& RedHat

Red Hat OpenShift Pipelines 1.18

Observability in OpenShift Pipelines

Observability features of OpenShift Pipelines

Last Updated: 2025-05-14

Red Hat OpenShift Pipelines 1.18 Observability in OpenShift Pipelines

Observability features of OpenShift Pipelines

Legal Notice

Copyright © 2025 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides information about observability features of OpenShift Pipelines.

Table of Contents

Table of Contents

CHAPTER 1. USING TEKTON RESULTS FOR OPENSHIFT PIPELINES OBSERVABILITYccoovvaa.... 3
1.1. TEKTON RESULTS CONCEPTS 3
1.2. CONFIGURING TEKTON RESULTS 6

1.2.1. Configuring LokiStack forwarding for logging information 6
1.2.2. Configuring an external database server 8
1.2.3. Configuring the retention policy for Tekton Results 9
1.3. QUERYING TEKTON RESULTS USING THE OPC COMMAND LINE UTILITY 10
1.3.1. Preparing the opc utility environment for querying Tekton Results 10
1.3.2. Querying for results and records by name 1
1.3.3. Searching for results 13
1.3.4. Searching for records 13
1.3.5. Reference information for searching results 15
1.3.6. Reference information for searching records 15
1.4. ADDITIONAL RESOURCES 16

Red Hat OpenShift Pipelines 1.18 Observability in OpenShift Pipelines

CHAPTER 1. USING TEKTON RESULTS FOR OPENSHIFT PIPELINES OBSERVABILITY

CHAPTER 1. USING TEKTON RESULTS FOR OPENSHIFT
PIPELINES OBSERVABILITY

Tekton Results is a service that archives the complete information for every pipeline run and task run.
You can prune the PipelineRun and TaskRun resources as necessary and use the Tekton Results API
or the opc command line utility to access their YAML manifests as well as logging information.

1.1. TEKTON RESULTS CONCEPTS
Tekton Results archives pipeline runs and task runs in the form of results and records.

For every PipelineRun and TaskRun custom resource (CR) that completes running, Tekton Results
creates a record.

A result can contain one or several records. A record is always a part of exactly one result.

A result corresponds to a pipeline run, and includes the records for the PipelineRun CR itself and for all
the TaskRun CRs that were started as a part of the pipeline run.

If a task run was started directly, without the use of a pipeline run, a result is created for this task run.
This result contains the record for the same task run.

Each result has a name that includes the namespace in which the PipelineRun or TaskRun CR was
created and the UUID of the CR. The format for the result name is
<hamespace_name>/results/<parent_run_uuids. In this format, <parent_run_uuids is the UUUD of a
pipeline run or else of a task run that was started directly.

Example result name
I results-testing/results/04e2fbf2-8653-405f-bc42-a262bcf02bed

Each record has a name that includes name of the result that contains the record, as well as the UUID of
the PipelineRun or TaskRun CR to which the record corresponds. The format for the result name is
<namespace_names>/results/<parent_run_uuid>/results/<run_uuid>.

Example record name

results-testing/results/04e2fbf2-8653-405f-bc42-a262bcf02bed/records/e9c736db-5665-441f-922f-
7¢1d65c9d621

The record includes the full YAML manifest of the TaskRun or PipelineRun CR as it existed after the
completion of the run. This manifest contains the specification of the run, any annotation specified for
the run, as well as certain information about the results of the run, such as the time when it was
completed and whether the run was successful.

While the TaskRun or PipelineRun CR exists, you can view the YAML manifest by using the following
command:

I $ oc get pipelinerun <cr_name> -o yaml

Tekton Results preserves this manifest after the TaskRun or PipelineRun CR is deleted and makes it
available for viewing and searching.

