Deploying and Managing AMQ Streams on OpenShift
Deploy and manage AMQ Streams 2.5 on OpenShift Container Platform
Abstract
Making open source more inclusive
Red Hat is committed to replacing problematic language in our code, documentation, and web properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the enormity of this endeavor, these changes will be implemented gradually over several upcoming releases. For more details, see our CTO Chris Wright’s message.
Chapter 1. Deployment overview
AMQ Streams simplifies the process of running Apache Kafka in an OpenShift cluster.
This guide provides instructions for deploying and managing AMQ Streams. Deployment options and steps are covered using the example installation files included with AMQ Streams. While the guide highlights important configuration considerations, it does not cover all available options. For a deeper understanding of the Kafka component configuration options, refer to the AMQ Streams Custom Resource API Reference.
In addition to deployment instructions, the guide offers pre- and post-deployment guidance. It covers setting up and securing client access to your Kafka cluster. Furthermore, it explores additional deployment options such as metrics integration, distributed tracing, and cluster management tools like Cruise Control and the AMQ Streams Drain Cleaner. You’ll also find recommendations on managing AMQ Streams and fine-tuning Kafka configuration for optimal performance.
Upgrade instructions are provided for both AMQ Streams and Kafka, to help keep your deployment up to date.
AMQ Streams is designed to be compatible with all types of OpenShift clusters, irrespective of their distribution. Whether your deployment involves public or private clouds, or if you are setting up a local development environment, the instructions in this guide are applicable in all cases.
1.1. AMQ Streams custom resources
Deployment of Kafka components to an OpenShift cluster using AMQ Streams is highly configurable through the application of custom resources. These custom resources are created as instances of APIs added by Custom Resource Definitions (CRDs) to extend OpenShift resources.
CRDs act as configuration instructions to describe the custom resources in an OpenShift cluster, and are provided with AMQ Streams for each Kafka component used in a deployment, as well as users and topics. CRDs and custom resources are defined as YAML files. Example YAML files are provided with the AMQ Streams distribution.
CRDs also allow AMQ Streams resources to benefit from native OpenShift features like CLI accessibility and configuration validation.
1.1.1. AMQ Streams custom resource example
CRDs require a one-time installation in a cluster to define the schemas used to instantiate and manage AMQ Streams-specific resources.
After a new custom resource type is added to your cluster by installing a CRD, you can create instances of the resource based on its specification.
Depending on the cluster setup, installation typically requires cluster admin privileges.
Access to manage custom resources is limited to AMQ Streams administrators. For more information, see Section 4.5, “Designating AMQ Streams administrators”.
A CRD defines a new kind
of resource, such as kind:Kafka
, within an OpenShift cluster.
The Kubernetes API server allows custom resources to be created based on the kind
and understands from the CRD how to validate and store the custom resource when it is added to the OpenShift cluster.
When a CustomResourceDefinition
is deleted, custom resources of that type are also deleted. Additionally, OpenShift resources created by the custom resource are also deleted, such as Deployment
, Pod
, Service
and ConfigMap
resources.
Each AMQ Streams-specific custom resource conforms to the schema defined by the CRD for the resource’s kind
. The custom resources for AMQ Streams components have common configuration properties, which are defined under spec
.
To understand the relationship between a CRD and a custom resource, let’s look at a sample of the CRD for a Kafka topic.
Kafka topic CRD
apiVersion: kafka.strimzi.io/v1beta2 kind: CustomResourceDefinition metadata: 1 name: kafkatopics.kafka.strimzi.io labels: app: strimzi spec: 2 group: kafka.strimzi.io versions: v1beta2 scope: Namespaced names: # ... singular: kafkatopic plural: kafkatopics shortNames: - kt 3 additionalPrinterColumns: 4 # ... subresources: status: {} 5 validation: 6 openAPIV3Schema: properties: spec: type: object properties: partitions: type: integer minimum: 1 replicas: type: integer minimum: 1 maximum: 32767 # ...
- 1
- The metadata for the topic CRD, its name and a label to identify the CRD.
- 2
- The specification for this CRD, including the group (domain) name, the plural name and the supported schema version, which are used in the URL to access the API of the topic. The other names are used to identify instance resources in the CLI. For example,
oc get kafkatopic my-topic
oroc get kafkatopics
. - 3
- The shortname can be used in CLI commands. For example,
oc get kt
can be used as an abbreviation instead ofoc get kafkatopic
. - 4
- The information presented when using a
get
command on the custom resource. - 5
- The current status of the CRD as described in the schema reference for the resource.
- 6
- openAPIV3Schema validation provides validation for the creation of topic custom resources. For example, a topic requires at least one partition and one replica.
You can identify the CRD YAML files supplied with the AMQ Streams installation files, because the file names contain an index number followed by ‘Crd’.
Here is a corresponding example of a KafkaTopic
custom resource.
Kafka topic custom resource
apiVersion: kafka.strimzi.io/v1beta2 kind: KafkaTopic 1 metadata: name: my-topic labels: strimzi.io/cluster: my-cluster 2 spec: 3 partitions: 1 replicas: 1 config: retention.ms: 7200000 segment.bytes: 1073741824 status: conditions: 4 lastTransitionTime: "2019-08-20T11:37:00.706Z" status: "True" type: Ready observedGeneration: 1 / ...
- 1
- The
kind
andapiVersion
identify the CRD of which the custom resource is an instance. - 2
- A label, applicable only to
KafkaTopic
andKafkaUser
resources, that defines the name of the Kafka cluster (which is same as the name of theKafka
resource) to which a topic or user belongs. - 3
- The spec shows the number of partitions and replicas for the topic as well as the configuration parameters for the topic itself. In this example, the retention period for a message to remain in the topic and the segment file size for the log are specified.
- 4
- Status conditions for the
KafkaTopic
resource. Thetype
condition changed toReady
at thelastTransitionTime
.
Custom resources can be applied to a cluster through the platform CLI. When the custom resource is created, it uses the same validation as the built-in resources of the Kubernetes API.
After a KafkaTopic
custom resource is created, the Topic Operator is notified and corresponding Kafka topics are created in AMQ Streams.
1.2. AMQ Streams operators
AMQ Streams operators are purpose-built with specialist operational knowledge to effectively manage Kafka on OpenShift. Each operator performs a distinct function.
- Cluster Operator
- The Cluster Operator handles the deployment and management of Apache Kafka clusters on OpenShift. It automates the setup of Kafka brokers, and other Kafka components and resources.
- Topic Operator
- The Topic Operator manages the creation, configuration, and deletion of topics within Kafka clusters.
- User Operator
- The User Operator manages Kafka users that require access to Kafka brokers.
When you deploy AMQ Streams, you first deploy the Cluster Operator. The Cluster Operator is then ready to handle the deployment of Kafka. You can also deploy the Topic Operator and User Operator using the Cluster Operator (recommended) or as standalone operators. You would use a standalone operator with a Kafka cluster that is not managed by the Cluster Operator.
The Topic Operator and User Operator are part of the Entity Operator. The Cluster Operator can deploy one or both operators based on the Entity Operator configuration.
To deploy the standalone operators, you need to set environment variables to connect to a Kafka cluster. These environment variables do not need to be set if you are deploying the operators using the Cluster Operator as they will be set by the Cluster Operator.
1.2.1. Watching AMQ Streams resources in OpenShift namespaces
Operators watch and manage AMQ Streams resources in OpenShift namespaces. The Cluster Operator can watch a single namespace, multiple namespaces, or all namespaces in an OpenShift cluster. The Topic Operator and User Operator can watch a single namespace.
-
The Cluster Operator watches for
Kafka
resources -
The Topic Operator watches for
KafkaTopic
resources -
The User Operator watches for
KafkaUser
resources
The Topic Operator and the User Operator can only watch a single Kafka cluster in a namespace. And they can only be connected to a single Kafka cluster.
If multiple Topic Operators watch the same namespace, name collisions and topic deletion can occur. This is because each Kafka cluster uses Kafka topics that have the same name (such as __consumer_offsets
). Make sure that only one Topic Operator watches a given namespace.
When using multiple User Operators with a single namespace, a user with a given username can exist in more than one Kafka cluster.
If you deploy the Topic Operator and User Operator using the Cluster Operator, they watch the Kafka cluster deployed by the Cluster Operator by default. You can also specify a namespace using watchedNamespace
in the operator configuration.
For a standalone deployment of each operator, you specify a namespace and connection to the Kafka cluster to watch in the configuration.
1.2.2. Managing RBAC resources
The Cluster Operator creates and manages role-based access control (RBAC) resources for AMQ Streams components that need access to OpenShift resources.
For the Cluster Operator to function, it needs permission within the OpenShift cluster to interact with Kafka resources, such as Kafka
and KafkaConnect
, as well as managed resources like ConfigMap
, Pod
, Deployment
, and Service
.
Permission is specified through the following OpenShift RBAC resources:
-
ServiceAccount
-
Role
andClusterRole
-
RoleBinding
andClusterRoleBinding
1.2.2.1. Delegating privileges to AMQ Streams components
The Cluster Operator runs under a service account called strimzi-cluster-operator
. It is assigned cluster roles that give it permission to create the RBAC resources for AMQ Streams components. Role bindings associate the cluster roles with the service account.
OpenShift prevents components operating under one ServiceAccount
from granting another ServiceAccount
privileges that the granting ServiceAccount
does not have. Because the Cluster Operator creates the RoleBinding
and ClusterRoleBinding
RBAC resources needed by the resources it manages, it requires a role that gives it the same privileges.
The following tables describe the RBAC resources created by the Cluster Operator.
Name | Used by |
---|---|
| Kafka broker pods |
| ZooKeeper pods |
| Kafka Connect pods |
| MirrorMaker pods |
| MirrorMaker 2 pods |
| Kafka Bridge pods |
| Entity Operator |
Name | Used by |
---|---|
| Cluster Operator |
| Cluster Operator |
| Cluster Operator |
| Cluster Operator, rack feature (when used) |
| Cluster Operator, Topic Operator, User Operator |
| Cluster Operator, Kafka clients for rack awareness |
Name | Used by |
---|---|
| Cluster Operator |
| Cluster Operator, Kafka brokers for rack awareness |
| Cluster Operator, Kafka clients for rack awareness |
Name | Used by |
---|---|
| Cluster Operator |
| Cluster Operator, Kafka brokers for rack awareness |
1.2.2.2. Running the Cluster Operator using a ServiceAccount
The Cluster Operator is best run using a ServiceAccount
.
Example ServiceAccount
for the Cluster Operator
apiVersion: v1 kind: ServiceAccount metadata: name: strimzi-cluster-operator labels: app: strimzi
The Deployment
of the operator then needs to specify this in its spec.template.spec.serviceAccountName
.
Partial example of Deployment
for the Cluster Operator
apiVersion: apps/v1 kind: Deployment metadata: name: strimzi-cluster-operator labels: app: strimzi spec: replicas: 1 selector: matchLabels: name: strimzi-cluster-operator strimzi.io/kind: cluster-operator template: metadata: labels: name: strimzi-cluster-operator strimzi.io/kind: cluster-operator spec: serviceAccountName: strimzi-cluster-operator # ...
1.2.2.3. ClusterRole
resources
The Cluster Operator uses ClusterRole
resources to provide the necessary access to resources. Depending on the OpenShift cluster setup, a cluster administrator might be needed to create the cluster roles.
Cluster administrator rights are only needed for the creation of ClusterRole
resources. The Cluster Operator will not run under a cluster admin account.
ClusterRole
resources follow the principle of least privilege and contain only those privileges needed by the Cluster Operator to operate the cluster of the Kafka component. The first set of assigned privileges allow the Cluster Operator to manage OpenShift resources such as Deployment
, Pod
, and ConfigMap
.
All cluster roles are required by the Cluster Operator in order to delegate privileges.
The Cluster Operator uses the strimzi-cluster-operator-namespaced
and strimzi-cluster-operator-global
cluster roles to grant permission at the namespace-scoped resources level and cluster-scoped resources level.
ClusterRole
with namespaced resources for the Cluster Operator
apiVersion: rbac.authorization.k8s.io/v1 kind: ClusterRole metadata: name: strimzi-cluster-operator-namespaced labels: app: strimzi rules: # Resources in this role are used by the operator based on an operand being deployed in some namespace. When needed, you # can deploy the operator as a cluster-wide operator. But grant the rights listed in this role only on the namespaces # where the operands will be deployed. That way, you can limit the access the operator has to other namespaces where it # does not manage any clusters. - apiGroups: - "rbac.authorization.k8s.io" resources: # The cluster operator needs to access and manage rolebindings to grant Strimzi components cluster permissions - rolebindings verbs: - get - list - watch - create - delete - patch - update - apiGroups: - "rbac.authorization.k8s.io" resources: # The cluster operator needs to access and manage roles to grant the entity operator permissions - roles verbs: - get - list - watch - create - delete - patch - update - apiGroups: - "" resources: # The cluster operator needs to access and delete pods, this is to allow it to monitor pod health and coordinate rolling updates - pods # The cluster operator needs to access and manage service accounts to grant Strimzi components cluster permissions - serviceaccounts # The cluster operator needs to access and manage config maps for Strimzi components configuration - configmaps # The cluster operator needs to access and manage services and endpoints to expose Strimzi components to network traffic - services - endpoints # The cluster operator needs to access and manage secrets to handle credentials - secrets # The cluster operator needs to access and manage persistent volume claims to bind them to Strimzi components for persistent data - persistentvolumeclaims verbs: - get - list - watch - create - delete - patch - update - apiGroups: - "apps" resources: # The cluster operator needs to access and manage deployments to run deployment based Strimzi components - deployments - deployments/scale - deployments/status # The cluster operator needs to access and manage stateful sets to run stateful sets based Strimzi components - statefulsets # The cluster operator needs to access replica-sets to manage Strimzi components and to determine error states - replicasets verbs: - get - list - watch - create - delete - patch - update - apiGroups: - "" # legacy core events api, used by topic operator - "events.k8s.io" # new events api, used by cluster operator resources: # The cluster operator needs to be able to create events and delegate permissions to do so - events verbs: - create - apiGroups: # Kafka Connect Build on OpenShift requirement - build.openshift.io resources: - buildconfigs - buildconfigs/instantiate - builds verbs: - get - list - watch - create - delete - patch - update - apiGroups: - networking.k8s.io resources: # The cluster operator needs to access and manage network policies to lock down communication between Strimzi components - networkpolicies # The cluster operator needs to access and manage ingresses which allow external access to the services in a cluster - ingresses verbs: - get - list - watch - create - delete - patch - update - apiGroups: - route.openshift.io resources: # The cluster operator needs to access and manage routes to expose Strimzi components for external access - routes - routes/custom-host verbs: - get - list - watch - create - delete - patch - update - apiGroups: - image.openshift.io resources: # The cluster operator needs to verify the image stream when used for Kafka Connect image build - imagestreams verbs: - get - apiGroups: - policy resources: # The cluster operator needs to access and manage pod disruption budgets this limits the number of concurrent disruptions # that a Strimzi component experiences, allowing for higher availability - poddisruptionbudgets verbs: - get - list - watch - create - delete - patch - update
ClusterRole
with cluster-scoped resources for the Cluster Operator
apiVersion: rbac.authorization.k8s.io/v1 kind: ClusterRole metadata: name: strimzi-cluster-operator-global labels: app: strimzi rules: - apiGroups: - "rbac.authorization.k8s.io" resources: # The cluster operator needs to create and manage cluster role bindings in the case of an install where a user # has specified they want their cluster role bindings generated - clusterrolebindings verbs: - get - list - watch - create - delete - patch - update - apiGroups: - storage.k8s.io resources: # The cluster operator requires "get" permissions to view storage class details # This is because only a persistent volume of a supported storage class type can be resized - storageclasses verbs: - get - apiGroups: - "" resources: # The cluster operator requires "list" permissions to view all nodes in a cluster # The listing is used to determine the node addresses when NodePort access is configured # These addresses are then exposed in the custom resource states - nodes verbs: - list
The strimzi-cluster-operator-leader-election
cluster role represents the permissions needed for the leader election.
ClusterRole
with leader election permissions
apiVersion: rbac.authorization.k8s.io/v1 kind: ClusterRole metadata: name: strimzi-cluster-operator-leader-election labels: app: strimzi rules: - apiGroups: - coordination.k8s.io resources: # The cluster operator needs to access and manage leases for leader election # The "create" verb cannot be used with "resourceNames" - leases verbs: - create - apiGroups: - coordination.k8s.io resources: # The cluster operator needs to access and manage leases for leader election - leases resourceNames: # The default RBAC files give the operator only access to the Lease resource names strimzi-cluster-operator # If you want to use another resource name or resource namespace, you have to configure the RBAC resources accordingly - strimzi-cluster-operator verbs: - get - list - watch - delete - patch - update
The strimzi-kafka-broker
cluster role represents the access needed by the init container in Kafka pods that use rack awareness.
A role binding named strimzi-<cluster_name>-kafka-init
grants the <cluster_name>-kafka
service account access to nodes within a cluster using the strimzi-kafka-broker
role. If the rack feature is not used and the cluster is not exposed through nodeport
, no binding is created.
ClusterRole
for the Cluster Operator allowing it to delegate access to OpenShift nodes to the Kafka broker pods
apiVersion: rbac.authorization.k8s.io/v1 kind: ClusterRole metadata: name: strimzi-kafka-broker labels: app: strimzi rules: - apiGroups: - "" resources: # The Kafka Brokers require "get" permissions to view the node they are on # This information is used to generate a Rack ID that is used for High Availability configurations - nodes verbs: - get
The strimzi-entity-operator
cluster role represents the access needed by the Topic Operator and User Operator.
The Topic Operator produces OpenShift events with status information, so the <cluster_name>-entity-operator
service account is bound to the strimzi-entity-operator
role, which grants this access via the strimzi-entity-operator
role binding.
ClusterRole
for the Cluster Operator allowing it to delegate access to events to the Topic and User Operators
apiVersion: rbac.authorization.k8s.io/v1 kind: ClusterRole metadata: name: strimzi-entity-operator labels: app: strimzi rules: - apiGroups: - "kafka.strimzi.io" resources: # The entity operator runs the KafkaTopic assembly operator, which needs to access and manage KafkaTopic resources - kafkatopics - kafkatopics/status # The entity operator runs the KafkaUser assembly operator, which needs to access and manage KafkaUser resources - kafkausers - kafkausers/status verbs: - get - list - watch - create - patch - update - delete - apiGroups: - "" resources: - events verbs: # The entity operator needs to be able to create events - create - apiGroups: - "" resources: # The entity operator user-operator needs to access and manage secrets to store generated credentials - secrets verbs: - get - list - watch - create - delete - patch - update
The strimzi-kafka-client
cluster role represents the access needed by Kafka clients that use rack awareness.
ClusterRole
for the Cluster Operator allowing it to delegate access to OpenShift nodes to the Kafka client-based pods
apiVersion: rbac.authorization.k8s.io/v1 kind: ClusterRole metadata: name: strimzi-kafka-client labels: app: strimzi rules: - apiGroups: - "" resources: # The Kafka clients (Connect, Mirror Maker, etc.) require "get" permissions to view the node they are on # This information is used to generate a Rack ID (client.rack option) that is used for consuming from the closest # replicas when enabled - nodes verbs: - get
1.2.2.4. ClusterRoleBinding
resources
The Cluster Operator uses ClusterRoleBinding
and RoleBinding
resources to associate its ClusterRole
with its ServiceAccount
: Cluster role bindings are required by cluster roles containing cluster-scoped resources.
Example ClusterRoleBinding
for the Cluster Operator
apiVersion: rbac.authorization.k8s.io/v1 kind: ClusterRoleBinding metadata: name: strimzi-cluster-operator labels: app: strimzi subjects: - kind: ServiceAccount name: strimzi-cluster-operator namespace: myproject roleRef: kind: ClusterRole name: strimzi-cluster-operator-global apiGroup: rbac.authorization.k8s.io
Cluster role bindings are also needed for the cluster roles used in delegating privileges:
Example ClusterRoleBinding
for the Cluster Operator and Kafka broker rack awareness
apiVersion: rbac.authorization.k8s.io/v1 kind: ClusterRoleBinding metadata: name: strimzi-cluster-operator-kafka-broker-delegation labels: app: strimzi # The Kafka broker cluster role must be bound to the cluster operator service account so that it can delegate the cluster role to the Kafka brokers. # This must be done to avoid escalating privileges which would be blocked by Kubernetes. subjects: - kind: ServiceAccount name: strimzi-cluster-operator namespace: myproject roleRef: kind: ClusterRole name: strimzi-kafka-broker apiGroup: rbac.authorization.k8s.io
Example ClusterRoleBinding
for the Cluster Operator and Kafka client rack awareness
apiVersion: rbac.authorization.k8s.io/v1 kind: ClusterRoleBinding metadata: name: strimzi-cluster-operator-kafka-client-delegation labels: app: strimzi # The Kafka clients cluster role must be bound to the cluster operator service account so that it can delegate the # cluster role to the Kafka clients using it for consuming from closest replica. # This must be done to avoid escalating privileges which would be blocked by Kubernetes. subjects: - kind: ServiceAccount name: strimzi-cluster-operator namespace: myproject roleRef: kind: ClusterRole name: strimzi-kafka-client apiGroup: rbac.authorization.k8s.io
Cluster roles containing only namespaced resources are bound using role bindings only.
Example RoleBinding
for the Cluster Operator
apiVersion: rbac.authorization.k8s.io/v1 kind: RoleBinding metadata: name: strimzi-cluster-operator labels: app: strimzi subjects: - kind: ServiceAccount name: strimzi-cluster-operator namespace: myproject roleRef: kind: ClusterRole name: strimzi-cluster-operator-namespaced apiGroup: rbac.authorization.k8s.io
Example RoleBinding
for the Cluster Operator and Kafka broker rack awareness
apiVersion: rbac.authorization.k8s.io/v1 kind: RoleBinding metadata: name: strimzi-cluster-operator-entity-operator-delegation labels: app: strimzi # The Entity Operator cluster role must be bound to the cluster operator service account so that it can delegate the cluster role to the Entity Operator. # This must be done to avoid escalating privileges which would be blocked by Kubernetes. subjects: - kind: ServiceAccount name: strimzi-cluster-operator namespace: myproject roleRef: kind: ClusterRole name: strimzi-entity-operator apiGroup: rbac.authorization.k8s.io
1.3. Using the Kafka Bridge to connect with a Kafka cluster
You can use the AMQ Streams Kafka Bridge API to create and manage consumers and send and receive records over HTTP rather than the native Kafka protocol.
When you set up the Kafka Bridge you configure HTTP access to the Kafka cluster. You can then use the Kafka Bridge to produce and consume messages from the cluster, as well as performing other operations through its REST interface.
Additional resources
- For information on installing and using the Kafka Bridge, see Using the AMQ Streams Kafka Bridge.
1.4. Seamless FIPS support
Federal Information Processing Standards (FIPS) are standards for computer security and interoperability. When running AMQ Streams on a FIPS-enabled OpenShift cluster, the OpenJDK used in AMQ Streams container images automatically switches to FIPS mode. From version 2.4, AMQ Streams can run on FIPS-enabled OpenShift clusters without any changes or special configuration. It uses only the FIPS-compliant security libraries from the OpenJDK.
Minimum password length
When running in the FIPS mode, SCRAM-SHA-512 passwords need to be at least 32 characters long. From AMQ Streams 2.4, the default password length in AMQ Streams User Operator is set to 32 characters as well. If you have a Kafka cluster with custom configuration that uses a password length that is less than 32 characters, you need to update your configuration. If you have any users with passwords shorter than 32 characters, you need to regenerate a password with the required length. You can do that, for example, by deleting the user secret and waiting for the User Operator to create a new password with the appropriate length.
If you are using FIPS-enabled OpenShift clusters, you may experience higher memory consumption compared to regular OpenShift clusters. To avoid any issues, we suggest increasing the memory request to at least 512Mi.
1.5. Document Conventions
User-replaced values
User-replaced values, also known as replaceables, are shown in with angle brackets (< >). Underscores ( _ ) are used for multi-word values. If the value refers to code or commands, monospace
is also used.
For example, the following code shows that <my_namespace>
must be replaced by the correct namespace name:
sed -i 's/namespace: .*/namespace: <my_namespace>' install/cluster-operator/*RoleBinding*.yaml
1.6. Additional resources
Chapter 2. AMQ Streams installation methods
You can install AMQ Streams on OpenShift 4.12 and later in two ways.
Installation method | Description |
---|---|
Download Red Hat AMQ Streams 2.5 OpenShift Installation and Example Files from the AMQ Streams software downloads page. Deploy the YAML installation artifacts to your OpenShift cluster using
You can also use the
| |
Use the AMQ Streams operator in the OperatorHub to deploy AMQ Streams to a single namespace or all namespaces. |
For the greatest flexibility, choose the installation artifacts method. The OperatorHub method provides a standard configuration and allows you to take advantage of automatic updates.
Installation of AMQ Streams using Helm is not supported.
Chapter 3. What is deployed with AMQ Streams
Apache Kafka components are provided for deployment to OpenShift with the AMQ Streams distribution. The Kafka components are generally run as clusters for availability.
A typical deployment incorporating Kafka components might include:
- Kafka cluster of broker nodes
- ZooKeeper cluster of replicated ZooKeeper instances
- Kafka Connect cluster for external data connections
- Kafka MirrorMaker cluster to mirror the Kafka cluster in a secondary cluster
- Kafka Exporter to extract additional Kafka metrics data for monitoring
- Kafka Bridge to make HTTP-based requests to the Kafka cluster
- Cruise Control to rebalance topic partitions across broker nodes
Not all of these components are mandatory, though you need Kafka and ZooKeeper as a minimum. Some components can be deployed without Kafka, such as MirrorMaker or Kafka Connect.
3.1. Order of deployment
The required order of deployment to an OpenShift cluster is as follows:
- Deploy the Cluster Operator to manage your Kafka cluster
- Deploy the Kafka cluster with the ZooKeeper cluster, and include the Topic Operator and User Operator in the deployment
Optionally deploy:
- The Topic Operator and User Operator standalone if you did not deploy them with the Kafka cluster
- Kafka Connect
- Kafka MirrorMaker
- Kafka Bridge
- Components for the monitoring of metrics
The Cluster Operator creates OpenShift resources for the components, such as Deployment
, Service
, and Pod
resources. The names of the OpenShift resources are appended with the name specified for a component when it’s deployed. For example, a Kafka cluster named my-kafka-cluster
has a service named my-kafka-cluster-kafka
.
Chapter 4. Preparing for your AMQ Streams deployment
Prepare for a deployment of AMQ Streams by completing any necessary pre-deployment tasks. Take the necessary preparatory steps according to your specific requirements, such as the following:
- Ensuring you have the necessary prerequisites before deploying AMQ Streams
- Downloading the AMQ Streams release artifacts to facilitate your deployment
- Pushing the AMQ Streams container images into your own registry (if required)
- Setting up admin roles to enable configuration of custom resources used in the deployment
To run the commands in this guide, your cluster user must have the rights to manage role-based access control (RBAC) and CRDs.
4.1. Deployment prerequisites
To deploy AMQ Streams, you will need the following:
An OpenShift 4.12 and later cluster.
AMQ Streams is based on Strimzi 0.36.x.
-
The
oc
command-line tool is installed and configured to connect to the running cluster.
4.2. Downloading AMQ Streams release artifacts
To use deployment files to install AMQ Streams, download and extract the files from the AMQ Streams software downloads page.
AMQ Streams release artifacts include sample YAML files to help you deploy the components of AMQ Streams to OpenShift, perform common operations, and configure your Kafka cluster.
Use oc
to deploy the Cluster Operator from the install/cluster-operator
folder of the downloaded ZIP file. For more information about deploying and configuring the Cluster Operator, see Section 6.2, “Deploying the Cluster Operator”.
In addition, if you want to use standalone installations of the Topic and User Operators with a Kafka cluster that is not managed by the AMQ Streams Cluster Operator, you can deploy them from the install/topic-operator
and install/user-operator
folders.
AMQ Streams container images are also available through the Red Hat Ecosystem Catalog. However, we recommend that you use the YAML files provided to deploy AMQ Streams.
4.3. Pushing container images to your own registry
Container images for AMQ Streams are available in the Red Hat Ecosystem Catalog. The installation YAML files provided by AMQ Streams will pull the images directly from the Red Hat Ecosystem Catalog.
If you do not have access to the Red Hat Ecosystem Catalog or want to use your own container repository, do the following:
- Pull all container images listed here
- Push them into your own registry
- Update the image names in the installation YAML files
Each Kafka version supported for the release has a separate image.
Container image | Namespace/Repository | Description |
---|---|---|
Kafka |
| AMQ Streams image for running Kafka, including:
|
Operator |
| AMQ Streams image for running the operators:
|
Kafka Bridge |
| AMQ Streams image for running the AMQ Streams Kafka Bridge |
AMQ Streams Drain Cleaner |
| AMQ Streams image for running the AMQ Streams Drain Cleaner |
4.4. Creating a pull secret for authentication to the container image registry
The installation YAML files provided by AMQ Streams pull container images directly from the Red Hat Ecosystem Catalog. If an AMQ Streams deployment requires authentication, configure authentication credentials in a secret and add it to the installation YAML.
Authentication is not usually required, but might be requested on certain platforms.
Prerequisites
- You need your Red Hat username and password or the login details from your Red Hat registry service account.
You can use your Red Hat subscription to create a registry service account from the Red Hat Customer Portal.
Procedure
Create a pull secret containing your login details and the container registry where the AMQ Streams image is pulled from:
oc create secret docker-registry <pull_secret_name> \ --docker-server=registry.redhat.io \ --docker-username=<user_name> \ --docker-password=<password> \ --docker-email=<email>
Add your user name and password. The email address is optional.
Edit the
install/cluster-operator/060-Deployment-strimzi-cluster-operator.yaml
deployment file to specify the pull secret using theSTRIMZI_IMAGE_PULL_SECRET
environment variable:apiVersion: apps/v1 kind: Deployment metadata: name: strimzi-cluster-operator spec: # ... template: spec: serviceAccountName: strimzi-cluster-operator containers: # ... env: - name: STRIMZI_IMAGE_PULL_SECRETS value: "<pull_secret_name>" # ...
The secret applies to all pods created by the Cluster Operator.
4.5. Designating AMQ Streams administrators
AMQ Streams provides custom resources for configuration of your deployment. By default, permission to view, create, edit, and delete these resources is limited to OpenShift cluster administrators. AMQ Streams provides two cluster roles that you can use to assign these rights to other users:
-
strimzi-view
allows users to view and list AMQ Streams resources. -
strimzi-admin
allows users to also create, edit or delete AMQ Streams resources.
When you install these roles, they will automatically aggregate (add) these rights to the default OpenShift cluster roles. strimzi-view
aggregates to the view
role, and strimzi-admin
aggregates to the edit
and admin
roles. Because of the aggregation, you might not need to assign these roles to users who already have similar rights.
The following procedure shows how to assign a strimzi-admin
role that allows non-cluster administrators to manage AMQ Streams resources.
A system administrator can designate AMQ Streams administrators after the Cluster Operator is deployed.
Prerequisites
- The AMQ Streams Custom Resource Definitions (CRDs) and role-based access control (RBAC) resources to manage the CRDs have been deployed with the Cluster Operator.
Procedure
Create the
strimzi-view
andstrimzi-admin
cluster roles in OpenShift.oc create -f install/strimzi-admin
If needed, assign the roles that provide access rights to users that require them.
oc create clusterrolebinding strimzi-admin --clusterrole=strimzi-admin --user=user1 --user=user2
Chapter 5. Installing AMQ Streams from the OperatorHub using the web console
Install the AMQ Streams operator from the OperatorHub in the OpenShift Container Platform web console.
The procedures in this section show how to:
5.1. Installing the AMQ Streams operator from the OperatorHub
You can install and subscribe to the AMQ Streams operator using the OperatorHub in the OpenShift Container Platform web console.
This procedure describes how to create a project and install the AMQ Streams operator to that project. A project is a representation of a namespace. For manageability, it is a good practice to use namespaces to separate functions.
Make sure you use the appropriate update channel. If you are on a supported version of OpenShift, installing AMQ Streams from the default stable channel is generally safe. However, we do not recommend enabling automatic updates on the stable channel. An automatic upgrade will skip any necessary steps prior to upgrade. Use automatic upgrades only on version-specific channels.
Prerequisites
-
Access to an OpenShift Container Platform web console using an account with
cluster-admin
orstrimzi-admin
permissions.
Procedure
Navigate in the OpenShift web console to the Home > Projects page and create a project (namespace) for the installation.
We use a project named
amq-streams-kafka
in this example.- Navigate to the Operators > OperatorHub page.
Scroll or type a keyword into the Filter by keyword box to find the AMQ Streams operator.
The operator is located in the Streaming & Messaging category.
- Click AMQ Streams to display the operator information.
- Read the information about the operator and click Install.
On the Install Operator page, choose from the following installation and update options:
Update Channel: Choose the update channel for the operator.
- The (default) stable channel contains all the latest updates and releases, including major, minor, and micro releases, which are assumed to be well tested and stable.
- An amq-streams-X.x channel contains the minor and micro release updates for a major release, where X is the major release version number.
- An amq-streams-X.Y.x channel contains the micro release updates for a minor release, where X is the major release version number and Y is the minor release version number.
Installation Mode: Choose the project you created to install the operator on a specific namespace.
You can install the AMQ Streams operator to all namespaces in the cluster (the default option) or a specific namespace. We recommend that you dedicate a specific namespace to the Kafka cluster and other AMQ Streams components.
- Update approval: By default, the AMQ Streams operator is automatically upgraded to the latest AMQ Streams version by the Operator Lifecycle Manager (OLM). Optionally, select Manual if you want to manually approve future upgrades. For more information on operators, see the OpenShift documentation.
Click Install to install the operator to your selected namespace.
The AMQ Streams operator deploys the Cluster Operator, CRDs, and role-based access control (RBAC) resources to the selected namespace.
After the operator is ready for use, navigate to Operators > Installed Operators to verify that the operator has installed to the selected namespace.
The status will show as Succeeded.
You can now use the AMQ Streams operator to deploy Kafka components, starting with a Kafka cluster.
If you navigate to Workloads > Deployments, you can see the deployment details for the Cluster Operator and Entity Operator. The name of the Cluster Operator includes a version number: amq-streams-cluster-operator-<version>
. The name is different when deploying the Cluster Operator using the AMQ Streams installation artifacts. In this case, the name is strimzi-cluster-operator
.
5.2. Deploying Kafka components using the AMQ Streams operator
When installed on Openshift, the AMQ Streams operator makes Kafka components available for installation from the user interface.
The following Kafka components are available for installation:
- Kafka
- Kafka Connect
- Kafka MirrorMaker
- Kafka MirrorMaker 2
- Kafka Topic
- Kafka User
- Kafka Bridge
- Kafka Connector
- Kafka Rebalance
You select the component and create an instance. As a minimum, you create a Kafka instance. This procedure describes how to create a Kafka instance using the default settings. You can configure the default installation specification before you perform the installation.
The process is the same for creating instances of other Kafka components.
Prerequisites
- The AMQ Streams operator is installed on the OpenShift cluster.
Procedure
Navigate in the web console to the Operators > Installed Operators page and click AMQ Streams to display the operator details.
From Provided APIs, you can create instances of Kafka components.
Click Create instance under Kafka to create a Kafka instance.
By default, you’ll create a Kafka cluster called
my-cluster
with three Kafka broker nodes and three ZooKeeper nodes. The cluster uses ephemeral storage.Click Create to start the installation of Kafka.
Wait until the status changes to Ready.
Chapter 6. Deploying AMQ Streams using installation artifacts
Having prepared your environment for a deployment of AMQ Streams, you can deploy AMQ Streams to an OpenShift cluster. Use the installation files provided with the release artifacts.
AMQ Streams is based on Strimzi 0.36.x. You can deploy AMQ Streams 2.5 on OpenShift 4.12 and later.
The steps to deploy AMQ Streams using the installation files are as follows:
- Deploy the Cluster Operator
Use the Cluster Operator to deploy the following:
Optionally, deploy the following Kafka components according to your requirements:
To run the commands in this guide, an OpenShift user must have the rights to manage role-based access control (RBAC) and CRDs.
6.1. Basic deployment path
You can set up a deployment where AMQ Streams manages a single Kafka cluster in the same namespace. You might use this configuration for development or testing. Or you can use AMQ Streams in a production environment to manage a number of Kafka clusters in different namespaces.
The first step for any deployment of AMQ Streams is to install the Cluster Operator using the install/cluster-operator
files.
A single command applies all the installation files in the cluster-operator
folder: oc apply -f ./install/cluster-operator
.
The command sets up everything you need to be able to create and manage a Kafka deployment, including the following:
-
Cluster Operator (
Deployment
,ConfigMap
) -
AMQ Streams CRDs (
CustomResourceDefinition
) -
RBAC resources (
ClusterRole
,ClusterRoleBinding
,RoleBinding
) -
Service account (
ServiceAccount
)
The basic deployment path is as follows:
- Download the release artifacts
- Create an OpenShift namespace in which to deploy the Cluster Operator
-
Update the
install/cluster-operator
files to use the namespace created for the Cluster Operator - Install the Cluster Operator to watch one, multiple, or all namespaces
-
Update the
- Create a Kafka cluster
After which, you can deploy other Kafka components and set up monitoring of your deployment.
6.2. Deploying the Cluster Operator
The Cluster Operator is responsible for deploying and managing Kafka clusters within an OpenShift cluster.
When the Cluster Operator is running, it starts to watch for updates of Kafka resources.
By default, a single replica of the Cluster Operator is deployed. You can add replicas with leader election so that additional Cluster Operators are on standby in case of disruption. For more information, see Section 8.5.3, “Running multiple Cluster Operator replicas with leader election”.
6.2.1. Specifying the namespaces the Cluster Operator watches
The Cluster Operator watches for updates in the namespaces where the Kafka resources are deployed. When you deploy the Cluster Operator, you specify which namespaces to watch in the OpenShift cluster. You can specify the following namespaces:
- A single selected namespace (the same namespace containing the Cluster Operator)
- Multiple selected namespaces
- All namespaces in the cluster
Watching multiple selected namespaces has the most impact on performance due to increased processing overhead. To optimize performance for namespace monitoring, it is generally recommended to either watch a single namespace or monitor the entire cluster. Watching a single namespace allows for focused monitoring of namespace-specific resources, while monitoring all namespaces provides a comprehensive view of the cluster’s resources across all namespaces.
The Cluster Operator watches for changes to the following resources:
-
Kafka
for the Kafka cluster. -
KafkaConnect
for the Kafka Connect cluster. -
KafkaConnector
for creating and managing connectors in a Kafka Connect cluster. -
KafkaMirrorMaker
for the Kafka MirrorMaker instance. -
KafkaMirrorMaker2
for the Kafka MirrorMaker 2 instance. -
KafkaBridge
for the Kafka Bridge instance. -
KafkaRebalance
for the Cruise Control optimization requests.
When one of these resources is created in the OpenShift cluster, the operator gets the cluster description from the resource and starts creating a new cluster for the resource by creating the necessary OpenShift resources, such as Deployments, Pods, Services and ConfigMaps.
Each time a Kafka resource is updated, the operator performs corresponding updates on the OpenShift resources that make up the cluster for the resource.
Resources are either patched or deleted, and then recreated in order to make the cluster for the resource reflect the desired state of the cluster. This operation might cause a rolling update that might lead to service disruption.
When a resource is deleted, the operator undeploys the cluster and deletes all related OpenShift resources.
While the Cluster Operator can watch one, multiple, or all namespaces in an OpenShift cluster, the Topic Operator and User Operator watch for KafkaTopic
and KafkaUser
resources in a single namespace. For more information, see Section 1.2.1, “Watching AMQ Streams resources in OpenShift namespaces”.
6.2.2. Deploying the Cluster Operator to watch a single namespace
This procedure shows how to deploy the Cluster Operator to watch AMQ Streams resources in a single namespace in your OpenShift cluster.
Prerequisites
-
You need an account with permission to create and manage
CustomResourceDefinition
and RBAC (ClusterRole
, andRoleBinding
) resources.
Procedure
Edit the AMQ Streams installation files to use the namespace the Cluster Operator is going to be installed into.
For example, in this procedure the Cluster Operator is installed into the namespace
my-cluster-operator-namespace
.On Linux, use:
sed -i 's/namespace: .*/namespace: my-cluster-operator-namespace/' install/cluster-operator/*RoleBinding*.yaml
On MacOS, use:
sed -i '' 's/namespace: .*/namespace: my-cluster-operator-namespace/' install/cluster-operator/*RoleBinding*.yaml
Deploy the Cluster Operator:
oc create -f install/cluster-operator -n my-cluster-operator-namespace
Check the status of the deployment:
oc get deployments -n my-cluster-operator-namespace
Output shows the deployment name and readiness
NAME READY UP-TO-DATE AVAILABLE strimzi-cluster-operator 1/1 1 1
READY
shows the number of replicas that are ready/expected. The deployment is successful when theAVAILABLE
output shows1
.
6.2.3. Deploying the Cluster Operator to watch multiple namespaces
This procedure shows how to deploy the Cluster Operator to watch AMQ Streams resources across multiple namespaces in your OpenShift cluster.
Prerequisites
-
You need an account with permission to create and manage
CustomResourceDefinition
and RBAC (ClusterRole
, andRoleBinding
) resources.
Procedure
Edit the AMQ Streams installation files to use the namespace the Cluster Operator is going to be installed into.
For example, in this procedure the Cluster Operator is installed into the namespace
my-cluster-operator-namespace
.On Linux, use:
sed -i 's/namespace: .*/namespace: my-cluster-operator-namespace/' install/cluster-operator/*RoleBinding*.yaml
On MacOS, use:
sed -i '' 's/namespace: .*/namespace: my-cluster-operator-namespace/' install/cluster-operator/*RoleBinding*.yaml
Edit the
install/cluster-operator/060-Deployment-strimzi-cluster-operator.yaml
file to add a list of all the namespaces the Cluster Operator will watch to theSTRIMZI_NAMESPACE
environment variable.For example, in this procedure the Cluster Operator will watch the namespaces
watched-namespace-1
,watched-namespace-2
,watched-namespace-3
.apiVersion: apps/v1 kind: Deployment spec: # ... template: spec: serviceAccountName: strimzi-cluster-operator containers: - name: strimzi-cluster-operator image: registry.redhat.io/amq-streams/strimzi-rhel8-operator:2.5.2 imagePullPolicy: IfNotPresent env: - name: STRIMZI_NAMESPACE value: watched-namespace-1,watched-namespace-2,watched-namespace-3
For each namespace listed, install the
RoleBindings
.In this example, we replace
watched-namespace
in these commands with the namespaces listed in the previous step, repeating them forwatched-namespace-1
,watched-namespace-2
,watched-namespace-3
:oc create -f install/cluster-operator/020-RoleBinding-strimzi-cluster-operator.yaml -n <watched_namespace> oc create -f install/cluster-operator/023-RoleBinding-strimzi-cluster-operator.yaml -n <watched_namespace> oc create -f install/cluster-operator/031-RoleBinding-strimzi-cluster-operator-entity-operator-delegation.yaml -n <watched_namespace>
Deploy the Cluster Operator:
oc create -f install/cluster-operator -n my-cluster-operator-namespace
Check the status of the deployment:
oc get deployments -n my-cluster-operator-namespace
Output shows the deployment name and readiness
NAME READY UP-TO-DATE AVAILABLE strimzi-cluster-operator 1/1 1 1
READY
shows the number of replicas that are ready/expected. The deployment is successful when theAVAILABLE
output shows1
.
6.2.4. Deploying the Cluster Operator to watch all namespaces
This procedure shows how to deploy the Cluster Operator to watch AMQ Streams resources across all namespaces in your OpenShift cluster.
When running in this mode, the Cluster Operator automatically manages clusters in any new namespaces that are created.
Prerequisites
-
You need an account with permission to create and manage
CustomResourceDefinition
and RBAC (ClusterRole
, andRoleBinding
) resources.
Procedure
Edit the AMQ Streams installation files to use the namespace the Cluster Operator is going to be installed into.
For example, in this procedure the Cluster Operator is installed into the namespace
my-cluster-operator-namespace
.On Linux, use:
sed -i 's/namespace: .*/namespace: my-cluster-operator-namespace/' install/cluster-operator/*RoleBinding*.yaml
On MacOS, use:
sed -i '' 's/namespace: .*/namespace: my-cluster-operator-namespace/' install/cluster-operator/*RoleBinding*.yaml
Edit the
install/cluster-operator/060-Deployment-strimzi-cluster-operator.yaml
file to set the value of theSTRIMZI_NAMESPACE
environment variable to*
.apiVersion: apps/v1 kind: Deployment spec: # ... template: spec: # ... serviceAccountName: strimzi-cluster-operator containers: - name: strimzi-cluster-operator image: registry.redhat.io/amq-streams/strimzi-rhel8-operator:2.5.2 imagePullPolicy: IfNotPresent env: - name: STRIMZI_NAMESPACE value: "*" # ...
Create
ClusterRoleBindings
that grant cluster-wide access for all namespaces to the Cluster Operator.oc create clusterrolebinding strimzi-cluster-operator-namespaced --clusterrole=strimzi-cluster-operator-namespaced --serviceaccount my-cluster-operator-namespace:strimzi-cluster-operator oc create clusterrolebinding strimzi-cluster-operator-watched --clusterrole=strimzi-cluster-operator-watched --serviceaccount my-cluster-operator-namespace:strimzi-cluster-operator oc create clusterrolebinding strimzi-cluster-operator-entity-operator-delegation --clusterrole=strimzi-entity-operator --serviceaccount my-cluster-operator-namespace:strimzi-cluster-operator
Deploy the Cluster Operator to your OpenShift cluster.
oc create -f install/cluster-operator -n my-cluster-operator-namespace
Check the status of the deployment:
oc get deployments -n my-cluster-operator-namespace
Output shows the deployment name and readiness
NAME READY UP-TO-DATE AVAILABLE strimzi-cluster-operator 1/1 1 1
READY
shows the number of replicas that are ready/expected. The deployment is successful when theAVAILABLE
output shows1
.
6.3. Deploying Kafka
To be able to manage a Kafka cluster with the Cluster Operator, you must deploy it as a Kafka
resource. AMQ Streams provides example deployment files to do this. You can use these files to deploy the Topic Operator and User Operator at the same time.
After you have deployed the Cluster Operator, use a Kafka
resource to deploy the following components:
When installing Kafka, AMQ Streams also installs a ZooKeeper cluster and adds the necessary configuration to connect Kafka with ZooKeeper.
If you are trying the preview of the node pools feature, you can deploy a Kafka cluster with one or more node pools. Node pools provide configuration for a set of Kafka nodes. By using node pools, nodes can have different configuration within the same Kafka cluster.
Node pools are not enabled by default, so you must enable the KafkaNodePools
feature gate before using them.
If you haven’t deployed a Kafka cluster as a Kafka
resource, you can’t use the Cluster Operator to manage it. This applies, for example, to a Kafka cluster running outside of OpenShift. However, you can use the Topic Operator and User Operator with a Kafka cluster that is not managed by AMQ Streams, by deploying them as standalone components. You can also deploy and use other Kafka components with a Kafka cluster not managed by AMQ Streams.
6.3.1. Deploying the Kafka cluster
This procedure shows how to deploy a Kafka cluster to your OpenShift cluster using the Cluster Operator.
The deployment uses a YAML file to provide the specification to create a Kafka
resource.
AMQ Streams provides the following example files you can use to create a Kafka cluster:
kafka-persistent.yaml
- Deploys a persistent cluster with three ZooKeeper and three Kafka nodes.
kafka-jbod.yaml
- Deploys a persistent cluster with three ZooKeeper and three Kafka nodes (each using multiple persistent volumes).
kafka-persistent-single.yaml
- Deploys a persistent cluster with a single ZooKeeper node and a single Kafka node.
kafka-ephemeral.yaml
- Deploys an ephemeral cluster with three ZooKeeper and three Kafka nodes.
kafka-ephemeral-single.yaml
- Deploys an ephemeral cluster with three ZooKeeper nodes and a single Kafka node.
In this procedure, we use the examples for an ephemeral and persistent Kafka cluster deployment.
- Ephemeral cluster
-
In general, an ephemeral (or temporary) Kafka cluster is suitable for development and testing purposes, not for production. This deployment uses
emptyDir
volumes for storing broker information (for ZooKeeper) and topics or partitions (for Kafka). Using anemptyDir
volume means that its content is strictly related to the pod life cycle and is deleted when the pod goes down. - Persistent cluster
A persistent Kafka cluster uses persistent volumes to store ZooKeeper and Kafka data. A
PersistentVolume
is acquired using aPersistentVolumeClaim
to make it independent of the actual type of thePersistentVolume
. ThePersistentVolumeClaim
can use aStorageClass
to trigger automatic volume provisioning. When noStorageClass
is specified, OpenShift will try to use the defaultStorageClass
.The following examples show some common types of persistent volumes:
- If your OpenShift cluster runs on Amazon AWS, OpenShift can provision Amazon EBS volumes
- If your OpenShift cluster runs on Microsoft Azure, OpenShift can provision Azure Disk Storage volumes
- If your OpenShift cluster runs on Google Cloud, OpenShift can provision Persistent Disk volumes
- If your OpenShift cluster runs on bare metal, OpenShift can provision local persistent volumes
The example YAML files specify the latest supported Kafka version, and configuration for its supported log message format version and inter-broker protocol version. The inter.broker.protocol.version
property for the Kafka config
must be the version supported by the specified Kafka version (spec.kafka.version
). The property represents the version of Kafka protocol used in a Kafka cluster.
From Kafka 3.0.0, when the inter.broker.protocol.version
is set to 3.0
or higher, the log.message.format.version
option is ignored and doesn’t need to be set.
An update to the inter.broker.protocol.version
is required when upgrading Kafka.
The example clusters are named my-cluster
by default. The cluster name is defined by the name of the resource and cannot be changed after the cluster has been deployed. To change the cluster name before you deploy the cluster, edit the Kafka.metadata.name
property of the Kafka
resource in the relevant YAML file.
Default cluster name and specified Kafka versions
apiVersion: kafka.strimzi.io/v1beta2 kind: Kafka metadata: name: my-cluster spec: kafka: version: 3.5.0 #... config: #... log.message.format.version: "3.5" inter.broker.protocol.version: "3.5" # ...
Prerequisites
Procedure
Create and deploy an ephemeral or persistent cluster.
To create and deploy an ephemeral cluster:
oc apply -f examples/kafka/kafka-ephemeral.yaml
To create and deploy a persistent cluster:
oc apply -f examples/kafka/kafka-persistent.yaml
Check the status of the deployment:
oc get pods -n <my_cluster_operator_namespace>
Output shows the pod names and readiness
NAME READY STATUS RESTARTS my-cluster-entity-operator 3/3 Running 0 my-cluster-kafka-0 1/1 Running 0 my-cluster-kafka-1 1/1 Running 0 my-cluster-kafka-2 1/1 Running 0 my-cluster-zookeeper-0 1/1 Running 0 my-cluster-zookeeper-1 1/1 Running 0 my-cluster-zookeeper-2 1/1 Running 0
my-cluster
is the name of the Kafka cluster.A sequential index number starting with
0
identifies each Kafka and ZooKeeper pod created.With the default deployment, you create an Entity Operator cluster, 3 Kafka pods, and 3 ZooKeeper pods.
READY
shows the number of replicas that are ready/expected. The deployment is successful when theSTATUS
displays asRunning
.
Additional resources
6.3.2. (Preview) Deploying Kafka node pools
This procedure shows how to deploy Kafka node pools to your OpenShift cluster using the Cluster Operator. Node pools represent a distinct group of Kafka nodes within a Kafka cluster that share the same configuration. For each Kafka node in the node pool, any configuration not defined in node pool is inherited from the cluster configuration in the kafka
resource.
The node pools feature is available as a preview. Node pools are not enabled by default, so you must enable the KafkaNodePools
feature gate before using them.
The deployment uses a YAML file to provide the specification to create a KafkaNodePool
resource. You can use node pools with Kafka clusters that use KRaft (Kafka Raft metadata) mode or ZooKeeper for cluster management.
KRaft mode is not ready for production in Apache Kafka or in AMQ Streams.
AMQ Streams provides the following example files that you can use to create a Kafka node pool:
kafka.yaml
- Deploys ZooKeeper with 3 nodes, and 2 different pools of Kafka brokers. Each of the pools has 3 brokers. The pools in the example use different storage configuration.
kafka-with-dual-role-kraft-nodes.yaml
- Deploys a Kafka cluster with one pool of KRaft nodes that share the broker and controller roles.
kafka-with-kraft.yaml
- Deploys a Kafka cluster with one pool of controller nodes and one pool of broker nodes.
You don’t need to start using node pools right away. If you decide to use them, you can perform the steps outlined here to deploy a new Kafka cluster with KafkaNodePool
resources or migrate your existing Kafka cluster.
Prerequisites
If you want to migrate an existing Kafka cluster to use node pools, see the steps to migrate existing Kafka clusters.
Procedure
Enable the
KafkaNodePools
feature gate from the command line:oc set env deployment/strimzi-cluster-operator STRIMZI_FEATURE_GATES="+KafkaNodePools"
Or by editing the Cluster Operator Deployment and updating the
STRIMZI_FEATURE_GATES
environment variable:env - name: STRIMZI_FEATURE_GATES value: +KafkaNodePools
This updates the Cluster Operator.
If using KRaft mode, enable the
UseKRaft
feature gate as well.Create a node pool.
To deploy a Kafka cluster and ZooKeeper cluster with two node pools of three brokers:
oc apply -f examples/kafka/nodepools/kafka.yaml
To deploy a Kafka cluster in KRaft mode with a single node pool that uses dual-role nodes:
oc apply -f examples/kafka/nodepools/kafka-with-dual-role-kraft-nodes.yaml
To deploy a Kafka cluster in KRaft mode with separate node pools for broker and controller nodes:
oc apply -f examples/kafka/nodepools/kafka-with-kraft.yaml
Check the status of the deployment:
oc get pods -n <my_cluster_operator_namespace>
Output shows the node pool names and readiness
NAME READY STATUS RESTARTS my-cluster-entity-operator 3/3 Running 0 my-cluster-pool-a-kafka-0 1/1 Running 0 my-cluster-pool-a-kafka-1 1/1 Running 0 my-cluster-pool-a-kafka-4 1/1 Running 0
-
my-cluster
is the name of the Kafka cluster. pool-a
is the name of the node pool.A sequential index number starting with
0
identifies each Kafka pod created. If you are using ZooKeeper, you’ll also see the ZooKeeper pods.READY
shows the number of replicas that are ready/expected. The deployment is successful when theSTATUS
displays asRunning
.Information on the deployment is also shown in the status of the
KafkaNodePool
resource, including a list of IDs for nodes in the pool.NoteNode IDs are assigned sequentially starting at 0 (zero) across all node pools within a cluster. This means that node IDs might not run sequentially within a specific node pool. If there are gaps in the sequence of node IDs across the cluster, the next node to be added is assigned an ID that fills the gap. When scaling down, the node with the highest node ID within a pool is removed.
-
Additional resources
6.3.3. Deploying the Topic Operator using the Cluster Operator
This procedure describes how to deploy the Topic Operator using the Cluster Operator. The Topic Operator can be deployed for use in either bidirectional mode or unidirectional mode. To learn more about bidirectional and unidirectional topic management, see Section 9.1, “Topic management modes”.
Unidirectional topic management is available as a preview. Unidirectional topic management is not enabled by default, so you must enable the UnidirectionalTopicOperator
feature gate to be able to use it.
You configure the entityOperator
property of the Kafka
resource to include the topicOperator
. By default, the Topic Operator watches for KafkaTopic
resources in the namespace of the Kafka cluster deployed by the Cluster Operator. You can also specify a namespace using watchedNamespace
in the Topic Operator spec
. A single Topic Operator can watch a single namespace. One namespace should be watched by only one Topic Operator.
If you use AMQ Streams to deploy multiple Kafka clusters into the same namespace, enable the Topic Operator for only one Kafka cluster or use the watchedNamespace
property to configure the Topic Operators to watch other namespaces.
If you want to use the Topic Operator with a Kafka cluster that is not managed by AMQ Streams, you must deploy the Topic Operator as a standalone component.
For more information about configuring the entityOperator
and topicOperator
properties, see Configuring the Entity Operator.
Prerequisites
Procedure
Edit the
entityOperator
properties of theKafka
resource to includetopicOperator
:apiVersion: kafka.strimzi.io/v1beta2 kind: Kafka metadata: name: my-cluster spec: #... entityOperator: topicOperator: {} userOperator: {}
Configure the Topic Operator
spec
using the properties described in theEntityTopicOperatorSpec
schema reference.Use an empty object (
{}
) if you want all properties to use their default values.Create or update the resource:
oc apply -f <kafka_configuration_file>
Check the status of the deployment:
oc get pods -n <my_cluster_operator_namespace>
Output shows the pod name and readiness
NAME READY STATUS RESTARTS my-cluster-entity-operator 3/3 Running 0 # ...
my-cluster
is the name of the Kafka cluster.READY
shows the number of replicas that are ready/expected. The deployment is successful when theSTATUS
displays asRunning
.
6.3.4. Deploying the User Operator using the Cluster Operator
This procedure describes how to deploy the User Operator using the Cluster Operator.
You configure the entityOperator
property of the Kafka
resource to include the userOperator
. By default, the User Operator watches for KafkaUser
resources in the namespace of the Kafka cluster deployment. You can also specify a namespace using watchedNamespace
in the User Operator spec
. A single User Operator can watch a single namespace. One namespace should be watched by only one User Operator.
If you want to use the User Operator with a Kafka cluster that is not managed by AMQ Streams, you must deploy the User Operator as a standalone component.
For more information about configuring the entityOperator
and userOperator
properties, see Configuring the Entity Operator.
Prerequisites
Procedure
Edit the
entityOperator
properties of theKafka
resource to includeuserOperator
:apiVersion: kafka.strimzi.io/v1beta2 kind: Kafka metadata: name: my-cluster spec: #... entityOperator: topicOperator: {} userOperator: {}
Configure the User Operator
spec
using the properties described inEntityUserOperatorSpec
schema reference.Use an empty object (
{}
) if you want all properties to use their default values.Create or update the resource:
oc apply -f <kafka_configuration_file>
Check the status of the deployment:
oc get pods -n <my_cluster_operator_namespace>
Output shows the pod name and readiness
NAME READY STATUS RESTARTS my-cluster-entity-operator 3/3 Running 0 # ...
my-cluster
is the name of the Kafka cluster.READY
shows the number of replicas that are ready/expected. The deployment is successful when theSTATUS
displays asRunning
.
6.3.5. List of Kafka cluster resources
The following resources are created by the Cluster Operator in the OpenShift cluster:
Shared resources
cluster-name-cluster-ca
- Secret with the Cluster CA private key used to encrypt the cluster communication.
cluster-name-cluster-ca-cert
- Secret with the Cluster CA public key. This key can be used to verify the identity of the Kafka brokers.
cluster-name-clients-ca
- Secret with the Clients CA private key used to sign user certificates
cluster-name-clients-ca-cert
- Secret with the Clients CA public key. This key can be used to verify the identity of the Kafka users.
cluster-name-cluster-operator-certs
- Secret with Cluster operators keys for communication with Kafka and ZooKeeper.
ZooKeeper nodes
cluster-name-zookeeper
Name given to the following ZooKeeper resources:
- StrimziPodSet for managing the ZooKeeper node pods.
- Service account used by the ZooKeeper nodes.
- PodDisruptionBudget configured for the ZooKeeper nodes.
cluster-name-zookeeper-idx
- Pods created by the StrimziPodSet.
cluster-name-zookeeper-nodes
- Headless Service needed to have DNS resolve the ZooKeeper pods IP addresses directly.
cluster-name-zookeeper-client
- Service used by Kafka brokers to connect to ZooKeeper nodes as clients.
cluster-name-zookeeper-config
- ConfigMap that contains the ZooKeeper ancillary configuration, and is mounted as a volume by the ZooKeeper node pods.
cluster-name-zookeeper-nodes
- Secret with ZooKeeper node keys.
cluster-name-network-policy-zookeeper
- Network policy managing access to the ZooKeeper services.
data-cluster-name-zookeeper-idx
-
Persistent Volume Claim for the volume used for storing data for the ZooKeeper node pod
idx
. This resource will be created only if persistent storage is selected for provisioning persistent volumes to store data.
Kafka brokers
cluster-name-kafka
Name given to the following Kafka resources:
- StrimziPodSet for managing the Kafka broker pods.
- Service account used by the Kafka pods.
- PodDisruptionBudget configured for the Kafka brokers.
cluster-name-kafka-idx
Name given to the following Kafka resources:
- Pods created by the StrimziPodSet.
