Chapter 10. Custom network interface templates
After you configure Chapter 8, Basic network isolation, you can create a set of custom network interface templates to suit the nodes in your environment. For example, you can include the following files:
-
The environment file to enable network isolation (
/usr/share/openstack-tripleo-heat-templates/environments/network-isolation.yaml
). -
The environment file to configure network defaults (
/usr/share/openstack-tripleo-heat-templates/environments/network-environment.yaml
). - Templates to define your NIC layout for each node. The overcloud core template collection contains a set of defaults for different use cases. To create a custom NIC template, render a default Jinja2 template as the basis for your custom templates.
-
A custom environment file to enable NICs. This example uses a custom environment file (
/home/stack/templates/custom-network-configuration.yaml
) that references your custom interface templates. - Any additional environment files to customize your networking parameters.
-
If you customize your networks, a custom
network_data.yaml
file. -
If you create additional or custom composable networks, a custom
network_data.yaml
file and a customroles_data.yaml
file.
Some of the files in the previous list are Jinja2 format files and have a .j2.yaml
extension. Director renders these files to .yaml
versions during deployment.
10.1. Custom network architecture
The default NIC templates might not suit a specific network configuration. For example, you might want to create your own custom NIC template that suits a specific network layout. You might want to separate the control services and data services on to separate NICs. In this situation, you can map the service to NIC assignments in the following way:
NIC1 (Provisioning)
- Provisioning / Control Plane
NIC2 (Control Group)
- Internal API
- Storage Management
- External (Public API)
NIC3 (Data Group)
- Tenant Network (VXLAN tunneling)
- Tenant VLANs / Provider VLANs
- Storage
- External VLANs (Floating IP/SNAT)
NIC4 (Management)
- Management
10.2. Rendering default network interface templates for customization
To simplify the configuration of custom interface templates, render the Jinja2 syntax of a default NIC template and use the rendered templates as the basis for your custom configuration.
Procedure
Render a copy of the
openstack-tripleo-heat-templates
collection with theprocess-templates.py
script:$ cd /usr/share/openstack-tripleo-heat-templates $ ./tools/process-templates.py -o ~/openstack-tripleo-heat-templates-rendered
This converts all Jinja2 templates to their rendered YAML versions and saves the results to
~/openstack-tripleo-heat-templates-rendered
.If you use a custom network file or custom roles file, you can include these files using the
-n
and-r
options respectively:$ ./tools/process-templates.py -o ~/openstack-tripleo-heat-templates-rendered -n /home/stack/network_data.yaml -r /home/stack/roles_data.yaml
Copy the multiple NIC example:
$ cp -r ~/openstack-tripleo-heat-templates-rendered/network/config/multiple-nics/ ~/templates/custom-nics/
-
Edit the template set in
custom-nics
to suit your own network configuration.
10.3. Network interface architecture
The custom NIC templates that you render in Section 10.2, “Rendering default network interface templates for customization” contain the parameters
and resources
sections.
Parameters
The parameters
section contains all network configuration parameters for network interfaces. This includes information such as subnet ranges and VLAN IDs. This section should remain unchanged as the heat template inherits values from its parent template. However, you can use a network environment file to modify the values for some parameters.
Resources
The resources
section is where the main network interface configuration occurs. In most cases, the resources
section is the only one that requires modification. Each resources
section begins with the following header:
resources: OsNetConfigImpl: type: OS::Heat::SoftwareConfig properties: group: script config: str_replace: template: get_file: /usr/share/openstack-tripleo-heat-templates/network/scripts/run-os-net-config.sh params: $network_config: network_config:
This snippet runs a script (run-os-net-config.sh
) that creates a configuration file for os-net-config
to use to configure network properties on a node. The network_config
section contains the custom network interface data sent to the run-os-net-config.sh
script. You arrange this custom interface data in a sequence based on the type of device.
If you create custom NIC templates, you must set the run-os-net-config.sh
script location to an absolute path for each NIC template. The script is located at /usr/share/openstack-tripleo-heat-templates/network/scripts/run-os-net-config.sh
on the undercloud.
