& RedHat

Red Hat OpenShift Service Mesh 3.0

Installing

Installing OpenShift Service Mesh

Last Updated: 2025-09-16

Red Hat OpenShift Service Mesh 3.0 Installing

Installing OpenShift Service Mesh

Legal Notice

Copyright © 2025 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This documentation provides information about installing OpenShift Service Mesh.

Table of Contents

CHAPTER 1. SUPPORTED PLATFORMS AND CONFIGURATIONSo,
11. SUPPORTED PLATFORMS
1.2. SUPPORTED CONFIGURATIONS FOR SERVICE MESH
1.3. SUPPORTED NETWORK CONFIGURATIONS
1.4. SUPPORTED CONFIGURATIONS FOR KIALI
1.5. ADDITIONAL RESOURCES

CHAPTER 2. INSTALLING OPENSHIFTSERVICEMESHttt
2.1. ABOUT DEPLOYING ISTIO USING THE RED HAT OPENSHIFT SERVICE MESH OPERATOR
2.1.1. About Istio control plane update strategies
2.2. INSTALLING THE SERVICE MESH OPERATOR
2.2.1. About Service Mesh custom resource definitions
2.3. ABOUT ISTIO DEPLOYMENT
2.3.1. Creating the Istio project using the web console
2.3.2. Creating the Istio resource using the web console
2.3.3. Creating the IstioCNI project using the web console
2.3.4. Creating the IstioCNI resource using the web console
2.4, SCOPING THE SERVICE MESH WITH DISCOVERY SELECTORS
2.4.1. About discovery selectors
2.4.2. Scoping a Service Mesh by using discovery selectors
2.5. ABOUT THE BOOKINFO APPLICATION
2.5.1. Deploying the Bookinfo application
2.5.2. About accessing the Bookinfo application using a gateway
2.5.3. Accessing the Bookinfo application by using Istio gateway injection
2.5.4. Accessing the Bookinfo application by using Gateway AP
2.6. CUSTOMIZING ISTIO CONFIGURATION
2.7. ABOUT ISTIO HIGH AVAILABILITY
2.7.1. Configuring Istio HA by using autoscaling
2.7.1.1. API settings for Service Mesh HA autoscaling mode
2.7.2. Configuring Istio HA by using replica count

CHAPTER 3. SIDECAR INJECTION 1.ttt ettt et et eieeaneeeaneennneennns
3.1. ABOUT SIDECAR INJECTION
3.2. IDENTIFYING THE REVISION NAME
3.2.1. Enabling sidecar injection with default revision
3.2.2. Enabling sidecar injection with other revisions
3.3. ENABLING SIDECAR INJECTION
3.3.1. Enabling sidecar injection with namespace labels
3.3.2. Exclude a workload from the mesh
3.3.3. Enabling sidecar injection with pod labels

Table of Contents

g o M M D

(o]

O O 0 0 0 O O O

o

10

............ 23
23
23
23
24
24
25
26
27

3.4. ENABLING SIDECAR INJECTION WITH NAMESPACE LABELS AND AN ISTIOREVISIONTAG RESOURCE

3.5. ADDITIONAL RESOURCES

CHAPTER 4. OPENSHIFT SERVICE MESH AND CERT-MANAGERccviiiiiinnn...
4.1. ABOUT INTEGRATING SERVICE MESH WITH CERT-MANAGER AND ISTIO-CSR
4.2. INSTALLING CERT-MANAGER
4.2.1. Installing the istio-csr agent by using the in place update strategy
4.2.2. Installing the istio-csr agent by using the revision based update strategy
4.2.3. Installing your Istio resource
4.2.4. Verifying cert-manager installation
4.3. UPDATING ISTIO-CSR AGENTS WITH REVISION-BASED UPDATE STRATEGIES

29
31

32
33
34
35
36
36
38

Red Hat OpenShift Service Mesh 3.0 Installing

CHAPTER 5. MULTI-CLUSTER TOPOLOGIES ... ittt tiitee e tnneneeennnnaaeeennnns
51. ABOUT MULTI-CLUSTER MESH TOPOLOGIES
5.1.1. Control plane topology models
5.1.2. Network topology models
5.2. MULTI-CLUSTER CONFIGURATION OVERVIEW
5.2.1. Creating certificates for a multi-cluster topology
5.2.2. Applying certificates to a multi-cluster topology
53.INSTALLING A MULTI-PRIMARY MULTI-NETWORK MESH
5.3.1. Verifying a multi-cluster topology
5.3.2. Removing a multi-cluster topology from a development environment
5.4. INSTALLING A PRIMARY-REMOTE MULTI-NETWORK MESH
5.5, INSTALLING KIALI'IN A MULTI-CLUSTER MESH

CHAPTER 6. DEPLOYING MULTIPLE SERVICE MESHES ON ASINGLE CLUSTERcccoivvviinnn.,
6.1. PREREQUISITES
6.2. ABOUT DEPLOYING MULTIPLE CONTROL PLANES
6.3. USING MULTIPLE CONTROL PLANES ON ASINGLE CLUSTER
6.4. DEPLOYING MULTIPLE CONTROL PLANES
6.4.1. Deploying the first control plane
6.4.2. Deploying the second control plane
6.4.3. Verifying multiple control planes
6.5. DEPLOY APPLICATION WORKLOADS IN EACH MESH
6.6. ADDITIONAL RESOURCES

CHAPTER 7. EXTERNAL CONTROL PLANE TOPOLOGY .. .ttttittiittiientennneeaneeraneennnennn
7.1. ABOUT EXTERNAL CONTROL PLANE TOPOLOGY
7.1.1. Installing the control plane and data plane on separate clusters

CHAPTER 8. ISTIOCT L TOO L ottt i e i e e it it ei it a e,
8.1. SUPPORT FORISTIOCTL
8.2. INSTALLING THE ISTIOCTL TOOL

CHAPTER 9. ENABLING MUTUAL TRANSPORT LAYERSECURITY ... i,
9.1. ABOUT MUTUAL TRANSPORT LAYER SECURITY (MTLS)
9.2. ENABLING STRICT MTLS MODE BY USING THE NAMESPACE
9.3. ENABLING STRICT MTLS ACROSS THE WHOLE SERVICE MESH
9.4. VALIDATING ENCRYPTIONS WITH KIALI
9.5. ADDITIONAL RESOURCES

40
40
40
40

41
44
46
48

51
52
54

59
59
59
59
59
60

61
62
62
65

66
66
66

74
74
74

77
77
77
78
78
79

Table of Contents

Red Hat OpenShift Service Mesh 3.0 Installing

CHAPTER 1. SUPPORTED PLATFORMS AND
CONFIGURATIONS

Before you can install Red Hat OpenShift Service Mesh 3.0.4, you must subscribe to OpenShift
Container Platform and install OpenShift Container Platform in a supported configuration. If you do not
have a subscription on your Red Hat account, contact your sales representative for more information.

1.1. SUPPORTED PLATFORMS
Version {MaistraVersion} Service Mesh control planes are supported on the following platform versions:
® Red Hat OpenShift Container Platform version 4.14 or later
® Red Hat OpenShift Dedicated version 4
® Azure Red Hat OpenShift (ARO) version 4
® Red Hat OpenShift Service on AWS (ROSA)
The Red Hat OpenShift Service Mesh Operator supports multiple versions of Istio.

If you are installing Red Hat OpenShift Service Mesh on a restricted network, follow the instructions for
your chosen OpenShift Container Platform infrastructure.

For additional information about Red Hat OpenShift Service Mesh lifecycle and supported platforms,
refer to the Support Policy.

1.2. SUPPORTED CONFIGURATIONS FOR SERVICE MESH
Red Hat OpenShift Service Mesh supports the following configurations:

® This release of Red Hat OpenShift Service Mesh is supported on OpenShift Container Platform
x86_64, IBM Z°, IBM Power®, and Advanced RISC Machine (ARM).

e Configurations where all Service Mesh components are contained within a single OpenShift
Container Platform cluster.

e Configurations that do not integrate external services such as virtual machines.

NOTE

Red Hat OpenShift Service Mesh does not support the EnvoyFilter configuration except
where explicitly documented.

1.3. SUPPORTED NETWORK CONFIGURATIONS

You can use the following OpenShift networking plugins for the Red Hat OpenShift Service Mesh:
® OpenShift-SDN.

® OVN-Kubernetes. See About the OVN-Kubernetes network plugin for more information.

https://docs.redhat.com/en/documentation/openshift_container_platform/latest/html/installation_overview/installing-preparing#supported-installation-methods-for-different-platforms
https://access.redhat.com/support/policy/updates/openshift_operators
https://docs.redhat.com/en/documentation/openshift_dedicated/latest/html/networking/ovn-kubernetes-network-plugin#about-ovn-kubernetes

CHAPTER 1. SUPPORTED PLATFORMS AND CONFIGURATIONS

e Third-Party Container Network Interface (CNI) plugins that have been certified on OpenShift

Container Platform and passed Service Mesh conformance testing. See Certified OpenShift
CNI Plug-ins for more information.

1.4. SUPPORTED CONFIGURATIONS FORKIALI

The Kiali console is supported on Google Chrome, Microsoft Edge, Mozilla Firefox, or Apple
Safari browsers.

The openshift authentication strategy is the only supported authentication configuration when
Kiali is deployed with Red Hat OpenShift Service Mesh (OSSM). The openshift strategy
controls access based on the user’s role-based access control (RBAC) roles of the OpenShift
Container Platform.

1.5. ADDITIONAL RESOURCES

OpenShift Operator Life Cycles

About OpenShift Container Platform installation

Installing OpenShift Container Platform on AWS

Installing OpenShift Container Platform on AWS with user-provisioned infrastructure
Installing OpenShift Container Platform on bare metal

Installing OpenShift Container Platform on vSphere

Installing OpenShift Container Platform on IBM Z® and IBM® LinuxONE

Installing OpenShift Container Platform on IBM Power®

https://access.redhat.com/articles/5436171
https://access.redhat.com/support/policy/updates/openshift_operators
https://docs.redhat.com/en/documentation/openshift_container_platform/latest/html/installation_overview/ocp-installation-overview#installation-overview_ocp-installation-overview
https://docs.redhat.com/en/documentation/openshift_container_platform/latest/html/installing_on_aws/preparing-to-install-on-aws#preparing-to-install-on-aws
https://docs.redhat.com/en/documentation/openshift_container_platform/latest/html/installing_on_aws/user-provisioned-infrastructure
https://docs.redhat.com/en/documentation/openshift_container_platform/latest/html/installing_on_bare_metal/preparing-to-install-on-bare-metal
https://docs.redhat.com/en/documentation/openshift_container_platform/latest/html/installing_on_vmware_vsphere/preparing-to-install-on-vsphere
https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html/installing_on_ibm_z_and_ibm_linuxone/preparing-to-install-on-ibm-z
https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html/installing_on_ibm_power/preparing-to-install-on-ibm-power

Red Hat OpenShift Service Mesh 3.0 Installing

CHAPTER 2. INSTALLING OPENSHIFT SERVICE MESH

Installing OpenShift Service Mesh consists of three main tasks: installing the OpenShift Operator,
deploying Istio, and customizing the Istio configuration. Then, you can also choose to install the sample
bookinfo application to push data through the mesh and explore mesh functionality.

WARNING
Before installing OpenShift Service Mesh 3, make sure you are not running

OpenShift Service Mesh 3 and OpenShift Service Mesh 2 in the same cluster,
because it causes conflicts unless configured correctly. To migrate from OpenShift
Service Mesh 2, see Migrating from OpenShift Service Mesh 2.6 .

2.1. ABOUT DEPLOYING ISTIO USING THE RED HAT OPENSHIFT
SERVICE MESH OPERATOR

To deploy Istio using the Red Hat OpenShift Service Mesh Operator, you must create an Istio resource.
Then, the Operator creates an IstioRevision resource, which represents one revision of the Istio control
plane. Based on the IstioRevision resource, the Operator deploys the Istio control plane, which includes
the istiod Deployment resource and other resources.

The Red Hat OpenShift Service Mesh Operator may create additional instances of the IstioRevision
resource, depending on the update strategy defined in the Istio resource.
2.1.1. About Istio control plane update strategies

The update strategy affects how the update process is performed. The spec.updateStrategy field in
the Istio resource configuration determines how the OpenShift Service Mesh Operator updates the
Istio control plane. When the Operator detects a change in the spec.version field or identifies a new
minor release with a configured vX.Y-latest alias, it initiates an upgrade procedure. For each mesh, you
select one of two strategies:

e [nPlace
e RevisionBased

InPlace is the default strategy for updating OpenShift Service Mesh.

2.2.INSTALLING THE SERVICE MESH OPERATOR

https://docs.redhat.com/en/documentation/red_hat_openshift_service_mesh/3.0/html-single/migrating_from_service_mesh_2_to_service_mesh_3/#ossm-migrating-read-me

CHAPTER 2. INSTALLING OPENSHIFT SERVICE MESH

WARNING
For clusters without OpenShift Service Mesh instances, install the Service Mesh

Operator. OpenShift Service Mesh operates cluster-wide and needs a scope
configuration to prevent conflicts between Istio control planes. For clusters with
OpenShift Service Mesh 3 or later, see "Deploying multiple service meshes on a
single cluster"”.

Prerequisites

® You have deployed a cluster on OpenShift Container Platform 4.14 or later.

® You are logged in to the OpenShift Container Platform web console as a user with the cluster-

admin role.

Procedure

1.

In the OpenShift Container Platform web console, navigate to the Operators -» OperatorHub
page.

Search for the Red Hat OpenShift Service Mesh 3 Operator.

Locate the Service Mesh Operator, and click to select it.

When the prompt that discusses the community operator opens, click Continue.
Click Install.

On the Install Operator page, perform the following steps:

a. Select All namespaces on the cluster (default)as the Installation Mode. This mode
installs the Operator in the default openshift-operators namespace, which enables the
Operator to watch and be available to all namespaces in the cluster.

b. Select Automatic as the Approval Strategy. This ensures that the Operator Lifecycle
Manager (OLM) handles the future upgrades to the Operator automatically. If you select
the Manual approval strategy, OLM creates an update request. As a cluster administrator,
you must then manually approve the OLM update request to update the Operator to the
new version.

c. Select an Update Channel.

® Choose the stable channel to install the latest stable version of the Red Hat OpenShift
Service Mesh 3 Operator. It is the default channel for installing the Operator.

® Toinstall a specific version of the Red Hat OpenShift Service Mesh 3 Operator, choose
the corresponding stable-<version> channel. For example, to install the Red Hat
OpenShift Service Mesh Operator version 3.0.x, use the stable-3.0 channel.

7. Click Install to install the Operator.

Verification

Red Hat OpenShift Service Mesh 3.0 Installing

1. Click Operators — Installed Operators to verify that the Service Mesh Operator is installed.
Succeeded should show in the Status column.
Additional resources

® Deploying multiple service meshes on a single cluster

2.2.1. About Service Mesh custom resource definitions

Installing the Red Hat OpenShift Service Mesh Operator also installs custom resource definitions (CRD)
that administrators can use to configure Istio for Service Mesh installations. The Operator Lifecycle
Manager (OLM) installs two categories of CRDs: Sail Operator CRDs and Istio CRDs.

Sail Operator CRDs define custom resources for installing and maintaining the Istio components
required to operate a service mesh. These custom resources belong to the sailoperator.io API group
and include the Istio, IstioRevision, IstioCNI, and ZTunnel resource kinds. For more information on
how to configure these resources, see the sailoperator.io AP| reference documentation.

Istio CRDs are associated with mesh configuration and service management. These CRDs define
custom resources in several istio.io API groups, such as networking.istio.io and security.istio.io. The
CRDs also include various resource kinds, such as AuthorizationPolicy, DestinationRule, and
VirtualService, that administrators use to configure a service mesh.

2.3. ABOUT ISTIO DEPLOYMENT

To deploy Istio, you must create two resources: Istio and IstioCNI. The Istio resource deploys and
configures the Istio Control Plane. The IstioCNI resource deploys and configures the Istio Container
Network Interface (CNI) plugin. You should create these resources in separate projects; therefore, you
must create two projects as part of the Istio deployment process.

You can use the OpenShift web console or the OpenShift CLI (oc) to create a project or a resource in
your cluster.

NOTE

In the OpenShift Container Platform, a project is essentially a Kubernetes namespace
with additional annotations, such as the range of user IDs that can be used in the project.
Typically, the OpenShift Container Platform web console uses the term project, and the
CLI uses the term namespace, but the terms are essentially synonymous.

2.3.1. Creating the Istio project using the web console

The Service Mesh Operator deploys the Istio control plane to a project that you create. In this example,
istio-system is the name of the project.

Prerequisties

® The Red Hat OpenShift Service Mesh Operator must be installed.

® You are logged in to the OpenShift Container Platform web console as cluster-admin.

Procedure

https://github.com/istio-ecosystem/sail-operator/blob/main/docs/api-reference/sailoperator.io.md

CHAPTER 2. INSTALLING OPENSHIFT SERVICE MESH

1. In the OpenShift Container Platform web console, click Home — Projects.
2. Click Create Project.

3. At the prompt, enter a name for the project in the Name field. For example, istio-system. The
other fields provide supplementary information to the Istio resource definition and are optional.

4. Click Create. The Service Mesh Operator deploys Istio to the project you specified.

2.3.2. Creating the Istio resource using the web console

Create the Istio resource that will contain the YAML configuration file for your Istio deployment. The
Red Hat OpenShift Service Mesh Operator uses information in the YAML file to create an instance of
the Istio control plane.

