Developing solvers with Red Hat build of OptaPlanner in Red Hat Process Automation Manager
Abstract
Preface
As a developer of business decisions and processes , you can use Red Hat build of OptaPlanner to develop solvers that determine the optimal solution to planning problems. OptaPlanner is a built-in component of Red Hat Process Automation Manager. You can use solvers as part of your services in Red Hat Process Automation Manager to optimize limited resources with specific constraints.
Making open source more inclusive
Red Hat is committed to replacing problematic language in our code, documentation, and web properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the enormity of this endeavor, these changes will be implemented gradually over several upcoming releases. For more details, see our CTO Chris Wright’s message.
Part I. Upgrading your Red Hat build of OptaPlanner projects to OptaPlanner 8
If you have OptaPlanner projects that you created with the OptaPlanner 7 or earlier pubic API and you want to upgrade your project code to OptaPlanner 8, review the information in this guide. This guide also includes changes to implementation classes which are outside of the pubic API.
The OptaPlanner public API is a subset of the OptaPlanner source code that enables you to interact with OptaPlanner through Java code. So that you can upgrade to higher OptaPlanner versions within the same major release, OptaPlanner follows semantic versioning. This means that you can upgrade from OptaPlanner 7.44 to OptaPlanner 7.48 for example without breaking your code that uses the OptaPlanner public API. The OptaPlanner public API classes are compatible within the versions of a major OptaPlanner release. However, when Red Hat releases a new major release, disrupting changes are sometimes introduced to the public API.
OptaPlanner 8 is a new major release and some of the changes to the public API are not are not compatible with earlier versions of OptaPlanner. OptaPlanner 8 will be the foundation for the 8.x series for the next few years. The changes to the public API that are not compatible with earlier versions that were required for this release were made for the long term benefit of this project.
Process Automation Manager | OptaPlanner |
---|---|
7.7 | 7.33 |
7.8 | 7.39 |
7.9 | 7.44 |
7.10 | 7.48 |
7.11 | 8.5 |
Every upgrade note has a label that indicates how likely it is that your code will be affected by that change. The following table describes each label:
Label | Impact |
---|---|
Major | Likely to affect your code. |
Minor | Unlikely to affect your code, especially if you followed the examples, unless you have customized the code extensively. |
Any changes that are not compatible with earlier versions of OptaPlanner are annotated with the Public API tag.
Chapter 1. Changes that are not compatible with OptaPlanner 7.x or earlier
The changes listed in this section are not compatible with OptaPlanner 7.x or earlier versions of OptaPlanner.
Java 11 or higher required
Major, Public API
If you are using JRE or JDK 8, upgrade to JDK 11 or higher.
On Linux, get OpenJDK from your Linux software repository. On Fedora and Red Hat Enterprise Linux, enter the following command:
sudo dnf install java-11-openjdk-devel
- On Windows and macOS, download OpenJDK from the AdoptOpenJDK website.
SolverFactory
and PlannerBenchmarkFactory
no longer support KIE containers
Major, Public API
Because OptaPlanner now aligns with Kogito, the KIE container concept no longer applies. Therefore, SolverFactory
no longer allows you to create Solver
instances from KIE containers. This also applies to PlannerBenchmarkFactory
and benchmarks.
OSGi metadata removed
Major, Public API
Because of the limited usage of OSGi and the maintenance burden it brings, the OptaPlanner JAR files in the OptaPlanner 8.x series no longer include OSGi metadata in the META-INF/MANIFEST.MF
file.
Refrain from using Java serialization
Minor, Public API
In OptaPlanner 8, most uses of the Serializable
marker interface were removed from the public API. Consider serializing with JSON or another format.
SolverFactory.getScoreDirectorFactory()
replaced with ScoreManager
Major, Public API
In version 7 of OptaPlanner, using ScoreDirectorFactory
was necessary in order to explain the score. In version 8 of OptaPlanner, new functionality was added to the ScoreManager
and as a result there is no longer any reason to create new instances of ScoreDirector
.
An example from a *.java
file in OptaPlanner 7:
ScoreDirectorFactory<CloudBalance> scoreDirectorFactory = solverFactory.getScoreDirectorFactory(); try (ScoreDirector<CloudBalance> scoreDirector = scoreDirectorFactory.buildScoreDirector()) { scoreDirector.setWorkingSolution(solution); Score score = scoreDirector.calculateScore(); }
An example from a *.java
file in OptaPlanner 8:
ScoreManager<CloudBalance> scoreManager = ScoreManager.create(solverFactory); Score score = scoreManager.updateScore(solution);
Methods that allowed you to retrieve an instance of ScoreDirector
and ScoreDirectorFactory
have been removed from the public API without replacement. A reduced version of the ScoreDirector
interface was promoted to the public API to promote the ProblemFactChange
interface to the public API.
SolverFactory
: getSolverConfig()
removed
Minor, Public API
The SolverFactory.getSolverConfig()
method has been deprecated and replaced with the SolverFactory.create(SolverConfig)
method. A SolverConfig
instance is now instantiated before a SolverFactory
instance is instantiated, which is more natural. The previous order has been removed.
An example from a *.java
file in OptaPlanner 7:
SolverFactory<MySolution> solverFactory = SolverFactory.createFromXmlResource(".../mySolverConfig.xml"); SolverConfig solverConfig = solverFactory.getSolverConfig(); ... Solver<MySolution> solver = solverFactory.buildSolver();
An example from a *.java
file in OptaPlanner 8:
SolverConfig solverConfig = SolverConfig.createFromXmlResource(".../mySolverConfig.xml"); ... SolverFactory<MySolution> solverFactory = SolverFactory.create(solverConfig); Solver<MySolution> solver = solverFactory.buildSolver();
If you were also passing a ClassLoader
, pass it to both SolverConfig.createFromXmlResource()
and SolverFactory.create()
.
SolverConfig
: buildSolver()
removed
Minor, Public API
The SolverConfig.buildSolver()
method is an inner method that does not belong in the public API. Use the SolverFactory.buildSolver()
method instead.
An example from a *.java
file in OptaPlanner 7:
SolverConfig solverConfig = SolverConfig.createFromXmlResource(".../mySolverConfig.xml"); ... Solver<MySolution> solver = solverConfig.buildSolver();
An example from a *.java
file in OptaPlanner 8:
SolverConfig solverConfig = SolverConfig.createFromXmlResource(".../mySolverConfig.xml"); ... SolverFactory<MySolution> solverFactory = SolverFactory.create(solverConfig); Solver<MySolution> solver = solverFactory.buildSolver();
PlannerBenchmarkConfig
: buildPlannerBenchmark()
removed
Minor, Public API
The PlannerBenchmarkConfig.buildPlannerBenchmark()
method is an inner method that does not belong in the public API. Use the PlannerBenchmarkFactory.buildPlannerBenchmark()
method instead.
An example from a *.java
file in OptaPlanner 7:
PlannerBenchmarkConfig benchmarkConfig = PlannerBenchmarkConfig.createFromXmlResource( ".../cloudBalancingBenchmarkConfig.xml"); ... PlannerBenchmark benchmark = benchmarkFactory.buildPlannerBenchmark();
An example from a *.java
file in OptaPlanner 8:
PlannerBenchmarkConfig benchmarkConfig = PlannerBenchmarkConfig.createFromXmlResource( ".../cloudBalancingBenchmarkConfig.xml"); ... PlannerBenchmarkFactory benchmarkFactory = PlannerBenchmarkFactory.create(benchmarkConfig); PlannerBenchmark benchmark = benchmarkFactory.buildPlannerBenchmark();
SolverFactory
: cloneSolverFactory()
removed
Minor, Public API
The SolverFactory.cloneSolverFactory()
method has been deprecated and replaced with the new SolverConfig(SolverConfig)
copy constructors and the SolverFactory.cloneSolverFactory()
method has been removed.
An example from a *.java
file in OptaPlanner 7:
private SolverFactory<MySolution> base; public void userRequest(..., long userInput) { SolverFactory<MySolution> solverFactory = base.cloneSolverFactory(); solverFactory.getSolverConfig() .getTerminationConfig() .setMinutesSpentLimit(userInput); Solver<MySolution> solver = solverFactory.buildSolver(); ... }
An example from a *.java
file in OptaPlanner 8:
private SolverConfig base; public void userRequest(..., long userInput) { SolverConfig solverConfig = new SolverConfig(base); // Copy it solverConfig.getTerminationConfig() .setMinutesSpentLimit(userInput); SolverFactory<MySolution> solverFactory = SolverFactory.create(solverConfig); Solver<MySolution> solver = solverFactory.buildSolver(); ... }
SolverFactory
: createEmpty()
removed
Minor, Public API
The SolverFactory.createEmpty()
method has been deprecated and replaced with the new SolverConfig()
method. The SolverFactory.createEmpty()
method has been removed.
An example from a *.java
file in OptaPlanner 7:
SolverFactory<MySolution> solverFactory = SolverFactory.createEmpty(); SolverConfig solverConfig = solverFactory.getSolverConfig() ... Solver<MySolution> solver = solverFactory.buildSolver();
An example from a *.java
file in OptaPlanner 8:
SolverConfig solverConfig = new SolverConfig(); ... SolverFactory<MySolution> solverFactory = SolverFactory.create(solverConfig); Solver<MySolution> solver = solverFactory.buildSolver();
XML <solver/> root element now belongs to the http://www.optaplanner.org/xsd/solver namespace
Major, Public API
OptaPlanner now provides an XML schema definition for the solver configuration. Although OptaPlanner retains compatibility with previous versions of the existing XML configuration, migrating to the XSD is strongly recommended because OptaPlanner might support only valid configuration XML in the future.
An example from the *SolverConfig.xml
file in OptaPlanner 7:
<?xml version="1.0" encoding="UTF-8"?> <solver> ... </solver>
An example from the *SolverConfig.xml
file in OptaPlanner 8:
<?xml version="1.0" encoding="UTF-8"?> <solver xmlns="https://www.optaplanner.org/xsd/solver" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="https://www.optaplanner.org/xsd/solver https://www.optaplanner.org/xsd/solver/solver.xsd"> ... </solver>
Using the XSD might require reordering some of the XML elements of the configuration. Use code completion in the IDE to migrate to a valid XML.
Property subPillarEnabled
in move selector configuration has been removed
Minor, Public API
The subPillarEnabled
property in PillarSwapMoveSelector
and PillarChangeMoveSelector
has been deprecated and replaced with a new property, subPillarType
. The subPillarEnabled
property has been removed.
An example from the *SolverConfig.xml
and *BenchmarkConfig.xml
files in OptaPlanner 7:
<pillar...MoveSelector> ... <pillarSelector> <subPillarEnabled>false</subPillarEnabled> ... </pillarSelector> ... </pillar...MoveSelector>
An example from the *SolverConfig.xml
and *BenchmarkConfig.xml
files in OptaPlanner 8:
<pillar...MoveSelector> <subPillarType>NONE</subPillarType> <pillarSelector> ... </pillarSelector> ... </pillar...MoveSelector>
Solver
: getScoreDirectorFactory()
removed
Major, Public API
The getScoreDirectorFactory()
method has been deprecated and has now been removed from both Solver
and SolverFactory
classes.
You no longer need to create a Solver
instance just to calculate or explain a score in the UI. Use the ScoreManager
API instead.
An example from a *.java
file in OptaPlanner 7:
SolverFactory<VehicleRoutingSolution> solverFactory = SolverFactory.createFromXmlResource(...); Solver<VehicleRoutingSolution> solver = solverFactory.buildSolver(); uiScoreDirectorFactory = solver.getScoreDirectorFactory(); ...
An example from a *.java
file in OptaPlanner 8:
SolverFactory<VehicleRoutingSolution> solverFactory = SolverFactory.createFromXmlResource(...); ScoreManager<VehicleRoutingSolution> scoreManager = ScoreManager.create(solverFactory); ...
ScoreDirectorFactory
should not be used anymore because it has always been outside the public API and all of its functionality is exposed in various parts of the public API.
Solver.explainBestScore()
has been removed
Major, Public API
The explainBestScore()
method on the Solver
interface was deprecated in 7.x and has now been removed. You can obtain the same information through the new ScoreManager
API.
Red Hat recommends that you do not parse the results of this method call in any way.
An example from a *.java
file in OptaPlanner 7:
solver = ...; scoreExplanation = solver.explainBestScore();
An example from a *.java
file in OptaPlanner 8:
MySolution solution = ...; ScoreManager<MySolution> scoreManager = ...; scoreExplanation = scoreManager.explainScore(solution);
The Solver interface methods getBestSolution()
, getBestScore()
, and getTimeMillisSpent()
have been removed
Minor, Public API
Several methods on the Solver
interface were deprecated in 7.x and have been removed. You can obtain the same information by registering an EventListener
through the Solver.addEventListener(…)
.
An example from a *.java
file in OptaPlanner 7:
solver = ...; solution = solver.getBestSolution(); score = solver.getBestScore(); timeMillisSpent = solver.getTimeMillisSpent();
An example from a *.java
file in OptaPlanner 8:
solver = ...; solver.addEventListener(event -> { solution = event.getNewBestSolution(); score = event.getNewBestScore(); timeMillisSpent = event.getTimeMillisSpent(); });
Annotation scanning has been removed
Major, Public API
The <scanAnnotatedClasses/>
directive in the solver configuration was deprecated in 7.x and is now removed.
An example from the *.xml
file in OptaPlanner 7:
<solver> ... <scanAnnotatedClasses/> ... </solver>
An example from the *.xml
file in OptaPlanner 8:
<solver> ... <solutionClass>...</solutionClass> <entityClass>...</entityClass> ... </solver>
New package for @PlanningFactProperty
and @PlanningFactCollectionProperty
Major, Public API
The @PlanningFactProperty
and @PlanningFactCollectionProperty
annotations now share the same package with other similar annotations, such as @PlanningSolution
. The old annotations were deprecated in 7.x and removed.
An example from a *.java
file in OptaPlanner 7:
import org.optaplanner.core.api.domain.solution.drools.ProblemFactCollectionProperty; import org.optaplanner.core.api.domain.solution.drools.ProblemFactProperty;
An example from a *.java
file in OptaPlanner 8:
import org.optaplanner.core.api.domain.solution.ProblemFactCollectionProperty; import org.optaplanner.core.api.domain.solution.ProblemFactProperty;
filterClassList
replaced with a single filter class
Minor, Public API
The configuration of EntitySelector
, ValueSelector
, and MoveSelector
now has a single filter class in both the configuration API and the solver configuration XML.
In practice, you do not need multiple selection filter classes often, and you can replace them with a single selection filter class that implements the logic of all of them. Passing a single selection class now requires less boilerplate code.
An example from a *.java
file in OptaPlanner 7:
ValueSelectorConfig valueSelectorConfig = new ValueSelectorConfig(); valueSelectorConfig.setFilterClassList(Collections.singletonList(MySelectionFilterClass.class));
An example from a *.java
file in OptaPlanner 8:
ValueSelectorConfig valueSelectorConfig = new ValueSelectorConfig(); valueSelectorConfig.setFilterClass(MySelectionFilterClass.class);
Replacing multiple selection filter classes with a single selection filter class
An example from the *.xml
file in OptaPlanner 7:
<swapMoveSelector> <entitySelector> <filterClass>com.example.FilterA</filterClass> <filterClass>com.example.FilterB</filterClass> </entitySelector> </swapMoveSelector>
An example from a *.java
file in OptaPlanner 7:
package com.example; ... public class FilterA implements SelectionFilter<MySolution, MyPlanningEntity> { @Override public boolean accept(ScoreDirector<MySolution> scoreDirector, MyPlanningEntity selection) { return selection.getValue() < 500; } }
package com.example; ... public class FilterB implements SelectionFilter<MySolution, MyPlanningEntity> { @Override public boolean accept(ScoreDirector<MySolution> scoreDirector, MyPlanningEntity selection) { return selection.getOrder() == Order.ASC; } }
An example from the *.xml
file in OptaPlanner 8:
<swapMoveSelector> <entitySelector> <filterClass>com.example.SingleEntityFilter</filterClass> </entitySelector> </swapMoveSelector>
An example from a *.java
file in OptaPlanner 8:
package com.example; ... public class SingleEntityFilter implements SelectionFilter<MySolution, MyPlanningEntity> { @Override public boolean accept(ScoreDirector<MySolution> scoreDirector, MyPlanningEntity selection) { return selection.getValue() < 500 && selection.getOrder() == Order.ASC; } }
AcceptorConfig
renamed to LocalSearchAcceptorConfig
Minor
This only impacts the configuration API. The solver configuration XML file remains intact.
Naming consistency with other local-search-specific configuration classes has been implemented.
An example from a *.java
file in OptaPlanner 7:
LocalSearchPhaseConfig localSearchPhaseConfig = new LocalSearchPhaseConfig() .withAcceptorConfig(new AcceptorConfig().withEntityTabuSize(5));
An example from a *.java
file in OptaPlanner 8:
LocalSearchPhaseConfig localSearchPhaseConfig = new LocalSearchPhaseConfig() .withAcceptorConfig(new LocalSearchAcceptorConfig().withEntityTabuSize(5));
Custom properties XML configuration format changes
Minor, Public API
This issue only impacts the solver configuration XML, specifically <scoreDirectorFactory/>
, <moveIteratorFactory/>
, <moveListFactory/>
, <partitionedSearch/>
and <customPhase/>
.
This change was made to enforce the structure of the configuration XML in build time.
An example from the *.xml
file in OptaPlanner 7:
<partitionedSearch> <solutionPartitionerClass>com.example.MySolutionPartitioner</solutionPartitionerClass> <solutionPartitionerCustomProperties> <partCount>4</partCount> <!-- a custom property --> <minimumProcessListSize>300</minimumProcessListSize> <!-- a custom property --> </solutionPartitionerCustomProperties> </partitionedSearch>
An example from the *.xml
file in OptaPlanner 8:
<partitionedSearch> <solutionPartitionerClass>com.example.MySolutionPartitioner</solutionPartitionerClass> <solutionPartitionerCustomProperties> <property name="partCount" value="4"/> <!-- a custom property --> <property name="minimumProcessListSize" value="300"/> <!-- a custom property --> </solutionPartitionerCustomProperties> </partitionedSearch>
<variableNameInclude/>
elements are now wrapped by the <variableNameIncludes/>
element
Minor, Public API
This update only impacts the solver configuration XML, specifically the <swapMoveSelector/>
and <pillarSwapMoveSelector/>
elements.
This change was made to enforce the structure of the configuration XML in build time.
An example from the *.xml
file in OptaPlanner 7:
<swapMoveSelector> <variableNameInclude>variableA</variableNameInclude> <variableNameInclude>variableB</variableNameInclude> </swapMoveSelector>
An example from the *.xml
file in OptaPlanner 8:
<swapMoveSelector> <variableNameIncludes> <variableNameInclude>variableA</variableNameInclude> <variableNameInclude>variableB</variableNameInclude> </variableNameIncludes> </swapMoveSelector>
Solution
interface removed
Minor, Public API
The Solution
interface was deprecated and removed. The AbstractSolution
interface, which is only used by Business Central, has also been removed.
Remove the Solution
interface, annotate the getScore()
method with @PlanningScore
, and replace the getProblemFacts()
method with a @ProblemFactCollectionProperty
annotation directly on every problem fact getter (or field).
An example from a *.java
file in OptaPlanner 7:
@PlanningSolution public class CloudBalance implements Solution<HardSoftScore> { private List<CloudComputer> computerList; ... private HardSoftScore score; @ValueRangeProvider(id = "computerRange") public List<CloudComputer> getComputerList() {...} public HardSoftScore getScore() {...} public void setScore(HardSoftScore score) {...} public Collection<? extends Object> getProblemFacts() { List<Object> facts = new ArrayList<Object>(); facts.addAll(computerList); ... return facts; } }
An example from a *.java
file in OptaPlanner 8:
@PlanningSolution public class CloudBalance { private List<CloudComputer> computerList; ... private HardSoftScore score; @ValueRangeProvider(id = "computerRange") @ProblemFactCollectionProperty public List<CloudComputer> getComputerList() {...} @PlanningScore public HardSoftScore getScore() {...} public void setScore(HardSoftScore score) {...} }
For a single problem fact that is not wrapped in a Collection
, use the @ProblemFactProperty
annotation, as shown in the following example, with field annotations this time:
An example from a *.java
file in OptaPlanner 7:
@PlanningSolution public class CloudBalance implements Solution<HardSoftScore> { private CloudParametrization parametrization; private List<CloudBuilding> buildingList; @ValueRangeProvider(id = "computerRange") private List<CloudComputer> computerList; ... public Collection<? extends Object> getProblemFacts() { List<Object> facts = new ArrayList<Object>(); facts.add(parametrization); // not a Collection facts.addAll(buildingList); facts.addAll(computerList); ... return facts; } }
An example from a *.java
file in OptaPlanner 8:
@PlanningSolution public class CloudBalance { @ProblemFactProperty private CloudParametrization parametrization; @ProblemFactCollectionProperty private List<CloudBuilding> buildingList; @ValueRangeProvider(id = "computerRange") @ProblemFactCollectionProperty private List<CloudComputer> computerList; ... }
Do not add the @ProblemFactCollectionProperty
annotation on getters (or fields) that have a @PlanningEntityCollectionProperty
annotation.
BestSolutionChangedEvent
: isNewBestSolutionInitialized()
removed
Minor, Public API
The BestSolutionChangedEvent.isNewBestSolutionInitialized()
method has been deprecated and replaced with the BestSolutionChangedEvent.getNewBestSolution().getScore().isSolutionInitialized()
method. The BestSolutionChangedEvent.isNewBestSolutionInitialized()
method has been removed.
An example from a *.java
file in OptaPlanner 7:
public void bestSolutionChanged(BestSolutionChangedEvent<CloudBalance> event) { if (event.isEveryProblemFactChangeProcessed() && event.isNewBestSolutionInitialized()) { ... } }
An example from a *.java
file in OptaPlanner 8:
public void bestSolutionChanged(BestSolutionChangedEvent<CloudBalance> event) { if (event.isEveryProblemFactChangeProcessed() && event.getNewBestSolution().getScore().isSolutionInitialized()) { ... } }
If you check isFeasible()
, it checks if the solution is initialized.
An example from a *.java
file in OptaPlanner 8:
public void bestSolutionChanged(BestSolutionChangedEvent<CloudBalance> event) { if (event.isEveryProblemFactChangeProcessed() // isFeasible() checks isSolutionInitialized() too && event.getNewBestSolution().getScore().isFeasible()) { ... } }
<valueSelector>
: variableName
is now an attribute
Minor, Public API
When power-tweaking move selectors, such as <changeMoveSelector>
, in a use case with multiple planning variables, the <variableName>
XML element has been replaced with a variableName="…"
XML attribute. This change reduces the solver configuration verbosity. After being deprecated for the entire 7.x series, the old way has now been removed.
An example from the *SolverConfig.xml
and *BenchmarkConfig.xml
files in OptaPlanner 7:
<valueSelector> <variableName>room</variableName> </valueSelector>
An example from the *SolverConfig.xml
and *BenchmarkConfig.xml
files in OptaPlanner 8:
<valueSelector variableName="room"/>
Partitioned Search: threadFactoryClass
removed
Minor, Public API
Because <solver>
has supported a <threadFactoryClass>
element for some time, the <threadFactoryClass>
element under <partitionedSearch>
has been removed.
An example from the *SolverConfig.xml
and *BenchmarkConfig.xml
files in OptaPlanner 7:
<solver> ... <partitionedSearch> <threadFactoryClass>...MyAppServerThreadFactory</threadFactoryClass> ... </partitionedSearch> </solver>
An example from the *SolverConfig.xml
and *BenchmarkConfig.xml
files in OptaPlanner 8:
<solver> <threadFactoryClass>...MyAppServerThreadFactory</threadFactoryClass> ... <partitionedSearch> ... </partitionedSearch> </solver>
SimpleDoubleScore
and HardSoftDoubleScore
removed
Minor, Public API
The use of double-based score types is not recommended because they can cause score corruption. They have been removed.
An example from a *.java
file in OptaPlanner 7:
@PlanningSolution public class MyPlanningSolution { private SimpleDoubleScore score; ... }
An example from a *.java
file in OptaPlanner 8:
@PlanningSolution public class MyPlanningSolution { private SimpleLongScore score; ... }
Score.toInitializedScore()
removed
Minor, Public API
The Score.toInitializedScore()
method was deprecated and replaced with the Score.withInitScore(int)
method in 7.x and is now removed.
An example from a *.java
file in OptaPlanner 7:
score = score.toInitializedScore();
An example from a *.java
file in OptaPlanner 8:
score = score.withInitScore(0);
Various justification Comparators
removed
Minor, Public API
The following Comparator
implementations were deprecated in 7.x and removed:
-
org.optaplanner.core.api.score.comparator.NaturalScoreComparator
-
org.optaplanner.core.api.score.constraint.ConstraintMatchScoreComparator
-
org.optaplanner.core.api.score.constraint.ConstraintMatchTotalScoreComparator
-
org.optaplanner.core.api.score.constraint.IndictmentScoreComparator
An example from a *.java
file in OptaPlanner 7:
NaturalScoreComparator comparator = new NaturalScoreComparator(); ConstraintMatchScoreComparator comparator2 = new ConstraintMatchScoreComparator();
An example from a *.java
file in OptaPlanner 8:
Comparator<Score> comparator = Comparable::compareTo; Comparator<ConstraintMatch> comparator2 = Comparator.comparing(ConstraintMatch::getScore);
FeasibilityScore
removed
Minor, Public API
The FeasibilityScore
interface was deprecated in 7.x and its only method isFeasible()
moved to the Score
supertype. The interface has now been removed.
You should refer to Score
s by their ultimate type, for example HardSoftScore
instead of to Score
.
@PlanningEntity.movableEntitySelectionFilter
removed
Minor, Public API
The movableEntitySelectionFilter
field on the @PlanningEntity
annotation was deprecated in 7.x and a new field pinningFilter
has been introduced with a name that shows the relation to the @PlanningPin
annotation. This filter implements a new PinningFilter
interface, returning true if the entity is pinned, and false if movable. The logic of this new filter is therefore inverted as compared to the old filter.
You should update your @PlanningEntity
annotations by supplying the new filter instead of the old filter. The old filter has now been removed.
An example from a *.java
file in OptaPlanner 7:
@PlanningEntity(movableEntitySelectionFilter = MyMovableEntitySelectionFilter.class)
An example from a *.java
file in OptaPlanner 8:
@PlanningEntity(pinningFilter = MyPinningFilter.class)
@PlanningVariable.reinitializeVariableEntityFilter
removed
Minor, Public API
The reinitializeVariableEntityFilter
field on the @PlanningVariable
annotation was deprecated in 7.x and now removed.
*ScoreHolder
classes turned into interfaces
Minor, Public API
In OptaPlanner 7, ScoreHolder
classes, used exclusively for Drools score calculation, exposed a number of public methods which, if used, allowed the user to unintentionally corrupt or otherwise negatively affect their scores.
In OptaPlanner 8, these methods have been removed and the classes have been turned into interfaces. Most users do not use the removed and potentially harmful methods.
However, if you do use these methods, you will find suitable replacements in the public API in areas of score explanation and constraint configuration.
ValueRangeFactory
class now final
Minor
ValueRangeFactory
class is a factory class that has only static methods. There is no need for you to extend this class, and it has therefore been made final
.
An example from a *.java
file in OptaPlanner 7:
class MyValueRangeFactory extends ValueRangeFactory { ... }
An example from a *.java
file in OptaPlanner 8:
class MyValueRangeFactory { ... }
ConstraintMatchTotal
and Indictment
are now interfaces
Minor, Public API
ConstraintMatchTotal
and Indictment
classes have been converted into interfaces. As a result, their implementations were moved out of the public API, together with methods that allowed them to mutate their state. These methods were never intended for the public API, and therefore there is no replacement for them.
You might still need the instances themselves if you choose to implement ConstraintMatchAwareIncrementalScoreCalculator
:
ConstraintMatchTotal maximumCapacityMatchTotal = new ConstraintMatchTotal(...);
An example from a *.java
file in OptaPlanner 8:
ConstraintMatchTotal maximumCapacityMatchTotal = new DefaultConstraintMatchTotal(...);
ScoreManager
: generic type Score
added
Major, Public API
The ScoreManager
and ScoreExplanation
APIs now have the generic type Score
to avoid downcasts in your code, for example from Score
to HardSoftScore
.
An example from a *.java
file in OptaPlanner 7:
@Inject // or @Autowired ScoreManager<TimeTable> scoreManager;
An example from a *.java
file in OptaPlanner 8:
@Inject // or @Autowired ScoreManager<TimeTable, HardSoftScore> scoreManager;
An example from a *.java
file in OptaPlanner 7:
ScoreExplanation<TimeTable> explanation = scoreManager.explainScore(timeTable); HardSoftScore score = (HardSoftScore) explanation.getScore();
An example from a *.java
file in OptaPlanner 8:
ScoreExplanation<TimeTable, HardSoftScore> explanation = scoreManager.explainScore(timeTable); HardSoftScore score = explanation.getScore();
ConstraintMatchTotal
, ConstraintMatch
, and Indictment
: generic type Score
added
Major
Similar to ScoreManager
and ScoreExplanation
, the ConstraintMatchTotal
, ConstraintMatch
, and Indictment
APIs now have a generic type Score
to avoid downcasts in your code, for example from Score
to HardSoftScore
.
An example from a *.java
file in OptaPlanner 7:
ScoreExplanation<TimeTable> explanation = scoreManager.explainScore(timeTable); Map<String, ConstraintMatchTotal> constraintMatchTotalMap = scoreExplanation.getConstraintMatchTotalMap(); ConstraintMatchTotal constraintMatchTotal = constraintMatchTotalMap.get(contraintId); HardSoftScore totalScore = (HardSoftScore) constraintMatchTotal.getScore();
An example from a *.java
file in OptaPlanner 8:
ScoreExplanation<TimeTable, HardSoftScore> explanation = scoreManager.explainScore(timeTable); Map<String, ConstraintMatchTotal<HardSoftScore>> constraintMatchTotalMap = scoreExplanation.getConstraintMatchTotalMap(); ConstraintMatchTotal<HardSoftScore> constraintMatchTotal = constraintMatchTotalMap.get(contraintId); HardSoftScore totalScore = constraintMatchTotal.getScore();
An example from a *.java
file in OptaPlanner 7:
ScoreExplanation<TimeTable> explanation = scoreManager.explainScore(timeTable); Map<Object, Indictment> indictmentMap = scoreExplanation.getIndictmentMap(); Indictment indictment = indictmentMap.get(lesson); HardSoftScore totalScore = (HardSoftScore) indictment.getScore();
An example from a *.java
file in OptaPlanner 8:
ScoreExplanation<TimeTable, HardSoftScore> explanation = scoreManager.explainScore(timeTable); Map<Object, Indictment<HardSoftScore>> indictmentMap = scoreExplanation.getIndictmentMap(); Indictment<HardSoftScore> indictment = indictmentMap.get(lesson); HardSoftScore totalScore = indictment.getScore();
ConstraintMatchAwareIncrementalScoreCalculator
: generic type Score
added
Minor
The interface ConstraintMatchAwareIncrementalScoreCalculator
now also has a generic type parameter for Score
to avoid raw type usages of ConstraintMatchTotal
and Indictment
.
An example from a *.java
file in OptaPlanner 7:
public class MachineReassignmentIncrementalScoreCalculator implements ConstraintMatchAwareIncrementalScoreCalculator<MachineReassignment> { @Override public Collection<ConstraintMatchTotal> getConstraintMatchTotals() { ... } @Override public Map<Object, Indictment> getIndictmentMap() { ... } }
An example from a *.java
file in OptaPlanner 8:
public class MachineReassignmentIncrementalScoreCalculator implements ConstraintMatchAwareIncrementalScoreCalculator<MachineReassignment, HardSoftLongScore> { @Override public Collection<ConstraintMatchTotal<HardSoftLongScore>> getConstraintMatchTotals() { ... } @Override public Map<Object, Indictment<HardSoftLongScore>> getIndictmentMap() { ... } }
AbstractCustomPhaseCommand
was removed
Minor, Public API
The abstract class AbstractCustomPhaseCommand
was removed. Any class that extends it should directly implement the CustomPhaseCommand
interface.
An example from a *.java
file in OptaPlanner 7:
public class DinnerPartySolutionInitializer extends AbstractCustomPhaseCommand<DinnerParty> { @Override public void changeWorkingSolution(ScoreDirector<DinnerParty> scoreDirector) { ... } }
An example from a *.java
file in OptaPlanner 8:
public class DinnerPartySolutionInitializer implements CustomPhaseCommand<DinnerParty> { @Override public void changeWorkingSolution(ScoreDirector<DinnerParty> scoreDirector) { ... } }
Score calculators moved to the public API
Major
The interfaces EasyScoreCalculator
, IncrementalScoreCalculator
, and ConstraintMatchAwareIncrementalScoreCalculator
have moved to a new package in the public API. Their deprecated counterparts have been removed. The deprecated class org.optaplanner.core.impl.score.director.incremental.AbstractIncrementalScoreCalculator
has also been removed. Replace the use of the removed interfaces and classes with their counterparts in the public API.
An example from the EasyScoreCalculator.java
file in OptaPlanner 7:
... import org.optaplanner.core.impl.score.director.easy.EasyScoreCalculator; ... public class CloudBalancingEasyScoreCalculator implements EasyScoreCalculator<CloudBalance> { ... }
An example from the EasyScoreCalculator.java
file in OptaPlanner 8:
... import org.optaplanner.core.api.score.calculator.EasyScoreCalculator; ... public class CloudBalancingEasyScoreCalculator implements EasyScoreCalculator<CloudBalance, HardSoftScore> { ... }
An example from the IncrementalScoreCalculator.java
file in OptaPlanner 7:
... import org.optaplanner.core.impl.score.director.incremental.AbstractIncrementalScoreCalculator; ... public class CloudBalancingIncrementalScoreCalculator extends AbstractIncrementalScoreCalculator<CloudBalance> { ... }
An example from the IncrementalScoreCalculator.java
file in OptaPlanner 8:
... import org.optaplanner.core.api.score.calculator.IncrementalScoreCalculator; ... public class CloudBalancingIncrementalScoreCalculator implements IncrementalScoreCalculator<CloudBalance, HardSoftScore> { ... }
An example from the ConstraintMatchAwareIncrementalScoreCalculator.java
file in OptaPlanner 7:
... import org.optaplanner.core.impl.score.director.incremental.AbstractIncrementalScoreCalculator; import org.optaplanner.core.impl.score.director.incremental.ConstraintMatchAwareIncrementalScoreCalculator; ... public class CheapTimeConstraintMatchAwareIncrementalScoreCalculator extends AbstractIncrementalScoreCalculator<CheapTimeSolution> implements ConstraintMatchAwareIncrementalScoreCalculator<CheapTimeSolution> { ... }
An example from the ConstraintMatchAwareIncrementalScoreCalculator.java
file in OptaPlanner 8:
... import org.optaplanner.core.api.score.calculator.ConstraintMatchAwareIncrementalScoreCalculator; ... public class CheapTimeConstraintMatchAwareIncrementalScoreCalculator implements ConstraintMatchAwareIncrementalScoreCalculator<CheapTimeSolution, HardMediumSoftLongScore> { ... }
PlannerBenchmarkFactory
: createFromSolverFactory()
removed
Major, Public API
The PlannerBenchmarkFactory.createFromSolverFactory()
method has been deprecated and replaced with the PlannerBenchmarkFactory.createFromSolverConfigXmlResource(String)
method. The PlannerBenchmarkFactory.createFromSolverFactory()
method has been removed.
An example from a *.java
file in OptaPlanner 7:
SolverFactory<CloudBalance> solverFactory = SolverFactory.createFromXmlResource( ".../cloudBalancingSolverConfig.xml"); PlannerBenchmarkFactory benchmarkFactory = PlannerBenchmarkFactory.createFromSolverFactory(solverFactory);
An example from a *.java
file in OptaPlanner 8:
PlannerBenchmarkFactory benchmarkFactory = PlannerBenchmarkFactory.createFromSolverConfigXmlResource( ".../cloudBalancingSolverConfig.xml");
If you programmatically adjust the solver configuration, you can use PlannerBenchmarkConfig.createFromSolverConfig(SolverConfig)
and then PlannerBenchmarkFactory.create(PlannerBenchmarkConfig)
instead.
PlannerBenchmarkFactory
: getPlannerBenchmarkConfig()
removed
Minor, Public API
The PlannerBenchmarkFactory.getPlannerBenchmarkConfig()
method has been deprecated and replaced with the PlannerBenchmarkFactory.create(PlannerBenchmarkConfig)
method. A PlannerBenchmarkConfig
instance is now instantiated before a PlannerBenchmarkFactory
instance is instantiated. This order is more logical. PlannerBenchmarkFactory.getPlannerBenchmarkConfig()
has been removed.
An example from a *.java
file in OptaPlanner 7:
PlannerBenchmarkFactory benchmarkFactory = PlannerBenchmarkFactory.createFromXmlResource( ".../cloudBalancingBenchmarkConfig.xml"); PlannerBenchmarkConfig benchmarkConfig = benchmarkFactory.getPlannerBenchmarkConfig(); ... PlannerBenchmark benchmark = benchmarkFactory.buildPlannerBenchmark();
An example from a *.java
file in OptaPlanner 8:
PlannerBenchmarkConfig benchmarkConfig = PlannerBenchmarkConfig.createFromXmlResource( ".../cloudBalancingBenchmarkConfig.xml"); ... PlannerBenchmarkFactory benchmarkFactory = PlannerBenchmarkFactory.create(benchmarkConfig); PlannerBenchmark benchmark = benchmarkFactory.buildPlannerBenchmark();
XML <plannerBenchmark/> root element now belongs to the http://www.optaplanner.org/xsd/benchmark namespace
Minor, Public API
OptaPlanner now provides an XML Schema Definition (XSD) for the benchmark configuration. Although OptaPlanner keeps compatibility with earlier versions of the existing XML configuration, migrating to the XSD is strongly recommended because OptaPlanner might support only valid configuration XML in the future.
An example from the *BenchmarkConfig.xml
file in OptaPlanner 7:
<?xml version="1.0" encoding="UTF-8"?> <plannerBenchmark> ... </plannerBenchmark>
An example from the *BenchmarkConfig.xml
file in OptaPlanner 8:
<?xml version="1.0" encoding="UTF-8"?> <plannerBenchmark xmlns="https://www.optaplanner.org/xsd/benchmark" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="https://www.optaplanner.org/xsd/benchmark https://www.optaplanner.org/xsd/benchmark/benchmark.xsd"> ... </plannerBenchmark>
Using the XSD might require reordering some of the XML elements of the configuration. Use code completion in the IDE to migrate to a valid XML.
ProblemBenchmarksConfig
: xStreamAnnotatedClass
removed
Major, Public API
The <xStreamAnnotatedClass/>
has been removed from the <problemBenchmarks/>
configuration together with the corresponding getXStreamAnnotatedClassList()
and setXStreamAnnotatedClassList()
methods in the ProblemBenchmarksConfig
class.
An example from a *.java
file in OptaPlanner 7:
ProblemBenchmarksConfig problemBenchmarksConfig = new ProblemBenchmarksConfig(); problemBenchmarksConfig.setXStreamAnnotatedClassList(MySolution.class);
An example from a *.java
file in OptaPlanner 8:
package com.example; ... public class MySolutionFileIO extends XStreamSolutionFileIO<MySolution> { public MySolutionFileIO() { super(MySolution.class); } } ... ProblemBenchmarksConfig problemBenchmarksConfig = new ProblemBenchmarksConfig(); problemBenchmarksConfig.setSolutionFileIOClass(MySolutionFileIO.class);
An example from the *BenchmarkConfig.xml
file in OptaPlanner 7:
<plannerBenchmark> ... <solverBenchmark> <problemBenchmarks> <xStreamAnnotatedClass>com.example.MySolution</xStreamAnnotatedClass> ... </problemBenchmarks> ... </solverBenchmark> ... </plannerBenchmark>
An example from the *BenchmarkConfig.xml
file in OptaPlanner 8:
<plannerBenchmark> ... <solverBenchmark> <problemBenchmarks> <!-- See the "After in *.java" section to create the MySolutionFileIO. --> <solutionFileIOClass>com.example.MySolutionFileIO</solutionFileIOClass> ... </problemBenchmarks> ... </solverBenchmark> ... </plannerBenchmark>
BenchmarkAggregatorFrame.createAndDisplay(PlannerBenchmarkFactory)
removed
Minor
The BenchmarkAggregatorFrame.createAndDisplay(PlannerBenchmarkFactory)
method has been deprecated and replaced with the BenchmarkAggregatorFrame.createAndDisplayFromXmlResource(String)
method. The BenchmarkAggregatorFrame.createAndDisplay(PlannerBenchmarkFactory)
method has been removed.
An example from a *.java
file in OptaPlanner 7:
PlannerBenchmarkFactory benchmarkFactory = PlannerBenchmarkFactory.createFromXmlResource( ".../cloudBalancingBenchmarkConfig.xml"); BenchmarkAggregatorFrame.createAndDisplay(benchmarkFactory);
An example from a *.java
file in OptaPlanner 8:
BenchmarkAggregatorFrame.createAndDisplayFromXmlResource( ".../cloudBalancingBenchmarkConfig.xml");
If you programmatically adjust the benchmark configuration, you can use BenchmarkAggregatorFrame.createAndDisplay(PlannerBenchmarkConfig)
instead.
Removed JavaScript expression support in configuration
Minor
Various elements of both the solver configuration and benchmark configuration no longer support nested JavaScript expressions. You must replace these with either auto-configuration or with integer constants.
An example from the solverConfig.xml
file in OptaPlanner 7:
<solver> ... <moveThreadCount>availableProcessorCount - 1</moveThreadCount> ... </solver>
An example from the `solverConfig.xml`file in OptaPlanner 8:
<solver> ... <moveThreadCount>1</moveThreadCount> <!-- Alternatively, use "AUTO" or omit entirely. --> ... </solver>
An example from the benchmarkConfig.xml
file in OptaPlanner 7:
<plannerBenchmark> ... <parallelBenchmarkCount>availableProcessorCount - 1</parallelBenchmarkCount> ... </plannerBenchmark>
An example from the benchmarkConfig.xml
file in OptaPlanner 8:
<plannerBenchmark> ... <parallelBenchmarkCount>1</parallelBenchmarkCount> <!-- Alternatively, use "AUTO" or omit entirely. --> ... </plannerBenchmark>
Removed the deprecated variable listeners
Major, Public API
The deprecated interface VariableListener
from the package org.optaplanner.core.impl.domain.variable.listener
has been removed, along with the deprecated interface StatefulVariableListener
and the deprecated class VariableListenerAdapter
in that same package. Use a VariableListener
interface from the org.optaplanner.core.api.domain.variable
package instead.
An example of a VariableListener.java
file in OptaPlanner 7:
... import org.optaplanner.core.impl.domain.variable.listener.VariableListenerAdapter; ... public class MyVariableListener extends VariableListenerAdapter<Object> { ... @Override void afterEntityRemoved(ScoreDirector scoreDirector, Object entity); ... } ... }
An example from a VariableListener.java
file in OptaPlanner 8:
... import org.optaplanner.core.api.domain.variable.VariableListener; ... public class MyVariableListener extends VariableListener<MySolution, Object> { ... @Override void afterEntityRemoved(ScoreDirector<MySolution> scoreDirector, Object entity); ... } ... }
An example of a StatefulVariableListener.java
file in OptaPlanner 7:
... import org.optaplanner.core.impl.domain.variable.listener.StatefulVariableListener; ... public class MyStatefulVariableListener implements StatefulVariableListener<Object> { ... @Override public void clearWorkingSolution(ScoreDirector scoreDirector) { ... } ... }
An example from the StatefulVariableListener.java
file in OptaPlanner 8:
... import org.optaplanner.core.api.domain.variable.VariableListener; ... public class MyStatefulVariableListener implements VariableListener<MySolution, Object> { ... @Override public void close() { ... } ... }
Chapter 2. Changes between OptaPlanner 8.2.0 and OptaPlanner 8.3.0
The changes listed in this section were made between OptaPlanner 8.2.0 and OptaPlanner 8.3.0.
ConstraintMatch.compareTo()
inconsistent with equals()
Minor
The equals()
override in ConstraintMatch
has been removed. As a result, two different ConstraintMatch
instances are never considered equal. This contrasts with the compareTo()
method, which continues to consider two instances equal if all their field values are equal.
Part II. Getting started with Red Hat build of OptaPlanner
As a business rules developer, you can use Red Hat build of OptaPlanner to find the optimal solution to planning problems based on a set of limited resources and under specific constraints.
Use this document to start developing solvers with OptaPlanner.
Chapter 3. Introduction to Red Hat build of OptaPlanner
OptaPlanner is a lightweight, embeddable planning engine that optimizes planning problems. It helps normal Java programmers solve planning problems efficiently, and it combines optimization heuristics and metaheuristics with very efficient score calculations.
For example, OptaPlanner helps solve various use cases:
- Employee/Patient Rosters: It helps create timetables for nurses and keeps track of patient bed management.
- Educational Timetables: It helps schedule lessons, courses, exams, and conference presentations.
- Shop Schedules: It tracks car assembly lines, machine queue planning, and workforce task planning.
- Cutting Stock: It minimizes waste by reducing the consumption of resources such as paper and steel.
Every organization faces planning problems; that is, they provide products and services with a limited set of constrained resources (employees, assets, time, and money).
OptaPlanner is open source software under the Apache Software License 2.0. It is 100% pure Java and runs on most Java virtual machines (JVMs).
3.1. Planning problems
A planning problem has an optimal goal, based on limited resources and under specific constraints. Optimal goals can be any number of things, such as:
- Maximized profits - the optimal goal results in the highest possible profit.
- Minimized ecological footprint - the optimal goal has the least amount of environmental impact.
- Maximized satisfaction for employees or customers - the optimal goal prioritizes the needs of employees or customers.
The ability to achieve these goals relies on the number of resources available. For example, the following resources might be limited:
- Number of people
- Amount of time
- Budget
- Physical assets, for example, machinery, vehicles, computers, buildings
You must also take into account the specific constraints related to these resources, such as the number of hours a person works, their ability to use certain machines, or compatibility between pieces of equipment.
Red Hat build of OptaPlanner helps Java programmers solve constraint satisfaction problems efficiently. It combines optimization heuristics and metaheuristics with efficient score calculation.
3.2. NP-completeness in planning problems
The provided use cases are probably NP-complete or NP-hard, which means the following statements apply:
- It is easy to verify a specific solution to a problem in reasonable time.
- There is no simple way to find the optimal solution of a problem in reasonable time.
The implication is that solving your problem is probably harder than you anticipated, because the two common techniques do not suffice:
- A brute force algorithm (even a more advanced variant) takes too long.
- A quick algorithm, for example in the bin packing problem, putting in the largest items first returns a solution that is far from optimal.
By using advanced optimization algorithms, OptaPlanner finds a good solution in reasonable time for such planning problems.
3.3. Solutions to planning problems
A planning problem has a number of solutions.
Several categories of solutions are:
- Possible solution
- A possible solution is any solution, whether or not it breaks any number of constraints. Planning problems often have an incredibly large number of possible solutions. Many of those solutions are not useful.
- Feasible solution
- A feasible solution is a solution that does not break any (negative) hard constraints. The number of feasible solutions are relative to the number of possible solutions. Sometimes there are no feasible solutions. Every feasible solution is a possible solution.
