisites
- Administrator access to Vault.
-
Choose a unique path name as the backend
path
that follows the naming convention since it cannot be changed later.
Procedure
Enable the Key/Value (KV) backend path in Vault.
For Vault KV secret engine API, version 1:
$ vault secrets enable -path=ocs kv
For Vault KV secret engine API, version 2:
$ vault secrets enable -path=ocs kv-v2
Create a policy to restrict users to perform a write or delete operation on the secret using the following commands:
echo ' path "ocs/*" { capabilities = ["create", "read", "update", "delete", "list"] } path "sys/mounts" { capabilities = ["read"] }'| vault policy write ocs -
Create a token matching the above policy:
$ vault token create -policy=ocs -format json
Chapter 2. Deploy OpenShift Container Storage using local storage devices
Use this section to deploy OpenShift Container Storage on IBM Power Systems infrastructure where OpenShift Container Platform is already installed.
Follow the below steps in the order given:
2.1. Installing Local Storage Operator
Use this procedure to install the Local Storage Operator from the Operator Hub before creating OpenShift Container Storage clusters on local storage devices.
Procedure
- Log in to the OpenShift Web Console.
- Click Operators → OperatorHub.
-
Type
local storage
in the Filter by keyword… box to search forLocal Storage
operator from the list of operators and click on it. - Click Install.
Set the following options on the Install Operator page:
- Update Channel as stable-4.8.
- Installation Mode as A specific namespace on the cluster.
- Installed Namespace as Operator recommended namespace openshift-local-storage.
- Approval Strategy as Automatic.
- Click Install.
-
Verify that the Local Storage Operator shows the Status as
Succeeded
.
2.2. Installing Red Hat OpenShift Container Storage Operator
You can install Red Hat OpenShift Container Storage Operator using the Red Hat OpenShift Container Platform Operator Hub.
For information about the hardware and software requirements, see Planning your deployment.
Prerequisites
- Access to an OpenShift Container Platform cluster using an account with cluster-admin and Operator installation permissions.
- You must have at least three worker nodes in the RHOCP cluster.
-
When you need to override the cluster-wide default node selector for OpenShift Container Storage, you can use the following command in command line interface to specify a blank node selector for the
openshift-storage
namespace (create openshift-storage namespace in this case):
$ oc annotate namespace openshift-storage openshift.io/node-selector=
-
Taint a node as
infra
to ensure only Red Hat OpenShift Container Storage resources are scheduled on that node. This helps you save on subscription costs. For more information, see How to use dedicated worker nodes for Red Hat OpenShift Container Storage chapter in Managing and Allocating Storage Resources guide.
Procedure
- Navigate in the left pane of the OpenShift Web Console to click Operators → OperatorHub.
- Scroll or type a keyword into the Filter by keyword box to search for OpenShift Container Storage Operator.
- Click Install on the OpenShift Container Storage operator page.
On the Install Operator page, the following required options are selected by default:
- Update Channel as stable-4.8.
- Installation Mode as A specific namespace on the cluster.
-
Installed Namespace as Operator recommended namespace openshift-storage. If Namespace
openshift-storage
does not exist, it will be created during the operator installation. - Select Approval Strategy as Automatic or Manual.
Click Install.
If you selected Automatic updates, then the Operator Lifecycle Manager (OLM) automatically upgrades the running instance of your Operator without any intervention.
If you selected Manual updates, then the OLM creates an update request. As a cluster administrator, you must then manually approve that update request to have the Operator updated to the new version.
Verification steps
Verify that OpenShift Container Storage Operator shows a green tick indicating successful installation.
2.3. Finding available storage devices
Use this procedure to identify the device names for each of the three or more worker nodes that you have labeled with the OpenShift Container Storage label cluster.ocs.openshift.io/openshift-storage=''
before creating PVs for IBM Power Systems.
Procedure
List and verify the name of the worker nodes with the OpenShift Container Storage label.
$ oc get nodes -l cluster.ocs.openshift.io/openshift-storage=
Example output:
NAME STATUS ROLES AGE VERSION worker-0 Ready worker 2d11h v1.21.1+f36aa36 worker-1 Ready worker 2d11h v1.21.1+f36aa36 worker-2 Ready worker 2d11h v1.21.1+f36aa36
Log in to each worker node that is used for OpenShift Container Storage resources and find the name of the additional disk that you have attached while deploying Openshift Container Platform.