- ConfigMaps with Kafka broker configuration.
cluster-name-kafka-brokers
- Service needed to have DNS resolve the Kafka broker pods IP addresses directly.
cluster-name-kafka-bootstrap
- Service can be used as bootstrap servers for Kafka clients connecting from within the OpenShift cluster.
cluster-name-kafka-external-bootstrap
-
Bootstrap service for clients connecting from outside the OpenShift cluster. This resource is created only when an external listener is enabled. The old service name will be used for backwards compatibility when the listener name is
external
and port is9094
. cluster-name-kafka-pod-id
-
Service used to route traffic from outside the OpenShift cluster to individual pods. This resource is created only when an external listener is enabled. The old service name will be used for backwards compatibility when the listener name is
external
and port is9094
. cluster-name-kafka-external-bootstrap
-
Bootstrap route for clients connecting from outside the OpenShift cluster. This resource is created only when an external listener is enabled and set to type
route
. The old route name will be used for backwards compatibility when the listener name isexternal
and port is9094
. cluster-name-kafka-pod-id
-
Route for traffic from outside the OpenShift cluster to individual pods. This resource is created only when an external listener is enabled and set to type
route
. The old route name will be used for backwards compatibility when the listener name isexternal
and port is9094
. cluster-name-kafka-listener-name-bootstrap
- Bootstrap service for clients connecting from outside the OpenShift cluster. This resource is created only when an external listener is enabled. The new service name will be used for all other external listeners.
cluster-name-kafka-listener-name-pod-id
- Service used to route traffic from outside the OpenShift cluster to individual pods. This resource is created only when an external listener is enabled. The new service name will be used for all other external listeners.
cluster-name-kafka-listener-name-bootstrap
-
Bootstrap route for clients connecting from outside the OpenShift cluster. This resource is created only when an external listener is enabled and set to type
route
. The new route name will be used for all other external listeners. cluster-name-kafka-listener-name-pod-id
-
Route for traffic from outside the OpenShift cluster to individual pods. This resource is created only when an external listener is enabled and set to type
route
. The new route name will be used for all other external listeners. cluster-name-kafka-config
-
ConfigMap containing the Kafka ancillary configuration, which is mounted as a volume by the broker pods when the
UseStrimziPodSets
feature gate is disabled. cluster-name-kafka-brokers
- Secret with Kafka broker keys.
cluster-name-network-policy-kafka
- Network policy managing access to the Kafka services.
strimzi-namespace-name-cluster-name-kafka-init
- Cluster role binding used by the Kafka brokers.
cluster-name-jmx
- Secret with JMX username and password used to secure the Kafka broker port. This resource is created only when JMX is enabled in Kafka.
data-cluster-name-kafka-idx
-
Persistent Volume Claim for the volume used for storing data for the Kafka broker pod
idx
. This resource is created only if persistent storage is selected for provisioning persistent volumes to store data. data-id-cluster-name-kafka-idx
-
Persistent Volume Claim for the volume
id
used for storing data for the Kafka broker podidx
. This resource is created only if persistent storage is selected for JBOD volumes when provisioning persistent volumes to store data.
Entity Operator
These resources are only created if the Entity Operator is deployed using the Cluster Operator.
cluster-name-entity-operator
Name given to the following Entity Operator resources:
- Deployment with Topic and User Operators.
- Service account used by the Entity Operator.
- Network policy managing access to the Entity Operator metrics.
cluster-name-entity-operator-random-string
- Pod created by the Entity Operator deployment.
cluster-name-entity-topic-operator-config
- ConfigMap with ancillary configuration for Topic Operators.
cluster-name-entity-user-operator-config
- ConfigMap with ancillary configuration for User Operators.
cluster-name-entity-topic-operator-certs
- Secret with Topic Operator keys for communication with Kafka and ZooKeeper.
cluster-name-entity-user-operator-certs
- Secret with User Operator keys for communication with Kafka and ZooKeeper.
strimzi-cluster-name-entity-topic-operator
- Role binding used by the Entity Topic Operator.
strimzi-cluster-name-entity-user-operator
- Role binding used by the Entity User Operator.
Kafka Exporter
These resources are only created if the Kafka Exporter is deployed using the Cluster Operator.
cluster-name-kafka-exporter
Name given to the following Kafka Exporter resources:
- Deployment with Kafka Exporter.
- Service used to collect consumer lag metrics.
- Service account used by the Kafka Exporter.
- Network policy managing access to the Kafka Exporter metrics.
cluster-name-kafka-exporter-random-string
- Pod created by the Kafka Exporter deployment.
Cruise Control
These resources are only created if Cruise Control was deployed using the Cluster Operator.
cluster-name-cruise-control
Name given to the following Cruise Control resources:
- Deployment with Cruise Control.
- Service used to communicate with Cruise Control.
- Service account used by the Cruise Control.
cluster-name-cruise-control-random-string
- Pod created by the Cruise Control deployment.
cluster-name-cruise-control-config
- ConfigMap that contains the Cruise Control ancillary configuration, and is mounted as a volume by the Cruise Control pods.
cluster-name-cruise-control-certs
- Secret with Cruise Control keys for communication with Kafka and ZooKeeper.
cluster-name-network-policy-cruise-control
- Network policy managing access to the Cruise Control service.
6.4. Deploying Kafka Connect
Kafka Connect is an integration toolkit for streaming data between Kafka brokers and other systems using connector plugins. Kafka Connect provides a framework for integrating Kafka with an external data source or target, such as a database or messaging system, for import or export of data using connectors. Connectors are plugins that provide the connection configuration needed.
In AMQ Streams, Kafka Connect is deployed in distributed mode. Kafka Connect can also work in standalone mode, but this is not supported by AMQ Streams.
Using the concept of connectors, Kafka Connect provides a framework for moving large amounts of data into and out of your Kafka cluster while maintaining scalability and reliability.
The Cluster Operator manages Kafka Connect clusters deployed using the KafkaConnect
resource and connectors created using the KafkaConnector
resource.
In order to use Kafka Connect, you need to do the following.
The term connector is used interchangeably to mean a connector instance running within a Kafka Connect cluster, or a connector class. In this guide, the term connector is used when the meaning is clear from the context.
6.4.1. Deploying Kafka Connect to your OpenShift cluster
This procedure shows how to deploy a Kafka Connect cluster to your OpenShift cluster using the Cluster Operator.
A Kafka Connect cluster deployment is implemented with a configurable number of nodes (also called workers) that distribute the workload of connectors as tasks so that the message flow is highly scalable and reliable.
The deployment uses a YAML file to provide the specification to create a KafkaConnect
resource.
AMQ Streams provides example configuration files. In this procedure, we use the following example file:
-
examples/connect/kafka-connect.yaml
Prerequisites
Procedure
Deploy Kafka Connect to your OpenShift cluster. Use the
examples/connect/kafka-connect.yaml
file to deploy Kafka Connect.oc apply -f examples/connect/kafka-connect.yaml
Check the status of the deployment:
oc get pods -n <my_cluster_operator_namespace>
Output shows the deployment name and readiness
NAME READY STATUS RESTARTS my-connect-cluster-connect-<pod_id> 1/1 Running 0
my-connect-cluster
is the name of the Kafka Connect cluster.A pod ID identifies each pod created.
With the default deployment, you create a single Kafka Connect pod.
READY
shows the number of replicas that are ready/expected. The deployment is successful when theSTATUS
displays asRunning
.
Additional resources
6.4.2. Configuring Kafka Connect for multiple instances
If you are running multiple instances of Kafka Connect, you have to change the default configuration of the following config
properties:
apiVersion: kafka.strimzi.io/v1beta2 kind: KafkaConnect metadata: name: my-connect spec: # ... config: group.id: connect-cluster 1 offset.storage.topic: connect-cluster-offsets 2 config.storage.topic: connect-cluster-configs 3 status.storage.topic: connect-cluster-status 4 # ... # ...
Values for the three topics must be the same for all Kafka Connect instances with the same group.id
.
Unless you change the default settings, each Kafka Connect instance connecting to the same Kafka cluster is deployed with the same values. What happens, in effect, is all instances are coupled to run in a cluster and use the same topics.
If multiple Kafka Connect clusters try to use the same topics, Kafka Connect will not work as expected and generate errors.
If you wish to run multiple Kafka Connect instances, change the values of these properties for each instance.
6.4.3. Adding connectors
Kafka Connect uses connectors to integrate with other systems to stream data. A connector is an instance of a Kafka Connector
class, which can be one of the following type:
- Source connector
- A source connector is a runtime entity that fetches data from an external system and feeds it to Kafka as messages.
- Sink connector
- A sink connector is a runtime entity that fetches messages from Kafka topics and feeds them to an external system.
Kafka Connect uses a plugin architecture to provide the implementation artifacts for connectors. Plugins allow connections to other systems and provide additional configuration to manipulate data. Plugins include connectors and other components, such as data converters and transforms. A connector operates with a specific type of external system. Each connector defines a schema for its configuration. You supply the configuration to Kafka Connect to create a connector instance within Kafka Connect. Connector instances then define a set of tasks for moving data between systems.
Add connector plugins to Kafka Connect in one of the following ways:
- Configure Kafka Connect to build a new container image with plugins automatically
- Create a Docker image from the base Kafka Connect image (manually or using continuous integration)
After plugins have been added to the container image, you can start, stop, and manage connector instances in the following ways:
You can also create new connector instances using these options.
6.4.3.1. Building a new container image with connector plugins automatically
Configure Kafka Connect so that AMQ Streams automatically builds a new container image with additional connectors. You define the connector plugins using the .spec.build.plugins
property of the KafkaConnect
custom resource. AMQ Streams will automatically download and add the connector plugins into a new container image. The container is pushed into the container repository specified in .spec.build.output
and automatically used in the Kafka Connect deployment.
Prerequisites
- The Cluster Operator must be deployed.
- A container registry.
You need to provide your own container registry where images can be pushed to, stored, and pulled from. AMQ Streams supports private container registries as well as public registries such as Quay or Docker Hub.
Procedure
Configure the
KafkaConnect
custom resource by specifying the container registry in.spec.build.output
, and additional connectors in.spec.build.plugins
:apiVersion: kafka.strimzi.io/v1beta2 kind: KafkaConnect metadata: name: my-connect-cluster spec: 1 #... build: output: 2 type: docker image: my-registry.io/my-org/my-connect-cluster:latest pushSecret: my-registry-credentials plugins: 3 - name: debezium-postgres-connector artifacts: - type: tgz url: https://repo1.maven.org/maven2/io/debezium/debezium-connector-postgres/2.1.3.Final/debezium-connector-postgres-2.1.3.Final-plugin.tar.gz sha512sum: c4ddc97846de561755dc0b021a62aba656098829c70eb3ade3b817ce06d852ca12ae50c0281cc791a5a131cb7fc21fb15f4b8ee76c6cae5dd07f9c11cb7c6e79 - name: camel-telegram artifacts: - type: tgz url: https://repo.maven.apache.org/maven2/org/apache/camel/kafkaconnector/camel-telegram-kafka-connector/0.11.5/camel-telegram-kafka-connector-0.11.5-package.tar.gz sha512sum: d6d9f45e0d1dbfcc9f6d1c7ca2046168c764389c78bc4b867dab32d24f710bb74ccf2a007d7d7a8af2dfca09d9a52ccbc2831fc715c195a3634cca055185bd91 #...
Create or update the resource:
$ oc apply -f <kafka_connect_configuration_file>
- Wait for the new container image to build, and for the Kafka Connect cluster to be deployed.
-
Use the Kafka Connect REST API or
KafkaConnector
custom resources to use the connector plugins you added.
Additional resources
6.4.3.2. Building a new container image with connector plugins from the Kafka Connect base image
Create a custom Docker image with connector plugins from the Kafka Connect base image Add the custom image to the /opt/kafka/plugins
directory.
You can use the Kafka container image on Red Hat Ecosystem Catalog as a base image for creating your own custom image with additional connector plugins.
At startup, the AMQ Streams version of Kafka Connect loads any third-party connector plugins contained in the /opt/kafka/plugins
directory.
Prerequisites
Procedure
Create a new
Dockerfile
usingregistry.redhat.io/amq-streams/kafka-35-rhel8:2.5.2
as the base image:FROM registry.redhat.io/amq-streams/kafka-35-rhel8:2.5.2 USER root:root COPY ./my-plugins/ /opt/kafka/plugins/ USER 1001
Example plugins file
$ tree ./my-plugins/ ./my-plugins/ ├── debezium-connector-mongodb │ ├── bson-<version>.jar │ ├── CHANGELOG.md │ ├── CONTRIBUTE.md │ ├── COPYRIGHT.txt │ ├── debezium-connector-mongodb-<version>.jar │ ├── debezium-core-<version>.jar │ ├── LICENSE.txt │ ├── mongodb-driver-core-<version>.jar │ ├── README.md │ └── # ... ├── debezium-connector-mysql │ ├── CHANGELOG.md │ ├── CONTRIBUTE.md │ ├── COPYRIGHT.txt │ ├── debezium-connector-mysql-<version>.jar │ ├── debezium-core-<version>.jar │ ├── LICENSE.txt │ ├── mysql-binlog-connector-java-<version>.jar │ ├── mysql-connector-java-<version>.jar │ ├── README.md │ └── # ... └── debezium-connector-postgres ├── CHANGELOG.md ├── CONTRIBUTE.md ├── COPYRIGHT.txt ├── debezium-connector-postgres-<version>.jar ├── debezium-core-<version>.jar ├── LICENSE.txt ├── postgresql-<version>.jar ├── protobuf-java-<version>.jar ├── README.md └── # ...
The COPY command points to the plugin files to copy to the container image.
This example adds plugins for Debezium connectors (MongoDB, MySQL, and PostgreSQL), though not all files are listed for brevity. Debezium running in Kafka Connect looks the same as any other Kafka Connect task.
- Build the container image.
- Push your custom image to your container registry.
Point to the new container image.
You can point to the image in one of the following ways:
Edit the
KafkaConnect.spec.image
property of theKafkaConnect
custom resource.If set, this property overrides the
STRIMZI_KAFKA_CONNECT_IMAGES
environment variable in the Cluster Operator.apiVersion: kafka.strimzi.io/v1beta2 kind: KafkaConnect metadata: name: my-connect-cluster spec: 1 #... image: my-new-container-image 2 config: 3 #...
-
Edit the
STRIMZI_KAFKA_CONNECT_IMAGES
environment variable in theinstall/cluster-operator/060-Deployment-strimzi-cluster-operator.yaml
file to point to the new container image, and then reinstall the Cluster Operator.
6.4.3.3. Deploying KafkaConnector resources
Deploy KafkaConnector
resources to manage connectors. The KafkaConnector
custom resource offers an OpenShift-native approach to management of connectors by the Cluster Operator. You don’t need to send HTTP requests to manage connectors, as with the Kafka Connect REST API. You manage a running connector instance by updating its corresponding KafkaConnector
resource, and then applying the updates. The Cluster Operator updates the configurations of the running connector instances. You remove a connector by deleting its corresponding KafkaConnector
.
KafkaConnector
resources must be deployed to the same namespace as the Kafka Connect cluster they link to.
In the configuration shown in this procedure, the autoRestart
property is set to true
. This enables automatic restarts of failed connectors and tasks. Up to seven restart attempts are made, after which restarts must be made manually. You annotate the KafkaConnector
resource to restart a connector or restart a connector task manually.
Example connectors
You can use your own connectors or try the examples provided by AMQ Streams. Up until Apache Kafka 3.1.0, example file connector plugins were included with Apache Kafka. Starting from the 3.1.1 and 3.2.0 releases of Apache Kafka, the examples need to be added to the plugin path as any other connector.
AMQ Streams provides an example KafkaConnector
configuration file (examples/connect/source-connector.yaml
) for the example file connector plugins, which creates the following connector instances as KafkaConnector
resources:
-
A
FileStreamSourceConnector
instance that reads each line from the Kafka license file (the source) and writes the data as messages to a single Kafka topic. -
A
FileStreamSinkConnector
instance that reads messages from the Kafka topic and writes the messages to a temporary file (the sink).
We use the example file to create connectors in this procedure.
The example connectors are not intended for use in a production environment.
Prerequisites
- A Kafka Connect deployment
- The Cluster Operator is running
Procedure
Add the
FileStreamSourceConnector
andFileStreamSinkConnector
plugins to Kafka Connect in one of the following ways:- Configure Kafka Connect to build a new container image with plugins automatically
- Create a Docker image from the base Kafka Connect image (manually or using continuous integration)
Set the
strimzi.io/use-connector-resources annotation
totrue
in the Kafka Connect configuration.apiVersion: kafka.strimzi.io/v1beta2 kind: KafkaConnect metadata: name: my-connect-cluster annotations: strimzi.io/use-connector-resources: "true" spec: # ...
With the
KafkaConnector
resources enabled, the Cluster Operator watches for them.Edit the
examples/connect/source-connector.yaml
file:apiVersion: kafka.strimzi.io/v1beta2 kind: KafkaConnector metadata: name: my-source-connector 1 labels: strimzi.io/cluster: my-connect-cluster 2 spec: class: org.apache.kafka.connect.file.FileStreamSourceConnector 3 tasksMax: 2 4 autoRestart: 5 enabled: true config: 6 file: "/opt/kafka/LICENSE" 7 topic: my-topic 8 # ...
- 1
- Name of the
KafkaConnector
resource, which is used as the name of the connector. Use any name that is valid for an OpenShift resource. - 2
- Name of the Kafka Connect cluster to create the connector instance in. Connectors must be deployed to the same namespace as the Kafka Connect cluster they link to.
- 3
- Full name or alias of the connector class. This should be present in the image being used by the Kafka Connect cluster.
- 4
- Maximum number of Kafka Connect tasks that the connector can create.
- 5
- Enables automatic restarts of failed connectors and tasks.
- 6
- Connector configuration as key-value pairs.
- 7
- This example source connector configuration reads data from the
/opt/kafka/LICENSE
file. - 8
- Kafka topic to publish the source data to.
Create the source
KafkaConnector
in your OpenShift cluster:oc apply -f examples/connect/source-connector.yaml
Create an
examples/connect/sink-connector.yaml
file:touch examples/connect/sink-connector.yaml
Paste the following YAML into the
sink-connector.yaml
file:apiVersion: kafka.strimzi.io/v1beta2 kind: KafkaConnector metadata: name: my-sink-connector labels: strimzi.io/cluster: my-connect spec: class: org.apache.kafka.connect.file.FileStreamSinkConnector 1 tasksMax: 2 config: 2 file: "/tmp/my-file" 3 topics: my-topic 4
- 1
- Full name or alias of the connector class. This should be present in the image being used by the Kafka Connect cluster.
- 2
- Connector configuration as key-value pairs.
- 3
- Temporary file to publish the source data to.
- 4
- Kafka topic to read the source data from.
Create the sink
KafkaConnector
in your OpenShift cluster:oc apply -f examples/connect/sink-connector.yaml
Check that the connector resources were created:
oc get kctr --selector strimzi.io/cluster=<my_connect_cluster> -o name my-source-connector my-sink-connector
Replace <my_connect_cluster> with the name of your Kafka Connect cluster.
In the container, execute
kafka-console-consumer.sh
to read the messages that were written to the topic by the source connector:oc exec <my_kafka_cluster>-kafka-0 -i -t -- bin/kafka-console-consumer.sh --bootstrap-server <my_kafka_cluster>-kafka-bootstrap.NAMESPACE.svc:9092 --topic my-topic --from-beginning
Replace <my_kafka_cluster> with the name of your Kafka cluster.
Source and sink connector configuration options
The connector configuration is defined in the spec.config
property of the KafkaConnector
resource.
The FileStreamSourceConnector
and FileStreamSinkConnector
classes support the same configuration options as the Kafka Connect REST API. Other connectors support different configuration options.
Name | Type | Default value | Description |
---|---|---|---|
| String | Null | Source file to write messages to. If not specified, the standard input is used. |
| List | Null | The Kafka topic to publish data to. |
Name | Type | Default value | Description |
---|---|---|---|
| String | Null | Destination file to write messages to. If not specified, the standard output is used. |
| List | Null | One or more Kafka topics to read data from. |
| String | Null | A regular expression matching one or more Kafka topics to read data from. |
6.4.3.4. Manually restarting connectors
If you are using KafkaConnector
resources to manage connectors, use the restart
annotation to manually trigger a restart of a connector.
Prerequisites
- The Cluster Operator is running.
Procedure
Find the name of the
KafkaConnector
custom resource that controls the Kafka connector you want to restart:oc get KafkaConnector
Restart the connector by annotating the
KafkaConnector
resource in OpenShift.oc annotate KafkaConnector <kafka_connector_name> strimzi.io/restart=true
The
restart
annotation is set totrue
.Wait for the next reconciliation to occur (every two minutes by default).
The Kafka connector is restarted, as long as the annotation was detected by the reconciliation process. When Kafka Connect accepts the restart request, the annotation is removed from the
KafkaConnector
custom resource.
6.4.3.5. Manually restarting Kafka connector tasks
If you are using KafkaConnector
resources to manage connectors, use the restart-task
annotation to manually trigger a restart of a connector task.
Prerequisites
- The Cluster Operator is running.
Procedure
Find the name of the
KafkaConnector
custom resource that controls the Kafka connector task you want to restart:oc get KafkaConnector
Find the ID of the task to be restarted from the
KafkaConnector
custom resource. Task IDs are non-negative integers, starting from 0:oc describe KafkaConnector <kafka_connector_name>
Use the ID to restart the connector task by annotating the
KafkaConnector
resource in OpenShift:oc annotate KafkaConnector <kafka_connector_name> strimzi.io/restart-task=0
In this example, task
0
is restarted.Wait for the next reconciliation to occur (every two minutes by default).
The Kafka connector task is restarted, as long as the annotation was detected by the reconciliation process. When Kafka Connect accepts the restart request, the annotation is removed from the
KafkaConnector
custom resource.
6.4.3.6. Exposing the Kafka Connect API
Use the Kafka Connect REST API as an alternative to using KafkaConnector
resources to manage connectors. The Kafka Connect REST API is available as a service running on <connect_cluster_name>-connect-api:8083
, where <connect_cluster_name> is the name of your Kafka Connect cluster. The service is created when you create a Kafka Connect instance.
The operations supported by the Kafka Connect REST API are described in the Apache Kafka Connect API documentation.
The strimzi.io/use-connector-resources
annotation enables KafkaConnectors. If you applied the annotation to your KafkaConnect
resource configuration, you need to remove it to use the Kafka Connect API. Otherwise, manual changes made directly using the Kafka Connect REST API are reverted by the Cluster Operator.
You can add the connector configuration as a JSON object.
Example curl request to add connector configuration
curl -X POST \ http://my-connect-cluster-connect-api:8083/connectors \ -H 'Content-Type: application/json' \ -d '{ "name": "my-source-connector", "config": { "connector.class":"org.apache.kafka.connect.file.FileStreamSourceConnector", "file": "/opt/kafka/LICENSE", "topic":"my-topic", "tasksMax": "4", "type": "source" } }'
The API is only accessible within the OpenShift cluster. If you want to make the Kafka Connect API accessible to applications running outside of the OpenShift cluster, you can expose it manually by creating one of the following features:
-
LoadBalancer
orNodePort
type services -
Ingress
resources (Kubernetes only) - OpenShift routes (OpenShift only)
The connection is insecure, so allow external access advisedly.
If you decide to create services, use the labels from the selector
of the <connect_cluster_name>-connect-api
service to configure the pods to which the service will route the traffic:
Selector configuration for the service
# ... selector: strimzi.io/cluster: my-connect-cluster 1 strimzi.io/kind: KafkaConnect strimzi.io/name: my-connect-cluster-connect 2 #...
You must also create a NetworkPolicy
that allows HTTP requests from external clients.
Example NetworkPolicy to allow requests to the Kafka Connect API
apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
name: my-custom-connect-network-policy
spec:
ingress:
- from:
- podSelector: 1
matchLabels:
app: my-connector-manager
ports:
- port: 8083
protocol: TCP
podSelector:
matchLabels:
strimzi.io/cluster: my-connect-cluster
strimzi.io/kind: KafkaConnect
strimzi.io/name: my-connect-cluster-connect
policyTypes:
- Ingress
- 1
- The label of the pod that is allowed to connect to the API.
To add the connector configuration outside the cluster, use the URL of the resource that exposes the API in the curl command.
6.4.3.7. Limiting access to the Kafka Connect API
It is crucial to restrict access to the Kafka Connect API only to trusted users to prevent unauthorized actions and potential security issues. The Kafka Connect API provides extensive capabilities for altering connector configurations, which makes it all the more important to take security precautions. Someone with access to the Kafka Connect API could potentially obtain sensitive information that an administrator may assume is secure.
The Kafka Connect REST API can be accessed by anyone who has authenticated access to the OpenShift cluster and knows the endpoint URL, which includes the hostname/IP address and port number.
For example, suppose an organization uses a Kafka Connect cluster and connectors to stream sensitive data from a customer database to a central database. The administrator uses a configuration provider plugin to store sensitive information related to connecting to the customer database and the central database, such as database connection details and authentication credentials. The configuration provider protects this sensitive information from being exposed to unauthorized users. However, someone who has access to the Kafka Connect API can still obtain access to the customer database without the consent of the administrator. They can do this by setting up a fake database and configuring a connector to connect to it. They then modify the connector configuration to point to the customer database, but instead of sending the data to the central database, they send it to the fake database. By configuring the connector to connect to the fake database, the login details and credentials for connecting to the customer database are intercepted, even though they are stored securely in the configuration provider.
If you are using the KafkaConnector
custom resources, then by default the OpenShift RBAC rules permit only OpenShift cluster administrators to make changes to connectors. You can also designate non-cluster administrators to manage AMQ Streams resources. With KafkaConnector
resources enabled in your Kafka Connect configuration, changes made directly using the Kafka Connect REST API are reverted by the Cluster Operator. If you are not using the KafkaConnector
resource, the default RBAC rules do not limit access to the Kafka Connect API. If you want to limit direct access to the Kafka Connect REST API using OpenShift RBAC, you need to enable and use the KafkaConnector
resources.
For improved security, we recommend configuring the following properties for the Kafka Connect API:
org.apache.kafka.disallowed.login.modules
(Kafka 3.4 or later) Set the
org.apache.kafka.disallowed.login.modules
Java system property to prevent the use of insecure login modules. For example, specifyingcom.sun.security.auth.module.JndiLoginModule
prevents the use of the KafkaJndiLoginModule
.Example configuration for disallowing login modules
apiVersion: kafka.strimzi.io/v1beta2 kind: KafkaConnect metadata: name: my-connect-cluster annotations: strimzi.io/use-connector-resources: "true" spec: # ... jvmOptions: javaSystemProperties: - name: org.apache.kafka.disallowed.login.modules value: com.sun.security.auth.module.JndiLoginModule, org.apache.kafka.common.security.kerberos.KerberosLoginModule # ...
Only allow trusted login modules and follow the latest advice from Kafka for the version you are using. As a best practice, you should explicitly disallow insecure login modules in your Kafka Connect configuration by using the
org.apache.kafka.disallowed.login.modules
system property.connector.client.config.override.policy
Set the
connector.client.config.override.policy
property toNone
to prevent connector configurations from overriding the Kafka Connect configuration and the consumers and producers it uses.Example configuration to specify connector override policy
apiVersion: kafka.strimzi.io/v1beta2 kind: KafkaConnect metadata: name: my-connect-cluster annotations: strimzi.io/use-connector-resources: "true" spec: # ... config: connector.client.config.override.policy: None # ...
6.4.3.8. Switching from using the Kafka Connect API to using KafkaConnector custom resources
You can switch from using the Kafka Connect API to using KafkaConnector
custom resources to manage your connectors. To make the switch, do the following in the order shown:
-
Deploy
KafkaConnector
resources with the configuration to create your connector instances. -
Enable
KafkaConnector
resources in your Kafka Connect configuration by setting thestrimzi.io/use-connector-resources
annotation totrue
.
If you enable KafkaConnector
resources before creating them, you delete all connectors.
To switch from using KafkaConnector
resources to using the Kafka Connect API, first remove the annotation that enables the KafkaConnector
resources from your Kafka Connect configuration. Otherwise, manual changes made directly using the Kafka Connect REST API are reverted by the Cluster Operator.
When making the switch, check the status of the KafkaConnect
resource. The value of metadata.generation
(the current version of the deployment) must match status.observedGeneration
(the latest reconciliation of the resource). When the Kafka Connect cluster is Ready
, you can delete the KafkaConnector
resources.
6.4.4. List of Kafka Connect cluster resources
The following resources are created by the Cluster Operator in the OpenShift cluster:
- connect-cluster-name-connect
Name given to the following Kafka Connect resources:
-
Deployment that creates the Kafka Connect worker node pods (when
StableConnectIdentities
feature gate is disabled). -
StrimziPodSet that creates the Kafka Connect worker node pods (when
StableConnectIdentities
feature gate is enabled). -
Headless service that provides stable DNS names to the Connect pods (when
StableConnectIdentities
feature gate is enabled). - Pod Disruption Budget configured for the Kafka Connect worker nodes.
-
Deployment that creates the Kafka Connect worker node pods (when
- connect-cluster-name-connect-idx
-
Pods created by the Kafka Connect StrimziPodSet (when
StableConnectIdentities
feature gate is enabled). - connect-cluster-name-connect-api
- Service which exposes the REST interface for managing the Kafka Connect cluster.
- connect-cluster-name-config
- ConfigMap which contains the Kafka Connect ancillary configuration and is mounted as a volume by the Kafka broker pods.
6.5. Deploying Kafka MirrorMaker
Kafka MirrorMaker replicates data between two or more Kafka clusters, within or across data centers. This process is called mirroring to avoid confusion with the concept of Kafka partition replication. MirrorMaker consumes messages from a source cluster and republishes those messages to a target cluster.
Data replication across clusters supports scenarios that require the following:
- Recovery of data in the event of a system failure
- Consolidation of data from multiple source clusters for centralized analysis
- Restriction of data access to a specific cluster
- Provision of data at a specific location to improve latency
6.5.1. Deploying Kafka MirrorMaker to your OpenShift cluster
This procedure shows how to deploy a Kafka MirrorMaker cluster to your OpenShift cluster using the Cluster Operator.
The deployment uses a YAML file to provide the specification to create a KafkaMirrorMaker
or KafkaMirrorMaker2
resource depending on the version of MirrorMaker deployed.
Kafka MirrorMaker 1 (referred to as just MirrorMaker in the documentation) has been deprecated in Apache Kafka 3.0.0 and will be removed in Apache Kafka 4.0.0. As a result, the KafkaMirrorMaker
custom resource which is used to deploy Kafka MirrorMaker 1 has been deprecated in AMQ Streams as well. The KafkaMirrorMaker
resource will be removed from AMQ Streams when we adopt Apache Kafka 4.0.0. As a replacement, use the KafkaMirrorMaker2
custom resource with the IdentityReplicationPolicy
.
AMQ Streams provides example configuration files. In this procedure, we use the following example files:
-
examples/mirror-maker/kafka-mirror-maker.yaml
-
examples/mirror-maker/kafka-mirror-maker-2.yaml
Prerequisites
Procedure
Deploy Kafka MirrorMaker to your OpenShift cluster:
For MirrorMaker:
oc apply -f examples/mirror-maker/kafka-mirror-maker.yaml
For MirrorMaker 2:
oc apply -f examples/mirror-maker/kafka-mirror-maker-2.yaml
Check the status of the deployment:
oc get pods -n <my_cluster_operator_namespace>
Output shows the deployment name and readiness
NAME READY STATUS RESTARTS my-mirror-maker-mirror-maker-<pod_id> 1/1 Running 1 my-mm2-cluster-mirrormaker2-<pod_id> 1/1 Running 1
my-mirror-maker
is the name of the Kafka MirrorMaker cluster.my-mm2-cluster
is the name of the Kafka MirrorMaker 2 cluster.A pod ID identifies each pod created.
With the default deployment, you install a single MirrorMaker or MirrorMaker 2 pod.
READY
shows the number of replicas that are ready/expected. The deployment is successful when theSTATUS
displays asRunning
.
Additional resources
6.5.2. List of Kafka MirrorMaker cluster resources
The following resources are created by the Cluster Operator in the OpenShift cluster:
- <mirror-maker-name>-mirror-maker
- Deployment which is responsible for creating the Kafka MirrorMaker pods.
- <mirror-maker-name>-config
- ConfigMap which contains ancillary configuration for the Kafka MirrorMaker, and is mounted as a volume by the Kafka broker pods.
- <mirror-maker-name>-mirror-maker
- Pod Disruption Budget configured for the Kafka MirrorMaker worker nodes.
6.6. Deploying Kafka Bridge
Kafka Bridge provides an API for integrating HTTP-based clients with a Kafka cluster.
6.6.1. Deploying Kafka Bridge to your OpenShift cluster
This procedure shows how to deploy a Kafka Bridge cluster to your OpenShift cluster using the Cluster Operator.
The deployment uses a YAML file to provide the specification to create a KafkaBridge
resource.
AMQ Streams provides example configuration files. In this procedure, we use the following example file:
-
examples/bridge/kafka-bridge.yaml
Prerequisites
Procedure
Deploy Kafka Bridge to your OpenShift cluster:
oc apply -f examples/bridge/kafka-bridge.yaml
Check the status of the deployment:
oc get pods -n <my_cluster_operator_namespace>
Output shows the deployment name and readiness
NAME READY STATUS RESTARTS my-bridge-bridge-<pod_id> 1/1 Running 0
my-bridge
is the name of the Kafka Bridge cluster.A pod ID identifies each pod created.
With the default deployment, you install a single Kafka Bridge pod.
READY
shows the number of replicas that are ready/expected. The deployment is successful when theSTATUS
displays asRunning
.
Additional resources
6.6.2. Exposing the Kafka Bridge service to your local machine
Use port forwarding to expose the AMQ Streams Kafka Bridge service to your local machine on http://localhost:8080.
Port forwarding is only suitable for development and testing purposes.
Procedure
List the names of the pods in your OpenShift cluster:
oc get pods -o name pod/kafka-consumer # ... pod/my-bridge-bridge-<pod_id>
Connect to the Kafka Bridge pod on port
8080
:oc port-forward pod/my-bridge-bridge-<pod_id> 8080:8080 &
NoteIf port 8080 on your local machine is already in use, use an alternative HTTP port, such as
8008
.
API requests are now forwarded from port 8080 on your local machine to port 8080 in the Kafka Bridge pod.
6.6.3. Accessing the Kafka Bridge outside of OpenShift
After deployment, the AMQ Streams Kafka Bridge can only be accessed by applications running in the same OpenShift cluster. These applications use the <kafka_bridge_name>-bridge-service
service to access the API.
If you want to make the Kafka Bridge accessible to applications running outside of the OpenShift cluster, you can expose it manually by creating one of the following features:
-
LoadBalancer
orNodePort
type services -
Ingress
resources (Kubernetes only) - OpenShift routes (OpenShift only)
If you decide to create Services, use the labels from the selector
of the <kafka_bridge_name>-bridge-service
service to configure the pods to which the service will route the traffic:
# ...
selector:
strimzi.io/cluster: kafka-bridge-name 1
strimzi.io/kind: KafkaBridge
#...
- 1
- Name of the Kafka Bridge custom resource in your OpenShift cluster.
6.6.4. List of Kafka Bridge cluster resources
The following resources are created by the Cluster Operator in the OpenShift cluster:
- bridge-cluster-name-bridge
- Deployment which is in charge to create the Kafka Bridge worker node pods.
- bridge-cluster-name-bridge-service
- Service which exposes the REST interface of the Kafka Bridge cluster.
- bridge-cluster-name-bridge-config
- ConfigMap which contains the Kafka Bridge ancillary configuration and is mounted as a volume by the Kafka broker pods.
- bridge-cluster-name-bridge
- Pod Disruption Budget configured for the Kafka Bridge worker nodes.
6.7. Alternative standalone deployment options for AMQ Streams operators
You can perform a standalone deployment of the Topic Operator and User Operator. Consider a standalone deployment of these operators if you are using a Kafka cluster that is not managed by the Cluster Operator.
You deploy the operators to OpenShift. Kafka can be running outside of OpenShift. For example, you might be using a Kafka as a managed service. You adjust the deployment configuration for the standalone operator to match the address of your Kafka cluster.
6.7.1. Deploying the standalone Topic Operator
This procedure shows how to deploy the Topic Operator as a standalone component for topic management. You can use a standalone Topic Operator with a Kafka cluster that is not managed by the Cluster Operator.
A standalone deployment can operate with any Kafka cluster.
Standalone deployment files are provided with AMQ Streams. Use the 05-Deployment-strimzi-topic-operator.yaml
deployment file to deploy the Topic Operator. Add or set the environment variables needed to make a connection to a Kafka cluster.
The Topic Operator watches for KafkaTopic
resources in a single namespace. You specify the namespace to watch, and the connection to the Kafka cluster, in the Topic Operator configuration. A single Topic Operator can watch a single namespace. One namespace should be watched by only one Topic Operator. If you want to use more than one Topic Operator, configure each of them to watch different namespaces. In this way, you can use Topic Operators with multiple Kafka clusters.
Prerequisites
You are running a Kafka cluster for the Topic Operator to connect to.
As long as the standalone Topic Operator is correctly configured for connection, the Kafka cluster can be running on a bare-metal environment, a virtual machine, or as a managed cloud application service.
Procedure
Edit the
env
properties in theinstall/topic-operator/05-Deployment-strimzi-topic-operator.yaml
standalone deployment file.Example standalone Topic Operator deployment configuration
apiVersion: apps/v1 kind: Deployment metadata: name: strimzi-topic-operator labels: app: strimzi spec: # ... template: # ... spec: # ... containers: - name: strimzi-topic-operator # ... env: - name: STRIMZI_NAMESPACE 1 valueFrom: fieldRef: fieldPath: metadata.namespace - name: STRIMZI_KAFKA_BOOTSTRAP_SERVERS 2 value: my-kafka-bootstrap-address:9092 - name: STRIMZI_RESOURCE_LABELS 3 value: "strimzi.io/cluster=my-cluster" - name: STRIMZI_ZOOKEEPER_CONNECT 4 value: my-cluster-zookeeper-client:2181 - name: STRIMZI_ZOOKEEPER_SESSION_TIMEOUT_MS 5 value: "18000" - name: STRIMZI_FULL_RECONCILIATION_INTERVAL_MS 6 value: "120000" - name: STRIMZI_TOPIC_METADATA_MAX_ATTEMPTS 7 value: "6" - name: STRIMZI_LOG_LEVEL 8 value: INFO - name: STRIMZI_TLS_ENABLED 9 value: "false" - name: STRIMZI_JAVA_OPTS 10 value: "-Xmx=512M -Xms=256M" - name: STRIMZI_JAVA_SYSTEM_PROPERTIES 11 value: "-Djavax.net.debug=verbose -DpropertyName=value" - name: STRIMZI_PUBLIC_CA 12 value: "false" - name: STRIMZI_TLS_AUTH_ENABLED 13 value: "false" - name: STRIMZI_SASL_ENABLED 14 value: "false" - name: STRIMZI_SASL_USERNAME 15 value: "admin" - name: STRIMZI_SASL_PASSWORD 16 value: "password" - name: STRIMZI_SASL_MECHANISM 17 value: "scram-sha-512" - name: STRIMZI_SECURITY_PROTOCOL 18 value: "SSL"
- 1
- The OpenShift namespace for the Topic Operator to watch for
KafkaTopic
resources. Specify the namespace of the Kafka cluster. - 2
- The host and port pair of the bootstrap broker address to discover and connect to all brokers in the Kafka cluster. Use a comma-separated list to specify two or three broker addresses in case a server is down.
- 3
- The label to identify the
KafkaTopic
resources managed by the Topic Operator. This does not have to be the name of the Kafka cluster. It can be the label assigned to theKafkaTopic
resource. If you deploy more than one Topic Operator, the labels must be unique for each. That is, the operators cannot manage the same resources. - 4
- (ZooKeeper) The host and port pair of the address to connect to the ZooKeeper cluster. This must be the same ZooKeeper cluster that your Kafka cluster is using.
- 5
- (ZooKeeper) The ZooKeeper session timeout, in milliseconds. The default is
18000
(18 seconds). - 6
- The interval between periodic reconciliations, in milliseconds. The default is
120000
(2 minutes). - 7
- The number of attempts at getting topic metadata from Kafka. The time between each attempt is defined as an exponential backoff. Consider increasing this value when topic creation takes more time due to the number of partitions or replicas. The default is
6
attempts. - 8
- The level for printing logging messages. You can set the level to
ERROR
,WARNING
,INFO
,DEBUG
, orTRACE
. - 9
- Enables TLS support for encrypted communication with the Kafka brokers.
- 10
- (Optional) The Java options used by the JVM running the Topic Operator.
- 11
- (Optional) The debugging (
-D
) options set for the Topic Operator. - 12
- (Optional) Skips the generation of trust store certificates if TLS is enabled through
STRIMZI_TLS_ENABLED
. If this environment variable is enabled, the brokers must use a public trusted certificate authority for their TLS certificates. The default isfalse
. - 13
- (Optional) Generates key store certificates for mTLS authentication. Setting this to
false
disables client authentication with mTLS to the Kafka brokers. The default istrue
. - 14
- (Optional) Enables SASL support for client authentication when connecting to Kafka brokers. The default is
false
. - 15
- (Optional) The SASL username for client authentication. Mandatory only if SASL is enabled through
STRIMZI_SASL_ENABLED
. - 16
- (Optional) The SASL password for client authentication. Mandatory only if SASL is enabled through
STRIMZI_SASL_ENABLED
. - 17
- (Optional) The SASL mechanism for client authentication. Mandatory only if SASL is enabled through
STRIMZI_SASL_ENABLED
. You can set the value toplain
,scram-sha-256
, orscram-sha-512
. - 18
- (Optional) The security protocol used for communication with Kafka brokers. The default value is "PLAINTEXT". You can set the value to
PLAINTEXT
,SSL
,SASL_PLAINTEXT
, orSASL_SSL
.
-
If you want to connect to Kafka brokers that are using certificates from a public certificate authority, set
STRIMZI_PUBLIC_CA
totrue
. Set this property totrue
, for example, if you are using Amazon AWS MSK service. If you enabled mTLS with the
STRIMZI_TLS_ENABLED
environment variable, specify the keystore and truststore used to authenticate connection to the Kafka cluster.Example mTLS configuration
# .... env: - name: STRIMZI_TRUSTSTORE_LOCATION 1 value: "/path/to/truststore.p12" - name: STRIMZI_TRUSTSTORE_PASSWORD 2 value: "TRUSTSTORE-PASSWORD" - name: STRIMZI_KEYSTORE_LOCATION 3 value: "/path/to/keystore.p12" - name: STRIMZI_KEYSTORE_PASSWORD 4 value: "KEYSTORE-PASSWORD" # ...
Deploy the Topic Operator.
oc create -f install/topic-operator
Check the status of the deployment:
oc get deployments
Output shows the deployment name and readiness
NAME READY UP-TO-DATE AVAILABLE strimzi-topic-operator 1/1 1 1
READY
shows the number of replicas that are ready/expected. The deployment is successful when theAVAILABLE
output shows1
.
6.7.1.1. (Preview) Deploying the standalone Topic Operator for unidirectional topic management
Unidirectional topic management maintains topics solely through KafkaTopic
resources. For more information on unidirectional topic management, see Section 9.1, “Topic management modes”.
If you want to try the preview of unidirectional topic management, follow these steps to deploy the standalone Topic Operator.
Procedure
Undeploy the current standalone Topic Operator.
Retain the
KafkaTopic
resources, which are picked up by the Topic Operator when it is deployed again.Edit the
Deployment
configuration for the standalone Topic Operator to remove any ZooKeeper-related environment variables:-
STRIMZI_ZOOKEEPER_CONNECT
-
STRIMZI_ZOOKEEPER_SESSION_TIMEOUT_MS
-
TC_ZK_CONNECTION_TIMEOUT_MS
STRIMZI_USE_ZOOKEEPER_TOPIC_STORE
It is the presence or absence of the ZooKeeper variables that defines whether the unidirectional Topic Operator is used. Unidirectional topic management does not use ZooKeeper. If ZooKeeper environment variables are not present, the unidirectional Topic Operator is used. Otherwise, the bidirectional Topic Operator is used.
Other unused environment variables that can be removed if present:
-
STRIMZI_REASSIGN_THROTTLE
-
STRIMZI_REASSIGN_VERIFY_INTERVAL_MS
-
STRIMZI_TOPIC_METADATA_MAX_ATTEMPTS
-
STRIMZI_TOPICS_PATH
-
STRIMZI_STORE_TOPIC
-
STRIMZI_STORE_NAME
-
STRIMZI_APPLICATION_ID
-
STRIMZI_STALE_RESULT_TIMEOUT_MS
-
(Optional) Set the
STRIMZI_USE_FINALIZERS
environment variable tofalse
:Additional configuration for unidirectional topic management
# ... env: - name: STRIMZI_USE_FINALIZERS value: "false"
Set this environment variable to
false
if you do not want to use finalizers to control topic deletion.Example standalone Topic Operator deployment configuration for unidirectional topic management
apiVersion: apps/v1 kind: Deployment metadata: name: strimzi-topic-operator labels: app: strimzi spec: # ... template: # ... spec: # ... containers: - name: strimzi-topic-operator # ... env: - name: STRIMZI_NAMESPACE valueFrom: fieldRef: fieldPath: metadata.namespace - name: STRIMZI_KAFKA_BOOTSTRAP_SERVERS value: my-kafka-bootstrap-address:9092 - name: STRIMZI_RESOURCE_LABELS value: "strimzi.io/cluster=my-cluster" - name: STRIMZI_FULL_RECONCILIATION_INTERVAL_MS value: "120000" - name: STRIMZI_LOG_LEVEL value: INFO - name: STRIMZI_TLS_ENABLED value: "false" - name: STRIMZI_JAVA_OPTS value: "-Xmx=512M -Xms=256M" - name: STRIMZI_JAVA_SYSTEM_PROPERTIES value: "-Djavax.net.debug=verbose -DpropertyName=value" - name: STRIMZI_PUBLIC_CA value: "false" - name: STRIMZI_TLS_AUTH_ENABLED value: "false" - name: STRIMZI_SASL_ENABLED value: "false" - name: STRIMZI_SASL_USERNAME value: "admin" - name: STRIMZI_SASL_PASSWORD value: "password" - name: STRIMZI_SASL_MECHANISM value: "scram-sha-512" - name: STRIMZI_SECURITY_PROTOCOL value: "SSL" - name: STRIMZI_USE_FINALIZERS value: "true"
- Deploy the standalone Topic Operator in the standard way.
6.7.2. Deploying the standalone User Operator
This procedure shows how to deploy the User Operator as a standalone component for user management. You can use a standalone User Operator with a Kafka cluster that is not managed by the Cluster Operator.
A standalone deployment can operate with any Kafka cluster.
Standalone deployment files are provided with AMQ Streams. Use the 05-Deployment-strimzi-user-operator.yaml
deployment file to deploy the User Operator. Add or set the environment variables needed to make a connection to a Kafka cluster.
The User Operator watches for KafkaUser
resources in a single namespace. You specify the namespace to watch, and the connection to the Kafka cluster, in the User Operator configuration. A single User Operator can watch a single namespace. One namespace should be watched by only one User Operator. If you want to use more than one User Operator, configure each of them to watch different namespaces. In this way, you can use the User Operator with multiple Kafka clusters.
Prerequisites
You are running a Kafka cluster for the User Operator to connect to.
As long as the standalone User Operator is correctly configured for connection, the Kafka cluster can be running on a bare-metal environment, a virtual machine, or as a managed cloud application service.
Procedure
Edit the following
env
properties in theinstall/user-operator/05-Deployment-strimzi-user-operator.yaml
standalone deployment file.Example standalone User Operator deployment configuration
apiVersion: apps/v1 kind: Deployment metadata: name: strimzi-user-operator labels: app: strimzi spec: # ... template: # ... spec: # ... containers: - name: strimzi-user-operator # ... env: - name: STRIMZI_NAMESPACE 1 valueFrom: fieldRef: fieldPath: metadata.namespace - name: STRIMZI_KAFKA_BOOTSTRAP_SERVERS 2 value: my-kafka-bootstrap-address:9092 - name: STRIMZI_CA_CERT_NAME 3 value: my-cluster-clients-ca-cert - name: STRIMZI_CA_KEY_NAME 4 value: my-cluster-clients-ca - name: STRIMZI_LABELS 5 value: "strimzi.io/cluster=my-cluster" - name: STRIMZI_FULL_RECONCILIATION_INTERVAL_MS 6 value: "120000" - name: STRIMZI_WORK_QUEUE_SIZE 7 value: 10000 - name: STRIMZI_CONTROLLER_THREAD_POOL_SIZE 8 value: 10 - name: STRIMZI_USER_OPERATIONS_THREAD_POOL_SIZE 9 value: 4 - name: STRIMZI_LOG_LEVEL 10 value: INFO - name: STRIMZI_GC_LOG_ENABLED 11 value: "true" - name: STRIMZI_CA_VALIDITY 12 value: "365" - name: STRIMZI_CA_RENEWAL 13 value: "30" - name: STRIMZI_JAVA_OPTS 14 value: "-Xmx=512M -Xms=256M" - name: STRIMZI_JAVA_SYSTEM_PROPERTIES 15 value: "-Djavax.net.debug=verbose -DpropertyName=value" - name: STRIMZI_SECRET_PREFIX 16 value: "kafka-" - name: STRIMZI_ACLS_ADMIN_API_SUPPORTED 17 value: "true" - name: STRIMZI_MAINTENANCE_TIME_WINDOWS 18 value: '* * 8-10 * * ?;* * 14-15 * * ?' - name: STRIMZI_KAFKA_ADMIN_CLIENT_CONFIGURATION 19 value: | default.api.timeout.ms=120000 request.timeout.ms=60000
- 1
- The OpenShift namespace for the User Operator to watch for
KafkaUser
resources. Only one namespace can be specified. - 2
- The host and port pair of the bootstrap broker address to discover and connect to all brokers in the Kafka cluster. Use a comma-separated list to specify two or three broker addresses in case a server is down.
- 3
- The OpenShift
Secret
that contains the public key (ca.crt
) value of the CA (certificate authority) that signs new user certificates for mTLS authentication. - 4
- The OpenShift
Secret
that contains the private key (ca.key
) value of the CA that signs new user certificates for mTLS authentication. - 5
- The label to identify the
KafkaUser
resources managed by the User Operator. This does not have to be the name of the Kafka cluster. It can be the label assigned to theKafkaUser
resource. If you deploy more than one User Operator, the labels must be unique for each. That is, the operators cannot manage the same resources. - 6
- The interval between periodic reconciliations, in milliseconds. The default is
120000
(2 minutes). - 7
- The size of the controller event queue. The size of the queue should be at least as big as the maximal amount of users you expect the User Operator to operate. The default is
1024
. - 8
- The size of the worker pool for reconciling the users. Bigger pool might require more resources, but it will also handle more
KafkaUser
resources The default is50
. - 9
- The size of the worker pool for Kafka Admin API and OpenShift operations. Bigger pool might require more resources, but it will also handle more
KafkaUser
resources The default is4
. - 10
- The level for printing logging messages. You can set the level to
ERROR
,WARNING
,INFO
,DEBUG
, orTRACE
. - 11
- Enables garbage collection (GC) logging. The default is
true
. - 12
- The validity period for the CA. The default is
365
days. - 13
- The renewal period for the CA. The renewal period is measured backwards from the expiry date of the current certificate. The default is
30
days to initiate certificate renewal before the old certificates expire. - 14
- (Optional) The Java options used by the JVM running the User Operator
- 15
- (Optional) The debugging (
-D
) options set for the User Operator - 16
- (Optional) Prefix for the names of OpenShift secrets created by the User Operator.
- 17
- (Optional) Indicates whether the Kafka cluster supports management of authorization ACL rules using the Kafka Admin API. When set to
false
, the User Operator will reject all resources withsimple
authorization ACL rules. This helps to avoid unnecessary exceptions in the Kafka cluster logs. The default istrue
. - 18
- (Optional) Semi-colon separated list of Cron Expressions defining the maintenance time windows during which the expiring user certificates will be renewed.
- 19
- (Optional) Configuration options for configuring the Kafka Admin client used by the User Operator in the properties format.
If you are using mTLS to connect to the Kafka cluster, specify the secrets used to authenticate connection. Otherwise, go to the next step.
Example mTLS configuration
# .... env: - name: STRIMZI_CLUSTER_CA_CERT_SECRET_NAME 1 value: my-cluster-cluster-ca-cert - name: STRIMZI_EO_KEY_SECRET_NAME 2 value: my-cluster-entity-operator-certs # ..."
- 1
- The OpenShift
Secret
that contains the public key (ca.crt
) value of the CA that signs Kafka broker certificates. - 2
- The OpenShift
Secret
that contains the certificate public key (entity-operator.crt
) and private key (entity-operator.key
) that is used for mTLS authentication against the Kafka cluster.
Deploy the User Operator.
oc create -f install/user-operator
Check the status of the deployment:
oc get deployments
Output shows the deployment name and readiness
NAME READY UP-TO-DATE AVAILABLE strimzi-user-operator 1/1 1 1
READY
shows the number of replicas that are ready/expected. The deployment is successful when theAVAILABLE
output shows1
.
Chapter 7. Enabling AMQ Streams feature gates
AMQ Streams operators use feature gates to enable or disable specific features and functions. By enabling a feature gate, you alter the behavior of the corresponding operator, thereby introducing the feature to your AMQ Streams deployment.
A feature gate might be enabled or disabled by default, depending on its level of maturity.
To modify a feature gate’s default state, use the STRIMZI_FEATURE_GATES
environment variable in the operator’s configuration. You can modify multiple feature gates using this single environment variable. Specify a comma-separated list of feature gate names and prefixes. A +
prefix enables the feature gate and a -
prefix disables it.
Example feature gate configuration that enables FeatureGate1
and disables FeatureGate2
env: - name: STRIMZI_FEATURE_GATES value: +FeatureGate1,-FeatureGate2
7.1. ControlPlaneListener feature gate
The ControlPlaneListener
feature gate has moved to GA, which means it is now permanently enabled and cannot be disabled. With ControlPlaneListener
enabled, the connections between the Kafka controller and brokers use an internal control plane listener on port 9090. Replication of data between brokers, as well as internal connections from AMQ Streams operators, Cruise Control, or the Kafka Exporter use the replication listener on port 9091.
With the ControlPlaneListener
feature gate permanently enabled, it is no longer possible to upgrade or downgrade directly between AMQ Streams 1.7 and earlier and AMQ Streams 2.3 and newer. You have to first upgrade or downgrade through one of the AMQ Streams versions in-between, disable the ControlPlaneListener
feature gate, and then downgrade or upgrade (with the feature gate enabled) to the target version.
7.2. ServiceAccountPatching feature gate
The ServiceAccountPatching
feature gate has moved to GA, which means it is now permanently enabled and cannot be disabled. With ServiceAccountPatching
enabled, the Cluster Operator always reconciles service accounts and updates them when needed. For example, when you change service account labels or annotations using the template
property of a custom resource, the operator automatically updates them on the existing service account resources.
7.3. UseStrimziPodSets feature gate
The UseStrimziPodSets
feature gate has moved to GA, which means it is now permanently enabled and cannot be disabled. Support for StatefulSets
has been removed and AMQ Streams is now always using StrimziPodSets
to manage Kafka and ZooKeeper pods.
With the UseStrimziPodSets
feature gate permanently enabled, it is no longer possible to downgrade directly from AMQ Streams 2.4 and newer to AMQ Streams 2.0 or earlier. You have to first downgrade through one of the AMQ Streams versions in-between, disable the UseStrimziPodSets
feature gate, and then downgrade to AMQ Streams 2.0 or earlier.
7.4. (Preview) UseKRaft feature gate
The UseKRaft
feature gate has a default state of disabled.
The UseKRaft
feature gate deploys the Kafka cluster in the KRaft (Kafka Raft metadata) mode without ZooKeeper. ZooKeeper and KRaft are mechanisms used to manage metadata and coordinate operations in Kafka clusters. KRaft mode eliminates the need for an external coordination service like ZooKeeper. In KRaft mode, Kafka nodes take on the roles of brokers, controllers, or both. They collectively manage the metadata, which is replicated across partitions. Controllers are responsible for coordinating operations and maintaining the cluster’s state.
This feature gate is currently intended only for development and testing.
KRaft mode is not ready for production in Apache Kafka or in AMQ Streams.
Enabling the UseKRaft
feature gate requires the KafkaNodePools
feature gate to be enabled as well. To deploy a Kafka cluster in KRaft mode, you must use the KafkaNodePool
resources. For more details and examples, see Section 6.3.2, “(Preview) Deploying Kafka node pools”.
When the UseKRaft
feature gate is enabled, the Kafka cluster is deployed without ZooKeeper. The .spec.zookeeper
properties in the Kafka
custom resource are ignored, but still need to be present. The UseKRaft
feature gate provides an API that configures Kafka cluster nodes and their roles. The API is still in development and is expected to change before the KRaft mode is production-ready.
Currently, the KRaft mode in AMQ Streams has the following major limitations:
- Moving from Kafka clusters with ZooKeeper to KRaft clusters or the other way around is not supported.
- Controller-only nodes cannot undergo rolling updates or be updated individually.
- Upgrades and downgrades of Apache Kafka versions or the AMQ Streams operator are not supported. Users might need to delete the cluster, upgrade the operator and deploy a new Kafka cluster.
-
Only the Unidirectional Topic Operator is supported in KRaft mode. You can enable it using the
UnidirectionalTopicOperator
feature gate. The Bidirectional Topic Operator is not supported and when theUnidirectionalTopicOperator
feature gate is not enabled, thespec.entityOperator.topicOperator
property must be removed from theKafka
custom resource. -
JBOD storage is not supported. The
type: jbod
storage can be used, but the JBOD array can contain only one disk.
Enabling the UseKRaft feature gate
To enable the UseKRaft
feature gate, specify +UseKRaft,+KafkaNodePools
in the STRIMZI_FEATURE_GATES
environment variable in the Cluster Operator configuration.
7.5. StableConnectIdentities feature gate
The StableConnectIdentities
feature gate has a default state of disabled.
The StableConnectIdentities
feature gate uses StrimziPodSet
resources to manage Kafka Connect and Kafka MirrorMaker 2 pods instead of using OpenShift Deployment
resources. StrimziPodSets
give the pods stable names and stable addresses, which do not change during rolling upgrades. This helps to minimize the number of rebalances of connector tasks.
Enabling the StableConnectIdentities
feature gate
To enable the StableConnectIdentities
feature gate, specify +StableConnectIdentities
in the STRIMZI_FEATURE_GATES
environment variable in the Cluster Operator configuration.
The StableConnectIdentities
feature gate must be disabled when downgrading to AMQ Streams 2.3 and earlier versions.
7.6. (Preview) KafkaNodePools feature gate
The KafkaNodePools
feature gate has a default state of disabled.
The KafkaNodePools
feature gate introduces a new KafkaNodePool
custom resource that enables the configuration of different pools of Apache Kafka nodes.
A node pool refers to a distinct group of Kafka nodes within a Kafka cluster. Each pool has its own unique configuration, which includes mandatory settings such as the number of replicas, storage configuration, and a list of assigned roles. You can assign the controller role, broker role, or both roles to all nodes in the pool in the .spec.roles
field. When used with a ZooKeeper-based Apache Kafka cluster, it must be set to the broker
role. When used with the UseKRaft
feature gate, it can be set to broker
, controller
, or both.
In addition, a node pool can have its own configuration of resource requests and limits, Java JVM options, and resource templates. Configuration options not set in the KafkaNodePool
resource are inherited from the Kafka
custom resource.
The KafkaNodePool
resources use a strimzi.io/cluster
label to indicate to which Kafka cluster they belong. The label must be set to the name of the Kafka
custom resource.
Examples of the KafkaNodePool
resources can be found in the example configuration files provided by AMQ Streams.
Enabling the KafkaNodePools feature gate
To enable the KafkaNodePools
feature gate, specify +KafkaNodePools
in the STRIMZI_FEATURE_GATES
environment variable in the Cluster Operator configuration. The Kafka
custom resource using the node pools must also have the annotation strimzi.io/node-pools: enabled
.
7.7. (Preview) UnidirectionalTopicOperator feature gate
The UnidirectionalTopicOperator
feature gate has a default state of disabled.
The UnidirectionalTopicOperator
feature gate introduces a unidirectional topic management mode for creating Kafka topics using the KafkaTopic
resource. Unidirectional mode is compatible with using KRaft for cluster management. With unidirectional mode, you create Kafka topics using the KafkaTopic
resource, which are then managed by the Topic Operator. Any configuration changes to a topic outside the KafkaTopic
resource are reverted. For more information on topic management, see Section 9.1, “Topic management modes”.
Enabling the UnidirectionalTopicOperator feature gate
To enable the UnidirectionalTopicOperator
feature gate, specify +UnidirectionalTopicOperator
in the STRIMZI_FEATURE_GATES
environment variable in the Cluster Operator configuration. For the KafkaTopic
custom resource to use this feature, the strimzi.io/managed
annotation is set to true
by default.
7.8. Feature gate releases
Feature gates have three stages of maturity:
- Alpha — typically disabled by default
- Beta — typically enabled by default
- General Availability (GA) — typically always enabled
Alpha stage features might be experimental or unstable, subject to change, or not sufficiently tested for production use. Beta stage features are well tested and their functionality is not likely to change. GA stage features are stable and should not change in the future. Alpha and beta stage features are removed if they do not prove to be useful.
