Transitioning to Containerized Services


Red Hat OpenStack Platform 16.2

A basic guide to working with OpenStack Platform containerized services

OpenStack Documentation Team

Abstract

This guide provides some basic information to help users get accustomed working with OpenStack Platform services running in containers.

Making open source more inclusive

Red Hat is committed to replacing problematic language in our code, documentation, and web properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the enormity of this endeavor, these changes will be implemented gradually over several upcoming releases. For more details, see our CTO Chris Wright’s message.

Providing feedback on Red Hat documentation

We appreciate your input on our documentation. Tell us how we can make it better.

Providing documentation feedback in Jira

Use the Create Issue form to provide feedback on the documentation. The Jira issue will be created in the Red Hat OpenStack Platform Jira project, where you can track the progress of your feedback.

  1. Ensure that you are logged in to Jira. If you do not have a Jira account, create an account to submit feedback.
  2. Click the following link to open a the Create Issue page: Create Issue
  3. Complete the Summary and Description fields. In the Description field, include the documentation URL, chapter or section number, and a detailed description of the issue. Do not modify any other fields in the form.
  4. Click Create.

Chapter 1. Introduction

Past versions of Red Hat OpenStack Platform used services managed with Systemd. However, more recent version of OpenStack Platform now use containers to run services. Some administrators might not have a good understanding of how containerized OpenStack Platform services operate, and so this guide aims to help you understand OpenStack Platform container images and containerized services. This includes:

  • How to obtain and modify container images
  • How to manage containerized services in the overcloud
  • Understanding how containers differ from Systemd services

The main goal is to help you gain enough knowledge of containerized OpenStack Platform services to transition from a Systemd-based environment to a container-based environment.

1.1. Containerized services and Kolla

Each of the main Red Hat OpenStack Platform (RHOSP) services run in containers. This provides a method to keep each service within its own isolated namespace separated from the host. This has the following effects:

  • During deployment, RHOSP pulls and runs container images from the Red Hat Customer Portal.
  • The podman command operates management functions, like starting and stopping services.
  • To upgrade containers, you must pull new container images and replace the existing containers with newer versions.

Red Hat OpenStack Platform uses a set of containers built and managed with the Kolla toolset.

Chapter 2. Obtaining and modifying container images

A containerized overcloud requires access to a registry with the required container images. This chapter provides information on how to prepare the registry and your undercloud and overcloud configuration to use container images for Red Hat OpenStack Platform.

2.1. Preparing container images

The overcloud installation requires an environment file to determine where to obtain container images and how to store them. Generate and customize this environment file that you can use to prepare your container images.

Note

If you need to configure specific container image versions for your overcloud, you must pin the images to a specific version. For more information, see Pinning container images for the overcloud.

Procedure

  1. Log in to your undercloud host as the stack user.
  2. Generate the default container image preparation file:

    $ sudo openstack tripleo container image prepare default \
      --local-push-destination \
      --output-env-file containers-prepare-parameter.yaml

    This command includes the following additional options:

    • --local-push-destination sets the registry on the undercloud as the location for container images. This means that director pulls the necessary images from the Red Hat Container Catalog and pushes them to the registry on the undercloud. Director uses this registry as the container image source. To pull directly from the Red Hat Container Catalog, omit this option.
    • --output-env-file is an environment file name. The contents of this file include the parameters for preparing your container images. In this case, the name of the file is containers-prepare-parameter.yaml.

      Note

      You can use the same containers-prepare-parameter.yaml file to define a container image source for both the undercloud and the overcloud.

  3. Modify the containers-prepare-parameter.yaml to suit your requirements.

2.2. Container image preparation parameters

The default file for preparing your containers (containers-prepare-parameter.yaml) contains the ContainerImagePrepare heat parameter. This parameter defines a list of strategies for preparing a set of images:

parameter_defaults:
  ContainerImagePrepare:
  - (strategy one)
  - (strategy two)
  - (strategy three)
  ...

Each strategy accepts a set of sub-parameters that defines which images to use and what to do with the images. The following table contains information about the sub-parameters that you can use with each ContainerImagePrepare strategy:

ParameterDescription

excludes

List of regular expressions to exclude image names from a strategy.

includes

List of regular expressions to include in a strategy. At least one image name must match an existing image. All excludes are ignored if includes is specified.

modify_append_tag

String to append to the tag for the destination image. For example, if you pull an image with the tag 16.2.3-5.161 and set the modify_append_tag to -hotfix, the director tags the final image as 16.2.3-5.161-hotfix.

modify_only_with_labels

A dictionary of image labels that filter the images that you want to modify. If an image matches the labels defined, the director includes the image in the modification process.

modify_role

String of ansible role names to run during upload but before pushing the image to the destination registry.

modify_vars

Dictionary of variables to pass to modify_role.

push_destination

Defines the namespace of the registry that you want to push images to during the upload process.

  • If set to true, the push_destination is set to the undercloud registry namespace using the hostname, which is the recommended method.
  • If set to false, the push to a local registry does not occur and nodes pull images directly from the source.
  • If set to a custom value, director pushes images to an external local registry.

If you set this parameter to false in production environments while pulling images directly from Red Hat Container Catalog, all overcloud nodes will simultaneously pull the images from the Red Hat Container Catalog over your external connection, which can cause bandwidth issues. Only use false to pull directly from a Red Hat Satellite Server hosting the container images.

If the push_destination parameter is set to false or is not defined and the remote registry requires authentication, set the ContainerImageRegistryLogin parameter to true and include the credentials with the ContainerImageRegistryCredentials parameter.

pull_source

The source registry from where to pull the original container images.

set

A dictionary of key: value definitions that define where to obtain the initial images.

tag_from_label

Use the value of specified container image metadata labels to create a tag for every image and pull that tagged image. For example, if you set tag_from_label: {version}-{release}, director uses the version and release labels to construct a new tag. For one container, version might be set to 16.2.3 and release might be set to 5.161, which results in the tag 16.2.3-5.161. Director uses this parameter only if you have not defined tag in the set dictionary.

Important

When you push images to the undercloud, use push_destination: true instead of push_destination: UNDERCLOUD_IP:PORT. The push_destination: true method provides a level of consistency across both IPv4 and IPv6 addresses.

The set parameter accepts a set of key: value definitions:

KeyDescription

ceph_image

The name of the Ceph Storage container image.

ceph_namespace

The namespace of the Ceph Storage container image.

ceph_tag

The tag of the Ceph Storage container image.

ceph_alertmanager_image

ceph_alertmanager_namespace

ceph_alertmanager_tag

The name, namespace, and tag of the Ceph Storage Alert Manager container image.

ceph_grafana_image

ceph_grafana_namespace

ceph_grafana_tag

The name, namespace, and tag of the Ceph Storage Grafana container image.

ceph_node_exporter_image

ceph_node_exporter_namespace

ceph_node_exporter_tag

The name, namespace, and tag of the Ceph Storage Node Exporter container image.

ceph_prometheus_image

ceph_prometheus_namespace

ceph_prometheus_tag

The name, namespace, and tag of the Ceph Storage Prometheus container image.

name_prefix

A prefix for each OpenStack service image.

name_suffix

A suffix for each OpenStack service image.

namespace

The namespace for each OpenStack service image.

neutron_driver

The driver to use to determine which OpenStack Networking (neutron) container to use. Use a null value to set to the standard neutron-server container. Set to ovn to use OVN-based containers.

tag

Sets a specific tag for all images from the source. If not defined, director uses the Red Hat OpenStack Platform version number as the default value. This parameter takes precedence over the tag_from_label value.

Note

The container images use multi-stream tags based on the Red Hat OpenStack Platform version. This means that there is no longer a latest tag.

2.3. Guidelines for container image tagging

The Red Hat Container Registry uses a specific version format to tag all Red Hat OpenStack Platform container images. This format follows the label metadata for each container, which is version-release.

version
Corresponds to a major and minor version of Red Hat OpenStack Platform. These versions act as streams that contain one or more releases.
release
Corresponds to a release of a specific container image version within a version stream.