$ oc debug node/<node name>
Example output:
$ oc debug node/worker-0 Starting pod/worker-0-debug ... To use host binaries, run `chroot /host` Pod IP: 192.168.0.63 If you don't see a command prompt, try pressing enter. sh-4.4# sh-4.4# chroot /host sh-4.4# lsblk NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT loop1 7:1 0 500G 0 loop sda 8:0 0 500G 0 disk sdb 8:16 0 120G 0 disk |-sdb1 8:17 0 4M 0 part |-sdb3 8:19 0 384M 0 part `-sdb4 8:20 0 119.6G 0 part sdc 8:32 0 500G 0 disk sdd 8:48 0 120G 0 disk |-sdd1 8:49 0 4M 0 part |-sdd3 8:51 0 384M 0 part `-sdd4 8:52 0 119.6G 0 part sde 8:64 0 500G 0 disk sdf 8:80 0 120G 0 disk |-sdf1 8:81 0 4M 0 part |-sdf3 8:83 0 384M 0 part `-sdf4 8:84 0 119.6G 0 part sdg 8:96 0 500G 0 disk sdh 8:112 0 120G 0 disk |-sdh1 8:113 0 4M 0 part |-sdh3 8:115 0 384M 0 part `-sdh4 8:116 0 119.6G 0 part sdi 8:128 0 500G 0 disk sdj 8:144 0 120G 0 disk |-sdj1 8:145 0 4M 0 part |-sdj3 8:147 0 384M 0 part `-sdj4 8:148 0 119.6G 0 part sdk 8:160 0 500G 0 disk sdl 8:176 0 120G 0 disk |-sdl1 8:177 0 4M 0 part |-sdl3 8:179 0 384M 0 part `-sdl4 8:180 0 119.6G 0 part /sysroot sdm 8:192 0 500G 0 disk sdn 8:208 0 120G 0 disk |-sdn1 8:209 0 4M 0 part |-sdn3 8:211 0 384M 0 part /boot `-sdn4 8:212 0 119.6G 0 part sdo 8:224 0 500G 0 disk sdp 8:240 0 120G 0 disk |-sdp1 8:241 0 4M 0 part |-sdp3 8:243 0 384M 0 part `-sdp4 8:244 0 119.6G 0 part
In this example, for worker-0, the available local devices of 500G are
sda
,sdc
,sde
,sdg
,sdi
,sdk
,sdm
,sdo
.- Repeat the above step for all the other worker nodes that have the storage devices to be used by OpenShift Container Storage. See this Knowledge Base article for more details.
2.4. Creating OpenShift Container Storage cluster on IBM Power Systems
Prerequisites
- Ensure that all the requirements in the Requirements for installing OpenShift Container Storage using local storage devices section are met.
- You must have a minimum of three worker nodes with the same storage type and size attached to each node (for example, 200 GB SSD) to use local storage devices on IBM Power Systems.
Verify your OpenShift Container Platform worker nodes are labeled for OpenShift Container Storage:
oc get nodes -l cluster.ocs.openshift.io/openshift-storage -o jsonpath='{range .items[*]}{.metadata.name}{"\n"}'
To identify storage devices on each node, refer to Finding available storage devices.
Procedure
- Log into the OpenShift Web Console.
-
In
openshift-local-storage
namespace Click Operators → Installed Operators to view the installed operators. - Click the Local Storage installed operator.
- On the Operator Details page, click the Local Volume link.
- Click Create Local Volume.
- Click on YAML view for configuring Local Volume.
Define a
LocalVolume
custom resource for block PVs using the following YAML.apiVersion: local.storage.openshift.io/v1 kind: LocalVolume metadata: name: localblock namespace: openshift-local-storage spec: logLevel: Normal managementState: Managed nodeSelector: nodeSelectorTerms: - matchExpressions: - key: kubernetes.io/hostname operator: In values: - worker-0 - worker-1 - worker-2 storageClassDevices: - devicePaths: - /dev/sda storageClassName: localblock volumeMode: Block
The above definition selects
sda
local device from theworker-0
,worker-1
andworker-2
nodes. Thelocalblock
storage class is created and persistent volumes are provisioned fromsda
.ImportantSpecify appropriate values of nodeSelector as per your environment. The device name should be same on all the worker nodes. You can also specify more than one devicePaths.
- Click Create.
Confirm whether
diskmaker-manager
pods andPersistent Volumes
are created.For Pods
- Click Workloads → Pods from the left pane of the OpenShift Web Console.