-
The
ControlPlaneListener
feature gate moved to GA stage in AMQ Streams 2.3. It is now permanently enabled and cannot be disabled. -
The
ServiceAccountPatching
feature gate moved to GA stage in AMQ Streams 2.3. It is now permanently enabled and cannot be disabled. -
The
UseStrimziPodSets
feature gate moved to GA stage in AMQ Streams 2.5 and the support for StatefulSets is completely removed. It is now permanently enabled and cannot be disabled. -
The
UseKRaft
feature gate is available for development only and does not currently have a planned release for moving to the beta phase. -
The
StableConnectIdentities
feature gate is in alpha stage and is disabled by default. -
The
KafkaNodePools
feature gate is in alpha stage and is disabled by default. -
The
UnidirectionalTopicOperator
feature gate is in alpha stage and is disabled by default.
Feature gates might be removed when they reach GA. This means that the feature was incorporated into the AMQ Streams core features and can no longer be disabled.
Feature gate | Alpha | Beta | GA |
---|---|---|---|
| 1.8 | 2.0 | 2.3 |
| 1.8 | 2.0 | 2.3 |
| 2.1 | 2.3 | 2.5 |
| 2.2 | - | - |
| 2.4 | - | - |
| 2.5 | - | - |
| 2.5 | - | - |
If a feature gate is enabled, you may need to disable it before upgrading or downgrading from a specific AMQ Streams version. The following table shows which feature gates you need to disable when upgrading or downgrading AMQ Streams versions.
Disable Feature gate | Upgrading from AMQ Streams version | Downgrading to AMQ Streams version |
---|---|---|
| 1.7 and earlier | 1.7 and earlier |
| - | 2.0 and earlier |
| - | 2.3 and earlier |
Chapter 8. Configuring a deployment
Configure and manage an AMQ Streams deployment to your precise needs using AMQ Streams custom resources. AMQ Streams provides example custom resources with each release, allowing you to configure and create instances of supported Kafka components. Fine-tune your deployment by configuring custom resources to include additional features according to your specific requirements. For specific areas of configuration, namely metrics, logging, and external configuration for Kafka Connect connectors, you can also use ConfigMap
resources. By using a ConfigMap
resource to incorporate configuration, you centralize maintenance. You can also use configuration providers to load configuration from external sources, which we recommend for supplying the credentials for Kafka Connect connector configuration.
Use custom resources to configure and create instances of the following components:
- Kafka clusters
- Kafka Connect clusters
- Kafka MirrorMaker
- Kafka Bridge
- Cruise Control
You can also use custom resource configuration to manage your instances or modify your deployment to introduce additional features. This might include configuration that supports the following:
- (Preview) Specifying node pools
- Securing client access to Kafka brokers
- Accessing Kafka brokers from outside the cluster
- Creating topics
- Creating users (clients)
- Controlling feature gates
- Changing logging frequency
- Allocating resource limits and requests
- Introducing features, such as AMQ Streams Drain Cleaner, Cruise Control, or distributed tracing.
The AMQ Streams Custom Resource API Reference describes the properties you can use in your configuration.
Labels applied to a custom resource are also applied to the OpenShift resources making up its cluster. This provides a convenient mechanism for resources to be labeled as required.
Applying changes to a custom resource configuration file
You add configuration to a custom resource using spec
properties. After adding the configuration, you can use oc
to apply the changes to a custom resource configuration file:
oc apply -f <kafka_configuration_file>
8.1. Using example configuration files
Further enhance your deployment by incorporating additional supported configuration. Example configuration files are provided with the downloadable release artifacts from the AMQ Streams software downloads page.
The example files include only the essential properties and values for custom resources by default. You can download and apply the examples using the oc
command-line tool. The examples can serve as a starting point when building your own Kafka component configuration for deployment.
If you installed AMQ Streams using the Operator, you can still download the example files and use them to upload configuration.
The release artifacts include an examples
directory that contains the configuration examples.
Example configuration files provided with AMQ Streams
examples ├── user 1 ├── topic 2 ├── security 3 │ ├── tls-auth │ ├── scram-sha-512-auth │ └── keycloak-authorization ├── mirror-maker 4 ├── metrics 5 ├── kafka 6 │ └── nodepools 7 ├── cruise-control 8 ├── connect 9 └── bridge 10
- 1
KafkaUser
custom resource configuration, which is managed by the User Operator.- 2
KafkaTopic
custom resource configuration, which is managed by Topic Operator.- 3
- Authentication and authorization configuration for Kafka components. Includes example configuration for TLS and SCRAM-SHA-512 authentication. The Red Hat Single Sign-On example includes
Kafka
custom resource configuration and a Red Hat Single Sign-On realm specification. You can use the example to try Red Hat Single Sign-On authorization services. There is also an example with enabledoauth
authentication andkeycloak
authorization metrics. - 4
Kafka
custom resource configuration for a deployment of Mirror Maker. Includes example configuration for replication policy and synchronization frequency.- 5
- Metrics configuration, including Prometheus installation and Grafana dashboard files.
- 6
Kafka
custom resource configuration for a deployment of Kafka. Includes example configuration for an ephemeral or persistent single or multi-node deployment.- 7
- (Preview)
KafkaNodePool
configuration for Kafka nodes in a Kafka cluster. Includes example configuration for nodes in clusters that use KRaft (Kafka Raft metadata) mode or ZooKeeper. - 8
Kafka
custom resource with a deployment configuration for Cruise Control. IncludesKafkaRebalance
custom resources to generate optimization proposals from Cruise Control, with example configurations to use the default or user optimization goals.- 9
KafkaConnect
andKafkaConnector
custom resource configuration for a deployment of Kafka Connect. Includes example configurations for a single or multi-node deployment.- 10
KafkaBridge
custom resource configuration for a deployment of Kafka Bridge.
8.2. Configuring Kafka
Update the spec
properties of the Kafka
custom resource to configure your Kafka deployment.
As well as configuring Kafka, you can add configuration for ZooKeeper and the AMQ Streams Operators. Common configuration properties, such as logging and healthchecks, are configured independently for each component.
Configuration options that are particularly important include the following:
- Resource requests (CPU / Memory)
- JVM options for maximum and minimum memory allocation
- Listeners for connecting clients to Kafka brokers (and authentication of clients)
- Authentication
- Storage
- Rack awareness
- Metrics
- Cruise Control for cluster rebalancing
For a deeper understanding of the Kafka cluster configuration options, refer to the AMQ Streams Custom Resource API Reference.
Kafka versions
The inter.broker.protocol.version
property for the Kafka config
must be the version supported by the specified Kafka version (spec.kafka.version
). The property represents the version of Kafka protocol used in a Kafka cluster.
From Kafka 3.0.0, when the inter.broker.protocol.version
is set to 3.0
or higher, the log.message.format.version
option is ignored and doesn’t need to be set.
An update to the inter.broker.protocol.version
is required when upgrading your Kafka version. For more information, see Upgrading Kafka.
Managing TLS certificates
When deploying Kafka, the Cluster Operator automatically sets up and renews TLS certificates to enable encryption and authentication within your cluster. If required, you can manually renew the cluster and clients CA certificates before their renewal period starts. You can also replace the keys used by the cluster and clients CA certificates. For more information, see Renewing CA certificates manually and Replacing private keys.
Example Kafka
custom resource configuration
apiVersion: kafka.strimzi.io/v1beta2 kind: Kafka metadata: name: my-cluster spec: kafka: replicas: 3 1 version: 3.5.0 2 logging: 3 type: inline loggers: kafka.root.logger.level: INFO resources: 4 requests: memory: 64Gi cpu: "8" limits: memory: 64Gi cpu: "12" readinessProbe: 5 initialDelaySeconds: 15 timeoutSeconds: 5 livenessProbe: initialDelaySeconds: 15 timeoutSeconds: 5 jvmOptions: 6 -Xms: 8192m -Xmx: 8192m image: my-org/my-image:latest 7 listeners: 8 - name: plain 9 port: 9092 10 type: internal 11 tls: false 12 configuration: useServiceDnsDomain: true 13 - name: tls port: 9093 type: internal tls: true authentication: 14 type: tls - name: external 15 port: 9094 type: route tls: true configuration: brokerCertChainAndKey: 16 secretName: my-secret certificate: my-certificate.crt key: my-key.key authorization: 17 type: simple config: 18 auto.create.topics.enable: "false" offsets.topic.replication.factor: 3 transaction.state.log.replication.factor: 3 transaction.state.log.min.isr: 2 default.replication.factor: 3 min.insync.replicas: 2 inter.broker.protocol.version: "3.5" storage: 19 type: persistent-claim 20 size: 10000Gi rack: 21 topologyKey: topology.kubernetes.io/zone metricsConfig: 22 type: jmxPrometheusExporter valueFrom: configMapKeyRef: 23 name: my-config-map key: my-key # ... zookeeper: 24 replicas: 3 25 logging: 26 type: inline loggers: zookeeper.root.logger: INFO resources: requests: memory: 8Gi cpu: "2" limits: memory: 8Gi cpu: "2" jvmOptions: -Xms: 4096m -Xmx: 4096m storage: type: persistent-claim size: 1000Gi metricsConfig: # ... entityOperator: 27 tlsSidecar: 28 resources: requests: cpu: 200m memory: 64Mi limits: cpu: 500m memory: 128Mi topicOperator: watchedNamespace: my-topic-namespace reconciliationIntervalSeconds: 60 logging: 29 type: inline loggers: rootLogger.level: INFO resources: requests: memory: 512Mi cpu: "1" limits: memory: 512Mi cpu: "1" userOperator: watchedNamespace: my-topic-namespace reconciliationIntervalSeconds: 60 logging: 30 type: inline loggers: rootLogger.level: INFO resources: requests: memory: 512Mi cpu: "1" limits: memory: 512Mi cpu: "1" kafkaExporter: 31 # ... cruiseControl: 32 # ...
- 1
- The number of replica nodes.
- 2
- Kafka version, which can be changed to a supported version by following the upgrade procedure.
- 3
- Kafka loggers and log levels added directly (
inline
) or indirectly (external
) through a ConfigMap. A custom Log4j configuration must be placed under thelog4j.properties
key in the ConfigMap. For the Kafkakafka.root.logger.level
logger, you can set the log level to INFO, ERROR, WARN, TRACE, DEBUG, FATAL or OFF. - 4
- Requests for reservation of supported resources, currently
cpu
andmemory
, and limits to specify the maximum resources that can be consumed. - 5
- Healthchecks to know when to restart a container (liveness) and when a container can accept traffic (readiness).
- 6
- JVM configuration options to optimize performance for the Virtual Machine (VM) running Kafka.
- 7
- ADVANCED OPTION: Container image configuration, which is recommended only in special situations.
- 8
- Listeners configure how clients connect to the Kafka cluster via bootstrap addresses. Listeners are configured as internal or external listeners for connection from inside or outside the OpenShift cluster.
- 9
- Name to identify the listener. Must be unique within the Kafka cluster.
- 10
- Port number used by the listener inside Kafka. The port number has to be unique within a given Kafka cluster. Allowed port numbers are 9092 and higher with the exception of ports 9404 and 9999, which are already used for Prometheus and JMX. Depending on the listener type, the port number might not be the same as the port number that connects Kafka clients.
- 11
- Listener type specified as
internal
orcluster-ip
(to expose Kafka using per-brokerClusterIP
services), or for external listeners, asroute
(OpenShift only),loadbalancer
,nodeport
oringress
(Kubernetes only). - 12
- Enables TLS encryption for each listener. Default is
false
. TLS encryption has to be enabled, by setting it totrue
, forroute
andingress
type listeners. - 13
- Defines whether the fully-qualified DNS names including the cluster service suffix (usually
.cluster.local
) are assigned. - 14
- Listener authentication mechanism specified as mTLS, SCRAM-SHA-512, or token-based OAuth 2.0.
- 15
- External listener configuration specifies how the Kafka cluster is exposed outside OpenShift, such as through a
route
,loadbalancer
ornodeport
. - 16
- Optional configuration for a Kafka listener certificate managed by an external CA (certificate authority). The
brokerCertChainAndKey
specifies aSecret
that contains a server certificate and a private key. You can configure Kafka listener certificates on any listener with enabled TLS encryption. - 17
- Authorization enables simple, OAUTH 2.0, or OPA authorization on the Kafka broker. Simple authorization uses the
AclAuthorizer
Kafka plugin. - 18
- Broker configuration. Standard Apache Kafka configuration may be provided, restricted to those properties not managed directly by AMQ Streams.
- 19
- Storage size for persistent volumes may be increased and additional volumes may be added to JBOD storage.
- 20
- Persistent storage has additional configuration options, such as a storage
id
andclass
for dynamic volume provisioning. - 21
- Rack awareness configuration to spread replicas across different racks, data centers, or availability zones. The
topologyKey
must match a node label containing the rack ID. The example used in this configuration specifies a zone using the standardtopology.kubernetes.io/zone
label. - 22
- Prometheus metrics enabled. In this example, metrics are configured for the Prometheus JMX Exporter (the default metrics exporter).
- 23
- Rules for exporting metrics in Prometheus format to a Grafana dashboard through the Prometheus JMX Exporter, which are enabled by referencing a ConfigMap containing configuration for the Prometheus JMX exporter. You can enable metrics without further configuration using a reference to a ConfigMap containing an empty file under
metricsConfig.valueFrom.configMapKeyRef.key
. - 24
- ZooKeeper-specific configuration, which contains properties similar to the Kafka configuration.
- 25
- The number of ZooKeeper nodes. ZooKeeper clusters or ensembles usually run with an odd number of nodes, typically three, five, or seven. The majority of nodes must be available in order to maintain an effective quorum. If the ZooKeeper cluster loses its quorum, it will stop responding to clients and the Kafka brokers will stop working. Having a stable and highly available ZooKeeper cluster is crucial for AMQ Streams.
- 26
- ZooKeeper loggers and log levels.
- 27
- Entity Operator configuration, which specifies the configuration for the Topic Operator and User Operator.
- 28
- Entity Operator TLS sidecar configuration. Entity Operator uses the TLS sidecar for secure communication with ZooKeeper.
- 29
- Specified Topic Operator loggers and log levels. This example uses
inline
logging. - 30
- Specified User Operator loggers and log levels.
- 31
- Kafka Exporter configuration. Kafka Exporter is an optional component for extracting metrics data from Kafka brokers, in particular consumer lag data. For Kafka Exporter to be able to work properly, consumer groups need to be in use.
- 32
- Optional configuration for Cruise Control, which is used to rebalance the Kafka cluster.
8.2.1. Setting limits on brokers using the Kafka Static Quota plugin
Use the Kafka Static Quota plugin to set throughput and storage limits on brokers in your Kafka cluster. You enable the plugin and set limits by configuring the Kafka
resource. You can set a byte-rate threshold and storage quotas to put limits on the clients interacting with your brokers.
You can set byte-rate thresholds for producer and consumer bandwidth. The total limit is distributed across all clients accessing the broker. For example, you can set a byte-rate threshold of 40 MBps for producers. If two producers are running, they are each limited to a throughput of 20 MBps.
Storage quotas throttle Kafka disk storage limits between a soft limit and hard limit. The limits apply to all available disk space. Producers are slowed gradually between the soft and hard limit. The limits prevent disks filling up too quickly and exceeding their capacity. Full disks can lead to issues that are hard to rectify. The hard limit is the maximum storage limit.
For JBOD storage, the limit applies across all disks. If a broker is using two 1 TB disks and the quota is 1.1 TB, one disk might fill and the other disk will be almost empty.
Prerequisites
- The Cluster Operator that manages the Kafka cluster is running.
Procedure
Add the plugin properties to the
config
of theKafka
resource.The plugin properties are shown in this example configuration.
Example Kafka Static Quota plugin configuration
apiVersion: kafka.strimzi.io/v1beta2 kind: Kafka metadata: name: my-cluster spec: kafka: # ... config: client.quota.callback.class: io.strimzi.kafka.quotas.StaticQuotaCallback 1 client.quota.callback.static.produce: 1000000 2 client.quota.callback.static.fetch: 1000000 3 client.quota.callback.static.storage.soft: 400000000000 4 client.quota.callback.static.storage.hard: 500000000000 5 client.quota.callback.static.storage.check-interval: 5 6
- 1
- Loads the Kafka Static Quota plugin.
- 2
- Sets the producer byte-rate threshold. 1 MBps in this example.
- 3
- Sets the consumer byte-rate threshold. 1 MBps in this example.
- 4
- Sets the lower soft limit for storage. 400 GB in this example.
- 5
- Sets the higher hard limit for storage. 500 GB in this example.
- 6
- Sets the interval in seconds between checks on storage. 5 seconds in this example. You can set this to 0 to disable the check.
Update the resource.
oc apply -f <kafka_configuration_file>
Additional resources
8.2.2. Default ZooKeeper configuration values
When deploying ZooKeeper with AMQ Streams, some of the default configuration set by AMQ Streams differs from the standard ZooKeeper defaults. This is because AMQ Streams sets a number of ZooKeeper properties with values that are optimized for running ZooKeeper within an OpenShift environment.
The default configuration for key ZooKeeper properties in AMQ Streams is as follows:
Property | Default value | Description |
---|---|---|
| 2000 | The length of a single tick in milliseconds, which determines the length of a session timeout. |
| 5 | The maximum number of ticks that a follower is allowed to fall behind the leader in a ZooKeeper cluster. |
| 2 | The maximum number of ticks that a follower is allowed to be out of sync with the leader in a ZooKeeper cluster. |
| 1 |
Enables the |
| false | Flag to disable the ZooKeeper admin server. The admin server is not used by AMQ Streams. |
Modifying these default values as zookeeper.config
in the Kafka
custom resource may impact the behavior and performance of your ZooKeeper cluster.
8.3. (Preview) Configuring node pools
Update the spec
properties of the KafkaNodePool
custom resource to configure a node pool deployment.
The node pools feature is available as a preview. Node pools are not enabled by default, so you must enable the KafkaNodePools
feature gate before using them.
A node pool refers to a distinct group of Kafka nodes within a Kafka cluster. Each pool has its own unique configuration, which includes mandatory settings for the number of replicas, roles, and storage allocation.
Optionally, you can also specify values for the following properties:
-
resources
to specify memory and cpu requests and limits -
template
to specify custom configuration for pods and other OpenShift resources -
jvmOptions
to specify custom JVM configuration for heap size, runtime and other options
The Kafka
resource represents the configuration for all nodes in the Kafka cluster. The KafkaNodePool
resource represents the configuration for nodes only in the node pool. If a configuration property is not specified in KafkaNodePool
, it is inherited from the Kafka
resource. Configuration specified in the KafkaNodePool
resource takes precedence if set in both resources. For example, if both the node pool and Kafka configuration includes jvmOptions
, the values specified in the node pool configuration are used. When -Xmx: 1024m
is set in KafkaNodePool.spec.jvmOptions
and -Xms: 512m
is set in Kafka.spec.kafka.jvmOptions
, the node uses the value from its node pool configuration.
Properties from Kafka
and KafkaNodePool
schemas are not combined. To clarify, if KafkaNodePool.spec.template
includes only podSet.metadata.labels
, and Kafka.spec.kafka.template
includes podSet.metadata.annotations
and pod.metadata.labels
, the template values from the Kafka configuration are ignored since there is a template value in the node pool configuration.
Node pools can be used with Kafka clusters that operate in KRaft mode (using Kafka Raft metadata) or use ZooKeeper for cluster management. If you are using KRaft mode, you can specify roles for all nodes in the node pool to operate as brokers, controllers, or both. If you are using ZooKeeper, nodes must be set as brokers only.
KRaft mode is not ready for production in Apache Kafka or in AMQ Streams.
For a deeper understanding of the node pool configuration options, refer to the AMQ Streams Custom Resource API Reference.
While the KafkaNodePools
feature gate that enables node pools is in alpha phase, replica and storage configuration properties in the KafkaNodePool
resource must also be present in the Kafka
resource. The configuration in the Kafka
resource is ignored when node pools are used. Similarly, ZooKeeper configuration properties must also be present in the Kafka
resource when using KRaft mode. These properties are also ignored.
Example configuration for a node pool in a cluster using ZooKeeper
apiVersion: kafka.strimzi.io/v1beta2 kind: KafkaNodePool metadata: name: pool-a 1 labels: strimzi.io/cluster: my-cluster 2 spec: replicas: 3 3 roles: - broker 4 storage: 5 type: jbod volumes: - id: 0 type: persistent-claim size: 100Gi deleteClaim: false resources: 6 requests: memory: 64Gi cpu: "8" limits: memory: 64Gi cpu: "12"
- 1
- Unique name for the node pool.
- 2
- The Kafka cluster the node pool belongs to. A node pool can only belong to a single cluster.
- 3
- Number of replicas for the nodes.
- 4
- Roles for the nodes in the node pool, which can only be
broker
when using Kafka with ZooKeeper. - 5
- Storage specification for the nodes.
- 6
- Requests for reservation of supported resources, currently
cpu
andmemory
, and limits to specify the maximum resources that can be consumed.
Example configuration for a node pool in a cluster using KRaft mode
apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaNodePool
metadata:
name: kraft-dual-role
labels:
strimzi.io/cluster: my-cluster
spec:
replicas: 3
roles: 1
- controller
- broker
storage:
type: jbod
volumes:
- id: 0
type: persistent-claim
size: 20Gi
deleteClaim: false
resources:
requests:
memory: 64Gi
cpu: "8"
limits:
memory: 64Gi
cpu: "12"
- 1
- Roles for the nodes in the node pool. In this example, the nodes have dual roles as controllers and brokers.
The configuration for the Kafka
resource must be suitable for KRaft mode. Currently, KRaft mode has a number of limitations.
8.3.1. (Preview) Assigning IDs to node pools for scaling operations
This procedure describes how to use annotations for advanced node ID handling by the Cluster Operator when performing scaling operations on node pools. You specify the node IDs to use, rather than the Cluster Operator using the next ID in sequence. Management of node IDs in this way gives greater control.
To add a range of IDs, you assign the following annotations to the KafkaNodePool
resource:
-
strimzi.io/next-node-ids
to add a range of IDs that are used for new brokers -
strimzi.io/remove-node-ids
to add a range of IDs for removing existing brokers
You can specify an array of individual node IDs, ID ranges, or a combination of both. For example, you can specify the following range of IDs: [0, 1, 2, 10-20, 30]
for scaling up the Kafka node pool. This format allows you to specify a combination of individual node IDs (0
, 1
, 2
, 30
) as well as a range of IDs (10-20
).
In a typical scenario, you might specify a range of IDs for scaling up and a single node ID to remove a specific node when scaling down.
In this procedure, we add the scaling annotations to node pools as follows:
-
pool-a
is assigned a range of IDs for scaling up -
pool-b
is assigned a range of IDs for scaling down
During the scaling operation, IDs are used as follows:
- Scale up picks up the lowest available ID in the range for the new node.
- Scale down removes the node with the highest available ID in the range.
If there are gaps in the sequence of node IDs assigned in the node pool, the next node to be added is assigned an ID that fills the gap.
The annotations don’t need to be updated after every scaling operation. Any unused IDs are still valid for the next scaling event.
The Cluster Operator allows you to specify a range of IDs in either ascending or descending order, so you can define them in the order the nodes are scaled. For example, when scaling up, you can specify a range such as [1000-1999]
, and the new nodes are assigned the next lowest IDs: 1000
, 1001
, 1002
, 1003
, and so on. Conversely, when scaling down, you can specify a range like [1999-1000]
, ensuring that nodes with the next highest IDs are removed: 1003
, 1002
, 1001
, 1000
, and so on.
If you don’t specify an ID range using the annotations, the Cluster Operator follows its default behavior for handling IDs during scaling operations. Node IDs start at 0 (zero) and run sequentially across the Kafka cluster. The next lowest ID is assigned to a new node. Gaps to node IDs are filled across the cluster. This means that they might not run sequentially within a node pool. The default behavior for scaling up is to add the next lowest available node ID across the cluster; and for scaling down, it is to remove the node in the node pool with the highest available node ID. The default approach is also applied if the assigned range of IDs is misformatted, the scaling up range runs out of IDs, or the scaling down range does not apply to any in-use nodes.
Prerequisites
Procedure
Annotate the node pool with the IDs to use when scaling up or scaling down, as shown in the following examples.
IDs for scaling up are assigned to node pool
pool-a
:Assigning IDs for scaling up
oc annotate kafkanodepool pool-a strimzi.io/next-node-ids="[0,1,2,10-20,30]"
The lowest available ID from this range is used when adding a node to
pool-a
.IDs for scaling down are assigned to node pool
pool-b
:Assigning IDs for scaling down
oc annotate kafkanodepool pool-b strimzi.io/remove-node-ids="[60-50,9,8,7]"
The highest available ID from this range is removed when scaling down
pool-b
.You can now scale the node pool.
For more information, see the following:
On reconciliation, a warning is given if the annotations are misformatted.
8.3.2. (Preview) Adding nodes to a node pool
This procedure describes how to scale up a node pool to add new nodes.
In this procedure, we start with three nodes for node pool pool-a
:
Kafka nodes in the node pool
NAME READY STATUS RESTARTS my-cluster-pool-a-kafka-0 1/1 Running 0 my-cluster-pool-a-kafka-1 1/1 Running 0 my-cluster-pool-a-kafka-2 1/1 Running 0
Node IDs are appended to the name of the node on creation. We add node my-cluster-pool-a-kafka-3
, which has a node ID of 3
.
During this process, the ID of the node that holds the partition replicas changes. Consider any dependencies that reference the node ID.
Prerequisites
- The Cluster Operator must be deployed.
(Optional) For scale up operations, you can specify the range of node IDs to use.
If you have assigned a range of node IDs for the operation, the ID of the node being added is determined by the sequence of nodes given. Otherwise, the lowest available node ID across the cluster is used.
Procedure
Create a new node in the node pool.
For example, node pool
pool-a
has three replicas. We add a node by increasing the number of replicas:oc scale kafkanodepool pool-a --replicas=4
Check the status of the deployment and wait for the pods in the node pool to be created and have a status of
READY
.oc get pods -n <my_cluster_operator_namespace>
Output shows four Kafka nodes in the node pool
NAME READY STATUS RESTARTS my-cluster-pool-a-kafka-0 1/1 Running 0 my-cluster-pool-a-kafka-1 1/1 Running 0 my-cluster-pool-a-kafka-2 1/1 Running 0 my-cluster-pool-a-kafka-3 1/1 Running 0
Reassign the partitions after increasing the number of nodes in the node pool.
After scaling up a node pool, you can use the Cruise Control
add-brokers
mode to move partition replicas from existing brokers to the newly added brokers.
8.3.3. (Preview) Removing nodes from a node pool
This procedure describes how to scale down a node pool to remove nodes.
In this procedure, we start with four nodes for node pool pool-a
:
Kafka nodes in the node pool
NAME READY STATUS RESTARTS my-cluster-pool-a-kafka-0 1/1 Running 0 my-cluster-pool-a-kafka-1 1/1 Running 0 my-cluster-pool-a-kafka-2 1/1 Running 0 my-cluster-pool-a-kafka-3 1/1 Running 0
Node IDs are appended to the name of the node on creation. We remove node my-cluster-pool-a-kafka-3
, which has a node ID of 3
.
During this process, the ID of the node that holds the partition replicas changes. Consider any dependencies that reference the node ID.
Prerequisites
- The Cluster Operator must be deployed.
(Optional) For scale down operations, you can specify the range of node IDs to use in the operation.
If you have assigned a range of node IDs for the operation, the ID of the node being removed is determined by the sequence of nodes given. Otherwise, the node with the highest available ID in the node pool is removed.
Procedure
Reassign the partitions before decreasing the number of nodes in the node pool.
Before scaling down a node pool, you can use the Cruise Control
remove-brokers
mode to move partition replicas off the brokers that are going to be removed.After the reassignment process is complete, and the node being removed has no live partitions, reduce the number of Kafka nodes in the node pool.
For example, node pool
pool-a
has four replicas. We remove a node by decreasing the number of replicas:oc scale kafkanodepool pool-a --replicas=3
Output shows three Kafka nodes in the node pool
NAME READY STATUS RESTARTS my-cluster-pool-b-kafka-0 1/1 Running 0 my-cluster-pool-b-kafka-1 1/1 Running 0 my-cluster-pool-b-kafka-2 1/1 Running 0
8.3.4. (Preview) Moving nodes between node pools
This procedure describes how to move nodes between source and target Kafka node pools without downtime. You create a new node on the target node pool and reassign partitions to move data from the old node on the source node pool. When the replicas on the new node are in-sync, you can delete the old node.
In this procedure, we start with two node pools:
-
pool-a
with three replicas is the target node pool -
pool-b
with four replicas is the source node pool
We scale up pool-a
, and reassign partitions and scale down pool-b
, which results in the following:
-
pool-a
with four replicas -
pool-b
with three replicas
During this process, the ID of the node that holds the partition replicas changes. Consider any dependencies that reference the node ID.
Prerequisites
- The Cluster Operator must be deployed.
(Optional) For scale up and scale down operations, you can specify the range of node IDs to use.
If you have assigned node IDs for the operation, the ID of the node being added or removed is determined by the sequence of nodes given. Otherwise, the lowest available node ID across the cluster is used when adding nodes; and the node with the highest available ID in the node pool is removed.
Procedure
Create a new node in the target node pool.
For example, node pool
pool-a
has three replicas. We add a node by increasing the number of replicas:oc scale kafkanodepool pool-a --replicas=4
Check the status of the deployment and wait for the pods in the node pool to be created and have a status of
READY
.oc get pods -n <my_cluster_operator_namespace>
Output shows four Kafka nodes in the target node pool
NAME READY STATUS RESTARTS my-cluster-pool-a-kafka-0 1/1 Running 0 my-cluster-pool-a-kafka-1 1/1 Running 0 my-cluster-pool-a-kafka-4 1/1 Running 0 my-cluster-pool-a-kafka-5 1/1 Running 0
Node IDs are appended to the name of the node on creation. We add node
my-cluster-pool-a-kafka-5
, which has a node ID of5
.Reassign the partitions from the old node to the new node.
Before scaling down the source node pool, you can use the Cruise Control
remove-brokers
mode to move partition replicas off the brokers that are going to be removed.After the reassignment process is complete, reduce the number of Kafka nodes in the source node pool.
For example, node pool
pool-b
has four replicas. We remove a node by decreasing the number of replicas:oc scale kafkanodepool pool-b --replicas=3
The node with the highest ID within a pool is removed.
Output shows three Kafka nodes in the source node pool
NAME READY STATUS RESTARTS my-cluster-pool-b-kafka-2 1/1 Running 0 my-cluster-pool-b-kafka-3 1/1 Running 0 my-cluster-pool-b-kafka-6 1/1 Running 0
8.3.5. (Preview) Migrating existing Kafka clusters to use Kafka node pools
This procedure describes how to migrate existing Kafka clusters to use Kafka node pools. After you have updated the Kafka cluster, you can use the node pools to manage the configuration of nodes within each pool.
While the KafkaNodePools
feature gate that enables node pools is in alpha phase, replica and storage configuration in the KafkaNodePool
resource must also be present in the Kafka
resource. The configuration is ignored when node pools are being used.
Prerequisites
Procedure
Create a new
KafkaNodePool
resource.-
Name the resource
kafka
. -
Point a
strimzi.io/cluster
label to your existingKafka
resource. - Set the replica count and storage configuration to match your current Kafka cluster.
-
Set the roles to
broker
.
Example configuration for a node pool used in migrating a Kafka cluster
apiVersion: kafka.strimzi.io/v1beta2 kind: KafkaNodePool metadata: name: kafka labels: strimzi.io/cluster: my-cluster spec: replicas: 3 roles: - broker storage: type: jbod volumes: - id: 0 type: persistent-claim size: 100Gi deleteClaim: false
-
Name the resource
Apply the
KafkaNodePool
resource:oc apply -f <node_pool_configuration_file>
By applying this resource, you switch Kafka to using node pools.
There is no change or rolling update and resources are identical to how they were before.
Update the
STRIMZI_FEATURE_GATES
environment variable in the Cluster Operator configuration to include+KafkaNodePools
.env: - name: STRIMZI_FEATURE_GATES value: +KafkaNodePools
Enable the
KafkaNodePools
feature gate in theKafka
resource using thestrimzi.io/node-pools: enabled
annotation.Example configuration for a node pool in a cluster using ZooKeeper
apiVersion: kafka.strimzi.io/v1beta2 kind: Kafka metadata: name: my-cluster annotations: strimzi.io/node-pools: enabled spec: kafka: version: 3.5.0 replicas: 3 # ... storage: type: jbod volumes: - id: 0 type: persistent-claim size: 100Gi deleteClaim: false
Apply the
Kafka
resource:oc apply -f <kafka_configuration_file>
8.4. Configuring the Entity Operator
Use the entityOperator
property in Kafka.spec
to configure the Entity Operator. The Entity Operator is responsible for managing Kafka-related entities in a running Kafka cluster. It comprises the following operators:
- Topic Operator to manage Kafka topics
- User Operator to manage Kafka users
By configuring the Kafka
resource, the Cluster Operator can deploy the Entity Operator, including one or both operators. Once deployed, the operators are automatically configured to handle the topics and users of the Kafka cluster.
Each operator can only monitor a single namespace. For more information, see Section 1.2.1, “Watching AMQ Streams resources in OpenShift namespaces”.
The entityOperator
property supports several sub-properties:
-
tlsSidecar
-
topicOperator
-
userOperator
-
template
The tlsSidecar
property contains the configuration of the TLS sidecar container, which is used to communicate with ZooKeeper.
The template
property contains the configuration of the Entity Operator pod, such as labels, annotations, affinity, and tolerations. For more information on configuring templates, see Section 8.16, “Customizing OpenShift resources”.
The topicOperator
property contains the configuration of the Topic Operator. When this option is missing, the Entity Operator is deployed without the Topic Operator.
The userOperator
property contains the configuration of the User Operator. When this option is missing, the Entity Operator is deployed without the User Operator.
For more information on the properties used to configure the Entity Operator, see the EntityUserOperatorSpec
schema reference.
Example of basic configuration enabling both operators
apiVersion: kafka.strimzi.io/v1beta2 kind: Kafka metadata: name: my-cluster spec: kafka: # ... zookeeper: # ... entityOperator: topicOperator: {} userOperator: {}
If an empty object ({}
) is used for the topicOperator
and userOperator
, all properties use their default values.
When both topicOperator
and userOperator
properties are missing, the Entity Operator is not deployed.
8.4.1. Configuring the Topic Operator
Use topicOperator
properties in Kafka.spec.entityOperator
to configure the Topic Operator.
If you are using the preview of unidirectional topic management, the following properties are not used and will be ignored: Kafka.spec.entityOperator.topicOperator.zookeeperSessionTimeoutSeconds
and Kafka.spec.entityOperator.topicOperator.topicMetadataMaxAttempts
. For more information on unidirectional topic management, refer to Section 9.1, “Topic management modes”.
The following properties are supported:
watchedNamespace
-
The OpenShift namespace in which the Topic Operator watches for
KafkaTopic
resources. Default is the namespace where the Kafka cluster is deployed. reconciliationIntervalSeconds
-
The interval between periodic reconciliations in seconds. Default
120
. zookeeperSessionTimeoutSeconds
-
The ZooKeeper session timeout in seconds. Default
18
. topicMetadataMaxAttempts
-
The number of attempts at getting topic metadata from Kafka. The time between each attempt is defined as an exponential back-off. Consider increasing this value when topic creation might take more time due to the number of partitions or replicas. Default
6
. image
-
The
image
property can be used to configure the container image which will be used. To learn more, refer to the information provided on configuring theimage
property`. resources
-
The
resources
property configures the amount of resources allocated to the Topic Operator. You can specify requests and limits formemory
andcpu
resources. The requests should be enough to ensure a stable performance of the operator. logging
-
The
logging
property configures the logging of the Topic Operator. To learn more, refer to the information provided on Topic Operator logging.
Example Topic Operator configuration
apiVersion: kafka.strimzi.io/v1beta2 kind: Kafka metadata: name: my-cluster spec: kafka: # ... zookeeper: # ... entityOperator: # ... topicOperator: watchedNamespace: my-topic-namespace reconciliationIntervalSeconds: 60 resources: requests: cpu: "1" memory: 500Mi limits: cpu: "1" memory: 500Mi # ...
8.4.2. Configuring the User Operator
Use userOperator
properties in Kafka.spec.entityOperator
to configure the User Operator. The following properties are supported:
watchedNamespace
-
The OpenShift namespace in which the User Operator watches for
KafkaUser
resources. Default is the namespace where the Kafka cluster is deployed. reconciliationIntervalSeconds
-
The interval between periodic reconciliations in seconds. Default
120
. image
-
The
image
property can be used to configure the container image which will be used. To learn more, refer to the information provided on configuring theimage
property`. resources
-
The
resources
property configures the amount of resources allocated to the User Operator. You can specify requests and limits formemory
andcpu
resources. The requests should be enough to ensure a stable performance of the operator. logging
-
The
logging
property configures the logging of the User Operator. To learn more, refer to the information provided on User Operator logging. secretPrefix
-
The
secretPrefix
property adds a prefix to the name of all Secrets created from the KafkaUser resource. For example,secretPrefix: kafka-
would prefix all Secret names withkafka-
. So a KafkaUser namedmy-user
would create a Secret namedkafka-my-user
.
Example User Operator configuration
apiVersion: kafka.strimzi.io/v1beta2 kind: Kafka metadata: name: my-cluster spec: kafka: # ... zookeeper: # ... entityOperator: # ... userOperator: watchedNamespace: my-user-namespace reconciliationIntervalSeconds: 60 resources: requests: cpu: "1" memory: 500Mi limits: cpu: "1" memory: 500Mi # ...
8.5. Configuring the Cluster Operator
Use environment variables to configure the Cluster Operator. Specify the environment variables for the container image of the Cluster Operator in its Deployment
configuration file.
The Deployment
configuration file provided with the AMQ Streams release artifacts is install/cluster-operator/060-Deployment-strimzi-cluster-operator.yaml
.
You can use the following environment variables to configure the Cluster Operator. If you are running Cluster Operator replicas in standby mode, there are additional environment variables for enabling leader election.
STRIMZI_NAMESPACE
A comma-separated list of namespaces that the operator operates in. When not set, set to empty string, or set to
*
, the Cluster Operator operates in all namespaces.The Cluster Operator deployment might use the downward API to set this automatically to the namespace the Cluster Operator is deployed in.
Example configuration for Cluster Operator namespaces
env: - name: STRIMZI_NAMESPACE valueFrom: fieldRef: fieldPath: metadata.namespace
STRIMZI_FULL_RECONCILIATION_INTERVAL_MS
- Optional, default is 120000 ms. The interval between periodic reconciliations, in milliseconds.
STRIMZI_OPERATION_TIMEOUT_MS
- Optional, default 300000 ms. The timeout for internal operations, in milliseconds. Increase this value when using AMQ Streams on clusters where regular OpenShift operations take longer than usual (because of slow downloading of Docker images, for example).
STRIMZI_ZOOKEEPER_ADMIN_SESSION_TIMEOUT_MS
-
Optional, default 10000 ms. The session timeout for the Cluster Operator’s ZooKeeper admin client, in milliseconds. Increase the value if ZooKeeper requests from the Cluster Operator are regularly failing due to timeout issues. There is a maximum allowed session time set on the ZooKeeper server side via the
maxSessionTimeout
config. By default, the maximum session timeout value is 20 times the defaulttickTime
(whose default is 2000) at 40000 ms. If you require a higher timeout, change themaxSessionTimeout
ZooKeeper server configuration value. STRIMZI_OPERATIONS_THREAD_POOL_SIZE
- Optional, default 10. The worker thread pool size, which is used for various asynchronous and blocking operations that are run by the Cluster Operator.
STRIMZI_OPERATOR_NAME
- Optional, defaults to the pod’s hostname. The operator name identifies the AMQ Streams instance when emitting OpenShift events.
STRIMZI_OPERATOR_NAMESPACE
The name of the namespace where the Cluster Operator is running. Do not configure this variable manually. Use the downward API.
env: - name: STRIMZI_OPERATOR_NAMESPACE valueFrom: fieldRef: fieldPath: metadata.namespace
STRIMZI_OPERATOR_NAMESPACE_LABELS
Optional. The labels of the namespace where the AMQ Streams Cluster Operator is running. Use namespace labels to configure the namespace selector in network policies. Network policies allow the AMQ Streams Cluster Operator access only to the operands from the namespace with these labels. When not set, the namespace selector in network policies is configured to allow access to the Cluster Operator from any namespace in the OpenShift cluster.
env: - name: STRIMZI_OPERATOR_NAMESPACE_LABELS value: label1=value1,label2=value2
STRIMZI_LABELS_EXCLUSION_PATTERN
Optional, default regex pattern is
^app.kubernetes.io/(?!part-of).*
. The regex exclusion pattern used to filter labels propagation from the main custom resource to its subresources. The labels exclusion filter is not applied to labels in template sections such asspec.kafka.template.pod.metadata.labels
.env: - name: STRIMZI_LABELS_EXCLUSION_PATTERN value: "^key1.*"
STRIMZI_CUSTOM_{COMPONENT_NAME}_LABELS
Optional. One or more custom labels to apply to all the pods created by the
{COMPONENT_NAME}
custom resource. The Cluster Operator labels the pods when the custom resource is created or is next reconciled.Labels can be applied to the following components:
-
KAFKA
-
KAFKA_CONNECT
-
KAFKA_CONNECT_BUILD
-
ZOOKEEPER
-
ENTITY_OPERATOR
-
KAFKA_MIRROR_MAKER2
-
KAFKA_MIRROR_MAKER
-
CRUISE_CONTROL
-
KAFKA_BRIDGE
-
KAFKA_EXPORTER
-
STRIMZI_CUSTOM_RESOURCE_SELECTOR
Optional. The label selector to filter the custom resources handled by the Cluster Operator. The operator will operate only on those custom resources that have the specified labels set. Resources without these labels will not be seen by the operator. The label selector applies to
Kafka
,KafkaConnect
,KafkaBridge
,KafkaMirrorMaker
, andKafkaMirrorMaker2
resources.KafkaRebalance
andKafkaConnector
resources are operated only when their corresponding Kafka and Kafka Connect clusters have the matching labels.env: - name: STRIMZI_CUSTOM_RESOURCE_SELECTOR value: label1=value1,label2=value2
STRIMZI_KAFKA_IMAGES
-
Required. The mapping from the Kafka version to the corresponding Docker image containing a Kafka broker for that version. The required syntax is whitespace or comma-separated
<version>=<image>
pairs. For example3.4.0=registry.redhat.io/amq-streams/kafka-34-rhel8:2.5.2, 3.5.0=registry.redhat.io/amq-streams/kafka-35-rhel8:2.5.2
. This is used when aKafka.spec.kafka.version
property is specified but not theKafka.spec.kafka.image
in theKafka
resource. STRIMZI_DEFAULT_KAFKA_INIT_IMAGE
-
Optional, default
registry.redhat.io/amq-streams/strimzi-rhel8-operator:2.5.2
. The image name to use as default for the init container if no image is specified as thekafka-init-image
in theKafka
resource. The init container is started before the broker for initial configuration work, such as rack support. STRIMZI_KAFKA_CONNECT_IMAGES
-
Required. The mapping from the Kafka version to the corresponding Docker image of Kafka Connect for that version. The required syntax is whitespace or comma-separated
<version>=<image>
pairs. For example3.4.0=registry.redhat.io/amq-streams/kafka-34-rhel8:2.5.2, 3.5.0=registry.redhat.io/amq-streams/kafka-35-rhel8:2.5.2
. This is used when aKafkaConnect.spec.version
property is specified but not theKafkaConnect.spec.image
. STRIMZI_KAFKA_MIRROR_MAKER_IMAGES
-
Required. The mapping from the Kafka version to the corresponding Docker image of MirrorMaker for that version. The required syntax is whitespace or comma-separated
<version>=<image>
pairs. For example3.4.0=registry.redhat.io/amq-streams/kafka-34-rhel8:2.5.2, 3.5.0=registry.redhat.io/amq-streams/kafka-35-rhel8:2.5.2
. This is used when aKafkaMirrorMaker.spec.version
property is specified but not theKafkaMirrorMaker.spec.image
. STRIMZI_DEFAULT_TOPIC_OPERATOR_IMAGE
-
Optional, default
registry.redhat.io/amq-streams/strimzi-rhel8-operator:2.5.2
. The image name to use as the default when deploying the Topic Operator if no image is specified as theKafka.spec.entityOperator.topicOperator.image
in theKafka
resource. STRIMZI_DEFAULT_USER_OPERATOR_IMAGE
-
Optional, default
registry.redhat.io/amq-streams/strimzi-rhel8-operator:2.5.2
. The image name to use as the default when deploying the User Operator if no image is specified as theKafka.spec.entityOperator.userOperator.image
in theKafka
resource. STRIMZI_DEFAULT_TLS_SIDECAR_ENTITY_OPERATOR_IMAGE
-
Optional, default
registry.redhat.io/amq-streams/kafka-35-rhel8:2.5.2
. The image name to use as the default when deploying the sidecar container for the Entity Operator if no image is specified as theKafka.spec.entityOperator.tlsSidecar.image
in theKafka
resource. The sidecar provides TLS support. STRIMZI_IMAGE_PULL_POLICY
-
Optional. The
ImagePullPolicy
that is applied to containers in all pods managed by the Cluster Operator. The valid values areAlways
,IfNotPresent
, andNever
. If not specified, the OpenShift defaults are used. Changing the policy will result in a rolling update of all your Kafka, Kafka Connect, and Kafka MirrorMaker clusters. STRIMZI_IMAGE_PULL_SECRETS
-
Optional. A comma-separated list of
Secret
names. The secrets referenced here contain the credentials to the container registries where the container images are pulled from. The secrets are specified in theimagePullSecrets
property for all pods created by the Cluster Operator. Changing this list results in a rolling update of all your Kafka, Kafka Connect, and Kafka MirrorMaker clusters. STRIMZI_KUBERNETES_VERSION
Optional. Overrides the OpenShift version information detected from the API server.
Example configuration for OpenShift version override
env: - name: STRIMZI_KUBERNETES_VERSION value: | major=1 minor=16 gitVersion=v1.16.2 gitCommit=c97fe5036ef3df2967d086711e6c0c405941e14b gitTreeState=clean buildDate=2019-10-15T19:09:08Z goVersion=go1.12.10 compiler=gc platform=linux/amd64
KUBERNETES_SERVICE_DNS_DOMAIN
Optional. Overrides the default OpenShift DNS domain name suffix.
By default, services assigned in the OpenShift cluster have a DNS domain name that uses the default suffix
cluster.local
.For example, for broker kafka-0:
<cluster-name>-kafka-0.<cluster-name>-kafka-brokers.<namespace>.svc.cluster.local
The DNS domain name is added to the Kafka broker certificates used for hostname verification.
If you are using a different DNS domain name suffix in your cluster, change the
KUBERNETES_SERVICE_DNS_DOMAIN
environment variable from the default to the one you are using in order to establish a connection with the Kafka brokers.STRIMZI_CONNECT_BUILD_TIMEOUT_MS
- Optional, default 300000 ms. The timeout for building new Kafka Connect images with additional connectors, in milliseconds. Consider increasing this value when using AMQ Streams to build container images containing many connectors or using a slow container registry.
STRIMZI_NETWORK_POLICY_GENERATION
Optional, default
true
. Network policy for resources. Network policies allow connections between Kafka components.Set this environment variable to
false
to disable network policy generation. You might do this, for example, if you want to use custom network policies. Custom network policies allow more control over maintaining the connections between components.STRIMZI_DNS_CACHE_TTL
-
Optional, default
30
. Number of seconds to cache successful name lookups in local DNS resolver. Any negative value means cache forever. Zero means do not cache, which can be useful for avoiding connection errors due to long caching policies being applied. STRIMZI_POD_SET_RECONCILIATION_ONLY
-
Optional, default
false
. When set totrue
, the Cluster Operator reconciles only theStrimziPodSet
resources and any changes to the other custom resources (Kafka
,KafkaConnect
, and so on) are ignored. This mode is useful for ensuring that your pods are recreated if needed, but no other changes happen to the clusters. STRIMZI_FEATURE_GATES
- Optional. Enables or disables the features and functionality controlled by feature gates.
STRIMZI_POD_SECURITY_PROVIDER_CLASS
-
Optional. Configuration for the pluggable
PodSecurityProvider
class, which can be used to provide the security context configuration for Pods and containers.
8.5.1. Restricting access to the Cluster Operator using network policy
Use the STRIMZI_OPERATOR_NAMESPACE_LABELS
environment variable to establish network policy for the Cluster Operator using namespace labels.
The Cluster Operator can run in the same namespace as the resources it manages, or in a separate namespace. By default, the STRIMZI_OPERATOR_NAMESPACE
environment variable is configured to use the downward API to find the namespace the Cluster Operator is running in. If the Cluster Operator is running in the same namespace as the resources, only local access is required and allowed by AMQ Streams.
If the Cluster Operator is running in a separate namespace to the resources it manages, any namespace in the OpenShift cluster is allowed access to the Cluster Operator unless network policy is configured. By adding namespace labels, access to the Cluster Operator is restricted to the namespaces specified.
Network policy configured for the Cluster Operator deployment
#... env: # ... - name: STRIMZI_OPERATOR_NAMESPACE_LABELS value: label1=value1,label2=value2 #...
8.5.2. Configuring periodic reconciliation by the Cluster Operator
Use the STRIMZI_FULL_RECONCILIATION_INTERVAL_MS
variable to set the time interval for periodic reconciliations by the Cluster Operator. Replace its value with the required interval in milliseconds.
Reconciliation period configured for the Cluster Operator deployment
#... env: # ... - name: STRIMZI_FULL_RECONCILIATION_INTERVAL_MS value: "120000" #...
The Cluster Operator reacts to all notifications about applicable cluster resources received from the OpenShift cluster. If the operator is not running, or if a notification is not received for any reason, resources will get out of sync with the state of the running OpenShift cluster. In order to handle failovers properly, a periodic reconciliation process is executed by the Cluster Operator so that it can compare the state of the resources with the current cluster deployments in order to have a consistent state across all of them.
Additional resources
8.5.3. Running multiple Cluster Operator replicas with leader election
The default Cluster Operator configuration enables leader election to run multiple parallel replicas of the Cluster Operator. One replica is elected as the active leader and operates the deployed resources. The other replicas run in standby mode. When the leader stops or fails, one of the standby replicas is elected as the new leader and starts operating the deployed resources.
By default, AMQ Streams runs with a single Cluster Operator replica that is always the leader replica. When a single Cluster Operator replica stops or fails, OpenShift starts a new replica.
Running the Cluster Operator with multiple replicas is not essential. But it’s useful to have replicas on standby in case of large-scale disruptions caused by major failure. For example, suppose multiple worker nodes or an entire availability zone fails. This failure might cause the Cluster Operator pod and many Kafka pods to go down at the same time. If subsequent pod scheduling causes congestion through lack of resources, this can delay operations when running a single Cluster Operator.
8.5.3.1. Enabling leader election for Cluster Operator replicas
Configure leader election environment variables when running additional Cluster Operator replicas. The following environment variables are supported:
STRIMZI_LEADER_ELECTION_ENABLED
-
Optional, disabled (
false
) by default. Enables or disables leader election, which allows additional Cluster Operator replicas to run on standby.
Leader election is disabled by default. It is only enabled when applying this environment variable on installation.
STRIMZI_LEADER_ELECTION_LEASE_NAME
-
Required when leader election is enabled. The name of the OpenShift
Lease
resource that is used for the leader election. STRIMZI_LEADER_ELECTION_LEASE_NAMESPACE
Required when leader election is enabled. The namespace where the OpenShift
Lease
resource used for leader election is created. You can use the downward API to configure it to the namespace where the Cluster Operator is deployed.env: - name: STRIMZI_LEADER_ELECTION_LEASE_NAMESPACE valueFrom: fieldRef: fieldPath: metadata.namespace
STRIMZI_LEADER_ELECTION_IDENTITY
Required when leader election is enabled. Configures the identity of a given Cluster Operator instance used during the leader election. The identity must be unique for each operator instance. You can use the downward API to configure it to the name of the pod where the Cluster Operator is deployed.
env: - name: STRIMZI_LEADER_ELECTION_IDENTITY valueFrom: fieldRef: fieldPath: metadata.name
STRIMZI_LEADER_ELECTION_LEASE_DURATION_MS
- Optional, default 15000 ms. Specifies the duration the acquired lease is valid.
STRIMZI_LEADER_ELECTION_RENEW_DEADLINE_MS
- Optional, default 10000 ms. Specifies the period the leader should try to maintain leadership.
STRIMZI_LEADER_ELECTION_RETRY_PERIOD_MS
- Optional, default 2000 ms. Specifies the frequency of updates to the lease lock by the leader.
8.5.3.2. Configuring Cluster Operator replicas
To run additional Cluster Operator replicas in standby mode, you will need to increase the number of replicas and enable leader election. To configure leader election, use the leader election environment variables.
To make the required changes, configure the following Cluster Operator installation files located in install/cluster-operator/
:
- 060-Deployment-strimzi-cluster-operator.yaml
- 022-ClusterRole-strimzi-cluster-operator-role.yaml
- 022-RoleBinding-strimzi-cluster-operator.yaml
Leader election has its own ClusterRole
and RoleBinding
RBAC resources that target the namespace where the Cluster Operator is running, rather than the namespace it is watching.
The default deployment configuration creates a Lease
resource called strimzi-cluster-operator
in the same namespace as the Cluster Operator. The Cluster Operator uses leases to manage leader election. The RBAC resources provide the permissions to use the Lease
resource. If you use a different Lease
name or namespace, update the ClusterRole
and RoleBinding
files accordingly.
Prerequisites
-
You need an account with permission to create and manage
CustomResourceDefinition
and RBAC (ClusterRole
, andRoleBinding
) resources.
Procedure
Edit the Deployment
resource that is used to deploy the Cluster Operator, which is defined in the 060-Deployment-strimzi-cluster-operator.yaml
file.
Change the
replicas
property from the default (1) to a value that matches the required number of replicas.Increasing the number of Cluster Operator replicas
apiVersion: apps/v1 kind: Deployment metadata: name: strimzi-cluster-operator labels: app: strimzi spec: replicas: 3
Check that the leader election
env
properties are set.If they are not set, configure them.
To enable leader election,
STRIMZI_LEADER_ELECTION_ENABLED
must be set totrue
(default).In this example, the name of the lease is changed to
my-strimzi-cluster-operator
.Configuring leader election environment variables for the Cluster Operator
# ... spec containers: - name: strimzi-cluster-operator # ... env: - name: STRIMZI_LEADER_ELECTION_ENABLED value: "true" - name: STRIMZI_LEADER_ELECTION_LEASE_NAME value: "my-strimzi-cluster-operator" - name: STRIMZI_LEADER_ELECTION_LEASE_NAMESPACE valueFrom: fieldRef: fieldPath: metadata.namespace - name: STRIMZI_LEADER_ELECTION_IDENTITY valueFrom: fieldRef: fieldPath: metadata.name
For a description of the available environment variables, see Section 8.5.3.1, “Enabling leader election for Cluster Operator replicas”.
If you specified a different name or namespace for the
Lease
resource used in leader election, update the RBAC resources.(optional) Edit the
ClusterRole
resource in the022-ClusterRole-strimzi-cluster-operator-role.yaml
file.Update
resourceNames
with the name of theLease
resource.Updating the ClusterRole references to the lease
apiVersion: rbac.authorization.k8s.io/v1 kind: ClusterRole metadata: name: strimzi-cluster-operator-leader-election labels: app: strimzi rules: - apiGroups: - coordination.k8s.io resourceNames: - my-strimzi-cluster-operator # ...
(optional) Edit the
RoleBinding
resource in the022-RoleBinding-strimzi-cluster-operator.yaml
file.Update
subjects.name
andsubjects.namespace
with the name of theLease
resource and the namespace where it was created.Updating the RoleBinding references to the lease
apiVersion: rbac.authorization.k8s.io/v1 kind: RoleBinding metadata: name: strimzi-cluster-operator-leader-election labels: app: strimzi subjects: - kind: ServiceAccount name: my-strimzi-cluster-operator namespace: myproject # ...
Deploy the Cluster Operator:
oc create -f install/cluster-operator -n myproject
Check the status of the deployment:
oc get deployments -n myproject
Output shows the deployment name and readiness
NAME READY UP-TO-DATE AVAILABLE strimzi-cluster-operator 3/3 3 3
READY
shows the number of replicas that are ready/expected. The deployment is successful when theAVAILABLE
output shows the correct number of replicas.
8.5.4. Configuring Cluster Operator HTTP proxy settings
If you are running a Kafka cluster behind a HTTP proxy, you can still pass data in and out of the cluster. For example, you can run Kafka Connect with connectors that push and pull data from outside the proxy. Or you can use a proxy to connect with an authorization server.
Configure the Cluster Operator deployment to specify the proxy environment variables. The Cluster Operator accepts standard proxy configuration (HTTP_PROXY
, HTTPS_PROXY
and NO_PROXY
) as environment variables. The proxy settings are applied to all AMQ Streams containers.
The format for a proxy address is http://<ip_address>:<port_number>. To set up a proxy with a name and password, the format is http://<username>:<password>@<ip-address>:<port_number>.
Prerequisites
-
You need an account with permission to create and manage
CustomResourceDefinition
and RBAC (ClusterRole
, andRoleBinding
) resources.
Procedure
To add proxy environment variables to the Cluster Operator, update its
Deployment
configuration (install/cluster-operator/060-Deployment-strimzi-cluster-operator.yaml
).Example proxy configuration for the Cluster Operator
apiVersion: apps/v1 kind: Deployment spec: # ... template: spec: serviceAccountName: strimzi-cluster-operator containers: # ... env: # ... - name: "HTTP_PROXY" value: "http://proxy.com" 1 - name: "HTTPS_PROXY" value: "https://proxy.com" 2 - name: "NO_PROXY" value: "internal.com, other.domain.com" 3 # ...
Alternatively, edit the
Deployment
directly:oc edit deployment strimzi-cluster-operator
If you updated the YAML file instead of editing the
Deployment
directly, apply the changes:oc create -f install/cluster-operator/060-Deployment-strimzi-cluster-operator.yaml
Additional resources
8.5.5. Disabling FIPS mode using Cluster Operator configuration
AMQ Streams automatically switches to FIPS mode when running on a FIPS-enabled OpenShift cluster. Disable FIPS mode by setting the FIPS_MODE
environment variable to disabled
in the deployment configuration for the Cluster Operator. With FIPS mode disabled, AMQ Streams automatically disables FIPS in the OpenJDK for all components. With FIPS mode disabled, AMQ Streams is not FIPS compliant. The AMQ Streams operators, as well as all operands, run in the same way as if they were running on an OpenShift cluster without FIPS enabled.
Procedure
To disable the FIPS mode in the Cluster Operator, update its
Deployment
configuration (install/cluster-operator/060-Deployment-strimzi-cluster-operator.yaml
) and add theFIPS_MODE
environment variable.Example FIPS configuration for the Cluster Operator
apiVersion: apps/v1 kind: Deployment spec: # ... template: spec: serviceAccountName: strimzi-cluster-operator containers: # ... env: # ... - name: "FIPS_MODE" value: "disabled" 1 # ...
- 1
- Disables the FIPS mode.
Alternatively, edit the
Deployment
directly:oc edit deployment strimzi-cluster-operator
If you updated the YAML file instead of editing the
Deployment
directly, apply the changes:oc apply -f install/cluster-operator/060-Deployment-strimzi-cluster-operator.yaml
8.6. Configuring Kafka Connect
Update the spec
properties of the KafkaConnect
custom resource to configure your Kafka Connect deployment.
Use Kafka Connect to set up external data connections to your Kafka cluster. Use the properties of the KafkaConnect
resource to configure your Kafka Connect deployment.
For a deeper understanding of the Kafka Connect cluster configuration options, refer to the AMQ Streams Custom Resource API Reference.
KafkaConnector configuration
KafkaConnector
resources allow you to create and manage connector instances for Kafka Connect in an OpenShift-native way.
In your Kafka Connect configuration, you enable KafkaConnectors for a Kafka Connect cluster by adding the strimzi.io/use-connector-resources
annotation. You can also add a build
configuration so that AMQ Streams automatically builds a container image with the connector plugins you require for your data connections. External configuration for Kafka Connect connectors is specified through the externalConfiguration
property.
To manage connectors, you can use use KafkaConnector
custom resources or the Kafka Connect REST API. KafkaConnector
resources must be deployed to the same namespace as the Kafka Connect cluster they link to. For more information on using these methods to create, reconfigure, or delete connectors, see Adding connectors.
Connector configuration is passed to Kafka Connect as part of an HTTP request and stored within Kafka itself. ConfigMaps and Secrets are standard OpenShift resources used for storing configurations and confidential data. You can use ConfigMaps and Secrets to configure certain elements of a connector. You can then reference the configuration values in HTTP REST commands, which keeps the configuration separate and more secure, if needed. This method applies especially to confidential data, such as usernames, passwords, or certificates.
Handling high volumes of messages
You can tune the configuration to handle high volumes of messages. For more information, see Handling high volumes of messages.
