Deploying OpenShift Data Foundation using Amazon Web Services
Instructions for deploying OpenShift Data Foundation using Amazon Web Services for cloud storage
Abstract
Making open source more inclusive
Red Hat is committed to replacing problematic language in our code, documentation, and web properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the enormity of this endeavor, these changes will be implemented gradually over several upcoming releases. For more details, see our CTO Chris Wright’s message.
Providing feedback on Red Hat documentation
We appreciate your input on our documentation. Do let us know how we can make it better. To give feedback:
For simple comments on specific passages:
- Make sure you are viewing the documentation in the Multi-page HTML format. In addition, ensure you see the Feedback button in the upper right corner of the document.
- Use your mouse cursor to highlight the part of text that you want to comment on.
- Click the Add Feedback pop-up that appears below the highlighted text.
- Follow the displayed instructions.
For submitting more complex feedback, create a Bugzilla ticket:
- Go to the Bugzilla website.
- In the Component section, choose documentation.
- Fill in the Description field with your suggestion for improvement. Include a link to the relevant part(s) of documentation.
- Click Submit Bug.
Preface
Red Hat OpenShift Data Foundation 4.9 supports deployment on existing Red Hat OpenShift Container Platform (RHOCP) AWS clusters in connected or disconnected environments along with out-of-the-box support for proxy environments.
Only internal OpenShift Data Foundation clusters are supported on AWS. See Planning your deployment and Preparing to deploy OpenShift Data Foundation for more information about deployment requirements.
To deploy OpenShift Data Foundation, start with the requirements in Preparing to deploy OpenShift Data Foundation chapter and then follow the deployment process for your environment based on your requirement:
Chapter 1. Preparing to deploy OpenShift Data Foundation
Deploying OpenShift Data Foundation on OpenShift Container Platform using dynamic storage devices provides you with the option to create internal cluster resources.
Before you begin the deployment of Red Hat OpenShift Data Foundation, follow these steps:
For Red Hat Enterprise Linux based hosts for worker nodes, enable file system access for containers on Red Hat Enterprise Linux based nodes.
NoteSkip this step for Red Hat Enterprise Linux CoreOS (RHCOS).
Optional: If you want to enable cluster-wide encryption using an external Key Management System (KMS):
- Ensure that a policy with a token exists and the key value backend path in Vault is enabled. See enabled the key value backend path and policy in Vault.
- Ensure that you are using signed certificates on your Vault servers.
Minimum starting node requirements [Technology Preview]
An OpenShift Data Foundation cluster is deployed with minimum configuration when the standard deployment resource requirement is not met. See Resource requirements section in the Planning guide.
Regional-DR requirements [Developer Preview]
Disaster Recovery features supported by Red Hat OpenShift Data Foundation require all of the following prerequisites in order to successfully implement a Disaster Recovery solution:
- A valid Red Hat OpenShift Data Foundation Advanced entitlement
A valid Red Hat Advanced Cluster Management for Kubernetes subscription
To know how subscriptions for OpenShift Data Foundation work, see knowledgebase article on OpenShift Data Foundation subscriptions.
For detailed requirements, see Regional-DR requirements and RHACM requirements.
1.1. Enabling file system access for containers on Red Hat Enterprise Linux based nodes
Deploying OpenShift Data Foundation on an OpenShift Container Platform with worker nodes on a Red Hat Enterprise Linux base in a user provisioned infrastructure (UPI) does not automatically provide container access to the underlying Ceph file system.
Skip this step for hosts based on Red Hat Enterprise Linux CoreOS (RHCOS).
Procedure
- Log in to the Red Hat Enterprise Linux based node and open a terminal.
For each node in your cluster:
Verify that the node has access to the rhel-7-server-extras-rpms repository.
# subscription-manager repos --list-enabled | grep rhel-7-server
If you do not see both
rhel-7-server-rpms
andrhel-7-server-extras-rpms
in the output, or if there is no output, run the following commands to enable each repository:# subscription-manager repos --enable=rhel-7-server-rpms
# subscription-manager repos --enable=rhel-7-server-extras-rpms
Install the required packages.
# yum install -y policycoreutils container-selinux
Persistently enable container use of the Ceph file system in SELinux.