- Select openshift-local-storage from the Project drop down list.
-
Check if there are
diskmaker-manager
pods for each of the worker node that you used while creating LocalVolume CR.
For Persistent Volumes
- Click Storage → PersistentVolumes from the left pane of the OpenShift Web Console.
Check the Persistent Volumes with the name
local-pv-*
. Number of Persistent Volumes will be equivalent to the product of number of worker nodes and number of storage devices provisioned while creating localVolume CR.ImportantThe flexible scaling feature gets enabled on creating a storage cluster with 3 or more nodes spread across fewer than the minimum requirement of 3 availability zones. This feature is available only for the new deployments of OpenShift Container Storage 4.7 clusters and does not support the upgraded clusters. For information about flexible scaling, see Scaling Storage Guide
- Click Operators → Installed Operators from the left pane of the OpenShift Web Console to view the installed operators.
-
Select
openshift-storage
from the Project drop down list. - Click the OpenShift Container Storage installed operator.
- On the Operator Details page, click the Storage Cluster link.
Click Create Storage Cluster.
- Select Internal-Attached devices for the Select Mode.
- Click on Storage and Nodes.
- Select the required storage class.
- The nodes corresponding to the storage class are displayed based on the storage class that you selected from the drop down.
- Click Next.
(Optional) Set Security and network configuration
- Select the Enable encryption checkbox to encrypt block and file storage.
Choose any one or both Encryption level:
- Cluster-wide encryption to encrypt the entire cluster (block and file).
- Storage class encryption to create encrypted persistent volume (block only) using encryption enabled storage class.
Select the Connect to an external key management service checkbox. This is optional for cluster-wide encryption.
-
Key Management Service Provider is set to
Vault
by default. - Enter Vault Service Name, host Address of Vault server ('https://<hostname or ip>'), Port number and Token.
-
Key Management Service Provider is set to
Expand Advanced Settings to enter additional settings and certificate details:
- Enter the Key Value secret path in Backend Path that is dedicated and unique to OpenShift Container Storage.
- Enter TLS Server Name and Vault Enterprise Namespace.
- Provide CA Certificate, Client Certificate and Client Private Key by uploading the respective PEM encoded certificate file.
- Click Save.
- Click Next.
- Review the configurations details. To modify any configuration settings, click Back to go back to the previous configuration page.
- Click Create.
Verification steps
Verify that the final Status of the installed storage cluster shows as Phase: Ready with a green tick mark.
- Click Operators → Installed Operators → Storage Cluster link to view the storage cluster installation status.
- Alternatively, when you are on the Operator Details tab, you can click on the Storage Cluster tab to view the status.
To verify if flexible scaling is enabled on your storage cluster, perform the following steps:
-
Click
ocs-storagecluster
in Storage Cluster tab. In the YAML tab, search for the keys
flexibleScaling
inspec
section andfailureDomain
instatus
section. Ifflexible scaling
is true andfailureDomain
is set to host, flexible scaling feature is enabled.spec: flexibleScaling: true […] status: failureDomain: host
-
Click
- To verify that all components for OpenShift Container Storage are successfully installed, see Verifying your OpenShift Container Storage installation.
Additional resources
- To expand the capacity of the initial cluster, see the Scaling Storage guide.
Chapter 3. Verifying OpenShift Container Storage deployment for internal mode
Use this section to verify that OpenShift Container Storage is deployed correctly.
3.1. Verifying the state of the pods
To determine if OpenShift Container storage is deployed successfully, you can verify that the pods are in Running
state.
Procedure
- Click Workloads → Pods from the left pane of the OpenShift Web Console.
Select openshift-storage from the Project drop down list.
For more information on the expected number of pods for each component and how it varies depending on the number of nodes, see Table 3.1, “Pods corresponding to OpenShift Container storage cluster”.