Prerequisties

® The Service Mesh Operator must be installed.

® You are logged in to the OpenShift Container Platform web console as cluster-admin.

Procedure

1. In the OpenShift Container Platform web console, click Operators = Installed Operators.
2. Select istio-system in the Project drop-down menu.

3. Click the Service Mesh Operator.

4. Clicklstio.

5. Click Create Istio.

6. Select the istio-system project from the Namespace drop-down menu.

7. Click Create. This action deploys the Istio control plane.
When State: Healthy appears in the Status column, Istio is successfully deployed.

2.3.3. Creating the IstioCNI project using the web console

The Service Mesh Operator deploys the Istio CNI plugin to a project that you create. In this example,
istio-cni is the name of the project.

Prerequisties

® The Red Hat OpenShift Service Mesh Operator must be installed.

® You are logged in to the OpenShift Container Platform web console as cluster-admin.

Procedure

1. In the OpenShift Container Platform web console, click Home — Projects.

2. Click Create Project.

Red Hat OpenShift Service Mesh 3.0 Installing

3. At the prompt, you must enter a name for the project in the Name field. For example, istio-cni.
The other fields provide supplementary information and are optional.

4. Click Create.

2.3.4. Creating the IstioCNI resource using the web console

Create an Istio Container Network Interface (CNI) resource, which contains the configuration file for the
Istio CNI plugin. The Service Mesh Operator uses the configuration specified by this resource to deploy
the CNI pod.

Prerequisties

® The Red Hat OpenShift Service Mesh Operator must be installed.

® You are logged in to the OpenShift Container Platform web console as cluster-admin.

Procedure

1. In the OpenShift Container Platform web console, click Operators = Installed Operators.
2. Select istio-cni in the Project drop-down menu.

3. Click the Service Mesh Operator.

4. Click IstioCNI.

5. Click Create IstioCNL.

6. Ensure that the name is default.

7. Click Create. This action deploys the Istio CNI plugin.
When State: Healthy appears in the Status column, the Istio CNI plugin is successfully
deployed.

2.4. SCOPING THE SERVICE MESH WITH DISCOVERY SELECTORS
Service Mesh includes workloads that meet the following criteria:

e The control plane has discovered the workload.

e The workload has an Envoy proxy sidecar injected.

By default, the control plane discovers workloads in all namespaces across the cluster, with the following
results:

® FEach proxy instance receives configuration for all namespaces, including workloads not enrolled
in the mesh.

® Any workload with the appropriate pod or namespace injection label receives a proxy sidecar.

In shared clusters, you might want to limit the scope of Service Mesh to only certain namespaces. This
approach is especially useful if multiple service meshes run in the same cluster.

2.4.1. About discovery selectors

10

CHAPTER 2. INSTALLING OPENSHIFT SERVICE MESH

With discovery selectors, the mesh administrator can control which namespaces the control plane can
access. By using a Kubernetes label selector, the administrator sets the criteria for the namespaces
visible to the control plane, excluding any namespaces that do not match the specified criteria.

NOTE
Istiod always opens a watch to OpenShift for all namespaces. However, discovery

selectors ignore objects that are not selected very early in its processing, minimizing
costs.

The discoverySelectors field accepts an array of Kubernetes selectors, which apply to labels on
namespaces. You can configure each selector for different use cases:

® Custom label names and values. For example, configure all namespaces with the label istio-
discovery=enabled.

e Alist of namespace labels by using set-based selectors with OR logic. For instance, configure
namespaces with istio-discovery=enabled OR region=us-east1.

® |nclusion and exclusion of namespaces. For example, configure namespaces with istio-
discovery=enabled AND the label app=helloworld.

NOTE

Discovery selectors are not a security boundary. Istiod continues to have access to all
namespaces even when you have configured the discoverySelector field.

Additional resources

® | abelselectors (Kubernetes documentation)

® Resources that support set-based requirements (Kubernetes documentation)

2.4.2. Scoping a Service Mesh by using discovery selectors

If you know which namespaces to include in the Service Mesh, configure discoverySelectors during or
after installation by adding the required selectors to the meshConfig.discoverySelectors section of
the Istio resource. For example, configure Istio to discover only namespaces labeled istio-
discovery=enabled.

Prerequisites

® The OpenShift Service Mesh operator is installed.

® Anlstio CNI resource is created.

Procedure

1. Add alabel to the namespace containing the Istio control plane, for example, the istio-system
system namespace.

I $ oc label namespace istio-system istio-discovery=enabled

1

https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/#label-selectors
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/#resources-that-support-set-based-requirements

Red Hat OpenShift Service Mesh 3.0 Installing

2. Modify the Istio control plane resource to include a discoverySelectors section with the same
label.

kind: Istio
apiVersion: sailoperator.io/v1
metadata:

name: default
spec:

namespace: istio-system

values:

meshConfig:
discoverySelectors:
- matchLabels:
istio-discovery: enabled

3. Apply the Istio CR:
I $ oc apply -f istio.yaml

4. Ensure that all namespaces that will contain workloads that are to be part of the Service Mesh
have both the discoverySelector label and, if needed, the appropriate Istio injection label.

NOTE

Discovery selectors help restrict the scope of a single Service Mesh and are essential for
limiting the control plane scope when you deploy multiple Istio control planes in a single
cluster.

Next steps

® Deploying the Bookinfo application

2.5. ABOUT THE BOOKINFO APPLICATION

Installing the bookinfo example application consists of two main tasks: deploying the application and
creating a gateway so the application is accessible outside the cluster.

You can use the bookinfo application to explore service mesh features. Using the bookinfo application,
you can easily confirm that requests from a web browser pass through the mesh and reach the
application.

The bookinfo application displays information about a book, similar to a single catalog entry of an online
book store. The application displays a page that describes the book, lists book details (ISBN, number of
pages, and other information), and book reviews.

The bookinfo application is exposed through the mesh, and the mesh configuration determines how the
microservices comprising the application are used to serve requests. The review information comes from
one of three services: reviews-v1, reviews-v2 or reviews-v3. If you deploy the bookinfo application
without defining the reviews virtual service, then the mesh uses a round robin rule to route requests to a
service.

By deploying the reviews virtual service, you can specify a different behavior. For example, you can
specify that if a user logs into the bookinfo application, then the mesh routes requests to the reviews-
v2 service, and the application displays reviews with black stars. If a user does not log into the bookinfo

12

CHAPTER 2. INSTALLING OPENSHIFT SERVICE MESH

application, then the mesh routes requests to the reviews-v3 service, and the application displays
reviews with red stars.

For more information, see Bookinfo Application in the upstream Istio documentation.

2.5.1. Deploying the Bookinfo application

Prerequisites

You have deployed a cluster on OpenShift Container Platform 4.15 or later.

You are logged in to the OpenShift Container Platform web console as a user with the cluster-
admin role.

You have access to the OpenShift CLI (oc).

You have installed the Red Hat OpenShift Service Mesh Operator, created the Istio resource,
and the Operator has deployed Istio.

You have created IstioCNI resource, and the Operator has deployed the necessary IstioCNI
pods.

Procedure

1. In the OpenShift Container Platform web console, navigate to the Home — Projects page.

2. Click Create Project.

3. Enter bookinfo in the Project name field.

The Display name and Description fields provide supplementary information and are not
required.

4. Click Create.

5. Apply the Istio discovery selector and injection label to the bookinfo namespace by entering the

following command:

I $ oc label namespace bookinfo istio-discovery=enabled istio-injection=enabled

NOTE

In this example, the name of the Istio resource is default. If the Istio resource
name is different, you must set the istio.io/rev label to the name of the Istio
resource instead of adding the istio-injection=enabled label.

6. Apply the bookinfo YAML file to deploy the bookinfo application by entering the following

command:

oc apply -f https://raw.githubusercontent.com/openshift-service-mesh/istio/release-
1.24/samples/bookinfo/platform/kube/bookinfo.yaml -n bookinfo

Verification

13

https://istio.io/latest/docs/examples/bookinfo/

Red Hat OpenShift Service Mesh 3.0 Installing

1. Verify that the bookinfo service is available by running the following command:

I $ oc get services -n bookinfo

Example output

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
details ClusterlP 172.30.137.21 <none> 9080/TCP 44s
productpage ClusterlP 172.30.2.246 <none> 9080/TCP 43s
ratings ClusterlP 172.30.33.85 <none> 9080/TCP 44s
reviews ClusterlP 172.30.175.88 <none> 9080/TCP 44s

2. Verify that the bookinfo pods are available by running the following command:

I $ oc get pods -n bookinfo

Example output

NAME READY STATUS RESTARTS AGE
details-v1-698d88b-km2jg 2/2 Running 0 66s
productpage-v1-675fc69cf-cvxv9 2/2 Running 0 65s
ratings-v1-6484c4d9bb-tpx7d 2/2 Running 0 65s
reviews-v1-5b5d6494f4-wsrwp 2/2 Running 0 65s
reviews-v2-5b667bcbf8-4Isfd 2/2 Running 0 65s
reviews-v3-5b9bd44f4-44hr6 2/2 Running 0 65s

When the Ready columns displays 2/2, the proxy sidecar was successfully injected. Confirm that
Running appears in the Status column for each pod.

3. Verify that the bookinfo application is running by sending a request to the bookinfo page. Run
the following command:

$ oc exec "$(oc get pod -l app=ratings -n bookinfo -0 jsonpath="{.items[0].metadata.name}')" -
¢ ratings -n bookinfo -- curl -sS productpage:9080/productpage | grep -o "<title>.*</title>"

2.5.2. About accessing the Bookinfo application using a gateway

The Red Hat OpenShift Service Mesh Operator does not deploy gateways. Gateways are not part of the
control plane. As a security best-practice, Ingress and Egress gateways should be deployed in a different
namespace than the namespace that contains the control plane.

You can deploy gateways using either the Gateway API or the gateway injection method.

2.5.3. Accessing the Bookinfo application by using Istio gateway injection

Gateway injection uses the same mechanisms as Istio sidecar injection to create a gateway from a
Deployment resource that is paired with a Service resource. The Service resource can be made
accessible from outside an OpenShift Container Platform cluster.

Prerequisites

14

® You are logged in to the OpenShift Container Platform web console as cluster-admin.

CHAPTER 2. INSTALLING OPENSHIFT SERVICE MESH

® The Red Hat OpenShift Service Mesh Operator must be installed.

® The Istio resource must be deployed.

Procedure

1. Create the istio-ingressgateway deployment and service by running the following command:

I $ oc apply -n bookinfo -f ingress-gateway.yami

NOTE

This example uses a sample ingress-gateway.yaml file that is available in the
Istio community repository.

2. Configure the bookinfo application to use the new gateway. Apply the gateway configuration by
running the following command:

$ oc apply -f https://raw.githubusercontent.com/openshift-service-mesh/istio/release-
1.24/samples/bookinfo/networking/bookinfo-gateway.yaml -n bookinfo

NOTE

To configure gateway injection with the bookinfo application, this example uses
a sample gateway configuration file that must be applied in the namespace
where the application is installed.

3. Use a route to expose the gateway external to the cluster by running the following command:

I $ oc expose service istio-ingressgateway -n bookinfo

4. Modify the YAML file to automatically scale the pod when ingress traffic increases.

Example configuration

apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:
labels:
istio: ingressgateway
release: istio
name: ingressgatewayhpa
namespace: bookinfo
spec:
maxReplicas: 5 ﬂ
metrics:
- resource:
name: cpu
target:
averageUltilization: 80
type: Utilization
type: Resource

15

https://raw.githubusercontent.com/istio-ecosystem/sail-operator/main/chart/samples/ingress-gateway.yaml

Red Hat OpenShift Service Mesh 3.0 Installing

minReplicas: 2
scaleTargetRef:

apiVersion: apps/v1

kind: Deployment

name: istio-ingressgateway

ﬂ This example sets the the maximum replicas to 5 and the minimum replicas to 2. It also
creates another replica when utilization reaches 80%.

5. Specify the minimum number of pods that must be running on the node.

Example configuration

apiVersion: policy/v1
kind: PodDisruptionBudget
metadata:
labels:
istio: ingressgateway
release: istio
name: ingressgatewaypdb
namespace: bookinfo
spec:
minAvailable: 1)
selector:
matchLabels:
istio: ingressgateway

ﬂ This example ensures one replica is running if a pod gets restarted on a new node.

6. Obtain the gateway host name and the URL for the product page by running the following
command:

I $ HOST=%(oc get route istio-ingressgateway -n bookinfo -o jsonpath="{.spec.host}')

7. Verify that the productpage is accessible from a web browser by running the following
command:

I $ echo productpage URL: http://$HOST/productpage

2.5.4. Accessing the Bookinfo application by using Gateway API

The Kubernetes Gateway API deploys a gateway by creating a Gateway resource. In OpenShift
Container Platform 4.15 and later, Red Hat OpenShift Service Mesh implements the Gateway API
custom resource definitions (CRDs). However, in OpenShift Container Platform 4.18 and earlier, the
CRDs are not installed by default. Hence, in OpenShift Container Platform 4.15 through 4.18, you must
manually install the CRDs. Starting with OpenShift Container Platform 4.19, these CRDs are
automatically installed and managed, and you can no longer create, update, or delete them.

For details about enabling Gateway API for Ingress in OpenShift Container Platform 4.19 and later, see
"Configuring ingress cluster traffic" in the OpenShift Container Platform documentation.

16

CHAPTER 2. INSTALLING OPENSHIFT SERVICE MESH

NOTE

Red Hat provides support for using the Kubernetes Gateway APl with Red Hat OpenShift
Service Mesh. Red Hat does not provide support for the Kubernetes Gateway API custom
resource definitions (CRDs). In this procedure, the use of community Gateway API CRDs

is shown for demonstration purposes only.

Prerequisites

® You are logged in to the OpenShift Container Platform web console as cluster-admin.
® The Red Hat OpenShift Service Mesh Operator must be installed.

® The Istio resource must be deployed.

Procedure

1. Enable the Gateway APl CRDs for OpenShift Container Platform 4.18 and earlier, by running
the following command:

$ oc get crd gateways.gateway.networking.k8s.io &> /dev/null || { oc kustomize
"github.com/kubernetes-sigs/gateway-api/config/crd?ref=v1.0.0" | oc apply -f -; }

2. Create and configure a gateway by using the Gateway and HTTPRoute resources by running
the following command:

$ oc apply -f https://raw.githubusercontent.com/openshift-service-mesh/istio/release-
1.24/samples/bookinfo/gateway-api/bookinfo-gateway.yaml -n bookinfo

NOTE

To configure a gateway with the bookinfo application by using the Gateway API,
this example uses a sample gateway configuration file that must be applied in the
namespace where the application is installed.

3. Ensure that the Gateway API service is ready, and has an address allocated by running the
following command:

I $ oc wait --for=condition=programmed gtw bookinfo-gateway -n bookinfo

4. Retrieve the host by running the following command:

$ export INGRESS_HOST=$(oc get gtw bookinfo-gateway -n bookinfo -o
jsonpath='{.status.addresses[0].value}')

5. Retrieve the port by running the following command:

$ export INGRESS_PORT=$(oc get gtw bookinfo-gateway -n bookinfo -o
jsonpath="{.spec.listeners[?(@.name=="http")].port}")

6. Retrieve the gateway URL by running the following command:

I $ export GATEWAY_URL=$INGRESS_HOST:$INGRESS_PORT

17

Red Hat OpenShift Service Mesh 3.0 Installing

7. Obtain the gateway host name and the URL of the product page by running the following
command:

I $ echo "http://${GATEWAY_URL}/productpage”

Verification

e Verify that the productpage is accessible from a web browser.

Additional resources

® Configuring ingress cluster traffic

2.6. CUSTOMIZING ISTIO CONFIGURATION

The values field of the Istio custom resource definition, which was created when the control plane was
deployed, can be used to customize Istio configuration using Istio’s Helm configuration values. When
you create this resource using the OpenShift Container Platform web console, it is pre-populated with
configuration settings to enable Istio to run on OpenShift.

Procedure

1. Click Operators — Installed Operators.
2. Clicklstio in the Provided APIs column.
3. Click the Istio instance, named default, in the Name column.
4. Click YAML to view the Istio configuration and make modifications.
For a list of available configuration for the values field, refer to Istio’s artifacthub chart documentation.
® Base parameters
® |stiod parameters
® Gateway parameters
® CNI parameters

® ZTunnel parameters

Additional resources

® Service Mesh 3.0 Operator community documentation

2.7. ABOUT ISTIO HIGH AVAILABILITY

Running the Istio control plane in High Availability (HA) mode prevents single points of failure, and
ensures continuous mesh operation even if an istiod pod fails. By using HA, if one istiod pod becomes
unavailable, another one continues to manage and configure the Istio data plane, preventing service

18

https://docs.redhat.com/en/documentation/openshift_container_platform/latest/html/networking/configuring-ingress-cluster-traffic
https://artifacthub.io/packages/search?org=istio&sort=relevance&page=1
https://artifacthub.io/packages/helm/istio-official/base?modal=values
https://artifacthub.io/packages/helm/istio-official/istiod?modal=values
https://artifacthub.io/packages/helm/istio-official/gateway?modal=values
https://artifacthub.io/packages/helm/istio-official/cni?modal=values
https://artifacthub.io/packages/helm/istio-official/ztunnel?modal=values
https://github.com/istio-ecosystem/sail-operator/blob/main/docs/README.md

CHAPTER 2. INSTALLING OPENSHIFT SERVICE MESH

outages or disruptions. HA provides scalability by distributing the control plane workload, enables
graceful upgrades, supports disaster recovery operations, and protects against zone-wide mesh
outages.

