Deploying OpenShift Data Foundation on any platform
Instructions on deploying OpenShift Data Foundation on any platform including virtualized and cloud environments.
Abstract
Making open source more inclusive
Red Hat is committed to replacing problematic language in our code, documentation, and web properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the enormity of this endeavor, these changes will be implemented gradually over several upcoming releases. For more details, see our CTO Chris Wright’s message.
Providing feedback on Red Hat documentation
We appreciate your input on our documentation. Do let us know how we can make it better.
To give feedback, create a Jira ticket:
- Log in to the Jira.
- Click Create in the top navigation bar
- Enter a descriptive title in the Summary field.
- Enter your suggestion for improvement in the Description field. Include links to the relevant parts of the documentation.
- Select Documentation in the Components field.
- Click Create at the bottom of the dialogue.
Preface
Red Hat OpenShift Data Foundation supports deployment on any platform that you provision including bare metal, virtualized, and cloud environments. Both internal and external OpenShift Data Foundation clusters are supported on these environments. See Planning your deployment and Preparing to deploy OpenShift Data Foundation for more information about deployment requirements.
To deploy OpenShift Data Foundation, follow the appropriate deployment process based on your requirement:
Chapter 1. Preparing to deploy OpenShift Data Foundation
When you deploy OpenShift Data Foundation on OpenShift Container Platform using the local storage devices on any platform, you can create internal cluster resources. This approach internally provisions base services so that all the applications can access additional storage classes.
You can also deploy OpenShift Data Foundation to use an external Red Hat Ceph Storage cluster and IBM FlashSystem. For instructions, see Deploying OpenShift Data Foundation in external mode. External mode deployment works on clusters that are detected as non-cloud. If your cluster is not detected correctly, open up a bug in Bugzilla.
Before you begin the deployment of Red Hat OpenShift Data Foundation using a local storage, ensure that you meet the resource requirements. See Requirements for installing OpenShift Data Foundation using local storage devices.
After completing the preparatory steps, perform the following procedures:
1.1. Requirements for installing OpenShift Data Foundation using local storage devices
Node requirements
The cluster must consist of at least three OpenShift Container Platform worker or infrastructure nodes with locally attached-storage devices on each of them.
Each of the three selected nodes must have at least one raw block device available. OpenShift Data Foundation uses the one or more available raw block devices.
NoteMake sure that the devices have a unique
by-id
device name for each available raw block device.- The devices you use must be empty, the disks must not include Physical Volumes (PVs), Volume Groups (VGs), or Logical Volumes (LVs) remaining on the disk.
For more information, see the Resource requirements section in the Planning guide.
Disaster recovery requirements
Disaster Recovery features supported by Red Hat OpenShift Data Foundation require all of the following prerequisites to successfully implement a disaster recovery solution:
- A valid Red Hat OpenShift Data Foundation Advanced subscription.
- A valid Red Hat Advanced Cluster Management (RHACM) for Kubernetes subscription.
To know in detail how subscriptions for OpenShift Data Foundation work, see knowledgebase article on OpenShift Data Foundation subscriptions.
For detailed disaster recovery solution requirements, see Configuring OpenShift Data Foundation Disaster Recovery for OpenShift Workloads guide, and Requirements and recommendations section of the Install guide in Red Hat Advanced Cluster Management for Kubernetes documentation.
Minimum starting node requirements
An OpenShift Data Foundation cluster is deployed with a minimum configuration when the resource requirement for a standard deployment is not met.
For more information, see the Resource requirements section in the Planning guide.
Chapter 2. Deploy OpenShift Data Foundation using local storage devices
You can deploy OpenShift Data Foundation on any platform including virtualized and cloud environments where OpenShift Container Platform is already installed.
Also, it is possible to deploy only the Multicloud Object Gateway (MCG) component with OpenShift Data Foundation. For more information, see Deploy standalone Multicloud Object Gateway.