Example KafkaConnect
custom resource configuration
apiVersion: kafka.strimzi.io/v1beta2 kind: KafkaConnect 1 metadata: name: my-connect-cluster annotations: strimzi.io/use-connector-resources: "true" 2 spec: replicas: 3 3 authentication: 4 type: tls certificateAndKey: certificate: source.crt key: source.key secretName: my-user-source bootstrapServers: my-cluster-kafka-bootstrap:9092 5 tls: 6 trustedCertificates: - secretName: my-cluster-cluster-cert certificate: ca.crt - secretName: my-cluster-cluster-cert certificate: ca2.crt config: 7 group.id: my-connect-cluster offset.storage.topic: my-connect-cluster-offsets config.storage.topic: my-connect-cluster-configs status.storage.topic: my-connect-cluster-status key.converter: org.apache.kafka.connect.json.JsonConverter value.converter: org.apache.kafka.connect.json.JsonConverter key.converter.schemas.enable: true value.converter.schemas.enable: true config.storage.replication.factor: 3 offset.storage.replication.factor: 3 status.storage.replication.factor: 3 build: 8 output: 9 type: docker image: my-registry.io/my-org/my-connect-cluster:latest pushSecret: my-registry-credentials plugins: 10 - name: debezium-postgres-connector artifacts: - type: tgz url: https://repo1.maven.org/maven2/io/debezium/debezium-connector-postgres/2.1.3.Final/debezium-connector-postgres-2.1.3.Final-plugin.tar.gz sha512sum: c4ddc97846de561755dc0b021a62aba656098829c70eb3ade3b817ce06d852ca12ae50c0281cc791a5a131cb7fc21fb15f4b8ee76c6cae5dd07f9c11cb7c6e79 - name: camel-telegram artifacts: - type: tgz url: https://repo.maven.apache.org/maven2/org/apache/camel/kafkaconnector/camel-telegram-kafka-connector/0.11.5/camel-telegram-kafka-connector-0.11.5-package.tar.gz sha512sum: d6d9f45e0d1dbfcc9f6d1c7ca2046168c764389c78bc4b867dab32d24f710bb74ccf2a007d7d7a8af2dfca09d9a52ccbc2831fc715c195a3634cca055185bd91 externalConfiguration: 11 env: - name: AWS_ACCESS_KEY_ID valueFrom: secretKeyRef: name: aws-creds key: awsAccessKey - name: AWS_SECRET_ACCESS_KEY valueFrom: secretKeyRef: name: aws-creds key: awsSecretAccessKey resources: 12 requests: cpu: "1" memory: 2Gi limits: cpu: "2" memory: 2Gi logging: 13 type: inline loggers: log4j.rootLogger: INFO readinessProbe: 14 initialDelaySeconds: 15 timeoutSeconds: 5 livenessProbe: initialDelaySeconds: 15 timeoutSeconds: 5 metricsConfig: 15 type: jmxPrometheusExporter valueFrom: configMapKeyRef: name: my-config-map key: my-key jvmOptions: 16 "-Xmx": "1g" "-Xms": "1g" image: my-org/my-image:latest 17 rack: topologyKey: topology.kubernetes.io/zone 18 template: 19 pod: affinity: podAntiAffinity: requiredDuringSchedulingIgnoredDuringExecution: - labelSelector: matchExpressions: - key: application operator: In values: - postgresql - mongodb topologyKey: "kubernetes.io/hostname" connectContainer: 20 env: - name: OTEL_SERVICE_NAME value: my-otel-service - name: OTEL_EXPORTER_OTLP_ENDPOINT value: "http://otlp-host:4317" tracing: type: opentelemetry 21
- 1
- Use
KafkaConnect
. - 2
- Enables KafkaConnectors for the Kafka Connect cluster.
- 3
- The number of replica nodes for the workers that run tasks.
- 4
- Authentication for the Kafka Connect cluster, specified as mTLS, token-based OAuth, SASL-based SCRAM-SHA-256/SCRAM-SHA-512, or PLAIN. By default, Kafka Connect connects to Kafka brokers using a plain text connection.
- 5
- Bootstrap server for connection to the Kafka cluster.
- 6
- TLS encryption with key names under which TLS certificates are stored in X.509 format for the cluster. If certificates are stored in the same secret, it can be listed multiple times.
- 7
- Kafka Connect configuration of workers (not connectors). Standard Apache Kafka configuration may be provided, restricted to those properties not managed directly by AMQ Streams.
- 8
- Build configuration properties for building a container image with connector plugins automatically.
- 9
- (Required) Configuration of the container registry where new images are pushed.
- 10
- (Required) List of connector plugins and their artifacts to add to the new container image. Each plugin must be configured with at least one
artifact
. - 11
- External configuration for connectors using environment variables, as shown here, or volumes. You can also use configuration provider plugins to load configuration values from external sources.
- 12
- Requests for reservation of supported resources, currently
cpu
andmemory
, and limits to specify the maximum resources that can be consumed. - 13
- Specified Kafka Connect loggers and log levels added directly (
inline
) or indirectly (external
) through a ConfigMap. A custom Log4j configuration must be placed under thelog4j.properties
orlog4j2.properties
key in the ConfigMap. For the Kafka Connectlog4j.rootLogger
logger, you can set the log level to INFO, ERROR, WARN, TRACE, DEBUG, FATAL or OFF. - 14
- Healthchecks to know when to restart a container (liveness) and when a container can accept traffic (readiness).
- 15
- Prometheus metrics, which are enabled by referencing a ConfigMap containing configuration for the Prometheus JMX exporter in this example. You can enable metrics without further configuration using a reference to a ConfigMap containing an empty file under
metricsConfig.valueFrom.configMapKeyRef.key
. - 16
- JVM configuration options to optimize performance for the Virtual Machine (VM) running Kafka Connect.
- 17
- ADVANCED OPTION: Container image configuration, which is recommended only in special situations.
- 18
- SPECIALIZED OPTION: Rack awareness configuration for the deployment. This is a specialized option intended for a deployment within the same location, not across regions. Use this option if you want connectors to consume from the closest replica rather than the leader replica. In certain cases, consuming from the closest replica can improve network utilization or reduce costs . The
topologyKey
must match a node label containing the rack ID. The example used in this configuration specifies a zone using the standardtopology.kubernetes.io/zone
label. To consume from the closest replica, enable theRackAwareReplicaSelector
in the Kafka broker configuration. - 19
- Template customization. Here a pod is scheduled with anti-affinity, so the pod is not scheduled on nodes with the same hostname.
- 20
- Environment variables are set for distributed tracing.
- 21
- Distributed tracing is enabled by using OpenTelemetry.
8.6.1. Configuring Kafka Connect user authorization
This procedure describes how to authorize user access to Kafka Connect.
When any type of authorization is being used in Kafka, a Kafka Connect user requires read/write access rights to the consumer group and the internal topics of Kafka Connect.
The properties for the consumer group and internal topics are automatically configured by AMQ Streams, or they can be specified explicitly in the spec
of the KafkaConnect
resource.
Example configuration properties in the KafkaConnect
resource
apiVersion: kafka.strimzi.io/v1beta2 kind: KafkaConnect metadata: name: my-connect spec: # ... config: group.id: my-connect-cluster 1 offset.storage.topic: my-connect-cluster-offsets 2 config.storage.topic: my-connect-cluster-configs 3 status.storage.topic: my-connect-cluster-status 4 # ... # ...
This procedure shows how access is provided when simple
authorization is being used.
Simple authorization uses ACL rules, handled by the Kafka AclAuthorizer
plugin, to provide the right level of access. For more information on configuring a KafkaUser
resource to use simple authorization, see the AclRule
schema reference.
The default values for the consumer group and topics will differ when running multiple instances.
Prerequisites
- An OpenShift cluster
- A running Cluster Operator
Procedure
Edit the
authorization
property in theKafkaUser
resource to provide access rights to the user.In the following example, access rights are configured for the Kafka Connect topics and consumer group using
literal
name values:Property Name offset.storage.topic
connect-cluster-offsets
status.storage.topic
connect-cluster-status
config.storage.topic
connect-cluster-configs
group
connect-cluster
apiVersion: kafka.strimzi.io/v1beta2 kind: KafkaUser metadata: name: my-user labels: strimzi.io/cluster: my-cluster spec: # ... authorization: type: simple acls: # access to offset.storage.topic - resource: type: topic name: connect-cluster-offsets patternType: literal operations: - Create - Describe - Read - Write host: "*" # access to status.storage.topic - resource: type: topic name: connect-cluster-status patternType: literal operations: - Create - Describe - Read - Write host: "*" # access to config.storage.topic - resource: type: topic name: connect-cluster-configs patternType: literal operations: - Create - Describe - Read - Write host: "*" # consumer group - resource: type: group name: connect-cluster patternType: literal operations: - Read host: "*"
Create or update the resource.
oc apply -f KAFKA-USER-CONFIG-FILE
8.7. Configuring Kafka MirrorMaker 2
Update the spec
properties of the KafkaMirrorMaker2
custom resource to configure your MirrorMaker 2 deployment. MirrorMaker 2 uses source cluster configuration for data consumption and target cluster configuration for data output.
MirrorMaker 2 is based on the Kafka Connect framework, connectors managing the transfer of data between clusters.
You configure MirrorMaker 2 to define the Kafka Connect deployment, including the connection details of the source and target clusters, and then run a set of MirrorMaker 2 connectors to make the connection.
MirrorMaker 2 supports topic configuration synchronization between the source and target clusters. You specify source topics in the MirrorMaker 2 configuration. MirrorMaker 2 monitors the source topics. MirrorMaker 2 detects and propagates changes to the source topics to the remote topics. Changes might include automatically creating missing topics and partitions.
In most cases you write to local topics and read from remote topics. Though write operations are not prevented on remote topics, they should be avoided.
The configuration must specify:
- Each Kafka cluster
- Connection information for each cluster, including authentication
The replication flow and direction
- Cluster to cluster
- Topic to topic
For a deeper understanding of the Kafka MirrorMaker 2 cluster configuration options, refer to the AMQ Streams Custom Resource API Reference.
MirrorMaker 2 resource configuration differs from the previous version of MirrorMaker, which is now deprecated. There is currently no legacy support, so any resources must be manually converted into the new format.
Default configuration
MirrorMaker 2 provides default configuration values for properties such as replication factors. A minimal configuration, with defaults left unchanged, would be something like this example:
Minimal configuration for MirrorMaker 2
apiVersion: kafka.strimzi.io/v1beta2 kind: KafkaMirrorMaker2 metadata: name: my-mirror-maker2 spec: version: 3.5.0 connectCluster: "my-cluster-target" clusters: - alias: "my-cluster-source" bootstrapServers: my-cluster-source-kafka-bootstrap:9092 - alias: "my-cluster-target" bootstrapServers: my-cluster-target-kafka-bootstrap:9092 mirrors: - sourceCluster: "my-cluster-source" targetCluster: "my-cluster-target" sourceConnector: {}
You can configure access control for source and target clusters using mTLS or SASL authentication. This procedure shows a configuration that uses TLS encryption and mTLS authentication for the source and target cluster.
You can specify the topics and consumer groups you wish to replicate from a source cluster in the KafkaMirrorMaker2
resource. You use the topicsPattern
and groupsPattern
properties to do this. You can provide a list of names or use a regular expression. By default, all topics and consumer groups are replicated if you do not set the topicsPattern
and groupsPattern
properties. You can also replicate all topics and consumer groups by using ".*"
as a regular expression. However, try to specify only the topics and consumer groups you need to avoid causing any unnecessary extra load on the cluster.
Handling high volumes of messages
You can tune the configuration to handle high volumes of messages. For more information, see Handling high volumes of messages.
Example KafkaMirrorMaker2
custom resource configuration
apiVersion: kafka.strimzi.io/v1beta2 kind: KafkaMirrorMaker2 metadata: name: my-mirror-maker2 spec: version: 3.5.0 1 replicas: 3 2 connectCluster: "my-cluster-target" 3 clusters: 4 - alias: "my-cluster-source" 5 authentication: 6 certificateAndKey: certificate: source.crt key: source.key secretName: my-user-source type: tls bootstrapServers: my-cluster-source-kafka-bootstrap:9092 7 tls: 8 trustedCertificates: - certificate: ca.crt secretName: my-cluster-source-cluster-ca-cert - alias: "my-cluster-target" 9 authentication: 10 certificateAndKey: certificate: target.crt key: target.key secretName: my-user-target type: tls bootstrapServers: my-cluster-target-kafka-bootstrap:9092 11 config: 12 config.storage.replication.factor: 1 offset.storage.replication.factor: 1 status.storage.replication.factor: 1 tls: 13 trustedCertificates: - certificate: ca.crt secretName: my-cluster-target-cluster-ca-cert mirrors: 14 - sourceCluster: "my-cluster-source" 15 targetCluster: "my-cluster-target" 16 sourceConnector: 17 tasksMax: 10 18 autoRestart: 19 enabled: true config: replication.factor: 1 20 offset-syncs.topic.replication.factor: 1 21 sync.topic.acls.enabled: "false" 22 refresh.topics.interval.seconds: 60 23 replication.policy.class: "org.apache.kafka.connect.mirror.IdentityReplicationPolicy" 24 heartbeatConnector: 25 autoRestart: enabled: true config: heartbeats.topic.replication.factor: 1 26 replication.policy.class: "org.apache.kafka.connect.mirror.IdentityReplicationPolicy" checkpointConnector: 27 autoRestart: enabled: true config: checkpoints.topic.replication.factor: 1 28 refresh.groups.interval.seconds: 600 29 sync.group.offsets.enabled: true 30 sync.group.offsets.interval.seconds: 60 31 emit.checkpoints.interval.seconds: 60 32 replication.policy.class: "org.apache.kafka.connect.mirror.IdentityReplicationPolicy" topicsPattern: "topic1|topic2|topic3" 33 groupsPattern: "group1|group2|group3" 34 resources: 35 requests: cpu: "1" memory: 2Gi limits: cpu: "2" memory: 2Gi logging: 36 type: inline loggers: connect.root.logger.level: INFO readinessProbe: 37 initialDelaySeconds: 15 timeoutSeconds: 5 livenessProbe: initialDelaySeconds: 15 timeoutSeconds: 5 jvmOptions: 38 "-Xmx": "1g" "-Xms": "1g" image: my-org/my-image:latest 39 rack: topologyKey: topology.kubernetes.io/zone 40 template: 41 pod: affinity: podAntiAffinity: requiredDuringSchedulingIgnoredDuringExecution: - labelSelector: matchExpressions: - key: application operator: In values: - postgresql - mongodb topologyKey: "kubernetes.io/hostname" connectContainer: 42 env: - name: OTEL_SERVICE_NAME value: my-otel-service - name: OTEL_EXPORTER_OTLP_ENDPOINT value: "http://otlp-host:4317" tracing: type: opentelemetry 43 externalConfiguration: 44 env: - name: AWS_ACCESS_KEY_ID valueFrom: secretKeyRef: name: aws-creds key: awsAccessKey - name: AWS_SECRET_ACCESS_KEY valueFrom: secretKeyRef: name: aws-creds key: awsSecretAccessKey
- 1
- The Kafka Connect and Mirror Maker 2.0 version, which will always be the same.
- 2
- The number of replica nodes for the workers that run tasks.
- 3
- Kafka cluster alias for Kafka Connect, which must specify the target Kafka cluster. The Kafka cluster is used by Kafka Connect for its internal topics.
- 4
- Specification for the Kafka clusters being synchronized.
- 5
- Cluster alias for the source Kafka cluster.
- 6
- Authentication for the source cluster, specified as mTLS, token-based OAuth, SASL-based SCRAM-SHA-256/SCRAM-SHA-512, or PLAIN.
- 7
- Bootstrap server for connection to the source Kafka cluster.
- 8
- TLS encryption with key names under which TLS certificates are stored in X.509 format for the source Kafka cluster. If certificates are stored in the same secret, it can be listed multiple times.
- 9
- Cluster alias for the target Kafka cluster.
- 10
- Authentication for the target Kafka cluster is configured in the same way as for the source Kafka cluster.
- 11
- Bootstrap server for connection to the target Kafka cluster.
- 12
- Kafka Connect configuration. Standard Apache Kafka configuration may be provided, restricted to those properties not managed directly by AMQ Streams.
- 13
- TLS encryption for the target Kafka cluster is configured in the same way as for the source Kafka cluster.
- 14
- MirrorMaker 2 connectors.
- 15
- Cluster alias for the source cluster used by the MirrorMaker 2 connectors.
- 16
- Cluster alias for the target cluster used by the MirrorMaker 2 connectors.
- 17
- Configuration for the
MirrorSourceConnector
that creates remote topics. Theconfig
overrides the default configuration options. - 18
- The maximum number of tasks that the connector may create. Tasks handle the data replication and run in parallel. If the infrastructure supports the processing overhead, increasing this value can improve throughput. Kafka Connect distributes the tasks between members of the cluster. If there are more tasks than workers, workers are assigned multiple tasks. For sink connectors, aim to have one task for each topic partition consumed. For source connectors, the number of tasks that can run in parallel may also depend on the external system. The connector creates fewer than the maximum number of tasks if it cannot achieve the parallelism.
- 19
- Enables automatic restarts of failed connectors and tasks. Up to seven restart attempts are made, after which restarts must be made manually.
- 20
- Replication factor for mirrored topics created at the target cluster.
- 21
- Replication factor for the
MirrorSourceConnector
offset-syncs
internal topic that maps the offsets of the source and target clusters. - 22
- When ACL rules synchronization is enabled, ACLs are applied to synchronized topics. The default is
true
. This feature is not compatible with the User Operator. If you are using the User Operator, set this property tofalse
. - 23
- Optional setting to change the frequency of checks for new topics. The default is for a check every 10 minutes.
- 24
- Adds a policy that overrides the automatic renaming of remote topics. Instead of prepending the name with the name of the source cluster, the topic retains its original name. This optional setting is useful for active/passive backups and data migration. The property must be specified for all connectors. For bidirectional (active/active) replication, use the
DefaultReplicationPolicy
class to automatically rename remote topics and specify thereplication.policy.separator
property for all connectors to add a custom separator. - 25
- Configuration for the
MirrorHeartbeatConnector
that performs connectivity checks. Theconfig
overrides the default configuration options. - 26
- Replication factor for the heartbeat topic created at the target cluster.
- 27
- Configuration for the
MirrorCheckpointConnector
that tracks offsets. Theconfig
overrides the default configuration options. - 28
- Replication factor for the checkpoints topic created at the target cluster.
- 29
- Optional setting to change the frequency of checks for new consumer groups. The default is for a check every 10 minutes.
- 30
- Optional setting to synchronize consumer group offsets, which is useful for recovery in an active/passive configuration. Synchronization is not enabled by default.
- 31
- If the synchronization of consumer group offsets is enabled, you can adjust the frequency of the synchronization.
- 32
- Adjusts the frequency of checks for offset tracking. If you change the frequency of offset synchronization, you might also need to adjust the frequency of these checks.
- 33
- Topic replication from the source cluster defined as a comma-separated list or regular expression pattern. The source connector replicates the specified topics. The checkpoint connector tracks offsets for the specified topics. Here we request three topics by name.
- 34
- Consumer group replication from the source cluster defined as a comma-separated list or regular expression pattern. The checkpoint connector replicates the specified consumer groups. Here we request three consumer groups by name.
- 35
- Requests for reservation of supported resources, currently
cpu
andmemory
, and limits to specify the maximum resources that can be consumed. - 36
- Specified Kafka Connect loggers and log levels added directly (
inline
) or indirectly (external
) through a ConfigMap. A custom Log4j configuration must be placed under thelog4j.properties
orlog4j2.properties
key in the ConfigMap. For the Kafka Connectlog4j.rootLogger
logger, you can set the log level to INFO, ERROR, WARN, TRACE, DEBUG, FATAL or OFF. - 37
- Healthchecks to know when to restart a container (liveness) and when a container can accept traffic (readiness).
- 38
- JVM configuration options to optimize performance for the Virtual Machine (VM) running Kafka MirrorMaker.
- 39
- ADVANCED OPTION: Container image configuration, which is recommended only in special situations.
- 40
- SPECIALIZED OPTION: Rack awareness configuration for the deployment. This is a specialized option intended for a deployment within the same location, not across regions. Use this option if you want connectors to consume from the closest replica rather than the leader replica. In certain cases, consuming from the closest replica can improve network utilization or reduce costs . The
topologyKey
must match a node label containing the rack ID. The example used in this configuration specifies a zone using the standardtopology.kubernetes.io/zone
label. To consume from the closest replica, enable theRackAwareReplicaSelector
in the Kafka broker configuration. - 41
- Template customization. Here a pod is scheduled with anti-affinity, so the pod is not scheduled on nodes with the same hostname.
- 42
- Environment variables are set for distributed tracing.
- 43
- Distributed tracing is enabled by using OpenTelemetry.
- 44
- External configuration for an OpenShift Secret mounted to Kafka MirrorMaker as an environment variable. You can also use configuration provider plugins to load configuration values from external sources.
8.7.1. Configuring active/active or active/passive modes
You can use MirrorMaker 2 in active/passive or active/active cluster configurations.
- active/active cluster configuration
- An active/active configuration has two active clusters replicating data bidirectionally. Applications can use either cluster. Each cluster can provide the same data. In this way, you can make the same data available in different geographical locations. As consumer groups are active in both clusters, consumer offsets for replicated topics are not synchronized back to the source cluster.
- active/passive cluster configuration
- An active/passive configuration has an active cluster replicating data to a passive cluster. The passive cluster remains on standby. You might use the passive cluster for data recovery in the event of system failure.
The expectation is that producers and consumers connect to active clusters only. A MirrorMaker 2 cluster is required at each target destination.
8.7.1.1. Bidirectional replication (active/active)
The MirrorMaker 2 architecture supports bidirectional replication in an active/active cluster configuration.
Each cluster replicates the data of the other cluster using the concept of source and remote topics. As the same topics are stored in each cluster, remote topics are automatically renamed by MirrorMaker 2 to represent the source cluster. The name of the originating cluster is prepended to the name of the topic.
Figure 8.1. Topic renaming

By flagging the originating cluster, topics are not replicated back to that cluster.
The concept of replication through remote topics is useful when configuring an architecture that requires data aggregation. Consumers can subscribe to source and remote topics within the same cluster, without the need for a separate aggregation cluster.
8.7.1.2. Unidirectional replication (active/passive)
The MirrorMaker 2 architecture supports unidirectional replication in an active/passive cluster configuration.
You can use an active/passive cluster configuration to make backups or migrate data to another cluster. In this situation, you might not want automatic renaming of remote topics.
You can override automatic renaming by adding IdentityReplicationPolicy
to the source connector configuration. With this configuration applied, topics retain their original names.
8.7.2. Configuring MirrorMaker 2 connectors
Use MirrorMaker 2 connector configuration for the internal connectors that orchestrate the synchronization of data between Kafka clusters.
MirrorMaker 2 consists of the following connectors:
MirrorSourceConnector
-
The source connector replicates topics from a source cluster to a target cluster. It also replicates ACLs and is necessary for the
MirrorCheckpointConnector
to run. MirrorCheckpointConnector
- The checkpoint connector periodically tracks offsets. If enabled, it also synchronizes consumer group offsets between the source and target cluster.
MirrorHeartbeatConnector
- The heartbeat connector periodically checks connectivity between the source and target cluster.
The following table describes connector properties and the connectors you configure to use them.
Property | sourceConnector | checkpointConnector | heartbeatConnector |
---|---|---|---|
| ✓ | ✓ | ✓ |
| ✓ | ✓ | ✓ |
| ✓ | ✓ | ✓ |
| ✓ | ✓ | |
| ✓ | ✓ | |
| ✓ | ✓ | |
| ✓ | ||
| ✓ | ||
| ✓ | ||
| ✓ | ||
| ✓ | ||
| ✓ | ||
| ✓ | ||
| ✓ | ||
| ✓ | ||
| ✓ | ||
| ✓ | ||
| ✓ | ||
| ✓ | ||
| ✓ | ||
| ✓ | ||
| ✓ | ||
| ✓ | ||
| ✓ | ||
| ✓ | ||
| ✓ | ||
| ✓ | ||
| ✓ |
8.7.2.1. Changing the location of the consumer group offsets topic
MirrorMaker 2 tracks offsets for consumer groups using internal topics.
offset-syncs
topic-
The
offset-syncs
topic maps the source and target offsets for replicated topic partitions from record metadata. checkpoints
topic-
The
checkpoints
topic maps the last committed offset in the source and target cluster for replicated topic partitions in each consumer group.
As they are used internally by MirrorMaker 2, you do not interact directly with these topics.
MirrorCheckpointConnector
emits checkpoints for offset tracking. Offsets for the checkpoints
topic are tracked at predetermined intervals through configuration. Both topics enable replication to be fully restored from the correct offset position on failover.
The location of the offset-syncs
topic is the source
cluster by default. You can use the offset-syncs.topic.location
connector configuration to change this to the target
cluster. You need read/write access to the cluster that contains the topic. Using the target cluster as the location of the offset-syncs
topic allows you to use MirrorMaker 2 even if you have only read access to the source cluster.
8.7.2.2. Synchronizing consumer group offsets
The __consumer_offsets
topic stores information on committed offsets for each consumer group. Offset synchronization periodically transfers the consumer offsets for the consumer groups of a source cluster into the consumer offsets topic of a target cluster.
Offset synchronization is particularly useful in an active/passive configuration. If the active cluster goes down, consumer applications can switch to the passive (standby) cluster and pick up from the last transferred offset position.
To use topic offset synchronization, enable the synchronization by adding sync.group.offsets.enabled
to the checkpoint connector configuration, and setting the property to true
. Synchronization is disabled by default.
When using the IdentityReplicationPolicy
in the source connector, it also has to be configured in the checkpoint connector configuration. This ensures that the mirrored consumer offsets will be applied for the correct topics.
Consumer offsets are only synchronized for consumer groups that are not active in the target cluster. If the consumer groups are in the target cluster, the synchronization cannot be performed and an UNKNOWN_MEMBER_ID
error is returned.
If enabled, the synchronization of offsets from the source cluster is made periodically. You can change the frequency by adding sync.group.offsets.interval.seconds
and emit.checkpoints.interval.seconds
to the checkpoint connector configuration. The properties specify the frequency in seconds that the consumer group offsets are synchronized, and the frequency of checkpoints emitted for offset tracking. The default for both properties is 60 seconds. You can also change the frequency of checks for new consumer groups using the refresh.groups.interval.seconds
property, which is performed every 10 minutes by default.
Because the synchronization is time-based, any switchover by consumers to a passive cluster will likely result in some duplication of messages.
If you have an application written in Java, you can use the RemoteClusterUtils.java
utility to synchronize offsets through the application. The utility fetches remote offsets for a consumer group from the checkpoints
topic.
8.7.2.3. Deciding when to use the heartbeat connector
The heartbeat connector emits heartbeats to check connectivity between source and target Kafka clusters. An internal heartbeat
topic is replicated from the source cluster, which means that the heartbeat connector must be connected to the source cluster. The heartbeat
topic is located on the target cluster, which allows it to do the following:
- Identify all source clusters it is mirroring data from
- Verify the liveness and latency of the mirroring process
This helps to make sure that the process is not stuck or has stopped for any reason. While the heartbeat connector can be a valuable tool for monitoring the mirroring processes between Kafka clusters, it’s not always necessary to use it. For example, if your deployment has low network latency or a small number of topics, you might prefer to monitor the mirroring process using log messages or other monitoring tools. If you decide not to use the heartbeat connector, simply omit it from your MirrorMaker 2 configuration.
8.7.2.4. Aligning the configuration of MirrorMaker 2 connectors
To ensure that MirrorMaker 2 connectors work properly, make sure to align certain configuration settings across connectors. Specifically, ensure that the following properties have the same value across all applicable connectors:
-
replication.policy.class
-
replication.policy.separator
-
offset-syncs.topic.location
-
topic.filter.class
For example, the value for replication.policy.class
must be the same for the source, checkpoint, and heartbeat connectors. Mismatched or missing settings cause issues with data replication or offset syncing, so it’s essential to keep all relevant connectors configured with the same settings.
8.7.3. Configuring MirrorMaker 2 connector producers and consumers
MirrorMaker 2 connectors use internal producers and consumers. If needed, you can configure these producers and consumers to override the default settings.
For example, you can increase the batch.size
for the source producer that sends topics to the target Kafka cluster to better accommodate large volumes of messages.
Producer and consumer configuration options depend on the MirrorMaker 2 implementation, and may be subject to change.
The following tables describe the producers and consumers for each of the connectors and where you can add configuration.
Type | Description | Configuration |
---|---|---|
Producer | Sends topic messages to the target Kafka cluster. Consider tuning the configuration of this producer when it is handling large volumes of data. |
|
Producer |
Writes to the |
|
Consumer | Retrieves topic messages from the source Kafka cluster. |
|
Type | Description | Configuration |
---|---|---|
Producer | Emits consumer offset checkpoints. |
|
Consumer |
Loads the |
|
You can set offset-syncs.topic.location
to target
to use the target Kafka cluster as the location of the offset-syncs
topic.
Type | Description | Configuration |
---|---|---|
Producer | Emits heartbeats. |
|
The following example shows how you configure the producers and consumers.
Example configuration for connector producers and consumers
apiVersion: kafka.strimzi.io/v1beta2 kind: KafkaMirrorMaker2 metadata: name: my-mirror-maker2 spec: version: 3.5.0 # ... mirrors: - sourceCluster: "my-cluster-source" targetCluster: "my-cluster-target" sourceConnector: tasksMax: 5 config: producer.override.batch.size: 327680 producer.override.linger.ms: 100 producer.request.timeout.ms: 30000 consumer.fetch.max.bytes: 52428800 # ... checkpointConnector: config: producer.override.request.timeout.ms: 30000 consumer.max.poll.interval.ms: 300000 # ... heartbeatConnector: config: producer.override.request.timeout.ms: 30000 # ...
8.7.4. Specifying a maximum number of data replication tasks
Connectors create the tasks that are responsible for moving data in and out of Kafka. Each connector comprises one or more tasks that are distributed across a group of worker pods that run the tasks. Increasing the number of tasks can help with performance issues when replicating a large number of partitions or synchronizing the offsets of a large number of consumer groups.
Tasks run in parallel. Workers are assigned one or more tasks. A single task is handled by one worker pod, so you don’t need more worker pods than tasks. If there are more tasks than workers, workers handle multiple tasks.
You can specify the maximum number of connector tasks in your MirrorMaker configuration using the tasksMax
property. Without specifying a maximum number of tasks, the default setting is a single task.
The heartbeat connector always uses a single task.
The number of tasks that are started for the source and checkpoint connectors is the lower value between the maximum number of possible tasks and the value for tasksMax
. For the source connector, the maximum number of tasks possible is one for each partition being replicated from the source cluster. For the checkpoint connector, the maximum number of tasks possible is one for each consumer group being replicated from the source cluster. When setting a maximum number of tasks, consider the number of partitions and the hardware resources that support the process.
If the infrastructure supports the processing overhead, increasing the number of tasks can improve throughput and latency. For example, adding more tasks reduces the time taken to poll the source cluster when there is a high number of partitions or consumer groups.
Increasing the number of tasks for the source connector is useful when you have a large number of partitions.
Increasing the number of tasks for the source connector
apiVersion: kafka.strimzi.io/v1beta2 kind: KafkaMirrorMaker2 metadata: name: my-mirror-maker2 spec: # ... mirrors: - sourceCluster: "my-cluster-source" targetCluster: "my-cluster-target" sourceConnector: tasksMax: 10 # ...
Increasing the number of tasks for the checkpoint connector is useful when you have a large number of consumer groups.
Increasing the number of tasks for the checkpoint connector
apiVersion: kafka.strimzi.io/v1beta2 kind: KafkaMirrorMaker2 metadata: name: my-mirror-maker2 spec: # ... mirrors: - sourceCluster: "my-cluster-source" targetCluster: "my-cluster-target" checkpointConnector: tasksMax: 10 # ...
By default, MirrorMaker 2 checks for new consumer groups every 10 minutes. You can adjust the refresh.groups.interval.seconds
configuration to change the frequency. Take care when adjusting lower. More frequent checks can have a negative impact on performance.
8.7.4.1. Checking connector task operations
If you are using Prometheus and Grafana to monitor your deployment, you can check MirrorMaker 2 performance. The example MirrorMaker 2 Grafana dashboard provided with AMQ Streams shows the following metrics related to tasks and latency.
- The number of tasks
- Replication latency
- Offset synchronization latency
Additional resources
8.7.5. Synchronizing ACL rules for remote topics
When using MirrorMaker 2 with AMQ Streams, it is possible to synchronize ACL rules for remote topics. However, this feature is only available if you are not using the User Operator.
If you are using type: simple
authorization without the User Operator, the ACL rules that manage access to brokers also apply to remote topics. This means that users who have read access to a source topic can also read its remote equivalent.
OAuth 2.0 authorization does not support access to remote topics in this way.
8.7.6. Securing a Kafka MirrorMaker 2 deployment
This procedure describes in outline the configuration required to secure a MirrorMaker 2 deployment.
You need separate configuration for the source Kafka cluster and the target Kafka cluster. You also need separate user configuration to provide the credentials required for MirrorMaker to connect to the source and target Kafka clusters.
For the Kafka clusters, you specify internal listeners for secure connections within an OpenShift cluster and external listeners for connections outside the OpenShift cluster.
You can configure authentication and authorization mechanisms. The security options implemented for the source and target Kafka clusters must be compatible with the security options implemented for MirrorMaker 2.
After you have created the cluster and user authentication credentials, you specify them in your MirrorMaker configuration for secure connections.
In this procedure, the certificates generated by the Cluster Operator are used, but you can replace them by installing your own certificates. You can also configure your listener to use a Kafka listener certificate managed by an external CA (certificate authority).
Before you start
Before starting this procedure, take a look at the example configuration files provided by AMQ Streams. They include examples for securing a deployment of MirrorMaker 2 using mTLS or SCRAM-SHA-512 authentication. The examples specify internal listeners for connecting within an OpenShift cluster.
The examples provide the configuration for full authorization, including all the ACLs needed by MirrorMaker 2 to allow operations on the source and target Kafka clusters.
Prerequisites
- AMQ Streams is running
- Separate namespaces for source and target clusters
The procedure assumes that the source and target Kafka clusters are installed to separate namespaces If you want to use the Topic Operator, you’ll need to do this. The Topic Operator only watches a single cluster in a specified namespace.
By separating the clusters into namespaces, you will need to copy the cluster secrets so they can be accessed outside the namespace. You need to reference the secrets in the MirrorMaker configuration.
Procedure
Configure two
Kafka
resources, one to secure the source Kafka cluster and one to secure the target Kafka cluster.You can add listener configuration for authentication and enable authorization.
In this example, an internal listener is configured for a Kafka cluster with TLS encryption and mTLS authentication. Kafka
simple
authorization is enabled.Example source Kafka cluster configuration with TLS encryption and mTLS authentication
apiVersion: kafka.strimzi.io/v1beta2 kind: Kafka metadata: name: my-source-cluster spec: kafka: version: 3.5.0 replicas: 1 listeners: - name: tls port: 9093 type: internal tls: true authentication: type: tls authorization: type: simple config: offsets.topic.replication.factor: 1 transaction.state.log.replication.factor: 1 transaction.state.log.min.isr: 1 default.replication.factor: 1 min.insync.replicas: 1 inter.broker.protocol.version: "3.5" storage: type: jbod volumes: - id: 0 type: persistent-claim size: 100Gi deleteClaim: false zookeeper: replicas: 1 storage: type: persistent-claim size: 100Gi deleteClaim: false entityOperator: topicOperator: {} userOperator: {}
Example target Kafka cluster configuration with TLS encryption and mTLS authentication
apiVersion: kafka.strimzi.io/v1beta2 kind: Kafka metadata: name: my-target-cluster spec: kafka: version: 3.5.0 replicas: 1 listeners: - name: tls port: 9093 type: internal tls: true authentication: type: tls authorization: type: simple config: offsets.topic.replication.factor: 1 transaction.state.log.replication.factor: 1 transaction.state.log.min.isr: 1 default.replication.factor: 1 min.insync.replicas: 1 inter.broker.protocol.version: "3.5" storage: type: jbod volumes: - id: 0 type: persistent-claim size: 100Gi deleteClaim: false zookeeper: replicas: 1 storage: type: persistent-claim size: 100Gi deleteClaim: false entityOperator: topicOperator: {} userOperator: {}
Create or update the
Kafka
resources in separate namespaces.oc apply -f <kafka_configuration_file> -n <namespace>
The Cluster Operator creates the listeners and sets up the cluster and client certificate authority (CA) certificates to enable authentication within the Kafka cluster.
The certificates are created in the secret
<cluster_name>-cluster-ca-cert
.Configure two
KafkaUser
resources, one for a user of the source Kafka cluster and one for a user of the target Kafka cluster.-
Configure the same authentication and authorization types as the corresponding source and target Kafka cluster. For example, if you used
tls
authentication and thesimple
authorization type in theKafka
configuration for the source Kafka cluster, use the same in theKafkaUser
configuration. Configure the ACLs needed by MirrorMaker 2 to allow operations on the source and target Kafka clusters.
The ACLs are used by the internal MirrorMaker connectors, and by the underlying Kafka Connect framework.
Example source user configuration for mTLS authentication
apiVersion: kafka.strimzi.io/v1beta2 kind: KafkaUser metadata: name: my-source-user labels: strimzi.io/cluster: my-source-cluster spec: authentication: type: tls authorization: type: simple acls: # MirrorSourceConnector - resource: # Not needed if offset-syncs.topic.location=target type: topic name: mm2-offset-syncs.my-target-cluster.internal operations: - Create - DescribeConfigs - Read - Write - resource: # Needed for every topic which is mirrored type: topic name: "*" operations: - DescribeConfigs - Read # MirrorCheckpointConnector - resource: type: cluster operations: - Describe - resource: # Needed for every group for which offsets are synced type: group name: "*" operations: - Describe - resource: # Not needed if offset-syncs.topic.location=target type: topic name: mm2-offset-syncs.my-target-cluster.internal operations: - Read
Example target user configuration for mTLS authentication
apiVersion: kafka.strimzi.io/v1beta2 kind: KafkaUser metadata: name: my-target-user labels: strimzi.io/cluster: my-target-cluster spec: authentication: type: tls authorization: type: simple acls: # Underlying Kafka Connect internal topics to store configuration, offsets, or status - resource: type: group name: mirrormaker2-cluster operations: - Read - resource: type: topic name: mirrormaker2-cluster-configs operations: - Create - Describe - DescribeConfigs - Read - Write - resource: type: topic name: mirrormaker2-cluster-status operations: - Create - Describe - DescribeConfigs - Read - Write - resource: type: topic name: mirrormaker2-cluster-offsets operations: - Create - Describe - DescribeConfigs - Read - Write # MirrorSourceConnector - resource: # Needed for every topic which is mirrored type: topic name: "*" operations: - Create - Alter - AlterConfigs - Write # MirrorCheckpointConnector - resource: type: cluster operations: - Describe - resource: type: topic name: my-source-cluster.checkpoints.internal operations: - Create - Describe - Read - Write - resource: # Needed for every group for which the offset is synced type: group name: "*" operations: - Read - Describe # MirrorHeartbeatConnector - resource: type: topic name: heartbeats operations: - Create - Describe - Write
NoteYou can use a certificate issued outside the User Operator by setting
type
totls-external
. For more information, see theKafkaUserSpec
schema reference.-
Configure the same authentication and authorization types as the corresponding source and target Kafka cluster. For example, if you used
Create or update a
KafkaUser
resource in each of the namespaces you created for the source and target Kafka clusters.oc apply -f <kafka_user_configuration_file> -n <namespace>
The User Operator creates the users representing the client (MirrorMaker), and the security credentials used for client authentication, based on the chosen authentication type.
The User Operator creates a new secret with the same name as the
KafkaUser
resource. The secret contains a private and public key for mTLS authentication. The public key is contained in a user certificate, which is signed by the clients CA.Configure a
KafkaMirrorMaker2
resource with the authentication details to connect to the source and target Kafka clusters.Example MirrorMaker 2 configuration with TLS encryption and mTLS authentication
apiVersion: kafka.strimzi.io/v1beta2 kind: KafkaMirrorMaker2 metadata: name: my-mirror-maker-2 spec: version: 3.5.0 replicas: 1 connectCluster: "my-target-cluster" clusters: - alias: "my-source-cluster" bootstrapServers: my-source-cluster-kafka-bootstrap:9093 tls: 1 trustedCertificates: - secretName: my-source-cluster-cluster-ca-cert certificate: ca.crt authentication: 2 type: tls certificateAndKey: secretName: my-source-user certificate: user.crt key: user.key - alias: "my-target-cluster" bootstrapServers: my-target-cluster-kafka-bootstrap:9093 tls: 3 trustedCertificates: - secretName: my-target-cluster-cluster-ca-cert certificate: ca.crt authentication: 4 type: tls certificateAndKey: secretName: my-target-user certificate: user.crt key: user.key config: # -1 means it will use the default replication factor configured in the broker config.storage.replication.factor: -1 offset.storage.replication.factor: -1 status.storage.replication.factor: -1 mirrors: - sourceCluster: "my-source-cluster" targetCluster: "my-target-cluster" sourceConnector: config: replication.factor: 1 offset-syncs.topic.replication.factor: 1 sync.topic.acls.enabled: "false" heartbeatConnector: config: heartbeats.topic.replication.factor: 1 checkpointConnector: config: checkpoints.topic.replication.factor: 1 sync.group.offsets.enabled: "true" topicsPattern: "topic1|topic2|topic3" groupsPattern: "group1|group2|group3"
- 1
- The TLS certificates for the source Kafka cluster. If they are in a separate namespace, copy the cluster secrets from the namespace of the Kafka cluster.
- 2
- The user authentication for accessing the source Kafka cluster using the TLS mechanism.
- 3
- The TLS certificates for the target Kafka cluster.
- 4
- The user authentication for accessing the target Kafka cluster.
Create or update the
KafkaMirrorMaker2
resource in the same namespace as the target Kafka cluster.oc apply -f <mirrormaker2_configuration_file> -n <namespace_of_target_cluster>
8.8. Configuring Kafka MirrorMaker (deprecated)
Update the spec
properties of the KafkaMirrorMaker
custom resource to configure your Kafka MirrorMaker deployment.
You can configure access control for producers and consumers using TLS or SASL authentication. This procedure shows a configuration that uses TLS encryption and mTLS authentication on the consumer and producer side.
For a deeper understanding of the Kafka MirrorMaker cluster configuration options, refer to the AMQ Streams Custom Resource API Reference.
Kafka MirrorMaker 1 (referred to as just MirrorMaker in the documentation) has been deprecated in Apache Kafka 3.0.0 and will be removed in Apache Kafka 4.0.0. As a result, the KafkaMirrorMaker
custom resource which is used to deploy Kafka MirrorMaker 1 has been deprecated in AMQ Streams as well. The KafkaMirrorMaker
resource will be removed from AMQ Streams when we adopt Apache Kafka 4.0.0. As a replacement, use the KafkaMirrorMaker2
custom resource with the IdentityReplicationPolicy
.
Example KafkaMirrorMaker
custom resource configuration
apiVersion: kafka.strimzi.io/v1beta2 kind: KafkaMirrorMaker metadata: name: my-mirror-maker spec: replicas: 3 1 consumer: bootstrapServers: my-source-cluster-kafka-bootstrap:9092 2 groupId: "my-group" 3 numStreams: 2 4 offsetCommitInterval: 120000 5 tls: 6 trustedCertificates: - secretName: my-source-cluster-ca-cert certificate: ca.crt authentication: 7 type: tls certificateAndKey: secretName: my-source-secret certificate: public.crt key: private.key config: 8 max.poll.records: 100 receive.buffer.bytes: 32768 producer: bootstrapServers: my-target-cluster-kafka-bootstrap:9092 abortOnSendFailure: false 9 tls: trustedCertificates: - secretName: my-target-cluster-ca-cert certificate: ca.crt authentication: type: tls certificateAndKey: secretName: my-target-secret certificate: public.crt key: private.key config: compression.type: gzip batch.size: 8192 include: "my-topic|other-topic" 10 resources: 11 requests: cpu: "1" memory: 2Gi limits: cpu: "2" memory: 2Gi logging: 12 type: inline loggers: mirrormaker.root.logger: INFO readinessProbe: 13 initialDelaySeconds: 15 timeoutSeconds: 5 livenessProbe: initialDelaySeconds: 15 timeoutSeconds: 5 metricsConfig: 14 type: jmxPrometheusExporter valueFrom: configMapKeyRef: name: my-config-map key: my-key jvmOptions: 15 "-Xmx": "1g" "-Xms": "1g" image: my-org/my-image:latest 16 template: 17 pod: affinity: podAntiAffinity: requiredDuringSchedulingIgnoredDuringExecution: - labelSelector: matchExpressions: - key: application operator: In values: - postgresql - mongodb topologyKey: "kubernetes.io/hostname" mirrorMakerContainer: 18 env: - name: OTEL_SERVICE_NAME value: my-otel-service - name: OTEL_EXPORTER_OTLP_ENDPOINT value: "http://otlp-host:4317" tracing: 19 type: opentelemetry
- 1
- The number of replica nodes.
- 2
- Bootstrap servers for consumer and producer.
- 3
- Group ID for the consumer.
- 4
- The number of consumer streams.
- 5
- The offset auto-commit interval in milliseconds.
- 6
- TLS encryption with key names under which TLS certificates are stored in X.509 format for consumer or producer. If certificates are stored in the same secret, it can be listed multiple times.
- 7
- Authentication for consumer or producer, specified as mTLS, token-based OAuth, SASL-based SCRAM-SHA-256/SCRAM-SHA-512, or PLAIN.
- 8
- Kafka configuration options for consumer and producer.
- 9
- If the
abortOnSendFailure
property is set totrue
, Kafka MirrorMaker will exit and the container will restart following a send failure for a message. - 10
- A list of included topics mirrored from source to target Kafka cluster.
- 11
- Requests for reservation of supported resources, currently
cpu
andmemory
, and limits to specify the maximum resources that can be consumed. - 12
- Specified loggers and log levels added directly (
inline
) or indirectly (external
) through a ConfigMap. A custom Log4j configuration must be placed under thelog4j.properties
orlog4j2.properties
key in the ConfigMap. MirrorMaker has a single logger calledmirrormaker.root.logger
. You can set the log level to INFO, ERROR, WARN, TRACE, DEBUG, FATAL or OFF. - 13
- Healthchecks to know when to restart a container (liveness) and when a container can accept traffic (readiness).
- 14
- Prometheus metrics, which are enabled by referencing a ConfigMap containing configuration for the Prometheus JMX exporter in this example. You can enable metrics without further configuration using a reference to a ConfigMap containing an empty file under
metricsConfig.valueFrom.configMapKeyRef.key
. - 15
- JVM configuration options to optimize performance for the Virtual Machine (VM) running Kafka MirrorMaker.
- 16
- ADVANCED OPTION: Container image configuration, which is recommended only in special situations.
- 17
- Template customization. Here a pod is scheduled with anti-affinity, so the pod is not scheduled on nodes with the same hostname.
- 18
- Environment variables are set for distributed tracing.
- 19
- Distributed tracing is enabled by using OpenTelemetry.Warning
With the
abortOnSendFailure
property set tofalse
, the producer attempts to send the next message in a topic. The original message might be lost, as there is no attempt to resend a failed message.
8.9. Configuring the Kafka Bridge
Update the spec
properties of the KafkaBridge
custom resource to configure your Kafka Bridge deployment.
In order to prevent issues arising when client consumer requests are processed by different Kafka Bridge instances, address-based routing must be employed to ensure that requests are routed to the right Kafka Bridge instance. Additionally, each independent Kafka Bridge instance must have a replica. A Kafka Bridge instance has its own state which is not shared with another instances.
For a deeper understanding of the Kafka Bridge cluster configuration options, refer to the AMQ Streams Custom Resource API Reference.
Example KafkaBridge
custom resource configuration
apiVersion: kafka.strimzi.io/v1beta2 kind: KafkaBridge metadata: name: my-bridge spec: replicas: 3 1 bootstrapServers: <cluster_name>-cluster-kafka-bootstrap:9092 2 tls: 3 trustedCertificates: - secretName: my-cluster-cluster-cert certificate: ca.crt - secretName: my-cluster-cluster-cert certificate: ca2.crt authentication: 4 type: tls certificateAndKey: secretName: my-secret certificate: public.crt key: private.key http: 5 port: 8080 cors: 6 allowedOrigins: "https://strimzi.io" allowedMethods: "GET,POST,PUT,DELETE,OPTIONS,PATCH" consumer: 7 config: auto.offset.reset: earliest producer: 8 config: delivery.timeout.ms: 300000 resources: 9 requests: cpu: "1" memory: 2Gi limits: cpu: "2" memory: 2Gi logging: 10 type: inline loggers: logger.bridge.level: INFO # enabling DEBUG just for send operation logger.send.name: "http.openapi.operation.send" logger.send.level: DEBUG jvmOptions: 11 "-Xmx": "1g" "-Xms": "1g" readinessProbe: 12 initialDelaySeconds: 15 timeoutSeconds: 5 livenessProbe: initialDelaySeconds: 15 timeoutSeconds: 5 image: my-org/my-image:latest 13 template: 14 pod: affinity: podAntiAffinity: requiredDuringSchedulingIgnoredDuringExecution: - labelSelector: matchExpressions: - key: application operator: In values: - postgresql - mongodb topologyKey: "kubernetes.io/hostname" bridgeContainer: 15 env: - name: OTEL_SERVICE_NAME value: my-otel-service - name: OTEL_EXPORTER_OTLP_ENDPOINT value: "http://otlp-host:4317" tracing: type: opentelemetry 16
- 1
- The number of replica nodes.
- 2
- Bootstrap server for connection to the target Kafka cluster. Use the name of the Kafka cluster as the <cluster_name>.
- 3
- TLS encryption with key names under which TLS certificates are stored in X.509 format for the source Kafka cluster. If certificates are stored in the same secret, it can be listed multiple times.
- 4
- Authentication for the Kafka Bridge cluster, specified as mTLS, token-based OAuth, SASL-based SCRAM-SHA-256/SCRAM-SHA-512, or PLAIN. By default, the Kafka Bridge connects to Kafka brokers without authentication.
- 5
- HTTP access to Kafka brokers.
- 6
- CORS access specifying selected resources and access methods. Additional HTTP headers in requests describe the origins that are permitted access to the Kafka cluster.
- 7
- Consumer configuration options.
- 8
- Producer configuration options.
- 9
- Requests for reservation of supported resources, currently
cpu
andmemory
, and limits to specify the maximum resources that can be consumed. - 10
- Specified Kafka Bridge loggers and log levels added directly (
inline
) or indirectly (external
) through a ConfigMap. A custom Log4j configuration must be placed under thelog4j.properties
orlog4j2.properties
key in the ConfigMap. For the Kafka Bridge loggers, you can set the log level to INFO, ERROR, WARN, TRACE, DEBUG, FATAL or OFF. - 11
- JVM configuration options to optimize performance for the Virtual Machine (VM) running the Kafka Bridge.
- 12
- Healthchecks to know when to restart a container (liveness) and when a container can accept traffic (readiness).
- 13
- Optional: Container image configuration, which is recommended only in special situations.
- 14
- Template customization. Here a pod is scheduled with anti-affinity, so the pod is not scheduled on nodes with the same hostname.
- 15
- Environment variables are set for distributed tracing.
- 16
- Distributed tracing is enabled by using OpenTelemetry.
Additional resources
8.10. Configuring Kafka and ZooKeeper storage
As stateful applications, Kafka and ZooKeeper store data on disk. AMQ Streams supports three storage types for this data:
- Ephemeral (Recommended for development only)
- Persistent
- JBOD (Kafka only not ZooKeeper)
When configuring a Kafka
resource, you can specify the type of storage used by the Kafka broker and its corresponding ZooKeeper node. You configure the storage type using the storage
property in the following resources:
-
Kafka.spec.kafka
-
Kafka.spec.zookeeper
The storage type is configured in the type
field.
Refer to the schema reference for more information on storage configuration properties:
The storage type cannot be changed after a Kafka cluster is deployed.
8.10.1. Data storage considerations
For AMQ Streams to work well, an efficient data storage infrastructure is essential. We strongly recommend using block storage. AMQ Streams is only tested for use with block storage. File storage, such as NFS, is not tested and there is no guarantee it will work.
Choose one of the following options for your block storage:
- A cloud-based block storage solution, such as Amazon Elastic Block Store (EBS)
- Persistent storage using local persistent volumes
- Storage Area Network (SAN) volumes accessed by a protocol such as Fibre Channel or iSCSI
AMQ Streams does not require OpenShift raw block volumes.
8.10.1.1. File systems
Kafka uses a file system for storing messages. AMQ Streams is compatible with the XFS and ext4 file systems, which are commonly used with Kafka. Consider the underlying architecture and requirements of your deployment when choosing and setting up your file system.
For more information, refer to Filesystem Selection in the Kafka documentation.
8.10.1.2. Disk usage
Use separate disks for Apache Kafka and ZooKeeper.
Solid-state drives (SSDs), though not essential, can improve the performance of Kafka in large clusters where data is sent to and received from multiple topics asynchronously. SSDs are particularly effective with ZooKeeper, which requires fast, low latency data access.
You do not need to provision replicated storage because Kafka and ZooKeeper both have built-in data replication.
8.10.2. Ephemeral storage
Ephemeral data storage is transient. All pods on a node share a local ephemeral storage space. Data is retained for as long as the pod that uses it is running. The data is lost when a pod is deleted. Although a pod can recover data in a highly available environment.
Because of its transient nature, ephemeral storage is only recommended for development and testing.
Ephemeral storage uses emptyDir
volumes to store data. An emptyDir
volume is created when a pod is assigned to a node. You can set the total amount of storage for the emptyDir
using the sizeLimit
property .
Ephemeral storage is not suitable for single-node ZooKeeper clusters or Kafka topics with a replication factor of 1.
To use ephemeral storage, you set the storage type configuration in the Kafka
or ZooKeeper
resource to ephemeral
.
Example ephemeral storage configuration
apiVersion: kafka.strimzi.io/v1beta2 kind: Kafka metadata: name: my-cluster spec: kafka: # ... storage: type: ephemeral # ... zookeeper: # ... storage: type: ephemeral # ...
8.10.2.1. Mount path of Kafka log directories
The ephemeral volume is used by Kafka brokers as log directories mounted into the following path:
/var/lib/kafka/data/kafka-logIDX
Where IDX
is the Kafka broker pod index. For example /var/lib/kafka/data/kafka-log0
.
8.10.3. Persistent storage
Persistent data storage retains data in the event of system disruption. For pods that use persistent data storage, data is persisted across pod failures and restarts.
A dynamic provisioning framework enables clusters to be created with persistent storage. Pod configuration uses Persistent Volume Claims (PVCs) to make storage requests on persistent volumes (PVs). PVs are storage resources that represent a storage volume. PVs are independent of the pods that use them. The PVC requests the amount of storage required when a pod is being created. The underlying storage infrastructure of the PV does not need to be understood. If a PV matches the storage criteria, the PVC is bound to the PV.
Because of its permanent nature, persistent storage is recommended for production.
PVCs can request different types of persistent storage by specifying a StorageClass. Storage classes define storage profiles and dynamically provision PVs. If a storage class is not specified, the default storage class is used. Persistent storage options might include SAN storage types or local persistent volumes.
To use persistent storage, you set the storage type configuration in the Kafka
or ZooKeeper
resource to persistent-claim
.
In the production environment, the following configuration is recommended:
-
For Kafka, configure
type: jbod
with one or moretype: persistent-claim
volumes -
For ZooKeeper, configure
type: persistent-claim
Persistent storage also has the following configuration options:
id
(optional)-
A storage identification number. This option is mandatory for storage volumes defined in a JBOD storage declaration. Default is
0
. size
(required)- The size of the persistent volume claim, for example, "1000Gi".
class
(optional)-
The OpenShift StorageClass to use for dynamic volume provisioning. Storage
class
configuration includes parameters that describe the profile of a volume in detail. selector
(optional)- Configuration to specify a specific PV. Provides key:value pairs representing the labels of the volume selected.
deleteClaim
(optional)-
Boolean value to specify whether the PVC is deleted when the cluster is uninstalled. Default is
false
.
Increasing the size of persistent volumes in an existing AMQ Streams cluster is only supported in OpenShift versions that support persistent volume resizing. The persistent volume to be resized must use a storage class that supports volume expansion. For other versions of OpenShift and storage classes that do not support volume expansion, you must decide the necessary storage size before deploying the cluster. Decreasing the size of existing persistent volumes is not possible.
Example persistent storage configuration for Kafka and ZooKeeper
# ... spec: kafka: # ... storage: type: jbod volumes: - id: 0 type: persistent-claim size: 100Gi deleteClaim: false - id: 1 type: persistent-claim size: 100Gi deleteClaim: false - id: 2 type: persistent-claim size: 100Gi deleteClaim: false # ... zookeeper: storage: type: persistent-claim size: 1000Gi # ...
If you do not specify a storage class, the default is used. The following example specifies a storage class.
Example persistent storage configuration with specific storage class
# ... storage: type: persistent-claim size: 1Gi class: my-storage-class # ...
Use a selector
to specify a labeled persistent volume that provides certain features, such as an SSD.
Example persistent storage configuration with selector
# ... storage: type: persistent-claim size: 1Gi selector: hdd-type: ssd deleteClaim: true # ...
8.10.3.1. Storage class overrides
Instead of using the default storage class, you can specify a different storage class for one or more Kafka brokers or ZooKeeper nodes. This is useful, for example, when storage classes are restricted to different availability zones or data centers. You can use the overrides
field for this purpose.
In this example, the default storage class is named my-storage-class
:
Example AMQ Streams cluster using storage class overrides
apiVersion: kafka.strimzi.io/v1beta2 kind: Kafka metadata: labels: app: my-cluster name: my-cluster namespace: myproject spec: # ... kafka: replicas: 3 storage: type: jbod volumes: - id: 0 type: persistent-claim size: 100Gi deleteClaim: false class: my-storage-class overrides: - broker: 0 class: my-storage-class-zone-1a - broker: 1 class: my-storage-class-zone-1b - broker: 2 class: my-storage-class-zone-1c # ... # ... zookeeper: replicas: 3 storage: deleteClaim: true size: 100Gi type: persistent-claim class: my-storage-class overrides: - broker: 0 class: my-storage-class-zone-1a - broker: 1 class: my-storage-class-zone-1b - broker: 2 class: my-storage-class-zone-1c # ...
As a result of the configured overrides
property, the volumes use the following storage classes:
-
The persistent volumes of ZooKeeper node 0 use
my-storage-class-zone-1a
. -
The persistent volumes of ZooKeeper node 1 use
my-storage-class-zone-1b
. -
The persistent volumes of ZooKeeepr node 2 use
my-storage-class-zone-1c
. -
The persistent volumes of Kafka broker 0 use
my-storage-class-zone-1a
. -
The persistent volumes of Kafka broker 1 use
my-storage-class-zone-1b
. -
The persistent volumes of Kafka broker 2 use
my-storage-class-zone-1c
.
The overrides
property is currently used only to override storage class configurations. Overrides for other storage configuration properties is not currently supported. Other storage configuration properties are currently not supported.
8.10.3.2. PVC resources for persistent storage
When persistent storage is used, it creates PVCs with the following names:
data-cluster-name-kafka-idx
-
PVC for the volume used for storing data for the Kafka broker pod
idx
. data-cluster-name-zookeeper-idx
-
PVC for the volume used for storing data for the ZooKeeper node pod
idx
.
8.10.3.3. Mount path of Kafka log directories
The persistent volume is used by the Kafka brokers as log directories mounted into the following path:
/var/lib/kafka/data/kafka-logIDX
Where IDX
is the Kafka broker pod index. For example /var/lib/kafka/data/kafka-log0
.
8.10.4. Resizing persistent volumes
Persistent volumes used by a cluster can be resized without any risk of data loss, as long as the storage infrastructure supports it. Following a configuration update to change the size of the storage, AMQ Streams instructs the storage infrastructure to make the change. Storage expansion is supported in AMQ Streams clusters that use persistent-claim volumes.
Storage reduction is only possible when using multiple disks per broker. You can remove a disk after moving all partitions on the disk to other volumes within the same broker (intra-broker) or to other brokers within the same cluster (intra-cluster).
You cannot decrease the size of persistent volumes because it is not currently supported in OpenShift.
Prerequisites
- An OpenShift cluster with support for volume resizing.
- The Cluster Operator is running.
- A Kafka cluster using persistent volumes created using a storage class that supports volume expansion.
Procedure
Edit the
Kafka
resource for your cluster.Change the
size
property to increase the size of the persistent volume allocated to a Kafka cluster, a ZooKeeper cluster, or both.-
For Kafka clusters, update the
size
property underspec.kafka.storage
. -
For ZooKeeper clusters, update the
size
property underspec.zookeeper.storage
.
Kafka configuration to increase the volume size to
2000Gi
apiVersion: kafka.strimzi.io/v1beta2 kind: Kafka metadata: name: my-cluster spec: kafka: # ... storage: type: persistent-claim size: 2000Gi class: my-storage-class # ... zookeeper: # ...