Verify that the following pods are in running and completed state by clicking on the Running and the Completed tabs:
Table 3.1. Pods corresponding to OpenShift Container storage cluster Component Corresponding pods OpenShift Container Storage Operator
-
ocs-operator-*
(1 pod on any worker node) -
ocs-metrics-exporter-*
Rook-ceph Operator
rook-ceph-operator-*
(1 pod on any worker node)Multicloud Object Gateway
-
noobaa-operator-*
(1 pod on any worker node) -
noobaa-core-*
(1 pod on any storage node) -
noobaa-db-pg-*
(1 pod on any storage node) -
noobaa-endpoint-*
(1 pod on any storage node)
MON
rook-ceph-mon-*
(3 pods on each storage node)MGR
rook-ceph-mgr-*
(1 pod on any storage node)MDS
rook-ceph-mds-ocs-storagecluster-cephfilesystem-*
(2 pods distributed across storage node)RGW
rook-ceph-rgw-ocs-storagecluster-cephobjectstore-*
(1 pod on any storage node)CSI
cephfs
-
csi-cephfsplugin-*
(1 pod on each worker node) -
csi-cephfsplugin-provisioner-*
(2 pods distributed across storage nodes)
-
rbd
-
csi-rbdplugin-*
(1 pod on each worker node) -
csi-rbdplugin-provisioner-*
(2 pods distributed across storage nodes)
-
rook-ceph-crashcollector
rook-ceph-crashcollector-*
(1 pod on each storage node)OSD
-
rook-ceph-osd-*
(1 pod for each device) -
rook-ceph-osd-prepare-ocs-deviceset-*
(1 pod for each device)
-
3.2. Verifying the OpenShift Container Storage cluster is healthy
To verify that the cluster of OpenShift Container Storage is healthy, follow the steps in the procedure.
Procedure
- Click Storage → Overview and click the Block and File tab.
- In the Status card, verify that Storage Cluster and Data Resiliency has a green tick mark.
- In the Details card, verify that the cluster information is displayed.
For more information on the health of the OpenShift Container Storage clusters using the Block and File dashboard, see Monitoring OpenShift Container Storage.
3.3. Verifying the Multicloud Object Gateway is healthy
To verify that the OpenShift Container Storage Multicloud Object Gateway is healthy, follow the steps in the procedure.
Procedure
- Click Storage → Overview from the OpenShift Web Console and click the Object tab.
-
In the Status card, verify that both Object Service and Data Resiliency are in
Ready
state (green tick). - In the Details card, verify that the Multicloud Object Gateway information is displayed.
For more information on the health of the OpenShift Container Storage cluster using the object service dashboard, see Monitoring OpenShift Container Storage.
3.4. Verifying that the OpenShift Container Storage specific storage classes exist
To verify the storage classes exists in the cluster, follow the steps in the procedure.
Procedure
- Click Storage → Storage Classes from the OpenShift Web Console.
Verify that the following storage classes are created with the OpenShift Container Storage cluster creation:
-
ocs-storagecluster-ceph-rbd
-
ocs-storagecluster-cephfs
-
openshift-storage.noobaa.io
-
ocs-storagecluster-ceph-rgw
-
Chapter 4. Uninstalling OpenShift Container Storage
4.1. Uninstalling OpenShift Container Storage in Internal mode
Use the steps in this section to uninstall OpenShift Container Storage.
Uninstall Annotations
Annotations on the Storage Cluster are used to change the behavior of the uninstall process. To define the uninstall behavior, the following two annotations have been introduced in the storage cluster:
-
uninstall.ocs.openshift.io/cleanup-policy: delete
-
uninstall.ocs.openshift.io/mode: graceful
The below table provides information on the different values that can used with these annotations:
Annotation | Value | Default | Behavior |
---|---|---|---|
cleanup-policy | delete | Yes |
Rook cleans up the physical drives and the |
cleanup-policy | retain | No |
Rook does not clean up the physical drives and the |
mode | graceful | Yes | Rook and NooBaa pauses the uninstall process until the PVCs and the OBCs are removed by the administrator/user |
mode | forced | No | Rook and NooBaa proceeds with uninstall even if PVCs/OBCs provisioned using Rook and NooBaa exist respectively. |
You can change the cleanup policy or the uninstall mode by editing the value of the annotation by using the following commands:
$ oc -n openshift-storage annotate storagecluster ocs-storagecluster uninstall.ocs.openshift.io/cleanup-policy="retain" --overwrite storagecluster.ocs.openshift.io/ocs-storagecluster annotated
$ oc -n openshift-storage annotate storagecluster ocs-storagecluster uninstall.ocs.openshift.io/mode="forced" --overwrite storagecluster.ocs.openshift.io/ocs-storagecluster annotated
Prerequisites
- Ensure that the OpenShift Container Storage cluster is in a healthy state. The uninstall process can fail when some of the pods are not terminated successfully due to insufficient resources or nodes. In case the cluster is in an unhealthy state, contact Red Hat Customer Support before uninstalling OpenShift Container Storage.