Perform the following steps to deploy OpenShift Data Foundation:
2.1. Installing Local Storage Operator
Install the Local Storage Operator from the Operator Hub before creating Red Hat OpenShift Data Foundation clusters on local storage devices.
Procedure
- Log in to the OpenShift Web Console.
- Click Operators → OperatorHub.
-
Type
local storage
in the Filter by keyword box to find the Local Storage Operator from the list of operators, and click on it. Set the following options on the Install Operator page:
-
Update channel as
stable
. - Installation mode as A specific namespace on the cluster.
- Installed Namespace as Operator recommended namespace openshift-local-storage.
- Update approval as Automatic.
-
Update channel as
- Click Install.
Verification steps
- Verify that the Local Storage Operator shows a green tick indicating successful installation.
2.2. Installing Red Hat OpenShift Data Foundation Operator
You can install Red Hat OpenShift Data Foundation Operator using the Red Hat OpenShift Container Platform Operator Hub.
Prerequisites
-
Access to an OpenShift Container Platform cluster using an account with
cluster-admin
and operator installation permissions. - You must have at least three worker or infrastructure nodes in the Red Hat OpenShift Container Platform cluster.
- For additional resource requirements, see the Planning your deployment guide.
When you need to override the cluster-wide default node selector for OpenShift Data Foundation, you can use the following command to specify a blank node selector for the
openshift-storage
namespace (createopenshift-storage
namespace in this case):$ oc annotate namespace openshift-storage openshift.io/node-selector=
-
Taint a node as
infra
to ensure only Red Hat OpenShift Data Foundation resources are scheduled on that node. This helps you save on subscription costs. For more information, see the How to use dedicated worker nodes for Red Hat OpenShift Data Foundation section in the Managing and Allocating Storage Resources guide.
Procedure
- Log in to the OpenShift Web Console.
- Click Operators → OperatorHub.
-
Scroll or type
OpenShift Data Foundation
into the Filter by keyword box to find the OpenShift Data Foundation Operator. - Click Install.
Set the following options on the Install Operator page:
- Update Channel as stable-4.18.
- Installation Mode as A specific namespace on the cluster.
-
Installed Namespace as Operator recommended namespace openshift-storage. If Namespace
openshift-storage
does not exist, it is created during the operator installation. Select Approval Strategy as Automatic or Manual.
If you select Automatic updates, then the Operator Lifecycle Manager (OLM) automatically upgrades the running instance of your Operator without any intervention.
If you select Manual updates, then the OLM creates an update request. As a cluster administrator, you must then manually approve that update request to update the Operator to a newer version.
- Ensure that the Enable option is selected for the Console plugin.
- Click Install.
Verification steps
-
After the operator is successfully installed, a pop-up with a message,
Web console update is available
appears on the user interface. Click Refresh web console from this pop-up for the console changes to reflect. In the Web Console:
- Navigate to Installed Operators and verify that the OpenShift Data Foundation Operator shows a green tick indicating successful installation.
- Navigate to Storage and verify if the Data Foundation dashboard is available.
2.3. Creating OpenShift Data Foundation cluster on any platform
Prerequisites
- Ensure that all the requirements in the Requirements for installing OpenShift Data Foundation using local storage devices section are met.
- Ensure that the disk type is SSD, which is the only supported disk type.
- If you want to use multus networking, you must create network attachment definitions (NADs) before deployment which is later attached to the cluster. For more information, see Multi network plug-in (Multus) support and Creating network attachment definitions.
Procedure
In the OpenShift Web Console, click Operators → Installed Operators to view all the installed operators.
Ensure that the Project selected is
openshift-storage
.- Click on the OpenShift Data Foundation operator, and then click Create StorageSystem.
In the Backing storage page, perform the following:
- Select Full Deployment for the Deployment type option.
- Select the Create a new StorageClass using the local storage devices option.
Optional: Select Use external PostgreSQL checkbox to use an external PostgreSQL [Technology preview].
This provides high availability solution for Multicloud Object Gateway where the PostgreSQL pod is a single point of failure.