-
For Kafka clusters, update the
Create or update the resource:
oc apply -f <kafka_configuration_file>
OpenShift increases the capacity of the selected persistent volumes in response to a request from the Cluster Operator. When the resizing is complete, the Cluster Operator restarts all pods that use the resized persistent volumes. This happens automatically.
Verify that the storage capacity has increased for the relevant pods on the cluster:
oc get pv
Kafka broker pods with increased storage
NAME CAPACITY CLAIM pvc-0ca459ce-... 2000Gi my-project/data-my-cluster-kafka-2 pvc-6e1810be-... 2000Gi my-project/data-my-cluster-kafka-0 pvc-82dc78c9-... 2000Gi my-project/data-my-cluster-kafka-1
The output shows the names of each PVC associated with a broker pod.
Additional resources
- For more information about resizing persistent volumes in OpenShift, see Resizing Persistent Volumes using Kubernetes.
8.10.5. JBOD storage
You can configure AMQ Streams to use JBOD, a data storage configuration of multiple disks or volumes. JBOD is one approach to providing increased data storage for Kafka brokers. It can also improve performance.
JBOD storage is supported for Kafka only not ZooKeeper.
A JBOD configuration is described by one or more volumes, each of which can be either ephemeral or persistent. The rules and constraints for JBOD volume declarations are the same as those for ephemeral and persistent storage. For example, you cannot decrease the size of a persistent storage volume after it has been provisioned, or you cannot change the value of sizeLimit
when the type is ephemeral
.
To use JBOD storage, you set the storage type configuration in the Kafka
resource to jbod
. The volumes
property allows you to describe the disks that make up your JBOD storage array or configuration.
Example JBOD storage configuration
# ... storage: type: jbod volumes: - id: 0 type: persistent-claim size: 100Gi deleteClaim: false - id: 1 type: persistent-claim size: 100Gi deleteClaim: false # ...
The IDs cannot be changed once the JBOD volumes are created. You can add or remove volumes from the JBOD configuration.
8.10.5.1. PVC resource for JBOD storage
When persistent storage is used to declare JBOD volumes, it creates a PVC with the following name:
data-id-cluster-name-kafka-idx
-
PVC for the volume used for storing data for the Kafka broker pod
idx
. Theid
is the ID of the volume used for storing data for Kafka broker pod.
8.10.5.2. Mount path of Kafka log directories
The JBOD volumes are used by Kafka brokers as log directories mounted into the following path:
/var/lib/kafka/data-id/kafka-logidx
Where id
is the ID of the volume used for storing data for Kafka broker pod idx
. For example /var/lib/kafka/data-0/kafka-log0
.
8.10.6. Adding volumes to JBOD storage
This procedure describes how to add volumes to a Kafka cluster configured to use JBOD storage. It cannot be applied to Kafka clusters configured to use any other storage type.
When adding a new volume under an id
which was already used in the past and removed, you have to make sure that the previously used PersistentVolumeClaims
have been deleted.
Prerequisites
- An OpenShift cluster
- A running Cluster Operator
- A Kafka cluster with JBOD storage
Procedure
Edit the
spec.kafka.storage.volumes
property in theKafka
resource. Add the new volumes to thevolumes
array. For example, add the new volume with id2
:apiVersion: kafka.strimzi.io/v1beta2 kind: Kafka metadata: name: my-cluster spec: kafka: # ... storage: type: jbod volumes: - id: 0 type: persistent-claim size: 100Gi deleteClaim: false - id: 1 type: persistent-claim size: 100Gi deleteClaim: false - id: 2 type: persistent-claim size: 100Gi deleteClaim: false # ... zookeeper: # ...
Create or update the resource:
oc apply -f <kafka_configuration_file>
Create new topics or reassign existing partitions to the new disks.
TipCruise Control is an effective tool for reassigning partitions. To perform an intra-broker disk balance, you set
rebalanceDisk
totrue
under theKafkaRebalance.spec
.
8.10.7. Removing volumes from JBOD storage
This procedure describes how to remove volumes from Kafka cluster configured to use JBOD storage. It cannot be applied to Kafka clusters configured to use any other storage type. The JBOD storage always has to contain at least one volume.
To avoid data loss, you have to move all partitions before removing the volumes.
Prerequisites
- An OpenShift cluster
- A running Cluster Operator
- A Kafka cluster with JBOD storage with two or more volumes
Procedure
Reassign all partitions from the disks which are you going to remove. Any data in partitions still assigned to the disks which are going to be removed might be lost.
TipYou can use the
kafka-reassign-partitions.sh
tool to reassign the partitions.Edit the
spec.kafka.storage.volumes
property in theKafka
resource. Remove one or more volumes from thevolumes
array. For example, remove the volumes with ids1
and2
:apiVersion: kafka.strimzi.io/v1beta2 kind: Kafka metadata: name: my-cluster spec: kafka: # ... storage: type: jbod volumes: - id: 0 type: persistent-claim size: 100Gi deleteClaim: false # ... zookeeper: # ...
Create or update the resource:
oc apply -f <kafka_configuration_file>
8.11. Configuring CPU and memory resource limits and requests
By default, the AMQ Streams Cluster Operator does not specify CPU and memory resource requests and limits for its deployed operands. Ensuring an adequate allocation of resources is crucial for maintaining stability and achieving optimal performance in Kafka. The ideal resource allocation depends on your specific requirements and use cases.
It is recommended to configure CPU and memory resources for each container by setting appropriate requests and limits.
8.12. Configuring pod scheduling
To avoid performance degradation caused by resource conflicts between applications scheduled on the same OpenShift node, you can schedule Kafka pods separately from critical workloads. This can be achieved by either selecting specific nodes or dedicating a set of nodes exclusively for Kafka.
8.12.1. Specifying affinity, tolerations, and topology spread constraints
Use affinity, tolerations and topology spread constraints to schedule the pods of kafka resources onto nodes. Affinity, tolerations and topology spread constraints are configured using the affinity
, tolerations
, and topologySpreadConstraint
properties in following resources:
-
Kafka.spec.kafka.template.pod
-
Kafka.spec.zookeeper.template.pod
-
Kafka.spec.entityOperator.template.pod
-
KafkaConnect.spec.template.pod
-
KafkaBridge.spec.template.pod
-
KafkaMirrorMaker.spec.template.pod
-
KafkaMirrorMaker2.spec.template.pod
The format of the affinity
, tolerations
, and topologySpreadConstraint
properties follows the OpenShift specification. The affinity configuration can include different types of affinity:
- Pod affinity and anti-affinity
- Node affinity
Additional resources
8.12.1.1. Use pod anti-affinity to avoid critical applications sharing nodes
Use pod anti-affinity to ensure that critical applications are never scheduled on the same disk. When running a Kafka cluster, it is recommended to use pod anti-affinity to ensure that the Kafka brokers do not share nodes with other workloads, such as databases.
8.12.1.2. Use node affinity to schedule workloads onto specific nodes
The OpenShift cluster usually consists of many different types of worker nodes. Some are optimized for CPU heavy workloads, some for memory, while other might be optimized for storage (fast local SSDs) or network. Using different nodes helps to optimize both costs and performance. To achieve the best possible performance, it is important to allow scheduling of AMQ Streams components to use the right nodes.
OpenShift uses node affinity to schedule workloads onto specific nodes. Node affinity allows you to create a scheduling constraint for the node on which the pod will be scheduled. The constraint is specified as a label selector. You can specify the label using either the built-in node label like beta.kubernetes.io/instance-type
or custom labels to select the right node.
8.12.1.3. Use node affinity and tolerations for dedicated nodes
Use taints to create dedicated nodes, then schedule Kafka pods on the dedicated nodes by configuring node affinity and tolerations.
Cluster administrators can mark selected OpenShift nodes as tainted. Nodes with taints are excluded from regular scheduling and normal pods will not be scheduled to run on them. Only services which can tolerate the taint set on the node can be scheduled on it. The only other services running on such nodes will be system services such as log collectors or software defined networks.
Running Kafka and its components on dedicated nodes can have many advantages. There will be no other applications running on the same nodes which could cause disturbance or consume the resources needed for Kafka. That can lead to improved performance and stability.
8.12.2. Configuring pod anti-affinity to schedule each Kafka broker on a different worker node
Many Kafka brokers or ZooKeeper nodes can run on the same OpenShift worker node. If the worker node fails, they will all become unavailable at the same time. To improve reliability, you can use podAntiAffinity
configuration to schedule each Kafka broker or ZooKeeper node on a different OpenShift worker node.
Prerequisites
- An OpenShift cluster
- A running Cluster Operator
Procedure
Edit the
affinity
property in the resource specifying the cluster deployment. To make sure that no worker nodes are shared by Kafka brokers or ZooKeeper nodes, use thestrimzi.io/name
label. Set thetopologyKey
tokubernetes.io/hostname
to specify that the selected pods are not scheduled on nodes with the same hostname. This will still allow the same worker node to be shared by a single Kafka broker and a single ZooKeeper node. For example:apiVersion: kafka.strimzi.io/v1beta2 kind: Kafka spec: kafka: # ... template: pod: affinity: podAntiAffinity: requiredDuringSchedulingIgnoredDuringExecution: - labelSelector: matchExpressions: - key: strimzi.io/name operator: In values: - CLUSTER-NAME-kafka topologyKey: "kubernetes.io/hostname" # ... zookeeper: # ... template: pod: affinity: podAntiAffinity: requiredDuringSchedulingIgnoredDuringExecution: - labelSelector: matchExpressions: - key: strimzi.io/name operator: In values: - CLUSTER-NAME-zookeeper topologyKey: "kubernetes.io/hostname" # ...
Where
CLUSTER-NAME
is the name of your Kafka custom resource.If you even want to make sure that a Kafka broker and ZooKeeper node do not share the same worker node, use the
strimzi.io/cluster
label. For example:apiVersion: kafka.strimzi.io/v1beta2 kind: Kafka spec: kafka: # ... template: pod: affinity: podAntiAffinity: requiredDuringSchedulingIgnoredDuringExecution: - labelSelector: matchExpressions: - key: strimzi.io/cluster operator: In values: - CLUSTER-NAME topologyKey: "kubernetes.io/hostname" # ... zookeeper: # ... template: pod: affinity: podAntiAffinity: requiredDuringSchedulingIgnoredDuringExecution: - labelSelector: matchExpressions: - key: strimzi.io/cluster operator: In values: - CLUSTER-NAME topologyKey: "kubernetes.io/hostname" # ...
Where
CLUSTER-NAME
is the name of your Kafka custom resource.Create or update the resource.
oc apply -f <kafka_configuration_file>
8.12.3. Configuring pod anti-affinity in Kafka components
Pod anti-affinity configuration helps with the stability and performance of Kafka brokers. By using podAntiAffinity
, OpenShift will not schedule Kafka brokers on the same nodes as other workloads. Typically, you want to avoid Kafka running on the same worker node as other network or storage intensive applications such as databases, storage or other messaging platforms.
Prerequisites
- An OpenShift cluster
- A running Cluster Operator
Procedure
Edit the
affinity
property in the resource specifying the cluster deployment. Use labels to specify the pods which should not be scheduled on the same nodes. ThetopologyKey
should be set tokubernetes.io/hostname
to specify that the selected pods should not be scheduled on nodes with the same hostname. For example:apiVersion: kafka.strimzi.io/v1beta2 kind: Kafka spec: kafka: # ... template: pod: affinity: podAntiAffinity: requiredDuringSchedulingIgnoredDuringExecution: - labelSelector: matchExpressions: - key: application operator: In values: - postgresql - mongodb topologyKey: "kubernetes.io/hostname" # ... zookeeper: # ...
Create or update the resource.
This can be done using
oc apply
:oc apply -f <kafka_configuration_file>
8.12.4. Configuring node affinity in Kafka components
Prerequisites
- An OpenShift cluster
- A running Cluster Operator
Procedure
Label the nodes where AMQ Streams components should be scheduled.
This can be done using
oc label
:oc label node NAME-OF-NODE node-type=fast-network
Alternatively, some of the existing labels might be reused.
Edit the
affinity
property in the resource specifying the cluster deployment. For example:apiVersion: kafka.strimzi.io/v1beta2 kind: Kafka spec: kafka: # ... template: pod: affinity: nodeAffinity: requiredDuringSchedulingIgnoredDuringExecution: nodeSelectorTerms: - matchExpressions: - key: node-type operator: In values: - fast-network # ... zookeeper: # ...
Create or update the resource.
This can be done using
oc apply
:oc apply -f <kafka_configuration_file>
8.12.5. Setting up dedicated nodes and scheduling pods on them
Prerequisites
- An OpenShift cluster
- A running Cluster Operator
Procedure
- Select the nodes which should be used as dedicated.
- Make sure there are no workloads scheduled on these nodes.
Set the taints on the selected nodes:
This can be done using
oc adm taint
:oc adm taint node NAME-OF-NODE dedicated=Kafka:NoSchedule
Additionally, add a label to the selected nodes as well.
This can be done using
oc label
:oc label node NAME-OF-NODE dedicated=Kafka
Edit the
affinity
andtolerations
properties in the resource specifying the cluster deployment.For example:
apiVersion: kafka.strimzi.io/v1beta2 kind: Kafka spec: kafka: # ... template: pod: tolerations: - key: "dedicated" operator: "Equal" value: "Kafka" effect: "NoSchedule" affinity: nodeAffinity: requiredDuringSchedulingIgnoredDuringExecution: nodeSelectorTerms: - matchExpressions: - key: dedicated operator: In values: - Kafka # ... zookeeper: # ...
Create or update the resource.
This can be done using
oc apply
:oc apply -f <kafka_configuration_file>
8.13. Configuring logging levels
Configure logging levels in the custom resources of Kafka components and AMQ Streams operators. You can specify the logging levels directly in the spec.logging
property of the custom resource. Or you can define the logging properties in a ConfigMap that’s referenced in the custom resource using the configMapKeyRef
property.
The advantages of using a ConfigMap are that the logging properties are maintained in one place and are accessible to more than one resource. You can also reuse the ConfigMap for more than one resource. If you are using a ConfigMap to specify loggers for AMQ Streams Operators, you can also append the logging specification to add filters.
You specify a logging type
in your logging specification:
-
inline
when specifying logging levels directly -
external
when referencing a ConfigMap
Example inline
logging configuration
spec: # ... logging: type: inline loggers: kafka.root.logger.level: INFO
Example external
logging configuration
spec: # ... logging: type: external valueFrom: configMapKeyRef: name: my-config-map key: my-config-map-key
Values for the name
and key
of the ConfigMap are mandatory. Default logging is used if the name
or key
is not set.
8.13.1. Logging options for Kafka components and operators
For more information on configuring logging for specific Kafka components or operators, see the following sections.
Kafka component logging
Operator logging
8.13.2. Creating a ConfigMap for logging
To use a ConfigMap to define logging properties, you create the ConfigMap and then reference it as part of the logging definition in the spec
of a resource.
The ConfigMap must contain the appropriate logging configuration.
-
log4j.properties
for Kafka components, ZooKeeper, and the Kafka Bridge -
log4j2.properties
for the Topic Operator and User Operator
The configuration must be placed under these properties.
In this procedure a ConfigMap defines a root logger for a Kafka resource.
Procedure
Create the ConfigMap.
You can create the ConfigMap as a YAML file or from a properties file.
ConfigMap example with a root logger definition for Kafka:
kind: ConfigMap apiVersion: v1 metadata: name: logging-configmap data: log4j.properties: kafka.root.logger.level="INFO"
If you are using a properties file, specify the file at the command line:
oc create configmap logging-configmap --from-file=log4j.properties
The properties file defines the logging configuration:
# Define the logger kafka.root.logger.level="INFO" # ...
Define external logging in the
spec
of the resource, setting thelogging.valueFrom.configMapKeyRef.name
to the name of the ConfigMap andlogging.valueFrom.configMapKeyRef.key
to the key in this ConfigMap.spec: # ... logging: type: external valueFrom: configMapKeyRef: name: logging-configmap key: log4j.properties
Create or update the resource.
oc apply -f <kafka_configuration_file>
8.13.3. Configuring Cluster Operator logging
Cluster Operator logging is configured through a ConfigMap
named strimzi-cluster-operator
. A ConfigMap
containing logging configuration is created when installing the Cluster Operator. This ConfigMap
is described in the file install/cluster-operator/050-ConfigMap-strimzi-cluster-operator.yaml
. You configure Cluster Operator logging by changing the data.log4j2.properties
values in this ConfigMap
.
To update the logging configuration, you can edit the 050-ConfigMap-strimzi-cluster-operator.yaml
file and then run the following command:
oc create -f install/cluster-operator/050-ConfigMap-strimzi-cluster-operator.yaml
Alternatively, edit the ConfigMap
directly:
oc edit configmap strimzi-cluster-operator
With this ConfigMap, you can control various aspects of logging, including the root logger level, log output format, and log levels for different components. The monitorInterval
setting, determines how often the logging configuration is reloaded. You can also control the logging levels for the Kafka AdminClient
, ZooKeeper ZKTrustManager
, Netty, and the OkHttp client. Netty is a framework used in AMQ Streams for network communication, and OkHttp is a library used for making HTTP requests.
If the ConfigMap
is missing when the Cluster Operator is deployed, the default logging values are used.
If the ConfigMap
is accidentally deleted after the Cluster Operator is deployed, the most recently loaded logging configuration is used. Create a new ConfigMap
to load a new logging configuration.
Do not remove the monitorInterval
option from the ConfigMap
.
8.13.4. Adding logging filters to AMQ Streams operators
If you are using a ConfigMap to configure the (log4j2) logging levels for AMQ Streams operators, you can also define logging filters to limit what’s returned in the log.
Logging filters are useful when you have a large number of logging messages. Suppose you set the log level for the logger as DEBUG (rootLogger.level="DEBUG"
). Logging filters reduce the number of logs returned for the logger at that level, so you can focus on a specific resource. When the filter is set, only log messages matching the filter are logged.
Filters use markers to specify what to include in the log. You specify a kind, namespace and name for the marker. For example, if a Kafka cluster is failing, you can isolate the logs by specifying the kind as Kafka
, and use the namespace and name of the failing cluster.
This example shows a marker filter for a Kafka cluster named my-kafka-cluster
.
Basic logging filter configuration
rootLogger.level="INFO" appender.console.filter.filter1.type=MarkerFilter 1 appender.console.filter.filter1.onMatch=ACCEPT 2 appender.console.filter.filter1.onMismatch=DENY 3 appender.console.filter.filter1.marker=Kafka(my-namespace/my-kafka-cluster) 4
You can create one or more filters. Here, the log is filtered for two Kafka clusters.
Multiple logging filter configuration
appender.console.filter.filter1.type=MarkerFilter appender.console.filter.filter1.onMatch=ACCEPT appender.console.filter.filter1.onMismatch=DENY appender.console.filter.filter1.marker=Kafka(my-namespace/my-kafka-cluster-1) appender.console.filter.filter2.type=MarkerFilter appender.console.filter.filter2.onMatch=ACCEPT appender.console.filter.filter2.onMismatch=DENY appender.console.filter.filter2.marker=Kafka(my-namespace/my-kafka-cluster-2)
Adding filters to the Cluster Operator
To add filters to the Cluster Operator, update its logging ConfigMap YAML file (install/cluster-operator/050-ConfigMap-strimzi-cluster-operator.yaml
).
Procedure
Update the
050-ConfigMap-strimzi-cluster-operator.yaml
file to add the filter properties to the ConfigMap.In this example, the filter properties return logs only for the
my-kafka-cluster
Kafka cluster:kind: ConfigMap apiVersion: v1 metadata: name: strimzi-cluster-operator data: log4j2.properties: #... appender.console.filter.filter1.type=MarkerFilter appender.console.filter.filter1.onMatch=ACCEPT appender.console.filter.filter1.onMismatch=DENY appender.console.filter.filter1.marker=Kafka(my-namespace/my-kafka-cluster)
Alternatively, edit the
ConfigMap
directly:oc edit configmap strimzi-cluster-operator
If you updated the YAML file instead of editing the
ConfigMap
directly, apply the changes by deploying the ConfigMap:oc create -f install/cluster-operator/050-ConfigMap-strimzi-cluster-operator.yaml
Adding filters to the Topic Operator or User Operator
To add filters to the Topic Operator or User Operator, create or edit a logging ConfigMap.
In this procedure a logging ConfigMap is created with filters for the Topic Operator. The same approach is used for the User Operator.
Procedure
Create the ConfigMap.
You can create the ConfigMap as a YAML file or from a properties file.
In this example, the filter properties return logs only for the
my-topic
topic:kind: ConfigMap apiVersion: v1 metadata: name: logging-configmap data: log4j2.properties: rootLogger.level="INFO" appender.console.filter.filter1.type=MarkerFilter appender.console.filter.filter1.onMatch=ACCEPT appender.console.filter.filter1.onMismatch=DENY appender.console.filter.filter1.marker=KafkaTopic(my-namespace/my-topic)
If you are using a properties file, specify the file at the command line:
oc create configmap logging-configmap --from-file=log4j2.properties
The properties file defines the logging configuration:
# Define the logger rootLogger.level="INFO" # Set the filters appender.console.filter.filter1.type=MarkerFilter appender.console.filter.filter1.onMatch=ACCEPT appender.console.filter.filter1.onMismatch=DENY appender.console.filter.filter1.marker=KafkaTopic(my-namespace/my-topic) # ...
Define external logging in the
spec
of the resource, setting thelogging.valueFrom.configMapKeyRef.name
to the name of the ConfigMap andlogging.valueFrom.configMapKeyRef.key
to the key in this ConfigMap.For the Topic Operator, logging is specified in the
topicOperator
configuration of theKafka
resource.spec: # ... entityOperator: topicOperator: logging: type: external valueFrom: configMapKeyRef: name: logging-configmap key: log4j2.properties
- Apply the changes by deploying the Cluster Operator:
create -f install/cluster-operator -n my-cluster-operator-namespace
Additional resources
8.14. Using ConfigMaps to add configuration
Add specific configuration to your AMQ Streams deployment using ConfigMap
resources. ConfigMaps use key-value pairs to store non-confidential data. Configuration data added to ConfigMaps is maintained in one place and can be reused amongst components.
ConfigMaps can only store the following types of configuration data:
- Logging configuration
- Metrics configuration
- External configuration for Kafka Connect connectors
You can’t use ConfigMaps for other areas of configuration.
When you configure a component, you can add a reference to a ConfigMap using the configMapKeyRef
property.
For example, you can use configMapKeyRef
to reference a ConfigMap that provides configuration for logging. You might use a ConfigMap to pass a Log4j configuration file. You add the reference to the logging
configuration.
Example ConfigMap for logging
spec: # ... logging: type: external valueFrom: configMapKeyRef: name: my-config-map key: my-config-map-key
To use a ConfigMap for metrics configuration, you add a reference to the metricsConfig
configuration of the component in the same way.
ExternalConfiguration
properties make data from a ConfigMap (or Secret) mounted to a pod available as environment variables or volumes. You can use external configuration data for the connectors used by Kafka Connect. The data might be related to an external data source, providing the values needed for the connector to communicate with that data source.
For example, you can use the configMapKeyRef
property to pass configuration data from a ConfigMap as an environment variable.
Example ConfigMap providing environment variable values
apiVersion: kafka.strimzi.io/v1beta2 kind: KafkaConnect metadata: name: my-connect spec: # ... externalConfiguration: env: - name: MY_ENVIRONMENT_VARIABLE valueFrom: configMapKeyRef: name: my-config-map key: my-key
If you are using ConfigMaps that are managed externally, use configuration providers to load the data in the ConfigMaps.
8.14.1. Naming custom ConfigMaps
AMQ Streams creates its own ConfigMaps and other resources when it is deployed to OpenShift. The ConfigMaps contain data necessary for running components. The ConfigMaps created by AMQ Streams must not be edited.
Make sure that any custom ConfigMaps you create do not have the same name as these default ConfigMaps. If they have the same name, they will be overwritten. For example, if your ConfigMap has the same name as the ConfigMap for the Kafka cluster, it will be overwritten when there is an update to the Kafka cluster.
Additional resources
8.15. Loading configuration values from external sources
Use configuration providers to load configuration data from external sources. The providers operate independently of AMQ Streams. You can use them to load configuration data for all Kafka components, including producers and consumers. You reference the external source in the configuration of the component and provide access rights. The provider loads data without needing to restart the Kafka component or extracting files, even when referencing a new external source. For example, use providers to supply the credentials for the Kafka Connect connector configuration. The configuration must include any access rights to the external source.
8.15.1. Enabling configuration providers
You can enable one or more configuration providers using the config.providers
properties in the spec
configuration of a component.
Example configuration to enable a configuration provider
apiVersion: kafka.strimzi.io/v1beta2 kind: KafkaConnect metadata: name: my-connect annotations: strimzi.io/use-connector-resources: "true" spec: # ... config: # ... config.providers: env config.providers.env.class: io.strimzi.kafka.EnvVarConfigProvider # ...
- KubernetesSecretConfigProvider
- Loads configuration data from OpenShift secrets. You specify the name of the secret and the key within the secret where the configuration data is stored. This provider is useful for storing sensitive configuration data like passwords or other user credentials.
- KubernetesConfigMapConfigProvider
- Loads configuration data from OpenShift config maps. You specify the name of the config map and the key within the config map where the configuration data is stored. This provider is useful for storing non-sensitive configuration data.
- EnvVarConfigProvider
- Loads configuration data from environment variables. You specify the name of the environment variable where the configuration data is stored. This provider is useful for configuring applications running in containers, for example, to load certificates or JAAS configuration from environment variables mapped from secrets.
- FileConfigProvider
- Loads configuration data from a file. You specify the path to the file where the configuration data is stored. This provider is useful for loading configuration data from files that are mounted into containers.
- DirectoryConfigProvider
- Loads configuration data from files within a directory. You specify the path to the directory where the configuration files are stored. This provider is useful for loading multiple configuration files and for organizing configuration data into separate files.
To use KubernetesSecretConfigProvider
and KubernetesConfigMapConfigProvider
, which are part of the OpenShift Configuration Provider plugin, you must set up access rights to the namespace that contains the configuration file.
You can use the other providers without setting up access rights. You can supply connector configuration for Kafka Connect or MirrorMaker 2 in this way by doing the following:
- Mount config maps or secrets into the Kafka Connect pod as environment variables or volumes
-
Enable
EnvVarConfigProvider
,FileConfigProvider
, orDirectoryConfigProvider
in the Kafka Connect or MirrorMaker 2 configuration -
Pass connector configuration using the
externalConfiguration
property in thespec
of theKafkaConnect
orKafkaMirrorMaker2
resource
Using providers help prevent the passing of restricted information through the Kafka Connect REST interface. You can use this approach in the following scenarios:
- Mounting environment variables with the values a connector uses to connect and communicate with a data source
- Mounting a properties file with values that are used to configure Kafka Connect connectors
- Mounting files in a directory that contains values for the TLS truststore and keystore used by a connector
A restart is required when using a new Secret
or ConfigMap
for a connector, which can disrupt other connectors.
Additional resources
8.15.2. Loading configuration values from secrets or config maps
Use the KubernetesSecretConfigProvider
to provide configuration properties from a secret or the KubernetesConfigMapConfigProvider
to provide configuration properties from a config map.
In this procedure, a config map provides configuration properties for a connector. The properties are specified as key values of the config map. The config map is mounted into the Kafka Connect pod as a volume.
Prerequisites
- A Kafka cluster is running.
- The Cluster Operator is running.
- You have a config map containing the connector configuration.
Example config map with connector properties
apiVersion: v1 kind: ConfigMap metadata: name: my-connector-configuration data: option1: value1 option2: value2
Procedure
Configure the
KafkaConnect
resource.-
Enable the
KubernetesConfigMapConfigProvider
The specification shown here can support loading values from config maps and secrets.
Example Kafka Connect configuration to use config maps and secrets
apiVersion: kafka.strimzi.io/v1beta2 kind: KafkaConnect metadata: name: my-connect annotations: strimzi.io/use-connector-resources: "true" spec: # ... config: # ... config.providers: secrets,configmaps 1 config.providers.configmaps.class: io.strimzi.kafka.KubernetesConfigMapConfigProvider 2 config.providers.secrets.class: io.strimzi.kafka.KubernetesSecretConfigProvider 3 # ...
- 1
- The alias for the configuration provider is used to define other configuration parameters. The provider parameters use the alias from
config.providers
, taking the formconfig.providers.${alias}.class
. - 2
KubernetesConfigMapConfigProvider
provides values from config maps.- 3
KubernetesSecretConfigProvider
provides values from secrets.
-
Enable the
Create or update the resource to enable the provider.
oc apply -f <kafka_connect_configuration_file>
Create a role that permits access to the values in the external config map.
Example role to access values from a config map
apiVersion: rbac.authorization.k8s.io/v1 kind: Role metadata: name: connector-configuration-role rules: - apiGroups: [""] resources: ["configmaps"] resourceNames: ["my-connector-configuration"] verbs: ["get"] # ...
The rule gives the role permission to access the
my-connector-configuration
config map.Create a role binding to permit access to the namespace that contains the config map.
Example role binding to access the namespace that contains the config map
apiVersion: rbac.authorization.k8s.io/v1 kind: RoleBinding metadata: name: connector-configuration-role-binding subjects: - kind: ServiceAccount name: my-connect-connect namespace: my-project roleRef: kind: Role name: connector-configuration-role apiGroup: rbac.authorization.k8s.io # ...
The role binding gives the role permission to access the
my-project
namespace.The service account must be the same one used by the Kafka Connect deployment. The service account name format is
<cluster_name>-connect
, where<cluster_name>
is the name of theKafkaConnect
custom resource.Reference the config map in the connector configuration.
Example connector configuration referencing the config map
apiVersion: kafka.strimzi.io/v1beta2 kind: KafkaConnector metadata: name: my-connector labels: strimzi.io/cluster: my-connect spec: # ... config: option: ${configmaps:my-project/my-connector-configuration:option1} # ... # ...
The placeholder structure is
configmaps:<path_and_file_name>:<property>
.KubernetesConfigMapConfigProvider
reads and extracts theoption1
property value from the external config map.
8.15.3. Loading configuration values from environment variables
Use the EnvVarConfigProvider
to provide configuration properties as environment variables. Environment variables can contain values from config maps or secrets.
In this procedure, environment variables provide configuration properties for a connector to communicate with Amazon AWS. The connector must be able to read the AWS_ACCESS_KEY_ID
and AWS_SECRET_ACCESS_KEY
. The values of the environment variables are derived from a secret mounted into the Kafka Connect pod.
The names of user-defined environment variables cannot start with KAFKA_
or STRIMZI_
.
Prerequisites
- A Kafka cluster is running.
- The Cluster Operator is running.
- You have a secret containing the connector configuration.
Example secret with values for environment variables
apiVersion: v1 kind: Secret metadata: name: aws-creds type: Opaque data: awsAccessKey: QUtJQVhYWFhYWFhYWFhYWFg= awsSecretAccessKey: Ylhsd1lYTnpkMjl5WkE=
Procedure
Configure the
KafkaConnect
resource.-
Enable the
EnvVarConfigProvider
-
Specify the environment variables using the
externalConfiguration
property.
Example Kafka Connect configuration to use external environment variables
apiVersion: kafka.strimzi.io/v1beta2 kind: KafkaConnect metadata: name: my-connect annotations: strimzi.io/use-connector-resources: "true" spec: # ... config: # ... config.providers: env 1 config.providers.env.class: io.strimzi.kafka.EnvVarConfigProvider 2 # ... externalConfiguration: env: - name: AWS_ACCESS_KEY_ID 3 valueFrom: secretKeyRef: name: aws-creds 4 key: awsAccessKey 5 - name: AWS_SECRET_ACCESS_KEY valueFrom: secretKeyRef: name: aws-creds key: awsSecretAccessKey # ...
- 1
- The alias for the configuration provider is used to define other configuration parameters. The provider parameters use the alias from
config.providers
, taking the formconfig.providers.${alias}.class
. - 2
EnvVarConfigProvider
provides values from environment variables.- 3
- The environment variable takes a value from the secret.
- 4
- The name of the secret containing the environment variable.
- 5
- The name of the key stored in the secret.
NoteThe
secretKeyRef
property references keys in a secret. If you are using a config map instead of a secret, use theconfigMapKeyRef
property.-
Enable the
Create or update the resource to enable the provider.
oc apply -f <kafka_connect_configuration_file>
Reference the environment variable in the connector configuration.
Example connector configuration referencing the environment variable
apiVersion: kafka.strimzi.io/v1beta2 kind: KafkaConnector metadata: name: my-connector labels: strimzi.io/cluster: my-connect spec: # ... config: option: ${env:AWS_ACCESS_KEY_ID} option: ${env:AWS_SECRET_ACCESS_KEY} # ... # ...
The placeholder structure is
env:<environment_variable_name>
.EnvVarConfigProvider
reads and extracts the environment variable values from the mounted secret.
8.15.4. Loading configuration values from a file within a directory
Use the FileConfigProvider
to provide configuration properties from a file within a directory. Files can be config maps or secrets.
In this procedure, a file provides configuration properties for a connector. A database name and password are specified as properties of a secret. The secret is mounted to the Kafka Connect pod as a volume. Volumes are mounted on the path /opt/kafka/external-configuration/<volume-name>
.
Prerequisites
- A Kafka cluster is running.
- The Cluster Operator is running.
- You have a secret containing the connector configuration.
Example secret with database properties
apiVersion: v1 kind: Secret metadata: name: mysecret type: Opaque stringData: connector.properties: |- 1 dbUsername: my-username 2 dbPassword: my-password
Procedure
Configure the
KafkaConnect
resource.-
Enable the
FileConfigProvider
-
Specify the file using the
externalConfiguration
property.
Example Kafka Connect configuration to use an external property file
apiVersion: kafka.strimzi.io/v1beta2 kind: KafkaConnect metadata: name: my-connect spec: # ... config: config.providers: file 1 config.providers.file.class: org.apache.kafka.common.config.provider.FileConfigProvider 2 #... externalConfiguration: volumes: - name: connector-config 3 secret: secretName: mysecret 4
- 1
- The alias for the configuration provider is used to define other configuration parameters.
- 2
FileConfigProvider
provides values from properties files. The parameter uses the alias fromconfig.providers
, taking the formconfig.providers.${alias}.class
.- 3
- The name of the volume containing the secret.
- 4
- The name of the secret.
-
Enable the
Create or update the resource to enable the provider.
oc apply -f <kafka_connect_configuration_file>
Reference the file properties in the connector configuration as placeholders.
Example connector configuration referencing the file
apiVersion: kafka.strimzi.io/v1beta2 kind: KafkaConnector metadata: name: my-source-connector labels: strimzi.io/cluster: my-connect-cluster spec: class: io.debezium.connector.mysql.MySqlConnector tasksMax: 2 config: database.hostname: 192.168.99.1 database.port: "3306" database.user: "${file:/opt/kafka/external-configuration/connector-config/mysecret:dbUsername}" database.password: "${file:/opt/kafka/external-configuration/connector-config/mysecret:dbPassword}" database.server.id: "184054" #...
The placeholder structure is
file:<path_and_file_name>:<property>
.FileConfigProvider
reads and extracts the database username and password property values from the mounted secret.
8.15.5. Loading configuration values from multiple files within a directory
Use the DirectoryConfigProvider
to provide configuration properties from multiple files within a directory. Files can be config maps or secrets.
In this procedure, a secret provides the TLS keystore and truststore user credentials for a connector. The credentials are in separate files. The secrets are mounted into the Kafka Connect pod as volumes. Volumes are mounted on the path /opt/kafka/external-configuration/<volume-name>
.
Prerequisites
- A Kafka cluster is running.
- The Cluster Operator is running.
- You have a secret containing the user credentials.
Example secret with user credentials
apiVersion: v1 kind: Secret metadata: name: my-user labels: strimzi.io/kind: KafkaUser strimzi.io/cluster: my-cluster type: Opaque data: ca.crt: <public_key> # Public key of the clients CA user.crt: <user_certificate> # Public key of the user user.key: <user_private_key> # Private key of the user user.p12: <store> # PKCS #12 store for user certificates and keys user.password: <password_for_store> # Protects the PKCS #12 store
The my-user
secret provides the keystore credentials (user.crt
and user.key
) for the connector.
The <cluster_name>-cluster-ca-cert
secret generated when deploying the Kafka cluster provides the cluster CA certificate as truststore credentials (ca.crt
).
Procedure
Configure the
KafkaConnect
resource.-
Enable the
DirectoryConfigProvider
-
Specify the files using the
externalConfiguration
property.
Example Kafka Connect configuration to use external property files
apiVersion: kafka.strimzi.io/v1beta2 kind: KafkaConnect metadata: name: my-connect spec: # ... config: config.providers: directory 1 config.providers.directory.class: org.apache.kafka.common.config.provider.DirectoryConfigProvider 2 #... externalConfiguration: volumes: 3 - name: cluster-ca 4 secret: secretName: my-cluster-cluster-ca-cert 5 - name: my-user secret: secretName: my-user 6
- 1
- The alias for the configuration provider is used to define other configuration parameters.
- 2
DirectoryConfigProvider
provides values from files in a directory. The parameter uses the alias fromconfig.providers
, taking the formconfig.providers.${alias}.class
.- 3
- The names of the volumes containing the secrets.
- 4
- The name of the secret for the cluster CA certificate to supply truststore configuration.
- 5
- The name of the secret for the user to supply keystore configuration.
-
Enable the
Create or update the resource to enable the provider.
oc apply -f <kafka_connect_configuration_file>
Reference the file properties in the connector configuration as placeholders.
Example connector configuration referencing the files
apiVersion: kafka.strimzi.io/v1beta2 kind: KafkaConnector metadata: name: my-source-connector labels: strimzi.io/cluster: my-connect-cluster spec: class: io.debezium.connector.mysql.MySqlConnector tasksMax: 2 config: # ... database.history.producer.security.protocol: SSL database.history.producer.ssl.truststore.type: PEM database.history.producer.ssl.truststore.certificates: "${directory:/opt/kafka/external-configuration/cluster-ca:ca.crt}" database.history.producer.ssl.keystore.type: PEM database.history.producer.ssl.keystore.certificate.chain: "${directory:/opt/kafka/external-configuration/my-user:user.crt}" database.history.producer.ssl.keystore.key: "${directory:/opt/kafka/external-configuration/my-user:user.key}" #...
The placeholder structure is
directory:<path>:<file_name>
.DirectoryConfigProvider
reads and extracts the credentials from the mounted secrets.
8.16. Customizing OpenShift resources
An AMQ Streams deployment creates OpenShift resources, such as Deployment
, Pod
, and Service
resources. These resources are managed by AMQ Streams operators. Only the operator that is responsible for managing a particular OpenShift resource can change that resource. If you try to manually change an operator-managed OpenShift resource, the operator will revert your changes back.
Changing an operator-managed OpenShift resource can be useful if you want to perform certain tasks, such as the following:
-
Adding custom labels or annotations that control how
Pods
are treated by Istio or other services -
Managing how
Loadbalancer
-type Services are created by the cluster
To make the changes to an OpenShift resource, you can use the template
property within the spec
section of various AMQ Streams custom resources.
Here is a list of the custom resources where you can apply the changes:
-
Kafka.spec.kafka
-
Kafka.spec.zookeeper
-
Kafka.spec.entityOperator
-
Kafka.spec.kafkaExporter
-
Kafka.spec.cruiseControl
-
KafkaNodePool.spec
-
KafkaConnect.spec
-
KafkaMirrorMaker.spec
-
KafkaMirrorMaker2.spec
-
KafkaBridge.spec
-
KafkaUser.spec
For more information about these properties, see the AMQ Streams Custom Resource API Reference.
The AMQ Streams Custom Resource API Reference provides more details about the customizable fields.
In the following example, the template
property is used to modify the labels in a Kafka broker’s pod.
Example template customization
apiVersion: kafka.strimzi.io/v1beta2 kind: Kafka metadata: name: my-cluster labels: app: my-cluster spec: kafka: # ... template: pod: metadata: labels: mylabel: myvalue # ...
8.16.1. Customizing the image pull policy
AMQ Streams allows you to customize the image pull policy for containers in all pods deployed by the Cluster Operator. The image pull policy is configured using the environment variable STRIMZI_IMAGE_PULL_POLICY
in the Cluster Operator deployment. The STRIMZI_IMAGE_PULL_POLICY
environment variable can be set to three different values:
Always
- Container images are pulled from the registry every time the pod is started or restarted.
IfNotPresent
- Container images are pulled from the registry only when they were not pulled before.
Never
- Container images are never pulled from the registry.
Currently, the image pull policy can only be customized for all Kafka, Kafka Connect, and Kafka MirrorMaker clusters at once. Changing the policy will result in a rolling update of all your Kafka, Kafka Connect, and Kafka MirrorMaker clusters.
Additional resources
8.16.2. Applying a termination grace period
Apply a termination grace period to give a Kafka cluster enough time to shut down cleanly.
Specify the time using the terminationGracePeriodSeconds
property. Add the property to the template.pod
configuration of the Kafka
custom resource.
The time you add will depend on the size of your Kafka cluster. The OpenShift default for the termination grace period is 30 seconds. If you observe that your clusters are not shutting down cleanly, you can increase the termination grace period.
A termination grace period is applied every time a pod is restarted. The period begins when OpenShift sends a term (termination) signal to the processes running in the pod. The period should reflect the amount of time required to transfer the processes of the terminating pod to another pod before they are stopped. After the period ends, a kill signal stops any processes still running in the pod.
The following example adds a termination grace period of 120 seconds to the Kafka
custom resource. You can also specify the configuration in the custom resources of other Kafka components.
Example termination grace period configuration
apiVersion: kafka.strimzi.io/v1beta2 kind: Kafka metadata: name: my-cluster spec: kafka: # ... template: pod: terminationGracePeriodSeconds: 120 # ... # ...
Chapter 9. Using the Topic Operator to manage Kafka topics
The KafkaTopic
resource configures topics, including partition and replication factor settings. When you create, modify, or delete a topic using KafkaTopic
, the Topic Operator ensures that these changes are reflected in the Kafka cluster.
For more information on the KafkaTopic
resource, see the KafkaTopic
schema reference.
9.1. Topic management modes
The KafkaTopic
resource is responsible for managing a single topic within a Kafka cluster. The Topic Operator provides two modes for managing KafkaTopic
resources and Kafka topics:
- Bidirectional mode
- Bidirectional mode requires ZooKeeper for cluster management. It is not compatible with using AMQ Streams in KRaft mode.
- (Preview) Unidirectional mode
- Unidirectional mode does not require ZooKeeper for cluster management. It is compatible with using AMQ Streams in KRaft mode.
Unidirectional topic management is available as a preview. Unidirectional topic management is not enabled by default, so you must enable the UnidirectionalTopicOperator
feature gate to be able to use it.
9.1.1. Bidirectional topic management
In bidirectional mode, the Topic Operator operates as follows:
-
When a
KafkaTopic
is created, deleted, or changed, the Topic Operator performs the corresponding operation on the Kafka topic. -
Similarly, when a topic is created, deleted, or changed within the Kafka cluster, the Topic Operator performs the corresponding operation on the
KafkaTopic
resource.
Try to stick to one method of managing topics, either through the KafkaTopic
resources or directly in Kafka. Avoid routinely switching between both methods for a given topic.
9.1.2. (Preview) Unidirectional topic management
In unidirectional mode, the Topic Operator operates as follows:
-
When a
KafkaTopic
is created, deleted, or changed, the Topic Operator performs the corresponding operation on the Kafka topic.
If a topic is created, deleted, or modified directly within the Kafka cluster, without the presence of a corresponding KafkaTopic
resource, the Topic Operator does not manage that topic. The Topic Operator will only manage Kafka topics associated with KafkaTopic
resources and does not interfere with topics managed independently within the Kafka cluster. If a KafkaTopic
does exist for a Kafka topic, any configuration changes made outside the resource are reverted.
9.2. Topic naming conventions
A KafkaTopic
resource includes a name for the topic and a label that identifies the name of the Kafka cluster it belongs to.
Label identifying a Kafka cluster for topic handling
apiVersion: kafka.strimzi.io/v1beta2 kind: KafkaTopic metadata: name: topic-name-1 labels: strimzi.io/cluster: my-cluster spec: topicName: topic-name-1
The label provides the cluster name of the Kafka
resource. The Topic Operator uses the label as a mechanism for determining which KafkaTopic
resources to manage. If the label does not match the Kafka cluster, the Topic Operator cannot see the KafkaTopic
, and the topic is not created.
Kafka and OpenShift have their own naming validation rules, and a Kafka topic name might not be a valid resource name in OpenShift. If possible, try and stick to a naming convention that works for both.
Consider the following guidelines:
- Use topic names that reflect the nature of the topic
- Be concise and keep the name under 63 characters
- Use all lower case and hyphens
- Avoid special characters, spaces or symbols
The KafkaTopic
resource allows you to specify the Kafka topic name using the metadata.name
field. However, if the desired Kafka topic name is not a valid OpenShift resource name, you can use the spec.topicName
property to specify the actual name. The spec.topicName
field is optional, and when it’s absent, the Kafka topic name defaults to the metadata.name
of the topic. When a topic is created, the topic name cannot be changed later.
Example of supplying a valid Kafka topic name
apiVersion: kafka.strimzi.io/v1beta2 kind: KafkaTopic metadata: name: my-topic-1 1 spec: topicName: My.Topic.1 2 # ...
If more than one KafkaTopic
resource refers to the same Kafka topic, the resource that was created first is considered to be the one managing the topic. The status of the newer resources is updated to indicate a conflict, and their Ready
status is changed to False
.
If a Kafka client application, such as Kafka Streams, automatically creates topics with invalid OpenShift resource names, the Topic Operator generates a valid metadata.name
when used in bidirectional mode. It replaces invalid characters and appends a hash to the name. However, this behavior does not apply in (preview) unidirectional mode.
Example of replacing an invalid topic name
apiVersion: kafka.strimzi.io/v1beta2 kind: KafkaTopic metadata: name: my-topic---c55e57fe2546a33f9e603caf57165db4072e827e # ...
For more information on the requirements for identifiers and names in a cluster, refer to the OpenShift documentation Object Names and IDs.
9.3. Handling changes to topics
How the Topic Operator handles changes to topics depends on the mode of topic management.
-
For bidirectional topic management, configuration changes are synchronized between the Kafka topic and the
KafkaTopic
resource in both directions. Incompatible changes prioritize the Kafka configuration, and theKafkaTopic
resource is adjusted accordingly. -
For unidirectional topic management (currently in preview), configuration changes only go in one direction: from the
KafkaTopic
resource to the Kafka topic. Any changes to a Kafka topic managed outside theKafkaTopic
resource are reverted.
9.3.1. Topic store for bidirectional topic management
For bidirectional topic management, the Topic Operator is capable of handling changes to topics when there is no single source of truth. The KafkaTopic
resource and the Kafka topic can undergo independent modifications, where real-time observation of changes may not always be feasible, particularly when the Topic Operator is not operational. To handle this, the Topic Operator maintains a topic store that stores topic configuration information about each topic. It compares the state of the Kafka cluster and OpenShift with the topic store to determine the necessary changes for synchronization. This evaluation takes place during startup and at regular intervals while the Topic Operator is active.
For example, if the Topic Operator is inactive, and a new KafkaTopic
named my-topic is created, upon restart, the Topic Operator recognizes the absence of my-topic in the topic store. It recognizes that the KafkaTopic
was created after its last operation. Consequently, the Topic Operator generates the corresponding Kafka topic and saves the metadata in the topic store.
The topic store enables the Topic Operator to manage situations where the topic configuration is altered in both Kafka topics and KafkaTopic
resources, as long as the changes are compatible. When Kafka topic configuration is updated or changes are made to the KafkaTopic
custom resource, the topic store is updated after reconciling with the Kafka cluster, as long as the changes are compatible.
The topic store is based on the Kafka Streams key-value mechanism, which uses Kafka topics to persist the state. Topic metadata is cached in-memory and accessed locally within the Topic Operator. Updates from operations applied to the local in-memory cache are persisted to a backup topic store on disk. The topic store is continually synchronized with updates from Kafka topics or OpenShift KafkaTopic
custom resources. Operations are handled rapidly with the topic store set up this way, but should the in-memory cache crash it is automatically repopulated from the persistent storage.
Internal topics support the handling of topic metadata in the topic store.
__strimzi_store_topic
- Input topic for storing the topic metadata
__strimzi-topic-operator-kstreams-topic-store-changelog
- Retains a log of compacted topic store values
Do not delete these topics, as they are essential to the running of the Topic Operator.
9.3.2. Migrating topic metadata from ZooKeeper to the topic store
In previous releases of AMQ Streams, topic metadata was stored in ZooKeeper. The topic store removes this requirement, bringing the metadata into the Kafka cluster, and under the control of the Topic Operator.
When upgrading to AMQ Streams 2.5, the transition to Topic Operator control of the topic store is seamless. Metadata is found and migrated from ZooKeeper, and the old store is deleted.
9.3.3. Downgrading to an AMQ Streams version that uses ZooKeeper to store topic metadata
If you are reverting back to a version of AMQ Streams earlier than 1.7, which uses ZooKeeper for the storage of topic metadata, you still downgrade your Cluster Operator to the previous version, then downgrade Kafka brokers and client applications to the previous Kafka version as standard.
However, you must also delete the topics that were created for the topic store using a kafka-topics
command, specifying the bootstrap address of the Kafka cluster. For example:
oc run kafka-admin -ti --image=registry.redhat.io/amq-streams/kafka-35-rhel8:2.5.2 --rm=true --restart=Never -- ./bin/kafka-topics.sh --bootstrap-server localhost:9092 --topic __strimzi-topic-operator-kstreams-topic-store-changelog --delete && ./bin/kafka-topics.sh --bootstrap-server localhost:9092 --topic __strimzi_store_topic --delete
The command must correspond to the type of listener and authentication used to access the Kafka cluster.
The Topic Operator will reconstruct the ZooKeeper topic metadata from the state of the topics in Kafka.
9.3.4. Automatic creation of topics
Applications can trigger the automatic creation of topics in the Kafka cluster. By default, the Kafka broker configuration auto.create.topics.enable
is set to true
, allowing the broker to create topics automatically when an application attempts to produce or consume from a non-existing topic. Applications might also use the Kafka AdminClient
to automatically create topics. When an application is deployed along with its KafkaTopic
resources, it is possible that automatic topic creation in the cluster happens before the Topic Operator can react to the KafkaTopic
.
For bidirectional topic management, the Topic Operator synchronizes the changes between the topics and KafkaTopic
resources.
If you are trying the unidirectional topic management preview, this can mean that the topics created for an application deployment are initially created with default topic configuration. If the Topic Operator attempts to reconfigure the topics based on KafkaTopic
resource specifications included with the application deployment, the operation might fail because the required change to the configuration is not allowed. For example, if the change means lowering the number of topic partitions. For this reason, it is recommended to disable auto.create.topics.enable
in the Kafka cluster configuration when using unidirectional topic management.
9.4. Configuring Kafka topics
Use the properties of the KafkaTopic
resource to configure Kafka topics. Changes made to topic configuration in the KafkaTopic
are propagated to Kafka.
You can use oc apply
to create or modify topics, and oc delete
to delete existing topics.
For example:
-
oc apply -f <topic_config_file>
-
oc delete KafkaTopic <topic_name>
To be able to delete topics, delete.topic.enable
must be set to true
(default) in the spec.kafka.config
of the Kafka resource.
This procedure shows how to create a topic with 10 partitions and 2 replicas.
The procedure is the same for the bidirectional and (preview) unidirectional modes of topic management.
Before you begin
The KafkaTopic resource does not allow the following changes:
-
Renaming the topic defined in
spec.topicName
. A mismatch betweenspec.topicName
andstatus.topicName
will be detected. -
Decreasing the number of partitions using
spec.partitions
(not supported by Kafka). -
Modifying the number of replicas specified in
spec.replicas
.
Increasing spec.partitions
for topics with keys will alter the partitioning of records, which can cause issues, especially when the topic uses semantic partitioning.
Prerequisites
- A running Kafka cluster configured with a Kafka broker listener using mTLS authentication and TLS encryption.
- A running Topic Operator (typically deployed with the Entity Operator).
-
For deleting a topic,
delete.topic.enable=true
(default) in thespec.kafka.config
of theKafka
resource.
Procedure
Configure the
KafkaTopic
resource.Example Kafka topic configuration
apiVersion: kafka.strimzi.io/v1beta2 kind: KafkaTopic metadata: name: my-topic-1 labels: strimzi.io/cluster: my-cluster spec: partitions: 10 replicas: 2
TipWhen modifying a topic, you can get the current version of the resource using
oc get kafkatopic my-topic-1 -o yaml
.Create the
KafkaTopic
resource in OpenShift.oc apply -f <topic_config_file>
Wait for the ready status of the topic to change to
True
:oc get kafkatopics -o wide -w -n <namespace>
Kafka topic status
NAME CLUSTER PARTITIONS REPLICATION FACTOR READY my-topic-1 my-cluster 10 3 True my-topic-2 my-cluster 10 3 my-topic-3 my-cluster 10 3 True
Topic creation is successful when the
READY
output showsTrue
.If the
READY
column stays blank, get more details on the status from the resource YAML or from the Topic Operator logs.Status messages provide details on the reason for the current status.
oc get kafkatopics my-topic-2 -o yaml
Details on a topic with a
NotReady
status# ... status: conditions: - lastTransitionTime: "2022-06-13T10:14:43.351550Z" message: Number of partitions cannot be decreased reason: PartitionDecreaseException status: "True" type: NotReady
In this example, the reason the topic is not ready is because the original number of partitions was reduced in the
KafkaTopic
configuration. Kafka does not support this.After resetting the topic configuration, the status shows the topic is ready.
oc get kafkatopics my-topic-2 -o wide -w -n <namespace>
Status update of the topic
NAME CLUSTER PARTITIONS REPLICATION FACTOR READY my-topic-2 my-cluster 10 3 True
Fetching the details shows no messages
oc get kafkatopics my-topic-2 -o yaml
Details on a topic with a
READY
status# ... status: conditions: - lastTransitionTime: '2022-06-13T10:15:03.761084Z' status: 'True' type: Ready
9.5. Configuring topics for replication and number of partitions
The recommended configuration for topics managed by the Topic Operator is a topic replication factor of 3, and a minimum of 2 in-sync replicas.
apiVersion: kafka.strimzi.io/v1beta2 kind: KafkaTopic metadata: name: my-topic labels: strimzi.io/cluster: my-cluster spec: partitions: 10 1 replicas: 3 2 config: min.insync.replicas: 2 3 #...
- 1
- The number of partitions for the topic.
- 2
- The number of replica topic partitions. Currently, this cannot be changed in the
KafkaTopic
resource, but it can be changed using thekafka-reassign-partitions.sh
tool. - 3
- The minimum number of replica partitions that a message must be successfully written to, or an exception is raised.
In-sync replicas are used in conjunction with the acks
configuration for producer applications. The acks
configuration determines the number of follower partitions a message must be replicated to before the message is acknowledged as successfully received. The bidirectional Topic Operator runs with acks=all
for its internal topics whereby messages must be acknowledged by all in-sync replicas.
When scaling Kafka clusters by adding or removing brokers, replication factor configuration is not changed and replicas are not reassigned automatically. However, you can use the kafka-reassign-partitions.sh
tool to change the replication factor, and manually reassign replicas to brokers.
Alternatively, though the integration of Cruise Control for AMQ Streams cannot change the replication factor for topics, the optimization proposals it generates for rebalancing Kafka include commands that transfer partition replicas and change partition leadership.
9.6. (Preview) Managing KafkaTopic resources without impacting Kafka topics
This procedure describes how to convert Kafka topics that are currently managed through the KafkaTopic
resource into non-managed topics. This capability can be useful in various scenarios. For instance, you might want to update the metadata.name
of a KafkaTopic
resource. You can only do that by deleting the original KafkaTopic
resource and recreating a new one.
By annotating a KafkaTopic
resource with strimzi.io/managed=false
, you indicate that the Topic Operator should no longer manage that particular topic. This allows you to retain the Kafka topic while making changes to the resource’s configuration or other administrative tasks.
You can perform this task if you are using unidirectional topic management.
Unidirectional topic management is available as a preview. Unidirectional topic management is not enabled by default, so you must enable the UnidirectionalTopicOperator
feature gate to be able to use it.
Prerequisites
Procedure
Annotate the
KafkaTopic
resource in OpenShift, settingstrimzi.io/managed
tofalse
:oc annotate kafkatopic my-topic-1 strimzi.io/managed=false
Specify the
metadata.name
of the topic in yourKafkaTopic
resource, which ismy-topic-1
in this example.Check the status of the
KafkaTopic
resource to make sure the request was successful:oc get kafkatopics my-topic-1 -o yaml
Example topic with a
Ready
statusapiVersion: kafka.strimzi.io/v1beta2 kind: KafkaTopic metadata: generation: 124 name: my-topic-1 finalizer: strimzi.io/topic-operator labels: strimzi.io/cluster: my-cluster spec: partitions: 10 replicas: 2 # ... status: observedGeneration: 124 1 topicName: my-topic-1 conditions: - type: Ready status: True lastTransitionTime: 20230301T103000Z
- 1
- Successful reconciliation of the resource means the topic is no longer managed.
The value of
metadata.generation
(the current version of the deployment) mustmatch status.observedGeneration
(the latest reconciliation of the resource).You can now make changes to the
KafkaTopic
resource without it affecting the Kafka topic it was managing.For example, to change the
metadata.name
, do as follows:Delete the original
KafkTopic
resource:oc delete kafkatopic <kafka_topic_name>
-
Recreate the
KafkTopic
resource with a differentmetadata.name
, but usespec.topicName
to refer to the same topic that was managed by the original
-
If you haven’t deleted the original
KafkaTopic
resource, and you wish to resume management of the Kafka topic again, set thestrimzi.io/managed
annotation totrue
or remove the annotation.
9.7. (Preview) Enabling topic management for existing Kafka topics
This procedure describes how to enable topic management for topics that are not currently managed through the KafkaTopic
resource. You do this by creating a matching KafkaTopic
resource.
You can perform this task if you are using unidirectional topic management.
Unidirectional topic management is available as a preview. Unidirectional topic management is not enabled by default, so you must enable the UnidirectionalTopicOperator
feature gate to be able to use it.
Prerequisites
Procedure
Create a
KafkaTopic
resource with ametadata.name
that is the same as the Kafka topic.Or use
spec.topicName
if the name of the topic in Kafka would not be a legal OpenShift resource name.Example Kafka topic configuration
apiVersion: kafka.strimzi.io/v1beta2 kind: KafkaTopic metadata: name: my-topic-1 labels: strimzi.io/cluster: my-cluster spec: partitions: 10 replicas: 2
In this example, the Kafka topic is named
my-topic-1
.The Topic Operator checks whether the topic is managed by another
KafkaTopic
resource. If it is, the older resource takes precedence and a resource conflict error is returned in the status of the new resource.Apply the
KafkaTopic
resource:oc apply -f <topic_configuration_file>
Wait for the operator to update the topic in Kafka.
The operator updates the Kafka topic with the
spec
of theKafkaTopic
that has the same name.Check the status of the
KafkaTopic
resource to make sure the request was successful:oc get kafkatopics my-topic-1 -o yaml
Example topic with a
Ready
statusapiVersion: kafka.strimzi.io/v1beta2 kind: KafkaTopic metadata: generation: 1 name: my-topic-1 labels: strimzi.io/cluster: my-cluster spec: partitions: 10 replicas: 2 # ... status: observedGeneration: 1 1 topicName: my-topic-1 conditions: - type: Ready status: True lastTransitionTime: 20230301T103000Z
- 1
- Successful reconciliation of the resource means the topic is now managed.
The value of
metadata.generation
(the current version of the deployment) mustmatch status.observedGeneration
(the latest reconciliation of the resource).
9.8. (Preview) Deleting managed topics
Unidirectional topic management supports the deletion of topics managed through the KafkaTopic
resource with or without OpenShift finalizers. This is controlled by the STRIMZI_USE_FINALIZERS
Topic Operator environment variable. By default, this is set to true
, though it can be set to false
in the Topic Operator env
configuration if you do not want the Topic Operator to add finalizers.
Unidirectional topic management is available as a preview. Unidirectional topic management is not enabled by default, so you must enable the UnidirectionalTopicOperator
feature gate to be able to use it.
Finalizers ensure orderly and controlled deletion of KafkaTopic
resources. A finalizer for the Topic Operator is added to the metadata of the KafkaTopic
resource:
Finalizer to control topic deletion
apiVersion: kafka.strimzi.io/v1beta2 kind: KafkaTopic metadata: generation: 1 name: my-topic-1 finalizer: strimzi.io/topic-operator labels: strimzi.io/cluster: my-cluster
In this example, the finalizer is added for topic my-topic-1
. The finalizer prevents the topic from being fully deleted until the finalization process is complete. If you then delete the topic using oc delete kafkatopic my-topic-1
, a timestamp is added to the metadata:
Finalizer timestamp on deletion
apiVersion: kafka.strimzi.io/v1beta2 kind: KafkaTopic metadata: generation: 1 name: my-topic-1 finalizer: strimzi.io/topic-operator labels: strimzi.io/cluster: my-cluster deletionTimestamp: 20230301T000000.000
The resource is still present. If the deletion fails, it is shown in the status of the resource.