There are two ways for a system administrator to configure HA for the Istio deployment:

e Defining a static replica count: This approach involves setting a fixed number of istiod pods,
providing a consistent level of redundancy.

e Using autoscaling: This approach dynamically adjusts the number of istiod pods based on
resource utilization or custom metrics, providing more efficient resource consumption for
fluctuating workloads.

2.7.1. Configuring Istio HA by using autoscaling

Configure the Istio control plane in High Availability (HA) mode to prevent a single point of failure, and
ensure continuous mesh operation even if one of the istiod pods fails. Autoscaling defines the minimum
and maximum number of Istio control plane pods that can operate. OpenShift Container Platform uses
these values to scale the number of control planes in operation based on resource utilization, such as
CPU or memory, to efficiently respond to the varying number of workloads and overall traffic patterns
within the mesh.

Prerequisites

® You are logged in to the OpenShift Container Platform web console as a user with the cluster-
admin role.

® You have installed the Red Hat OpenShift Service Mesh Operator.

® You have deployed the Istio resource.

Procedure
1. In the OpenShift Container Platform web console, click Installed Operators.
2. Click Red Hat OpenShift Service Mesh 3 Operator.
3. ClickIstio.
4. Click the name of the Istio installation. For example, default.
5. Click YAML.

6. Modify the Istio custom resource (CR) similar to the following example:

Example configuration

apiVersion: sailoperator.io/v1
kind: Istio
metadata:
name: default
spec:
namespace: istio-system
values:
pilot:

19

Red Hat OpenShift Service Mesh 3.0 Installing

autoscaleMin: 2 ﬂ
autoscaleMax: 5 g
cpu:
targetAverageUtilization: 80 6
memory:
targetAverageUtilization: 80 ﬂ

Specifies the minimum number of Istio control plane replicas that always run.

Specifies the maximum number of Istio control plane replicas, allowing for scaling based on
load. To support HA, there must be at least two replicas.

Specifies the target CPU utilization for autoscaling to 80%. If the average CPU usage
exceeds this threshold, the Horizontal Pod Autoscaler (HPA) automatically increases the
number of replicas.

Specifies the target memory utilization for autoscaling to 80%. If the average memory
usage exceeds this threshold, the HPA automatically increases the number of replicas.

O o o9

Verification

e Verify the status of the Istio control pods by running the following command:

I $ oc get pods -n istio-system -l app=istiod
Example output

NAME READY STATUS RESTARTS AGE
istiod-7¢7b6564c9-nwhsg 1/1 Running 0 70s
istiod-7¢c7b6564c9-xkmsl 1/1 Running 0 85s

Two istiod pods are running. Two pods, the minimum requirement for an HA Istio control plane,
indicates that a basic HA setup is in place.

2.7.1.1. API settings for Service Mesh HA autoscaling mode

Use the following istio custom resource definition (CRD) parameters when you configure a service
mesh for High Availability (HA) by using autoscaling.

Table 2.1. HA API parameters

Parameter Description

autoScaleMin Defines the minimum number of istiod pods for an

istio deployment. Each pod contains one instance of
the Istio control plane.

OpenShift only uses this parameter when the
Horizontal Pod Autoscaler (HPA) is enabled for the
Istio deployment. This is the default behavior.

20

CHAPTER 2. INSTALLING OPENSHIFT SERVICE MESH

Parameter Description

autoScaleMax

cpu.targetAverageUtilization

memory.targetAverageUtilization

behavior

Additional resources

Defines the maximum number of istiod pods for an

Istio deployment. Each pod contains one instance of
the Istio control plane.

For OpenShift to automatically scale the number of
istiod pods based on load, you must set this
parameter to a value that is greater than the value
that you defined for the autoScaleMin parameter.

You must also configure metrics for autoscaling to
work properly. If no metrics are configured, the
autoscaler does not scale up or down.

OpenShift only uses this parameter when Horizontal
Pod Autoscaler (HPA) is enabled for the Istio
deployment. This is the default behavior.

Defines the target CPU utilization for the istiod pod.
If the average CPU usage exceeds the threshold that
this parameter defines, the HPA automatically
increases the number of replica pods.

Defines the target memory utilization for the istiod
pod. If the average memory usage exceeds the
threshold that this parameter defines, the HPA
automatically increases the number of replica pods.

You can use the behavior field to define additional

policies that OpenShift uses to scale Istio resources
up or down.

For more information, see Configurable Scaling
Behavior.

® Horizontal Pod Autoscaling(Kubernetes documentation)

2.7.2. Configuring Istio HA by using replica count

Configure the Istio control plane in High Availability (HA) mode to prevent a single point of failure, and
ensure continuous mesh operation even if one of the istiod pods fails. The replica count defines a fixed
number of Istio control plane pods that can operate. Use replica count for mesh environments where the
control plane workload is relatively stable or predictable, or when you prefer to manually scale the istiod

pod.

Prerequisites

® You are logged in to the OpenShift Container Platform web console as a user with the cluster-

admin role.

21

https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/#configurable-scaling-behavior
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/

Red Hat OpenShift Service Mesh 3.0 Installing

® You have installed the Red Hat OpenShift Service Mesh Operator.

® You have deployed the Istio resource.

Procedure

1. Obtain the name of the Istio resource by running the following command:

I $ oc get istio -n istio-sytem
Example output

NAME REVISIONS READY INUSE ACTIVE REVISION STATUS VERSION
AGE

default 1 1 0 default Healthy v1.24.6 24m

The name of the Istio resource is default.

2. Update the Istio custom resource (CR) by adding the autoscaleEnabled and replicaCount
parameters by running the following command:

$ oc patch istio default -n istio-system --type merge -p '
spec:
values:
pilot:
autoscaleEnabled: false ﬂ
replicaCount: 2 g

ﬂ Specifies a setting that disables autoscaling and ensures that the number of replicas
remains fixed.
9 Specifies the number of Istio control plane replicas. To support HA, there must be at least

two replicas.

Verification

1. Verify the status of the Istio control pods by running the following command:
I $ oc get pods -n istio-system -I app=istiod
Example output

NAME READY STATUS RESTARTS AGE
istiod-7¢7b6564c9-nwhsg 1/1 Running 0 70s
istiod-7¢c7b6564c9-xkmsl 1/1 Running 0 85s

Two istiod pods are running, which is the minimum requirement for an HA Istio control plane and
indicates that a basic HA setup is in place.

22

CHAPTER 3. SIDECAR INJECTION

CHAPTER 3. SIDECAR INJECTION

To use Istio’s capabilities within a service mesh, each pod needs a sidecar proxy, configured and
managed by the Istio control plane.

3.1. ABOUT SIDECAR INJECTION

Sidecar injection is enabled using labels at the namespace or pod level. These labels also indicate the
specific control plane managing the proxy. When you apply a valid injection label to the pod template
defined in a deployment, any new pods created by that deployment automatically receive a sidecar.
Similarly, applying a pod injection label at the namespace level ensures any new pods in that namespace
include a sidecar.

NOTE

Injection happens at pod creation through an admission controller, so changes appear on
individual pods rather than the deployment resources. To confirm sidecar injection, check
the pod details directly using oc describe, where you can see the injected Istio proxy
container.

3.2. IDENTIFYING THE REVISION NAME

The label required to enable sidecar injection is determined by the specific control plane instance, known
as a revision. Each revision is managed by an IstioRevision resource, which is automatically created and
managed by the Istio resource, so manual creation or modification of IstioRevision resources is
generally unnecessary.

The naming of an IstioRevision depends on the spec.updateStrategy.type setting in the Istio
resource. If set to InPlace, the revision shares the Istio resource name. If set to RevisionBased, the
revision name follows the format <Istio resource name>-v<versions. Typically, each Istio resource
corresponds to a single IstioRevision. However, during a revision-based upgrade, multiple
IstioRevision resources may exist, each representing a distinct control plane instance.

To see available revision names, use the following command:
I $ oc get istiorevisions

You should see output similar to the following example:

Example output

NAME READY STATUS INUSE VERSION AGE
my-mesh-v1-23-0 True Healthy False v1.23.0 114s

3.2.1. Enabling sidecar injection with default revision

When the service mesh'’s IstioRevision name is default, it's possible to use the following labels on a
namespace or a pod to enable sidecar injection:

23

Red Hat OpenShift Service Mesh 3.0 Installing

Resource Label Enabled value Disabled value
Namespace istio-injection enabled disabled
Pod sidecar.istio.io/inject true false

NOTE

You can also enable injection by setting the istio.io/rev: default label in the namespace
or pod.
3.2.2. Enabling sidecar injection with other revisions

When the IstioRevision name is not default, use the specific IstioRevision name with the istio.io/rev
label to map the pod to the desired control plane and enable sidecar injection. To enable injection, set
the istio.io/rev: default label in either the namespace or the pod, as adding it to both is not required.

For example, with the revision shown above, the following labels would enable sidecar injection:

Resource Enabled label Disabled label

Namespace istio.io/rev=my-mesh-v1-23-0 istio-injection=disabled

Pod istio.io/rev=my-mesh-v1-23-0 sidecar.istio.io/inject="false"

NOTE

When both istio-injection and istio.io/rev labels are applied, the istio-injection label
takes precedence and treats the namespace as part of the default revision.

3.3. ENABLING SIDECAR INJECTION

To demonstrate different approaches for configuring sidecar injection, the following procedures use the
Bookinfo application.

Prerequisites

® You have installed the Red Hat OpenShift Service Mesh Operator, created an Istio resource,
and the Operator has deployed Istio.

® You have created the IstioCNI resource, and the Operator has deployed the necessary
IstioCNI pods.

® You have created the namespaces that are to be part of the mesh, and they are discoverable by
the Istio control plane.

e Optional: You have deployed the workloads to be included in the mesh. In the following
examples, the Bookinfo has been deployed to the bookinfo namespace, but sidecar injection
(step 5) has not been configured. For more information, see "Deploying the Bookinfo
application”.

24

CHAPTER 3. SIDECAR INJECTION

3.3.1. Enabling sidecar injection with namespace labels

In this example, all workloads within a namespace receive a sidecar proxy injection, making it the best
approach when the majority of workloads in the namespace should be included in the mesh.

Procedure

1. Verify the revision name of the Istio control plane using the following command:

I $ oc get istiorevisions

You should see output similar to the following example:

Example output

NAME TYPE READY STATUS INUSE VERSION AGE
default Local True Healthy False v1.23.0 4m57s

Since the revision name is default, you can use the default injection labels without referencing
the exact revision name.

2. Verify that workloads already running in the desired namespace show 1/1 containers as READY
by using the following command. This confirms that the pods are running without sidecars.

I $ oc get pods -n bookinfo

You should see output similar to the following example:

Example output

NAME READY STATUS RESTARTS AGE
details-v1-65cfcf56f9-gmév7 1/1 Running 0 4m55s

productpage-v1-d5789fdfb-8x6bk 1/1 Running 0 4m53s
ratings-v1-7c9bd4b87f-6v7hg 1/1 Running 0 4mb55s

reviews-v1-6584ddcf65-6wqgtw ~ 1/1 Running 0 4mb4s
reviews-v2-6f85cb9b7c-w918s 1/1 Running 0 4mb4s
reviews-v3-6f5b775685-mg5n6 1/1 Running 0O 4mb54s

3. To apply the injection label to the bookinfo namespace, run the following command at the CLI:

$ oc label namespace bookinfo istio-injection=enabled
namespace/bookinfo labeled

4. To ensure sidecar injection is applied, redeploy the existing workloads in the bookinfo
namespace. Use the following command to perform a rolling update of all workloads:

I $ oc -n bookinfo rollout restart deployments
Verification

1. Verify the rollout by checking that the new pods display 2/2 containers as READY, confirming
successful sidecar injection by running the following command:

25

Red Hat OpenShift Service Mesh 3.0 Installing

I $ oc get pods -n bookinfo

You should see output similar to the following example:

Example output

NAME READY STATUS RESTARTS AGE
details-v1-7745f84ff-bpf8f 2/2 Running 0 55s
productpage-v1-54f48db985-gd5q9 2/2 Running 0 55s
ratings-v1-5d645c985f-xsw7p 2/2 Running 0 55s
reviews-v1-bd5f54b8c-zns4v 2/2 Running 0 55s
reviews-v2-5d7b9dbf97-wbpjr 2/2 Running 0 55s
reviews-v3-5fccc48c8c-bjkin 2/2 Running 0 55s

3.3.2. Exclude a workload from the mesh

You can exclude specific workloads from sidecar injection within a namespace where injection is enabled
for all workloads.

NOTE

This example is for demonstration purposes only. The bookinfo application requires all
workloads to be part of the mesh for proper functionality.

Procedure

1. Open the application’s Deployment resource in an editor. In this case, exclude the ratings-v1
service.

2. Modify the spec.template.metadata.labels section of your Deployment resource to include
the label sidecatr.istio.io/inject: false to disable sidecar injection.

kind: Deployment
apiVersion: apps/v1
metadata:
name: ratings-v1
namespace: bookinfo
labels:
app: ratings
version: v1
spec:
template:
metadata:
labels:
sidecar.istio.io/inject: 'false’

NOTE

Adding the label to the top-level labels section of the Deployment does not
affect sidecar injection.

Updating the deployment triggers a rollout, creating a new ReplicaSet with updated pod(s).

26

CHAPTER 3. SIDECAR INJECTION

Verification

1. Verify that the updated pod(s) do not contain a sidecar container and show 1/1 containers as
Running by running the following command:

I $ oc get pods -n bookinfo

You should see output similar to the following example:

Example output

NAME READY STATUS RESTARTS AGE
details-v1-6bc7b69776-7f6wz 2/2 Running 0 29m
productpage-vi1-54f48db985-gd5q9 2/2 Running 0 29m
ratings-v1-5d645c985f-xsw7p 1/1 Running 0 7s
reviews-v1-bd5f54b8c-zns4v 2/2 Running 0 29m
reviews-v2-5d7b9dbf97-wbpjr 2/2 Running 0 29m
reviews-v3-5fccc48c8c-bjkin 2/2 Running 0 29m

3.3.3. Enabling sidecar injection with pod labels

This approach allows you to include individual workloads for sidecar injection instead of applying it to all
workloads within a namespace, making it ideal for scenarios where only a few workloads need to be part
of a service mesh. This example also demonstrates the use of a revision label for sidecar injection, where
the Istio resource is created with the name my-mesh. A unique Istio resource name is required when
multiple Istio control planes are present in the same cluster or during a revision-based control plane
upgrade.

Procedure

1. Verify the revision name of the Istio control plane by running the following command:
I $ oc get istiorevisions

You should see output similar to the following example:

Example output

NAME TYPE READY STATUS INUSE VERSION AGE
my-mesh Local True Healthy False v1.23.0 47s

Since the revision name is my-mesh, use the revision label istio.io/rev=my-mesh to enable
sidecar injection.

2. Verify that workloads already running show 1/1 containers as READY, indicating that the pods
are running without sidecars by running the following command:

I $ oc get pods -n bookinfo

You should see output similar to the following example:

Example output

27

Red Hat OpenShift Service Mesh 3.0 Installing

NAME READY STATUS RESTARTS AGE
details-v1-65cfcf56f9-gmév7 1/1 Running 0 4m55s

productpage-v1-d5789fdfb-8x6bk 1/1 Running 0 4m53s
ratings-v1-7c9bd4b87f-6v7hg 1/1 Running 0 4m55s

reviews-v1-6584ddcf65-6wqgtw ~ 1/1 Running 0 4mb4s
reviews-v2-6f85cb9b7c-w918s 1/1 Running 0 4mb4s
reviews-v3-6f5b775685-mg5n6 1/1 Running 0O 4mb54s

3. Open the application’s Deployment resource in an editor. In this case, update the ratings-v1
service.

4. Update the spec.template.metadata.labels section of your Deployment to include the
appropriate pod injection or revision label. In this case, istio.io/rev: my-mesh:

kind: Deployment
apiVersion: apps/v1
metadata:
name: ratings-v1
namespace: bookinfo
labels:
app: ratings
version: v1
spec:
template:
metadata:
labels:
istio.io/rev: my-mesh

NOTE
Adding the label to the top-level labels section of the Deployment resource
does not impact sidecar injection.

Updating the deployment triggers a rollout, creating a new ReplicaSet with the updated pod(s).

Verification

1. Verify that only the ratings-v1 pod now shows 2/2 containers READY, indicating that the sidecar
has been successfully injected by running the following command:

I $ oc get pods -n bookinfo

You should see output similar to the following example:

Example output

NAME READY STATUS RESTARTS AGE
details-v1-559cd49f6c-b89hw 1/1 Running 0 42m
productpage-v1-5f48cdcb85-8ppz5 1/1 Running 0 42m
ratings-v1-848bf79888-krdch 2/2 Running 0 9s
reviews-v1-6b7444ffbd-7m5wp 1/1 Running 0 42m
reviews-v2-67876d7b7-9nmw5 1/1 Running 0 42m
reviews-v3-84b55b667c-x5t8s 1/1 Running 0 42m

28

CHAPTER 3. SIDECAR INJECTION

2. Repeat for other workloads that you wish to include in the mesh.

3.4. ENABLING SIDECAR INJECTION WITH NAMESPACE LABELS AND
AN ISTIOREVISIONTAG RESOURCE

To use the istio-injection=enabled label when your revision name is not default, you must create an
IstioRevisionTag resource with the name default that references your Istio resource.