10.4. Network interface reference
Network interface configuration contains the following parameters:
interface
Defines a single network interface. The configuration defines each interface using either the actual interface name ("eth0", "eth1", "enp0s25") or a set of numbered interfaces ("nic1", "nic2", "nic3"):
- type: interface name: nic2
Option | Default | Description |
---|---|---|
name | Name of the interface. | |
use_dhcp | False | Use DHCP to get an IP address. |
use_dhcpv6 | False | Use DHCP to get a v6 IP address. |
addresses | A list of IP addresses assigned to the interface. | |
routes | A list of routes assigned to the interface. For more information, see routes. | |
mtu | 1500 | The maximum transmission unit (MTU) of the connection. |
primary | False | Defines the interface as the primary interface. |
defroute | True |
Use a default route provided by the DHCP service. Only applies when you enable |
persist_mapping | False | Write the device alias configuration instead of the system names. |
dhclient_args | None | Arguments that you want to pass to the DHCP client. |
dns_servers | None | List of DNS servers that you want to use for the interface. |
ethtool_opts |
Set this option to |
vlan
Defines a VLAN. Use the VLAN ID and subnet passed from the parameters
section.
For example:
- type: vlan vlan_id:{get_param: ExternalNetworkVlanID} addresses: - ip_netmask: {get_param: ExternalIpSubnet}
Option | Default | Description |
---|---|---|
vlan_id | The VLAN ID. | |
device | The parent device to attach the VLAN. Use this parameter when the VLAN is not a member of an OVS bridge. For example, use this parameter to attach the VLAN to a bonded interface device. | |
use_dhcp | False | Use DHCP to get an IP address. |
use_dhcpv6 | False | Use DHCP to get a v6 IP address. |
addresses | A list of IP addresses assigned to the VLAN. | |
routes | A list of routes assigned to the VLAN. For more information, see routes. | |
mtu | 1500 | The maximum transmission unit (MTU) of the connection. |
primary | False | Defines the VLAN as the primary interface. |
defroute | True |
Use a default route provided by the DHCP service. Only applies when you enable |
persist_mapping | False | Write the device alias configuration instead of the system names. |
dhclient_args | None | Arguments that you want to pass to the DHCP client. |
dns_servers | None | List of DNS servers that you want to use for the VLAN. |
ovs_bond
Defines a bond in Open vSwitch to join two or more interfaces
together. This helps with redundancy and increases bandwidth.
For example:
- type: ovs_bond name: bond1 members: - type: interface name: nic2 - type: interface name: nic3
Option | Default | Description |
---|---|---|
name | Name of the bond. | |
use_dhcp | False | Use DHCP to get an IP address. |
use_dhcpv6 | False | Use DHCP to get a v6 IP address. |
addresses | A list of IP addresses assigned to the bond. | |
routes | A list of routes assigned to the bond. For more information, see routes. | |
mtu | 1500 | The maximum transmission unit (MTU) of the connection. |
primary | False | Defines the interface as the primary interface. |
members | A sequence of interface objects that you want to use in the bond. | |
ovs_options | A set of options to pass to OVS when creating the bond. | |
ovs_extra | A set of options to set as the OVS_EXTRA parameter in the network configuration file of the bond. | |
defroute | True |
Use a default route provided by the DHCP service. Only applies when you enable |
persist_mapping | False | Write the device alias configuration instead of the system names. |
dhclient_args | None | Arguments that you want to pass to the DHCP client. |
dns_servers | None | List of DNS servers that you want to use for the bond. |
ovs_bridge
Defines a bridge in Open vSwitch, which connects multiple interface
, ovs_bond
, and vlan
objects together.
The network interface type, ovs_bridge
, takes a parameter name
.
If you have multiple bridges, you must use distinct bridge names other than accepting the default name of bridge_name
. If you do not use distinct names, then during the converge phase, two network bonds are placed on the same bridge.
If you are defining an OVS bridge for the external tripleo network, then retain the values bridge_name
and interface_name
as your deployment framework automatically replaces these values with an external bridge name and an external interface name, respectively.
For example:
- type: ovs_bridge name: bridge_name addresses: - ip_netmask: list_join: - / - - {get_param: ControlPlaneIp} - {get_param: ControlPlaneSubnetCidr} members: - type: interface name: interface_name - type: vlan device: bridge_name vlan_id: {get_param: ExternalNetworkVlanID} addresses: - ip_netmask: {get_param: ExternalIpSubnet}
The OVS bridge connects to the Networking service (neutron) server to obtain configuration data. If the OpenStack control traffic, typically the Control Plane and Internal API networks, is placed on an OVS bridge, then connectivity to the neutron server is lost whenever you upgrade OVS, or the OVS bridge is restarted by the admin user or process. This causes some downtime. If downtime is not acceptable in these circumstances, then you must place the Control group networks on a separate interface or bond rather than on an OVS bridge:
- You can achieve a minimal setting when you put the Internal API network on a VLAN on the provisioning interface and the OVS bridge on a second interface.
- To implement bonding, you need at least two bonds (four network interfaces). Place the control group on a Linux bond (Linux bridge). If the switch does not support LACP fallback to a single interface for PXE boot, then this solution requires at least five NICs.