For example, if the latest version of Red Hat OpenStack Platform is 16.2.3 and the release for the container image is 5.161, then the resulting tag for the container image is 16.2.3-5.161.

The Red Hat Container Registry also uses a set of major and minor version tags that link to the latest release for that container image version. For example, both 16.2 and 16.2.3 link to the latest release in the 16.2.3 container stream. If a new minor release of 16.2 occurs, the 16.2 tag links to the latest release for the new minor release stream while the 16.2.3 tag continues to link to the latest release within the 16.2.3 stream.

The ContainerImagePrepare parameter contains two sub-parameters that you can use to determine which container image to download. These sub-parameters are the tag parameter within the set dictionary, and the tag_from_label parameter. Use the following guidelines to determine whether to use tag or tag_from_label.

  • The default value for tag is the major version for your OpenStack Platform version. For this version it is 16.2. This always corresponds to the latest minor version and release.

    parameter_defaults:
      ContainerImagePrepare:
      - set:
          ...
          tag: 16.2
          ...
  • To change to a specific minor version for OpenStack Platform container images, set the tag to a minor version. For example, to change to 16.2.2, set tag to 16.2.2.

    parameter_defaults:
      ContainerImagePrepare:
      - set:
          ...
          tag: 16.2.2
          ...
  • When you set tag, director always downloads the latest container image release for the version set in tag during installation and updates.
  • If you do not set tag, director uses the value of tag_from_label in conjunction with the latest major version.

    parameter_defaults:
      ContainerImagePrepare:
      - set:
          ...
          # tag: 16.2
          ...
        tag_from_label: '{version}-{release}'
  • The tag_from_label parameter generates the tag from the label metadata of the latest container image release it inspects from the Red Hat Container Registry. For example, the labels for a certain container might use the following version and release metadata:

      "Labels": {
        "release": "5.161",
        "version": "16.2.3",
        ...
      }
  • The default value for tag_from_label is {version}-{release}, which corresponds to the version and release metadata labels for each container image. For example, if a container image has 16.2.3 set for version and 5.161 set for release, the resulting tag for the container image is 16.2.3-5.161.
  • The tag parameter always takes precedence over the tag_from_label parameter. To use tag_from_label, omit the tag parameter from your container preparation configuration.
  • A key difference between tag and tag_from_label is that director uses tag to pull an image only based on major or minor version tags, which the Red Hat Container Registry links to the latest image release within a version stream, while director uses tag_from_label to perform a metadata inspection of each container image so that director generates a tag and pulls the corresponding image.

2.4. Obtaining container images from private registries

The registry.redhat.io registry requires authentication to access and pull images. To authenticate with registry.redhat.io and other private registries, include the ContainerImageRegistryCredentials and ContainerImageRegistryLogin parameters in your containers-prepare-parameter.yaml file.

ContainerImageRegistryCredentials

Some container image registries require authentication to access images. In this situation, use the ContainerImageRegistryCredentials parameter in your containers-prepare-parameter.yaml environment file. The ContainerImageRegistryCredentials parameter uses a set of keys based on the private registry URL. Each private registry URL uses its own key and value pair to define the username (key) and password (value). This provides a method to specify credentials for multiple private registries.

parameter_defaults:
  ContainerImagePrepare:
  - push_destination: true
    set:
      namespace: registry.redhat.io/...
      ...
  ContainerImageRegistryCredentials:
    registry.redhat.io:
      my_username: my_password

In the example, replace my_username and my_password with your authentication credentials. Instead of using your individual user credentials, Red Hat recommends creating a registry service account and using those credentials to access registry.redhat.io content.

To specify authentication details for multiple registries, set multiple key-pair values for each registry in ContainerImageRegistryCredentials:

parameter_defaults:
  ContainerImagePrepare:
  - push_destination: true
    set:
      namespace: registry.redhat.io/...
      ...
  - push_destination: true
    set:
      namespace: registry.internalsite.com/...
      ...
  ...
  ContainerImageRegistryCredentials:
    registry.redhat.io:
      myuser: 'p@55w0rd!'
    registry.internalsite.com:
      myuser2: '0th3rp@55w0rd!'
    '192.0.2.1:8787':
      myuser3: '@n0th3rp@55w0rd!'
Important

The default ContainerImagePrepare parameter pulls container images from registry.redhat.io, which requires authentication.

For more information, see Red Hat Container Registry Authentication.

ContainerImageRegistryLogin

The ContainerImageRegistryLogin parameter is used to control whether an overcloud node system needs to log in to the remote registry to fetch the container images. This situation occurs when you want the overcloud nodes to pull images directly, rather than use the undercloud to host images.

You must set ContainerImageRegistryLogin to true if push_destination is set to false or not used for a given strategy.

parameter_defaults:
  ContainerImagePrepare:
  - push_destination: false
    set:
      namespace: registry.redhat.io/...
      ...
  ...
  ContainerImageRegistryCredentials:
    registry.redhat.io:
      myuser: 'p@55w0rd!'
  ContainerImageRegistryLogin: true

However, if the overcloud nodes do not have network connectivity to the registry hosts defined in ContainerImageRegistryCredentials and you set ContainerImageRegistryLogin to true, the deployment might fail when trying to perform a login. If the overcloud nodes do not have network connectivity to the registry hosts defined in the ContainerImageRegistryCredentials, set push_destination to true and ContainerImageRegistryLogin to false so that the overcloud nodes pull images from the undercloud.

parameter_defaults:
  ContainerImagePrepare:
  - push_destination: true
    set:
      namespace: registry.redhat.io/...
      ...
  ...
  ContainerImageRegistryCredentials:
    registry.redhat.io:
      myuser: 'p@55w0rd!'
  ContainerImageRegistryLogin: false

2.5. Layering image preparation entries

The value of the ContainerImagePrepare parameter is a YAML list. This means that you can specify multiple entries.

The following example demonstrates two entries where director uses the latest version of all images except for the nova-api image, which uses the version tagged with 16.2.1-hotfix:

parameter_defaults:
  ContainerImagePrepare:
  - tag_from_label: "{version}-{release}"
    push_destination: true
    excludes:
    - nova-api
    set:
      namespace: registry.redhat.io/rhosp-rhel8
      name_prefix: openstack-
      name_suffix: ''
      tag:16.2
  - push_destination: true
    includes:
    - nova-api
    set:
      namespace: registry.redhat.io/rhosp-rhel8
      tag: 16.2.1-hotfix

The includes and excludes parameters use regular expressions to control image filtering for each entry. The images that match the includes strategy take precedence over excludes matches. The image name must match the includes or excludes regular expression value to be considered a match.

A similar technique is used if your Block Storage (cinder) driver requires a vendor supplied cinder-volume image known as a plugin. If your Block Storage driver requires a plugin, see Deploying a vendor plugin in the Advanced Overcloud Customization guide.

2.6. Modifying images during preparation

It is possible to modify images during image preparation, and then immediately deploy the overcloud with modified images.

Note

Red Hat OpenStack Platform (RHOSP) director supports modifying images during preparation for RHOSP containers, not for Ceph containers.

Scenarios for modifying images include:

  • As part of a continuous integration pipeline where images are modified with the changes being tested before deployment.
  • As part of a development workflow where local changes must be deployed for testing and development.
  • When changes must be deployed but are not available through an image build pipeline. For example, adding proprietary add-ons or emergency fixes.

To modify an image during preparation, invoke an Ansible role on each image that you want to modify. The role takes a source image, makes the requested changes, and tags the result. The prepare command can push the image to the destination registry and set the heat parameters to refer to the modified image.