Red Hat OpenShift Pipelines 1.18 Observability in OpenShift Pipelines

Example YAML manifest of a pipeline run after its completion

kind: PipelineRun

spec:
params:
- name: message
value: five
timeouts:
pipeline: 1hOmOs
pipelineRef:
name: echo-pipeline
taskRunTemplate:
serviceAccountName: pipeline
status:
startTime: "2023-08-07T11:41:40Z"
conditions:

- type: Succeeded
reason: Succeeded
status: "True"
message: 'Tasks Completed: 1 (Failed: 0, Cancelled 0), Skipped: 0'
lastTransitionTime: "2023-08-07T11:41:49Z"
pipelineSpec:
tasks:
- name: echo-task
params:
- name: message
value: five
taskRef:
kind: Task
name: echo-task-pipeline
params:
- name: message
type: string
completionTime: "2023-08-07T11:41:49Z2"
childReferences:
- kind: TaskRun
name: echo-pipeline-run-gmzrx-echo-task
apiVersion: tekton.dev/v1
pipelineTaskName: echo-task
metadata:
uid: 62c3b02e-f12b-416¢c-9771-c02af518f6d4
name: echo-pipeline-run-gmzrx
labels:
tekton.dev/pipeline: echo-pipeline
namespace: releasetest-jsbit
finalizers:
- chains.tekton.dev/pipelinerun
generation: 2
annotations:
results.tekton.dev/log: releasetest-js5tt/results/62c3b02e-f12b-416¢-9771-
c02af518f6d4/logs/c1e49dd8-d641-383e-b708-e3a02b6a4378
chains.tekton.dev/signed: "true"
results.tekton.dev/record: releasetest-js5tt/results/62c3b02e-f12b-416¢-9771-
c02af518f6d4/records/62c3b02e-f12b-416¢-9771-c02af518f6d4
results.tekton.dev/result: releasetest-jsbStt/results/62c3b02e-f12b-416¢-9771-c02af518f6d4
generateName: echo-pipeline-run-

CHAPTER 1. USING TEKTON RESULTS FOR OPENSHIFT PIPELINES OBSERVABILITY

managedFields:

- time: "2023-08-07T11:41:39Z2"
manager: kubectl-create
fieldsV1:

f:spec:
ot
f:params: {}
f:pipelineRef:
=}
f:name: {}
f:metadata:
f:generateName: {}
operation: Update
apiVersion: tekton.dev/v1
fieldsType: FieldsV1

- time: "2023-08-07T11:41:40Z"
manager: openshift-pipelines-controller
fieldsV1:

f:metadata:
f:labels:
= {}
f:tekton.dev/pipeline: {}
operation: Update
apiVersion: tekton.dev/v1
fieldsType: FieldsV1

- time: "2023-08-07T11:41:49Z"
manager: openshift-pipelines-chains-controller
fieldsV1:

f:metadata:
f:finalizers:
<}
v:"chains.tekton.dev/pipelinerun”: {}
f:annotations:
= {}
f:chains.tekton.dev/signed: {}
operation: Update
apiVersion: tekton.dev/v1
fieldsType: FieldsV1

- time: "2023-08-07T11:41:49Z"
manager: openshift-pipelines-controller
fieldsV1:

f:status:
f:startTime: {}
f:conditions: {}
f:pipelineSpec:
= {}
f:tasks: {}
f:params: {}
f:completionTime: {}
f:childReferences: {}
operation: Update
apiVersion: tekton.dev/v1
fieldsType: FieldsV1
subresource: status

- time: "2023-08-07T11:42:15Z"

manager: openshift-pipelines-results-watcher

Red Hat OpenShift Pipelines 1.18 Observability in OpenShift Pipelines

fieldsV1:
f:metadata:
f:annotations:
f:results.tekton.dev/log: {}
f:results.tekton.dev/record: {}
f:results.tekton.dev/result: {}
operation: Update
apiVersion: tekton.dev/v1
fieldsType: FieldsV1
resourceVersion: "126429"
creationTimestamp: "2023-08-07T11:41:39Z2"
deletionTimestamp: "2023-08-07T11:42:23Z2"
deletionGracePeriodSeconds: 0
apiVersion: tekton.dev/v1

You can access every result and record by its name. You can also use Common Expression Language
(CEL) queries to search for results and records by the information they contain, including the YAML
manifest.