# setsebool -P container_use_cephfs on
1.2. Enabling key value backend path and policy in Vault
Prerequisites
- Administrator access to Vault.
-
Carefully, choose a unique path name as the backend
path
that follows the naming convention since it cannot be changed later.
Procedure
Enable the Key/Value (KV) backend path in Vault.
For Vault KV secret engine API, version 1:
$ vault secrets enable -path=odf kv
For Vault KV secret engine API, version 2:
$ vault secrets enable -path=odf kv-v2
Create a policy to restrict users to perform a write or delete operation on the secret using the following commands.
echo ' path "odf/*" { capabilities = ["create", "read", "update", "delete", "list"] } path "sys/mounts" { capabilities = ["read"] }'| vault policy write odf -
Create a token matching the above policy.
$ vault token create -policy=odf -format json
Chapter 2. Deploy OpenShift Data Foundation using dynamic storage devices
You can deploy OpenShift Data Foundation on OpenShift Container Platform using dynamic storage devices provided by Amazon Web Services (AWS) EBS (type, gp2
) that provides you with the option to create internal cluster resources. This results in the internal provisioning of the base services, which helps to make additional storage classes available to applications.
Also, it is possible to deploy only the Multicloud Object Gateway (MCG) component with OpenShift Data Foundation. For more information, see Deploy standalone Multicloud Object Gateway.
Only internal OpenShift Data Foundation clusters are supported on AWS. See Planning your deployment for more information about deployment requirements.
Also, ensure that you have addressed the requirements in Preparing to deploy OpenShift Data Foundation chapter before proceeding with the below steps for deploying using dynamic storage devices:
2.1. Installing Red Hat OpenShift Data Foundation Operator
You can install Red Hat OpenShift Data Foundation Operator using the Red Hat OpenShift Container Platform Operator Hub.
Prerequisites
-
Access to an OpenShift Container Platform cluster using an account with
cluster-admin
and Operator installation permissions. - You must have at least three worker nodes in the Red Hat OpenShift Container Platform cluster.
- For additional resource requirements, see the Planning your deployment guide.
When you need to override the cluster-wide default node selector for OpenShift Data Foundation, you can use the following command in the command line interface to specify a blank node selector for the
openshift-storage
namespace (create openshift-storage namespace in this case):$ oc annotate namespace openshift-storage openshift.io/node-selector=
-
Taint a node as
infra
to ensure only Red Hat OpenShift Data Foundation resources are scheduled on that node. This helps you save on subscription costs. For more information, see How to use dedicated worker nodes for Red Hat OpenShift Data Foundation chapter in the Managing and Allocating Storage Resources guide.
Procedure
- Log in to the OpenShift Web Console.
- Click Operators → OperatorHub.
-
Scroll or type
OpenShift Data Foundation
into the Filter by keyword box to find the OpenShift Data Foundation Operator. - Click Install.
Set the following options on the Install Operator page:
- Update Channel as stable-4.9.
- Installation Mode as A specific namespace on the cluster.
-
Installed Namespace as Operator recommended namespace openshift-storage. If Namespace
openshift-storage
does not exist, it is created during the operator installation. Select Approval Strategy as Automatic or Manual.
If you select Automatic updates, then the Operator Lifecycle Manager (OLM) automatically upgrades the running instance of your Operator without any intervention.
If you select Manual updates, then the OLM creates an update request. As a cluster administrator, you must then manually approve that update request to update the Operator to a newer version.
- Ensure that the Enable option is selected for the Console plugin.
- Click Install.
We recommend using all default settings. Changing it may result in unexpected behavior. Alter only if you are aware of its result.
Verification steps
- Verify that the OpenShift Data Foundation Operator shows a green tick indicating successful installation.
After the operator is successfully installed, a pop-up with a message,
Web console update is available
appears on the user interface. Click Refresh web console from this pop-up for the console changes to reflect.- In the Web Console, navigate to Operators and verify if OpenShift Data Foundation is available.
In case the console plugin option was not automatically enabled after you installed the OpenShift Data Foundation Operator, you need to enable it.
For more information on how to enable the console plugin, see Enabling the Red Hat OpenShift Data Foundation console plugin.