When the finalization tasks are successfully executed, the finalizer is removed from the metadata, and the resource is fully deleted.
Finalizers also prevent related resources from being deleted. If the unidirectional Topic Operator is not running, it won’t be able to remove the metadata.finalizer
. Consequently, an attempt to delete the namespace that contains the KafkaTopic
resource won’t complete until either the operator is restarted, or the finalizer is otherwise removed (for example using oc edit
).
Chapter 10. Using the User Operator to manage Kafka users
When you create, modify or delete a user using the KafkaUser
resource, the User Operator ensures that these changes are reflected in the Kafka cluster.
For more information on the KafkaUser
resource, see the KafkaUser
schema reference.
10.1. Configuring Kafka users
Use the properties of the KafkaUser
resource to configure Kafka users.
You can use oc apply
to create or modify users, and oc delete
to delete existing users.
For example:
-
oc apply -f <user_config_file>
-
oc delete KafkaUser <user_name>
Users represent Kafka clients. When you configure Kafka users, you enable the user authentication and authorization mechanisms required by clients to access Kafka. The mechanism used must match the equivalent Kafka
configuration. For more information on using Kafka
and KafkaUser
resources to secure access to Kafka brokers, see Securing access to Kafka brokers.
Prerequisites
- A running Kafka cluster configured with a Kafka broker listener using mTLS authentication and TLS encryption.
- A running User Operator (typically deployed with the Entity Operator).
Procedure
Configure the
KafkaUser
resource.This example specifies mTLS authentication and simple authorization using ACLs.
Example Kafka user configuration
apiVersion: kafka.strimzi.io/v1beta2 kind: KafkaUser metadata: name: my-user-1 labels: strimzi.io/cluster: my-cluster spec: authentication: type: tls authorization: type: simple acls: # Example consumer Acls for topic my-topic using consumer group my-group - resource: type: topic name: my-topic patternType: literal operations: - Describe - Read host: "*" - resource: type: group name: my-group patternType: literal operations: - Read host: "*" # Example Producer Acls for topic my-topic - resource: type: topic name: my-topic patternType: literal operations: - Create - Describe - Write host: "*"
Create the
KafkaUser
resource in OpenShift.oc apply -f <user_config_file>
Wait for the ready status of the user to change to
True
:oc get kafkausers -o wide -w -n <namespace>
Kafka user status
NAME CLUSTER AUTHENTICATION AUTHORIZATION READY my-user-1 my-cluster tls simple True my-user-2 my-cluster tls simple my-user-3 my-cluster tls simple True
User creation is successful when the
READY
output showsTrue
.If the
READY
column stays blank, get more details on the status from the resource YAML or User Operator logs.Messages provide details on the reason for the current status.
oc get kafkausers my-user-2 -o yaml
Details on a user with a
NotReady
status# ... status: conditions: - lastTransitionTime: "2022-06-10T10:07:37.238065Z" message: Simple authorization ACL rules are configured but not supported in the Kafka cluster configuration. reason: InvalidResourceException status: "True" type: NotReady
In this example, the reason the user is not ready is because simple authorization is not enabled in the
Kafka
configuration.Kafka configuration for simple authorization
apiVersion: kafka.strimzi.io/v1beta2 kind: Kafka metadata: name: my-cluster spec: kafka: # ... authorization: type: simple
After updating the Kafka configuration, the status shows the user is ready.
oc get kafkausers my-user-2 -o wide -w -n <namespace>
Status update of the user
NAME CLUSTER AUTHENTICATION AUTHORIZATION READY my-user-2 my-cluster tls simple True
Fetching the details shows no messages.
oc get kafkausers my-user-2 -o yaml
Details on a user with a
READY
status# ... status: conditions: - lastTransitionTime: "2022-06-10T10:33:40.166846Z" status: "True" type: Ready
Chapter 11. Validating schemas with the Red Hat build of Apicurio Registry
You can use the Red Hat build of Apicurio Registry with AMQ Streams.
Apicurio Registry is a datastore for sharing standard event schemas and API designs across API and event-driven architectures. You can use Apicurio Registry to decouple the structure of your data from your client applications, and to share and manage your data types and API descriptions at runtime using a REST interface.
Apicurio Registry stores schemas used to serialize and deserialize messages, which can then be referenced from your client applications to ensure that the messages that they send and receive are compatible with those schemas. Apicurio Registry provides Kafka client serializers/deserializers for Kafka producer and consumer applications. Kafka producer applications use serializers to encode messages that conform to specific event schemas. Kafka consumer applications use deserializers, which validate that the messages have been serialized using the correct schema, based on a specific schema ID.
You can enable your applications to use a schema from the registry. This ensures consistent schema usage and helps to prevent data errors at runtime.
Additional resources
- Red Hat build of Apicurio Registry product documentation
- Red Hat build of Apicurio Registry is built on the Apicurio Registry open source community project available on GitHub: Apicurio/apicurio-registry
Chapter 12. Integrating with the Red Hat build of Debezium for change data capture
The Red Hat build of Debezium is a distributed change data capture platform. It captures row-level changes in databases, creates change event records, and streams the records to Kafka topics. Debezium is built on Apache Kafka. You can deploy and integrate the Red Hat build of Debezium with AMQ Streams. Following a deployment of AMQ Streams, you deploy Debezium as a connector configuration through Kafka Connect. Debezium passes change event records to AMQ Streams on OpenShift. Applications can read these change event streams and access the change events in the order in which they occurred.
Debezium has multiple uses, including:
- Data replication
- Updating caches and search indexes
- Simplifying monolithic applications
- Data integration
- Enabling streaming queries
To capture database changes, deploy Kafka Connect with a Debezium database connector. You configure a KafkaConnector
resource to define the connector instance.
For more information on deploying the Red Hat build of Debezium with AMQ Streams, refer to the product documentation. The documentation includes a Getting Started with Debezium guide that guides you through the process of setting up the services and connector required to view change event records for database updates.
Chapter 13. Setting up client access to a Kafka cluster
After you have deployed AMQ Streams, you can set up client access to your Kafka cluster. To verify the deployment, you can deploy example producer and consumer clients. Otherwise, create listeners that provide client access within or outside the OpenShift cluster.
13.1. Deploying example clients
Deploy example producer and consumer clients to send and receive messages. You can use these clients to verify a deployment of AMQ Streams.
Prerequisites
- The Kafka cluster is available for the clients.
Procedure
Deploy a Kafka producer.
oc run kafka-producer -ti --image=registry.redhat.io/amq-streams/kafka-35-rhel8:2.5.2 --rm=true --restart=Never -- bin/kafka-console-producer.sh --bootstrap-server cluster-name-kafka-bootstrap:9092 --topic my-topic
- Type a message into the console where the producer is running.
- Press Enter to send the message.
Deploy a Kafka consumer.
oc run kafka-consumer -ti --image=registry.redhat.io/amq-streams/kafka-35-rhel8:2.5.2 --rm=true --restart=Never -- bin/kafka-console-consumer.sh --bootstrap-server cluster-name-kafka-bootstrap:9092 --topic my-topic --from-beginning
- Confirm that you see the incoming messages in the consumer console.
13.2. Configuring listeners to connect to Kafka brokers
Use listeners for client connection to Kafka brokers. AMQ Streams provides a generic GenericKafkaListener
schema with properties to configure listeners through the Kafka
resource. The GenericKafkaListener
provides a flexible approach to listener configuration. You can specify properties to configure internal listeners for connecting within the OpenShift cluster or external listeners for connecting outside the OpenShift cluster.
Specify a connection type
to expose Kafka in the listener configuration. The type chosen depends on your requirements, and your environment and infrastructure. The following listener types are supported:
- Internal listeners
-
internal
to connect within the same OpenShift cluster -
cluster-ip
to expose Kafka using per-brokerClusterIP
services
-
- External listeners
-
nodeport
to use ports on OpenShift nodes -
loadbalancer
to use loadbalancer services -
ingress
to use KubernetesIngress
and the Ingress NGINX Controller for Kubernetes (Kubernetes only) -
route
to use OpenShiftRoute
and the default HAProxy router (OpenShift only)
-
Do not use ingress
on OpenShift, use the route
type instead. The Ingress NGINX Controller is only intended for use on Kubernetes. The route
type is only supported on OpenShift.
An internal
type listener configuration uses a headless service and the DNS names given to the broker pods. You might want to join your OpenShift network to an outside network. In which case, you can configure an internal
type listener (using the useServiceDnsDomain
property) so that the OpenShift service DNS domain (typically .cluster.local
) is not used. You can also configure a cluster-ip
type of listener that exposes a Kafka cluster based on per-broker ClusterIP
services. This is a useful option when you can’t route through the headless service or you wish to incorporate a custom access mechanism. For example, you might use this listener when building your own type of external listener for a specific Ingress controller or the OpenShift Gateway API.
External listeners handle access to a Kafka cluster from networks that require different authentication mechanisms. You can configure external listeners for client access outside an OpenShift environment using a specified connection mechanism, such as a loadbalancer or route. For example, loadbalancers might not be suitable for certain infrastructure, such as bare metal, where node ports provide a better option.
Each listener is defined as an array in the Kafka
resource.
Example listener configuration
apiVersion: kafka.strimzi.io/v1beta2 kind: Kafka metadata: name: my-cluster spec: kafka: # ... listeners: - name: plain port: 9092 type: internal tls: false configuration: useServiceDnsDomain: true - name: tls port: 9093 type: internal tls: true authentication: type: tls - name: external port: 9094 type: route tls: true configuration: brokerCertChainAndKey: secretName: my-secret certificate: my-certificate.crt key: my-key.key # ...
You can configure as many listeners as required, as long as their names and ports are unique. You can also configure listeners for secure connection using authentication.
If you want to know more about the pros and cons of each connection type, refer to Accessing Apache Kafka in Strimzi.
If you scale your Kafka cluster while using external listeners, it might trigger a rolling update of all Kafka brokers. This depends on the configuration.
Additional resources
13.3. Setting up client access to a Kafka cluster using listeners
Using the address of the Kafka cluster, you can provide access to a client in the same OpenShift cluster; or provide external access to a client on a different OpenShift namespace or outside OpenShift entirely. This procedure shows how to configure client access to a Kafka cluster from outside OpenShift or from another OpenShift cluster.
A Kafka listener provides access to the Kafka cluster. Client access is secured using the following configuration:
-
An external listener is configured for the Kafka cluster, with TLS encryption and mTLS authentication, and Kafka
simple
authorization enabled. -
A
KafkaUser
is created for the client, with mTLS authentication, and Access Control Lists (ACLs) defined forsimple
authorization.
You can configure your listener to use mutual tls
, scram-sha-512
, or oauth
authentication. mTLS always uses encryption, but encryption is also recommended when using SCRAM-SHA-512 and OAuth 2.0 authentication.
You can configure simple
, oauth
, opa
, or custom
authorization for Kafka brokers. When enabled, authorization is applied to all enabled listeners.
When you configure the KafkaUser
authentication and authorization mechanisms, ensure they match the equivalent Kafka configuration:
-
KafkaUser.spec.authentication
matchesKafka.spec.kafka.listeners[*].authentication
-
KafkaUser.spec.authorization
matchesKafka.spec.kafka.authorization
You should have at least one listener supporting the authentication you want to use for the KafkaUser
.
Authentication between Kafka users and Kafka brokers depends on the authentication settings for each. For example, it is not possible to authenticate a user with mTLS if it is not also enabled in the Kafka configuration.
AMQ Streams operators automate the configuration process and create the certificates required for authentication:
- The Cluster Operator creates the listeners and sets up the cluster and client certificate authority (CA) certificates to enable authentication with the Kafka cluster.
- The User Operator creates the user representing the client and the security credentials used for client authentication, based on the chosen authentication type.
You add the certificates to your client configuration.
In this procedure, the CA certificates generated by the Cluster Operator are used, but you can replace them by installing your own certificates. You can also configure your listener to use a Kafka listener certificate managed by an external CA (certificate authority).
Certificates are available in PEM (.crt) and PKCS #12 (.p12) formats. This procedure uses PEM certificates. Use PEM certificates with clients that use certificates in X.509 format.
For internal clients in the same OpenShift cluster and namespace, you can mount the cluster CA certificate in the pod specification. For more information, see Configuring internal clients to trust the cluster CA.
Prerequisites
- The Kafka cluster is available for connection by a client running outside the OpenShift cluster
- The Cluster Operator and User Operator are running in the cluster
Procedure
Configure the Kafka cluster with a Kafka listener.
- Define the authentication required to access the Kafka broker through the listener.
Enable authorization on the Kafka broker.
Example listener configuration
apiVersion: kafka.strimzi.io/v1beta2 kind: Kafka metadata: name: my-cluster namespace: myproject spec: kafka: # ... listeners: 1 - name: external 2 port: 9094 3 type: <listener_type> 4 tls: true 5 authentication: type: tls 6 configuration: 7 #... authorization: 8 type: simple superUsers: - super-user-name 9 # ...
- 1
- Configuration options for enabling external listeners are described in the Generic Kafka listener schema reference.
- 2
- Name to identify the listener. Must be unique within the Kafka cluster.
- 3
- Port number used by the listener inside Kafka. The port number has to be unique within a given Kafka cluster. Allowed port numbers are 9092 and higher with the exception of ports 9404 and 9999, which are already used for Prometheus and JMX. Depending on the listener type, the port number might not be the same as the port number that connects Kafka clients.
- 4
- External listener type specified as
route
(OpenShift only),loadbalancer
,nodeport
oringress
(Kubernetes only). An internal listener is specified asinternal
orcluster-ip
. - 5
- Required. TLS encryption on the listener. For
route
andingress
type listeners it must be set totrue
. For mTLS authentication, also use theauthentication
property. - 6
- Client authentication mechanism on the listener. For server and client authentication using mTLS, you specify
tls: true
andauthentication.type: tls
. - 7
- (Optional) Depending on the requirements of the listener type, you can specify additional listener configuration.
- 8
- Authorization specified as
simple
, which uses theAclAuthorizer
Kafka plugin. - 9
- (Optional) Super users can access all brokers regardless of any access restrictions defined in ACLs.
WarningAn OpenShift Route address comprises the name of the Kafka cluster, the name of the listener, and the name of the namespace it is created in. For example,
my-cluster-kafka-listener1-bootstrap-myproject
(CLUSTER-NAME-kafka-LISTENER-NAME-bootstrap-NAMESPACE). If you are using aroute
listener type, be careful that the whole length of the address does not exceed a maximum limit of 63 characters.
Create or update the
Kafka
resource.oc apply -f <kafka_configuration_file>
The Kafka cluster is configured with a Kafka broker listener using mTLS authentication.
A service is created for each Kafka broker pod.
A service is created to serve as the bootstrap address for connection to the Kafka cluster.
A service is also created as the external bootstrap address for external connection to the Kafka cluster using
nodeport
listeners.The cluster CA certificate to verify the identity of the kafka brokers is also created in the secret
<cluster_name>-cluster-ca-cert
.NoteIf you scale your Kafka cluster while using external listeners, it might trigger a rolling update of all Kafka brokers. This depends on the configuration.
Retrieve the bootstrap address you can use to access the Kafka cluster from the status of the
Kafka
resource.oc get kafka <kafka_cluster_name> -o=jsonpath='{.status.listeners[?(@.name=="<listener_name>")].bootstrapServers}{"\n"}'
For example:
oc get kafka my-cluster -o=jsonpath='{.status.listeners[?(@.name=="external")].bootstrapServers}{"\n"}'
Use the bootstrap address in your Kafka client to connect to the Kafka cluster.
Create or modify a user representing the client that requires access to the Kafka cluster.
-
Specify the same authentication type as the
Kafka
listener. Specify the authorization ACLs for
simple
authorization.Example user configuration
apiVersion: kafka.strimzi.io/v1beta2 kind: KafkaUser metadata: name: my-user labels: strimzi.io/cluster: my-cluster 1 spec: authentication: type: tls 2 authorization: type: simple acls: 3 - resource: type: topic name: my-topic patternType: literal operations: - Describe - Read - resource: type: group name: my-group patternType: literal operations: - Read
-
Specify the same authentication type as the
Create or modify the
KafkaUser
resource.oc apply -f USER-CONFIG-FILE
The user is created, as well as a secret with the same name as the
KafkaUser
resource. The secret contains a public and private key for mTLS authentication.Example secret
apiVersion: v1 kind: Secret metadata: name: my-user labels: strimzi.io/kind: KafkaUser strimzi.io/cluster: my-cluster type: Opaque data: ca.crt: <public_key> # Public key of the clients CA user.crt: <user_certificate> # Public key of the user user.key: <user_private_key> # Private key of the user user.p12: <store> # PKCS #12 store for user certificates and keys user.password: <password_for_store> # Protects the PKCS #12 store
Extract the cluster CA certificate from the
<cluster_name>-cluster-ca-cert
secret of the Kafka cluster.oc get secret <cluster_name>-cluster-ca-cert -o jsonpath='{.data.ca\.crt}' | base64 -d > ca.crt
Extract the user CA certificate from the
<user_name>
secret.oc get secret <user_name> -o jsonpath='{.data.user\.crt}' | base64 -d > user.crt
Extract the private key of the user from the
<user_name>
secret.oc get secret <user_name> -o jsonpath='{.data.user\.key}' | base64 -d > user.key
Configure your client with the bootstrap address hostname and port for connecting to the Kafka cluster:
props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "<hostname>:<port>");
Configure your client with the truststore credentials to verify the identity of the Kafka cluster.
Specify the public cluster CA certificate.
Example truststore configuration
props.put(CommonClientConfigs.SECURITY_PROTOCOL_CONFIG, "SSL"); props.put(SslConfigs.SSL_TRUSTSTORE_TYPE_CONFIG, "PEM"); props.put(SslConfigs.SSL_TRUSTSTORE_CERTIFICATES_CONFIG, "<ca.crt_file_content>");
SSL is the specified security protocol for mTLS authentication. Specify
SASL_SSL
for SCRAM-SHA-512 authentication over TLS. PEM is the file format of the truststore.Configure your client with the keystore credentials to verify the user when connecting to the Kafka cluster.
Specify the public certificate and private key.
Example keystore configuration
props.put(CommonClientConfigs.SECURITY_PROTOCOL_CONFIG, "SSL"); props.put(SslConfigs.SSL_KEYSTORE_TYPE_CONFIG, "PEM"); props.put(SslConfigs.SSL_KEYSTORE_CERTIFICATE_CHAIN_CONFIG, "<user.crt_file_content>"); props.put(SslConfigs.SSL_KEYSTORE_KEY_CONFIG, "<user.key_file_content>");
Add the keystore certificate and the private key directly to the configuration. Add as a single-line format. Between the
BEGIN CERTIFICATE
andEND CERTIFICATE
delimiters, start with a newline character (\n
). End each line from the original certificate with\n
too.Example keystore configuration
props.put(SslConfigs.SSL_KEYSTORE_CERTIFICATE_CHAIN_CONFIG, "-----BEGIN CERTIFICATE----- \n<user_certificate_content_line_1>\n<user_certificate_content_line_n>\n-----END CERTIFICATE---"); props.put(SslConfigs.SSL_KEYSTORE_KEY_CONFIG, "----BEGIN PRIVATE KEY-----\n<user_key_content_line_1>\n<user_key_content_line_n>\n-----END PRIVATE KEY-----");
Additional resources
- Section 14.1.1, “Listener authentication”
- Section 14.1.2, “Kafka authorization”
If you are using an authorization server, you can use token-based authentication and authorization:
13.4. Accessing Kafka using node ports
Use node ports to access an AMQ Streams Kafka cluster from an external client outside the OpenShift cluster.
To connect to a broker, you specify a hostname and port number for the Kafka bootstrap address, as well as the certificate used for TLS encryption.
The procedure shows basic nodeport
listener configuration. You can use listener properties to enable TLS encryption (tls
) and specify a client authentication mechanism (authentication
). Add additional configuration using configuration
properties. For example, you can use the following configuration properties with nodeport
listeners:
preferredNodePortAddressType
- Specifies the first address type that’s checked as the node address.
externalTrafficPolicy
- Specifies whether the service routes external traffic to node-local or cluster-wide endpoints.
nodePort
- Overrides the assigned node port numbers for the bootstrap and broker services.
For more information on listener configuration, see the GenericKafkaListener
schema reference.
Prerequisites
- A running Cluster Operator
In this procedure, the Kafka cluster name is my-cluster
. The name of the listener is external
.
Procedure
Configure a
Kafka
resource with an external listener set to thenodeport
type.For example:
apiVersion: kafka.strimzi.io/v1beta2 kind: Kafka metadata: labels: app: my-cluster name: my-cluster namespace: myproject spec: kafka: # ... listeners: - name: external port: 9094 type: nodeport tls: true authentication: type: tls # ... # ... zookeeper: # ...
Create or update the resource.
oc apply -f <kafka_configuration_file>
A cluster CA certificate to verify the identity of the kafka brokers is created in the secret
my-cluster-cluster-ca-cert
.NodePort
type services are created for each Kafka broker, as well as an external bootstrap service.Node port services created for the bootstrap and brokers
NAME TYPE CLUSTER-IP PORT(S) my-cluster-kafka-external-0 NodePort 172.30.55.13 9094:31789/TCP my-cluster-kafka-external-1 NodePort 172.30.250.248 9094:30028/TCP my-cluster-kafka-external-2 NodePort 172.30.115.81 9094:32650/TCP my-cluster-kafka-external-bootstrap NodePort 172.30.30.23 9094:32650/TCP
The bootstrap address used for client connection is propagated to the
status
of theKafka
resource.Example status for the bootstrap address
status: clusterId: Y_RJQDGKRXmNF7fEcWldJQ conditions: - lastTransitionTime: '2023-01-31T14:59:37.113630Z' status: 'True' type: Ready listeners: # ... - addresses: - host: ip-10-0-224-199.us-west-2.compute.internal port: 32650 bootstrapServers: 'ip-10-0-224-199.us-west-2.compute.internal:32650' certificates: - | -----BEGIN CERTIFICATE----- -----END CERTIFICATE----- name: external type: external observedGeneration: 2 # ...
Retrieve the bootstrap address you can use to access the Kafka cluster from the status of the
Kafka
resource.oc get kafka my-cluster -o=jsonpath='{.status.listeners[?(@.name=="external")].bootstrapServers}{"\n"}' ip-10-0-224-199.us-west-2.compute.internal:32650
Extract the cluster CA certificate.
oc get secret my-cluster-cluster-ca-cert -o jsonpath='{.data.ca\.crt}' | base64 -d > ca.crt
Configure your client to connect to the brokers.
-
Specify the bootstrap host and port in your Kafka client as the bootstrap address to connect to the Kafka cluster. For example,
ip-10-0-224-199.us-west-2.compute.internal:32650
. Add the extracted certificate to the truststore of your Kafka client to configure a TLS connection.
If you enabled a client authentication mechanism, you will also need to configure it in your client.
-
Specify the bootstrap host and port in your Kafka client as the bootstrap address to connect to the Kafka cluster. For example,
If you are using your own listener certificates, check whether you need to add the CA certificate to the client’s truststore configuration. If it is a public (external) CA, you usually won’t need to add it.
13.5. Accessing Kafka using loadbalancers
Use loadbalancers to access an AMQ Streams Kafka cluster from an external client outside the OpenShift cluster.
To connect to a broker, you specify a hostname and port number for the Kafka bootstrap address, as well as the certificate used for TLS encryption.
The procedure shows basic loadbalancer
listener configuration. You can use listener properties to enable TLS encryption (tls
) and specify a client authentication mechanism (authentication
). Add additional configuration using configuration
properties. For example, you can use the following configuration properties with loadbalancer
listeners:
loadBalancerSourceRanges
- Restricts traffic to a specified list of CIDR (Classless Inter-Domain Routing) ranges.
externalTrafficPolicy
- Specifies whether the service routes external traffic to node-local or cluster-wide endpoints.
loadBalancerIP
- Requests a specific IP address when creating a loadbalancer.
For more information on listener configuration, see the GenericKafkaListener
schema reference.
Prerequisites
- A running Cluster Operator
In this procedure, the Kafka cluster name is my-cluster
. The name of the listener is external
.
Procedure
Configure a
Kafka
resource with an external listener set to theloadbalancer
type.For example:
apiVersion: kafka.strimzi.io/v1beta2 kind: Kafka metadata: labels: app: my-cluster name: my-cluster namespace: myproject spec: kafka: # ... listeners: - name: external port: 9095 type: loadbalancer tls: true authentication: type: tls # ... # ... zookeeper: # ...
Create or update the resource.
oc apply -f <kafka_configuration_file>
A cluster CA certificate to verify the identity of the kafka brokers is also created in the secret
my-cluster-cluster-ca-cert
.loadbalancer
type services and loadbalancers are created for each Kafka broker, as well as an external bootstrap service.Loadbalancer services and loadbalancers created for the bootstraps and brokers
NAME TYPE CLUSTER-IP PORT(S) my-cluster-kafka-external-0 LoadBalancer 172.30.204.234 9095:30011/TCP my-cluster-kafka-external-1 LoadBalancer 172.30.164.89 9095:32544/TCP my-cluster-kafka-external-2 LoadBalancer 172.30.73.151 9095:32504/TCP my-cluster-kafka-external-bootstrap LoadBalancer 172.30.30.228 9095:30371/TCP NAME EXTERNAL-IP (loadbalancer) my-cluster-kafka-external-0 a8a519e464b924000b6c0f0a05e19f0d-1132975133.us-west-2.elb.amazonaws.com my-cluster-kafka-external-1 ab6adc22b556343afb0db5ea05d07347-611832211.us-west-2.elb.amazonaws.com my-cluster-kafka-external-2 a9173e8ccb1914778aeb17eca98713c0-777597560.us-west-2.elb.amazonaws.com my-cluster-kafka-external-bootstrap a8d4a6fb363bf447fb6e475fc3040176-36312313.us-west-2.elb.amazonaws.com
The bootstrap address used for client connection is propagated to the
status
of theKafka
resource.Example status for the bootstrap address
status: clusterId: Y_RJQDGKRXmNF7fEcWldJQ conditions: - lastTransitionTime: '2023-01-31T14:59:37.113630Z' status: 'True' type: Ready listeners: # ... - addresses: - host: >- a8d4a6fb363bf447fb6e475fc3040176-36312313.us-west-2.elb.amazonaws.com port: 9095 bootstrapServers: >- a8d4a6fb363bf447fb6e475fc3040176-36312313.us-west-2.elb.amazonaws.com:9095 certificates: - | -----BEGIN CERTIFICATE----- -----END CERTIFICATE----- name: external type: external observedGeneration: 2 # ...
The DNS addresses used for client connection are propagated to the
status
of each loadbalancer service.Example status for the bootstrap loadbalancer
status: loadBalancer: ingress: - hostname: >- a8d4a6fb363bf447fb6e475fc3040176-36312313.us-west-2.elb.amazonaws.com # ...
Retrieve the bootstrap address you can use to access the Kafka cluster from the status of the
Kafka
resource.oc get kafka my-cluster -o=jsonpath='{.status.listeners[?(@.name=="external")].bootstrapServers}{"\n"}' a8d4a6fb363bf447fb6e475fc3040176-36312313.us-west-2.elb.amazonaws.com:9095
Extract the cluster CA certificate.
oc get secret my-cluster-cluster-ca-cert -o jsonpath='{.data.ca\.crt}' | base64 -d > ca.crt
Configure your client to connect to the brokers.
-
Specify the bootstrap host and port in your Kafka client as the bootstrap address to connect to the Kafka cluster. For example,
a8d4a6fb363bf447fb6e475fc3040176-36312313.us-west-2.elb.amazonaws.com:9095
. Add the extracted certificate to the truststore of your Kafka client to configure a TLS connection.
If you enabled a client authentication mechanism, you will also need to configure it in your client.
-
Specify the bootstrap host and port in your Kafka client as the bootstrap address to connect to the Kafka cluster. For example,
If you are using your own listener certificates, check whether you need to add the CA certificate to the client’s truststore configuration. If it is a public (external) CA, you usually won’t need to add it.
13.6. Accessing Kafka using OpenShift routes
Use OpenShift routes to access an AMQ Streams Kafka cluster from clients outside the OpenShift cluster.
To be able to use routes, add configuration for a route
type listener in the Kafka
custom resource. When applied, the configuration creates a dedicated route and service for an external bootstrap and each broker in the cluster. Clients connect to the bootstrap route, which routes them through the bootstrap service to connect to a broker. Per-broker connections are then established using DNS names, which route traffic from the client to the broker through the broker-specific routes and services.
To connect to a broker, you specify a hostname for the route bootstrap address, as well as the certificate used for TLS encryption. For access using routes, the port is always 443.
An OpenShift route address comprises the name of the Kafka cluster, the name of the listener, and the name of the project it is created in. For example, my-cluster-kafka-external-bootstrap-myproject
(<cluster_name>-kafka-<listener_name>-bootstrap-<namespace>). Be careful that the whole length of the address does not exceed a maximum limit of 63 characters.
The procedure shows basic listener configuration. TLS encryption (tls
) must be enabled. You can also specify a client authentication mechanism (authentication
). Add additional configuration using configuration
properties. For example, you can use the host
configuration property with route
listeners to specify the hostnames used by the bootstrap and per-broker services.
For more information on listener configuration, see the GenericKafkaListener
schema reference.
TLS passthrough
TLS passthrough is enabled for routes created by AMQ Streams. Kafka uses a binary protocol over TCP, but routes are designed to work with a HTTP protocol. To be able to route TCP traffic through routes, AMQ Streams uses TLS passthrough with Server Name Indication (SNI).
SNI helps with identifying and passing connection to Kafka brokers. In passthrough mode, TLS encryption is always used. Because the connection passes to the brokers, the listeners use TLS certificates signed by the internal cluster CA and not the ingress certificates. To configure listeners to use your own listener certificates, use the brokerCertChainAndKey
property.
Prerequisites
- A running Cluster Operator
In this procedure, the Kafka cluster name is my-cluster
. The name of the listener is external
.
Procedure
Configure a
Kafka
resource with an external listener set to theroute
type.For example:
apiVersion: kafka.strimzi.io/v1beta2 kind: Kafka metadata: labels: app: my-cluster name: my-cluster namespace: myproject spec: kafka: # ... listeners: - name: external port: 9094 type: route tls: true 1 authentication: type: tls # ... # ... zookeeper: # ...
- 1
- For
route
type listeners, TLS encryption must be enabled (true
).
Create or update the resource.
oc apply -f <kafka_configuration_file>
A cluster CA certificate to verify the identity of the kafka brokers is created in the secret
my-cluster-cluster-ca-cert
.ClusterIP
type services are created for each Kafka broker, as well as an external bootstrap service.A
route
is also created for each service, with a DNS address (host/port) to expose them using the default OpenShift HAProxy router.The routes are preconfigured with TLS passthrough.
Routes created for the bootstraps and brokers
NAME HOST/PORT SERVICES PORT TERMINATION my-cluster-kafka-external-0 my-cluster-kafka-external-0-my-project.router.com my-cluster-kafka-external-0 9094 passthrough my-cluster-kafka-external-1 my-cluster-kafka-external-1-my-project.router.com my-cluster-kafka-external-1 9094 passthrough my-cluster-kafka-external-2 my-cluster-kafka-external-2-my-project.router.com my-cluster-kafka-external-2 9094 passthrough my-cluster-kafka-external-bootstrap my-cluster-kafka-external-bootstrap-my-project.router.com my-cluster-kafka-external-bootstrap 9094 passthrough
The DNS addresses used for client connection are propagated to the
status
of each route.Example status for the bootstrap route
status: ingress: - host: >- my-cluster-kafka-external-bootstrap-my-project.router.com # ...
Use a target broker to check the client-server TLS connection on port 443 using the OpenSSL
s_client
.openssl s_client -connect my-cluster-kafka-external-0-my-project.router.com:443 -servername my-cluster-kafka-external-0-my-project.router.com -showcerts
The server name is the SNI for passing the connection to the broker.
If the connection is successful, the certificates for the broker are returned.
Certificates for the broker
Certificate chain 0 s:O = io.strimzi, CN = my-cluster-kafka i:O = io.strimzi, CN = cluster-ca v0
Retrieve the address of the bootstrap service from the status of the
Kafka
resource.oc get kafka my-cluster -o=jsonpath='{.status.listeners[?(@.name=="external")].bootstrapServers}{"\n"}' my-cluster-kafka-external-bootstrap-my-project.router.com:443
The address comprises the cluster name, the listener name, the project name and the domain of the router (
router.com
in this example).Extract the cluster CA certificate.
oc get secret my-cluster-cluster-ca-cert -o jsonpath='{.data.ca\.crt}' | base64 -d > ca.crt
Configure your client to connect to the brokers.
- Specify the address for the bootstrap service and port 443 in your Kafka client as the bootstrap address to connect to the Kafka cluster.
Add the extracted certificate to the truststore of your Kafka client to configure a TLS connection.
If you enabled a client authentication mechanism, you will also need to configure it in your client.
If you are using your own listener certificates, check whether you need to add the CA certificate to the client’s truststore configuration. If it is a public (external) CA, you usually won’t need to add it.
Chapter 14. Managing secure access to Kafka
Secure your Kafka cluster by managing the access a client has to Kafka brokers. Specify configuration options to secure Kafka brokers and clients
A secure connection between Kafka brokers and clients can encompass the following:
- Encryption for data exchange
- Authentication to prove identity
- Authorization to allow or decline actions executed by users
The authentication and authorization mechanisms specified for a client must match those specified for the Kafka brokers. AMQ Streams operators automate the configuration process and create the certificates required for authentication. The Cluster Operator automatically sets up TLS certificates for data encryption and authentication within your cluster.
14.1. Security options for Kafka
Use the Kafka
resource to configure the mechanisms used for Kafka authentication and authorization.
14.1.1. Listener authentication
Configure client authentication for Kafka brokers when creating listeners. Specify the listener authentication type using the Kafka.spec.kafka.listeners.authentication
property in the Kafka
resource.
For clients inside the OpenShift cluster, you can create plain
(without encryption) or tls
internal listeners. The internal
listener type use a headless service and the DNS names given to the broker pods. As an alternative to the headless service, you can also create a cluster-ip
type of internal listener to expose Kafka using per-broker ClusterIP
services. For clients outside the OpenShift cluster, you create external listeners and specify a connection mechanism, which can be nodeport
, loadbalancer
, ingress
(Kubernetes only), or route
(OpenShift only).
For more information on the configuration options for connecting an external client, see Chapter 13, Setting up client access to a Kafka cluster.
Supported authentication options:
- mTLS authentication (only on the listeners with TLS enabled encryption)
- SCRAM-SHA-512 authentication
- OAuth 2.0 token-based authentication
- Custom authentication
The authentication option you choose depends on how you wish to authenticate client access to Kafka brokers.
Try exploring the standard authentication options before using custom authentication. Custom authentication allows for any type of kafka-supported authentication. It can provide more flexibility, but also adds complexity.
Figure 14.1. Kafka listener authentication options

The listener authentication
property is used to specify an authentication mechanism specific to that listener.
If no authentication
property is specified then the listener does not authenticate clients which connect through that listener. The listener will accept all connections without authentication.
Authentication must be configured when using the User Operator to manage KafkaUsers
.
The following example shows:
-
A
plain
listener configured for SCRAM-SHA-512 authentication -
A
tls
listener with mTLS authentication -
An
external
listener with mTLS authentication
Each listener is configured with a unique name and port within a Kafka cluster.
When configuring listeners for client access to brokers, you can use port 9092 or higher (9093, 9094, and so on), but with a few exceptions. The listeners cannot be configured to use the ports reserved for interbroker communication (9090 and 9091), Prometheus metrics (9404), and JMX (Java Management Extensions) monitoring (9999).
Example listener authentication configuration
apiVersion: kafka.strimzi.io/v1beta2 kind: Kafka metadata: name: my-cluster namespace: myproject spec: kafka: # ... listeners: - name: plain port: 9092 type: internal tls: true authentication: type: scram-sha-512 - name: tls port: 9093 type: internal tls: true authentication: type: tls - name: external port: 9094 type: loadbalancer tls: true authentication: type: tls # ...
14.1.1.1. mTLS authentication
mTLS authentication is always used for the communication between Kafka brokers and ZooKeeper pods.
AMQ Streams can configure Kafka to use TLS (Transport Layer Security) to provide encrypted communication between Kafka brokers and clients either with or without mutual authentication. For mutual, or two-way, authentication, both the server and the client present certificates. When you configure mTLS authentication, the broker authenticates the client (client authentication) and the client authenticates the broker (server authentication).
mTLS listener configuration in the Kafka
resource requires the following:
-
tls: true
to specify TLS encryption and server authentication -
authentication.type: tls
to specify the client authentication
When a Kafka cluster is created by the Cluster Operator, it creates a new secret with the name <cluster_name>-cluster-ca-cert
. The secret contains a CA certificate. The CA certificate is in PEM and PKCS #12 format. To verify a Kafka cluster, add the CA certificate to the truststore in your client configuration. To verify a client, add a user certificate and key to the keystore in your client configuration. For more information on configuring a client for mTLS, see Section 14.2.2, “User authentication”.
TLS authentication is more commonly one-way, with one party authenticating the identity of another. For example, when HTTPS is used between a web browser and a web server, the browser obtains proof of the identity of the web server.
14.1.1.2. SCRAM-SHA-512 authentication
SCRAM (Salted Challenge Response Authentication Mechanism) is an authentication protocol that can establish mutual authentication using passwords. AMQ Streams can configure Kafka to use SASL (Simple Authentication and Security Layer) SCRAM-SHA-512 to provide authentication on both unencrypted and encrypted client connections.
When SCRAM-SHA-512 authentication is used with a TLS connection, the TLS protocol provides the encryption, but is not used for authentication.
The following properties of SCRAM make it safe to use SCRAM-SHA-512 even on unencrypted connections:
- The passwords are not sent in the clear over the communication channel. Instead the client and the server are each challenged by the other to offer proof that they know the password of the authenticating user.
- The server and client each generate a new challenge for each authentication exchange. This means that the exchange is resilient against replay attacks.
When KafkaUser.spec.authentication.type
is configured with scram-sha-512
the User Operator will generate a random 12-character password consisting of upper and lowercase ASCII letters and numbers.
14.1.1.3. Network policies
By default, AMQ Streams automatically creates a NetworkPolicy
resource for every listener that is enabled on a Kafka broker. This NetworkPolicy
allows applications to connect to listeners in all namespaces. Use network policies as part of the listener configuration.
If you want to restrict access to a listener at the network level to only selected applications or namespaces, use the networkPolicyPeers
property. Each listener can have a different networkPolicyPeers
configuration. For more information on network policy peers, refer to the NetworkPolicyPeer API reference.
If you want to use custom network policies, you can set the STRIMZI_NETWORK_POLICY_GENERATION
environment variable to false
in the Cluster Operator configuration. For more information, see Section 8.5, “Configuring the Cluster Operator”.
Your configuration of OpenShift must support ingress NetworkPolicies
in order to use network policies in AMQ Streams.
14.1.1.4. Providing listener certificates
You can provide your own server certificates, called Kafka listener certificates, for TLS listeners or external listeners which have TLS encryption enabled. For more information, see Section 14.3.4, “Providing your own Kafka listener certificates for TLS encryption”.
Additional resources
14.1.2. Kafka authorization
Configure authorization for Kafka brokers using the Kafka.spec.kafka.authorization
property in the Kafka
resource. If the authorization
property is missing, no authorization is enabled and clients have no restrictions. When enabled, authorization is applied to all enabled listeners. The authorization method is defined in the type
field.
Supported authorization options:
- Simple authorization
- OAuth 2.0 authorization (if you are using OAuth 2.0 token based authentication)
- Open Policy Agent (OPA) authorization
- Custom authorization
Figure 14.2. Kafka cluster authorization options

14.1.2.1. Super users
Super users can access all resources in your Kafka cluster regardless of any access restrictions, and are supported by all authorization mechanisms.
To designate super users for a Kafka cluster, add a list of user principals to the superUsers
property. If a user uses mTLS authentication, the username is the common name from the TLS certificate subject prefixed with CN=
. If you are not using the User Operator and using your own certificates for mTLS, the username is the full certificate subject. A full certificate subject can have the following fields: CN=user,OU=my_ou,O=my_org,L=my_location,ST=my_state,C=my_country_code
. Omit any fields that are not present.
An example configuration with super users
apiVersion: kafka.strimzi.io/v1beta2 kind: Kafka metadata: name: my-cluster namespace: myproject spec: kafka: # ... authorization: type: simple superUsers: - CN=client_1 - user_2 - CN=client_3 - CN=client_4,OU=my_ou,O=my_org,L=my_location,ST=my_state,C=US - CN=client_5,OU=my_ou,O=my_org,C=GB - CN=client_6,O=my_org # ...
14.2. Security options for Kafka clients
Use the KafkaUser
resource to configure the authentication mechanism, authorization mechanism, and access rights for Kafka clients. In terms of configuring security, clients are represented as users.
You can authenticate and authorize user access to Kafka brokers. Authentication permits access, and authorization constrains the access to permissible actions.
You can also create super users that have unconstrained access to Kafka brokers.
The authentication and authorization mechanisms must match the specification for the listener used to access the Kafka brokers.
For more information on configuring a KafkaUser
resource to access Kafka brokers securely, see Section 13.3, “Setting up client access to a Kafka cluster using listeners”.
14.2.1. Identifying a Kafka cluster for user handling
A KafkaUser
resource includes a label that defines the appropriate name of the Kafka cluster (derived from the name of the Kafka
resource) to which it belongs.
apiVersion: kafka.strimzi.io/v1beta2 kind: KafkaUser metadata: name: my-user labels: strimzi.io/cluster: my-cluster
The label is used by the User Operator to identify the KafkaUser
resource and create a new user, and also in subsequent handling of the user.
If the label does not match the Kafka cluster, the User Operator cannot identify the KafkaUser
and the user is not created.
If the status of the KafkaUser
resource remains empty, check your label.
14.2.2. User authentication
Use the KafkaUser
custom resource to configure authentication credentials for users (clients) that require access to a Kafka cluster. Configure the credentials using the authentication
property in KafkaUser.spec
. By specifying a type
, you control what credentials are generated.
Supported authentication types:
-
tls
for mTLS authentication -
tls-external
for mTLS authentication using external certificates -
scram-sha-512
for SCRAM-SHA-512 authentication
If tls
or scram-sha-512
is specified, the User Operator creates authentication credentials when it creates the user. If tls-external
is specified, the user still uses mTLS, but no authentication credentials are created. Use this option when you’re providing your own certificates. When no authentication type is specified, the User Operator does not create the user or its credentials.
You can use tls-external
to authenticate with mTLS using a certificate issued outside the User Operator. The User Operator does not generate a TLS certificate or a secret. You can still manage ACL rules and quotas through the User Operator in the same way as when you’re using the tls
mechanism. This means that you use the CN=USER-NAME
format when specifying ACL rules and quotas. USER-NAME is the common name given in a TLS certificate.
14.2.2.1. mTLS authentication
To use mTLS authentication, you set the type
field in the KafkaUser
resource to tls
.
Example user with mTLS authentication enabled
apiVersion: kafka.strimzi.io/v1beta2 kind: KafkaUser metadata: name: my-user labels: strimzi.io/cluster: my-cluster spec: authentication: type: tls # ...
The authentication type must match the equivalent configuration for the Kafka
listener used to access the Kafka cluster.
When the user is created by the User Operator, it creates a new secret with the same name as the KafkaUser
resource. The secret contains a private and public key for mTLS. The public key is contained in a user certificate, which is signed by a clients CA (certificate authority) when it is created. All keys are in X.509 format.
If you are using the clients CA generated by the Cluster Operator, the user certificates generated by the User Operator are also renewed when the clients CA is renewed by the Cluster Operator.
The user secret provides keys and certificates in PEM and PKCS #12 formats.
Example secret with user credentials
apiVersion: v1 kind: Secret metadata: name: my-user labels: strimzi.io/kind: KafkaUser strimzi.io/cluster: my-cluster type: Opaque data: ca.crt: <public_key> # Public key of the clients CA user.crt: <user_certificate> # Public key of the user user.key: <user_private_key> # Private key of the user user.p12: <store> # PKCS #12 store for user certificates and keys user.password: <password_for_store> # Protects the PKCS #12 store
When you configure a client, you specify the following:
- Truststore properties for the public cluster CA certificate to verify the identity of the Kafka cluster
- Keystore properties for the user authentication credentials to verify the client
The configuration depends on the file format (PEM or PKCS #12). This example uses PKCS #12 stores, and the passwords required to access the credentials in the stores.
Example client configuration using mTLS in PKCS #12 format
bootstrap.servers=<kafka_cluster_name>-kafka-bootstrap:9093 1 security.protocol=SSL 2 ssl.truststore.location=/tmp/ca.p12 3 ssl.truststore.password=<truststore_password> 4 ssl.keystore.location=/tmp/user.p12 5 ssl.keystore.password=<keystore_password> 6
- 1
- The bootstrap server address to connect to the Kafka cluster.
- 2
- The security protocol option when using TLS for encryption.
- 3
- The truststore location contains the public key certificate (
ca.p12
) for the Kafka cluster. A cluster CA certificate and password is generated by the Cluster Operator in the<cluster_name>-cluster-ca-cert
secret when the Kafka cluster is created. - 4
- The password (
ca.password
) for accessing the truststore. - 5
- The keystore location contains the public key certificate (
user.p12
) for the Kafka user. - 6
- The password (
user.password
) for accessing the keystore.
14.2.2.2. mTLS authentication using a certificate issued outside the User Operator
To use mTLS authentication using a certificate issued outside the User Operator, you set the type
field in the KafkaUser
resource to tls-external
. A secret and credentials are not created for the user.
Example user with mTLS authentication that uses a certificate issued outside the User Operator
apiVersion: kafka.strimzi.io/v1beta2 kind: KafkaUser metadata: name: my-user labels: strimzi.io/cluster: my-cluster spec: authentication: type: tls-external # ...
14.2.2.3. SCRAM-SHA-512 authentication
To use the SCRAM-SHA-512 authentication mechanism, you set the type
field in the KafkaUser
resource to scram-sha-512
.
Example user with SCRAM-SHA-512 authentication enabled
apiVersion: kafka.strimzi.io/v1beta2 kind: KafkaUser metadata: name: my-user labels: strimzi.io/cluster: my-cluster spec: authentication: type: scram-sha-512 # ...
When the user is created by the User Operator, it creates a new secret with the same name as the KafkaUser
resource. The secret contains the generated password in the password
key, which is encoded with base64. In order to use the password, it must be decoded.
Example secret with user credentials
apiVersion: v1 kind: Secret metadata: name: my-user labels: strimzi.io/kind: KafkaUser strimzi.io/cluster: my-cluster type: Opaque data: password: Z2VuZXJhdGVkcGFzc3dvcmQ= 1 sasl.jaas.config: b3JnLmFwYWNoZS5rYWZrYS5jb21tb24uc2VjdXJpdHkuc2NyYW0uU2NyYW1Mb2dpbk1vZHVsZSByZXF1aXJlZCB1c2VybmFtZT0ibXktdXNlciIgcGFzc3dvcmQ9ImdlbmVyYXRlZHBhc3N3b3JkIjsK 2
Decoding the generated password:
echo "Z2VuZXJhdGVkcGFzc3dvcmQ=" | base64 --decode
14.2.2.3.1. Custom password configuration
When a user is created, AMQ Streams generates a random password. You can use your own password instead of the one generated by AMQ Streams. To do so, create a secret with the password and reference it in the KafkaUser
resource.
Example user with a password set for SCRAM-SHA-512 authentication
apiVersion: kafka.strimzi.io/v1beta2 kind: KafkaUser metadata: name: my-user labels: strimzi.io/cluster: my-cluster spec: authentication: type: scram-sha-512 password: valueFrom: secretKeyRef: name: my-secret 1 key: my-password 2 # ...
14.2.3. User authorization
Use the KafkaUser
custom resource to configure authorization rules for users (clients) that require access to a Kafka cluster. Configure the rules using the authorization
property in KafkaUser.spec
. By specifying a type
, you control what rules are used.
To use simple authorization, you set the type
property to simple
in KafkaUser.spec.authorization
. The simple authorization uses the Kafka Admin API to manage the ACL rules inside your Kafka cluster. Whether ACL management in the User Operator is enabled or not depends on your authorization configuration in the Kafka cluster.
- For simple authorization, ACL management is always enabled.
- For OPA authorization, ACL management is always disabled. Authorization rules are configured in the OPA server.
- For Red Hat Single Sign-On authorization, you can manage the ACL rules directly in Red Hat Single Sign-On. You can also delegate authorization to the simple authorizer as a fallback option in the configuration. When delegation to the simple authorizer is enabled, the User Operator will enable management of ACL rules as well.
-
For custom authorization using a custom authorization plugin, use the
supportsAdminApi
property in the.spec.kafka.authorization
configuration of theKafka
custom resource to enable or disable the support.
Authorization is cluster-wide. The authorization type must match the equivalent configuration in the Kafka
custom resource.
If ACL management is not enabled, AMQ Streams rejects a resource if it contains any ACL rules.
If you’re using a standalone deployment of the User Operator, ACL management is enabled by default. You can disable it using the STRIMZI_ACLS_ADMIN_API_SUPPORTED
environment variable.
If no authorization is specified, the User Operator does not provision any access rights for the user. Whether such a KafkaUser
can still access resources depends on the authorizer being used. For example, for the AclAuthorizer
this is determined by its allow.everyone.if.no.acl.found
configuration.
14.2.3.1. ACL rules
AclAuthorizer
uses ACL rules to manage access to Kafka brokers.
ACL rules grant access rights to the user, which you specify in the acls
property.
For more information about the AclRule
object, see the AclRule
schema reference.
14.2.3.2. Super user access to Kafka brokers
If a user is added to a list of super users in a Kafka broker configuration, the user is allowed unlimited access to the cluster regardless of any authorization constraints defined in ACLs in KafkaUser
.
For more information on configuring super user access to brokers, see Kafka authorization.
14.2.3.3. User quotas
You can configure the spec
for the KafkaUser
resource to enforce quotas so that a user does not exceed a configured level of access to Kafka brokers. You can set size-based network usage and time-based CPU utilization thresholds. You can also add a partition mutation quota to control the rate at which requests to change partitions are accepted for user requests.
An example KafkaUser
with user quotas
apiVersion: kafka.strimzi.io/v1beta2 kind: KafkaUser metadata: name: my-user labels: strimzi.io/cluster: my-cluster spec: # ... quotas: producerByteRate: 1048576 1 consumerByteRate: 2097152 2 requestPercentage: 55 3 controllerMutationRate: 10 4
- 1
- Byte-per-second quota on the amount of data the user can push to a Kafka broker
- 2
- Byte-per-second quota on the amount of data the user can fetch from a Kafka broker
- 3
- CPU utilization limit as a percentage of time for a client group
- 4
- Number of concurrent partition creation and deletion operations (mutations) allowed per second
For more information on these properties, see the KafkaUserQuotas
schema reference.
14.3. Securing access to Kafka brokers
To establish secure access to Kafka brokers, you configure and apply:
A
Kafka
resource to:- Create listeners with a specified authentication type
- Configure authorization for the whole Kafka cluster
-
A
KafkaUser
resource to access the Kafka brokers securely through the listeners
Configure the Kafka
resource to set up:
- Listener authentication
- Network policies that restrict access to Kafka listeners
- Kafka authorization
- Super users for unconstrained access to brokers
Authentication is configured independently for each listener. Authorization is always configured for the whole Kafka cluster.
The Cluster Operator creates the listeners and sets up the cluster and client certificate authority (CA) certificates to enable authentication within the Kafka cluster.
You can replace the certificates generated by the Cluster Operator by installing your own certificates.
You can also provide your own server certificates and private keys for any listener with TLS encryption enabled. These user-provided certificates are called Kafka listener certificates. Providing Kafka listener certificates allows you to leverage existing security infrastructure, such as your organization’s private CA or a public CA. Kafka clients will need to trust the CA which was used to sign the listener certificate. You must manually renew Kafka listener certificates when needed. Certificates are available in PKCS #12 format (.p12) and PEM (.crt) formats.
Use KafkaUser
to enable the authentication and authorization mechanisms that a specific client uses to access Kafka.
Configure the KafkaUser
resource to set up:
- Authentication to match the enabled listener authentication
- Authorization to match the enabled Kafka authorization
- Quotas to control the use of resources by clients
The User Operator creates the user representing the client and the security credentials used for client authentication, based on the chosen authentication type.
Refer to the schema reference for more information on access configuration properties:
14.3.1. Securing Kafka brokers
This procedure shows the steps involved in securing Kafka brokers when running AMQ Streams.
The security implemented for Kafka brokers must be compatible with the security implemented for the clients requiring access.
-
Kafka.spec.kafka.listeners[*].authentication
matchesKafkaUser.spec.authentication
-
Kafka.spec.kafka.authorization
matchesKafkaUser.spec.authorization
The steps show the configuration for simple authorization and a listener using mTLS authentication. For more information on listener configuration, see the GenericKafkaListener
schema reference.
Alternatively, you can use SCRAM-SHA or OAuth 2.0 for listener authentication, and OAuth 2.0 or OPA for Kafka authorization.
Procedure
Configure the
Kafka
resource.-
Configure the
authorization
property for authorization. Configure the
listeners
property to create a listener with authentication.For example:
apiVersion: kafka.strimzi.io/v1beta2 kind: Kafka spec: kafka: # ... authorization: 1 type: simple superUsers: 2 - CN=client_1 - user_2 - CN=client_3 listeners: - name: tls port: 9093 type: internal tls: true authentication: type: tls 3 # ... zookeeper: # ...
- 1
- 2
- List of user principals with unlimited access to Kafka. CN is the common name from the client certificate when mTLS authentication is used.
- 3
- Listener authentication mechanisms may be configured for each listener, and specified as mTLS, SCRAM-SHA-512, or token-based OAuth 2.0.
If you are configuring an external listener, the configuration is dependent on the chosen connection mechanism.
-
Configure the
Create or update the
Kafka
resource.oc apply -f <kafka_configuration_file>
The Kafka cluster is configured with a Kafka broker listener using mTLS authentication.
A service is created for each Kafka broker pod.
A service is created to serve as the bootstrap address for connection to the Kafka cluster.
The cluster CA certificate to verify the identity of the kafka brokers is also created in the secret
<cluster_name>-cluster-ca-cert
.
14.3.2. Securing user access to Kafka
Create or modify a KafkaUser
to represent a client that requires secure access to the Kafka cluster.
When you configure the KafkaUser
authentication and authorization mechanisms, ensure they match the equivalent Kafka
configuration:
-
KafkaUser.spec.authentication
matchesKafka.spec.kafka.listeners[*].authentication
-
KafkaUser.spec.authorization
matchesKafka.spec.kafka.authorization
This procedure shows how a user is created with mTLS authentication. You can also create a user with SCRAM-SHA authentication.
The authentication required depends on the type of authentication configured for the Kafka broker listener.
Authentication between Kafka users and Kafka brokers depends on the authentication settings for each. For example, it is not possible to authenticate a user with mTLS if it is not also enabled in the Kafka configuration.
Prerequisites
- A running Kafka cluster configured with a Kafka broker listener using mTLS authentication and TLS encryption.
- A running User Operator (typically deployed with the Entity Operator).
The authentication type in KafkaUser
should match the authentication configured in Kafka
brokers.
Procedure
Configure the
KafkaUser
resource.For example:
apiVersion: kafka.strimzi.io/v1beta2 kind: KafkaUser metadata: name: my-user labels: strimzi.io/cluster: my-cluster spec: authentication: 1 type: tls authorization: type: simple 2 acls: - resource: type: topic name: my-topic patternType: literal operations: - Describe - Read - resource: type: group name: my-group patternType: literal operations: - Read
Create or update the
KafkaUser
resource.oc apply -f <user_config_file>
The user is created, as well as a Secret with the same name as the
KafkaUser
resource. The Secret contains a private and public key for mTLS authentication.
For information on configuring a Kafka client with properties for secure connection to Kafka brokers, see Section 13.3, “Setting up client access to a Kafka cluster using listeners”.
14.3.3. Restricting access to Kafka listeners using network policies
You can restrict access to a listener to only selected applications by using the networkPolicyPeers
property.
Prerequisites
- An OpenShift cluster with support for Ingress NetworkPolicies.
- The Cluster Operator is running.
Procedure
-
Open the
Kafka
resource. In the
networkPolicyPeers
property, define the application pods or namespaces that will be allowed to access the Kafka cluster.For example, to configure a
tls
listener to allow connections only from application pods with the labelapp
set tokafka-client
:apiVersion: kafka.strimzi.io/v1beta2 kind: Kafka spec: kafka: # ... listeners: - name: tls port: 9093 type: internal tls: true authentication: type: tls networkPolicyPeers: - podSelector: matchLabels: app: kafka-client # ... zookeeper: # ...
Create or update the resource.
Use
oc apply
:oc apply -f your-file
Additional resources
14.3.4. Providing your own Kafka listener certificates for TLS encryption
Listeners provide client access to Kafka brokers. Configure listeners in the Kafka
resource, including the configuration required for client access using TLS.
By default, the listeners use certificates signed by the internal CA (certificate authority) certificates generated by AMQ Streams. A CA certificate is generated by the Cluster Operator when it creates a Kafka cluster. When you configure a client for TLS, you add the CA certificate to its truststore configuration to verify the Kafka cluster. You can also install and use your own CA certificates. Or you can configure a listener using brokerCertChainAndKey
properties and use a custom server certificate.
The brokerCertChainAndKey
properties allow you to access Kafka brokers using your own custom certificates at the listener-level. You create a secret with your own private key and server certificate, then specify the key and certificate in the listener’s brokerCertChainAndKey
configuration. You can use a certificate signed by a public (external) CA or a private CA. If signed by a public CA, you usually won’t need to add it to a client’s truststore configuration. Custom certificates are not managed by AMQ Streams, so you need to renew them manually.
Listener certificates are used for TLS encryption and server authentication only. They are not used for TLS client authentication. If you want to use your own certificate for TLS client authentication as well, you must install and use your own clients CA.
Prerequisites
- The Cluster Operator is running.
Each listener requires the following:
A compatible server certificate signed by an external CA. (Provide an X.509 certificate in PEM format.)
You can use one listener certificate for multiple listeners.
- Subject Alternative Names (SANs) are specified in the certificate for each listener. For more information, see Section 14.3.5, “Alternative subjects in server certificates for Kafka listeners”.
If you are not using a self-signed certificate, you can provide a certificate that includes the whole CA chain in the certificate.
You can only use the brokerCertChainAndKey
properties if TLS encryption (tls: true
) is configured for the listener.
AMQ Streams does not support the use of encrypted private keys for TLS. The private key stored in the secret must be unencrypted for this to work.
Procedure
Create a
Secret
containing your private key and server certificate:oc create secret generic my-secret --from-file=my-listener-key.key --from-file=my-listener-certificate.crt
Edit the
Kafka
resource for your cluster.Configure the listener to use your
Secret
, certificate file, and private key file in theconfiguration.brokerCertChainAndKey
property.Example configuration for a
loadbalancer
external listener with TLS encryption enabled# ... listeners: - name: plain port: 9092 type: internal tls: false - name: external port: 9094 type: loadbalancer tls: true configuration: brokerCertChainAndKey: secretName: my-secret certificate: my-listener-certificate.crt key: my-listener-key.key # ...
Example configuration for a TLS listener
# ... listeners: - name: plain port: 9092 type: internal tls: false - name: tls port: 9093 type: internal tls: true configuration: brokerCertChainAndKey: secretName: my-secret certificate: my-listener-certificate.crt key: my-listener-key.key # ...
Apply the new configuration to create or update the resource:
oc apply -f kafka.yaml
The Cluster Operator starts a rolling update of the Kafka cluster, which updates the configuration of the listeners.
NoteA rolling update is also started if you update a Kafka listener certificate in a
Secret
that is already used by a listener.
14.3.5. Alternative subjects in server certificates for Kafka listeners
In order to use TLS hostname verification with your own Kafka listener certificates, you must use the correct Subject Alternative Names (SANs) for each listener. The certificate SANs must specify hostnames for the following:
- All of the Kafka brokers in your cluster
- The Kafka cluster bootstrap service
You can use wildcard certificates if they are supported by your CA.
14.3.5.1. Examples of SANs for internal listeners
Use the following examples to help you specify hostnames of the SANs in your certificates for your internal listeners.
Replace <cluster-name>
with the name of the Kafka cluster and <namespace>
with the OpenShift namespace where the cluster is running.
Wildcards example for a type: internal
listener
//Kafka brokers *.<cluster-name>-kafka-brokers *.<cluster-name>-kafka-brokers.<namespace>.svc // Bootstrap service <cluster-name>-kafka-bootstrap <cluster-name>-kafka-bootstrap.<namespace>.svc
Non-wildcards example for a type: internal
listener
// Kafka brokers <cluster-name>-kafka-0.<cluster-name>-kafka-brokers <cluster-name>-kafka-0.<cluster-name>-kafka-brokers.<namespace>.svc <cluster-name>-kafka-1.<cluster-name>-kafka-brokers <cluster-name>-kafka-1.<cluster-name>-kafka-brokers.<namespace>.svc # ... // Bootstrap service <cluster-name>-kafka-bootstrap <cluster-name>-kafka-bootstrap.<namespace>.svc
Non-wildcards example for a type: cluster-ip
listener
// Kafka brokers <cluster-name>-kafka-<listener-name>-0 <cluster-name>-kafka-<listener-name>-0.<namespace>.svc <cluster-name>-kafka-<listener-name>-1 <cluster-name>-kafka-<listener-name>-1.<namespace>.svc # ... // Bootstrap service <cluster-name>-kafka-<listener-name>-bootstrap <cluster-name>-kafka-<listener-name>-bootstrap.<namespace>.svc
14.3.5.2. Examples of SANs for external listeners
For external listeners which have TLS encryption enabled, the hostnames you need to specify in certificates depends on the external listener type
.