- Ensure that applications are not consuming persistent volume claims (PVCs) or object bucket claims (OBCs) using the storage classes provided by OpenShift Container Storage.
- If any custom resources (such as custom storage classes, cephblockpools) were created by the admin, they must be deleted by the admin after removing the resources which consumed them.
Procedure
Delete the volume snapshots that are using OpenShift Container Storage.
List the volume snapshots from all the namespaces.
$ oc get volumesnapshot --all-namespaces
From the output of the previous command, identify and delete the volume snapshots that are using OpenShift Container Storage.
$ oc delete volumesnapshot <VOLUME-SNAPSHOT-NAME> -n <NAMESPACE>
Delete PVCs and OBCs that are using OpenShift Container Storage.
In the default uninstall mode (graceful), the uninstaller waits until all the PVCs and OBCs that use OpenShift Container Storage are deleted.
If you wish to delete the Storage Cluster without deleting the PVCs beforehand, you may set the uninstall mode annotation to "forced" and skip this step. Doing so will result in orphan PVCs and OBCs in the system.
Delete OpenShift Container Platform monitoring stack PVCs using OpenShift Container Storage.
For more information, see Removing monitoring stack from OpenShift Container Storage
Delete OpenShift Container Platform Registry PVCs using OpenShift Container Storage.
For more information, see Removing OpenShift Container Platform registry from OpenShift Container Storage
Delete OpenShift Container Platform logging PVCs using OpenShift Container Storage.
For more information, see Removing the cluster logging operator from OpenShift Container Storage
Delete other PVCs and OBCs provisioned using OpenShift Container Storage.
Given below is a sample script to identify the PVCs and OBCs provisioned using OpenShift Container Storage. The script ignores the PVCs that are used internally by Openshift Container Storage.
#!/bin/bash RBD_PROVISIONER="openshift-storage.rbd.csi.ceph.com" CEPHFS_PROVISIONER="openshift-storage.cephfs.csi.ceph.com" NOOBAA_PROVISIONER="openshift-storage.noobaa.io/obc" RGW_PROVISIONER="openshift-storage.ceph.rook.io/bucket" NOOBAA_DB_PVC="noobaa-db" NOOBAA_BACKINGSTORE_PVC="noobaa-default-backing-store-noobaa-pvc" # Find all the OCS StorageClasses OCS_STORAGECLASSES=$(oc get storageclasses | grep -e "$RBD_PROVISIONER" -e "$CEPHFS_PROVISIONER" -e "$NOOBAA_PROVISIONER" -e "$RGW_PROVISIONER" | awk '{print $1}') # List PVCs in each of the StorageClasses for SC in $OCS_STORAGECLASSES do echo "======================================================================" echo "$SC StorageClass PVCs and OBCs" echo "======================================================================" oc get pvc --all-namespaces --no-headers 2>/dev/null | grep $SC | grep -v -e "$NOOBAA_DB_PVC" -e "$NOOBAA_BACKINGSTORE_PVC" oc get obc --all-namespaces --no-headers 2>/dev/null | grep $SC echo done
NoteOmit
RGW_PROVISIONER
for cloud platforms.Delete the OBCs.
$ oc delete obc <obc name> -n <project name>
Delete the PVCs.
$ oc delete pvc <pvc name> -n <project-name>
NoteEnsure that you have removed any custom backing stores, bucket classes, etc., created in the cluster.
Delete the Storage Cluster object and wait for the removal of the associated resources.
$ oc delete -n openshift-storage storagecluster --all --wait=true
Check for cleanup pods if the
uninstall.ocs.openshift.io/cleanup-policy
was set todelete
(default) and ensure that their status isCompleted
.$ oc get pods -n openshift-storage | grep -i cleanup NAME READY STATUS RESTARTS AGE cluster-cleanup-job-<xx> 0/1 Completed 0 8m35s cluster-cleanup-job-<yy> 0/1 Completed 0 8m35s cluster-cleanup-job-<zz> 0/1 Completed 0 8m35s
Confirm that the directory
/var/lib/rook
is now empty. This directory will be empty only if theuninstall.ocs.openshift.io/cleanup-policy
annotation was set todelete
(default).$ for i in $(oc get node -l cluster.ocs.openshift.io/openshift-storage= -o jsonpath='{ .items[*].metadata.name }'); do oc debug node/${i} -- chroot /host ls -l /var/lib/rook; done
If encryption was enabled at the time of install, remove
dm-crypt
manageddevice-mapper
mapping from OSD devices on all the OpenShift Container Storage nodes.Create a
debug
pod andchroot
to the host on the storage node.$ oc debug node/<node name> $ chroot /host
Get Device names and make note of the OpenShift Container Storage devices.
