& RedHat

Red Hat OpenShift Service on AWS 4

CLI tools

Learning how to use the command-line tools for Red Hat OpenShift Service on AWS

Last Updated: 2026-01-15

Red Hat OpenShift Service on AWS 4 CLI tools

Learning how to use the command-line tools for Red Hat OpenShift Service on AWS

Legal Notice

Copyright © Red Hat.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides information about installing, configuring, and using the command-line tools
in Red Hat OpenShift Service on AWS. It also contains a reference of CLI commands and examples
of how to use them.

Table of Contents

Table of Contents

CHAPTER 1. RED HAT OPENSHIFT SERVICE ON AWS CLITOOLSOVERVIEWciiiiiiiininnnnnnn. 12
1.1. LIST OF CLITOOLS 12
CHAPTER 2. OPENSHIFT CLI(O€) 1ttt ittt et et e et e et aateeaeeaneeeaneeraneennneenneenns 13
2.1. GETTING STARTED WITH THE OPENSHIFT CLI 13
2.1.1. About the OpenShift CLI 13
2.1.2. Installing the OpenShift CLI 13
2.1.3. Installing the OpenShift CLI on Linux 13
2.1.4. Installing the OpenShift CLI on Windows 14
2.1.5. Installing the OpenShift CLI on macOS 14
2.1.5.1. Installing the OpenShift CLI by using the web console 15
2.1.5.1.1. Installing the OpenShift CLI on Linux using the web console 15
2.1.5.1.2. Installing the OpenShift CLI on Windows using the web console 16
2.1.5.1.3. Installing the OpenShift CLI on macOS using the web console 17
2.1.5.2. Installing the OpenShift CLI by using an RPM 18
2.1.5.3. Installing the OpenShift CLI by using Homebrew 19
2.1.6. Logging in to the OpenShift CLI 19
2.1.7. Logging in to the OpenShift CLI using a web browser 21
2.1.8. Using the OpenShift CLI 22
2.1.8.1. Creating a project 22
2.1.8.2. Creating a new app 22
2.1.8.3. Viewing pods 23
2.1.8.4. Viewing pod logs 23
2.1.8.5. Viewing the current project 23
2.1.8.6. Viewing the status for the current project 23
2.1.8.7. Listing supported API resources 24
2.1.9. Getting help 24
2.110. Logging out of the OpenShift CLI 25
2.2. CONFIGURING THE OPENSHIFT CLI 26
2.2.1. Enabling tab completion 26
2.2.1.1. Enabling tab completion for Bash 26
2.2.1.2. Enabling tab completion for Zsh 26
2.2.2. Accessing kubeconfig by using the oc CLI 27
2.3. USAGE OF OC AND KUBECTL COMMANDS 27
2.3.1. The oc binary 28
2.3.2. The kubectl binary 29
2.4. MANAGING CLI PROFILES 29
2.4.1. About switches between CLI profiles 29
2.4.2. Manual configuration of CLI profiles 31
2.4.3. Load and merge rules 33
2.5. EXTENDING THE OPENSHIFT CLI WITH PLUGINS 34
2.5.1. Writing CLI plugins 35
2.5.2. Installing and using CLI plugins 35
2.6. OPENSHIFT CLI DEVELOPER COMMAND REFERENCE 36
2.6.1. OpenShift CLI (oc) developer commands 36
2.6.1.1. oc annotate 36
2.6.1.2. oc api-resources 37
2.6.1.3. oc api-versions 37
2.6.1.4. oc apply 38
2.6.1.5. oc apply edit-last-applied 38
2.6.1.6. oc apply set-last-applied 38

Red Hat OpenShift Service on AWS 4 CLI tools

2.6.1.7. oc apply view-last-applied
2.6.1.8. oc attach

2.6.1.9. oc auth can-i

2.6.1.10. oc auth reconcile

2.6.1.11. oc auth whoami

2.6.1.12. oc autoscale

2.6.1.13. oc cancel-build

2.6.1.14. oc cluster-info

2.6.1.15. oc cluster-info dump

2.6.1.16. oc completion

2.6.1.17. oc config current-context
2.6.1.18. oc config delete-cluster
2.6.1.19. oc config delete-context
2.6.1.20. oc config delete-user
2.6.1.21. oc config get-clusters
2.6.1.22. oc config get-contexts
2.6.1.23. oc config get-users

2.6.1.24. oc config new-admin-kubeconfig
2.6.1.25. oc config new-kubelet-bootstrap-kubeconfig
2.6.1.26. oc config refresh-ca-bundle
2.6.1.27. oc config rename-context
2.6.1.28. oc config set

2.6.1.29. oc config set-cluster
2.6.1.30. oc config set-context
2.6.1.31. oc config set-credentials
2.6.1.32. oc config unset

2.6.1.33. oc config use-context
2.6.1.34. oc config view
2.6.1.35.0ccp

2.6.1.36. oc create

2.6.1.37. oc create build

2.6.1.38. oc create clusterresourcequota
2.6.1.39. oc create clusterrole
2.6.1.40. oc create clusterrolebinding
2.6.1.41. oc create configmap
2.6.1.42. oc create cronjob

2.6.1.43. oc create deployment
2.6.1.44. oc create deploymentconfig
2.6.1.45. oc create identity

2.6.1.46. oc create imagestream
2.6.1.47. oc create imagestreamtag
2.6.1.48. oc create ingress

2.6.1.49. oc create job

2.6.1.50. oc create namespace
2.6.1.51. oc create poddisruptionbudget
2.6.1.52. oc create priorityclass
2.6.1.53. oc create quota

2.6.1.54. oc create role

2.6.1.55. oc create rolebinding
2.6.1.56. oc create route edge
2.6.1.57. oc create route passthrough
2.6.1.58. oc create route reencrypt
2.6.1.59. oc create secret docker-registry

39
39
39
40
40
40
40

41

41

41
42
42
43
43
43
43
43
44
44
44
44
44
45
45
45
46
46
46
47
47
48
48
48
48
49
49
49
50
50
50
50
50

51

51
52
52
52
52
53
53
53
53
54

2.6.1.60. oc create secret generic
2.6.1.61. oc create secret tls
2.6.1.62. oc create service clusterip
2.6.1.63. oc create service externalname
2.6.1.64. oc create service loadbalancer
2.6.1.65. oc create service nodeport
2.6.1.66. oc create serviceaccount
2.6.1.67. oc create token

2.6.1.68. oc create user

2.6.1.69. oc create useridentitymapping
2.6.1.70. oc debug

2.6.1.71. oc delete

2.6.1.72. oc describe

2.6.1.73. oc diff

2.6.1.74. oc edit

2.6.1.75. oc events

2.6.1.76. oc exec

2.6.1.77. oc explain

2.6.1.78. oc expose

2.6.1.79. oc extract

2.6.1.80. oc get

2.6.1.81. oc get-token

2.6.1.82. ocidle

2.6.1.83. oc image append

2.6.1.84. oc image extract

2.6.1.85. ocimage info

2.6.1.86. oc image mirror

2.6.1.87. oc import-image

2.6.1.88. oc kustomize

2.6.1.89. oc label

2.6.1.90. oc login

2.6.1.91. oc logout

2.6.1.92. oclogs

2.6.1.93. oc new-app

2.6.1.94. oc new-build

2.6.1.95. oc new-project

2.6.1.96. oc observe

2.6.1.97. oc patch

2.6.1.98. oc plugin

2.6.1.99. oc plugin list

2.6.1100. oc policy add-role-to-user
2.6.1.101. oc policy scc-review
2.6.1.102. oc policy scc-subject-review
2.6.1.103. oc port-forward

2.6.1.104. oc process

2.6.1.105. oc project

2.6.1.106. oc projects

2.6.1.107. oc proxy

2.6.1108. oc registry login

2.6.1109. oc replace

2.6.1.110. oc rollback

2.6.1.111. oc rollout

2.6.1.112. oc rollout cancel

Table of Contents

54
54
55
55
55
55
55
56
56
56
56
57
58
58
58
59
59
60
60

61

61
62
62
62
63
64
64
65
66
66
67
67
67
68
69
69
70
70
70

71

71

71
72
72
72
73
73
73
74
74
74
75
75

Red Hat OpenShift Service on AWS 4 CLI tools

2.6.1.113. oc rollout history
2.6.1.114. oc rollout latest
2.6.1.115. oc rollout pause
2.6.1.116. oc rollout restart
2.6.1.117. oc rollout resume
2.6.1.118. oc rollout retry
2.6.1.119. oc rollout status
2.6.1.120. oc rollout undo
2.6.1121. ocrsh

2.6.1.122. oc rsync

2.6.1.123. ocrun

2.6.1124. oc scale

2.6.1125. oc secrets link
2.6.1126. oc secrets unlink
2.6.1127. oc set build-hook
2.6.1.128. oc set build-secret
2.6.1.129. oc set data

2.6.1130. oc set deployment-hook
2.6.1.131. oc set env

2.6.1.132. oc set image
2.6.1133. oc set image-lookup
2.6.1134. oc set probe
2.6.1135. oc set resources
2.6.1.136. oc set route-backends
2.6.1.137. oc set selector
2.6.1138. oc set serviceaccount
2.6.1139. oc set subject
2.6.1.140. oc set triggers
2.6.1141. oc set volumes
2.6.1142. oc start-build
2.6.1143. oc status

2.6.1.144. oc tag

2.6.1.145. oc version

2.6.1.146. oc wait

2.6.1147. oc whoami

2.7. OPENSHIFT CLI ADMINISTRATOR COMMAND REFERENCE

2.7.1. OpenShift CLI (oc) administrator commands
2.7.1.1. oc adm build-chain

2.7.1.2. oc adm catalog mirror

2.7.1.3. oc adm certificate approve

2.7.1.4. oc adm certificate deny

2.7.1.5. oc adm copy-to-node

2.7.1.6. oc adm cordon

2.7.1.7. oc adm create-bootstrap-project-template
2.7.1.8. oc adm create-error-template

2.7.1.9. oc adm create-login-template

2.7.1.10. oc adm create-provider-selection-template
2.7.1.11. oc adm drain

2.7.1.12. oc adm groups add-users

2.7.1.13. oc adm groups new

2.7.1.14. oc adm groups prune

2.7.1.15. oc adm groups remove-users

2.7.1.16. oc adm groups sync

75
76
76
76
76
76
77
77
77
78
78
78
79
79
79
80
80
80

81

81
82
82
83
83
83
84
84
84
85
85
86
86
87
87
87
88
88
88
88
89
89
89
89
89
90
90
90
90
90

91

91

91

91

Table of Contents

2.7.117. oc adm inspect 92
2.7.1.18. oc adm migrate icsp 92
2.7.1.19. oc adm migrate template-instances 92
2.7.1.20. oc adm must-gather 93
2.7.1.21. oc adm new-project 93
2.7.1.22. oc adm node-image create 93
2.7.1.23. oc adm node-image monitor 94
2.7.1.24. oc adm node-logs 94
2.7.1.25. oc adm ocp-certificates monitor-certificates 94
2.7.1.26. oc adm ocp-certificates regenerate-leaf 94
2.7.1.27. oc adm ocp-certificates regenerate-machine-config-server-serving-cert 95
2.7.1.28. oc adm ocp-certificates regenerate-top-level 95
2.7.1.29. oc adm ocp-certificates remove-old-trust 95
2.7.1.30. oc adm ocp-certificates update-ignition-ca-bundle-for-machine-config-server 95
2.7.1.31. oc adm policy add-cluster-role-to-group 95
2.7.1.32. oc adm policy add-cluster-role-to-user 96
2.7.1.33. oc adm policy add-role-to-user 96
2.7.1.34. oc adm policy add-scc-to-group 96
2.7.1.35. oc adm policy add-scc-to-user 96
2.7.1.36. oc adm policy remove-cluster-role-from-group 96
2.7.1.37. oc adm policy remove-cluster-role-from-user 97
2.7.1.38. oc adm policy scc-review 97
2.7.1.39. oc adm policy scc-subject-review 97
2.7.1.40. oc adm prune builds 98
2.7.1.41. oc adm prune deployments 98
2.7.1.42. oc adm prune groups 98
2.7.1.43. oc adm prune images 98
2.7.1.44. oc adm prune renderedmachineconfigs 99
2.7.1.45. oc adm prune renderedmachineconfigs list 99
2.7.1.46. oc adm reboot-machine-config-pool 100
2.7.1.47. oc adm release extract 100
2.7.1.48. oc adm release info 100
2.7.1.49. oc adm release mirror 101
2.7.1.50. oc adm release new 101
2.7.1.51. oc adm restart-kubelet 101
2.7.1.52. oc adm taint 102
2.7.1.53. oc adm top images 102
2.7.1.54. oc adm top imagestreams 102
2.7.1.55. oc adm top node 103
2.7.1.56. oc adm top persistentvolumeclaims 103
2.7.1.57. oc adm top pod 103
2.7.1.58. oc adm uncordon 103
2.7.1.59. oc adm upgrade 104
2.7.1.60. oc adm verify-image-signature 104
2.7.1.61. oc adm wait-for-node-reboot 104
2.7.1.62. oc adm wait-for-stable-cluster 105
2.7.2. Additional resources 105
CHAPTER 3. IMPORTANT UPDATE ON ODO ...iiittiittii et eieeeieeenneeaeeeaneeenneennnens 106
CHAPTER 4. KNATIVE CLIFORUSE WITH OPENSHIFTSERVERLESSciiiiiiiiiiiiiiiii e, 107
41.KEY FEATURES 107
4.2. INSTALLING THE KNATIVE CLI 107

Red Hat OpenShift Service on AWS 4 CLI tools

CHAPTER 5. PIPELINES CLI (TKN) ottt ittt ettt ettt e et ee e eeeeanaeenneennneennnens 108
5.1. INSTALLING TKN 108
5.1.1. Installing the Red Hat OpenShift Pipelines CLI on Linux 108
5.1.2. Installing the Red Hat OpenShift Pipelines CLI on Linux using an RPM 109
5.1.3. Installing the Red Hat OpenShift Pipelines CLI on Windows 110
5.1.4. Installing the Red Hat OpenShift Pipelines CLI on macOS 110
5.2. CONFIGURING THE OPENSHIFT PIPELINES TKN CLI m
5.2.1. Enabling tab completion m
5.3. OPENSHIFT PIPELINES TKN REFERENCE m
5.3.1. Basic syntax m
5.3.2. Global options m
5.3.3. Utility commands m
5.3.3.1. tkn m
5.3.3.2. completion [shell] 12
5.3.3.3. version 12
5.3.4. Pipelines management commands N2
5.3.4.1. pipeline 12
5.3.4.2. pipeline delete 12
5.3.4.3. pipeline describe 12
5.3.4.4. pipeline list 12
5.3.4.5. pipeline logs 13
5.3.4.6. pipeline start 13
5.3.5. Pipeline run commands 13
5.3.5.1. pipelinerun 13
5.3.5.2. pipelinerun cancel 13
5.3.5.3. pipelinerun delete 13
5.3.5.4. pipelinerun describe n4
5.3.5.5. pipelinerun list n4
5.3.5.6. pipelinerun logs n4
5.3.6. Task management commands n4
5.3.6.1. task 14
5.3.6.2. task delete 15
5.3.6.3. task describe 15
5.3.6.4. task list 15
5.3.6.5. task logs 15
5.3.6.6. task start 15
5.3.7. Task run commands 15
5.3.7.1. taskrun 15
5.3.7.2. taskrun cancel 16
5.3.7.3. taskrun delete 16
5.3.7.4. taskrun describe 16
5.3.7.5. taskrun list 16
5.3.7.6. taskrun logs 16
5.3.8. Condition management commands 16
5.3.8.1. condition 16
5.3.8.2. condition delete n7
5.3.8.3. condition describe n7
5.3.8.4. condition list n7
5.3.9. Pipeline Resource management commands nz
5.3.9.1. resource n7
5.3.9.2. resource create nz
5.3.9.3. resource delete 18
5.3.9.4. resource describe 18

Table of Contents

5.3.9.5. resource list 18
5.3.10. ClusterTask management commands 18
5.3.10.1. clustertask 18
5.3.10.2. clustertask delete 18
5.3.10.3. clustertask describe 18
5.3.10.4. clustertask list 19
5.3.10.5. clustertask start 19
5.3.11. Trigger management commands 19
5.3.11.1. eventlistener 19
5.3.11.2. eventlistener delete 19
5.3.11.3. eventlistener describe 19
5.3.11.4. eventlistener list 19
5.3.11.5. eventlistener logs 120
5.3.11.6. triggerbinding 120
5.3.11.7. triggerbinding delete 120
5.3.11.8. triggerbinding describe 120
5.3.11.9. triggerbinding list 120
5.3.11.10. triggertemplate 120
5.3.1111. triggertemplate delete 121
5.3.11.12. triggertemplate describe 121
5.3.11.13. triggertemplate list 121
5.3.11.14. clustertriggerbinding 121
5.3.11.15. clustertriggerbinding delete 121
5.3.11.16. clustertriggerbinding describe 121
5.3.11.17. clustertriggerbinding list 122
5.3.12. Hub interaction commands 122
5.3.12.1. hub 122
5.3.12.2. hub downgrade 122
5.3.12.3. hub get 122
5.3.12.4. hub info 122
5.3.12.5. hub install 123
5.3.12.6. hub reinstall 123
5.3.12.7. hub search 123
5.3.12.8. hub upgrade 123
CHAPTER 6. OPM CLl ittt ittt et ettt ettt et e et a e et eeaeeeanneeaneennneennnens 124
6.1. INSTALLING THE OPM CLI 124
6.1.1. About the opm CLI 124
6.1.2. Installing the opm CLI 124
6.2. OPM CLI REFERENCE 125
6.2.1. generate 126
6.2.1.1. dockerfile 126
6.2.2. index 127
6.2.2.1. add 128
6.2.2.2. prune 128
6.2.2.3. prune-stranded 129
6.2.2.4.rm 130
6.2.3.init 131
6.2.4. migrate 131
6.2.5. render 132
6.2.6. serve 132
6.2.7. validate 133

Red Hat OpenShift Service on AWS 4 CLI tools

CHAPTER 7. ROSA CLI oottt ettt et ettt ettt et e e et e s e e aneeeseannnneessannnneeeennnns 134
7.1. GETTING STARTED WITH THE ROSA CLI 134
7.1.1. About the ROSA CLI 134
7.1.2. Setting up the ROSA CLI 134
7.1.3. Configuring the ROSA CLI 136
7.1.3.1. login 136
7.1.3.1.1. Authenticating the ROSA CLI with Red Hat single sign-on 136
7.1.3.1.2. Authenticating the ROSA CLI with a single sign-on authorization code 137
7.1.3.1.3. Authenticating the ROSA CLI with a single sign-on device code 137
7.1.3.1.4. Authenticating the ROSA CLI with an offline token 138
7.1.3.2. logout 139
7.1.3.3. verify permissions 139
7.1.3.4. verify quota 140
7.1.3.5. download rosa 141
7.1.3.6. download oc 141
7.1.3.7. verify oc 141
7.1.4. Updating the ROSA CLI 142
7.2. ROSA CLI COMMAND REFERENCE 143
7.2.1. ROSA CLI commands 143
7.2.1.1. rosa create account-roles 143
7.2.1.2. rosa create admin 143
7.2.1.3. rosa create autoscaler 143
7.2.1.4. rosa create break-glass-credential 144
7.2.1.5. rosa create cluster 144
7.2.1.6. rosa create decision 144
7.2.1.7. rosa create dns-domain 144
7.2.1.8. rosa create external-auth-provider 144
7.2.1.9. rosa create iamserviceaccount 145
7.2.1.10. rosa create idp 145
7.2.1.11. rosa create image-mirror 145
7.2.1.12. rosa create kubeletconfig 145
7.2.113. rosa create log-forwarder 145
7.2.1.14. rosa create machinepool 146
7.2.1.15. rosa create network 146
7.2.1.16. rosa create ocm-role 147
7.2.1.17. rosa create oidc-config 147
7.2.1.18. rosa create oidc-provider 147
7.2.1.19. rosa create operator-roles 147
7.2.1.20. rosa create tuning-configs 147
7.2.1.21. rosa create user-role 148
7.2.1.22. rosa delete account-roles 148
7.2.1.23. rosa delete admin 148
7.2.1.24. rosa delete autoscaler 148
7.2.1.25. rosa delete cluster 148
7.2.1.26. rosa delete dns-domain 149
7.2.1.27. rosa delete external-auth-provider 149
7.2.1.28. rosa delete iamserviceaccount 149
7.2.1.29. rosa delete idp 149
7.2.1.30. rosa delete image-mirror 149
7.2.1.31. rosa delete ingress 150
7.2.1.32. rosa delete kubeletconfig 150
7.2.1.33. rosa delete log-forwarder 150
7.2.1.34. rosa delete machinepool 150

7.2.1.35. rosa delete ocm-role
7.2.1.36. rosa delete oidc-config
7.2.1.37.rosa delete oidc-provider
7.2.1.38. rosa delete operator-roles
7.2.1.39. rosa delete tuning-configs
7.2.1.40. rosa delete user-role
7.2.1.41. rosa describe access-request
7.2.1.42. rosa describe addon

7.2.1.43. rosa describe addon-installation
7.2.1.44. rosa describe admin

7.2.1.45. rosa describe autoscaler

7.2.1.46. rosa describe break-glass-credential

7.2.1.47. rosa describe cluster

7.2.1.48. rosa describe external-auth-provider

7.2.1.49. rosa describe iamserviceaccount
7.2.1.50. rosa describe ingress

7.2.1.51. rosa describe kubeletconfig
7.2.1.52. rosa describe log-forwarder
7.2.1.53. rosa describe machinepool
7.2.1.54. rosa describe tuning-configs
7.2.1.55. rosa describe upgrade

7.2.1.56. rosa download openshift-client
7.2.1.57. rosa download rosa-client
7.2.1.58. rosa edit addon

7.2.1.59. rosa edit autoscaler

7.2.1.60. rosa edit cluster

7.2.1.61. rosa edit image-mirror

7.2.1.62. rosa edit ingress

7.2.1.63. rosa edit kubeletconfig
7.2.1.64. rosa edit machinepool

7.2.1.65. rosa edit tuning-configs
7.2.1.66. rosa grant user

7.2.1.67. rosa init

7.2.1.68. rosa install addon

7.2.1.69. rosa link ocm-role

7.2.1.70. rosa link user-role

7.2.1.71. rosa list access-request
7.2.1.72. rosa list account-roles
7.2.1.73.rosa list addons

7.2.1.74. rosa list break-glass-credentials
7.2.1.75. rosa list clusters

7.2.1.76. rosa list dns-domain

7.2.1.77. rosa list external-auth-providers
7.2.1.78. rosa list gates

7.2.1.79. rosa list iamserviceaccounts
7.2.1.80. rosa list idps

7.2.1.81. rosa list image-mirrors
7.2.1.82.rosa list ingresses

7.2.1.83. rosa list instance-types
7.2.1.84. rosa list kubeletconfigs
7.2.1.85. rosa list log-forwarders
7.2.1.86. rosa list machinepools

7.2.1.87. rosa list ocm-roles

Table of Contents

150
151
151
151
151
151
151
152
152
152
152
152

153

153

153

153

153

153

154

154

154

154

154

154
155
155
155
155

156

156

156

156
157
157
157
157
157
158
158
158
158
158
159
159
159
159
159

160

160

160

160

160
161

Red Hat OpenShift Service on AWS 4 CLI tools

10

7.2.1.88. rosa list oidc-config

7.2.1.89. rosa list oidc-providers
7.2.1.90. rosa list operator-roles
7.2.1.91. rosa list regions

7.2.1.92. rosa list tuning-configs
7.2.1.93. rosa list user-roles

7.2.1.94. rosa list users

7.2.1.95. rosa list versions

7.2.1.96. rosa login

7.2.1.97.rosa logs

7.2.1.98. rosa logs install

7.2.1.99. rosa logs uninstall

7.2.1.100. rosa register oidc-config
7.2.1.101. rosa revoke break-glass-credentials
7.2.1.102. rosa revoke user

7.2.1.103. rosa uninstall addon
7.2.1.104. rosa unlink ocm-role
7.2.1.105. rosa unlink user-role
7.2.1.106. rosa upgrade account-roles
7.2.1.107. rosa upgrade cluster
7.2.1.108. rosa upgrade machinepool
7.2.1.109. rosa upgrade operator-roles
7.2.1.110. rosa upgrade roles

7.2.1.111. rosa verify network

7.2.1.112. rosa verify openshift-client
7.2.1.113. rosa verify permissions
7.2.1.114. rosa verify quota

7.2.1.115. rosa verify rosa-client
7.2.1.116. rosa whoami

7.3. LEAST PRIVILEGE PERMISSIONS FOR ROSA CLI COMMANDS
7.3.1. Least privilege permissions for common Red Hat OpenShift Service on AWS CLI commands

7.3.11. Create a managed OpenlID Connect (OIDC) provider
7.3.1.2. Create an unmanaged OpenlD Connect provider
7.3.1.3. List your account roles

7.3.1.4. List your Operator roles

7.3.1.5. List your OIDC providers

7.3.1.6. Verify your quota

7.3.1.7. Delete your managed OIDC configuration
7.3.1.8. Delete your unmanaged OIDC configuration
7.3.1.9. Create a cluster

7.3.110. Create your account roles and Operator roles
7.3.1.11. Delete your account roles

7.3.112. Delete your Operator roles

7.3.2. ROSA CLI commands with no required permissions
7.3.3. Additional resources

7.4. MANAGING BILLING ACCOUNTS FOR RED HAT OPENSHIFT SERVICE ON AWS CLUSTERS
7.4.1. Update billing accounts for Red Hat OpenShift Service on AWS clusters

161

161

161

161

161
162
162
162
162
162
163
163
163
163
163
164
164
164
164
164
165
165
165
165
165
166
166
166
166
166
167
167
167
168
168
169
169
170
170

171
172
172
173
173
174
174
174

Table of Contents

n

Red Hat OpenShift Service on AWS 4 CLI tools

CHAPTER 1. RED HAT OPENSHIFT SERVICE ON AWS CLI

TOOLS OVERVIEW
A user performs a range of operations while working on Red Hat OpenShift Service on AWS such as the
following:
® Managing clusters

Building, deploying, and managing applications
Managing deployment processes

Creating and maintaining Operator catalogs

Red Hat OpenShift Service on AWS offers a set of command-line interface (CLI) tools that simplify
these tasks by enabling users to perform various administration and development operations from the
terminal. These tools expose simple commands to manage the applications, as well as interact with each
component of the system.

1.1. LIST OF CLITOOLS

The following set of CLI tools are available in Red Hat OpenShift Service on AWS:

12

OpenShift CLI (oc¢): This is the most commonly used CLI tool by Red Hat OpenShift Service on
AWS users. It helps both cluster administrators and developers to perform end-to-end
operations across Red Hat OpenShift Service on AWS using the terminal. Unlike the web
console, it allows the user to work directly with the project source code using command scripts.

Knative CLI (kn): The Knative (kn) CLI tool provides simple and intuitive terminal commands
that can be used to interact with OpenShift Serverless components, such as Knative Serving and
Eventing.

Pipelines CLI (tkn): OpenShift Pipelines is a continuous integration and continuous delivery
(Cl/CD) solution in Red Hat OpenShift Service on AWS, which internally uses Tekton. The tkn
CLI tool provides simple and intuitive commands to interact with OpenShift Pipelines using the
terminal.

opm CLI: The opm CLI tool helps the Operator developers and cluster administrators to create
and maintain the catalogs of Operators from the terminal.

ROSA CLI (rosa): Use the rosa CLI to create, update, manage, and delete Red Hat OpenShift
Service on AWS clusters and resources.

CHAPTER 2. OPENSHIFT CLI (OC)

CHAPTER 2. OPENSHIFT CLI (OC)

21.GETTING STARTED WITH THE OPENSHIFT CLI

2.1.1. About the OpenShift CLI

With the OpenShift CLI (o¢), you can create applications and manage Red Hat OpenShift Service on
AWS projects from a terminal. The OpenShift CLI is ideal in the following situations:

® Working directly with project source code.
® Scripting Red Hat OpenShift Service on AWS operations

® Managing projects while restricted by bandwidth resources and the web console is unavailable.

2.1.2. Installing the OpenShift CLI

You can install the OpenShift CLI (oc¢) either by downloading the binary or by using an RPM.

2.1.3. Installing the OpenShift CLI on Linux

To manage your cluster and deploy applications from the command line, install the OpenShift CLI (o¢)
binary on Linux.

IMPORTANT

If you installed an earlier version of o¢, you cannot use it to complete all of the commands
in Red Hat OpenShift Service on AWS.

Download and install the new version of oc.

Procedure

1. Navigate to the Download OpenShift Container Platform page on the Red Hat Customer Portal.
2. Select the architecture from the Product Variant list.

3. Select the appropriate version from the Version list.
4. Click Download Now next to the OpenShift v4 Linux Clients entry and save the file.

5. Unpack the archive:

I $ tar xvf <file>

6. Place the oc binary in a directory that is on your PATH.
To check your PATH, execute the following command:

I $ echo $PATH

Verification

13

https://access.redhat.com/downloads/content/290

Red Hat OpenShift Service on AWS 4 CLI tools

e After you install the OpenShift CLI, it is available using the oc command:

I $ oc <command>

2.1.4. Installing the OpenShift CLI on Windows

To manage your cluster and deploy applications from the command line, install OpenShift CLI (o¢)
binary on Windows.

IMPORTANT

If you installed an earlier version of o¢, you cannot use it to complete all of the commands
in Red Hat OpenShift Service on AWS.

Download and install the new version of oc.

Procedure

1. Navigate to the Download OpenShift Container Platform page on the Red Hat Customer Portal.
2. Select the appropriate version from the Version list.

3. Click Download Now next to the OpenShift v4 Windows Client entry and save the file.
4. Extract the archive with a ZIP program.

5. Move the oc binary to a directory that is on your PATH variable.
To check your PATH variable, open the command prompt and execute the following command:

I C:\> path

Verification

e After you install the OpenShift CLI, it is available using the oc command:

I C:\> oc <command>

2.1.5. Installing the OpenShift CLI on macOS

To manage your cluster and deploy applications from the command line, install the OpenShift CLI (o¢)
binary on macOS.

IMPORTANT

If you installed an earlier version of o¢, you cannot use it to complete all of the commands
in Red Hat OpenShift Service on AWS.

Download and install the new version of oc.

Procedure

1. Navigate to the Download OpenShift Container Platform on the Red Hat Customer Portal.

14

https://access.redhat.com/downloads/content/290
https://access.redhat.com/downloads/content/290

CHAPTER 2. OPENSHIFT CLI (OC)

2. Select the appropriate version from the Version drop-down list.

3. Click Download Now next to the OpenShift v4 macOS Clientsentry and save the file.

4. Unpack and unzip the archive.

5. Move the oc binary to a directory on your PATH variable.
To check your PATH variable, open a terminal and execute the following command:

I $ echo $PATH

Verification

e Verify your installation by using an o¢ command:

I $ oc <command>

2.1.5.1. Installing the OpenShift CLI by using the web console

You can install the OpenShift CLI (o¢) to interact with Red Hat OpenShift Service on AWS clusters
from a web console. You can install oc on Linux, Windows, or macOS.

IMPORTANT

If you installed an earlier version of o¢, you cannot use it to complete all of the commands
in Red Hat OpenShift Service on AWS. Download and install the new version of oc.

2.1.5.1.1. Installing the OpenShift CLI on Linux using the web console

You can install the OpenShift CLI (o¢) binary on Linux by using the following procedure.

Procedure

1. From the web console, click ?.

RedHat e
OpenShift #=OAl
Container Platform

© © kubezadmin v

Quick Starts

You are logged in as a temporary administrative user. Update the cluster OAuth configuration to allow others to

©¢ Administrator v
Document tation 4

Overview Command Line Tools kstart available X

Report Bug to Red Hat

Home 7

Overview Cluster
About

Projects

Learning Portal z
View alerts View events

Openshift Blog 2]

Se h .
eare Details View settings Status

Explore
Cluster API Address @ Cluster @ Control Plane @ Operators

2. Click Command Line Tools.

15

Red Hat OpenShift Service on AWS 4 CLlI tools

RedHat ves .
OpenShift = o © © kube:admin v
Container Platform

You are logged in as a temporary administrative user. Update the cluster OAuth configuration to allow others to login.

¢ Administrator v

Command Line Tools
Home
Overview Copy Login Command &

Projects
Search oc - OpenShift Command Line Interface (CLI)

Expl
9 With the OpenShift command line interface, you can create applications and manage OpenShift projects from a terminal.
B The oc binary offers the same capabilities as the kubect! binary, but it is further extended to natively support OpenShift Container Platform features,

+ Download oc for Linux for x86_647
Operators « Download oc for Mac for x86_640F

» Download oc for Windows for x86_64 &'

« Download oc for Linux for ARM 64 (unsupported) @
Widedts « Download oc for Linux for IBM Power, little endian @
« Download oc for Linux for [BM Z &

* LICENSE®

Networking

3. Select appropriate oc binary for your Linux platform, and then click Download oc for Linux
4. Save the file.
5. Unpack the archive.

I $ tar xvf <file>

6. Move the oc binary to a directory that is on your PATH.
To check your PATH, execute the following command:

I $ echo $PATH
After you install the OpenShift CLI, it is available using the o¢ command:
I $ oc <command>

2.1.5.1.2. Installing the OpenShift CLI on Windows using the web console

You can install the OpenShift CLI (oc¢) binary on Windows by using the following procedure.

Procedure

1. From the web console, click ?.

RedHat e .
OpenShift s A © © kube:admin ~
Container Platform

Quick Starts

You are logged in as a temporary administrative user. Update the cluster OAuth configuration to allow others to

¢ Administrator v
Documentation

Overview Command Line Tools kstart available X
Home
Report Bug to Red Hat ©

Overview Cluster
About

Projects

Learning Portal z
View alerts View events

Se h .
eare Details View settings Status
Openshift Blog 4

Explore
Cluster API Address @ Cluster @ Control Plane @ Operators

2. Click Command Line Tools.

16

CHAPTER 2. OPENSHIFT CLI (OC)

RedHat
OpenShift
Container Platform

a O @ kube:admin ¥

You are logged in as a temporary administrative user. Update the cluster OAuth configuration to allow others to login.

&% Administrator v

Command Line Tools

Home

Overvi
verview Copy Login Command @

Projects

Search oc - OpenShift Command Line Interface (CLI)

Expl
9 With the OpenShift command line interface, you can create applications and manage OpenShift projects from a terminal.

s The oc binary offers the same capabilities as the kubect! binary, but it is further extended to natively support OpenShift Container Platform features,
« Download oc for Linux for x86_64 &

Operators « Download oc for Mac for x86_64 &

» Download oc for Windows for x86_64 &'

« Download oc for Linux for ARM 64 (unsupported) @

« Download oc for Linux for IBM Power, little endian @

« Download oc for Linux for IBM Z &t

* LICENSE®'

Workloads

Networking

3. Select the oc binary for Windows platform, and then click Download oc for Windows for
x86_64.

4. Save the file.
5. Unzip the archive with a ZIP program.

6. Move the oc binary to a directory that is on your PATH.
To check your PATH, open the command prompt and execute the following command:

I C:\> path
After you install the OpenShift CLI, it is available using the o¢ command:
I C:\> oc <command>

2.1.5.1.3. Installing the OpenShift CLI on macOS using the web console

You can install the OpenShift CLI (o¢) binary on macOS by using the following procedure.