The Ansible role tripleo-modify-image conforms with the required role interface and provides the behaviour necessary for the modify use cases. Control the modification with the modify-specific keys in the ContainerImagePrepare parameter:

  • modify_role specifies the Ansible role to invoke for each image to modify.
  • modify_append_tag appends a string to the end of the source image tag. This makes it obvious that the resulting image has been modified. Use this parameter to skip modification if the push_destination registry already contains the modified image. Change modify_append_tag whenever you modify the image.
  • modify_vars is a dictionary of Ansible variables to pass to the role.

To select a use case that the tripleo-modify-image role handles, set the tasks_from variable to the required file in that role.

While developing and testing the ContainerImagePrepare entries that modify images, run the image prepare command without any additional options to confirm that the image is modified as you expect:

sudo openstack tripleo container image prepare \
  -e ~/containers-prepare-parameter.yaml
Important

To use the openstack tripleo container image prepare command, your undercloud must contain a running image-serve registry. As a result, you cannot run this command before a new undercloud installation because the image-serve registry will not be installed. You can run this command after a successful undercloud installation.

2.7. Updating existing packages on container images

Note

Red Hat OpenStack Platform (RHOSP) director supports updating existing packages on container images for RHOSP containers, not for Ceph containers.

Procedure

  • The following example ContainerImagePrepare entry updates in all packages on the container images by using the dnf repository configuration of the undercloud host:

    ContainerImagePrepare:
    - push_destination: true
      ...
      modify_role: tripleo-modify-image
      modify_append_tag: "-updated"
      modify_vars:
        tasks_from: yum_update.yml
        compare_host_packages: true
        yum_repos_dir_path: /etc/yum.repos.d
      ...

2.8. Installing additional RPM files to container images

You can install a directory of RPM files in your container images. This is useful for installing hotfixes, local package builds, or any package that is not available through a package repository.

Note

Red Hat OpenStack Platform (RHOSP) director supports installing additional RPM files to container images for RHOSP containers, not for Ceph containers.

Note

When you modify container images in existing deployments, you must then perform a minor update to apply the changes to your overcloud. For more information, see Keeping Red Hat OpenStack Platform Updated.

Procedure

  • The following example ContainerImagePrepare entry installs some hotfix packages on only the nova-compute image:

    ContainerImagePrepare:
    - push_destination: true
      ...
      includes:
      - nova-compute
      modify_role: tripleo-modify-image
      modify_append_tag: "-hotfix"
      modify_vars:
        tasks_from: rpm_install.yml
        rpms_path: /home/stack/nova-hotfix-pkgs
      ...

2.9. Modifying container images with a custom Dockerfile

You can specify a directory that contains a Dockerfile to make the required changes. When you invoke the tripleo-modify-image role, the role generates a Dockerfile.modified file that changes the FROM directive and adds extra LABEL directives.

Note

Red Hat OpenStack Platform (RHOSP) director supports modifying container images with a custom Dockerfile for RHOSP containers, not for Ceph containers.

Procedure

  1. The following example runs the custom Dockerfile on the nova-compute image:

    ContainerImagePrepare:
    - push_destination: true
      ...
      includes:
      - nova-compute
      modify_role: tripleo-modify-image
      modify_append_tag: "-hotfix"
      modify_vars:
        tasks_from: modify_image.yml
        modify_dir_path: /home/stack/nova-custom
      ...
  2. The following example shows the /home/stack/nova-custom/Dockerfile file. After you run any USER root directives, you must switch back to the original image default user:

    FROM registry.redhat.io/rhosp-rhel8/openstack-nova-compute:latest
    
    USER "root"
    
    COPY customize.sh /tmp/
    RUN /tmp/customize.sh
    
    USER "nova"

2.10. Preparing a Satellite server for container images

Red Hat Satellite 6 offers registry synchronization capabilities. This provides a method to pull multiple images into a Satellite server and manage them as part of an application life cycle. The Satellite also acts as a registry for other container-enabled systems to use. For more information about managing container images, see Managing Container Images in the Red Hat Satellite 6 Content Management Guide.

The examples in this procedure use the hammer command line tool for Red Hat Satellite 6 and an example organization called ACME. Substitute this organization for your own Satellite 6 organization.

Note

This procedure requires authentication credentials to access container images from registry.redhat.io. Instead of using your individual user credentials, Red Hat recommends creating a registry service account and using those credentials to access registry.redhat.io content. For more information, see "Red Hat Container Registry Authentication".

Procedure

  1. Create a list of all container images:

    $ sudo podman search --limit 1000 "registry.redhat.io/rhosp-rhel8/openstack" --format="{{ .Name }}" | sort > satellite_images
    $ sudo podman search --limit 1000 "registry.redhat.io/rhceph" | grep rhceph-4-dashboard-rhel8
    $ sudo podman search --limit 1000 "registry.redhat.io/rhceph" | grep rhceph-4-rhel8
    $ sudo podman search --limit 1000 "registry.redhat.io/openshift" | grep ose-prometheus
    • If you plan to install Ceph and enable the Ceph Dashboard, you need the following ose-prometheus containers:

      registry.redhat.io/openshift4/ose-prometheus-node-exporter:v4.6
      registry.redhat.io/openshift4/ose-prometheus:v4.6
      registry.redhat.io/openshift4/ose-prometheus-alertmanager:v4.6
  2. Copy the satellite_images file to a system that contains the Satellite 6 hammer tool. Alternatively, use the instructions in the Hammer CLI Guide to install the hammer tool to the undercloud.
  3. Run the following hammer command to create a new product (OSP Containers) in your Satellite organization:

    $ hammer product create \
      --organization "ACME" \
      --name "OSP Containers"

    This custom product will contain your images.

  4. Add the overcloud container images from the satellite_images file:

    $ while read IMAGE; do \
      IMAGE_NAME=$(echo $IMAGE | cut -d"/" -f3 | sed "s/openstack-//g") ; \
      IMAGE_NOURL=$(echo $IMAGE | sed "s/registry.redhat.io\///g") ; \
      hammer repository create \
      --organization "ACME" \
      --product "OSP Containers" \
      --content-type docker \
      --url https://registry.redhat.io \
      --docker-upstream-name $IMAGE_NOURL \
      --upstream-username USERNAME \
      --upstream-password PASSWORD \
      --name $IMAGE_NAME ; done < satellite_images
  5. Add the Ceph Storage 4 container image:

    $ hammer repository create \
      --organization "ACME" \
      --product "OSP Containers" \
      --content-type docker \
      --url https://registry.redhat.io \
      --docker-upstream-name rhceph/rhceph-4-rhel8 \
      --upstream-username USERNAME \
      --upstream-password PASSWORD \
      --name rhceph-4-rhel8
    Note

    If you want to install the Ceph dashboard, include --name rhceph-4-dashboard-rhel8 in the hammer repository create command:

    $ hammer repository create \
      --organization "ACME" \
      --product "OSP Containers" \
      --content-type docker \
      --url https://registry.redhat.io \
      --docker-upstream-name rhceph/rhceph-4-dashboard-rhel8 \
      --upstream-username USERNAME \
      --upstream-password PASSWORD \
      --name rhceph-4-dashboard-rhel8
  6. Synchronize the container images:

    $ hammer product synchronize \
      --organization "ACME" \
      --name "OSP Containers"

    Wait for the Satellite server to complete synchronization.

    Note

    Depending on your configuration, hammer might ask for your Satellite server username and password. You can configure hammer to automatically login using a configuration file. For more information, see the Authentication section in the Hammer CLI Guide.

  7. If your Satellite 6 server uses content views, create a new content view version to incorporate the images and promote it along environments in your application life cycle. This largely depends on how you structure your application lifecycle. For example, if you have an environment called production in your lifecycle and you want the container images to be available in that environment, create a content view that includes the container images and promote that content view to the production environment. For more information, see Managing Content Views.
  8. Check the available tags for the base image:

    $ hammer docker tag list --repository "base" \
      --organization "ACME" \
      --lifecycle-environment "production" \
      --product "OSP Containers"

    This command displays tags for the OpenStack Platform container images within a content view for a particular environment.