Prerequisites

® You have installed the Red Hat OpenShift Service Mesh Operator, created an Istio resource,
and the Operator has deployed Istio.

® You have created the IstioCNI resource, and the Operator has deployed the necessary
IstioCNI pods.

® You have created the namespaces that are to be part of the mesh, and they are discoverable by
the Istio control plane.

e Optional: You have deployed the workloads to be included in the mesh. In the following
examples, the Bookinfo has been deployed to the bookinfo namespace, but sidecar injection

(step 5in "Deploying the Bookinfo application” procedure) has not been configured. For more
information, see "Deploying the Bookinfo application”.

Procedure

1. Find the name of your Istio resource by running the following command:
I $ oc get istio
Example output

NAME REVISIONS READY INUSE ACTIVE REVISION STATUS VERSION
AGE
default 1 1 1 default-v1-24-3 Healthy v1.24.3 11s

In this example, the Istio resource has the name default, but the underlying revision is called
default-v1-24-3.

2. Create the IstioRevisionTag resource in a YAML file:

Example IstioRevistionTag resource YAML file

apiVersion: sailoperator.io/v1
kind: IstioRevisionTag
metadata:
name: default
spec:
targetRef:
kind: Istio
name: default

3. Apply the IstioRevisionTag resource by running the following command:

29

Red Hat OpenShift Service Mesh 3.0 Installing

I $ oc apply -f istioRevisionTag.yaml

4. Verify that the IstioRevisionTag resource has been created successfully by running the
following command:

I $ oc get istiorevisiontags.sailoperator.io

Example output

NAME STATUS INUSE REVISION AGE
default Healthy True default-v1-24-3 4m23s

In this example, the new tag is referencing your active revision, default-v1-24-3. Now you can
use the istio-injection=enabled label as if your revision was called default.

5. Confirm that the pods are running without sidecars by running the following command. Any

workloads that are already running in the desired namespace should show 1/1 containers in the
READY column.

I $ oc get pods -n bookinfo

Example output

NAME READY STATUS RESTARTS AGE
details-v1-65cfcf56f9-gmév7 1/1 Running 0 4m55s

productpage-v1-d5789fdfb-8x6bk 1/1 Running 0 4m53s
ratings-v1-7c9bd4b87f-6v7hg 1/1 Running 0 4m55s

reviews-v1-6584ddcf65-6wqgtw 1/1 Running 0 4mb4s
reviews-v2-6f85cb9b7c-w918s 1/1 Running 0 4mb4s
reviews-v3-6f5b775685-mg5n6 1/1 Running 0O 4mb54s

6. Apply the injection label to the bookinfo namespace by running the following command:

$ oc label namespace bookinfo istio-injection=enabled \
namespace/bookinfo labeled

7. To ensure sidecar injection is applied, redeploy the workloads in the bookinfo namespace by
running the following command:

I $ oc -n bookinfo rollout restart deployments

Verification

1. Verify the rollout by running the following command and confirming that the new pods display
2/2 containers in the READY column:

I $ oc get pods -n bookinfo

Example output

I NAME READY STATUS RESTARTS AGE

30

CHAPTER 3. SIDECAR INJECTION

details-v1-7745f84ff-bpf8f 2/2 Running 0 55s
productpage-vi1-54f48db985-gd5q9 2/2 Running 0 55s
ratings-v1-5d645c985f-xsw7p 2/2 Running 0 55s
reviews-v1-bd5f54b8c-zns4v 2/2 Running 0 55s
reviews-v2-5d7b9dbf97-wbpjr 2/2 Running 0 55s
reviews-v3-5fccc48c8c-bjkin 2/2 Running 0 55s

3.5. ADDITIONAL RESOURCES
® About admission controllers (Kubernetes documentation)
® |stio sidecar injection problems (Istio documentation)
® Deploying the Bookinfo application
® Scoping the mesh with discovery selectors

® |stioRevisionTag resource

31

https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers/
https://istio.io/latest/docs/ops/common-problems/injection/
https://docs.redhat.com/en/documentation/red_hat_openshift_service_mesh/3.0/html-single/about/#istiorevisiontag-resource_ossm-about-concepts

Red Hat OpenShift Service Mesh 3.0 Installing

CHAPTER 4. OPENSHIFT SERVICE MESH AND CERT-
MANAGER

The cert-manager tool is a solution for X.509 certificate management on Kubernetes. It delivers a
unified API to integrate applications with private or public key infrastructure (PKI), such as Vault, Google
Cloud Certificate Authority Service, Let's Encrypt, and other providers.

IMPORTANT

The cert-manager tool must be installed before you create and install your Istio resource.

The cert-manager tool ensures the certificates are valid and up-to-date by attempting to renew
certificates at a configured time before they expire.

4.1. ABOUT INTEGRATING SERVICE MESH WITH CERT-MANAGER AND
ISTIO-CSR

The cert-manager tool provides integration with Istio through an external agent called istio-csr. The
istio-csr agent handles certificate signing requests (CSR) from Istio proxies and the controlplane in the
following ways:

1. Verifying the identity of the workload.
2. Creating a CSR through cert-manager for the workload.

The cert-manager tool then creates a CSR to the configured CA Issuer, which signs the certificate.

NOTE

Red Hat provides support for integrating with istio-csr and cert-manager. Red Hat does
not provide direct support for the istio-csr or the community cert-manager components.
The use of community cert-manager shown here is for demonstration purposes only.

Prerequisites
® One of these versions of cert-manager:

o Red Hat cert-manager Operator 1.10 or later
o community cert-manager Operator 1.11 or later
o cert-manager 1.11 or later

® Red Hat OpenShift Service Mesh 3.0 or later

® AnlstioCNI instance is running in the cluster

® |stio CLI (istioctl) tool is installed

® jqisinstalled

® Helmisinstalled

32

CHAPTER 4. OPENSHIFT SERVICE MESH AND CERT-MANAGER

4.2. INSTALLING CERT-MANAGER

You can integrate cert-manager with OpenShift Service Mesh by deploying istio-csr and then creating
an Istio resource that uses the istio-csr agent to process workload and control plane certificate signing
requests. This example creates a self-signed Issuer, but any other Issuer can be used instead.

IMPORTANT

You must install cert-manager before installing your Istio resource.

Procedure

1. Create the istio-system namespace by running the following command:

I $ oc create namespace istio-system

2. Create the rootissuer by creating an Issuer object in a YAML file.

a. Create an Issuer object similar to the following example:

Example issuer.yaml file

apiVersion: cert-manager.io/v1
kind: Issuer
metadata:
name: selfsigned
namespace: istio-system
spec:
selfSigned: {}
apiVersion: cert-manager.io/v1
kind: Certificate
metadata:
name: istio-ca
namespace: istio-system
spec:
isCA: true
duration: 87600h # 10 years
secretName: istio-ca
commonName: istio-ca
privateKey:
algorithm: ECDSA
size: 256
subject:
organizations:
- cluster.local
- cert-manager
issuerRef:
name: selfsigned
kind: Issuer
group: cert-manager.io
apiVersion: cert-manager.io/v1
kind: Issuer

33

Red Hat OpenShift Service Mesh 3.0 Installing

metadata:
name: istio-ca
namespace: istio-system
spec:
ca:
secretName: istio-ca

b. Create the objects by running the following command:

I $ oc apply -f issuer.yaml

c. Wait for the istio-ca certificate to contain the "Ready" status condition by running the
following command:

I $ oc wait --for=condition=Ready certificates/istio-ca -n istio-system
3. Copy the istio-ca certificate to the cert-manager namespace so it can be used by istio-csr:
a. Copy the secret to a local file by running the following command:

I $ oc get -n istio-system secret istio-ca -0 jsonpath="{.data.tls\.crt}' | base64 -d > ca.pem

b. Create a secret from the local certificate file in the cert-manager namespace by running
the following command:

I $ oc create secret generic -n cert-manager istio-root-ca --from-file=ca.pem=ca.pem

Next steps

To install istio-csr, you must follow the istio-csr installation instructions for the type of update strategy
you want. By default, spec.updateStrategy is set to InPlace when you create and install your Istio
resource. You create and install your Istio resource after you install istio-csr.

® |[nstalling the istio-csr agent by using the in place update strategy

® |Installing the istio-csr agent by using the revision based update strategy

4.2.1. Installing the istio-csr agent by using the in place update strategy

Istio resources use the in place update strategy by default. Follow this procedure if you plan to leave
spec.updateStrategy as InPlace when you create and install your lIstio resource.

Procedure

1. Add the Jetstack charts repository to your local Helm repository by running the following
command:

I $ helm repo add jetstack https://charts.jetstack.io --force-update

2. Install the istio-csr chart by running the following command:

I $ helm upgrade cert-manager-istio-csr jetstack/cert-manager-istio-csr \

34

CHAPTER 4. OPENSHIFT SERVICE MESH AND CERT-MANAGER

--install \

--namespace cert-manager \

--wait \

--set "app.tls.rootCAFile=/var/run/secrets/istio-csr/ca.pem" \
--set "volumeMounts[0].name=root-ca" \

--set "volumeMounts[0].mountPath=/var/run/secrets/istio-csr" \
--set "volumes[0].name=root-ca" \

--set "volumesl[0].secret.secretName=istio-root-ca" \

--set "app.istio.namespace=istio-system"

Next steps

® |Installing your Istio resource

4.2.2. Installing the istio-csr agent by using the revision based update strategy

Istio resources use the in place update strategy by default. Follow this procedure if you plan to change
spec.updateStrategy to RevisionBased when you create and install your lIstio resource.

Procedure

1. Specify all the Istio revisions to your istio-csr deployment. See "istio-csr deployment”.
2. Add the Jetstack charts to your local Helm repository by running the following command:

I $ helm repo add jetstack https://charts.jetstack.io --force-update

3. Install the istio-csr chart with your revision name by running the following command:

$ helm upgrade cert-manager-istio-csr jetstack/cert-manager-istio-csr \
--install \
--namespace cert-manager \
--wait \
--set "app.tls.rootCAFile=/var/run/secrets/istio-csr/ca.pem" \
--set "volumeMounts[0].name=root-ca" \
--set "volumeMounts[0].mountPath=/var/run/secrets/istio-csr" \
--set "volumes[0].name=root-ca" \
--set "volumes|0].secret.secretName=istio-root-ca" \
--set "app.istio.namespace=istio-system" \
--set "app.istio.revisions={default-v1-24-3}"

NOTE

Revision names use the following format, <istio-name>-v<major_version>-
<minor_version>-<patch_versions. For example: default-v1-24-3.

Additional resources

® stio-csr deployment

Next steps

® |Installing your Istio resource

35

https://github.com/cert-manager/istio-csr/tree/main/deploy/charts/istio-csr#appistiorevisions0??string

Red Hat OpenShift Service Mesh 3.0 Installing

4.2.3. Installing your Istio resource

After you have installed istio-csr by following the procedure for either an in place or revision based
update strategy, you can install the Istio resource.

You need to disable Istio’s built in CA server and tell istiod to use the istio-csr CA server. The istio-csr
CA server issues certificates for both istiod and user workloads.

Procedure

1. Create the Istio object as shown in the following example:

Example istio.yaml object

apiVersion: sailoperator.io/v1
kind: Istio
metadata:
name: default
spec:
version: v1.24.3
namespace: istio-system
values:
global:
caAddress: cert-manager-istio-csr.cert-manager.svc:443
pilot:
env:
ENABLE_CA_SERVER: "false"

NOTE

If you installed your CSR agent with a revision based update strategy, then you
need to add the following to your Istio object YAML:

kind: Istio
metadata:
name: default
spec:
updateStrategy:
type: RevisionBased

2. Create the Istio resource by running the following command:
I $ oc apply -f istio.yaml
3. Wait for the Istio object to become ready by running the following command:

I $ oc wait --for=condition=Ready istios/default -n istio-system

4.2.4. Verifying cert-manager installation

36

CHAPTER 4. OPENSHIFT SERVICE MESH AND CERT-MANAGER

You can use the sample httpbin service and sleep application to check communication between the
workloads. You can also check the workload certificate of the proxy to verify that the cert-manager tool
is installed correctly.

Procedure
1. Create the sample namespace by running the following command:

I $ oc new-project sample

2. Find your active Istio revision by running the following command:

I $ oc get istios default -0 jsonpath="{.status.activeRevisionName}'

3. Add the injection label for your active revision to the sample namespace by running the
following command:

I $ oc label namespace sample istio.io/rev=<your-active-revision-name> --overwrite=true

4. Deploy the sample httpbin service by running the following command:

$ oc apply -n sample -f https://raw.githubusercontent.com/openshift-service-
mesh/istio/refs/heads/master/samples/httpbin/httpbin.yaml

5. Deploy the sample sleep application by running the following command:

$ oc apply -n sample -f https://raw.githubusercontent.com/openshift-service-
mesh/istio/refs/heads/master/samples/sleep/sleep.yam|

6. Wait for both applications to become ready by running the following command:

I $ oc rollout status -n sample deployment httpbin sleep

7. Verify that sleep application can access the httpbin service by running the following command:

$ oc exec "$(oc get pod -l app=sleep -n sample \
-0 jsonpath={.items..metadata.name})" -c sleep -n sample -- \
curl http://httpbin.sample:8000/ip -s -0 /dev/null \
-w "%{http_code}\n"

Example of a successful output

I 200

8. Run the following command to print the workload certificate for the httpbin service and verify
the output:

$ istioctl proxy-config secret -n sample $(oc get pods -n sample -o
jsonpath='{.items..metadata.name}' --selector app=httpbin) -o json | jq -r
".dynamicActiveSecrets[0].secret.tlsCertificate.certificateChain.inlineBytes' | base64 --decode
| openssl x509 -text -noout

37

Red Hat OpenShift Service Mesh 3.0 Installing

Example output

Issuer: O = cert-manager + O = cluster.local, CN = istio-ca

X509v3 Subject Alternative Name:
URI:spiffe://cluster.local/ns/sample/sa/httpbin

4.3. UPDATING ISTIO-CSR AGENTS WITH REVISION-BASED UPDATE
STRATEGIES

If you deployed your Istio resource using the revision based update strategy, you must pass all revisions
each time you update your control plane. You must perform the update in the following order:

1. Update the istio-csr deployment with the new revision.
2. Update the value of Istio.spec.version parameter/field.

Example update for RevisionBased control plane

In this example, the controlplane is being updated from v1.24.0 to 1.24.1.

1. Update the istio-csr deployment with the new revision by running the following command:

$ helm upgrade cert-manager-istio-csr jetstack/cert-manager-istio-csr \
--wait \

--reuse-values \

--set "app.istio.revisions={<old_revision>,<new_revision>}"

where:

old_revision

Specifies the old revision in the <istio-name>-v<major_version>-<minor_version>-
<patch_versions> format. For example: default-v1-24-0.

new_revision
Specifies the new revision in the <istio-name>-v<major_version>-<minor_version>-
<patch_version> format. For example: default-v1-24-1.

2. Update the istio.spec.version in the Istio object similar to the following example:

Example istio.yaml file

apiVersion: sailoperator.io/v1
kind: Istio
metadata:
name: default
spec:
version: <new_revision> ﬂ

ﬂ Update to the new revision prefixed with the letter v, such as v1.24.1

38

CHAPTER 4. OPENSHIFT SERVICE MESH AND CERT-MANAGER

. Remove the old revision from your istio-csr deployment by running the following command:

helm upgrade cert-manager-istio-csr jetstack/cert-manager-istio-csr \
--install \
--namespace cert-manager \
--wait \
--reuse-values \
--set "app.istio.revisions={default-v1-24-1}"

39

Red Hat OpenShift Service Mesh 3.0 Installing

CHAPTER 5. MULTI-CLUSTER TOPOLOGIES

Multi-Cluster topologies are useful for organizations with distributed systems or environments seeking
enhanced scalability, fault tolerance, and regional redundancy.

5.1. ABOUT MULTI-CLUSTER MESH TOPOLOGIES

In a multi-cluster mesh topology, you install and manage a single Istio mesh across multiple OpenShift
Container Platform clusters, enabling communication and service discovery between the services. Two
factors determine the multi-cluster mesh topology: control plane topology and network topology. There
are two options for each topology. Therefore, there are four possible multi-cluster mesh topology
configurations.

® Multi-Primary Single Network: Combines the multi-primary control plane topology and the
single network network topology models.

® Multi-Primary Multi-Network: Combines the multi-primary control plane topology and the multi-
network network topology models.

® Primary-Remote Single Network: Combines the primary-remote control plane topology and the
single network network topology models.

® Primary-Remote Multi-Network: Combines the primary-remote control plane topology and the
multi-network network topology models.

5.1.1. Control plane topology models

A multi-cluster mesh must use one of the following control plane topologies:

® Multi-Primary: In this configuration, a control plane resides on every cluster. Each control plane
observes the API servers in all of the other clusters for services and endpoints.

® Primary-Remote: In this configuration, the control plane resides only on one cluster, called the
primary cluster. No control plane runs on any of the other clusters, called remote clusters. The

control plane on the primary cluster discovers services and endpoints and configures the
sidecar proxies for the workloads in all clusters.

5.1.2. Network topology models

A multi-cluster mesh must use one of the following network topologies:
® Single Network: All clusters reside on the same network and there is direct connectivity between
the services in all the clusters. There is no need to use gateways for communication between the

services across cluster boundaries.

® Multi-Network: Clusters reside on different networks and there is no direct connectivity
between services. Gateways must be used to enable communication across network boundaries.