Procedure

1. From the web console, click ?.

RedHat e
OpenShift H o o ©
Container Platform

kube:admin v

Quick Starts

You are logged in as a temporary administrative user. Update the cluster OAuth configuration to allow others to

o2 Administrator v

Documentation

Overview Command Line Tools kstartavailable X
Home

Report Bug to Red Hat &

Overview Cluster
About

Projects

Search Learning Portal 3

Details View settings Status View alerts View events

Openshift Blog 2]

Explore

Cluster API Address @ Cluster @ Control Plane @ Operators

2. Click Command Line Tools.

17

Red Hat OpenShift Service on AWS 4 CLI tools

RedHat -
OpenShift #HOoAa
Container Platform

© e kube:admin ¥

You are logged in as a temporary administrative user. Update the cluster OAuth configuration to allow others to login.

&% Administrator v

Command Line Tools
Home v

Overvi
verview Copy Login Command @

Projects

EEE oc - OpenShift Command Line Interface (CLI)

Explore With the OpenShift command line interface, you can create applications and manage OpenShift projects from a terminal.

s The oc binary offers the same capabilities as the kubect! binary, but it is further extended to natively support OpenShift Container Platform features,
« Download oc for Linux for x86_64 &

Operators « Download oc for Mac for x86_64 &

» Download oc for Windows for x86_64 &'

« Download oc for Linux for ARM 64 (unsupported) @

« Download oc for Linux for IBM Power, little endian @

« Download oc for Linux for [BM Z e

Networking * LICENSE®

Workloads

NOTE

For macOS arm64, click Download oc for Mac for ARM 64

4. Save the file.
5. Unpack and unzip the archive.

6. Move the oc binary to a directory on your PATH.
To check your PATH, open a terminal and execute the following command:

I $ echo $PATH
After you install the OpenShift CLI, it is available using the o¢ command:

I $ oc <command>

2.1.5.2. Installing the OpenShift CLI by using an RPM

For Red Hat Enterprise Linux (RHEL), you can install the OpenShift CLI (o¢) as an RPM if you have an
active Red Hat OpenShift Service on AWS subscription on your Red Hat account.

IMPORTANT

You must install oc for RHEL 9 by downloading the binary. Installing oc by using an RPM
package is not supported on Red Hat Enterprise Linux (RHEL) 9.

Prerequisites

® Must have root or sudo privileges.

Procedure

1. Register with Red Hat Subscription Manager:

I # subscription-manager register

18

CHAPTER 2. OPENSHIFT CLI (OC)

2. Pull the latest subscription data:

I # subscription-manager refresh
3. List the available subscriptions:

I # subscription-manager list --available --matches *OpenShift*'

4. In the output for the previous command, find the pool ID for an Red Hat OpenShift Service on
AWS subscription and attach the subscription to the registered system:

I # subscription-manager attach --pool=<pool_id>

5. Enable the repositories required by Red Hat OpenShift Service on AWS 4.
I # subscription-manager repos --enable="rhocp-4-for-rhel-8-x86_64-rpms"
6. Install the openshift-clients package:

I # yum install openshift-clients
Verification
e Verify your installation by using an o¢ command:
I $ oc <command>
2.1.5.3. Installing the OpenShift CLI by using Homebrew
For macOS, you can install the OpenShift CLI (o¢) by using the Homebrew package manager.

Prerequisites

® You must have Homebrew (brew) installed.

Procedure

® |nstall the openshift-cli package by running the following command:

I $ brew install openshift-cli

Verification

e Verify your installation by using an o¢ command:

I $ oc <command>

2.1.6. Logging in to the OpenShift CLI

You can log in to the OpenShift CLI (o¢) to access and manage your cluster.

19

https://brew.sh
https://formulae.brew.sh/formula/openshift-cli

Red Hat OpenShift Service on AWS 4 CLI tools

Prerequisites
® You must have access to a Red Hat OpenShift Service on AWS cluster.

® The OpenShift CLI (o¢) is installed.

NOTE

To access a cluster that is accessible only over an HTTP proxy server, you can set the
HTTP_PROXY, HTTPS_PROXY and NO_PROXY variables. These environment variables
are respected by the oc CLI so that all communication with the cluster goes through the
HTTP proxy.

Authentication headers are sent only when using HTTPS transport.

Procedure

1. Enter the oc login command and pass in a user name:

I $ oc login -u userf

2. When prompted, enter the required information:

Example output

Server [https://localhost:8443]: https://openshift.example.com:6443 ﬂ

The server uses a certificate signed by an unknown authority.

You can bypass the certificate check, but any data you send to the server could be
intercepted by others.

Use insecure connections? (y/n): y g

Authentication required for https://openshift.example.com:6443 (openshift)
Username: user1

Password: 6
Login successful.

You don't have any projects. You can try to create a new project, by running
oc new-project <projectname>

Welcome! See 'oc help' to get started.

ﬂ Enter the Red Hat OpenShift Service on AWS server URL.
9 Enter whether to use insecure connections.

9 Enter the user’s password.

20

CHAPTER 2. OPENSHIFT CLI (OC)

NOTE

If you are logged in to the web console, you can generate an oc login command that
includes your token and server information. You can use the command to log in to the
OpenShift CLI (oe) without the interactive prompts. To generate the command, select
Copy login command from the username drop-down menu at the top right of the web
console.

You can now create a project or issue other commands for managing your cluster.

2.1.7. Logging in to the OpenShift CLI using a web browser

You can log in to the OpenShift CLI (o¢) with the help of a web browser to access and manage your
cluster. This allows users to avoid inserting their access token into the command line.

WARNING
Logging in to the CLI through the web browser runs a server on localhost with

HTTP, not HTTPS; use with caution on multi-user workstations.

Prerequisites
® You must have access to an Red Hat OpenShift Service on AWS cluster.

® You must have installed the OpenShift CLI (o¢).

® You must have a browser installed.

Procedure

1. Enter the oc login command with the --web flag:
I $ oc login <cluster_url> --web ﬂ

Optionally, you can specify the server URL and callback port. For example, oc login
<cluster_url> --web --callback-port 8280 localhost:8443.

2. The web browser opens automatically. If it does not, click the link in the command output. If you
do not specify the Red Hat OpenShift Service on AWS server oc tries to open the web console
of the cluster specified in the current oc configuration file. If no oc configuration exists, oc
prompts interactively for the server URL.

Example output

Opening login URL in the default browser: https://openshift.example.com
Opening in existing browser session.

3. If more than one identity provider is available, select your choice from the options provided.

21

Red Hat OpenShift Service on AWS 4 CLI tools

4. Enter your username and password into the corresponding browser fields. After you are logged
in, the browser displays the text access token received successfully; please return to your
terminal.

5. Check the CLI for a login confirmation.

Example output

Login successful.
You don't have any projects. You can try to create a new project, by running

oc new-project <projectname>

NOTE

The web console defaults to the profile used in the previous session. To switch between
Administrator and Developer profiles, log out of the Red Hat OpenShift Service on AWS
web console and clear the cache.

You can now create a project or issue other commands for managing your cluster.

2.1.8. Using the OpenShift CLI

Review the following sections to learn how to complete common tasks using the CLI.

2.1.8.1. Creating a project

Use the oc new-project command to create a new project.
I $ oc new-project my-project
Example output

I Now using project "my-project” on server "https://openshift.example.com:6443".

2.1.8.2. Creating a new app

Use the oc new-app command to create a new application.

I $ oc new-app https://github.com/sclorg/cakephp-ex

Example output

--> Found image 40de956 (9 days old) in imagestream "openshift/php" under tag "7.2" for "php"

Run 'oc status' to view your app.

22

CHAPTER 2. OPENSHIFT CLI (OC)

2.1.8.3. Viewing pods

Use the oc get pods command to view the pods for the current project.

NOTE

When you run oc¢ inside a pod and do not specify a namespace, the namespace of the

pod is used by default.

I $ oc get pods -0 wide
Example output

NAME READY STATUS RESTARTS AGE [P NODE
NOMINATED NODE

cakephp-ex-1-build 0/1 Completed 0 5m45s 10.131.0.10 ip-10-0-141-74.ec2.internal

<none>

cakephp-ex-1-deploy 0/1 Completed 0 3m44s 10.129.2.9 ip-10-0-147-65.ec2.internal

<none>

cakephp-ex-1-ktz97 1/1 Running 0 3m33s 10.128.2.11 ip-10-0-168-105.ec2.internal

<none>

2.1.8.4. Viewing pod logs

Use the oc logs command to view logs for a particular pod.
I $ oc logs cakephp-ex-1-deploy
Example output

--> Scaling cakephp-ex-1 to 1
--> Success

2.1.8.5. Viewing the current project

Use the oc project command to view the current project.
I $ oc project
Example output

I Using project "my-project” on server "https://openshift.example.com:6443".

2.1.8.6. Viewing the status for the current project

Use the oc status command to view information about the current project, such as services,
deployments, and build configs.

I $ oc status

23

Red Hat OpenShift Service on AWS 4 CLI tools

Example output

In project my-project on server https://openshift.example.com:6443
svc/cakephp-ex - 172.30.236.80 ports 8080, 8443
dc/cakephp-ex deploys istag/cakephp-ex:latest <-
bc/cakephp-ex source builds https://github.com/sclorg/cakephp-ex on openshift/php:7.2
deployment #1 deployed 2 minutes ago - 1 pod

3 infos identified, use 'oc status --suggest' to see details.

2.1.8.7. Listing supported API resources

Use the oc api-resources command to view the list of supported API resources on the server.

I $ oc api-resources

Example output

NAME SHORTNAMES APIGROUP NAMESPACED KIND
bindings true Binding

componentstatuses cs false ComponentStatus
configmaps cm true ConfigMap

2.1.9. Getting help

You can get help with CLI commands and Red Hat OpenShift Service on AWS resources in the following
ways:

® Use oc help to get a list and description of all available CLI commands:

Example: Get general help for the CLI
I $ oc help

Example output

OpenShift Client

This client helps you develop, build, deploy, and run your applications on any OpenShift or
Kubernetes compatible

platform. It also includes the administrative commands for managing a cluster under the 'adm'’
subcommand.

Usage:
oc [flags]

Basic Commands:

login Log in to a server
new-project Request a new project
new-app Create a new application

24

CHAPTER 2. OPENSHIFT CLI (OC)

e Use the --help flag to get help about a specific CLI command:

Example: Get help for the oc create command
I $ oc create --help

Example output

Create a resource by filename or stdin
JSON and YAML formats are accepted.

Usage:
oc create -f FILENAME [flags]

e Use the oc explain command to view the description and fields for a particular resource:

Example: View documentation for the Pod resource
I $ oc explain pods

Example output

KIND: Pod
VERSION: v1

DESCRIPTION:
Pod is a collection of containers that can run on a host. This resource is
created by clients and scheduled onto hosts.

FIELDS:
apiVersion <string>
APIVersion defines the versioned schema of this representation of an
object. Servers should convert recognized schemas to the latest internal

value, and may reject unrecognized values. More info:
https://git.k8s.io/community/contributors/devel/api-conventions.md#resources

2.1.10. Logging out of the OpenShift CLI

You can log out the OpenShift CLI to end your current session.

® Use the oc logout command.

I $ oc logout

Example output

25

Red Hat OpenShift Service on AWS 4 CLI tools

I Logged "user1" out on "https://openshift.example.com”

This deletes the saved authentication token from the server and removes it from your configuration file.

2.2. CONFIGURING THE OPENSHIFT CLI

2.2.1. Enabling tab completion

You can enable tab completion for the Bash or Zsh shells.

2.2.1.1. Enabling tab completion for Bash

After you install the OpenShift CLI (o¢), you can enable tab completion to automatically complete oc¢

commands or suggest options when you press Tab. The following procedure enables tab completion for
the Bash shell.

Prerequisites

® You must have the OpenShift CLI (o¢) installed.

® You must have the package bash-completion installed.
Procedure
1. Save the Bash completion code to a file:

I $ oc completion bash > oc_bash_completion
2. Copy the file to /etc/bash_completion.d/:
I $ sudo cp oc_bash_completion /etc/bash_completion.d/

You can also save the file to a local directory and source it from your .bashrec file instead.

Tab completion is enabled when you open a new terminal.

2.2.1.2. Enabling tab completion for Zsh

After you install the OpenShift CLI (o¢), you can enable tab completion to automatically complete oc¢

commands or suggest options when you press Tab. The following procedure enables tab completion for
the Zsh shell.

Prerequisites

® You must have the OpenShift CLI (o¢) installed.

Procedure

® To add tab completion for oc to your .zshre file, run the following command:

$ cat >>~/.zshrc<<EOF
autoload -Uz compinit

26

CHAPTER 2. OPENSHIFT CLI (OC)

compinit

if [5commands[oc]]; then
source <(oc completion zsh)
compdef _oc oc

fi

EOF

Tab completion is enabled when you open a new terminal.

2.2.2. Accessing kubeconfig by using the oc CLI

You can use the oc CLI to log in to your OpenShift cluster and retrieve a kubeconfig file for accessing
the cluster from the command line.

Prerequisites

® You have access to the Red Hat OpenShift Service on AWS web console or APl server
endpoint.

Procedure

1. Log in to your OpenShift cluster by running the following command:
I $ oc login <api-server-url> -u <username> -p <password> m

ﬂ Specify the full API server URL. For example: https://api.my-cluster.example.com:6443.
9 Specify a valid username. For example: kubeadmin.

9 Provide the password for the specified user. For example, the kubeadmin password
generated during cluster installation.

2. Save the cluster configuration to a local file by running the following command:

I $ oc config view --raw > kubeconfig

3. Set the KUBECONFIG environment variable to point to the exported file by running the
following command:

I $ export KUBECONFIG=./kubeconfig
4. Use oc to interact with your OpenShift cluster by running the following command:

I $ oc get nodes

NOTE

If you plan to reuse the exported kubeconfig file across sessions or machines, store it
securely and avoid committing it to source control.

2.3. USAGE OF OC AND KUBECTL COMMANDS

27

https://api.my-cluster.example.com:6443

Red Hat OpenShift Service on AWS 4 CLI tools

The Kubernetes command-line interface (CLI), kubectl, can be used to run commands against a
Kubernetes cluster. Because Red Hat OpenShift Service on AWS is a certified Kubernetes distribution,
you can use the supported kubectl binaries that ship with Red Hat OpenShift Service on AWS, or you
can gain extended functionality by using the o¢ binary.

2.3.1. The oc binary

The oc binary offers the same capabilities as the kubectl binary, but it extends to natively support
additional Red Hat OpenShift Service on AWS features, including:

e Full support for Red Hat OpenShift Service on AWS resources
Resources such as DeploymentConfig, BuildConfig, Route, ImageStream, and
ImageStreamTag objects are specific to Red Hat OpenShift Service on AWS distributions, and
build upon standard Kubernetes primitives.

® Authentication

® Additional commands
The additional command oc new-app, for example, makes it easier to get new applications
started using existing source code or pre-built images. Similarly, the additional command oc
new-project makes it easier to start a project that you can switch to as your default.

IMPORTANT

If you installed an earlier version of the oc¢ binary, you cannot use it to complete all of the
commands in Red Hat OpenShift Service on AWS . If you want the latest features, you
must download and install the latest version of the oc¢ binary corresponding to your Red
Hat OpenShift Service on AWS server version.

Non-security APl changes will involve, at minimum, two minor releases (4.1to 4.2 to 4.3, for example) to
allow older oc binaries to update. Using new capabilities might require newer oc binaries. A 4.3 server
might have additional capabilities that a 4.2 oc¢ binary cannot use and a 4.3 oc binary might have
additional capabilities that are unsupported by a 4.2 server.

Table 2.1. Compatibility Matrix

X.Y (oc Client) X.Y+N @] (oc Client)

X.Y (Server) o o
X.Y+N 2] (Server) o o

[a] Where N is a number greater than or equal to 1.

o Fully compatible.

o oc client might not be able to access server features.

28

CHAPTER 2. OPENSHIFT CLI (OC)

o oc client might provide options and features that might not be compatible with the accessed
server.

2.3.2. The kubectl binary

The kubectl binary is provided as a means to support existing workflows and scripts for new Red Hat
OpenShift Service on AWS users coming from a standard Kubernetes environment, or for those who
prefer to use the kubectl CLI. Existing users of kubectl can continue to use the binary to interact with
Kubernetes primitives, with no changes required to the Red Hat OpenShift Service on AWS cluster.

You can install the supported kubectl binary by following the steps to Install the OpenShift CLI. The
kubectl binary is included in the archive if you download the binary, or is installed when you install the
CLI by using an RPM.

For more information, see the kubectl documentation.

2.4. MANAGING CLI PROFILES

A CLI configuration file allows you to configure different profiles, or contexts, for use with the CLI tools
overview. A context consists of a Red Hat OpenShift Service on AWS server information associated with
a nickname.

2.4.1. About switches between CLI profiles

Contexts allow you to easily switch between multiple users across multiple Red Hat OpenShift Service
on AWS servers, or clusters, when using CLI operations. Nicknames make managing CLI configurations
easier by providing short-hand references to contexts, user credentials, and cluster details. After a user
logs in with the oc CLI for the first time, Red Hat OpenShift Service on AWS creates a ~/.kube/config
file if one does not already exist. As more authentication and connection details are provided to the CLI,
either automatically during an oc¢ login operation or by manually configuring CLI profiles, the updated
information is stored in the configuration file:

CLI config file

apiVersion: vi
clusters: ﬂ
- cluster:
insecure-skip-tls-verify: true
server: https://openshift1.example.com:8443
name: openshift1.example.com:8443
- cluster:
insecure-skip-tls-verify: true
server: https://openshift2.example.com:8443
name: openshift2.example.com:8443
contexts: @
- context:
cluster: openshift1.example.com:8443
namespace: alice-project
user: alice/openshift1.example.com:8443
name: alice-project/openshift1.example.com:8443/alice
- context:
cluster: openshift1.example.com:8443
namespace: joe-project

29

https://kubernetes.io/docs/reference/kubectl/overview/

Red Hat OpenShift Service on AWS 4 CLI tools

©

o

user: alice/openshift1.example.com:8443
name: joe-project/openshifti/alice
current-context: joe-project/openshift1.example.com:8443/alice 6
kind: Config
preferences: {}
users:
- name: alice/openshift1.example.com:8443
user:
token: xZHd2piv5_9vQrg-SKXRJ2DsI9SceNJAhNTIEKTb8k

The clusters section defines connection details for Red Hat OpenShift Service on AWS clusters,
including the address for their master server. In this example, one cluster is nicknamed
openshift1.example.com:8443 and another is nicknamed openshift2.example.com:8443.

This contexts section defines two contexts: one nicknamed alice-
project/openshifti.example.com:8443/alice, using the alice-project project,
openshift1.example.com:8443 cluster, and alice user, and another nicknamed joe-
project/openshifti.example.com:8443/alice, using the joe-project project,
openshift1.example.com:8443 cluster and alice user.

The current-context parameter shows that the joe-project/openshifti.example.com:8443/alice
context is currently in use, allowing the alice user to work in the joe-project project on the
openshift1.example.com:8443 cluster.

The users section defines user credentials. In this example, the user nickname
alice/openshift1.example.com:8443 uses an access token.

The CLI can support multiple configuration files which are loaded at runtime and merged together along
with any override options specified from the command line. After you are logged in, you can use the oc
status or oc project command to verify your current working environment:

Verify the current working environment

$ oc status

Example output

30

oc status
In project Joe's Project (joe-project)

service database (172.30.43.12:5434 -> 3306)
database deploys docker.io/openshift/mysql-55-centos7:latest
#1 deployed 25 minutes ago - 1 pod

service frontend (172.30.159.137:5432 -> 8080)
frontend deploys origin-ruby-sample:latest <-
builds https://github.com/openshift/ruby-hello-world with joe-project/ruby-20-centos7:latest
#1 deployed 22 minutes ago - 2 pods

To see more information about a service or deployment, use 'oc describe service <name>' or 'oc
describe dc <name>'.
You can use 'oc get all' to see lists of each of the types described in this example.

CHAPTER 2. OPENSHIFT CLI (OC)

List the current project
I $ oc project
Example output

Using project "joe-project” from context named "joe-project/openshift1.example.com:8443/alice" on
server "https://openshift1.example.com:8443".

You can run the oc login command again and supply the required information during the interactive
process, to log in using any other combination of user credentials and cluster details. A context is
constructed based on the supplied information if one does not already exist. If you are already logged in
and want to switch to another project the current user already has access to, use the oc project
command and enter the name of the project:

I $ oc project alice-project
Example output

I Now using project "alice-project” on server "https://openshift1.example.com:8443".

At any time, you can use the oc config view command to view your current CLI configuration, as seen in
the output. Additional CLI configuration commands are also available for more advanced usage.

NOTE

If you have access to administrator credentials but are no longer logged in as the default
system user system:admin, you can log back in as this user at any time as long as the
credentials are still present in your CLI config file. The following command logs in and
switches to the default project:

I $ oc login -u system:admin -n default

2.4.2. Manual configuration of CLI profiles

NOTE

This section covers more advanced usage of CLI configurations. In most situations, you
can use the oc login and oc project commands to log in and switch between contexts

and projects.

If you want to manually configure your CLI config files, you can use the oc config command instead of
directly modifying the files. The oc config command includes a number of helpful sub-commands for
this purpose:

Table 2.2. CLI configuration subcommands

31

Red Hat OpenShift Service on AWS 4 CLI tools

Subcom

mand

set-
cluster

set-
context

use-
context

set

unset

view

Sets a cluster entry in the CLI config file. If the referenced cluster nickname already exists, the
specified information is merged in.

$ oc config set-cluster <cluster_nickname> [--server=<master_ip_or_fqdn>]
[--certificate-authority=<path/to/certificate/authority>]
[--api-version=<apiversion>] [--insecure-skip-tls-verify=true]

Sets a context entry in the CLI config file. If the referenced context nickname already exists, the
specified information is merged in.

$ oc config set-context <context_nickname> [--cluster=<cluster_nickname>]
[--user=<user_nickname>] [--namespace=<namespace>]

Sets the current context using the specified context nickname.

I $ oc config use-context <context_nickname>

Sets an individual value in the CLI config file.
I $ oc config set <property_names <property_value>

The <property_names is a dot-delimited name where each token represents either an attribute
name or a map key. The <property_values is the new value being set.

Unsets individual values in the CLI config file.
I $ oc config unset <property_name>

The <property_names= is a dot-delimited name where each token represents either an attribute
name or a map key.

Displays the merged CLI configuration currently in use.
I $ oc config view
Displays the result of the specified CLI config file.

I $ oc config view --config=<specific_filename>

Example usage

® | ogin as auser that uses an access token. This token is used by the alice user:

$ oc login https://openshift1.example.com --
token=ns7yVhuRNpDM9cgzfhhxQ7bM5s7N2ZVrkZepSRf4LCO

32

CHAPTER 2. OPENSHIFT CLI (OC)

® View the cluster entry automatically created:

I $ oc config view

Example output

apiVersion: v1
clusters:
- cluster:
insecure-skip-tls-verify: true
server: https://openshift1.example.com
name: openshift1-example-com
contexts:
- context:
cluster: openshift1-example-com
namespace: default
user: alice/openshift1-example-com
name: default/openshift1-example-com/alice
current-context: default/openshift1-example-com/alice
kind: Config
preferences: {}
users:
- name: alice/openshift1.example.com
user:
token: ns7yVhuRNpDM9cgzfthhxQ7bM5s7N2Z2VrkZepSRf4LCO

® Update the current context to have users log in to the desired namespace:
I $ oc config set-context “oc config current-context’ --namespace=<project_name>

® Examine the current context, to confirm that the changes are implemented:
I $ oc whoami -c

All subsequent CLI operations uses the new context, unless otherwise specified by overriding CLI
options or until the context is switched.
2.4.3. Load and merge rules

You can follow these rules, when issuing CLI operations for the loading and merging order for the CLI
configuration:

e CLI config files are retrieved from your workstation, using the following hierarchy and merge
rules:

o If the --config option is set, then only that file is loaded. The flag is set once and no merging
takes place.

o |f the SKUBECONFIG environment variable is set, then it is used. The variable can be a list
of paths, and if so the paths are merged together. When a value is modified, it is modified in
the file that defines the stanza. When a value is created, it is created in the first file that
exists. If no files in the chain exist, then it creates the last file in the list.

o Otherwise, the ~/.kube/config file is used and no merging takes place.

33

Red Hat OpenShift Service on AWS 4 CLI tools

® The context to use is determined based on the first match in the following flow:
o The value of the --context option.
o The current-context value from the CLI config file.
o Anempty value is allowed at this stage.
® The user and cluster to use is determined. At this point, you may or may not have a context; they

are built based on the first match in the following flow, which is run once for the user and once
for the cluster:

o The value of the --user for user name and --cluster option for cluster name.
o If the --context option is present, then use the context’s value.
o Anempty value is allowed at this stage.
® The actual cluster information to use is determined. At this point, you may or may not have

cluster information. Each piece of the cluster information is built based on the first match in the
following flow:

o The values of any of the following command-line options:
m --server,
m --api-version
m --certificate-authority
m --insecure-skip-tls-verify
o If cluster information and a value for the attribute is present, then use it.
o |f you do not have a server location, then there is an error.
® The actual user information to use is determined. Users are built using the same rules as clusters,
except that you can only have one authentication technique per user; conflicting techniques

cause the operation to fail. Command-line options take precedence over config file values.
Valid command-line options are:

o --auth-path

o --client-certificate
o --client-key

o --token

® Foranyinformation that is still missing, default values are used and prompts are given for
additional information.

2.5. EXTENDING THE OPENSHIFT CLI WITH PLUGINS

You can write and install plugins to build on the default oc commands, allowing you to perform new and
more complex tasks with the OpenShift CLI.

34

CHAPTER 2. OPENSHIFT CLI (OC)

2.5.1. Writing CLI plugins

You can write a plugin for the OpenShift CLI in any programming language or script that allows you to
write command-line commands. Note that you can not use a plugin to overwrite an existing oc
command.

Procedure

This procedure creates a simple Bash plugin that prints a message to the terminal when the oc foo
command is issued.

1. Create a file called oc-foo.
When naming your plugin file, keep the following in mind:

e The file must begin with oc- or kubectl- to be recognized as a plugin.

® The file name determines the command that invokes the plugin. For example, a plugin with
the file name oc-foo-bar can be invoked by a command of oc foo bar. You can also use
underscores if you want the command to contain dashes. For example, a plugin with the file
name oc-foo_bar can be invoked by a command of oc foo-bar.

2. Add the following contents to the file.
#!/bin/bash

optional argument handling
if ["$1" == "version"]]
then
echo "1.0.0"
exit 0
fi
optional argument handling
if [["$1" == "config"]]
then
echo $KUBECONFIG
exit 0
fi

echo "l am a plugin named kubectl-foo"
After you install this plugin for the OpenShift CLI, it can be invoked using the oc foo command.

Additional resources
® Review the Sample plugin repository for an example of a plugin written in Go.

® Review the CLI runtime repository for a set of utilities to assist in writing plugins in Go.

2.5.2. Installing and using CLI plugins

After you write a custom plugin for the OpenShift CLI, you must install the plugin before use.

Prerequisites

35

https://github.com/kubernetes/sample-cli-plugin
https://github.com/kubernetes/cli-runtime/

Red Hat OpenShift Service on AWS 4 CLI tools

® You must have the oc CLI tool installed.

® You must have a CLI plugin file that begins with oc- or kubectl-.

Procedure

1. If necessary, update the plugin file to be executable.

I $ chmod +x <plugin_file>

2. Place the file anywhere in your PATH, such as /ust/local/bin/.

I $ sudo mv <plugin_file> /usr/local/bin/.

3. Run oc plugin list to make sure that the plugin is listed.

I $ oc plugin list
Example output

The following compatible plugins are available:

/ust/local/bin/<plugin_file>

If your plugin is not listed here, verify that the file begins with oc- or kubectl-, is executable, and
is on your PATH.

. Invoke the new command or option introduced by the plugin.

For example, if you built and installed the kubectl-ns plugin from the Sample plugin repository,
you can use the following command to view the current namespace.

I $ocns

Note that the command to invoke the plugin depends on the plugin file name. For example, a
plugin with the file name of oc-foo-bar is invoked by the oc foo bar command.

2.6. OPENSHIFT CLI DEVELOPER COMMAND REFERENCE

This reference provides descriptions and example commands for OpenShift CLI (oc) developer
commands.

Run oc help to list all commands or run o¢c <command> --help to get additional details for a specific
command.

2.6.1. OpenShift CLI (oc) developer commands

2.6.1.1. oc annotate

Update the annotations on a resource

Example usage

36

https://github.com/kubernetes/sample-cli-plugin

CHAPTER 2. OPENSHIFT CLI (OC)

Update pod 'foo’ with the annotation 'description’ and the value 'my frontend’
If the same annotation is set multiple times, only the last value will be applied
oc annotate pods foo description="my frontend'

Update a pod identified by type and name in "pod.json”
oc annotate -f pod.json description="my frontend'

Update pod 'foo' with the annotation ‘description’ and the value ‘my frontend running nginx’,
overwriting any existing value

oc annotate --overwrite pods foo description="my frontend running nginx'

Update all pods in the namespace
oc annotate pods --all description="my frontend running nginx'

Update pod 'foo’ only if the resource is unchanged from version 1
oc annotate pods foo description="my frontend running nginx' --resource-version=1

Update pod 'foo’ by removing an annotation named 'description’ if it exists

Does not require the --overwrite flag
oc annotate pods foo description-

2.6.1.2. oc api-resources

Print the supported API resources on the server

Example usage

Print the supported API resources
ocC api-resources

Print the supported API resources with more information
ocC api-resources -0 wide

Print the supported API resources sorted by a column
ocC api-resources --sort-by=name

Print the supported namespaced resources
ocC api-resources --namespaced=true

Print the supported non-namespaced resources
oc api-resources --namespaced=false

Print the supported API resources with a specific APIGroup

ocC api-resources --api-group=rbac.authorization.k8s.io

2.6.1.3. oc api-versions

Print the supported API versions on the server, in the form of "group/version"

Example usage

Print the supported APl versions
ocC api-versions

37

Red Hat OpenShift Service on AWS 4 CLI tools

2.6.1.4. oc apply

Apply a configuration to a resource by file name or stdin

Example usage

Apply the configuration in pod.json to a pod
oc apply -f ./pod.json

Apply resources from a directory containing kustomization.yaml - e.g. dir/kustomization.yaml|
oc apply -k dir/

Apply the JSON passed into stdin to a pod
cat pod.json | oc apply -f -

Apply the configuration from all files that end with ' json’
oc apply -f ™.json’

Note: --prune is still in Alpha

Apply the configuration in manifest.yaml that matches label app=nginx and delete all other
resources that are not in the file and match label app=nginx

oc apply --prune -f manifest.yaml -| app=nginx

Apply the configuration in manifest.yaml and delete all the other config maps that are not in the file

oc apply --prune -f manifest.yaml --all --prune-allowlist=core/v1/ConfigMap

2.6.1.5. oc apply edit-last-applied

Edit latest last-applied-configuration annotations of a resource/object

Example usage

Edit the last-applied-configuration annotations by type/name in YAML
oc apply edit-last-applied deployment/nginx

Edit the last-applied-configuration annotations by file in JSON
oc apply edit-last-applied -f deploy.yaml -0 json

2.6.1.6. oc apply set-last-applied

Set the last-applied-configuration annotation on a live object to match the contents of a file

Example usage

Set the last-applied-configuration of a resource to match the contents of a file
oc apply set-last-applied -f deploy.yaml

Execute set-last-applied against each configuration file in a directory
oc apply set-last-applied -f path/

Set the last-applied-configuration of a resource to match the contents of a file; will create the

annotation if it does not already exist
oc apply set-last-applied -f deploy.yaml --create-annotation=true

38

CHAPTER 2. OPENSHIFT CLI (OC)

2.6.1.7. oc apply view-last-applied

View the latest last-applied-configuration annotations of a resource/object

Example usage

View the last-applied-configuration annotations by type/name in YAML
oc apply view-last-applied deployment/nginx

View the last-applied-configuration annotations by file in JSON
oc apply view-last-applied -f deploy.yaml -0 json
2.6.1.8. oc attach

Attach to a running container

Example usage

Get output from running pod mypod; use the ‘oc.kubernetes.io/default-container' annotation
for selecting the container to be attached or the first container in the pod will be chosen
oc attach mypod

Get output from ruby-container from pod mypod
oc attach mypod -c ruby-container

Switch to raw terminal mode; sends stdin to 'bash’ in ruby-container from pod mypod
and sends stdout/stderr from ‘bash’ back to the client
oc attach mypod -c ruby-container -i -t

Get output from the first pod of a replica set named nginx
oc attach rs/nginx

2.6.1.9. oc auth can-i

Check whether an action is allowed

Example usage

Check to see if | can create pods in any namespace
oc auth can-i create pods --all-namespaces

Check to see if | can list deployments in my current namespace
oc auth can-i list deployments.apps

Check to see if service account "foo" of namespace "dev" can list pods in the namespace "prod”
You must be allowed to use impersonation for the global option "--as”

oc auth can-i list pods --as=system:serviceaccount:dev:foo -n prod

Check to see if | can do everything in my current namespace ("*"
oc auth can-i ™" "™

means all)

Check to see if | can get the job named "bar" in namespace "foo"
oc auth can-i list jobs.batch/bar -n foo

39

Red Hat OpenShift Service on AWS 4 CLI tools

Check to see if | can read pod logs
oc auth can-i get pods --subresource=log

Check to see if | can access the URL /logs/
oc auth can-i get /logs/

Check to see if | can approve certificates.k8s.io
oc auth can-i approve certificates.k8s.io

List all allowed actions in namespace "foo"

oc auth can-i --list --namespace=foo

2.6.1.10. oc auth reconcile

Reconciles rules for RBAC role, role binding, cluster role, and cluster role binding objects

Example usage

Reconcile RBAC resources from a file
oc auth reconcile -f my-rbac-rules.yaml

2.6.1.11. oc auth whoami

Experimental: Check self subject attributes

Example usage

Get your subject attributes
oc auth whoami

Get your subject attributes in JSON format

oc auth whoami -o json

2.6.1.12. oc autoscale

Autoscale a deployment config, deployment, replica set, stateful set, or replication controller

Example usage

Auto scale a deployment "foo", with the number of pods between 2 and 10, no target CPU
utilization specified so a default autoscaling policy will be used
oc autoscale deployment foo --min=2 --max=10

Auto scale a replication controller "foo", with the number of pods between 1 and 5, target CPU

utilization at 80%
oc autoscale rc foo --max=5 --cpu-percent=80

2.6.1.13. oc cancel-build

Cancel running, pending, or new builds

Example usage

40

CHAPTER 2. OPENSHIFT CLI (OC)

Cancel the build with the given name
oc cancel-build ruby-build-2

Cancel the named build and print the build logs
oc cancel-build ruby-build-2 --dump-logs

Cancel the named build and create a new one with the same parameters
oc cancel-build ruby-build-2 --restart

Cancel multiple builds
oc cancel-build ruby-build-1 ruby-build-2 ruby-build-3

Cancel all builds created from the 'ruby-build’ build config that are in the 'new’ state

oc cancel-build bc/ruby-build --state=new

2.6.1.14. oc cluster-info

Display cluster information

Example usage

Print the address of the control plane and cluster services
oc cluster-info

2.6.1.15. oc cluster-info dump

Dump relevant information for debugging and diagnosis

Example usage

Dump current cluster state to stdout
oc cluster-info dump

Dump current cluster state to /path/to/cluster-state
oc cluster-info dump --output-directory=/path/to/cluster-state

Dump all namespaces to stdout
oc cluster-info dump --all-namespaces

Dump a set of namespaces to /path/to/cluster-state
oc cluster-info dump --namespaces default,kube-system --output-directory=/path/to/cluster-state

2.6.1.16. oc completion

Output shell completion code for the specified shell (bash, zsh, fish, or powershell)

Example usage

Installing bash completion on macOS using homebrew

If running Bash 3.2 included with macOS

brew install bash-completion

or, if running Bash 4.1+

brew install bash-completion@2

If oc is installed via homebrew, this should start working immediately

41

Red Hat OpenShift Service on AWS 4 CLI tools

If you've installed via other means, you may need add the completion to your completion directory
oc completion bash > $(brew --prefix)/etc/bash_completion.d/oc

Installing bash completion on Linux

If bash-completion is not installed on Linux, install the 'bash-completion’ package
via your distribution’s package manager.