External listener type | In the SANs, specify… |
---|---|
|
Addresses of all Kafka broker You can use a matching wildcard name. |
|
Addresses of all Kafka broker You can use a matching wildcard name. |
|
Addresses of all Kafka broker You can use a matching wildcard name. |
| Addresses of all OpenShift worker nodes that the Kafka broker pods might be scheduled to. You can use a matching wildcard name. |
Additional resources
14.4. Using OAuth 2.0 token-based authentication
AMQ Streams supports the use of OAuth 2.0 authentication using the OAUTHBEARER and PLAIN mechanisms.
OAuth 2.0 enables standardized token-based authentication and authorization between applications, using a central authorization server to issue tokens that grant limited access to resources.
You can configure OAuth 2.0 authentication, then OAuth 2.0 authorization.
Kafka brokers and clients both need to be configured to use OAuth 2.0. OAuth 2.0 authentication can also be used in conjunction with simple
or OPA-based Kafka authorization.
Using OAuth 2.0 token-based authentication, application clients can access resources on application servers (called resource servers) without exposing account credentials.
The application client passes an access token as a means of authenticating, which application servers can also use to determine the level of access to grant. The authorization server handles the granting of access and inquiries about access.
In the context of AMQ Streams:
- Kafka brokers act as OAuth 2.0 resource servers
- Kafka clients act as OAuth 2.0 application clients
Kafka clients authenticate to Kafka brokers. The brokers and clients communicate with the OAuth 2.0 authorization server, as necessary, to obtain or validate access tokens.
For a deployment of AMQ Streams, OAuth 2.0 integration provides:
- Server-side OAuth 2.0 support for Kafka brokers
- Client-side OAuth 2.0 support for Kafka MirrorMaker, Kafka Connect and the Kafka Bridge
14.4.1. OAuth 2.0 authentication mechanisms
AMQ Streams supports the OAUTHBEARER and PLAIN mechanisms for OAuth 2.0 authentication. Both mechanisms allow Kafka clients to establish authenticated sessions with Kafka brokers. The authentication flow between clients, the authorization server, and Kafka brokers is different for each mechanism.
We recommend that you configure clients to use OAUTHBEARER whenever possible. OAUTHBEARER provides a higher level of security than PLAIN because client credentials are never shared with Kafka brokers. Consider using PLAIN only with Kafka clients that do not support OAUTHBEARER.
You configure Kafka broker listeners to use OAuth 2.0 authentication for connecting clients. If necessary, you can use the OAUTHBEARER and PLAIN mechanisms on the same oauth
listener. The properties to support each mechanism must be explicitly specified in the oauth
listener configuration.
OAUTHBEARER overview
OAUTHBEARER is automatically enabled in the oauth
listener configuration for the Kafka broker. You can set the enableOauthBearer
property to true
, though this is not required.
# ... authentication: type: oauth # ... enableOauthBearer: true
Many Kafka client tools use libraries that provide basic support for OAUTHBEARER at the protocol level. To support application development, AMQ Streams provides an OAuth callback handler for the upstream Kafka Client Java libraries (but not for other libraries). Therefore, you do not need to write your own callback handlers. An application client can use the callback handler to provide the access token. Clients written in other languages, such as Go, must use custom code to connect to the authorization server and obtain the access token.
With OAUTHBEARER, the client initiates a session with the Kafka broker for credentials exchange, where credentials take the form of a bearer token provided by the callback handler. Using the callbacks, you can configure token provision in one of three ways:
- Client ID and Secret (by using the OAuth 2.0 client credentials mechanism)
- A long-lived access token, obtained manually at configuration time
- A long-lived refresh token, obtained manually at configuration time
OAUTHBEARER authentication can only be used by Kafka clients that support the OAUTHBEARER mechanism at the protocol level.
PLAIN overview
To use PLAIN, you must enable it in the oauth
listener configuration for the Kafka broker.
In the following example, PLAIN is enabled in addition to OAUTHBEARER, which is enabled by default. If you want to use PLAIN only, you can disable OAUTHBEARER by setting enableOauthBearer
to false
.
# ...
authentication:
type: oauth
# ...
enablePlain: true
tokenEndpointUri: https://OAUTH-SERVER-ADDRESS/auth/realms/external/protocol/openid-connect/token
PLAIN is a simple authentication mechanism used by all Kafka client tools. To enable PLAIN to be used with OAuth 2.0 authentication, AMQ Streams provides OAuth 2.0 over PLAIN server-side callbacks.
With the AMQ Streams implementation of PLAIN, the client credentials are not stored in ZooKeeper. Instead, client credentials are handled centrally behind a compliant authorization server, similar to when OAUTHBEARER authentication is used.
When used with the OAuth 2.0 over PLAIN callbacks, Kafka clients authenticate with Kafka brokers using either of the following methods:
- Client ID and secret (by using the OAuth 2.0 client credentials mechanism)
- A long-lived access token, obtained manually at configuration time
For both methods, the client must provide the PLAIN username
and password
properties to pass credentials to the Kafka broker. The client uses these properties to pass a client ID and secret or username and access token.
Client IDs and secrets are used to obtain access tokens.
Access tokens are passed as password
property values. You pass the access token with or without an $accessToken:
prefix.
-
If you configure a token endpoint (
tokenEndpointUri
) in the listener configuration, you need the prefix. -
If you don’t configure a token endpoint (
tokenEndpointUri
) in the listener configuration, you don’t need the prefix. The Kafka broker interprets the password as a raw access token.
If the password
is set as the access token, the username
must be set to the same principal name that the Kafka broker obtains from the access token. You can specify username extraction options in your listener using the userNameClaim
, fallbackUserNameClaim
, fallbackUsernamePrefix
, and userInfoEndpointUri
properties. The username extraction process also depends on your authorization server; in particular, how it maps client IDs to account names.
OAuth over PLAIN does not support password grant
mechanism. You can only 'proxy' through SASL PLAIN mechanism the client credentials
(clientId + secret) or the access token as described above.
Additional resources
14.4.2. OAuth 2.0 Kafka broker configuration
Kafka broker configuration for OAuth 2.0 involves:
- Creating the OAuth 2.0 client in the authorization server
- Configuring OAuth 2.0 authentication in the Kafka custom resource
In relation to the authorization server, Kafka brokers and Kafka clients are both regarded as OAuth 2.0 clients.
14.4.2.1. OAuth 2.0 client configuration on an authorization server
To configure a Kafka broker to validate the token received during session initiation, the recommended approach is to create an OAuth 2.0 client definition in an authorization server, configured as confidential, with the following client credentials enabled:
-
Client ID of
kafka
(for example) - Client ID and Secret as the authentication mechanism
You only need to use a client ID and secret when using a non-public introspection endpoint of the authorization server. The credentials are not typically required when using public authorization server endpoints, as with fast local JWT token validation.
14.4.2.2. OAuth 2.0 authentication configuration in the Kafka cluster
To use OAuth 2.0 authentication in the Kafka cluster, you specify, for example, a tls
listener configuration for your Kafka cluster custom resource with the authentication method oauth
:
Assigining the authentication method type for OAuth 2.0
apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
spec:
kafka:
# ...
listeners:
- name: tls
port: 9093
type: internal
tls: true
authentication:
type: oauth
#...
You can configure OAuth 2.0 authentication in your listeners. We recommend using OAuth 2.0 authentication together with TLS encryption (tls: true
). Without encryption, the connection is vulnerable to network eavesdropping and unauthorized access through token theft.
You configure an external
listener with type: oauth
for a secure transport layer to communicate with the client.
Using OAuth 2.0 with an external listener
# ...
listeners:
- name: external
port: 9094
type: loadbalancer
tls: true
authentication:
type: oauth
#...
The tls
property is false by default, so it must be enabled.
When you have defined the type of authentication as OAuth 2.0, you add configuration based on the type of validation, either as fast local JWT validation or token validation using an introspection endpoint.
The procedure to configure OAuth 2.0 for listeners, with descriptions and examples, is described in Configuring OAuth 2.0 support for Kafka brokers.
14.4.2.3. Fast local JWT token validation configuration
Fast local JWT token validation checks a JWT token signature locally.
The local check ensures that a token:
-
Conforms to type by containing a (typ) claim value of
Bearer
for an access token - Is valid (not expired)
-
Has an issuer that matches a
validIssuerURI
You specify a validIssuerURI
attribute when you configure the listener, so that any tokens not issued by the authorization server are rejected.
The authorization server does not need to be contacted during fast local JWT token validation. You activate fast local JWT token validation by specifying a jwksEndpointUri
attribute, the endpoint exposed by the OAuth 2.0 authorization server. The endpoint contains the public keys used to validate signed JWT tokens, which are sent as credentials by Kafka clients.
All communication with the authorization server should be performed using TLS encryption.
You can configure a certificate truststore as an OpenShift Secret in your AMQ Streams project namespace, and use a tlsTrustedCertificates
attribute to point to the OpenShift Secret containing the truststore file.
You might want to configure a userNameClaim
to properly extract a username from the JWT token. If required, you can use a JsonPath expression like "['user.info'].['user.id']"
to retrieve the username from nested JSON attributes within a token.
If you want to use Kafka ACL authorization, you need to identify the user by their username during authentication. (The sub
claim in JWT tokens is typically a unique ID, not a username.)
Example configuration for fast local JWT token validation
apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
spec:
kafka:
#...
listeners:
- name: tls
port: 9093
type: internal
tls: true
authentication:
type: oauth
validIssuerUri: <https://<auth_server_address>/auth/realms/tls>
jwksEndpointUri: <https://<auth_server_address>/auth/realms/tls/protocol/openid-connect/certs>
userNameClaim: preferred_username
maxSecondsWithoutReauthentication: 3600
tlsTrustedCertificates:
- secretName: oauth-server-cert
certificate: ca.crt
#...
14.4.2.4. OAuth 2.0 introspection endpoint configuration
Token validation using an OAuth 2.0 introspection endpoint treats a received access token as opaque. The Kafka broker sends an access token to the introspection endpoint, which responds with the token information necessary for validation. Importantly, it returns up-to-date information if the specific access token is valid, and also information about when the token expires.
To configure OAuth 2.0 introspection-based validation, you specify an introspectionEndpointUri
attribute rather than the jwksEndpointUri
attribute specified for fast local JWT token validation. Depending on the authorization server, you typically have to specify a clientId
and clientSecret
, because the introspection endpoint is usually protected.
Example configuration for an introspection endpoint
apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
spec:
kafka:
listeners:
- name: tls
port: 9093
type: internal
tls: true
authentication:
type: oauth
clientId: kafka-broker
clientSecret:
secretName: my-cluster-oauth
key: clientSecret
validIssuerUri: <https://<auth_server_-_address>/auth/realms/tls>
introspectionEndpointUri: <https://<auth_server_address>/auth/realms/tls/protocol/openid-connect/token/introspect>
userNameClaim: preferred_username
maxSecondsWithoutReauthentication: 3600
tlsTrustedCertificates:
- secretName: oauth-server-cert
certificate: ca.crt
14.4.3. Session re-authentication for Kafka brokers
You can configure oauth
listeners to use Kafka session re-authentication for OAuth 2.0 sessions between Kafka clients and Kafka brokers. This mechanism enforces the expiry of an authenticated session between the client and the broker after a defined period of time. When a session expires, the client immediately starts a new session by reusing the existing connection rather than dropping it.
Session re-authentication is disabled by default. To enable it, you set a time value for maxSecondsWithoutReauthentication
in the oauth
listener configuration. The same property is used to configure session re-authentication for OAUTHBEARER and PLAIN authentication. For an example configuration, see Section 14.4.6.2, “Configuring OAuth 2.0 support for Kafka brokers”.
Session re-authentication must be supported by the Kafka client libraries used by the client.
Session re-authentication can be used with fast local JWT or introspection endpoint token validation.
Client re-authentication
When the broker’s authenticated session expires, the client must re-authenticate to the existing session by sending a new, valid access token to the broker, without dropping the connection.
If token validation is successful, a new client session is started using the existing connection. If the client fails to re-authenticate, the broker will close the connection if further attempts are made to send or receive messages. Java clients that use Kafka client library 2.2 or later automatically re-authenticate if the re-authentication mechanism is enabled on the broker.
Session re-authentication also applies to refresh tokens, if used. When the session expires, the client refreshes the access token by using its refresh token. The client then uses the new access token to re-authenticate to the existing session.
Session expiry for OAUTHBEARER and PLAIN
When session re-authentication is configured, session expiry works differently for OAUTHBEARER and PLAIN authentication.
For OAUTHBEARER and PLAIN, using the client ID and secret method:
-
The broker’s authenticated session will expire at the configured
maxSecondsWithoutReauthentication
. - The session will expire earlier if the access token expires before the configured time.
For PLAIN using the long-lived access token method:
-
The broker’s authenticated session will expire at the configured
maxSecondsWithoutReauthentication
. - Re-authentication will fail if the access token expires before the configured time. Although session re-authentication is attempted, PLAIN has no mechanism for refreshing tokens.
If maxSecondsWithoutReauthentication
is not configured, OAUTHBEARER and PLAIN clients can remain connected to brokers indefinitely, without needing to re-authenticate. Authenticated sessions do not end with access token expiry. However, this can be considered when configuring authorization, for example, by using keycloak
authorization or installing a custom authorizer.
14.4.4. OAuth 2.0 Kafka client configuration
A Kafka client is configured with either:
- The credentials required to obtain a valid access token from an authorization server (client ID and Secret)
- A valid long-lived access token or refresh token, obtained using tools provided by an authorization server
The only information ever sent to the Kafka broker is an access token. The credentials used to authenticate with the authorization server to obtain the access token are never sent to the broker.
When a client obtains an access token, no further communication with the authorization server is needed.
The simplest mechanism is authentication with a client ID and Secret. Using a long-lived access token, or a long-lived refresh token, adds more complexity because there is an additional dependency on authorization server tools.
If you are using long-lived access tokens, you may need to configure the client in the authorization server to increase the maximum lifetime of the token.
If the Kafka client is not configured with an access token directly, the client exchanges credentials for an access token during Kafka session initiation by contacting the authorization server. The Kafka client exchanges either:
- Client ID and Secret
- Client ID, refresh token, and (optionally) a secret
- Username and password, with client ID and (optionally) a secret
14.4.5. OAuth 2.0 client authentication flows
OAuth 2.0 authentication flows depend on the underlying Kafka client and Kafka broker configuration. The flows must also be supported by the authorization server used.
The Kafka broker listener configuration determines how clients authenticate using an access token. The client can pass a client ID and secret to request an access token.
If a listener is configured to use PLAIN authentication, the client can authenticate with a client ID and secret or username and access token. These values are passed as the username
and password
properties of the PLAIN mechanism.
Listener configuration supports the following token validation options:
- You can use fast local token validation based on JWT signature checking and local token introspection, without contacting an authorization server. The authorization server provides a JWKS endpoint with public certificates that are used to validate signatures on the tokens.
- You can use a call to a token introspection endpoint provided by an authorization server. Each time a new Kafka broker connection is established, the broker passes the access token received from the client to the authorization server. The Kafka broker checks the response to confirm whether or not the token is valid.
An authorization server might only allow the use of opaque access tokens, which means that local token validation is not possible.
Kafka client credentials can also be configured for the following types of authentication:
- Direct local access using a previously generated long-lived access token
- Contact with the authorization server for a new access token to be issued (using a client ID and a secret, or a refresh token, or a username and a password)
14.4.5.1. Example client authentication flows using the SASL OAUTHBEARER mechanism
You can use the following communication flows for Kafka authentication using the SASL OAUTHBEARER mechanism.
- Client using client ID and secret, with broker delegating validation to authorization server
- Client using client ID and secret, with broker performing fast local token validation
- Client using long-lived access token, with broker delegating validation to authorization server
- Client using long-lived access token, with broker performing fast local validation
Client using client ID and secret, with broker delegating validation to authorization server
- The Kafka client requests an access token from the authorization server using a client ID and secret, and optionally a refresh token. Alternatively, the client may authenticate using a username and a password.
- The authorization server generates a new access token.
- The Kafka client authenticates with the Kafka broker using the SASL OAUTHBEARER mechanism to pass the access token.
- The Kafka broker validates the access token by calling a token introspection endpoint on the authorization server using its own client ID and secret.
- A Kafka client session is established if the token is valid.
Client using client ID and secret, with broker performing fast local token validation
- The Kafka client authenticates with the authorization server from the token endpoint, using a client ID and secret, and optionally a refresh token. Alternatively, the client may authenticate using a username and a password.
- The authorization server generates a new access token.
- The Kafka client authenticates with the Kafka broker using the SASL OAUTHBEARER mechanism to pass the access token.
- The Kafka broker validates the access token locally using a JWT token signature check, and local token introspection.
Client using long-lived access token, with broker delegating validation to authorization server
- The Kafka client authenticates with the Kafka broker using the SASL OAUTHBEARER mechanism to pass the long-lived access token.
- The Kafka broker validates the access token by calling a token introspection endpoint on the authorization server, using its own client ID and secret.
- A Kafka client session is established if the token is valid.
Client using long-lived access token, with broker performing fast local validation
- The Kafka client authenticates with the Kafka broker using the SASL OAUTHBEARER mechanism to pass the long-lived access token.
- The Kafka broker validates the access token locally using a JWT token signature check and local token introspection.
Fast local JWT token signature validation is suitable only for short-lived tokens as there is no check with the authorization server if a token has been revoked. Token expiration is written into the token, but revocation can happen at any time, so cannot be accounted for without contacting the authorization server. Any issued token would be considered valid until it expires.
14.4.5.2. Example client authentication flows using the SASL PLAIN mechanism
You can use the following communication flows for Kafka authentication using the OAuth PLAIN mechanism.
Client using a client ID and secret, with the broker obtaining the access token for the client
-
The Kafka client passes a
clientId
as a username and asecret
as a password. -
The Kafka broker uses a token endpoint to pass the
clientId
andsecret
to the authorization server. - The authorization server returns a fresh access token or an error if the client credentials are not valid.
The Kafka broker validates the token in one of the following ways:
- If a token introspection endpoint is specified, the Kafka broker validates the access token by calling the endpoint on the authorization server. A session is established if the token validation is successful.
- If local token introspection is used, a request is not made to the authorization server. The Kafka broker validates the access token locally using a JWT token signature check.
Client using a long-lived access token without a client ID and secret
- The Kafka client passes a username and password. The password provides the value of an access token that was obtained manually and configured before running the client.
The password is passed with or without an
$accessToken:
string prefix depending on whether or not the Kafka broker listener is configured with a token endpoint for authentication.-
If the token endpoint is configured, the password should be prefixed by
$accessToken:
to let the broker know that the password parameter contains an access token rather than a client secret. The Kafka broker interprets the username as the account username. -
If the token endpoint is not configured on the Kafka broker listener (enforcing a
no-client-credentials mode
), the password should provide the access token without the prefix. The Kafka broker interprets the username as the account username. In this mode, the client doesn’t use a client ID and secret, and thepassword
parameter is always interpreted as a raw access token.
-
If the token endpoint is configured, the password should be prefixed by
The Kafka broker validates the token in one of the following ways:
- If a token introspection endpoint is specified, the Kafka broker validates the access token by calling the endpoint on the authorization server. A session is established if token validation is successful.
- If local token introspection is used, there is no request made to the authorization server. Kafka broker validates the access token locally using a JWT token signature check.
14.4.6. Configuring OAuth 2.0 authentication
OAuth 2.0 is used for interaction between Kafka clients and AMQ Streams components.
In order to use OAuth 2.0 for AMQ Streams, you must:
14.4.6.1. Configuring an OAuth 2.0 authorization server
This procedure describes in general what you need to do to configure an authorization server for integration with AMQ Streams.
These instructions are not product specific.
The steps are dependent on the chosen authorization server. Consult the product documentation for the authorization server for information on how to set up OAuth 2.0 access.
If you already have an authorization server deployed, you can skip the deployment step and use your current deployment.
Procedure
- Deploy the authorization server to your cluster.
Access the CLI or admin console for the authorization server to configure OAuth 2.0 for AMQ Streams.
Now prepare the authorization server to work with AMQ Streams.
-
Configure a
kafka-broker
client. - Configure clients for each Kafka client component of your application.
What to do next
After deploying and configuring the authorization server, configure the Kafka brokers to use OAuth 2.0.
14.4.6.2. Configuring OAuth 2.0 support for Kafka brokers
This procedure describes how to configure Kafka brokers so that the broker listeners are enabled to use OAuth 2.0 authentication using an authorization server.
We advise use of OAuth 2.0 over an encrypted interface through through a listener with tls: true
. Plain listeners are not recommended.
If the authorization server is using certificates signed by the trusted CA and matching the OAuth 2.0 server hostname, TLS connection works using the default settings. Otherwise, you may need to configure the truststore with proper certificates or disable the certificate hostname validation.
When configuring the Kafka broker you have two options for the mechanism used to validate the access token during OAuth 2.0 authentication of the newly connected Kafka client:
Before you start
For more information on the configuration of OAuth 2.0 authentication for Kafka broker listeners, see:
Prerequisites
- AMQ Streams and Kafka are running
- An OAuth 2.0 authorization server is deployed
Procedure
Update the Kafka broker configuration (
Kafka.spec.kafka
) of yourKafka
resource in an editor.oc edit kafka my-cluster
Configure the Kafka broker
listeners
configuration.The configuration for each type of listener does not have to be the same, as they are independent.
The examples here show the configuration options as configured for external listeners.
Example 1: Configuring fast local JWT token validation
#... - name: external port: 9094 type: loadbalancer tls: true authentication: type: oauth 1 validIssuerUri: https://<auth_server_address>/auth/realms/external 2 jwksEndpointUri: https://<auth_server_address>/auth/realms/external/protocol/openid-connect/certs 3 userNameClaim: preferred_username 4 maxSecondsWithoutReauthentication: 3600 5 tlsTrustedCertificates: 6 - secretName: oauth-server-cert certificate: ca.crt disableTlsHostnameVerification: true 7 jwksExpirySeconds: 360 8 jwksRefreshSeconds: 300 9 jwksMinRefreshPauseSeconds: 1 10
- 1
- Listener type set to
oauth
. - 2
- URI of the token issuer used for authentication.
- 3
- URI of the JWKS certificate endpoint used for local JWT validation.
- 4
- The token claim (or key) that contains the actual username used to identify the user. Its value depends on the authorization server. If necessary, a JsonPath expression like
"['user.info'].['user.id']"
can be used to retrieve the username from nested JSON attributes within a token. - 5
- (Optional) Activates the Kafka re-authentication mechanism that enforces session expiry to the same length of time as the access token. If the specified value is less than the time left for the access token to expire, then the client will have to re-authenticate before the actual token expiry. By default, the session does not expire when the access token expires, and the client does not attempt re-authentication.
- 6
- (Optional) Trusted certificates for TLS connection to the authorization server.
- 7
- (Optional) Disable TLS hostname verification. Default is
false
. - 8
- The duration the JWKS certificates are considered valid before they expire. Default is
360
seconds. If you specify a longer time, consider the risk of allowing access to revoked certificates. - 9
- The period between refreshes of JWKS certificates. The interval must be at least 60 seconds shorter than the expiry interval. Default is
300
seconds. - 10
- The minimum pause in seconds between consecutive attempts to refresh JWKS public keys. When an unknown signing key is encountered, the JWKS keys refresh is scheduled outside the regular periodic schedule with at least the specified pause since the last refresh attempt. The refreshing of keys follows the rule of exponential backoff, retrying on unsuccessful refreshes with ever increasing pause, until it reaches
jwksRefreshSeconds
. The default value is 1.
Example 2: Configuring token validation using an introspection endpoint
- name: external port: 9094 type: loadbalancer tls: true authentication: type: oauth validIssuerUri: https://<auth_server_address>/auth/realms/external introspectionEndpointUri: https://<auth_server_address>/auth/realms/external/protocol/openid-connect/token/introspect 1 clientId: kafka-broker 2 clientSecret: 3 secretName: my-cluster-oauth key: clientSecret userNameClaim: preferred_username 4 maxSecondsWithoutReauthentication: 3600 5
- 1
- URI of the token introspection endpoint.
- 2
- Client ID to identify the client.
- 3
- Client Secret and client ID is used for authentication.
- 4
- The token claim (or key) that contains the actual username used to identify the user. Its value depends on the authorization server. If necessary, a JsonPath expression like
"['user.info'].['user.id']"
can be used to retrieve the username from nested JSON attributes within a token. - 5
- (Optional) Activates the Kafka re-authentication mechanism that enforces session expiry to the same length of time as the access token. If the specified value is less than the time left for the access token to expire, then the client will have to re-authenticate before the actual token expiry. By default, the session does not expire when the access token expires, and the client does not attempt re-authentication.
Depending on how you apply OAuth 2.0 authentication, and the type of authorization server, there are additional (optional) configuration settings you can use:
# ... authentication: type: oauth # ... checkIssuer: false 1 checkAudience: true 2 fallbackUserNameClaim: client_id 3 fallbackUserNamePrefix: client-account- 4 validTokenType: bearer 5 userInfoEndpointUri: https://<auth_server_address>/auth/realms/external/protocol/openid-connect/userinfo 6 enableOauthBearer: false 7 enablePlain: true 8 tokenEndpointUri: https://<auth_server_address>/auth/realms/external/protocol/openid-connect/token 9 customClaimCheck: "@.custom == 'custom-value'" 10 clientAudience: audience 11 clientScope: scope 12 connectTimeoutSeconds: 60 13 readTimeoutSeconds: 60 14 httpRetries: 2 15 httpRetryPauseMs: 300 16 groupsClaim: "$.groups" 17 groupsClaimDelimiter: "," 18
- 1
- If your authorization server does not provide an
iss
claim, it is not possible to perform an issuer check. In this situation, setcheckIssuer
tofalse
and do not specify avalidIssuerUri
. Default istrue
. - 2
- If your authorization server provides an
aud
(audience) claim, and you want to enforce an audience check, setcheckAudience
totrue
. Audience checks identify the intended recipients of tokens. As a result, the Kafka broker will reject tokens that do not have itsclientId
in theiraud
claim. Default isfalse
. - 3
- An authorization server may not provide a single attribute to identify both regular users and clients. When a client authenticates in its own name, the server might provide a client ID. When a user authenticates using a username and password to obtain a refresh token or an access token, the server might provide a username attribute in addition to a client ID. Use this fallback option to specify the username claim (attribute) to use if a primary user ID attribute is not available. If necessary, a JsonPath expression like
"['client.info'].['client.id']"
can be used to retrieve the fallback username to retrieve the username from nested JSON attributes within a token. - 4
- In situations where
fallbackUserNameClaim
is applicable, it may also be necessary to prevent name collisions between the values of the username claim, and those of the fallback username claim. Consider a situation where a client calledproducer
exists, but also a regular user calledproducer
exists. In order to differentiate between the two, you can use this property to add a prefix to the user ID of the client. - 5
- (Only applicable when using
introspectionEndpointUri
) Depending on the authorization server you are using, the introspection endpoint may or may not return the token type attribute, or it may contain different values. You can specify a valid token type value that the response from the introspection endpoint has to contain. - 6
- (Only applicable when using
introspectionEndpointUri
) The authorization server may be configured or implemented in such a way to not provide any identifiable information in an Introspection Endpoint response. In order to obtain the user ID, you can configure the URI of theuserinfo
endpoint as a fallback. TheuserNameClaim
,fallbackUserNameClaim
, andfallbackUserNamePrefix
settings are applied to the response ofuserinfo
endpoint. - 7
- Set this to
false
to disable the OAUTHBEARER mechanism on the listener. At least one of PLAIN or OAUTHBEARER has to be enabled. Default istrue
. - 8
- Set to
true
to enable PLAIN authentication on the listener, which is supported for clients on all platforms. - 9
- Additional configuration for the PLAIN mechanism. If specified, clients can authenticate over PLAIN by passing an access token as the
password
using an$accessToken:
prefix. For production, always usehttps://
urls. - 10
- Additional custom rules can be imposed on the JWT access token during validation by setting this to a JsonPath filter query. If the access token does not contain the necessary data, it is rejected. When using the
introspectionEndpointUri
, the custom check is applied to the introspection endpoint response JSON. - 11
- An
audience
parameter passed to the token endpoint. An audience is used when obtaining an access token for inter-broker authentication. It is also used in the name of a client for OAuth 2.0 over PLAIN client authentication using aclientId
andsecret
. This only affects the ability to obtain the token, and the content of the token, depending on the authorization server. It does not affect token validation rules by the listener. - 12
- A
scope
parameter passed to the token endpoint. A scope is used when obtaining an access token for inter-broker authentication. It is also used in the name of a client for OAuth 2.0 over PLAIN client authentication using aclientId
andsecret
. This only affects the ability to obtain the token, and the content of the token, depending on the authorization server. It does not affect token validation rules by the listener. - 13
- The connect timeout in seconds when connecting to the authorization server. The default value is 60.
- 14
- The read timeout in seconds when connecting to the authorization server. The default value is 60.
- 15
- The maximum number of times to retry a failed HTTP request to the authorization server. The default value is
0
, meaning that no retries are performed. To use this option effectively, consider reducing the timeout times for theconnectTimeoutSeconds
andreadTimeoutSeconds
options. However, note that retries may prevent the current worker thread from being available to other requests, and if too many requests stall, it could make the Kafka broker unresponsive. - 16
- The time to wait before attempting another retry of a failed HTTP request to the authorization server. By default, this time is set to zero, meaning that no pause is applied. This is because many issues that cause failed requests are per-request network glitches or proxy issues that can be resolved quickly. However, if your authorization server is under stress or experiencing high traffic, you may want to set this option to a value of 100 ms or more to reduce the load on the server and increase the likelihood of successful retries.
- 17
- A JsonPath query that is used to extract groups information from either the JWT token or the introspection endpoint response. This option is not set by default. By configuring this option, a custom authorizer can make authorization decisions based on user groups.
- 18
- A delimiter used to parse groups information when it is returned as a single delimited string. The default value is ',' (comma).
- Save and exit the editor, then wait for rolling updates to complete.
Check the update in the logs or by watching the pod state transitions:
oc logs -f ${POD_NAME} -c ${CONTAINER_NAME} oc get pod -w
The rolling update configures the brokers to use OAuth 2.0 authentication.
What to do next
14.4.6.3. Configuring Kafka Java clients to use OAuth 2.0
Configure Kafka producer and consumer APIs to use OAuth 2.0 for interaction with Kafka brokers. Add a callback plugin to your client pom.xml
file, then configure your client for OAuth 2.0.
Specify the following in your client configuration:
A SASL (Simple Authentication and Security Layer) security protocol:
-
SASL_SSL
for authentication over TLS encrypted connections SASL_PLAINTEXT
for authentication over unencrypted connectionsUse
SASL_SSL
for production andSASL_PLAINTEXT
for local development only. When usingSASL_SSL
, additionalssl.truststore
configuration is needed. The truststore configuration is required for secure connection (https://
) to the OAuth 2.0 authorization server. To verify the OAuth 2.0 authorization server, add the CA certificate for the authorization server to the truststore in your client configuration. You can configure a truststore in PEM or PKCS #12 format.
-
A Kafka SASL mechanism:
-
OAUTHBEARER
for credentials exchange using a bearer token -
PLAIN
to pass client credentials (clientId + secret) or an access token
-
A JAAS (Java Authentication and Authorization Service) module that implements the SASL mechanism:
-
org.apache.kafka.common.security.oauthbearer.OAuthBearerLoginModule
implements the OAUTHBEARER mechanism -
org.apache.kafka.common.security.plain.PlainLoginModule
implements the PLAIN mechanism
-
SASL authentication properties, which support the following authentication methods:
- OAuth 2.0 client credentials
- OAuth 2.0 password grant (deprecated)
- Access token
- Refresh token
Add the SASL authentication properties as JAAS configuration (sasl.jaas.config
). How you configure the authentication properties depends on the authentication method you are using to access the OAuth 2.0 authorization server. In this procedure, the properties are specified in a properties file, then loaded into the client configuration.
You can also specify authentication properties as environment variables, or as Java system properties. For Java system properties, you can set them using setProperty
and pass them on the command line using the -D
option.
Prerequisites
- AMQ Streams and Kafka are running
- An OAuth 2.0 authorization server is deployed and configured for OAuth access to Kafka brokers
- Kafka brokers are configured for OAuth 2.0
Procedure
Add the client library with OAuth 2.0 support to the
pom.xml
file for the Kafka client:<dependency> <groupId>io.strimzi</groupId> <artifactId>kafka-oauth-client</artifactId> <version>0.13.0.redhat-00015</version> </dependency>
Configure the client properties by specifying the following configuration in a properties file:
- The security protocol
- The SASL mechanism
The JAAS module and authentication properties according to the method being used
For example, we can add the following to a
client.properties
file:Client credentials mechanism properties
security.protocol=SASL_SSL 1 sasl.mechanism=OAUTHBEARER 2 ssl.truststore.location=/tmp/truststore.p12 3 ssl.truststore.password=$STOREPASS ssl.truststore.type=PKCS12 sasl.jaas.config=org.apache.kafka.common.security.oauthbearer.OAuthBearerLoginModule required \ oauth.token.endpoint.uri="<token_endpoint_url>" \ 4 oauth.client.id="<client_id>" \ 5 oauth.client.secret="<client_secret>" \ 6 oauth.ssl.truststore.location="/tmp/oauth-truststore.p12" \ 7 oauth.ssl.truststore.password="$STOREPASS" \ 8 oauth.ssl.truststore.type="PKCS12" \ 9 oauth.scope="<scope>" \ 10 oauth.audience="<audience>" ; 11
- 1
SASL_SSL
security protocol for TLS-encrypted connections. UseSASL_PLAINTEXT
over unencrypted connections for local development only.- 2
- The SASL mechanism specified as
OAUTHBEARER
orPLAIN
. - 3
- The truststore configuration for secure access to the Kafka cluster.
- 4
- URI of the authorization server token endpoint.
- 5
- Client ID, which is the name used when creating the client in the authorization server.
- 6
- Client secret created when creating the client in the authorization server.
- 7
- The location contains the public key certificate (
truststore.p12
) for the authorization server. - 8
- The password for accessing the truststore.
- 9
- The truststore type.
- 10
- (Optional) The
scope
for requesting the token from the token endpoint. An authorization server may require a client to specify the scope. - 11
- (Optional) The
audience
for requesting the token from the token endpoint. An authorization server may require a client to specify the audience.
Password grants mechanism properties
security.protocol=SASL_SSL sasl.mechanism=OAUTHBEARER ssl.truststore.location=/tmp/truststore.p12 ssl.truststore.password=$STOREPASS ssl.truststore.type=PKCS12 sasl.jaas.config=org.apache.kafka.common.security.oauthbearer.OAuthBearerLoginModule required \ oauth.token.endpoint.uri="<token_endpoint_url>" \ oauth.client.id="<client_id>" \ 1 oauth.client.secret="<client_secret>" \ 2 oauth.password.grant.username="<username>" \ 3 oauth.password.grant.password="<password>" \ 4 oauth.ssl.truststore.location="/tmp/oauth-truststore.p12" \ oauth.ssl.truststore.password="$STOREPASS" \ oauth.ssl.truststore.type="PKCS12" \ oauth.scope="<scope>" \ oauth.audience="<audience>" ;
- 1
- Client ID, which is the name used when creating the client in the authorization server.
- 2
- (Optional) Client secret created when creating the client in the authorization server.
- 3
- Username for password grant authentication. OAuth password grant configuration (username and password) uses the OAuth 2.0 password grant method. To use password grants, create a user account for a client on your authorization server with limited permissions. The account should act like a service account. Use in environments where user accounts are required for authentication, but consider using a refresh token first.
- 4
- Password for password grant authentication.Note
SASL PLAIN does not support passing a username and password (password grants) using the OAuth 2.0 password grant method.
Access token properties
security.protocol=SASL_SSL sasl.mechanism=OAUTHBEARER ssl.truststore.location=/tmp/truststore.p12 ssl.truststore.password=$STOREPASS ssl.truststore.type=PKCS12 sasl.jaas.config=org.apache.kafka.common.security.oauthbearer.OAuthBearerLoginModule required \ oauth.token.endpoint.uri="<token_endpoint_url>" \ oauth.access.token="<access_token>" ; 1 oauth.ssl.truststore.location="/tmp/oauth-truststore.p12" \ oauth.ssl.truststore.password="$STOREPASS" \ oauth.ssl.truststore.type="PKCS12" \
- 1
- Long-lived access token for Kafka clients.
Refresh token properties
security.protocol=SASL_SSL sasl.mechanism=OAUTHBEARER ssl.truststore.location=/tmp/truststore.p12 ssl.truststore.password=$STOREPASS ssl.truststore.type=PKCS12 sasl.jaas.config=org.apache.kafka.common.security.oauthbearer.OAuthBearerLoginModule required \ oauth.token.endpoint.uri="<token_endpoint_url>" \ oauth.client.id="<client_id>" \ 1 oauth.client.secret="<client_secret>" \ 2 oauth.refresh.token="<refresh_token>" ; 3 oauth.ssl.truststore.location="/tmp/oauth-truststore.p12" \ oauth.ssl.truststore.password="$STOREPASS" \ oauth.ssl.truststore.type="PKCS12" \
Input the client properties for OAUTH 2.0 authentication into the Java client code.
Example showing input of client properties
Properties props = new Properties(); try (FileReader reader = new FileReader("client.properties", StandardCharsets.UTF_8)) { props.load(reader); }
- Verify that the Kafka client can access the Kafka brokers.
14.4.6.4. Configuring OAuth 2.0 for Kafka components
This procedure describes how to configure Kafka components to use OAuth 2.0 authentication using an authorization server.
You can configure authentication for:
- Kafka Connect
- Kafka MirrorMaker
- Kafka Bridge
In this scenario, the Kafka component and the authorization server are running in the same cluster.
Before you start
For more information on the configuration of OAuth 2.0 authentication for Kafka components, see the KafkaClientAuthenticationOAuth
schema reference. The schema reference includes examples of configuration options.
Prerequisites
- AMQ Streams and Kafka are running
- An OAuth 2.0 authorization server is deployed and configured for OAuth access to Kafka brokers
- Kafka brokers are configured for OAuth 2.0
Procedure
Create a client secret and mount it to the component as an environment variable.
For example, here we are creating a client
Secret
for the Kafka Bridge:apiVersion: kafka.strimzi.io/v1beta2 kind: Secret metadata: name: my-bridge-oauth type: Opaque data: clientSecret: MGQ1OTRmMzYtZTllZS00MDY2LWI5OGEtMTM5MzM2NjdlZjQw 1
- 1
- The
clientSecret
key must be in base64 format.
Create or edit the resource for the Kafka component so that OAuth 2.0 authentication is configured for the authentication property.
For OAuth 2.0 authentication, you can use the following options:
- Client ID and secret
- Client ID and refresh token
- Access token
- Username and password
- TLS
For example, here OAuth 2.0 is assigned to the Kafka Bridge client using a client ID and secret, and TLS:
apiVersion: kafka.strimzi.io/v1beta2 kind: KafkaBridge metadata: name: my-bridge spec: # ... authentication: type: oauth 1 tokenEndpointUri: https://<auth-server-address>/auth/realms/master/protocol/openid-connect/token 2 clientId: kafka-bridge clientSecret: secretName: my-bridge-oauth key: clientSecret tlsTrustedCertificates: 3 - secretName: oauth-server-cert certificate: tls.crt
Depending on how you apply OAuth 2.0 authentication, and the type of authorization server, there are additional configuration options you can use:
# ... spec: # ... authentication: # ... disableTlsHostnameVerification: true 1 checkAccessTokenType: false 2 accessTokenIsJwt: false 3 scope: any 4 audience: kafka 5 connectTimeoutSeconds: 60 6 readTimeoutSeconds: 60 7 httpRetries: 2 8 httpRetryPauseMs: 300 9
- 1
- (Optional) Disable TLS hostname verification. Default is
false
. - 2
- If the authorization server does not return a
typ
(type) claim inside the JWT token, you can applycheckAccessTokenType: false
to skip the token type check. Default istrue
. - 3
- If you are using opaque tokens, you can apply
accessTokenIsJwt: false
so that access tokens are not treated as JWT tokens. - 4
- (Optional) The
scope
for requesting the token from the token endpoint. An authorization server may require a client to specify the scope. In this case it isany
. - 5
- (Optional) The
audience
for requesting the token from the token endpoint. An authorization server may require a client to specify the audience. In this case it iskafka
. - 6
- (Optional) The connect timeout in seconds when connecting to the authorization server. The default value is 60.
- 7
- (Optional) The read timeout in seconds when connecting to the authorization server. The default value is 60.
- 8
- (Optional) The maximum number of times to retry a failed HTTP request to the authorization server. The default value is
0
, meaning that no retries are performed. To use this option effectively, consider reducing the timeout times for theconnectTimeoutSeconds
andreadTimeoutSeconds
options. However, note that retries may prevent the current worker thread from being available to other requests, and if too many requests stall, it could make the Kafka broker unresponsive. - 9
- (Optional) The time to wait before attempting another retry of a failed HTTP request to the authorization server. By default, this time is set to zero, meaning that no pause is applied. This is because many issues that cause failed requests are per-request network glitches or proxy issues that can be resolved quickly. However, if your authorization server is under stress or experiencing high traffic, you may want to set this option to a value of 100 ms or more to reduce the load on the server and increase the likelihood of successful retries.
Apply the changes to the deployment of your Kafka resource.
oc apply -f your-file
Check the update in the logs or by watching the pod state transitions:
oc logs -f ${POD_NAME} -c ${CONTAINER_NAME} oc get pod -w
The rolling updates configure the component for interaction with Kafka brokers using OAuth 2.0 authentication.
14.5. Using OAuth 2.0 token-based authorization
AMQ Streams supports the use of OAuth 2.0 token-based authorization through Red Hat Single Sign-On Authorization Services, which allows you to manage security policies and permissions centrally.
Security policies and permissions defined in Red Hat Single Sign-On are used to grant access to resources on Kafka brokers. Users and clients are matched against policies that permit access to perform specific actions on Kafka brokers.
Kafka allows all users full access to brokers by default, and also provides the AclAuthorizer
plugin to configure authorization based on Access Control Lists (ACLs).
ZooKeeper stores ACL rules that grant or deny access to resources based on username. However, OAuth 2.0 token-based authorization with Red Hat Single Sign-On offers far greater flexibility on how you wish to implement access control to Kafka brokers. In addition, you can configure your Kafka brokers to use OAuth 2.0 authorization and ACLs.
Additional resources
14.5.1. OAuth 2.0 authorization mechanism
OAuth 2.0 authorization in AMQ Streams uses Red Hat Single Sign-On server Authorization Services REST endpoints to extend token-based authentication with Red Hat Single Sign-On by applying defined security policies on a particular user, and providing a list of permissions granted on different resources for that user. Policies use roles and groups to match permissions to users. OAuth 2.0 authorization enforces permissions locally based on the received list of grants for the user from Red Hat Single Sign-On Authorization Services.
14.5.1.1. Kafka broker custom authorizer
A Red Hat Single Sign-On authorizer (KeycloakAuthorizer
) is provided with AMQ Streams. To be able to use the Red Hat Single Sign-On REST endpoints for Authorization Services provided by Red Hat Single Sign-On, you configure a custom authorizer on the Kafka broker.
The authorizer fetches a list of granted permissions from the authorization server as needed, and enforces authorization locally on the Kafka Broker, making rapid authorization decisions for each client request.
14.5.2. Configuring OAuth 2.0 authorization support
This procedure describes how to configure Kafka brokers to use OAuth 2.0 authorization using Red Hat Single Sign-On Authorization Services.
Before you begin
Consider the access you require or want to limit for certain users. You can use a combination of Red Hat Single Sign-On groups, roles, clients, and users to configure access in Red Hat Single Sign-On.
Typically, groups are used to match users based on organizational departments or geographical locations. And roles are used to match users based on their function.
With Red Hat Single Sign-On, you can store users and groups in LDAP, whereas clients and roles cannot be stored this way. Storage and access to user data may be a factor in how you choose to configure authorization policies.
Super users always have unconstrained access to a Kafka broker regardless of the authorization implemented on the Kafka broker.
Prerequisites
- AMQ Streams must be configured to use OAuth 2.0 with Red Hat Single Sign-On for token-based authentication. You use the same Red Hat Single Sign-On server endpoint when you set up authorization.
-
OAuth 2.0 authentication must be configured with the
maxSecondsWithoutReauthentication
option to enable re-authentication.
Procedure
- Access the Red Hat Single Sign-On Admin Console or use the Red Hat Single Sign-On Admin CLI to enable Authorization Services for the Kafka broker client you created when setting up OAuth 2.0 authentication.
- Use Authorization Services to define resources, authorization scopes, policies, and permissions for the client.
- Bind the permissions to users and clients by assigning them roles and groups.
Configure the Kafka brokers to use Red Hat Single Sign-On authorization by updating the Kafka broker configuration (
Kafka.spec.kafka
) of yourKafka
resource in an editor.oc edit kafka my-cluster
Configure the Kafka broker
kafka
configuration to usekeycloak
authorization, and to be able to access the authorization server and Authorization Services.For example:
apiVersion: kafka.strimzi.io/v1beta2 kind: Kafka metadata: name: my-cluster spec: kafka: # ... authorization: type: keycloak 1 tokenEndpointUri: <https://<auth-server-address>/auth/realms/external/protocol/openid-connect/token> 2 clientId: kafka 3 delegateToKafkaAcls: false 4 disableTlsHostnameVerification: false 5 superUsers: 6 - CN=fred - sam - CN=edward tlsTrustedCertificates: 7 - secretName: oauth-server-cert certificate: ca.crt grantsRefreshPeriodSeconds: 60 8 grantsRefreshPoolSize: 5 9 grantsMaxIdleSeconds: 300 10 grantsGcPeriodSeconds: 300 11 grantsAlwaysLatest: false 12 connectTimeoutSeconds: 60 13 readTimeoutSeconds: 60 14 httpRetries: 2 15 enableMetrics: false 16 #...
- 1
- Type
keycloak
enables Red Hat Single Sign-On authorization. - 2
- URI of the Red Hat Single Sign-On token endpoint. For production, always use
https://
urls. When you configure token-basedoauth
authentication, you specify ajwksEndpointUri
as the URI for local JWT validation. The hostname for thetokenEndpointUri
URI must be the same. - 3
- The client ID of the OAuth 2.0 client definition in Red Hat Single Sign-On that has Authorization Services enabled. Typically,
kafka
is used as the ID. - 4
- (Optional) Delegate authorization to Kafka
AclAuthorizer
if access is denied by Red Hat Single Sign-On Authorization Services policies. Default isfalse
. - 5
- (Optional) Disable TLS hostname verification. Default is
false
. - 6
- (Optional) Designated super users.
- 7
- (Optional) Trusted certificates for TLS connection to the authorization server.
- 8
- (Optional) The time between two consecutive grants refresh runs. That is the maximum time for active sessions to detect any permissions changes for the user on Red Hat Single Sign-On. The default value is 60.
- 9
- (Optional) The number of threads to use to refresh (in parallel) the grants for the active sessions. The default value is 5.
- 10
- (Optional) The time, in seconds, after which an idle grant in the cache can be evicted. The default value is 300.
- 11
- (Optional) The time, in seconds, between consecutive runs of a job that cleans stale grants from the cache. The default value is 300.
- 12
- (Optional) Controls whether the latest grants are fetched for a new session. When enabled, grants are retrieved from Red Hat Single Sign-On and cached for the user. The default value is
false
. - 13
- (Optional) The connect timeout in seconds when connecting to the Red Hat Single Sign-On token endpoint. The default value is 60.
- 14
- (Optional) The read timeout in seconds when connecting to the Red Hat Single Sign-On token endpoint. The default value is 60.
- 15
- (Optional) The maximum number of times to retry (without pausing) a failed HTTP request to the authorization server. The default value is
0
, meaning that no retries are performed. To use this option effectively, consider reducing the timeout times for theconnectTimeoutSeconds
andreadTimeoutSeconds
options. However, note that retries may prevent the current worker thread from being available to other requests, and if too many requests stall, it could make the Kafka broker unresponsive. - 16
- (Optional) Enable or disable OAuth metrics. The default value is
false
.
- Save and exit the editor, then wait for rolling updates to complete.
Check the update in the logs or by watching the pod state transitions:
oc logs -f ${POD_NAME} -c kafka oc get pod -w
The rolling update configures the brokers to use OAuth 2.0 authorization.
- Verify the configured permissions by accessing Kafka brokers as clients or users with specific roles, making sure they have the necessary access, or do not have the access they are not supposed to have.
14.5.3. Managing policies and permissions in Red Hat Single Sign-On Authorization Services
This section describes the authorization models used by Red Hat Single Sign-On Authorization Services and Kafka, and defines the important concepts in each model.
To grant permissions to access Kafka, you can map Red Hat Single Sign-On Authorization Services objects to Kafka resources by creating an OAuth client specification in Red Hat Single Sign-On. Kafka permissions are granted to user accounts or service accounts using Red Hat Single Sign-On Authorization Services rules.
Examples are shown of the different user permissions required for common Kafka operations, such as creating and listing topics.
14.5.3.1. Kafka and Red Hat Single Sign-On authorization models overview
Kafka and Red Hat Single Sign-On Authorization Services use different authorization models.
Kafka authorization model
Kafka’s authorization model uses resource types. When a Kafka client performs an action on a broker, the broker uses the configured KeycloakAuthorizer
to check the client’s permissions, based on the action and resource type.
Kafka uses five resource types to control access: Topic
, Group
, Cluster
, TransactionalId
, and DelegationToken
. Each resource type has a set of available permissions.
Topic
-
Create
-
Write
-
Read
-
Delete
-
Describe
-
DescribeConfigs
-
Alter
-
AlterConfigs
Group
-
Read
-
Describe
-
Delete
Cluster
-
Create
-
Describe
-
Alter
-
DescribeConfigs
-
AlterConfigs
-
IdempotentWrite
-
ClusterAction
TransactionalId
-
Describe
-
Write
DelegationToken
-
Describe
Red Hat Single Sign-On Authorization Services model
The Red Hat Single Sign-On Authorization Services model has four concepts for defining and granting permissions: resources, authorization scopes, policies, and permissions.
- Resources
- A resource is a set of resource definitions that are used to match resources with permitted actions. A resource might be an individual topic, for example, or all topics with names starting with the same prefix. A resource definition is associated with a set of available authorization scopes, which represent a set of all actions available on the resource. Often, only a subset of these actions is actually permitted.
- Authorization scopes
- An authorization scope is a set of all the available actions on a specific resource definition. When you define a new resource, you add scopes from the set of all scopes.
- Policies
A policy is an authorization rule that uses criteria to match against a list of accounts. Policies can match:
- Service accounts based on client ID or roles
- User accounts based on username, groups, or roles.
- Permissions
- A permission grants a subset of authorization scopes on a specific resource definition to a set of users.
Additional resources
14.5.3.2. Map Red Hat Single Sign-On Authorization Services to the Kafka authorization model
The Kafka authorization model is used as a basis for defining the Red Hat Single Sign-On roles and resources that will control access to Kafka.
To grant Kafka permissions to user accounts or service accounts, you first create an OAuth client specification in Red Hat Single Sign-On for the Kafka broker. You then specify Red Hat Single Sign-On Authorization Services rules on the client. Typically, the client id of the OAuth client that represents the broker is kafka
. The example configuration files provided with AMQ Streams use kafka
as the OAuth client id.
If you have multiple Kafka clusters, you can use a single OAuth client (kafka
) for all of them. This gives you a single, unified space in which to define and manage authorization rules. However, you can also use different OAuth client ids (for example, my-cluster-kafka
or cluster-dev-kafka
) and define authorization rules for each cluster within each client configuration.
The kafka
client definition must have the Authorization Enabled option enabled in the Red Hat Single Sign-On Admin Console.
All permissions exist within the scope of the kafka
client. If you have different Kafka clusters configured with different OAuth client IDs, they each need a separate set of permissions even though they’re part of the same Red Hat Single Sign-On realm.
When the Kafka client uses OAUTHBEARER authentication, the Red Hat Single Sign-On authorizer (KeycloakAuthorizer
) uses the access token of the current session to retrieve a list of grants from the Red Hat Single Sign-On server. To retrieve the grants, the authorizer evaluates the Red Hat Single Sign-On Authorization Services policies and permissions.
Authorization scopes for Kafka permissions
An initial Red Hat Single Sign-On configuration usually involves uploading authorization scopes to create a list of all possible actions that can be performed on each Kafka resource type. This step is performed once only, before defining any permissions. You can add authorization scopes manually instead of uploading them.
Authorization scopes must contain all the possible Kafka permissions regardless of the resource type:
-
Create
-
Write
-
Read
-
Delete
-
Describe
-
Alter
-
DescribeConfig
-
AlterConfig
-
ClusterAction
-
IdempotentWrite
If you’re certain you won’t need a permission (for example, IdempotentWrite
), you can omit it from the list of authorization scopes. However, that permission won’t be available to target on Kafka resources.
Resource patterns for permissions checks
Resource patterns are used for pattern matching against the targeted resources when performing permission checks. The general pattern format is RESOURCE-TYPE:PATTERN-NAME
.
The resource types mirror the Kafka authorization model. The pattern allows for two matching options:
-
Exact matching (when the pattern does not end with
*
) -
Prefix matching (when the pattern ends with
*
)
Example patterns for resources
Topic:my-topic Topic:orders-* Group:orders-* Cluster:*
Additionally, the general pattern format can be prefixed by kafka-cluster:CLUSTER-NAME
followed by a comma, where CLUSTER-NAME refers to the metadata.name
in the Kafka custom resource.
Example patterns for resources with cluster prefix
kafka-cluster:my-cluster,Topic:* kafka-cluster:*,Group:b_*
When the kafka-cluster
prefix is missing, it is assumed to be kafka-cluster:*
.
When defining a resource, you can associate it with a list of possible authorization scopes which are relevant to the resource. Set whatever actions make sense for the targeted resource type.
Though you may add any authorization scope to any resource, only the scopes supported by the resource type are considered for access control.
Policies for applying access permission
Policies are used to target permissions to one or more user accounts or service accounts. Targeting can refer to:
- Specific user or service accounts
- Realm roles or client roles
- User groups
- JavaScript rules to match a client IP address
A policy is given a unique name and can be reused to target multiple permissions to multiple resources.
Permissions to grant access
Use fine-grained permissions to pull together the policies, resources, and authorization scopes that grant access to users.
The name of each permission should clearly define which permissions it grants to which users. For example, Dev Team B can read from topics starting with x
.
Additional resources
- For more information about how to configure permissions through Red Hat Single Sign-On Authorization Services, see Section 14.5.4, “Trying Red Hat Single Sign-On Authorization Services”.
14.5.3.3. Example permissions required for Kafka operations
The following examples demonstrate the user permissions required for performing common operations on Kafka.
Create a topic
To create a topic, the Create
permission is required for the specific topic, or for Cluster:kafka-cluster
.
bin/kafka-topics.sh --create --topic my-topic \ --bootstrap-server my-cluster-kafka-bootstrap:9092 --command-config=/tmp/config.properties
List topics
If a user has the Describe
permission on a specified topic, the topic is listed.
bin/kafka-topics.sh --list \ --bootstrap-server my-cluster-kafka-bootstrap:9092 --command-config=/tmp/config.properties
Display topic details
To display a topic’s details, Describe
and DescribeConfigs
permissions are required on the topic.
bin/kafka-topics.sh --describe --topic my-topic \ --bootstrap-server my-cluster-kafka-bootstrap:9092 --command-config=/tmp/config.properties
Produce messages to a topic
To produce messages to a topic, Describe
and Write
permissions are required on the topic.
If the topic hasn’t been created yet, and topic auto-creation is enabled, the permissions to create a topic are required.
bin/kafka-console-producer.sh --topic my-topic \ --bootstrap-server my-cluster-kafka-bootstrap:9092 --producer.config=/tmp/config.properties
Consume messages from a topic
To consume messages from a topic, Describe
and Read
permissions are required on the topic. Consuming from the topic normally relies on storing the consumer offsets in a consumer group, which requires additional Describe
and Read
permissions on the consumer group.
Two resources
are needed for matching. For example:
Topic:my-topic Group:my-group-*
bin/kafka-console-consumer.sh --topic my-topic --group my-group-1 --from-beginning \ --bootstrap-server my-cluster-kafka-bootstrap:9092 --consumer.config /tmp/config.properties
Produce messages to a topic using an idempotent producer
As well as the permissions for producing to a topic, an additional IdempotentWrite
permission is required on the Cluster:kafka-cluster
resource.
Two resources
are needed for matching. For example:
Topic:my-topic Cluster:kafka-cluster
bin/kafka-console-producer.sh --topic my-topic \ --bootstrap-server my-cluster-kafka-bootstrap:9092 --producer.config=/tmp/config.properties --producer-property enable.idempotence=true --request-required-acks -1
List consumer groups
When listing consumer groups, only the groups on which the user has the Describe
permissions are returned. Alternatively, if the user has the Describe
permission on the Cluster:kafka-cluster
, all the consumer groups are returned.
bin/kafka-consumer-groups.sh --list \ --bootstrap-server my-cluster-kafka-bootstrap:9092 --command-config=/tmp/config.properties
Display consumer group details
To display a consumer group’s details, the Describe
permission is required on the group and the topics associated with the group.
bin/kafka-consumer-groups.sh --describe --group my-group-1 \ --bootstrap-server my-cluster-kafka-bootstrap:9092 --command-config=/tmp/config.properties
Change topic configuration
To change a topic’s configuration, the Describe
and Alter
permissions are required on the topic.
bin/kafka-topics.sh --alter --topic my-topic --partitions 2 \ --bootstrap-server my-cluster-kafka-bootstrap:9092 --command-config=/tmp/config.properties
Display Kafka broker configuration
In order to use kafka-configs.sh
to get a broker’s configuration, the DescribeConfigs
permission is required on the Cluster:kafka-cluster
.
bin/kafka-configs.sh --entity-type brokers --entity-name 0 --describe --all \ --bootstrap-server my-cluster-kafka-bootstrap:9092 --command-config=/tmp/config.properties
Change Kafka broker configuration
To change a Kafka broker’s configuration, DescribeConfigs
and AlterConfigs
permissions are required on Cluster:kafka-cluster
.
bin/kafka-configs --entity-type brokers --entity-name 0 --alter --add-config log.cleaner.threads=2 \ --bootstrap-server my-cluster-kafka-bootstrap:9092 --command-config=/tmp/config.properties
Delete a topic
To delete a topic, the Describe
and Delete
permissions are required on the topic.
bin/kafka-topics.sh --delete --topic my-topic \ --bootstrap-server my-cluster-kafka-bootstrap:9092 --command-config=/tmp/config.properties
Select a lead partition
To run leader selection for topic partitions, the Alter
permission is required on the Cluster:kafka-cluster
.
bin/kafka-leader-election.sh --topic my-topic --partition 0 --election-type PREFERRED / --bootstrap-server my-cluster-kafka-bootstrap:9092 --admin.config /tmp/config.properties
Reassign partitions
To generate a partition reassignment file, Describe
permissions are required on the topics involved.
bin/kafka-reassign-partitions.sh --topics-to-move-json-file /tmp/topics-to-move.json --broker-list "0,1" --generate \ --bootstrap-server my-cluster-kafka-bootstrap:9092 --command-config /tmp/config.properties > /tmp/partition-reassignment.json
To execute the partition reassignment, Describe
and Alter
permissions are required on Cluster:kafka-cluster
. Also, Describe
permissions are required on the topics involved.
bin/kafka-reassign-partitions.sh --reassignment-json-file /tmp/partition-reassignment.json --execute \ --bootstrap-server my-cluster-kafka-bootstrap:9092 --command-config /tmp/config.properties
To verify partition reassignment, Describe
, and AlterConfigs
permissions are required on Cluster:kafka-cluster
, and on each of the topics involved.
bin/kafka-reassign-partitions.sh --reassignment-json-file /tmp/partition-reassignment.json --verify \ --bootstrap-server my-cluster-kafka-bootstrap:9092 --command-config /tmp/config.properties
14.5.4. Trying Red Hat Single Sign-On Authorization Services
This example explains how to use Red Hat Single Sign-On Authorization Services with keycloak
authorization. Use Red Hat Single Sign-On Authorization Services to enforce access restrictions on Kafka clients. Red Hat Single Sign-On Authorization Services use authorization scopes, policies and permissions to define and apply access control to resources.