  9. Return to the undercloud and generate a default environment file that prepares images using your Satellite server as a source. Run the following example command to generate the environment file:

    $ sudo openstack tripleo container image prepare default \
      --output-env-file containers-prepare-parameter.yaml
    • --output-env-file is an environment file name. The contents of this file include the parameters for preparing your container images for the undercloud. In this case, the name of the file is containers-prepare-parameter.yaml.
  10. Edit the containers-prepare-parameter.yaml file and modify the following parameters:

    • push_destination - Set this to true or false depending on your chosen container image management strategy. If you set this parameter to false, the overcloud nodes pull images directly from the Satellite. If you set this parameter to true, the director pulls the images from the Satellite to the undercloud registry and the overcloud pulls the images from the undercloud registry.
    • namespace - The URL and port of the registry on the Satellite server. The default registry port on Red Hat Satellite is 443.
    • name_prefix - The prefix is based on a Satellite 6 convention. This differs depending on whether you use content views:

      • If you use content views, the structure is [org]-[environment]-[content view]-[product]-. For example: acme-production-myosp16-osp_containers-.
      • If you do not use content views, the structure is [org]-[product]-. For example: acme-osp_containers-.
    • ceph_namespace, ceph_image, ceph_tag - If you use Ceph Storage, include these additional parameters to define the Ceph Storage container image location. Note that ceph_image now includes a Satellite-specific prefix. This prefix is the same value as the name_prefix option.

The following example environment file contains Satellite-specific parameters:

parameter_defaults:
  ContainerImagePrepare:
  - push_destination: false
    set:
      ceph_image: acme-production-myosp16_1-osp_containers-rhceph-4
      ceph_namespace: satellite.example.com:443
      ceph_tag: latest
      name_prefix: acme-production-myosp16_1-osp_containers-
      name_suffix: ''
      namespace: satellite.example.com:443
      neutron_driver: null
      tag: '16.2'
      ...
Note

To use a specific container image version stored on your Red Hat Satellite Server, set the tag key-value pair to the specific version in the set dictionary. For example, to use the 16.2.2 image stream, set tag: 16.2.2 in the set dictionary.

You must define the containers-prepare-parameter.yaml environment file in the undercloud.conf configuration file, otherwise the undercloud uses the default values:

container_images_file = /home/stack/containers-prepare-parameter.yaml

Chapter 3. Installing the undercloud with containers

This chapter provides info on how to create a container-based undercloud and keep it updated.

3.1. Configuring director

The director installation process requires certain settings in the undercloud.conf configuration file, which director reads from the home directory of the stack user. Complete the following steps to copy default template as a foundation for your configuration.

Procedure

  1. Copy the default template to the home directory of the stack user’s:

    [stack@director ~]$ cp \
      /usr/share/python-tripleoclient/undercloud.conf.sample \
      ~/undercloud.conf
  2. Edit the undercloud.conf file. This file contains settings to configure your undercloud. If you omit or comment out a parameter, the undercloud installation uses the default value.

3.2. Director configuration parameters

The following list contains information about parameters for configuring the undercloud.conf file. Keep all parameters within their relevant sections to avoid errors.

Important

At minimum, you must set the container_images_file parameter to the environment file that contains your container image configuration. Without this parameter properly set to the appropriate file, director cannot obtain your container image rule set from the ContainerImagePrepare parameter nor your container registry authentication details from the ContainerImageRegistryCredentials parameter.

Defaults

The following parameters are defined in the [DEFAULT] section of the undercloud.conf file:

additional_architectures

A list of additional (kernel) architectures that an overcloud supports. Currently the overcloud supports ppc64le architecture in addition to the default x86_64 architecture.

Note

When you enable support for ppc64le, you must also set ipxe_enabled to False. For more information on configuring your undercloud with multiple CPU architectures, see Configuring a multiple CPU architecture overcloud.

certificate_generation_ca
The certmonger nickname of the CA that signs the requested certificate. Use this option only if you have set the generate_service_certificate parameter. If you select the local CA, certmonger extracts the local CA certificate to /etc/pki/ca-trust/source/anchors/cm-local-ca.pem and adds the certificate to the trust chain.
clean_nodes
Defines whether to wipe the hard drive between deployments and after introspection.
cleanup
Delete temporary files. Set this to False to retain the temporary files used during deployment. The temporary files can help you debug the deployment if errors occur.
container_cli
The CLI tool for container management. Leave this parameter set to podman. Red Hat Enterprise Linux 8.4 only supports podman.
container_healthcheck_disabled
Disables containerized service health checks. Red Hat recommends that you enable health checks and leave this option set to false.
container_images_file

Heat environment file with container image information. This file can contain the following entries:

  • Parameters for all required container images
  • The ContainerImagePrepare parameter to drive the required image preparation. Usually the file that contains this parameter is named containers-prepare-parameter.yaml.
container_insecure_registries
A list of insecure registries for podman to use. Use this parameter if you want to pull images from another source, such as a private container registry. In most cases, podman has the certificates to pull container images from either the Red Hat Container Catalog or from your Satellite Server if the undercloud is registered to Satellite.
container_registry_mirror
An optional registry-mirror configured that podman uses.
custom_env_files
Additional environment files that you want to add to the undercloud installation.
deployment_user
The user who installs the undercloud. Leave this parameter unset to use the current default user stack.
discovery_default_driver
Sets the default driver for automatically enrolled nodes. Requires the enable_node_discovery parameter to be enabled and you must include the driver in the enabled_hardware_types list.
enable_ironic; enable_ironic_inspector; enable_mistral; enable_nova; enable_tempest; enable_validations; enable_zaqar
Defines the core services that you want to enable for director. Leave these parameters set to true.
enable_node_discovery
Automatically enroll any unknown node that PXE-boots the introspection ramdisk. New nodes use the fake driver as a default but you can set discovery_default_driver to override. You can also use introspection rules to specify driver information for newly enrolled nodes.
enable_novajoin
Defines whether to install the novajoin metadata service in the undercloud.
enable_routed_networks
Defines whether to enable support for routed control plane networks.
enable_swift_encryption
Defines whether to enable Swift encryption at-rest.
enable_telemetry
Defines whether to install OpenStack Telemetry services (gnocchi, aodh, panko) in the undercloud. Set the enable_telemetry parameter to true if you want to install and configure telemetry services automatically. The default value is false, which disables telemetry on the undercloud. This parameter is required if you use other products that consume metrics data, such as Red Hat CloudForms.
Warning

RBAC is not supported by every component. The Alarming service (aodh) and Gnocchi do not take secure RBAC rules into account.

enabled_hardware_types
A list of hardware types that you want to enable for the undercloud.
generate_service_certificate
Defines whether to generate an SSL/TLS certificate during the undercloud installation, which is used for the undercloud_service_certificate parameter. The undercloud installation saves the resulting certificate /etc/pki/tls/certs/undercloud-[undercloud_public_vip].pem. The CA defined in the certificate_generation_ca parameter signs this certificate.
heat_container_image
URL for the heat container image to use. Leave unset.
heat_native
Run host-based undercloud configuration using heat-all. Leave as true.
hieradata_override
Path to hieradata override file that configures Puppet hieradata on the director, providing custom configuration to services beyond the undercloud.conf parameters. If set, the undercloud installation copies this file to the /etc/puppet/hieradata directory and sets it as the first file in the hierarchy. For more information about using this feature, see Configuring hieradata on the undercloud.
inspection_extras
Defines whether to enable extra hardware collection during the inspection process. This parameter requires the python-hardware or python-hardware-detect packages on the introspection image.
inspection_interface
The bridge that director uses for node introspection. This is a custom bridge that the director configuration creates. The LOCAL_INTERFACE attaches to this bridge. Leave this as the default br-ctlplane.
inspection_runbench
Runs a set of benchmarks during node introspection. Set this parameter to true to enable the benchmarks. This option is necessary if you intend to perform benchmark analysis when inspecting the hardware of registered nodes.
ipa_otp
Defines the one-time password to register the undercloud node to an IPA server. This is required when enable_novajoin is enabled.
ipv6_address_mode