You can also configure Tekton Results to facilitate forwarding the logging information of all the tools

that ran as a part of a pipeline or task to LokiStack. You can then query Tekton Results for logging
information of the task run associated with a Tekton Results record.

1.2. CONFIGURING TEKTON RESULTS
After you install OpenShift Pipelines, Tekton Results is enabled by default.

However, if you want to store and access logging information for your pipeline runs and task runs, you
must configure forwarding this information to LokiStack.

You can optionally complete additional configuration for Tekton Results.

1.2.1. Configuring LokiStack forwarding for logging information

If you want to use Tekton Results to query logging information for task runs, you must install LokiStack
and OpenShift Logging on your OpenShift Container Platform cluster and configure forwarding of the
logging information to LokiStack.

If you do not configure LokiStack forwarding for logging information, Tekton Results does not store this
information or provide it from the command-line interface or API.

Prerequisites

® You installed the OpenShift CLI (o¢) utility.
® You are logged in to your OpenShift Container Platform cluster as a cluster administrator user.

Procedure

To configure LokiStack forwarding, complete the following steps:

1. On your OpenShift Container Platform cluster, install LokiStack by using the Loki Operator and
also install the OpenShift Logging Operator.

CHAPTER 1. USING TEKTON RESULTS FOR OPENSHIFT PIPELINES OBSERVABILITY

. Create a ClusterLogForwarder.yaml manifest file for the ClusterLogForwarder custom
resource (CR) with one of the following YAML manifests, depending on whether you installed
OpenShift Logging version 6 or version 5:

YAML manifest for the ClusterLogForwarder CR if you installed OpenShift Logging
version 6

apiVersion: observability.openshift.io/v1
kind: ClusterLogForwarder
metadata:
name: collector
namespace: openshift-logging
spec:
inputs:
- application:
selector:
matchExpressions:
- key: app.kubernetes.io/managed-by
operator: In
values: ["tekton-pipelines”, "pipelinesascode.tekton.dev"]
name: only-tekton
type: application
managementState: Managed
outputs:
- lokiStack:
labelKeys:
application:
ignoreGlobal: true
labelKeys:
- log_type
- kubernetes.namespace_name
- openshift_cluster_id
authentication:
token:
from: serviceAccount
target:
name: logging-loki
namespace: openshift-logging
name: default-lokistack
tls:
ca:
configMapName: openshift-service-ca.crt
key: service-ca.crt
type: lokiStack
pipelines:
- inputRefs:
- only-tekton
name: default-logstore
outputRefs:
- default-lokistack
serviceAccount:
name: collector

YAML manifest for the ClusterLogForwarder CR if you installed OpenShift Logging
version 5

Red Hat OpenShift Pipelines 1.18 Observability in OpenShift Pipelines

apiVersion: "logging.openshift.io/v1"
kind: ClusterLogForwarder
metadata:
name: instance
namespace: openshift-logging
spec:
inputs:
- name: only-tekton
application:
selector:
matchLabels:
app.kubernetes.io/managed-by: tekton-pipelines
pipelines:
- name: enable-default-log-store
inputRefs: [only-tekton]
outputRefs: [default]

3. Create the ClusterLogForwarder CR in the openshift-logging namespace by entering the
following command:

I $ oc apply -n openshift-logging ClusterLogForwarder.yaml

4. Edit the TektonConfig custom resource (CR) by using the following command:
I $ oc edit TektonConfig config

Make the following changes in the result spec:

apiVersion: operator.tekton.dev/vialphat
kind: TektonConfig
metadata:
name: config
spec:
result:
loki_stack_name: logging-loki ﬂ
loki_stack_namespace: openshift-logging g

ﬂ The name of the LokiStack CR, typically logging-loki.