- Optimal solution
- Optimal solutions are the solutions with the highest scores. Planning problems usually have a few optimal solutions. They always have at least one optimal solution, even in the case that there are no feasible solutions and the optimal solution is not feasible.
- Best solution found
- The best solution is the solution with the highest score found by an implementation in a specified amount of time. The best solution found is likely to be feasible and, given enough time, it’s an optimal solution.
Counterintuitively, the number of possible solutions is huge (if calculated correctly), even with a small data set.
In the examples provided in the planner-engine
distribution folder, most instances have a large number of possible solutions. As there is no guaranteed way to find the optimal solution, any implementation is forced to evaluate at least a subset of all those possible solutions.
OptaPlanner supports several optimization algorithms to efficiently wade through that incredibly large number of possible solutions.
Depending on the use case, some optimization algorithms perform better than others, but it is impossible to know in advance. Using OptaPlanner, you can switch the optimization algorithm by changing the solver configuration in a few lines of XML or code.
3.4. Constraints on planning problems
Usually, a planning problem has minimum two levels of constraints:
A (negative) hard constraint must not be broken.
For example, one teacher can not teach two different lessons at the same time.
A (negative) soft constraint should not be broken if it can be avoided.
For example, Teacher A does not like to teach on Friday afternoons.
Some problems also have positive constraints:
A positive soft constraint (or reward) should be fulfilled if possible.
For example, Teacher B likes to teach on Monday mornings.
Some basic problems only have hard constraints. Some problems have three or more levels of constraints, for example, hard, medium, and soft constraints.
These constraints define the score calculation (otherwise known as the fitness function) of a planning problem. Each solution of a planning problem is graded with a score. With OptaPlanner, score constraints are written in an object oriented language such as Java, or in Drools rules.
This type of code is flexible and scalable.
3.5. Examples provided with Red Hat build of OptaPlanner
Several Red Hat build of OptaPlanner examples are shipped with Red Hat Process Automation Manager. You can review the code for examples and modify it as necessary to suit your needs.
Red Hat does not provide support for the example code included in the Red Hat Process Automation Manager distribution.
Some of the OptaPlanner examples solve problems that are presented in academic contests. The Contest
column in the following table lists the contests. It also identifies an example as being either realistic or unrealistic for the purpose of a contest. A realistic contest is an official, independent contest that meets the following standards:
- Clearly defined real-world use cases
- Real-world constraints
- Multiple real-world datasets
- Reproducible results within a specific time limit on specific hardware
- Serious participation from the academic and/or enterprise Operations Research community.
Realistic contests provide an objective comparison of OptaPlanner with competitive software and academic research.
Example | Domain | Size | Contest | Directory name |
---|---|---|---|---|
1 entity class (1 variable) |
Entity ⇐
Value ⇐
Search space ⇐ | Pointless (cheatable) |
| |
1 entity class (1 variable) |
Entity ⇐
Value ⇐
Search space ⇐ | No (Defined by us) |
| |
1 entity class (1 chained variable) |
Entity ⇐
Value ⇐
Search space ⇐ | Unrealistic TSP web |
| |
1 entity class (1 variable) |
Entity ⇐
Value ⇐
Search space ⇐ | No (Defined by us) |
| |
1 entity class (2 variables) |
Entity ⇐
Value ⇐
Search space ⇐ | No (Defined by us) |
| |
1 entity class (2 variables) |
Entity ⇐
Value ⇐
Search space ⇐ | Realistic ITC 2007 track 3 |
| |
1 entity class (1 variable) |
Entity ⇐
Value ⇐
Search space ⇐ | Nearly realistic ROADEF 2012 |
| |
1 entity class (1 chained variable) 1 shadow entity class (1 automatic shadow variable) |
Entity ⇐
Value ⇐
Search space ⇐ | Unrealistic VRP web |
| |
Vehicle routing with time windows | All of Vehicle routing (1 shadow variable) |
Entity ⇐
Value ⇐
Search space ⇐ | Unrealistic VRP web |
|
1 entity class (2 variables) (1 shadow variable) |
Entity ⇐
Value ⇐
Search space ⇐ | Nearly realistic MISTA 2013 |
| |
1 entity class (1 chained variable) (1 shadow variable) 1 shadow entity class (1 automatic shadow variable) |
Entity ⇐
Value ⇐
Search space ⇐ | No Defined by us |
| |
2 entity classes (same hierarchy) (2 variables) |
Entity ⇐
Value ⇐
Search space ⇐ | Realistic ITC 2007 track 1 |
| |
1 entity class (1 variable) |
Entity ⇐
Value ⇐
Search space ⇐ | Realistic INRC 2010 |
| |
1 entity class (1 variable) |
Entity ⇐
Value ⇐
Search space ⇐ | Unrealistic TTP |
| |
1 entity class (2 variables) |
Entity ⇐
Value ⇐
Search space ⇐ | Nearly realistic ICON Energy |
| |
1 entity class (1 variable) |
Entity ⇐
Value =
Search space ⇐ | No Defined by us |
| |
1 entity class (2 variables) |
Entity ⇐
Value ⇐
Search space ⇐ | No Defined by us |
| |
1 entity class (1 chained variable) (4 shadow variables) 1 shadow entity class (1 automatic shadow variable) |
Entity ⇐
Value ⇐
Search space ⇐ | No Defined by us |
| |
1 entity class (1 variable) 1 shadow entity class (1 automatic shadow variable) |
Entity ⇐
Value ⇐
Search space ⇐ | No Defined by us |
|
3.6. N queens
Place n number of queens on an n sized chessboard so that no two queens can attack each other. The most common n queens puzzle is the eight queens puzzle, with n = 8:
Constraints:
- Use a chessboard of n columns and n rows.
- Place n queens on the chessboard.
- No two queens can attack each other. A queen can attack any other queen on the same horizontal, vertical, or diagonal line.
This documentation heavily uses the four queens puzzle as the primary example.
A proposed solution could be:
Figure 3.1. A wrong solution for the four queens puzzle
The above solution is wrong because queens A1
and B0
can attack each other (so can queens B0
and D0
). Removing queen B0
would respect the "no two queens can attack each other" constraint, but would break the "place n queens" constraint.
Below is a correct solution:
Figure 3.2. A correct solution for the Four queens puzzle
All the constraints have been met, so the solution is correct.
Note that most n queens puzzles have multiple correct solutions. We will focus on finding a single correct solution for a specific n, not on finding the number of possible correct solutions for a specific n.
Problem size
4queens has 4 queens with a search space of 256. 8queens has 8 queens with a search space of 10^7. 16queens has 16 queens with a search space of 10^19. 32queens has 32 queens with a search space of 10^48. 64queens has 64 queens with a search space of 10^115. 256queens has 256 queens with a search space of 10^616.
The implementation of the n queens example has not been optimized because it functions as a beginner example. Nevertheless, it can easily handle 64 queens. With a few changes it has been shown to easily handle 5000 queens and more.
3.6.1. Domain model for N queens
This example uses the domain model to solve the four queens problem.
Creating a Domain Model
A good domain model will make it easier to understand and solve your planning problem.
This is the domain model for the n queens example:
public class Column { private int index; // ... getters and setters }
public class Row { private int index; // ... getters and setters }
public class Queen { private Column column; private Row row; public int getAscendingDiagonalIndex() {...} public int getDescendingDiagonalIndex() {...} // ... getters and setters }
Calculating the Search Space.
A
Queen
instance has aColumn
(for example: 0 is column A, 1 is column B, …) and aRow
(its row, for example: 0 is row 0, 1 is row 1, …).The ascending diagonal line and the descending diagonal line can be calculated based on the column and the row.
The column and row indexes start from the upper left corner of the chessboard.
public class NQueens { private int n; private List<Column> columnList; private List<Row> rowList; private List<Queen> queenList; private SimpleScore score; // ... getters and setters }
Finding the Solution
A single
NQueens
instance contains a list of allQueen
instances. It is theSolution
implementation which will be supplied to, solved by, and retrieved from the Solver.
Notice that in the four queens example, the NQueens getN()
method will always return four.
Figure 3.3. A solution for Four Queens
columnIndex | rowIndex | ascendingDiagonalIndex (columnIndex + rowIndex) | descendingDiagonalIndex (columnIndex - rowIndex) | |
---|---|---|---|---|
A1 | 0 | 1 | 1 (**) | -1 |
B0 | 1 | 0 (*) | 1 (**) | 1 |
C2 | 2 | 2 | 4 | 0 |
D0 | 3 | 0 (*) | 3 | 3 |
When two queens share the same column, row or diagonal line, such as (*) and (**), they can attack each other.
3.7. Cloud balancing
For information about this example, see Red Hat build of OptaPlanner quick start guides.
3.8. Traveling salesman (TSP - Traveling Salesman Problem)
Given a list of cities, find the shortest tour for a salesman that visits each city exactly once.
The problem is defined by Wikipedia. It is one of the most intensively studied problems in computational mathematics. Yet, in the real world, it is often only part of a planning problem, along with other constraints, such as employee shift rostering constraints.
Problem size
dj38 has 38 cities with a search space of 10^43. europe40 has 40 cities with a search space of 10^46. st70 has 70 cities with a search space of 10^98. pcb442 has 442 cities with a search space of 10^976. lu980 has 980 cities with a search space of 10^2504.
Problem difficulty
Despite TSP’s simple definition, the problem is surprisingly hard to solve. Because it is an NP-hard problem (like most planning problems), the optimal solution for a specific problem dataset can change a lot when that problem dataset is slightly altered:
3.9. Tennis club scheduling
Every week the tennis club has four teams playing round robin against each other. Assign those four spots to the teams fairly.
Hard constraints:
- Conflict: A team can only play once per day.
- Unavailability: Some teams are unavailable on some dates.
Medium constraints:
- Fair assignment: All teams should play an (almost) equal number of times.
Soft constraints:
- Evenly confrontation: Each team should play against every other team an equal number of times.
Problem size
munich-7teams has 7 teams, 18 days, 12 unavailabilityPenalties and 72 teamAssignments with a search space of 10^60.
Figure 3.4. Domain model
3.10. Meeting scheduling
Assign each meeting to a starting time and a room. Meetings have different durations.
Hard constraints:
- Room conflict: Two meetings must not use the same room at the same time.
- Required attendance: A person cannot have two required meetings at the same time.
- Required room capacity: A meeting must not be in a room that doesn’t fit all of the meeting’s attendees.
- Start and end on same day: A meeting shouldn’t be scheduled over multiple days.
Medium constraints:
- Preferred attendance: A person cannot have two preferred meetings at the same time, nor a preferred and a required meeting at the same time.
Soft constraints:
- Sooner rather than later: Schedule all meetings as soon as possible.
- A break between meetings: Any two meetings should have at least one time grain break between them.
- Overlapping meetings: To minimize the number of meetings in parallel so people don’t have to choose one meeting over the other.
- Assign larger rooms first: If a larger room is available any meeting should be assigned to that room in order to accommodate as many people as possible even if they haven’t signed up to that meeting.
- Room stability: If a person has two consecutive meetings with two or less time grains break between them they better be in the same room.
Problem size
50meetings-160timegrains-5rooms has 50 meetings, 160 timeGrains and 5 rooms with a search space of 10^145. 100meetings-320timegrains-5rooms has 100 meetings, 320 timeGrains and 5 rooms with a search space of 10^320. 200meetings-640timegrains-5rooms has 200 meetings, 640 timeGrains and 5 rooms with a search space of 10^701. 400meetings-1280timegrains-5rooms has 400 meetings, 1280 timeGrains and 5 rooms with a search space of 10^1522. 800meetings-2560timegrains-5rooms has 800 meetings, 2560 timeGrains and 5 rooms with a search space of 10^3285.
3.11. Course timetabling (ITC 2007 Track 3 - Curriculum Course Scheduling)
Schedule each lecture into a timeslot and into a room.
Hard constraints:
- Teacher conflict: A teacher must not have two lectures in the same period.
- Curriculum conflict: A curriculum must not have two lectures in the same period.
- Room occupancy: Two lectures must not be in the same room in the same period.
- Unavailable period (specified per dataset): A specific lecture must not be assigned to a specific period.
Soft constraints:
- Room capacity: A room’s capacity should not be less than the number of students in its lecture.
- Minimum working days: Lectures of the same course should be spread out into a minimum number of days.
- Curriculum compactness: Lectures belonging to the same curriculum should be adjacent to each other (so in consecutive periods).
- Room stability: Lectures of the same course should be assigned to the same room.
The problem is defined by the International Timetabling Competition 2007 track 3.
Problem size
comp01 has 24 teachers, 14 curricula, 30 courses, 160 lectures, 30 periods, 6 rooms and 53 unavailable period constraints with a search space of 10^360. comp02 has 71 teachers, 70 curricula, 82 courses, 283 lectures, 25 periods, 16 rooms and 513 unavailable period constraints with a search space of 10^736. comp03 has 61 teachers, 68 curricula, 72 courses, 251 lectures, 25 periods, 16 rooms and 382 unavailable period constraints with a search space of 10^653. comp04 has 70 teachers, 57 curricula, 79 courses, 286 lectures, 25 periods, 18 rooms and 396 unavailable period constraints with a search space of 10^758. comp05 has 47 teachers, 139 curricula, 54 courses, 152 lectures, 36 periods, 9 rooms and 771 unavailable period constraints with a search space of 10^381. comp06 has 87 teachers, 70 curricula, 108 courses, 361 lectures, 25 periods, 18 rooms and 632 unavailable period constraints with a search space of 10^957. comp07 has 99 teachers, 77 curricula, 131 courses, 434 lectures, 25 periods, 20 rooms and 667 unavailable period constraints with a search space of 10^1171. comp08 has 76 teachers, 61 curricula, 86 courses, 324 lectures, 25 periods, 18 rooms and 478 unavailable period constraints with a search space of 10^859. comp09 has 68 teachers, 75 curricula, 76 courses, 279 lectures, 25 periods, 18 rooms and 405 unavailable period constraints with a search space of 10^740. comp10 has 88 teachers, 67 curricula, 115 courses, 370 lectures, 25 periods, 18 rooms and 694 unavailable period constraints with a search space of 10^981. comp11 has 24 teachers, 13 curricula, 30 courses, 162 lectures, 45 periods, 5 rooms and 94 unavailable period constraints with a search space of 10^381. comp12 has 74 teachers, 150 curricula, 88 courses, 218 lectures, 36 periods, 11 rooms and 1368 unavailable period constraints with a search space of 10^566. comp13 has 77 teachers, 66 curricula, 82 courses, 308 lectures, 25 periods, 19 rooms and 468 unavailable period constraints with a search space of 10^824. comp14 has 68 teachers, 60 curricula, 85 courses, 275 lectures, 25 periods, 17 rooms and 486 unavailable period constraints with a search space of 10^722.
Figure 3.5. Domain model
3.12. Machine reassignment (Google ROADEF 2012)
Assign each process to a machine. All processes already have an original (unoptimized) assignment. Each process requires an amount of each resource (such as CPU or RAM). This is a more complex version of the Cloud Balancing example.
Hard constraints:
- Maximum capacity: The maximum capacity for each resource for each machine must not be exceeded.
- Conflict: Processes of the same service must run on distinct machines.
- Spread: Processes of the same service must be spread out across locations.
- Dependency: The processes of a service depending on another service must run in the neighborhood of a process of the other service.
- Transient usage: Some resources are transient and count towards the maximum capacity of both the original machine as the newly assigned machine.
Soft constraints:
- Load: The safety capacity for each resource for each machine should not be exceeded.
- Balance: Leave room for future assignments by balancing the available resources on each machine.
- Process move cost: A process has a move cost.
- Service move cost: A service has a move cost.
- Machine move cost: Moving a process from machine A to machine B has another A-B specific move cost.
The problem is defined by the Google ROADEF/EURO Challenge 2012.
Figure 3.6. Value proposition
Problem size
model_a1_1 has 2 resources, 1 neighborhoods, 4 locations, 4 machines, 79 services, 100 processes and 1 balancePenalties with a search space of 10^60. model_a1_2 has 4 resources, 2 neighborhoods, 4 locations, 100 machines, 980 services, 1000 processes and 0 balancePenalties with a search space of 10^2000. model_a1_3 has 3 resources, 5 neighborhoods, 25 locations, 100 machines, 216 services, 1000 processes and 0 balancePenalties with a search space of 10^2000. model_a1_4 has 3 resources, 50 neighborhoods, 50 locations, 50 machines, 142 services, 1000 processes and 1 balancePenalties with a search space of 10^1698. model_a1_5 has 4 resources, 2 neighborhoods, 4 locations, 12 machines, 981 services, 1000 processes and 1 balancePenalties with a search space of 10^1079. model_a2_1 has 3 resources, 1 neighborhoods, 1 locations, 100 machines, 1000 services, 1000 processes and 0 balancePenalties with a search space of 10^2000. model_a2_2 has 12 resources, 5 neighborhoods, 25 locations, 100 machines, 170 services, 1000 processes and 0 balancePenalties with a search space of 10^2000. model_a2_3 has 12 resources, 5 neighborhoods, 25 locations, 100 machines, 129 services, 1000 processes and 0 balancePenalties with a search space of 10^2000. model_a2_4 has 12 resources, 5 neighborhoods, 25 locations, 50 machines, 180 services, 1000 processes and 1 balancePenalties with a search space of 10^1698. model_a2_5 has 12 resources, 5 neighborhoods, 25 locations, 50 machines, 153 services, 1000 processes and 0 balancePenalties with a search space of 10^1698. model_b_1 has 12 resources, 5 neighborhoods, 10 locations, 100 machines, 2512 services, 5000 processes and 0 balancePenalties with a search space of 10^10000. model_b_2 has 12 resources, 5 neighborhoods, 10 locations, 100 machines, 2462 services, 5000 processes and 1 balancePenalties with a search space of 10^10000. model_b_3 has 6 resources, 5 neighborhoods, 10 locations, 100 machines, 15025 services, 20000 processes and 0 balancePenalties with a search space of 10^40000. model_b_4 has 6 resources, 5 neighborhoods, 50 locations, 500 machines, 1732 services, 20000 processes and 1 balancePenalties with a search space of 10^53979. model_b_5 has 6 resources, 5 neighborhoods, 10 locations, 100 machines, 35082 services, 40000 processes and 0 balancePenalties with a search space of 10^80000. model_b_6 has 6 resources, 5 neighborhoods, 50 locations, 200 machines, 14680 services, 40000 processes and 1 balancePenalties with a search space of 10^92041. model_b_7 has 6 resources, 5 neighborhoods, 50 locations, 4000 machines, 15050 services, 40000 processes and 1 balancePenalties with a search space of 10^144082. model_b_8 has 3 resources, 5 neighborhoods, 10 locations, 100 machines, 45030 services, 50000 processes and 0 balancePenalties with a search space of 10^100000. model_b_9 has 3 resources, 5 neighborhoods, 100 locations, 1000 machines, 4609 services, 50000 processes and 1 balancePenalties with a search space of 10^150000. model_b_10 has 3 resources, 5 neighborhoods, 100 locations, 5000 machines, 4896 services, 50000 processes and 1 balancePenalties with a search space of 10^184948.
Figure 3.7. Domain model
3.13. Vehicle routing
Using a fleet of vehicles, pick up the objects of each customer and bring them to the depot. Each vehicle can service multiple customers, but it has a limited capacity.
Besides the basic case (CVRP), there is also a variant with time windows (CVRPTW).
Hard constraints:
- Vehicle capacity: a vehicle cannot carry more items then its capacity.
Time windows (only in CVRPTW):
- Travel time: Traveling from one location to another takes time.
- Customer service duration: A vehicle must stay at the customer for the length of the service duration.
- Customer ready time: A vehicle may arrive before the customer’s ready time, but it must wait until the ready time before servicing.
- Customer due time: A vehicle must arrive on time, before the customer’s due time.
Soft constraints:
- Total distance: Minimize the total distance driven (fuel consumption) of all vehicles.
The capacitated vehicle routing problem (CVRP) and its time-windowed variant (CVRPTW) are defined by the VRP web.
Figure 3.8. Value proposition
Problem size
CVRP instances (without time windows):
belgium-n50-k10 has 1 depots, 10 vehicles and 49 customers with a search space of 10^74. belgium-n100-k10 has 1 depots, 10 vehicles and 99 customers with a search space of 10^170. belgium-n500-k20 has 1 depots, 20 vehicles and 499 customers with a search space of 10^1168. belgium-n1000-k20 has 1 depots, 20 vehicles and 999 customers with a search space of 10^2607. belgium-n2750-k55 has 1 depots, 55 vehicles and 2749 customers with a search space of 10^8380. belgium-road-km-n50-k10 has 1 depots, 10 vehicles and 49 customers with a search space of 10^74. belgium-road-km-n100-k10 has 1 depots, 10 vehicles and 99 customers with a search space of 10^170. belgium-road-km-n500-k20 has 1 depots, 20 vehicles and 499 customers with a search space of 10^1168. belgium-road-km-n1000-k20 has 1 depots, 20 vehicles and 999 customers with a search space of 10^2607. belgium-road-km-n2750-k55 has 1 depots, 55 vehicles and 2749 customers with a search space of 10^8380. belgium-road-time-n50-k10 has 1 depots, 10 vehicles and 49 customers with a search space of 10^74. belgium-road-time-n100-k10 has 1 depots, 10 vehicles and 99 customers with a search space of 10^170. belgium-road-time-n500-k20 has 1 depots, 20 vehicles and 499 customers with a search space of 10^1168. belgium-road-time-n1000-k20 has 1 depots, 20 vehicles and 999 customers with a search space of 10^2607. belgium-road-time-n2750-k55 has 1 depots, 55 vehicles and 2749 customers with a search space of 10^8380. belgium-d2-n50-k10 has 2 depots, 10 vehicles and 48 customers with a search space of 10^74. belgium-d3-n100-k10 has 3 depots, 10 vehicles and 97 customers with a search space of 10^170. belgium-d5-n500-k20 has 5 depots, 20 vehicles and 495 customers with a search space of 10^1168. belgium-d8-n1000-k20 has 8 depots, 20 vehicles and 992 customers with a search space of 10^2607. belgium-d10-n2750-k55 has 10 depots, 55 vehicles and 2740 customers with a search space of 10^8380. A-n32-k5 has 1 depots, 5 vehicles and 31 customers with a search space of 10^40. A-n33-k5 has 1 depots, 5 vehicles and 32 customers with a search space of 10^41. A-n33-k6 has 1 depots, 6 vehicles and 32 customers with a search space of 10^42. A-n34-k5 has 1 depots, 5 vehicles and 33 customers with a search space of 10^43. A-n36-k5 has 1 depots, 5 vehicles and 35 customers with a search space of 10^46. A-n37-k5 has 1 depots, 5 vehicles and 36 customers with a search space of 10^48. A-n37-k6 has 1 depots, 6 vehicles and 36 customers with a search space of 10^49. A-n38-k5 has 1 depots, 5 vehicles and 37 customers with a search space of 10^49. A-n39-k5 has 1 depots, 5 vehicles and 38 customers with a search space of 10^51. A-n39-k6 has 1 depots, 6 vehicles and 38 customers with a search space of 10^52. A-n44-k7 has 1 depots, 7 vehicles and 43 customers with a search space of 10^61. A-n45-k6 has 1 depots, 6 vehicles and 44 customers with a search space of 10^62. A-n45-k7 has 1 depots, 7 vehicles and 44 customers with a search space of 10^63. A-n46-k7 has 1 depots, 7 vehicles and 45 customers with a search space of 10^65. A-n48-k7 has 1 depots, 7 vehicles and 47 customers with a search space of 10^68. A-n53-k7 has 1 depots, 7 vehicles and 52 customers with a search space of 10^77. A-n54-k7 has 1 depots, 7 vehicles and 53 customers with a search space of 10^79. A-n55-k9 has 1 depots, 9 vehicles and 54 customers with a search space of 10^82. A-n60-k9 has 1 depots, 9 vehicles and 59 customers with a search space of 10^91. A-n61-k9 has 1 depots, 9 vehicles and 60 customers with a search space of 10^93. A-n62-k8 has 1 depots, 8 vehicles and 61 customers with a search space of 10^94. A-n63-k9 has 1 depots, 9 vehicles and 62 customers with a search space of 10^97. A-n63-k10 has 1 depots, 10 vehicles and 62 customers with a search space of 10^98. A-n64-k9 has 1 depots, 9 vehicles and 63 customers with a search space of 10^99. A-n65-k9 has 1 depots, 9 vehicles and 64 customers with a search space of 10^101. A-n69-k9 has 1 depots, 9 vehicles and 68 customers with a search space of 10^108. A-n80-k10 has 1 depots, 10 vehicles and 79 customers with a search space of 10^130. F-n45-k4 has 1 depots, 4 vehicles and 44 customers with a search space of 10^60. F-n72-k4 has 1 depots, 4 vehicles and 71 customers with a search space of 10^108. F-n135-k7 has 1 depots, 7 vehicles and 134 customers with a search space of 10^240.
CVRPTW instances (with time windows):
belgium-tw-d2-n50-k10 has 2 depots, 10 vehicles and 48 customers with a search space of 10^74. belgium-tw-d3-n100-k10 has 3 depots, 10 vehicles and 97 customers with a search space of 10^170. belgium-tw-d5-n500-k20 has 5 depots, 20 vehicles and 495 customers with a search space of 10^1168. belgium-tw-d8-n1000-k20 has 8 depots, 20 vehicles and 992 customers with a search space of 10^2607. belgium-tw-d10-n2750-k55 has 10 depots, 55 vehicles and 2740 customers with a search space of 10^8380. belgium-tw-n50-k10 has 1 depots, 10 vehicles and 49 customers with a search space of 10^74. belgium-tw-n100-k10 has 1 depots, 10 vehicles and 99 customers with a search space of 10^170. belgium-tw-n500-k20 has 1 depots, 20 vehicles and 499 customers with a search space of 10^1168. belgium-tw-n1000-k20 has 1 depots, 20 vehicles and 999 customers with a search space of 10^2607. belgium-tw-n2750-k55 has 1 depots, 55 vehicles and 2749 customers with a search space of 10^8380. Solomon_025_C101 has 1 depots, 25 vehicles and 25 customers with a search space of 10^40. Solomon_025_C201 has 1 depots, 25 vehicles and 25 customers with a search space of 10^40. Solomon_025_R101 has 1 depots, 25 vehicles and 25 customers with a search space of 10^40. Solomon_025_R201 has 1 depots, 25 vehicles and 25 customers with a search space of 10^40. Solomon_025_RC101 has 1 depots, 25 vehicles and 25 customers with a search space of 10^40. Solomon_025_RC201 has 1 depots, 25 vehicles and 25 customers with a search space of 10^40. Solomon_100_C101 has 1 depots, 25 vehicles and 100 customers with a search space of 10^185. Solomon_100_C201 has 1 depots, 25 vehicles and 100 customers with a search space of 10^185. Solomon_100_R101 has 1 depots, 25 vehicles and 100 customers with a search space of 10^185. Solomon_100_R201 has 1 depots, 25 vehicles and 100 customers with a search space of 10^185. Solomon_100_RC101 has 1 depots, 25 vehicles and 100 customers with a search space of 10^185. Solomon_100_RC201 has 1 depots, 25 vehicles and 100 customers with a search space of 10^185. Homberger_0200_C1_2_1 has 1 depots, 50 vehicles and 200 customers with a search space of 10^429. Homberger_0200_C2_2_1 has 1 depots, 50 vehicles and 200 customers with a search space of 10^429. Homberger_0200_R1_2_1 has 1 depots, 50 vehicles and 200 customers with a search space of 10^429. Homberger_0200_R2_2_1 has 1 depots, 50 vehicles and 200 customers with a search space of 10^429. Homberger_0200_RC1_2_1 has 1 depots, 50 vehicles and 200 customers with a search space of 10^429. Homberger_0200_RC2_2_1 has 1 depots, 50 vehicles and 200 customers with a search space of 10^429. Homberger_0400_C1_4_1 has 1 depots, 100 vehicles and 400 customers with a search space of 10^978. Homberger_0400_C2_4_1 has 1 depots, 100 vehicles and 400 customers with a search space of 10^978. Homberger_0400_R1_4_1 has 1 depots, 100 vehicles and 400 customers with a search space of 10^978. Homberger_0400_R2_4_1 has 1 depots, 100 vehicles and 400 customers with a search space of 10^978. Homberger_0400_RC1_4_1 has 1 depots, 100 vehicles and 400 customers with a search space of 10^978. Homberger_0400_RC2_4_1 has 1 depots, 100 vehicles and 400 customers with a search space of 10^978. Homberger_0600_C1_6_1 has 1 depots, 150 vehicles and 600 customers with a search space of 10^1571. Homberger_0600_C2_6_1 has 1 depots, 150 vehicles and 600 customers with a search space of 10^1571. Homberger_0600_R1_6_1 has 1 depots, 150 vehicles and 600 customers with a search space of 10^1571. Homberger_0600_R2_6_1 has 1 depots, 150 vehicles and 600 customers with a search space of 10^1571. Homberger_0600_RC1_6_1 has 1 depots, 150 vehicles and 600 customers with a search space of 10^1571. Homberger_0600_RC2_6_1 has 1 depots, 150 vehicles and 600 customers with a search space of 10^1571. Homberger_0800_C1_8_1 has 1 depots, 200 vehicles and 800 customers with a search space of 10^2195. Homberger_0800_C2_8_1 has 1 depots, 200 vehicles and 800 customers with a search space of 10^2195. Homberger_0800_R1_8_1 has 1 depots, 200 vehicles and 800 customers with a search space of 10^2195. Homberger_0800_R2_8_1 has 1 depots, 200 vehicles and 800 customers with a search space of 10^2195. Homberger_0800_RC1_8_1 has 1 depots, 200 vehicles and 800 customers with a search space of 10^2195. Homberger_0800_RC2_8_1 has 1 depots, 200 vehicles and 800 customers with a search space of 10^2195. Homberger_1000_C110_1 has 1 depots, 250 vehicles and 1000 customers with a search space of 10^2840. Homberger_1000_C210_1 has 1 depots, 250 vehicles and 1000 customers with a search space of 10^2840. Homberger_1000_R110_1 has 1 depots, 250 vehicles and 1000 customers with a search space of 10^2840. Homberger_1000_R210_1 has 1 depots, 250 vehicles and 1000 customers with a search space of 10^2840. Homberger_1000_RC110_1 has 1 depots, 250 vehicles and 1000 customers with a search space of 10^2840. Homberger_1000_RC210_1 has 1 depots, 250 vehicles and 1000 customers with a search space of 10^2840.
3.13.1. Domain model for Vehicle routing
The vehicle routing with time windows domain model makes heavy use of the shadow variable feature. This allows it to express its constraints more naturally, because properties such as arrivalTime
and departureTime
, are directly available on the domain model.
Road Distances Instead of Air Distances
In the real world, vehicles cannot follow a straight line from location to location: they have to use roads and highways. From a business point of view, this matters a lot:
For the optimization algorithm, this does not matter much, as long as the distance between two points can be looked up (and are preferably precalculated). The road cost does not even need to be a distance. It can also be travel time, fuel cost, or a weighted function of those. There are several technologies available to precalculate road costs, such as GraphHopper (embeddable, offline Java engine), Open MapQuest (web service) and Google Maps Client API (web service).
There are also several technologies to render it, such as Leaflet and Google Maps for developers.
It is even possible to render the actual road routes with GraphHopper or Google Map Directions, but because of route overlaps on highways, it can become harder to see the standstill order:
Take special care that the road costs between two points use the same optimization criteria as the one used in OptaPlanner. For example, GraphHopper will by default return the fastest route, not the shortest route. Don’t use the km (or miles) distances of the fastest GPS routes to optimize the shortest trip in OptaPlanner: this leads to a suboptimal solution as shown below:
Contrary to popular belief, most users do not want the shortest route: they want the fastest route instead. They prefer highways over normal roads. They prefer normal roads over dirt roads. In the real world, the fastest and shortest route are rarely the same.
3.14. Project job scheduling
Schedule all jobs in time and execution mode to minimize project delays. Each job is part of a project. A job can be executed in different ways: each way is an execution mode that implies a different duration but also different resource usages. This is a form of flexible job shop scheduling.
Hard constraints:
- Job precedence: a job can only start when all its predecessor jobs are finished.
Resource capacity: do not use more resources than available.
- Resources are local (shared between jobs of the same project) or global (shared between all jobs)
- Resources are renewable (capacity available per day) or nonrenewable (capacity available for all days)
Medium constraints:
- Total project delay: minimize the duration (makespan) of each project.
Soft constraints:
- Total makespan: minimize the duration of the whole multi-project schedule.
The problem is defined by the MISTA 2013 challenge.
Problem size
Schedule A-1 has 2 projects, 24 jobs, 64 execution modes, 7 resources and 150 resource requirements. Schedule A-2 has 2 projects, 44 jobs, 124 execution modes, 7 resources and 420 resource requirements. Schedule A-3 has 2 projects, 64 jobs, 184 execution modes, 7 resources and 630 resource requirements. Schedule A-4 has 5 projects, 60 jobs, 160 execution modes, 16 resources and 390 resource requirements. Schedule A-5 has 5 projects, 110 jobs, 310 execution modes, 16 resources and 900 resource requirements. Schedule A-6 has 5 projects, 160 jobs, 460 execution modes, 16 resources and 1440 resource requirements. Schedule A-7 has 10 projects, 120 jobs, 320 execution modes, 22 resources and 900 resource requirements. Schedule A-8 has 10 projects, 220 jobs, 620 execution modes, 22 resources and 1860 resource requirements. Schedule A-9 has 10 projects, 320 jobs, 920 execution modes, 31 resources and 2880 resource requirements. Schedule A-10 has 10 projects, 320 jobs, 920 execution modes, 31 resources and 2970 resource requirements. Schedule B-1 has 10 projects, 120 jobs, 320 execution modes, 31 resources and 900 resource requirements. Schedule B-2 has 10 projects, 220 jobs, 620 execution modes, 22 resources and 1740 resource requirements. Schedule B-3 has 10 projects, 320 jobs, 920 execution modes, 31 resources and 3060 resource requirements. Schedule B-4 has 15 projects, 180 jobs, 480 execution modes, 46 resources and 1530 resource requirements. Schedule B-5 has 15 projects, 330 jobs, 930 execution modes, 46 resources and 2760 resource requirements. Schedule B-6 has 15 projects, 480 jobs, 1380 execution modes, 46 resources and 4500 resource requirements. Schedule B-7 has 20 projects, 240 jobs, 640 execution modes, 61 resources and 1710 resource requirements. Schedule B-8 has 20 projects, 440 jobs, 1240 execution modes, 42 resources and 3180 resource requirements. Schedule B-9 has 20 projects, 640 jobs, 1840 execution modes, 61 resources and 5940 resource requirements. Schedule B-10 has 20 projects, 460 jobs, 1300 execution modes, 42 resources and 4260 resource requirements.
3.15. Task assigning
Assign each task to a spot in an employee’s queue. Each task has a duration which is affected by the employee’s affinity level with the task’s customer.
Hard constraints:
- Skill: Each task requires one or more skills. The employee must possess all these skills.
Soft level 0 constraints:
- Critical tasks: Complete critical tasks first, sooner than major and minor tasks.
Soft level 1 constraints:
Minimize makespan: Reduce the time to complete all tasks.
- Start with the longest working employee first, then the second longest working employee and so forth, to create fairness and load balancing.
Soft level 2 constraints:
- Major tasks: Complete major tasks as soon as possible, sooner than minor tasks.
Soft level 3 constraints:
- Minor tasks: Complete minor tasks as soon as possible.
Figure 3.9. Value proposition
Problem size
24tasks-8employees has 24 tasks, 6 skills, 8 employees, 4 task types and 4 customers with a search space of 10^30. 50tasks-5employees has 50 tasks, 5 skills, 5 employees, 10 task types and 10 customers with a search space of 10^69. 100tasks-5employees has 100 tasks, 5 skills, 5 employees, 20 task types and 15 customers with a search space of 10^164. 500tasks-20employees has 500 tasks, 6 skills, 20 employees, 100 task types and 60 customers with a search space of 10^1168.
Figure 3.10. Domain model
3.16. Exam timetabling (ITC 2007 track 1 - Examination)
Schedule each exam into a period and into a room. Multiple exams can share the same room during the same period.
Hard constraints:
- Exam conflict: Two exams that share students must not occur in the same period.
- Room capacity: A room’s seating capacity must suffice at all times.
- Period duration: A period’s duration must suffice for all of its exams.
Period related hard constraints (specified per dataset):
- Coincidence: Two specified exams must use the same period (but possibly another room).
- Exclusion: Two specified exams must not use the same period.
- After: A specified exam must occur in a period after another specified exam’s period.
Room related hard constraints (specified per dataset):
- Exclusive: One specified exam should not have to share its room with any other exam.
Soft constraints (each of which has a parametrized penalty):
- The same student should not have two exams in a row.
- The same student should not have two exams on the same day.
- Period spread: Two exams that share students should be a number of periods apart.
- Mixed durations: Two exams that share a room should not have different durations.
- Front load: Large exams should be scheduled earlier in the schedule.
- Period penalty (specified per dataset): Some periods have a penalty when used.
- Room penalty (specified per dataset): Some rooms have a penalty when used.
It uses large test data sets of real-life universities.
The problem is defined by the International Timetabling Competition 2007 track 1. Geoffrey De Smet finished 4th in that competition with a very early version of OptaPlanner. Many improvements have been made since then.
Problem Size
exam_comp_set1 has 7883 students, 607 exams, 54 periods, 7 rooms, 12 period constraints and 0 room constraints with a search space of 10^1564. exam_comp_set2 has 12484 students, 870 exams, 40 periods, 49 rooms, 12 period constraints and 2 room constraints with a search space of 10^2864. exam_comp_set3 has 16365 students, 934 exams, 36 periods, 48 rooms, 168 period constraints and 15 room constraints with a search space of 10^3023. exam_comp_set4 has 4421 students, 273 exams, 21 periods, 1 rooms, 40 period constraints and 0 room constraints with a search space of 10^360. exam_comp_set5 has 8719 students, 1018 exams, 42 periods, 3 rooms, 27 period constraints and 0 room constraints with a search space of 10^2138. exam_comp_set6 has 7909 students, 242 exams, 16 periods, 8 rooms, 22 period constraints and 0 room constraints with a search space of 10^509. exam_comp_set7 has 13795 students, 1096 exams, 80 periods, 15 rooms, 28 period constraints and 0 room constraints with a search space of 10^3374. exam_comp_set8 has 7718 students, 598 exams, 80 periods, 8 rooms, 20 period constraints and 1 room constraints with a search space of 10^1678.
3.16.1. Domain model for exam timetabling
The following diagram shows the main examination domain classes:
Figure 3.11. Examination domain class diagram
Notice that we’ve split up the exam concept into an Exam
class and a Topic
class. The Exam
instances change during solving (this is the planning entity class), when their period or room property changes. The Topic
, Period
and Room
instances never change during solving (these are problem facts, just like some other classes).
3.17. Nurse rostering (INRC 2010)
For each shift, assign a nurse to work that shift.
Hard constraints:
- No unassigned shifts (built-in): Every shift need to be assigned to an employee.
- Shift conflict: An employee can have only one shift per day.
Soft constraints:
Contract obligations. The business frequently violates these, so they decided to define these as soft constraints instead of hard constraints.
- Minimum and maximum assignments: Each employee needs to work more than x shifts and less than y shifts (depending on their contract).
- Minimum and maximum consecutive working days: Each employee needs to work between x and y days in a row (depending on their contract).
- Minimum and maximum consecutive free days: Each employee needs to be free between x and y days in a row (depending on their contract).
- Minimum and maximum consecutive working weekends: Each employee needs to work between x and y weekends in a row (depending on their contract).
- Complete weekends: Each employee needs to work every day in a weekend or not at all.
- Identical shift types during weekend: Each weekend shift for the same weekend of the same employee must be the same shift type.
- Unwanted patterns: A combination of unwanted shift types in a row, for example a late shift followed by an early shift followed by a late shift.
Employee wishes:
- Day on request: An employee wants to work on a specific day.
- Day off request: An employee does not want to work on a specific day.
- Shift on request: An employee wants to be assigned to a specific shift.
- Shift off request: An employee does not want to be assigned to a specific shift.
- Alternative skill: An employee assigned to a skill should have a proficiency in every skill required by that shift.
The problem is defined by the International Nurse Rostering Competition 2010.
Figure 3.12. Value proposition
Problem size
There are three dataset types:
- Sprint: must be solved in seconds.
- Medium: must be solved in minutes.
- Long: must be solved in hours.
toy1 has 1 skills, 3 shiftTypes, 2 patterns, 1 contracts, 6 employees, 7 shiftDates, 35 shiftAssignments and 0 requests with a search space of 10^27. toy2 has 1 skills, 3 shiftTypes, 3 patterns, 2 contracts, 20 employees, 28 shiftDates, 180 shiftAssignments and 140 requests with a search space of 10^234. sprint01 has 1 skills, 4 shiftTypes, 3 patterns, 4 contracts, 10 employees, 28 shiftDates, 152 shiftAssignments and 150 requests with a search space of 10^152. sprint02 has 1 skills, 4 shiftTypes, 3 patterns, 4 contracts, 10 employees, 28 shiftDates, 152 shiftAssignments and 150 requests with a search space of 10^152. sprint03 has 1 skills, 4 shiftTypes, 3 patterns, 4 contracts, 10 employees, 28 shiftDates, 152 shiftAssignments and 150 requests with a search space of 10^152. sprint04 has 1 skills, 4 shiftTypes, 3 patterns, 4 contracts, 10 employees, 28 shiftDates, 152 shiftAssignments and 150 requests with a search space of 10^152. sprint05 has 1 skills, 4 shiftTypes, 3 patterns, 4 contracts, 10 employees, 28 shiftDates, 152 shiftAssignments and 150 requests with a search space of 10^152. sprint06 has 1 skills, 4 shiftTypes, 3 patterns, 4 contracts, 10 employees, 28 shiftDates, 152 shiftAssignments and 150 requests with a search space of 10^152. sprint07 has 1 skills, 4 shiftTypes, 3 patterns, 4 contracts, 10 employees, 28 shiftDates, 152 shiftAssignments and 150 requests with a search space of 10^152. sprint08 has 1 skills, 4 shiftTypes, 3 patterns, 4 contracts, 10 employees, 28 shiftDates, 152 shiftAssignments and 150 requests with a search space of 10^152. sprint09 has 1 skills, 4 shiftTypes, 3 patterns, 4 contracts, 10 employees, 28 shiftDates, 152 shiftAssignments and 150 requests with a search space of 10^152. sprint10 has 1 skills, 4 shiftTypes, 3 patterns, 4 contracts, 10 employees, 28 shiftDates, 152 shiftAssignments and 150 requests with a search space of 10^152. sprint_hint01 has 1 skills, 4 shiftTypes, 8 patterns, 3 contracts, 10 employees, 28 shiftDates, 152 shiftAssignments and 150 requests with a search space of 10^152. sprint_hint02 has 1 skills, 4 shiftTypes, 0 patterns, 3 contracts, 10 employees, 28 shiftDates, 152 shiftAssignments and 150 requests with a search space of 10^152. sprint_hint03 has 1 skills, 4 shiftTypes, 8 patterns, 3 contracts, 10 employees, 28 shiftDates, 152 shiftAssignments and 150 requests with a search space of 10^152. sprint_late01 has 1 skills, 4 shiftTypes, 8 patterns, 3 contracts, 10 employees, 28 shiftDates, 152 shiftAssignments and 150 requests with a search space of 10^152. sprint_late02 has 1 skills, 3 shiftTypes, 4 patterns, 3 contracts, 10 employees, 28 shiftDates, 144 shiftAssignments and 139 requests with a search space of 10^144. sprint_late03 has 1 skills, 4 shiftTypes, 8 patterns, 3 contracts, 10 employees, 28 shiftDates, 160 shiftAssignments and 150 requests with a search space of 10^160. sprint_late04 has 1 skills, 4 shiftTypes, 8 patterns, 3 contracts, 10 employees, 28 shiftDates, 160 shiftAssignments and 150 requests with a search space of 10^160. sprint_late05 has 1 skills, 4 shiftTypes, 8 patterns, 3 contracts, 10 employees, 28 shiftDates, 152 shiftAssignments and 150 requests with a search space of 10^152. sprint_late06 has 1 skills, 4 shiftTypes, 0 patterns, 3 contracts, 10 employees, 28 shiftDates, 152 shiftAssignments and 150 requests with a search space of 10^152. sprint_late07 has 1 skills, 4 shiftTypes, 0 patterns, 3 contracts, 10 employees, 28 shiftDates, 152 shiftAssignments and 150 requests with a search space of 10^152. sprint_late08 has 1 skills, 4 shiftTypes, 0 patterns, 3 contracts, 10 employees, 28 shiftDates, 152 shiftAssignments and 0 requests with a search space of 10^152. sprint_late09 has 1 skills, 4 shiftTypes, 0 patterns, 3 contracts, 10 employees, 28 shiftDates, 152 shiftAssignments and 0 requests with a search space of 10^152. sprint_late10 has 1 skills, 4 shiftTypes, 0 patterns, 3 contracts, 10 employees, 28 shiftDates, 152 shiftAssignments and 150 requests with a search space of 10^152. medium01 has 1 skills, 4 shiftTypes, 0 patterns, 4 contracts, 31 employees, 28 shiftDates, 608 shiftAssignments and 403 requests with a search space of 10^906. medium02 has 1 skills, 4 shiftTypes, 0 patterns, 4 contracts, 31 employees, 28 shiftDates, 608 shiftAssignments and 403 requests with a search space of 10^906. medium03 has 1 skills, 4 shiftTypes, 0 patterns, 4 contracts, 31 employees, 28 shiftDates, 608 shiftAssignments and 403 requests with a search space of 10^906. medium04 has 1 skills, 4 shiftTypes, 0 patterns, 4 contracts, 31 employees, 28 shiftDates, 608 shiftAssignments and 403 requests with a search space of 10^906. medium05 has 1 skills, 4 shiftTypes, 0 patterns, 4 contracts, 31 employees, 28 shiftDates, 608 shiftAssignments and 403 requests with a search space of 10^906. medium_hint01 has 1 skills, 4 shiftTypes, 7 patterns, 4 contracts, 30 employees, 28 shiftDates, 428 shiftAssignments and 390 requests with a search space of 10^632. medium_hint02 has 1 skills, 4 shiftTypes, 7 patterns, 3 contracts, 30 employees, 28 shiftDates, 428 shiftAssignments and 390 requests with a search space of 10^632. medium_hint03 has 1 skills, 4 shiftTypes, 7 patterns, 4 contracts, 30 employees, 28 shiftDates, 428 shiftAssignments and 390 requests with a search space of 10^632. medium_late01 has 1 skills, 4 shiftTypes, 7 patterns, 4 contracts, 30 employees, 28 shiftDates, 424 shiftAssignments and 390 requests with a search space of 10^626. medium_late02 has 1 skills, 4 shiftTypes, 7 patterns, 3 contracts, 30 employees, 28 shiftDates, 428 shiftAssignments and 390 requests with a search space of 10^632. medium_late03 has 1 skills, 4 shiftTypes, 0 patterns, 4 contracts, 30 employees, 28 shiftDates, 428 shiftAssignments and 390 requests with a search space of 10^632. medium_late04 has 1 skills, 4 shiftTypes, 7 patterns, 3 contracts, 30 employees, 28 shiftDates, 416 shiftAssignments and 390 requests with a search space of 10^614. medium_late05 has 2 skills, 5 shiftTypes, 7 patterns, 4 contracts, 30 employees, 28 shiftDates, 452 shiftAssignments and 390 requests with a search space of 10^667. long01 has 2 skills, 5 shiftTypes, 3 patterns, 3 contracts, 49 employees, 28 shiftDates, 740 shiftAssignments and 735 requests with a search space of 10^1250. long02 has 2 skills, 5 shiftTypes, 3 patterns, 3 contracts, 49 employees, 28 shiftDates, 740 shiftAssignments and 735 requests with a search space of 10^1250. long03 has 2 skills, 5 shiftTypes, 3 patterns, 3 contracts, 49 employees, 28 shiftDates, 740 shiftAssignments and 735 requests with a search space of 10^1250. long04 has 2 skills, 5 shiftTypes, 3 patterns, 3 contracts, 49 employees, 28 shiftDates, 740 shiftAssignments and 735 requests with a search space of 10^1250. long05 has 2 skills, 5 shiftTypes, 3 patterns, 3 contracts, 49 employees, 28 shiftDates, 740 shiftAssignments and 735 requests with a search space of 10^1250. long_hint01 has 2 skills, 5 shiftTypes, 9 patterns, 3 contracts, 50 employees, 28 shiftDates, 740 shiftAssignments and 0 requests with a search space of 10^1257. long_hint02 has 2 skills, 5 shiftTypes, 7 patterns, 3 contracts, 50 employees, 28 shiftDates, 740 shiftAssignments and 0 requests with a search space of 10^1257. long_hint03 has 2 skills, 5 shiftTypes, 7 patterns, 3 contracts, 50 employees, 28 shiftDates, 740 shiftAssignments and 0 requests with a search space of 10^1257. long_late01 has 2 skills, 5 shiftTypes, 9 patterns, 3 contracts, 50 employees, 28 shiftDates, 752 shiftAssignments and 0 requests with a search space of 10^1277. long_late02 has 2 skills, 5 shiftTypes, 9 patterns, 4 contracts, 50 employees, 28 shiftDates, 752 shiftAssignments and 0 requests with a search space of 10^1277. long_late03 has 2 skills, 5 shiftTypes, 9 patterns, 3 contracts, 50 employees, 28 shiftDates, 752 shiftAssignments and 0 requests with a search space of 10^1277. long_late04 has 2 skills, 5 shiftTypes, 9 patterns, 4 contracts, 50 employees, 28 shiftDates, 752 shiftAssignments and 0 requests with a search space of 10^1277. long_late05 has 2 skills, 5 shiftTypes, 9 patterns, 3 contracts, 50 employees, 28 shiftDates, 740 shiftAssignments and 0 requests with a search space of 10^1257.