IPv6 address configuration mode for the undercloud provisioning network. The following list contains the possible values for this parameter:

  • dhcpv6-stateless - Address configuration using router advertisement (RA) and optional information using DHCPv6.
  • dhcpv6-stateful - Address configuration and optional information using DHCPv6.
ipxe_enabled
Defines whether to use iPXE or standard PXE. The default is true, which enables iPXE. Set this parameter to false to use standard PXE. For PowerPC deployments, or for hybrid PowerPC and x86 deployments, set this value to false.
local_interface

The chosen interface for the director Provisioning NIC. This is also the device that director uses for DHCP and PXE boot services. Change this value to your chosen device. To see which device is connected, use the ip addr command. For example, this is the result of an ip addr command:

2: em0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP qlen 1000
    link/ether 52:54:00:75:24:09 brd ff:ff:ff:ff:ff:ff
    inet 192.168.122.178/24 brd 192.168.122.255 scope global dynamic em0
       valid_lft 3462sec preferred_lft 3462sec
    inet6 fe80::5054:ff:fe75:2409/64 scope link
       valid_lft forever preferred_lft forever
3: em1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noop state DOWN
    link/ether 42:0b:c2:a5:c1:26 brd ff:ff:ff:ff:ff:ff

In this example, the External NIC uses em0 and the Provisioning NIC uses em1, which is currently not configured. In this case, set the local_interface to em1. The configuration script attaches this interface to a custom bridge defined with the inspection_interface parameter.

local_ip

The IP address defined for the director Provisioning NIC. This is also the IP address that director uses for DHCP and PXE boot services. Leave this value as the default 192.168.24.1/24 unless you use a different subnet for the Provisioning network, for example, if this IP address conflicts with an existing IP address or subnet in your environment.

For IPv6, the local IP address prefix length must be /64 to support both stateful and stateless connections.

local_mtu
The maximum transmission unit (MTU) that you want to use for the local_interface. Do not exceed 1500 for the undercloud.
local_subnet
The local subnet that you want to use for PXE boot and DHCP interfaces. The local_ip address should reside in this subnet. The default is ctlplane-subnet.
net_config_override
Path to network configuration override template. If you set this parameter, the undercloud uses a JSON or YAML format template to configure the networking with os-net-config and ignores the network parameters set in undercloud.conf. Use this parameter when you want to configure bonding or add an option to the interface. For more information about customizing undercloud network interfaces, see Configuring undercloud network interfaces.
networks_file
Networks file to override for heat.
output_dir
Directory to output state, processed heat templates, and Ansible deployment files.
overcloud_domain_name

The DNS domain name that you want to use when you deploy the overcloud.

Note

When you configure the overcloud, you must set the CloudDomain parameter to a matching value. Set this parameter in an environment file when you configure your overcloud.

roles_file
The roles file that you want to use to override the default roles file for undercloud installation. It is highly recommended to leave this parameter unset so that the director installation uses the default roles file.
scheduler_max_attempts
The maximum number of times that the scheduler attempts to deploy an instance. This value must be greater or equal to the number of bare metal nodes that you expect to deploy at once to avoid potential race conditions when scheduling.
service_principal
The Kerberos principal for the service using the certificate. Use this parameter only if your CA requires a Kerberos principal, such as in FreeIPA.
subnets
List of routed network subnets for provisioning and introspection. The default value includes only the ctlplane-subnet subnet. For more information, see Subnets.
templates
Heat templates file to override.
undercloud_admin_host

The IP address or hostname defined for director Admin API endpoints over SSL/TLS. The director configuration attaches the IP address to the director software bridge as a routed IP address, which uses the /32 netmask.

If the undercloud_admin_host is not in the same IP network as the local_ip, you must set the ControlVirtualInterface parameter to the interface on which you want the admin APIs on the undercloud to listen. By default, the admin APIs listen on the br-ctlplane interface. Set the ControlVirtualInterface parameter in a custom environment file, and include the custom environment file in the undercloud.conf file by configuring the custom_env_files parameter.

For information about customizing undercloud network interfaces, see Configuring undercloud network interfaces.

undercloud_debug
Sets the log level of undercloud services to DEBUG. Set this value to true to enable DEBUG log level.
undercloud_enable_selinux
Enable or disable SELinux during the deployment. It is highly recommended to leave this value set to true unless you are debugging an issue.
undercloud_hostname
Defines the fully qualified host name for the undercloud. If set, the undercloud installation configures all system host name settings. If left unset, the undercloud uses the current host name, but you must configure all system host name settings appropriately.
undercloud_log_file
The path to a log file to store the undercloud install and upgrade logs. By default, the log file is install-undercloud.log in the home directory. For example, /home/stack/install-undercloud.log.
undercloud_nameservers
A list of DNS nameservers to use for the undercloud hostname resolution.
undercloud_ntp_servers
A list of network time protocol servers to help synchronize the undercloud date and time.
undercloud_public_host

The IP address or hostname defined for director Public API endpoints over SSL/TLS. The director configuration attaches the IP address to the director software bridge as a routed IP address, which uses the /32 netmask.

If the undercloud_public_host is not in the same IP network as the local_ip, you must set the PublicVirtualInterface parameter to the public-facing interface on which you want the public APIs on the undercloud to listen. By default, the public APIs listen on the br-ctlplane interface. Set the PublicVirtualInterface parameter in a custom environment file, and include the custom environment file in the undercloud.conf file by configuring the custom_env_files parameter.

For information about customizing undercloud network interfaces, see Configuring undercloud network interfaces.

undercloud_service_certificate
The location and filename of the certificate for OpenStack SSL/TLS communication. Ideally, you obtain this certificate from a trusted certificate authority. Otherwise, generate your own self-signed certificate.
undercloud_timezone
Host timezone for the undercloud. If you do not specify a timezone, director uses the existing timezone configuration.
undercloud_update_packages
Defines whether to update packages during the undercloud installation.

Subnets

Each provisioning subnet is a named section in the undercloud.conf file. For example, to create a subnet called ctlplane-subnet, use the following sample in your undercloud.conf file:

[ctlplane-subnet]
cidr = 192.168.24.0/24
dhcp_start = 192.168.24.5
dhcp_end = 192.168.24.24
inspection_iprange = 192.168.24.100,192.168.24.120
gateway = 192.168.24.1
masquerade = true

You can specify as many provisioning networks as necessary to suit your environment.

Important

Director cannot change the IP addresses for a subnet after director creates the subnet.

cidr
The network that director uses to manage overcloud instances. This is the Provisioning network, which the undercloud neutron service manages. Leave this as the default 192.168.24.0/24 unless you use a different subnet for the Provisioning network.
masquerade

Defines whether to masquerade the network defined in the cidr for external access. This provides the Provisioning network with network address translation (NAT) so that the Provisioning network has external access through director.

Note

The director configuration also enables IP forwarding automatically using the relevant sysctl kernel parameter.

dhcp_start; dhcp_end

The start and end of the DHCP allocation range for overcloud nodes. Ensure that this range contains enough IP addresses to allocate to your nodes. If not specified for the subnet, director determines the allocation pools by removing the values set for the local_ip, gateway, undercloud_admin_host, undercloud_public_host, and inspection_iprange parameters from the subnets full IP range.