Load the oc completion code for bash into the current shell

source <(oc completion bash)

Write bash completion code to a file and source it from .bash_profile
oc completion bash > ~/.kube/completion.bash.inc

printf "

oc shell completion

source '$HOME/.kube/completion.bash.inc'

" >> $HOME/.bash_profile

source $HOME/.bash_profile

Load the oc completion code for zsh[1] into the current shell
source <(oc completion zsh)

Set the oc completion code for zsh[1] to autoload on startup
oc completion zsh > "${fpath[1]}/_oc"

Load the oc completion code for fish[2] into the current shell
oc completion fish | source

To load completions for each session, execute once:

oc completion fish > ~/.config/fish/completions/oc.fish

Load the oc completion code for powershell into the current shell
oc completion powershell | Out-String | Invoke-Expression

Set oc completion code for powershell to run on startup

Save completion code to a script and execute in the profile

oc completion powershell > $HOME\.kube\completion.ps1
Add-Content $PROFILE "$HOME\.kube\completion.ps1"

Execute completion code in the profile

Add-Content $PROFILE "if (Get-Command oc -ErrorAction SilentlyContinue) {
oc completion powershell | Out-String | Invoke-Expression

yr

Add completion code directly to the $PROFILE script

oc completion powershell >> $PROFILE

2.6.1.17. oc config current-context

Display the current-context

Example usage

Display the current-context
oc config current-context

2.6.1.18. oc config delete-cluster

Delete the specified cluster from the kubeconfig

Example usage

42

Delete the minikube cluster
oc config delete-cluster minikube

2.6.1.19. oc config delete-context

Delete the specified context from the kubeconfig

Example usage

Delete the context for the minikube cluster
oc config delete-context minikube

2.6.1.20. oc config delete-user

Delete the specified user from the kubeconfig

Example usage

Delete the minikube user
oc config delete-user minikube

2.6.1.21. oc config get-clusters

Display clusters defined in the kubeconfig

Example usage

List the clusters that oc knows about
oc config get-clusters

2.6.1.22. oc config get-contexts

Describe one or many contexts

Example usage

List all the contexts in your kubeconfig file
oc config get-contexts

Describe one context in your kubeconfig file

oc config get-contexts my-context

2.6.1.23. oc config get-users

Display users defined in the kubeconfig

Example usage

List the users that oc knows about
oc config get-users

CHAPTER 2. OPENSHIFT CLI (OC)

43

Red Hat OpenShift Service on AWS 4 CLI tools

2.6.1.24. oc config new-admin-kubeconfig

Generate, make the server trust, and display a new admin.kubeconfig

Example usage

Generate a new admin kubeconfig
oc config new-admin-kubeconfig

2.6.1.25. oc config new-kubelet-bootstrap-kubeconfig

Generate, make the server trust, and display a new kubelet /etc/kubernetes/kubeconfig

Example usage

Generate a new kubelet bootstrap kubeconfig
oc config new-kubelet-bootstrap-kubeconfig

2.6.1.26. oc config refresh-ca-bundle

Update the OpenShift CA bundle by contacting the APl server

Example usage

Refresh the CA bundle for the current context's cluster
oc config refresh-ca-bundle

Refresh the CA bundle for the cluster named e2e in your kubeconfig
oc config refresh-ca-bundle e2e

Print the CA bundle from the current OpenShift cluster's APl server

oc config refresh-ca-bundle --dry-run

2.6.1.27. oc config rename-context

Rename a context from the kubeconfig file

Example usage

Rename the context 'old-name’ to 'new-name’' in your kubeconfig file
oc config rename-context old-name new-name

2.6.1.28. oc config set

Set an individual value in a kubeconfig file

Example usage

Set the server field on the my-cluster cluster to https://1.2.3.4
oc config set clusters.my-cluster.server https://1.2.3.4

Set the certificate-authority-data field on the my-cluster cluster

44

CHAPTER 2. OPENSHIFT CLI (OC)

oc config set clusters.my-cluster.certificate-authority-data $(echo "cert_data_here" | base64 -i -)

Set the cluster field in the my-context context to my-cluster
oc config set contexts.my-context.cluster my-cluster

Set the client-key-data field in the cluster-admin user using --set-raw-bytes option

oc config set users.cluster-admin.client-key-data cert_data_here --set-raw-bytes=true

2.6.1.29. oc config set-cluster

Set a cluster entry in kubeconfig

Example usage

Set only the server field on the e2e cluster entry without touching other values
oc config set-cluster e2e --server=https://1.2.3.4

Embed certificate authority data for the e2e cluster entry
oc config set-cluster e2e --embed-certs --certificate-authority=~/.kube/e2e/kubernetes.ca.crt

Disable cert checking for the e2e cluster entry
oc config set-cluster e2e --insecure-skip-tls-verify=true

Set the custom TLS server name to use for validation for the e2e cluster entry
oc config set-cluster e2e --tls-server-name=my-cluster-name

Set the proxy URL for the e2e cluster entry

oc config set-cluster e2e --proxy-url=https://1.2.3.4

2.6.1.30. oc config set-context

Set a context entry in kubeconfig

Example usage

Set the user field on the gce context entry without touching other values
oc config set-context gce --user=cluster-admin

2.6.1.31. oc config set-credentials

Set a user entry in kubeconfig

Example usage

Set only the "client-key" field on the "cluster-admin”
entry, without touching other values
oc config set-credentials cluster-admin --client-key=~/.kube/admin.key

Set basic auth for the "cluster-admin” entry
oc config set-credentials cluster-admin --username=admin --password=uXFGweU9I35qcif

Embed client certificate data in the "cluster-admin” entry
oc config set-credentials cluster-admin --client-certificate=~/.kube/admin.crt --embed-certs=true

45

Red Hat OpenShift Service on AWS 4 CLI tools

Enable the Google Compute Platform auth provider for the "cluster-admin” entry
oc config set-credentials cluster-admin --auth-provider=gcp

Enable the OpenlD Connect auth provider for the "cluster-admin" entry with additional arguments

oc config set-credentials cluster-admin --auth-provider=oidc --auth-provider-arg=client-id=foo --auth-
provider-arg=client-secret=bar

Remove the "client-secret" config value for the OpenlD Connect auth provider for the "cluster-
admin" entry

oc config set-credentials cluster-admin --auth-provider=oidc --auth-provider-arg=client-secret-

Enable new exec auth plugin for the "cluster-admin” entry

oc config set-credentials cluster-admin --exec-command=/path/to/the/executable --exec-api-
version=client.authentication.k8s.io/v1ibetal

Enable new exec auth plugin for the "cluster-admin” entry with interactive mode

oc config set-credentials cluster-admin --exec-command=/path/to/the/executable --exec-api-

version=client.authentication.k8s.io/vibetal --exec-interactive-mode=Never

Define new exec auth plugin arguments for the "cluster-admin” entry
oc config set-credentials cluster-admin --exec-arg=arg1 --exec-arg=arg2

Create or update exec auth plugin environment variables for the "cluster-admin” entry
oc config set-credentials cluster-admin --exec-env=keyi=vall --exec-env=key2=val2

Remove exec auth plugin environment variables for the "cluster-admin” entry

oc config set-credentials cluster-admin --exec-env=var-to-remove-

2.6.1.32. oc config unset

Unset an individual value in a kubeconfig file

Example usage

Unset the current-context
oc config unset current-context

Unset namespace in foo context
oc config unset contexts.foo.namespace

2.6.1.33. oc config use-context

Set the current-context in a kubeconfig file

Example usage

Use the context for the minikube cluster
oc config use-context minikube

2.6.1.34. oc config view

Display merged kubeconfig settings or a specified kubeconfig file

Example usage

46

CHAPTER 2. OPENSHIFT CLI (OC)

Show merged kubeconfig settings
oc config view

Show merged kubeconfig settings, raw certificate data, and exposed secrets
oc config view --raw

Get the password for the e2e user
oc config view -0 jsonpath="{.users[?(@.name == "e2e")].user.password}'

2.6.1.35. oc cp

Copy files and directories to and from containers

Example usage

lllmportant Note!!!

Requires that the 'tar' binary is present in your container

image. If 'tar'is not present, 'oc cp' will fail.

#

For advanced use cases, such as symlinks, wildcard expansion or
file mode preservation, consider using 'oc exec'.

Copy /tmp/foo local file to /tmp/bar in a remote pod in namespace <some-namespace>
tar cf - /tmp/foo | oc exec -i -n <some-namespace> <some-pod> -- tar xf - -C /tmp/bar

Copy /tmp/foo from a remote pod to /tmp/bar locally
0C exec -n <some-namespace> <some-pod> -- tar cf - /tmp/foo | tar xf - -C /tmp/bar

Copy /tmp/foo_dir local directory to /tmp/bar_dir in a remote pod in the default namespace
oc cp /tmp/foo_dir <some-pod>:/tmp/bar_dir

Copy /tmp/foo local file to /tmp/bar in a remote pod in a specific container
oc cp /tmp/foo <some-pod>:/tmp/bar -c <specific-container>

Copy /tmp/foo local file to /tmp/bar in a remote pod in namespace <some-namespace>
oc cp /tmp/foo <some-namespace>/<some-pod>:/tmp/bar

Copy /tmp/foo from a remote pod to /tmp/bar locally
0C Cp <some-namespace>/<some-pod>:/tmp/foo /tmp/bar

2.6.1.36. oc create

Create a resource from a file or from stdin

Example usage

Create a pod using the data in pod.json
oc create -f ./pod.json

Create a pod based on the JSON passed into stdin
cat pod.json | oc create -f -

Edit the data in registry.yaml in JSON then create the resource using the edited data
oc create -f registry.yaml --edit -o json

47

Red Hat OpenShift Service on AWS 4 CLI tools

2.6.1.37. oc create build

Create a new build

Example usage

Create a new build
oc create build myapp

2.6.1.38. oc create clusterresourcequota

Create a cluster resource quota

Example usage

Create a cluster resource quota limited to 10 pods
oc create clusterresourcequota limit-bob --project-annotation-selector=openshift.io/requester=user-
bob --hard=pods=10

2.6.1.39. oc create clusterrole

Create a cluster role

Example usage

"mon

Create a cluster role named "pod-reader” that allows user to perform "get", "watch" and "list" on
pods
oc create clusterrole pod-reader --verb=get,list,watch --resource=pods

Create a cluster role named "pod-reader” with ResourceName specified
oc create clusterrole pod-reader --verb=get --resource=pods --resource-name=readablepod --

resource-name=anotherpod

Create a cluster role named "foo" with APl Group specified
oc create clusterrole foo --verb=get,list,watch --resource=rs.apps

Create a cluster role named "foo" with SubResource specified
oc create clusterrole foo --verb=get,list,watch --resource=pods,pods/status

Create a cluster role name "foo" with NonResourceURL specified
oc create clusterrole "foo" --verb=get --non-resource-url=/logs/*

Create a cluster role name "monitoring” with AggregationRule specified

oc create clusterrole monitoring --aggregation-rule="rbac.example.com/aggregate-to-
monitoring=true"

2.6.1.40. oc create clusterrolebinding

Create a cluster role binding for a particular cluster role

Example usage

48

CHAPTER 2. OPENSHIFT CLI (OC)

Create a cluster role binding for user1, user2, and group1 using the cluster-admin cluster role
oc create clusterrolebinding cluster-admin --clusterrole=cluster-admin --user=useri --user=user2 --
group=group1

2.6.1.41. oc create configmap

Create a config map from a local file, directory or literal value

Example usage

Create a new config map named my-config based on folder bar
oc create configmap my-config --from-file=path/to/bar

Create a new config map named my-config with specified keys instead of file basenames on disk
oc create configmap my-config --from-file=key1=/path/to/bar/file1.txt --from-
file=key2=/path/to/bar/file2.txt

Create a new config map named my-config with key1=config1 and key2=config2
oc create configmap my-config --from-literal=key1=config1 --from-literal=key2=config2

Create a new config map named my-config from the key=value pairs in the file
oc create configmap my-config --from-file=path/to/bar

Create a new config map named my-config from an env file

oc create configmap my-config --from-env-file=path/to/foo.env --from-env-file=path/to/bar.env

2.6.1.42. oc create cronjob

Create a cron job with the specified name

Example usage

Create a cron job
oc create cronjob my-job --image=busybox --schedule="*/1 * * * *"

Create a cron job with a command

oc create cronjob my-job --image=busybox --schedule="*/1 * * * *" -- date

2.6.1.43. oc create deployment

Create a deployment with the specified name

Example usage

Create a deployment named my-dep that runs the busybox image
oc create deployment my-dep --image=busybox

Create a deployment with a command
oc create deployment my-dep --image=busybox -- date

Create a deployment named my-dep that runs the nginx image with 3 replicas
oc create deployment my-dep --image=nginx --replicas=3

49

Red Hat OpenShift Service on AWS 4 CLI tools

Create a deployment named my-dep that runs the busybox image and expose port 5701
oc create deployment my-dep --image=busybox --port=5701

Create a deployment named my-dep that runs multiple containers

oc create deployment my-dep --image=busybox:latest --image=ubuntu:latest --image=nginx

2.6.1.44. oc create deploymentconfig

Create a deployment config with default options that uses a given image

Example usage

Create an nginx deployment config named my-nginx
oc create deploymentconfig my-nginx --image=nginx

2.6.1.45. oc create identity

Manually create an identity (only needed if automatic creation is disabled)

Example usage

Create an identity with identity provider "acme_Ildap" and the identity provider username
"adamjones”
oc create identity acme_ldap:adamjones

2.6.1.46. oc create imagestream

Create a new empty image stream

Example usage

Create a new image stream
oc create imagestream mysq|

2.6.1.47. oc create imagestreamtag

Create a new image stream tag

Example usage

Create a new image stream tag based on an image in a remote registry
oc create imagestreamtag mysql:latest --from-image=myregistry.local/mysgl/mysql:5.0

2.6.1.48. oc create ingress

Create an ingress with the specified name

Example usage

Create a single ingress called 'simple’ that directs requests to foo.com/bar to svc
svc1:8080 with a TLS secret "my-cert”
oc create ingress simple --rule="foo.com/bar=svc1:8080,tls=my-cert"

50

CHAPTER 2. OPENSHIFT CLI (OC)

Create a catch all ingress of "/path" pointing to service svc:port and Ingress Class as
"otheringress”
oc create ingress catch-all --class=otheringress --rule="/path=svc:port"

Create an ingress with two annotations: ingress.annotation1 and ingress.annotations2
oc create ingress annotated --class=default --rule="foo.com/bar=svc:port" \

--annotation ingress.annotation1=foo \

--annotation ingress.annotation2=bla

Create an ingress with the same host and multiple paths
oc create ingress multipath --class=default \
--rule="foo.com/=svc:port" \
--rule="foo.com/admin/=svcadmin:portadmin"

Create an ingress with multiple hosts and the pathType as Prefix
oc create ingress ingress1 --class=default \
--rule="foo.com/path*=svc:8080" \
--rule="bar.com/admin*=svc2:http"

Create an ingress with TLS enabled using the default ingress certificate and different path types
oc create ingress ingtls --class=default \

--rule="foo.com/=svc:https,tls" \

--rule="foo.com/path/subpath*=othersvc:8080"

Create an ingress with TLS enabled using a specific secret and pathType as Prefix
oc create ingress ingsecret --class=default \

--rule="foo.com/*=svc:8080,tls=secret1"

Create an ingress with a default backend

oc create ingress ingdefault --class=default \

--default-backend=defaultsvc:http \
--rule="foo.com/*=svc:8080,tls=secret1"

2.6.1.49. oc create job

Create a job with the specified name

Example usage

Create a job
oc create job my-job --image=busybox

Create a job with a command
oc create job my-job --image=busybox -- date

Create a job from a cron job named "a-cronjob”

oc create job test-job --from=cronjob/a-cronjob

2.6.1.50. oc create namespace

Create a namespace with the specified name

Example usage

51

Red Hat OpenShift Service on AWS 4 CLI tools

Create a new namespace named my-namespace
oc create namespace my-namespace

2.6.1.51. oc create poddisruptionbudget

Create a pod disruption budget with the specified name

Example usage

Create a pod disruption budget named my-pdb that will select all pods with the app=rails label
and require at least one of them being available at any point in time
oc create poddisruptionbudget my-pdb --selector=app=rails --min-available=1

Create a pod disruption budget named my-pdb that will select all pods with the app=nginx label
and require at least half of the pods selected to be available at any point in time
oc create pdb my-pdb --selector=app=nginx --min-available=50%

2.6.1.52. oc create priorityclass

Create a priority class with the specified name

Example usage

Create a priority class named high-priority
oc create priorityclass high-priority --value=1000 --description="high priority"

Create a priority class named default-priority that is considered as the global default priority

oc create priorityclass default-priority --value=1000 --global-default=true --description="default
priority"

Create a priority class named high-priority that cannot preempt pods with lower priority

oc create priorityclass high-priority --value=1000 --description="high priority" --preemption-
policy="Never"

2.6.1.53. oc create quota

Create a quota with the specified name

Example usage

Create a new resource quota named my-quota

oc create quota my-quota --
hard=cpu=1,memory=1G,pods=2,services=3,replicationcontrollers=2,resourcequotas=1,secrets=5,persi.
tentvolumeclaims=10

Create a new resource quota named best-effort
oc create quota best-effort --hard=pods=100 --scopes=BestEffort

2.6.1.54. oc create role

Create a role with single rule

Example usage

52

CHAPTER 2. OPENSHIFT CLI (OC)

"om

Create a role named "pod-reader” that allows user to perform "get", "watch" and "list" on pods
oc create role pod-reader --verb=get --verb=list --verb=watch --resource=pods

Create a role named "pod-reader” with ResourceName specified
oc create role pod-reader --verb=get --resource=pods --resource-name=readablepod --resource-
name=anotherpod

Create a role named "foo" with APl Group specified
oc create role foo --verb=get,list,watch --resource=rs.apps

Create a role named "foo" with SubResource specified

oc create role foo --verb=get,list,watch --resource=pods,pods/status

2.6.1.55. oc create rolebinding

Create a role binding for a particular role or cluster role

Example usage

Create a role binding for user1, user2, and group1 using the admin cluster role
oc create rolebinding admin --clusterrole=admin --user=user1 --user=user2 --group=group1

Create a role binding for service account monitoring:sa-dev using the admin role

oc create rolebinding admin-binding --role=admin --serviceaccount=monitoring:sa-dev

2.6.1.56. oc create route edge

Create a route that uses edge TLS termination

Example usage

Create an edge route named "my-route” that exposes the frontend service
oc create route edge my-route --service=frontend

Create an edge route that exposes the frontend service and specify a path

If the route name is omitted, the service name will be used
oc create route edge --service=frontend --path /assets

2.6.1.57. oc create route passthrough

Create a route that uses passthrough TLS termination

Example usage

Create a passthrough route named "my-route” that exposes the frontend service
oc create route passthrough my-route --service=frontend

Create a passthrough route that exposes the frontend service and specify
a host name. If the route name is omitted, the service name will be used
oc create route passthrough --service=frontend --hostname=www.example.com

2.6.1.58. oc create route reencrypt

53

Red Hat OpenShift Service on AWS 4 CLI tools

Create a route that uses reencrypt TLS termination

Example usage

Create a route named "my-route” that exposes the frontend service
oc create route reencrypt my-route --service=frontend --dest-ca-cert cert.cert

Create a reencrypt route that exposes the frontend service, letting the

route name default to the service name and the destination CA certificate
default to the service CA

oc create route reencrypt --service=frontend

2.6.1.59. oc create secret docker-registry

Create a secret for use with a Docker registry

Example usage

If you do not already have a .dockercfq file, create a dockercfg secret directly

oc create secret docker-registry my-secret --docker-server=DOCKER_REGISTRY_SERVER --
docker-username=DOCKER_USER --docker-password=DOCKER_PASSWORD --docker-
email=DOCKER_EMAIL

Create a new secret named my-secret from ~/.docker/config.json

oc create secret docker-registry my-secret --from-file=path/to/.docker/config.json

2.6.1.60. oc create secret generic

Create a secret from a local file, directory, or literal value

Example usage

Create a new secret named my-secret with keys for each file in folder bar
oc create secret generic my-secret --from-file=path/to/bar

Create a new secret named my-secret with specified keys instead of names on disk
oc create secret generic my-secret --from-file=ssh-privatekey=path/to/id_rsa --from-file=ssh-
publickey=path/to/id_rsa.pub

Create a new secret named my-secret with key1=supersecret and key2=topsecret
oc create secret generic my-secret --from-literal=key1=supersecret --from-literal=key2=topsecret

Create a new secret named my-secret using a combination of a file and a literal

oc create secret generic my-secret --from-file=ssh-privatekey=path/to/id_rsa --from-
literal=passphrase=topsecret

Create a new secret named my-secret from env files

oc create secret generic my-secret --from-env-file=path/to/foo.env --from-env-file=path/to/bar.env

2.6.1.61. oc create secret tls

Create a TLS secret

54

CHAPTER 2. OPENSHIFT CLI (OC)

Example usage

Create a new TLS secret named tls-secret with the given key pair
oc create secret tls tls-secret --cert=path/to/tls.crt --key=path/to/ils.key

2.6.1.62. oc create service clusterip

Create a ClusterlP service

Example usage

Create a new ClusterlP service named my-cs
oc create service clusterip my-cs --tcp=5678:8080

Create a new ClusterlP service named my-cs (in headless mode)

oc create service clusterip my-cs --clusterip="None"

2.6.1.63. oc create service externalname

Create an ExternalName service

Example usage

Create a new ExternalName service named my-ns
oc create service externalname my-ns --external-name bar.com

2.6.1.64. oc create service loadbalancer

Create a LoadBalancer service

Example usage

Create a new LoadBalancer service named my-Ibs
oc create service loadbalancer my-lbs --tcp=5678:8080

2.6.1.65. oc create service nodeport

Create a NodePort service

Example usage

Create a new NodePort service named my-ns
oc create service nodeport my-ns --tcp=5678:8080

2.6.1.66. oc create serviceaccount

Create a service account with the specified name

Example usage

55

Red Hat OpenShift Service on AWS 4 CLI tools

Create a new service account named my-service-account
oc create serviceaccount my-service-account

2.6.1.67. oc create token

Request a service account token

Example usage

Request a token to authenticate to the kube-apiserver as the service account "myapp" in the
current namespace
oc create token myapp

Request a token for a service account in a custom namespace
oc create token myapp --namespace myns

Request a token with a custom expiration
oc create token myapp --duration 10m

Request a token with a custom audience
oc create token myapp --audience https://example.com

Request a token bound to an instance of a Secret object
oc create token myapp --bound-object-kind Secret --bound-object-name mysecret

Request a token bound to an instance of a Secret object with a specific UID

oc create token myapp --bound-object-kind Secret --bound-object-name mysecret --bound-object-
uid 0d4691ed-659b-4935-a832-355f77ee47cc

2.6.1.68. oc create user

Manually create a user (only needed if automatic creation is disabled)

Example usage

Create a user with the username "ajones" and the display name "Adam Jones"
oc create user ajones --full-name="Adam Jones"

2.6.1.69. oc create useridentitymapping

Manually map an identity to a user

Example usage

Map the identity "acme_Ildap:adamjones” to the user "ajones”
oc create useridentitymapping acme_ldap:adamjones ajones

2.6.1.70. oc debug

Launch a new instance of a pod for debugging

Example usage

56

CHAPTER 2. OPENSHIFT CLI (OC)

Start a shell session into a pod using the OpenShift tools image
oc debug

Debug a currently running deployment by creating a new pod
oc debug deploy/test

Debug a node as an administrator
oc debug node/master-1

Debug a Windows node
Note: the chosen image must match the Windows Server version (2019, 2022) of the node
oc debug node/win-worker-1 --image=mcr.microsoft.com/powershell:lts-nanoserver-ltsc2022

Launch a shell in a pod using the provided image stream tag
oc debug istag/mysql:latest -n openshift

Test running a job as a non-root user
oc debug job/test --as-user=1000000

Debug a specific failing container by running the env command in the 'second’ container
oc debug daemonset/test -c second -- /bin/env

See the pod that would be created to debug
oc debug mypod-9xbc -0 yaml

Debug a resource but launch the debug pod in another namespace

Note: Not all resources can be debugged using --to-namespace without modification. For
example,

volumes and service accounts are namespace-dependent. Add "-o yaml' to output the debug pod
definition

to disk. If necessary, edit the definition then run 'oc debug -f -' or run without --to-namespace

oc debug mypod-9xbc --to-namespace testns

2.6.1.71. oc delete

Delete resources by file names, stdin, resources and names, or by resources and label selector

Example usage

Delete a pod using the type and name specified in pod.json
oc delete -f ./pod.json

Delete resources from a directory containing kustomization.yaml - e.g. dir/kustomization.yam|
oc delete -k dir

Delete resources from all files that end with "json’
oc delete -f ".json’

Delete a pod based on the type and name in the JSON passed into stdin
cat pod.json | oc delete -f -

Delete pods and services with same names "baz" and "foo"
oc delete pod,service baz foo

Delete pods and services with label name=myLabel

57

Red Hat OpenShift Service on AWS 4 CLI tools

oc delete pods,services -| name=myLabel

Delete a pod with minimal delay
oc delete pod foo --now

Force delete a pod on a dead node
oc delete pod foo --force

Delete all pods
oc delete pods --all

Delete all pods only if the user confirms the deletion
oc delete pods --all --interactive

2.6.1.72. oc describe

Show details of a specific resource or group of resources

Example usage

Describe a node
oc describe nodes kubernetes-node-emt8.c.myproject.internal

Describe a pod
oc describe pods/nginx

Describe a pod identified by type and name in "pod.json”
oc describe -f pod.json

Describe all pods
oc describe pods

Describe pods by label name=mylLabel
oc describe pods -l name=myLabel

Describe all pods managed by the 'frontend’ replication controller
(rc-created pods get the name of the rc as a prefix in the pod name)
oc describe pods frontend

2.6.1.73. oc diff

Diff the live version against a would-be applied version

Example usage

Diff resources included in pod.json
oc diff -f pod.json

Diff file read from stdin
cat service.yaml | oc diff -f -

2.6.1.74. oc edit

Edit a resource on the server

58

CHAPTER 2. OPENSHIFT CLI (OC)

Example usage

Edit the service named 'registry’
oc edit svc/registry

Use an alternative editor
KUBE_EDITOR="nano" oc edit svc/registry

Edit the job 'myjob’ in JSON using the v1 API format
oc edit job.v1.batch/myjob -o json

Edit the deployment ‘'mydeployment' in YAML and save the modified config in its annotation
oc edit deployment/mydeployment -0 yaml --save-config

Edit the 'status’ subresource for the 'mydeployment’ deployment

oc edit deployment mydeployment --subresource="status'

2.6.1.75. oc events

List events

Example usage

List recent events in the default namespace
oc events

List recent events in all namespaces
oc events --all-namespaces

List recent events for the specified pod, then wait for more events and list them as they arrive
oc events --for pod/web-pod-13je7 --watch

List recent events in YAML format
oc events -oyaml|

List recent only events of type 'Warning' or 'Normal'

oc events --types=Warning,Normal

2.6.1.76. oc exec

Execute a command in a container

Example usage

Get output from running the ‘date’ command from pod mypod, using the first container by default
oc exec mypod -- date

Get output from running the ‘date' command in ruby-container from pod mypod
oc exec mypod -c ruby-container -- date

Switch to raw terminal mode; sends stdin to 'bash’ in ruby-container from pod mypod

and sends stdout/stderr from 'bash’ back to the client
oc exec mypod -c ruby-container -i -t -- bash -il

59

Red Hat OpenShift Service on AWS 4 CLI tools

List contents of /usr from the first container of pod mypod and sort by modification time
If the command you want to execute in the pod has any flags in common (e.g. -i),

you must use two dashes (--) to separate your command'’s flags/arguments

Also note, do not surround your command and its flags/arguments with quotes

unless that is how you would execute it normally (i.e., do Is -t /usr, not "ls -t /usr”)

oc exec mypod -i -t -- Is -t /usr

Get output from running ‘date’ command from the first pod of the deployment mydeployment,
using the first container by default
oc exec deploy/mydeployment -- date

Get output from running 'date’ command from the first pod of the service myservice, using the first
container by default
oc exec svc/myservice -- date

2.6.1.77. oc explain

Get documentation for a resource

Example usage

Get the documentation of the resource and its fields
oc explain pods

Get all the fields in the resource
oc explain pods --recursive

Get the explanation for deployment in supported api versions
oc explain deployments --api-version=apps/vi

Get the documentation of a specific field of a resource
oc explain pods.spec.containers

Get the documentation of resources in different format
oc explain deployment --output=plaintext-openapiv2

2.6.1.78. oc expose

Expose a replicated application as a service or route

Example usage

60

Create a route based on service nginx. The new route will reuse nginx's labels
OC expose service nginx

Create a route and specify your own label and route name
0C expose service nginx - name=myroute --name=fromdowntown

Create a route and specify a host name
0C expose service nginx --hosthname=www.example.com

Create a route with a wildcard

ocC expose service nginx --hostname=x.example.com --wildcard-policy=Subdomain

This would be equivalent to *.example.com. NOTE: only hosts are matched by the wildcard;
subdomains would not be included

CHAPTER 2. OPENSHIFT CLI (OC)

Expose a deployment configuration as a service and use the specified port
oc expose dc ruby-hello-world --port=8080

Expose a service as a route in the specified path
oC expose service nginx --path=/nginx

2.6.1.79. oc extract

Extract secrets or config maps to disk

Example usage

Extract the secret "test" to the current directory
oc extract secret/test

Extract the config map "nginx" to the /tmp directory
oc extract configmap/nginx --to=/tmp

Extract the config map "nginx" to STDOUT
oc extract configmap/nginx --to=-

Extract only the key "nginx.conf" from config map "nginx" to the /tmp directory
oc extract configmap/nginx --to=/tmp --keys=nginx.conf

2.6.1.80. oc get

Display one or many resources

Example usage

List all pods in ps output format
oc get pods

List all pods in ps output format with more information (such as node name)
oc get pods -0 wide

List a single replication controller with specified NAME in ps output format
oc get replicationcontroller web

List deployments in JSON output format, in the "v1" version of the "apps” API group
oc get deployments.v1.apps -0 json

List a single pod in JSON output format
oc get -0 json pod web-pod-13je7

List a pod identified by type and name specified in "pod.yaml" in JSON output format
oc get -f pod.yaml -0 json

List resources from a directory with kustomization.yaml - e.g. dir/kustomization.yam|
oc get -k dir/

Return only the phase value of the specified pod
oc get -o template pod/web-pod-13je7 --template={{.status.phase}}

61

Red Hat OpenShift Service on AWS 4 CLI tools

List resource information in custom columns
oc get pod test-pod -0 custom-
columns=CONTAINER:.spec.containers[0].name,IMAGE:.spec.containers[0].image

List all replication controllers and services together in ps output format
oc get rc,services

List one or more resources by their type and names
oc get rc/web service/frontend pods/web-pod-13je7

List the 'status' subresource for a single pod
oc get pod web-pod-13je7 --subresource status

List all deployments in namespace 'backend’
oc get deployments.apps --namespace backend

List all pods existing in all namespaces

oc get pods --all-namespaces

2.6.1.81. oc get-token

Experimental: Get token from external OIDC issuer as credentials exec plugin

Example usage

Starts an auth code flow to the issuer URL with the client ID and the given exira scopes
oc get-token --client-id=client-id --issuer-url=test.issuer.url --extra-scopes=email,profile

Starts an auth code flow to the issuer URL with a different callback address
oc get-token --client-id=client-id --issuer-url=test.issuer.url --callback-address=127.0.0.1:8343

2.6.1.82. ocidle

Idle scalable resources

Example usage

Idle the scalable controllers associated with the services listed in to-idle.txt
$ oc idle --resource-names-file to-idle.txt

2.6.1.83. oc image append

Add layers to images and push them to a registry

Example usage

Remove the entrypoint on the mysql:latest image
oc image append --from mysql:latest --to myregistry.com/myimage:latest --image '{"Entrypoint":null}'

Add a new layer to the image
oc image append --from mysql:latest --to myregistry.com/myimage:latest layer.tar.gz

Add a new layer to the image and store the result on disk

62

CHAPTER 2. OPENSHIFT CLI (OC)

This results in $(pwd)/v2/mysql/blobs,manifests
oc image append --from mysql:latest --to file://mysql:local layer.tar.gz

Add a new layer to the image and store the result on disk in a designated directory
This will result in $(pwd)/mysql-local/v2/mysql/blobs, manifests
oc image append --from mysql:latest --to file://mysql:local --dir mysql-local layer.tar.gz

Add a new layer to an image that is stored on disk (~/mysql-local/v2/image exists)
oc image append --from-dir ~/mysql-local --to myregistry.com/myimage:latest layer.tar.gz

Add a new layer to an image that was mirrored to the current directory on disk ($(pwd)/v2/image
exists)
oc image append --from-dir v2 --to myregistry.com/myimage:latest layer.tar.gz

Add a new layer to a multi-architecture image for an os/arch that is different from the system's
os/arch

Note: The first image in the manifest list that matches the filter will be returned when --keep-
manifest-list is not specified

oc image append --from docker.io/library/busybox:latest --filter-by-os=linux/s390x --to
myregistry.com/myimage:latest layer.tar.gz

Add a new layer to a multi-architecture image for all the os/arch manifests when keep-manifest-list
is specified

oc image append --from docker.io/library/busybox:latest --keep-manifest-list --to
myregistry.com/myimage:latest layer.tar.gz

Add a new layer to a multi-architecture image for all the os/arch manifests that is specified by the
filter, while preserving the manifestlist

oc image append --from docker.io/library/busybox:latest --filter-by-os=Ilinux/s390x --keep-manifest-
list --to myregistry.com/myimage:latest layer.tar.gz

2.6.1.84. oc image extract

Copy files from an image to the file system

Example usage

Extract the busybox image into the current directory
oc image extract docker.io/library/busybox:latest

Extract the busybox image into a designated directory (must exist)
oc image extract docker.io/library/busybox:latest --path /:/tmp/busybox

Extract the busybox image into the current directory for linux/s390x platform
Note: Wildcard filter is not supported with extract; pass a single os/arch to extract

oc image extract docker.io/library/busybox:latest --filter-by-os=linux/s390x

Extract a single file from the image into the current directory
oc image extract docker.io/library/centos:7 --path /bin/bash:.