5.2. MULTI-CLUSTER CONFIGURATION OVERVIEW

To configure a multi-cluster topology you must perform the following actions:
® |nstall the OpenShift Service Mesh Operator for each cluster.

® Create or have access to root and intermediate certificates for each cluster.

40

CHAPTER 5. MULTI-CLUSTER TOPOLOGIES

® Apply the security certificates for each cluster.

® |[nstall Istio for each cluster.

5.2.1. Creating certificates for a multi-cluster topology

Create the root and intermediate certificate authority (CA) certificates for two clusters.

Prerequisites

® You have OpenSSL installed locally.

Procedure
1. Create the root CA certificate:

a. Create a key for the root certificate by running the following command:

I $ openssl genrsa -out root-key.pem 4096

b. Create an OpenSSL configuration certificate file named root-ca.conf for the root CA
certificates:

Example root certificate configuration file

encrypt_key = no

prompt = no

utf8 = yes

default_md = sha256

default_bits = 4096
reg_extensions = req_ext
x509_extensions = req_ext
distinguished_name = req_dn

[req_ext]

subjectKeyldentifier = hash
basicConstraints = critical, CA:true
keyUsage = critical, digitalSignature, nonRepudiation, keyEncipherment, keyCertSign

[req_dn]
O = Istio
CN = Root CA

c. Create the certificate signing request by running the following command:

$ openssl req -sha256 -new -key root-key.pem \
-config root-ca.conf \
-out root-cert.csr

d. Create a shared root certificate by running the following command:

$ openssl x509 -req -sha256 -days 3650 \
-signkey root-key.pem \
-extensions req_ext -extfile root-ca.conf \
-in root-cert.csr \
-out root-cert.pem

41

Red Hat OpenShift Service Mesh 3.0 Installing

2. Create the intermediate CA certificate for the East cluster:

a. Create a directory named east by running the following command:

I $ mkdir east

b. Create a key for the intermediate certificate for the East cluster by running the following
command:

I $ openssl genrsa -out east/ca-key.pem 4096

c. Create an OpenSSL configuration file named intermediate.conf in the east/ directory for
the intermediate certificate of the East cluster. Copy the following example file and save it
locally:

Example configuration file

[req]

encrypt_key = no

prompt = no

utf8 = yes

default_md = sha256

default_bits = 4096

reg_extensions = req_ext

x509_extensions = req_ext
distinguished_name = req_dn

[req_ext]

subjectKeyldentifier = hash

basicConstraints = critical, CA:true, pathlen:0
keyUsage = critical, digitalSignature, nonRepudiation, keyEncipherment, keyCertSign
subjectAltName=@san

[san]

DNS.1 = istiod.istio-system.svc

[req_dn]

O = Istio

CN = Intermediate CA

L = east

d. Create a certificate signing request by running the following command:

$ openssl req -new -config east/intermediate.conf \
-key east/ca-key.pem \
-out east/cluster-ca.csr

e. Create the intermediate CA certificate for the East cluster by running the following
command:

$ openssl x509 -req -sha256 -days 3650 \
-CA root-cert.pem \
-CAkey root-key.pem -CAcreateserial \
-extensions req_ext -extfile east/intermediate.conf \
-in east/cluster-ca.csr\
-out east/ca-cert.pem

42

CHAPTER 5. MULTI-CLUSTER TOPOLOGIES

f. Create a certificate chain from the intermediate and root CA certificate for the east cluster
by running the following command:

I $ cat east/ca-cert.pem root-cert.pem > east/cert-chain.pem && cp root-cert.pem east

3. Create the intermediate CA certificate for the West cluster:

a. Create a directory named west by running the following command:

I $ mkdir west

b. Create a key for the intermediate certificate for the West cluster by running the following
command:

I $ openssl genrsa -out west/ca-key.pem 4096

c. Create an OpenSSL configuration file named intermediate.conf in the west/ directory for
for the intermediate certificate of the West cluster. Copy the following example file and
save it locally:

Example configuration file

[req]

encrypt_key = no

prompt = no

utf8 = yes

default_md = sha256

default_bits = 4096

reg_extensions = req_ext

x509_extensions = req_ext
distinguished_name = req_dn

[req_ext]

subjectKeyldentifier = hash

basicConstraints = critical, CA:true, pathlen:0
keyUsage = critical, digitalSignature, nonRepudiation, keyEncipherment, keyCertSign
subjectAltName=@san

[san]

DNS.1 = istiod.istio-system.svc

[req_dn]

O = Istio

CN = Intermediate CA

L = west

d. Create a certificate signing request by running the following command:
$ openssl req -new -config west/intermediate.conf \

-key west/ca-key.pem \
-out west/cluster-ca.csr

e. Create the certificate by running the following command:
$ openssl x509 -req -sha256 -days 3650 \

-CA root-cert.pem \
-CAkey root-key.pem -CAcreateserial \

43

Red Hat OpenShift Service Mesh 3.0 Installing

-extensions req_ext -extfile west/intermediate.conf \
-in west/cluster-ca.csr \
-out west/ca-cert.pem

f. Create the certificate chain by running the following command:

I $ cat west/ca-cert.pem root-cert.pem > west/cert-chain.pem && cp root-cert.pem west

5.2.2. Applying certificates to a multi-cluster topology

Apply root and intermediate certificate authority (CA) certificates to the clusters in a multi-cluster
topology.

NOTE

In this procedure, CLUSTER1 is the East cluster and CLUSTERZ2 is the West cluster.

Prerequisites

® You have access to two OpenShift Container Platform clusters with external load balancer
support.

® You have created the root CA certificate and intermediate CA certificates for each cluster or
someone has made them available for you.

Procedure
1. Apply the certificates to the East cluster of the multi-cluster topology:

a. Login to East cluster by running the following command:

I $ oc login -u https://<east_cluster_api_server_url>

b. Set up the environment variable that contains the oc command context for the East cluster
by running the following command:

I $ export CTX_CLUSTER1=$(oc config current-context)

c. Create a project called istio-system by running the following command:

$ oc get project istio-system --context "${CTX_CLUSTERT1}" || oc new-project istio-
system --context "${CTX_CLUSTER1}"

d. Configure Istio to use network1 as the default network for the pods on the East cluster by
running the following command:

$ oc --context "${CTX_CLUSTER1}" label namespace istio-system
topology.istio.io/network=network1

e. Create the CA certificates, certificate chain, and the private key for Istio on the East cluster
by running the following command:

I $ oc get secret -n istio-system --context "${CTX_CLUSTERT1}" cacerts || oc create secret

44

CHAPTER 5. MULTI-CLUSTER TOPOLOGIES

generic cacerts -n istio-system --context "${CTX_CLUSTER1}"\
--from-file=east/ca-cert.pem \
--from-file=east/ca-key.pem \
--from-file=east/root-cert.pem \
--from-file=east/cert-chain.pem

NOTE

If you followed the instructions in "Creating certificates for a multi-cluster
mesh", your certificates will reside in the east/ directory. If your certificates
reside in a different directory, modify the syntax accordingly.

2. Apply the certificates to the West cluster of the multi-cluster topology:

a. Login to the West cluster by running the following command:

I $ oc login -u https://<west_cluster_api_server_url>

b. Set up the environment variable that contains the oc command context for the West
cluster by running the following command:

I $ export CTX_CLUSTER2=$(oc config current-context)

c. Create a project called istio-system by running the following command:

$ oc get project istio-system --context "${CTX_CLUSTER2}" || oc new-project istio-
system --context "${CTX_CLUSTER2}"

d. Configure Istio to use network2 as the default network for the pods on the West cluster by
running the following command:

$ oc --context "${CTX_CLUSTER2}" label namespace istio-system
topology.istio.io/network=network2

e. Create the CA certificate secret for Istio on the West cluster by running the following
command:

$ oc get secret -n istio-system --context "${CTX_CLUSTER2}" cacerts || oc create secret
generic cacerts -n istio-system --context "${CTX_CLUSTER2}" \
--from-file=west/ca-cert.pem \
--from-file=west/ca-key.pem \
--from-file=west/root-cert.pem \
--from-file=west/cert-chain.pem

NOTE

If you followed the instructions in "Creating certificates for a multi-cluster
mesh", your certificates will reside in the west/ directory. If the certificates
reside in a different directory, modify the syntax accordingly.

Next steps

45

Red Hat OpenShift Service Mesh 3.0 Installing

Install Istio on all the clusters comprising the mesh topology.

5.3.INSTALLING A MULTI-PRIMARY MULTI-NETWORK MESH

Install Istio in the multi-primary multi-network topology on two OpenShift Container Platform clusters.

NOTE

In this procedure, CLUSTERT1 is the East cluster and CLUSTERZ2 is the West cluster.
You can adapt these instructions for a mesh spanning more than two clusters.

Prerequisites

® You have installed the OpenShift Service Mesh 3 Operator on all of the clusters that comprise
the mesh.

® You have completed "Creating certificates for a multi-cluster mesh".
® You have completed "Applying certificates to a multi-cluster topology".
® You have created an Istio Container Network Interface (CNI) resource.

® You have istioctl installed on the laptop you can use to run these instructions.

Procedure

1. Create an ISTIO_VERSION environment variable that defines the Istio version to install by
running the following command:

I $ export ISTIO_VERSION=1.24.3

2. Install Istio on the East cluster:

a. Create anIstio resource on the East cluster by running the following command:

$ cat <<EOF | oc --context "${CTX_CLUSTER1}" apply -f -
apiVersion: sailoperator.io/v1
kind: Istio
metadata:
name: default
spec:
version: v${ISTIO_VERSION}
namespace: istio-system
values:
global:
meshlID: mesh1
multiCluster:
clusterName: cluster
network: network1
EOF

b. Wait for the control plane to return the Ready status condition by running the following
command:

46

CHAPTER 5. MULTI-CLUSTER TOPOLOGIES

$ oc --context "${CTX_CLUSTER1}" wait --for condition=Ready istio/default --
timeout=3m

c. Create an East-West gateway on the East cluster by running the following command:

$ oc --context "${CTX_CLUSTER1}" apply -f https://raw.githubusercontent.com/istio-
ecosystem/sail-operator/main/docs/deployment-models/resources/east-west-gateway-
net1.yaml

d. Expose the services through the gateway by running the following command:

$ oc --context "${CTX_CLUSTER1}" apply -n istio-system -f
https://raw.githubusercontent.com/istio-ecosystem/sail-operator/main/docs/deployment-
models/resources/expose-services.yaml

3. Install Istio on the West cluster:

a. Create anIstio resource on the West cluster by running the following command:

$ cat <<EOF | oc --context "${CTX_CLUSTER2}" apply -f -
apiVersion: sailoperator.io/v1
kind: Istio
metadata:
name: default
spec:
version: v${ISTIO_VERSION}
namespace: istio-system
values:
global:
meshlID: mesh1
multiCluster:
clusterName: cluster2
network: network2
EOF

b. Wait for the control plane to return the Ready status condition by running the following
command:

$ oc --context "${CTX_CLUSTER2}" wait --for condition=Ready istio/default --
timeout=3m

c. Create an East-West gateway on the West cluster by running the following command:

$ oc --context "${CTX_CLUSTER2}" apply -f https://raw.githubusercontent.com/istio-
ecosystem/sail-operator/main/docs/deployment-models/resources/east-west-gateway-
net2.yaml

d. Expose the services through the gateway by running the following command:
$ oc --context "${CTX_CLUSTER2}" apply -n istio-system -f

https://raw.githubusercontent.com/istio-ecosystem/sail-operator/main/docs/deployment-
models/resources/expose-services.yaml

47

Red Hat OpenShift Service Mesh 3.0 Installing

4. Create the istio-reader-service-account service account for the East cluster by running the
following command:

$ oc --context="${CTX_CLUSTER1}" create serviceaccount istio-reader-service-account -n
istio-system

5. Create the istio-reader-service-account service account for the West cluster by running the
following command:

$ oc --context="${CTX_CLUSTER2}" create serviceaccount istio-reader-service-account -n
istio-system

6. Add the cluster-reader role to the East cluster by running the following command:

$ oc --context="${CTX_CLUSTER1}" adm policy add-cluster-role-to-user cluster-reader -z
istio-reader-service-account -n istio-system

7. Add the cluster-reader role to the West cluster by running the following command:

$ oc --context="${CTX_CLUSTER2}" adm policy add-cluster-role-to-user cluster-reader -z
istio-reader-service-account -n istio-system

8. Install a remote secret on the East cluster that provides access to the APl server on the West
cluster by running the following command:

$ istioctl create-remote-secret \
--context="${CTX_CLUSTER2}" \
--name=cluster2 \
--create-service-account=false | \
oc --context="${CTX_CLUSTER1}" apply -f -

9. Install a remote secret on the West cluster that provides access to the API server on the East
cluster by running the following command:

$ istioctl create-remote-secret \
--context="${CTX_CLUSTER1}"\
--name=cluster1 \
--create-service-account=false | \
oc --context="${CTX_CLUSTER2}" apply -f -

5.3.1. Verifying a multi-cluster topology

Deploy sample applications and verify traffic on a multi-cluster topology on two OpenShift Container
Platform clusters.

NOTE

In this procedure, CLUSTER1 is the East cluster and CLUSTERZ2 is the West cluster.

Prerequisites

48

CHAPTER 5. MULTI-CLUSTER TOPOLOGIES

® You have installed the OpenShift Service Mesh Operator on all of the clusters that comprise the
mesh.

® You have completed "Creating certificates for a multi-cluster mesh".

® You have completed "Applying certificates to a multi-cluster topology".

® You have created an Istio Container Network Interface (CNI) resource.

® You have istioctl installed on the laptop you will use to run these instructions.

® You have installed a multi-cluster topology.

Procedure
1. Deploy sample applications on the East cluster:

a. Create a sample application namespace on the East cluster by running the following
command:

$ oc --context "${CTX_CLUSTER1}" get project sample || oc --
context="${CTX_CLUSTER1}" new-project sample

b. Label the application namespace to support sidecar injection by running the following
command:

I $ oc --context="${CTX_CLUSTER1}" label namespace sample istio-injection=enabled

c. Deploy the helloworld application:

i. Create the helloworld service by running the following command:

$ oc --context="${CTX_CLUSTER1}" apply \

-f hitps://raw.githubusercontent.com/openshift-service-mesh/istio/release-
1.24/samples/helloworld/helloworld.yaml \

-| service=helloworld -n sample

ii. Create the helloworld-v1 deployment by running the following command:

$ oc --context="${CTX_CLUSTER1}" apply \

-f hitps://raw.githubusercontent.com/openshift-service-mesh/istio/release-
1.24/samples/helloworld/helloworld.yaml \

-l version=v1 -n sample

d. Deploy the sleep application by running the following command:
$ oc --context="${CTX_CLUSTER1}" apply \

-f hitps://raw.githubusercontent.com/openshift-service-mesh/istio/release-
1.24/samples/sleep/sleep.yaml -n sample

e. Wait for the helloworld application on the East cluster to return the Ready status condition
by running the following command:

49

Red Hat OpenShift Service Mesh 3.0 Installing

deployment/helloworld-v1

I $ oc --context="${CTX_CLUSTER1}" wait --for condition=available -n sample

f. Wait for the sleep application on the East cluster to return the Ready status condition by

running the following command:

$ oc --context="${CTX_CLUSTER1}" wait --for condition=available -n sample
deployment/sleep

2. Deploy the sample applications on the West cluster:

a.

50

Create a sample application namespace on the West cluster by running the following
command:

$ oc --context "${CTX_CLUSTER2}" get project sample || oc --
context="${CTX_CLUSTER2}" new-project sample

Label the application namespace to support sidecar injection by running the following
command:

I $ oc --context="${CTX_CLUSTER2}" label namespace sample istio-injection=enabled

Deploy the helloworld application:

i. Create the helloworld service by running the following command:

$ oc --context="${CTX_CLUSTER2}" apply \

-f hitps://raw.githubusercontent.com/openshift-service-mesh/istio/release-
1.24/samples/helloworld/helloworld.yaml \

-I service=helloworld -n sample

ii. Create the helloworld-v2 deployment by running the following command:

$ oc --context="${CTX_CLUSTER2}" apply \

-f https://raw.githubusercontent.com/openshift-service-mesh/istio/release-
1.24/samples/helloworld/helloworld.yaml \

-l version=v2 -n sample

Deploy the sleep application by running the following command:

$ oc --context="${CTX_CLUSTER2}" apply \
-f hitps://raw.githubusercontent.com/openshift-service-mesh/istio/release-
1.24/samples/sleep/sleep.yaml -n sample

Wait for the helloworld application on the West cluster to return the Ready status
condition by running the following command:

$ oc --context="${CTX_CLUSTER2}" wait --for condition=available -n sample
deployment/helloworld-v2

Wait for the sleep application on the West cluster to return the Ready status condition by
running the following command:

CHAPTER 5. MULTI-CLUSTER TOPOLOGIES

$ oc --context="${CTX_CLUSTER2}" wait --for condition=available -n sample
deployment/sleep

Verifying traffic flows between clusters

1. For the East cluster, send 10 requests to the helloworld service by running the following
command:

$ foriin {0..9}; do\

oc --context="${CTX_CLUSTER1}" exec -n sample deploy/sleep -c sleep -- curl -sS
helloworld.sample:5000/hello; \
done

Verify that you see responses from both clusters. This means version 1and version 2 of the
service can be seen in the responses.