9 The name of the namespace where LokiStack is deployed, typically openshift-logging.

1.2.2. Configuring an external database server

Tekton Results uses a PostgreSQL database to store data. By default, the installation includes an
internal PostgreSQL instance. You can configure the installation to use an external PostgreSQL server
that already exists in your deployment.

Procedure

1. Create a secret with the credentials for connecting to your PostgreSQL server by entering the
following command:

I $ oc create secret generic tekton-results-postgres \

CHAPTER 1. USING TEKTON RESULTS FOR OPENSHIFT PIPELINES OBSERVABILITY

--namespace=openshift-pipelines \
--from-literal=POSTGRES_USER=<user> \
--from-literal=POSTGRES_PASSWORD=<password>

2. Edit the TektonConfig custom resource (CR) by using the following command:
I $ oc edit TektonConfig config

Make the following changes in the result spec:

apiVersion: operator.tekton.dev/vialphat
kind: TektonConfig
metadata:
name: config
spec:
result:
is_external_db: true
db_host: database.example.com ﬂ
db_port: 5342 @)

ﬂ Provide the host name of your PostgreSQL server.

9 Provide the port number of your PostgreSQL server.

1.2.3. Configuring the retention policy for Tekton Results

By default, Tekton Results stores pipeline runs, task runs, events, and logs indefinitely. This leads to an
unnecesary use of storage resources and can affect your database performance.

You can configure the retention policy for Tekton Results at the cluster level to remove older results
and their associated records and logs.

Procedure

e Edit the TektonConfig custom resource (CR) by using the following command:
I $ oc edit TektonConfig config

Make the following changes in the result spec:

apiVersion: operator.tekton.dev/vialphat
kind: TektonConfig
metadata:

name: config
spec:

result:

options:
configMaps:
config-results-retention-policy:
data:
runAt: "35** 0" @)

maxRetention: "30" 9

Red Hat OpenShift Pipelines 1.18 Observability in OpenShift Pipelines

ﬂ Specify, in cron format, when to run the pruning job in the database. This example runs the
job at 5:03 AM every Sunday.

9 Specify how many days to keep the data in the database. This example retains the data for
30 days.

1.3. QUERYING TEKTON RESULTS USING THE OPC COMMAND LINE
UTILITY

You can use the opc command line utility to query Tekton Results for results and records. To install the
opc command line utility, install the package for the tkn command line utility. For instructions about
installing this package, see Installing tkn.

You can use the names of records and results to retrieve the data in them.

You can search for results and records using Common Expression Language (CEL) queries. These
searches display the UUIDs of the results or records. You can use the provided examples to create
queries for common search types. You can also use reference information to create other queries.

1.3.1. Preparing the opc utility environment for querying Tekton Results

Before you can query Tekton Results, you must prepare the environment for the opc utility.

Prerequisites

® You installed the opc utility.

Procedure

1. Set the RESULTS_API environment variable to the route to the Tekton Results APl by entering
the following command:

$ export RESULTS_API=$(oc get route tekton-results-api-service -n openshift-pipelines --no-
headers -0 custom-columns=":spec.host"):443

2. Create an authentication token for the Tekton Results API by entering the following command:
I $ oc create token <service_account>

Save the string that this command outputs.

3. Optional: Create the ~/.config/tkn/results.yaml file for automatic authentication with the
Tekton Results API. The file must have the following contents:

address: <tekton_results_route> ﬂ
token: <authentication_token> 9
ssl:
roots_file_path: /nome/example/cert.pem 6
server_name_override: tekton-results-api-service.openshift-pipelines.svc.cluster.local ﬂ
service_account:
namespace: service_acc_1 9
name: service_acc_1

10

https://docs.redhat.com/en/documentation/red_hat_openshift_pipelines/1.18/html-single/pipelines_cli_tkn_reference/#installing-tkn

CHAPTER 1. USING TEKTON RESULTS FOR OPENSHIFT PIPELINES OBSERVABILITY

The route to the Tekton Results API. Use the same value as you set for RESULTS_API.