Provide the following connection details:
- Username
- Password
- Server name and Port
- Database name
- Select Enable TLS/SSL checkbox to enable encryption for the Postgres server.
Click Next.
ImportantYou are prompted to install the Local Storage Operator if it is not already installed. Click Install, and follow the procedure as described in Installing Local Storage Operator.
In the Create local volume set page, provide the following information:
Enter a name for the LocalVolumeSet and the StorageClass.
The local volume set name appears as the default value for the storage class name. You can change the name.
Select one of the following:
Disks on all nodes
Uses the available disks that match the selected filters on all the nodes.
Disks on selected nodes
Uses the available disks that match the selected filters only on the selected nodes.
ImportantThe flexible scaling feature is enabled only when the storage cluster that you created with three or more nodes are spread across fewer than the minimum requirement of three availability zones.
For information about flexible scaling, see knowledgebase article on Scaling OpenShift Data Foundation cluster using YAML when flexible scaling is enabled.
- Flexible scaling features get enabled at the time of deployment and can not be enabled or disabled later on.
If the nodes selected do not match the OpenShift Data Foundation cluster requirement of an aggregated 30 CPUs and 72 GiB of RAM, a minimal cluster is deployed if at least 24 CPUs and 72 GiB of RAM is available.
For minimum starting node requirements, see the Resource requirements section in the Planning guide.
-
From the available list of Disk Type, select
SSD/NVMe
. Expand the Advanced section and set the following options:
Volume Mode
Block is selected as the default value.
Device Type
Select one or more device types from the dropdown list.
Disk Size
Set a minimum size of 100GB for the device and maximum available size of the device that needs to be included.
Maximum Disks Limit
This indicates the maximum number of Persistent Volumes (PVs) that you can create on a node. If this field is left empty, then PVs are created for all the available disks on the matching nodes.
Click Next.
A pop-up to confirm the creation of LocalVolumeSet is displayed.
- Click Yes to continue.
In the Capacity and nodes page, configure the following:
- Available raw capacity is populated with the capacity value based on all the attached disks associated with the storage class. This takes some time to show up. The Selected nodes list shows the nodes based on the storage class.
In the Configure performance section, select one of the following performance profiles:
Lean
Use this in a resource constrained environment with minimum resources that are lower than the recommended. This profile minimizes resource consumption by allocating fewer CPUs and less memory.
Balanced (default)
Use this when recommended resources are available. This profile provides a balance between resource consumption and performance for diverse workloads.
Performance
Use this in an environment with sufficient resources to get the best performance. This profile is tailored for high performance by allocating ample memory and CPUs to ensure optimal execution of demanding workloads.
NoteYou have the option to configure the performance profile even after the deployment using the Configure performance option from the options menu of the StorageSystems tab.
ImportantBefore selecting a resource profile, make sure to check the current availability of resources within the cluster. Opting for a higher resource profile in a cluster with insufficient resources might lead to installation failures.
For more information about resource requirements, see Resource requirement for performance profiles.
- Optional: Select the Taint nodes checkbox to dedicate the selected nodes for OpenShift Data Foundation.
- Click Next.
Optional: In the Security and network page, configure the following based on your requirement:
- To enable encryption, select Enable data encryption for block and file storage.
Select one or both of the following Encryption level:
Cluster-wide encryption
Encrypts the entire cluster (block and file).
StorageClass encryption
Creates encrypted persistent volume (block only) using encryption enabled storage class.
Optional: Select the Connect to an external key management service checkbox. This is optional for cluster-wide encryption.
- From the Key Management Service Provider drop-down list, either select Vault or Thales CipherTrust Manager (using KMIP). If you selected Vault, go to the next step. If you selected Thales CipherTrust Manager (using KMIP), go to step iii.
Select an Authentication Method.
- Using Token authentication method
- Enter a unique Connection Name, host Address of the Vault server ('https://<hostname or ip>'), Port number and Token.