2. For the West cluster, send 10 requests to the helloworld service:

$ foriin {0..9}; do\

oc --context="${CTX_CLUSTER2}" exec -n sample deploy/sleep -c sleep -- curl -sS
helloworld.sample:5000/hello; \
done

Verify that you see responses from both clusters. This means version 1and version 2 of the
service can be seen in the responses.

5.3.2. Removing a multi-cluster topology from a development environment

After experimenting with the multi-cluster functionality in a development environment, remove the
multi-cluster topology from all the clusters.

NOTE

In this procedure, CLUSTER1 is the East cluster and CLUSTERZ2 is the West cluster.

Prerequisites

® You have installed a multi-cluster topology.

Procedure

1. Remove Istio and the sample applications from the East cluster of the development
environment by running the following command:

I $ oc --context="${CTX_CLUSTER1}" delete istio/default ns/istio-system ns/sample ns/istio-
cni

2. Remove Istio and the sample applications from the West cluster of development environment
by running the following command:

I $ oc --context="${CTX_CLUSTER2}" delete istio/default ns/istio-system ns/sample ns/istio-
cni

51

Red Hat OpenShift Service Mesh 3.0 Installing

5.4.INSTALLING A PRIMARY-REMOTE MULTI-NETWORK MESH

Install Istio in a primary-remote multi-network topology on two OpenShift Container Platform clusters.

NOTE
In this procedure, CLUSTERT1 is the East cluster and CLUSTERZ2 is the West cluster. The
East cluster is the primary cluster and the West cluster is the remote cluster.

You can adapt these instructions for a mesh spanning more than two clusters.

Prerequisites

® You have installed the OpenShift Service Mesh 3 Operator on all of the clusters that comprise
the mesh.

® You have completed "Creating certificates for a multi-cluster mesh".
® You have completed "Applying certificates to a multi-cluster topology".
® You have created an Istio Container Network Interface (CNI) resource.

® You have istioctl installed on the laptop you will use to run these instructions.

Procedure

1. Create an ISTIO_VERSION environment variable that defines the Istio version to install by
running the following command:

I $ export ISTIO_VERSION=1.24.3

2. Install Istio on the East cluster:

a. Set the default network for the East cluster by running the following command:

$ oc --context="${CTX_CLUSTER1}" label namespace istio-system
topology.istio.io/network=network1

b. Create an Istio resource on the East cluster by running the following command:

$ cat <<EOF | oc --context "${CTX_CLUSTER1}" apply -f -
apiVersion: sailoperator.io/v1
kind: Istio
metadata:
name: default
spec:
version: v${ISTIO_VERSION}
namespace: istio-system
values:
global:
meshlID: mesh1
multiCluster:
clusterName: cluster1

52

CHAPTER 5. MULTI-CLUSTER TOPOLOGIES

network: network1

externallstiod: true ﬂ
EOF

This enables the control plane installed on the East cluster to serve as an external
control plane for other remote clusters.

c. Wait for the control plane to return the "Ready" status condition by running the following
command:

$ oc --context "${CTX_CLUSTER1}" wait --for condition=Ready istio/default --
timeout=3m

d. Create an East-West gateway on the East cluster by running the following command:

$ oc --context "${CTX_CLUSTER1}" apply -f https://raw.githubusercontent.com/istio-
ecosystem/sail-operator/main/docs/deployment-models/resources/east-west-gateway-
netl.yaml

e. Expose the control plane through the gateway so that services in the West cluster can
access the control plane by running the following command:

$ oc --context "${CTX_CLUSTER1}" apply -n istio-system -f
https://raw.githubusercontent.com/istio-ecosystem/sail-operator/main/docs/deployment-
models/resources/expose-istiod.yaml

f. Expose the application services through the gateway by running the following command:

$ oc --context "${CTX_CLUSTER1}" apply -n istio-system -f
https://raw.githubusercontent.com/istio-ecosystem/sail-operator/main/docs/deployment-
models/resources/expose-services.yaml

3. Install Istio on the West cluster:

a. Save the IP address of the East-West gateway running in the East cluster by running the
following command:

$ export DISCOVERY_ADDRESS=$(oc --context="${CTX_CLUSTER1}" \
-n istio-system get svc istio-eastwestgateway \
-0 jsonpath='{.status.loadBalancer.ingress[0].ip}')

b. Create an Istio resource on the West cluster by running the following command:

$ cat <<EOF | oc --context "${CTX_CLUSTER2}" apply -f -
apiVersion: sailoperator.io/v1
kind: Istio
metadata:
name: default
spec:
version: v${ISTIO_VERSION}
namespace: istio-system
profile: remote
values:

53

Red Hat OpenShift Service Mesh 3.0 Installing

istiodRemote:
injectionPath: /inject/cluster/cluster2/net/network2
global:
remotePilotAddress: ${DISCOVERY_ADDRESS}
EOF

c. Annotate the istio-system namespace in the West cluster so that it is managed by the
control plane in the East cluster by running the following command:

$ oc --context="${CTX_CLUSTER2}" annotate namespace istio-system
topology.istio.io/controlPlaneClusters=cluster1

d. Set the default network for the West cluster by running the following command:

$ oc --context="${CTX_CLUSTER2}" label namespace istio-system
topology.istio.io/network=network2

e. Install a remote secret on the East cluster that provides access to the APl server on the
West cluster by running the following command:

$ istioctl create-remote-secret \
--context="${CTX_CLUSTER2}"\

--name=cluster2 |\
oc --context="${CTX_CLUSTER1}" apply -f -

f. Wait for the Istio resource to return the "Ready" status condition by running the following
command:

$ oc --context "${CTX_CLUSTER2}" wait --for condition=Ready istio/default --
timeout=3m

g. Create an East-West gateway on the West cluster by running the following command:
$ oc --context "${CTX_CLUSTER2}" apply -f https://raw.githubusercontent.com/istio-

ecosystem/sail-operator/main/docs/deployment-models/resources/east-west-gateway-
net2.yaml

NOTE

Since the West cluster is installed with a remote profile, exposing the
application services on the East cluster exposes them on the East-West
gateways of both clusters.

S5.5.INSTALLING KIALI'IN A MULTI-CLUSTER MESH

Install Kiali in a multi-cluster mesh configuration on two OpenShift Container Platform clusters.

NOTE

In this procedure, CLUSTER1 is the East cluster and CLUSTERZ2 is the West cluster.

You can adapt these instructions for a mesh spanning more than two clusters.

54

CHAPTER 5. MULTI-CLUSTER TOPOLOGIES

Prerequisites

® You have installed the latest Kiali Operator on each cluster.
® |stio installed in a multi-cluster configuration on each cluster.
® You haveistioctl installed on the laptop you can use to run these instructions.

® You are logged in to the OpenShift Container Platform web console as a user with the cluster-
admin role.

® You have configured a metrics store so that Kiali can query metrics from all the clusters. Kiali
queries metrics and traces from their respective endpoints.

Procedure
1. Install Kiali on the East cluster:

a. Create a YAML file named kiali.yaml that creates a namespace for the Kiali deployment.

Example configuration

apiVersion: kiali.io/vialphat
kind: Kial
metadata:
name: kiali
namespace: istio-system
spec:
version: default
external_services:
prometheus:
auth:
type: bearer
use_kiali_token: true
thanos_proxy:
enabled: true
url: https://thanos-querier.openshift-monitoring.svc.cluster.local:9091

NOTE

The endpoint for this example uses OpenShift Monitoring to configure
metrics. For more information, see "Configuring OpenShift Monitoring with
Kiali".

b. Apply the YAML file on the East cluster by running the following command:

I $ oc --context cluster1 apply -f kiali.yam|

Example output

I kiali-istio-system.apps.example.com

2. Ensure that the Kiali custom resource (CR) is ready by running the following command:

55

Red Hat OpenShift Service Mesh 3.0 Installing

$ oc wait --context cluster1 --for=condition=Successful kialis/kiali -n istio-system --
timeout=3m

Example output

I kiali.kiali.io/kiali condition met

3. Display your Kiali Route hostname.

I $ oc --context cluster1 get route kiali -n istio-system -o jsonpath='{.spec.host}'

4. Create aKiali CR on the West cluster.

Example configuration

apiVersion: kiali.io/vialphat
kind: Kiali
metadata:
name: kiali
namespace: istio-system
spec:
version: default
auth:
openshift:
redirect_uris:
Replace kiali-route-hostname with the hostname from the previous step.
- "https://{kiali-route-hostname}/api/auth/callback/cluster2"
deployment:
remote_cluster_resources_only: true

The Kiali Operator creates the resources necessary for the Kiali server on the East cluster to
connect to the West cluster. The Kiali server is not installed on the West cluster.

5. Apply the YAML file on the West cluster by running the following command:

I $ oc --context cluster2 apply -f kiali-remote.yami

6. Ensure that the Kiali CR is ready by running the following command:

$ oc wait --context cluster2 --for=condition=Successful kialis/kiali -n istio-system --
timeout=3m

7. Create aremote cluster secret so that Kiali installation in the East cluster can access the West
cluster.

a. Create along lived API token bound to the kiali-service-account in the West cluster. Kiali
uses this token to authenticate to the West cluster.

Example configuration
apiVersion: vi

kind: Secret
metadata:

56

CHAPTER 5. MULTI-CLUSTER TOPOLOGIES

name: "kiali-service-account”
namespace: "istio-system"
annotations:
kubernetes.io/service-account.name: "kiali-service-account"
type: kubernetes.io/service-account-token

b. Apply the YAML file on the West cluster by running the following command:

I $ oc --context cluster2 apply -f kiali-svc-account-token.yami

c. Create a kubeconfig file and save it as a secret in the namespace on the East cluster where
the Kiali deployment resides.
To simplify this process, use the kiali-prepare-remote-cluster.sh script to generate the
kubeconfig file by running the following curl command:

$ curl -L -o kiali-prepare-remote-cluster.sh
https://raw.githubusercontent.com/kiali/kiali/master/hack/istio/multicluster/kiali-prepare-
remote-cluster.sh

d. Modify the script to make it executeable by running the following command:

I chmod +x kiali-prepare-remote-cluster.sh

e. Execute the script so that it passes the East and West cluster contexts to the kubeconfig
file by running the following command:

$./kiali-prepare-remote-cluster.sh --kiali-cluster-context cluster1 --remote-cluster-context
cluster2 --view-only false --kiali-resource-name kiali-service-account --remote-cluster-

namespace istio-system --process-kiali-secret true --process-remote-resources false --
remote-cluster-name cluster2

NOTE

Use the --help option to display additional details about how to use the
script.

8. Trigger the reconciliation loop so that the Kiali Operator registers the remote secret that the CR
contains by running the following command:

$ oc --context cluster1 annotate kiali kiali -n istio-system --overwrite
kiali.io/reconcile="$(date)"

9. Wait for Kiali resource to become ready by running the following command:

I oc --context cluster1 wait --for=condition=Successful --timeout=2m kialis/kiali -n istio-system

10. Wait for Kiali server to become ready by running the following command:

I oc --context clusteri rollout status deployments/kiali -n istio-system

1. Login to Kiali.

57

Red Hat OpenShift Service Mesh 3.0 Installing

a. When you first access Kiali, log in to the cluster that contains the Kiali deployment. In this
example, access the East cluster.

b. Display the hostname of the Kiali route by running the following command:

I oc --context cluster1 get route kiali -n istio-system -o jsonpath='{.spec.host}'

c. Navigate to the Kiali URL in your browser: https://<your-kiali-route-hostname>.

12. Login to the West cluster through Kiali.

In order to see other clusters in the Kiali Ul, you must first login as a user to those clusters
through Kiali.

a. Click on the user profile dropdown in the top right hand menu.

b. Select Login to West You are redirected to an OpenShift login page and prompted for
credentials for the West cluster.

13. Verify that Kiali shows information from both clusters.

a. Click Overview and verify that you can see namespaces from both clusters.

b. Click Navigate and verify that you see both clusters on the mesh graph.

Additional resources

® Using Kiali Operator provided by Red Hat

Next steps

® \Verifying a multi-cluster topology

® Removing a multi-cluster topology from a development environment

58

https:
https://docs.redhat.com/en/documentation/red_hat_openshift_service_mesh/3.0/html-single/observability/#ossm-kiali

CHAPTER 6. DEPLOYING MULTIPLE SERVICE MESHES ON A SINGLE CLUSTER

CHAPTER 6. DEPLOYING MULTIPLE SERVICE MESHES ON A
SINGLE CLUSTER

You can use the Red Hat OpenShift Service Mesh to operate multiple service meshes in a single cluster,
with each mesh managed by a separate control plane. Using discovery selectors and revisions prevents
conflicts between control planes.

6.1. PREREQUISITES
® You have installed the OpenShift Service Mesh operator.

® You have created an Istio Container Network Interface (CNI) resource.

NOTE

You can run the following command to check for existing Istio instances:

I $ oc get istios

-

® You have installed the istioctl binary on your localhost.

6.2. ABOUT DEPLOYING MULTIPLE CONTROL PLANES

To configure a cluster to host two control planes, set up separate Istio resources with unique names in
independent Istio system namespaces. Assign a unique revision name to each Istio resource to identify
the control planes, workloads, or namespaces it manages. Apply these revision names using injection or
istio.io/rev labels to specify which control plane injects the sidecar proxy into application pods.

Each Istio resource must also configure discovery selectors to specify which namespaces the Istio
control plane observes. Only namespaces with labels that match the configured discovery selectors can
join the mesh. Additionally, discovery selectors determine which control plane creates the istio-ca-root-
cert config map in each namespace, which is used to encrypt traffic between services with mutual TLS
within each mesh.

When adding an additional Istio control plane to a cluster with an existing control plane, ensure that the
existing Istio instance has discovery selectors configured to avoid overlapping with the new control
plane.

NOTE

Only one IstioCNI resource is shared by all control planes in a cluster, and you must
update this resource independent of other cluster resources.

-

6.3. USING MULTIPLE CONTROL PLANES ON ASINGLE CLUSTER

You can use discovery selectors to limit the visibility of an Istio control plane to specific namespaces in a
cluster. By combining discovery selectors with control plane revisions, you can deploy multiple control
planes in a single cluster, ensuring that each control plane manages only its assigned namespaces. This
approach avoids conflicts between control planes and enables soft multi-tenancy for service meshes.

6.4. DEPLOYING MULTIPLE CONTROL PLANES

59

Red Hat OpenShift Service Mesh 3.0 Installing

You can have extended support for more than two control planes. The maximum number of service
meshes in a single cluster depends on the available cluster resources.

6.4.1. Deploying the first control plane

You deploy the first control plane by creating its assigned namespace.

Procedure

60

1. Create the namespace for the first Istio control plane called istio-system-1 by running the

following command:

I $ oc new-project istio-system-1

2. Add the following label to the first namespace, which is used with the Istio discoverySelectors

field by running the following command:

I $ oc label namespace istio-system-1 istio-discovery=mesh-1

. Create a YAML file named istio-1.yaml with the name mesh-1 and the discoverySelector as

mesh-1:

Example configuration

kind: Istio
apiVersion: sailoperator.io/v1
metadata:

name: mesh-1
spec:

namespace: istio-system-1

values:

meshConfig:
discoverySelectors:
- matchLabels:
istio-discovery: mesh-1

#...

. Create the first Istio resource by running the following command:

I $ oc apply -f istio-1.yaml

. To restrict workloads in mesh-1 from communicating freely with decrypted traffic between

meshes, deploy a PeerAuthentication resource to enforce mutual TLS (mTLS) traffic within
the mesh-1 data plane. Apply the PeerAuthentication resource in the istio-system-1
namespace by using a configuration file, such as peer-auth-1.yaml:

I $ oc apply -f peer-auth-1.yaml
Example configuration

apiVersion: security.istio.io/v1
kind: PeerAuthentication

CHAPTER 6. DEPLOYING MULTIPLE SERVICE MESHES ON A SINGLE CLUSTER

metadata:
name: "mesh-1-peerauth”
namespace: "istio-system-1"
spec:
mtls:
mode: STRICT

6.4.2. Deploying the second control plane

After deploying the first control plane, you can deploy the second control plane by creating its assigned
namespace.

Procedure

1. Create a namespace for the second Istio control plane called istio-system-2 by running the
following command:

I $ oc new-project istio-system-2

2. Add the following label to the second namespace, which is used with the Istio
discoverySelectors field by running the following command:

I $ oc label namespace istio-system-2 istio-discovery=mesh-2

3. Create a YAML file named istio-2.yaml:

Example configuration

kind: Istio
apiVersion: sailoperator.io/v1
metadata:

name: mesh-2
spec:

namespace: istio-system-2

values:

meshConfig:
discoverySelectors:
- matchLabels:
istio-discovery: mesh-2

#...

4. Create the second Istio resource by running the following command:
I $ oc apply -f istio-2.yaml

5. Deploy a policy for workloads in the istio-system-2 namespace to only accept mutual TLS
traffic peer-auth-2.yaml by running the following command:

I $ oc apply -f peer-auth-2.yaml

Example configuration

61

Red Hat OpenShift Service Mesh 3.0 Installing

apiVersion: security.istio.io/v1
kind: PeerAuthentication
metadata:

name: "mesh-2-peerauth”

namespace: "istio-system-2"
spec:

mtls:

mode: STRICT

6.4.3. Verifying multiple control planes

Verify that both of the Istio control planes are deployed and running properly. You can validate that the
istiod pod is successfully running in each Istio system namespace.