Extract all .repo files from the image's /etc/yum.repos.d/ folder into the current directory
oc image extract docker.io/library/centos:7 --path /etc/yum.repos.d/*.repo:.

Extract all .repo files from the image's /etc/yum.repos.d/ folder into a designated directory (must
exist)

63

Red Hat OpenShift Service on AWS 4 CLI tools

This results in /tmp/yum.repos.d/*.repo on local system
oc image extract docker.io/library/centos:7 --path /etc/yum.repos.d/*.repo:/tmp/yum.repos.d

Extract an image stored on disk into the current directory ($(pwd)/v2/busybox/blobs, manifests
exists)

--confirm is required because the current directory is not empty

oc image extract file://busybox:local --confirm

Extract an image stored on disk in a directory other than $(pwd)/v2 into the current directory

--confirm is required because the current directory is not empty ($(pwd)/busybox-mirror-
dir/v2/busybox exists)

oc image extract file://busybox:local --dir busybox-mirror-dir --confirm

Extract an image stored on disk in a directory other than $(pwd)/v2 into a designated directory
(must exist)

oc image extract file://busybox:local --dir busybox-mirror-dir --path /:/tmp/busybox

Extract the last layer in the image
oc image extract docker.io/library/centos:7[-1]

Extract the first three layers of the image
oc image extract docker.io/library/centos:7[:3]

Extract the last three layers of the image

oc image extract docker.io/library/centos:7[-3:]

2.6.1.85. oc image info

Display information about an image

Example usage

Show information about an image
oc image info quay.io/openshift/cli:latest

Show information about images matching a wildcard
oc image info quay.io/openshift/cli:4.*

Show information about a file mirrored to disk under DIR
oc image info --dir=DIR file://library/busybox:latest

Select which image from a multi-OS image to show
oc image info library/busybox:latest --filter-by-os=linux/armé64

2.6.1.86. oc image mirror

Mirror images from one repository to another

Example usage

Copy image to another tag
oc image mirror myregistry.com/myimage:latest myregistry.com/myimage:stable

Copy image to another registry
oc image mirror myregistry.com/myimage:latest docker.io/myrepository/myimage:stable

64

CHAPTER 2. OPENSHIFT CLI (OC)

Copy all tags starting with mysql to the destination repository
oc image mirror myregistry.com/myimage:mysql* docker.io/myrepository/myimage

Copy image to disk, creating a directory structure that can be served as a registry
oc image mirror myregistry.com/myimage:latest file://myrepository/myimage:latest

Copy image to S3 (pull from <bucket>.s3.amazonaws.com/image:latest)
oc image mirror myregistry.com/myimage:latest
s3://s3.amazonaws.com/<region>/<bucket>/image:latest

Copy image to S3 without setting a tag (pull via @<digest>)
oc image mirror myregistry.com/myimage:latest s3://s3.amazonaws.com/<region>/<bucket>/image

Copy image to multiple locations
oc image mirror myregistry.com/myimage:latest docker.io/myrepository/myimage:stable \
docker.io/myrepository/myimage:dev

Copy multiple images
oc image mirror myregistry.com/myimage:latest=myregistry.com/other:test \
myregistry.com/myimage:new=myregistry.com/other:target

Copy manifest list of a multi-architecture image, even if only a single image is found
oc image mirror myregistry.com/myimage:latest=myregistry.com/other:test \
--keep-manifest-list=true

Copy specific os/arch manifest of a multi-architecture image

Run 'oc image info myregistry.com/myimage:latest’ to see available os/arch for multi-arch images

Note that with multi-arch images, this results in a new manifest list digest that includes only the
filtered manifests

oc image mirror myregistry.com/myimage:latest=myregistry.com/other:test \

--filter-by-os=0s/arch

Copy all os/arch manifests of a multi-architecture image

Run 'oc image info myregistry.com/myimage:latest’ to see list of os/arch manifests that will be
mirrored

oc image mirror myregistry.com/myimage:latest=myregistry.com/other:test \

--keep-manifest-list=true

Note the above command is equivalent to
oc image mirror myregistry.com/myimage:latest=myregistry.com/other:test \
--filter-by-0s=.*

Copy specific os/arch manifest of a multi-architecture image

Run 'oc image info myregistry.com/myimage:latest’ to see available os/arch for multi-arch images
Note that the target registry may reject a manifest list if the platform specific images do not all exist
You must use a registry with sparse registry support enabled

oc image mirror myregistry.com/myimage:latest=myregistry.com/other:test \

--filter-by-0s=Ilinux/386 \

--keep-manifest-list=true

2.6.1.87. oc import-image

Import images from a container image registry

65

Red Hat OpenShift Service on AWS 4 CLI tools

Example usage

Import tag latest into a new image stream
oc import-image mystream --from=registry.io/repo/image:latest --confirm

Update imported data for tag latest in an already existing image stream
oc import-image mystream

Update imported data for tag stable in an already existing image stream
oc import-image mystream:stable

Update imported data for all tags in an existing image stream
oc import-image mystream --all

Update imported data for a tag that points to a manifest list to include the full manifest list
oc import-image mystream --import-mode=PreserveOriginal

Import all tags into a new image stream
oc import-image mystream --from=registry.io/repo/image --all --confirm

Import all tags into a new image stream using a custom timeout
oc --request-timeout=5m import-image mystream --from=registry.io/repo/image --all --confirm

2.6.1.88. oc kustomize

Build a kustomization target from a directory or URL

Example usage

Build the current working directory
oc kustomize

Build some shared configuration directory
oc kustomize /home/config/production

Build from github
oc kustomize https://github.com/kubernetes-sigs/kustomize.git/examples/helloWorld?ref=v1.0.6

2.6.1.89. oc label

Update the labels on a resource

Example usage

66

Update pod 'foo’ with the label 'unhealthy' and the value 'true’
oc label pods foo unhealthy=true

Update pod 'foo' with the label 'status’ and the value ‘unhealthy’, overwriting any existing value
oc label --overwrite pods foo status=unhealthy

Update all pods in the namespace
oc label pods --all status=unhealthy

Update a pod identified by the type and name in "pod.json”

CHAPTER 2. OPENSHIFT CLI (OC)

oc label -f pod.json status=unhealthy

Update pod 'foo’ only if the resource is unchanged from version 1
oc label pods foo status=unhealthy --resource-version=1

Update pod 'foo’ by removing a label named 'bar’ if it exists

Does not require the --overwrite flag
oc label pods foo bar-

2.6.1.90. oc login

Login to aserver

Example usage

Log in interactively
oc login --username=myuser

Log in to the given server with the given certificate authority file
oc login localhost:8443 --certificate-authority=/path/to/cert.crt

Log in to the given server with the given credentials (will not prompt interactively)
oc login localhost:8443 --username=myuser --password=mypass

Log in to the given server through a browser
oc login localhost:8443 --web --callback-port 8280

Log in to the external OIDC issuer through Auth Code + PKCE by starting a local server listening
on port 8080

oc login localhost:8443 --exec-plugin=0c-oidc --client-id=client-id --extra-scopes=email,profile --
callback-port=8080

2.6.1.91. oc logout

End the current server session

Example usage

Log out
oc logout

2.6.1.92. oc logs

Print the logs for a container in a pod

Example usage

Start streaming the logs of the most recent build of the openldap build config
oc logs -f bc/openldap

Start streaming the logs of the latest deployment of the mysql deployment config
oc logs -f de/mysql

Get the logs of the first deployment for the mysql deployment config. Note that logs

67

Red Hat OpenShift Service on AWS 4 CLI tools

from older deployments may not exist either because the deployment was successful
or due to deployment pruning or manual deletion of the deployment
oc logs --version=1 dc/mysq|

Return a snapshot of ruby-container logs from pod backend
oc logs backend -c ruby-container

Start streaming of ruby-container logs from pod backend
oc logs -f pod/backend -c ruby-container

2.6.1.93. oc new-app

Create a new application

Example usage

68

List all local templates and image streams that can be used to create an app
oc new-app --list

Create an application based on the source code in the current git repository (with a public remote)

and a container image

oc new-app . --image=registry/repo/langimage

Create an application myapp with Docker based build strategy expecting binary input
oc new-app --strategy=docker --binary --name myapp

Create a Ruby application based on the provided [image]~[source code] combination
oc new-app centos/ruby-25-centos7~https://github.com/sclorg/ruby-ex.git

Use the public container registry MySQL image to create an app. Generated artifacts will be

labeled with db=mysql

oc new-app mysqgl MYSQL_USER=user MYSQL_PASSWORD=pass MYSQL_DATABASE=testdb -

| db=mysq|l

Use a MySQL image in a private registry to create an app and override application artifacts’

names

oc new-app --image=myregistry.com/mycompany/mysql --name=private

Use an image with the full manifest list to create an app and override application artifacts' names
oC new-app --image=myregistry.com/mycompany/image --name=private --import-

mode=PreserveOriginal

Create an application from a remote repository using its beta4 branch
oc new-app https://github.com/openshift/ruby-hello-world#beta4

Create an application based on a stored template, explicitly setting a parameter value
oc new-app --template=ruby-helloworld-sample --param=MYSQL_USER=admin

Create an application from a remote repository and specify a context directory
oc new-app https://github.com/youruser/yourgitrepo --context-dir=src/build

Create an application from a remote private repository and specify which existing secret to use
oc new-app https://github.com/youruser/yourgitrepo --source-secret=yoursecret

Create an application based on a template file, explicitly setting a parameter value

CHAPTER 2. OPENSHIFT CLI (OC)

oc new-app --file=./example/myapp/template.json --param=MYSQL_USER=admin

Search all templates, image streams, and container images for the ones that match "ruby”
oc new-app --search ruby

Search for "ruby", but only in stored templates (--template, --image-stream and --image
can be used to filter search results)
oc new-app --search --template=ruby

Search for "ruby" in stored templates and print the output as YAML
oc new-app --search --template=ruby --output=yaml|

2.6.1.94. oc new-build

Create a new build configuration

Example usage

Create a build config based on the source code in the current git repository (with a public
remote) and a container image
oc new-build . --image=repo/langimage

Create a NodeJS build config based on the provided [image]~[source code] combination
oc new-build centos/nodejs-8-centos7~https://github.com/sclorg/nodejs-ex.git

Create a build config from a remote repository using its beta2 branch
oc new-build https://github.com/openshift/ruby-hello-world#beta2

Create a build config using a Dockerfile specified as an argument
oc new-build -D $'FROM centos:7\nRUN yum install -y httpd'

Create a build config from a remote repository and add custom environment variables
oc new-build https://github.com/openshift/ruby-hello-world -e RACK_ENV=development

Create a build config from a remote private repository and specify which existing secret to use
oc new-build https://github.com/youruser/yourgitrepo --source-secret=yoursecret

Create a build config using an image with the full manifest list to create an app and override
application artifacts' names

oc new-build --image=myregistry.com/mycompany/image --name=private --import-
mode=PreserveOriginal

Create a build config from a remote repository and inject the npmrc into a build
oc new-build https://github.com/openshift/ruby-hello-world --build-secret npmrc:.npmrc

Create a build config from a remote repository and inject environment data into a build
oc new-build https://github.com/openshift/ruby-hello-world --build-config-map env:config

Create a build config that gets its input from a remote repository and another container image
oc new-build https://github.com/openshift/ruby-hello-world --source-image=openshift/jenkins-1-
centos7 --source-image-path=/var/lib/jenkins:tmp

2.6.1.95. oc new-project

Request a new project

69

Red Hat OpenShift Service on AWS 4 CLI tools

Example usage

Create a new project with minimal information
oc new-project web-team-dev

Create a new project with a display name and description
oc new-project web-team-dev --display-name="Web Team Development" --
description="Development project for the web team."

2.6.1.96. oc observe

Observe changes to resources and react to them (experimental)

Example usage

Observe changes to services
oc observe services

Observe changes to services, including the clusterlP and invoke a script for each
oc observe services --template '{ .spec.clusterlP }' -- register_dns.sh

Observe changes to services filtered by a label selector
oc observe services -l regist-dns=true --template '{ .spec.clusterlP }' -- register_dns.sh

2.6.1.97. oc patch

Update fields of a resource

Example usage

Partially update a node using a strategic merge patch, specifying the patch as JSON
oc patch node k8s-node-1 -p '{"spec":{"unschedulable":true}}'

Partially update a node using a strategic merge patch, specifying the patch as YAML
oc patch node k8s-node-1 -p $'spec:\n unschedulable: true'

Partially update a node identified by the type and name specified in "node.json" using strategic
merge patch
oc patch -f node.json -p '{"spec":{"unschedulable":true}}'

Update a container's image; spec.containers[*].name is required because it's a merge key
oc patch pod valid-pod -p '{"spec":{"containers":[{"name":"kubernetes-serve-
hostname","image":"new image"}]}}'

Update a container's image using a JSON patch with positional arrays
oc patch pod valid-pod --type='json' -p="[{"op": "replace", "path": "/spec/containers/0/image",
"value":"new image"}]'

Update a deployment's replicas through the 'scale' subresource using a merge patch
oc patch deployment nginx-deployment --subresource='scale’ --type="merge' -p '{"spec":
{"replicas":2}}'

2.6.1.98. oc plugin

70

CHAPTER 2. OPENSHIFT CLI (OC)

Provides utilities for interacting with plugins

Example usage

List all available plugins
oc plugin list

List only binary names of available plugins without paths

oc plugin list --name-only

2.6.1.99. oc plugin list

List all visible plugin executables on a user's PATH

Example usage

List all available plugins
oc plugin list

List only binary names of available plugins without paths

oc plugin list --name-only

2.6.1.100. oc policy add-role-to-user

Add a role to users or service accounts for the current project

Example usage

Add the 'view' role to user1 for the current project
oc policy add-role-to-user view user

Add the 'edit’ role to serviceaccount1 for the current project
oc policy add-role-to-user edit -z serviceaccount1

2.6.1.101. oc policy scc-review

Check which service account can create a pod

Example usage

Check whether service accounts sal and sa2 can admit a pod with a template pod spec specified
in my_resource.yaml|

Service Account specified in myresource.yaml file is ignored

oc policy scc-review -z sal,sa2 -f my_resource.yaml

Check whether service accounts system:serviceaccount:bob:default can admit a pod with a
template pod spec specified in my_resource.yam!

oc policy scc-review -z system:serviceaccount:bob:default -f my_resource.yaml

Check whether the service account specified in my_resource_with_sa.yaml can admit the pod
oc policy scc-review -f my_resource_with_sa.yaml

71

Red Hat OpenShift Service on AWS 4 CLI tools

Check whether the default service account can admit the pod; default is taken since no service
account is defined in myresource_with_no_sa.yam!
oc policy scc-review -f myresource_with_no_sa.yaml

2.6.1.102. oc policy scc-subject-review

Check whether a user or a service account can create a pod

Example usage

Check whether user bob can create a pod specified in myresource.yam!
oc policy scc-subject-review -u bob -f myresource.yaml

Check whether user bob who belongs to projectAdmin group can create a pod specified in
myresource.yaml
oc policy scc-subject-review -u bob -g projectAdmin -f myresource.yaml

Check whether a service account specified in the pod template spec in myresourcewithsa.yam|

can create the pod
oc policy scc-subject-review -f myresourcewithsa.yaml

2.6.1.103. oc port-forward

Forward one or more local ports to a pod

Example usage

Listen on ports 5000 and 6000 locally, forwarding data to/from ports 5000 and 6000 in the pod
oc port-forward pod/mypod 5000 6000

Listen on ports 5000 and 6000 locally, forwarding data to/from ports 5000 and 6000 in a pod
selected by the deployment
oc port-forward deployment/mydeployment 5000 6000

Listen on port 8443 locally, forwarding to the targetPort of the service's port named "https” in a pod
selected by the service

oc port-forward service/myservice 8443:https

Listen on port 8888 locally, forwarding to 5000 in the pod
oc port-forward pod/mypod 8888:5000

Listen on port 8888 on all addresses, forwarding to 5000 in the pod
oc port-forward --address 0.0.0.0 pod/mypod 8888:5000

Listen on port 8888 on localhost and selected IP, forwarding to 5000 in the pod
oc port-forward --address localhost,10.19.21.23 pod/mypod 8888:5000

Listen on a random port locally, forwarding to 5000 in the pod
oc port-forward pod/mypod :5000

2.6.1.104. oc process

Process a template into list of resources

72

CHAPTER 2. OPENSHIFT CLI (OC)

Example usage

Convert the template.json file into a resource list and pass to create
oc process -f template.json | oc create -f -

Process a file locally instead of contacting the server
oc process -f template.json --local -o yaml

Process template while passing a user-defined label
oc process -f template.json -l name=mytemplate

Convert a stored template into a resource list
oc process foo

Convert a stored template info a resource list by setting/overriding parameter values
oc process foo PARM1=VALUE1 PARM2=VALUE2

Convert a template stored in different namespace into a resource list
oc process openshift/foo

Convert template.json into a resource list

cat template.json | oc process -f -

2.6.1.105. oc project

Switch to another project

Example usage

Switch to the 'myapp’ project
oc project myapp

Display the project currently in use

oc project

2.6.1.106. oc projects
Display existing projects

Example usage

List all projects
oc projects

2.6.1.107. oc proxy

Run a proxy to the Kubernetes API server

Example usage

To proxy all of the Kubernetes API and nothing else
oc proxy --api-prefix=/

73

Red Hat OpenShift Service on AWS 4 CLI tools

To proxy only part of the Kubernetes APl and also some static files
You can get pods info with ‘curl localhost:8001/api/v1/pods’

oc proxy --www=/my/files --www-prefix=/static/ --api-prefix=/api/

To proxy the entire Kubernetes API at a different root

You can get pods info with ‘curl localhost:8001/custom/api/v1/pods’
oc proxy --api-prefix=/custom/

Run a proxy to the Kubernetes API server on port 8011, serving static content from ./local/www/
oc proxy --port=8011 --wwws=./local/www/

Run a proxy to the Kubernetes API server on an arbitrary local port

The chosen port for the server will be output to stdout

ocC proxy --port=0

Run a proxy to the Kubernetes API server, changing the API prefix to k8s-api

This makes e.g. the pods API available at localhost:8001/k8s-api/v1/pods/
oc proxy --api-prefix=/k8s-api

2.6.1.108. oc registry login

Login to the integrated registry

Example usage

Log in to the integrated registry
oc registry login

Log in to different registry using BASIC auth credentials
oc registry login --registry quay.io/myregistry --auth-basic=USER:PASS

2.6.1.109. oc replace

Replace a resource by file name or stdin

Example usage

Replace a pod using the data in pod.json
oc replace -f ./pod.json

Replace a pod based on the JSON passed into stdin
cat pod.json | oc replace -f -

Update a single-container pod's image version (tag) to v4
oc get pod mypod -o yaml | sed 's/\(image: myimage\):.*$/\1:v4/' | oc replace -f -

Force replace, delete and then re-create the resource
oc replace --force -f ./pod.json

2.6.1.110. oc rollback

Revert part of an application back to a previous deployment

Example usage

74

CHAPTER 2. OPENSHIFT CLI (OC)
Perform a rollback to the last successfully completed deployment for a deployment config
oc rollback frontend

See what a rollback to version 3 will look like, but do not perform the rollback
oc rollback frontend --to-version=3 --dry-run

Perform a rollback to a specific deployment
oc rollback frontend-2

Perform the rollback manually by piping the JSON of the new config back to oc
oc rollback frontend -0 json | oc replace dc/frontend -f -

Print the updated deployment configuration in JSON format instead of performing the rollback

oc rollback frontend -o json

2.6.1.111. oc rollout

Manage the rollout of a resource

Example usage

Roll back to the previous deployment
oc rollout undo deployment/abc

Check the rollout status of a daemonset
oc rollout status daemonset/foo

Restart a deployment
oc rollout restart deployment/abc

Restart deployments with the ‘app=nginx’ label

oc rollout restart deployment --selector=app=nginx

2.6.1.112. oc rollout cancel

Cancel the in-progress deployment

Example usage

r

Cancel the in-progress deployment based on 'nginx
oc rollout cancel dc/nginx

2.6.1.113. oc rollout history

View rollout history

Example usage

View the rollout history of a deployment
oc rollout history deployment/abc

View the details of daemonset revision 3
oc rollout history daemonset/abc --revision=3

75

Red Hat OpenShift Service on AWS 4 CLI tools

2.6.1.114. oc rollout latest

Start a new rollout for a deployment config with the latest state from its triggers

Example usage

Start a new rollout based on the latest images defined in the image change triggers
oc rollout latest dc/nginx

Print the rolled out deployment config

oc rollout latest dc/nginx -0 json

2.6.1.115. oc rollout pause

Mark the provided resource as paused

Example usage

Mark the nginx deployment as paused

Any current state of the deployment will continue its function; new updates

to the deployment will not have an effect as long as the deployment is paused
oc rollout pause deployment/nginx

2.6.1.116. oc rollout restart

Restart a resource

Example usage

Restart all deployments in the test-namespace namespace
oc rollout restart deployment -n test-namespace

Restart a deployment
oc rollout restart deployment/nginx

Restart a daemon set
oc rollout restart daemonset/abc

Restart deployments with the app=nginx label

oc rollout restart deployment --selector=app=nginx

2.6.1.117. oc rollout resume

Resume a paused resource

Example usage

Resume an already paused deployment
oc rollout resume deployment/nginx

2.6.1.118. oc rollout retry

Retry the latest failed rollout

76

CHAPTER 2. OPENSHIFT CLI (OC)

Example usage

Retry the latest failed deployment based on 'frontend’
The deployer pod and any hook pods are deleted for the latest failed deployment
oc rollout retry dc/frontend

2.6.1.119. oc rollout status

Show the status of the rollout

Example usage

Watch the rollout status of a deployment
oc rollout status deployment/nginx

2.6.1.120. oc rollout undo

Undo a previous rollout

Example usage

Roll back to the previous deployment
oc rollout undo deployment/abc

Roll back to daemonset revision 3
oc rollout undo daemonset/abc --to-revision=3

Roll back to the previous deployment with dry-run

oc rollout undo --dry-run=server deployment/abc

2.6.1.121. oc rsh

Start a shell session in a container

Example usage

Open a shell session on the first container in pod 'foo’
oc rsh foo

Open a shell session on the first container in pod 'foo' and namespace 'bar’
(Note that oc client specific arguments must come before the resource name and its arguments)

oc rsh -n bar foo

Run the command 'cat /etc/resolv.conf’ inside pod 'foo’
oc rsh foo cat /etc/resolv.conf

See the configuration of your internal registry
oc rsh dc/docker-registry cat config.yml

Open a shell session on the container named 'index' inside a pod of your job
oc rsh -c index job/scheduled

77

Red Hat OpenShift Service on AWS 4 CLI tools

2.6.1.122. oc rsync

Copy files between a local file system and a pod

Example usage

Synchronize a local directory with a pod directory
oc rsync ./local/dir/ POD:/remote/dir

Synchronize a pod directory with a local directory

oc rsync POD:/remote/dir/ ./local/dir

2.6.1.123. oc run

Run a particular image on the cluster

Example usage

Start a nginx pod
OC run nginx --image=nginx

Start a hazelcast pod and let the container expose port 5701
oc run hazelcast --image=hazelcast/hazelcast --port=5701

Start a hazelcast pod and set environment variables "DNS_DOMAIN=cluster" and
"POD_NAMESPACE=default" in the container

oc run hazelcast --image=hazelcast/hazelcast --env="DNS_DOMAIN=cluster" --
env="POD_NAMESPACE=default"

Start a hazelcast pod and set labels "app=hazelcast” and "env=prod" in the container
oc run hazelcast --image=hazelcast/hazelcast --labels="app=hazelcast,env=prod"

Dry run; print the corresponding API objects without creating them
oc run nginx --image=nginx --dry-run=client

Start a nginx pod, but overload the spec with a partial set of values parsed from JSON
oc run nginx --image=nginx --overrides='{ "apiVersion": "v1", "spec": { ... } }'

Start a busybox pod and keep it in the foreground, don't restart it if it exits
oc run -i -t busybox --image=busybox --restart=Never

Start the nginx pod using the default command, but use custom arguments (arg1 .. argN) for that
command

OcC run nginx --image=nginx -- <arg1> <arg2> ... <argN>

Start the nginx pod using a different command and custom arguments
ocC run nginx --image=nginx --command -- <cmd> <arg1> ... <argN>

2.6.1.124. oc scale

Set a new size for a deployment, replica set, or replication controller

Example usage

78

CHAPTER 2. OPENSHIFT CLI (OC)

Scale a replica set named 'foo' to 3
oc scale --replicas=3 rs/foo

Scale a resource identified by type and name specified in "foo.yaml" to 3
oc scale --replicas=3 -f foo.yaml

If the deployment named mysql's current size is 2, scale mysql to 3
oc scale --current-replicas=2 --replicas=3 deployment/mysq|

Scale multiple replication controllers
oc scale --replicas=5 rc/example1 rc/example2 rc/example3

Scale stateful set named 'web' to 3

oc scale --replicas=3 statefulset/web

2.6.1.125. oc secrets link

Link secrets to a service account

Example usage

Add an image pull secret to a service account to automatically use it for pulling pod images
oc secrets link serviceaccount-name pull-secret --for=pull

Add an image pull secret to a service account to automatically use it for both pulling and pushing

build images
oc secrets link builder builder-image-secret --for=pull,mount

2.6.1.126. oc secrets unlink

Detach secrets from a service account

Example usage

Unlink a secret currently associated with a service account
oc secrets unlink serviceaccount-name secret-name another-secret-name ...

2.6.1.127. oc set build-hook

Update a build hook on a build config

Example usage

Clear post-commit hook on a build config
oc set build-hook bc/mybuild --post-commit --remove

Set the post-commit hook to execute a test suite using a new entrypoint
oc set build-hook bc/mybuild --post-commit --command -- /bin/bash -c /var/lib/test-image.sh

Set the post-commit hook to execute a shell script

oc set build-hook bc/mybuild --post-commit --script="/var/lib/test-image.sh param1 param2 &&
/var/lib/done.sh"

79

Red Hat OpenShift Service on AWS 4 CLI tools

2.6.1.128. oc set build-secret

Update a build secret on a build config

Example usage

Clear the push secret on a build config
oc set build-secret --push --remove bc/mybuild

Set the pull secret on a build config
oc set build-secret --pull bc/mybuild mysecret

Set the push and pull secret on a build config
oc set build-secret --push --pull be/mybuild mysecret

Set the source secret on a set of build configs matching a selector
oc set build-secret --source -I app=myapp gitsecret

2.6.1.129. oc set data

Update the data within a config map or secret

Example usage

Set the password’ key of a secret
oc set data secret/foo password=this_is_secret

Remove the ‘password' key from a secret
oc set data secret/foo password-

Update the 'haproxy.conf' key of a config map from a file on disk
oc set data configmap/bar --from-file=../haproxy.conf

Update a secret with the contents of a directory, one key per file
oc set data secret/foo --from-file=secret-dir

2.6.1.130. oc set deployment-hook

Update a deployment hook on a deployment config

Example usage

80

Clear pre and post hooks on a deployment config
oc set deployment-hook dc/myapp --remove --pre --post

Set the pre deployment hook to execute a db migration command for an application
using the data volume from the application
oc set deployment-hook dc/myapp --pre --volumes=data -- /var/lib/migrate-db.sh

Set a mid deployment hook along with additional environment variables
oc set deployment-hook dc/myapp --mid --volumes=data -e VAR1=value1 -e VAR2=value2 --
/var/lib/prepare-deploy.sh

CHAPTER 2. OPENSHIFT CLI (OC)

2.6.1.131. oc set env

Update environment variables on a pod template

Example usage

Update deployment config 'myapp’ with a new environment variable
oc set env dc/myapp STORAGE_DIR=/local

List the environment variables defined on a build config 'sample-build’
oc set env bc/sample-build --list

List the environment variables defined on all pods
oc set env pods --all --list

Output modified build config in YAML
oc set env bc/sample-build STORAGE_DIR=/data -o yaml

Update all containers in all replication controllers in the project to have ENV=prod
oc set env rc --all ENV=prod

Import environment from a secret
oc set env --from=secret/mysecret dc/myapp

Import environment from a config map with a prefix
oc set env --from=configmap/myconfigmap --prefix=MYSQL_ dc/myapp

Remove the environment variable ENV from container 'c1'in all deployment configs
oc set env dc --all --containers="c1" ENV-

Remove the environment variable ENV from a deployment config definition on disk and
update the deployment config on the server
oc set env -f dc.json ENV-

Set some of the local shell environment into a deployment config on the server
oc set env | grep RAILS_ | oc env -e - dc/myapp

2.6.1132. oc set image

Update the image of a pod template

Example usage

Set a deployment config's nginx container image to 'nginx:1.9.1', and its busybox container image
to 'busybox’.
oc set image dc/nginx busybox=busybox nginx=nginx:1.9.1

Set a deployment config's app container image to the image referenced by the imagestream tag
‘openshift/ruby:2.3".
oc set image dc/myapp app=openshift/ruby:2.3 --source=imagestreamtag

Update all deployments’ and rc's nginx container's image to 'nginx:1.9.1’
oc set image deployments,rc nginx=nginx:1.9.1 --all

Update image of all containers of daemonset abc to ‘nginx:1.9.1'

81

Red Hat OpenShift Service on AWS 4 CLI tools

oc set image daemonset abc *=nginx:1.9.1
Print result (in YAML format) of updating nginx container image from local file, without hitting the

server
oc set image -f path/to/file.yaml nginx=nginx:1.9.1 --local -o yaml|

2.6.1.133. oc set image-lookup

Change how images are resolved when deploying applications

Example usage

Print all of the image streams and whether they resolve local names
oc set image-lookup

Use local name lookup on image stream mysql
oc set image-lookup mysql

Force a deployment to use local name lookup
oc set image-lookup deploy/mysq|

Show the current status of the deployment lookup
oc set image-lookup deploy/mysq| --list

Disable local name lookup on image stream mysql
oc set image-lookup mysql --enabled=false

Set local name lookup on all image streams

oc set image-lookup --all

2.6.1.134. oc set probe

Update a probe on a pod template

Example usage

Clear both readiness and liveness probes off all containers
oc set probe dc/myapp --remove --readiness --liveness

Set an exec action as a liveness probe to run 'echo ok’
oc set probe dc/myapp --liveness -- echo ok

Set a readiness probe to try to open a TCP socket on 3306
oc set probe rc/mysql --readiness --open-tcp=3306

Set an HTTP startup probe for port 8080 and path /healthz over HTTP on the pod IP
oc set probe dc/webapp --startup --get-url=http://:8080/healthz

Set an HTTP readiness probe for port 8080 and path /healthz over HTTP on the pod IP
oc set probe dc/webapp --readiness --get-url=http://:8080/healthz

Set an HTTP readiness probe over HTTPS on 127.0.0.1 for a hostNetwork pod
oc set probe dc/router --readiness --get-url=https://127.0.0.1:1936/stats

Set only the initial-delay-seconds field on all deployments

82

CHAPTER 2. OPENSHIFT CLI (OC)

I oc set probe dc --all --readiness --initial-delay-seconds=30

2.6.1.135. oc set resources

Update resource requests/limits on objects with pod templates

Example usage

Set a deployments nginx container CPU limits to "200m and memory to 512Mi"
oc set resources deployment nginx -c=nginx --limits=cpu=200m,memory=512Mi

Set the resource request and limits for all containers in nginx
oc set resources deployment nginx --limits=cpu=200m,memory=512Mi --
requests=cpu=100m,memory=256Mi

Remove the resource requests for resources on containers in nginx

oc set resources deployment nginx --limits=cpu=0,memory=0 --requests=cpu=0,memory=0

Print the result (in YAML format) of updating nginx container limits locally, without hitting the server

oc set resources -f path/to/file.yaml --limits=cpu=200m,memory=512Mi --local -0 yaml|

2.6.1.136. oc set route-backends

Update the backends for a route

Example usage

Print the backends on the route 'web'
oc set route-backends web

r

Set two backend services on route 'web' with 2/3rds of traffic going to 'a
oc set route-backends web a=2 b=1

Increase the traffic percentage going to b by 10%% relative to a
oc set route-backends web --adjust b=+10%%

Set traffic percentage going to b to 10%% of the traffic going to a
oc set route-backends web --adjust b=10%%

Set weight of b to 10
oc set route-backends web --adjust b=10

Set the weight to all backends to zero
oc set route-backends web --zero

2.6.1.137. oc set selector

Set the selector on a resource

Example usage

Set the labels and selector before creating a deployment/service pair.

oc create service clusterip my-svc --clusterip="None" -0 yaml --dry-run | oc set selector --local -f -

83

Red Hat OpenShift Service on AWS 4 CLI tools

'environment=qga' -o yaml | oc create -f -
oc create deployment my-dep -0 yaml --dry-run | oc label --local -f - environment=qga -0 yaml | oc
create -f -

2.6.1.138. oc set serviceaccount

Update the service account of a resource

Example usage

Set deployment nginx-deployment's service account to serviceaccount1
oc set serviceaccount deployment nginx-deployment serviceaccount1

Print the result (in YAML format) of updated nginx deployment with service account from a local
file, without hitting the API server
oc set sa -f nginx-deployment.yaml serviceaccounti --local --dry-run -o yaml

2.6.1.139. oc set subject

Update the user, group, or service account in a role binding or cluster role binding

Example usage

Update a cluster role binding for serviceaccount1
oc set subject clusterrolebinding admin --serviceaccount=namespace:serviceaccountt

Update a role binding for user1, user2, and group1
oc set subject rolebinding admin --user=user1 --user=user2 --group=group1

Print the result (in YAML format) of updating role binding subjects locally, without hitting the server
oc create rolebinding admin --role=admin --user=admin -o yaml --dry-run | oc set subject --local -f -
--user=foo -o yaml

2.6.1.140. oc set triggers

Update the triggers on one or more objects

Example usage

Print the triggers on the deployment config ‘'myapp
oc set triggers dc/myapp

Set all triggers to manual
oc set triggers dc/myapp --manual

Enable all automatic triggers
oc set triggers dc/myapp --auto

Reset the GitHub webhook on a build to a new, generated secret
oc set triggers bc/webapp --from-github
oc set triggers bc/webapp --from-webhook