Expand Advanced Settings to enter additional settings and certificate details based on your
Vault
configuration:- Enter the Key Value secret path in Backend Path that is dedicated and unique to OpenShift Data Foundation.
- Optional: Enter TLS Server Name and Vault Enterprise Namespace.
- Upload the respective PEM encoded certificate file to provide the CA Certificate, Client Certificate and Client Private Key .
- Click Save and skip to step iv.
- Using Kubernetes authentication method
- Enter a unique Vault Connection Name, host Address of the Vault server ('https://<hostname or ip>'), Port number and Role name.
Expand Advanced Settings to enter additional settings and certificate details based on your
Vault
configuration:- Enter the Key Value secret path in Backend Path that is dedicated and unique to OpenShift Data Foundation.
- Optional: Enter TLS Server Name and Authentication Path if applicable.
- Upload the respective PEM encoded certificate file to provide the CA Certificate, Client Certificate and Client Private Key .
- Click Save and skip to step iv.
To use Thales CipherTrust Manager (using KMIP) as the KMS provider, follow the steps below:
- Enter a unique Connection Name for the Key Management service within the project.
In the Address and Port sections, enter the IP of Thales CipherTrust Manager and the port where the KMIP interface is enabled. For example:
- Address: 123.34.3.2
- Port: 5696
- Upload the Client Certificate, CA certificate, and Client Private Key.
- If StorageClass encryption is enabled, enter the Unique Identifier to be used for encryption and decryption generated above.
-
The TLS Server field is optional and used when there is no DNS entry for the KMIP endpoint. For example,
kmip_all_<port>.ciphertrustmanager.local
.
- Select a Network.
Select one of the following:
Default (SDN)
If you are using a single network.
Custom (Multus)
If you are using multiple network interfaces.
- Select a Public Network Interface from the dropdown.
Select a Cluster Network Interface from the dropdown.
NoteIf you are using only one additional network interface, select the single
NetworkAttachementDefinition
, that is,ocs-public-cluster
for the Public Network Interface and leave the Cluster Network Interface blank.
- Click Next.
In the Review and create page, review the configuration details.
To modify any configuration settings, click Back to go back to the previous configuration page.
- Click Create StorageSystem.
When your deployment has five or more nodes, racks, or rooms, and when there are five or more number of failure domains present in the deployment, you can configure Ceph monitor counts based on the number of racks or zones. An alert is displayed in the notification panel or Alert Center of the OpenShift Web Console to indicate the option to increase the number of Ceph monitor counts. You can use the Configure option in the alert to configure the Ceph monitor counts. For more information, see Resolving low Ceph monitor count alert.
Verification steps
To verify the final Status of the installed storage cluster:
- In the OpenShift Web Console, navigate to Installed Operators → OpenShift Data Foundation → Storage System
- Click ocs-storagecluster-storagesystem → Resources.
-
Verify that the
Status
of theStorageCluster
isReady
and has a green tick mark next to it.
To verify if the flexible scaling is enabled on your storage cluster, perform the following steps (for arbiter mode, flexible scaling is disabled):
- In the OpenShift Web Console, navigate to Installed Operators → OpenShift Data Foundation → Storage System
- Click ocs-storagecluster-storagesystem → Resources → ocs-storagecluster.
In the YAML tab, search for the keys
flexibleScaling
in thespec
section andfailureDomain
in thestatus
section. Ifflexible scaling
is true andfailureDomain
is set to host, flexible scaling feature is enabled:spec: flexibleScaling: true […] status: failureDomain: host
- To verify that all the components for OpenShift Data Foundation are successfully installed, see Verifying your OpenShift Data Foundation installation.
- To verify the multi networking (Multus), see Verifying the Multus networking.
Additional resources
- To expand the capacity of the initial cluster, see the Scaling Storage guide and follow the instructions in the "Scaling storage of bare metal OpenShift Data Foundation cluster" section.
2.4. Verifying OpenShift Data Foundation deployment
To verify that OpenShift Data Foundation is deployed correctly:
2.4.1. Verifying the state of the pods
Procedure
- Click Workloads → Pods from the OpenShift Web Console.