Figure 3.13. Domain model
3.18. Traveling tournament problem (TTP)
Schedule matches between n number of teams.
Hard constraints:
- Each team plays twice against every other team: once home and once away.
- Each team has exactly one match on each timeslot.
- No team must have more than three consecutive home or three consecutive away matches.
- No repeaters: no two consecutive matches of the same two opposing teams.
Soft constraints:
- Minimize the total distance traveled by all teams.
The problem is defined on Michael Trick’s website (which contains the world records too).
Problem size
1-nl04 has 6 days, 4 teams and 12 matches with a search space of 10^5. 1-nl06 has 10 days, 6 teams and 30 matches with a search space of 10^19. 1-nl08 has 14 days, 8 teams and 56 matches with a search space of 10^43. 1-nl10 has 18 days, 10 teams and 90 matches with a search space of 10^79. 1-nl12 has 22 days, 12 teams and 132 matches with a search space of 10^126. 1-nl14 has 26 days, 14 teams and 182 matches with a search space of 10^186. 1-nl16 has 30 days, 16 teams and 240 matches with a search space of 10^259. 2-bra24 has 46 days, 24 teams and 552 matches with a search space of 10^692. 3-nfl16 has 30 days, 16 teams and 240 matches with a search space of 10^259. 3-nfl18 has 34 days, 18 teams and 306 matches with a search space of 10^346. 3-nfl20 has 38 days, 20 teams and 380 matches with a search space of 10^447. 3-nfl22 has 42 days, 22 teams and 462 matches with a search space of 10^562. 3-nfl24 has 46 days, 24 teams and 552 matches with a search space of 10^692. 3-nfl26 has 50 days, 26 teams and 650 matches with a search space of 10^838. 3-nfl28 has 54 days, 28 teams and 756 matches with a search space of 10^999. 3-nfl30 has 58 days, 30 teams and 870 matches with a search space of 10^1175. 3-nfl32 has 62 days, 32 teams and 992 matches with a search space of 10^1367. 4-super04 has 6 days, 4 teams and 12 matches with a search space of 10^5. 4-super06 has 10 days, 6 teams and 30 matches with a search space of 10^19. 4-super08 has 14 days, 8 teams and 56 matches with a search space of 10^43. 4-super10 has 18 days, 10 teams and 90 matches with a search space of 10^79. 4-super12 has 22 days, 12 teams and 132 matches with a search space of 10^126. 4-super14 has 26 days, 14 teams and 182 matches with a search space of 10^186. 5-galaxy04 has 6 days, 4 teams and 12 matches with a search space of 10^5. 5-galaxy06 has 10 days, 6 teams and 30 matches with a search space of 10^19. 5-galaxy08 has 14 days, 8 teams and 56 matches with a search space of 10^43. 5-galaxy10 has 18 days, 10 teams and 90 matches with a search space of 10^79. 5-galaxy12 has 22 days, 12 teams and 132 matches with a search space of 10^126. 5-galaxy14 has 26 days, 14 teams and 182 matches with a search space of 10^186. 5-galaxy16 has 30 days, 16 teams and 240 matches with a search space of 10^259. 5-galaxy18 has 34 days, 18 teams and 306 matches with a search space of 10^346. 5-galaxy20 has 38 days, 20 teams and 380 matches with a search space of 10^447. 5-galaxy22 has 42 days, 22 teams and 462 matches with a search space of 10^562. 5-galaxy24 has 46 days, 24 teams and 552 matches with a search space of 10^692. 5-galaxy26 has 50 days, 26 teams and 650 matches with a search space of 10^838. 5-galaxy28 has 54 days, 28 teams and 756 matches with a search space of 10^999. 5-galaxy30 has 58 days, 30 teams and 870 matches with a search space of 10^1175. 5-galaxy32 has 62 days, 32 teams and 992 matches with a search space of 10^1367. 5-galaxy34 has 66 days, 34 teams and 1122 matches with a search space of 10^1576. 5-galaxy36 has 70 days, 36 teams and 1260 matches with a search space of 10^1801. 5-galaxy38 has 74 days, 38 teams and 1406 matches with a search space of 10^2042. 5-galaxy40 has 78 days, 40 teams and 1560 matches with a search space of 10^2301.
3.19. Cheap time scheduling
Schedule all tasks in time and on a machine to minimize power cost. Power prices differ in time. This is a form of job shop scheduling.
Hard constraints:
- Start time limits: Each task must start between its earliest start and latest start limit.
- Maximum capacity: The maximum capacity for each resource for each machine must not be exceeded.
- Startup and shutdown: Each machine must be active in the periods during which it has assigned tasks. Between tasks it is allowed to be idle to avoid startup and shutdown costs.
Medium constraints:
Power cost: Minimize the total power cost of the whole schedule.
- Machine power cost: Each active or idle machine consumes power, which infers a power cost (depending on the power price during that time).
- Task power cost: Each task consumes power too, which infers a power cost (depending on the power price during its time).
- Machine startup and shutdown cost: Every time a machine starts up or shuts down, an extra cost is incurred.
Soft constraints (addendum to the original problem definition):
- Start early: Prefer starting a task sooner rather than later.
The problem is defined by the ICON challenge.
Problem size
sample01 has 3 resources, 2 machines, 288 periods and 25 tasks with a search space of 10^53. sample02 has 3 resources, 2 machines, 288 periods and 50 tasks with a search space of 10^114. sample03 has 3 resources, 2 machines, 288 periods and 100 tasks with a search space of 10^226. sample04 has 3 resources, 5 machines, 288 periods and 100 tasks with a search space of 10^266. sample05 has 3 resources, 2 machines, 288 periods and 250 tasks with a search space of 10^584. sample06 has 3 resources, 5 machines, 288 periods and 250 tasks with a search space of 10^673. sample07 has 3 resources, 2 machines, 288 periods and 1000 tasks with a search space of 10^2388. sample08 has 3 resources, 5 machines, 288 periods and 1000 tasks with a search space of 10^2748. sample09 has 4 resources, 20 machines, 288 periods and 2000 tasks with a search space of 10^6668. instance00 has 1 resources, 10 machines, 288 periods and 200 tasks with a search space of 10^595. instance01 has 1 resources, 10 machines, 288 periods and 200 tasks with a search space of 10^599. instance02 has 1 resources, 10 machines, 288 periods and 200 tasks with a search space of 10^599. instance03 has 1 resources, 10 machines, 288 periods and 200 tasks with a search space of 10^591. instance04 has 1 resources, 10 machines, 288 periods and 200 tasks with a search space of 10^590. instance05 has 2 resources, 25 machines, 288 periods and 200 tasks with a search space of 10^667. instance06 has 2 resources, 25 machines, 288 periods and 200 tasks with a search space of 10^660. instance07 has 2 resources, 25 machines, 288 periods and 200 tasks with a search space of 10^662. instance08 has 2 resources, 25 machines, 288 periods and 200 tasks with a search space of 10^651. instance09 has 2 resources, 25 machines, 288 periods and 200 tasks with a search space of 10^659. instance10 has 2 resources, 20 machines, 288 periods and 500 tasks with a search space of 10^1657. instance11 has 2 resources, 20 machines, 288 periods and 500 tasks with a search space of 10^1644. instance12 has 2 resources, 20 machines, 288 periods and 500 tasks with a search space of 10^1637. instance13 has 2 resources, 20 machines, 288 periods and 500 tasks with a search space of 10^1659. instance14 has 2 resources, 20 machines, 288 periods and 500 tasks with a search space of 10^1643. instance15 has 3 resources, 40 machines, 288 periods and 500 tasks with a search space of 10^1782. instance16 has 3 resources, 40 machines, 288 periods and 500 tasks with a search space of 10^1778. instance17 has 3 resources, 40 machines, 288 periods and 500 tasks with a search space of 10^1764. instance18 has 3 resources, 40 machines, 288 periods and 500 tasks with a search space of 10^1769. instance19 has 3 resources, 40 machines, 288 periods and 500 tasks with a search space of 10^1778. instance20 has 3 resources, 50 machines, 288 periods and 1000 tasks with a search space of 10^3689. instance21 has 3 resources, 50 machines, 288 periods and 1000 tasks with a search space of 10^3678. instance22 has 3 resources, 50 machines, 288 periods and 1000 tasks with a search space of 10^3706. instance23 has 3 resources, 50 machines, 288 periods and 1000 tasks with a search space of 10^3676. instance24 has 3 resources, 50 machines, 288 periods and 1000 tasks with a search space of 10^3681. instance25 has 3 resources, 60 machines, 288 periods and 1000 tasks with a search space of 10^3774. instance26 has 3 resources, 60 machines, 288 periods and 1000 tasks with a search space of 10^3737. instance27 has 3 resources, 60 machines, 288 periods and 1000 tasks with a search space of 10^3744. instance28 has 3 resources, 60 machines, 288 periods and 1000 tasks with a search space of 10^3731. instance29 has 3 resources, 60 machines, 288 periods and 1000 tasks with a search space of 10^3746. instance30 has 4 resources, 70 machines, 288 periods and 2000 tasks with a search space of 10^7718. instance31 has 4 resources, 70 machines, 288 periods and 2000 tasks with a search space of 10^7740. instance32 has 4 resources, 70 machines, 288 periods and 2000 tasks with a search space of 10^7686. instance33 has 4 resources, 70 machines, 288 periods and 2000 tasks with a search space of 10^7672. instance34 has 4 resources, 70 machines, 288 periods and 2000 tasks with a search space of 10^7695. instance35 has 4 resources, 80 machines, 288 periods and 2000 tasks with a search space of 10^7807. instance36 has 4 resources, 80 machines, 288 periods and 2000 tasks with a search space of 10^7814. instance37 has 4 resources, 80 machines, 288 periods and 2000 tasks with a search space of 10^7764. instance38 has 4 resources, 80 machines, 288 periods and 2000 tasks with a search space of 10^7736. instance39 has 4 resources, 80 machines, 288 periods and 2000 tasks with a search space of 10^7783. instance40 has 4 resources, 90 machines, 288 periods and 4000 tasks with a search space of 10^15976. instance41 has 4 resources, 90 machines, 288 periods and 4000 tasks with a search space of 10^15935. instance42 has 4 resources, 90 machines, 288 periods and 4000 tasks with a search space of 10^15887. instance43 has 4 resources, 90 machines, 288 periods and 4000 tasks with a search space of 10^15896. instance44 has 4 resources, 90 machines, 288 periods and 4000 tasks with a search space of 10^15885. instance45 has 4 resources, 100 machines, 288 periods and 5000 tasks with a search space of 10^20173. instance46 has 4 resources, 100 machines, 288 periods and 5000 tasks with a search space of 10^20132. instance47 has 4 resources, 100 machines, 288 periods and 5000 tasks with a search space of 10^20126. instance48 has 4 resources, 100 machines, 288 periods and 5000 tasks with a search space of 10^20110. instance49 has 4 resources, 100 machines, 288 periods and 5000 tasks with a search space of 10^20078.
3.20. Investment asset class allocation (Portfolio Optimization)
Decide the relative quantity to invest in each asset class.
Hard constraints:
Risk maximum: the total standard deviation must not be higher than the standard deviation maximum.
- Total standard deviation calculation takes asset class correlations into account by applying Markowitz Portfolio Theory.
- Region maximum: Each region has a quantity maximum.
- Sector maximum: Each sector has a quantity maximum.
Soft constraints:
- Maximize expected return.
Problem size
de_smet_1 has 1 regions, 3 sectors and 11 asset classes with a search space of 10^4. irrinki_1 has 2 regions, 3 sectors and 6 asset classes with a search space of 10^3.
Larger datasets have not been created or tested yet, but should not pose a problem. A good source of data is this Asset Correlation website.
3.21. Conference scheduling
Assign each conference talk to a timeslot and a room. Timeslots can overlap. Read and write to and from an *.xlsx
file that can be edited with LibreOffice or Excel.
Hard constraints:
- Talk type of timeslot: The type of a talk must match the timeslot’s talk type.
- Room unavailable timeslots: A talk’s room must be available during the talk’s timeslot.
- Room conflict: Two talks can’t use the same room during overlapping timeslots.
- Speaker unavailable timeslots: Every talk’s speaker must be available during the talk’s timeslot.
- Speaker conflict: Two talks can’t share a speaker during overlapping timeslots.
Generic purpose timeslot and room tags:
- Speaker required timeslot tag: If a speaker has a required timeslot tag, then all of his or her talks must be assigned to a timeslot with that tag.
- Speaker prohibited timeslot tag: If a speaker has a prohibited timeslot tag, then all of his or her talks cannot be assigned to a timeslot with that tag.
- Talk required timeslot tag: If a talk has a required timeslot tag, then it must be assigned to a timeslot with that tag.
- Talk prohibited timeslot tag: If a talk has a prohibited timeslot tag, then it cannot be assigned to a timeslot with that tag.
- Speaker required room tag: If a speaker has a required room tag, then all of his or her talks must be assigned to a room with that tag.
- Speaker prohibited room tag: If a speaker has a prohibited room tag, then all of his or her talks cannot be assigned to a room with that tag.
- Talk required room tag: If a talk has a required room tag, then it must be assigned to a room with that tag.
- Talk prohibited room tag: If a talk has a prohibited room tag, then it cannot be assigned to a room with that tag.
- Talk mutually-exclusive-talks tag: Talks that share such a tag must not be scheduled in overlapping timeslots.
- Talk prerequisite talks: A talk must be scheduled after all its prerequisite talks.
Soft constraints:
- Theme track conflict: Minimize the number of talks that share a theme tag during overlapping timeslots.
- Sector conflict: Minimize the number of talks that share a same sector tag during overlapping timeslots.
- Content audience level flow violation: For every content tag, schedule the introductory talks before the advanced talks.
- Audience level diversity: For every timeslot, maximize the number of talks with a different audience level.
- Language diversity: For every timeslot, maximize the number of talks with a different language.
Generic purpose timeslot and room tags:
- Speaker preferred timeslot tag: If a speaker has a preferred timeslot tag, then all of his or her talks should be assigned to a timeslot with that tag.
- Speaker undesired timeslot tag: If a speaker has an undesired timeslot tag, then none of his or her talks should be assigned to a timeslot with that tag.
- Talk preferred timeslot tag: If a talk has a preferred timeslot tag, then it should be assigned to a timeslot with that tag.
- Talk undesired timeslot tag: If a talk has an undesired timeslot tag, then it should not be assigned to a timeslot with that tag.
- Speaker preferred room tag: If a speaker has a preferred room tag, then all of his or her talks should be assigned to a room with that tag.
- Speaker undesired room tag: If a speaker has an undesired room tag, then none of his or her talks should be assigned to a room with that tag.
- Talk preferred room tag: If a talk has a preferred room tag, then it should be assigned to a room with that tag.
- Talk undesired room tag: If a talk has an undesired room tag, then it should not be assigned to a room with that tag.
- Same day talks: All talks that share a theme tag or content tag should be scheduled in the minimum number of days (ideally in the same day).
Figure 3.14. Value proposition
Problem size
18talks-6timeslots-5rooms has 18 talks, 6 timeslots and 5 rooms with a search space of 10^26. 36talks-12timeslots-5rooms has 36 talks, 12 timeslots and 5 rooms with a search space of 10^64. 72talks-12timeslots-10rooms has 72 talks, 12 timeslots and 10 rooms with a search space of 10^149. 108talks-18timeslots-10rooms has 108 talks, 18 timeslots and 10 rooms with a search space of 10^243. 216talks-18timeslots-20rooms has 216 talks, 18 timeslots and 20 rooms with a search space of 10^552.
3.22. Rock tour
Drive the rock bank bus from show to show, but schedule shows only on available days.
Hard constraints:
- Schedule every required show.
- Schedule as many shows as possible.
Medium constraints:
- Maximize revenue opportunity.
- Minimize driving time.
- Visit sooner than later.
Soft constraints:
- Avoid long driving times.
Problem size
47shows has 47 shows with a search space of 10^59.
3.23. Flight crew scheduling
Assign flights to pilots and flight attendants.
Hard constraints:
- Required skill: each flight assignment has a required skill. For example, flight AB0001 requires 2 pilots and 3 flight attendants.
- Flight conflict: each employee can only attend one flight at the same time
- Transfer between two flights: between two flights, an employee must be able to transfer from the arrival airport to the departure airport. For example, Ann arrives in Brussels at 10:00 and departs in Amsterdam at 15:00.
- Employee unavailability: the employee must be available on the day of the flight. For example, Ann is on PTO on 1-Feb.
Soft constraints:
- First assignment departing from home
- Last assignment arriving at home
- Load balance flight duration total per employee
Problem size
175flights-7days-Europe has 2 skills, 50 airports, 150 employees, 175 flights and 875 flight assignments with a search space of 10^1904. 700flights-28days-Europe has 2 skills, 50 airports, 150 employees, 700 flights and 3500 flight assignments with a search space of 10^7616. 875flights-7days-Europe has 2 skills, 50 airports, 750 employees, 875 flights and 4375 flight assignments with a search space of 10^12578. 175flights-7days-US has 2 skills, 48 airports, 150 employees, 175 flights and 875 flight assignments with a search space of 10^1904.
Chapter 4. Downloading Red Hat build of OptaPlanner examples
You can download the Red Hat build of OptaPlanner examples as a part of the {PRODUCTPAM} add-ons package available on the Red Hat Customer Portal.
Procedure
Navigate to the Software Downloads page in the Red Hat Customer Portal (login required), and select the product and version from the drop-down options:
- Product: Process Automation Manager
- Version: 7.13.5
- Download Red Hat Process Automation Manager 7.13 Add Ons.
-
Extract the
rhpam-7.13.5-add-ons.zip
file. The extractedadd-ons
folder contains therhpam-7.13.5-planner-engine.zip
file. -
Extract the
rhpam-7.13.5-planner-engine.zip
file.
Result
The extracted rhpam-7.13.5-planner-engine
directory contains example source code under the following subdirectories:
-
examples/sources/src/main/java/org/optaplanner/examples
-
examples/sources/src/main/resources/org/optaplanner/examples
4.1. Running OptaPlanner examples
Red Hat build of OptaPlanner includes several examples that demonstrate a variety of planning use cases. Download and use the examples to explore different types of planning solutions.
Prerequisites
- You have downloaded and extracted the examples as described in Chapter 4, Downloading Red Hat build of OptaPlanner examples.
Procedure
To run the examples, in the
rhpam-7.13.5-planner-engine/examples
directory enter one of the following commands:Linux or Mac:
$ ./runExamples.sh
Windows:
$ runExamples.bat
The OptaPlanner Examples window opens.
- Select an example to run that example.
Red Hat build of OptaPlanner has no GUI dependencies. It runs just as well on a server or a mobile JVM as it does on the desktop.
4.2. Running the Red Hat build of OptaPlanner examples in an IDE (IntelliJ, Eclipse, or Netbeans)
If you use an integrated development environment (IDE), such as IntelliJ, Eclipse, or Netbeans, you can run your downloaded OptaPlanner examples within your development environment.
Prerequisites
- You have downloaded and extracted the OptaPlanner examples as described in Chapter 4, Downloading Red Hat build of OptaPlanner examples.
Procedure
Open the OptaPlanner examples as a new project:
-
For IntelliJ or Netbeans, open
examples/sources/pom.xml
as the new project. The Maven integration guides you through the rest of the installation. Skip the rest of the steps in this procedure. -
For Eclipse, open a new project for the
/examples/binaries
directory, located under therhpam-7.13.5-planner-engine
directory.
-
For IntelliJ or Netbeans, open
-
Add all the JAR files that are in the
binaries
directory to the classpath, except for theexamples/binaries/optaplanner-examples-7.67.0.Final-redhat-00024.jar
file. -
Add the Java source directory
src/main/java
and the Java resources directorysrc/main/resources
, located under therhpam-7.13.5-planner-engine/examples/sources/
directory. Create a run configuration:
-
Main class:
org.optaplanner.examples.app.OptaPlannerExamplesApp
-
VM parameters (optional):
-Xmx512M -server -Dorg.optaplanner.examples.dataDir=examples/sources/data
-
Working directory:
examples/sources
-
Main class:
- Run the run configuration.
Chapter 5. Getting started with OptaPlanner in Business Central: An employee rostering example
You can build and deploy the employee-rostering
sample project in Business Central. The project demonstrates how to create each of the Business Central assets required to solve the shift rostering planning problem and use Red Hat build of OptaPlanner to find the best possible solution.
You can deploy the preconfigured employee-rostering
project in Business Central. Alternatively, you can create the project yourself using Business Central.
The employee-rostering
sample project in Business Central does not include a data set. You must supply a data set in XML format using a REST API call.
5.1. Deploying the employee rostering sample project in Business Central
Business Central includes a number of sample projects that you can use to get familiar with the product and its features. The employee rostering sample project is designed and created to demonstrate the shift rostering use case for Red Hat build of OptaPlanner. Use the following procedure to deploy and run the employee rostering sample in Business Central.
Prerequisites
- Red Hat Process Automation Manager has been downloaded and installed. For installation options, see Planning a Red Hat Process Automation Manager installation.
-
You have started Red Hat Process Automation Manager, as described the installation documentation, and you are logged in to Business Central as a user with
admin
permissions.
Procedure
- In Business Central, click Menu → Design → Projects.
-
In the preconfigured
MySpace
space, click Try Samples. - Select employee-rostering from the list of sample projects and click Ok in the upper-right corner to import the project.
- After the asset list has complied, click Build & Deploy to deploy the employee rostering example.
The rest of this document explains each of the project assets and their configuration.
5.2. Re-creating the employee rostering sample project
The employee rostering sample project is a preconfigured project available in Business Central. You can learn about how to deploy this project in Section 5.1, “Deploying the employee rostering sample project in Business Central”.
You can create the employee rostering example "from scratch". You can use the workflow in this example to create a similar project of your own in Business Central.
5.2.1. Setting up the employee rostering project
To start developing a solver in Business Central, you must set up the project.
Prerequisites
- Red Hat Process Automation Manager has been downloaded and installed.
-
You have deployed Business Central and logged in with a user that has the
admin
role.
Procedure
- Create a new project in Business Central by clicking Menu → Design → Projects → Add Project.
In the Add Project window, fill out the following fields:
-
Name:
employee-rostering
- Description(optional): Employee rostering problem optimization using OptaPlanner. Assigns employees to shifts based on their skill.
Optional: Click Configure Advanced Options to populate the
Group ID
,Artifact ID
, andVersion
information.-
Group ID:
employeerostering
-
Artifact ID:
employeerostering
-
Version:
1.0.0-SNAPSHOT
-
Name:
- Click Add to add the project to the Business Central project repository.
5.2.2. Problem facts and planning entities
Each of the domain classes in the employee rostering planning problem is categorized as one of the following:
- An unrelated class: not used by any of the score constraints. From a planning standpoint, this data is obsolete.
-
A problem fact class: used by the score constraints, but does not change during planning (as long as the problem stays the same), for example,
Shift
andEmployee
. All the properties of a problem fact class are problem properties. A planning entity class: used by the score constraints and changes during planning, for example,
ShiftAssignment
. The properties that change during planning are planning variables. The other properties are problem properties.Ask yourself the following questions:
- What class changes during planning?
Which class has variables that I want the
Solver
to change?That class is a planning entity.
A planning entity class needs to be annotated with the
@PlanningEntity
annotation, or defined in Business Central using the Red Hat build of OptaPlanner dock in the domain designer.Each planning entity class has one or more planning variables, and must also have one or more defining properties.
Most use cases have only one planning entity class, and only one planning variable per planning entity class.
5.2.3. Creating the data model for the employee rostering project
Use this section to create the data objects required to run the employee rostering sample project in Business Central.
Prerequisites
- You have completed the project setup described in Section 5.2.1, “Setting up the employee rostering project”.
Procedure
- With your new project, either click Data Object in the project perspective, or click Add Asset → Data Object to create a new data object.
Name the first data object
Timeslot
, and selectemployeerostering.employeerostering
as the Package.Click Ok.
-
In the Data Objects perspective, click +add field to add fields to the
Timeslot
data object. -
In the id field, type
endTime
. -
Click the drop-down menu next to Type and select
LocalDateTime
. - Click Create and continue to add another field.
-
Add another field with the id
startTime
and TypeLocalDateTime
. - Click Create.
-
Click Save in the upper-right corner to save the
Timeslot
data object. - Click the x in the upper-right corner to close the Data Objects perspective and return to the Assets menu.
Using the previous steps, create the following data objects and their attributes:
Table 5.1. Skill id Type name
String
Table 5.2. Employee id Type name
String
skills
employeerostering.employeerostering.Skill[List]
Table 5.3. Shift id Type requiredSkill
employeerostering.employeerostering.Skill
timeslot
employeerostering.employeerostering.Timeslot
Table 5.4. DayOffRequest id Type date
LocalDate
employee
employeerostering.employeerostering.Employee
Table 5.5. ShiftAssignment id Type employee
employeerostering.employeerostering.Employee
shift
employeerostering.employeerostering.Shift
For more examples of creating data objects, see Getting started with decision services.
5.2.3.1. Creating the employee roster planning entity
In order to solve the employee rostering planning problem, you must create a planning entity and a solver. The planning entity is defined in the domain designer using the attributes available in the Red Hat build of OptaPlanner dock.
Use the following procedure to define the ShiftAssignment
data object as the planning entity for the employee rostering example.
Prerequisites
- You have created the relevant data objects and planning entity required to run the employee rostering example by completing the procedures in Section 5.2.3, “Creating the data model for the employee rostering project”.
Procedure
-
From the project Assets menu, open the
ShiftAssignment
data object. - In the Data Objects perspective, open the OptaPlanner dock by clicking the on the right.
- Select Planning Entity.
-
Select
employee
from the list of fields under theShiftAssignment
data object. In the OptaPlanner dock, select Planning Variable.
In the Value Range Id input field, type
employeeRange
. This adds the@ValueRangeProvider
annotation to the planning entity, which you can view by clicking theSource
tab in the designer.The value range of a planning variable is defined with the
@ValueRangeProvider
annotation. A@ValueRangeProvider
annotation always has a propertyid
, which is referenced by the@PlanningVariable
propertyvalueRangeProviderRefs
.- Close the dock and click Save to save the data object.
5.2.3.2. Creating the employee roster planning solution
The employee roster problem relies on a defined planning solution. The planning solution is defined in the domain designer using the attributes available in the Red Hat build of OptaPlanner dock.
Prerequisites
- You have created the relevant data objects and planning entity required to run the employee rostering example by completing the procedures in Section 5.2.3, “Creating the data model for the employee rostering project” and Section 5.2.3.1, “Creating the employee roster planning entity”.
Procedure
-
Create a new data object with the identifier
EmployeeRoster
. Create the following fields:
Table 5.6. EmployeeRoster id Type dayOffRequestList
employeerostering.employeerostering.DayOffRequest[List]
shiftAssignmentList
employeerostering.employeerostering.ShiftAssignment[List]
shiftList
employeerostering.employeerostering.Shift[List]
skillList
employeerostering.employeerostering.Skill[List]
timeslotList
employeerostering.employeerostering.Timeslot[List]
- In the Data Objects perspective, open the OptaPlanner dock by clicking the on the right.
- Select Planning Solution.
-
Leave the default
Hard soft score
as the Solution Score Type. This automatically generates ascore
field in theEmployeeRoster
data object with the solution score as the type. Add a new field with the following attributes:
id Type employeeList
employeerostering.employeerostering.Employee[List]
With the
employeeList
field selected, open the OptaPlanner dock and select the Planning Value Range Provider box.In the id field, type
employeeRange
. Close the dock.- Click Save in the upper-right corner to save the asset.
5.2.4. Employee rostering constraints
Employee rostering is a planning problem. All planning problems include constraints that must be satisfied in order to find an optimal solution.
The employee rostering sample project in Business Central includes the following hard and soft constraints:
- Hard constraint
- Employees are only assigned one shift per day.
- All shifts that require a particular employee skill are assigned an employee with that particular skill.
- Soft constraints
- All employees are assigned a shift.
- If an employee requests a day off, their shift is reassigned to another employee.
Hard and soft constraints are defined in Business Central using either the free-form DRL designer, or using guided rules.
5.2.4.1. DRL (Drools Rule Language) rules
DRL (Drools Rule Language) rules are business rules that you define directly in .drl
text files. These DRL files are the source in which all other rule assets in Business Central are ultimately rendered. You can create and manage DRL files within the Business Central interface, or create them externally as part of a Maven or Java project using Red Hat CodeReady Studio or another integrated development environment (IDE). A DRL file can contain one or more rules that define at a minimum the rule conditions (when
) and actions (then
). The DRL designer in Business Central provides syntax highlighting for Java, DRL, and XML.
DRL files consist of the following components:
Components in a DRL file
package import function // Optional query // Optional declare // Optional global // Optional rule "rule name" // Attributes when // Conditions then // Actions end rule "rule2 name" ...
The following example DRL rule determines the age limit in a loan application decision service:
Example rule for loan application age limit
rule "Underage" salience 15 agenda-group "applicationGroup" when $application : LoanApplication() Applicant( age < 21 ) then $application.setApproved( false ); $application.setExplanation( "Underage" ); end
A DRL file can contain single or multiple rules, queries, and functions, and can define resource declarations such as imports, globals, and attributes that are assigned and used by your rules and queries. The DRL package must be listed at the top of a DRL file and the rules are typically listed last. All other DRL components can follow any order.
Each rule must have a unique name within the rule package. If you use the same rule name more than once in any DRL file in the package, the rules fail to compile. Always enclose rule names with double quotation marks (rule "rule name"
) to prevent possible compilation errors, especially if you use spaces in rule names.
All data objects related to a DRL rule must be in the same project package as the DRL file in Business Central. Assets in the same package are imported by default. Existing assets in other packages can be imported with the DRL rule.
5.2.4.2. Defining constraints for employee rostering using the DRL designer
You can create constraint definitions for the employee rostering example using the free-form DRL designer in Business Central.
Use this procedure to create a hard constraint where no employee is assigned a shift that begins less than 10 hours after their previous shift ended.
Procedure
- In Business Central, go to Menu → Design → Projects and click the project name.
- Click Add Asset → DRL file.
-
In the DRL file name field, type
ComplexScoreRules
. -
Select the
employeerostering.employeerostering
package. - Click +Ok to create the DRL file.
In the Model tab of the DRL designer, define the
Employee10HourShiftSpace
rule as a DRL file:package employeerostering.employeerostering; rule "Employee10HourShiftSpace" when $shiftAssignment : ShiftAssignment( $employee : employee != null, $shiftEndDateTime : shift.timeslot.endTime) ShiftAssignment( this != $shiftAssignment, $employee == employee, $shiftEndDateTime <= shift.timeslot.endTime, $shiftEndDateTime.until(shift.timeslot.startTime, java.time.temporal.ChronoUnit.HOURS) <10) then scoreHolder.addHardConstraintMatch(kcontext, -1); end
- Click Save to save the DRL file.
For more information about creating DRL files, see Designing a decision service using DRL rules.
5.2.5. Creating rules for employee rostering using guided rules
You can create rules that define hard and soft constraints for employee rostering using the guided rules designer in Business Central.
5.2.5.1. Guided rules
Guided rules are business rules that you create in a UI-based guided rules designer in Business Central that leads you through the rule-creation process. The guided rules designer provides fields and options for acceptable input based on the data objects for the rule being defined. The guided rules that you define are compiled into Drools Rule Language (DRL) rules as with all other rule assets.
All data objects related to a guided rule must be in the same project package as the guided rule. Assets in the same package are imported by default. After you create the necessary data objects and the guided rule, you can use the Data Objects tab of the guided rules designer to verify that all required data objects are listed or to import other existing data objects by adding a New item.
5.2.5.2. Creating a guided rule to balance employee shift numbers
The BalanceEmployeesShiftNumber
guided rule creates a soft constraint that ensures shifts are assigned to employees in a way that is balanced as evenly as possible. It does this by creating a score penalty that increases when shift distribution is less even. The score formula, implemented by the rule, incentivizes the Solver to distribute shifts in a more balanced way.
Procedure
- In Business Central, go to Menu → Design → Projects and click the project name.
- Click Add Asset → Guided Rule.
-
Enter
BalanceEmployeesShiftNumber
as the Guided Rule name and select theemployeerostering.employeerostering
Package. - Click Ok to create the rule asset.
- Add a WHEN condition by clicking the in the WHEN field.
-
Select
Employee
in the Add a condition to the rule window. Click +Ok. -
Click the
Employee
condition to modify the constraints and add the variable name$employee
. Add the WHEN condition
From Accumulate
.-
Above the
From Accumulate
condition, click click to add pattern and selectNumber
as the fact type from the drop-down list. -
Add the variable name
$shiftCount
to theNumber
condition. -
Below the
From Accumulate
condition, click click to add pattern and select theShiftAssignment
fact type from the drop-down list. -
Add the variable name
$shiftAssignment
to theShiftAssignment
fact type. -
Click the
ShiftAssignment
condition again and from the Add a restriction on a field drop-down list, selectemployee
. -
Select
equal to
from the drop-down list next to theemployee
constraint. - Click the icon next to the drop-down button to add a variable, and click Bound variable in the Field value window.
-
Select
$employee
from the drop-down list. -
In the Function box type
count($shiftAssignment)
.
-
Above the
- Add the THEN condition by clicking the in the THEN field.
Select
Modify Soft Score
in the Add a new action window. Click +Ok.-
Type the following expression into the box:
-($shiftCount.intValue()*$shiftCount.intValue())
-
Type the following expression into the box:
- Click Validate in the upper-right corner to check all rule conditions are valid. If the rule validation fails, address any problems described in the error message, review all components in the rule, and try again to validate the rule until the rule passes.
- Click Save to save the rule.
For more information about creating guided rules, see Designing a decision service using guided rules.
5.2.5.3. Creating a guided rule for no more than one shift per day
The OneEmployeeShiftPerDay
guided rule creates a hard constraint that employees are not assigned more than one shift per day. In the employee rostering example, this constraint is created using the guided rule designer.
Procedure
- In Business Central, go to Menu → Design → Projects and click the project name.
- Click Add Asset → Guided Rule.
-
Enter
OneEmployeeShiftPerDay
as the Guided Rule name and select theemployeerostering.employeerostering
Package. - Click Ok to create the rule asset.
- Add a WHEN condition by clicking the in the WHEN field.
- Select Free form DRL from the Add a condition to the rule window.
In the free form DRL box, type the following condition:
$shiftAssignment : ShiftAssignment( employee != null ) ShiftAssignment( this != $shiftAssignment , employee == $shiftAssignment.employee , shift.timeslot.startTime.toLocalDate() == $shiftAssignment.shift.timeslot.startTime.toLocalDate() )
This condition states that a shift cannot be assigned to an employee that already has another shift assignment on the same day.
- Add the THEN condition by clicking the in the THEN field.
- Select Add free form DRL from the Add a new action window.
In the free form DRL box, type the following condition:
scoreHolder.addHardConstraintMatch(kcontext, -1);
- Click Validate in the upper-right corner to check all rule conditions are valid. If the rule validation fails, address any problems described in the error message, review all components in the rule, and try again to validate the rule until the rule passes.
- Click Save to save the rule.
For more information about creating guided rules, see Designing a decision service using guided rules.
5.2.5.4. Creating a guided rule to match skills to shift requirements
The ShiftReqiredSkillsAreMet
guided rule creates a hard constraint that ensures all shifts are assigned an employee with the correct set of skills. In the employee rostering example, this constraint is created using the guided rule designer.
Procedure
- In Business Central, go to Menu → Design → Projects and click the project name.
- Click Add Asset → Guided Rule.
-
Enter
ShiftReqiredSkillsAreMet
as the Guided Rule name and select theemployeerostering.employeerostering
Package. - Click Ok to create the rule asset.
- Add a WHEN condition by clicking the in the WHEN field.
-
Select
ShiftAssignment
in the Add a condition to the rule window. Click +Ok. -
Click the
ShiftAssignment
condition, and selectemployee
from the Add a restriction on a field drop-down list. -
In the designer, click the drop-down list next to
employee
and selectis not null
. Click the
ShiftAssignment
condition, and click Expression editor.-
In the designer, click
[not bound]
to open the Expression editor, and bind the expression to the variable$requiredSkill
. Click Set. -
In the designer, next to
$requiredSkill
, selectshift
from the first drop-down list, thenrequiredSkill
from the next drop-down list.
-
In the designer, click
Click the
ShiftAssignment
condition, and click Expression editor.-
In the designer, next to
[not bound]
, selectemployee
from the first drop-down list, thenskills
from the next drop-down list. -
Leave the next drop-down list as
Choose
. -
In the next drop-down box, change
please choose
toexcludes
. -
Click the
icon next to
excludes
, and in the Field value window, click the New formula button. -
Type
$requiredSkill
into the formula box.
-
In the designer, next to
- Add the THEN condition by clicking the in the THEN field.
-
Select
Modify Hard Score
in the Add a new action window. Click +Ok. -
Type
-1
into the score actions box. - Click Validate in the upper-right corner to check all rule conditions are valid. If the rule validation fails, address any problems described in the error message, review all components in the rule, and try again to validate the rule until the rule passes.
- Click Save to save the rule.
For more information about creating guided rules, see Designing a decision service using guided rules.
5.2.5.5. Creating a guided rule to manage day off requests
The DayOffRequest
guided rule creates a soft constraint. This constraint allows a shift to be reassigned to another employee in the event the employee who was originally assigned the shift is no longer able to work that day. In the employee rostering example, this constraint is created using the guided rule designer.
Procedure
- In Business Central, go to Menu → Design → Projects and click the project name.
- Click Add Asset → Guided Rule.
-
Enter
DayOffRequest
as the Guided Rule name and select theemployeerostering.employeerostering
Package. - Click Ok to create the rule asset.
- Add a WHEN condition by clicking the in the WHEN field.
- Select Free form DRL from the Add a condition to the rule window.
In the free form DRL box, type the following condition:
$dayOffRequest : DayOffRequest( ) ShiftAssignment( employee == $dayOffRequest.employee , shift.timeslot.startTime.toLocalDate() == $dayOffRequest.date )
This condition states if a shift is assigned to an employee who has made a day off request, the employee can be unassigned the shift on that day.
- Add the THEN condition by clicking the in the THEN field.
- Select Add free form DRL from the Add a new action window.
In the free form DRL box, type the following condition:
scoreHolder.addSoftConstraintMatch(kcontext, -100);
- Click Validate in the upper-right corner to check all rule conditions are valid. If the rule validation fails, address any problems described in the error message, review all components in the rule, and try again to validate the rule until the rule passes.
- Click Save to save the rule.
For more information about creating guided rules, see Designing a decision service using guided rules.
5.2.6. Creating a solver configuration for employee rostering
You can create and edit Solver configurations in Business Central. The Solver configuration designer creates a solver configuration that can be run after the project is deployed.
Prerequisites
- Red Hat Process Automation Manager has been downloaded and installed.
- You have created and configured all of the relevant assets for the employee rostering example.
Procedure
- In Business Central, click Menu → Projects, and click your project to open it.
- In the Assets perspective, click Add Asset → Solver configuration
In the Create new Solver configuration window, type the name
EmployeeRosteringSolverConfig
for your Solver and click Ok.This opens the Solver configuration designer.
In the Score Director Factory configuration section, define a KIE base that contains scoring rule definitions. The employee rostering sample project uses
defaultKieBase
.-
Select one of the KIE sessions defined within the KIE base. The employee rostering sample project uses
defaultKieSession
.
-
Select one of the KIE sessions defined within the KIE base. The employee rostering sample project uses
- Click Validate in the upper-right corner to check the Score Director Factory configuration is correct. If validation fails, address any problems described in the error message, and try again to validate until the configuration passes.
- Click Save to save the Solver configuration.
5.2.7. Configuring Solver termination for the employee rostering project
You can configure the Solver to terminate after a specified amount of time. By default, the planning engine is given an unlimited time period to solve a problem instance.
The employee rostering sample project is set up to run for 30 seconds.
Prerequisites
-
You have created all relevant assets for the employee rostering project and created the
EmployeeRosteringSolverConfig
solver configuration in Business Central as described in Section 5.2.6, “Creating a solver configuration for employee rostering”.
Procedure
-
Open the
EmployeeRosteringSolverConfig
from the Assets perspective. This will open the Solver configuration designer. - In the Termination section, click Add to create new termination element within the selected logical group.
-
Select the
Time spent
termination type from the drop-down list. This is added as an input field in the termination configuration. - Use the arrows next to the time elements to adjust the amount of time spent to 30 seconds.
- Click Validate in the upper-right corner to check the Score Director Factory configuration is correct. If validation fails, address any problems described in the error message, and try again to validate until the configuration passes.
- Click Save to save the Solver configuration.
5.3. Accessing the solver using the REST API
After deploying or re-creating the sample solver, you can access it using the REST API.
You must register a solver instance using the REST API. Then you can supply data sets and retrieve optimized solutions.
Prerequisites
- The employee rostering project is set up and deployed according to the previous sections in this document. You can either deploy the sample project, as described in Section 5.1, “Deploying the employee rostering sample project in Business Central”, or re-create the project, as described in Section 5.2, “Re-creating the employee rostering sample project”.
5.3.1. Registering the Solver using the REST API
You must register the solver instance using the REST API before you can use the solver.
Each solver instance is capable of optimizing one planning problem at a time.
Procedure
Create a HTTP request using the following header:
authorization: admin:admin X-KIE-ContentType: xstream content-type: application/xml
Register the Solver using the following request:
- PUT
-
http://localhost:8080/kie-server/services/rest/server/containers/employeerostering_1.0.0-SNAPSHOT/solvers/EmployeeRosteringSolver
- Request body
<solver-instance> <solver-config-file>employeerostering/employeerostering/EmployeeRosteringSolverConfig.solver.xml</solver-config-file> </solver-instance>
5.3.2. Calling the Solver using the REST API
After registering the solver instance, you can use the REST API to submit a data set to the solver and to retrieve an optimized solution.