2.2. Creating an OpenShift Data Foundation cluster
Create an OpenShift Data Foundation cluster after you install the OpenShift Data Foundation operator.
Prerequisites
- The OpenShift Data Foundation operator must be installed from the Operator Hub. For more information, see Installing OpenShift Data Foundation Operator.
Procedure
In the OpenShift Web Console, click Operators → Installed Operators to view all the installed operators.
Ensure that the Project selected is
openshift-storage
.- Click on the OpenShift Data Foundation operator, and then click Create StorageSystem.
In the Backing storage page, select the following:
- Select the Use an existing StorageClass option.
Select the Storage Class.
By default, it is set to
gp2
.-
Expand Advanced and select
Full Deployment
for the Deployment type option. - Click Next.
In the Capacity and nodes page, provide the necessary information:
Select a value for Requested Capacity from the dropdown list. It is set to
2 TiB
by default.NoteOnce you select the initial storage capacity, cluster expansion is performed only using the selected usable capacity (three times of raw storage).
In the Select Nodes section, select at least three available nodes.
For cloud platforms with multiple availability zones, ensure that the Nodes are spread across different Locations/availability zones.
If the nodes selected do not match the OpenShift Data Foundation cluster requirement of an aggregated 30 CPUs and 72 GiB of RAM, a minimal cluster is deployed. For minimum starting node requirements, see the Resource requirements section in the Planning guide.
- Click Next.
Optional: In the Security and network page, configure the following based on your requirements:
- To enable encryption, select Enable data encryption for block and file storage.
Choose either one or both the encryption levels:
Cluster-wide encryption
Encrypts the entire cluster (block and file).
StorageClass encryption
Creates encrypted persistent volume (block only) using encryption enabled storage class.
Select the Connect to an external key management service checkbox. This is optional for cluster-wide encryption.
-
Key Management Service Provider is set to
Vault
by default. - Enter Vault Service Name, host Address of Vault server ('https://<hostname or ip>'), Port number and Token.
Expand Advanced Settings to enter additional settings and certificate details based on your
Vault
configuration:- Enter the Key Value secret path in Backend Path that is dedicated and unique to OpenShift Data Foundation.
- Optional: Enter TLS Server Name and Vault Enterprise Namespace.
- Upload the respective PEM encoded certificate file to provide the CA Certificate, Client Certificate and Client Private Key .
- Click Save.
-
Key Management Service Provider is set to
- Click Next.
In the Review and create page, review the configuration details.
To modify any configuration settings, click Back.
- Click Create StorageSystem.
Verification steps
To verify the final Status of the installed storage cluster:
- In the OpenShift Web Console, navigate to Installed Operators → OpenShift Data Foundation → Storage System → ocs-storagecluster-storagesystem → Resources.
Verify that
Status
ofStorageCluster
isReady
and has a green tick mark next to it.- To verify that all the components for OpenShift Data Foundation are successfully installed, see Verifying OpenShift Data Foundation deployment.
Additional resources
To enable Overprovision Control alerts, refer to Alerts in Monitoring guide.
2.3. Verifying OpenShift Data Foundation deployment
To verify that OpenShift Data Foundation is deployed correctly:
2.3.1. Verifying the state of the pods
Procedure
- Click Workloads → Pods from the OpenShift Web Console.
Select
openshift-storage
from the Project drop-down list.NoteIf the Show default projects option is disabled, use the toggle button to list all the default projects.
For more information about the expected number of pods for each component and how it varies depending on the number of nodes, see Table 2.1, “Pods corresponding to OpenShift Data Foundation cluster”.