Select
openshift-storage
from the Project drop-down list.NoteIf the Show default projects option is disabled, use the toggle button to list all the default projects.
For more information on the expected number of pods for each component and how it varies depending on the number of nodes, see the following table:
-
Set filter for Running and Completed pods to verify that the following pods are in
Running
andCompleted
state:
Component | Corresponding pods |
OpenShift Data Foundation Operator |
|
Rook-ceph Operator |
(1 pod on any storage node) |
Multicloud Object Gateway |
|
MON |
(3 pods distributed across storage nodes) |
MGR |
(1 pod on any storage node) |
MDS |
(2 pods distributed across storage nodes) |
RGW |
|
CSI |
|
rook-ceph-crashcollector |
(1 pod on each storage node) |
OSD |
|
2.4.2. Verifying the OpenShift Data Foundation cluster is healthy
Procedure
- In the OpenShift Web Console, click Storage → Data Foundation.
- In the Status card of the Overview tab, click Storage System and then click the storage system link from the pop up that appears.
- In the Status card of the Block and File tab, verify that the Storage Cluster has a green tick.
- In the Details card, verify that the cluster information is displayed.
For more information on the health of the OpenShift Data Foundation cluster using the Block and File dashboard, see Monitoring OpenShift Data Foundation.
2.4.3. Verifying the Multicloud Object Gateway is healthy
Procedure
- In the OpenShift Web Console, click Storage → Data Foundation.
In the Status card of the Overview tab, click Storage System and then click the storage system link from the pop up that appears.
- In the Status card of the Object tab, verify that both Object Service and Data Resiliency have a green tick.
- In the Details card, verify that the MCG information is displayed.
For more information on the health of the OpenShift Data Foundation cluster using the object service dashboard, see Monitoring OpenShift Data Foundation.
The Multicloud Object Gateway only has a single copy of the database (NooBaa DB). This means if NooBaa DB PVC gets corrupted and we are unable to recover it, can result in total data loss of applicative data residing on the Multicloud Object Gateway. Because of this, Red Hat recommends taking a backup of NooBaa DB PVC regularly. If NooBaa DB fails and cannot be recovered, then you can revert to the latest backed-up version. For instructions on backing up your NooBaa DB, follow the steps in this knowledgabase article.
2.4.4. Verifying that the specific storage classes exist
Procedure
- Click Storage → Storage Classes from the left pane of the OpenShift Web Console.
Verify that the following storage classes are created with the OpenShift Data Foundation cluster creation:
-
ocs-storagecluster-ceph-rbd
-
ocs-storagecluster-cephfs
-
openshift-storage.noobaa.io
-
ocs-storagecluster-ceph-rgw
-
2.4.5. Verifying the Multus networking
To determine if Multus is working in your cluster, verify the Multus networking.
Procedure
Based on your Network configuration choices, the OpenShift Data Foundation operator will do one of the following:
-
If only a single NetworkAttachmentDefinition (for example,
ocs-public-cluster
) was selected for the Public Network Interface, then the traffic between the application pods and the OpenShift Data Foundation cluster will happen on this network. Additionally the cluster will be self configured to also use this network for the replication and rebalancing traffic between OSDs. -
If both NetworkAttachmentDefinitions (for example,
ocs-public
andocs-cluster
) were selected for the Public Network Interface and the Cluster Network Interface respectively during the Storage Cluster installation, then client storage traffic will be on the public network and cluster network for the replication and rebalancing traffic between OSDs.
To verify the network configuration is correct, complete the following:
In the OpenShift console, navigate to Installed Operators → OpenShift Data Foundation → Storage System → ocs-storagecluster-storagesystem → Resources → ocs-storagecluster.
In the YAML tab, search for network
in the spec
section and ensure the configuration is correct for your network interface choices. This example is for separating the client storage traffic from the storage replication traffic.