Procedure
Create a HTTP request using the following header:
authorization: admin:admin X-KIE-ContentType: xstream content-type: application/xml
Submit a request to the Solver with a data set, as in the following example:
- POST
-
http://localhost:8080/kie-server/services/rest/server/containers/employeerostering_1.0.0-SNAPSHOT/solvers/EmployeeRosteringSolver/state/solving
- Request body
<employeerostering.employeerostering.EmployeeRoster> <employeeList> <employeerostering.employeerostering.Employee> <name>John</name> <skills> <employeerostering.employeerostering.Skill> <name>reading</name> </employeerostering.employeerostering.Skill> </skills> </employeerostering.employeerostering.Employee> <employeerostering.employeerostering.Employee> <name>Mary</name> <skills> <employeerostering.employeerostering.Skill> <name>writing</name> </employeerostering.employeerostering.Skill> </skills> </employeerostering.employeerostering.Employee> <employeerostering.employeerostering.Employee> <name>Petr</name> <skills> <employeerostering.employeerostering.Skill> <name>speaking</name> </employeerostering.employeerostering.Skill> </skills> </employeerostering.employeerostering.Employee> </employeeList> <shiftList> <employeerostering.employeerostering.Shift> <timeslot> <startTime>2017-01-01T00:00:00</startTime> <endTime>2017-01-01T01:00:00</endTime> </timeslot> <requiredSkill reference="../../../employeeList/employeerostering.employeerostering.Employee/skills/employeerostering.employeerostering.Skill"/> </employeerostering.employeerostering.Shift> <employeerostering.employeerostering.Shift> <timeslot reference="../../employeerostering.employeerostering.Shift/timeslot"/> <requiredSkill reference="../../../employeeList/employeerostering.employeerostering.Employee[3]/skills/employeerostering.employeerostering.Skill"/> </employeerostering.employeerostering.Shift> <employeerostering.employeerostering.Shift> <timeslot reference="../../employeerostering.employeerostering.Shift/timeslot"/> <requiredSkill reference="../../../employeeList/employeerostering.employeerostering.Employee[2]/skills/employeerostering.employeerostering.Skill"/> </employeerostering.employeerostering.Shift> </shiftList> <skillList> <employeerostering.employeerostering.Skill reference="../../employeeList/employeerostering.employeerostering.Employee/skills/employeerostering.employeerostering.Skill"/> <employeerostering.employeerostering.Skill reference="../../employeeList/employeerostering.employeerostering.Employee[3]/skills/employeerostering.employeerostering.Skill"/> <employeerostering.employeerostering.Skill reference="../../employeeList/employeerostering.employeerostering.Employee[2]/skills/employeerostering.employeerostering.Skill"/> </skillList> <timeslotList> <employeerostering.employeerostering.Timeslot reference="../../shiftList/employeerostering.employeerostering.Shift/timeslot"/> </timeslotList> <dayOffRequestList/> <shiftAssignmentList> <employeerostering.employeerostering.ShiftAssignment> <shift reference="../../../shiftList/employeerostering.employeerostering.Shift"/> </employeerostering.employeerostering.ShiftAssignment> <employeerostering.employeerostering.ShiftAssignment> <shift reference="../../../shiftList/employeerostering.employeerostering.Shift[3]"/> </employeerostering.employeerostering.ShiftAssignment> <employeerostering.employeerostering.ShiftAssignment> <shift reference="../../../shiftList/employeerostering.employeerostering.Shift[2]"/> </employeerostering.employeerostering.ShiftAssignment> </shiftAssignmentList> </employeerostering.employeerostering.EmployeeRoster>
Request the best solution to the planning problem:
- GET
http://localhost:8080/kie-server/services/rest/server/containers/employeerostering_1.0.0-SNAPSHOT/solvers/EmployeeRosteringSolver/bestsolution
Example response
<solver-instance> <container-id>employee-rostering</container-id> <solver-id>solver1</solver-id> <solver-config-file>employeerostering/employeerostering/EmployeeRosteringSolverConfig.solver.xml</solver-config-file> <status>NOT_SOLVING</status> <score scoreClass="org.optaplanner.core.api.score.buildin.hardsoft.HardSoftScore">0hard/0soft</score> <best-solution class="employeerostering.employeerostering.EmployeeRoster"> <employeeList> <employeerostering.employeerostering.Employee> <name>John</name> <skills> <employeerostering.employeerostering.Skill> <name>reading</name> </employeerostering.employeerostering.Skill> </skills> </employeerostering.employeerostering.Employee> <employeerostering.employeerostering.Employee> <name>Mary</name> <skills> <employeerostering.employeerostering.Skill> <name>writing</name> </employeerostering.employeerostering.Skill> </skills> </employeerostering.employeerostering.Employee> <employeerostering.employeerostering.Employee> <name>Petr</name> <skills> <employeerostering.employeerostering.Skill> <name>speaking</name> </employeerostering.employeerostering.Skill> </skills> </employeerostering.employeerostering.Employee> </employeeList> <shiftList> <employeerostering.employeerostering.Shift> <timeslot> <startTime>2017-01-01T00:00:00</startTime> <endTime>2017-01-01T01:00:00</endTime> </timeslot> <requiredSkill reference="../../../employeeList/employeerostering.employeerostering.Employee/skills/employeerostering.employeerostering.Skill"/> </employeerostering.employeerostering.Shift> <employeerostering.employeerostering.Shift> <timeslot reference="../../employeerostering.employeerostering.Shift/timeslot"/> <requiredSkill reference="../../../employeeList/employeerostering.employeerostering.Employee[3]/skills/employeerostering.employeerostering.Skill"/> </employeerostering.employeerostering.Shift> <employeerostering.employeerostering.Shift> <timeslot reference="../../employeerostering.employeerostering.Shift/timeslot"/> <requiredSkill reference="../../../employeeList/employeerostering.employeerostering.Employee[2]/skills/employeerostering.employeerostering.Skill"/> </employeerostering.employeerostering.Shift> </shiftList> <skillList> <employeerostering.employeerostering.Skill reference="../../employeeList/employeerostering.employeerostering.Employee/skills/employeerostering.employeerostering.Skill"/> <employeerostering.employeerostering.Skill reference="../../employeeList/employeerostering.employeerostering.Employee[3]/skills/employeerostering.employeerostering.Skill"/> <employeerostering.employeerostering.Skill reference="../../employeeList/employeerostering.employeerostering.Employee[2]/skills/employeerostering.employeerostering.Skill"/> </skillList> <timeslotList> <employeerostering.employeerostering.Timeslot reference="../../shiftList/employeerostering.employeerostering.Shift/timeslot"/> </timeslotList> <dayOffRequestList/> <shiftAssignmentList/> <score>0hard/0soft</score> </best-solution> </solver-instance>
Chapter 6. Getting Started with OptaPlanner and Quarkus
You can use the https://code.quarkus.redhat.com
website to generate a Red Hat build of OptaPlanner Quarkus Maven project and automatically add and configure the extensions that you want to use in your application. You can then download the Quarkus Maven repository or use the online Maven repository with your project.
6.1. Apache Maven and Red Hat build of Quarkus
Apache Maven is a distributed build automation tool used in Java application development to create, manage, and build software projects. Maven uses standard configuration files called Project Object Model (POM) files to define projects and manage the build process. POM files describe the module and component dependencies, build order, and targets for the resulting project packaging and output using an XML file. This ensures that the project is built in a correct and uniform manner.
Maven repositories
A Maven repository stores Java libraries, plug-ins, and other build artifacts. The default public repository is the Maven 2 Central Repository, but repositories can be private and internal within a company to share common artifacts among development teams. Repositories are also available from third parties.
You can use the online Maven repository with your Quarkus projects or you can download the Red Hat build of Quarkus Maven repository.
Maven plug-ins
Maven plug-ins are defined parts of a POM file that achieve one or more goals. Quarkus applications use the following Maven plug-ins:
-
Quarkus Maven plug-in (
quarkus-maven-plugin
): Enables Maven to create Quarkus projects, supports the generation of uber-JAR files, and provides a development mode. -
Maven Surefire plug-in (
maven-surefire-plugin
): Used during the test phase of the build lifecycle to execute unit tests on your application. The plug-in generates text and XML files that contain the test reports.
6.1.1. Configuring the Maven settings.xml file for the online repository
You can use the online Maven repository with your Maven project by configuring your user settings.xml
file. This is the recommended approach. Maven settings used with a repository manager or repository on a shared server provide better control and manageability of projects.
When you configure the repository by modifying the Maven settings.xml
file, the changes apply to all of your Maven projects.
Procedure
Open the Maven
~/.m2/settings.xml
file in a text editor or integrated development environment (IDE).NoteIf there is not a
settings.xml
file in the~/.m2/
directory, copy thesettings.xml
file from the$MAVEN_HOME/.m2/conf/
directory into the~/.m2/
directory.Add the following lines to the
<profiles>
element of thesettings.xml
file:<!-- Configure the Maven repository --> <profile> <id>red-hat-enterprise-maven-repository</id> <repositories> <repository> <id>red-hat-enterprise-maven-repository</id> <url>https://maven.repository.redhat.com/ga/</url> <releases> <enabled>true</enabled> </releases> <snapshots> <enabled>false</enabled> </snapshots> </repository> </repositories> <pluginRepositories> <pluginRepository> <id>red-hat-enterprise-maven-repository</id> <url>https://maven.repository.redhat.com/ga/</url> <releases> <enabled>true</enabled> </releases> <snapshots> <enabled>false</enabled> </snapshots> </pluginRepository> </pluginRepositories> </profile>
Add the following lines to the
<activeProfiles>
element of thesettings.xml
file and save the file.<activeProfile>red-hat-enterprise-maven-repository</activeProfile>
6.1.2. Downloading and configuring the Quarkus Maven repository
If you do not want to use the online Maven repository, you can download and configure the Quarkus Maven repository to create a Quarkus application with Maven. The Quarkus Maven repository contains many of the requirements that Java developers typically use to build their applications. This procedure describes how to edit the settings.xml
file to configure the Quarkus Maven repository.
When you configure the repository by modifying the Maven settings.xml
file, the changes apply to all of your Maven projects.
Procedure
- Download the Red Hat build of Quarkus Maven repository ZIP file from the Software Downloads page of the Red Hat Customer Portal (login required).
- Expand the downloaded archive.
-
Change directory to the
~/.m2/
directory and open the Mavensettings.xml
file in a text editor or integrated development environment (IDE). Add the following lines to the
<profiles>
element of thesettings.xml
file, whereQUARKUS_MAVEN_REPOSITORY
is the path of the Quarkus Maven repository that you downloaded. The format ofQUARKUS_MAVEN_REPOSITORY
must befile://$PATH
, for examplefile:///home/userX/rh-quarkus-2.13.GA-maven-repository/maven-repository
.<!-- Configure the Quarkus Maven repository --> <profile> <id>red-hat-enterprise-maven-repository</id> <repositories> <repository> <id>red-hat-enterprise-maven-repository</id> <url>QUARKUS_MAVEN_REPOSITORY</url> <releases> <enabled>true</enabled> </releases> <snapshots> <enabled>false</enabled> </snapshots> </repository> </repositories> <pluginRepositories> <pluginRepository> <id>red-hat-enterprise-maven-repository</id> <url>QUARKUS_MAVEN_REPOSITORY</url> <releases> <enabled>true</enabled> </releases> <snapshots> <enabled>false</enabled> </snapshots> </pluginRepository> </pluginRepositories> </profile>
Add the following lines to the
<activeProfiles>
element of thesettings.xml
file and save the file.<activeProfile>red-hat-enterprise-maven-repository</activeProfile>
If your Maven repository contains outdated artifacts, you might encounter one of the following Maven error messages when you build or deploy your project, where ARTIFACT_NAME
is the name of a missing artifact and PROJECT_NAME
is the name of the project you are trying to build:
-
Missing artifact PROJECT_NAME
-
[ERROR] Failed to execute goal on project ARTIFACT_NAME; Could not resolve dependencies for PROJECT_NAME
To resolve the issue, delete the cached version of your local repository located in the ~/.m2/repository
directory to force a download of the latest Maven artifacts.
6.2. Creating an OptaPlanner Red Hat build of Quarkus Maven project using the Maven plug-in
You can get up and running with a Red Hat build of OptaPlanner and Quarkus application using Apache Maven and the Quarkus Maven plug-in.
Prerequisites
- OpenJDK 11 or later is installed. Red Hat build of Open JDK is available from the Software Downloads page in the Red Hat Customer Portal (login required).
- Apache Maven 3.6 or higher is installed. Maven is available from the Apache Maven Project website.
Procedure
In a command terminal, enter the following command to verify that Maven is using JDK 11 and that the Maven version is 3.6 or higher:
mvn --version
- If the preceding command does not return JDK 11, add the path to JDK 11 to the PATH environment variable and enter the preceding command again.
To generate a Quarkus OptaPlanner quickstart project, enter the following command:
mvn com.redhat.quarkus.platform:quarkus-maven-plugin:2.13.Final-redhat-00006:create \ -DprojectGroupId=com.example \ -DprojectArtifactId=optaplanner-quickstart \ -Dextensions="resteasy,resteasy-jackson,optaplanner-quarkus,optaplanner-quarkus-jackson" \ -DplatformGroupId=com.redhat.quarkus.platform -DplatformVersion=2.13.Final-redhat-00006 \ -DnoExamples
This command create the following elements in the
./optaplanner-quickstart
directory:- The Maven structure
-
Example
Dockerfile
file insrc/main/docker
The application configuration file
Table 6.1. Properties used in the mvn io.quarkus:quarkus-maven-plugin:2.13.Final-redhat-00006:create command Property Description projectGroupId
The group ID of the project.
projectArtifactId
The artifact ID of the project.
extensions
A comma-separated list of Quarkus extensions to use with this project. For a full list of Quarkus extensions, enter
mvn quarkus:list-extensions
on the command line.noExamples
Creates a project with the project structure but without tests or classes.
The values of the
projectGroupID
and theprojectArtifactID
properties are used to generate the project version. The default project version is1.0.0-SNAPSHOT
.
To view your OptaPlanner project, change directory to the OptaPlanner Quickstarts directory:
cd optaplanner-quickstart
Review the
pom.xml
file. The content should be similar to the following example:<dependencyManagement> <dependencies> <dependency> <groupId>io.quarkus.platform</groupId> <artifactId>quarkus-bom</artifactId> <version>2.13.Final-redhat-00006</version> <type>pom</type> <scope>import</scope> </dependency> <dependency> <groupId>io.quarkus.platform</groupId> <artifactId>quarkus-optaplanner-bom</artifactId> <version>2.13.Final-redhat-00006</version> <type>pom</type> <scope>import</scope> </dependency> </dependencies> </dependencyManagement> <dependencies> <dependency> <groupId>io.quarkus</groupId> <artifactId>quarkus-resteasy</artifactId> </dependency> <dependency> <groupId>io.quarkus</groupId> <artifactId>quarkus-resteasy-jackson</artifactId> </dependency> <dependency> <groupId>org.optaplanner</groupId> <artifactId>optaplanner-quarkus</artifactId> </dependency> <dependency> <groupId>org.optaplanner</groupId> <artifactId>optaplanner-quarkus-jackson</artifactId> </dependency> <dependency> <groupId>io.quarkus</groupId> <artifactId>quarkus-junit5</artifactId> <scope>test</scope> </dependency> </dependencies>
6.3. Creating a Red Hat build of Quarkus Maven project using code.quarkus.redhat.com
You can use the code.quarkus.redhat.com
website to generate a Red Hat build of OptaPlanner Quarkus Maven project and automatically add and configure the extensions that you want to use in your application. In addition, code.quarkus.redhat.com
automatically manages the configuration parameters required to compile your project into a native executable.
This section walks you through the process of generating an OptaPlanner Maven project and includes the following topics:
- Specifying basic details about your application.
- Choosing the extensions that you want to include in your project.
- Generating a downloadable archive with your project files.
- Using the custom commands for compiling and starting your application.
Prerequisites
- You have a web browser.
Procedure
-
Open
https://code.quarkus.redhat.com
in your web browser: - Specify details about your project:
-
Enter a group name for your project. The format of the name follows the Java package naming convention, for example,
com.example
. -
Enter a name that you want to use for Maven artifacts generated from your project, for example
code-with-quarkus
. Select Build Tool > Maven to specify that you want to create a Maven project. The build tool that you choose determines the items:
- The directory structure of your generated project
- The format of configuration files used in your generated project
The custom build script and command for compiling and starting your application that
code.quarkus.redhat.com
displays for you after you generate your projectNoteRed Hat provides support for using
code.quarkus.redhat.com
to create OptaPlanner Maven projects only. Generating Gradle projects is not supported by Red Hat.
-
Enter a version to be used in artifacts generated from your project. The default value of this field is
1.0.0-SNAPSHOT
. Using semantic versioning is recommended, but you can use a different type of versioning if you prefer. Enter the package name of artifacts that the build tool generates when you package your project.
According to the Java package naming conventions the package name should match the group name that you use for your project, but you can specify a different name.
NoteThe
code.quarkus.redhat.com
website automatically uses the latest release of OptaPlanner. You can manually change the BOM version in thepom.xml
file after you generate your project.Select the following extensions to include as dependencies:
- RESTEasy JAX-RS (quarkus-resteasy)
- RESTEasy Jackson (quarkus-resteasy-jackson)
- OptaPlanner AI constraint solver(optaplanner-quarkus)
OptaPlanner Jackson (optaplanner-quarkus-jackson)
Red Hat provides different levels of support for individual extensions on the list, which are indicated by labels next to the name of each extension:
- SUPPORTED extensions are fully supported by Red Hat for use in enterprise applications in production environments.
- TECH-PREVIEW extensions are subject to limited support by Red Hat in production environments under the Technology Preview Features Support Scope.
- DEV-SUPPORT extensions are not supported by Red Hat for use in production environments, but the core functionalities that they provide are supported by Red Hat developers for use in developing new applications.
DEPRECATED extension are planned to be replaced with a newer technology or implementation that provides the same functionality.
Unlabeled extensions are not supported by Red Hat for use in production environments.
- Select Generate your application to confirm your choices and display the overlay screen with the download link for the archive that contains your generated project. The overlay screen also shows the custom command that you can use to compile and start your application.
- Select Download the ZIP to save the archive with the generated project files to your system.
- Extract the contents of the archive.
Navigate to the directory that contains your extracted project files:
cd <directory_name>
Compile and start your application in development mode:
./mvnw compile quarkus:dev
6.4. Creating a Red Hat build of Quarkus Maven project using the Quarkus CLI
You can use the Quarkus command line interface (CLI) to create a Quarkus OptaPlanner project.
Prerequisites
- You have installed the Quarkus CLI. For information, see Building Quarkus Apps with Quarkus Command Line Interface.
Procedure
Create a Quarkus application:
quarkus create app -P io.quarkus:quarkus-bom:2.13.Final-redhat-00006
To view the available extensions, enter the following command:
quarkus ext -i
This command returns the following extensions:
optaplanner-quarkus optaplanner-quarkus-benchmark optaplanner-quarkus-jackson optaplanner-quarkus-jsonb
Enter the following command to add extensions to the project’s
pom.xml
file:quarkus ext add resteasy-jackson quarkus ext add optaplanner-quarkus quarkus ext add optaplanner-quarkus-jackson
Open the
pom.xml
file in a text editor. The contents of the file should look similar to the following example:<?xml version="1.0"?> <project xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 https://maven.apache.org/xsd/maven-4.0.0.xsd" xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <modelVersion>4.0.0</modelVersion> <groupId>org.acme</groupId> <artifactId>code-with-quarkus-optaplanner</artifactId> <version>1.0.0-SNAPSHOT</version> <properties> <compiler-plugin.version>3.8.1</compiler-plugin.version> <maven.compiler.parameters>true</maven.compiler.parameters> <maven.compiler.source>11</maven.compiler.source> <maven.compiler.target>11</maven.compiler.target> <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding> <project.reporting.outputEncoding>UTF-8</project.reporting.outputEncoding> <quarkus.platform.artifact-id>quarkus-bom</quarkus.platform.artifact-id> <quarkus.platform.group-id>io.quarkus</quarkus.platform.group-id> <quarkus.platform.version>2.13.Final-redhat-00006</quarkus.platform.version> <surefire-plugin.version>3.0.0-M5</surefire-plugin.version> </properties> <dependencyManagement> <dependencies> <dependency> <groupId>${quarkus.platform.group-id}</groupId> <artifactId>${quarkus.platform.artifact-id}</artifactId> <version>${quarkus.platform.version}</version> <type>pom</type> <scope>import</scope> </dependency> <dependency> <groupId>io.quarkus.platform</groupId> <artifactId>optaplanner-quarkus</artifactId> <version>2.2.2.Final</version> <type>pom</type> <scope>import</scope> </dependency> </dependencies> </dependencyManagement> <dependencies> <dependency> <groupId>io.quarkus</groupId> <artifactId>quarkus-arc</artifactId> </dependency> <dependency> <groupId>io.quarkus</groupId> <artifactId>quarkus-resteasy</artifactId> </dependency> <dependency> <groupId>org.optaplanner</groupId> <artifactId>optaplanner-quarkus</artifactId> </dependency> <dependency> <groupId>org.optaplanner</groupId> <artifactId>optaplanner-quarkus-jackson</artifactId> </dependency> <dependency> <groupId>io.quarkus</groupId> <artifactId>quarkus-resteasy-jackson</artifactId> </dependency> <dependency> <groupId>io.quarkus</groupId> <artifactId>quarkus-junit5</artifactId> <scope>test</scope> </dependency> <dependency> <groupId>io.rest-assured</groupId> <artifactId>rest-assured</artifactId> <scope>test</scope> </dependency> </dependencies> <build> <plugins> <plugin> <groupId>${quarkus.platform.group-id}</groupId> <artifactId>quarkus-maven-plugin</artifactId> <version>${quarkus.platform.version}</version> <extensions>true</extensions> <executions> <execution> <goals> <goal>build</goal> <goal>generate-code</goal> <goal>generate-code-tests</goal> </goals> </execution> </executions> </plugin> <plugin> <artifactId>maven-compiler-plugin</artifactId> <version>${compiler-plugin.version}</version> <configuration> <parameters>${maven.compiler.parameters}</parameters> </configuration> </plugin> <plugin> <artifactId>maven-surefire-plugin</artifactId> <version>${surefire-plugin.version}</version> <configuration> <systemPropertyVariables> <java.util.logging.manager>org.jboss.logmanager.LogManager</java.util.logging.manager> <maven.home>${maven.home}</maven.home> </systemPropertyVariables> </configuration> </plugin> </plugins> </build> <profiles> <profile> <id>native</id> <activation> <property> <name>native</name> </property> </activation> <build> <plugins> <plugin> <artifactId>maven-failsafe-plugin</artifactId> <version>${surefire-plugin.version}</version> <executions> <execution> <goals> <goal>integration-test</goal> <goal>verify</goal> </goals> <configuration> <systemPropertyVariables> <native.image.path>${project.build.directory}/${project.build.finalName}-runner</native.image.path> <java.util.logging.manager>org.jboss.logmanager.LogManager</java.util.logging.manager> <maven.home>${maven.home}</maven.home> </systemPropertyVariables> </configuration> </execution> </executions> </plugin> </plugins> </build> <properties> <quarkus.package.type>native</quarkus.package.type> </properties> </profile> </profiles> </project>
Part III. The Red Hat build of OptaPlanner solver
Solving a planning problem with OptaPlanner consists of the following steps:
-
Model your planning problem as a class annotated with the
@PlanningSolution
annotation (for example, theNQueens
class). -
Configure a Solver (for example a First Fit and Tabu Search solver for any
NQueens
instance). - Load a problem data set from your data layer (for example a Four Queens instance). That is the planning problem.
-
Solve it with
Solver.solve(problem)
, which returns the best solution found.
Chapter 7. Configuring the Red Hat build of OptaPlanner solver
You can use the following methods to configure your OptaPlanner solver:
- Use an XML file.
-
Use the
SolverConfig
API. - Add class annotations and JavaBean property annotations on the domain model.
- Control the method that OptaPlanner uses to access your domain.
- Define custom properties.
7.1. Using an XML file to configure the OptaPlanner solver
You can use an XML file to configure the solver. In a typical project that follows the Maven directory structure, after you build a Solver
instance with the SolverFactory
, the solverConfig
XML file is located in the $PROJECT_DIR/src/main/resources/org/optaplanner/examples/<PROJECT>/solver
directory, where <PROJECT>
is the name of your OptaPlanner project. Alternatively, you can create a SolverFactory
from a file with SolverFactory.createFromXmlFile()
. However, for portability reasons, a classpath resource is recommended.
Both a Solver
and a SolverFactory
have a generic type called Solution_
, which is the class representing a planning problem and solution.
OptaPlanner makes it relatively easy to switch optimization algorithms by changing the configuration.
Procedure
-
Build a
Solver
instance with theSolverFactory
. Configure the solver configuration XML file:
- Define the model.
- Define the score function.
Optional: Configure the optimization algorithm.
The following example is a solver XML file for the NQueens problem:
<?xml version="1.0" encoding="UTF-8"?> <solver xmlns="https://www.optaplanner.org/xsd/solver" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="https://www.optaplanner.org/xsd/solver https://www.optaplanner.org/xsd/solver/solver.xsd"> <!-- Define the model --> <solutionClass>org.optaplanner.examples.nqueens.domain.NQueens</solutionClass> <entityClass>org.optaplanner.examples.nqueens.domain.Queen</entityClass> <!-- Define the score function --> <scoreDirectorFactory> <scoreDrl>org/optaplanner/examples/nqueens/solver/nQueensConstraints.drl</scoreDrl> </scoreDirectorFactory> <!-- Configure the optimization algorithms (optional) --> <termination> ... </termination> <constructionHeuristic> ... </constructionHeuristic> <localSearch> ... </localSearch> </solver>
NoteOn some environments, for example OSGi and JBoss modules, classpath resources such as the solver config, score DRLs, and domain classe) in your JAR files might not be available to the default
ClassLoader
of theoptaplanner-core
JAR file. In those cases, provide theClassLoader
of your classes as a parameter:SolverFactory<NQueens> solverFactory = SolverFactory.createFromXmlResource( ".../nqueensSolverConfig.xml", getClass().getClassLoader());
Configure the
SolverFactory
with a solver configuration XML file, provided as a classpath resource as defined byClassLoader.getResource()
:SolverFasctory<NQueens> solverFactory = SolverFactory.createFromXmlResource( "org/optaplanner/examples/nqueens/solver/nqueensSolverConfig.xml"); Solver<NQueens> solver = solverFactory.buildSolver();
7.2. Using the Java API to configure the OptaPlanner solver
You can configure a solver by using the SolverConfig
API. This is especially useful to change values dynamically at runtime. The following example changes the running time based on system properties before building the Solver
in the NQueens project:
SolverConfig solverConfig = SolverConfig.createFromXmlResource( "org/optaplanner/examples/nqueens/solver/nqueensSolverConfig.xml"); solverConfig.withTerminationConfig(new TerminationConfig() .withMinutesSpentLimit(userInput)); SolverFactory<NQueens> solverFactory = SolverFactory.create(solverConfig); Solver<NQueens> solver = solverFactory.buildSolver();
Every element in the solver configuration XML file is available as a Config
class or a property on a Config
class in the package namespace org.optaplanner.core.config
. These Config
classes are the Java representation of the XML format. They build the runtime components of the package namespace org.optaplanner.core.impl
and assemble them into an efficient Solver
.
To configure a SolverFactory
dynamically for each user request, build a template SolverConfig
during initialization and copy it with the copy constructor for each user request. The following example shows how to do this with the NQueens problem:
private SolverConfig template; public void init() { template = SolverConfig.createFromXmlResource( "org/optaplanner/examples/nqueens/solver/nqueensSolverConfig.xml"); template.setTerminationConfig(new TerminationConfig()); } // Called concurrently from different threads public void userRequest(..., long userInput) { SolverConfig solverConfig = new SolverConfig(template); // Copy it solverConfig.getTerminationConfig().setMinutesSpentLimit(userInput); SolverFactory<NQueens> solverFactory = SolverFactory.create(solverConfig); Solver<NQueens> solver = solverFactory.buildSolver(); ... }
7.3. OptaPlanner annotation
You must specify which classes in your domain model are planning entities, which properties are planning variables, and so on. Use one of the following methods to add annotations to your OptaPlanner project:
- Add class annotations and JavaBean property annotations on the domain model. The property annotations must be on the getter method, not on the setter method. Annotated getter methods do not need to be public. This is the recommended method.
- Add class annotations and field annotations on the domain model. Annotated fields do not need to be public.
7.4. Specifying OptaPlanner domain access
By default, OptaPlanner accesses your domain using reflection. Reflection is reliable but slow compared to direct access. Alternatively, you can configure OptaPlanner to access your domain using Gizmo, which will generate bytecode that directly accesses the fields and methods of your domain without reflection. However, this method has the following restrictions:
- The planning annotations can only be on public fields and public getters.
-
io.quarkus.gizmo:gizmo
must be on the classpath.
These restrictions do not apply when you use OptaPlanner with Quarkus because Gizmo is the default domain access type.
Procedure
To use Gizmo outside of Quarkus, set the domainAccessType
in the solver configuration:
<solver> <domainAccessType>GIZMO</domainAccessType> </solver>
7.5. Configuring custom properties
In your OptaPlanner projects, you can add custom properties to solver configuration elements that instantiate classes and have documents that explicitly mention custom properties.
Prerequisites
- You have a solver.
Procedure
Add a custom property.
For example, if your
EasyScoreCalculator
has heavy calculations which are cached and you want to increase the cache size in one benchmark add themyCacheSize
property:<scoreDirectorFactory> <easyScoreCalculatorClass>...MyEasyScoreCalculator</easyScoreCalculatorClass> <easyScoreCalculatorCustomProperties> <property name="myCacheSize" value="1000"/><!-- Override value --> </easyScoreCalculatorCustomProperties> </scoreDirectorFactory>
Add a public setter for each custom property, which is called when a
Solver
is built.public class MyEasyScoreCalculator extends EasyScoreCalculator<MySolution, SimpleScore> { private int myCacheSize = 500; // Default value @SuppressWarnings("unused") public void setMyCacheSize(int myCacheSize) { this.myCacheSize = myCacheSize; } ... }
Most value types are supported, including
boolean
,int
,double
,BigDecimal
,String
andenums
.
Chapter 8. The OptaPlanner Solver
A solver finds the best and optimal solution to your planning problem. A solver can only solve one planning problem instance at a time. Solvers are built with the SolverFactory
method:
public interface Solver<Solution_> { Solution_ solve(Solution_ problem); ... }
A solver should only be accessed from a single thread, except for the methods that are specifically documented in javadoc
as being thread-safe. The solve()
method hogs the current thread. Hogging the thread can cause HTTP timeouts for REST services and it requires extra code to solve multiple data sets in parallel. To avoid such issues, use a SolverManager
instead.
8.1. Solving a problem
Use the solver to solve a planning problem.
Prerequisites
-
A
Solver
built from a solver configuration -
An
@PlanningSolution
annotation that represents the planning problem instance
Procedure
Provide the planning problem as an argument to the solve()
method. The solver will return the best solution found.
The following example solves the NQueens problem:
NQueens problem = ...; NQueens bestSolution = solver.solve(problem);
In this example, the solve()
method will return an NQueens
instance with every Queen
assigned to a Row
.
The solution instance given to the solve(Solution)
method can be partially or fully initialized, which is often the case in repeated planning.
Figure 8.1. Best Solution for the Four Queens Puzzle in 8ms (Also an Optimal Solution)
The solve(Solution)
method can take a long time depending on the problem size and the solver configuration. The Solver
intelligently works through the search space of possible solutions and remembers the best solution it encounters during solving. Depending on a number of factors, including problem size, how much time the Solver
has, the solver configuration, and so forth, the best
solution might or might not be an optimal
solution.
The solution instance given to the method solve(Solution)
is changed by the Solver
, but do not mistake it for the best solution.
The solution instance returned by the methods solve(Solution)
or getBestSolution()
is most likely a planning clone of the instance given to the method solve(Solution)
, which implies it is a different instance.
8.2. Solver environment mode
The solver environment mode enables you to detect common bugs in your implementation. It does not affect the logging level.
A solver has a single random instance. Some solver configurations use the random instance a lot more than others. For example, the Simulated Annealing algorithm depends highly on random numbers, while Tabu Search
only depends on it to resolve score ties. The environment mode influences the seed of that random instance.
You can set the environment mode in the solver configuration XML file. The following example sets the FAST_ASSERT
mode:
<solver xmlns="https://www.optaplanner.org/xsd/solver" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="https://www.optaplanner.org/xsd/solver https://www.optaplanner.org/xsd/solver/solver.xsd"> <environmentMode>FAST_ASSERT</environmentMode> ... </solver>
The following list describes the environment modes that you can use in the solver configuration file:
-
FULL_ASSERT
mode turns on all assertions, for example the assertion that the incremental score calculation is uncorrupted for each move, to fail-fast on a bug in a Move implementation, a constraint, the engine itself, and so on. This mode is reproducible. It is also intrusive because it calls the methodcalculateScore()
more frequently than a non-assert mode. TheFULL_ASSERT
mode is very slow because it does not rely on incremental score calculation.
-
NON_INTRUSIVE_FULL_ASSERT
mode turns on several assertions to fail-fast on a bug in a Move implementation, a constraint, the engine itself, and so on. This mode is reproducible. It is non-intrusive because it does not call the methodcalculateScore()
more frequently than a non assert mode. TheNON_INTRUSIVE_FULL_ASSERT
mode is very slow because it does not rely on incremental score calculation.
-
FAST_ASSERT
mode turns on most assertions, such as the assertions that an undoMove’s score is the same as before the Move, to fail-fast on a bug in a Move implementation, a constraint, the engine itself, and so on. This mode is reproducible. It is also intrusive because it calls the methodcalculateScore()
more frequently than a non-assert mode. TheFAST_ASSERT
mode is slow. Write a test case that does a short run of your planning problem with theFAST_ASSERT
mode on.
REPRODUCIBLE
mode is the default mode because it is recommended during development. In this mode, two runs in the same OptaPlanner version execute the same code in the same order. Those two runs have the same result at every step, except if the following note applies. This enables you to reproduce bugs consistently. It also enables you to benchmark certain refactorings, such as a score constraint performance optimization, fairly across runs.NoteDespite using
REPRODCIBLE
mode, your application might still not be fully reproducible for the following reasons:-
Use of
HashSet
or anotherCollection
which has an inconsistent order between JVM runs for collections of planning entities or planning values but not normal problem facts, especially in the solution implementation. Replace it withLinkedHashSet
. - Combining a time gradient dependent algorithm, most notably the Simulated Annealing algorithm, together with time spent termination. A sufficiently large difference in allocated CPU time will influence the time gradient values. Replace the Simulated Annealing algorithms with the Late Acceptance algorithm, or replace time spent termination with step count termination.
-
Use of
-
REPRODUCIBLE
mode can be slightly slower thanNON_REPRODUCIBLE
mode. If your production environment can benefit from reproducibility, use this mode in production. In practice,REPRODUCIBLE
mode uses the default fixed random seed if no seed is specified and it also disables certain concurrency optimizations such as work stealing.
-
NON_REPRODUCIBLE
mode can be slightly faster thanREPRODUCIBLE
mode. Avoid using it during development because it makes debugging and bug fixing difficult. If reproducibility isn’t important in your production environment, useNON_REPRODUCIBLE
mode in production. In practice, this mode uses no fixed random seed if no seed is specified.
8.3. Changing the OptaPlanner solver logging level
You can change the logging level in an OptaPlanner solver to review solver activity. The following list describes the different logging levels:
error: Logs errors, except those that are thrown to the calling code as a
RuntimeException
.If an error occurs, OptaPlanner normally fails fast. It throws a subclass of
RuntimeException
with a detailed message to the calling code. To avoid duplicate log messages, it does not log it as an error. Unless the calling code explicitly catches and eliminates thatRuntimeException
, aThread’s default `ExceptionHandler
will log it as an error anyway. Meanwhile, the code is disrupted from doing further harm or obfuscating the error.- warn: Logs suspicious circumstances
- info: Logs every phase and the solver itself
- debug: Logs every step of every phase
- trace: Logs every move of every step of every phase
Specifying trace
logging will slow down performance considerably. However, trace
logging is invaluable during development to discover a bottleneck.
Even debug
logging can slow down performance considerably for fast stepping algorithms such as Late Acceptance and Simulated Annealing, but not for slow stepping algorithms such as Tabu Search.
Both trace` and debug
logging cause congestion in multithreaded solving with most appenders.
In Eclipse, debug
logging to the console tends to cause congestion with score calculation speeds above 10000 per second. Neither IntelliJ or the Maven command line suffer from this problem.
Procedure
Set the logging level to debug
logging to see when the phases end and how fast steps are taken.
The following example shows output from debug logging:
INFO Solving started: time spent (3), best score (-4init/0), random (JDK with seed 0). DEBUG CH step (0), time spent (5), score (-3init/0), selected move count (1), picked move (Queen-2 {null -> Row-0}). DEBUG CH step (1), time spent (7), score (-2init/0), selected move count (3), picked move (Queen-1 {null -> Row-2}). DEBUG CH step (2), time spent (10), score (-1init/0), selected move count (4), picked move (Queen-3 {null -> Row-3}). DEBUG CH step (3), time spent (12), score (-1), selected move count (4), picked move (Queen-0 {null -> Row-1}). INFO Construction Heuristic phase (0) ended: time spent (12), best score (-1), score calculation speed (9000/sec), step total (4). DEBUG LS step (0), time spent (19), score (-1), best score (-1), accepted/selected move count (12/12), picked move (Queen-1 {Row-2 -> Row-3}). DEBUG LS step (1), time spent (24), score (0), new best score (0), accepted/selected move count (9/12), picked move (Queen-3 {Row-3 -> Row-2}). INFO Local Search phase (1) ended: time spent (24), best score (0), score calculation speed (4000/sec), step total (2). INFO Solving ended: time spent (24), best score (0), score calculation speed (7000/sec), phase total (2), environment mode (REPRODUCIBLE).
All time spent values are in milliseconds.
Everything is logged to SLF4J, which is a simple logging facade that delegates every log message to Logback, Apache Commons Logging, Log4j, or java.util.logging. Add a dependency to the logging adaptor for your logging framework of choice.
8.4. Using Logback to log OptaPlanner solver activity
Logback is the recommended logging frameworkd to use with OptaPlanner. Use Logback to log OptaPlanner solver activity.
Prerequisites
- You have an OptaPlanner project.
Procedure
Add the following Maven dependency to your OptaPlanner project’s
pom.xml
file:NoteYou do not need to add an extra bridge dependency.
<dependency> <groupId>ch.qos.logback</groupId> <artifactId>logback-classic</artifactId> <version>1.x</version> </dependency>
Configure the logging level on the
org.optaplanner
package in yourlogback.xml
file as shown in the following example where<LEVEL>
is a logging level listed in Section 8.4, “Using Logback to log OptaPlanner solver activity”.<configuration> <logger name="org.optaplanner" level="<LEVEL>"/> ... </configuration>
Optional: If you have a multitenant application where multiple
Solver
instances might be running at the same time, separate the logging of each instance into separate files:Surround the
solve()
call with Mapped Diagnostic Context (MDC):MDC.put("tenant.name",tenantName); MySolution bestSolution = solver.solve(problem); MDC.remove("tenant.name");
Configure your logger to use different files for each
${tenant.name}
. For example, use aSiftingAppender
in thelogback.xml
file:<appender name="fileAppender" class="ch.qos.logback.classic.sift.SiftingAppender"> <discriminator> <key>tenant.name</key> <defaultValue>unknown</defaultValue> </discriminator> <sift> <appender name="fileAppender.${tenant.name}" class="...FileAppender"> <file>local/log/optaplanner-${tenant.name}.log</file> ... </appender> </sift> </appender>
NoteWhen running multiple solvers or one multithreaded solve, most appenders, including the console, cause congestion with
debug
andtrace
logging. Switch to an async appender to avoid this problem or turn offdebug
logging.
-
If OptaPlanner doesn’t recognize the new level, temporarily add the system property
-Dlogback.LEVEL=true
to troubleshoot.
8.5. Using Log4J to log OptaPlanner solver activity
If you are already using Log4J and you do not want to switch to its faster successor, Logback, you can configure your OptaPlanner project for Log4J.
Prerequisites
- You have an OptaPlanner project
- You are using the Log4J logging framework
Procedure
Add the bridge dependency to the project
pom.xml
file:<dependency> <groupId>org.slf4j</groupId> <artifactId>slf4j-log4j12</artifactId> <version>1.x</version> </dependency>
Configure the logging level on the package
org.optaplanner
in yourlog4j.xml
file as shown in the following example, where<LEVEL>
is a logging level listed in Section 8.4, “Using Logback to log OptaPlanner solver activity”.<log4j:configuration xmlns:log4j="http://jakarta.apache.org/log4j/"> <category name="org.optaplanner"> <priority value="<LEVEL>" /> </category> ... </log4j:configuration>
Optional: If you have a multitenant application where multiple
Solver
instances might be running at the same time, separate the logging of each instance into separate files:Surround the
solve()
call with Mapped Diagnostic Context (MDC):MDC.put("tenant.name",tenantName); MySolution bestSolution = solver.solve(problem); MDC.remove("tenant.name");
Configure your logger to use different files for each
${tenant.name}
. For example, use aSiftingAppender
in thelogback.xml
file:<appender name="fileAppender" class="ch.qos.logback.classic.sift.SiftingAppender"> <discriminator> <key>tenant.name</key> <defaultValue>unknown</defaultValue> </discriminator> <sift> <appender name="fileAppender.${tenant.name}" class="...FileAppender"> <file>local/log/optaplanner-${tenant.name}.log</file> ... </appender> </sift> </appender>
NoteWhen running multiple solvers or one multithreaded solve, most appenders, including the console, cause congestion with
debug
andtrace
logging. Switch to an async appender to avoid this problem or turn offdebug
logging.
8.6. Monitoring the solver
OptaPlanner exposes metrics through Micrometer, a metrics instrumentation library for Java applications. You can use Micrometer with popular monitoring systems to monitor the OptaPlanner solver.
8.6.1. Configuring a Quarkus OptaPlanner application for Micrometer
To configure your OptaPlanner Quarkus application to use Micrometer and a specified monitoring system, add the Micrometer dependency to the pom.xml
file.
Prerequisites
- You have a Quarkus OptaPlanner application.
Procedure
Add the following dependency to your application’s
pom.xml
file where<MONITORING_SYSTEM>
is a monitoring system supported by Micrometer and Quarkus:NotePrometheus is currently the only monitoring system supported by Quarkus.
<dependency> <groupId>io.quarkus</groupId> <artifactId>quarkus-micrometer-registry-<MONITORING_SYSTEM></artifactId> </dependency>
To run the application in development mode, enter the following command:
mvn compile quarkus:dev
To view metrics for your application, enter the following URL in a browser:
http://localhost:8080/q/metrics
8.6.2. Configuring a Spring Boot OptaPlanner application for Micrometer
To configure your Spring Boot OptaPlanner application to use Micrometer and a specified monitoring system, add the Micrometer dependency to the pom.xml
file.
Prerequisites
- You have a Spring Boot OptaPlanner application.
Procedure
Add the following dependency to your application’s
pom.xml
file where<MONITORING_SYSTEM>
is a monitoring system supported by Micrometer and Spring Boot:<dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-actuator</artifactId> </dependency> <dependency> <groupId>io.micrometer</groupId> <artifactId>micrometer-registry-<MONITORING_SYSTEM></artifactId> </dependency>
-
Add configuration information to the application’s
application.properties
file. For information, see the Micrometer web site. To run the application, enter the following command:
mvn spring-boot:run
To view metrics for your application, enter the following URL in a browser:
http://localhost:8080/actuator/metrics
NoteUse the following URL as the Prometheus scraper path:
http://localhost:8080/actuator/prometheus
8.6.3. Configuring a plain Java OptaPlanner application for Micrometer
To configuring a plain Java OptaPlanner application to use Micrometer, you must add Micrometer dependencies and configuration information for your chosen monitoring system to your project’s POM.XML
file.
Prerequisites
- You have a plain Java OptaPlanner application.
Procedure
Add the following dependencies to your application’s
pom.xml
file where<MONITORING_SYSTEM>
is a monitoring system that is configured with Micrometer and<VERSION>
is the version of Micrometer that you are using:<dependency> <groupId>io.micrometer</groupId> <artifactId>micrometer-registry-<MONITORING_SYSTEM></artifactId> <version><VERSION></version> </dependency> <dependency> <groupId>io.micrometer</groupId> <artifactId>micrometer-core</artifactId> <version>`<VERSION>`</version> </dependency>
-
Add Micrometer configuration information for your monitoring system to the beginning of your project’s
pom.xml
file. For information, see the Micrometer web site. Add the following line below the configuration information, where
<MONITORING_SYSTEM>
is the monitoring system that you added:Metrics.addRegistry(<MONITORING_SYSTEM>);
The following example shows how to add the Prometheus monitoring system:
PrometheusMeterRegistry prometheusRegistry = new PrometheusMeterRegistry(PrometheusConfig.DEFAULT); try { HttpServer server = HttpServer.create(new InetSocketAddress(8080), 0); server.createContext("/prometheus", httpExchange -> { String response = prometheusRegistry.scrape(); httpExchange.sendResponseHeaders(200, response.getBytes().length); try (OutputStream os = httpExchange.getResponseBody()) { os.write(response.getBytes()); } }); new Thread(server::start).start(); } catch (IOException e) { throw new RuntimeException(e); } Metrics.addRegistry(prometheusRegistry);
Open your monitoring system to view the metrics for your OptaPlanner project. The following metrics are exposed:
NoteThe names and format of the metrics vary depending on the registry.
-
optaplanner.solver.errors.total
: the total number of errors that occurred while solving since the start of the measuring. -
optaplanner.solver.solve-length.active-count
: the number of solvers currently solving. -
optaplanner.solver.solve-length.seconds-max
: run time of the longest-running currently active solver. -
optaplanner.solver.solve-length.seconds-duration-sum
: the sum of each active solver’s solve duration. For example, if there are two active solvers, one running for three minutes and the other for one minute, the total solve time is four minutes.
-
8.6.4. Additional Metrics
For more detailed monitoring, you can configure OptaPlanner in the solver configuration to monitor additional metrics at a performance cost. The following example uses the BEST_SCORE
and SCORE_CALCULATION_COUNT
metric :
<solver xmlns="https://www.optaplanner.org/xsd/solver" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="https://www.optaplanner.org/xsd/solver https://www.optaplanner.org/xsd/solver/solver.xsd"> <monitoring> <metric>BEST_SCORE</metric> <metric>SCORE_CALCULATION_COUNT</metric> ... </monitoring> ... </solver>
You can enable the following metrics in this configuration:
-
SOLVE_DURATION
(enabled by default, Micrometer meter ID:optaplanner.solver.solve.duration
): Measures the duration of solving for the longest active solver, the number of active solvers, and the cumulative duration of all active solvers. -
ERROR_COUNT
(enabled by default, Micrometer meter ID:optaplanner.solver.errors
): Measures the number of errors that occurred while solving. -
SCORE_CALCULATION_COUNT
(enabled by default, Micrometer meter ID:optaplanner.solver.score.calculation.count
): Measures the number of score calculations the OptaPlanner performed. -
BEST_SCORE
(Micrometer meter ID:optaplanner.solver.best.score.*
): Measures the score of the best solution that OptaPlanner has found so far. There are separate meters for each level of the score. For instance, for aHardSoftScore
, there areoptaplanner.solver.best.score.hard.score
andoptaplanner.solver.best.score.soft.score
meters. -
STEP_SCORE
(Micrometer meter ID:optaplanner.solver.step.score.*
): Measures the score of each step that OptaPlanner takes. There are separate meters for each level of the score. For instance, for aHardSoftScore
, there areoptaplanner.solver.step.score.hard.score
andoptaplanner.solver.step.score.soft.score
meters. -
BEST_SOLUTION_MUTATION
(Micrometer meter ID:optaplanner.solver.best.solution.mutation
): Measures the number of changed planning variables between consecutive best solutions. -
MOVE_COUNT_PER_STEP
(Micrometer meter ID:optaplanner.solver.step.move.count
): Measures the number of moves evaluated in a step. -
MEMORY_USE
(Micrometer meter ID:jvm.memory.used
): Measures the amount of memory used across the JVM. This metric does not measure the amount of memory used by a solver; two solvers on the same JVM will report the same value for this metric. -
CONSTRAINT_MATCH_TOTAL_BEST_SCORE
(Micrometer meter ID:optaplanner.solver.constraint.match.best.score.*
): Measures the score impact of each constraint on the best solution that OptaPlanner has found so far. There are separate meters for each level of the score, with tags for each constraint. For instance, for aHardSoftScore
for a constraint "Minimize Cost" in package "com.example", there areoptaplanner.solver.constraint.match.best.score.hard.score
andoptaplanner.solver.constraint.match.best.score.soft.score
meters with tags "constraint.package=com.example" and "constraint.name=Minimize Cost". -
CONSTRAINT_MATCH_TOTAL_STEP_SCORE
(Micrometer meter ID:optaplanner.solver.constraint.match.step.score.*
): Measures the score impact of each constraint on the current step. There are separate meters for each level of the score, with tags for each constraint. For instance, for aHardSoftScore
for a constraint "Minimize Cost" in package "com.example", there areoptaplanner.solver.constraint.match.step.score.hard.score
andoptaplanner.solver.constraint.match.step.score.soft.score
meters with tags "constraint.package=com.example" and "constraint.name=Minimize Cost". -
PICKED_MOVE_TYPE_BEST_SCORE_DIFF
(Micrometer meter ID:optaplanner.solver.move.type.best.score.diff.*
): Measures how much a particular move type improves the best solution. There are separate meters for each level of the score, with a tag for the move type. For instance, for aHardSoftScore
and aChangeMove
for the computer of a process, there areoptaplanner.solver.move.type.best.score.diff.hard.score
andoptaplanner.solver.move.type.best.score.diff.soft.score
meters with the tagmove.type=ChangeMove(Process.computer)
. -
PICKED_MOVE_TYPE_STEP_SCORE_DIFF
(Micrometer meter ID:optaplanner.solver.move.type.step.score.diff.*
): Measures how much a particular move type improves the best solution. There are separate meters for each level of the score, with a tag for the move type. For instance, for aHardSoftScore
and aChangeMove
for the computer of a process, there areoptaplanner.solver.move.type.step.score.diff.hard.score
andoptaplanner.solver.move.type.step.score.diff.soft.score
meters with the tagmove.type=ChangeMove(Process.computer)
.