You can configure non-contiguous allocation pools for undercloud control plane subnets by specifying a list of start and end address pairs. Alternatively, you can use the dhcp_exclude option to exclude IP addresses within an IP address range. For example, the following configurations both create allocation pools 172.20.0.100-172.20.0.150 and 172.20.0.200-172.20.0.250:

Option 1

dhcp_start = 172.20.0.100,172.20.0.200
dhcp_end = 172.20.0.150,172.20.0.250

Option 2

dhcp_start = 172.20.0.100
dhcp_end = 172.20.0.250
dhcp_exclude = 172.20.0.151-172.20.0.199

dhcp_exclude

IP addresses to exclude in the DHCP allocation range. For example, the following configuration excludes the IP address 172.20.0.105 and the IP address range 172.20.0.210-172.20.0.219:

dhcp_exclude = 172.20.0.105,172.20.0.210-172.20.0.219
dns_nameservers
DNS nameservers specific to the subnet. If no nameservers are defined for the subnet, the subnet uses nameservers defined in the undercloud_nameservers parameter.
gateway
The gateway for the overcloud instances. This is the undercloud host, which forwards traffic to the External network. Leave this as the default 192.168.24.1 unless you use a different IP address for director or want to use an external gateway directly.
host_routes
Host routes for the Neutron-managed subnet for the overcloud instances on this network. This also configures the host routes for the local_subnet on the undercloud.
inspection_iprange
Temporary IP range for nodes on this network to use during the inspection process. This range must not overlap with the range defined by dhcp_start and dhcp_end but must be in the same IP subnet.

Modify the values for these parameters to suit your configuration. When complete, save the file.

3.3. Installing director

Complete the following steps to install director and perform some basic post-installation tasks.

Procedure

  1. Run the following command to install director on the undercloud:

    [stack@director ~]$ openstack undercloud install

    This command launches the director configuration script. Director installs additional packages, configures its services according to the configuration in the undercloud.conf, and starts all the RHOSP service containers. This script takes several minutes to complete.

    The script generates two files:

    • undercloud-passwords.conf - A list of all passwords for the director services.
    • stackrc - A set of initialization variables to help you access the director command line tools.
  2. Confirm that the RHOSP service containers are running:

    [stack@director ~]$ sudo podman ps -a --format "{{.Names}} {{.Status}}"

    The following command output indicates that the RHOSP service containers are running (Up):

    memcached Up 3 hours (healthy)
    haproxy Up 3 hours
    rabbitmq Up 3 hours (healthy)
    mysql Up 3 hours (healthy)
    iscsid Up 3 hours (healthy)
    keystone Up 3 hours (healthy)
    keystone_cron Up 3 hours (healthy)
    neutron_api Up 3 hours (healthy)
    logrotate_crond Up 3 hours (healthy)
    neutron_dhcp Up 3 hours (healthy)
    neutron_l3_agent Up 3 hours (healthy)
    neutron_ovs_agent Up 3 hours (healthy)
    ironic_api Up 3 hours (healthy)
    ironic_conductor Up 3 hours (healthy)
    ironic_neutron_agent Up 3 hours (healthy)
    ironic_pxe_tftp Up 3 hours (healthy)
    ironic_pxe_http Up 3 hours (unhealthy)
    ironic_inspector Up 3 hours (healthy)
    ironic_inspector_dnsmasq Up 3 hours (healthy)
    neutron-dnsmasq-qdhcp-30d628e6-45e6-499d-8003-28c0bc066487 Up 3 hours
    ...
  3. To initialize the stack user to use the command line tools, run the following command:

    [stack@director ~]$ source ~/stackrc

    The prompt now indicates that OpenStack commands authenticate and execute against the undercloud;

    (undercloud) [stack@director ~]$

The director installation is complete. You can now use the director command line tools.

3.4. Performing a minor update of a containerized undercloud

Director provides commands to update the main packages on the undercloud node. Use director to perform a minor update within the current version of your RHOSP environment.

Procedure

  1. On the undercloud node, log in as the stack user.
  2. Source the stackrc file:

    $ source ~/stackrc
  3. Update the director main packages with the dnf update command:

    $ sudo dnf update -y python3-tripleoclient* tripleo-ansible ansible
  4. Update the undercloud environment with the openstack undercloud upgrade command :

    $ openstack undercloud upgrade
  5. Wait until the undercloud update process completes.
  6. Reboot the undercloud to update the operating system’s kernel and other system packages:

    $ sudo reboot
  7. Wait until the node boots.

Chapter 4. Deploying and updating an overcloud with containers

This chapter provides info on how to create a container-based overcloud and keep it updated.

4.1. Deploying an overcloud

This procedure demonstrates how to deploy an overcloud with minimum configuration. The result will be a basic two-node overcloud (1 Controller node, 1 Compute node).

Procedure

  1. Source the stackrc file:

    $ source ~/stackrc
  2. Run the deploy command and include the file containing your overcloud image locations (usually overcloud_images.yaml):

    (undercloud) $ openstack overcloud deploy --templates \
      -e /home/stack/templates/overcloud_images.yaml \
      --ntp-server pool.ntp.org
  3. Wait until the overcloud completes deployment.

4.2. Updating an overcloud

For information on updating a containerized overcloud, see the Keeping Red Hat OpenStack Platform Updated guide.

Chapter 5. Working with containerized services

This chapter provides some examples of commands to manage containers and how to troubleshoot your OpenStack Platform containers

5.1. Managing containerized services

Red Hat OpenStack Platform (RHOSP) runs services in containers on the undercloud and overcloud nodes. In certain situations, you might need to control the individual services on a host. This section contains information about some common commands you can run on a node to manage containerized services.

Listing containers and images

To list running containers, run the following command:

$ sudo podman ps

To include stopped or failed containers in the command output, add the --all option to the command:

$ sudo podman ps --all

To list container images, run the following command:

$ sudo podman images

Inspecting container properties

To view the properties of a container or container images, use the podman inspect command. For example, to inspect the keystone container, run the following command:

$ sudo podman inspect keystone

Managing containers with Systemd services

Previous versions of OpenStack Platform managed containers with Docker and its daemon. In OpenStack Platform 16, the Systemd services interface manages the lifecycle of the containers. Each container is a service and you run Systemd commands to perform specific operations for each container.

Note

It is not recommended to use the Podman CLI to stop, start, and restart containers because Systemd applies a restart policy. Use Systemd service commands instead.

To check a container status, run the systemctl status command:

$ sudo systemctl status tripleo_keystone
● tripleo_keystone.service - keystone container
   Loaded: loaded (/etc/systemd/system/tripleo_keystone.service; enabled; vendor preset: disabled)
   Active: active (running) since Fri 2019-02-15 23:53:18 UTC; 2 days ago
 Main PID: 29012 (podman)
   CGroup: /system.slice/tripleo_keystone.service
           └─29012 /usr/bin/podman start -a keystone

To stop a container, run the systemctl stop command:

$ sudo systemctl stop tripleo_keystone

To start a container, run the systemctl start command:

$ sudo systemctl start tripleo_keystone

To restart a container, run the systemctl restart command:

$ sudo systemctl restart tripleo_keystone

Because no daemon monitors the containers status, Systemd automatically restarts most containers in these situations:

  • Clean exit code or signal, such as running podman stop command.
  • Unclean exit code, such as the podman container crashing after a start.
  • Unclean signals.
  • Timeout if the container takes more than 1m 30s to start.

For more information about Systemd services, see the systemd.service documentation.

Note

Any changes to the service configuration files within the container revert after restarting the container. This is because the container regenerates the service configuration based on files on the local file system of the node in /var/lib/config-data/puppet-generated/. For example, if you edit /etc/keystone/keystone.conf within the keystone container and restart the container, the container regenerates the configuration using /var/lib/config-data/puppet-generated/keystone/etc/keystone/keystone.conf on the local file system of the node, which overwrites any the changes that were made within the container before the restart.

Monitoring podman containers with Systemd timers

The Systemd timers interface manages container health checks. Each container has a timer that runs a service unit that executes health check scripts.