Sample output:
[..] spec: [..] network: ipFamily: IPv4 provider: multus selectors: cluster: openshift-storage/ocs-cluster public: openshift-storage/ocs-public [..]
To verify the network configuration is correct using the command line interface, run the following commands:
$ oc get storagecluster ocs-storagecluster \ -n openshift-storage \ -o=jsonpath='{.spec.network}{"\n"}'
Sample output:
{"ipFamily":"IPv4","provider":"multus","selectors":{"cluster":"openshift-storage/ocs-cluster","public":"openshift-storage/ocs-public"}}
Confirm the OSD pods are using correct network
In the openshift-storage
namespace use one of the OSD pods to verify the pod has connectivity to the correct networks. This example is for separating the client storage traffic from the storage replication traffic.
Only the OSD pods will connect to both Multus public and cluster networks if both are created. All other OCS pods will connect to the Multus public network.
$ oc get -n openshift-storage $(oc get pods -n openshift-storage -o name -l app=rook-ceph-osd | grep 'osd-0') -o=jsonpath='{.metadata.annotations.k8s\.v1\.cni\.cncf\.io/network-status}{"\n"}'
Sample output:
[{ "name": "openshift-sdn", "interface": "eth0", "ips": [ "10.129.2.30" ], "default": true, "dns": {} },{ "name": "openshift-storage/ocs-cluster", "interface": "net1", "ips": [ "192.168.2.1" ], "mac": "e2:04:c6:81:52:f1", "dns": {} },{ "name": "openshift-storage/ocs-public", "interface": "net2", "ips": [ "192.168.1.1" ], "mac": "ee:a0:b6:a4:07:94", "dns": {} }]
To confirm the OSD pods are using correct network using the command line interface, run the following command (requires the jq utility):
$ oc get -n openshift-storage $(oc get pods -n openshift-storage -o name -l app=rook-ceph-osd | grep 'osd-0') -o=jsonpath='{.metadata.annotations.k8s\.v1\.cni\.cncf\.io/network-status}{"\n"}' | jq -r '.[].name'
Sample output:
openshift-sdn openshift-storage/ocs-cluster openshift-storage/ocs-public
Chapter 3. Deploy standalone Multicloud Object Gateway
Deploying only the Multicloud Object Gateway (MCG) component with the OpenShift Data Foundation provides the flexibility in deployment and helps to reduce the resource consumption. After deploying the MCG component, you can create and manage buckets using MCG object browser. For more information, see Creating and managing buckets using MCG object browser.
Use this section to deploy only the standalone Multicloud Object Gateway component, which involves the following steps:
- Installing the Local Storage Operator.
- Installing Red Hat OpenShift Data Foundation Operator
- Creating standalone Multicloud Object Gateway
The Multicloud Object Gateway only has a single copy of the database (NooBaa DB). This means if NooBaa DB PVC gets corrupted and we are unable to recover it, can result in total data loss of applicative data residing on the Multicloud Object Gateway. Because of this, Red Hat recommends taking a backup of NooBaa DB PVC regularly. If NooBaa DB fails and cannot be recovered, then you can revert to the latest backed-up version. For instructions on backing up your NooBaa DB, follow the steps in this knowledgabase article.
3.1. Installing Local Storage Operator
Install the Local Storage Operator from the Operator Hub before creating Red Hat OpenShift Data Foundation clusters on local storage devices.
Procedure
- Log in to the OpenShift Web Console.
- Click Operators → OperatorHub.
-
Type
local storage
in the Filter by keyword box to find the Local Storage Operator from the list of operators, and click on it. Set the following options on the Install Operator page:
-
Update channel as
stable
. - Installation mode as A specific namespace on the cluster.
- Installed Namespace as Operator recommended namespace openshift-local-storage.
- Update approval as Automatic.
-
Update channel as
- Click Install.
Verification steps
- Verify that the Local Storage Operator shows a green tick indicating successful installation.