The authentication token that was created by the oc create token command. If you
provide this token, it overrides the service_account setting and opc uses this token to
authenticate.

The location of the file with the SSL certificate that you configured for the APl endpoint.

If you configured a custom target namespace for OpenShift Pipelines, replace openshift-
pipelines with the name of this namespace.

o0 o9

)The name of a service account for authenticating with the Tekton Results API. If you
provided the authentication token, you do not need to provide the service_account
parameters.

Alternatively, if you do not create the ~/.config/tkn/results.yaml file, you can pass the token to
each opc command by using the --authtoken option.

1.3.2. Querying for results and records by name

You can list and query results and records using their names.

Prerequisites

® You installed the opc utility and prepared its environment to query Tekton Results.
® You installed the jg package.

e |f you want to query logging information, you configured log forwarding to LokiStack.

Procedure

1. List the names of all results that correspond to pipeline runs and task runs created in a
namespace. Enter the following command:

I $ opc results list --addr ${RESULTS_API} <namespace_name>

Example command
I $ opc results list --addr ${RESULTS_API} results-testing

Example output

Name Start Update
results-testing/results/04e2fbf2-8653-405f-bc42-a262bcf02bed 2023-06-29 02:49:53 +0530
IST 2023-06-29 02:50:05 +0530 IST
results-testing/results/ad7eb937-90cc-4510-8380-defe51ad793f 2023-06-29 02:49:38 +0530
IST 2023-06-29 02:50:06 +0530 IST
results-testing/results/d064ce6e-d851-4b4e-8db4-7605a23671e4 2023-06-29 02:49:45
+0530 IST 2023-06-29 02:49:56 +0530 IST

2. List the names of all records in a result by entering the following command:

1

Red Hat OpenShift Pipelines 1.18 Observability in OpenShift Pipelines

12

I $ opc results records list --addr ${RESULTS_API} <result_name>

Example command

$ opc results records list --addr ${RESULTS_API} results-testing/results/04e2fbf2-8653-405f-

I bc42-a262bcf02bed
Example output

Name Type
Start Update

results-testing/results/04e2fbf2-8653-405f-bc42-a262bcf02bed/records/e9c736db-5665-4411-

922f-7¢1d65¢9d621 tekton.dev/v1.TaskRun 2023-06-29 02:49:53 +0530 IST
2023-06-29 02:49:57 +0530 IST
results-testing/results/04e2fbf2-8653-405f-bc42-a262bcf02bed/records/5de23a76-a12b-

3a72-8a6a-4f15a3110a3e results.tekton.dev/vialpha2.Log 2023-06-29 02:49:57 +0530

IST 2023-06-29 02:49:57 +0530 IST

results-testing/results/04e2fbf2-8653-405f-bc42-a262bcf02bed/records/57ce92f9-9bf8-3a0a-
aefb-dc20c3e2862d results.tekton.dev/vialpha2.Log 2023-06-29 02:50:05 +0530 IST

2023-06-29 02:50:05 +0530 IST

results-testing/results/04e2fbf2-8653-405f-bc42-a262bcf02bed/records/e9alc21a-f826-42ab-

a9d7-a03bcefed4fd tekton.dev/vi.TaskRun 2023-06-29 02:49:57 +0530 IST
2023-06-29 02:50:05 +0530 IST

results-testing/results/04e2fbf2-8653-405f-bc42-a262bcf02bed/records/04e2fbf2-8653-405f-

bc42-a262bcf02bed tekton.dev/v1.PipelineRun 2023-06-29 02:49:53 +0530 IST
2023-06-29 02:50:05 +0530 IST

results-testing/results/04e2fbf2-8653-405f-bc42-a262bcf02bed/records/e6eea2f9-ec80-388c-
9982-74a018a548e4 results.tekton.dev/vialpha2.Log 2023-06-29 02:50:05 +0530 IST