8.7. Configuring the random number generator
Many heuristics and metaheuristics depend on a pseudorandom number generator for move selection, to resolve score ties, probability based move acceptance, and so on. During solving, the same random instance is reused to improve reproducibility, performance, and uniform distribution of random values.
A random seed is a number used to initialize a pseudorandom number generator.
Procedure
Optional: To change the random seed of a random instance, specify a
randomSeed
:<solver xmlns="https://www.optaplanner.org/xsd/solver" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="https://www.optaplanner.org/xsd/solver https://www.optaplanner.org/xsd/solver/solver.xsd"> <randomSeed>0</randomSeed> ... </solver>
Optional: To change the pseudorandom number generator implementation, specify a value for the
randomType
property listed in the solver configuration file below, where<RANDOM_NUMBER_GENERATOR>
is a pseudorandom number generator:<solver xmlns="https://www.optaplanner.org/xsd/solver" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="https://www.optaplanner.org/xsd/solver https://www.optaplanner.org/xsd/solver/solver.xsd"> <randomType><RANDOM_NUMBER_GENERATOR></randomType> ... </solver>
The following pseudorandom number generators are supported:
-
JDK
(default): Standard random number generator implementation (java.util.Random
) -
MERSENNE_TWISTER
: Random number generator implementation by Commons Math -
WELL512A
,WELL1024A
,WELL19937A
,WELL19937C
,WELL44497A
andWELL44497B
: Random number generator implementation by Commons Math
-
For most use cases, the value of the randomType
property has no significant impact on the average quality of the best solution on multiple data sets.
Chapter 9. The OptaPlanner SolverManager
A SolverManager
is a facade for one or more Solver
instances to simplify solving planning problems in REST and other enterprise services.
Unlike the Solver.solve(…)
method, a SolverManager
has the following characteristics:
-
SolverManager.solve(…)
returns immediately: it schedules a problem for asynchronous solving without blocking the calling thread. This avoids timeout issues of HTTP and other technologies. -
SolverManager.solve(…)
solves multiple planning problems of the same domain, in parallel.
Internally, a SolverManager
manages a thread pool of solver threads, which call Solver.solve(…)
, and a thread pool of consumer threads, which handle best solution changed events.
In Quarkus and Spring Boot, the SolverManager
instance is automatically injected in your code. If you are using a platform other than Quarkus or Spring Boot, build a SolverManager
instance with the create(…)
method:
SolverConfig solverConfig = SolverConfig.createFromXmlResource(".../cloudBalancingSolverConfig.xml"); SolverManager<CloudBalance, UUID> solverManager = SolverManager.create(solverConfig, new SolverManagerConfig());
Each problem submitted to the SolverManager.solve(…)
methods must have a unique problem ID. Later calls to getSolverStatus(problemId)
or terminateEarly(problemId)
use that problem ID to distinguish between planning problems. The problem ID must be an immutable class, such as Long
, String
, or java.util.UUID
.
The SolverManagerConfig
class has a parallelSolverCount
property that controls how many solvers are run in parallel. For example, if the parallelSolverCount
property` is set to 4
and you submit five problems, four problems start solving immediately and the fifth problem starts when one of the first problems ends. If those problems solve for five minutes each, the fifth problem takes 10 minutes to finish. By default, parallelSolverCount
is set to AUTO
, which resolves to half the CPU cores, regardless of the moveThreadCount
of the solvers.
To retrieve the best solution, after solving terminates normally use SolverJob.getFinalBestSolution()
:
CloudBalance problem1 = ...; UUID problemId = UUID.randomUUID(); // Returns immediately SolverJob<CloudBalance, UUID> solverJob = solverManager.solve(problemId, problem1); ... CloudBalance solution1; try { // Returns only after solving terminates solution1 = solverJob.getFinalBestSolution(); } catch (InterruptedException | ExecutionException e) { throw ...; }
However, there are better approaches, both for solving batch problems before a user needs the solution as well as for live solving while a user is actively waiting for the solution.
The current SolverManager
implementation runs on a single computer node, but future work aims to distribute solver loads across a cloud.
9.1. Batch solving problems
Batch solving is solving multiple data sets in parallel. Batch solving is particularly useful overnight:
- There are typically few or no problem changes in the middle of the night. Some organizations enforce a deadline, for example, submit all day off requests before midnight.
- The solvers can run for much longer, often hours, because nobody is waiting for the results and CPU resources are often cheaper.
- Solutions are available when employees arrive at work the next working day.
Procedure
To batch solve problems in parallel, limited by parallelSolverCount
, call solve(…)
for each data set created the following class:
public class TimeTableService { private SolverManager<TimeTable, Long> solverManager; // Returns immediately, call it for every data set public void solveBatch(Long timeTableId) { solverManager.solve(timeTableId, // Called once, when solving starts this::findById, // Called once, when solving ends this::save); } public TimeTable findById(Long timeTableId) {...} public void save(TimeTable timeTable) {...} }
9.2. Solve and listen to show progress
When a solver is running while a user is waiting for a solution, the user might need to wait for several minutes or hours before receiving a result. To assure the user that everything is going well, show progress by displaying the best solution and best score attained so far.
Procedure
To handle intermediate best solutions, use
solveAndListen(…)
:public class TimeTableService { private SolverManager<TimeTable, Long> solverManager; // Returns immediately public void solveLive(Long timeTableId) { solverManager.solveAndListen(timeTableId, // Called once, when solving starts this::findById, // Called multiple times, for every best solution change this::save); } public TimeTable findById(Long timeTableId) {...} public void save(TimeTable timeTable) {...} public void stopSolving(Long timeTableId) { solverManager.terminateEarly(timeTableId); } }
This implementation is using the database to communicate with the UI, which polls the database. More advanced implementations push the best solutions directly to the UI or a messaging queue.
-
When the user is satisfied with the intermediate best solution and does not want to wait any longer for a better one, call
SolverManager.terminateEarly(problemId)
.
Part IV. Red Hat build of OptaPlanner quick start guides
Red Hat build of OptaPlanner provides the following quick start guides to demonstrate how OptaPlanner can integrate with different techologies:
- Red Hat build of OptaPlanner on Red Hat build of Quarkus: a school timetable quick start guide
- Red Hat build of OptaPlanner on Red Hat build of Quarkus: a vaccination appointment scheduler quick start guide
- Red Hat build of OptaPlanner on Spring Boot: a school timetable quick start guide
- Red Hat build of OptaPlanner with Java solvers: a cloud balancing quick start guide
Chapter 10. Red Hat build of OptaPlanner on Red Hat build of Quarkus: a school timetable quick start guide
This guide walks you through the process of creating a Red Hat build of Quarkus application with Red Hat build of OptaPlanner’s constraint solving artificial intelligence (AI). You will build a REST application that optimizes a school timetable for students and teachers
Your service will assign Lesson
instances to Timeslot
and Room
instances automatically by using AI to adhere to the following hard and soft scheduling constraints:
- A room can have at most one lesson at the same time.
- A teacher can teach at most one lesson at the same time.
- A student can attend at most one lesson at the same time.
- A teacher prefers to teach in a single room.
- A teacher prefers to teach sequential lessons and dislikes gaps between lessons.
Mathematically speaking, school timetabling is an NP-hard problem. That means it is difficult to scale. Simply iterating through all possible combinations with brute force would take millions of years for a non-trivial data set, even on a supercomputer. Fortunately, AI constraint solvers such as Red Hat build of OptaPlanner have advanced algorithms that deliver a near-optimal solution in a reasonable amount of time. What is considered to be a reasonable amount of time is subjective and depends on the goals of your problem.
Prerequisites
- OpenJDK 11 or later is installed. Red Hat build of Open JDK is available from the Software Downloads page in the Red Hat Customer Portal (login required).
- Apache Maven 3.6 or higher is installed. Maven is available from the Apache Maven Project website.
- An IDE, such as IntelliJ IDEA, VS Code, Eclipse, or NetBeans is available.
10.1. Creating an OptaPlanner Red Hat build of Quarkus Maven project using the Maven plug-in
You can get up and running with a Red Hat build of OptaPlanner and Quarkus application using Apache Maven and the Quarkus Maven plug-in.
Prerequisites
- OpenJDK 11 or later is installed. Red Hat build of Open JDK is available from the Software Downloads page in the Red Hat Customer Portal (login required).
- Apache Maven 3.6 or higher is installed. Maven is available from the Apache Maven Project website.
Procedure
In a command terminal, enter the following command to verify that Maven is using JDK 11 and that the Maven version is 3.6 or higher:
mvn --version
- If the preceding command does not return JDK 11, add the path to JDK 11 to the PATH environment variable and enter the preceding command again.
To generate a Quarkus OptaPlanner quickstart project, enter the following command:
mvn com.redhat.quarkus.platform:quarkus-maven-plugin:2.13.Final-redhat-00006:create \ -DprojectGroupId=com.example \ -DprojectArtifactId=optaplanner-quickstart \ -Dextensions="resteasy,resteasy-jackson,optaplanner-quarkus,optaplanner-quarkus-jackson" \ -DplatformGroupId=com.redhat.quarkus.platform -DplatformVersion=2.13.Final-redhat-00006 \ -DnoExamples
This command create the following elements in the
./optaplanner-quickstart
directory:- The Maven structure
-
Example
Dockerfile
file insrc/main/docker
The application configuration file
Table 10.1. Properties used in the mvn io.quarkus:quarkus-maven-plugin:2.13.Final-redhat-00006:create command Property Description projectGroupId
The group ID of the project.
projectArtifactId
The artifact ID of the project.
extensions
A comma-separated list of Quarkus extensions to use with this project. For a full list of Quarkus extensions, enter
mvn quarkus:list-extensions
on the command line.noExamples
Creates a project with the project structure but without tests or classes.
The values of the
projectGroupID
and theprojectArtifactID
properties are used to generate the project version. The default project version is1.0.0-SNAPSHOT
.
To view your OptaPlanner project, change directory to the OptaPlanner Quickstarts directory:
cd optaplanner-quickstart
Review the
pom.xml
file. The content should be similar to the following example:<dependencyManagement> <dependencies> <dependency> <groupId>io.quarkus.platform</groupId> <artifactId>quarkus-bom</artifactId> <version>2.13.Final-redhat-00006</version> <type>pom</type> <scope>import</scope> </dependency> <dependency> <groupId>io.quarkus.platform</groupId> <artifactId>quarkus-optaplanner-bom</artifactId> <version>2.13.Final-redhat-00006</version> <type>pom</type> <scope>import</scope> </dependency> </dependencies> </dependencyManagement> <dependencies> <dependency> <groupId>io.quarkus</groupId> <artifactId>quarkus-resteasy</artifactId> </dependency> <dependency> <groupId>io.quarkus</groupId> <artifactId>quarkus-resteasy-jackson</artifactId> </dependency> <dependency> <groupId>org.optaplanner</groupId> <artifactId>optaplanner-quarkus</artifactId> </dependency> <dependency> <groupId>org.optaplanner</groupId> <artifactId>optaplanner-quarkus-jackson</artifactId> </dependency> <dependency> <groupId>io.quarkus</groupId> <artifactId>quarkus-junit5</artifactId> <scope>test</scope> </dependency> </dependencies>
10.2. Model the domain objects
The goal of the Red Hat build of OptaPlanner timetable project is to assign each lesson to a time slot and a room. To do this, add three classes, Timeslot
, Lesson
, and Room
, as shown in the following diagram:
Timeslot
The Timeslot
class represents a time interval when lessons are taught, for example, Monday 10:30 - 11:30
or Tuesday 13:30 - 14:30
. In this example, all time slots have the same duration and there are no time slots during lunch or other breaks.
A time slot has no date because a high school schedule just repeats every week. There is no need for continuous planning. A timeslot is called a problem fact because no Timeslot
instances change during solving. Such classes do not require any OptaPlanner-specific annotations.
Room
The Room
class represents a location where lessons are taught, for example, Room A
or Room B
. In this example, all rooms are without capacity limits and they can accommodate all lessons.
Room
instances do not change during solving so Room
is also a problem fact.
Lesson
During a lesson, represented by the Lesson
class, a teacher teaches a subject to a group of students, for example, Math by A.Turing for 9th grade
or Chemistry by M.Curie for 10th grade
. If a subject is taught multiple times each week by the same teacher to the same student group, there are multiple Lesson
instances that are only distinguishable by id
. For example, the 9th grade has six math lessons a week.
During solving, OptaPlanner changes the timeslot
and room
fields of the Lesson
class to assign each lesson to a time slot and a room. Because OptaPlanner changes these fields, Lesson
is a planning entity:
Most of the fields in the previous diagram contain input data, except for the orange fields. A lesson’s timeslot
and room
fields are unassigned (null
) in the input data and assigned (not null
) in the output data. OptaPlanner changes these fields during solving. Such fields are called planning variables. In order for OptaPlanner to recognize them, both the timeslot
and room
fields require an @PlanningVariable
annotation. Their containing class, Lesson
, requires an @PlanningEntity
annotation.
Procedure
Create the
src/main/java/com/example/domain/Timeslot.java
class:package com.example.domain; import java.time.DayOfWeek; import java.time.LocalTime; public class Timeslot { private DayOfWeek dayOfWeek; private LocalTime startTime; private LocalTime endTime; private Timeslot() { } public Timeslot(DayOfWeek dayOfWeek, LocalTime startTime, LocalTime endTime) { this.dayOfWeek = dayOfWeek; this.startTime = startTime; this.endTime = endTime; } @Override public String toString() { return dayOfWeek + " " + startTime.toString(); } // ******************************** // Getters and setters // ******************************** public DayOfWeek getDayOfWeek() { return dayOfWeek; } public LocalTime getStartTime() { return startTime; } public LocalTime getEndTime() { return endTime; } }
Notice the
toString()
method keeps the output short so it is easier to read OptaPlanner’sDEBUG
orTRACE
log, as shown later.Create the
src/main/java/com/example/domain/Room.java
class:package com.example.domain; public class Room { private String name; private Room() { } public Room(String name) { this.name = name; } @Override public String toString() { return name; } // ******************************** // Getters and setters // ******************************** public String getName() { return name; } }
Create the
src/main/java/com/example/domain/Lesson.java
class:package com.example.domain; import org.optaplanner.core.api.domain.entity.PlanningEntity; import org.optaplanner.core.api.domain.variable.PlanningVariable; @PlanningEntity public class Lesson { private Long id; private String subject; private String teacher; private String studentGroup; @PlanningVariable(valueRangeProviderRefs = "timeslotRange") private Timeslot timeslot; @PlanningVariable(valueRangeProviderRefs = "roomRange") private Room room; private Lesson() { } public Lesson(Long id, String subject, String teacher, String studentGroup) { this.id = id; this.subject = subject; this.teacher = teacher; this.studentGroup = studentGroup; } @Override public String toString() { return subject + "(" + id + ")"; } // ******************************** // Getters and setters // ******************************** public Long getId() { return id; } public String getSubject() { return subject; } public String getTeacher() { return teacher; } public String getStudentGroup() { return studentGroup; } public Timeslot getTimeslot() { return timeslot; } public void setTimeslot(Timeslot timeslot) { this.timeslot = timeslot; } public Room getRoom() { return room; } public void setRoom(Room room) { this.room = room; } }
The
Lesson
class has an@PlanningEntity
annotation, so OptaPlanner knows that this class changes during solving because it contains one or more planning variables.The
timeslot
field has an@PlanningVariable
annotation, so OptaPlanner knows that it can change its value. In order to find potentialTimeslot
instances to assign to this field, OptaPlanner uses thevalueRangeProviderRefs
property to connect to a value range provider that provides aList<Timeslot>
to pick from. See Section 10.4, “Gather the domain objects in a planning solution” for information about value range providers.The
room
field also has an@PlanningVariable
annotation for the same reasons.
10.3. Define the constraints and calculate the score
When solving a problem, a score represents the quality of a specific solution. The higher the score the better. Red Hat build of OptaPlanner looks for the best solution, which is the solution with the highest score found in the available time. It might be the optimal solution.
Because the timetable example use case has hard and soft constraints, use the HardSoftScore
class to represent the score:
- Hard constraints must not be broken. For example: A room can have at most one lesson at the same time.
- Soft constraints should not be broken. For example: A teacher prefers to teach in a single room.
Hard constraints are weighted against other hard constraints. Soft constraints are weighted against other soft constraints. Hard constraints always outweigh soft constraints, regardless of their respective weights.
To calculate the score, you could implement an EasyScoreCalculator
class:
public class TimeTableEasyScoreCalculator implements EasyScoreCalculator<TimeTable> { @Override public HardSoftScore calculateScore(TimeTable timeTable) { List<Lesson> lessonList = timeTable.getLessonList(); int hardScore = 0; for (Lesson a : lessonList) { for (Lesson b : lessonList) { if (a.getTimeslot() != null && a.getTimeslot().equals(b.getTimeslot()) && a.getId() < b.getId()) { // A room can accommodate at most one lesson at the same time. if (a.getRoom() != null && a.getRoom().equals(b.getRoom())) { hardScore--; } // A teacher can teach at most one lesson at the same time. if (a.getTeacher().equals(b.getTeacher())) { hardScore--; } // A student can attend at most one lesson at the same time. if (a.getStudentGroup().equals(b.getStudentGroup())) { hardScore--; } } } } int softScore = 0; // Soft constraints are only implemented in the "complete" implementation return HardSoftScore.of(hardScore, softScore); } }
Unfortunately, this solution does not scale well because it is non-incremental: every time a lesson is assigned to a different time slot or room, all lessons are re-evaluated to calculate the new score.
A better solution is to create a src/main/java/com/example/solver/TimeTableConstraintProvider.java
class to perform incremental score calculation. This class uses OptaPlanner’s ConstraintStream API which is inspired by Java 8 Streams and SQL. The ConstraintProvider
scales an order of magnitude better than the EasyScoreCalculator
: O(n) instead of O(n²).
Procedure
Create the following src/main/java/com/example/solver/TimeTableConstraintProvider.java
class:
package com.example.solver; import com.example.domain.Lesson; import org.optaplanner.core.api.score.buildin.hardsoft.HardSoftScore; import org.optaplanner.core.api.score.stream.Constraint; import org.optaplanner.core.api.score.stream.ConstraintFactory; import org.optaplanner.core.api.score.stream.ConstraintProvider; import org.optaplanner.core.api.score.stream.Joiners; public class TimeTableConstraintProvider implements ConstraintProvider { @Override public Constraint[] defineConstraints(ConstraintFactory constraintFactory) { return new Constraint[] { // Hard constraints roomConflict(constraintFactory), teacherConflict(constraintFactory), studentGroupConflict(constraintFactory), // Soft constraints are only implemented in the "complete" implementation }; } private Constraint roomConflict(ConstraintFactory constraintFactory) { // A room can accommodate at most one lesson at the same time. // Select a lesson ... return constraintFactory.from(Lesson.class) // ... and pair it with another lesson ... .join(Lesson.class, // ... in the same timeslot ... Joiners.equal(Lesson::getTimeslot), // ... in the same room ... Joiners.equal(Lesson::getRoom), // ... and the pair is unique (different id, no reverse pairs) Joiners.lessThan(Lesson::getId)) // then penalize each pair with a hard weight. .penalize("Room conflict", HardSoftScore.ONE_HARD); } private Constraint teacherConflict(ConstraintFactory constraintFactory) { // A teacher can teach at most one lesson at the same time. return constraintFactory.from(Lesson.class) .join(Lesson.class, Joiners.equal(Lesson::getTimeslot), Joiners.equal(Lesson::getTeacher), Joiners.lessThan(Lesson::getId)) .penalize("Teacher conflict", HardSoftScore.ONE_HARD); } private Constraint studentGroupConflict(ConstraintFactory constraintFactory) { // A student can attend at most one lesson at the same time. return constraintFactory.from(Lesson.class) .join(Lesson.class, Joiners.equal(Lesson::getTimeslot), Joiners.equal(Lesson::getStudentGroup), Joiners.lessThan(Lesson::getId)) .penalize("Student group conflict", HardSoftScore.ONE_HARD); } }
10.4. Gather the domain objects in a planning solution
A TimeTable
instance wraps all Timeslot
, Room
, and Lesson
instances of a single dataset. Furthermore, because it contains all lessons, each with a specific planning variable state, it is a planning solution and it has a score:
-
If lessons are still unassigned, then it is an uninitialized solution, for example, a solution with the score
-4init/0hard/0soft
. -
If it breaks hard constraints, then it is an infeasible solution, for example, a solution with the score
-2hard/-3soft
. -
If it adheres to all hard constraints, then it is a feasible solution, for example, a solution with the score
0hard/-7soft
.
The TimeTable
class has an @PlanningSolution
annotation, so Red Hat build of OptaPlanner knows that this class contains all of the input and output data.
Specifically, this class is the input of the problem:
A
timeslotList
field with all time slots- This is a list of problem facts, because they do not change during solving.
A
roomList
field with all rooms- This is a list of problem facts, because they do not change during solving.
A
lessonList
field with all lessons- This is a list of planning entities because they change during solving.
Of each
Lesson
:-
The values of the
timeslot
androom
fields are typically stillnull
, so unassigned. They are planning variables. -
The other fields, such as
subject
,teacher
andstudentGroup
, are filled in. These fields are problem properties.
-
The values of the
However, this class is also the output of the solution:
-
A
lessonList
field for which eachLesson
instance has non-nulltimeslot
androom
fields after solving -
A
score
field that represents the quality of the output solution, for example,0hard/-5soft
Procedure
Create the src/main/java/com/example/domain/TimeTable.java
class:
package com.example.domain; import java.util.List; import org.optaplanner.core.api.domain.solution.PlanningEntityCollectionProperty; import org.optaplanner.core.api.domain.solution.PlanningScore; import org.optaplanner.core.api.domain.solution.PlanningSolution; import org.optaplanner.core.api.domain.solution.ProblemFactCollectionProperty; import org.optaplanner.core.api.domain.valuerange.ValueRangeProvider; import org.optaplanner.core.api.score.buildin.hardsoft.HardSoftScore; @PlanningSolution public class TimeTable { @ValueRangeProvider(id = "timeslotRange") @ProblemFactCollectionProperty private List<Timeslot> timeslotList; @ValueRangeProvider(id = "roomRange") @ProblemFactCollectionProperty private List<Room> roomList; @PlanningEntityCollectionProperty private List<Lesson> lessonList; @PlanningScore private HardSoftScore score; private TimeTable() { } public TimeTable(List<Timeslot> timeslotList, List<Room> roomList, List<Lesson> lessonList) { this.timeslotList = timeslotList; this.roomList = roomList; this.lessonList = lessonList; } // ******************************** // Getters and setters // ******************************** public List<Timeslot> getTimeslotList() { return timeslotList; } public List<Room> getRoomList() { return roomList; } public List<Lesson> getLessonList() { return lessonList; } public HardSoftScore getScore() { return score; } }
The value range providers
The timeslotList
field is a value range provider. It holds the Timeslot
instances which OptaPlanner can pick from to assign to the timeslot
field of Lesson
instances. The timeslotList
field has an @ValueRangeProvider
annotation to connect those two, by matching the id
with the valueRangeProviderRefs
of the @PlanningVariable
in the Lesson
.
Following the same logic, the roomList
field also has an @ValueRangeProvider
annotation.
The problem fact and planning entity properties
Furthermore, OptaPlanner needs to know which Lesson
instances it can change as well as how to retrieve the Timeslot
and Room
instances used for score calculation by your TimeTableConstraintProvider
.
The timeslotList
and roomList
fields have an @ProblemFactCollectionProperty
annotation, so your TimeTableConstraintProvider
can select from those instances.
The lessonList
has an @PlanningEntityCollectionProperty
annotation, so OptaPlanner can change them during solving and your TimeTableConstraintProvider
can select from those too.
10.5. Create the solver service
Solving planning problems on REST threads causes HTTP timeout issues. Therefore, the Quarkus extension injects a SolverManager, which runs solvers in a separate thread pool and can solve multiple data sets in parallel.
Procedure
Create the src/main/java/org/acme/optaplanner/rest/TimeTableResource.java
class:
package org.acme.optaplanner.rest; import java.util.UUID; import java.util.concurrent.ExecutionException; import javax.inject.Inject; import javax.ws.rs.POST; import javax.ws.rs.Path; import org.acme.optaplanner.domain.TimeTable; import org.optaplanner.core.api.solver.SolverJob; import org.optaplanner.core.api.solver.SolverManager; @Path("/timeTable") public class TimeTableResource { @Inject SolverManager<TimeTable, UUID> solverManager; @POST @Path("/solve") public TimeTable solve(TimeTable problem) { UUID problemId = UUID.randomUUID(); // Submit the problem to start solving SolverJob<TimeTable, UUID> solverJob = solverManager.solve(problemId, problem); TimeTable solution; try { // Wait until the solving ends solution = solverJob.getFinalBestSolution(); } catch (InterruptedException | ExecutionException e) { throw new IllegalStateException("Solving failed.", e); } return solution; } }
This initial implementation waits for the solver to finish, which can still cause an HTTP timeout. The complete implementation avoids HTTP timeouts much more elegantly.
10.6. Set the solver termination time
If your planning application does not have a termination setting or a termination event, it theoretically runs forever and in reality eventually causes an HTTP timeout error. To prevent this from occurring, use the optaplanner.solver.termination.spent-limit
parameter to specify the length of time after which the application terminates. In most applications, set the time to at least five minutes (5m
). However, in the Timetable example, limit the solving time to five seconds, which is short enough to avoid the HTTP timeout.
Procedure
Create the src/main/resources/application.properties
file with the following content:
quarkus.optaplanner.solver.termination.spent-limit=5s
10.7. Running the school timetable application
After you have created the school timetable project, run it in development mode. In development mode, you can update the application sources and configurations while your application is running. Your changes will appear in the running application.
Prerequisites
- You have created the school timetable project.
Procedure
To compile the application in development mode, enter the following command from the project directory:
./mvnw compile quarkus:dev
Test the REST service. You can use any REST client. The following example uses the Linux command
curl
to send a POST request:$ curl -i -X POST http://localhost:8080/timeTable/solve -H "Content-Type:application/json" -d '{"timeslotList":[{"dayOfWeek":"MONDAY","startTime":"08:30:00","endTime":"09:30:00"},{"dayOfWeek":"MONDAY","startTime":"09:30:00","endTime":"10:30:00"}],"roomList":[{"name":"Room A"},{"name":"Room B"}],"lessonList":[{"id":1,"subject":"Math","teacher":"A. Turing","studentGroup":"9th grade"},{"id":2,"subject":"Chemistry","teacher":"M. Curie","studentGroup":"9th grade"},{"id":3,"subject":"French","teacher":"M. Curie","studentGroup":"10th grade"},{"id":4,"subject":"History","teacher":"I. Jones","studentGroup":"10th grade"}]}'
After the time period specified in
termination spent time
defined in yourapplication.properties
file, the service returns output similar to the following example:HTTP/1.1 200 Content-Type: application/json ... {"timeslotList":...,"roomList":...,"lessonList":[{"id":1,"subject":"Math","teacher":"A. Turing","studentGroup":"9th grade","timeslot":{"dayOfWeek":"MONDAY","startTime":"08:30:00","endTime":"09:30:00"},"room":{"name":"Room A"}},{"id":2,"subject":"Chemistry","teacher":"M. Curie","studentGroup":"9th grade","timeslot":{"dayOfWeek":"MONDAY","startTime":"09:30:00","endTime":"10:30:00"},"room":{"name":"Room A"}},{"id":3,"subject":"French","teacher":"M. Curie","studentGroup":"10th grade","timeslot":{"dayOfWeek":"MONDAY","startTime":"08:30:00","endTime":"09:30:00"},"room":{"name":"Room B"}},{"id":4,"subject":"History","teacher":"I. Jones","studentGroup":"10th grade","timeslot":{"dayOfWeek":"MONDAY","startTime":"09:30:00","endTime":"10:30:00"},"room":{"name":"Room B"}}],"score":"0hard/0soft"}
Notice that your application assigned all four lessons to one of the two time slots and one of the two rooms. Also notice that it conforms to all hard constraints. For example, M. Curie’s two lessons are in different time slots.
To review what OptaPlanner did during the solving time, review the info log on the server side. The following is sample info log output:
... Solving started: time spent (33), best score (-8init/0hard/0soft), environment mode (REPRODUCIBLE), random (JDK with seed 0). ... Construction Heuristic phase (0) ended: time spent (73), best score (0hard/0soft), score calculation speed (459/sec), step total (4). ... Local Search phase (1) ended: time spent (5000), best score (0hard/0soft), score calculation speed (28949/sec), step total (28398). ... Solving ended: time spent (5000), best score (0hard/0soft), score calculation speed (28524/sec), phase total (2), environment mode (REPRODUCIBLE).
10.8. Testing the application
A good application includes test coverage. Test the constraints and the solver in your timetable project.
10.8.1. Test the school timetable constraints
To test each constraint of the timetable project in isolation, use a ConstraintVerifier
in unit tests. This tests each constraint’s corner cases in isolation from the other tests, which lowers maintenance when adding a new constraint with proper test coverage.
This test verifies that the constraint TimeTableConstraintProvider::roomConflict
, when given three lessons in the same room and two of the lessons have the same timeslot, penalizes with a match weight of 1. So if the constraint weight is 10hard
it reduces the score by -10hard
.
Procedure
Create the src/test/java/org/acme/optaplanner/solver/TimeTableConstraintProviderTest.java
class:
package org.acme.optaplanner.solver; import java.time.DayOfWeek; import java.time.LocalTime; import javax.inject.Inject; import io.quarkus.test.junit.QuarkusTest; import org.acme.optaplanner.domain.Lesson; import org.acme.optaplanner.domain.Room; import org.acme.optaplanner.domain.TimeTable; import org.acme.optaplanner.domain.Timeslot; import org.junit.jupiter.api.Test; import org.optaplanner.test.api.score.stream.ConstraintVerifier; @QuarkusTest class TimeTableConstraintProviderTest { private static final Room ROOM = new Room("Room1"); private static final Timeslot TIMESLOT1 = new Timeslot(DayOfWeek.MONDAY, LocalTime.of(9,0), LocalTime.NOON); private static final Timeslot TIMESLOT2 = new Timeslot(DayOfWeek.TUESDAY, LocalTime.of(9,0), LocalTime.NOON); @Inject ConstraintVerifier<TimeTableConstraintProvider, TimeTable> constraintVerifier; @Test void roomConflict() { Lesson firstLesson = new Lesson(1, "Subject1", "Teacher1", "Group1"); Lesson conflictingLesson = new Lesson(2, "Subject2", "Teacher2", "Group2"); Lesson nonConflictingLesson = new Lesson(3, "Subject3", "Teacher3", "Group3"); firstLesson.setRoom(ROOM); firstLesson.setTimeslot(TIMESLOT1); conflictingLesson.setRoom(ROOM); conflictingLesson.setTimeslot(TIMESLOT1); nonConflictingLesson.setRoom(ROOM); nonConflictingLesson.setTimeslot(TIMESLOT2); constraintVerifier.verifyThat(TimeTableConstraintProvider::roomConflict) .given(firstLesson, conflictingLesson, nonConflictingLesson) .penalizesBy(1); } }
Notice how ConstraintVerifier
ignores the constraint weight during testing even if those constraint weights are hardcoded in the ConstraintProvider
. This is because constraint weights change regularly before going into production. This way, constraint weight tweaking does not break the unit tests.
10.8.2. Test the school timetable solver
This example tests the Red Hat build of OptaPlanner school timetable project on Red Hat build of Quarkus. It uses a JUnit test to generate a test data set and send it to the TimeTableController
to solve.
Procedure
Create the
src/test/java/com/example/rest/TimeTableResourceTest.java
class with the following content:package com.exmaple.optaplanner.rest; import java.time.DayOfWeek; import java.time.LocalTime; import java.util.ArrayList; import java.util.List; import javax.inject.Inject; import io.quarkus.test.junit.QuarkusTest; import com.exmaple.optaplanner.domain.Room; import com.exmaple.optaplanner.domain.Timeslot; import com.exmaple.optaplanner.domain.Lesson; import com.exmaple.optaplanner.domain.TimeTable; import com.exmaple.optaplanner.rest.TimeTableResource; import org.junit.jupiter.api.Test; import org.junit.jupiter.api.Timeout; import static org.junit.jupiter.api.Assertions.assertFalse; import static org.junit.jupiter.api.Assertions.assertNotNull; import static org.junit.jupiter.api.Assertions.assertTrue; @QuarkusTest public class TimeTableResourceTest { @Inject TimeTableResource timeTableResource; @Test @Timeout(600_000) public void solve() { TimeTable problem = generateProblem(); TimeTable solution = timeTableResource.solve(problem); assertFalse(solution.getLessonList().isEmpty()); for (Lesson lesson : solution.getLessonList()) { assertNotNull(lesson.getTimeslot()); assertNotNull(lesson.getRoom()); } assertTrue(solution.getScore().isFeasible()); } private TimeTable generateProblem() { List<Timeslot> timeslotList = new ArrayList<>(); timeslotList.add(new Timeslot(DayOfWeek.MONDAY, LocalTime.of(8, 30), LocalTime.of(9, 30))); timeslotList.add(new Timeslot(DayOfWeek.MONDAY, LocalTime.of(9, 30), LocalTime.of(10, 30))); timeslotList.add(new Timeslot(DayOfWeek.MONDAY, LocalTime.of(10, 30), LocalTime.of(11, 30))); timeslotList.add(new Timeslot(DayOfWeek.MONDAY, LocalTime.of(13, 30), LocalTime.of(14, 30))); timeslotList.add(new Timeslot(DayOfWeek.MONDAY, LocalTime.of(14, 30), LocalTime.of(15, 30))); List<Room> roomList = new ArrayList<>(); roomList.add(new Room("Room A")); roomList.add(new Room("Room B")); roomList.add(new Room("Room C")); List<Lesson> lessonList = new ArrayList<>(); lessonList.add(new Lesson(101L, "Math", "B. May", "9th grade")); lessonList.add(new Lesson(102L, "Physics", "M. Curie", "9th grade")); lessonList.add(new Lesson(103L, "Geography", "M. Polo", "9th grade")); lessonList.add(new Lesson(104L, "English", "I. Jones", "9th grade")); lessonList.add(new Lesson(105L, "Spanish", "P. Cruz", "9th grade")); lessonList.add(new Lesson(201L, "Math", "B. May", "10th grade")); lessonList.add(new Lesson(202L, "Chemistry", "M. Curie", "10th grade")); lessonList.add(new Lesson(203L, "History", "I. Jones", "10th grade")); lessonList.add(new Lesson(204L, "English", "P. Cruz", "10th grade")); lessonList.add(new Lesson(205L, "French", "M. Curie", "10th grade")); return new TimeTable(timeslotList, roomList, lessonList); } }
This test verifies that after solving, all lessons are assigned to a time slot and a room. It also verifies that it found a feasible solution (no hard constraints broken).
Add test properties to the
src/main/resources/application.properties
file:# The solver runs only for 5 seconds to avoid a HTTP timeout in this simple implementation. # It's recommended to run for at least 5 minutes ("5m") otherwise. quarkus.optaplanner.solver.termination.spent-limit=5s # Effectively disable this termination in favor of the best-score-limit %test.quarkus.optaplanner.solver.termination.spent-limit=1h %test.quarkus.optaplanner.solver.termination.best-score-limit=0hard/*soft
Normally, the solver finds a feasible solution in less than 200 milliseconds. Notice how the application.properties
file overwrites the solver termination during tests to terminate as soon as a feasible solution (0hard/*soft)
is found. This avoids hard coding a solver time, because the unit test might run on arbitrary hardware. This approach ensures that the test runs long enough to find a feasible solution, even on slow systems. But it does not run a millisecond longer than it strictly must, even on fast systems.
10.9. Logging
After you complete the Red Hat build of OptaPlanner school timetable project, you can use logging information to help you fine-tune the constraints in the ConstraintProvider
. Review the score calculation speed in the info
log file to assess the impact of changes to your constraints. Run the application in debug mode to show every step that your application takes or use trace logging to log every step and every move.
Procedure
- Run the school timetable application for a fixed amount of time, for example, five minutes.
Review the score calculation speed in the
log
file as shown in the following example:... Solving ended: ..., score calculation speed (29455/sec), ...
-
Change a constraint, run the planning application again for the same amount of time, and review the score calculation speed recorded in the
log
file. Run the application in debug mode to log every step that the application makes:
-
To run debug mode from the command line, use the
-D
system property. To permanently enable debug mode, add the following line to the
application.properties
file:quarkus.log.category."org.optaplanner".level=debug
The following example shows output in the
log
file in debug mode:... Solving started: time spent (67), best score (-20init/0hard/0soft), environment mode (REPRODUCIBLE), random (JDK with seed 0). ... CH step (0), time spent (128), score (-18init/0hard/0soft), selected move count (15), picked move ([Math(101) {null -> Room A}, Math(101) {null -> MONDAY 08:30}]). ... CH step (1), time spent (145), score (-16init/0hard/0soft), selected move count (15), picked move ([Physics(102) {null -> Room A}, Physics(102) {null -> MONDAY 09:30}]). ...
-
To run debug mode from the command line, use the
-
Use
trace
logging to show every step and every move for each step.
10.10. Integrating a database with your Quarkus OptaPlanner school timetable application
After you create your Quarkus OptaPlanner school timetable application, you can integrate it with a database and create a web-based user interface to display the timetable.
Prerequisites
- You have a Quarkus OptaPlanner school timetable application.
Procedure
-
Use Hibernate and Panache to store
Timeslot
,Room
, andLesson
instances in a database. See Simplified Hibernate ORM with Panache for more information. - Expose the instances through REST. For information, see Writing JSON REST Services.
Update the
TimeTableResource
class to read and write aTimeTable
instance in a single transaction:package org.acme.optaplanner.rest; import javax.inject.Inject; import javax.transaction.Transactional; import javax.ws.rs.GET; import javax.ws.rs.POST; import javax.ws.rs.Path; import io.quarkus.panache.common.Sort; import org.acme.optaplanner.domain.Lesson; import org.acme.optaplanner.domain.Room; import org.acme.optaplanner.domain.TimeTable; import org.acme.optaplanner.domain.Timeslot; import org.optaplanner.core.api.score.ScoreManager; import org.optaplanner.core.api.score.buildin.hardsoft.HardSoftScore; import org.optaplanner.core.api.solver.SolverManager; import org.optaplanner.core.api.solver.SolverStatus; @Path("/timeTable") public class TimeTableResource { public static final Long SINGLETON_TIME_TABLE_ID = 1L; @Inject SolverManager<TimeTable, Long> solverManager; @Inject ScoreManager<TimeTable, HardSoftScore> scoreManager; // To try, open http://localhost:8080/timeTable @GET public TimeTable getTimeTable() { // Get the solver status before loading the solution // to avoid the race condition that the solver terminates between them SolverStatus solverStatus = getSolverStatus(); TimeTable solution = findById(SINGLETON_TIME_TABLE_ID); scoreManager.updateScore(solution); // Sets the score solution.setSolverStatus(solverStatus); return solution; } @POST @Path("/solve") public void solve() { solverManager.solveAndListen(SINGLETON_TIME_TABLE_ID, this::findById, this::save); } public SolverStatus getSolverStatus() { return solverManager.getSolverStatus(SINGLETON_TIME_TABLE_ID); } @POST @Path("/stopSolving") public void stopSolving() { solverManager.terminateEarly(SINGLETON_TIME_TABLE_ID); } @Transactional protected TimeTable findById(Long id) { if (!SINGLETON_TIME_TABLE_ID.equals(id)) { throw new IllegalStateException("There is no timeTable with id (" + id + ")."); } // Occurs in a single transaction, so each initialized lesson references the same timeslot/room instance // that is contained by the timeTable's timeslotList/roomList. return new TimeTable( Timeslot.listAll(Sort.by("dayOfWeek").and("startTime").and("endTime").and("id")), Room.listAll(Sort.by("name").and("id")), Lesson.listAll(Sort.by("subject").and("teacher").and("studentGroup").and("id"))); } @Transactional protected void save(TimeTable timeTable) { for (Lesson lesson : timeTable.getLessonList()) { // TODO this is awfully naive: optimistic locking causes issues if called by the SolverManager Lesson attachedLesson = Lesson.findById(lesson.getId()); attachedLesson.setTimeslot(lesson.getTimeslot()); attachedLesson.setRoom(lesson.getRoom()); } } }
This example includes a
TimeTable
instance. However, you can enable multi-tenancy and handleTimeTable
instances for multiple schools in parallel.The
getTimeTable()
method returns the latest timetable from the database. It uses theScoreManager
method, which is automatically injected, to calculate the score of that timetable and make it available to the UI.The
solve()
method starts a job to solve the current timetable and stores the time slot and room assignments in the database. It uses theSolverManager.solveAndListen()
method to listen to intermediate best solutions and update the database accordingly. The UI uses this to show progress while the backend is still solving.Update the
TimeTableResourceTest
class to reflect that thesolve()
method returns immediately and to poll for the latest solution until the solver finishes solving:package org.acme.optaplanner.rest; import javax.inject.Inject; import io.quarkus.test.junit.QuarkusTest; import org.acme.optaplanner.domain.Lesson; import org.acme.optaplanner.domain.TimeTable; import org.junit.jupiter.api.Test; import org.junit.jupiter.api.Timeout; import org.optaplanner.core.api.solver.SolverStatus; import static org.junit.jupiter.api.Assertions.assertFalse; import static org.junit.jupiter.api.Assertions.assertNotNull; import static org.junit.jupiter.api.Assertions.assertTrue; @QuarkusTest public class TimeTableResourceTest { @Inject TimeTableResource timeTableResource; @Test @Timeout(600_000) public void solveDemoDataUntilFeasible() throws InterruptedException { timeTableResource.solve(); TimeTable timeTable = timeTableResource.getTimeTable(); while (timeTable.getSolverStatus() != SolverStatus.NOT_SOLVING) { // Quick polling (not a Test Thread Sleep anti-pattern) // Test is still fast on fast machines and doesn't randomly fail on slow machines. Thread.sleep(20L); timeTable = timeTableResource.getTimeTable(); } assertFalse(timeTable.getLessonList().isEmpty()); for (Lesson lesson : timeTable.getLessonList()) { assertNotNull(lesson.getTimeslot()); assertNotNull(lesson.getRoom()); } assertTrue(timeTable.getScore().isFeasible()); } }
- Build a web UI on top of these REST methods to provide a visual representation of the timetable.
- Review the quickstart source code.
10.11. Using Micrometer and Prometheus to monitor your school timetable OptaPlanner Quarkus application
OptaPlanner exposes metrics through Micrometer, a metrics instrumentation library for Java applications. You can use Micrometer with Prometheus to monitor the OptaPlanner solver in the school timetable application.
Prerequisites
- You have created the Quarkus OptaPlanner school timetable application.
- Prometheus is installed. For information about installing Prometheus, see the Prometheus website.
Procedure
Add the Micrometer Prometheus dependency to the school timetable
pom.xml
file:<dependency> <groupId>io.quarkus</groupId> <artifactId>quarkus-micrometer-registry-prometheus</artifactId> </dependency>
Start the school timetable application:
mvn compile quarkus:dev
-
Open
http://localhost:8080/q/metric
in a web browser.
Chapter 11. Red Hat build of OptaPlanner on Red Hat build of Quarkus: a vaccination appointment scheduler quick start guide
You can use the OptaPlanner vaccination appointment scheduler quick start to develop a vaccination schedule that is both efficient and fair. The vaccination appointment scheduler uses artificial intelligence (AI) to prioritize people and allocate time slots based on multiple constraints and priorities.
Prerequisites
- OpenJDK 11 or later is installed. Red Hat build of Open JDK is available from the Software Downloads page in the Red Hat Customer Portal (login required).
- Apache Maven 3.6 or higher is installed. Maven is available from the Apache Maven Project website.
- An IDE, such as IntelliJ IDEA, VS Code, Eclipse, or NetBeans is available.
- You have created a Quakus OptaPlanner project as described in Chapter 6, Getting Started with OptaPlanner and Quarkus.
11.1. How the OptaPlanner vaccination appointment scheduler works
There are two main approaches to scheduling appointments. The system can either let a person choose an appointment slot (user-selects) or the system assigns a slot and tells the person when and where to attend (system-automatically-assigns). The OptaPlanner vaccination appointment scheduler uses the system-automatically-assigns approach. With the OptaPlanner vaccination appointment scheduler, you can create an application where people provide their information to the system and the system assigns an appointment.
Characteristics of this approach:
- Appointment slots are allocated based on priority.
- The system allocates the best appointment time and location based on preconfigured planning constraints.
- The system is not overwhelmed by a large number of users competing for a limited number of appointments.
This approach solves the problem of vaccinating as many people as possible by using planning constraints to create a score for each person. The person’s score determines when they get an appointment. The higher the person’s score, the better chance they have of receiving an earlier appointment.
11.1.1. OptaPlanner vaccination appointment scheduler constraints
OptaPlanner vaccination appointment scheduler constraints are either hard, medium, or soft:
Hard constraints cannot be broken. If any hard constraint is broken, the plan is unfeasible and cannot be executed:
- Capacity: Do not over-book vaccine capacity at any time at any location.
- Vaccine max age: If a vaccine has a maximum age, do not administer it to people who at the time of the first dose vaccination are older than the vaccine maximum age. Ensure people are given a vaccine type appropriate for their age. For example, do not assign a 75 year old person an appointment for a vaccine that has a maximum age restriction of 65 years.
- Required vaccine type: Use the required vaccine type. For example, the second dose of a vaccine must be the same vaccine type as the first dose.
- Ready date: Administer the vaccine on or after the specified date. For example, if a person receives a second dose, do not administer it before the recommended earliest possible vaccination date for the specific vaccine type, for example 26 days after the first dose.
- Due date: Administer the vaccine on or before the specified date. For example, if a person receives a second dose, administer it before the recommended vaccination final due date for the specific vaccine, for example three months after the first dose.
- Restrict maximum travel distance: Assign each person to one of a group of vaccination centers nearest to them. This is typically one of three centers. This restriction is calculated by travel time, not distance, so a person that lives in an urban area usually has a lower maximum distance to travel than a person living in a rural area.
Medium constraints decide who does not get an appointment when there is not enough capacity to assign appointments to everyone. This is called overconstrained planning:
- Schedule second dose vaccinations: Do not leave any second dose vaccination appointments unassigned unless the ideal date falls outside of the planning window.
- Schedule people based on their priority rating: Each person has a priority rating. This is typically their age but it can be much higher if they are, for example, a health care worker. Leave only people with the lowest priority ratings unassigned. They will be considered in the next run. This constraint is softer than the previous constraint because the second dose is always prioritized over priority rating.
Soft constraints should not be broken:
- Preferred vaccination center: If a person has a preferred vaccination center, give them an appointment at that center.
- Distance: Minimize the distance that a person must travel to their assigned vaccination center.
- Ideal date: Administer the vaccine on or as close to the specified date as possible. For example, if a person receives a second dose, administer it on the ideal date for the specific vaccine, for example 28 days after the first dose. This constraint is softer than the distance constraint to avoid sending people halfway across the country just to be one day closer to their ideal date.