1. Verify that the workloads are assigned to the control plane in istio-system-1 by running the
following command:

I $ oc get pods -n istio-system-1
Example output

NAME READY STATUS RESTARTS AGE
istiod-mesh-1-b69646b6f-kxrwk 1/1 Running 0 4mi4s

2. Verify that the workloads are assigned to the control plane in istio-system-2 by running the
following command:

I $ oc get pods -n istio-system-2
Example output

NAME READY STATUS RESTARTS AGE
istiod-mesh-2-8666fdfc6-mgp45 1/1 Running 0 118s

6.5. DEPLOY APPLICATION WORKLOADS IN EACH MESH

To deploy application workloads, assign each workload to a separate namespace.

Procedure

1. Create an application namespace called app-ns-1 by running the following command:

I $ oc create namespace app-ns-1

2. To ensure that the namespace is discovered by the first control plane, add the istio-
discovery=mesh-1 label by running the following command:

I $ oc label namespace app-ns-1 istio-discovery=mesh-1

62

CHAPTER 6. DEPLOYING MULTIPLE SERVICE MESHES ON A SINGLE CLUSTER

To enable sidecar injection into all the pods by default while ensuring that pods in this
namespace are mapped to the first control plane, add the istio.io/rev=mesh-1 label to the
namespace by running the following command:

I $ oc label namespace app-ns-1 istio.io/rev=mesh-1

Optional: You can verify the mesh-1 revision name by running the following command:

I $ oc get istiorevisions

Deploy the sleep and httpbin applications by running the following command:
$ oc apply -n app-ns-1\
-f https://raw.githubusercontent.com/openshift-service-mesh/istio/release-
1.24/samples/sleep/sleep.yaml \

-f https://raw.githubusercontent.com/openshift-service-mesh/istio/release-
1.24/samples/httpbin/httpbin.yaml

Wait for the httpbin and sleep pods to run with sidecars injected by running the following
command:

I $ oc get pods -n app-ns-1
Example output

NAME READY STATUS RESTARTS AGE
httpbin-7f56dc944b-kpw2x 2/2 Running 0 2m26s
sleep-5577c64d7c-b5wd2 2/2 Running 0 91m

Create a second application namespace called app-ns-2 by running the following command:
I $ oc create namespace app-ns-2

Create a third application namespace called app-ns-3 by running the following command:

I $ oc create namespace app-ns-3

Add the label istio-discovery=mesh-2 to both namespaces and the revision label mesh-2 to
match the discovery selector of the second control plane by running the following command:

I $ oc label namespace app-ns-2 app-ns-3 istio-discovery=mesh-2 istio.io/rev=mesh-2

. Deploy the sleep and httpbin applications to the app-ns-2 namespace by running the following

command:

$ oc apply -n app-ns-2 \

-f https://raw.githubusercontent.com/openshift-service-mesh/istio/release-
1.24/samples/sleep/sleep.yaml \

-f https://raw.githubusercontent.com/openshift-service-mesh/istio/release-
1.24/samples/httpbin/httpbin.yaml

63

Red Hat OpenShift Service Mesh 3.0 Installing

11. Deploy the sleep and httpbin applications to the app-ns-3 namespace by running the following
command:

$ oc apply -n app-ns-3 \

-f https://raw.githubusercontent.com/openshift-service-mesh/istio/release-
1.24/samples/sleep/sleep.yaml \

-f https://raw.githubusercontent.com/openshift-service-mesh/istio/release-
1.24/samples/httpbin/httpbin.yaml

12. Optional: Use the following command to wait for a deployment to be available:

I $ oc wait deployments -n app-ns-2 --all --for condition=Available

Verification

1. Verify that each application workload is managed by its assigned control plane by using the
istioctl ps command after deploying the applications:

a. Verify that the workloads are assigned to the control plane in istio-system-1 by running the
following command:

I $ istioctl ps -i istio-system-1

Example output

NAME CLUSTER CDS LDS EDS RDS
ECDS ISTIOD VERSION

httpbin-7f56dc944b-vwfm5.app-ns-1 Kubernetes SYNCED (11m) SYNCED (11m)
SYNCED (11m) SYNCED (11m) IGNORED istiod-mesh-1-b69646b6f-kxrwk
1.23.0

sleep-5577c64d7c-d675f.app-ns-1 Kubernetes SYNCED (11m) SYNCED (11m)
SYNCED (11m) SYNCED (11m) IGNORED istiod-mesh-1-b69646b6f-kxrwk
1.23.0

b. Verify that the workloads are assigned to the control plane in istio-system-2 by running the
following command:

I $ istioctl ps -i istio-system-2

Example output

NAME CLUSTER CDS LDS EDS
RDS ECDS ISTIOD VERSION
httpbin-7f56dc944b-54gjs.app-ns-3 Kubernetes SYNCED (3m59s) SYNCED
(3m59s) SYNCED (3m59s) SYNCED (3m59s) IGNORED istiod-mesh-2-
8666fdfc6-mgp45 1.23.0

httpbin-7f56dc944b-gnh72.app-ns-2 Kubernetes SYNCED (4m1s) SYNCED
(4m1s) SYNCED (83m59s) SYNCED (4m1s) IGNORED istiod-mesh-2-
8666fdfc6-mgp45 1.23.0

sleep-5577c64d7c-k9mxz.app-ns-2 Kubernetes SYNCED (4m1s) SYNCED
(4m1s) SYNCED (83m59s) SYNCED (4m1s) IGNORED istiod-mesh-2-
8666fdfc6-mgp45 1.23.0

64

CHAPTER 6. DEPLOYING MULTIPLE SERVICE MESHES ON A SINGLE CLUSTER

sleep-5577c64d7c-m9hvm.app-ns-3 Kubernetes SYNCED (4m1s) SYNCED
(4m1s) SYNCED (8m59s) SYNCED (4m1s) IGNORED istiod-mesh-2-
8666fdfc6-mqp45 1.23.0

2. Verify that the application connectivity is restricted to workloads within their respective mesh:

a. Send a request from the sleep pod in app-ns-1 to the httpbin service in app-ns-2 to check
that the communication fails by running the following command:

$ oc -n app-ns-1 exec deploy/sleep -c sleep -- curl -slL http://httpbin.app-ns-
I 2.svc.cluster.local:8000

The PeerAuthentication resources created earlier enforce mutual TLS (mTLS) traffic in
STRICT mode within each mesh. Each mesh uses its own root certificate, managed by the
istio-ca-root-cert config map, which prevents communication between meshes. The output
indicates a communication failure, similar to the following example:

Example output

HTTP/1.1 503 Service Unavailable
content-length: 95

content-type: text/plain

date: Wed, 16 Oct 2024 12:05:37 GMT
server: envoy

b. Confirm that the communication works by sending a request from the sleep pod to the
httpbin service that are present in the app-ns-2 namespace which is managed by mesh-2.
Run the following command:

$ oc -n app-ns-2 exec deploy/sleep -c sleep -- curl -slL http://httpbin.app-ns-
3.svc.cluster.local:8000

Example output

HTTP/1.1 200 OK

access-control-allow-credentials: true

access-control-allow-origin: *

content-security-policy: default-src 'self'; style-src 'self' 'unsafe-inline'; img-src 'self'
camo.githubusercontent.com

content-type: text/html; charset=utf-8

date: Wed, 16 Oct 2024 12:06:30 GMT

X-envoy-upstream-service-time: 8

server: envoy

transfer-encoding: chunked

6.6. ADDITIONAL RESOURCES

® Scoping Service Mesh with discoverySelectors

65

Red Hat OpenShift Service Mesh 3.0 Installing

CHAPTER 7. EXTERNAL CONTROL PLANE TOPOLOGY

Use the external control plane topology to isolate the control plane from the data plane on separate
clusters.

7.1. ABOUT EXTERNAL CONTROL PLANE TOPOLOGY

The external control plane topology improves security and allows the Service Mesh to be hosted as a
service. In this installation configuration one cluster hosts and manages the Istio control plane, and
applications are hosted on other clusters.

7.1.1. Installing the control plane and data plane on separate clusters

Install Istio on a control plane cluster and a separate data plane cluster. This installation approach
provides increased security.

NOTE
You can adapt these instructions for a mesh spanning more than one data plane cluster.

You can also adapt these instructions for multiple meshes with multiple control planes on
the same control plane cluster.

Prerequisites

® You have installed the OpenShift Service Mesh Operator on the control plane cluster and the
data plane cluster.

® You have istioctl installed on the laptop you will use to run these instructions.

Procedure

1. Create an ISTIO_VERSION environment variable that defines the Istio version to install on all
the clusters by running the following command:

I $ export ISTIO_VERSION=1.24.3

2. Create a REMOTE_CLUSTER_NAME environment variable that defines the name of the
cluster by running the following command:

I $ export REMOTE_CLUSTER_NAME-=cluster1

3. Set up the environment variable that contains the oc command context for the control plane
cluster by running the following command:

$ export CTX_CONTROL_PLANE_CLUSTER=
<context_name_of_the_control_plane_cluster>

4. Set up the environment variable that contains the oc command context for the data plane
cluster by running the following command:

I $ export CTX_DATA_PLANE_CLUSTER=<context_name_of the_data_plane_cluster>

66

CHAPTER 7. EXTERNAL CONTROL PLANE TOPOLOGY

5. Set up the ingress gateway for the control plane:

a. Create a project called istio-system by running the following command:

$ oc get project istio-system --context "${CTX_CONTROL_PLANE_CLUSTER}" || oc
new-project istio-system --context "${CTX_CONTROL_PLANE_CLUSTER}"

b. Create an Istio resource on the control plane cluster to manage the ingress gateway by
running the following command:

$ cat <<EOF | oc --context "${CTX_CONTROL_PLANE_CLUSTER}" apply -f -
apiVersion: sailoperator.io/v1
kind: Istio
metadata:

name: default
spec:

version: v${ISTIO_VERSION}

namespace: istio-system

value:

global:
network: network1

EOF

c. Create the ingress gateway for the control plane by running the following command:

$ oc --context "${CTX_CONTROL_PLANE_CLUSTER}" apply -f
https://raw.githubusercontent.com/istio-ecosystem/sail-operator/main/docs/deployment-
models/resources/controlplane-gateway.yamil

d. Get the assigned IP address for the ingress gateway by running the following command:

$ oc --context "${CTX_CONTROL_PLANE_CLUSTER}" get svc istio-ingressgateway -n
istio-system -o jsonpath='{.status.loadBalancer.ingress[0].ip}'

e. Store the IP address of the ingress gateway in an environment variable by running the
following command:

$ export EXTERNAL_ISTIOD_ADDR=$(oc -n istio-system --
context="${CTX_CONTROL_PLANE_CLUSTER]}" get svc istio-ingressgateway -o
jsonpath="{.status.loadBalancer.ingress[0].ip}")

6. Install Istio on the data plane cluster:

a. Create a project called external-istiod on the data plane cluster by running the following
command:

$ oc get project external-istiod --context "${CTX_DATA_PLANE_CLUSTER]}" || oc new-
project external-istiod --context "${CTX_DATA_PLANE_CLUSTER}"

b. Create an Istio resource on the data plane cluster by running the following command:
$ cat <<EOF | oc --context "${CTX_DATA_PLANE_CLUSTER}" apply -f -

apiVersion: sailoperator.io/v1
kind: Istio

67

Red Hat OpenShift Service Mesh 3.0 Installing

metadata:
name: external-istiod
spec:
version: v${ISTIO_VERSION}
namespace: external-istiod
profile: remote
values:
defaultRevision: external-istiod
global:
remotePilotAddress: ${EXTERNAL_ISTIOD_ADDR}
configCluster: true ﬂ
pilot:
configMap: true
istiodRemote:
injectionPath: /inject/cluster/cluster2/net/network1
EOF

ﬂ This setting identifies the data plane cluster as the source of the mesh configuration.

7. Create a project called istio-cni on the data plane cluster by running the following command:

$ oc get project istio-cni --context "${CTX_DATA_PLANE_CLUSTERY}" || oc new-project istio-
cni --context "${CTX_DATA_PLANE_CLUSTER}"

a. Create an IstioCNI resource on the data plane cluster by running the following command:

$ cat <<EOF | oc --context "${CTX_DATA_PLANE_CLUSTERY}" apply -f -
apiVersion: sailoperator.io/v1
kind: IstioCNI
metadata:
name: default
spec:
version: v${ISTIO_VERSION}
namespace: istio-cni
EOF

8. Set up the external Istio control plane on the control plane cluster:

a. Create a project called external-istiod on the control plane cluster by running the following
command:

$ oc get project external-istiod --context "${CTX_CONTROL_PLANE_CLUSTER}" || oc
new-project external-istiod --context "${CTX_CONTROL_PLANE_CLUSTER}"

b. Create a ServiceAccount resource on the control plane cluster by running the following
command:

$ oc --context="${CTX_CONTROL_PLANE_CLUSTER}" create serviceaccount istiod-
service-account -n external-istiod

c. Store the APl server address for the data plane cluster in an environment variable by
running the following command:

68

CHAPTER 7. EXTERNAL CONTROL PLANE TOPOLOGY

$
DATA_PLANE_API_SERVER=https://<hostname_or_IP_address_of_the API_server_for _t
he_data_plane_cluster>:6443

d. Install a remote secret on the control plane cluster that provides access to the APl server on
the data plane cluster by running the following command:

$ istioctl create-remote-secret \
--context="${CTX_DATA_PLANE_CLUSTER}"\
--type=config \
--namespace=external-istiod \
--service-account=istiod-external-istiod \
--create-service-account=false \
--server="${DATA_PLANE_API_SERVER}" |\
oc --context="${CTX_CONTROL_PLANE_CLUSTER}" apply -f -

e. Create an Istio resource on the control plane cluster by running the following command:

$ cat <<EOF | oc --context "${CTX_CONTROL_PLANE_CLUSTER}" apply -f -
apiVersion: sailoperator.io/v1
kind: Istio
metadata:
name: external-istiod
spec:
version: v${ISTIO_VERSION}
namespace: external-istiod
profile: empty
values:
meshConfig:
rootNamespace: external-istiod
defaultConfig:
discoveryAddress: SEXTERNAL_ISTIOD_ADDR:15012
pilot:
enabled: true
volumes:
- name: config-volume
configMap:
name: istio-external-istiod
- name: inject-volume
configMap:
name: istio-sidecar-injector-external-istiod
volumeMounts:
- name: config-volume
mountPath: /etc/istio/config
- name: inject-volume
mountPath: /var/lib/istio/inject
env:
INJECTION_WEBHOOK_CONFIG_NAME: "istio-sidecar-injector-external-istiod-
external-istiod"
VALIDATION_WEBHOOK_CONFIG_NAME: "istio-validator-external-istiod-external-
istiod"
EXTERNAL_ISTIOD: "true"
LOCAL_CLUSTER_SECRET_WATCHER: "true"
CLUSTER_ID: cluster2
SHARED_MESH_CONFIG: istio

69

Red Hat OpenShift Service Mesh 3.0 Installing

global:
caAddress: $EXTERNAL _ISTIOD_ADDR:15012
configValidation: false
meshlID: mesh1
multiCluster:
clusterName: cluster2
network: network1
EOF

f. Create Gateway and VirtualService resources so that the sidecar proxies on the data
plane cluster can access the control plane by running the following command:

$ oc --context "${CTX_CONTROL_PLANE_CLUSTER}" apply -f - <<EOF
apiVersion: networking.istio.io/v1
kind: Gateway
metadata:
name: external-istiod-gw
namespace: external-istiod

spec:
selector:
istio: ingressgateway
servers:
- port:
number: 15012
protocol: tls
name: tls-XDS
tls:
mode: PASSTHROUGH
hosts:
- port:
number: 15017
protocol: tls
name: tIs-WEBHOOK
tls:
mode: PASSTHROUGH
hosts:

wxn

apiVersion: networking.istio.io/v1
kind: VirtualService
metadata:
name: external-istiod-vs
namespace: external-istiod
spec:
hosts:
gateways:
- external-istiod-gw
tls:
- match:
- port: 15012
sniHosts:
route:
- destination:

70

CHAPTER 7. EXTERNAL CONTROL PLANE TOPOLOGY

host: istiod-external-istiod.external-istiod.svc.cluster.local
port:
number: 15012
- match:
- port: 15017
sniHosts:

nkn

route:
- destination:
host: istiod-external-istiod.external-istiod.svc.cluster.local
port:
number: 443
EOF

g. Wait for the external-istiod Istio resource on the control plane cluster to return the
"Ready" status condition by running the following command:

$ oc --context "${CTX_CONTROL_PLANE_CLUSTER]}" wait --for condition=Ready
istio/external-istiod --timeout=3m

h. Wait for the Istio resource on the data plane cluster to return the "Ready" status condition
by running the following command:

$ oc --context "${CTX_DATA_PLANE_CLUSTER]}" wait --for condition=Ready
istio/external-istiod --timeout=3m

i. Wait for the IstioCNI resource on the data plane cluster to return the "Ready" status
condition by running the following command:

$ oc --context "${CTX_DATA_PLANE_CLUSTER]}" wait --for condition=Ready
istiocni/default --timeout=3m

Verification
1. Deploy sample applications on the data plane cluster:

a. Create a namespace for sample applications on the data plane cluster by running the
following command:

$ oc --context "${CTX_DATA_PLANE_CLUSTER}" get project sample || oc --
context="${CTX_DATA_PLANE_CLUSTER}" new-project sample

b. Label the namespace for the sample applications to support sidecar injection by running the
following command:

$ oc --context="${CTX_DATA_PLANE_CLUSTER}" label namespace sample
istio.io/rev=external-istiod

c. Deploy the helloworld application:

i. Create the helloworld service by running the following command:

I $ oc --context="${CTX_DATA_PLANE_CLUSTER}" apply \
f

71

Red Hat OpenShift Service Mesh 3.0 Installing

https://raw.githubusercontent.com/istio/istio/${ISTIO_VERSION}/samples/helloworld/he
lloworld.yaml \
-| service=helloworld -n sample

ii. Create the helloworld-v1 deployment by running the following command:

$ oc --context="${CTX_DATA_PLANE_CLUSTERY}" apply \

-f
https://raw.githubusercontent.com/istio/istio/${ISTIO_VERSION}/samples/helloworld/he
lloworld.yaml \

-l version=v1 -n sample

d. Deploy the sleep application by running the following command:

$ oc --context="${CTX_DATA_PLANE_CLUSTER}" apply \

-f
https://raw.githubusercontent.com/istio/istio/${ISTIO_VERSION}/samples/sleep/sleep.yaml
-n sample

e. Verify that the pods on the sample namespace have a sidecar injected by running the
following command:

I $ oc --context="${CTX_DATA_PLANE_CLUSTER}" get pods -n sample

The terminal should return 2/2 for each pod on the sample namespace by running the
following command:

Example output

NAME READY STATUS RESTARTS AGE
helloworld-v1-6d65866976-jp6qc 2/2 Running 0 im
sleep-5fcd8fd6c8-mg8n2 2/2 Running 0 im

2. Verify that internal traffic can reach the applications on the cluster:

a. Verify a request can be sent to the helloworld application through the sleep application by
running the following command:

$ oc exec --context="${CTX_DATA_PLANE_CLUSTER}" -n sample -c sleep
deploy/sleep -- curl -sS helloworld.sample:5000/hello

The terminal should return a response from the helloworld application:
Example output

I Hello version: v1, instance: helloworld-v1-6d65866976-jb6qc

3. Install an ingress gateway to expose the sample application to external clients:

a. Create the ingress gateway by running the following command:

72

CHAPTER 7. EXTERNAL CONTROL PLANE TOPOLOGY

$ oc --context="${CTX_DATA_PLANE_CLUSTER}" apply
-f https://raw.githubusercontent.com/istio-ecosystem/sail-
operator/refs/heads/main/chart/samples/ingress-gateway.yaml -n sample

b. Confirm that the ingress gateway is running by running the following command:

$ oc get pod - app=istio-ingressgateway -n sample --
context="${CTX_DATA_PLANE_CLUSTER}"

The terminal should return output confirming that the gateway is running:

Example output

NAME READY STATUS RESTARTS AGE
istio-ingressgateway-7bcd5c6bbd-kmtl4 1/1 Running 0 8md4s

c. Expose the helloworld application through the ingress gateway by running the following
command:

$ oc apply -f
https://raw.githubusercontent.com/istio/istio/refs/heads/master/samples/helloworld/helloworl
d-gateway.yaml -n sample --context="${CTX_DATA_PLANE_CLUSTER}"

d. Set the gateway URL environment variable by running the following command:

$ export INGRESS_HOST=$(oc -n sample --
context="${CTX_DATA_PLANE_CLUSTER]}" get service istio-ingressgateway -o
jsonpath='{.status.loadBalancer.ingress[0].ip}"); \

export INGRESS_PORT=$(oc -n sample --
context="${CTX_DATA_PLANE_CLUSTER]}" get service istio-ingressgateway -o
jsonpath='{.spec.ports[?(@.name=="http2")].port}'); \

export GATEWAY_URL=$INGRESS_HOST:$INGRESS_PORT

4. Verify that external traffic can reach the applications on the mesh:

a. Confirm that the helloworld application is accessible through the gateway by running the
following command:

I $ curl -s "http://${GATEWAY_URL}/hello"

The helloworld application should return a response.
Example output

I Hello version: v1, instance: helloworld-v1-6d65866976-jb6qc

73

Red Hat OpenShift Service Mesh 3.0 Installing

CHAPTER 8. ISTIOCTL TOOL

OpenShift Service Mesh 3 supports istioctl, the command line utility for the Istio project that includes
many diagnostic and debugging utilities.

8.1. SUPPORT FORISTIOCTL
OpenShift Service Mesh 3 supports a selection of Istioctl commands.

Table 8.1. Supported Istioctl commands

Command Description

admin Manage the control plane (istiod) configuration

analyze Analyze the Istio configuration and print validation
messages

completion Generate the autocompletion script for the specified

create-remote-secret

help

proxy-config, pc

proxy-status, ps

remote-clusters

validate, v

version

waypoint

ztunnel-config

shell

Create a secret with credentials to allow Istio to
access remote Kubernetes APl servers

Display help about any command

Retrieve information about the proxy configuration
from Envoy (Kubernetes only)

Retrieve the synchronization status of each Envoy in
the mesh

List the remote clusters each istiod instance is
connected to

Validate the Istio policy and rules files

Print out the build version information

Manage the waypoint configuration

Update or retrieve the current Ztunnel configuration.

8.2. INSTALLING THE ISTIOCTL TOOL

Install the istioctl command-line utility to debug and diagnose Istio service mesh deployments.

Prerequisites

74

CHAPTER 8.ISTIOCTL TOOL

® You have access to the OpenShift Container Platform web console.
® The OpenShift Service Mesh 3 Operator is installed and running.

® You have created at least one Istio resource.

Procedure

1. Confirm which version of the Istio resource runs on the installation by running the following
command:

I $ oc get istio -ojsonpath="{range .items[*]}{.spec.version}{\n"}{end}" | sed s/*v// | sort

If there are multiple Istio resources with different versions, choose the latest version. The latest
version is displayed last.

2. In the OpenShift Container Platform web console, click the Help icon and select Command
Line Tools.

3. Click Download istioctl. Choose the version and architecture that matches your system.
® Linux (x86_64, amd64)
® Linux on ARM (aarch64, arm64)
® MacOS (x86_64, amd64)
® MacOS on ARM (aarch64, arm64)
® Windows (x86_64, amd64)
4. Extract the istioctl binary file.

a. If you are using a Linux operating system, run the following command:

I $ tar xzf istioctl-<VERSION>-<OS>-<ARCH>.tar.gz

b. If you are using an Apple Mac operating system, unpack and extract the archive.

c. If you are using a Microsoft Windows operating system, use the zip software to extract the
archive.

5. Move to the uncompressed directory by running the following command:

I $ cd istioctl-<VERSION>-<OS>-<ARCH>

6. Add the istioctl client to the path by running the following command:

I $ export PATH=$PWD:$PATH

7. Confirm that the istioctl client version and the Istio control plane version match or are within
one version by running the following command:

I $ istioctl version

75

https://mirror.openshift.com/pub/cgw/servicemesh/latest/istioctl-1.24.4-linux-amd64.tar.gz
https://mirror.openshift.com/pub/cgw/servicemesh/latest/istioctl-1.24.4-linux-arm64.tar.gz
https://mirror.openshift.com/pub/cgw/servicemesh/latest/istioctl-1.24.4-darwin-amd64.tar.gz
https://mirror.openshift.com/pub/cgw/servicemesh/latest/istioctl-1.24.4-darwin-arm64.tar.gz
https://mirror.openshift.com/pub/cgw/servicemesh/latest/istioctl-1.24.4-windows-amd64.zip

Red Hat OpenShift Service Mesh 3.0 Installing

Sample output:

client version: 1.20.0
control plane version: 1.24.3_ossm
data plane version: none

76

CHAPTER 9. ENABLING MUTUAL TRANSPORT LAYER SECURITY

CHAPTER 9. ENABLING MUTUAL TRANSPORT LAYER
SECURITY

You can use Red Hat OpenShift Service Mesh for your application to customize the communication
security between the complex array of microservices. Mutual Transport Layer Security (mTLS) is a
protocol that enables two parties to authenticate each other.

9.1. ABOUT MUTUAL TRANSPORT LAYER SECURITY (MTLYS)

In OpenShift Service Mesh 3, you use the Istio resource instead of the ServiceMeshControlPlane
resource to configure mTLS settings.

In OpenShift Service Mesh 3, you configure STRICT mTLS mode by using the PeerAuthentication and
DestinationRule resources. You set TLS protocol versions through Istio Workload Minimum TLS
Version Configuration.

Review the following Istio resources and concepts to configure mTLS settings properly:

PeerAuthentication

defines the type of mTLS traffic a sidecar accepts. In PERMISSIVE mode, both plaintext and mTLS
traffic are accepted. In STRICT mode, only mTLS traffic is allowed.

DestinationRule

configures the type of TLS traffic a sidecar sends. In DISABLE mode, the sidecar sends plaintext. In
SIMPLE, MUTUAL, and ISTIO_MUTUAL modes, the sidecar establishes a TLS connection.

Auto mTLS

ensures that all inter-mesh traffic is encrypted with mTLS by default, regardless of the
PeerAuthentication mode configuration. Auto mTLS is controlled by the global mesh configuration
field enableAutoMtls, which is enabled by default in OpenShift Service Mesh 2 and 3. The mTLS
setting operates entirely between sidecar proxies, requiring no changes to application or service
code.

By default, PeerAuthentication is set to PERMISSIVE mode, allowing sidecars in the Service Mesh to
accept both plain-text and mTLS-encrypted traffic.

9.2. ENABLING STRICT MTLS MODE BY USING THE NAMESPACE

You can restrict workloads to accept only encrypted mTLS traffic by enabling the STRICT mode in
PeerAuthentication.

Example PeerAuthentication policy for a namespace

apiVersion: security.istio.io/v1
kind: PeerAuthentication
metadata:

name: default

namespace: <namespace>
spec:

mtls:

mode: STRICT

77

Red Hat OpenShift Service Mesh 3.0 Installing

You can enable mTLS for all destination hosts in the <namespace> by creating a DestinationRule
resource with MUTUAL or ISTIO_MUTUAL mode when auto mTLS is disabled and
PeerAuthentication is set to STRICT mode.

Example DestinationRule policy for a namespace

apiVersion: networking.istio.io/v1
kind: DestinationRule
metadata:
name: enable-mtls
namespace: <namespace>
spec:
host: "*.<namespace>.svc.cluster.local"
trafficPolicy:
tls:
mode: ISTIO_MUTUAL

9.3. ENABLING STRICT MTLS ACROSS THE WHOLE SERVICE MESH

You can configure mTLS across the entire mesh by applying the PeerAuthentication policy to the
istiod namespace, such as istio-system. The istiod namespace name must match to the
spec.namespace field of your Istio resource.

Example PeerAuthentication policy for the whole mesh

apiVersion: security.istio.io/v1
kind: PeerAuthentication
metadata:

name: default

namespace: istio-system
spec:

mtls:

mode: STRICT

Additionally, create a DestinationRule resource to disable mTLS for communication with the APl server,
as it does not have a sidecar. Apply similar DestinationRule configurations for other services without
sidecars.

Example DestinationRule policy for the whole mesh

apiVersion: networking.istio.io/v1
kind: DestinationRule
metadata:
name: api-server
namespace: istio-system
spec:
host: kubernetes.default.svc.cluster.local
trafficPolicy:
tls:
mode: DISABLE

9.4. VALIDATING ENCRYPTIONS WITH KIALI

78

CHAPTER 9. ENABLING MUTUAL TRANSPORT LAYER SECURITY

The Kiali console offers several ways to validate whether or not your applications, services, and
workloads have mTLS encryption enabled.

The Services Detail Overview page displays a Security icon on the graph edges where at least one

request with mTLS enabled is present. Also note that Kiali displays a lock icon in the Network section
next to ports that are configured for mTLS.

9.5. ADDITIONAL RESOURCES

® |stio workload minimum TLS version configuration (Istio documentation)
® Understanding TLS configuration (Istio documentation)

® Permissive mode (Istio documentation)

79

https://istio.io/latest/docs/tasks/security/tls-configuration/workload-min-tls-version/
https://istio.io/latest/docs/ops/configuration/traffic-management/tls-configuration/
https://istio.io/latest/docs/concepts/security/#permissive-mode

	Table of Contents
	CHAPTER 1. SUPPORTED PLATFORMS AND CONFIGURATIONS
	1.1. SUPPORTED PLATFORMS
	1.2. SUPPORTED CONFIGURATIONS FOR SERVICE MESH
	1.3. SUPPORTED NETWORK CONFIGURATIONS
	1.4. SUPPORTED CONFIGURATIONS FOR KIALI
	1.5. ADDITIONAL RESOURCES

	CHAPTER 2. INSTALLING OPENSHIFT SERVICE MESH
	2.1. ABOUT DEPLOYING ISTIO USING THE RED HAT OPENSHIFT SERVICE MESH OPERATOR
	2.1.1. About Istio control plane update strategies

	2.2. INSTALLING THE SERVICE MESH OPERATOR
	2.2.1. About Service Mesh custom resource definitions

	2.3. ABOUT ISTIO DEPLOYMENT
	2.3.1. Creating the Istio project using the web console
	2.3.2. Creating the Istio resource using the web console
	2.3.3. Creating the IstioCNI project using the web console
	2.3.4. Creating the IstioCNI resource using the web console

	2.4. SCOPING THE SERVICE MESH WITH DISCOVERY SELECTORS
	2.4.1. About discovery selectors
	2.4.2. Scoping a Service Mesh by using discovery selectors

	2.5. ABOUT THE BOOKINFO APPLICATION
	2.5.1. Deploying the Bookinfo application
	2.5.2. About accessing the Bookinfo application using a gateway
	2.5.3. Accessing the Bookinfo application by using Istio gateway injection
	2.5.4. Accessing the Bookinfo application by using Gateway API

	2.6. CUSTOMIZING ISTIO CONFIGURATION
	2.7. ABOUT ISTIO HIGH AVAILABILITY
	2.7.1. Configuring Istio HA by using autoscaling
	2.7.1.1. API settings for Service Mesh HA autoscaling mode

	2.7.2. Configuring Istio HA by using replica count

	CHAPTER 3. SIDECAR INJECTION
	3.1. ABOUT SIDECAR INJECTION
	3.2. IDENTIFYING THE REVISION NAME
	3.2.1. Enabling sidecar injection with default revision
	3.2.2. Enabling sidecar injection with other revisions

	3.3. ENABLING SIDECAR INJECTION
	3.3.1. Enabling sidecar injection with namespace labels
	3.3.2. Exclude a workload from the mesh
	3.3.3. Enabling sidecar injection with pod labels

	3.4. ENABLING SIDECAR INJECTION WITH NAMESPACE LABELS AND AN ISTIOREVISIONTAG RESOURCE
	3.5. ADDITIONAL RESOURCES

	CHAPTER 4. OPENSHIFT SERVICE MESH AND CERT-MANAGER
	4.1. ABOUT INTEGRATING SERVICE MESH WITH CERT-MANAGER AND ISTIO-CSR
	4.2. INSTALLING CERT-MANAGER
	4.2.1. Installing the istio-csr agent by using the in place update strategy
	4.2.2. Installing the istio-csr agent by using the revision based update strategy
	4.2.3. Installing your Istio resource
	4.2.4. Verifying cert-manager installation

	4.3. UPDATING ISTIO-CSR AGENTS WITH REVISION-BASED UPDATE STRATEGIES

	CHAPTER 5. MULTI-CLUSTER TOPOLOGIES
	5.1. ABOUT MULTI-CLUSTER MESH TOPOLOGIES
	5.1.1. Control plane topology models
	5.1.2. Network topology models

	5.2. MULTI-CLUSTER CONFIGURATION OVERVIEW
	5.2.1. Creating certificates for a multi-cluster topology
	5.2.2. Applying certificates to a multi-cluster topology

	5.3. INSTALLING A MULTI-PRIMARY MULTI-NETWORK MESH
	5.3.1. Verifying a multi-cluster topology
	5.3.2. Removing a multi-cluster topology from a development environment

	5.4. INSTALLING A PRIMARY-REMOTE MULTI-NETWORK MESH
	5.5. INSTALLING KIALI IN A MULTI-CLUSTER MESH

	CHAPTER 6. DEPLOYING MULTIPLE SERVICE MESHES ON A SINGLE CLUSTER
	6.1. PREREQUISITES
	6.2. ABOUT DEPLOYING MULTIPLE CONTROL PLANES
	6.3. USING MULTIPLE CONTROL PLANES ON A SINGLE CLUSTER
	6.4. DEPLOYING MULTIPLE CONTROL PLANES
	6.4.1. Deploying the first control plane
	6.4.2. Deploying the second control plane
	6.4.3. Verifying multiple control planes

	6.5. DEPLOY APPLICATION WORKLOADS IN EACH MESH
	6.6. ADDITIONAL RESOURCES

	CHAPTER 7. EXTERNAL CONTROL PLANE TOPOLOGY
	7.1. ABOUT EXTERNAL CONTROL PLANE TOPOLOGY
	7.1.1. Installing the control plane and data plane on separate clusters

	CHAPTER 8. ISTIOCTL TOOL
	8.1. SUPPORT FOR ISTIOCTL
	8.2. INSTALLING THE ISTIOCTL TOOL

	CHAPTER 9. ENABLING MUTUAL TRANSPORT LAYER SECURITY
	9.1. ABOUT MUTUAL TRANSPORT LAYER SECURITY (MTLS)
	9.2. ENABLING STRICT MTLS MODE BY USING THE NAMESPACE
	9.3. ENABLING STRICT MTLS ACROSS THE WHOLE SERVICE MESH
	9.4. VALIDATING ENCRYPTIONS WITH KIALI
	9.5. ADDITIONAL RESOURCES