Remove all triggers
oc set triggers bc/webapp --remove-all

84

CHAPTER 2. OPENSHIFT CLI (OC)

Stop triggering on config change
oc set triggers dc/myapp --from-config --remove

Add an image trigger to a build config
oc set triggers bc/webapp --from-image=namespace1/image:latest

Add an image trigger to a stateful set on the main container

oc set triggers statefulset/db --from-image=namespace1/image:latest -c main

2.6.1.141. oc set volumes

Update volumes on a pod template

Example usage

List volumes defined on all deployment configs in the current project
oc set volume dc --all

Add a new empty dir volume to deployment config (dc) 'myapp’ mounted under
/var/lib/myapp
oc set volume dc/myapp --add --mount-path=/var/lib/myapp

Use an existing persistent volume claim (PVC) to overwrite an existing volume 'v1'

oc set volume dc/myapp --add --name=v1 -t pvc --claim-name=pvc1 --overwrite

Remove volume 'v1' from deployment config ‘'myapp’
oc set volume dc/myapp --remove --name=v1

Create a new persistent volume claim that overwrites an existing volume 'v1'
oc set volume dc/myapp --add --name=v1 -t pvc --claim-size=1G --overwrite

Change the mount point for volume 'v1' to /data
oc set volume dc/myapp --add --name=v1 -m /data --overwrite

Modify the deployment config by removing volume mount "v1" from container "c1"
(and by removing the volume "v1" if no other containers have volume mounts that reference it)

oc set volume dc/myapp --remove --name=v1 --containers=c1

Add new volume based on a more complex volume source (AWS EBS, GCE PD,

Ceph, Gluster, NFS, ISCSI, ...)
oc set volume dc/myapp --add -m /data --source=<json-string>

2.6.1.142. oc start-build

Start a new build

Example usage

Starts build from build config "hello-world"
oc start-build hello-world

Starts build from a previous build "hello-world-1"
oc start-build --from-build=hello-world-1

85

Red Hat OpenShift Service on AWS 4 CLI tools

Use the contents of a directory as build input
oc start-build hello-world --from-dir=src/

Send the contents of a Git repository to the server from tag 'v2'
oc start-build hello-world --from-repo=../hello-world --commit=v2

Start a new build for build config "hello-world" and watch the logs until the build
completes or fails
oc start-build hello-world --follow

Start a new build for build config "hello-world" and wait until the build completes. It
exits with a non-zero return code if the build fails
oc start-build hello-world --wait

2.6.1.143. oc status

Show an overview of the current project

Example usage

See an overview of the current project
oc status

Export the overview of the current project in an svg file
oc status -o dot | dot -T svg -0 project.svg

See an overview of the current project including details for any identified issues
oc status --suggest

2.6.1.144. oc tag

Tag existing images into image streams

Example usage

86

Tag the current image for the image stream ‘openshift/ruby’ and tag '2.0" into the image stream
'yourproject/ruby with tag 'tip’
oc tag openshift/ruby:2.0 yourproject/ruby:tip

Tag a specific image

oc tag
openshift/ruby@sha256:6b646fabbf5e5e4c7fa41056¢c27910e679c03ebe7f93e361e6515a9da7e258¢cc
yourproject/ruby:tip

Tag an external container image
oc tag --source=docker openshift/origin-control-plane:latest yourproject/ruby:tip

Tag an external container image and request pullthrough for it
oc tag --source=docker openshift/origin-control-plane:latest yourproject/ruby:tip --reference-
policy=local

Tag an external container image and include the full manifest list
oc tag --source=docker openshift/origin-control-plane:latest yourproject/ruby:tip --import-
mode=PreserveOriginal

CHAPTER 2. OPENSHIFT CLI (OC)

Remove the specified spec tag from an image stream
oc tag openshift/origin-control-plane:latest -d

2.6.1.145. oc version

Print the client and server version information

Example usage

Print the OpenShift client, kube-apiserver, and openshift-apiserver version information for the
current context
oc version

Print the OpenShift client, kube-apiserver, and openshift-apiserver version numbers for the current
context in JSON format
oc version --output json

Print the OpenShift client version information for the current context

oc version --client

2.6.1.146. oc wait

Experimental: Wait for a specific condition on one or many resources

Example usage

Wait for the pod "busybox1" to contain the status condition of type "Ready”
oc wait --for=condition=Ready pod/busybox1

The default value of status condition is true; you can wait for other targets after an equal delimiter
(compared after Unicode simple case folding, which is a more general form of case-insensitivity)
oc wait --for=condition=Ready=false pod/busybox1

Wait for the pod "busybox1" to contain the status phase to be "Running”
oc wait --for=jsonpath="{.status.phase}'=Running pod/busybox1

Wait for pod "busybox1" to be Ready
oc wait --for="jsonpath={.status.conditions[?(@.type=="Ready")].status}=True' pod/busybox1

Wait for the service "loadbalancer” to have ingress
oc wait --for=jsonpath="{.status.loadBalancer.ingress}' service/loadbalancer

Wait for the secret "busybox1" to be created, with a timeout of 30s
oc create secret generic busybox1
oc wait --for=create secret/busyboxi --timeout=30s

Wait for the pod "busybox1" to be deleted, with a timeout of 60s, after having issued the "delete”
command

oc delete pod/busybox1
oc wait --for=delete pod/busybox1 --timeout=60s

2.6.1.147. oc whoami

87

Red Hat OpenShift Service on AWS 4 CLI tools

Return information about the current session

Example usage

Display the currently authenticated user
oc whoami

2.7. OPENSHIFT CLI ADMINISTRATOR COMMAND REFERENCE

This reference provides descriptions and example commands for OpenShift CLI (o¢) administrator
commands. You must have cluster-admin or equivalent permissions to use these commands.

For developer commands, see the OpenShift CLI developer command reference.

Run oc adm -h to list all administrator commands or run oc <command> --help to get additional
details for a specific command.

2.7.1. OpenShift CLI (oc) administrator commands

2.7.1.1. oc adm build-chain

Output the inputs and dependencies of your builds

Example usage

Build the dependency tree for the 'latest’ tag in <image-stream>
oc adm build-chain <image-stream>

Build the dependency tree for the 'v2' tag in dot format and visualize it via the dot utility
oc adm build-chain <image-stream>:v2 -o dot | dot -T svg -0 deps.svg

Build the dependency tree across all namespaces for the specified image stream tag found in the

test' namespace
oc adm build-chain <image-stream> -n test --all

2.7.1.2. oc adm catalog mirror

Mirror an operator-registry catalog

Example usage

Mirror an operator-registry image and its contents to a registry
oc adm catalog mirror quay.io/my/image:latest myregistry.com

Mirror an operator-registry image and its contents to a particular namespace in a registry
oc adm catalog mirror quay.io/my/image:latest myregistry.com/my-namespace

Mirror to an airgapped registry by first mirroring to files
oc adm catalog mirror quay.io/my/image:latest file:///local/index
oc adm catalog mirror file:///local/index/my/image:latest my-airgapped-registry.com

Configure a cluster to use a mirrored registry
oc apply -f manifests/imageDigestMirrorSet.yaml

88

CHAPTER 2. OPENSHIFT CLI (OC)

Edit the mirroring mappings and mirror with "oc image mirror" manually

oc adm catalog mirror --manifests-only quay.io/my/image:latest myregistry.com
oc image mirror -f manifests/mapping.txt

Delete all ImageDigestMirrorSets generated by oc adm catalog mirror

oc delete imagedigestmirrorset -1 operators.openshift.org/catalog=true

2.7.1.3. oc adm certificate approve

Approve a certificate signing request

Example usage

Approve CSR ‘csr-sqgzp'
oc adm certificate approve csr-sqgzp

2.7.1.4. oc adm certificate deny

Deny a certificate signing request

Example usage

Deny CSR 'csr-sqgzp’
oc adm certificate deny csr-sqgzp

2.7.1.5. oc adm copy-to-node

Copy specified files to the node

Example usage

Copy a new bootstrap kubeconfig file to node-0
oc adm copy-to-node --copy=new-bootstrap-kubeconfig=/etc/kubernetes/kubeconfig node/node-0

2.7.1.6. oc adm cordon

Mark node as unschedulable

Example usage

Mark node "foo" as unschedulable
oc adm cordon foo

2.7.1.7. oc adm create-bootstrap-project-template

Create a bootstrap project template

Example usage

Qutput a bootstrap project template in YAML format to stdout
oc adm create-bootstrap-project-template -o yaml

89

Red Hat OpenShift Service on AWS 4 CLI tools

2.7.1.8. oc adm create-error-template

Create an error page template

Example usage

Output a template for the error page to stdout
oc adm create-error-template

2.7.1.9. oc adm create-login-template

Create a login template

Example usage

Output a template for the login page to stdout
oc adm create-login-template

2.7.1.10. oc adm create-provider-selection-template

Create a provider selection template

Example usage

Output a template for the provider selection page to stdout
oc adm create-provider-selection-template

2.7.1.11. oc adm drain

Drain node in preparation for maintenance

Example usage

Drain node "foo", even if there are pods not managed by a replication controller, replica set, job,
daemon set, or stateful set on it
oc adm drain foo --force

As above, but abort if there are pods not managed by a replication controller, replica set, job,

daemon set, or stateful set, and use a grace period of 15 minutes
oc adm drain foo --grace-period=900

2.7.1.12. oc adm groups add-users

Add users to a group

Example usage

Add useri and user2 to my-group
oc adm groups add-users my-group user1 user2

90

CHAPTER 2. OPENSHIFT CLI (OC)

2.7.1.13. oc adm groups hew

Create a new group

Example usage

Add a group with no users
oc adm groups new my-group

Add a group with two users
oc adm groups new my-group useri user2

Add a group with one user and shorter output

oc adm groups new my-group user1 -o name

2.7.1.14. oc adm groups prune

Remove old OpenShift groups referencing missing records from an external provider

Example usage

Prune all orphaned groups
oc adm groups prune --sync-config=/path/to/ldap-sync-config.yaml --confirm

Prune all orphaned groups except the ones from the denylist file

oc adm groups prune --blacklist=/path/to/denylist.txt --sync-config=/path/to/ldap-sync-config.yaml --
confirm

Prune all orphaned groups from a list of specific groups specified in an allowlist file

oc adm groups prune --whitelist=/path/to/allowlist.txt --sync-config=/path/to/Idap-sync-config.yaml --
confirm

Prune all orphaned groups from a list of specific groups specified in a list

oc adm groups prune groups/group_name groups/other_name --sync-config=/path/to/Idap-sync-
config.yaml --confirm

2.7.1.15. oc adm groups remove-users

Remove users from a group

Example usage

Remove user1 and user2 from my-group
oc adm groups remove-users my-group useri user2

2.7.1.16. oc adm groups sync

Sync OpenShift groups with records from an external provider

Example usage

Sync all groups with an LDAP server
oc adm groups sync --sync-config=/path/to/ldap-sync-config.yaml --confirm

o1

Red Hat OpenShift Service on AWS 4 CLI tools

Sync all groups except the ones from the blacklist file with an LDAP server

oc adm groups sync --blacklist=/path/to/blacklist.txt --sync-config=/path/to/Idap-sync-config.yaml --
confirm

Sync specific groups specified in an allowlist file with an LDAP server

oc adm groups sync --whitelist=/path/to/allowlist.txt --sync-config=/path/to/sync-config.yaml --
confirm

Sync all OpenShift groups that have been synced previously with an LDAP server
oc adm groups sync --type=openshift --sync-config=/path/to/ldap-sync-config.yaml --confirm

Sync specific OpenShift groups if they have been synced previously with an LDAP server

oc adm groups sync groups/group1 groups/group2 groups/group3d --sync-config=/path/to/sync-
config.yaml --confirm

2.7.1.17. oc adm inspect

Collect debugging data for a given resource

Example usage

Collect debugging data for the "openshift-apiserver” clusteroperator
oc adm inspect clusteroperator/openshift-apiserver

Collect debugging data for the "openshift-apiserver” and "kube-apiserver" clusteroperators
oc adm inspect clusteroperator/openshift-apiserver clusteroperator/kube-apiserver

Collect debugging data for all clusteroperators
oc adm inspect clusteroperator

Collect debugging data for all clusteroperators and clusterversions
oc adm inspect clusteroperators,clusterversions

2.7.1.18. oc adm migrate icsp

Update imagecontentsourcepolicy file(s) to imagedigestmirrorset file(s)

Example usage

Update the imagecontentsourcepolicy.yaml file to a new imagedigestmirrorset file under the mydir
directory
oc adm migrate icsp imagecontentsourcepolicy.yaml --dest-dir mydir

2.7.1.19. oc adm migrate template-instances

Update template instances to point to the latest group-version-kinds

Example usage

Perform a dry-run of updating all objects
oc adm migrate template-instances

To actually perform the update, the confirm flag must be appended

92

CHAPTER 2. OPENSHIFT CLI (OC)

I oc adm migrate template-instances --confirm

2.7.1.20. oc adm must-gather

Launch a new instance of a pod for gathering debug information

Example usage

Gather information using the default plug-in image and command, writing into ./must-gather.local.
<rand>
oc adm must-gather

Gather information with a specific local folder to copy to
oc adm must-gather --dest-dir=/local/directory

Gather audit information
oc adm must-gather -- /usr/bin/gather_audit_logs

Gather information using multiple plug-in images
oc adm must-gather --image=quay.io/kubevirt/must-gather --image=quay.io/openshift/origin-must-
gather

Gather information using a specific image stream plug-in
oc adm must-gather --image-stream=openshift/must-gather:latest

Gather information using a specific image, command, and pod directory

oc adm must-gather --image=my/image:tag --source-dir=/pod/directory -- myspecial-command.sh

2.7.1.21. oc adm new-project

Create a new project

Example usage

Create a new project using a node selector
oc adm new-project myproject --node-selector="type=user-node,region=east’

2.7.1.22. oc adm node-image create

Create an ISO image for booting the nodes to be added to the target cluster

Example usage

Create the ISO image and download it in the current folder
oc adm node-image create

Use a different assets folder
oc adm node-image create --dir=/tmp/assets

Specify a custom image name
oc adm node-image create -o=my-node.iso

In place of an ISO, creates files that can be used for PXE boot
oc adm node-image create --pxe

93

Red Hat OpenShift Service on AWS 4 CLI tools

Create an ISO to add a single node without using the configuration file
oc adm node-image create --mac-address=00:d8:e7:c7:4b:bb

Create an ISO to add a single node with a root device hint and without
using the configuration file

oc adm node-image create --mac-address=00:d8:e7:c7:4b:bb --root-device-
hint=deviceName:/dev/sda

2.7.1.23. oc adm node-image monitor

Monitor new nodes being added to an OpenShift cluster

Example usage

Monitor a single node being added to a cluster
oc adm node-image monitor --ip-addresses 192.168.111.83

Monitor multiple nodes being added to a cluster by separating each

IP address with a comma
oc adm node-image monitor --ip-addresses 192.168.111.83,192.168.111.84

2.7.1.24. oc adm node-logs

Display and filter node logs

Example usage

Show kubelet logs from all control plane nodes
oc adm node-logs --role master -u kubelet

See what logs are available in control plane nodes in /var/log
oc adm node-logs --role master --path=/

Display cron log file from all control plane nodes

oc adm node-logs --role master --path=cron

2.7.1.25. oc adm ocp-certificates monitor-certificates

Watch platform certificates

Example usage

Watch platform certificates
oc adm ocp-certificates monitor-certificates

2.7.1.26. oc adm ocp-certificates regenerate-leaf

Regenerate client and serving certificates of an OpenShift cluster

Example usage

I # Regenerate a leaf certificate contained in a particular secret

94

CHAPTER 2. OPENSHIFT CLI (OC)

oc adm ocp-certificates regenerate-leaf -n openshift-config-managed secret/kube-controller-
manager-client-cert-key

2.7.1.27. oc adm ocp-certificates regenerate-machine-config-server-serving-cert

Regenerate the machine config operator certificates in an OpenShift cluster

Example usage

Regenerate the MCO certs without modifying user-data secrets
oc adm ocp-certificates regenerate-machine-config-server-serving-cert --update-ignition=false

Update the user-data secrets to use new MCS certs

oc adm ocp-certificates update-ignition-ca-bundle-for-machine-config-server

2.7.1.28. oc adm ocp-certificates regenerate-top-level

Regenerate the top level certificates in an OpenShift cluster

Example usage

Regenerate the signing certificate contained in a particular secret
oc adm ocp-certificates regenerate-top-level -n openshift-kube-apiserver-operator
secret/loadbalancer-serving-signer-key

2.7.1.29. oc adm ocp-certificates remove-old-trust

Remove old CAs from ConfigMaps representing platform trust bundles in an OpenShift cluster

Example usage

Remove a trust bundled contained in a particular config map

oc adm ocp-certificates remove-old-trust -n openshift-config-managed configmaps/kube-apiserver-
aggregator-client-ca --created-before 2023-06-05T14:44:06Z

Remove only CA certificates created before a certain date from all trust bundles

oc adm ocp-certificates remove-old-trust configmaps -A --all --created-before 2023-06-05T14:44:06Z

2.7.1.30. oc adm ocp-certificates update-ignition-ca-bundle-for-machine-config-server

Update user-data secrets in an OpenShift cluster to use updated MCO certfs

Example usage

Regenerate the MCO certs without modifying user-data secrets
oc adm ocp-certificates regenerate-machine-config-server-serving-cert --update-ignition=false

Update the user-data secrets to use new MCS certs

oc adm ocp-certificates update-ignition-ca-bundle-for-machine-config-server

2.7.1.31. oc adm policy add-cluster-role-to-group

95

Red Hat OpenShift Service on AWS 4 CLI tools

Add a role to groups for all projects in the cluster

Example usage

Add the 'cluster-admin’ cluster role to the 'cluster-admins’ group
oc adm policy add-cluster-role-to-group cluster-admin cluster-admins

2.7.1.32. oc adm policy add-cluster-role-to-user

Add a role to users for all projects in the cluster

Example usage

Add the 'system:build-strategy-docker’ cluster role to the 'devuser' user
oc adm policy add-cluster-role-to-user system:build-strategy-docker devuser

2.7.1.33. oc adm policy add-role-to-user

Add a role to users or service accounts for the current project

Example usage

Add the 'view' role to user1 for the current project
oc adm policy add-role-to-user view user1

Add the 'edit’ role to serviceaccount1 for the current project
oc adm policy add-role-to-user edit -z serviceaccounti

2.7.1.34. oc adm policy add-scc-to-group

Add a security context constraint to groups

Example usage

Add the 'restricted’ security context constraint to group1 and group2
oc adm policy add-scc-to-group restricted group1 group2

2.7.1.35. oc adm policy add-scc-to-user

Add a security context constraint to users or a service account

Example usage

Add the 'restricted’ security context constraint to user1 and user2
oc adm policy add-scc-to-user restricted user1 user2

Add the ‘privileged' security context constraint to serviceaccounti in the current namespace

oc adm policy add-scc-to-user privileged -z serviceaccount1

2.7.1.36. oc adm policy remove-cluster-role-from-group

96

CHAPTER 2. OPENSHIFT CLI (OC)

Remove a role from groups for all projects in the cluster

Example usage

Remove the ‘cluster-admin’ cluster role from the 'cluster-admins’ group
oc adm policy remove-cluster-role-from-group cluster-admin cluster-admins

2.7.1.37. oc adm policy remove-cluster-role-from-user

Remove a role from users for all projects in the cluster

Example usage

Remove the 'system:build-strategy-docker' cluster role from the 'devuser’ user
oc adm policy remove-cluster-role-from-user system:build-strategy-docker devuser

2.7.1.38. oc adm policy scc-review

Check which service account can create a pod

Example usage

Check whether service accounts sal and sa2 can admit a pod with a template pod spec specified
in my_resource.yam|

Service Account specified in myresource.yaml file is ignored

oc adm policy scc-review -z sal,sa2 -f my_resource.yaml

Check whether service accounts system:serviceaccount:bob:default can admit a pod with a
template pod spec specified in my_resource.yam!

oc adm policy scc-review -z system:serviceaccount:bob:default -f my_resource.yaml

Check whether the service account specified in my_resource_with_sa.yaml can admit the pod
oc adm policy scc-review -f my_resource_with_sa.yaml

Check whether the default service account can admit the pod; default is taken since no service

account is defined in myresource_with_no_sa.yam!
oc adm policy scc-review -f myresource_with_no_sa.yaml

2.7.1.39. oc adm policy scc-subject-review

Check whether a user or a service account can create a pod

Example usage

Check whether user bob can create a pod specified in myresource.yam!
oc adm policy scc-subject-review -u bob -f myresource.yaml

Check whether user bob who belongs to projectAdmin group can create a pod specified in

myresource.yaml
oc adm policy scc-subject-review -u bob -g projectAdmin -f myresource.yaml

97

Red Hat OpenShift Service on AWS 4 CLI tools

Check whether a service account specified in the pod template spec in myresourcewithsa.yam|
can create the pod

oc adm policy scc-subject-review -f myresourcewithsa.yaml

2.7.1.40. oc adm prune builds

Remove old completed and failed builds

Example usage

Dry run deleting older completed and failed builds and also including
all builds whose associated build config no longer exists
oc adm prune builds --orphans

To actually perform the prune operation, the confirm flag must be appended
oc adm prune builds --orphans --confirm

2.7.1.41. oc adm prune deployments

Remove old completed and failed deployment configs

Example usage

Dry run deleting all but the last complete deployment for every deployment config
oc adm prune deployments --keep-complete=1

To actually perform the prune operation, the confirm flag must be appended
oc adm prune deployments --keep-complete=1 --confirm

2.7.1.42. oc adm prune groups

Remove old OpenShift groups referencing missing records from an external provider

Example usage

Prune all orphaned groups
oc adm prune groups --sync-config=/path/to/ldap-sync-config.yaml --confirm

Prune all orphaned groups except the ones from the denylist file

oc adm prune groups --blacklist=/path/to/denylist.txt --sync-config=/path/to/Idap-sync-config.yaml --
confirm

Prune all orphaned groups from a list of specific groups specified in an allowlist file

oc adm prune groups --whitelist=/path/to/allowlist.txt --sync-config=/path/to/Idap-sync-config.yaml --
confirm

Prune all orphaned groups from a list of specific groups specified in a list

oc adm prune groups groups/group_name groups/other_name --sync-config=/path/to/Idap-sync-
config.yaml --confirm

2.7.1.43. oc adm prune images

Remove unreferenced images

98

CHAPTER 2. OPENSHIFT CLI (OC)

Example usage

See what the prune command would delete if only images and their referrers were more than an
hour old

and obsoleted by 3 newer revisions under the same tag were considered

oc adm prune images --keep-tag-revisions=3 --keep-younger-than=60m

To actually perform the prune operation, the confirm flag must be appended
oc adm prune images --keep-tag-revisions=3 --keep-younger-than=60m --confirm

See what the prune command would delete if we are interested in removing images
exceeding currently set limit ranges (‘openshift.io/Image’)

oc adm prune images --prune-over-size-limit

To actually perform the prune operation, the confirm flag must be appended
oc adm prune images --prune-over-size-limit --confirm

Force the insecure HTTP protocol with the particular registry host name
oc adm prune images --registry-url=http://registry.example.org --confirm

Force a secure connection with a custom certificate authority to the particular registry host name

oc adm prune images --registry-url=registry.example.org --certificate-
authority=/path/to/custom/ca.crt --confirm

2.7.1.44. oc adm prune renderedmachineconfigs

Prunes rendered MachineConfigs in an OpenShift cluster

Example usage

See what the prune command would delete if run with no options
oc adm prune renderedmachineconfigs

To actually perform the prune operation, the confirm flag must be appended
oc adm prune renderedmachineconfigs --confirm

See what the prune command would delete if run on the worker MachineConfigPool
oc adm prune renderedmachineconfigs --pool-name=worker

Prunes 10 oldest rendered MachineConfigs in the cluster
oc adm prune renderedmachineconfigs --count=10 --confirm

Prunes 10 oldest rendered MachineConfigs in the cluster for the worker MachineConfigPool

oc adm prune renderedmachineconfigs --count=10 --pool-name=worker --confirm

2.7.1.45. oc adm prune renderedmachineconfigs list

Lists rendered MachineConfigs in an OpenShift cluster

Example usage

List all rendered MachineConfigs for the worker MachineConfigPool in the cluster
oc adm prune renderedmachineconfigs list --pool-name=worker

99

Red Hat OpenShift Service on AWS 4 CLI tools

List all rendered MachineConfigs in use by the cluster's MachineConfigPools
oc adm prune renderedmachineconfigs list --in-use

2.7.1.46. oc adm reboot-machine-config-pool

Initiate reboot of the specified MachineConfigPool

Example usage

Reboot all MachineConfigPools
oc adm reboot-machine-config-pool mcp/worker mcp/master

Reboot all MachineConfigPools that inherit from worker. This include all custom
MachineConfigPools and infra.

oc adm reboot-machine-config-pool mcp/worker

Reboot masters

oc adm reboot-machine-config-pool mcp/master

2.7.1.47. oc adm release extract

Extract the contents of an update payload to disk

Example usage

Use git to check out the source code for the current cluster release to DIR
oc adm release extract --git=DIR

Extract cloud credential requests for AWS
oc adm release extract --credentials-requests --cloud=aws

Use git to check out the source code for the current cluster release to DIR from linux/s390x image
Note: Wildcard filter is not supported; pass a single os/arch to extract

oc adm release extract --git=DIR quay.io/openshift-release-dev/ocp-release:4.11.2 --filter-by-
0s=linux/s390x

2.7.1.48. oc adm release info

Display information about a release

Example usage

Show information about the cluster's current release
oc adm release info

Show the source code that comprises a release
oc adm release info 4.11.2 --commit-urls

Show the source code difference between two releases
oc adm release info 4.11.0 4.11.2 --commits

Show where the images referenced by the release are located
oc adm release info quay.io/openshift-release-dev/ocp-release:4.11.2 --pullspecs

100

CHAPTER 2. OPENSHIFT CLI (OC)

Show information about linux/s390x image
Note: Wildcard filter is not supported; pass a single os/arch to extract
oc adm release info quay.io/openshift-release-dev/ocp-release:4.11.2 --filter-by-os=Ilinux/s390x

2.7.1.49. oc adm release mirror

Mirror a release to a different image registry location

Example usage

Perform a dry run showing what would be mirrored, including the mirror objects
oc adm release mirror 4.11.0 --to myregistry.local/openshift/release \
--release-image-signature-to-dir /imp/releases --dry-run

Mirror a release into the current directory
oc adm release mirror 4.11.0 --to file://openshift/release \
--release-image-signature-to-dir /tmp/releases

Mirror a release to another directory in the default location
oc adm release mirror 4.11.0 --to-dir /tmp/releases

Upload a release from the current directory to another server
oc adm release mirror --from file://openshift/release --to myregistry.com/openshift/release \
--release-image-signature-to-dir /tmp/releases

Mirror the 4.11.0 release to repository registry.example.com and apply signatures to connected
cluster

oc adm release mirror --from=quay.io/openshift-release-dev/ocp-release:4.11.0-x86_64 \

--to=registry.example.com/your/repository --apply-release-image-signature

2.7.1.50. oc adm release new

Create a new OpenShift release

Example usage

Create a release from the latest origin images and push to a DockerHub repository
oc adm release new --from-image-stream=4.11 -n origin --to-image
docker.io/mycompany/myrepo:latest

Create a new release with updated metadata from a previous release

oc adm release new --from-release registry.ci.openshift.org/origin/release:v4.11 --name 4.11.1\
--previous 4.11.0 --metadata ... --to-image docker.io/mycompany/myrepo:latest

Create a new release and override a single image

oc adm release new --from-release registry.ci.openshift.org/origin/release:v4.11 \
cli=docker.io/mycompany/cli:latest --to-image docker.io/mycompany/myrepo:latest

Run a verification pass to ensure the release can be reproduced

oc adm release new --from-release registry.ci.openshift.org/origin/release:v4.11

2.7.1.51. oc adm restart-kubelet

Restart kubelet on the specified nodes

101

Red Hat OpenShift Service on AWS 4 CLI tools

Example usage

Restart all the nodes, 10% at a time
oc adm restart-kubelet nodes --all --directive=RemoveKubeletKubeconfig

Restart all the nodes, 20 nodes at a time
oc adm restart-kubelet nodes --all --parallelism=20 --directive=RemoveKubeletKubeconfig

Restart all the nodes, 15% at a time
oc adm restart-kubelet nodes --all --parallelism=15% --directive=RemoveKubeletKubeconfig

Restart all the masters at the same time

oc adm restart-kubelet nodes -I node-role.kubernetes.io/master --parallelism=100% --
directive=RemoveKubeletKubeconfig

2.7.1.52. oc adm taint

Update the taints on one or more nodes

Example usage

Update node 'foo' with a taint with key 'dedicated’ and value 'special-user' and effect 'NoSchedule'
If a taint with that key and effect already exists, its value is replaced as specified
oc adm taint nodes foo dedicated=special-user:NoSchedule

Remove from node 'foo' the taint with key 'dedicated’ and effect 'NoSchedule' if one exists
oc adm taint nodes foo dedicated:NoSchedule-

Remove from node 'foo’ all the taints with key 'dedicated’
oc adm taint nodes foo dedicated-

Add a taint with key 'dedicated’ on nodes having label mylLabel=X
oc adm taint node -I myLabel=X dedicated=foo:PreferNoSchedule

Add to node 'foo' a taint with key 'bar’ and no value

oc adm taint nodes foo bar:NoSchedule

2.7.1.53. oc adm top images

Show usage statistics for images

Example usage

Show usage statistics for images
oc adm top images

2.7.1.54. oc adm top imagestreams

Show usage statistics for image streams

Example usage

102

CHAPTER 2. OPENSHIFT CLI (OC)

Show usage statistics for image streams
oc adm top imagestreams

2.7.1.55. oc adm top node

Display resource (CPU/memory) usage of nodes

Example usage

Show metrics for all nodes
oc adm top node

Show metrics for a given node

oc adm top node NODE_NAME

2.7.1.56. oc adm top persistentvolumeclaims

Experimental: Show usage statistics for bound persistentvolumeclaims

Example usage

Show usage statistics for all the bound persistentvolumeclaims across the cluster
oc adm top persistentvolumeclaims -A

Show usage statistics for all the bound persistentvolumeclaims in a specific namespace
oc adm top persistentvolumeclaims -n default

Show usage statistics for specific bound persistentvolumeclaims

oc adm top persistentvolumeclaims database-pvc app-pvc -n default

2.7.1.57. oc adm top pod

Display resource (CPU/memory) usage of pods

Example usage

Show metrics for all pods in the default namespace
oc adm top pod

Show metrics for all pods in the given namespace
oc adm top pod --namespace=NAMESPACE

Show metrics for a given pod and its containers
oc adm top pod POD_NAME --containers

Show metrics for the pods defined by label name=mylLabel
oc adm top pod -l name=myLabel

2.7.1.58. oc adm uncordon

Mark node as schedulable

103

Red Hat OpenShift Service on AWS 4 CLI tools

Example usage

Mark node "foo" as schedulable
oc adm uncordon foo

2.7.1.59. oc adm upgrade

Upgrade a cluster or adjust the upgrade channel

Example usage

View the update status and available cluster updates
oc adm upgrade

Update to the latest version
oc adm upgrade --to-latest=true

2.7.1.60. oc adm verify-image-signature

Verify the image identity contained in the image signature

Example usage

Verify the image signature and identity using the local GPG keychain

oc adm verify-image-signature
sha256:c841e9b64e4579bd56¢794bdd7c36e1c257110fd2404bebbb8b613e4935228¢c4 \

--expected-identity=registry.local:5000/foo/bar:v1

Verify the image signature and identity using the local GPG keychain and save the status

oc adm verify-image-signature
sha256:c841e9b64e4579bd56¢c794bdd7c36e1c257110fd2404bebbb8b613e4935228¢c4 \

--expected-identity=registry.local:5000/foo/bar:v1 --save

Verify the image signature and identity via exposed registry route

oc adm verify-image-signature
sha256:c841e9b64e4579bd56¢c794bdd7c36e1c257110fd2404bebbb8b613e4935228¢c4 \

--expected-identity=registry.local:5000/foo/bar:v1 \

--registry-url=docker-registry.foo.com

Remove all signature verifications from the image

oc adm verify-image-signature
sha256:c841e9b64e4579bd56¢794bdd7c36e1c257110fd2404bebbb8b613e4935228¢4 --remove-all

2.7.1.61. oc adm wait-for-node-reboot

Wait for nodes to reboot after running oc adm reboot-machine-config-pool

Example usage

Wait for all nodes to complete a requested reboot from 'oc adm reboot-machine-config-pool
mcp/worker mcp/master’
oc adm wait-for-node-reboot nodes --all

104

CHAPTER 2. OPENSHIFT CLI (OC)

Wait for masters to complete a requested reboot from 'oc adm reboot-machine-config-pool
mcp/master’

oc adm wait-for-node-reboot nodes -I node-role.kubernetes.io/master

Wait for masters to complete a specific reboot

oc adm wait-for-node-reboot nodes - node-role.kubernetes.io/master --reboot-number=4

2.7.1.62. oc adm wait-for-stable-cluster

Wait for the platform operators to become stable

Example usage

Wait for all cluster operators to become stable
oc adm wait-for-stable-cluster

Consider operators to be stable if they report as such for 5 minutes straight
oc adm wait-for-stable-cluster --minimum-stable-period 5m

2.7.2. Additional resources

® OpenShift CLI developer command reference

105

Red Hat OpenShift Service on AWS 4 CLI tools

CHAPTER 3. IMPORTANT UPDATE ON opo

Red Hat does not provide information about odo on the Red Hat OpenShift Service on AWS
documentation site. See the documentation maintained by Red Hat and the upstream community for
documentation information related to odo.

IMPORTANT

For the materials maintained by the upstream community, Red Hat provides support
under Cooperative Community Support.

106

https://odo.dev/docs/introduction
https://access.redhat.com/solutions/5893251

CHAPTER 4. KNATIVE CLI FOR USE WITH OPENSHIFT SERVERLESS

CHAPTER 4. KNATIVE CLIFOR USE WITH OPENSHIFT

SERVERLESS

The Knative (kn) CLI enables simple interaction with Knative components on Red Hat OpenShift Service
on AWS.

4.1. KEY FEATURES

The Knative (kn) CLI is designed to make serverless computing tasks simple and concise. Key features
of the Knative CLI include:

Deploy serverless applications from the command line.

Manage features of Knative Serving, such as services, revisions, and traffic-splitting.
Create and manage Knative Eventing components, such as event sources and triggers.
Create sink bindings to connect existing Kubernetes applications and Knative services.
Extend the Knative CLI with flexible plugin architecture, similar to the kubectl CLI.
Configure autoscaling parameters for Knative services.

Scripted usage, such as waiting for the results of an operation, or deploying custom rollout and
rollback strategies.

4.2. INSTALLING THE KNATIVE CLI

See Installing the Knative CLI.