Option | Default | Description |
---|---|---|
name | Name of the bridge. | |
use_dhcp | False | Use DHCP to get an IP address. |
use_dhcpv6 | False | Use DHCP to get a v6 IP address. |
addresses | A list of IP addresses assigned to the bridge. | |
routes | A list of routes assigned to the bridge. For more information, see routes. | |
mtu | 1500 | The maximum transmission unit (MTU) of the connection. |
members | A sequence of interface, VLAN, and bond objects that you want to use in the bridge. | |
ovs_options | A set of options to pass to OVS when creating the bridge. | |
ovs_extra | A set of options to to set as the OVS_EXTRA parameter in the network configuration file of the bridge. | |
defroute | True |
Use a default route provided by the DHCP service. Only applies when you enable |
persist_mapping | False | Write the device alias configuration instead of the system names. |
dhclient_args | None | Arguments that you want to pass to the DHCP client. |
dns_servers | None | List of DNS servers that you want to use for the bridge. |
linux_bond
Defines a Linux bond that joins two or more interfaces
together. This helps with redundancy and increases bandwidth. Ensure that you include the kernel-based bonding options in the bonding_options
parameter.
For example:
- type: linux_bond name: bond1 members: - type: interface name: nic2 primary: true - type: interface name: nic3 bonding_options: "mode=802.3ad"
Note that nic2
uses primary: true
to ensure that the bond uses the MAC address for nic2
.
Option | Default | Description |
---|---|---|
name | Name of the bond. | |
use_dhcp | False | Use DHCP to get an IP address. |
use_dhcpv6 | False | Use DHCP to get a v6 IP address. |
addresses | A list of IP addresses assigned to the bond. | |
routes | A list of routes assigned to the bond. See routes. | |
mtu | 1500 | The maximum transmission unit (MTU) of the connection. |
primary | False | Defines the interface as the primary interface. |
members | A sequence of interface objects that you want to use in the bond. | |
bonding_options | A set of options when creating the bond. | |
defroute | True |
Use a default route provided by the DHCP service. Only applies when you enable |
persist_mapping | False | Write the device alias configuration instead of the system names. |
dhclient_args | None | Arguments that you want to pass to the DHCP client. |
dns_servers | None | List of DNS servers that you want to use for the bond. |
linux_bridge
Defines a Linux bridge, which connects multiple interface
, linux_bond
, and vlan
objects together. The external bridge also uses two special values for parameters:
-
bridge_name
, which is replaced with the external bridge name. -
interface_name
, which is replaced with the external interface.
For example:
- type: linux_bridge name: bridge_name addresses: - ip_netmask: list_join: - / - - {get_param: ControlPlaneIp} - {get_param: ControlPlaneSubnetCidr} members: - type: interface name: interface_name - type: vlan device: bridge_name vlan_id: {get_param: ExternalNetworkVlanID} addresses: - ip_netmask: {get_param: ExternalIpSubnet}
Option | Default | Description |
---|---|---|
name | Name of the bridge. | |
use_dhcp | False | Use DHCP to get an IP address. |
use_dhcpv6 | False | Use DHCP to get a v6 IP address. |
addresses | A list of IP addresses assigned to the bridge. | |
routes | A list of routes assigned to the bridge. For more information, see routes. | |
mtu | 1500 | The maximum transmission unit (MTU) of the connection. |
members | A sequence of interface, VLAN, and bond objects that you want to use in the bridge. | |
defroute | True |
Use a default route provided by the DHCP service. Only applies when you enable |
persist_mapping | False | Write the device alias configuration instead of the system names. |
dhclient_args | None | Arguments that you want to pass to the DHCP client. |
dns_servers | None | List of DNS servers that you want to use for the bridge. |
routes
Defines a list of routes to apply to a network interface, VLAN, bridge, or bond.