$ dmsetup ls ocs-deviceset-localblock-0-data-1x4r7g-block-dmcrypt (253:1)
Remove the mapped device.
$ cryptsetup luksClose --debug --verbose ocs-deviceset-localblock-0-data-1x4r7g-block-dmcrypt
NoteIf the above command gets stuck due to insufficient privileges, run the following commands:
-
Press
CTRL+Z
to exit the above command. Find PID of the process which was stuck.
$ ps -ef | grep crypt
Terminate the process using
kill
command.$ kill -9 <PID>
Verify that the device name is removed.
$ dmsetup ls
-
Press
Delete the namespace and wait till the deletion is complete. You will need to switch to another project if
openshift-storage
is the active project.For example:
$ oc project default $ oc delete project openshift-storage --wait=true --timeout=5m
The project is deleted if the following command returns a
NotFound
error.$ oc get project openshift-storage
NoteWhile uninstalling OpenShift Container Storage, if
namespace
is not deleted completely and remains inTerminating
state, perform the steps in Troubleshooting and deleting remaining resources during Uninstall to identify objects that are blocking the namespace from being terminated.- Delete the local storage operator configurations if you have deployed OpenShift Container Storage using local storage devices. See Removing local storage operator configurations.
Unlabel the storage nodes.
$ oc label nodes --all cluster.ocs.openshift.io/openshift-storage- $ oc label nodes --all topology.rook.io/rack-
Remove the OpenShift Container Storage taint if the nodes were tainted.
$ oc adm taint nodes --all node.ocs.openshift.io/storage-
Confirm all PVs provisioned using OpenShift Container Storage are deleted. If there is any PV left in the
Released
state, delete it.$ oc get pv $ oc delete pv <pv name>
Delete the Multicloud Object Gateway storageclass.
$ oc delete storageclass openshift-storage.noobaa.io --wait=true --timeout=5m
Remove
CustomResourceDefinitions
.$ oc delete crd backingstores.noobaa.io bucketclasses.noobaa.io cephblockpools.ceph.rook.io cephclusters.ceph.rook.io cephfilesystems.ceph.rook.io cephnfses.ceph.rook.io cephobjectstores.ceph.rook.io cephobjectstoreusers.ceph.rook.io noobaas.noobaa.io ocsinitializations.ocs.openshift.io storageclusters.ocs.openshift.io cephclients.ceph.rook.io cephobjectrealms.ceph.rook.io cephobjectzonegroups.ceph.rook.io cephobjectzones.ceph.rook.io cephrbdmirrors.ceph.rook.io --wait=true --timeout=5m
To ensure that OpenShift Container Storage is uninstalled completely, on the OpenShift Container Platform Web Console,
- Click Storage.
- Verify that Overview no longer appears under Storage.
4.1.1. Removing local storage operator configurations
Use the instructions in this section only if you have deployed OpenShift Container Storage using local storage devices.
For OpenShift Container Storage deployments only using localvolume
resources, go directly to step 8.
Procedure
-
Identify the
LocalVolumeSet
and the correspondingStorageClassName
being used by OpenShift Container Storage. Set the variable SC to the
StorageClass
providing theLocalVolumeSet
.$ export SC="<StorageClassName>"
Delete the
LocalVolumeSet
.$ oc delete localvolumesets.local.storage.openshift.io <name-of-volumeset> -n openshift-local-storage
Delete the local storage PVs for the given
StorageClassName
.$ oc get pv | grep $SC | awk '{print $1}'| xargs oc delete pv
Delete the
StorageClassName
.$ oc delete sc $SC
Delete the symlinks created by the
LocalVolumeSet
.[[ ! -z $SC ]] && for i in $(oc get node -l cluster.ocs.openshift.io/openshift-storage= -o jsonpath='{ .items[*].metadata.name }'); do oc debug node/${i} -- chroot /host rm -rfv /mnt/local-storage/${SC}/; done
Delete
LocalVolumeDiscovery
.$ oc delete localvolumediscovery.local.storage.openshift.io/auto-discover-devices -n openshift-local-storage
Removing
LocalVolume
resources (if any).Use the following steps to remove the
LocalVolume
resources that were used to provision PVs in the current or previous OpenShift Container Storage version. Also, ensure that these resources are not being used by other tenants on the cluster.For each of the local volumes, do the following:
-
Identify the
LocalVolume
and the correspondingStorageClassName
being used by OpenShift Container Storage. Set the variable LV to the name of the LocalVolume and variable SC to the name of the StorageClass
For example:
$ LV=localblock $ SC=localblock
Delete the local volume resource.