107

https://docs.redhat.com/en/documentation/red_hat_openshift_serverless/1.28/html/installing_serverless/installing-kn#installing-kn

Red Hat OpenShift Service on AWS 4 CLI tools

CHAPTER 5. PIPELINES CLI (TKN)

S.1. INSTALLING TKN

Use the CLI tool to manage Red Hat OpenShift Pipelines from a terminal. The following section
describes how to install the CLI tool on different platforms.

You can also find the URL to the latest binaries from the Red Hat OpenShift Service on AWS web
console by clicking the ? icon in the upper-right corner and selecting Command Line Tools.

IMPORTANT

Running Red Hat OpenShift Pipelines on ARM hardware is a Technology Preview feature
only. Technology Preview features are not supported with Red Hat production service
level agreements (SLAs) and might not be functionally complete. Red Hat does not
recommend using them in production. These features provide early access to upcoming
product features, enabling customers to test functionality and provide feedback during
the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope.

NOTE

Both the archives and the RPMs contain the following executables:
® tkn
e tkn-pac

® opc

IMPORTANT

Running Red Hat OpenShift Pipelines with the ope CLI tool is a Technology Preview
feature only. Technology Preview features are not supported with Red Hat production
service level agreements (SLAs) and might not be functionally complete. Red Hat does
not recommend using them in production. These features provide early access to
upcoming product features, enabling customers to test functionality and provide
feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope.

5.1.1. Installing the Red Hat OpenShift Pipelines CLI on Linux

For Linux distributions, you can download the CLI as a tar.gz archive.

Procedure

108

. Download the relevant CLI tool.

® |inux (x86_64, amd64)

https://access.redhat.com/support/offerings/techpreview/
https://access.redhat.com/support/offerings/techpreview/
https://mirror.openshift.com/pub/openshift-v4/clients/pipelines/1.18.0/tkn-linux-amd64.tar.gz

CHAPTER 5. PIPELINES CLI (TKN)

® | inux on IBM Z® and IBM® LinuxONE (s390x)
® Linux on IBM Power® (ppc64le)
® Linux on ARM (aarch64, arm64)

1. Unpack the archive:

I $ tar xvzf <file>

2. Add the location of your tkn and tkn-pac files to your PATH environment variable.

3. To check your PATH, run the following command:

I $ echo $PATH

5.1.2. Installing the Red Hat OpenShift Pipelines CLI on Linux using an RPM

For Red Hat Enterprise Linux (RHEL) version 8, you can install the Red Hat OpenShift Pipelines CLI as
an RPM.

Prerequisites
® You have an active Red Hat OpenShift Service on AWS subscription on your Red Hat account.

® You have root or sudo privileges on your local system.

Procedure

1. Register with Red Hat Subscription Manager:

I # subscription-manager register

2. Pull the latest subscription data:

I # subscription-manager refresh

3. List the available subscriptions:

I # subscription-manager list --available --matches "pipelines™

4. Inthe output for the previous command, find the pool ID for your Red Hat OpenShift Service on
AWS subscription and attach the subscription to the registered system:

I # subscription-manager attach --pool=<pool_id>

5. Enable the repositories required by Red Hat OpenShift Pipelines:

® Linux (x86_64, amd64)

I # subscription-manager repos --enable="pipelines-1.18-for-rhel-8-x86_64-rpms"

® Linux on IBM Z® and IBM® LinuxONE (s390x)

109

https://mirror.openshift.com/pub/openshift-v4/clients/pipelines/1.18.0/tkn-linux-s390x.tar.gz
https://mirror.openshift.com/pub/openshift-v4/clients/pipelines/1.18.0/tkn-linux-ppc64le.tar.gz
https://mirror.openshift.com/pub/openshift-v4/clients/pipelines/1.18.0/tkn-linux-arm64.tar.gz

Red Hat OpenShift Service on AWS 4 CLI tools

I # subscription-manager repos --enable="pipelines-1.18-for-rhel-8-s390x-rpms"

® Linux on IBM Power® (ppc64le)

I # subscription-manager repos --enable="pipelines-1.18-for-rhel-8-ppc64le-rpms"

® Linux on ARM (aarch64, arm64)

I # subscription-manager repos --enable="pipelines-1.18-for-rhel-8-aarch64-rpms"

6. Install the openshift-pipelines-client package:

I # yum install openshift-pipelines-client
After you install the CLI, it is available using the tkn command:

I $ tkn version

5.1.3. Installing the Red Hat OpenShift Pipelines CLI on Windows

For Windows, you can download the CLI as a zip archive.

Procedure

1. Download the CLI tool.
2. Extract the archive with a ZIP program.
3. Add the location of your tkn and tkn-pac files to your PATH environment variable.

4. To check your PATH, run the following command:

I C:\> path

5.1.4. Installing the Red Hat OpenShift Pipelines CLI on macOS

For macOS, you can download the CLI as a tar.gz archive.

Procedure
1. Download the relevant CLI tool.

® macOS
® macOS on ARM
2. Unpack and extract the archive.
3. Add the location of your tkn and tkn-pac and files to your PATH environment variable.

4. To check your PATH, run the following command:

110

https://mirror.openshift.com/pub/openshift-v4/clients/pipelines/1.18.0/tkn-windows-amd64.zip
https://mirror.openshift.com/pub/openshift-v4/clients/pipelines/1.18.0/tkn-macos-amd64.tar.gz
https://mirror.openshift.com/pub/openshift-v4/clients/pipelines/1.18.0/tkn-macos-arm64.tar.gz

CHAPTER 5. PIPELINES CLI (TKN)

I $ echo $PATH

5.2. CONFIGURING THE OPENSHIFT PIPELINES TKN CLI

Configure the Red Hat OpenShift Pipelines tkn CLI to enable tab completion.

5.2.1. Enabling tab completion

After you install the tkn CLI, you can enable tab completion to automatically complete tkn commands or
suggest options when you press Tab.

Prerequisites
® You must have the tkn CLI tool installed.

® You must have bash-completion installed on your local system.

Procedure

The following procedure enables tab completion for Bash.

1. Save the Bash completion code to a file:
I $ tkn completion bash > tkn_bash_completion
2. Copy the file to /etc/bash_completion.d/:
I $ sudo cp tkn_bash_completion /etc/bash_completion.d/

Alternatively, you can save the file to a local directory and source it from your .bashrc file
instead.

Tab completion is enabled when you open a new terminal.

5.3. OPENSHIFT PIPELINES TKN REFERENCE

This section lists the basic tkn CLI commands.

5.3.1. Basic syntax

tkn [command or options] [arguments...]

5.3.2. Global options

--help, -h
5.3.3. Utility commands
5.3.3.1. tkn

Parent command for tkn CLI.

m

Red Hat OpenShift Service on AWS 4 CLI tools

Example: Display all options

I $ tkn

5.3.3.2. completion [shell]

Print shell completion code which must be evaluated to provide interactive completion. Supported
shells are bash and zsh.

Example: Completion code for bash shell
I $ tkn completion bash

5.3.3.3. version

Print version information of the tkn CLI.

Example: Check the tkn version

I $ tkn version

5.3.4. Pipelines management commands

5.3.4.1. pipeline
Manage pipelines.

Example: Display help
I $ tkn pipeline --help

5.3.4.2. pipeline delete

Delete a pipeline.

Example: Delete the mypipeline pipeline from a namespace

I $ tkn pipeline delete mypipeline -n myspace

5.3.4.3. pipeline describe

Describe a pipeline.

Example: Describe the mypipeline pipeline

I $ tkn pipeline describe mypipeline

5.3.4.4. pipeline list

12

Display a list of pipelines.

Example: Display a list of pipelines
I $ tkn pipeline list

5.3.4.5. pipeline logs

Display the logs for a specific pipeline.

Example: Stream the live logs for the mypipeline pipeline
I $ tkn pipeline logs -f mypipeline

5.3.4.6. pipeline start

Start a pipeline.

Example: Start the mypipeline pipeline

I $ tkn pipeline start mypipeline

5.3.5. Pipeline run commands

5.3.5.1. pipelinerun
Manage pipeline runs.

Example: Display help

I $ tkn pipelinerun -h

5.3.5.2. pipelinerun cancel

Cancel a pipeline run.

CHAPTER 5. PIPELINES CLI (TKN)

Example: Cancel the mypipelinerun pipeline run from a namespace

I $ tkn pipelinerun cancel mypipelinerun -n myspace

5.3.5.3. pipelinerun delete

Delete a pipeline run.

Example: Delete pipeline runs from a namespace

I $ tkn pipelinerun delete mypipelinerun1 mypipelinerun2 -n myspace

Example: Delete all pipeline runs from a namespace, except the five most recently executed

pipeline runs

13

Red Hat OpenShift Service on AWS 4 CLI tools

I $ tkn pipelinerun delete -n myspace --keep 5 ﬂ

ﬂ Replace 5 with the number of most recently executed pipeline runs you want to retain.

Example: Delete all pipelines

I $ tkn pipelinerun delete --all

NOTE

Starting with Red Hat OpenShift Pipelines 1.6, the tkn pipelinerun delete --all command
does not delete any resources that are in the running state.

5.3.5.4. pipelinerun describe

Describe a pipeline run.

Example: Describe the mypipelinerun pipeline run in a namespace

I $ tkn pipelinerun describe mypipelinerun -n myspace

5.3.5.5. pipelinerun list

List pipeline runs.

Example: Display a list of pipeline runs in a namespace
I $ tkn pipelinerun list -n myspace

5.3.5.6. pipelinerun logs

Display the logs of a pipeline run.

Example: Display the logs of the mypipelinerun pipeline run with all tasks and stepsin a
namespace

I $ tkn pipelinerun logs mypipelinerun -a -n myspace

5.3.6. Task management commands

5.3.6.1. task

Manage tasks.
Example: Display help

I $ tkn task -h

14

CHAPTER 5. PIPELINES CLI (TKN)

5.3.6.2. task delete

Delete a task.

Example: Delete mytask1 and mytask2 tasks from a namespace

I $ tkn task delete mytask1 mytask2 -n myspace

5.3.6.3. task describe

Describe a task.

Example: Describe the mytask task in a namespace

I $ tkn task describe mytask -n myspace

5.3.6.4. task list

List tasks.

Example: List all the tasks in a namespace

I $ tkn task list -n myspace

5.3.6.5. task logs

Display task logs.

Example: Display logs for the mytaskrun task run of the mytask task
I $ tkn task logs mytask mytaskrun -n myspace

5.3.6.6. task start

Start a task.

Example: Start the mytask task in a namespace

I $ tkn task start mytask -s <ServiceAccountName> -n myspace

5.3.7. Task run commands

5.3.7.1. taskrun

Manage task runs.
Example: Display help

I $ tkn taskrun -h

115

Red Hat OpenShift Service on AWS 4 CLI tools

5.3.7.2. taskrun cancel

Cancel a task run.

Example: Cancel the mytaskrun task run from a namespace
I $ tkn taskrun cancel mytaskrun -n myspace

5.3.7.3. taskrun delete

Delete a TaskRun.

Example: Delete the mytaskrun1 and mytaskrun2 task runs from a namespace

I $ tkn taskrun delete mytaskrun1 mytaskrun2 -n myspace

Example: Delete all but the five most recently executed task runs from a namespace
I $ tkn taskrun delete -n myspace --keep 5 ﬂ

ﬂ Replace 5 with the number of most recently executed task runs you want to retain.

5.3.7.4. taskrun describe

Describe a task run.

Example: Describe the mytaskrun task run in a namespace
I $ tkn taskrun describe mytaskrun -n myspace

5.3.7.5. taskrun list

List task runs.

Example: List all the task runs in a namespace

I $ tkn taskrun list -n myspace

5.3.7.6. taskrun logs

Display task run logs.

Example: Display live logs for the mytaskrun task run in a namespace

I $ tkn taskrun logs -f mytaskrun -n myspace

5.3.8. Condition management commands
5.3.8.1. condition

16

Manage Conditions.
Example: Display help

I $ tkn condition --help

5.3.8.2. condition delete

Delete a Condition.

Example: Delete the mycondition1 Condition from a namespace

I $ tkn condition delete mycondition1 -n myspace

5.3.8.3. condition describe

Describe a Condition.

Example: Describe the mycondition1 Condition in a namespace

I $ tkn condition describe mycondition1 -n myspace

5.3.8.4. condition list

List Conditions.

Example: List Conditions in a namespace

I $ tkn condition list -n myspace

5.3.9. Pipeline Resource management commands

5.3.9.1. resource

Manage Pipeline Resources.
Example: Display help

I $ tkn resource -h

5.3.9.2. resource create

Create a Pipeline Resource.

Example: Create a Pipeline Resource in a hamespace

I $ tkn resource create -n myspace

CHAPTER 5. PIPELINES CLI (TKN)

This is an interactive command that asks for input on the name of the Resource, type of the Resource,

and the values based on the type of the Resource.

17

Red Hat OpenShift Service on AWS 4 CLI tools

5.3.9.3. resource delete

Delete a Pipeline Resource.

Example: Delete the myresource Pipeline Resource from a namespace

I $ tkn resource delete myresource -n myspace

5.3.9.4. resource describe

Describe a Pipeline Resource.

Example: Describe the myresource Pipeline Resource

I $ tkn resource describe myresource -n myspace

5.3.9.5. resource list

List Pipeline Resources.

Example: List all Pipeline Resources in a namespace

I $ tkn resource list -n myspace

5.3.10. ClusterTask management commands

IMPORTANT

In Red Hat OpenShift Pipelines 1.10, ClusterTask functionality of the tkn command-line
utility is deprecated and is planned to be removed in a future release.

5.3.10.1. clustertask

Manage ClusterTasks.
Example: Display help
I $ tkn clustertask --help

5.3.10.2. clustertask delete

Delete a ClusterTask resource in a cluster.

Example: Delete mytask1 and mytask2 ClusterTasks

I $ tkn clustertask delete mytask1 mytask2

5.3.10.3. clustertask describe

Describe a ClusterTask.

18

Example: Describe the mytask ClusterTask

I $ tkn clustertask describe mytask1

5.3.10.4. clustertask list

List ClusterTasks.

Example: List ClusterTasks

I $ tkn clustertask list

5.3.10.5. clustertask start

Start ClusterTasks.

Example: Start the mytask ClusterTask

I $ tkn clustertask start mytask

5.3.11. Trigger management commands

5.3.11.1. eventlistener

Manage EventListeners.
Example: Display help

I $ tkn eventlistener -h

5.3.11.2. eventlistener delete

Delete an EventListener.

CHAPTER 5. PIPELINES CLI (TKN)

Example: Delete mylistener1 and mylistener2 EventListeners in a namespace

I $ tkn eventlistener delete mylistener1 mylistener2 -n myspace

5.3.11.3. eventlistener describe

Describe an EventListener.

Example: Describe the mylistener EventListener in a namespace

I $ tkn eventlistener describe mylistener -n myspace

5.3.11.4. eventlistener list

List EventListeners.

19

Red Hat OpenShift Service on AWS 4 CLI tools

Example: List all the EventListeners in a namespace

I $ tkn eventlistener list -n myspace

5.3.11.5. eventlistener logs

Display logs of an EventListener.

Example: Display the logs of the mylistener EventListener in a namespace

I $ tkn eventlistener logs mylistener -n myspace

5.3.11.6. triggerbinding

Manage TriggerBindings.
Example: Display TriggerBindings help

I $ tkn triggerbinding -h

5.3.11.7. triggerbinding delete

Delete a TriggerBinding.

Example: Delete mybinding1 and mybinding2 TriggerBindings in a namespace
I $ tkn triggerbinding delete mybinding1 mybinding2 -n myspace

5.3.11.8. triggerbinding describe

Describe a TriggerBinding.

Example: Describe the mybinding TriggerBinding in a namespace
I $ tkn triggerbinding describe mybinding -n myspace

5.3.11.9. triggerbinding list

List TriggerBindings.

Example: List all the TriggerBindings in a namespace

I $ tkn triggerbinding list -n myspace

5.3.11.10. triggertemplate

Manage TriggerTemplates.

Example: Display TriggerTemplate help

120

CHAPTER 5. PIPELINES CLI (TKN)
I $ tkn triggertemplate -h

5.3.11.11. triggertemplate delete

Delete a TriggerTemplate.

Example: Delete mytemplate1 and mytemplate2 TriggerTemplates in a namespace

I $ tkn triggertemplate delete mytemplate1 mytemplate2 -n “myspace’

5.3.11.12. triggertemplate describe

Describe a TriggerTemplate.

Example: Describe the mytemplate TriggerTemplate in a namespace

I $ tkn triggertemplate describe mytemplate -n “myspace’

5.3.11.13. triggertemplate list

List TriggerTemplates.

Example: List all the TriggerTemplates in a namespace

I $ tkn triggertemplate list -n myspace

5.3.11.14. clustertriggerbinding

Manage ClusterTriggerBindings.

Example: Display ClusterTriggerBindings help

I $ tkn clustertriggerbinding -h

5.3.11.15. clustertriggerbinding delete

Delete a ClusterTriggerBinding.

Example: Delete myclusterbinding1 and myclusterbinding2 ClusterTriggerBindings
I $ tkn clustertriggerbinding delete myclusterbinding1 myclusterbinding?2

5.3.11.16. clustertriggerbinding describe

Describe a ClusterTriggerBinding.

Example: Describe the myclusterbinding ClusterTriggerBinding

I $ tkn clustertriggerbinding describe myclusterbinding

121

Red Hat OpenShift Service on AWS 4 CLI tools

5.3.11.17. clustertriggerbinding list

List ClusterTriggerBindings.

Example: List all ClusterTriggerBindings

I $ tkn clustertriggerbinding list

5.3.12. Hub interaction commands

Interact with Tekton Hub for resources such as tasks and pipelines.

5.3.12.1. hub

Interact with hub.

Example: Display help

I $ tkn hub -h

Example: Interact with a hub APl server

I $ tkn hub --api-server https://api.hub.tekton.dev

NOTE

For each example, to get the corresponding sub-commands and flags, run tkn hub
<command> --help.

5.3.12.2. hub downgrade

Downgrade an installed resource.

Example: Downgrade the mytask task in the mynamespace namespace to its older version
I $ tkn hub downgrade task mytask --to version -n mynamespace

5.3.12.3. hub get

Get a resource manifest by its name, kind, catalog, and version.

Example: Get the manifest for a specific version of the myresource pipeline or task from the
tekton catalog

I $ tkn hub get [pipeline | task] myresource --from tekton --version version

5.3.12.4. hub info

Display information about a resource by its name, kind, catalog, and version.

122

CHAPTER 5. PIPELINES CLI (TKN)

Example: Display information about a specific version of the mytask task from the tekton
catalog

I $ tkn hub info task mytask --from tekton --version version

5.3.12.5. hub install

Install a resource from a catalog by its kind, name, and version.

Example: Install a specific version of the mytask task from the tekton catalog in the
mynamespace hamespace

I $ tkn hub install task mytask --from tekton --version version -n mynamespace

5.3.12.6. hub reinstall

Reinstall a resource by its kind and name.

Example: Reinstall a specific version of the mytask task from the tekton catalogin the
mynamespace hamespace

I $ tkn hub reinstall task mytask --from tekton --version version -n mynamespace

5.3.12.7. hub search

Search a resource by a combination of name, kind, and tags.

Example: Search a resource with a tag cli

I $ tkn hub search --tags cli

5.3.12.8. hub upgrade

Upgrade an installed resource.

Example: Upgrade the installed mytask task in the mynamespace namespace to a new
version

I $ tkn hub upgrade task mytask --to version -n mynamespace

123

Red Hat OpenShift Service on AWS 4 CLI tools

CHAPTER 6. OPM CLI

6.1. INSTALLING THE OPM CLI

6.1.1. About the opm CLI

The opm CLI tool is provided by the Operator Framework for use with the Operator bundle format. This
tool allows you to create and maintain catalogs of Operators from a list of Operator bundles that are
similar to software repositories. The result is a container image which can be stored in a container
registry and then installed on a cluster.

A catalog contains a database of pointers to Operator manifest content that can be queried through an
included API that is served when the container image is run. On Red Hat OpenShift Service on AWS,
Operator Lifecycle Manager (OLM) can reference the image in a catalog source, defined by a
CatalogSource object, which polls the image at regular intervals to enable frequent updates to installed
Operators on the cluster.

6.1.2. Installing the opm CLI

You can install the opm CLI tool on your Linux, macOS, or Windows workstation.

Prerequisites
® For Red Hat Enterprise Linux (RHEL) 9.0 and later, you must provide the following packages:

o podman version 1.9.3+ (version 2.0+ recommended)

o glibc version 2.28+

Procedure

1. Navigate to the OpenShift mirror site and download the latest version of the tarball that
matches your operating system.

2. Unpack the archive.

® For Linux or macOS:
I $ tar xvf <file>
® For Windows, unzip the archive with a ZIP program.
3. Place the file anywhere in your PATH.

® ForLinux or macOS:

a. Check your PATH:

I $ echo $PATH

b. Move the file. For example:

I $ sudo mv ./opm /ust/local/bin/

124

https://mirror.openshift.com/pub/openshift-v4/x86_64/clients/ocp/

CHAPTER 6. OPM CLI

® For Windows:

a. Check your PATH:
I C:\> path

b. Move the file:

I C:\> move opm.exe <directory>

Verification

® After you install the opm CLI, verify that it is available:

I $ opm version

6.2. OPM CLI REFERENCE

The opm command-line interface (CLI) is a tool for creating and maintaining Operator catalogs.

opm CLI syntax

I $ opm <command> [<subcommand>] [<argument>] [<flags>]

WARNING
The opm CLI is not forward compatible. The version of the opm CLI used to

generate catalog content must be earlier than or equal to the version used to serve
the content on a cluster.

Table 6.1. Global flags

Flag Description

-skip-tls-verify Skip TLS certificate verification for container image registries while pulling
bundles or indexes.

--use-http When you pull bundles, use plain HTTP for container image registries.

125

Red Hat OpenShift Service on AWS 4 CLI tools

IMPORTANT

The SQLite-based catalog format, including the related CLI commands, is a deprecated
feature. Deprecated functionality is still included in Red Hat OpenShift Service on AWS
and continues to be supported; however, it will be removed in a future release of this
product and is not recommended for new deployments.

For the most recent list of major functionality that has been deprecated or removed
within Red Hat OpenShift Service on AWS, refer to the Deprecated and removed features
section of the Red Hat OpenShift Service on AWS release notes.

6.2.1. generate

Generate various artifacts for declarative config indexes.

Command syntax

I $ opm generate <subcommand> [<flags>]

Table 6.2. generate subcommands

Subcommand Description

dockerfile Generate a Dockerfile for a declarative config index.

Table 6.3. generate flags

Flags Description

-h,--help Help for generate.

6.2.1.1. dockerfile

Generate a Dockerfile for a declarative config index.

IMPORTANT

This command creates a Dockerfile in the same directory as the <dcRootDir> (named
<dcDirNames.Dockerfile) that is used to build the index. If a Dockerfile with the same
name already exists, this command fails.

When specifying extra labels, if duplicate keys exist, only the last value of each duplicate
key gets added to the generated Dockerfile.

Command syntax

I $ opm generate dockerfile <dcRootDir> [<flags>]

Table 6.4. generate dockerfile flags

126

CHAPTER 6. OPM CLI

Flag Description

-i, --binary-image Image in which to build catalog. The default value is quay.io/operator-
(string) framework/opm:latest.
-1, --extra-labels Extra labels to include in the generated Dockerfile. Labels have the form
(string) key=value.
-h,--help Help for Dockerfile.

NOTE

To build with the official Red Hat image, use the registry.redhat.io/openshift4/ose-
operator-registry-rhel9:v4 value with the -i flag.

6.2.2. index

Generate Operator index for SQLite database format container images from pre-existing Operator
bundles.

IMPORTANT

As of Red Hat OpenShift Service on AWS 4.11, the default Red Hat-provided Operator
catalog releases in the file-based catalog format. The default Red Hat-provided
Operator catalogs for Red Hat OpenShift Service on AWS 4.6 through 4.10 released in
the deprecated SQLite database format.

The opm subcommands, flags, and functionality related to the SQLite database format
are also deprecated and will be removed in a future release. The features are still
supported and must be used for catalogs that use the deprecated SQLite database
format.

Many of the opm subcommands and flags for working with the SQL.ite database format,
such as opm index prune, do not work with the file-based catalog format.

Command syntax

I $ opm index <subcommand> [<flags>]

Table 6.5. index subcommands

Subcommand Description

add Add Operator bundles to an index.
prune Prune an index of all but specified packages.
prune-stranded Prune an index of stranded bundles, which are bundles that are not associated

with a particular image.

127

Red Hat OpenShift Service on AWS 4 CLI tools

Subcommand Description

rm Delete an entire Operator from an index.

6.2.2.1. add

Add Operator bundles to an index.

Command syntax
I $ opm index add [<flags>]

Table 6.6. index add flags

Flag Description

-i,--binary-image Container image for on-image opm command

-u, --build-tool (string) Tool to build container images: podman (the default value) ordocker.

Overrides part of the -=-container-tool flag.

-b, --bundles (strings)

-¢, --container-tool
(string)

-f --from-index
(string)

--generate

--mode (string)

-d, --out-dockerfile
(string)

--permissive

-p, --pull-tool (string)

-t --tag (string)

Comma-separated list of bundles to add.

Tool to interact with container images, such as for saving and building: docker or
podman.

Previous index to add to.

If enabled, only creates the Dockerfile and saves it to local disk.

Graph update mode that defines how channel graphs are updated: replaces (the
default value), semver, orsemver-skippatch.

Optional: If generating the Dockerfile, specify a file name.

Allow registry load errors.

Tool to pull container images: none (the default value), docker, orpodman.
Overrides part of the --container-tool flag.

Custom tag for container image being built.

6.2.2.2. prune

Prune an index of all but specified packages.

128

CHAPTER 6. OPM CLI

Command syntax

I $ opm index prune [<flags>]

Table 6.7. index prune flags

Flag Description

-i,--binary-image

-¢, --container-tool
(string)

-f --from-index
(string)

--generate

-d, --out-dockerfile
(string)

-p,--packages
(strings)

--permissive

-t --tag (string)

Container image for on-image opm command

Tool to interact with container images, such as for saving and building: docker or
podman.

Index to prune.

If enabled, only creates the Dockerfile and saves it to local disk.

Optional: If generating the Dockerfile, specify a file name.

Comma-separated list of packages to keep.

Allow registry load errors.

Custom tag for container image being built.

6.2.2.3. prune-stranded

Prune an index of stranded bundles, which are bundles that are not associated with a particular image.

Command syntax

I $ opm index prune-stranded [<flags>]
Table 6.8. index prune-stranded flags

Flag Description

-i,--binary-image Container image for on-image opm command

-c,--container-tool Tool to interact with container images, such as for saving and building: docker or
(string) podman.

-f --from-index
(string)

Index to prune.

129

Red Hat OpenShift Service on AWS 4 CLI tools

Flag Description

--generate If enabled, only creates the Dockerfile and saves it to local disk.
-d, --out-dockerfile Optional: If generating the Dockerfile, specify a file name.
(string)
-p,--packages Comma-separated list of packages to keep.
(strings)
--permissive Allow registry load errors.
-t --tag (string) Custom tag for container image being built.
6.2.2.4.rm

Delete an entire Operator from an index.

Command syntax
I $ opm index rm [<flags>]

Table 6.9. index rm flags

Flag Description

-i,--binary-image Container image for on-image opm command

-u, --build-tool (string) Tool to build container images: podman (the default value) ordocker.
Overrides part of the -=-container-tool flag.

-c,--container-tool Tool to interact with container images, such as for saving and building: docker or
(string) podman.

-f --from-index Previous index to delete from.

(string)

--generate If enabled, only creates the Dockerfile and saves it to local disk.

-0, --operators Comma-separated list of Operators to delete.

(strings)

-d, --out-dockerfile Optional: If generating the Dockerfile, specify a file name.

(string)

130

CHAPTER 6. OPM CLI

Flag Description

-p.--packages Comma-separated list of packages to keep.

(strings)

--permissive Allow registry load errors.

-p, --pull-tool (string) Tool to pull container images: none (the default value), docker, orpodman.

Overrides part of the --container-tool flag.

-t --tag (string) Custom tag for container image being built.

6.2.3.init

Generate an olm.package declarative config blob.

Command syntax
I $ opm init <package_name> [<flags>]

Table 6.10. init flags

Flag Description

-c, --default-channel The channel that subscriptions will default to if unspecified.
(string)

-d, --description Path to the Operator's README.md or other documentation.
(string)

-i,--icon (string) Path to package's icon.

-0, --output (string) Output format: json (the default value) oryaml.

6.2.4. migrate

Migrate a SQLite database format index image or database file to a file-based catalog.

IMPORTANT

The SQLite-based catalog format, including the related CLI commands, is a deprecated
feature. Deprecated functionality is still included in Red Hat OpenShift Service on AWS
and continues to be supported; however, it will be removed in a future release of this
product and is not recommended for new deployments.

For the most recent list of major functionality that has been deprecated or removed
within Red Hat OpenShift Service on AWS, refer to the Deprecated and removed features
section of the Red Hat OpenShift Service on AWS release notes.

131

Red Hat OpenShift Service on AWS 4 CLI tools

Command syntax

I $ opm migrate <index_ref> <output_dir> [<flags>]

Table 6.11. migrate flags

Flag Description

-0, --output (string) Output format: json (the default value) oryaml.

6.2.5. render

Generate a declarative config blob from the provided index images, bundle images, and SQL.ite
database files.

Command syntax
I $ opm render <index_image | bundle_image | sqlite_file> [<flags>]

Table 6.12. render flags

Flag Description
-0, --output (string) Output format: json (the default value) oryaml.
6.2.6. serve

Serve declarative configs via a GRPC server.

NOTE

The declarative config directory is loaded by the serve command at startup. Changes
made to the declarative config after this command starts are not reflected in the served
content.

Command syntax

$ opm serve <source_path> [<flags>]

Table 6.13. serve flags

Flag Description

--cache-dir (string) If this flag is set, it syncs and persists the server cache directory.
--cache-enforce- Exits with an error if the cache is not present or is invalidated. The default value is
integrity true when the --cache-dir flag is set and the -=-cache-only flag is false.

Otherwise, the default is false.

132

CHAPTER 6. OPM CLI

Flag Description

--cache-only Syncs the serve cache and exits without serving.

--debug Enables debug logging.

h,--help Help for serve.

-p, --port (string) The port number for the service. The default value is 50051.
--pprof-addr (string) The address of the startup profiling endpoint. The format is Addr:Port.
-t, --termination-log The path to a container termination log file. The default value is

(string) /dev/termination-log.

6.2.7. validate

Validate the declarative config JSON file(s) in a given directory.

Command syntax

I $ opm validate <directory> [<flags>]

133

Red Hat OpenShift Service on AWS 4 CLI tools

CHAPTER 7. ROSA CLI

7). GETTING STARTED WITH THE ROSA CLI

7.1.1. About the ROSA CLI

Use the ROSA command-line interface (CLI) (rosa) to create, update, manage, and delete Red Hat
OpenShift Service on AWS clusters and resources.

7.1.2. Setting up the ROSA CLI

Use the following steps to install and configure the ROSA CLI (rosa) on your installation host.

Procedure
1. Install and configure the latest AWS CLI (aws).

a. Follow the AWS Command Line Interface documentation to install and configure the AWS
CLI for your operating system.
Specify your aws_access_key_id, aws_secret_access_key, and region in the
.aws/credentials file. See AWS Configuration basics in the AWS documentation.

NOTE

You can optionally use the AWS_DEFAULT_REGION environment variable
to set the default AWS region.

b. Query the AWS API to verify if the AWS CLI is installed and configured correctly:

I $ aws sts get-caller-identity --output text

Example output

I <aws_account_id> arn:aws:iam::<aws_account_id>:user/<username> <aws_user_id>

2. Download the latest version of the ROSA CLI (rosa) for your operating system from the
Downloads page on OpenShift Cluster Manager.

3. Extract the rosa binary file from the downloaded archive. The following example extracts the
binary from a Linux tar archive:

I $ tar xvf rosa-linux.tar.gz

4. Add rosa to your path. In the following example, the /ust/local/bin directory is included in the
path of the user:

I $ sudo mv rosa /usr/local/bin/rosa

5. Verify if the ROSA CLlI is installed correctly by querying the rosa version:

I $ rosa version

134

https://aws.amazon.com/cli/
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-quickstart.html
https://console.redhat.com/openshift/downloads

CHAPTER 7. ROSA CLI

Example output

1.2.15
Your ROSA CLlI is up to date.

6. Optional: Enable tab completion for the ROSA CLI. With tab completion enabled, you can press
the Tab key twice to automatically complete subcommands and receive command suggestions:

® To enable persistent tab completion for Bash on a Linux host:

a. Generate a rosa tab completion configuration file for Bash and save it to your
/etc/bash_completion.d/ directory:

I # rosa completion bash > /etc/bash_completion.d/rosa

b. Open a new terminal to activate the configuration.

® To enable persistent tab completion for Bash on a macOS host:

a. Generate a rosa tab completion configuration file for Bash and save it to your
/usr/local/etc/bash_completion.d/ directory:

I $ rosa completion bash > /usr/local/etc/bash_completion.d/rosa

b. Open a new terminal to activate the configuration.

® To enable persistent tab completion for Zsh:

a. If tab completion is not enabled for your Zsh environment, enable it by running the
following command:

I $ echo "autoload -U compinit; compinit" >> ~/.zshrc

b. Generate a rosa tab completion configuration file for Zsh and save it to the first
directory in your functions path:

I $ rosa completion zsh > "${fpath[1]}/_rosa"

c. Open a new terminal to activate the configuration.

® To enable persistent tab completion for fish:

a. Generate a rosa tab completion configuration file for fish and save it to your
~/.config/fish/completions/ directory:

I $ rosa completion fish > ~/.config/fish/completions/rosa.fish

b. Open a new terminal to activate the configuration.

® To enable persistent tab completion for PowerShell:

a. Generate a rosa tab completion configuration file for PowerShell and save it to a file
named rosa.ps1i:

135

Red Hat OpenShift Service on AWS 4 CLI tools

I PS> rosa completion powershell | Out-String | Invoke-Expression

b. Source the rosa.ps1 file from your PowerShell profile.

NOTE

For more information about configuring rosa tab completion, see the help menu
by running the rosa completion --help command.

7.1.3. Configuring the ROSA CLI

Use the following commands to configure the ROSA command-line interface (CLI) (rosa).

7.1.3.1. login

There are several methods you can use to log in to your Red Hat account using the ROSA command-line
interface (CLI) (rosa). These methods are described in detail below.

7.1.3.1.1. Authenticating the ROSA CLI with Red Hat single sign-on

You can login to the ROSA CLI (rosa) with Red Hat single sign-on. Red Hat recommends using the
rosa command line tool with Red Hat single sign-on, instead of using an offline authentication token.

An offline authentication token is long-lived, stored on your operating system, and cannot be revoked.
These factors increase overall security risks and the likelihood of unauthorized access to your account.

Alternatively, authenticating with the Red Hat single sign-on method automatically sends your rosa
instance a refresh token that is valid for 10 hours. This unique, temporary authorization code enhances
security and reduces the risk of unauthorized access.