Click the Running and Completed tabs to verify that the following pods are in
Running
andCompleted
state:Table 2.1. Pods corresponding to OpenShift Data Foundation cluster Component Corresponding pods OpenShift Data Foundation Operator
-
ocs-operator-*
(1 pod on any worker node) -
ocs-metrics-exporter-*
(1 pod on any worker node) -
odf-operator-controller-manager-*
(1 pod on any worker node) -
odf-console-*
(1 pod on any worker node)
Rook-ceph Operator
rook-ceph-operator-*
(1 pod on any worker node)
Multicloud Object Gateway
-
noobaa-operator-*
(1 pod on any worker node) -
noobaa-core-*
(1 pod on any storage node) -
noobaa-db-pg-*
(1 pod on any storage node) -
noobaa-endpoint-*
(1 pod on any storage node)
MON
rook-ceph-mon-*
(3 pods distributed across storage nodes)
MGR
rook-ceph-mgr-*
(1 pod on any storage node)
MDS
rook-ceph-mds-ocs-storagecluster-cephfilesystem-*
(2 pods distributed across storage nodes)
CSI
cephfs
-
csi-cephfsplugin-*
(1 pod on each worker node) -
csi-cephfsplugin-provisioner-*
(2 pods distributed across worker nodes)
-
rbd
-
csi-rbdplugin-*
(1 pod on each worker node) -
csi-rbdplugin-provisioner-*
(2 pods distributed across worker nodes)
-
rook-ceph-crashcollector
rook-ceph-crashcollector-*
(1 pod on each storage node)
OSD
-
rook-ceph-osd-*
(1 pod for each device) -
rook-ceph-osd-prepare-ocs-deviceset-*
(1 pod for each device)
-
2.3.2. Verifying the OpenShift Data Foundation cluster is healthy
Procedure
- In the OpenShift Web Console, click Storage → OpenShift Data Foundation.
- In the Status card of the Overview tab, click Storage System and then click the storage system link from the pop up that appears.
- In the Status card of the Block and File tab, verify that Storage Cluster has a green tick.
- In the Details card, verify that the cluster information is displayed.
For more information on the health of the OpenShift Data Foundation cluster using the Block and File dashboard, see Monitoring OpenShift Data Foundation.
2.3.3. Verifying the Multicloud Object Gateway is healthy
Procedure
- In the OpenShift Web Console, click Storage → OpenShift Data Foundation.
In the Status card of the Overview tab, click Storage System and then click the storage system link from the pop up that appears.
- In the Status card of the Object tab, verify that both Object Service and Data Resiliency have a green tick.
- In the Details card, verify that the MCG information is displayed.
For more information on the health of the OpenShift Data Foundation cluster using the object service dashboard, see Monitoring OpenShift Data Foundation.
2.3.4. Verifying that the OpenShift Data Foundation specific storage classes exist
Procedure
- Click Storage → Storage Classes from the left pane of the OpenShift Web Console.
Verify that the following storage classes are created with the OpenShift Data Foundation cluster creation:
-
ocs-storagecluster-ceph-rbd
-
ocs-storagecluster-cephfs
-
openshift-storage.noobaa.io
-
Chapter 3. Deploy standalone Multicloud Object Gateway
Deploying only the Multicloud Object Gateway component with OpenShift Data Foundation provides the flexibility in deployment and helps to reduce the resource consumption. Use this section to deploy only the standalone Multicloud Object Gateway component, which involves the following steps:
- Installing Red Hat OpenShift Data Foundation Operator
- Creating standalone Multicloud Object Gateway
3.1. Installing Red Hat OpenShift Data Foundation Operator
You can install Red Hat OpenShift Data Foundation Operator using the Red Hat OpenShift Container Platform Operator Hub.
Prerequisites
-
Access to an OpenShift Container Platform cluster using an account with
cluster-admin
and Operator installation permissions. - You must have at least three worker nodes in the Red Hat OpenShift Container Platform cluster.
- For additional resource requirements, see the Planning your deployment guide.
When you need to override the cluster-wide default node selector for OpenShift Data Foundation, you can use the following command in the command line interface to specify a blank node selector for the
openshift-storage
namespace (create openshift-storage namespace in this case):$ oc annotate namespace openshift-storage openshift.io/node-selector=
-
Taint a node as
infra
to ensure only Red Hat OpenShift Data Foundation resources are scheduled on that node. This helps you save on subscription costs. For more information, see How to use dedicated worker nodes for Red Hat OpenShift Data Foundation chapter in the Managing and Allocating Storage Resources guide.
Procedure
- Log in to the OpenShift Web Console.
- Click Operators → OperatorHub.
-
Scroll or type
OpenShift Data Foundation
into the Filter by keyword box to find the OpenShift Data Foundation Operator. - Click Install.
Set the following options on the Install Operator page:
- Update Channel as stable-4.9.
- Installation Mode as A specific namespace on the cluster.