2023-06-29 02:50:05 +0530 IST

3. Retrieve the YAML manifest for a pipeline run or task run from a record by entering the
following command:

$ opc results records get --addr ${RESULTS_API} <record_name> \

| jq -r .data.value | base64 -d |\

xargs -0 python3 -c 'import sys, yaml, json; j=json.loads(sys.argv[1]);
print(yaml.safe_dump(j))’

Example command

$ opc results records get --addr ${RESULTS_API} \

results-testing/results/04e2fbf2-8653-405f-bc42-a262bcf02bed/records/e9c736db-5665-
441f-922f-7¢1d65¢c9d621 | \

jq -r .data.value | base64 -d | \

xargs -0 python3 -c 'import sys, yaml, json; j=json.loads(sys.argv[1]);
print(yaml.safe_dump(j))’

4. Optional: Retrieve the logging information for a task run from a record using the log record
name. To get the log record name, replace records with logs in the record name. Enter the
following command:

I $ opc results logs get --addr ${RESULTS_API} <log_record_name> | jq -r .data | base64 -d

CHAPTER 1. USING TEKTON RESULTS FOR OPENSHIFT PIPELINES OBSERVABILITY

Example command

$ opc results logs get --addr ${RESULTS_API} \
results-testing/results/04e2fbf2-8653-405f-bc42-a262bcf02bed/logs/e9c736db-5665-4411-
922f-7¢1d65¢9d621 |\
jq -r .data | base64 -d

1.3.3. Searching for results

You can search for results using Common Expression Language (CEL) queries. For example, you can
find results for pipeline runs that did not succeed. However, most of the relevant information is not
contained in result objects; to search by the names, completion times, and other data, search for
records.

Prerequisites

® You installed the opc utility and prepared its environment to query Tekton Results.

Procedure
® Search for results using a CEL query by entering the following command:
I $ opc results list --addr ${RESULTS_API} --filter="<cel_query>" <namespace-name>

Replace <namespace_name> with the namespace in which the pipeline runs or task runs were created.

Table 1.1. Example CEL queries for results

Purpose CEL query

The results of all runs that failed l(summary.status == SUCCESS)
The results all pipeline runs that contained the summary.annotations.contains(‘ann1’) &&
annotations ann1 and ann2 summary.annotations.contains(‘ann2’) &&

summary.type=="PIPELINE_RUN'

1.3.4. Searching for records
You can search for records using Common Expression Language (CEL) queries. As each record

contains full YAML information for a pipeline run or task run, you can find records by many different
criteria.

Prerequisites

® You installed the opc utility and prepared its environment to query Tekton Results.

Procedure

® Search for records using a CEL query by entering the following command:

$ opc results records list --addr ${RESULTS_API} --filter="<cel_query>"
<namespace_name>/result/-

13

Red Hat OpenShift Pipelines 1.18 Observability in OpenShift Pipelines

Replace <namespace_name> with the namespace in which the pipeline runs or task runs were
created. Alternatively, search for records within a single result by entering the following

command:

I $ opc results records list --addr ${RESULTS_API} --filter="<cel_query>" <result_name>

Replace <result_name> with the full name of the result.

Table 1.2. Example CEL queries for records

Purpose CEL query

!(data.status.conditions[0].status == 'True’)

14

Records of all task runs or pipeline runs that failed

Records where the name of the TaskRun or
PipelineRun custom resource (CR) wasrun1

Records for all task runs that were started by the
PipelineRun CR named run1

Records of all pipeline runs and task runs that were
created from a Pipeline CR named pipeline1

Records of all pipeline runs that were created from a
Pipeline CR named pipeline1