To list all OpenStack Platform containers timers, run the systemctl list-timers command and limit the output to lines containing tripleo:

$ sudo systemctl list-timers | grep tripleo
Mon 2019-02-18 20:18:30 UTC  1s left       Mon 2019-02-18 20:17:26 UTC  1min 2s ago  tripleo_nova_metadata_healthcheck.timer            tripleo_nova_metadata_healthcheck.service
Mon 2019-02-18 20:18:33 UTC  4s left       Mon 2019-02-18 20:17:03 UTC  1min 25s ago tripleo_mistral_engine_healthcheck.timer           tripleo_mistral_engine_healthcheck.service
Mon 2019-02-18 20:18:34 UTC  5s left       Mon 2019-02-18 20:17:23 UTC  1min 5s ago  tripleo_keystone_healthcheck.timer                 tripleo_keystone_healthcheck.service
Mon 2019-02-18 20:18:35 UTC  6s left       Mon 2019-02-18 20:17:13 UTC  1min 15s ago tripleo_memcached_healthcheck.timer                tripleo_memcached_healthcheck.service
(...)

To check the status of a specific container timer, run the systemctl status command for the healthcheck service:

$ sudo systemctl status tripleo_keystone_healthcheck.service
● tripleo_keystone_healthcheck.service - keystone healthcheck
   Loaded: loaded (/etc/systemd/system/tripleo_keystone_healthcheck.service; disabled; vendor preset: disabled)
   Active: inactive (dead) since Mon 2019-02-18 20:22:46 UTC; 22s ago
  Process: 115581 ExecStart=/usr/bin/podman exec keystone /openstack/healthcheck (code=exited, status=0/SUCCESS)
 Main PID: 115581 (code=exited, status=0/SUCCESS)

Feb 18 20:22:46 undercloud.localdomain systemd[1]: Starting keystone healthcheck...
Feb 18 20:22:46 undercloud.localdomain podman[115581]: {"versions": {"values": [{"status": "stable", "updated": "2019-01-22T00:00:00Z", "..."}]}]}}
Feb 18 20:22:46 undercloud.localdomain podman[115581]: 300 192.168.24.1:35357 0.012 seconds
Feb 18 20:22:46 undercloud.localdomain systemd[1]: Started keystone healthcheck.

To stop, start, restart, and show the status of a container timer, run the relevant systemctl command against the .timer Systemd resource. For example, to check the status of the tripleo_keystone_healthcheck.timer resource, run the following command:

$ sudo systemctl status tripleo_keystone_healthcheck.timer
● tripleo_keystone_healthcheck.timer - keystone container healthcheck
   Loaded: loaded (/etc/systemd/system/tripleo_keystone_healthcheck.timer; enabled; vendor preset: disabled)
   Active: active (waiting) since Fri 2019-02-15 23:53:18 UTC; 2 days ago

If the healthcheck service is disabled but the timer for that service is present and enabled, it means that the check is currently timed out, but will be run according to timer. You can also start the check manually.

Note

The podman ps command does not show the container health status.

Checking container logs

OpenStack Platform 16 introduces a new logging directory /var/log/containers/stdout that contains the standard output (stdout) all of the containers, and standard errors (stderr) consolidated in one single file for each container.

Paunch and the container-puppet.py script configure podman containers to push their outputs to the /var/log/containers/stdout directory, which creates a collection of all logs, even for the deleted containers, such as container-puppet-* containers.

The host also applies log rotation to this directory, which prevents huge files and disk space issues.

In case a container is replaced, the new container outputs to the same log file, because podman uses the container name instead of container ID.

You can also check the logs for a containerized service with the podman logs command. For example, to view the logs for the keystone container, run the following command:

$ sudo podman logs keystone

Accessing containers

To enter the shell for a containerized service, use the podman exec command to launch /bin/bash. For example, to enter the shell for the keystone container, run the following command:

$ sudo podman exec -it keystone /bin/bash

To enter the shell for the keystone container as the root user, run the following command:

$ sudo podman exec --user 0 -it <NAME OR ID> /bin/bash

To exit the container, run the following command:

# exit

5.2. Troubleshooting containerized services

If a containerized service fails during or after overcloud deployment, use the following recommendations to determine the root cause for the failure:

Note

Before running these commands, check that you are logged into an overcloud node and not running these commands on the undercloud.

Checking the container logs

Each container retains standard output from its main process. This output acts as a log to help determine what actually occurs during a container run. For example, to view the log for the keystone container, use the following command:

$ sudo podman logs keystone

In most cases, this log provides the cause of a container’s failure.

Inspecting the container

In some situations, you might need to verify information about a container. For example, use the following command to view keystone container data:

$ sudo podman inspect keystone

This provides a JSON object containing low-level configuration data. You can pipe the output to the jq command to parse specific data. For example, to view the container mounts for the keystone container, run the following command:

$ sudo podman inspect keystone | jq .[0].Mounts

You can also use the --format option to parse data to a single line, which is useful for running commands against sets of container data. For example, to recreate the options used to run the keystone container, use the following inspect command with the --format option:

$ sudo podman inspect --format='{{range .Config.Env}} -e "{{.}}" {{end}} {{range .Mounts}} -v {{.Source}}:{{.Destination}}{{if .Mode}}:{{.Mode}}{{end}}{{end}} -ti {{.Config.Image}}' keystone
Note

The --format option uses Go syntax to create queries.

Use these options in conjunction with the podman run command to recreate the container for troubleshooting purposes:

$ OPTIONS=$( sudo podman inspect --format='{{range .Config.Env}} -e "{{.}}" {{end}} {{range .Mounts}} -v {{.Source}}:{{.Destination}}{{if .Mode}}:{{.Mode}}{{end}}{{end}} -ti {{.Config.Image}}' keystone )
$ sudo podman run --rm $OPTIONS /bin/bash

Running commands in the container

In some cases, you might need to obtain information from within a container through a specific Bash command. In this situation, use the following podman command to execute commands within a running container. For example, to run a command in the keystone container:

$ sudo podman exec -ti keystone <COMMAND>
Note

The -ti options run the command through an interactive pseudoterminal.

Replace <COMMAND> with your desired command. For example, each container has a health check script to verify the service connection. You can run the health check script for keystone with the following command:

$ sudo podman exec -ti keystone /openstack/healthcheck

To access the container’s shell, run podman exec using /bin/bash as the command:

$ sudo podman exec -ti keystone /bin/bash

Exporting a container

When a container fails, you might need to investigate the full contents of the file. In this case, you can export the full file system of a container as a tar archive. For example, to export the keystone container’s file system, run the following command:

$ sudo podman export keystone -o keystone.tar

This command create the keystone.tar archive, which you can extract and explore.

Chapter 6. Comparing Systemd services to containerized services

This chapter provides some reference material to show how containerized services differ from Systemd services.

6.1. Systemd services and containerized services

The following table shows the correlation between Systemd-based services and the podman containers controlled with the Systemd services.

ComponentSystemd serviceContainers

OpenStack Image Storage (glance)

tripleo_glance_api.service

glance_api

HAProxy

tripleo_haproxy.service

haproxy

OpenStack Orchestration (heat)

tripleo_heat_api.service

tripleo_heat_api_cfn.service

tripleo_heat_api_cron.service

tripleo_heat_engine.service

heat_api

heat_api_cfn

heat_api_cron

heat_engine

OpenStack Bare Metal (ironic)

tripleo_ironic_api.service

tripleo_ironic_conductor.service

tripleo_ironic_inspector.service

tripleo_ironic_inspector_dnsmasq.service

tripleo_ironic_neutron_agent.service

tripleo_ironic_pxe_http.service

tripleo_ironic_pxe_tftp.service

tripleo_iscsid.service

ironic_api

ironic_conductor

ironic_inspector

ironic_inspector_dnsmasq

ironic_neutron_agent

ironic_pxe_http

ironic_pxe_tftp

iscsid

Keepalived

tripleo_keepalived.service

keepalived

OpenStack Identity (keystone)

tripleo_keystone.service

tripleo_keystone_cron.service

keystone

keystone_cron

Logrotate

tripleo_logrotate_crond.service

logrotate_crond

Memcached

tripleo_memcached.service

memcached

OpenStack Workflow (mistral)