For example:
- type: interface name: nic2 ... routes: - ip_netmask: 10.1.2.0/24 gateway_ip: 10.1.2.1
Option | Default | Description |
---|---|---|
ip_netmask | None | IP and netmask of the destination network. |
default | False |
Sets this route to a default route. Equivalent to setting |
next_hop | None | The IP address of the router used to reach the destination network. |
10.5. Example network interface layout
The following snippet for an example Controller node NIC template demonstrates how to configure the custom network scenario to keep the control group separate from the OVS bridge:
resources: OsNetConfigImpl: type: OS::Heat::SoftwareConfig properties: group: script config: str_replace: template: get_file: /usr/share/openstack-tripleo-heat-templates/network/scripts/run-os-net-config.sh params: $network_config: network_config: - type: interface name: nic1 mtu: get_param: ControlPlaneMtu use_dhcp: false addresses: - ip_netmask: list_join: - / - - get_param: ControlPlaneIp - get_param: ControlPlaneSubnetCidr routes: list_concat_unique: - get_param: ControlPlaneStaticRoutes - type: ovs_bridge name: bridge_name dns_servers: get_param: DnsServers domain: get_param: DnsSearchDomains members: - type: ovs_bond name: bond1 mtu: get_attr: [MinViableMtu, value] ovs_options: get_param: BondInterfaceOvsOptions members: - type: interface name: nic2 mtu: get_attr: [MinViableMtu, value] primary: true - type: interface name: nic3 mtu: get_attr: [MinViableMtu, value] - type: vlan mtu: get_param: StorageMtu vlan_id: get_param: StorageNetworkVlanID addresses: - ip_netmask: get_param: StorageIpSubnet routes: list_concat_unique: - get_param: StorageInterfaceRoutes - type: vlan mtu: get_param: StorageMgmtMtu vlan_id: get_param: StorageMgmtNetworkVlanID addresses: - ip_netmask: get_param: StorageMgmtIpSubnet routes: list_concat_unique: - get_param: StorageMgmtInterfaceRoutes - type: vlan mtu: get_param: InternalApiMtu vlan_id: get_param: InternalApiNetworkVlanID addresses: - ip_netmask: get_param: InternalApiIpSubnet routes: list_concat_unique: - get_param: InternalApiInterfaceRoutes - type: vlan mtu: get_param: TenantMtu vlan_id: get_param: TenantNetworkVlanID addresses: - ip_netmask: get_param: TenantIpSubnet routes: list_concat_unique: - get_param: TenantInterfaceRoutes - type: vlan mtu: get_param: ExternalMtu vlan_id: get_param: ExternalNetworkVlanID addresses: - ip_netmask: get_param: ExternalIpSubnet routes: list_concat_unique: - get_param: ExternalInterfaceRoutes - - default: true next_hop: get_param: ExternalInterfaceDefaultRoute
This template uses three network interfaces and assigns a number of tagged VLAN devices to the numbered interfaces, nic1
to nic3
. On nic2
and nic3
this template creates the OVS bridge that hosts the Storage, Tenant, and External networks. As a result, it creates the following layout:
NIC1 (Provisioning)
- Provisioning / Control Plane
NIC2 and NIC3 (Management)
- Internal API
- Storage
- Storage Management
- Tenant Network (VXLAN tunneling)
- Tenant VLANs / Provider VLANs
- External (Public API)
- External VLANs (Floating IP/SNAT)
10.6. Network interface template considerations for custom networks
When you use composable networks, the process-templates.py
script renders the static templates to include networks and roles that you define in your network_data.yaml
and roles_data.yaml
files. Ensure that your rendered NIC templates contain the following items:
- A static file for each role, including custom composable networks.
- The correct network definitions in the static file for each role.
Each static file requires all of the parameter definitions for any custom networks, even if the network is not used on the role. Ensure that the rendered templates contain these parameters. For example, if you add a StorageBackup
network only to the Ceph nodes, you must also include this definition in the parameters
section in the NIC configuration templates for all roles:
parameters: ... StorageBackupIpSubnet: default: '' description: IP address/subnet on the external network type: string ...
You can also include the parameters
definitions for VLAN IDs and/or gateway IP, if necessary:
parameters: ... StorageBackupNetworkVlanID: default: 60 description: Vlan ID for the management network traffic. type: number StorageBackupDefaultRoute: description: The default route of the storage backup network. type: string ...
The IpSubnet
parameter for the custom network appears in the parameter definitions for each role. However, since the Ceph role might be the only role that uses the StorageBackup
network, only the NIC configuration template for the Ceph role uses the StorageBackup
parameters in the network_config
section of the template.
$network_config: network_config: - type: interface name: nic1 use_dhcp: false addresses: - ip_netmask: get_param: StorageBackupIpSubnet
10.7. Custom network environment file
The custom network environment file (in this case, /home/stack/templates/custom-network-configuration.yaml
) is a heat environment file that describes the overcloud network environment and points to the custom network interface configuration templates. You can define the subnets and VLANs for your network along with IP address ranges. You can then customize these values for the local environment.
The resource_registry
section contains references to the custom network interface templates for each node role. Each resource registered uses the following format:
-
OS::TripleO::[ROLE]::Net::SoftwareConfig: [FILE]
[ROLE]
is the role name and [FILE]
is the respective network interface template for that particular role. For example:
resource_registry: OS::TripleO::Controller::Net::SoftwareConfig: /home/stack/templates/custom-nics/controller.yaml
The parameter_defaults
section contains a list of parameters that define the network options for each network type.