$ oc delete localvolume -n openshift-local-storage --wait=true $LV
Delete the remaining PVs and StorageClasses if they exist.
$ oc delete pv -l storage.openshift.com/local-volume-owner-name=${LV} --wait --timeout=5m $ oc delete storageclass $SC --wait --timeout=5m
Clean up the artifacts from the storage nodes for that resource.
$ [[ ! -z $SC ]] && for i in $(oc get node -l cluster.ocs.openshift.io/openshift-storage= -o jsonpath='{ .items[*].metadata.name }'); do oc debug node/${i} -- chroot /host rm -rfv /mnt/local-storage/${SC}/; done
Example output:
Starting pod/node-xxx-debug ... To use host binaries, run `chroot /host` removed '/mnt/local-storage/localblock/sda' removed directory '/mnt/local-storage/localblock' Removing debug pod ... Starting pod/node-yyy-debug ... To use host binaries, run `chroot /host` removed '/mnt/local-storage/localblock/sda' removed directory '/mnt/local-storage/localblock' Removing debug pod ... Starting pod/node-zzz-debug ... To use host binaries, run `chroot /host` removed '/mnt/local-storage/localblock/sda' removed directory '/mnt/local-storage/localblock' Removing debug pod ...
-
Identify the
Delete the
openshift-local-storage
namespace and wait until the deletion is complete. You will need to switch to another project if theopenshift-local-storage
namespace is the active project.For example:
$ oc project default $ oc delete project openshift-local-storage --wait=true --timeout=5m
The project is deleted if the following command returns a NotFound error.
$ oc get project openshift-local-storage
4.2. Removing monitoring stack from OpenShift Container Storage
Use this section to clean up the monitoring stack from OpenShift Container Storage.
The PVCs that are created as a part of configuring the monitoring stack are in the openshift-monitoring
namespace.
Prerequisites
PVCs are configured to use OpenShift Container Platform monitoring stack.
For information, see configuring monitoring stack.
Procedure
List the pods and PVCs that are currently running in the
openshift-monitoring
namespace.$ oc get pod,pvc -n openshift-monitoring NAME READY STATUS RESTARTS AGE pod/alertmanager-main-0 3/3 Running 0 8d pod/alertmanager-main-1 3/3 Running 0 8d pod/alertmanager-main-2 3/3 Running 0 8d pod/cluster-monitoring- operator-84457656d-pkrxm 1/1 Running 0 8d pod/grafana-79ccf6689f-2ll28 2/2 Running 0 8d pod/kube-state-metrics- 7d86fb966-rvd9w 3/3 Running 0 8d pod/node-exporter-25894 2/2 Running 0 8d pod/node-exporter-4dsd7 2/2 Running 0 8d pod/node-exporter-6p4zc 2/2 Running 0 8d pod/node-exporter-jbjvg 2/2 Running 0 8d pod/node-exporter-jj4t5 2/2 Running 0 6d18h pod/node-exporter-k856s 2/2 Running 0 6d18h pod/node-exporter-rf8gn 2/2 Running 0 8d pod/node-exporter-rmb5m 2/2 Running 0 6d18h pod/node-exporter-zj7kx 2/2 Running 0 8d pod/openshift-state-metrics- 59dbd4f654-4clng 3/3 Running 0 8d pod/prometheus-adapter- 5df5865596-k8dzn 1/1 Running 0 7d23h pod/prometheus-adapter- 5df5865596-n2gj9 1/1 Running 0 7d23h pod/prometheus-k8s-0 6/6 Running 1 8d pod/prometheus-k8s-1 6/6 Running 1 8d pod/prometheus-operator- 55cfb858c9-c4zd9 1/1 Running 0 6d21h pod/telemeter-client- 78fc8fc97d-2rgfp 3/3 Running 0 8d NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE persistentvolumeclaim/my-alertmanager-claim-alertmanager-main-0 Bound pvc-0d519c4f-15a5-11ea-baa0-026d231574aa 40Gi RWO ocs-storagecluster-ceph-rbd 8d persistentvolumeclaim/my-alertmanager-claim-alertmanager-main-1 Bound pvc-0d5a9825-15a5-11ea-baa0-026d231574aa 40Gi RWO ocs-storagecluster-ceph-rbd 8d persistentvolumeclaim/my-alertmanager-claim-alertmanager-main-2 Bound pvc-0d6413dc-15a5-11ea-baa0-026d231574aa 40Gi RWO ocs-storagecluster-ceph-rbd 8d persistentvolumeclaim/my-prometheus-claim-prometheus-k8s-0 Bound pvc-0b7c19b0-15a5-11ea-baa0-026d231574aa 40Gi RWO ocs-storagecluster-ceph-rbd 8d persistentvolumeclaim/my-prometheus-claim-prometheus-k8s-1 Bound pvc-0b8aed3f-15a5-11ea-baa0-026d231574aa 40Gi RWO ocs-storagecluster-ceph-rbd 8d