3.2. Installing Red Hat OpenShift Data Foundation Operator
You can install Red Hat OpenShift Data Foundation Operator using the Red Hat OpenShift Container Platform Operator Hub.
Prerequisites
-
Access to an OpenShift Container Platform cluster using an account with
cluster-admin
and operator installation permissions. - You must have at least three worker or infrastructure nodes in the Red Hat OpenShift Container Platform cluster.
- For additional resource requirements, see the Planning your deployment guide.
When you need to override the cluster-wide default node selector for OpenShift Data Foundation, you can use the following command to specify a blank node selector for the
openshift-storage
namespace (createopenshift-storage
namespace in this case):$ oc annotate namespace openshift-storage openshift.io/node-selector=
-
Taint a node as
infra
to ensure only Red Hat OpenShift Data Foundation resources are scheduled on that node. This helps you save on subscription costs. For more information, see the How to use dedicated worker nodes for Red Hat OpenShift Data Foundation section in the Managing and Allocating Storage Resources guide.
Procedure
- Log in to the OpenShift Web Console.
- Click Operators → OperatorHub.
-
Scroll or type
OpenShift Data Foundation
into the Filter by keyword box to find the OpenShift Data Foundation Operator. - Click Install.
Set the following options on the Install Operator page:
- Update Channel as stable-4.18.
- Installation Mode as A specific namespace on the cluster.
-
Installed Namespace as Operator recommended namespace openshift-storage. If Namespace
openshift-storage
does not exist, it is created during the operator installation. Select Approval Strategy as Automatic or Manual.
If you select Automatic updates, then the Operator Lifecycle Manager (OLM) automatically upgrades the running instance of your Operator without any intervention.
If you select Manual updates, then the OLM creates an update request. As a cluster administrator, you must then manually approve that update request to update the Operator to a newer version.
- Ensure that the Enable option is selected for the Console plugin.
- Click Install.
Verification steps
-
After the operator is successfully installed, a pop-up with a message,
Web console update is available
appears on the user interface. Click Refresh web console from this pop-up for the console changes to reflect. In the Web Console:
- Navigate to Installed Operators and verify that the OpenShift Data Foundation Operator shows a green tick indicating successful installation.
- Navigate to Storage and verify if the Data Foundation dashboard is available.
3.3. Creating a standalone Multicloud Object Gateway
You can create only the standalone Multicloud Object Gateway (MCG) component while deploying OpenShift Data Foundation. After you create the MCG component, you can create and manage buckets using the MCG object browser. For more information, see Creating and managing buckets using MCG object browser.
Prerequisites
- Ensure that the OpenShift Data Foundation Operator is installed.
Procedure
In the OpenShift Web Console, click Operators → Installed Operators to view all the installed operators.
Ensure that the Project selected is
openshift-storage
.- Click OpenShift Data Foundation operator and then click Create StorageSystem.
In the Backing storage page, select the following:
- Select Multicloud Object Gateway for Deployment type.
Optional: Select the Connect to an external key management service checkbox. This is optional for cluster-wide encryption.
- From the Key Management Service Provider drop-down list, either select Vault or Thales CipherTrust Manager (using KMIP). If you selected Vault, go to the next step. If you selected Thales CipherTrust Manager (using KMIP), go to step iii.
Select an Authentication Method.
- Using Token authentication method
- Enter a unique Connection Name, host Address of the Vault server ('https://<hostname or ip>'), Port number and Token.
Expand Advanced Settings to enter additional settings and certificate details based on your
Vault
configuration:- Enter the Key Value secret path in Backend Path that is dedicated and unique to OpenShift Data Foundation.
- Optional: Enter TLS Server Name and Vault Enterprise Namespace.
- Upload the respective PEM encoded certificate file to provide the CA Certificate, Client Certificate and Client Private Key .
- Click Save and skip to step iv.
- Using Kubernetes authentication method
- Enter a unique Vault Connection Name, host Address of the Vault server ('https://<hostname or ip>'), Port number and Role name.