- Priority rating: Schedule people with a higher priority rating earlier in the planning window. This constraint is softer than the distance constraint to avoid sending people halfway across the country. This constraint is also softer than the ideal date constraint because the second dose is prioritized over priority rating.
Hard constraints are weighted against other hard constraints. Soft constraints are weighted against other soft constraints. However, hard constraints always take precedence over medium and soft constraints. If a hard constraint is broken, then the plan is not feasible. But if no hard constraints are broken then soft and medium constraints are considered in order to determine priority. Because there are often more people than available appointment slots, you must prioritize. Second dose appointments are always assigned first to avoid creating a backlog that would overwhelm your system later. After that, people are assigned based on their priority rating. Everyone starts with a priority rating that is their age. Doing this prioritizes older people over younger people. After that, people that are in specific priority groups receive, for example, a few hundred extra points. This varies based on the priority of their group. For example, nurses might receive an extra 1000 points. This way, older nurses are prioritized over younger nurses and young nurses are prioritized over people who are not nurses. The following table illustrates this concept:
Age | Job | Priority rating |
---|---|---|
60 | nurse | 1060 |
33 | nurse | 1033 |
71 | retired | 71 |
52 | office worker | 52 |
11.1.2. The OptaPlanner solver
At the core of OptaPlanner is the solver, the engine that takes the problem data set and overlays the planning constraints and configurations. The problem data set includes all of the information about the people, the vaccines, and the vaccination centers. The solver works through the various combinations of data and eventually determines an optimized appointment schedule with people assigned to vaccination appointments at a specific center. The following illustration shows a schedule that the solver created:
11.1.3. Continuous planning
Continuous planning is the technique of managing one or more upcoming planning periods at the same time and repeating that process monthly, weekly, daily, hourly, or even more frequently. The planning window advances incrementally by a specified interval. The following illustration shows a two week planning window that is updated daily:
The two week planning window is divided in half. The first week is in the published state and the second week is in the draft state. People are assigned to appointments in both the published and draft parts of the planning window. However, only people in the published part of the planning window are notified of their appointments. The other appointments can still change easily in the next run. Doing this gives OptaPlanner the flexibility to change the appointments in the draft part when you run the solver again, if necessary. For example, if a person who needs a second dose has a ready date of Monday and an ideal date of Wednesday, OptaPlanner does not have to give them an appointment for Monday if you can prove OptaPlanner can demonstrate that it can give them a draft appointment later in the week.
You can determine the size of the planning window but just be aware of the size of the problem space. The problem space is all of the various elements that go into creating the schedule. The more days you plan ahead, the larger the problem space.
11.1.4. Pinned planning entities
If you are continuously planning on a daily basis, there will be appointments within the two week period that are already allocated to people. To ensure that appointments are not double-booked, OptaPlanner marks existing appointments as allocated by pinning them. Pinning is used to anchor one or more specific assignments and force OptaPlanner to schedule around those fixed assignments. A pinned planning entity, such as an appointment, does not change during solving.
Whether an entity is pinned or not is determined by the appointment state. An appointment can have five states : Open
, Invited
, Accepted
, Rejected
, or Rescheduled
.
You do not actually see these states directly in the quick start demo code because the OptaPlanner engine is only interested in whether the appointment is pinned or not.
You need to be able to plan around appointments that have already been scheduled. An appointment with the Invited
or Accepted
state is pinned. Appointments with the Open
, Reschedule
, and Rejected
state are not pinned and are available for scheduling.
In this example, when the solver runs it searches across the entire two week planning window in both the published and draft ranges. The solver considers any unpinned entities, appointments with the Open
, Reschedule
, or Rejected
states, in addition to the unscheduled input data, to find the optimal solution. If the solver is run daily, you will see a new day added to the schedule before you run the solver.
Notice that the appointments on the new day have been assigned and Amy and Edna who were previously scheduled in the draft part of the planning window are now scheduled in the published part of the window. This was possible because Gus and Hugo requested a reschedule. This will not cause any confusion because Amy and Edna were never notified about their draft dates. Now, because they have appointments in the published section of the planning window, they will be notified and asked to accept or reject their appointments, and their appointments are now pinned.
11.2. Downloading and running the OptaPlanner vaccination appointment scheduler
Download the OptaPlanner vaccination appointment scheduler quick start archive, start it in Quarkus development mode, and view the application in a browser. Quarkus development mode enables you to make changes and update your application while it is running.
Procedure
Navigate to the Software Downloads page in the Red Hat Customer Portal (login required), and select the product and version from the drop-down options:
- Product: Process Automation Manager
- Version: 7.13.5
-
Download Red Hat Process Automation Manager 7.13.5 Kogito and OptaPlanner 8 Decision Services Quickstarts (
rhpam-7.13.5-kogito-and-optaplanner-quickstarts.zip
). -
Extract the
rhpam-7.13.5-kogito-and-optaplanner-quickstarts.zip
file. -
Navigate to the
optaplanner-quickstarts-8.13.0.Final-redhat-00013
directory. -
Navigate to the
optaplanner-quickstarts-8.13.0.Final-redhat-00013/use-cases/vaccination-scheduling
directory. Enter the following command to start the OptaPlanner vaccination appointment scheduler in development mode:
$ mvn quarkus:dev
To view the OptaPlanner vaccination appointment scheduler, enter the following URL in a web browser.
http://localhost:8080/
- To run the OptaPlanner vaccination appointment scheduler, click Solve.
- Make changes to the source code then press the F5 key to refresh your browser. Notice that the changes that you made are now available.
11.3. Package and run the OptaPlanner vaccination appointment scheduler
When you have completed development work on the OptaPlanner vaccination appointment scheduler in quarkus:dev
mode, run the application as a conventional jar file.
Prerequisites
- You have downloaded the OptaPlanner vaccination appointment scheduler quick start. For more information, see Section 11.2, “Downloading and running the OptaPlanner vaccination appointment scheduler”.
Procedure
-
Navigate to the
/use-cases/vaccination-scheduling
directory. To compile the OptaPlanner vaccination appointment scheduler, enter the following command:
$ mvn package
To run the compiled OptaPlanner vaccination appointment scheduler, enter the following command:
$ java -jar ./target/*-runner.jar
NoteTo run the application on port 8081, add
-Dquarkus.http.port=8081
to the preceding command.To start the OptaPlanner vaccination appointment scheduler, enter the following URL in a web browser.
http://localhost:8080/
11.4. Run the OptaPlanner vaccination appointment scheduler as a native executable
To take advantage of the small memory footprint and access speeds that Quarkus offers, compile the OptaPlanner vaccination appointment scheduler in Quarkus native mode.
Procedure
-
Install GraalVM and the
native-image
tool. For information, see Configuring GraalVMl on the Quarkus website. -
Navigate to the
/use-cases/vaccination-scheduling
directory. To compile the OptaPlanner vaccination appointment scheduler natively, enter the following command:
$ mvn package -Dnative -DskipTests
To run the native executable, enter the following command:
$ ./target/*-runner
To start the OptaPlanner vaccination appointment scheduler, enter the following URL in a web browser.
http://localhost:8080/
11.5. Additional resources
Chapter 12. Red Hat build of OptaPlanner on Spring Boot: a school timetable quick start guide
This guide walks you through the process of creating a Spring Boot application with OptaPlanner’s constraint solving artificial intelligence (AI). You will build a REST application that optimizes a school timetable for students and teachers.
Your service will assign Lesson
instances to Timeslot
and Room
instances automatically by using AI to adhere to the following hard and soft scheduling constraints:
- A room can have at most one lesson at the same time.
- A teacher can teach at most one lesson at the same time.
- A student can attend at most one lesson at the same time.
- A teacher prefers to teach in a single room.
- A teacher prefers to teach sequential lessons and dislikes gaps between lessons.
Mathematically speaking, school timetabling is an NP-hard problem. That means it is difficult to scale. Simply iterating through all possible combinations with brute force would take millions of years for a non-trivial data set, even on a supercomputer. Fortunately, AI constraint solvers such as OptaPlanner have advanced algorithms that deliver a near-optimal solution in a reasonable amount of time. What is considered to be a reasonable amount of time is subjective and depends on the goals of your problem.
Prerequisites
- OpenJDK 11 or later is installed. Red Hat build of Open JDK is available from the Software Downloads page in the Red Hat Customer Portal (login required).
- Apache Maven 3.6 or higher is installed. Maven is available from the Apache Maven Project website.
- An IDE, such as IntelliJ IDEA, VS Code, Eclipse, or NetBeans is available.
12.1. Downloading and building the Spring Boot school timetable quick start
If you want to see a completed example of the school timetable project for Red Hat build of OptaPlanner with Spring Boot product, download the starter application from the Red Hat Customer Portal.
Procedure
Navigate to the Software Downloads page in the Red Hat Customer Portal (login required), and select the product and version from the drop-down options:
- Product: Process Automation Manager
- Version: 7.13.5
-
Download Red Hat Process Automation Manager 7.13.5 Kogito and OptaPlanner 8 Decision Services Quickstarts (
rhpam-7.13.5-kogito-and-optaplanner-quickstarts.zip
). -
Extract the
rhpam-7.13.5-kogito-and-optaplanner-quickstarts.zip
file. -
Download the Red Hat Process Automation Manager 7.13.5 Kogito and OptaPlanner 8 Decision Services Maven Repositroy (
rhpam-7.13.5-kogito-maven-repository.zip
). -
Extract the
rhpam-7.13.5-kogito-maven-repository.zip
file. -
Copy the contents of the
rhpam-7.13.5-kogito-maven-repository/maven-repository
subdirectory into the~/.m2/repository
directory. -
Navigate to the
optaplanner-quickstarts-8.13.0.Final-redhat-00013/technology/java-spring-boot
directory. Enter the following command to build the Spring Boot school timetabling project:
mvn clean install -DskipTests
To build the Spring Boot school timetabling project, enter the following command:
mvn spring-boot:run -DskipTests
To view the project, enter the following URL in a web browser:
http://localhost:8080/
12.2. Model the domain objects
The goal of the Red Hat build of OptaPlanner timetable project is to assign each lesson to a time slot and a room. To do this, add three classes, Timeslot
, Lesson
, and Room
, as shown in the following diagram:
Timeslot
The Timeslot
class represents a time interval when lessons are taught, for example, Monday 10:30 - 11:30
or Tuesday 13:30 - 14:30
. In this example, all time slots have the same duration and there are no time slots during lunch or other breaks.
A time slot has no date because a high school schedule just repeats every week. There is no need for continuous planning. A timeslot is called a problem fact because no Timeslot
instances change during solving. Such classes do not require any OptaPlanner-specific annotations.
Room
The Room
class represents a location where lessons are taught, for example, Room A
or Room B
. In this example, all rooms are without capacity limits and they can accommodate all lessons.
Room
instances do not change during solving so Room
is also a problem fact.
Lesson
During a lesson, represented by the Lesson
class, a teacher teaches a subject to a group of students, for example, Math by A.Turing for 9th grade
or Chemistry by M.Curie for 10th grade
. If a subject is taught multiple times each week by the same teacher to the same student group, there are multiple Lesson
instances that are only distinguishable by id
. For example, the 9th grade has six math lessons a week.
During solving, OptaPlanner changes the timeslot
and room
fields of the Lesson
class to assign each lesson to a time slot and a room. Because OptaPlanner changes these fields, Lesson
is a planning entity:
Most of the fields in the previous diagram contain input data, except for the orange fields. A lesson’s timeslot
and room
fields are unassigned (null
) in the input data and assigned (not null
) in the output data. OptaPlanner changes these fields during solving. Such fields are called planning variables. In order for OptaPlanner to recognize them, both the timeslot
and room
fields require an @PlanningVariable
annotation. Their containing class, Lesson
, requires an @PlanningEntity
annotation.
Procedure
Create the
src/main/java/com/example/domain/Timeslot.java
class:package com.example.domain; import java.time.DayOfWeek; import java.time.LocalTime; public class Timeslot { private DayOfWeek dayOfWeek; private LocalTime startTime; private LocalTime endTime; private Timeslot() { } public Timeslot(DayOfWeek dayOfWeek, LocalTime startTime, LocalTime endTime) { this.dayOfWeek = dayOfWeek; this.startTime = startTime; this.endTime = endTime; } @Override public String toString() { return dayOfWeek + " " + startTime.toString(); } // ******************************** // Getters and setters // ******************************** public DayOfWeek getDayOfWeek() { return dayOfWeek; } public LocalTime getStartTime() { return startTime; } public LocalTime getEndTime() { return endTime; } }
Notice the
toString()
method keeps the output short so it is easier to read OptaPlanner’sDEBUG
orTRACE
log, as shown later.Create the
src/main/java/com/example/domain/Room.java
class:package com.example.domain; public class Room { private String name; private Room() { } public Room(String name) { this.name = name; } @Override public String toString() { return name; } // ******************************** // Getters and setters // ******************************** public String getName() { return name; } }
Create the
src/main/java/com/example/domain/Lesson.java
class:package com.example.domain; import org.optaplanner.core.api.domain.entity.PlanningEntity; import org.optaplanner.core.api.domain.variable.PlanningVariable; @PlanningEntity public class Lesson { private Long id; private String subject; private String teacher; private String studentGroup; @PlanningVariable(valueRangeProviderRefs = "timeslotRange") private Timeslot timeslot; @PlanningVariable(valueRangeProviderRefs = "roomRange") private Room room; private Lesson() { } public Lesson(Long id, String subject, String teacher, String studentGroup) { this.id = id; this.subject = subject; this.teacher = teacher; this.studentGroup = studentGroup; } @Override public String toString() { return subject + "(" + id + ")"; } // ******************************** // Getters and setters // ******************************** public Long getId() { return id; } public String getSubject() { return subject; } public String getTeacher() { return teacher; } public String getStudentGroup() { return studentGroup; } public Timeslot getTimeslot() { return timeslot; } public void setTimeslot(Timeslot timeslot) { this.timeslot = timeslot; } public Room getRoom() { return room; } public void setRoom(Room room) { this.room = room; } }
The
Lesson
class has an@PlanningEntity
annotation, so OptaPlanner knows that this class changes during solving because it contains one or more planning variables.The
timeslot
field has an@PlanningVariable
annotation, so OptaPlanner knows that it can change its value. In order to find potentialTimeslot
instances to assign to this field, OptaPlanner uses thevalueRangeProviderRefs
property to connect to a value range provider that provides aList<Timeslot>
to pick from. See Section 12.4, “Gather the domain objects in a planning solution” for information about value range providers.The
room
field also has an@PlanningVariable
annotation for the same reasons.
12.3. Define the constraints and calculate the score
When solving a problem, a score represents the quality of a specific solution. The higher the score the better. Red Hat build of OptaPlanner looks for the best solution, which is the solution with the highest score found in the available time. It might be the optimal solution.
Because the timetable example use case has hard and soft constraints, use the HardSoftScore
class to represent the score:
- Hard constraints must not be broken. For example: A room can have at most one lesson at the same time.
- Soft constraints should not be broken. For example: A teacher prefers to teach in a single room.
Hard constraints are weighted against other hard constraints. Soft constraints are weighted against other soft constraints. Hard constraints always outweigh soft constraints, regardless of their respective weights.
To calculate the score, you could implement an EasyScoreCalculator
class:
public class TimeTableEasyScoreCalculator implements EasyScoreCalculator<TimeTable> { @Override public HardSoftScore calculateScore(TimeTable timeTable) { List<Lesson> lessonList = timeTable.getLessonList(); int hardScore = 0; for (Lesson a : lessonList) { for (Lesson b : lessonList) { if (a.getTimeslot() != null && a.getTimeslot().equals(b.getTimeslot()) && a.getId() < b.getId()) { // A room can accommodate at most one lesson at the same time. if (a.getRoom() != null && a.getRoom().equals(b.getRoom())) { hardScore--; } // A teacher can teach at most one lesson at the same time. if (a.getTeacher().equals(b.getTeacher())) { hardScore--; } // A student can attend at most one lesson at the same time. if (a.getStudentGroup().equals(b.getStudentGroup())) { hardScore--; } } } } int softScore = 0; // Soft constraints are only implemented in the "complete" implementation return HardSoftScore.of(hardScore, softScore); } }
Unfortunately, this solution does not scale well because it is non-incremental: every time a lesson is assigned to a different time slot or room, all lessons are re-evaluated to calculate the new score.
A better solution is to create a src/main/java/com/example/solver/TimeTableConstraintProvider.java
class to perform incremental score calculation. This class uses OptaPlanner’s ConstraintStream API which is inspired by Java 8 Streams and SQL. The ConstraintProvider
scales an order of magnitude better than the EasyScoreCalculator
: O(n) instead of O(n²).
Procedure
Create the following src/main/java/com/example/solver/TimeTableConstraintProvider.java
class:
package com.example.solver; import com.example.domain.Lesson; import org.optaplanner.core.api.score.buildin.hardsoft.HardSoftScore; import org.optaplanner.core.api.score.stream.Constraint; import org.optaplanner.core.api.score.stream.ConstraintFactory; import org.optaplanner.core.api.score.stream.ConstraintProvider; import org.optaplanner.core.api.score.stream.Joiners; public class TimeTableConstraintProvider implements ConstraintProvider { @Override public Constraint[] defineConstraints(ConstraintFactory constraintFactory) { return new Constraint[] { // Hard constraints roomConflict(constraintFactory), teacherConflict(constraintFactory), studentGroupConflict(constraintFactory), // Soft constraints are only implemented in the "complete" implementation }; } private Constraint roomConflict(ConstraintFactory constraintFactory) { // A room can accommodate at most one lesson at the same time. // Select a lesson ... return constraintFactory.from(Lesson.class) // ... and pair it with another lesson ... .join(Lesson.class, // ... in the same timeslot ... Joiners.equal(Lesson::getTimeslot), // ... in the same room ... Joiners.equal(Lesson::getRoom), // ... and the pair is unique (different id, no reverse pairs) Joiners.lessThan(Lesson::getId)) // then penalize each pair with a hard weight. .penalize("Room conflict", HardSoftScore.ONE_HARD); } private Constraint teacherConflict(ConstraintFactory constraintFactory) { // A teacher can teach at most one lesson at the same time. return constraintFactory.from(Lesson.class) .join(Lesson.class, Joiners.equal(Lesson::getTimeslot), Joiners.equal(Lesson::getTeacher), Joiners.lessThan(Lesson::getId)) .penalize("Teacher conflict", HardSoftScore.ONE_HARD); } private Constraint studentGroupConflict(ConstraintFactory constraintFactory) { // A student can attend at most one lesson at the same time. return constraintFactory.from(Lesson.class) .join(Lesson.class, Joiners.equal(Lesson::getTimeslot), Joiners.equal(Lesson::getStudentGroup), Joiners.lessThan(Lesson::getId)) .penalize("Student group conflict", HardSoftScore.ONE_HARD); } }
12.4. Gather the domain objects in a planning solution
A TimeTable
instance wraps all Timeslot
, Room
, and Lesson
instances of a single dataset. Furthermore, because it contains all lessons, each with a specific planning variable state, it is a planning solution and it has a score:
-
If lessons are still unassigned, then it is an uninitialized solution, for example, a solution with the score
-4init/0hard/0soft
. -
If it breaks hard constraints, then it is an infeasible solution, for example, a solution with the score
-2hard/-3soft
. -
If it adheres to all hard constraints, then it is a feasible solution, for example, a solution with the score
0hard/-7soft
.
The TimeTable
class has an @PlanningSolution
annotation, so Red Hat build of OptaPlanner knows that this class contains all of the input and output data.
Specifically, this class is the input of the problem:
A
timeslotList
field with all time slots- This is a list of problem facts, because they do not change during solving.
A
roomList
field with all rooms- This is a list of problem facts, because they do not change during solving.
A
lessonList
field with all lessons- This is a list of planning entities because they change during solving.
Of each
Lesson
:-
The values of the
timeslot
androom
fields are typically stillnull
, so unassigned. They are planning variables. -
The other fields, such as
subject
,teacher
andstudentGroup
, are filled in. These fields are problem properties.
-
The values of the
However, this class is also the output of the solution:
-
A
lessonList
field for which eachLesson
instance has non-nulltimeslot
androom
fields after solving -
A
score
field that represents the quality of the output solution, for example,0hard/-5soft
Procedure
Create the src/main/java/com/example/domain/TimeTable.java
class:
package com.example.domain; import java.util.List; import org.optaplanner.core.api.domain.solution.PlanningEntityCollectionProperty; import org.optaplanner.core.api.domain.solution.PlanningScore; import org.optaplanner.core.api.domain.solution.PlanningSolution; import org.optaplanner.core.api.domain.solution.ProblemFactCollectionProperty; import org.optaplanner.core.api.domain.valuerange.ValueRangeProvider; import org.optaplanner.core.api.score.buildin.hardsoft.HardSoftScore; @PlanningSolution public class TimeTable { @ValueRangeProvider(id = "timeslotRange") @ProblemFactCollectionProperty private List<Timeslot> timeslotList; @ValueRangeProvider(id = "roomRange") @ProblemFactCollectionProperty private List<Room> roomList; @PlanningEntityCollectionProperty private List<Lesson> lessonList; @PlanningScore private HardSoftScore score; private TimeTable() { } public TimeTable(List<Timeslot> timeslotList, List<Room> roomList, List<Lesson> lessonList) { this.timeslotList = timeslotList; this.roomList = roomList; this.lessonList = lessonList; } // ******************************** // Getters and setters // ******************************** public List<Timeslot> getTimeslotList() { return timeslotList; } public List<Room> getRoomList() { return roomList; } public List<Lesson> getLessonList() { return lessonList; } public HardSoftScore getScore() { return score; } }
The value range providers
The timeslotList
field is a value range provider. It holds the Timeslot
instances which OptaPlanner can pick from to assign to the timeslot
field of Lesson
instances. The timeslotList
field has an @ValueRangeProvider
annotation to connect those two, by matching the id
with the valueRangeProviderRefs
of the @PlanningVariable
in the Lesson
.
Following the same logic, the roomList
field also has an @ValueRangeProvider
annotation.
The problem fact and planning entity properties
Furthermore, OptaPlanner needs to know which Lesson
instances it can change as well as how to retrieve the Timeslot
and Room
instances used for score calculation by your TimeTableConstraintProvider
.
The timeslotList
and roomList
fields have an @ProblemFactCollectionProperty
annotation, so your TimeTableConstraintProvider
can select from those instances.
The lessonList
has an @PlanningEntityCollectionProperty
annotation, so OptaPlanner can change them during solving and your TimeTableConstraintProvider
can select from those too.
12.5. Create the Timetable service
Now you are ready to put everything together and create a REST service. But solving planning problems on REST threads causes HTTP timeout issues. Therefore, the Spring Boot starter injects a SolverManager
, which runs solvers in a separate thread pool and can solve multiple datasets in parallel.
Procedure
Create the src/main/java/com/example/solver/TimeTableController.java
class:
package com.example.solver; import java.util.UUID; import java.util.concurrent.ExecutionException; import com.example.domain.TimeTable; import org.optaplanner.core.api.solver.SolverJob; import org.optaplanner.core.api.solver.SolverManager; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.web.bind.annotation.PostMapping; import org.springframework.web.bind.annotation.RequestBody; import org.springframework.web.bind.annotation.RequestMapping; import org.springframework.web.bind.annotation.RestController; @RestController @RequestMapping("/timeTable") public class TimeTableController { @Autowired private SolverManager<TimeTable, UUID> solverManager; @PostMapping("/solve") public TimeTable solve(@RequestBody TimeTable problem) { UUID problemId = UUID.randomUUID(); // Submit the problem to start solving SolverJob<TimeTable, UUID> solverJob = solverManager.solve(problemId, problem); TimeTable solution; try { // Wait until the solving ends solution = solverJob.getFinalBestSolution(); } catch (InterruptedException | ExecutionException e) { throw new IllegalStateException("Solving failed.", e); } return solution; } }
In this example, the initial implementation waits for the solver to finish, which can still cause an HTTP timeout. The complete implementation avoids HTTP timeouts much more elegantly.
12.6. Set the solver termination time
If your planning application does not have a termination setting or a termination event, it theoretically runs forever and in reality eventually causes an HTTP timeout error. To prevent this from occurring, use the optaplanner.solver.termination.spent-limit
parameter to specify the length of time after which the application terminates. In most applications, set the time to at least five minutes (5m
). However, in the Timetable example, limit the solving time to five seconds, which is short enough to avoid the HTTP timeout.
Procedure
Create the src/main/resources/application.properties
file with the following content:
quarkus.optaplanner.solver.termination.spent-limit=5s
12.7. Make the application executable
After you complete the Red Hat build of OptaPlanner Spring Boot timetable project, package everything into a single executable JAR file driven by a standard Java main()
method.
Prerequisites
- You have a completed OptaPlanner Spring Boot timetable project.
Procedure
Create the
TimeTableSpringBootApp.java
class with the following content:package com.example; import org.springframework.boot.SpringApplication; import org.springframework.boot.autoconfigure.SpringBootApplication; @SpringBootApplication public class TimeTableSpringBootApp { public static void main(String[] args) { SpringApplication.run(TimeTableSpringBootApp.class, args); } }
-
Replace the
src/main/java/com/example/DemoApplication.java
class created by Spring Initializr with theTimeTableSpringBootApp.java
class. -
Run the
TimeTableSpringBootApp.java
class as the main class of a regular Java application.
12.7.1. Try the timetable application
After you start the Red Hat build of OptaPlanner Spring Boot timetable application, you can test the REST service with any REST client that you want. This example uses the Linux curl
command to send a POST request.
Prerequisites
- The OptaPlanner Spring Boot timetable application is running.
Procedure
Enter the following command:
$ curl -i -X POST http://localhost:8080/timeTable/solve -H "Content-Type:application/json" -d '{"timeslotList":[{"dayOfWeek":"MONDAY","startTime":"08:30:00","endTime":"09:30:00"},{"dayOfWeek":"MONDAY","startTime":"09:30:00","endTime":"10:30:00"}],"roomList":[{"name":"Room A"},{"name":"Room B"}],"lessonList":[{"id":1,"subject":"Math","teacher":"A. Turing","studentGroup":"9th grade"},{"id":2,"subject":"Chemistry","teacher":"M. Curie","studentGroup":"9th grade"},{"id":3,"subject":"French","teacher":"M. Curie","studentGroup":"10th grade"},{"id":4,"subject":"History","teacher":"I. Jones","studentGroup":"10th grade"}]}'
After about five seconds, the termination spent time defined in application.properties
, the service returns an output similar to the following example:
HTTP/1.1 200 Content-Type: application/json ... {"timeslotList":...,"roomList":...,"lessonList":[{"id":1,"subject":"Math","teacher":"A. Turing","studentGroup":"9th grade","timeslot":{"dayOfWeek":"MONDAY","startTime":"08:30:00","endTime":"09:30:00"},"room":{"name":"Room A"}},{"id":2,"subject":"Chemistry","teacher":"M. Curie","studentGroup":"9th grade","timeslot":{"dayOfWeek":"MONDAY","startTime":"09:30:00","endTime":"10:30:00"},"room":{"name":"Room A"}},{"id":3,"subject":"French","teacher":"M. Curie","studentGroup":"10th grade","timeslot":{"dayOfWeek":"MONDAY","startTime":"08:30:00","endTime":"09:30:00"},"room":{"name":"Room B"}},{"id":4,"subject":"History","teacher":"I. Jones","studentGroup":"10th grade","timeslot":{"dayOfWeek":"MONDAY","startTime":"09:30:00","endTime":"10:30:00"},"room":{"name":"Room B"}}],"score":"0hard/0soft"}
Notice that the application assigned all four lessons to one of the two time slots and one of the two rooms. Also notice that it conforms to all hard constraints. For example, M. Curie’s two lessons are in different time slots.
On the server side, the info
log shows what OptaPlanner did in those five seconds:
... Solving started: time spent (33), best score (-8init/0hard/0soft), environment mode (REPRODUCIBLE), random (JDK with seed 0). ... Construction Heuristic phase (0) ended: time spent (73), best score (0hard/0soft), score calculation speed (459/sec), step total (4). ... Local Search phase (1) ended: time spent (5000), best score (0hard/0soft), score calculation speed (28949/sec), step total (28398). ... Solving ended: time spent (5000), best score (0hard/0soft), score calculation speed (28524/sec), phase total (2), environment mode (REPRODUCIBLE).
12.7.2. Test the application
A good application includes test coverage. This example tests the Timetable Red Hat build of OptaPlanner Spring Boot application. It uses a JUnit test to generate a test dataset and send it to the TimeTableController
to solve.
Procedure
Create the src/test/java/com/example/solver/TimeTableControllerTest.java
class with the following content:
package com.example.solver; import java.time.DayOfWeek; import java.time.LocalTime; import java.util.ArrayList; import java.util.List; import com.example.domain.Lesson; import com.example.domain.Room; import com.example.domain.TimeTable; import com.example.domain.Timeslot; import org.junit.jupiter.api.Test; import org.junit.jupiter.api.Timeout; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.boot.test.context.SpringBootTest; import static org.junit.jupiter.api.Assertions.assertFalse; import static org.junit.jupiter.api.Assertions.assertNotNull; import static org.junit.jupiter.api.Assertions.assertTrue; @SpringBootTest(properties = { "optaplanner.solver.termination.spent-limit=1h", // Effectively disable this termination in favor of the best-score-limit "optaplanner.solver.termination.best-score-limit=0hard/*soft"}) public class TimeTableControllerTest { @Autowired private TimeTableController timeTableController; @Test @Timeout(600_000) public void solve() { TimeTable problem = generateProblem(); TimeTable solution = timeTableController.solve(problem); assertFalse(solution.getLessonList().isEmpty()); for (Lesson lesson : solution.getLessonList()) { assertNotNull(lesson.getTimeslot()); assertNotNull(lesson.getRoom()); } assertTrue(solution.getScore().isFeasible()); } private TimeTable generateProblem() { List<Timeslot> timeslotList = new ArrayList<>(); timeslotList.add(new Timeslot(DayOfWeek.MONDAY, LocalTime.of(8, 30), LocalTime.of(9, 30))); timeslotList.add(new Timeslot(DayOfWeek.MONDAY, LocalTime.of(9, 30), LocalTime.of(10, 30))); timeslotList.add(new Timeslot(DayOfWeek.MONDAY, LocalTime.of(10, 30), LocalTime.of(11, 30))); timeslotList.add(new Timeslot(DayOfWeek.MONDAY, LocalTime.of(13, 30), LocalTime.of(14, 30))); timeslotList.add(new Timeslot(DayOfWeek.MONDAY, LocalTime.of(14, 30), LocalTime.of(15, 30))); List<Room> roomList = new ArrayList<>(); roomList.add(new Room("Room A")); roomList.add(new Room("Room B")); roomList.add(new Room("Room C")); List<Lesson> lessonList = new ArrayList<>(); lessonList.add(new Lesson(101L, "Math", "B. May", "9th grade")); lessonList.add(new Lesson(102L, "Physics", "M. Curie", "9th grade")); lessonList.add(new Lesson(103L, "Geography", "M. Polo", "9th grade")); lessonList.add(new Lesson(104L, "English", "I. Jones", "9th grade")); lessonList.add(new Lesson(105L, "Spanish", "P. Cruz", "9th grade")); lessonList.add(new Lesson(201L, "Math", "B. May", "10th grade")); lessonList.add(new Lesson(202L, "Chemistry", "M. Curie", "10th grade")); lessonList.add(new Lesson(203L, "History", "I. Jones", "10th grade")); lessonList.add(new Lesson(204L, "English", "P. Cruz", "10th grade")); lessonList.add(new Lesson(205L, "French", "M. Curie", "10th grade")); return new TimeTable(timeslotList, roomList, lessonList); } }
This test verifies that after solving, all lessons are assigned to a time slot and a room. It also verifies that it found a feasible solution (no hard constraints broken).
Normally, the solver finds a feasible solution in less than 200 milliseconds. Notice how the @SpringBootTest
annotation’s properties
overwrites the solver termination to terminate as soon as a feasible solution (0hard/*soft
) is found. This avoids hard coding a solver time, because the unit test might run on arbitrary hardware. This approach ensures that the test runs long enough to find a feasible solution, even on slow systems. However, it does not run a millisecond longer than it strictly must, even on fast systems.
12.7.3. Logging
After you complete the Red Hat build of OptaPlanner Spring Boot timetable application, you can use logging information to help you fine-tune the constraints in the ConstraintProvider
. Review the score calculation speed in the info
log file to assess the impact of changes to your constraints. Run the application in debug mode to show every step that your application takes or use trace logging to log every step and every move.
Procedure
- Run the timetable application for a fixed amount of time, for example, five minutes.
Review the score calculation speed in the
log
file as shown in the following example:... Solving ended: ..., score calculation speed (29455/sec), ...
-
Change a constraint, run the planning application again for the same amount of time, and review the score calculation speed recorded in the
log
file. Run the application in debug mode to log every step:
-
To run debug mode from the command line, use the
-D
system property. To change logging in the
application.properties
file, add the following line to that file:logging.level.org.optaplanner=debug
The following example shows output in the
log
file in debug mode:... Solving started: time spent (67), best score (-20init/0hard/0soft), environment mode (REPRODUCIBLE), random (JDK with seed 0). ... CH step (0), time spent (128), score (-18init/0hard/0soft), selected move count (15), picked move ([Math(101) {null -> Room A}, Math(101) {null -> MONDAY 08:30}]). ... CH step (1), time spent (145), score (-16init/0hard/0soft), selected move count (15), picked move ([Physics(102) {null -> Room A}, Physics(102) {null -> MONDAY 09:30}]). ...
-
To run debug mode from the command line, use the
-
Use
trace
logging to show every step and every move for each step.
12.8. Add Database and UI integration
After you create the Red Hat build of OptaPlanner application example with Spring Boot, add database and UI integration.
Prerequisite
- You have created the OptaPlanner Spring Boot timetable example.
Procedure
-
Create Java Persistence API (JPA) repositories for
Timeslot
,Room
, andLesson
. For information about creating JPA repositories, see Accessing Data with JPA on the Spring website. - Expose the JPA repositories through REST. For information about exposing the repositories, see Accessing JPA Data with REST on the Spring website.
-
Build a
TimeTableRepository
facade to read and write aTimeTable
in a single transaction. Adjust the
TimeTableController
as shown in the following example:package com.example.solver; import com.example.domain.TimeTable; import com.example.persistence.TimeTableRepository; import org.optaplanner.core.api.score.ScoreManager; import org.optaplanner.core.api.solver.SolverManager; import org.optaplanner.core.api.solver.SolverStatus; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.web.bind.annotation.GetMapping; import org.springframework.web.bind.annotation.PostMapping; import org.springframework.web.bind.annotation.RequestMapping; import org.springframework.web.bind.annotation.RestController; @RestController @RequestMapping("/timeTable") public class TimeTableController { @Autowired private TimeTableRepository timeTableRepository; @Autowired private SolverManager<TimeTable, Long> solverManager; @Autowired private ScoreManager<TimeTable> scoreManager; // To try, GET http://localhost:8080/timeTable @GetMapping() public TimeTable getTimeTable() { // Get the solver status before loading the solution // to avoid the race condition that the solver terminates between them SolverStatus solverStatus = getSolverStatus(); TimeTable solution = timeTableRepository.findById(TimeTableRepository.SINGLETON_TIME_TABLE_ID); scoreManager.updateScore(solution); // Sets the score solution.setSolverStatus(solverStatus); return solution; } @PostMapping("/solve") public void solve() { solverManager.solveAndListen(TimeTableRepository.SINGLETON_TIME_TABLE_ID, timeTableRepository::findById, timeTableRepository::save); } public SolverStatus getSolverStatus() { return solverManager.getSolverStatus(TimeTableRepository.SINGLETON_TIME_TABLE_ID); } @PostMapping("/stopSolving") public void stopSolving() { solverManager.terminateEarly(TimeTableRepository.SINGLETON_TIME_TABLE_ID); } }
For simplicity, this code handles only one
TimeTable
instance, but it is straightforward to enable multi-tenancy and handle multipleTimeTable
instances of different high schools in parallel.The
getTimeTable()
method returns the latest timetable from the database. It uses theScoreManager
(which is automatically injected) to calculate the score of that timetable so the UI can show the score.The
solve()
method starts a job to solve the current timetable and store the time slot and room assignments in the database. It uses theSolverManager.solveAndListen()
method to listen to intermediate best solutions and update the database accordingly. This enables the UI to show progress while the backend is still solving.Now that the
solve()
method returns immediately, adjust theTimeTableControllerTest
as shown in the following example:package com.example.solver; import com.example.domain.Lesson; import com.example.domain.TimeTable; import org.junit.jupiter.api.Test; import org.junit.jupiter.api.Timeout; import org.optaplanner.core.api.solver.SolverStatus; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.boot.test.context.SpringBootTest; import static org.junit.jupiter.api.Assertions.assertFalse; import static org.junit.jupiter.api.Assertions.assertNotNull; import static org.junit.jupiter.api.Assertions.assertTrue; @SpringBootTest(properties = { "optaplanner.solver.termination.spent-limit=1h", // Effectively disable this termination in favor of the best-score-limit "optaplanner.solver.termination.best-score-limit=0hard/*soft"}) public class TimeTableControllerTest { @Autowired private TimeTableController timeTableController; @Test @Timeout(600_000) public void solveDemoDataUntilFeasible() throws InterruptedException { timeTableController.solve(); TimeTable timeTable = timeTableController.getTimeTable(); while (timeTable.getSolverStatus() != SolverStatus.NOT_SOLVING) { // Quick polling (not a Test Thread Sleep anti-pattern) // Test is still fast on fast systems and doesn't randomly fail on slow systems. Thread.sleep(20L); timeTable = timeTableController.getTimeTable(); } assertFalse(timeTable.getLessonList().isEmpty()); for (Lesson lesson : timeTable.getLessonList()) { assertNotNull(lesson.getTimeslot()); assertNotNull(lesson.getRoom()); } assertTrue(timeTable.getScore().isFeasible()); } }
- Poll for the latest solution until the solver finishes solving.
- To visualize the timetable, build an attractive web UI on top of these REST methods.
12.9. Using Micrometer and Prometheus to monitor your school timetable OptaPlanner Spring Boot application
OptaPlanner exposes metrics through Micrometer, a metrics instrumentation library for Java applications. You can use Micrometer with Prometheus to monitor the OptaPlanner solver in the school timetable application.
Prerequisites
- You have created the Spring Boot OptaPlanner school timetable application.
- Prometheus is installed. For information about installing Prometheus, see the Prometheus website.
Procedure
-
Navigate to the
technology/java-spring-boot
directory. Add the Micrometer Prometheus dependencies to the school timetable
pom.xml
file:<dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-actuator</artifactId> </dependency> <dependency> <groupId>io.micrometer</groupId> <artifactId>micrometer-registry-prometheus</artifactId> </dependency>
Add the following property to the application.properties file:
management.endpoints.web.exposure.include=metrics,prometheus
Start the school timetable application:
mvn spring-boot:run
-
Open
http://localhost:8080/actuator/prometheus
in a web browser.
Chapter 13. Red Hat build of OptaPlanner and Java: a school timetable quickstart guide
This guide walks you through the process of creating a simple Java application with OptaPlanner’s constraint solving artificial intelligence (AI). You will build a command-line application that optimizes a school timetable for students and teachers:
... INFO Solving ended: time spent (5000), best score (0hard/9soft), ... INFO INFO | | Room A | Room B | Room C | INFO |------------|------------|------------|------------| INFO | MON 08:30 | English | Math | | INFO | | I. Jones | A. Turing | | INFO | | 9th grade | 10th grade | | INFO |------------|------------|------------|------------| INFO | MON 09:30 | History | Physics | | INFO | | I. Jones | M. Curie | | INFO | | 9th grade | 10th grade | | INFO |------------|------------|------------|------------| INFO | MON 10:30 | History | Physics | | INFO | | I. Jones | M. Curie | | INFO | | 10th grade | 9th grade | | INFO |------------|------------|------------|------------| ... INFO |------------|------------|------------|------------|
Your application will assign Lesson
instances to Timeslot
and Room
instances automatically by using AI to adhere to hard and soft scheduling constraints, for example:
- A room can have at most one lesson at the same time.
- A teacher can teach at most one lesson at the same time.
- A student can attend at most one lesson at the same time.
- A teacher prefers to teach all lessons in the same room.
- A teacher prefers to teach sequential lessons and dislikes gaps between lessons.
- A student dislikes sequential lessons on the same subject.
Mathematically speaking, school timetabling is an NP-hard problem. This means it is difficult to scale. Simply brute force iterating through all possible combinations takes millions of years for a non-trivial data set, even on a supercomputer. Fortunately, AI constraint solvers such as OptaPlanner have advanced algorithms that deliver a near-optimal solution in a reasonable amount of time.
Prerequisites
- OpenJDK (JDK) 11 is installed. Red Hat build of Open JDK is available from the Software Downloads page in the Red Hat Customer Portal (login required).
- Apache Maven 3.6 or higher is installed. Maven is available from the Apache Maven Project website.
- An IDE, such as IntelliJ IDEA, VS Code or Eclipse
13.1. Create the Maven or Gradle build file and add dependencies
You can use Maven or Gradle for the OptaPlanner school timetable application. After you create the build files, add the following dependencies:
-
optaplanner-core
(compile scope) to solve the school timetable problem -
optaplanner-test
(test scope) to JUnit test the school timetabling constraints -
An implementation such as
logback-classic
(runtime scope) to view the steps that OptaPlanner takes
Procedure
- Create the Maven or Gradle build file.
Add
optaplanner-core
,optaplanner-test
, andlogback-classic
dependencies to your build file:For Maven, add the following dependencies to the
pom.xml
file:<dependency> <groupId>org.optaplanner</groupId> <artifactId>optaplanner-core</artifactId> </dependency> <dependency> <groupId>org.optaplanner</groupId> <artifactId>optaplanner-test</artifactId> <scope>test</scope> </dependency> <dependency> <groupId>ch.qos.logback</groupId> <artifactId>logback-classic</artifactId> <version>1.2.3</version> </dependency>
The following example shows the complete
pom.xml
file.<?xml version="1.0" encoding="UTF-8"?> <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 https://maven.apache.org/xsd/maven-4.0.0.xsd"> <modelVersion>4.0.0</modelVersion> <groupId>org.acme</groupId> <artifactId>optaplanner-hello-world-school-timetabling-quickstart</artifactId> <version>1.0-SNAPSHOT</version> <properties> <maven.compiler.release>11</maven.compiler.release> <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding> <version.org.optaplanner>8.13.0.Final-redhat-00013</version.org.optaplanner> <version.org.logback>1.2.3</version.org.logback> <version.compiler.plugin>3.8.1</version.compiler.plugin> <version.surefire.plugin>3.0.0-M5</version.surefire.plugin> <version.exec.plugin>3.0.0</version.exec.plugin> </properties> <dependencyManagement> <dependencies> <dependency> <groupId>org.optaplanner</groupId> <artifactId>optaplanner-bom</artifactId> <version>${version.org.optaplanner}</version> <type>pom</type> <scope>import</scope> </dependency> <dependency> <groupId>ch.qos.logback</groupId> <artifactId>logback-classic</artifactId> <version>${version.org.logback}</version> </dependency> </dependencies> </dependencyManagement> <dependencies> <dependency> <groupId>org.optaplanner</groupId> <artifactId>optaplanner-core</artifactId> </dependency> <dependency> <groupId>ch.qos.logback</groupId> <artifactId>logback-classic</artifactId> <scope>runtime</scope> </dependency> <!-- Testing --> <dependency> <groupId>org.optaplanner</groupId> <artifactId>optaplanner-test</artifactId> <scope>test</scope> </dependency> </dependencies> <build> <plugins> <plugin> <artifactId>maven-compiler-plugin</artifactId> <version>${version.compiler.plugin}</version> </plugin> <plugin> <artifactId>maven-surefire-plugin</artifactId> <version>${version.surefire.plugin}</version> </plugin> <plugin> <groupId>org.codehaus.mojo</groupId> <artifactId>exec-maven-plugin</artifactId> <version>${version.exec.plugin}</version> <configuration> <mainClass>org.acme.schooltimetabling.TimeTableApp</mainClass> </configuration> </plugin> </plugins> </build> <repositories> <repository> <id>jboss-public-repository-group</id> <url>https://repository.jboss.org/nexus/content/groups/public/</url> <releases> <!-- Get releases only from Maven Central which is faster. --> <enabled>false</enabled> </releases> <snapshots> <enabled>true</enabled> </snapshots> </repository> </repositories> </project>
For Gradle, add the following dependencies to the
gradle.build
file:dependencies { implementation "org.optaplanner:optaplanner-core:${optaplannerVersion}" runtimeOnly "ch.qos.logback:logback-classic:${logbackVersion}" testImplementation "org.optaplanner:optaplanner-test:${optaplannerVersion}" }
The following example shows the completed
gradle.build
file.plugins { id "java" id "application" } def optaplannerVersion = "{project-version}" def logbackVersion = "1.2.3" group = "org.acme" version = "0.1.0-SNAPSHOT" repositories { mavenCentral() } dependencies { implementation "org.optaplanner:optaplanner-core:${optaplannerVersion}" runtimeOnly "ch.qos.logback:logback-classic:${logbackVersion}" testImplementation "org.optaplanner:optaplanner-test:${optaplannerVersion}" } java { sourceCompatibility = JavaVersion.VERSION_11 targetCompatibility = JavaVersion.VERSION_11 } compileJava { options.encoding = "UTF-8" options.compilerArgs << "-parameters" } compileTestJava { options.encoding = "UTF-8" } application { mainClass = "org.acme.schooltimetabling.TimeTableApp" } test { // Log the test execution results. testLogging { events "passed", "skipped", "failed" } }
13.2. Model the domain objects
The goal of the Red Hat build of OptaPlanner timetable project is to assign each lesson to a time slot and a room. To do this, add three classes, Timeslot
, Lesson
, and Room
, as shown in the following diagram:
Timeslot
The Timeslot
class represents a time interval when lessons are taught, for example, Monday 10:30 - 11:30
or Tuesday 13:30 - 14:30
. In this example, all time slots have the same duration and there are no time slots during lunch or other breaks.
A time slot has no date because a high school schedule just repeats every week. There is no need for continuous planning. A timeslot is called a problem fact because no Timeslot
instances change during solving. Such classes do not require any OptaPlanner-specific annotations.
Room
The Room
class represents a location where lessons are taught, for example, Room A
or Room B
. In this example, all rooms are without capacity limits and they can accommodate all lessons.
Room
instances do not change during solving so Room
is also a problem fact.
Lesson
During a lesson, represented by the Lesson
class, a teacher teaches a subject to a group of students, for example, Math by A.Turing for 9th grade
or Chemistry by M.Curie for 10th grade
. If a subject is taught multiple times each week by the same teacher to the same student group, there are multiple Lesson
instances that are only distinguishable by id
. For example, the 9th grade has six math lessons a week.
During solving, OptaPlanner changes the timeslot
and room
fields of the Lesson
class to assign each lesson to a time slot and a room. Because OptaPlanner changes these fields, Lesson
is a planning entity:
Most of the fields in the previous diagram contain input data, except for the orange fields. A lesson’s timeslot
and room
fields are unassigned (null
) in the input data and assigned (not null
) in the output data. OptaPlanner changes these fields during solving. Such fields are called planning variables. In order for OptaPlanner to recognize them, both the timeslot
and room
fields require an @PlanningVariable
annotation. Their containing class, Lesson
, requires an @PlanningEntity
annotation.