IMPORTANT

The method of authenticating using Red Hat single sign-on does not break any existing
automations that rely on offline tokens. Red Hat recommends using services accounts for
automation purposes. If you still need to use offline tokens for automation or other
purposes, you can download the OpenShift Cluster Manager API token from the
OpenShift Cluster Manager API Token page.

Use one of the following methods of authentication:

® |f your system has a web browser, see the "Authenticating the ROSA CLI with a single sign-on
authorization code" section to authenticate with Red Hat single sign-on.

e |f you are working with containers, remote hosts, or other environments without a web browser,
see the "Authenticating the ROSA CLI with a single sign-on device code" section to
authenticate with Red Hat single sign-on.

® To authenticate the ROSA CLI using an offline token, see the "Authenticating the ROSA CLI
with an offline token" section.

NOTE

Single sign-on authorization is supported with ROSA CLI (rosa) version 1.2.36 or later.

136

https://console.redhat.com/iam/service-accounts
https://console.redhat.com/openshift/token

CHAPTER 7. ROSA CLI

7.1.3.1.2. Authenticating the ROSA CLI with a single sign-on authorization code

® Tologintothe ROSA CLI (rosa) with a Red Hat single sign-on authorization code, run the
following command:

Syntax
I $ rosa login --use-auth-code

Running this command redirects you to the Red Hat single sign-on login. Log in with your
Red Hat login or email.

Table 7.1. Optional arguments inherited from parent commands

Option Definition

--help Shows help for this command.

--debug Enables debug mode.

To switch accounts, logout from https://sso.redhat.com and run the rosa logout command in
your terminal before attempting to login again.

7.1.3.1.3. Authenticating the ROSA CLI with a single sign-on device code

If you are working with containers, remote hosts, and other environments without a web browser, you
can use a Red Hat single sign-on device code for secure authentication. To do this, you must use a
second device that has a web browser to approve the login.

NOTE

Single sign-on authorization is supported with ROSA CLI (rosa) version 1.2.36 or later.

® Tologintothe ROSA CLI (rosa) with a Red Hat single sign-on device code, run the following
command:

Syntax
I $ rosa login --use-device-code

Running this command will redirect you to the Red Hat SSO login and provide a log in code.

Table 7.2. Optional arguments inherited from parent commands

Option Definition

--help Shows help for this command.

--debug Enables debug mode.

137

https://sso.redhat.com

Red Hat OpenShift Service on AWS 4 CLI tools

To switch accounts, logout from https://sso.redhat.com and run the rosa logout command in
your terminal before attempting to login again.

7.1.3.1.4. Authenticating the ROSA CLI with an offline token

Log in to your Red Hat account, saving the credentials to the rosa configuration file.

138

NOTE

To use offline tokens for automation purposes, you can download the OpenShift Cluster
Manager API token from the OpenShift Cluster Manager API Token page. To use service
accounts for automation purposes, see the Service Accounts page.

IMPORTANT

Red Hat recommends using service accounts for automation purposes.

® Tologinto ROSA CLI (rosa) with a Red Hat offline token, run the following command:

Syntax
I $ rosa login [arguments]

Table 7.3. Arguments

Option Definition

--client-id The OpenlD client identifier (string). Default: cloud-services
--client-secret The OpenlD client secret (string).
--insecure Enables insecure communication with the server. This disables

verification of TLS certificates and host names.

--scope The OpenlD scope (string). If this option is used, it replaces the
default scopes. This can be repeated multiple times to specify
multiple scopes. Default: openid

--token Accesses or refreshes the token (string).

--token-url The OpenlID token URL (string). Default:
https://sso.redhat.com/auth/realms/redhat-
external/protocol/openid-connect/token

Table 7.4. Optional arguments inherited from parent commands

Option Definition

--help Shows help for this command.

https://sso.redhat.com
https://console.redhat.com/openshift/token/rosa
https://console.redhat.com/iam/service-accounts

CHAPTER 7. ROSA CLI

Option Definition

--debug Enables debug mode.
--profile Specifies an AWS profile (string) from your credentials file.
7.1.3.2. logout

Log out of rosa. Logging out also removes the rosa configuration file.

Syntax

I $ rosa logout [arguments]

Table 7.5. Optional arguments inherited from parent commands

Option Definition

--help Shows help for this command.
--debug Enables debug mode.
--profile Specifies an AWS profile (string) from your credentials file.

7.1.3.3. verify permissions

Verify that the AWS permissions required to create a Red Hat OpenShift Service on AWS cluster are
configured correctly:

Syntax

I $ rosa verify permissions [arguments]

NOTE

This command verifies permissions only for clusters that do not use the AWS Security
Token Service (STS).

Table 7.6. Optional arguments inherited from parent commands

Option Definition

--help Shows help for this command.

--debug Enables debug mode.

139

Red Hat OpenShift Service on AWS 4 CLI tools

Option Definition

--region The AWS region (string) in which to run the command. This value overrides
the AWS_REGION environment variable.

--profile Specifies an AWS profile (string) from your credentials file.
Examples
Verify that the AWS permissions are configured correctly:
I $ rosa verify permissions
Verify that the AWS permissions are configured correctly in a specific region:

I $ rosa verify permissions --region=us-west-2

7.1.3.4. verify quota

Verifies that AWS quotas are configured correctly for your default region.

Syntax
I $ rosa verify quota [arguments]

Table 7.7. Optional arguments inherited from parent commands

Option Definition

--help Shows help for this command.
--debug Enables debug mode.
--region The AWS region (string) in which to run the command. This value overrides

the AWS_REGION environment variable.

--profile Specifies an AWS profile (string) from your credentials file.
Examples
Verify that the AWS quotas are configured correctly for the default region:
I $ rosa verify quota
Verify that the AWS quotas are configured correctly in a specific region:

I $ rosa verify quota --region=us-west-2

140

CHAPTER 7. ROSA CLI

7.1.3.5. download rosa

Download the latest compatible version of the rosa CLI.
After you download rosa, extract the contents of the archive and add it to your path.

Syntax

I $ rosa download rosa [arguments]

Table 7.8. Optional arguments inherited from parent commands
--help Shows help for this command.

--debug Enables debug mode.

7.1.3.6. download oc

Download the latest compatible version of the OpenShift Container Platform CLI (o¢).
After you download oc¢, you must extract the contents of the archive and add it to your path.

Syntax
I $ rosa download oc [arguments]

Table 7.9. Optional arguments inherited from parent commands

Option Definition

--help Shows help for this command.
--debug Enables debug mode.
Example

Download oc client tools:

I $ rosa download oc

7.1.3.7. verify oc

Verifies that the OpenShift Container Platform CLI (o¢) is installed correctly.

Syntax

I $ rosa verify oc [arguments]

141

Red Hat OpenShift Service on AWS 4 CLI tools

Table 7.10. Optional arguments inherited from parent commands

Option Definition

--help Shows help for this command.
--debug Enables debug mode.
Example

Verify oc client tools:

I $ rosa verify oc

Additional resources

® Setting up the ROSA CLI

® Getting started with the OpenShift CLI

7.1.4. Updating the ROSA CLI

Update to the latest compatible version of the ROSA CLI (rosa).
Procedure
1. Confirm that a new version of the ROSA CLI (rosa) is available:

I $ rosa version

Example output
1.2.12

There is a newer release version '1.2.15', please consider updating:
https://mirror.openshift.com/pub/openshift-v4/clients/rosa/latest/

2. Download the latest compatible version of the ROSA CLI:

I $ rosa download rosa

This command downloads an archive called rosa-*.tar.gz into the current directory. The exact
name of the file depends on your operating system and system architecture.

3. Extract the contents of the archive:

I $ tar -xzf rosa-linux.tar.gz

4. Install the new version of the ROSA CLI by moving the extracted file into your path. In the
following example, the /ust/local/bin directory is included in the path of the user:

I $ sudo mv rosa /usr/local/bin/rosa

142

Verification

e Verify that the new version of the ROSA CLI is installed.

I $ rosa version

Example output
1.2.15
Your ROSA CLlI is up to date.

7.2. ROSA CLI COMMAND REFERENCE

CHAPTER 7. ROSA CLI

This reference provides descriptions and example commands for ROSA CLI (rosa) commands.

Run rosa -h to list all commands or run rosa <command> --help to get additional details for a specific

command.

7.2.1. ROSA CLI commands

7.2.1.1. rosa create account-roles

Create account-wide IAM roles before creating your cluster.

Example usage

Create default account roles for ROSA clusters using STS
rosa create account-roles

Create account roles with a specific permissions boundary

rosa create account-roles --permissions-boundary arn:aws:iam::123456789012:policy/perm-

boundary

7.2.1.2. rosa create admin

Creates an admin user to login to the cluster

Example usage

Create an admin user to login to the cluster
rosa create admin -c mycluster -p MasterKey123

7.2.1.3. rosa create autoscaler

Create an autoscaler for a cluster

Example usage

Interactively create an autoscaler to a cluster named "mycluster”
rosa create autoscaler --cluster=mycluster --interactive

Create a cluster-autoscaler where it should skip nodes with local storage

143

Red Hat OpenShift Service on AWS 4 CLI tools

rosa create autoscaler --cluster=mycluster --skip-nodes-with-local-storage

Create a cluster-autoscaler with log verbosity of '3’
rosa create autoscaler --cluster=mycluster --log-verbosity 3

Create a cluster-autoscaler with total CPU constraints

rosa create autoscaler --cluster=mycluster --min-cores 10 --max-cores 100

7.2.1.4. rosa create break-glass-credential

Create a break glass credential for a cluster.

Example usage

Interactively create a break glass credential to a cluster named "mycluster”
rosa create break-glass-credential --cluster=mycluster --interactive

7.2.1.5. rosa create cluster

Create cluster

Example usage

Create a cluster named "mycluster”
rosa create cluster --cluster-name=mycluster

Create a cluster in the us-east-2 region

rosa create cluster --cluster-name=mycluster --region=us-east-2

7.2.1.6. rosa create decision

Create a decision for an Access Request

Example usage

Create a decision for an Access Request to approve it
rosa create decision --access-request <access_request_id> --decision Approved

7.2.1.7. rosa create dns-domain

Create DNS Domain.

Example usage

Create DNS Domain
rosa create dns-domain

7.2.1.8. rosa create external-auth-provider

Create an external authentication provider for a cluster.

Example usage

144

CHAPTER 7. ROSA CLI

Interactively create an external authentication provider to a cluster named "mycluster”
rosa create external-auth-provider --cluster=mycluster --interactive

7.2.1.9. rosa create iamserviceaccount

Create IAM role for Kubernetes service account

Example usage

Create an IAM role for a service account
rosa create iamserviceaccount --cluster my-cluster --name my-app --namespace default

7.2.1.10. rosa create idp

Add IDP for cluster

Example usage

Add a GitHub identity provider to a cluster named "mycluster”
rosa create idp --type=github --cluster=mycluster

Add an identity provider following interactive prompts
rosa create idp --cluster=mycluster --interactive

7.2.1.11. rosa create image-mirror

Create image mirror for a cluster

Example usage

Create an image mirror for cluster "mycluster”
rosa create image-mirror --cluster=mycluster \
--source=registry.example.com/team \
--mirrors=mirror.corp.com/team,backup.corp.com/team

Create with a specific type (digest is default and only supported type)
rosa create image-mirror --cluster=mycluster \

--type=digest --source=docker.io/library \
--mirrors=internal-registry.company.com/dockerhub

7.2.1.12. rosa create kubeletconfig

Create a custom kubeletconfig for a cluster

Example usage

Create a custom kubeletconfig with a pod-pids-limit of 5000
rosa create kubeletconfig --cluster=mycluster --pod-pids-limit=5000

7.2.1.13. rosa create log-forwarder

145

Red Hat OpenShift Service on AWS 4 CLI tools

Create a log forwarder for a Hosted Control Plane cluster

Example usage

Create a log forwarder using a config file
rosa create log-forwarder -c mycluster-hcp --log-fwd-config=s3.yml

Create a log forwarder interactively
rosa create log-forwarder -¢ mycluster-hcp --interactive

7.2.1.14. rosa create machinepool

Add machine pool to cluster

Example usage

Interactively add a machine pool to a cluster named "mycluster”

rosa create machinepool --cluster=mycluster --interactive

Add a machine pool mp-1 with 3 replicas of m5.xlarge to a cluster

rosa create machinepool --cluster=mycluster --name=mp-1 --replicas=3 --instance-type=m5.xlarge

Add a machine pool mp-1 with autoscaling enabled and 3 to 6 replicas of m5.xlarge to a cluster

rosa create machinepool --cluster=mycluster --name=mp-1 --enable-autoscaling \
--min-replicas=3 --max-replicas=6 --instance-type=m5.xlarge

Add a machine pool with labels to a cluster

rosa create machinepool -c mycluster --name=mp-1 --replicas=2 --instance-type=r5.2xlarge --
labels=foo=bar,bar=baz,

Add a machine pool with spot instances to a cluster

rosa create machinepool -c mycluster --name=mp-1 --replicas=2 --instance-type=r5.2xlarge --use-
spot-instances \

--spot-max-price=0.5
Add a machine pool to a cluster and set the node drain grace period
rosa create machinepool -c mycluster --name=mp-1 --node-drain-grace-period="90 minutes"

7.2.1.15. rosa create network

Network AWS cloudformation stack

Example usage

Create a AWS cloudformation stack
rosa create network <template-name> --param Param1=Value1 --param Param2=Value2

ROSA quick start HCP VPC example with one availability zone
rosa create network rosa-quickstart-default-vpc --param Region=us-west-2 --param
Name=quickstart-stack --param AvailabilityZoneCount=1 --param VpcCidr=10.0.0.0/16

ROSA quick start HCP VPC example with two explicit availability zones

rosa create network rosa-quickstart-default-vpc --param Region=us-west-2 --param
Name=quickstart-stack --param AZ1=us-west-2b --param AZ2=us-west-2d --param
VpcCidr=10.0.0.0/16

To delete the AWS cloudformation stack
aws cloudformation delete-stack --stack-name <name> --region <region>

146

CHAPTER 7. ROSA CLI

TEMPLATE_NAME:

Specifies the name of the template to use. This should match the name of a directory

under the path specified by '--template-dir' or the 'OCM_TEMPLATE_DIR' environment variable.
The directory should contain a YAML file defining the custom template structure.

If no TEMPLATE_NAME is provided, or if no matching directory is found, the default

built-in template 'rosa-quickstart-default-vpc' will be used.

7.2.1.16. rosa create ocm-role

Create role used by OCM

Example usage

Create default ocm role for ROSA clusters using STS
rosa create ocm-role

Create ocm role with a specific permissions boundary

rosa create ocm-role --permissions-boundary arn:aws:iam::123456789012:policy/perm-boundary

7.2.1.17. rosa create oidc-config

Create OIDC config compliant with OIDC protocol.

Example usage

Create OIDC config
rosa create oidc-config

7.2.1.18. rosa create oidc-provider

Create OIDC provider for an STS cluster.

Example usage

Create OIDC provider for cluster named "mycluster”
rosa create oidc-provider --cluster=mycluster

7.2.1.19. rosa create operator-roles

Create operator IAM roles for a cluster.

Example usage

Create default operator roles for cluster named "mycluster”
rosa create operator-roles --cluster=mycluster

Create operator roles with a specific permissions boundary
rosa create operator-roles -c mycluster --permissions-boundary
arn:aws:iam::123456789012:policy/perm-boundary

7.2.1.20. rosa create tuning-configs

147

Red Hat OpenShift Service on AWS 4 CLI tools

Add tuning config

Example usage

Add a tuning config with name "tuned1" and spec from a file "file1" to a cluster named "mycluster”
rosa create tuning-config --name=tuned1 --spec-path=file1 --cluster=mycluster"

7.2.1.21. rosa create user-role

Create user role to verify account association

Example usage

Create user roles
rosa create user-role

Create user role with a specific permissions boundary

rosa create user-role --permissions-boundary arn:aws:iam::123456789012:policy/perm-boundary

7.2.1.22. rosa delete account-roles

Delete Account Roles

Example usage

Delete Account roles”
rosa delete account-roles -p prefix

7.2.1.23. rosa delete admin

Deletes the admin user

Example usage

Delete the admin user
rosa delete admin --cluster=mycluster

7.2.1.24. rosa delete autoscaler

Delete autoscaler for cluster

Example usage

Delete the autoscaler config for cluster named "mycluster”
rosa delete autoscaler --cluster=mycluster

7.2.1.25. rosa delete cluster

Delete cluster

Example usage

148

CHAPTER 7. ROSA CLI

Delete a cluster named "mycluster”
rosa delete cluster --cluster=mycluster

7.2.1.26. rosa delete dns-domain

Delete DNS domain

Example usage

Delete a DNS domain with ID github-1
rosa delete dns-domain github-1

7.2.1.27. rosa delete external-auth-provider

Delete external authentication provider

Example usage

Delete an external authentication provider named exauth-1
rosa delete external-auth-provider exauth-1 --cluster=mycluster

7.2.1.28. rosa delete iamserviceaccount

Delete IAM role for Kubernetes service account

Example usage

Delete IAM role for service account
rosa delete iamserviceaccount --cluster my-cluster \
--name my-app \
--namespace default

7.2.1.29. rosa delete idp

Delete cluster IDPs

Example usage

Delete an identity provider named github-1
rosa delete idp github-1 --cluster=mycluster

7.2.1.30. rosa delete image-mirror

Delete image mirror from a cluster

Example usage

Delete image mirror with ID "abc123" from cluster "mycluster”
rosa delete image-mirror --cluster=mycluster abc123

Delete without confirmation prompt

149

Red Hat OpenShift Service on AWS 4 CLI tools

rosa delete image-mirror --cluster=mycluster abc123 --yes
Alternative: using the --id flag

rosa delete image-mirror --cluster=mycluster --id=abc123

7.2.1.31. rosa delete ingress

Delete cluster ingress

Example usage

Delete ingress with ID a1b2 from a cluster named 'mycluster’
rosa delete ingress --cluster=mycluster a1b2

Delete secondary ingress using the sub-domain name

rosa delete ingress --cluster=mycluster apps2

7.2.1.32. rosa delete kubeletconfig

Delete a kubeletconfig from a cluster

Example usage

Delete the KubeletConfig for ROSA Classic cluster foo’
rosa delete kubeletconfig --cluster foo
Delete the KubeletConfig named 'bar' from cluster 'foo’
rosa delete kubeletconfig --cluster foo --name bar

7.2.1.33. rosa delete log-forwarder

Delete log forwarder

Example usage

Delete log forwarder with ID 'example-id' from a cluster named 'mycluster-hcp’
rosa delete log-forwarder --cluster=mycluster-hcp example-id

7.2.1.34. rosa delete machinepool

Delete machine pool

Example usage

Delete machine pool with ID mp-1 from a cluster named 'mycluster’
rosa delete machinepool --cluster=mycluster mp-1

7.2.1.35. rosa delete ocm-role

Delete OCM role

Example usage

150

CHAPTER 7. ROSA CLI

Delete OCM role
rosa delete ocm-role --role-arn arn:aws:iam::123456789012:role/xxx-OCM-Role-1223456778

7.2.1.36. rosa delete oidc-config

Delete OIDC Config

Example usage

Delete OIDC config based on registered OIDC Config ID that has been supplied
rosa delete oidc-config --oidc-config-id <oidc_config_id>

7.2.1.37.rosa delete oidc-provider

Delete OIDC Provider

Example usage

Delete OIDC provider for cluster named "mycluster”
rosa delete oidc-provider --cluster=mycluster

7.2.1.38. rosa delete operator-roles

Delete Operator Roles

Example usage

Delete Operator roles for cluster named "mycluster”
rosa delete operator-roles --cluster=mycluster

7.2.1.39. rosa delete tuning-configs

Delete tuning config

Example usage

Delete tuning config with name tuned1 from a cluster named 'mycluster’
rosa delete tuning-config --cluster=mycluster tuned1

7.2.1.40. rosa delete user-role

Delete user role

Example usage

Delete user role
rosa delete user-role --role-arn {prefix}-User-{username}-Role

7.2.1.41. rosa describe access-request

Show details of an Access Request

151

Red Hat OpenShift Service on AWS 4 CLI tools

Example usage

Describe an Access Request wit id <access request_id>
rosa describe access-request --id <access_request_id>

7.2.1.42.rosa describe addon

Show details of an add-on

Example usage

Describe an add-on named "codeready-workspaces”
rosa describe addon codeready-workspaces

7.2.1.43. rosa describe addon-installation

Show details of an add-on installation

Example usage

Describe the 'bar’ add-on installation on cluster 'foo’
rosa describe addon-installation --cluster foo --addon bar

7.2.1.44. rosa describe admin

Show details of the cluster-admin user

Example usage

Describe cluster-admin user of a cluster named mycluster
rosa describe admin -c¢ mycluster

7.2.1.45. rosa describe autoscaler

Show details of the autoscaler for a cluster

Example usage

Describe the autoscaler for cluster 'foo’
rosa describe autoscaler --cluster foo

7.2.1.46. rosa describe break-glass-credential

Show details of a break glass credential on a cluster

Example usage

Show details of a break glass credential with ID "12345" on a cluster named "mycluster”
rosa describe break-glass-credential 12345 --cluster=mycluster

152

CHAPTER 7. ROSA CLI

7.2.1.47. rosa describe cluster

Show details of a cluster

Example usage

Describe a cluster named "mycluster”
rosa describe cluster --cluster=mycluster

7.2.1.48. rosa describe external-auth-provider

Show details of an external authentication provider on a cluster

Example usage

Show details of an external authentication provider named "exauth" on a cluster named "mycluster”
rosa describe external-auth-provider exauth --cluster=mycluster

7.2.1.49. rosa describe iamserviceaccount

Describe IAM role for Kubernetes service account

Example usage

Describe IAM role for service account
rosa describe iamserviceaccount --cluster my-cluster \
--name my-app \
--namespace default

7.2.1.50. rosa describe ingress

Show details of the specified ingress within cluster

Example usage

I rosa describe ingress <ingress_id> -¢c mycluster

7.2.1.51. rosa describe kubeletconfig

Show details of a kubeletconfig for a cluster

Example usage

Describe the custom kubeletconfig for ROSA Classic cluster 'foo’
rosa describe kubeletconfig --cluster foo
Describe the custom kubeletconfig named 'bar’ for cluster 'foo’
rosa describe kubeletconfig --cluster foo --name bar

7.2.1.52. rosa describe log-forwarder

Show details of a specific log forwarder used by a cluster

153

Red Hat OpenShift Service on AWS 4 CLI tools

Example usage

I rosa describe log-forwarder <log_fwd_id> -¢c mycluster-hcp

7.2.1.53. rosa describe machinepool

Show details of a machine pool on a cluster

Example usage

Show details of a machine pool named "mymachinepool” on a cluster named "mycluster”
rosa describe machinepool --cluster=mycluster --machinepool=mymachinepool

7.2.1.54. rosa describe tuning-configs

Show details of tuning config

Example usage

[

Describe the 'tuned1' tuned config on cluster 'foo
rosa describe tuning-config --cluster foo tuned1

7.2.1.55. rosa describe upgrade

Show details of an upgrade

Example usage

Describe an upgrade-policy”
rosa describe upgrade

7.2.1.56. rosa download openshift-client

Download OpenShift client tools

Example usage

Download oc client tools
rosa download oc

7.2.1.57. rosa download rosa-client

Download ROSA client tools

Example usage

Download rosa client tools
rosa download rosa

7.2.1.58. rosa edit addon

154

CHAPTER 7. ROSA CLI

Edit add-on installation parameters on cluster

Example usage

Edit the parameters of the Red Hat OpenShift logging operator add-on installation
rosa edit addon --cluster=mycluster cluster-logging-operator

7.2.1.59. rosa edit autoscaler

Edit the autoscaler of a cluster

Example usage

Interactively edit an autoscaler to a cluster named "mycluster”
rosa edit autoscaler --cluster=mycluster --interactive

Edit a cluster-autoscaler to skip nodes with local storage
rosa edit autoscaler --cluster=mycluster --skip-nodes-with-local-storage

Edit a cluster-autoscaler with log verbosity of '3’
rosa edit autoscaler --cluster=mycluster --log-verbosity 3

Edit a cluster-autoscaler with total CPU constraints
rosa edit autoscaler --cluster=mycluster --min-cores 10 --max-cores 100

7.2.1.60. rosa edit cluster

Edit cluster

Example usage

Edit a cluster named "mycluster” to make it private
rosa edit cluster -c mycluster --private

Edit all options interactively

rosa edit cluster -c mycluster --interactive

7.2.1.61. rosa edit image-mirror

Edit image mirror for a cluster

Example usage

Update mirrors for image mirror with ID "abc123" on cluster "mycluster”
rosa edit image-mirror --cluster=mycluster abc123 \
--mirrors=mirror.corp.com/team,backup.corp.com/team,new-mirror.corp.com/team

Alternative: using the --id flag

rosa edit image-mirror --cluster=mycluster --id=abc123 \
--mirrors=mirror.corp.com/team,backup.corp.com/team,new-mirror.corp.com/team

7.2.1.62. rosa edit ingress

155

Red Hat OpenShift Service on AWS 4 CLI tools

Edit a cluster ingress (load balancer)

Example usage

Make additional ingress with ID ‘a1b2’ private on a cluster named 'mycluster’
rosa edit ingress --private --cluster=mycluster alb2

Update the router selectors for the additional ingress with ID 'a1b2’
rosa edit ingress --label-match=foo=bar --cluster=mycluster a1b2

Update the default ingress using the sub-domain identifier
rosa edit ingress --private=false --cluster=mycluster apps

Update the load balancer type of the appsZ2 ingress
rosa edit ingress --Ib-type=nlb --cluster=mycluster apps2

7.2.1.63. rosa edit kubeletconfig

Edit a kubeletconfig for a cluster

Example usage

Edit a KubeletConfig to have a pod-pids-limit of 10000
rosa edit kubeletconfig --cluster=mycluster --pod-pids-limit=10000
Edit a KubeletConfig named 'bar' to have a pod-pids-limit of 10000
rosa edit kubeletconfig --cluster=mycluster --name=bar --pod-pids-limit=10000

7.2.1.64. rosa edit machinepool

Edit machine pool

Example usage

Set 4 replicas on machine pool 'mp1' on cluster 'mycluster’

rosa edit machinepool --replicas=4 --cluster=mycluster mp1

Enable autoscaling and Set 3-5 replicas on machine pool 'mp1' on cluster 'mycluster’

rosa edit machinepool --enable-autoscaling --min-replicas=3 --max-replicas=5 --cluster=mycluster
mp1

Set the node drain grace period to 1 hour on machine pool ‘'mp1' on cluster 'mycluster’

rosa edit machinepool --node-drain-grace-period="1 hour" --cluster=mycluster mp1

7.2.1.65. rosa edit tuning-configs

Edit tuning config

Example usage

Update the tuning config with name 'tuning-1' with the spec defined in file 1
rosa edit tuning-config --cluster=mycluster tuning-1 --spec-path file1

7.2.1.66. rosa grant user

156

CHAPTER 7. ROSA CLI

Grant user access to cluster

Example usage

Add cluster-admin role to a user
rosa grant user cluster-admin --user=myusername --cluster=mycluster

Grant dedicated-admins role to a user
rosa grant user dedicated-admin --user=myusername --cluster=mycluster

7.2.1.67. rosa init

Applies templates to support Red Hat OpenShift Service on AWS

Example usage

Configure your AWS account to allow IAM (non-STS) ROSA clusters
rosa init

Configure a new AWS account using pre-existing OCM credentials
rosa init --token=$OFFLINE_ACCESS_TOKEN

7.2.1.68. rosa install addon

Install add-ons on cluster

Example usage

Add the CodeReady Workspaces add-on installation to the cluster
rosa install addon --cluster=mycluster codeready-workspaces

7.2.1.69. rosa link ocm-role

Link OCM role to specific OCM organization.

Example usage

Link OCM role
rosa link ocm-role --role-arn arn:aws:iam::123456789012:role/ManagedOpenshift-OCM-Role

7.2.1.70. rosa link user-role

Link user role to specific OCM account.

Example usage

Link user roles
rosa link user-role --role-arn arn:aws:iam::{accountid}:role/{prefix}-User-{username}-Role

7.2.1.71. rosa list access-request

157

Red Hat OpenShift Service on AWS 4 CLI tools

List Access Requests

Example usage

List all Access Requests for cluster 'foo’
rosa list access-request --cluster foo

7.2.1.72. rosa list account-roles

List account roles and policies

Example usage

List all account roles
rosa list account-roles

7.2.1.73.rosa list addons

List add-on installations

Example usage

List all add-on installations on a cluster named "mycluster”
rosa list addons --cluster=mycluster

7.2.1.74. rosa list break-glass-credentials

List break glass credential

Example usage

m

List all break glass credentials for a cluster named 'mycluster
rosa list break-glass-credentials -¢ mycluster

7.2.1.75. rosa list clusters

List clusters

Example usage

List all clusters
rosa list clusters

7.2.1.76. rosa list dns-domain

List DNS Domains

Example usage

List all DNS Domains tied to your organization ID"
rosa list dns-domain

158

CHAPTER 7. ROSA CLI

7.2.1.77. rosa list external-auth-providers

List external authentication provider

Example usage

"

List all external authentication providers for a cluster named 'mycluster
rosa list external-auth-provider -c mycluster

7.2.1.78.rosa list gates

List available OCP Gates

Example usage

List all OCP gates for OCP version
rosa list gates --version 4.9

List all STS gates for OCP version
rosa list gates --gate sts --version 4.9

List all OCP gates for OCP version
rosa list gates --gate ocp --version 4.9

List available gates for cluster upgrade version
rosa list gates -c <cluster_id> --version 4.9.15

7.2.1.79. rosa list iamserviceaccounts

List IAM roles for Kubernetes service accounts

Example usage

List IAM roles for service accounts
rosa list iamserviceaccounts --cluster my-cluster

7.2.1.80. rosal list idps

List cluster IDPs

Example usage

List all identity providers on a cluster named "mycluster”
rosa list idps --cluster=mycluster

7.2.1.81. rosa list image-mirrors

List cluster image mirrors

Example usage

159

Red Hat OpenShift Service on AWS 4 CLI tools

List all image mirrors on a cluster named "mycluster”
rosa list image-mirrors --cluster=mycluster

7.2.1.82.rosa list ingresses

List cluster Ingresses

Example usage

List all routes on a cluster named "mycluster”
rosa list ingresses --cluster=mycluster

7.2.1.83.rosa list instance-types

List Instance types

Example usage

List all instance types
rosa list instance-types

7.2.1.84.rosa list kubeletconfigs

List kubeletconfigs

Example usage

List the kubeletconfigs for cluster 'foo’
rosa list kubeletconfig --cluster foo

7.2.1.85. rosa list log-forwarders

List cluster log forwarders

Example usage

I # List all log forwarders on a cluster named "mycluster”: rosa list log-forwarders --cluster=mycluster

7.2.1.86. rosa list machinepools

List cluster machine pools

Example usage

List all machine pools on a cluster named "mycluster”
rosa list machinepools --cluster=mycluster

List machine pools showing all information
rosa list machinepools --cluster=mycluster --all

160

7.2.1.87. rosa list ocm-roles

List ocm roles

Example usage

List all ocm roles
rosa list ocm-roles

7.2.1.88. rosa list oidc-config

List OIDC Configuration resources

Example usage

List all OIDC Configurations tied to your organization ID"

I rosa list oidc-config

7.2.1.89. rosa list oidc-providers

List OIDC providers

Example usage

List all oidc providers
rosa list oidc-providers

7.2.1.90. rosa list operator-roles

List operator roles and policies

Example usage

List all operator roles
rosa list operator-roles

7.2.1.91. rosa list regions

List available regions

Example usage

List all available regions
rosa list regions

7.2.1.92. rosa list tuning-configs
List tuning configs

Example usage

CHAPTER 7. ROSA CLI

161

Red Hat OpenShift Service on AWS 4 CLI tools

"

List all tuning configuration for a cluster named 'mycluster
rosa list tuning-configs -c¢ mycluster

7.2.1.93. rosa list user-roles

List user roles

Example usage

List all user roles
rosa list user-roles

7.2.1.94. rosa list users

List cluster users

Example usage

List all users on a cluster named "mycluster”
rosa list users --cluster=mycluster

7.2.1.95. rosa list versions

List available versions

Example usage

List all OpenShift versions
rosa list versions

7.2.1.96. rosa login

Log in to your Red Hat account

Example usage

Login to the OpenShift API with an existing token generated from
https://console.redhat.com/openshift/token/rosa
rosa login --token=$OFFLINE_ACCESS_TOKEN

7.2.1.97.rosalogs

Show installation or uninstallation logs for a cluster

Example usage

Show install logs for a cluster named ‘mycluster’
rosa logs install --cluster=mycluster

Show uninstall logs for a cluster named 'mycluster’
rosa logs uninstall --cluster=mycluster

162

7.2.1.98. rosa logs install

Show cluster installation logs

Example usage

Show last 100 install log lines for a cluster named "mycluster”
rosa logs install mycluster --tail=100

Show install logs for a cluster using the --cluster flag

rosa logs install --cluster=mycluster

7.2.1.99. rosa logs uninstall

Show cluster uninstallation logs

Example usage

Show last 100 uninstall log lines for a cluster named "mycluster”
rosa logs uninstall mycluster --tail=100

Show uninstall logs for a cluster using the --cluster flag

rosa logs uninstall --cluster=mycluster

7.2.1.100. rosa register oidc-config

Registers unmanaged OIDC config with Openshift Clusters Manager.

Example usage

Register OIDC config
rosa register oidc-config

7.2.1.101. rosa revoke break-glass-credentials

Revoke break glass credentials

Example usage

Revoke all break glass credentials
rosa revoke break-glass-credentials --cluster=mycluster

7.2.1.102. rosa revoke user

Revoke role from users

Example usage

Revoke cluster-admin role from a user
rosa revoke user cluster-admins --user=myusername --cluster=mycluster

CHAPTER 7. ROSA CLI

163

Red Hat OpenShift Service on AWS 4 CLI tools

Revoke dedicated-admin role from a user
rosa revoke user dedicated-admins --user=myusername --cluster=mycluster

7.2.1.103. rosa uninstall addon

Uninstall add-on from cluster

Example usage

Remove the CodeReady Workspaces add-on installation from the cluster
rosa uninstall addon --cluster=mycluster codeready-workspaces

7.2.1.104. rosa unlink ocm-role

Unlink ocm role from a specific OCM organization

Example usage

#Unlink ocm role
rosa unlink ocm-role --role-arn arn:aws:iam::123456789012:role/ManagedOpenshift-OCM-Role

7.2.1.105. rosa unlink user-role

Unlink user role from a specific OCM account

Example usage

Unlink user role
rosa unlink user-role --role-arn arn:aws:iam::{accountid}:role/{prefix}-User-{username}-Role

7.2.1.106. rosa upgrade account-roles

Upgrade account-wide IAM roles to the latest version.