tripleo_mistral_api.service

tripleo_mistral_engine.service

tripleo_mistral_event_engine.service

tripleo_mistral_executor.service

mistral_api

mistral_engine

mistral_event_engine

mistral_executor

MySQL

tripleo_mysql.service

mysql

OpenStack Networking (neutron)

tripleo_neutron_api.service

tripleo_neutron_dhcp.service

tripleo_neutron_l3_agent.service

tripleo_neutron_ovs_agent.service

neutron_api

neutron_dhcp

neutron_l3_agent

neutron_ovs_agent

OpenStack Compute (nova)

tripleo_nova_api.service

tripleo_nova_api_cron.service

tripleo_nova_compute.service

tripleo_nova_conductor.service

tripleo_nova_metadata.service

tripleo_nova_placement.service

tripleo_nova_scheduler.service

nova_api

nova_api_cron

nova_compute

nova_conductor

nova_metadata

nova_placement

nova_scheduler

RabbitMQ

tripleo_rabbitmq.service

rabbitmq

OpenStack Object Storage (swift)

tripleo_swift_account_reaper.service

tripleo_swift_account_server.service

tripleo_swift_container_server.service

tripleo_swift_container_updater.service

tripleo_swift_object_expirer.service

tripleo_swift_object_server.service

tripleo_swift_object_updater.service

tripleo_swift_proxy.service

tripleo_swift_rsync.service

swift_account_reaper

swift_account_server

swift_container_server

swift_container_updater

swift_object_expirer

swift_object_server

swift_object_updater

swift_proxy

swift_rsync

OpenStack Messaging (zaqar)

tripleo_zaqar.service

tripleo_zaqar_websocket.service

zaqar

zaqar_websocket

Aodh

tripleo_aodh_api.service

tripleo_aodh_evaluator.service

tripleo_aodh_api_cron.service

tripleo_aodh_listener.service

tripleo_aodh_notifier.service

aodh_api

aodh_listener

aodh_evaluator

aodh_api_cron

aodh_notifier

Gnocchi

tripleo_gnocchi_api.service

tripleo_gnocchi_metricd.service

tripleo_gnocchi_statsd.service

gnocchi_api

gnocchi_metricd

gnocchi_statsd

Ceilometer

tripleo_ceilometer_agent_central.service

tripleo_ceilometer_agent_compute.service

tripleo_ceilometer_agent_notification.service

ceilometer_agent_central

ceilometer_agent_compute

ceilometer_agent_notification

6.2. Systemd log locations vs containerized log locations

The following table shows Systemd-based OpenStack logs and their equivalents for containers. All container-based log locations are available on the physical host and are mounted to the container.

OpenStack serviceSystemd service logsContainer logs

aodh

/var/log/aodh/

/var/log/containers/aodh/

/var/log/containers/httpd/aodh-api/

ceilometer

/var/log/ceilometer/

/var/log/containers/ceilometer/

cinder

/var/log/cinder/

/var/log/containers/cinder/

/var/log/containers/httpd/cinder-api/

glance

/var/log/glance/

/var/log/containers/glance/

gnocchi

/var/log/gnocchi/

/var/log/containers/gnocchi/

/var/log/containers/httpd/gnocchi-api/

heat

/var/log/heat/

/var/log/containers/heat/

/var/log/containers/httpd/heat-api/

/var/log/containers/httpd/heat-api-cfn/

horizon

/var/log/horizon/

/var/log/containers/horizon/

/var/log/containers/httpd/horizon/

keystone

/var/log/keystone/

/var/log/containers/keystone

/var/log/containers/httpd/keystone/

databases

/var/log/mariadb/

/var/log/mongodb/

/var/log/mysqld.log

/var/log/containers/mysql/

neutron

/var/log/neutron/

/var/log/containers/neutron/

/var/log/containers/httpd/neutron-api/

nova

/var/log/nova/

/var/log/containers/nova/

/var/log/containers/httpd/nova-api/

/var/log/containers/httpd/placement/

panko

 

/var/log/containers/panko/

/var/log/containers/httpd/panko-api/

rabbitmq

/var/log/rabbitmq/

/var/log/containers/rabbitmq/

redis

/var/log/redis/

/var/log/containers/redis/

swift

/var/log/swift/

/var/log/containers/swift/

6.3. Systemd configuration vs containerized configuration

The following table shows Systemd-based OpenStack configuration and their equivalents for containers. All container-based configuration locations are available on the physical host, are mounted to the container, and are merged (via kolla) into the configuration within each respective container.

OpenStack serviceSystemd service configurationContainer configuration

aodh

/etc/aodh/

/var/lib/config-data/puppet-generated/aodh/

ceilometer

/etc/ceilometer/

/var/lib/config-data/puppet-generated/ceilometer/etc/ceilometer/

cinder

/etc/cinder/

/var/lib/config-data/puppet-generated/cinder/etc/cinder/

glance

/etc/glance/

/var/lib/config-data/puppet-generated/glance_api/etc/glance/

gnocchi

/etc/gnocchi/

/var/lib/config-data/puppet-generated/gnocchi/etc/gnocchi/

haproxy

/etc/haproxy/

/var/lib/config-data/puppet-generated/haproxy/etc/haproxy/

heat

/etc/heat/

/var/lib/config-data/puppet-generated/heat/etc/heat/

/var/lib/config-data/puppet-generated/heat_api/etc/heat/

/var/lib/config-data/puppet-generated/heat_api_cfn/etc/heat/

horizon

/etc/openstack-dashboard/

/var/lib/config-data/puppet-generated/horizon/etc/openstack-dashboard/

keystone

/etc/keystone/

/var/lib/config-data/puppet-generated/keystone/etc/keystone/

databases

/etc/my.cnf.d/

/etc/my.cnf

/var/lib/config-data/puppet-generated/mysql/etc/my.cnf.d/

neutron

/etc/neutron/

/var/lib/config-data/puppet-generated/neutron/etc/neutron/

nova

/etc/nova/

/var/lib/config-data/puppet-generated/nova/etc/nova/

/var/lib/config-data/puppet-generated/etc/placement/

panko

 

/var/lib/config-data/puppet-generated/panko/etc/panko

rabbitmq

/etc/rabbitmq/

/var/lib/config-data/puppet-generated/rabbitmq/etc/rabbitmq/

redis

/etc/redis/

/etc/redis.conf

/var/lib/config-data/puppet-generated/redis/etc/redis/

/var/lib/config-data/puppet-generated/redis/etc/redis.conf

swift

/etc/swift/

/var/lib/config-data/puppet-generated/swift/etc/swift/

/var/lib/config-data/puppet-generated/swift_ringbuilder/etc/swift/

Legal Notice

Copyright © 2023 Red Hat, Inc.
The text of and illustrations in this document are licensed by Red Hat under a Creative Commons Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is available at http://creativecommons.org/licenses/by-sa/3.0/. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must provide the URL for the original version.
Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert, Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.
Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift, Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other countries.
Linux® is the registered trademark of Linus Torvalds in the United States and other countries.
Java® is a registered trademark of Oracle and/or its affiliates.
XFS® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States and/or other countries.
MySQL® is a registered trademark of MySQL AB in the United States, the European Union and other countries.
Node.js® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the official Joyent Node.js open source or commercial project.
The OpenStack® Word Mark and OpenStack logo are either registered trademarks/service marks or trademarks/service marks of the OpenStack Foundation, in the United States and other countries and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.
All other trademarks are the property of their respective owners.
Red Hat logoGithubRedditYoutubeTwitter

Learn

Try, buy, & sell

Communities

About Red Hat Documentation

We help Red Hat users innovate and achieve their goals with our products and services with content they can trust.

Making open source more inclusive

Red Hat is committed to replacing problematic language in our code, documentation, and web properties. For more details, see the Red Hat Blog.

About Red Hat

We deliver hardened solutions that make it easier for enterprises to work across platforms and environments, from the core datacenter to the network edge.

© 2024 Red Hat, Inc.