Procedure
Create the
src/main/java/com/example/domain/Timeslot.java
class:package com.example.domain; import java.time.DayOfWeek; import java.time.LocalTime; public class Timeslot { private DayOfWeek dayOfWeek; private LocalTime startTime; private LocalTime endTime; private Timeslot() { } public Timeslot(DayOfWeek dayOfWeek, LocalTime startTime, LocalTime endTime) { this.dayOfWeek = dayOfWeek; this.startTime = startTime; this.endTime = endTime; } @Override public String toString() { return dayOfWeek + " " + startTime.toString(); } // ******************************** // Getters and setters // ******************************** public DayOfWeek getDayOfWeek() { return dayOfWeek; } public LocalTime getStartTime() { return startTime; } public LocalTime getEndTime() { return endTime; } }
Notice the
toString()
method keeps the output short so it is easier to read OptaPlanner’sDEBUG
orTRACE
log, as shown later.Create the
src/main/java/com/example/domain/Room.java
class:package com.example.domain; public class Room { private String name; private Room() { } public Room(String name) { this.name = name; } @Override public String toString() { return name; } // ******************************** // Getters and setters // ******************************** public String getName() { return name; } }
Create the
src/main/java/com/example/domain/Lesson.java
class:package com.example.domain; import org.optaplanner.core.api.domain.entity.PlanningEntity; import org.optaplanner.core.api.domain.variable.PlanningVariable; @PlanningEntity public class Lesson { private Long id; private String subject; private String teacher; private String studentGroup; @PlanningVariable(valueRangeProviderRefs = "timeslotRange") private Timeslot timeslot; @PlanningVariable(valueRangeProviderRefs = "roomRange") private Room room; private Lesson() { } public Lesson(Long id, String subject, String teacher, String studentGroup) { this.id = id; this.subject = subject; this.teacher = teacher; this.studentGroup = studentGroup; } @Override public String toString() { return subject + "(" + id + ")"; } // ******************************** // Getters and setters // ******************************** public Long getId() { return id; } public String getSubject() { return subject; } public String getTeacher() { return teacher; } public String getStudentGroup() { return studentGroup; } public Timeslot getTimeslot() { return timeslot; } public void setTimeslot(Timeslot timeslot) { this.timeslot = timeslot; } public Room getRoom() { return room; } public void setRoom(Room room) { this.room = room; } }
The
Lesson
class has an@PlanningEntity
annotation, so OptaPlanner knows that this class changes during solving because it contains one or more planning variables.The
timeslot
field has an@PlanningVariable
annotation, so OptaPlanner knows that it can change its value. In order to find potentialTimeslot
instances to assign to this field, OptaPlanner uses thevalueRangeProviderRefs
property to connect to a value range provider that provides aList<Timeslot>
to pick from. See Section 13.4, “Gather the domain objects in a planning solution” for information about value range providers.The
room
field also has an@PlanningVariable
annotation for the same reasons.
13.3. Define the constraints and calculate the score
When solving a problem, a score represents the quality of a specific solution. The higher the score the better. Red Hat build of OptaPlanner looks for the best solution, which is the solution with the highest score found in the available time. It might be the optimal solution.
Because the timetable example use case has hard and soft constraints, use the HardSoftScore
class to represent the score:
- Hard constraints must not be broken. For example: A room can have at most one lesson at the same time.
- Soft constraints should not be broken. For example: A teacher prefers to teach in a single room.
Hard constraints are weighted against other hard constraints. Soft constraints are weighted against other soft constraints. Hard constraints always outweigh soft constraints, regardless of their respective weights.
To calculate the score, you could implement an EasyScoreCalculator
class:
public class TimeTableEasyScoreCalculator implements EasyScoreCalculator<TimeTable> { @Override public HardSoftScore calculateScore(TimeTable timeTable) { List<Lesson> lessonList = timeTable.getLessonList(); int hardScore = 0; for (Lesson a : lessonList) { for (Lesson b : lessonList) { if (a.getTimeslot() != null && a.getTimeslot().equals(b.getTimeslot()) && a.getId() < b.getId()) { // A room can accommodate at most one lesson at the same time. if (a.getRoom() != null && a.getRoom().equals(b.getRoom())) { hardScore--; } // A teacher can teach at most one lesson at the same time. if (a.getTeacher().equals(b.getTeacher())) { hardScore--; } // A student can attend at most one lesson at the same time. if (a.getStudentGroup().equals(b.getStudentGroup())) { hardScore--; } } } } int softScore = 0; // Soft constraints are only implemented in the "complete" implementation return HardSoftScore.of(hardScore, softScore); } }
Unfortunately, this solution does not scale well because it is non-incremental: every time a lesson is assigned to a different time slot or room, all lessons are re-evaluated to calculate the new score.
A better solution is to create a src/main/java/com/example/solver/TimeTableConstraintProvider.java
class to perform incremental score calculation. This class uses OptaPlanner’s ConstraintStream API which is inspired by Java 8 Streams and SQL. The ConstraintProvider
scales an order of magnitude better than the EasyScoreCalculator
: O(n) instead of O(n²).
Procedure
Create the following src/main/java/com/example/solver/TimeTableConstraintProvider.java
class:
package com.example.solver; import com.example.domain.Lesson; import org.optaplanner.core.api.score.buildin.hardsoft.HardSoftScore; import org.optaplanner.core.api.score.stream.Constraint; import org.optaplanner.core.api.score.stream.ConstraintFactory; import org.optaplanner.core.api.score.stream.ConstraintProvider; import org.optaplanner.core.api.score.stream.Joiners; public class TimeTableConstraintProvider implements ConstraintProvider { @Override public Constraint[] defineConstraints(ConstraintFactory constraintFactory) { return new Constraint[] { // Hard constraints roomConflict(constraintFactory), teacherConflict(constraintFactory), studentGroupConflict(constraintFactory), // Soft constraints are only implemented in the "complete" implementation }; } private Constraint roomConflict(ConstraintFactory constraintFactory) { // A room can accommodate at most one lesson at the same time. // Select a lesson ... return constraintFactory.from(Lesson.class) // ... and pair it with another lesson ... .join(Lesson.class, // ... in the same timeslot ... Joiners.equal(Lesson::getTimeslot), // ... in the same room ... Joiners.equal(Lesson::getRoom), // ... and the pair is unique (different id, no reverse pairs) Joiners.lessThan(Lesson::getId)) // then penalize each pair with a hard weight. .penalize("Room conflict", HardSoftScore.ONE_HARD); } private Constraint teacherConflict(ConstraintFactory constraintFactory) { // A teacher can teach at most one lesson at the same time. return constraintFactory.from(Lesson.class) .join(Lesson.class, Joiners.equal(Lesson::getTimeslot), Joiners.equal(Lesson::getTeacher), Joiners.lessThan(Lesson::getId)) .penalize("Teacher conflict", HardSoftScore.ONE_HARD); } private Constraint studentGroupConflict(ConstraintFactory constraintFactory) { // A student can attend at most one lesson at the same time. return constraintFactory.from(Lesson.class) .join(Lesson.class, Joiners.equal(Lesson::getTimeslot), Joiners.equal(Lesson::getStudentGroup), Joiners.lessThan(Lesson::getId)) .penalize("Student group conflict", HardSoftScore.ONE_HARD); } }
13.4. Gather the domain objects in a planning solution
A TimeTable
instance wraps all Timeslot
, Room
, and Lesson
instances of a single dataset. Furthermore, because it contains all lessons, each with a specific planning variable state, it is a planning solution and it has a score:
-
If lessons are still unassigned, then it is an uninitialized solution, for example, a solution with the score
-4init/0hard/0soft
. -
If it breaks hard constraints, then it is an infeasible solution, for example, a solution with the score
-2hard/-3soft
. -
If it adheres to all hard constraints, then it is a feasible solution, for example, a solution with the score
0hard/-7soft
.
The TimeTable
class has an @PlanningSolution
annotation, so Red Hat build of OptaPlanner knows that this class contains all of the input and output data.
Specifically, this class is the input of the problem:
A
timeslotList
field with all time slots- This is a list of problem facts, because they do not change during solving.
A
roomList
field with all rooms- This is a list of problem facts, because they do not change during solving.
A
lessonList
field with all lessons- This is a list of planning entities because they change during solving.
Of each
Lesson
:-
The values of the
timeslot
androom
fields are typically stillnull
, so unassigned. They are planning variables. -
The other fields, such as
subject
,teacher
andstudentGroup
, are filled in. These fields are problem properties.
-
The values of the
However, this class is also the output of the solution:
-
A
lessonList
field for which eachLesson
instance has non-nulltimeslot
androom
fields after solving -
A
score
field that represents the quality of the output solution, for example,0hard/-5soft
Procedure
Create the src/main/java/com/example/domain/TimeTable.java
class:
package com.example.domain; import java.util.List; import org.optaplanner.core.api.domain.solution.PlanningEntityCollectionProperty; import org.optaplanner.core.api.domain.solution.PlanningScore; import org.optaplanner.core.api.domain.solution.PlanningSolution; import org.optaplanner.core.api.domain.solution.ProblemFactCollectionProperty; import org.optaplanner.core.api.domain.valuerange.ValueRangeProvider; import org.optaplanner.core.api.score.buildin.hardsoft.HardSoftScore; @PlanningSolution public class TimeTable { @ValueRangeProvider(id = "timeslotRange") @ProblemFactCollectionProperty private List<Timeslot> timeslotList; @ValueRangeProvider(id = "roomRange") @ProblemFactCollectionProperty private List<Room> roomList; @PlanningEntityCollectionProperty private List<Lesson> lessonList; @PlanningScore private HardSoftScore score; private TimeTable() { } public TimeTable(List<Timeslot> timeslotList, List<Room> roomList, List<Lesson> lessonList) { this.timeslotList = timeslotList; this.roomList = roomList; this.lessonList = lessonList; } // ******************************** // Getters and setters // ******************************** public List<Timeslot> getTimeslotList() { return timeslotList; } public List<Room> getRoomList() { return roomList; } public List<Lesson> getLessonList() { return lessonList; } public HardSoftScore getScore() { return score; } }
The value range providers
The timeslotList
field is a value range provider. It holds the Timeslot
instances which OptaPlanner can pick from to assign to the timeslot
field of Lesson
instances. The timeslotList
field has an @ValueRangeProvider
annotation to connect those two, by matching the id
with the valueRangeProviderRefs
of the @PlanningVariable
in the Lesson
.
Following the same logic, the roomList
field also has an @ValueRangeProvider
annotation.
The problem fact and planning entity properties
Furthermore, OptaPlanner needs to know which Lesson
instances it can change as well as how to retrieve the Timeslot
and Room
instances used for score calculation by your TimeTableConstraintProvider
.
The timeslotList
and roomList
fields have an @ProblemFactCollectionProperty
annotation, so your TimeTableConstraintProvider
can select from those instances.
The lessonList
has an @PlanningEntityCollectionProperty
annotation, so OptaPlanner can change them during solving and your TimeTableConstraintProvider
can select from those too.
13.5. The TimeTableApp.java class
After you have created all of the components of the school timetable application, you will put them all together in the TimeTableApp.java
class.
The main()
method performs the following tasks:
-
Creates the
SolverFactory
to build aSolver
for each data set. - Loads a data set.
-
Solves it with
Solver.solve()
. - Visualizes the solution for that data set.
Typically, an application has a single SolverFactory
to build a new Solver
instance for each problem data set to solve. A SolverFactory
is thread-safe, but a Solver
is not. For the school timetable application, there is only one data set, so only one Solver
instance.
Here is the completed TimeTableApp.java
class:
package org.acme.schooltimetabling; import java.time.DayOfWeek; import java.time.Duration; import java.time.LocalTime; import java.util.ArrayList; import java.util.Collections; import java.util.List; import java.util.Map; import java.util.stream.Collectors; import org.acme.schooltimetabling.domain.Lesson; import org.acme.schooltimetabling.domain.Room; import org.acme.schooltimetabling.domain.TimeTable; import org.acme.schooltimetabling.domain.Timeslot; import org.acme.schooltimetabling.solver.TimeTableConstraintProvider; import org.optaplanner.core.api.solver.Solver; import org.optaplanner.core.api.solver.SolverFactory; import org.optaplanner.core.config.solver.SolverConfig; import org.slf4j.Logger; import org.slf4j.LoggerFactory; public class TimeTableApp { private static final Logger LOGGER = LoggerFactory.getLogger(TimeTableApp.class); public static void main(String[] args) { SolverFactory<TimeTable> solverFactory = SolverFactory.create(new SolverConfig() .withSolutionClass(TimeTable.class) .withEntityClasses(Lesson.class) .withConstraintProviderClass(TimeTableConstraintProvider.class) // The solver runs only for 5 seconds on this small data set. // It's recommended to run for at least 5 minutes ("5m") otherwise. .withTerminationSpentLimit(Duration.ofSeconds(10))); // Load the problem TimeTable problem = generateDemoData(); // Solve the problem Solver<TimeTable> solver = solverFactory.buildSolver(); TimeTable solution = solver.solve(problem); // Visualize the solution printTimetable(solution); } public static TimeTable generateDemoData() { List<Timeslot> timeslotList = new ArrayList<>(10); timeslotList.add(new Timeslot(DayOfWeek.MONDAY, LocalTime.of(8, 30), LocalTime.of(9, 30))); timeslotList.add(new Timeslot(DayOfWeek.MONDAY, LocalTime.of(9, 30), LocalTime.of(10, 30))); timeslotList.add(new Timeslot(DayOfWeek.MONDAY, LocalTime.of(10, 30), LocalTime.of(11, 30))); timeslotList.add(new Timeslot(DayOfWeek.MONDAY, LocalTime.of(13, 30), LocalTime.of(14, 30))); timeslotList.add(new Timeslot(DayOfWeek.MONDAY, LocalTime.of(14, 30), LocalTime.of(15, 30))); timeslotList.add(new Timeslot(DayOfWeek.TUESDAY, LocalTime.of(8, 30), LocalTime.of(9, 30))); timeslotList.add(new Timeslot(DayOfWeek.TUESDAY, LocalTime.of(9, 30), LocalTime.of(10, 30))); timeslotList.add(new Timeslot(DayOfWeek.TUESDAY, LocalTime.of(10, 30), LocalTime.of(11, 30))); timeslotList.add(new Timeslot(DayOfWeek.TUESDAY, LocalTime.of(13, 30), LocalTime.of(14, 30))); timeslotList.add(new Timeslot(DayOfWeek.TUESDAY, LocalTime.of(14, 30), LocalTime.of(15, 30))); List<Room> roomList = new ArrayList<>(3); roomList.add(new Room("Room A")); roomList.add(new Room("Room B")); roomList.add(new Room("Room C")); List<Lesson> lessonList = new ArrayList<>(); long id = 0; lessonList.add(new Lesson(id++, "Math", "A. Turing", "9th grade")); lessonList.add(new Lesson(id++, "Math", "A. Turing", "9th grade")); lessonList.add(new Lesson(id++, "Physics", "M. Curie", "9th grade")); lessonList.add(new Lesson(id++, "Chemistry", "M. Curie", "9th grade")); lessonList.add(new Lesson(id++, "Biology", "C. Darwin", "9th grade")); lessonList.add(new Lesson(id++, "History", "I. Jones", "9th grade")); lessonList.add(new Lesson(id++, "English", "I. Jones", "9th grade")); lessonList.add(new Lesson(id++, "English", "I. Jones", "9th grade")); lessonList.add(new Lesson(id++, "Spanish", "P. Cruz", "9th grade")); lessonList.add(new Lesson(id++, "Spanish", "P. Cruz", "9th grade")); lessonList.add(new Lesson(id++, "Math", "A. Turing", "10th grade")); lessonList.add(new Lesson(id++, "Math", "A. Turing", "10th grade")); lessonList.add(new Lesson(id++, "Math", "A. Turing", "10th grade")); lessonList.add(new Lesson(id++, "Physics", "M. Curie", "10th grade")); lessonList.add(new Lesson(id++, "Chemistry", "M. Curie", "10th grade")); lessonList.add(new Lesson(id++, "French", "M. Curie", "10th grade")); lessonList.add(new Lesson(id++, "Geography", "C. Darwin", "10th grade")); lessonList.add(new Lesson(id++, "History", "I. Jones", "10th grade")); lessonList.add(new Lesson(id++, "English", "P. Cruz", "10th grade")); lessonList.add(new Lesson(id++, "Spanish", "P. Cruz", "10th grade")); return new TimeTable(timeslotList, roomList, lessonList); } private static void printTimetable(TimeTable timeTable) { LOGGER.info(""); List<Room> roomList = timeTable.getRoomList(); List<Lesson> lessonList = timeTable.getLessonList(); Map<Timeslot, Map<Room, List<Lesson>>> lessonMap = lessonList.stream() .filter(lesson -> lesson.getTimeslot() != null && lesson.getRoom() != null) .collect(Collectors.groupingBy(Lesson::getTimeslot, Collectors.groupingBy(Lesson::getRoom))); LOGGER.info("| | " + roomList.stream() .map(room -> String.format("%-10s", room.getName())).collect(Collectors.joining(" | ")) + " |"); LOGGER.info("|" + "------------|".repeat(roomList.size() + 1)); for (Timeslot timeslot : timeTable.getTimeslotList()) { List<List<Lesson>> cellList = roomList.stream() .map(room -> { Map<Room, List<Lesson>> byRoomMap = lessonMap.get(timeslot); if (byRoomMap == null) { return Collections.<Lesson>emptyList(); } List<Lesson> cellLessonList = byRoomMap.get(room); if (cellLessonList == null) { return Collections.<Lesson>emptyList(); } return cellLessonList; }) .collect(Collectors.toList()); LOGGER.info("| " + String.format("%-10s", timeslot.getDayOfWeek().toString().substring(0, 3) + " " + timeslot.getStartTime()) + " | " + cellList.stream().map(cellLessonList -> String.format("%-10s", cellLessonList.stream().map(Lesson::getSubject).collect(Collectors.joining(", ")))) .collect(Collectors.joining(" | ")) + " |"); LOGGER.info("| | " + cellList.stream().map(cellLessonList -> String.format("%-10s", cellLessonList.stream().map(Lesson::getTeacher).collect(Collectors.joining(", ")))) .collect(Collectors.joining(" | ")) + " |"); LOGGER.info("| | " + cellList.stream().map(cellLessonList -> String.format("%-10s", cellLessonList.stream().map(Lesson::getStudentGroup).collect(Collectors.joining(", ")))) .collect(Collectors.joining(" | ")) + " |"); LOGGER.info("|" + "------------|".repeat(roomList.size() + 1)); } List<Lesson> unassignedLessons = lessonList.stream() .filter(lesson -> lesson.getTimeslot() == null || lesson.getRoom() == null) .collect(Collectors.toList()); if (!unassignedLessons.isEmpty()) { LOGGER.info(""); LOGGER.info("Unassigned lessons"); for (Lesson lesson : unassignedLessons) { LOGGER.info(" " + lesson.getSubject() + " - " + lesson.getTeacher() + " - " + lesson.getStudentGroup()); } } } }
The main()
method first creates the SolverFactory
:
SolverFactory<TimeTable> solverFactory = SolverFactory.create(new SolverConfig() .withSolutionClass(TimeTable.class) .withEntityClasses(Lesson.class) .withConstraintProviderClass(TimeTableConstraintProvider.class) // The solver runs only for 5 seconds on this small data set. // It's recommended to run for at least 5 minutes ("5m") otherwise. .withTerminationSpentLimit(Duration.ofSeconds(5)));
The SolverFactory
creation registers the @PlanningSolution
class, the @PlanningEntity
classes, and the ConstraintProvider
class, all of which you created earlier.
Without a termination setting or a terminationEarly()
event, the solver runs forever. To avoid that, the solver limits the solving time to five seconds.
After five seconds, the main()
method loads the problem, solves it, and prints the solution:
// Load the problem TimeTable problem = generateDemoData(); // Solve the problem Solver<TimeTable> solver = solverFactory.buildSolver(); TimeTable solution = solver.solve(problem); // Visualize the solution printTimetable(solution);
The solve()
method doesn’t return instantly. It runs for five seconds before returning the best solution.
OptaPlanner returns the best solution found in the available termination time. Due to the nature of NP-hard problems, the best solution might not be optimal, especially for larger data sets. Increase the termination time to potentially find a better solution.
The generateDemoData()
method generates the school timetable problem to solve.
The printTimetable()
method prettyprints the timetable to the console, so it’s easy to determine visually whether or not it’s a good schedule.
13.6. Create and run the school timetable application
Now that you have completed all of the components of the school timetable Java application, you are ready to put them all together in the TimeTableApp.java
class and run it.
Prerequisites
- You have created all of the required components of the school timetable application.
Procedure
Create the
src/main/java/org/acme/schooltimetabling/TimeTableApp.java
class:package org.acme.schooltimetabling; import java.time.DayOfWeek; import java.time.Duration; import java.time.LocalTime; import java.util.ArrayList; import java.util.Collections; import java.util.List; import java.util.Map; import java.util.stream.Collectors; import org.acme.schooltimetabling.domain.Lesson; import org.acme.schooltimetabling.domain.Room; import org.acme.schooltimetabling.domain.TimeTable; import org.acme.schooltimetabling.domain.Timeslot; import org.acme.schooltimetabling.solver.TimeTableConstraintProvider; import org.optaplanner.core.api.solver.Solver; import org.optaplanner.core.api.solver.SolverFactory; import org.optaplanner.core.config.solver.SolverConfig; import org.slf4j.Logger; import org.slf4j.LoggerFactory; public class TimeTableApp { private static final Logger LOGGER = LoggerFactory.getLogger(TimeTableApp.class); public static void main(String[] args) { SolverFactory<TimeTable> solverFactory = SolverFactory.create(new SolverConfig() .withSolutionClass(TimeTable.class) .withEntityClasses(Lesson.class) .withConstraintProviderClass(TimeTableConstraintProvider.class) // The solver runs only for 5 seconds on this small data set. // It's recommended to run for at least 5 minutes ("5m") otherwise. .withTerminationSpentLimit(Duration.ofSeconds(10))); // Load the problem TimeTable problem = generateDemoData(); // Solve the problem Solver<TimeTable> solver = solverFactory.buildSolver(); TimeTable solution = solver.solve(problem); // Visualize the solution printTimetable(solution); } public static TimeTable generateDemoData() { List<Timeslot> timeslotList = new ArrayList<>(10); timeslotList.add(new Timeslot(DayOfWeek.MONDAY, LocalTime.of(8, 30), LocalTime.of(9, 30))); timeslotList.add(new Timeslot(DayOfWeek.MONDAY, LocalTime.of(9, 30), LocalTime.of(10, 30))); timeslotList.add(new Timeslot(DayOfWeek.MONDAY, LocalTime.of(10, 30), LocalTime.of(11, 30))); timeslotList.add(new Timeslot(DayOfWeek.MONDAY, LocalTime.of(13, 30), LocalTime.of(14, 30))); timeslotList.add(new Timeslot(DayOfWeek.MONDAY, LocalTime.of(14, 30), LocalTime.of(15, 30))); timeslotList.add(new Timeslot(DayOfWeek.TUESDAY, LocalTime.of(8, 30), LocalTime.of(9, 30))); timeslotList.add(new Timeslot(DayOfWeek.TUESDAY, LocalTime.of(9, 30), LocalTime.of(10, 30))); timeslotList.add(new Timeslot(DayOfWeek.TUESDAY, LocalTime.of(10, 30), LocalTime.of(11, 30))); timeslotList.add(new Timeslot(DayOfWeek.TUESDAY, LocalTime.of(13, 30), LocalTime.of(14, 30))); timeslotList.add(new Timeslot(DayOfWeek.TUESDAY, LocalTime.of(14, 30), LocalTime.of(15, 30))); List<Room> roomList = new ArrayList<>(3); roomList.add(new Room("Room A")); roomList.add(new Room("Room B")); roomList.add(new Room("Room C")); List<Lesson> lessonList = new ArrayList<>(); long id = 0; lessonList.add(new Lesson(id++, "Math", "A. Turing", "9th grade")); lessonList.add(new Lesson(id++, "Math", "A. Turing", "9th grade")); lessonList.add(new Lesson(id++, "Physics", "M. Curie", "9th grade")); lessonList.add(new Lesson(id++, "Chemistry", "M. Curie", "9th grade")); lessonList.add(new Lesson(id++, "Biology", "C. Darwin", "9th grade")); lessonList.add(new Lesson(id++, "History", "I. Jones", "9th grade")); lessonList.add(new Lesson(id++, "English", "I. Jones", "9th grade")); lessonList.add(new Lesson(id++, "English", "I. Jones", "9th grade")); lessonList.add(new Lesson(id++, "Spanish", "P. Cruz", "9th grade")); lessonList.add(new Lesson(id++, "Spanish", "P. Cruz", "9th grade")); lessonList.add(new Lesson(id++, "Math", "A. Turing", "10th grade")); lessonList.add(new Lesson(id++, "Math", "A. Turing", "10th grade")); lessonList.add(new Lesson(id++, "Math", "A. Turing", "10th grade")); lessonList.add(new Lesson(id++, "Physics", "M. Curie", "10th grade")); lessonList.add(new Lesson(id++, "Chemistry", "M. Curie", "10th grade")); lessonList.add(new Lesson(id++, "French", "M. Curie", "10th grade")); lessonList.add(new Lesson(id++, "Geography", "C. Darwin", "10th grade")); lessonList.add(new Lesson(id++, "History", "I. Jones", "10th grade")); lessonList.add(new Lesson(id++, "English", "P. Cruz", "10th grade")); lessonList.add(new Lesson(id++, "Spanish", "P. Cruz", "10th grade")); return new TimeTable(timeslotList, roomList, lessonList); } private static void printTimetable(TimeTable timeTable) { LOGGER.info(""); List<Room> roomList = timeTable.getRoomList(); List<Lesson> lessonList = timeTable.getLessonList(); Map<Timeslot, Map<Room, List<Lesson>>> lessonMap = lessonList.stream() .filter(lesson -> lesson.getTimeslot() != null && lesson.getRoom() != null) .collect(Collectors.groupingBy(Lesson::getTimeslot, Collectors.groupingBy(Lesson::getRoom))); LOGGER.info("| | " + roomList.stream() .map(room -> String.format("%-10s", room.getName())).collect(Collectors.joining(" | ")) + " |"); LOGGER.info("|" + "------------|".repeat(roomList.size() + 1)); for (Timeslot timeslot : timeTable.getTimeslotList()) { List<List<Lesson>> cellList = roomList.stream() .map(room -> { Map<Room, List<Lesson>> byRoomMap = lessonMap.get(timeslot); if (byRoomMap == null) { return Collections.<Lesson>emptyList(); } List<Lesson> cellLessonList = byRoomMap.get(room); if (cellLessonList == null) { return Collections.<Lesson>emptyList(); } return cellLessonList; }) .collect(Collectors.toList()); LOGGER.info("| " + String.format("%-10s", timeslot.getDayOfWeek().toString().substring(0, 3) + " " + timeslot.getStartTime()) + " | " + cellList.stream().map(cellLessonList -> String.format("%-10s", cellLessonList.stream().map(Lesson::getSubject).collect(Collectors.joining(", ")))) .collect(Collectors.joining(" | ")) + " |"); LOGGER.info("| | " + cellList.stream().map(cellLessonList -> String.format("%-10s", cellLessonList.stream().map(Lesson::getTeacher).collect(Collectors.joining(", ")))) .collect(Collectors.joining(" | ")) + " |"); LOGGER.info("| | " + cellList.stream().map(cellLessonList -> String.format("%-10s", cellLessonList.stream().map(Lesson::getStudentGroup).collect(Collectors.joining(", ")))) .collect(Collectors.joining(" | ")) + " |"); LOGGER.info("|" + "------------|".repeat(roomList.size() + 1)); } List<Lesson> unassignedLessons = lessonList.stream() .filter(lesson -> lesson.getTimeslot() == null || lesson.getRoom() == null) .collect(Collectors.toList()); if (!unassignedLessons.isEmpty()) { LOGGER.info(""); LOGGER.info("Unassigned lessons"); for (Lesson lesson : unassignedLessons) { LOGGER.info(" " + lesson.getSubject() + " - " + lesson.getTeacher() + " - " + lesson.getStudentGroup()); } } } }
Run the
TimeTableApp
class as the main class of a normal Java application. The following output should result:... INFO | | Room A | Room B | Room C | INFO |------------|------------|------------|------------| INFO | MON 08:30 | English | Math | | INFO | | I. Jones | A. Turing | | INFO | | 9th grade | 10th grade | | INFO |------------|------------|------------|------------| INFO | MON 09:30 | History | Physics | | INFO | | I. Jones | M. Curie | | INFO | | 9th grade | 10th grade | | ...
-
Verify the console output. Does it conform to all hard constraints? What happens if you comment out the
roomConflict
constraint inTimeTableConstraintProvider
?
The info
log shows what OptaPlanner did in those five seconds:
... Solving started: time spent (33), best score (-8init/0hard/0soft), environment mode (REPRODUCIBLE), random (JDK with seed 0). ... Construction Heuristic phase (0) ended: time spent (73), best score (0hard/0soft), score calculation speed (459/sec), step total (4). ... Local Search phase (1) ended: time spent (5000), best score (0hard/0soft), score calculation speed (28949/sec), step total (28398). ... Solving ended: time spent (5000), best score (0hard/0soft), score calculation speed (28524/sec), phase total (2), environment mode (REPRODUCIBLE).
13.7. Test the application
A good application includes test coverage. Test the constraints and the solver in your timetable project.
13.7.1. Test the school timetable constraints
To test each constraint of the timetable project in isolation, use a ConstraintVerifier
in unit tests. This tests each constraint’s corner cases in isolation from the other tests, which lowers maintenance when adding a new constraint with proper test coverage.
This test verifies that the constraint TimeTableConstraintProvider::roomConflict
, when given three lessons in the same room and two of the lessons have the same timeslot, penalizes with a match weight of 1. So if the constraint weight is 10hard
it reduces the score by -10hard
.
Procedure
Create the src/test/java/org/acme/optaplanner/solver/TimeTableConstraintProviderTest.java
class:
package org.acme.optaplanner.solver; import java.time.DayOfWeek; import java.time.LocalTime; import javax.inject.Inject; import io.quarkus.test.junit.QuarkusTest; import org.acme.optaplanner.domain.Lesson; import org.acme.optaplanner.domain.Room; import org.acme.optaplanner.domain.TimeTable; import org.acme.optaplanner.domain.Timeslot; import org.junit.jupiter.api.Test; import org.optaplanner.test.api.score.stream.ConstraintVerifier; @QuarkusTest class TimeTableConstraintProviderTest { private static final Room ROOM = new Room("Room1"); private static final Timeslot TIMESLOT1 = new Timeslot(DayOfWeek.MONDAY, LocalTime.of(9,0), LocalTime.NOON); private static final Timeslot TIMESLOT2 = new Timeslot(DayOfWeek.TUESDAY, LocalTime.of(9,0), LocalTime.NOON); @Inject ConstraintVerifier<TimeTableConstraintProvider, TimeTable> constraintVerifier; @Test void roomConflict() { Lesson firstLesson = new Lesson(1, "Subject1", "Teacher1", "Group1"); Lesson conflictingLesson = new Lesson(2, "Subject2", "Teacher2", "Group2"); Lesson nonConflictingLesson = new Lesson(3, "Subject3", "Teacher3", "Group3"); firstLesson.setRoom(ROOM); firstLesson.setTimeslot(TIMESLOT1); conflictingLesson.setRoom(ROOM); conflictingLesson.setTimeslot(TIMESLOT1); nonConflictingLesson.setRoom(ROOM); nonConflictingLesson.setTimeslot(TIMESLOT2); constraintVerifier.verifyThat(TimeTableConstraintProvider::roomConflict) .given(firstLesson, conflictingLesson, nonConflictingLesson) .penalizesBy(1); } }
Notice how ConstraintVerifier
ignores the constraint weight during testing even if those constraint weights are hardcoded in the ConstraintProvider
. This is because constraint weights change regularly before going into production. This way, constraint weight tweaking does not break the unit tests.
13.7.2. Test the school timetable solver
This example tests the Red Hat build of OptaPlanner school timetable project on Red Hat build of Quarkus. It uses a JUnit test to generate a test data set and send it to the TimeTableController
to solve.
Procedure
Create the
src/test/java/com/example/rest/TimeTableResourceTest.java
class with the following content:package com.exmaple.optaplanner.rest; import java.time.DayOfWeek; import java.time.LocalTime; import java.util.ArrayList; import java.util.List; import javax.inject.Inject; import io.quarkus.test.junit.QuarkusTest; import com.exmaple.optaplanner.domain.Room; import com.exmaple.optaplanner.domain.Timeslot; import com.exmaple.optaplanner.domain.Lesson; import com.exmaple.optaplanner.domain.TimeTable; import com.exmaple.optaplanner.rest.TimeTableResource; import org.junit.jupiter.api.Test; import org.junit.jupiter.api.Timeout; import static org.junit.jupiter.api.Assertions.assertFalse; import static org.junit.jupiter.api.Assertions.assertNotNull; import static org.junit.jupiter.api.Assertions.assertTrue; @QuarkusTest public class TimeTableResourceTest { @Inject TimeTableResource timeTableResource; @Test @Timeout(600_000) public void solve() { TimeTable problem = generateProblem(); TimeTable solution = timeTableResource.solve(problem); assertFalse(solution.getLessonList().isEmpty()); for (Lesson lesson : solution.getLessonList()) { assertNotNull(lesson.getTimeslot()); assertNotNull(lesson.getRoom()); } assertTrue(solution.getScore().isFeasible()); } private TimeTable generateProblem() { List<Timeslot> timeslotList = new ArrayList<>(); timeslotList.add(new Timeslot(DayOfWeek.MONDAY, LocalTime.of(8, 30), LocalTime.of(9, 30))); timeslotList.add(new Timeslot(DayOfWeek.MONDAY, LocalTime.of(9, 30), LocalTime.of(10, 30))); timeslotList.add(new Timeslot(DayOfWeek.MONDAY, LocalTime.of(10, 30), LocalTime.of(11, 30))); timeslotList.add(new Timeslot(DayOfWeek.MONDAY, LocalTime.of(13, 30), LocalTime.of(14, 30))); timeslotList.add(new Timeslot(DayOfWeek.MONDAY, LocalTime.of(14, 30), LocalTime.of(15, 30))); List<Room> roomList = new ArrayList<>(); roomList.add(new Room("Room A")); roomList.add(new Room("Room B")); roomList.add(new Room("Room C")); List<Lesson> lessonList = new ArrayList<>(); lessonList.add(new Lesson(101L, "Math", "B. May", "9th grade")); lessonList.add(new Lesson(102L, "Physics", "M. Curie", "9th grade")); lessonList.add(new Lesson(103L, "Geography", "M. Polo", "9th grade")); lessonList.add(new Lesson(104L, "English", "I. Jones", "9th grade")); lessonList.add(new Lesson(105L, "Spanish", "P. Cruz", "9th grade")); lessonList.add(new Lesson(201L, "Math", "B. May", "10th grade")); lessonList.add(new Lesson(202L, "Chemistry", "M. Curie", "10th grade")); lessonList.add(new Lesson(203L, "History", "I. Jones", "10th grade")); lessonList.add(new Lesson(204L, "English", "P. Cruz", "10th grade")); lessonList.add(new Lesson(205L, "French", "M. Curie", "10th grade")); return new TimeTable(timeslotList, roomList, lessonList); } }
This test verifies that after solving, all lessons are assigned to a time slot and a room. It also verifies that it found a feasible solution (no hard constraints broken).
Add test properties to the
src/main/resources/application.properties
file:# The solver runs only for 5 seconds to avoid a HTTP timeout in this simple implementation. # It's recommended to run for at least 5 minutes ("5m") otherwise. quarkus.optaplanner.solver.termination.spent-limit=5s # Effectively disable this termination in favor of the best-score-limit %test.quarkus.optaplanner.solver.termination.spent-limit=1h %test.quarkus.optaplanner.solver.termination.best-score-limit=0hard/*soft
Normally, the solver finds a feasible solution in less than 200 milliseconds. Notice how the application.properties
file overwrites the solver termination during tests to terminate as soon as a feasible solution (0hard/*soft)
is found. This avoids hard coding a solver time, because the unit test might run on arbitrary hardware. This approach ensures that the test runs long enough to find a feasible solution, even on slow systems. But it does not run a millisecond longer than it strictly must, even on fast systems.
13.8. Logging
After you complete the Red Hat build of OptaPlanner school timetable project, you can use logging information to help you fine-tune the constraints in the ConstraintProvider
. Review the score calculation speed in the info
log file to assess the impact of changes to your constraints. Run the application in debug mode to show every step that your application takes or use trace logging to log every step and every move.
Procedure
- Run the school timetable application for a fixed amount of time, for example, five minutes.
Review the score calculation speed in the
log
file as shown in the following example:... Solving ended: ..., score calculation speed (29455/sec), ...
-
Change a constraint, run the planning application again for the same amount of time, and review the score calculation speed recorded in the
log
file. Run the application in debug mode to log every step that the application makes:
-
To run debug mode from the command line, use the
-D
system property. To permanently enable debug mode, add the following line to the
application.properties
file:quarkus.log.category."org.optaplanner".level=debug
The following example shows output in the
log
file in debug mode:... Solving started: time spent (67), best score (-20init/0hard/0soft), environment mode (REPRODUCIBLE), random (JDK with seed 0). ... CH step (0), time spent (128), score (-18init/0hard/0soft), selected move count (15), picked move ([Math(101) {null -> Room A}, Math(101) {null -> MONDAY 08:30}]). ... CH step (1), time spent (145), score (-16init/0hard/0soft), selected move count (15), picked move ([Physics(102) {null -> Room A}, Physics(102) {null -> MONDAY 09:30}]). ...
-
To run debug mode from the command line, use the
-
Use
trace
logging to show every step and every move for each step.
13.9. Using Micrometer and Prometheus to monitor your school timetable OptaPlanner Java application
OptaPlanner exposes metrics through Micrometer, a metrics instrumentation library for Java applications. You can use Micrometer with Prometheus to monitor the OptaPlanner solver in the school timetable application.
Prerequisites
- You have created the OptaPlanner school timetable application with Java.
- Prometheus is installed. For information about installing Prometheus, see the Prometheus website.
Procedure
Add the Micrometer Prometheus dependencies to the school timetable
pom.xml
file where<MICROMETER_VERSION>
is the version of Micrometer that you installed:<dependency> <groupId>io.micrometer</groupId> <artifactId>micrometer-registry-prometheus</artifactId> <version><MICROMETER_VERSION></version> </dependency>
NoteThe
micrometer-core
dependency is also required. However this dependency is contained in theoptaplanner-core
dependency so you do not need to add it to thepom.xml
file.Add the following import statements to the
TimeTableApp.java
class.import io.micrometer.core.instrument.Metrics; import io.micrometer.prometheus.PrometheusConfig; import io.micrometer.prometheus.PrometheusMeterRegistry;
Add the following lines to the top of the main method of the
TimeTableApp.java
class so Prometheus can scrap data fromcom.sun.net.httpserver.HttpServer
before the solution starts:PrometheusMeterRegistry prometheusRegistry = new PrometheusMeterRegistry(PrometheusConfig.DEFAULT); try { HttpServer server = HttpServer.create(new InetSocketAddress(8080), 0); server.createContext("/prometheus", httpExchange -> { String response = prometheusRegistry.scrape(); httpExchange.sendResponseHeaders(200, response.getBytes().length); try (OutputStream os = httpExchange.getResponseBody()) { os.write(response.getBytes()); } }); new Thread(server::start).start(); } catch (IOException e) { throw new RuntimeException(e); } Metrics.addRegistry(prometheusRegistry); solve(); }
Add the following line to control the solving time. By adjusting the solving time, you can see how the metrics change based on the time spent solving.
withTerminationSpentLimit(Duration.ofMinutes(5)));
- Start the school timetable application.
-
Open
http://localhost:8080/prometheus
in a web browser to view the timetable application in Prometheus. Open your monitoring system to view the metrics for your OptaPlanner project.
The following metrics are exposed:
-
optaplanner_solver_errors_total
: the total number of errors that occurred while solving since the start of the measuring. -
optaplanner_solver_solve_duration_seconds_active_count
: the number of solvers currently solving. -
optaplanner_solver_solve_duration_seconds_max
: run time of the longest-running currently active solver. -
optaplanner_solver_solve_duration_seconds_duration_sum
: the sum of each active solver’s solve duration. For example, if there are two active solvers, one running for three minutes and the other for one minute, the total solve time is four minutes.
-
Part V. Red Hat build of OptaPlanner starter applications
Red Hat build of OptaPlanner provides the following starter applications that you can deploy out-of-the-box on Red Hat OpenShift Container Platform:
- Employee Rostering starter application
- Vechile Route Planning starter application
OptaPlanner starter applications are more developed than examples and quick start guides. They focus on specific use cases and use the best technologies available to build a planning solution.
Chapter 14. Using Red Hat build of OptaPlanner in an IDE: an employee rostering example
As a business rules developer, you can use an IDE to build, run, and modify the optaweb-employee-rostering
starter application that uses the Red Hat build of OptaPlanner functionality.
Prerequisites
- You use an integrated development environment, such as Red Hat CodeReady Studio or IntelliJ IDEA.
- You have an understanding of the Java language.
- You have an understanding of React and TypeScript. This requirement is necessary to develop the OptaWeb UI.
14.1. Overview of the employee rostering starter application
The employee rostering starter application assigns employees to shifts on various positions in an organization. For example, you can use the application to distribute shifts in a hospital between nurses, guard duty shifts across a number of locations, or shifts on an assembly line between workers.
Optimal employee rostering must take a number of variables into account. For example, different skills can be required for shifts in different positions. Also, some employees might be unavailable for some time slots or might prefer a particular time slot. Moreover, an employee can have a contract that limits the number of hours that the employee can work in a single time period.
The Red Hat build of OptaPlanner rules for this starter application use both hard and soft constraints. During an optimization, the planning engine may not violate hard constraints, for example, if an employee is unavailable (out sick), or that an employee cannot work two spots in a single shift. The planning engine tries to adhere to soft constraints, such as an employee’s preference to not work a specific shift, but can violate them if the optimal solution requires it.
14.2. Building and running the employee rostering starter application
You can build the employee rostering starter application from the source code and run it as a JAR file.
Alternatively, you can use your IDE, for example, Eclipse (including Red Hat CodeReady Studio), to build and run the application.
14.2.1. Preparing deployment files
You must download and prepare the deployment files before building and deploying the application.
Procedure
Navigate to the Software Downloads page in the Red Hat Customer Portal (login required), and select the product and version from the drop-down options:
- Product: Process Automation Manager
- Version: 7.13.5
-
Download Red Hat Process Automation Manager 7.13.5 Kogito and OptaPlanner 8 Decision Services Quickstarts (
rhpam-7.13.5-kogito-and-optaplanner-quickstarts.zip
). -
Extract the
rhpam-7.13.5-kogito-and-optaplanner-quickstarts.zip
file. -
Download Red Hat Process Automation Manager 7.13 Maven Repository Kogito and OptaPlanner 8 Maven Repository (
rhpam-7.13.5-kogito-maven-repository.zip
). -
Extract the
rhpam-7.13.5-kogito-maven-repository.zip
file. -
Copy the contents of the
rhpam-7.13.5-kogito-maven-repository/maven-repository
subdirectory into the~/.m2/repository
directory. Navigate to the
optaweb-8.13.0.Final-redhat-00013/optaweb-employee-rostering
directory. This folder is the base folder in subsequent parts of this document.NoteFile and folder names might have higher version numbers than specifically noted in this document.
14.2.2. Running the Employee Rostering starter application JAR file
You can run the Employee Rostering starter application from a JAR file included in the Red Hat Process Automation Manager 7.13.5 Kogito and OptaPlanner 8 Decision Services Quickstarts download.
Prerequisites
-
You have downloaded and extracted the
rhpam-7.13.5-kogito-and-optaplanner-quickstarts.zip
file as described in Section 14.2.1, “Preparing deployment files”. - A Java Development Kit is installed.
- Maven is installed.
- The host has access to the Internet. The build process uses the Internet for downloading Maven packages from external repositories.
Procedure
-
In a command terminal, change to the
rhpam-7.13.5-kogito-and-optaplanner-quickstarts/optaweb-8.13.0.Final-redhat-00013/optaweb-employee-rostering
directory. Enter the following command:
mvn clean install -DskipTests
- Wait for the build process to complete.
-
Navigate to the
rhpam-7.13.5-kogito-and-optaplanner-quickstarts/optaweb-8.13.0.Final-redhat-00013/optaweb-employee-rostering/optaweb-employee-rostering-standalone/target
directory. Enter the following command to run the Employee Rostering JAR file:
java -jar quarkus-app/quarkus-run.jar
NoteThe value of the
quarkus.datasource.db-kind
parameter is set toH2
by default at build time. To use a different database, you must rebuild the standalone module and specify the database type on the command line. For example, to use a PostgreSQL database, enter the following command:mvn clean install -DskipTests -Dquarkus.profile=postgres
-
To access the application, enter
http://localhost:8080/
in a web browser.
14.2.3. Building and running the Employee Rostering starter application using Maven
You can use the command line to build and run the employee rostering starter application.
If you use this procedure, the data is stored in memory and is lost when the server is stopped. To build and run the application with a database server for persistent storage, see Section 14.2.4, “Building and running the employee rostering starter application with persistent data storage from the command line”.
Prerequisites
- You have prepared the deployment files as described in Section 14.2.1, “Preparing deployment files”.
- A Java Development Kit is installed.
- Maven is installed.
- The host has access to the Internet. The build process uses the Internet for downloading Maven packages from external repositories.
Procedure
-
Navigate to the
optaweb-employee-rostering-backend
directory. Enter the following command:
mvn quarkus:dev
-
Navigate to the
optaweb-employee-rostering-frontend
directory. Enter the following command:
npm start
NoteIf you use
npm
to start the server,npm
monitors code changes.-
To access the application, enter
http://localhost:3000/
in a web browser.
14.2.4. Building and running the employee rostering starter application with persistent data storage from the command line
If you use the command line to build the employee rostering starter application and run it, you can provide a database server for persistent data storage.
Prerequisites
- You have prepared the deployment files as described in Section 14.2.1, “Preparing deployment files”.
- A Java Development Kit is installed.
- Maven is installed.
- The host has access to the Internet. The build process uses the Internet for downloading Maven packages from external repositories.
- You have a deployed MySQL or PostrgeSQL database server.
Procedure
-
In a command terminal, navigate to the
optaweb-employee-rostering-standalone/target
directory. Enter the following command to run the Employee Rostering JAR file:
java \ -Dquarkus.datasource.username=<DATABASE_USER> \ -Dquarkus.datasource.password=<DATABASE_PASSWORD> \ -Dquarkus.datasource.jdbc.url=<DATABASE_URL> \ -jar quarkus-app/quarkus-run.jar
In this example, replace the following placeholders:
-
<DATABASE_URL>
: URL to connect to the database -
<DATABASE_USER>
: The user to connect to the database -
<DATABASE_PASSWORD>
: The password for<DATABASE_USER>
-
The value of the quarkus.datasource.db-kind
parameter is set to H2
by default at build time. To use a different database, you must rebuild the standalone module and specify the database type on the command line. For example, to use a PostgreSQL database, enter the following command:
mvn clean install -DskipTests -Dquarkus.profile=postgres
14.2.5. Building and running the employee rostering starter application using IntelliJ IDEA
You can use IntelliJ IDEA to build and run the employee rostering starter application.