Expand Advanced Settings to enter additional settings and certificate details based on your
Vault
configuration:- Enter the Key Value secret path in Backend Path that is dedicated and unique to OpenShift Data Foundation.
- Optional: Enter TLS Server Name and Authentication Path if applicable.
- Upload the respective PEM encoded certificate file to provide the CA Certificate, Client Certificate and Client Private Key .
- Click Save and skip to step iv.
To use Thales CipherTrust Manager (using KMIP) as the KMS provider, follow the steps below:
- Enter a unique Connection Name for the Key Management service within the project.
In the Address and Port sections, enter the IP of Thales CipherTrust Manager and the port where the KMIP interface is enabled. For example:
- Address: 123.34.3.2
- Port: 5696
- Upload the Client Certificate, CA certificate, and Client Private Key.
- If StorageClass encryption is enabled, enter the Unique Identifier to be used for encryption and decryption generated above.
-
The TLS Server field is optional and used when there is no DNS entry for the KMIP endpoint. For example,
kmip_all_<port>.ciphertrustmanager.local
.
- Select a Network.
- Click Next.
In the Review and create page, review the configuration details:
To modify any configuration settings, click Back.
- Click Create StorageSystem.
Verification steps
- Verifying that the OpenShift Data Foundation cluster is healthy
- In the OpenShift Web Console, click Storage → Data Foundation.
In the Status card of the Overview tab, click Storage System and then click the storage system link from the pop up that appears.
- In the Status card of the Object tab, verify that both Object Service and Data Resiliency have a green tick.
- In the Details card, verify that the MCG information is displayed.
- Verifying the state of the pods
- Click Workloads → Pods from the OpenShift Web Console.
Select
openshift-storage
from the Project drop-down list and verify that the following pods are inRunning
state.NoteIf the Show default projects option is disabled, use the toggle button to list all the default projects.
Component Corresponding pods OpenShift Data Foundation Operator
-
ocs-operator-*
(1 pod on any storage node) -
ocs-metrics-exporter-*
(1 pod on any storage node) -
odf-operator-controller-manager-*
(1 pod on any storage node) -
odf-console-*
(1 pod on any storage node) -
csi-addons-controller-manager-*
(1 pod on any storage node)
Rook-ceph Operator
rook-ceph-operator-*
(1 pod on any storage node)
Multicloud Object Gateway
-
noobaa-operator-*
(1 pod on any storage node) -
noobaa-core-*
(1 pod on any storage node) -
noobaa-db-pg-*
(1 pod on any storage node) -
noobaa-endpoint-*
(1 pod on any storage node)
-
Chapter 4. View OpenShift Data Foundation Topology
The topology shows the mapped visualization of the OpenShift Data Foundation storage cluster at various abstraction levels and also lets you to interact with these layers. The view also shows how the various elements compose the Storage cluster altogether.
Procedure
On the OpenShift Web Console, navigate to Storage → Data Foundation → Topology.
The view shows the storage cluster and the zones inside it. You can see the nodes depicted by circular entities within the zones, which are indicated by dotted lines. The label of each item or resource contains basic information such as status and health or indication for alerts.
- Choose a node to view node details on the right-hand panel. You can also access resources or deployments within a node by clicking on the search/preview decorator icon.
To view deployment details
- Click the preview decorator on a node. A modal window appears above the node that displays all of the deployments associated with that node along with their statuses.
- Click the Back to main view button in the model’s upper left corner to close and return to the previous view.
- Select a specific deployment to see more information about it. All relevant data is shown in the side panel.
- Click the Resources tab to view the pods information. This tab provides a deeper understanding of the problems and offers granularity that aids in better troubleshooting.
- Click the pod links to view the pod information page on OpenShift Container Platform. The link opens in a new window.
Chapter 5. Uninstalling OpenShift Data Foundation
5.1. Uninstalling OpenShift Data Foundation in Internal mode
To uninstall OpenShift Data Foundation in Internal mode, refer to the knowledgebase article on Uninstalling OpenShift Data Foundation.