10.8. Network environment parameters
The following table is a list of parameters that you can use in the parameter_defaults
section of a network environment file to override the default parameter values in your NIC templates.
Parameter | Description | Type |
---|---|---|
| The IP address of the router on the Control Plane, which is used as a default route for roles other than the Controller nodes. Set this value to the undercloud IP if you use IP masquerade instead of a router. | string |
|
The CIDR netmask of the IP network used on the Control Plane. If the Control Plane network uses 192.168.24.0/24, the CIDR is | string (though is always a number) |
|
The full network and CIDR netmask for a particular network. The default is automatically set to the network | string |
|
The IP allocation range for a particular network. The default is automatically set to the network | hash |
|
The VLAN ID for a node on a particular network. The default is set automatically to the network | number |
|
The router address for a particular network, which you can use as a default route for roles or for routes to other networks. The default is automatically set to the network | string |
| A list of DNS servers added to resolv.conf. Usually allows a maximum of 2 servers. | comma delimited list |
|
The options for bonding interfaces. For example, | string |
|
Legacy value for the name of the external bridge that you want to use for OpenStack Networking (neutron). This value is empty by default, which means that you can define multiple physical bridges in the | string |
|
Defines the flat networks that you want to configure in neutron plugins. The default value is | string |
|
The logical to physical bridge mappings that you want to use. The default value maps the external bridge on hosts ( | string |
|
Defines the interface that you want to bridge onto | string |
|
The tenant network type for OpenStack Networking (neutron). To specify multiple values, use a comma separated list. The first type that you specify is used until all available networks are exhausted, then the next type is used. For example, | string |
|
The tunnel types for the neutron tenant network. To specify multiple values, use a comma separated string. For example, | string / comma separated list |
|
Ranges of GRE tunnel IDs that you want to make available for tenant network allocation. For example, | string |
|
Ranges of VXLAN VNI IDs that you want to make available for tenant network allocation. For example, | string |
|
Defines whether to enable or completely disable all tunnelled networks. Leave this enabled unless you are sure that you do not want to create tunnelled networks in future. The default value is | Boolean |
|
The ML2 and Open vSwitch VLAN mapping range that you want to support. Defaults to permitting any VLAN on the | string |
|
The mechanism drivers for the neutron tenant network. The default value is | string / comma separated list |
10.9. Example custom network environment file
The following snippet is an example of an environment file that you can use to enable your NIC templates and set custom parameters.
resource_registry: OS::TripleO::BlockStorage::Net::SoftwareConfig: /home/stack/templates/nic-configs/cinder-storage.yaml OS::TripleO::Compute::Net::SoftwareConfig: /home/stack/templates/nic-configs/compute.yaml OS::TripleO::Controller::Net::SoftwareConfig: /home/stack/templates/nic-configs/controller.yaml OS::TripleO::ObjectStorage::Net::SoftwareConfig: /home/stack/templates/nic-configs/swift-storage.yaml OS::TripleO::CephStorage::Net::SoftwareConfig: /home/stack/templates/nic-configs/ceph-storage.yaml parameter_defaults: # Gateway router for the provisioning network (or Undercloud IP) ControlPlaneDefaultRoute: 192.0.2.254 # Define the DNS servers (maximum 2) for the overcloud nodes DnsServers: ["8.8.8.8","8.8.4.4"] NeutronExternalNetworkBridge: "''"
10.10. Enabling network isolation with custom NICs
To deploy the overcloud with network isolation and custom NIC templates, include all of the relevant networking environment files in the overcloud deployment command.
Procedure
When you run the
openstack overcloud deploy
command, include the following files:-
The custom
network_data.yaml
file. - The rendered file name of the default network isolation.
- The rendered file name of the default network environment file.
- The custom environment network configuration that includes resource references to your custom NIC templates.
- Any additional environment files relevant to your configuration.
-
The custom
For example:
$ openstack overcloud deploy --templates \ ... -n /home/stack/network_data.yaml \ -e /usr/share/openstack-tripleo-heat-templates/environments/network-isolation.yaml \ -e /usr/share/openstack-tripleo-heat-templates/environments/network-environment.yaml \ -e /home/stack/templates/custom-network-configuration.yaml \ ...
-
Include the
network-isolation.yaml
file first, then thenetwork-environment.yaml
file. The subsequentcustom-network-configuration.yaml
overrides theOS::TripleO::[ROLE]::Net::SoftwareConfig
resources from the previous two files. -
If you use composable networks, include the
network_data.yaml
androles_data.yaml
files with this command.