Edit the monitoring
configmap
.$ oc -n openshift-monitoring edit configmap cluster-monitoring-config
Remove any
config
sections that reference the OpenShift Container Storage storage classes as shown in the following example and save it.Before editing
. . . apiVersion: v1 data: config.yaml: | alertmanagerMain: volumeClaimTemplate: metadata: name: my-alertmanager-claim spec: resources: requests: storage: 40Gi storageClassName: ocs-storagecluster-ceph-rbd prometheusK8s: volumeClaimTemplate: metadata: name: my-prometheus-claim spec: resources: requests: storage: 40Gi storageClassName: ocs-storagecluster-ceph-rbd kind: ConfigMap metadata: creationTimestamp: "2019-12-02T07:47:29Z" name: cluster-monitoring-config namespace: openshift-monitoring resourceVersion: "22110" selfLink: /api/v1/namespaces/openshift-monitoring/configmaps/cluster-monitoring-config uid: fd6d988b-14d7-11ea-84ff-066035b9efa8 . . .
After editing
. . . apiVersion: v1 data: config.yaml: | kind: ConfigMap metadata: creationTimestamp: "2019-11-21T13:07:05Z" name: cluster-monitoring-config namespace: openshift-monitoring resourceVersion: "404352" selfLink: /api/v1/namespaces/openshift-monitoring/configmaps/cluster-monitoring-config uid: d12c796a-0c5f-11ea-9832-063cd735b81c . . .
In this example,
alertmanagerMain
andprometheusK8s
monitoring components are using the OpenShift Container Storage PVCs.Delete relevant PVCs. Make sure you delete all the PVCs that are consuming the storage classes.
$ oc delete -n openshift-monitoring pvc <pvc-name> --wait=true --timeout=5m
4.3. Removing OpenShift Container Platform registry from OpenShift Container Storage
Use this section to clean up OpenShift Container Platform registry from OpenShift Container Storage. If you want to configure an alternative storage, see image registry
The PVCs that are created as a part of configuring OpenShift Container Platform registry are in the openshift-image-registry
namespace.
Prerequisites
- The image registry should have been configured to use an OpenShift Container Storage PVC.
Procedure
Edit the
configs.imageregistry.operator.openshift.io
object and remove the content in the storage section.$ oc edit configs.imageregistry.operator.openshift.io
Before editing
. . . storage: pvc: claim: registry-cephfs-rwx-pvc . . .
After editing
. . . storage: emptyDir: {} . . .
In this example, the PVC is called
registry-cephfs-rwx-pvc
, which is now safe to delete.Delete the PVC.
$ oc delete pvc <pvc-name> -n openshift-image-registry --wait=true --timeout=5m
4.4. Removing the cluster logging operator from OpenShift Container Storage
To clean the cluster logging operator from the OpenShift Container Storage, follow the steps in the procedure.
The PVCs created as a part of configuring cluster logging operator are in the openshift-logging
namespace.
Prerequisites
- The cluster logging instance must be configured to use OpenShift Container Storage PVCs.
Procedure
Remove the
ClusterLogging
instance in the namespace.$ oc delete clusterlogging instance -n openshift-logging --wait=true --timeout=5m
The PVCs in the
openshift-logging
namespace are now safe to delete.Delete PVCs.
$ oc delete pvc <pvc-name> -n openshift-logging --wait=true --timeout=5m