Example usage

Upgrade account roles for ROSA STS clusters
rosa upgrade account-roles

7.2.1.107. rosa upgrade cluster

Upgrade cluster

Example usage

Interactively schedule an upgrade on the cluster named "mycluster”
rosa upgrade cluster --cluster=mycluster --interactive

Schedule a cluster upgrade within the hour
rosa upgrade cluster -c mycluster --version 4.12.20

164

CHAPTER 7. ROSA CLI

Check if any gates need to be acknowledged prior to attempting an upgrading
rosa upgrade cluster -c mycluster --version 4.12.20 --dry-run

7.2.1.108. rosa upgrade machinepool

Upgrade machinepool

Example usage

Interactively schedule an upgrade on the cluster named "mycluster™ for a machinepool named
"np1 n

rosa upgrade machinepool np1 --cluster=mycluster --interactive

Schedule a machinepool upgrade within the hour

rosa upgrade machinepool np1 -c mycluster --version 4.12.20

7.2.1.109. rosa upgrade operator-roles

Upgrade operator IAM roles for a cluster.

Example usage

Upgrade cluster-specific operator IAM roles
rosa upgrade operators-roles

7.2.1.110. rosa upgrade roles

Upgrade cluster-specific IAM roles to the latest version.

Example usage

Upgrade cluster roles for ROSA STS clusters
rosa upgrade roles -c <cluster_key>

7.2.1.11. rosa verify network

Verify VPC subnets are configured correctly

Example usage

Verify two subnets
rosa verify network --subnet-ids subnet-03046a9b92b5014fb,subnet-03046a9¢c92b5014fb

7.2.1.112. rosa verify openshift-client

Verify OpenShift client tools

Example usage

Verify oc client tools
rosa verify oc

165

Red Hat OpenShift Service on AWS 4 CLI tools

7.2.1.113. rosa verify permissions

Verify AWS permissions are ok for non-STS cluster install

Example usage

Verify AWS permissions are configured correctly
rosa verify permissions

Verify AWS permissions in a different region

rosa verify permissions --region=us-west-2

7.2.1.114. rosa verify quota

Verify AWS quota is ok for cluster install

Example usage

Verify AWS quotas are configured correctly
rosa verify quota

Verify AWS quotas in a different region

rosa verify quota --region=us-west-2

7.2.1.115. rosa verify rosa-client

Verify ROSA client tools

Example usage

Verify rosa client tools
rosa verify rosa

7.2.1.116. rosa whoami

Displays user account information

Example usage

Displays user information
rosa whoami

7.3. LEAST PRIVILEGE PERMISSIONS FOR ROSA CLI COMMANDS

You can create roles with permissions that adhere to the principal of least privilege, in which the users
assigned the roles have no other permissions assigned to them outside the scope of the specific action
they need to perform. These policies contain only the minimum required permissions needed to perform
specific actions by using the ROSA command-line interface (CLI) (rosa).

166

CHAPTER 7. ROSA CLI

IMPORTANT

Although the policies and commands presented in this topic will work in conjunction with
one another, you might have other restrictions within your AWS environment that make
the policies for these commands insufficient for your specific needs. Red Hat provides
these examples as a baseline, assuming no other AWS Identity and Access Management
(IAM) restrictions are present.

For more information about configuring permissions, policies, and roles in the AWS console, see AWS
Identity and Access Management in the AWS documentation.

7.3.1. Least privilege permissions for common Red Hat OpenShift Service on AWS
CLI commands

The following examples show the least privilege permissions needed for the most common ROSA CLI
commands when building Red Hat OpenShift Service on AWS clusters.
7.3.1.1. Create a managed OpenlID Connect (OIDC) provider

Run the following command with the specified permissions to create your managed OIDC provider by
using auto mode.

Input

I $ rosa create oidc-config --mode auto

Policy

{
"Version": "2012-10-17",

"Statement™: |

{
"Sid": "CreateQidcConfig",

"Effect": "Allow",

"Action": [
"iam:TagOpenIDConnectProvider",
"iam:CreateOpenlDConnectProvider"

1,

"Resource": "*"

7.3.1.2. Create an unmanaged OpenlD Connect provider

Run the following command with the specified permissions to create your unmanaged OIDC provider by
using auto mode.

Input

I $ rosa create oidc-config --mode auto --managed=false

Policy

167

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html

Red Hat OpenShift Service on AWS 4 CLI tools

{
"Version": "2012-10-17",

"Statement": |
{

"Sid": "VisualEditorQ",

"Effect": "Allow",

"Action": [
"lam:GetRole",
"iam:TagOpenIDConnectProvider",
"iam:ListRoleTags",
"iam:ListRoles",
"iam:CreateOpenlDConnectProvider",
"s3:CreateBucket",
"s3:PutObject",
"s3:PutBucketTagging",
"s3:PutBucketPolicy",
"s3:PutObjectTagging”,
"s3:PutBucketPublicAccessBlock",
"secretsmanager:CreateSecret",
"secretsmanager:TagResource"

1,

"Resource":; "*"

7.3.1.3. List your account roles

Run the following command with the specified permissions to list your account roles.

Input

I $ rosa list account-roles

Policy

{
"Version": "2012-10-17",

"Statement": |

{

"Sid": "ListAccountRoles",

"Effect": "Allow",

"Action": [
"iam:ListRoleTags",
"iam:ListRoles"

1,

"Resource": "*"

7.3.1.4. List your Operator roles

Run the following command with the specified permissions to list your Operator roles.

168

CHAPTER 7. ROSA CLI

Input

I $ rosa list operator-roles

Policy

{
"Version": "2012-10-17",

"Statement™: |

{
"Sid": "ListOperatorRoles",

"Effect": "Allow",

"Action": [
"iam:ListRoleTags",
"iam:ListAttachedRolePolicies",
"lam:ListRoles",
"iam:ListPolicyTags"

1,

"Resource": "*"

7.3.1.5. List your OIDC providers

Run the following command with the specified permissions to list your OIDC providers.
Input

I $ rosa list oidc-providers

Policy

{
"Version": "2012-10-17",

"Statement™: |

{
"Sid": "ListOidcProviders",

"Effect": "Allow",

"Action": [
"iam:ListOpenlDConnectProviders",
"iam:ListOpenIDConnectProviderTags"

1,

"Resource": "*"

7.3.1.6. Verify your quota

Run the following command with the specified permissions to verify your quota.

Input

169

Red Hat OpenShift Service on AWS 4 CLI tools

I $ rosa verify quota

Policy

{
"Version": "2012-10-17",

"Statement": |

{
"Sid": "VerifyQuota",
"Effect": "Allow",
"Action": [
"elasticloadbalancing:DescribeAccountLimits”,
"servicequotas:ListServiceQuotas"

1,

"Resource": "*"

7.3.1.7. Delete your managed OIDC configuration

Run the following command with the specified permissions to delete your managed OIDC configuration
by using auto mode.

Input

I $ rosa delete oidc-config -—mode auto

Policy

{
"Version": "2012-10-17",

"Statement": |

{
"Sid": "DeleteQidcConfig",

"Effect": "Allow",

"Action": [
"iam:ListOpenlDConnectProviders",
"iam:DeleteOpenlDConnectProvider"

1,

"Resource":; "*"

7.3.1.8. Delete your unmanaged OIDC configuration

Run the following command with the specified permissions to delete your unmanaged OIDC
configuration by using auto mode.

Input

I $ rosa delete oidc-config -—mode auto

170

CHAPTER 7. ROSA CLI

Policy

{
"Version": "2012-10-17",

"Statement": |
{

"Sid": "VisualEditorQ",

"Effect": "Allow",

"Action™: [
"iam:ListOpenlDConnectProviders",
"iam:DeleteOpenlDConnectProvider",
"secretsmanager:DeleteSecret",
"s3:ListBucket",

"s3:DeleteObject”,
"s3:DeleteBucket”

1,

"Resource"; "*"

7.3.1.9. Create a cluster

Run the following command with the specified permissions to create Red Hat OpenShift Service on
AWS clusters.

Input

I $ rosa create cluster --hosted-cp

Policy

{
"Version": "2012-10-17",

"Statement": [
{

"Sid": "CreateCluster",

"Effect": "Allow",

"Action": [
"lam:GetRole",
"iam:ListRoleTags",
"iam:ListAttachedRolePolicies",
"iam:ListRoles",
"ec2:DescribeSubnets”,
"ec2:DescribeRouteTables",
"ec2:DescribeAvailabilityZones"

1,

"Resource": "*"

171

Red Hat OpenShift Service on AWS 4 CLI tools

7.3.1.10. Create your account roles and Operator roles

Run the following command with the specified permissions to create account and Operator roles by
using auto mode.

Input

I $ rosa create account-roles --mode auto --hosted-cp

Policy

{
"Version": "2012-10-17",

"Statement": |
{

"Sid": "CreateAccountRoles",

"Effect": "Allow",

"Action™: [
"lam:GetRole",
"iam:UpdateAssumeRolePolicy",
"iam:ListRoleTags",
"iam:GetPolicy",
"lam:TagRole",
"iam:ListRoles",
"lam:CreateRole",
"iam:AttachRolePolicy",
"iam:ListPolicyTags"

],

"Resource": "*"

7.3.1.11. Delete your account roles

Run the following command with the specified permissions to delete the account roles in auto mode.
Input

I $ rosa delete account-roles -—mode auto

Policy

{
"Version": "2012-10-17",

"Statement": |
{

"Sid": "DeleteAccountRoles",

"Effect": "Allow",

"Action": [
"ilam:GetRole",
"lam:ListInstanceProfilesForRole",
"iam:DetachRolePolicy",
"iam:ListAttachedRolePolicies",

172

CHAPTER 7. ROSA CLI

"lam:ListRoles",
"lam:DeleteRole",
"ilam:ListRolePolicies"

1,

"Resource": "*"

7.3.1.12. Delete your Operator roles

Run the following command with the specified permissions to delete your Operator roles in auto mode.
Input

I $ rosa delete operator-roles -—mode auto

Policy

{
"Version": "2012-10-17",

"Statement": |

{
"Sid": "DeleteOperatorRoles",
"Effect": "Allow",
"Action": [

"lam:GetRole",
"ilam:DetachRolePolicy",
"iam:ListAttachedRolePolicies",
"iam:ListRoles",
"iam:DeleteRole"

1,

"Resource": "*"

7.3.2. ROSA CLI commands with no required permissions

The following ROSA CLI commands do not require permissions or policies to run. Instead, they require an
access key and configured secret key or an attached role.

Table 7.11. Commands

Command Input

list cluster $ rosa list cluster
list versions $ rosa list versions
describe cluster $ rosa describe cluster -c <cluster name>

173

Red Hat OpenShift Service on AWS 4 CLI tools

Command Input

create admin $ rosa create admin -c <cluster name>
list users $ rosa list users -c <cluster-name>

list upgrades $ rosa list upgrades

list OIDC configuration $ rosa list oidc-config

list identity providers $ rosa list idps -c <cluster-name>

list ingresses $ rosa list ingresses -c <cluster-name>

7.3.3. Additional resources

® For more information about AWS roles, see IAM roles.

® For more information about AWS policies and permissions, see Policies and permissions in IAM .

7.4. MANAGING BILLING ACCOUNTS FOR RED HAT OPENSHIFT
SERVICE ON AWS CLUSTERS

You can use the ROSA CLI (rosa) to link your cluster to the desired AWS billing account after the
cluster has been deployed.

This can be useful if you have accidentally linked to the wrong AWS billing account during cluster
deployment, or if you simply want to update the billing account.

NOTE
You also have the option to update your billing account through the OpenShift Cluster

Manager. For more information, see Updating billing accounts for Red Hat OpenShift
Service on AWS clusters.

7.4.1. Update billing accounts for Red Hat OpenShift Service on AWS clusters

Prerequisites

® You must have more than one AWS billing account.

® The AWS billing account you want your cluster to link to must already be linked to the Red Hat
organization where the cluster is deployed.

Procedure

1. Run the following command in your terminal window:

Syntax

174

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://docs.redhat.com/en/documentation/openshift_cluster_manager/1-latest/html-single/managing_clusters/index#proc_updating-billing-accts-rosa-hcp_assembly-managing-clusters

CHAPTER 7. ROSA CLI

I $ rosa edit cluster -c <cluster_ID> ﬂ

ﬂ Replace <cluster_ID> with the ID of the cluster that you want to update the AWS billing
account.

NOTE

To locate the IDs of your active clusters, run the $ rosa list clusters command in
your terminal window.

2. Skip to the Billing Account parameter within the interactive mode.

3. Select the desired AWS billing account from the list of available options and press "Enter”.
The AWS billing account for your cluster is now updated.

175

	Table of Contents
	CHAPTER 1. RED HAT OPENSHIFT SERVICE ON AWS CLI TOOLS OVERVIEW
	1.1. LIST OF CLI TOOLS

	CHAPTER 2. OPENSHIFT CLI (OC)
	2.1. GETTING STARTED WITH THE OPENSHIFT CLI
	2.1.1. About the OpenShift CLI
	2.1.2. Installing the OpenShift CLI
	2.1.3. Installing the OpenShift CLI on Linux
	2.1.4. Installing the OpenShift CLI on Windows
	2.1.5. Installing the OpenShift CLI on macOS
	2.1.5.1. Installing the OpenShift CLI by using the web console
	2.1.5.2. Installing the OpenShift CLI by using an RPM
	2.1.5.3. Installing the OpenShift CLI by using Homebrew

	2.1.6. Logging in to the OpenShift CLI
	2.1.7. Logging in to the OpenShift CLI using a web browser
	2.1.8. Using the OpenShift CLI
	2.1.8.1. Creating a project
	2.1.8.2. Creating a new app
	2.1.8.3. Viewing pods
	2.1.8.4. Viewing pod logs
	2.1.8.5. Viewing the current project
	2.1.8.6. Viewing the status for the current project
	2.1.8.7. Listing supported API resources

	2.1.9. Getting help
	2.1.10. Logging out of the OpenShift CLI

	2.2. CONFIGURING THE OPENSHIFT CLI
	2.2.1. Enabling tab completion
	2.2.1.1. Enabling tab completion for Bash
	2.2.1.2. Enabling tab completion for Zsh

	2.2.2. Accessing kubeconfig by using the oc CLI

	2.3. USAGE OF OC AND KUBECTL COMMANDS
	2.3.1. The oc binary
	2.3.2. The kubectl binary

	2.4. MANAGING CLI PROFILES
	2.4.1. About switches between CLI profiles
	2.4.2. Manual configuration of CLI profiles
	2.4.3. Load and merge rules

	2.5. EXTENDING THE OPENSHIFT CLI WITH PLUGINS
	2.5.1. Writing CLI plugins
	2.5.2. Installing and using CLI plugins

	2.6. OPENSHIFT CLI DEVELOPER COMMAND REFERENCE
	2.6.1. OpenShift CLI (oc) developer commands
	2.6.1.1. oc annotate
	2.6.1.2. oc api-resources
	2.6.1.3. oc api-versions
	2.6.1.4. oc apply
	2.6.1.5. oc apply edit-last-applied
	2.6.1.6. oc apply set-last-applied
	2.6.1.7. oc apply view-last-applied
	2.6.1.8. oc attach
	2.6.1.9. oc auth can-i
	2.6.1.10. oc auth reconcile
	2.6.1.11. oc auth whoami
	2.6.1.12. oc autoscale
	2.6.1.13. oc cancel-build
	2.6.1.14. oc cluster-info
	2.6.1.15. oc cluster-info dump
	2.6.1.16. oc completion
	2.6.1.17. oc config current-context
	2.6.1.18. oc config delete-cluster
	2.6.1.19. oc config delete-context
	2.6.1.20. oc config delete-user
	2.6.1.21. oc config get-clusters
	2.6.1.22. oc config get-contexts
	2.6.1.23. oc config get-users
	2.6.1.24. oc config new-admin-kubeconfig
	2.6.1.25. oc config new-kubelet-bootstrap-kubeconfig
	2.6.1.26. oc config refresh-ca-bundle
	2.6.1.27. oc config rename-context
	2.6.1.28. oc config set
	2.6.1.29. oc config set-cluster
	2.6.1.30. oc config set-context
	2.6.1.31. oc config set-credentials
	2.6.1.32. oc config unset
	2.6.1.33. oc config use-context
	2.6.1.34. oc config view
	2.6.1.35. oc cp
	2.6.1.36. oc create
	2.6.1.37. oc create build
	2.6.1.38. oc create clusterresourcequota
	2.6.1.39. oc create clusterrole
	2.6.1.40. oc create clusterrolebinding
	2.6.1.41. oc create configmap
	2.6.1.42. oc create cronjob
	2.6.1.43. oc create deployment
	2.6.1.44. oc create deploymentconfig
	2.6.1.45. oc create identity
	2.6.1.46. oc create imagestream
	2.6.1.47. oc create imagestreamtag
	2.6.1.48. oc create ingress
	2.6.1.49. oc create job
	2.6.1.50. oc create namespace
	2.6.1.51. oc create poddisruptionbudget
	2.6.1.52. oc create priorityclass
	2.6.1.53. oc create quota
	2.6.1.54. oc create role
	2.6.1.55. oc create rolebinding
	2.6.1.56. oc create route edge
	2.6.1.57. oc create route passthrough
	2.6.1.58. oc create route reencrypt
	2.6.1.59. oc create secret docker-registry
	2.6.1.60. oc create secret generic
	2.6.1.61. oc create secret tls
	2.6.1.62. oc create service clusterip
	2.6.1.63. oc create service externalname
	2.6.1.64. oc create service loadbalancer
	2.6.1.65. oc create service nodeport
	2.6.1.66. oc create serviceaccount
	2.6.1.67. oc create token
	2.6.1.68. oc create user
	2.6.1.69. oc create useridentitymapping
	2.6.1.70. oc debug
	2.6.1.71. oc delete
	2.6.1.72. oc describe
	2.6.1.73. oc diff
	2.6.1.74. oc edit
	2.6.1.75. oc events
	2.6.1.76. oc exec
	2.6.1.77. oc explain
	2.6.1.78. oc expose
	2.6.1.79. oc extract
	2.6.1.80. oc get
	2.6.1.81. oc get-token
	2.6.1.82. oc idle
	2.6.1.83. oc image append
	2.6.1.84. oc image extract
	2.6.1.85. oc image info
	2.6.1.86. oc image mirror
	2.6.1.87. oc import-image
	2.6.1.88. oc kustomize
	2.6.1.89. oc label
	2.6.1.90. oc login
	2.6.1.91. oc logout
	2.6.1.92. oc logs
	2.6.1.93. oc new-app
	2.6.1.94. oc new-build
	2.6.1.95. oc new-project
	2.6.1.96. oc observe
	2.6.1.97. oc patch
	2.6.1.98. oc plugin
	2.6.1.99. oc plugin list
	2.6.1.100. oc policy add-role-to-user
	2.6.1.101. oc policy scc-review
	2.6.1.102. oc policy scc-subject-review
	2.6.1.103. oc port-forward
	2.6.1.104. oc process
	2.6.1.105. oc project
	2.6.1.106. oc projects
	2.6.1.107. oc proxy
	2.6.1.108. oc registry login
	2.6.1.109. oc replace
	2.6.1.110. oc rollback
	2.6.1.111. oc rollout
	2.6.1.112. oc rollout cancel
	2.6.1.113. oc rollout history
	2.6.1.114. oc rollout latest
	2.6.1.115. oc rollout pause
	2.6.1.116. oc rollout restart
	2.6.1.117. oc rollout resume
	2.6.1.118. oc rollout retry
	2.6.1.119. oc rollout status
	2.6.1.120. oc rollout undo
	2.6.1.121. oc rsh
	2.6.1.122. oc rsync
	2.6.1.123. oc run
	2.6.1.124. oc scale
	2.6.1.125. oc secrets link
	2.6.1.126. oc secrets unlink
	2.6.1.127. oc set build-hook
	2.6.1.128. oc set build-secret
	2.6.1.129. oc set data
	2.6.1.130. oc set deployment-hook
	2.6.1.131. oc set env
	2.6.1.132. oc set image
	2.6.1.133. oc set image-lookup
	2.6.1.134. oc set probe
	2.6.1.135. oc set resources
	2.6.1.136. oc set route-backends
	2.6.1.137. oc set selector
	2.6.1.138. oc set serviceaccount
	2.6.1.139. oc set subject
	2.6.1.140. oc set triggers
	2.6.1.141. oc set volumes
	2.6.1.142. oc start-build
	2.6.1.143. oc status
	2.6.1.144. oc tag
	2.6.1.145. oc version
	2.6.1.146. oc wait
	2.6.1.147. oc whoami

	2.7. OPENSHIFT CLI ADMINISTRATOR COMMAND REFERENCE
	2.7.1. OpenShift CLI (oc) administrator commands
	2.7.1.1. oc adm build-chain
	2.7.1.2. oc adm catalog mirror
	2.7.1.3. oc adm certificate approve
	2.7.1.4. oc adm certificate deny
	2.7.1.5. oc adm copy-to-node
	2.7.1.6. oc adm cordon
	2.7.1.7. oc adm create-bootstrap-project-template
	2.7.1.8. oc adm create-error-template
	2.7.1.9. oc adm create-login-template
	2.7.1.10. oc adm create-provider-selection-template
	2.7.1.11. oc adm drain
	2.7.1.12. oc adm groups add-users
	2.7.1.13. oc adm groups new
	2.7.1.14. oc adm groups prune
	2.7.1.15. oc adm groups remove-users
	2.7.1.16. oc adm groups sync
	2.7.1.17. oc adm inspect
	2.7.1.18. oc adm migrate icsp
	2.7.1.19. oc adm migrate template-instances
	2.7.1.20. oc adm must-gather
	2.7.1.21. oc adm new-project
	2.7.1.22. oc adm node-image create
	2.7.1.23. oc adm node-image monitor
	2.7.1.24. oc adm node-logs
	2.7.1.25. oc adm ocp-certificates monitor-certificates
	2.7.1.26. oc adm ocp-certificates regenerate-leaf
	2.7.1.27. oc adm ocp-certificates regenerate-machine-config-server-serving-cert
	2.7.1.28. oc adm ocp-certificates regenerate-top-level
	2.7.1.29. oc adm ocp-certificates remove-old-trust
	2.7.1.30. oc adm ocp-certificates update-ignition-ca-bundle-for-machine-config-server
	2.7.1.31. oc adm policy add-cluster-role-to-group
	2.7.1.32. oc adm policy add-cluster-role-to-user
	2.7.1.33. oc adm policy add-role-to-user
	2.7.1.34. oc adm policy add-scc-to-group
	2.7.1.35. oc adm policy add-scc-to-user
	2.7.1.36. oc adm policy remove-cluster-role-from-group
	2.7.1.37. oc adm policy remove-cluster-role-from-user
	2.7.1.38. oc adm policy scc-review
	2.7.1.39. oc adm policy scc-subject-review
	2.7.1.40. oc adm prune builds
	2.7.1.41. oc adm prune deployments
	2.7.1.42. oc adm prune groups
	2.7.1.43. oc adm prune images
	2.7.1.44. oc adm prune renderedmachineconfigs
	2.7.1.45. oc adm prune renderedmachineconfigs list
	2.7.1.46. oc adm reboot-machine-config-pool
	2.7.1.47. oc adm release extract
	2.7.1.48. oc adm release info
	2.7.1.49. oc adm release mirror
	2.7.1.50. oc adm release new
	2.7.1.51. oc adm restart-kubelet
	2.7.1.52. oc adm taint
	2.7.1.53. oc adm top images
	2.7.1.54. oc adm top imagestreams
	2.7.1.55. oc adm top node
	2.7.1.56. oc adm top persistentvolumeclaims
	2.7.1.57. oc adm top pod
	2.7.1.58. oc adm uncordon
	2.7.1.59. oc adm upgrade
	2.7.1.60. oc adm verify-image-signature
	2.7.1.61. oc adm wait-for-node-reboot
	2.7.1.62. oc adm wait-for-stable-cluster

	2.7.2. Additional resources

	CHAPTER 3. IMPORTANT UPDATE ON ODO
	CHAPTER 4. KNATIVE CLI FOR USE WITH OPENSHIFT SERVERLESS
	4.1. KEY FEATURES
	4.2. INSTALLING THE KNATIVE CLI

	CHAPTER 5. PIPELINES CLI (TKN)
	5.1. INSTALLING TKN
	5.1.1. Installing the Red Hat OpenShift Pipelines CLI on Linux
	5.1.2. Installing the Red Hat OpenShift Pipelines CLI on Linux using an RPM
	5.1.3. Installing the Red Hat OpenShift Pipelines CLI on Windows
	5.1.4. Installing the Red Hat OpenShift Pipelines CLI on macOS

	5.2. CONFIGURING THE OPENSHIFT PIPELINES TKN CLI
	5.2.1. Enabling tab completion

	5.3. OPENSHIFT PIPELINES TKN REFERENCE
	5.3.1. Basic syntax
	5.3.2. Global options
	5.3.3. Utility commands
	5.3.3.1. tkn
	5.3.3.2. completion [shell]
	5.3.3.3. version

	5.3.4. Pipelines management commands
	5.3.4.1. pipeline
	5.3.4.2. pipeline delete
	5.3.4.3. pipeline describe
	5.3.4.4. pipeline list
	5.3.4.5. pipeline logs
	5.3.4.6. pipeline start

	5.3.5. Pipeline run commands
	5.3.5.1. pipelinerun
	5.3.5.2. pipelinerun cancel
	5.3.5.3. pipelinerun delete
	5.3.5.4. pipelinerun describe
	5.3.5.5. pipelinerun list
	5.3.5.6. pipelinerun logs

	5.3.6. Task management commands
	5.3.6.1. task
	5.3.6.2. task delete
	5.3.6.3. task describe
	5.3.6.4. task list
	5.3.6.5. task logs
	5.3.6.6. task start

	5.3.7. Task run commands
	5.3.7.1. taskrun
	5.3.7.2. taskrun cancel
	5.3.7.3. taskrun delete
	5.3.7.4. taskrun describe
	5.3.7.5. taskrun list
	5.3.7.6. taskrun logs

	5.3.8. Condition management commands
	5.3.8.1. condition
	5.3.8.2. condition delete
	5.3.8.3. condition describe
	5.3.8.4. condition list

	5.3.9. Pipeline Resource management commands
	5.3.9.1. resource
	5.3.9.2. resource create
	5.3.9.3. resource delete
	5.3.9.4. resource describe
	5.3.9.5. resource list

	5.3.10. ClusterTask management commands
	5.3.10.1. clustertask
	5.3.10.2. clustertask delete
	5.3.10.3. clustertask describe
	5.3.10.4. clustertask list
	5.3.10.5. clustertask start

	5.3.11. Trigger management commands
	5.3.11.1. eventlistener
	5.3.11.2. eventlistener delete
	5.3.11.3. eventlistener describe
	5.3.11.4. eventlistener list
	5.3.11.5. eventlistener logs
	5.3.11.6. triggerbinding
	5.3.11.7. triggerbinding delete
	5.3.11.8. triggerbinding describe
	5.3.11.9. triggerbinding list
	5.3.11.10. triggertemplate
	5.3.11.11. triggertemplate delete
	5.3.11.12. triggertemplate describe
	5.3.11.13. triggertemplate list
	5.3.11.14. clustertriggerbinding
	5.3.11.15. clustertriggerbinding delete
	5.3.11.16. clustertriggerbinding describe
	5.3.11.17. clustertriggerbinding list

	5.3.12. Hub interaction commands
	5.3.12.1. hub
	5.3.12.2. hub downgrade
	5.3.12.3. hub get
	5.3.12.4. hub info
	5.3.12.5. hub install
	5.3.12.6. hub reinstall
	5.3.12.7. hub search
	5.3.12.8. hub upgrade

	CHAPTER 6. OPM CLI
	6.1. INSTALLING THE OPM CLI
	6.1.1. About the opm CLI
	6.1.2. Installing the opm CLI

	6.2. OPM CLI REFERENCE
	6.2.1. generate
	6.2.1.1. dockerfile

	6.2.2. index
	6.2.2.1. add
	6.2.2.2. prune
	6.2.2.3. prune-stranded
	6.2.2.4. rm

	6.2.3. init
	6.2.4. migrate
	6.2.5. render
	6.2.6. serve
	6.2.7. validate

	CHAPTER 7. ROSA CLI
	7.1. GETTING STARTED WITH THE ROSA CLI
	7.1.1. About the ROSA CLI
	7.1.2. Setting up the ROSA CLI
	7.1.3. Configuring the ROSA CLI
	7.1.3.1. login
	7.1.3.2. logout
	7.1.3.3. verify permissions
	7.1.3.4. verify quota
	7.1.3.5. download rosa
	7.1.3.6. download oc
	7.1.3.7. verify oc

	7.1.4. Updating the ROSA CLI

	7.2. ROSA CLI COMMAND REFERENCE
	7.2.1. ROSA CLI commands
	7.2.1.1. rosa create account-roles
	7.2.1.2. rosa create admin
	7.2.1.3. rosa create autoscaler
	7.2.1.4. rosa create break-glass-credential
	7.2.1.5. rosa create cluster
	7.2.1.6. rosa create decision
	7.2.1.7. rosa create dns-domain
	7.2.1.8. rosa create external-auth-provider
	7.2.1.9. rosa create iamserviceaccount
	7.2.1.10. rosa create idp
	7.2.1.11. rosa create image-mirror
	7.2.1.12. rosa create kubeletconfig
	7.2.1.13. rosa create log-forwarder
	7.2.1.14. rosa create machinepool
	7.2.1.15. rosa create network
	7.2.1.16. rosa create ocm-role
	7.2.1.17. rosa create oidc-config
	7.2.1.18. rosa create oidc-provider
	7.2.1.19. rosa create operator-roles
	7.2.1.20. rosa create tuning-configs
	7.2.1.21. rosa create user-role
	7.2.1.22. rosa delete account-roles
	7.2.1.23. rosa delete admin
	7.2.1.24. rosa delete autoscaler
	7.2.1.25. rosa delete cluster
	7.2.1.26. rosa delete dns-domain
	7.2.1.27. rosa delete external-auth-provider
	7.2.1.28. rosa delete iamserviceaccount
	7.2.1.29. rosa delete idp
	7.2.1.30. rosa delete image-mirror
	7.2.1.31. rosa delete ingress
	7.2.1.32. rosa delete kubeletconfig
	7.2.1.33. rosa delete log-forwarder
	7.2.1.34. rosa delete machinepool
	7.2.1.35. rosa delete ocm-role
	7.2.1.36. rosa delete oidc-config
	7.2.1.37. rosa delete oidc-provider
	7.2.1.38. rosa delete operator-roles
	7.2.1.39. rosa delete tuning-configs
	7.2.1.40. rosa delete user-role
	7.2.1.41. rosa describe access-request
	7.2.1.42. rosa describe addon
	7.2.1.43. rosa describe addon-installation
	7.2.1.44. rosa describe admin
	7.2.1.45. rosa describe autoscaler
	7.2.1.46. rosa describe break-glass-credential
	7.2.1.47. rosa describe cluster
	7.2.1.48. rosa describe external-auth-provider
	7.2.1.49. rosa describe iamserviceaccount
	7.2.1.50. rosa describe ingress
	7.2.1.51. rosa describe kubeletconfig
	7.2.1.52. rosa describe log-forwarder
	7.2.1.53. rosa describe machinepool
	7.2.1.54. rosa describe tuning-configs
	7.2.1.55. rosa describe upgrade
	7.2.1.56. rosa download openshift-client
	7.2.1.57. rosa download rosa-client
	7.2.1.58. rosa edit addon
	7.2.1.59. rosa edit autoscaler
	7.2.1.60. rosa edit cluster
	7.2.1.61. rosa edit image-mirror
	7.2.1.62. rosa edit ingress
	7.2.1.63. rosa edit kubeletconfig
	7.2.1.64. rosa edit machinepool
	7.2.1.65. rosa edit tuning-configs
	7.2.1.66. rosa grant user
	7.2.1.67. rosa init
	7.2.1.68. rosa install addon
	7.2.1.69. rosa link ocm-role
	7.2.1.70. rosa link user-role
	7.2.1.71. rosa list access-request
	7.2.1.72. rosa list account-roles
	7.2.1.73. rosa list addons
	7.2.1.74. rosa list break-glass-credentials
	7.2.1.75. rosa list clusters
	7.2.1.76. rosa list dns-domain
	7.2.1.77. rosa list external-auth-providers
	7.2.1.78. rosa list gates
	7.2.1.79. rosa list iamserviceaccounts
	7.2.1.80. rosa list idps
	7.2.1.81. rosa list image-mirrors
	7.2.1.82. rosa list ingresses
	7.2.1.83. rosa list instance-types
	7.2.1.84. rosa list kubeletconfigs
	7.2.1.85. rosa list log-forwarders
	7.2.1.86. rosa list machinepools
	7.2.1.87. rosa list ocm-roles
	7.2.1.88. rosa list oidc-config
	7.2.1.89. rosa list oidc-providers
	7.2.1.90. rosa list operator-roles
	7.2.1.91. rosa list regions
	7.2.1.92. rosa list tuning-configs
	7.2.1.93. rosa list user-roles
	7.2.1.94. rosa list users
	7.2.1.95. rosa list versions
	7.2.1.96. rosa login
	7.2.1.97. rosa logs
	7.2.1.98. rosa logs install
	7.2.1.99. rosa logs uninstall
	7.2.1.100. rosa register oidc-config
	7.2.1.101. rosa revoke break-glass-credentials
	7.2.1.102. rosa revoke user
	7.2.1.103. rosa uninstall addon
	7.2.1.104. rosa unlink ocm-role
	7.2.1.105. rosa unlink user-role
	7.2.1.106. rosa upgrade account-roles
	7.2.1.107. rosa upgrade cluster
	7.2.1.108. rosa upgrade machinepool
	7.2.1.109. rosa upgrade operator-roles
	7.2.1.110. rosa upgrade roles
	7.2.1.111. rosa verify network
	7.2.1.112. rosa verify openshift-client
	7.2.1.113. rosa verify permissions
	7.2.1.114. rosa verify quota
	7.2.1.115. rosa verify rosa-client
	7.2.1.116. rosa whoami

	7.3. LEAST PRIVILEGE PERMISSIONS FOR ROSA CLI COMMANDS
	7.3.1. Least privilege permissions for common Red Hat OpenShift Service on AWS CLI commands
	7.3.1.1. Create a managed OpenID Connect (OIDC) provider
	7.3.1.2. Create an unmanaged OpenID Connect provider
	7.3.1.3. List your account roles
	7.3.1.4. List your Operator roles
	7.3.1.5. List your OIDC providers
	7.3.1.6. Verify your quota
	7.3.1.7. Delete your managed OIDC configuration
	7.3.1.8. Delete your unmanaged OIDC configuration
	7.3.1.9. Create a cluster
	7.3.1.10. Create your account roles and Operator roles
	7.3.1.11. Delete your account roles
	7.3.1.12. Delete your Operator roles

	7.3.2. ROSA CLI commands with no required permissions
	7.3.3. Additional resources

	7.4. MANAGING BILLING ACCOUNTS FOR RED HAT OPENSHIFT SERVICE ON AWS CLUSTERS
	7.4.1. Update billing accounts for Red Hat OpenShift Service on AWS clusters