-
Installed Namespace as Operator recommended namespace openshift-storage. If Namespace
openshift-storage
does not exist, it is created during the operator installation. Select Approval Strategy as Automatic or Manual.
If you select Automatic updates, then the Operator Lifecycle Manager (OLM) automatically upgrades the running instance of your Operator without any intervention.
If you select Manual updates, then the OLM creates an update request. As a cluster administrator, you must then manually approve that update request to update the Operator to a newer version.
- Ensure that the Enable option is selected for the Console plugin.
- Click Install.
We recommend using all default settings. Changing it may result in unexpected behavior. Alter only if you are aware of its result.
Verification steps
- Verify that the OpenShift Data Foundation Operator shows a green tick indicating successful installation.
After the operator is successfully installed, a pop-up with a message,
Web console update is available
appears on the user interface. Click Refresh web console from this pop-up for the console changes to reflect.- In the Web Console, navigate to Operators and verify if OpenShift Data Foundation is available.
In case the console plugin option was not automatically enabled after you installed the OpenShift Data Foundation Operator, you need to enable it.
For more information on how to enable the console plugin, see Enabling the Red Hat OpenShift Data Foundation console plugin.
3.2. Creating standalone Multicloud Object Gateway
Use this section to create only the Multicloud Object Gateway component with OpenShift Data Foundation.
Prerequisites
- Ensure that OpenShift Data Foundation Operator is installed.
- (For deploying using local storage devices only) Ensure that Local Storage Operator is installed.
- Ensure that you have a storage class and is set as the default.
Procedure
In the OpenShift Web Console, click Operators → Installed Operators to view all the installed operators.
Ensure that the Project selected is
openshift-storage
.- Click OpenShift Data Foundation operator and then click Create StorageSystem.
- In the Backing storage page, expand Advanced.
- Select Multicloud Object Gateway for Deployment type.
- Click Next.
Optional: In the Security page, select Connect to an external key management service.
-
Key Management Service Provider is set to
Vault
by default. - Enter Vault Service Name, host Address of Vault server ('https://<hostname or ip>'), Port number, and Token.
Expand Advanced Settings to enter additional settings and certificate details based on your
Vault
configuration:- Enter the Key Value secret path in the Backend Path that is dedicated and unique to OpenShift Data Foundation.
- Optional: Enter TLS Server Name and Vault Enterprise Namespace.
- Upload the respective PEM encoded certificate file to provide the CA Certificate, Client Certificate, and Client Private Key.
- Click Save.
- Click Next.
-
Key Management Service Provider is set to
In the Review and create page, review the configuration details:
To modify any configuration settings, click Back.
- Click Create StorageSystem.
Verification steps
- Verifying that the OpenShift Data Foundation cluster is healthy
- In the OpenShift Web Console, click Storage → OpenShift Data Foundation.
In the Status card of the Overview tab, click Storage System and then click the storage system link from the pop up that appears.
- In the Status card of the Object tab, verify that both Object Service and Data Resiliency have a green tick.
- In the Details card, verify that the MCG information is displayed.
- Verify the state of the pods
- Click Workloads → Pods from the OpenShift Web Console.
Select
openshift-storage
from the Project drop-down list and verify that the following pods are inRunning
state.NoteIf the Show default projects option is disabled, use the toggle button to list all the default projects.
Component Corresponding pods OpenShift Data Foundation Operator
-
ocs-operator-*
(1 pod on any worker node) -
ocs-metrics-exporter-*
(1 pod on any worker node) -
odf-operator-controller-manager-*
(1 pod on any worker node) -
odf-console-*
(1 pod on any worker node)
Rook-ceph Operator
rook-ceph-operator-*
(1 pod on any worker node)
Multicloud Object Gateway
-
noobaa-operator-*
(1 pod on any worker node) -
noobaa-core-*
(1 pod on any worker node) -
noobaa-db-pg-*
(1 pod on any worker node) -
noobaa-endpoint-*
(1 pod on any worker node)
-
Chapter 4. Uninstalling OpenShift Data Foundation
4.1. Uninstalling OpenShift Data Foundation in Internal mode
To uninstall OpenShift Data Foundation in Internal mode, refer to the knowledge base article on Uninstalling OpenShift Data Foundation.