Records of all task runs where the TaskRun CR
name stared with hello

Records of all pipeline runs that took more than five
minutes to complete

Records of all pipeline runs and task runs that
completed on October 7, 2023

Records of all pipeline runs that included three or
more tasks

Records of all pipeline runs that had annotations
containing ann1

Records of all pipeline runs that had annotations
containing ann1 and the name of the PipelineRun
CR started with hello

data.metadata.name == 'runt’

data_type == 'TASK_RUN' &&
data.metadata.labels['tekton.dev/pipelineRun
'l =="run1’

data.metadata.labels['tekton.dev/pipeline'] ==
'pipelinel’

data.metadata.labels['tekton.dev/pipeline'] ==
'pipeline1’ && data_type == 'PIPELINE_RUN'

data.metadata.name.startsWith('hello’) &&
data_type=="TASK_RUN'

data.status.completionTime -
data.status.startTime > duration('5m’) &&
data_type == 'PIPELINE_RUN'

data.status.completionTime.getDate() ==

&& data.status.completionTime.getMonth()
==10 &&
data.status.completionTime.getFullYear() ==
2023

size(data.status.pipelineSpec.tasks) >= 3 &&
data_type == 'PIPELINE_RUN'

data.metadata.annotations.contains('ann1’)
&& data_type == 'PIPELINE_RUN'

data.metadata.annotations.contains('ann1’)
&& data.metadata.name.startsWith('hello")
&& data_type == 'PIPELINE_RUN'

CHAPTER 1. USING TEKTON RESULTS FOR OPENSHIFT PIPELINES OBSERVABILITY

1.3.5. Reference information for searching results

You can use the following fields in Common Expression Language (CEL) queries for results:

Table 1.3. Fields available in CEL queries for results

CEL field Description

parent The namespace in which the PipelineRun or
TaskRun custom resource (CR) was created.

uid Unique identifier for the result.

annotations Annotations added to the PipelineRun or
TaskRun CR.

summary The summary of the result.

create_time The creation time of the result.

update_time The last update time of the result.

You can use the summary.status field to determine whether the pipeline run was successful. This field
can have the following values:

e UNKNOWN
e SUCCESS
e FAILURE

e TIMEOUT

e CANCELLED

NOTE

Do not use quote characters such as " or ' to provide the value for this field.

1.3.6. Reference information for searching records

You can use the following fields in Common Expression Language (CEL) queries for records:

Table 1.4. Fields available in CEL queries for records

CEL field Description Values

name Record name

15

Red Hat OpenShift Pipelines 1.18 Observability in OpenShift Pipelines

CEL field Description Values

data_type Record type identifier tekton.dev/vi.TaskRun or
TASK_RUNtekton.dev/v1.Pip
elineRun or

PIPELINE_RUNresults.tekton
.dev/vialpha2.Log

data The YAML data for the task run or
pipeline run. In log records, this
field contains the logging output.

Because the data field contains the entire YAML data for the task run or pipeline run, you can use all
elements of this data in your CEL query. For example, data.status.completionTime contains the
completion time of the task run or pipeline run.

1.4. ADDITIONAL RESOURCES

® Common Expression Language (CEL)

16

https://cel.dev/

	Table of Contents
	CHAPTER 1. USING TEKTON RESULTS FOR OPENSHIFT PIPELINES OBSERVABILITY
	1.1. TEKTON RESULTS CONCEPTS
	1.2. CONFIGURING TEKTON RESULTS
	1.2.1. Configuring LokiStack forwarding for logging information
	1.2.2. Configuring an external database server
	1.2.3. Configuring the retention policy for Tekton Results

	1.3. QUERYING TEKTON RESULTS USING THE OPC COMMAND LINE UTILITY
	1.3.1. Preparing the opc utility environment for querying Tekton Results
	1.3.2. Querying for results and records by name
	1.3.3. Searching for results
	1.3.4. Searching for records
	1.3.5. Reference information for searching results
	1.3.6. Reference information for searching records

	1.4. ADDITIONAL RESOURCES