Prerequisites
- You have downloaded the Employee Rostering source code, available from the Employee Rostering GitHub page.
- IntelliJ IDEA, Maven, and Node.js are installed.
- The host has access to the Internet. The build process uses the Internet for downloading Maven packages from external repositories.
Procedure
- Start IntelliJ IDEA.
- From the IntelliJ IDEA main menu, select File → Open.
- Select the root directory of the application source and click OK.
- From the main menu, select Run → Edit Configurations.
- In the window that appears, expand Templates and select Maven. The Maven sidebar appears.
-
In the Maven sidebar, select
optaweb-employee-rostering-backend
from the Working Directory menu. -
In Command Line, enter
mvn quarkus:dev
. - To start the back end, click OK .
-
In a command terminal, navigate to the
optaweb-employee-rostering-frontend
directory. Enter the following command to start the front end:
npm start
-
To access the application, enter
http://localhost:3000/
in a web browser.
14.3. Overview of the source code of the employee rostering starter application
The employee rostering starter application consists of the following principal components:
-
A
backend
that implements the rostering logic using Red Hat build of OptaPlanner and provides a REST API -
A
frontend
module that implements a user interface using React and interacts with thebackend
module through the REST API
You can build and use these components independently. In particular, you can implement a different user interface and use the REST API to call the server.
In addition to the two main components, the employee rostering template contains a generator of random source data (useful for demonstration and testing purposes) and a benchmarking application.
Modules and key classes
The Java source code of the employee rostering template contains several Maven modules. Each of these modules includes a separate Maven project file (pom.xml
), but they are intended for building in a common project.
The modules contain a number of files, including Java classes. This document lists all the modules, as well as the classes and other files that contain the key information for the employee rostering calculations.
-
optaweb-employee-rostering-benchmark
module: Contains an additional application that generates random data and benchmarks the solution. -
optaweb-employee-rostering-distribution
module: Contains README files. -
optaweb-employee-rostering-docs
module: Contains documentation files. -
optaweb-employee-rostering-frontend
module: Contains the client application with the user interface, developed in React. optaweb-employee-rostering-backend
module: Contains the server application that uses OptaPlanner to perform the rostering calculation.-
src/main/java/org.optaweb.employeerostering.service.roster/rosterGenerator.java
: Generates random input data for demonstration and testing purposes. If you change the required input data, change the generator accordingly. -
src/main/java/org.optaweb.employeerostering.domain.employee/EmployeeAvailability.java
: Defines availability information for an employee. For every time slot, an employee can be unavailable, available, or the time slot can be designated a preferred time slot for the employee. -
src/main/java/org.optaweb.employeerostering.domain.employee/Employee.java
: Defines an employee. An employee has a name, a list of skills, and works under a contract. Skills are represented by skill objects. -
src/main/java/org.optaweb.employeerostering.domain.roster/Roster.java
: Defines the calculated rostering information. -
src/main/java/org.optaweb.employeerostering.domain.shift/Shift.java
: Defines a shift to which an employee can be assigned. A shift is defined by a time slot and a spot. For example, in a diner there could be a shift in the Kitchen spot for the February 20 8AM-4PM time slot. Multiple shifts can be defined for a specific spot and time slot. In this case, multiple employees are required for this spot and time slot. -
src/main/java/org.optaweb.employeerostering.domain.skill/Skill.java
: Defines a skill that an employee can have. -
src/main/java/org.optaweb.employeerostering.domain.spot/Spot.java
: Defines a spot where employees can be placed. For example, aKitchen
can be a spot. -
src/main/java/org.optaweb.employeerostering.domain.contract/Contract.java
: Defines a contract that sets limits on work time for an employee in various time periods. -
src/main/java/org.optaweb.employeerostering.domain.tenant/Tenant.java
: Defines a tenant. Each tenant represents an independent set of data. Changes in the data for one tenant do not affect any other tenants. -
*View.java
: Classes related to domain objects that define value sets that are calculated from other information; the client application can read these values through the REST API, but not write them. -
*Service.java
: Interfaces located in the service package that define the REST API. Both the server and the client application separately define implementations of these interfaces.
-
-
optaweb-employee-rostering-standalone
module: Contains the assembly configurations for the standalone application.
14.4. Modifying the employee rostering starter application
To modify the employee rostering starter application to suit your needs, you must change the rules that govern the optimization process. You must also ensure that the data structures include the required data and provide the required calculations for the rules. If the required data is not present in the user interface, you must also modify the user interface.
The following procedure outlines the general approach to modifying the employee rostering starter application.
Prerequisites
- You have a build environment that successfully builds the application.
- You can read and modify Java code.
Procedure
Plan the required changes. Answer the following questions:
- What are the additional scenarios that must be avoided? These scenarios are hard constraints.
- What are the additional scenarios that the optimizer must try to avoid when possible? These scenarios are soft constraints.
- What data is required to calculate if each scenario is happening in a potential solution?
- Which of the data can be derived from the information that the user enters in the existing version?
- Which of the data can be hardcoded?
- Which of the data must be entered by the user and is not entered in the current version?
- If any required data can be calculated from the current data or can be hardcoded, add the calculations or hardcoding to existing view or utility classes. If the data must be calculated on the server side, add REST API endpoints to read it.
-
If any required data must be entered by the user, add the data to the classes representing the data entities (for example, the
Employee
class), add REST API endpoints to read and write the data, and modify the user interface to enter the data. -
When all of the data is available, modify the rules. For most modifications, you must add a new rule. The rules are located in the
src/main/java/org/optaweb/employeerostering/service/solver/EmployeeRosteringConstraintProvider.java
file of theoptaweb-employee-rostering-backend
module. - After modifying the application, build and run it.
Chapter 15. Deploying and using Red Hat build of OptaPlanner in Red Hat OpenShift Container Platform: an employee rostering starter example
As a business rules developer, you can test and interact with the Red Hat build of OptaPlanner functionality by quickly deploying the optaweb-employee-rostering
starter project included in the Red Hat Process Automation Manager distribution to OpenShift.
Prerequisites
- You have access to a deployed OpenShift environment. For details, see the documentation for the OpenShift product that you use.
15.1. Overview of the employee rostering starter application
The employee rostering starter application assigns employees to shifts on various positions in an organization. For example, you can use the application to distribute shifts in a hospital between nurses, guard duty shifts across a number of locations, or shifts on an assembly line between workers.
Optimal employee rostering must take a number of variables into account. For example, different skills can be required for shifts in different positions. Also, some employees might be unavailable for some time slots or might prefer a particular time slot. Moreover, an employee can have a contract that limits the number of hours that the employee can work in a single time period.
The Red Hat build of OptaPlanner rules for this starter application use both hard and soft constraints. During an optimization, the planning engine may not violate hard constraints, for example, if an employee is unavailable (out sick), or that an employee cannot work two spots in a single shift. The planning engine tries to adhere to soft constraints, such as an employee’s preference to not work a specific shift, but can violate them if the optimal solution requires it.
15.2. Installing and starting the employee rostering starter application on OpenShift
Use the runOnOpenShift.sh
script to deploy the Employee Rostering starter application to Red Hat OpenShift Container Platform. The runOnOpenShift.sh
shell script is available in the Red Hat Process Automation Manager 7.13.5 Kogito and OptaPlanner 8 Decision Services Quickstarts distribution.
The runOnOpenShift.sh
script builds and packages the application source code locally and uploads it to the OpenShift environment for deployment. This method requires Java Development Kit, Apache Maven, and a bash shell command line.
15.2.1. Deploying the application using the provided script
You can deploy the Employee Rostering starter application to Red Hat OpenShift Container Platform using the provided script. The script builds and packages the application source code locally and uploads it to the OpenShift environment for deployment.
Prerequisites
-
You are logged in to the target OpenShift environment using the
oc
command line tool. For more information about this tool, see the OpenShift Container Platform CLI Reference. - OpenJDK 11 or later is installed. Red Hat build of Open JDK is available from the Software Downloads page in the Red Hat Customer Portal (login required).
- Apache Maven 3.6 or higher is installed. Maven is available from the Apache Maven Project website.
-
A
bash
shell environment is available on your local system.
Procedure
Navigate to the Software Downloads page in the Red Hat Customer Portal (login required), and select the product and version from the drop-down options:
- Product: Process Automation Manager
- Version: 7.13.5
-
Download the Red Hat Process Automation Manager 7.13 Maven Repository Kogito and OptaPlanner 8 Maven Repository (
rhpam-7.13.5-kogito-maven-repository.zip
) file. -
Extract the
rhpam-7.13.5-kogito-maven-repository.zip
file. -
Copy the contents of the
rhpam-7.13.5-kogito-maven-repository/maven-repository
subdirectory into the~/.m2/repository
directory. -
Download the
rhpam-7.13.5-kogito-and-optaplanner-quickstarts.zip
file from the Software Downloads page of the Red Hat Customer Portal. - Extract the downloaded archive.
-
Navigate to the
optaweb-employee-rostering
folder. To build the Employee Rostering application, run the following command:
mvn clean install -DskipTests -DskipITs
Log in to an OpenShift account or a Red Hat Code Ready Container instance. In the following example,
<account-url>
is the URL for an OpenShift account or Red Hat Code Ready Container instance and<login-token>
is the login token for that account:oc login <account-url> --token <login-token>
Create a new project to host Employee Rostering:
oc new-project optaweb-employee-rostering
Run the provision script to build and deploy the application:
./runOnOpenShift.sh
Compilation and packaging might take up to 10 minutes to complete. These processes continually show progress on the command line output.
When the operation completes, the following message is displayed, where
<URL>
is the URL for the deployment:You can access the application at <URL> once the deployment is done.
Enter the URL that you used earlier in the procedure, for either an OpenShift account or Red Hat Code Ready Container instance, to access the deployed application. The first startup can take up to a minute because additional building is completed on the OpenShift platform.
NoteIf the application does not open a minute after clicking the link, perform a hard refresh of your browser page.
15.3. Using the employee rostering starter application
You can use the web interface to use the Employee Rostering starter application. The interface is developed in ReactJS. You can also access the REST API to create a custom user interface as necessary.
15.3.1. The draft and published periods
At any particular moment, you can use the application to create the roster for a time period, called a draft period. By default, the length of a draft period is three weeks.
When the roster is final for the first week of the draft period, you can publish the roster. At this time, the roster for the first week of the current draft period becomes a published period. In a published period, the roster is fixed and you can no longer change it automatically (however, emergency manual changes are still possible). This roster can then be distributed to employees so they can plan their time around it. The draft period is shifted a week later.
For example, assume that a draft period of September 1 to September 21 is set. You can automatically create the employee roster for this period. Then, when you publish the roster, the period up to September 7 becomes published. The new draft period is September 8 to September 28.
For instructions about publishing the roster, see Section 15.3.12, “Publishing the shift roster”.
15.3.2. The rotation pattern
The employee rostering application supports a rotation pattern for shifts and employees.
The rotation pattern is a "model" period of any time starting from two days. The pattern is not tied to a particular date.
You can create time buckets for every day of the rotation. Every time bucket sets the time of a shift. Optionally, the template can include the name of the default employee for the shift.
When you publish the roster, the application adds a new week to the draft period. At this time, the shifts and, if applicable, default employee names are copied from the rotation pattern to the new part of the draft period.
When the end of the rotation pattern is reached, it is automatically restarted from the beginning.
If weekend shift patterns in your organization are different from weekday shift patterns, use a rotation pattern of one week or a whole number of weeks, for example, 14, 21, or 28 days. The default length is 28 days. Then the pattern is always repeated on the same weekdays and you can set the shifts for different weekdays.
For instructions about editing the rotation pattern, see Section 15.3.13, “Viewing and editing the rotation pattern”.
15.3.3. Employee Rostering tenants
The Employee Rostering application supports multiple tenants. Each tenant is an independent set of data, including inputs and roster outputs. Changing data for one tenant does not affect other tenants. You can switch between tenants to use several independent data sets, for example, to prepare employee rosters for different locations.
Several sample tenants are present after installation, representing several typical enterprise types such as a factory or hospital. You can select any of these tenants and modify them to suit your needs. You can also create a new tenant to enter data from a blank slate.
15.3.3.1. Changing an Employee Rostering tenant
You can change the current tenant. After you select a different tenant, all of the displayed information refers to this tenant and any changes you make affect only this tenant.
Procedure
- In the Employee Rostering application web interface, in the top right part of the browser window, click the Tenant list.
- Select a tenant from the list.
15.3.3.2. Creating a tenant
You can create a new tenant to enter data from a blank slate. When creating a tenant, you can set several parameters that determine how the application prepares the output for this tenant.
You cannot change tenant parameters after you create the tenant.
Procedure
- To create a new tenant in the Employee Rostering application web interface, in the top right corner of the browser window click the settings (gear) icon then click Add.
Set the following values:
- Name: The name of the new tenant. This name is displayed in the list of tenants.
- Schedule Start Date: The start date of the initial draft period. After you publish the roster, this date becomes the start date of the published period. The weekday of this date always remains the weekday that starts the draft period, any particular published period, and the first use of the rotation pattern. So it is usually most convenient to set the start date to the start of a week (Sunday or Monday).
- Draft Length (days): The length of the draft period. The draft period stays the same length for the lifetime of the tenant.
- Publish Notice (days): The length of the publish notice period. Aspire to publish the final roster for any day at least this time in advance, so employees have enough notice to plan their personal life around their shift times. In the current version, this setting is not enforced in any way.
- Publish Length (days): The length of the period that becomes published (fixed) every time you publish the roster. In the current version, this setting is fixed at 7 days.
- Rotation Length (days): The length of the rotation pattern.
- Timezone: The timezone of the environment to which the roster applies. This timezone is used to determine the "current" date for user interface display.
- Click Save.
The tenant is created with blank data.
15.3.4. Entering skills
You can set all skills that are required in any position within the roster. For example, a 24-hour diner can require cooking, serving, bussing, and hosting skills, in addition to skills such as general human resources and restaurant operations.
Procedure
In the Employee Rostering application web interface, click the Skills tab.
You can see the numbers of currently visible skills in the top right part of the browser window, for example,
1-15 of 34
. You can use the < and > buttons to display other skills in the list.You can enter any part of a skill name in the Search box to search for skills.
Complete the following steps to add a new skill:
- Click Add.
- Enter the name of the new skill in the text field under Name.
- Click the Save icon.
- To edit the name of a skill, click the Edit Skill icon (pencil shape) next to the skill.
- To delete a skill, click the Delete Skill icon (trashcan shape) next to the skill.
Within each tenant, skill names must be unique. You cannot delete a skill if the skill is associated with an employee or spot.
15.3.5. Entering spots
You must enter the list of spots, which represent various positions at the business. For a diner, spots include the bar, the bussing stations, the front counter, the various kitchen stations, the serving areas, and the office.
For each spot, you can select one or more required skills from the list that you entered in the Skills tab. The application rosters only employees that have all of the required skills for a spot into that spot. If the spot has no required skill, the application can roster any employee into the spot.
Procedure
- To enter or change spots in the Employee Rostering application web interface, click the Spots tab. You can enter any part of a spot name in the Search box to search for spots.
Complete the following steps to add a new spot:
- Click Add Spot.
- Enter the name of the new spot in the text field under Name.
- Optional: Select one or more skills from the drop-down list under Required skill set.
- Click the Save icon.
- To edit the name and required skills for a spot, click the Edit Spot icon (pencil shape) next to the spot.
- To delete a spot, click the Delete Spot icon (trashcan shape) next to the spot.
Within each tenant, spot names must be unique. You cannot delete a spot when any shifts are created for it.
15.3.6. Entering the list of contracts
You must enter the list of all of the types of contracts that the business uses for employees.
A contract determines the maximum time that the employee can work in a day, calendar week, calendar month, or calendar year.
When creating a contract, you can set any of the limitations or none at all. For example, a part-time employee might not be allowed to work more than 20 hours in a week, while a full-time employee might be limited to 10 hours in a day and 1800 hours in a year. Another contract might include no limitations on worked hours.
You must enter all work time limits for contracts in minutes.
Procedure
To enter or change the list of contracts in the Employee Rostering application web interface, click the Contracts tab.
You can see the numbers of currently visible contracts in the top right part of the browser window, for example,
1-15 of 34
. You can use the < and > buttons to display other contracts in the list.You can enter any part of a contract name in the Search box to search for contracts.
Complete the following steps to add a new contract:
- Click Add.
- Enter the name of the contract in the text field under Name.
Enter the required time limits under Maximum minutes:
- If the employee must not work more than a set time per day, enable the check box at Per Day and enter the amount of minutes in the field next to this check box.
- If the employee must not work more than a set time per calendar week, enable the check box at Per Week and enter the amount of minutes in the field next to this check box.
- If the employee must not work more than a set time per calendar month, enable the check box at Per Month and enter the amount of minutes in the field next to this check box.
- If the employee must not work more than a set time per calendar year, enable the check box at Per Year and enter the amount of minutes in the field next to this check box.
- Click the Save icon.
- To edit the name and time limits for a contract, click the Edit Contract icon (pencil shape) next to the name of the contract.
- To delete a contract, click the Delete Contract icon (trashcan shape) next to the name of the contract.
Within each tenant, contract names must be unique. You cannot delete a contract if it is assigned to any employee.
15.3.7. Entering the list of employees
You must enter the list of all employees of the business, the skills they possess, and the contracts that apply to them. The application rosters these employees to spots according to their skills and according to the work time limits in the contracts.
Procedure
To enter or change the list of employees in the Employee Rostering application web interface, click the Employees tab.
You can see the numbers of currently visible employees in the top right part of the browser window, for example,
1-15 of 34
. You can use the < and > buttons to display other employees in the list.You can enter any part of an employee name in the Search box to search for employees.
Complete the following steps to add a new employee:
- Click Add.
- Enter the name of the employee in the text field under Name.
- Optional: Select one or more skills from the drop-down list under Skill set.
- Select a contract from the drop-down list under Contract.
- Click the Save icon.
- To edit the name and skills for an employee, click the Edit Employee icon (pencil shape) next to the name of the employee.
- To delete an employee, click the Delete Employee icon (trashcan shape) next to the name of the employee.
Within each tenant, employee names must be unique. You cannot delete employees if they are rostered to any shifts.
15.3.8. Setting employee availability
You can set the availability of employees for particular time spans.
If an employee is unavailable for a particular time span, the employee can never be assigned to any shift during this time span (for example, if the employee has called in sick or is on vacation). Undesired and desired are employee preferences for particular time spans; the application accommodates them when possible.
Procedure
To view and edit employee availability in the Employee Rostering application web interface, click the Availability Roster tab.
In the top left part of the window, you can see the dates for which the roster is displayed. To view other weeks, you can use the < and > buttons next to the Week of field. Alternatively, you can click the date field and change the date to view the week that includes this date.
-
To create an availability entry for an employee, click empty space on the schedule and then select an employee. Initially, an
Unavailable
entry for the entire day is created. To change an availability entry, click the entry. You can change the following settings:
- From and To date and time: The time span to which the availability entry applies.
Status: you can select Unavailable, Desired, or Undesired status from a drop-down list.
To save the entry, click Apply.
To delete an availability entry, click the entry, then click Delete availability.
You can also change or delete an availability entry by moving the mouse pointer over the entry and then clicking one of the icons displayed over the entry:
- Click the icon to set the status of the entry to Unavailable.
- Click the icon to set the status of the entry to Undesired.
- Click the icon to set the status of the entry to Desired.
- Click the icon to delete the entry.
If an employee is already assigned to a shift and then you create or change an availability entry during this shift, the assignment is not changed automatically. You must create the employee shift roster again to apply new or changed availability entries.
15.3.9. Viewing and editing shifts in the shift roster
The Shift Roster is a table of all spots and all possible time spans.
If an employee must be present in a spot during a time span, a shift must exist for this spot and this time span. If a spot requires several employees at the same time, you can create several shifts for the same spot and time span.
Each shift is represented by a rectangle at the intersection of a spot (row) and time span (column).
When new time is added to the draft period, the application copies the shifts (and default employees, if present) from the rotation pattern into this new part of the draft period. You can also manually add and edit shifts in the draft period.
Procedure
To view and edit the shift roster in the Employee Rostering application web interface, click the Shift tab.
In the top left part of the window, you can see the dates for which the roster is displayed. To view other weeks, you can use the < and > buttons next to the Week of field. Alternatively, you can click the date field and change the date to view the week that includes this date.
- To add a shift, click an open area of the schedule. The application adds a shift, determining the slot and time span automatically from the location of the click.
To edit a shift, click the shift. You can set the following values for a shift:
- From and To date and time: The exact time and duration of the shift.
- Employee: The employee assigned to the shift.
Pinned: Whether the employee is pinned to the shift. If an employee is pinned, automatic employee rostering cannot change the assignment of the employee to the shift. A pinned employee is not automatically replicated to any other shift.
To save the changes, click Apply.
- To delete a shift, click the shift, and then click Delete shift.
15.3.10. Creating and viewing the employee shift roster
You can use the application to create and view the optimal shift roster for all employees.
Procedure
- To view and edit the shift roster in the Employee Rostering application web interface, click the Shift tab.
- To create the optimal shift roster, click Schedule. The application takes 30 seconds to find the optimal solution.
Result
When the operation is finished, the Shift Roster view contains the optimal shift roster. The new roster is created for the draft period. The operation does not modify the published periods.
In the top left part of the window, you can see the dates for which the roster is displayed. To view other weeks, you can use the < and > buttons next to the Week of field. Alternatively, you can click the date field and change the date to view the week that includes this date.
In the draft period, the borders of boxes that represent shifts are dotted lines. In the published periods, the borders are unbroken lines.
The color of the boxes that represent shifts shows the constraint status of every shift:
- Strong green: Soft constraint matched; for example, the shift is in a "desired" timeslot for the employee.
- Pale green: No constraint broken.
- Grey: Soft constraint broken; for example, the shift is in an "undesired" timeslot for the employee.
- Yellow: Medium constraint broken; for example, no employee is assigned to the shift.
- Red: Hard constraint broken; for example, an employee has two shifts at the same time.
15.3.11. Viewing employee shifts
You can view the assigned shifts for particular employees in an employee-centric table. The information is the same as the Shift Roster, but the viewing format might be more convenient for informing employees about their assigned shifts.
Procedure
To view a table of employees and shifts in the Employee Rostering application web interface, click the Availability Roster tab.
In the top left part of the window, you can see the dates for which the roster is displayed. To view other weeks, you can use the < and > buttons next to the Week of field. Alternatively, you can click the date field and change the date to view the week that includes this date.
You can see the numbers of currently visible employees in the top right part of the browser window, for example, 1-10 of 34
. You can use the < and > buttons next to the numbers to display other employees in the list.
In the draft period, the borders of boxes representing shifts are dotted lines. In the published periods, the borders are unbroken lines.
15.3.12. Publishing the shift roster
When you publish the shift roster, the first week of the draft period becomes published. Automatic employee rostering no longer changes any shift assignments in the published period, though emergency manual changing is still possible. The draft period is shifted one week later. For details about draft and published periods, see Section 15.3.1, “The draft and published periods”.
Procedure
- To view and edit the shift roster in the Employee Rostering application web interface, click the Shift tab.
- Review the shift roster for the first week of the draft period to ensure that it is acceptable.
- Click Publish.
15.3.13. Viewing and editing the rotation pattern
The rotation pattern enables you to add, move, and delete shifts so you can manage your employee resources efficiently. It is defined by time buckets and seats.
- A time bucket describes a time slot (for example, 9:00 a.m. to 5:00 p.m.) for a particular spot or location (A) (for example, Anaesthetics), over two or more days, and any skills that are required (for example, firearm training).
- A seat (B) is an employee assignment for a particular day in a specific time bucket.
- An employee stub is an icon that represents an employee that is available to be assigned to a time bucket. Employee stubs are listed in the Employee Stub List.
For more information about the rotation pattern, see Section 15.3.2, “The rotation pattern”.
Procedure
- Click the Rotation tab to view and edit the rotation pattern.
- Select a spot from the Rotation menu.
- Click Add New Time Bucket. The Creating Working Time Bucket dialog is displayed.
- Specify a start and end time, select any additional required skills, select the days for this time bucket, and click Save. The unassigned seats for that time bucket appears on the Rotation page organized by time ranges.
- To create an employee stub list so that you can add employees to the rotation, click Edit Employee Stub List.
- In the Edit Employee Stub List dialog, click Add Employee and select an employee from the list.
- Add all of the employees required for this stub list and click Save. The employees appear above the time buckets on the Rotation page.
- Click an employee icon to select an employee from the employee stub list.
Click and drag the mouse over the seats of a time bucket to assign the selected employee to those seats. The seat is populated with the employee icon.
NoteA time bucket can only have one employee assigned to it for each day. To add multiple employees to the same time bucket, copy the time bucket and change the employee name as required.
- To provision the schedule, click Scheduling and select the spot that you created the rotation for.
- Click Provision and specify the date range.
- Deselect the spots that you do not want to include in this schedule.
- Click the arrow next to the selected spot and deselect any time buckets that you do not want to use in your schedule.
- Click Provision Shifts. The calendar is populated with shifts generated from the time buckets.
- To modify a shift, click a generated shift on the calendar.
Chapter 16. Deploying and using the Red Hat build of OptaPlanner vehicle route planning starter application
As a developer, you can use the OptaWeb Vehicle Routing starter application to optimize your vehicle fleet deliveries.
Prerequisites
- OpenJDK (JDK) 11 is installed. Red Hat build of Open JDK is available from the Software Downloads page in the Red Hat Customer Portal (login required).
- Apache Maven 3.6 or higher is installed. Maven is available from the Apache Maven Project website.
16.1. What is OptaWeb Vehicle Routing?
The main purpose of many businesses is to transport various types of cargo. The goal of these businesses is to deliver a piece of cargo from the loading point to a destination and use its vehicle fleet in the most efficient way. One of the main objectives is to minimize travel costs which are measured in either time or distance.
This type of optimization problem is referred to as the vehicle routing problem (VRP) and has many variations.
Red Hat build of OptaPlanner can solve many of these vehicle routing variations and provides solution examples. OptaPlanner enables developers to focus on modeling business rules and requirements instead of learning constraint programming theory. OptaWeb Vehicle Routing expands the vehicle routing capabilities of OptaPlanner by providing a starter application that answers questions such as these:
- Where do I get the distances and travel times?
- How do I visualize the solution on a map?
- How do I build an application that runs in the cloud?
OptaWeb Vehicle Routing uses OpenStreetMap (OSM) data files. For information about OpenStreetMap, see the OpenStreetMap web site.
Use the following definitions when working with OptaWeb Vehicle Routing:
Region: An arbitrary area on the map of Earth, represented by an OSM file. A region can be a country, a city, a continent, or a group of countries that are frequently used together. For example, the DACH region includes Germany (DE), Austria (AT), and Switzerland (CH).
Country code: A two-letter code assigned to a country by the ISO-3166 standard. You can use a country code to filter geosearch results. Because you can work with a region that spans multiple countries (for example, the DACH region), OptaWeb Vehicle Routing accepts a list of country codes so that geosearch filtering can be used with such regions. For a list of country codes, see ISO 3166 Country Codes
Geosearch: A type of query where you provide an address or a place name of a region as the search keyword and receive a number of GPS locations as a result. The number of locations returned depends on how unique the search keyword is. Because most place names are not unique, filter out nonrelevant results by including only places in the country or countries that are in your working region.
16.2. Download and build the OptaWeb Vehicle Routing deployment files
You must download and prepare the deployment files before building and deploying OptaWeb Vehicle Routing.
Procedure
Navigate to the Software Downloads page in the Red Hat Customer Portal (login required), and select the product and version from the drop-down options:
- Product: Process Automation Manager
- Version: 7.13.5
-
Download Red Hat Process Automation Manager 7.13.5 Kogito and OptaPlanner 8 Decision Services Quickstarts (
rhpam-7.13.5-kogito-and-optaplanner-quickstarts.zip
). -
Extract the
rhpam-7.13.5-kogito-and-optaplanner-quickstarts.zip
file. -
Download Red Hat Process Automation Manager 7.13 Maven Repository Kogito and OptaPlanner 8 Maven Repository (
rhpam-7.13.5-kogito-maven-repository.zip
). -
Extract the
rhpam-7.13.5-kogito-maven-repository.zip
file. -
Copy the contents of the
rhpam-7.13.5-kogito-maven-repository/maven-repository
subdirectory into the~/.m2/repository
directory. -
Navigate to the
optaweb-8.13.0.Final-redhat-00013/optaweb-vehicle-routing
directory. Enter the following command to build OptaWeb Vehicle Routing:
mvn clean package -DskipTests
16.3. Run OptaWeb Vehicle Routing locally using the runLocally.sh script
Linux users can use the runLocally.sh
Bash script to run OptaWeb Vehicle Routing.
The runLocally.sh
script does not run on macOS. If you cannot use the runLocally.sh
script, see Section 16.4, “Configure and run OptaWeb Vehicle Routing manually”.
The runLocally.sh
script automates the following setup steps that otherwise must be carried out manually:
- Create the data directory.
- Download selected OpenStreetMap (OSM) files from Geofabrik.
- Try to associate a country code with each downloaded OSM file automatically.
- Build the project if the standalone JAR file does not exist.
- Launch OptaWeb Vehicle Routing by taking a single region argument or by selecting the region interactively.
See the following sections for instructions about executing the runLocally.sh
script:
16.3.1. Run the OptaWeb Vehicle Routing runLocally.sh script in quick start mode
The easiest way to get started with OptaWeb Vehicle Routing is to run the runLocally.sh
script without any arguments.
Prerequisites
- OptaWeb Vehicle Routing has been successfully built with Maven as described in Section 16.2, “Download and build the OptaWeb Vehicle Routing deployment files”.
- Internet access is available.
Procedure
Enter the following command in the
rhpam-7.13.5-kogito-and-optaplanner-quickstarts/optaweb-8.13.0.Final-redhat-00013/optaweb-vehicle-routing
directory../runLocally.sh
-
If prompted to create the
.optaweb-vehicle-routing
directory, entery
. You are prompted to create this directory the first time you run the script. If prompted to download an OSM file, enter
y
. The first time that you run the script, OptaWeb Vehicle Routing downloads the Belgium OSM file.The application starts after the OSM file is downloaded.
To open the OptaWeb Vehicle Routing user interface, enter the following URL in a web browser:
http://localhost:8080
The first time that you run the script, it will take a few minutes to start because the OSM file must be imported by GraphHopper and stored as a road network graph. The next time you run the runlocally.sh
script, load times will be significantly faster.
16.3.2. Run the OptaWeb Vehicle Routing runLocally.sh script in interactive mode
Use interactive mode to see the list of downloaded OSM files and country codes assigned to each region. You can use the interactive mode to download additional OSM files from Geofabrik without visiting the website and choosing a destination for the download.
Prerequisites
- OptaWeb Vehicle Routing has been successfully built with Maven as described in Section 16.2, “Download and build the OptaWeb Vehicle Routing deployment files”.
- Internet access is available.
Procedure
-
Change directory to
rhpam-7.13.5-kogito-and-optaplanner-quickstarts/optaweb-8.13.0.Final-redhat-00013/optaweb-vehicle-routing
. Enter the following command to run the script in interactive mode:
./runLocally.sh -i
-
At the
Your choice
prompt, enterd
to display the download menu. A list of previously downloaded regions appears followed by a list of regions that you can download. Optional: Select a region from the list of previously downloaded regions:
- Enter the number associated with a region in the list of downloaded regions.
- Press the Enter key.
Optional: Download a region:
-
Enter the number associated with the region that you want to download. For example, to select the map of Europe, enter
5
. -
To download the map, enter
d
then press the Enter key. To download a specific region within the map, enter
e
then enter the number associated with the region that you want to download, and press the Enter key.Using large OSM filesFor the best user experience, use smaller regions such as individual European or US states. Using OSM files larger than 1 GB will require significant RAM size and take a lot of time (up to several hours) for the initial processing.
The application starts after the OSM file is downloaded.
-
Enter the number associated with the region that you want to download. For example, to select the map of Europe, enter
To open the OptaWeb Vehicle Routing user interface, enter the following URL in a web browser:
http://localhost:8080
16.3.3. Run the OptaWeb Vehicle Routing runLocally.sh script in non-interactive mode
Use OptaWeb Vehicle Routing in non-interactive mode to start OptaWeb Vehicle Routing with a single command that includes an OSM file that you downloaded previously. This is useful when you want to switch between regions quickly or when doing a demo.
Prerequisites
- OptaWeb Vehicle Routing has been successfully built with Maven as described in Section 16.2, “Download and build the OptaWeb Vehicle Routing deployment files”.
- The OSM file for the region that you want to use has been downloaded. For information about downloading OSM files, see Section 16.3.2, “Run the OptaWeb Vehicle Routing runLocally.sh script in interactive mode”.
- Internet access is available.
Procedure
-
Change directory to
rhpam-7.13.5-kogito-and-optaplanner-quickstarts/optaweb-8.13.0.Final-redhat-00013/optaweb-vehicle-routing
. Execute the following command where
<OSM_FILE_NAME>
is an OSM file that you downloaded previously:./runLocally.sh <OSM_FILE_NAME>
16.3.4. Update the data directory
You can update the data directory that OptaWeb Vehicle Routing uses if you want to use a different data directory. The default data directory is $HOME/.optaweb-vehicle-routing
.
Prerequisites
- OptaWeb Vehicle Routing has been successfully built with Maven as described in Section 16.2, “Download and build the OptaWeb Vehicle Routing deployment files”.
Procedure
-
To use a different data directory, add the directory’s absolute path to the
.DATA_DIR_LAST
file in the current data directory. To change country codes associated with a region, edit the corresponding file in the
country_codes
directory, in the current data directory.For example, if you downloaded an OSM file for Scotland and the script fails to guess the country code, set the content of
country_codes/scotland-latest
to GB.-
To remove a region, delete the corresponding OSM file from
openstreetmap
directory in the data directory and delete the region’s directory in thegraphhopper
directory.
16.4. Configure and run OptaWeb Vehicle Routing manually
The easiest way to run OptaWeb Vehicle Routing is to use the runlocally.sh
script. However, if Bash is not available on your system you can manually complete the steps that the runlocally.sh
script performs.
Prerequisites
- OptaWeb Vehicle Routing has been successfully built with Maven as described in Section 16.2, “Download and build the OptaWeb Vehicle Routing deployment files”.
- Internet access is available.
Procedure
Download routing data.
The routing engine requires geographical data to calculate the time it takes vehicles to travel between locations. You must download and store OpenStreetMap (OSM) data files on the local file system before you run OptaWeb Vehicle Routing.
NoteThe OSM data files are typically between 100 MB to 1 GB and take time to download so it is a good idea to download the files before building or starting the OptaWeb Vehicle Routing application.
-
Open
http://download.geofabrik.de/
in a web browser. - Click a region in the Sub Region list, for example Europe. The subregion page opens.
-
In the Sub Regions table, download the OSM file (
.osm.pbf
) for a country, for example Belgium.
-
Open
Create the data directory structure.
OptaWeb Vehicle Routing reads and writes several types of data on the file system. It reads OSM (OpenStreetMap) files from the
openstreetmap
directory, writes a road network graph to thegraphhopper
directory, and persists user data in a directory calleddb
. Create a new directory dedicated to storing all of these data to make it easier to upgrade to a newer version of OptaWeb Vehicle Routing in the future and continue working with the data you created previously.-
Create the
$HOME/.optaweb-vehicle-routing
directory. Create the
openstreetmap
directory in the$HOME/.optaweb-vehicle-routing
directory:$HOME/.optaweb-vehicle-routing └── openstreetmap
Move all of your downloaded OSM files (files with the extension
.osm.pbf
) to theopenstreetmap
directory.The rest of the directory structure is created by the OptaWeb Vehicle Routing application when it runs for the first time. After that, your directory structure is similar to the following example:
$HOME/.optaweb-vehicle-routing ├── db │ └── vrp.mv.db ├── graphhopper │ └── belgium-latest └── openstreetmap └── belgium-latest.osm.pbf
-
Create the
-
Change directory to
rhpam-7.13.5-kogito-and-optaplanner-quickstarts/optaweb-8.13.0.Final-redhat-00013/optaweb-vehicle-routing/optaweb-vehicle-routing-standalone/target
. To run OptaWeb Vehicle Routing, enter the following command:
java \ -Dapp.demo.data-set-dir=$HOME/.optaweb-vehicle-routing/dataset \ -Dapp.persistence.h2-dir=$HOME/.optaweb-vehicle-routing/db \ -Dapp.routing.gh-dir=$HOME/.optaweb-vehicle-routing/graphhopper \ -Dapp.routing.osm-dir=$HOME/.optaweb-vehicle-routing/openstreetmap \ -Dapp.routing.osm-file=<OSM_FILE_NAME> \ -Dapp.region.country-codes=<COUNTRY_CODE_LIST> \ -jar quarkus-app/quarkus-run.jar
In this command, replace the following variables:
-
<OSM_FILE_NAME>
: The OSM file for the region that you want to use and that you downloaded previously <COUNTRY_CODE_LIST>
: A comma-separated list of country codes used to filter geosearch queries. For a list of country codes, see ISO 3166 Country Codes.The application starts after the OSM file is downloaded.
In the following example, OptaWeb Vehicle Routing downloads the OSM map of Central America (
central-america-latest.osm.pbf
) and searches in the countries Belize (BZ) and Guatemala (GT).java \ -Dapp.demo.data-set-dir=$HOME/.optaweb-vehicle-routing/dataset \ -Dapp.persistence.h2-dir=$HOME/.optaweb-vehicle-routing/db \ -Dapp.routing.gh-dir=$HOME/.optaweb-vehicle-routing/graphhopper \ -Dapp.routing.osm-dir=$HOME/.optaweb-vehicle-routing/openstreetmap \ -Dapp.routing.osm-file=entral-america-latest.osm.pbf \ -Dapp.region.country-codes=BZ,GT \ -jar quarkus-app/quarkus-run.jar
-
To open the OptaWeb Vehicle Routing user interface, enter the following URL in a web browser:
http://localhost:8080
16.5. Run OptaWeb Vehicle Routing on Red Hat OpenShift Container Platform
Linux users can use the runOnOpenShift.sh
Bash script to install OptaWeb Vehicle Routing on Red Hat OpenShift Container Platform.
The runOnOpenShift.sh
script does not run on macOS.
Prerequisites
-
You have access to an OpenShift cluster and the OpenShift command-line interface (
oc
) has been installed. For information about Red Hat OpenShift Container Platform, see Installing OpenShift Container Platform. - OptaWeb Vehicle Routing has been successfully built with Maven as described in Section 16.2, “Download and build the OptaWeb Vehicle Routing deployment files”.
- Internet access is available.
Procedure
- Log in to or start a Red Hat OpenShift Container Platform cluster.
Enter the following command where
<PROJECT_NAME>
is the name of your new project:oc new-project <PROJECT_NAME>
-
If necessary, change directory to
rhpam-7.13.5-kogito-and-optaplanner-quickstarts/optaweb-8.13.0.Final-redhat-00013/optaweb-vehicle-routing
. Enter the following command to execute the
runOnOpenShift.sh
script and download an OpenStreetMap (OSM) file:./runOnOpenShift.sh <OSM_FILE_NAME> <COUNTRY_CODE_LIST> <OSM_FILE_DOWNLOAD_URL>
In this command, replace the following variables:
-
<OSM_FILE_NAME>
: The name of a file downloaded from<OSM_FILE_DOWNLOAD_URL>
. -
<COUNTRY_CODE_LIST>
: A comma-separated list of country codes used to filter geosearch queries. For a list of country codes, see ISO 3166 Country Codes. <OSM_FILE_DOWNLOAD_URL>
: The URL of an OSM data file in PBF format accessible from OpenShift. The file will be downloaded during backend startup and saved as/deployments/local/<OSM_FILE_NAME>
.In the following example, OptaWeb Vehicle Routing downloads the OSM map of Central America (
central-america-latest.osm.pbf
) and searches in the countries Belize (BZ) and Guatemala (GT)../runOnOpenShift.sh central-america-latest.osm.pbf BZ,GT http://download.geofabrik.de/europe/central-america-latest.osm.pbf
-
For help with the runOnOpenShift.sh
script, enter ./runOnOpenShift.sh --help
.
16.5.1. Updating the deployed OptaWeb Vehicle Routing application with local changes
After you deploy your OptaWeb Vehicle Routing application on Red Hat OpenShift Container Platform, you can update the back end and front end.
Prerequisites
- OptaWeb Vehicle Routing has been successfully built with Maven and deployed on OpenShift.
Procedure
To update the back end, perform the following steps:
- Change the source code and build the back-end module with Maven.
-
Change directory to
rhpam-7.13.5-kogito-and-optaplanner-quickstarts/optaweb-8.13.0.Final-redhat-00013/optaweb-vehicle-routing
. Enter the following command to start the OpenShift build:
oc start-build backend --from-dir=. --follow
To update the front end, perform the following steps:
-
Change the source code and build the front-end module with the
npm
utility. -
Change directory to
sources/optaweb-vehicle-routing-frontend
. Enter the following command to start the OpenShift build:
oc start-build frontend --from-dir=docker --follow
-
Change the source code and build the front-end module with the
16.6. Using OptaWeb Vehicle Routing
In the OptaWeb Vehicle Routing application, you can mark a number of locations on the map. The first location is assumed to be the depot. Vehicles must deliver goods from this depot to every other location that you marked.
You can set the number of vehicles and the carrying capacity of every vehicle. However, the route is not guaranteed to use all vehicles. The application uses as many vehicles as required for an optimal route.
The current version has certain limitations:
- Every delivery to a location is supposed to take one point of vehicle capacity. For example, a vehicle with a capacity of 10 can visit up to 10 locations before returning to the depot.
- Setting custom names of vehicles and locations is not supported.
16.6.1. Creating a route
To create an optimal route, use the Demo tab of the OptaWeb Vehicle Routing user interface.
Prerequisites
- OptaWeb Vehicle Routing is running and you have access to the user interface.
Procedure
- In OptaWeb Vehicle Routing, click Demo to open the Demo tab.
- Use the blue minus and plus buttons above the map to set the number of vehicles. Each vehicle has a default capacity of 10.
Use the plus button in a square on the map to zoom in as required.
NoteDo not double-click to zoom in. A double click also creates a location.
- Click a location for the depot.
- Click other locations on the map for delivery points.
If you want to delete a location:
- Hover the mouse cursor over the location to see the location name.
- Find the location name in the list in the left part of the screen.
- Click the X icon next to the name.
Every time you add or remove a location or change the number of vehicles, the application creates and displays a new optimal route. If the solution uses several vehicles, the application shows the route for every vehicle in a different color.
16.6.2. Viewing and setting other details
You can use other tabs in the OptaWeb Vehicle Routing user interface to view and set additional details.
Prerequisites
- OptaWeb Vehicle Routing is running and you have access to the user interface.
Procedure
- Click the Vehicles tab to view, add, and remove vehicles, and also set the capacity for every vehicle.
- Click the Visits tab to view and remove locations.
- Click the Route tab to select each vehicle and view the route for the selected vehicle.
16.6.3. Creating custom data sets with OptaWeb Vehicle Routing
There is a built-in demo data set consisting of a several large Belgian cities. If you want to have more demos available in the Load demo menu, you can prepare your own data sets.
Procedure
- In OptaWeb Vehicle Routing, add a depot and one or more of visits by clicking on the map or using geosearch.
Click Export and save the file in the data set directory.
NoteThe data set directory is the directory specified in the
app.demo.data-set-dir
property.If the application is running through the
runLocally.sh
script, the data set directory is set to$HOME/.optaweb-vehicle-routing/dataset
.Otherwise, the property is taken from the
application.properties
file and defaults torhpam-7.13.5-kogito-and-optaplanner-quickstarts/optaweb-8.13.0.Final-redhat-00013/optaweb-vehicle-routing/optaweb-vehicle-routing-standalone/target/local/dataset
.You can edit the
app.demo.data-set-dir
property to specify a diffent data directory.- Edit the YAML file and choose a unique name for the data set.
- Restart the back end.
After you restart the back end, files in the data set directory appear in the Load demo menu.
16.6.4. Troubleshooting OptaWeb Vehicle Routing
If the OptaWeb Vehicle Routing behaves unexpectedly, follow this procedure to trouble-shoot.
Prerequisites
- OptaWeb Vehicle Routing is running and behaving unexpectedly.
Procedure
- To identify issues, review the back-end terminal output log.
To resolve issues, remove the back-end database:
- Stop the back end by pressing Ctrl+C in the back-end terminal window.
-
Remove the
optaweb-vehicle-routing/optaweb-vehicle-routing-backend/local/db
directory. - Restart OptaWeb Vehicle Routing.
16.7. OptaWeb Vehicle Routing development guide
This section describes how to configure and run the back-end and front-end modules in development mode.
16.7.1. OptaWeb Vehicle Routing project structure
The OptaWeb Vehicle Routing project is a multi-module Maven project.
Figure 16.1. Module dependency tree diagram
The back-end and front-end modules are at the bottom of the module tree. These modules contain the application source code.
The standalone module is an assembly module that combines the back end and front end into a single executable JAR file.
The distribution module represents the final assembly step. It takes the standalone application and the documentation and wraps them in an archive that is easy to distribute.
The back end and front end are separate projects that you can build and deploy separately. In fact, they are written in completely different languages and built with different tools. Both projects have tools that provide a modern developer experience with fast turn-around between code changes and the running application.
The next sections describe how to run both back-end and front-end projects in development mode.
16.7.2. The OptaWeb Vehicle Routing back-end module
The back-end module contains a server-side application that uses Red Hat build of OptaPlanner to optimize vehicle routes. Optimization is a CPU-intensive computation that must avoid any I/O operations in order to perform to its full potential. Because one of the chief objectives is to minimize travel cost, either time or distance, OptaWeb Vehicle Routing keeps the travel cost information in RAM memory. While solving, OptaPlanner needs to know the travel cost between every pair of locations entered by the user. This information is stored in a structure called the distance matrix.
When you enter a new location, OptaWeb Vehicle Routing calculates the travel cost between the new location and every other location that has been entered so far, and stores the travel cost in the distance matrix. The travel cost calculation is performed by the GraphHopper routing engine.
The back-end module implements the following additional functionality:
- Persistence
- WebSocket connection for the front end
- Data set loading, export, and import
To learn more about the back-end code architecture, see Section 16.8, “OptaWeb Vehicle Routing back-end architecture”.
The next sections describe how to configure and run the back end in development mode.
16.7.2.1. Running the OptaWeb Vehicle Routing back-end module
You can run the back-end module in Quarkus development mode.
Prerequisites
- OptaWeb Vehicle Routing has been configured as described in Section 16.4, “Configure and run OptaWeb Vehicle Routing manually”.
Procedure
-
Change directory to
rhpam-7.13.5-kogito-and-optaplanner-quickstarts/optaweb-8.13.0.Final-redhat-00013/optaweb-vehicle-routing/optaweb-vehicle-routing-backend
. To run the back end in development mode, enter the following command:
mvn compile quarkus:dev
16.7.2.2. Running the OptaWeb Vehicle Routing back-end module from IntelliJ IDEA Ultimate
You can use IntelliJ IDEA Ulitmate to run the OptaWeb Vehicle Routing back-end module to make it easier to develop your project. IntelliJ IDEA Ultimate includes a Quarkus plug-in that automatically creates run configurations for modules that use the Quarkus framework.
Procedure
Use the optaweb-vehicle-routing-backend run configuration to run the back end. <