Red Hat Single Sign-On Authorization Services REST endpoints provide a list of granted permissions on resources for authenticated users. The list of grants (permissions) is fetched from the Red Hat Single Sign-On server as the first action after an authenticated session is established by the Kafka client. The list is refreshed in the background so that changes to the grants are detected. Grants are cached and enforced locally on the Kafka broker for each user session to provide fast authorization decisions.
AMQ Streams provides example configuration files. These include the following example files for setting up Red Hat Single Sign-On:
kafka-ephemeral-oauth-single-keycloak-authz.yaml
-
An example
Kafka
custom resource configured for OAuth 2.0 token-based authorization using Red Hat Single Sign-On. You can use the custom resource to deploy a Kafka cluster that useskeycloak
authorization and token-basedoauth
authentication. kafka-authz-realm.json
- An example Red Hat Single Sign-On realm configured with sample groups, users, roles and clients. You can import the realm into a Red Hat Single Sign-On instance to set up fine-grained permissions to access Kafka.
If you want to try the example with Red Hat Single Sign-On, use these files to perform the tasks outlined in this section in the order shown.
Authentication
When you configure token-based oauth
authentication, you specify a jwksEndpointUri
as the URI for local JWT validation. When you configure keycloak
authorization, you specify a tokenEndpointUri
as the URI of the Red Hat Single Sign-On token endpoint. The hostname for both URIs must be the same.
Targeted permissions with group or role policies
In Red Hat Single Sign-On, confidential clients with service accounts enabled can authenticate to the server in their own name using a client ID and a secret. This is convenient for microservices that typically act in their own name, and not as agents of a particular user (like a web site). Service accounts can have roles assigned like regular users. They cannot, however, have groups assigned. As a consequence, if you want to target permissions to microservices using service accounts, you cannot use group policies, and should instead use role policies. Conversely, if you want to limit certain permissions only to regular user accounts where authentication with a username and password is required, you can achieve that as a side effect of using the group policies rather than the role policies. This is what is used in this example for permissions that start with ClusterManager
. Performing cluster management is usually done interactively using CLI tools. It makes sense to require the user to log in before using the resulting access token to authenticate to the Kafka broker. In this case, the access token represents the specific user, rather than the client application.
14.5.4.1. Accessing the Red Hat Single Sign-On Admin Console
Set up Red Hat Single Sign-On, then connect to its Admin Console and add the preconfigured realm. Use the example kafka-authz-realm.json
file to import the realm. You can check the authorization rules defined for the realm in the Admin Console. The rules grant access to the resources on the Kafka cluster configured to use the example Red Hat Single Sign-On realm.
Prerequisites
- A running OpenShift cluster.
-
The AMQ Streams
examples/security/keycloak-authorization/kafka-authz-realm.json
file that contains the preconfigured realm.
Procedure
- Install the Red Hat Single Sign-On server using the Red Hat Single Sign-On Operator as described in Server Installation and Configuration in the Red Hat Single Sign-On documentation.
- Wait until the Red Hat Single Sign-On instance is running.
Get the external hostname to be able to access the Admin Console.
NS=sso oc get ingress keycloak -n $NS
In this example, we assume the Red Hat Single Sign-On server is running in the
sso
namespace.Get the password for the
admin
user.oc get -n $NS pod keycloak-0 -o yaml | less
The password is stored as a secret, so get the configuration YAML file for the Red Hat Single Sign-On instance to identify the name of the secret (
secretKeyRef.name
).Use the name of the secret to obtain the clear text password.
SECRET_NAME=credential-keycloak oc get -n $NS secret $SECRET_NAME -o yaml | grep PASSWORD | awk '{print $2}' | base64 -D
In this example, we assume the name of the secret is
credential-keycloak
.Log in to the Admin Console with the username
admin
and the password you obtained.Use
https://HOSTNAME
to access the KubernetesIngress
.You can now upload the example realm to Red Hat Single Sign-On using the Admin Console.
- Click Add Realm to import the example realm.
Add the
examples/security/keycloak-authorization/kafka-authz-realm.json
file, and then click Create.You now have
kafka-authz
as your current realm in the Admin Console.The default view displays the Master realm.
In the Red Hat Single Sign-On Admin Console, go to Clients > kafka > Authorization > Settings and check that Decision Strategy is set to Affirmative.
An affirmative policy means that at least one policy must be satisfied for a client to access the Kafka cluster.
In the Red Hat Single Sign-On Admin Console, go to Groups, Users, Roles and Clients to view the realm configuration.
- Groups
-
Groups
are used to create user groups and set user permissions. Groups are sets of users with a name assigned. They are used to compartmentalize users into geographical, organizational or departmental units. Groups can be linked to an LDAP identity provider. You can make a user a member of a group through a custom LDAP server admin user interface, for example, to grant permissions on Kafka resources. - Users
-
Users
are used to create users. For this example,alice
andbob
are defined.alice
is a member of theClusterManager
group andbob
is a member ofClusterManager-my-cluster
group. Users can be stored in an LDAP identity provider. - Roles
-
Roles
mark users or clients as having certain permissions. Roles are a concept analogous to groups. They are usually used to tag users with organizational roles and have the requisite permissions. Roles cannot be stored in an LDAP identity provider. If LDAP is a requirement, you can use groups instead, and add Red Hat Single Sign-On roles to the groups so that when users are assigned a group they also get a corresponding role. - Clients
Clients
can have specific configurations. For this example,kafka
,kafka-cli
,team-a-client
, andteam-b-client
clients are configured.-
The
kafka
client is used by Kafka brokers to perform the necessary OAuth 2.0 communication for access token validation. This client also contains the authorization services resource definitions, policies, and authorization scopes used to perform authorization on the Kafka brokers. The authorization configuration is defined in thekafka
client from the Authorization tab, which becomes visible when Authorization Enabled is switched on from the Settings tab. -
The
kafka-cli
client is a public client that is used by the Kafka command line tools when authenticating with username and password to obtain an access token or a refresh token. -
The
team-a-client
andteam-b-client
clients are confidential clients representing services with partial access to certain Kafka topics.
-
The
In the Red Hat Single Sign-On Admin Console, go to Authorization > Permissions to see the granted permissions that use the resources and policies defined for the realm.
For example, the
kafka
client has the following permissions:Dev Team A can write to topics that start with x_ on any cluster Dev Team B can read from topics that start with x_ on any cluster Dev Team B can update consumer group offsets that start with x_ on any cluster ClusterManager of my-cluster Group has full access to cluster config on my-cluster ClusterManager of my-cluster Group has full access to consumer groups on my-cluster ClusterManager of my-cluster Group has full access to topics on my-cluster
- Dev Team A
-
The Dev Team A realm role can write to topics that start with
x_
on any cluster. This combines a resource calledTopic:x_*
,Describe
andWrite
scopes, and theDev Team A
policy. TheDev Team A
policy matches all users that have a realm role calledDev Team A
. - Dev Team B
-
The Dev Team B realm role can read from topics that start with
x_
on any cluster. This combinesTopic:x_*
,Group:x_*
resources,Describe
andRead
scopes, and theDev Team B
policy. TheDev Team B
policy matches all users that have a realm role calledDev Team B
. Matching users and clients have the ability to read from topics, and update the consumed offsets for topics and consumer groups that have names starting withx_
.
14.5.4.2. Deploying a Kafka cluster with Red Hat Single Sign-On authorization
Deploy a Kafka cluster configured to connect to the Red Hat Single Sign-On server. Use the example kafka-ephemeral-oauth-single-keycloak-authz.yaml
file to deploy the Kafka cluster as a Kafka
custom resource. The example deploys a single-node Kafka cluster with keycloak
authorization and oauth
authentication.
Prerequisites
- The Red Hat Single Sign-On authorization server is deployed to your OpenShift cluster and loaded with the example realm.
- The Cluster Operator is deployed to your OpenShift cluster.
-
The AMQ Streams
examples/security/keycloak-authorization/kafka-ephemeral-oauth-single-keycloak-authz.yaml
custom resource.
Procedure
Use the hostname of the Red Hat Single Sign-On instance you deployed to prepare a truststore certificate for Kafka brokers to communicate with the Red Hat Single Sign-On server.
SSO_HOST=SSO-HOSTNAME SSO_HOST_PORT=$SSO_HOST:443 STOREPASS=storepass echo "Q" | openssl s_client -showcerts -connect $SSO_HOST_PORT 2>/dev/null | awk ' /BEGIN CERTIFICATE/,/END CERTIFICATE/ { print $0 } ' > /tmp/sso.pem
The certificate is required as Kubernetes
Ingress
is used to make a secure (HTTPS) connection.Usually there is not one single certificate, but a certificate chain. You only have to provide the top-most issuer CA, which is listed last in the
/tmp/sso.pem
file. You can extract it manually or using the following commands:Example command to extract the top CA certificate in a certificate chain
split -p "-----BEGIN CERTIFICATE-----" sso.pem sso- for f in $(ls sso-*); do mv $f $f.pem; done cp $(ls sso-* | sort -r | head -n 1) sso-ca.crt
NoteA trusted CA certificate is normally obtained from a trusted source, and not by using the
openssl
command.Deploy the certificate to OpenShift as a secret.
oc create secret generic oauth-server-cert --from-file=/tmp/sso-ca.crt -n $NS
Set the hostname as an environment variable
SSO_HOST=SSO-HOSTNAME
Create and deploy the example Kafka cluster.
cat examples/security/keycloak-authorization/kafka-ephemeral-oauth-single-keycloak-authz.yaml | sed -E 's#\${SSO_HOST}'"#$SSO_HOST#" | oc create -n $NS -f -
14.5.4.3. Preparing TLS connectivity for a CLI Kafka client session
Create a new pod for an interactive CLI session. Set up a truststore with a Red Hat Single Sign-On certificate for TLS connectivity. The truststore is to connect to Red Hat Single Sign-On and the Kafka broker.
Prerequisites
The Red Hat Single Sign-On authorization server is deployed to your OpenShift cluster and loaded with the example realm.
In the Red Hat Single Sign-On Admin Console, check the roles assigned to the clients are displayed in Clients > Service Account Roles.
- The Kafka cluster configured to connect with Red Hat Single Sign-On is deployed to your OpenShift cluster.
Procedure
Run a new interactive pod container using the AMQ Streams Kafka image to connect to a running Kafka broker.
NS=sso oc run -ti --restart=Never --image=registry.redhat.io/amq-streams/kafka-35-rhel8:2.5.2 kafka-cli -n $NS -- /bin/sh
NoteIf
oc
times out waiting on the image download, subsequent attempts may result in an AlreadyExists error.Attach to the pod container.
oc attach -ti kafka-cli -n $NS
Use the hostname of the Red Hat Single Sign-On instance to prepare a certificate for client connection using TLS.
SSO_HOST=SSO-HOSTNAME SSO_HOST_PORT=$SSO_HOST:443 STOREPASS=storepass echo "Q" | openssl s_client -showcerts -connect $SSO_HOST_PORT 2>/dev/null | awk ' /BEGIN CERTIFICATE/,/END CERTIFICATE/ { print $0 } ' > /tmp/sso.pem
Usually there is not one single certificate, but a certificate chain. You only have to provide the top-most issuer CA, which is listed last in the
/tmp/sso.pem
file. You can extract it manually or using the following command:Example command to extract the top CA certificate in a certificate chain
split -p "-----BEGIN CERTIFICATE-----" sso.pem sso- for f in $(ls sso-*); do mv $f $f.pem; done cp $(ls sso-* | sort -r | head -n 1) sso-ca.crt
NoteA trusted CA certificate is normally obtained from a trusted source, and not by using the
openssl
command.Create a truststore for TLS connection to the Kafka brokers.
keytool -keystore /tmp/truststore.p12 -storetype pkcs12 -alias sso -storepass $STOREPASS -import -file /tmp/sso-ca.crt -noprompt
Use the Kafka bootstrap address as the hostname of the Kafka broker and the
tls
listener port (9093) to prepare a certificate for the Kafka broker.KAFKA_HOST_PORT=my-cluster-kafka-bootstrap:9093 STOREPASS=storepass echo "Q" | openssl s_client -showcerts -connect $KAFKA_HOST_PORT 2>/dev/null | awk ' /BEGIN CERTIFICATE/,/END CERTIFICATE/ { print $0 } ' > /tmp/my-cluster-kafka.pem
The obtained
.pem
file is usually not one single certificate, but a certificate chain. You only have to provide the top-most issuer CA, which is listed last in the/tmp/my-cluster-kafka.pem
file. You can extract it manually or using the following command:Example command to extract the top CA certificate in a certificate chain
split -p "-----BEGIN CERTIFICATE-----" /tmp/my-cluster-kafka.pem kafka- for f in $(ls kafka-*); do mv $f $f.pem; done cp $(ls kafka-* | sort -r | head -n 1) my-cluster-kafka-ca.crt
NoteA trusted CA certificate is normally obtained from a trusted source, and not by using the
openssl
command. For this example we assume the client is running in a pod in the same namespace where the Kafka cluster was deployed. If the client is accessing the Kafka cluster from outside the OpenShift cluster, you would have to first determine the bootstrap address. In that case you can also get the cluster certificate directly from the OpenShift secret, and there is no need foropenssl
. For more information, see Chapter 13, Setting up client access to a Kafka cluster.Add the certificate for the Kafka broker to the truststore.
keytool -keystore /tmp/truststore.p12 -storetype pkcs12 -alias my-cluster-kafka -storepass $STOREPASS -import -file /tmp/my-cluster-kafka-ca.crt -noprompt
Keep the session open to check authorized access.
14.5.4.4. Checking authorized access to Kafka using a CLI Kafka client session
Check the authorization rules applied through the Red Hat Single Sign-On realm using an interactive CLI session. Apply the checks using Kafka’s example producer and consumer clients to create topics with user and service accounts that have different levels of access.
Use the team-a-client
and team-b-client
clients to check the authorization rules. Use the alice
admin user to perform additional administrative tasks on Kafka.
The AMQ Streams Kafka image used in this example contains Kafka producer and consumer binaries.
Prerequisites
- ZooKeeper and Kafka are running in the OpenShift cluster to be able to send and receive messages.
The interactive CLI Kafka client session is started.
Setting up client and admin user configuration
Prepare a Kafka configuration file with authentication properties for the
team-a-client
client.SSO_HOST=SSO-HOSTNAME cat > /tmp/team-a-client.properties << EOF security.protocol=SASL_SSL ssl.truststore.location=/tmp/truststore.p12 ssl.truststore.password=$STOREPASS ssl.truststore.type=PKCS12 sasl.mechanism=OAUTHBEARER sasl.jaas.config=org.apache.kafka.common.security.oauthbearer.OAuthBearerLoginModule required \ oauth.client.id="team-a-client" \ oauth.client.secret="team-a-client-secret" \ oauth.ssl.truststore.location="/tmp/truststore.p12" \ oauth.ssl.truststore.password="$STOREPASS" \ oauth.ssl.truststore.type="PKCS12" \ oauth.token.endpoint.uri="https://$SSO_HOST/auth/realms/kafka-authz/protocol/openid-connect/token" ; sasl.login.callback.handler.class=io.strimzi.kafka.oauth.client.JaasClientOauthLoginCallbackHandler EOF
The SASL OAUTHBEARER mechanism is used. This mechanism requires a client ID and client secret, which means the client first connects to the Red Hat Single Sign-On server to obtain an access token. The client then connects to the Kafka broker and uses the access token to authenticate.
Prepare a Kafka configuration file with authentication properties for the
team-b-client
client.cat > /tmp/team-b-client.properties << EOF security.protocol=SASL_SSL ssl.truststore.location=/tmp/truststore.p12 ssl.truststore.password=$STOREPASS ssl.truststore.type=PKCS12 sasl.mechanism=OAUTHBEARER sasl.jaas.config=org.apache.kafka.common.security.oauthbearer.OAuthBearerLoginModule required \ oauth.client.id="team-b-client" \ oauth.client.secret="team-b-client-secret" \ oauth.ssl.truststore.location="/tmp/truststore.p12" \ oauth.ssl.truststore.password="$STOREPASS" \ oauth.ssl.truststore.type="PKCS12" \ oauth.token.endpoint.uri="https://$SSO_HOST/auth/realms/kafka-authz/protocol/openid-connect/token" ; sasl.login.callback.handler.class=io.strimzi.kafka.oauth.client.JaasClientOauthLoginCallbackHandler EOF
Authenticate admin user
alice
by usingcurl
and performing a password grant authentication to obtain a refresh token.USERNAME=alice PASSWORD=alice-password GRANT_RESPONSE=$(curl -X POST "https://$SSO_HOST/auth/realms/kafka-authz/protocol/openid-connect/token" -H 'Content-Type: application/x-www-form-urlencoded' -d "grant_type=password&username=$USERNAME&password=$PASSWORD&client_id=kafka-cli&scope=offline_access" -s -k) REFRESH_TOKEN=$(echo $GRANT_RESPONSE | awk -F "refresh_token\":\"" '{printf $2}' | awk -F "\"" '{printf $1}')
The refresh token is an offline token that is long-lived and does not expire.
Prepare a Kafka configuration file with authentication properties for the admin user
alice
.cat > /tmp/alice.properties << EOF security.protocol=SASL_SSL ssl.truststore.location=/tmp/truststore.p12 ssl.truststore.password=$STOREPASS ssl.truststore.type=PKCS12 sasl.mechanism=OAUTHBEARER sasl.jaas.config=org.apache.kafka.common.security.oauthbearer.OAuthBearerLoginModule required \ oauth.refresh.token="$REFRESH_TOKEN" \ oauth.client.id="kafka-cli" \ oauth.ssl.truststore.location="/tmp/truststore.p12" \ oauth.ssl.truststore.password="$STOREPASS" \ oauth.ssl.truststore.type="PKCS12" \ oauth.token.endpoint.uri="https://$SSO_HOST/auth/realms/kafka-authz/protocol/openid-connect/token" ; sasl.login.callback.handler.class=io.strimzi.kafka.oauth.client.JaasClientOauthLoginCallbackHandler EOF
The
kafka-cli
public client is used for theoauth.client.id
in thesasl.jaas.config
. Since it’s a public client it does not require a secret. The client authenticates with the refresh token that was authenticated in the previous step. The refresh token requests an access token behind the scenes, which is then sent to the Kafka broker for authentication.
Producing messages with authorized access
Use the team-a-client
configuration to check that you can produce messages to topics that start with a_
or x_
.
Write to topic
my-topic
.bin/kafka-console-producer.sh --bootstrap-server my-cluster-kafka-bootstrap:9093 --topic my-topic \ --producer.config=/tmp/team-a-client.properties First message
This request returns a
Not authorized to access topics: [my-topic]
error.team-a-client
has aDev Team A
role that gives it permission to perform any supported actions on topics that start witha_
, but can only write to topics that start withx_
. The topic namedmy-topic
matches neither of those rules.Write to topic
a_messages
.bin/kafka-console-producer.sh --bootstrap-server my-cluster-kafka-bootstrap:9093 --topic a_messages \ --producer.config /tmp/team-a-client.properties First message Second message
Messages are produced to Kafka successfully.
- Press CTRL+C to exit the CLI application.
Check the Kafka container log for a debug log of
Authorization GRANTED
for the request.oc logs my-cluster-kafka-0 -f -n $NS
Consuming messages with authorized access
Use the team-a-client
configuration to consume messages from topic a_messages
.
Fetch messages from topic
a_messages
.bin/kafka-console-consumer.sh --bootstrap-server my-cluster-kafka-bootstrap:9093 --topic a_messages \ --from-beginning --consumer.config /tmp/team-a-client.properties
The request returns an error because the
Dev Team A
role forteam-a-client
only has access to consumer groups that have names starting witha_
.Update the
team-a-client
properties to specify the custom consumer group it is permitted to use.bin/kafka-console-consumer.sh --bootstrap-server my-cluster-kafka-bootstrap:9093 --topic a_messages \ --from-beginning --consumer.config /tmp/team-a-client.properties --group a_consumer_group_1
The consumer receives all the messages from the
a_messages
topic.
Administering Kafka with authorized access
The team-a-client
is an account without any cluster-level access, but it can be used with some administrative operations.
List topics.
bin/kafka-topics.sh --bootstrap-server my-cluster-kafka-bootstrap:9093 --command-config /tmp/team-a-client.properties --list
The
a_messages
topic is returned.List consumer groups.
bin/kafka-consumer-groups.sh --bootstrap-server my-cluster-kafka-bootstrap:9093 --command-config /tmp/team-a-client.properties --list
The
a_consumer_group_1
consumer group is returned.Fetch details on the cluster configuration.
bin/kafka-configs.sh --bootstrap-server my-cluster-kafka-bootstrap:9093 --command-config /tmp/team-a-client.properties \ --entity-type brokers --describe --entity-default
The request returns an error because the operation requires cluster level permissions that
team-a-client
does not have.
Using clients with different permissions
Use the team-b-client
configuration to produce messages to topics that start with b_
.
Write to topic
a_messages
.bin/kafka-console-producer.sh --bootstrap-server my-cluster-kafka-bootstrap:9093 --topic a_messages \ --producer.config /tmp/team-b-client.properties Message 1
This request returns a
Not authorized to access topics: [a_messages]
error.Write to topic
b_messages
.bin/kafka-console-producer.sh --bootstrap-server my-cluster-kafka-bootstrap:9093 --topic b_messages \ --producer.config /tmp/team-b-client.properties Message 1 Message 2 Message 3
Messages are produced to Kafka successfully.
Write to topic
x_messages
.bin/kafka-console-producer.sh --bootstrap-server my-cluster-kafka-bootstrap:9093 --topic x_messages \ --producer.config /tmp/team-b-client.properties Message 1
A
Not authorized to access topics: [x_messages]
error is returned, Theteam-b-client
can only read from topicx_messages
.Write to topic
x_messages
usingteam-a-client
.bin/kafka-console-producer.sh --bootstrap-server my-cluster-kafka-bootstrap:9093 --topic x_messages \ --producer.config /tmp/team-a-client.properties Message 1
This request returns a
Not authorized to access topics: [x_messages]
error. Theteam-a-client
can write to thex_messages
topic, but it does not have a permission to create a topic if it does not yet exist. Beforeteam-a-client
can write to thex_messages
topic, an admin power user must create it with the correct configuration, such as the number of partitions and replicas.
Managing Kafka with an authorized admin user
Use admin user alice
to manage Kafka. alice
has full access to manage everything on any Kafka cluster.
Create the
x_messages
topic asalice
.bin/kafka-topics.sh --bootstrap-server my-cluster-kafka-bootstrap:9093 --command-config /tmp/alice.properties \ --topic x_messages --create --replication-factor 1 --partitions 1
The topic is created successfully.
List all topics as
alice
.bin/kafka-topics.sh --bootstrap-server my-cluster-kafka-bootstrap:9093 --command-config /tmp/alice.properties --list bin/kafka-topics.sh --bootstrap-server my-cluster-kafka-bootstrap:9093 --command-config /tmp/team-a-client.properties --list bin/kafka-topics.sh --bootstrap-server my-cluster-kafka-bootstrap:9093 --command-config /tmp/team-b-client.properties --list
Admin user
alice
can list all the topics, whereasteam-a-client
andteam-b-client
can only list the topics they have access to.The
Dev Team A
andDev Team B
roles both haveDescribe
permission on topics that start withx_
, but they cannot see the other team’s topics because they do not haveDescribe
permissions on them.Use the
team-a-client
to produce messages to thex_messages
topic:bin/kafka-console-producer.sh --bootstrap-server my-cluster-kafka-bootstrap:9093 --topic x_messages \ --producer.config /tmp/team-a-client.properties Message 1 Message 2 Message 3
As
alice
created thex_messages
topic, messages are produced to Kafka successfully.Use the
team-b-client
to produce messages to thex_messages
topic.bin/kafka-console-producer.sh --bootstrap-server my-cluster-kafka-bootstrap:9093 --topic x_messages \ --producer.config /tmp/team-b-client.properties Message 4 Message 5
This request returns a
Not authorized to access topics: [x_messages]
error.Use the
team-b-client
to consume messages from thex_messages
topic:bin/kafka-console-consumer.sh --bootstrap-server my-cluster-kafka-bootstrap:9093 --topic x_messages \ --from-beginning --consumer.config /tmp/team-b-client.properties --group x_consumer_group_b
The consumer receives all the messages from the
x_messages
topic.Use the
team-a-client
to consume messages from thex_messages
topic.bin/kafka-console-consumer.sh --bootstrap-server my-cluster-kafka-bootstrap:9093 --topic x_messages \ --from-beginning --consumer.config /tmp/team-a-client.properties --group x_consumer_group_a
This request returns a
Not authorized to access topics: [x_messages]
error.Use the
team-a-client
to consume messages from a consumer group that begins witha_
.bin/kafka-console-consumer.sh --bootstrap-server my-cluster-kafka-bootstrap:9093 --topic x_messages \ --from-beginning --consumer.config /tmp/team-a-client.properties --group a_consumer_group_a
This request returns a
Not authorized to access topics: [x_messages]
error.Dev Team A
has noRead
access on topics that start with ax_
.Use
alice
to produce messages to thex_messages
topic.bin/kafka-console-consumer.sh --bootstrap-server my-cluster-kafka-bootstrap:9093 --topic x_messages \ --from-beginning --consumer.config /tmp/alice.properties
Messages are produced to Kafka successfully.
alice
can read from or write to any topic.Use
alice
to read the cluster configuration.bin/kafka-configs.sh --bootstrap-server my-cluster-kafka-bootstrap:9093 --command-config /tmp/alice.properties \ --entity-type brokers --describe --entity-default
The cluster configuration for this example is empty.
Chapter 15. Managing TLS certificates
AMQ Streams supports TLS for encrypted communication between Kafka and AMQ Streams components.
AMQ Streams establishes encrypted TLS connections for communication between the following components:
- Kafka brokers and ZooKeeper nodes
- Kafka brokers (interbroker communication)
- ZooKeeper nodes (internodal communication)
- AMQ Streams operators and Kafka and ZooKeeper
- Cruise Control and Kafka
- Kafka Exporter and Kafka
Connections between clients and brokers use listeners that you must configure to use TLS-encrypted communication. You configure these listeners in the Kafka
custom resource and each listener name and port number must be unique within the cluster. Communication between Kafka brokers and Kafka clients is encrypted according to how the tls
property is configured for the listener. For more information, see Chapter 13, Setting up client access to a Kafka cluster.
The following diagram shows the connections for secure communication.
Figure 15.1. Kafka and ZooKeeper communication secured by TLS encryption

The ports shown in the diagram are used as follows:
- Control plane listener (9090)
- Connections between the Kafka controller and brokers use an internal control plane listener on port 9090, facilitating interbroker communication. This listener is not accessible to Kafka clients.
- Replication listener (9091)
- Data replication between brokers, as well as internal connections from AMQ Streams operators, Cruise Control, and the Kafka Exporter, use the replication listener on port 9091. This listener is not accessible to Kafka clients.
- Listeners for client connections (9092 or higher)
- For TLS-encrypted communication (through configuration of the listener), internal and external clients connect to Kafka brokers. External clients (producers and consumers) connect to the Kafka brokers through the advertised listener port.
- ZooKeeper Port (2181)
- ZooKeeper port for connection to Kafka.
- ZooKeeper internodal communication port (2888)
- ZooKeeper port for internodal communication between ZooKeeper nodes.
- ZooKeeper leader election port (3888)
- ZooKeeper port for leader election among ZooKeeper nodes in a ZooKeeper cluster.
When configuring listeners for client access to brokers, you can use port 9092 or higher (9093, 9094, and so on), but with a few exceptions. The listeners cannot be configured to use the ports reserved for interbroker communication (9090 and 9091), Prometheus metrics (9404), and JMX (Java Management Extensions) monitoring (9999).
15.1. Internal cluster CA and clients CA
To support encryption, each AMQ Streams component needs its own private keys and public key certificates. All component certificates are signed by an internal CA (certificate authority) called the cluster CA.
CA (Certificate Authority) certificates are generated by the Cluster Operator to verify the identities of components and clients.
Similarly, each Kafka client application connecting to AMQ Streams using mTLS needs to use private keys and certificates. A second internal CA, named the clients CA, is used to sign certificates for the Kafka clients.
Both the cluster CA and clients CA have a self-signed public key certificate.
Kafka brokers are configured to trust certificates signed by either the cluster CA or clients CA. Components that clients do not need to connect to, such as ZooKeeper, only trust certificates signed by the cluster CA. Unless TLS encryption for external listeners is disabled, client applications must trust certificates signed by the cluster CA. This is also true for client applications that perform mTLS authentication.
By default, AMQ Streams automatically generates and renews CA certificates issued by the cluster CA or clients CA. You can configure the management of these CA certificates using Kafka.spec.clusterCa
and Kafka.spec.clientsCa
properties.
If you don’t want to use the CAs generated by the Cluster Operator, you can install your own cluster and clients CA certificates. Any certificates you provide are not renewed by the Cluster Operator.
15.2. Secrets generated by the operators
The Cluster Operator automatically sets up and renews TLS certificates to enable encryption and authentication within a cluster. It also sets up other TLS certificates if you want to enable encryption or mTLS authentication between Kafka brokers and clients.
Secrets are created when custom resources are deployed, such as Kafka
and KafkaUser
. AMQ Streams uses these secrets to store private and public key certificates for Kafka clusters, clients, and users. The secrets are used for establishing TLS encrypted connections between Kafka brokers, and between brokers and clients. They are also used for mTLS authentication.
Cluster and clients secrets are always pairs: one contains the public key and one contains the private key.
- Cluster secret
- A cluster secret contains the cluster CA to sign Kafka broker certificates. Connecting clients use the certificate to establish a TLS encrypted connection with a Kafka cluster. The certificate verifies broker identity.
- Client secret
- A client secret contains the clients CA for a user to sign its own client certificate. This allows mutual authentication against the Kafka cluster. The broker validates a client’s identity through the certificate.
- User secret
- A user secret contains a private key and certificate. The secret is created and signed by the clients CA when a new user is created. The key and certificate are used to authenticate and authorize the user when accessing the cluster.
You can provide Kafka listener certificates for TLS listeners or external listeners that have TLS encryption enabled. Use Kafka listener certificates to incorporate the security infrastructure you already have in place.
15.2.1. TLS authentication using keys and certificates in PEM or PKCS #12 format
The secrets created by AMQ Streams provide private keys and certificates in PEM (Privacy Enhanced Mail) and PKCS #12 (Public-Key Cryptography Standards) formats. PEM and PKCS #12 are OpenSSL-generated key formats for TLS communications using the SSL protocol.
You can configure mutual TLS (mTLS) authentication that uses the credentials contained in the secrets generated for a Kafka cluster and user.
To set up mTLS, you must first do the following:
When you deploy a Kafka cluster, a <cluster_name>-cluster-ca-cert
secret is created with public key to verify the cluster. You use the public key to configure a truststore for the client.
When you create a KafkaUser
, a <kafka_user_name>
secret is created with the keys and certificates to verify the user (client). Use these credentials to configure a keystore for the client.
With the Kafka cluster and client set up to use mTLS, you extract credentials from the secrets and add them to your client configuration.
- PEM keys and certificates
For PEM, you add the following to your client configuration:
- Truststore
-
ca.crt
from the<cluster_name>-cluster-ca-cert
secret, which is the CA certificate for the cluster.
-
- Keystore
-
user.crt
from the<kafka_user_name>
secret, which is the public certificate of the user. -
user.key
from the<kafka_user_name>
secret, which is the private key of the user.
-
- PKCS #12 keys and certificates
For PKCS #12, you add the following to your client configuration:
- Truststore
-
ca.p12
from the<cluster_name>-cluster-ca-cert
secret, which is the CA certificate for the cluster. -
ca.password
from the<cluster_name>-cluster-ca-cert
secret, which is the password to access the public cluster CA certificate.
-
- Keystore
-
user.p12
from the<kafka_user_name>
secret, which is the public key certificate of the user. -
user.password
from the<kafka_user_name>
secret, which is the password to access the public key certificate of the Kafka user.
-
PKCS #12 is supported by Java, so you can add the values of the certificates directly to your Java client configuration. You can also reference the certificates from a secure storage location. With PEM files, you must add the certificates directly to the client configuration in single-line format. Choose a format that’s suitable for establishing TLS connections between your Kafka cluster and client. Use PKCS #12 if you are unfamiliar with PEM.
All keys are 2048 bits in size and, by default, are valid for 365 days from the initial generation. You can change the validity period.
15.2.2. Secrets generated by the Cluster Operator
The Cluster Operator generates the following certificates, which are saved as secrets in the OpenShift cluster. AMQ Streams uses these secrets by default.
The cluster CA and clients CA have separate secrets for the private key and public key.
<cluster_name>-cluster-ca
- Contains the private key of the cluster CA. AMQ Streams and Kafka components use the private key to sign server certificates.
<cluster_name>-cluster-ca-cert
- Contains the public key of the cluster CA. Kafka clients use the public key to verify the identity of the Kafka brokers they are connecting to with TLS server authentication.
<cluster_name>-clients-ca
- Contains the private key of the clients CA. Kafka clients use the private key to sign new user certificates for mTLS authentication when connecting to Kafka brokers.
<cluster_name>-clients-ca-cert
- Contains the public key of the clients CA. Kafka brokers use the public key to verify the identity of clients accessing the Kafka brokers when mTLS authentication is used.
Secrets for communication between AMQ Streams components contain a private key and a public key certificate signed by the cluster CA.
<cluster_name>-kafka-brokers
- Contains the private and public keys for Kafka brokers.
<cluster_name>-zookeeper-nodes
- Contains the private and public keys for ZooKeeper nodes.
<cluster_name>-cluster-operator-certs
- Contains the private and public keys for encrypting communication between the Cluster Operator and Kafka or ZooKeeper.
<cluster_name>-entity-topic-operator-certs
- Contains the private and public keys for encrypting communication between the Topic Operator and Kafka or ZooKeeper.
<cluster_name>-entity-user-operator-certs
- Contains the private and public keys for encrypting communication between the User Operator and Kafka or ZooKeeper.
<cluster_name>-cruise-control-certs
- Contains the private and public keys for encrypting communication between Cruise Control and Kafka or ZooKeeper.
<cluster_name>-kafka-exporter-certs
- Contains the private and public keys for encrypting communication between Kafka Exporter and Kafka or ZooKeeper.
You can provide your own server certificates and private keys to connect to Kafka brokers using Kafka listener certificates rather than certificates signed by the cluster CA.
15.2.3. Cluster CA secrets
Cluster CA secrets are managed by the Cluster Operator in a Kafka cluster.
Only the <cluster_name>-cluster-ca-cert
secret is required by clients. All other cluster secrets are accessed by AMQ Streams components. You can enforce this using OpenShift role-based access controls, if necessary.
The CA certificates in <cluster_name>-cluster-ca-cert
must be trusted by Kafka client applications so that they validate the Kafka broker certificates when connecting to Kafka brokers over TLS.
Field | Description |
---|---|
| The current private key for the cluster CA. |
Field | Description |
---|---|
| PKCS #12 store for storing certificates and keys. |
| Password for protecting the PKCS #12 store. |
| The current certificate for the cluster CA. |
Field | Description |
---|---|
| PKCS #12 store for storing certificates and keys. |
| Password for protecting the PKCS #12 store. |
|
Certificate for a Kafka broker pod <num>. Signed by a current or former cluster CA private key in |
|
Private key for a Kafka broker pod |
Field | Description |
---|---|
| PKCS #12 store for storing certificates and keys. |
| Password for protecting the PKCS #12 store. |
|
Certificate for ZooKeeper node <num>. Signed by a current or former cluster CA private key in |
|
Private key for ZooKeeper pod |
Field | Description |
---|---|
| PKCS #12 store for storing certificates and keys. |
| Password for protecting the PKCS #12 store. |
|
Certificate for mTLS communication between the Cluster Operator and Kafka or ZooKeeper. Signed by a current or former cluster CA private key in |
| Private key for mTLS communication between the Cluster Operator and Kafka or ZooKeeper. |
Field | Description |
---|---|
| PKCS #12 store for storing certificates and keys. |
| Password for protecting the PKCS #12 store. |
|
Certificate for mTLS communication between the Topic Operator and Kafka or ZooKeeper. Signed by a current or former cluster CA private key in |
| Private key for mTLS communication between the Topic Operator and Kafka or ZooKeeper. |
Field | Description |
---|---|
| PKCS #12 store for storing certificates and keys. |
| Password for protecting the PKCS #12 store. |
|
Certificate for mTLS communication between the User Operator and Kafka or ZooKeeper. Signed by a current or former cluster CA private key in |
| Private key for mTLS communication between the User Operator and Kafka or ZooKeeper. |
Field | Description |
---|---|
| PKCS #12 store for storing certificates and keys. |
| Password for protecting the PKCS #12 store. |
|
Certificate for mTLS communication between Cruise Control and Kafka or ZooKeeper. Signed by a current or former cluster CA private key in |
| Private key for mTLS communication between the Cruise Control and Kafka or ZooKeeper. |
Field | Description |
---|---|
| PKCS #12 store for storing certificates and keys. |
| Password for protecting the PKCS #12 store. |
|
Certificate for mTLS communication between Kafka Exporter and Kafka or ZooKeeper. Signed by a current or former cluster CA private key in |
| Private key for mTLS communication between the Kafka Exporter and Kafka or ZooKeeper. |
15.2.4. Clients CA secrets
Clients CA secrets are managed by the Cluster Operator in a Kafka cluster.
The certificates in <cluster_name>-clients-ca-cert
are those which the Kafka brokers trust.
The <cluster_name>-clients-ca
secret is used to sign the certificates of client applications. This secret must be accessible to the AMQ Streams components and for administrative access if you are intending to issue application certificates without using the User Operator. You can enforce this using OpenShift role-based access controls, if necessary.
Field | Description |
---|---|
| The current private key for the clients CA. |
Field | Description |
---|---|
| PKCS #12 store for storing certificates and keys. |
| Password for protecting the PKCS #12 store. |
| The current certificate for the clients CA. |
15.2.5. User secrets generated by the User Operator
User secrets are managed by the User Operator.
When a user is created using the User Operator, a secret is generated using the name of the user.
Secret name | Field within secret | Description |
---|---|---|
|
| PKCS #12 store for storing certificates and keys. |
| Password for protecting the PKCS #12 store. | |
| Certificate for the user, signed by the clients CA | |
| Private key for the user |
15.2.6. Adding labels and annotations to cluster CA secrets
By configuring the clusterCaCert
template property in the Kafka
custom resource, you can add custom labels and annotations to the Cluster CA secrets created by the Cluster Operator. Labels and annotations are useful for identifying objects and adding contextual information. You configure template properties in AMQ Streams custom resources.
Example template customization to add labels and annotations to secrets
apiVersion: kafka.strimzi.io/v1beta2 kind: Kafka metadata: name: my-cluster spec: kafka: # ... template: clusterCaCert: metadata: labels: label1: value1 label2: value2 annotations: annotation1: value1 annotation2: value2 # ...
15.2.7. Disabling ownerReference
in the CA secrets
By default, the cluster and clients CA secrets are created with an ownerReference
property that is set to the Kafka
custom resource. This means that, when the Kafka
custom resource is deleted, the CA secrets are also deleted (garbage collected) by OpenShift.
If you want to reuse the CA for a new cluster, you can disable the ownerReference
by setting the generateSecretOwnerReference
property for the cluster and clients CA secrets to false
in the Kafka
configuration. When the ownerReference
is disabled, CA secrets are not deleted by OpenShift when the corresponding Kafka
custom resource is deleted.
Example Kafka configuration with disabled ownerReference
for cluster and clients CAs
apiVersion: kafka.strimzi.io/v1beta2 kind: Kafka # ... spec: # ... clusterCa: generateSecretOwnerReference: false clientsCa: generateSecretOwnerReference: false # ...
Additional resources
15.3. Certificate renewal and validity periods
Cluster CA and clients CA certificates are only valid for a limited time period, known as the validity period. This is usually defined as a number of days since the certificate was generated.
For CA certificates automatically created by the Cluster Operator, you can configure the validity period of:
-
Cluster CA certificates in
Kafka.spec.clusterCa.validityDays
-
Clients CA certificates in
Kafka.spec.clientsCa.validityDays
The default validity period for both certificates is 365 days. Manually-installed CA certificates should have their own validity periods defined.
When a CA certificate expires, components and clients that still trust that certificate will not accept connections from peers whose certificates were signed by the CA private key. The components and clients need to trust the new CA certificate instead.
To allow the renewal of CA certificates without a loss of service, the Cluster Operator initiates certificate renewal before the old CA certificates expire.
You can configure the renewal period of the certificates created by the Cluster Operator:
-
Cluster CA certificates in
Kafka.spec.clusterCa.renewalDays
-
Clients CA certificates in
Kafka.spec.clientsCa.renewalDays
The default renewal period for both certificates is 30 days.
The renewal period is measured backwards, from the expiry date of the current certificate.
Validity period against renewal period
Not Before Not After | | |<--------------- validityDays --------------->| <--- renewalDays --->|
To make a change to the validity and renewal periods after creating the Kafka cluster, you configure and apply the Kafka
custom resource, and manually renew the CA certificates. If you do not manually renew the certificates, the new periods will be used the next time the certificate is renewed automatically.
Example Kafka configuration for certificate validity and renewal periods
apiVersion: kafka.strimzi.io/v1beta2 kind: Kafka # ... spec: # ... clusterCa: renewalDays: 30 validityDays: 365 generateCertificateAuthority: true clientsCa: renewalDays: 30 validityDays: 365 generateCertificateAuthority: true # ...
The behavior of the Cluster Operator during the renewal period depends on the settings for the generateCertificateAuthority
certificate generation properties for the cluster CA and clients CA.
true
-
If the properties are set to
true
, a CA certificate is generated automatically by the Cluster Operator, and renewed automatically within the renewal period. false
-
If the properties are set to
false
, a CA certificate is not generated by the Cluster Operator. Use this option if you are installing your own certificates.
15.3.1. Renewal process with automatically generated CA certificates
The Cluster Operator performs the following processes in this order when renewing CA certificates:
Generates a new CA certificate, but retains the existing key.
The new certificate replaces the old one with the name
ca.crt
within the correspondingSecret
.Generates new client certificates (for ZooKeeper nodes, Kafka brokers, and the Entity Operator).
This is not strictly necessary because the signing key has not changed, but it keeps the validity period of the client certificate in sync with the CA certificate.
- Restarts ZooKeeper nodes so that they will trust the new CA certificate and use the new client certificates.
- Restarts Kafka brokers so that they will trust the new CA certificate and use the new client certificates.
Restarts the Topic and User Operators so that they will trust the new CA certificate and use the new client certificates.
User certificates are signed by the clients CA. User certificates generated by the User Operator are renewed when the clients CA is renewed.
15.3.2. Client certificate renewal
The Cluster Operator is not aware of the client applications using the Kafka cluster.
When connecting to the cluster, and to ensure they operate correctly, client applications must:
- Trust the cluster CA certificate published in the <cluster>-cluster-ca-cert Secret.
Use the credentials published in their <user-name> Secret to connect to the cluster.
The User Secret provides credentials in PEM and PKCS #12 format, or it can provide a password when using SCRAM-SHA authentication. The User Operator creates the user credentials when a user is created.
You must ensure clients continue to work after certificate renewal. The renewal process depends on how the clients are configured.
If you are provisioning client certificates and keys manually, you must generate new client certificates and ensure the new certificates are used by clients within the renewal period. Failure to do this by the end of the renewal period could result in client applications being unable to connect to the cluster.
For workloads running inside the same OpenShift cluster and namespace, Secrets can be mounted as a volume so the client Pods construct their keystores and truststores from the current state of the Secrets. For more details on this procedure, see Configuring internal clients to trust the cluster CA.
15.3.3. Manually renewing Cluster Operator-managed CA certificates
Cluster and clients CA certificates generated by the Cluster Operator auto-renew at the start of their respective certificate renewal periods. However, you can use the strimzi.io/force-renew
annotation to manually renew one or both of these certificates before the certificate renewal period starts. You might do this for security reasons, or if you have changed the renewal or validity periods for the certificates.
A renewed certificate uses the same private key as the old certificate.
If you are using your own CA certificates, the force-renew
annotation cannot be used. Instead, follow the procedure for renewing your own CA certificates.
Prerequisites
- The Cluster Operator must be deployed.
- A Kafka cluster in which CA certificates and private keys are installed.
- The OpenSSL TLS management tool to check the period of validity for CA certificates.
In this procedure, we use a Kafka cluster named my-cluster
within the my-project
namespace.
Procedure
Apply the
strimzi.io/force-renew
annotation to the secret that contains the CA certificate that you want to renew.Renewing the Cluster CA secret
oc annotate secret my-cluster-cluster-ca-cert -n my-project strimzi.io/force-renew=true
Renewing the Clients CA secret
oc annotate secret my-cluster-clients-ca-cert -n my-project strimzi.io/force-renew=true
At the next reconciliation, the Cluster Operator generates new certificates.
If maintenance time windows are configured, the Cluster Operator generates the new CA certificate at the first reconciliation within the next maintenance time window.
Check the period of validity for the new CA certificates.
Checking the period of validity for the new cluster CA certificate
oc get secret my-cluster-cluster-ca-cert -n my-project -o=jsonpath='{.data.ca\.crt}' | base64 -d | openssl x509 -noout -dates
Checking the period of validity for the new clients CA certificate
oc get secret my-cluster-clients-ca-cert -n my-project -o=jsonpath='{.data.ca\.crt}' | base64 -d | openssl x509 -noout -dates
The command returns a
notBefore
andnotAfter
date, which is the valid start and end date for the CA certificate.Update client configurations to trust the new cluster CA certificate.
See:
15.3.4. Manually recovering from expired Cluster Operator-managed CA certificates
The Cluster Operator automatically renews the cluster and clients CA certificates when their renewal periods begin. Nevertheless, unexpected operational problems or disruptions may prevent the renewal process, such as prolonged downtime of the Cluster Operator or unavailability of the Kafka cluster. If CA certificates expire, Kafka cluster components cannot communicate with each other and the Cluster Operator cannot renew the CA certificates without manual intervention.
To promptly perform a recovery, follow the steps outlined in this procedure in the order given. You can recover from expired cluster and clients CA certificates. The process involves deleting the secrets containing the expired certificates so that new ones are generated by the Cluster Operator. For more information on the secrets managed in AMQ Streams, see Section 15.2.2, “Secrets generated by the Cluster Operator”.
If you are using your own CA certificates and they expire, the process is similar, but you need to renew the CA certificates rather than use certificates generated by the Cluster Operator.
Prerequisites
- The Cluster Operator must be deployed.
- A Kafka cluster in which CA certificates and private keys are installed.
- The OpenSSL TLS management tool to check the period of validity for CA certificates.
In this procedure, we use a Kafka cluster named my-cluster
within the my-project
namespace.
Procedure
Delete the secret containing the expired CA certificate.
Deleting the Cluster CA secret
oc delete secret my-cluster-cluster-ca-cert -n my-project
Deleting the Clients CA secret
oc delete secret my-cluster-clients-ca-cert -n my-project
Wait for the Cluster Operator to generate new certificates.
-
A new CA cluster certificate to verify the identity of the Kafka brokers is created in a secret of the same name (
my-cluster-cluster-ca-cert
). -
A new CA clients certificate to verify the identity of Kafka users is created in a secret of the same name (
my-cluster-clients-ca-cert
).
-
A new CA cluster certificate to verify the identity of the Kafka brokers is created in a secret of the same name (
Check the period of validity for the new CA certificates.
Checking the period of validity for the new cluster CA certificate
oc get secret my-cluster-cluster-ca-cert -n my-project -o=jsonpath='{.data.ca\.crt}' | base64 -d | openssl x509 -noout -dates
Checking the period of validity for the new clients CA certificate
oc get secret my-cluster-clients-ca-cert -n my-project -o=jsonpath='{.data.ca\.crt}' | base64 -d | openssl x509 -noout -dates
The command returns a
notBefore
andnotAfter
date, which is the valid start and end date for the CA certificate.Delete the component pods and secrets that use the CA certificates.
- Delete the ZooKeeper secret.
- Wait for the Cluster Operator to detect the missing ZooKeeper secret and recreate it.
- Delete all ZooKeeper pods.
- Delete the Kafka secret.
- Wait for the Cluster Operator to detect the missing Kafka secret and recreate it.
- Delete all Kafka pods.
If you are only recovering the clients CA certificate, you only need to delete the Kafka secret and pods.
You can use the following
oc
command to find resources and also verify that they have been removed.oc get <resource_type> --all-namespaces | grep <kafka_cluster_name>
Replace
<resource_type>
with the type of the resource, such asPod
orSecret
.Wait for the Cluster Operator to detect the missing Kafka and ZooKeeper pods and recreate them with the updated CA certificates.
On reconciliation, the Cluster Operator automatically updates other components to trust the new CA certificates.
- Verify that there are no issues related to certificate validation in the Cluster Operator log.
Update client configurations to trust the new cluster CA certificate.
See:
15.3.5. Replacing private keys used by Cluster Operator-managed CA certificates
You can replace the private keys used by the cluster CA and clients CA certificates generated by the Cluster Operator. When a private key is replaced, the Cluster Operator generates a new CA certificate for the new private key.
If you are using your own CA certificates, the force-replace
annotation cannot be used. Instead, follow the procedure for renewing your own CA certificates.
Prerequisites
- The Cluster Operator is running.
- A Kafka cluster in which CA certificates and private keys are installed.
Procedure
Apply the
strimzi.io/force-replace
annotation to theSecret
that contains the private key that you want to renew.Table 15.13. Commands for replacing private keys Private key for Secret Annotate command Cluster CA
CLUSTER-NAME-cluster-ca
oc annotate secret CLUSTER-NAME-cluster-ca strimzi.io/force-replace=true
Clients CA
CLUSTER-NAME-clients-ca
oc annotate secret CLUSTER-NAME-clients-ca strimzi.io/force-replace=true
At the next reconciliation the Cluster Operator will:
-
Generate a new private key for the
Secret
that you annotated - Generate a new CA certificate
If maintenance time windows are configured, the Cluster Operator will generate the new private key and CA certificate at the first reconciliation within the next maintenance time window.
Client applications must reload the cluster and clients CA certificates that were renewed by the Cluster Operator.
15.4. Configuring internal clients to trust the cluster CA
This procedure describes how to configure a Kafka client that resides inside the OpenShift cluster — connecting to a TLS listener — to trust the cluster CA certificate.
The easiest way to achieve this for an internal client is to use a volume mount to access the Secrets
containing the necessary certificates and keys.
Follow the steps to configure trust certificates that are signed by the cluster CA for Java-based Kafka Producer, Consumer, and Streams APIs.
Choose the steps to follow according to the certificate format of the cluster CA: PKCS #12 (.p12
) or PEM (.crt
).
The steps describe how to mount the Cluster Secret that verifies the identity of the Kafka cluster to the client pod.
Prerequisites
- The Cluster Operator must be running.
-
There needs to be a
Kafka
resource within the OpenShift cluster. - You need a Kafka client application inside the OpenShift cluster that will connect using TLS, and needs to trust the cluster CA certificate.
-
The client application must be running in the same namespace as the
Kafka
resource.
Using PKCS #12 format (.p12)
Mount the cluster Secret as a volume when defining the client pod.
For example:
kind: Pod apiVersion: v1 metadata: name: client-pod spec: containers: - name: client-name image: client-name volumeMounts: - name: secret-volume mountPath: /data/p12 env: - name: SECRET_PASSWORD valueFrom: secretKeyRef: name: my-secret key: my-password volumes: - name: secret-volume secret: secretName: my-cluster-cluster-ca-cert
Here we’re mounting the following:
- The PKCS #12 file into an exact path, which can be configured
- The password into an environment variable, where it can be used for Java configuration
Configure the Kafka client with the following properties:
A security protocol option:
-
security.protocol: SSL
when using TLS for encryption (with or without mTLS authentication). -
security.protocol: SASL_SSL
when using SCRAM-SHA authentication over TLS.
-
-
ssl.truststore.location
with the truststore location where the certificates were imported. -
ssl.truststore.password
with the password for accessing the truststore. -
ssl.truststore.type=PKCS12
to identify the truststore type.
Using PEM format (.crt)
Mount the cluster Secret as a volume when defining the client pod.
For example:
kind: Pod apiVersion: v1 metadata: name: client-pod spec: containers: - name: client-name image: client-name volumeMounts: - name: secret-volume mountPath: /data/crt volumes: - name: secret-volume secret: secretName: my-cluster-cluster-ca-cert
- Use the extracted certificate to configure a TLS connection in clients that use certificates in X.509 format.
15.5. Configuring external clients to trust the cluster CA
This procedure describes how to configure a Kafka client that resides outside the OpenShift cluster – connecting to an external
listener – to trust the cluster CA certificate. Follow this procedure when setting up the client and during the renewal period, when the old clients CA certificate is replaced.
Follow the steps to configure trust certificates that are signed by the cluster CA for Java-based Kafka Producer, Consumer, and Streams APIs.
Choose the steps to follow according to the certificate format of the cluster CA: PKCS #12 (.p12
) or PEM (.crt
).
The steps describe how to obtain the certificate from the Cluster Secret that verifies the identity of the Kafka cluster.
The <cluster_name>-cluster-ca-cert
secret contains more than one CA certificate during the CA certificate renewal period. Clients must add all of them to their truststores.
Prerequisites
- The Cluster Operator must be running.
-
There needs to be a
Kafka
resource within the OpenShift cluster. - You need a Kafka client application outside the OpenShift cluster that will connect using TLS, and needs to trust the cluster CA certificate.
Using PKCS #12 format (.p12)
Extract the cluster CA certificate and password from the
<cluster_name>-cluster-ca-cert
Secret of the Kafka cluster.oc get secret <cluster_name>-cluster-ca-cert -o jsonpath='{.data.ca\.p12}' | base64 -d > ca.p12
oc get secret <cluster_name>-cluster-ca-cert -o jsonpath='{.data.ca\.password}' | base64 -d > ca.password
Replace <cluster_name> with the name of the Kafka cluster.
Configure the Kafka client with the following properties:
A security protocol option:
-
security.protocol: SSL
when using TLS. -
security.protocol: SASL_SSL
when using SCRAM-SHA authentication over TLS.
-
-
ssl.truststore.location
with the truststore location where the certificates were imported. -
ssl.truststore.password
with the password for accessing the truststore. This property can be omitted if it is not needed by the truststore. -
ssl.truststore.type=PKCS12
to identify the truststore type.
Using PEM format (.crt)
Extract the cluster CA certificate from the
<cluster_name>-cluster-ca-cert
secret of the Kafka cluster.oc get secret <cluster_name>-cluster-ca-cert -o jsonpath='{.data.ca\.crt}' | base64 -d > ca.crt
- Use the extracted certificate to configure a TLS connection in clients that use certificates in X.509 format.
15.6. Using your own CA certificates and private keys
Install and use your own CA certificates and private keys instead of using the defaults generated by the Cluster Operator. You can replace the cluster and clients CA certificates and private keys.
You can switch to using your own CA certificates and private keys in the following ways:
- Install your own CA certificates and private keys before deploying your Kafka cluster
- Replace the default CA certificates and private keys with your own after deploying a Kafka cluster
The steps to replace the default CA certificates and private keys after deploying a Kafka cluster are the same as those used to renew your own CA certificates and private keys.
If you use your own certificates, they won’t be renewed automatically. You need to renew the CA certificates and private keys before they expire.
Renewal options:
- Renew the CA certificates only
- Renew CA certificates and private keys (or replace the defaults)
15.6.1. Installing your own CA certificates and private keys
Install your own CA certificates and private keys instead of using the cluster and clients CA certificates and private keys generated by the Cluster Operator.
By default, AMQ Streams uses the following cluster CA and clients CA secrets, which are renewed automatically.
Cluster CA secrets
-
<cluster_name>-cluster-ca
-
<cluster_name>-cluster-ca-cert
-
Clients CA secrets
-
<cluster_name>-clients-ca
-
<cluster_name>-clients-ca-cert
-
To install your own certificates, use the same names.
Prerequisites
- The Cluster Operator is running.
A Kafka cluster is not yet deployed.
If you have already deployed a Kafka cluster, you can replace the default CA certificates with your own.
Your own X.509 certificates and keys in PEM format for the cluster CA or clients CA.
If you want to use a cluster or clients CA which is not a Root CA, you have to include the whole chain in the certificate file. The chain should be in the following order:
- The cluster or clients CA
- One or more intermediate CAs
- The root CA
- All CAs in the chain should be configured using the X509v3 Basic Constraints extension. Basic Constraints limit the path length of a certificate chain.
- The OpenSSL TLS management tool for converting certificates.
Before you begin
The Cluster Operator generates keys and certificates in PEM (Privacy Enhanced Mail) and PKCS #12 (Public-Key Cryptography Standards) formats. You can add your own certificates in either format.
Some applications cannot use PEM certificates and support only PKCS #12 certificates. If you don’t have a cluster certificate in PKCS #12 format, use the OpenSSL TLS management tool to generate one from your ca.crt
file.
Example certificate generation command
openssl pkcs12 -export -in ca.crt -nokeys -out ca.p12 -password pass:<P12_password> -caname ca.crt
Replace <P12_password> with your own password.
Procedure
Create a new secret that contains the CA certificate.
Client secret creation with a certificate in PEM format only
oc create secret generic <cluster_name>-clients-ca-cert --from-file=ca.crt=ca.crt
Cluster secret creation with certificates in PEM and PKCS #12 format
oc create secret generic <cluster_name>-cluster-ca-cert \ --from-file=ca.crt=ca.crt \ --from-file=ca.p12=ca.p12 \ --from-literal=ca.password=P12-PASSWORD
Replace <cluster_name> with the name of your Kafka cluster.
Create a new secret that contains the private key.
oc create secret generic CA-KEY-SECRET --from-file=ca.key=ca.key
Label the secrets.
oc label secret CA-CERTIFICATE-SECRET strimzi.io/kind=Kafka strimzi.io/cluster=<cluster_name>
oc label secret CA-KEY-SECRET strimzi.io/kind=Kafka strimzi.io/cluster=<cluster_name>
-
Label
strimzi.io/kind=Kafka
identifies the Kafka custom resource. -
Label
strimzi.io/cluster=<cluster_name>
identifies the Kafka cluster.
-
Label
Annotate the secrets
oc annotate secret CA-CERTIFICATE-SECRET strimzi.io/ca-cert-generation=CA-CERTIFICATE-GENERATION
oc annotate secret CA-KEY-SECRET strimzi.io/ca-key-generation=CA-KEY-GENERATION
-
Annotation
strimzi.io/ca-cert-generation=CA-CERTIFICATE-GENERATION
defines the generation of a new CA certificate. Annotation
strimzi.io/ca-key-generation=CA-KEY-GENERATION
defines the generation of a new CA key.Start from 0 (zero) as the incremental value (
strimzi.io/ca-cert-generation=0
) for your own CA certificate. Set a higher incremental value when you renew the certificates.
-
Annotation
Create the
Kafka
resource for your cluster, configuring either theKafka.spec.clusterCa
or theKafka.spec.clientsCa
object to not use generated CAs.Example fragment
Kafka
resource configuring the cluster CA to use certificates you supply for yourselfkind: Kafka version: kafka.strimzi.io/v1beta2 spec: # ... clusterCa: generateCertificateAuthority: false
15.6.2. Renewing your own CA certificates
If you are using your own CA certificates, you need to renew them manually. The Cluster Operator will not renew them automatically. Renew the CA certificates in the renewal period before they expire.
Perform the steps in this procedure when you are renewing CA certificates and continuing with the same private key. If you are renewing your own CA certificates and private keys, see Section 15.6.3, “Renewing or replacing CA certificates and private keys with your own”.
The procedure describes the renewal of CA certificates in PEM format.
Prerequisites
- The Cluster Operator is running.
- You have new cluster or clients X.509 certificates in PEM format.
Procedure
Update the
Secret
for the CA certificate.Edit the existing secret to add the new CA certificate and update the certificate generation annotation value.
oc edit secret <ca_certificate_secret_name>
<ca_certificate_secret_name> is the name of the
Secret
, which is<kafka_cluster_name>-cluster-ca-cert
for the cluster CA certificate and<kafka_cluster_name>-clients-ca-cert
for the clients CA certificate.The following example shows a secret for a cluster CA certificate that’s associated with a Kafka cluster named
my-cluster
.Example secret configuration for a cluster CA certificate
apiVersion: v1 kind: Secret data: ca.crt: LS0tLS1CRUdJTiBDRVJUSUZJQ0F... 1 metadata: annotations: strimzi.io/ca-cert-generation: "0" 2 labels: strimzi.io/cluster: my-cluster strimzi.io/kind: Kafka name: my-cluster-cluster-ca-cert #... type: Opaque
Encode your new CA certificate into base64.
cat <path_to_new_certificate> | base64
Update the CA certificate.
Copy the base64-encoded CA certificate from the previous step as the value for the
ca.crt
property underdata
.Increase the value of the CA certificate generation annotation.
Update the
strimzi.io/ca-cert-generation
annotation with a higher incremental value. For example, changestrimzi.io/ca-cert-generation=0
tostrimzi.io/ca-cert-generation=1
. If theSecret
is missing the annotation, the value is treated as0
, so add the annotation with a value of1
.When AMQ Streams generates certificates, the certificate generation annotation is automatically incremented by the Cluster Operator. For your own CA certificates, set the annotations with a higher incremental value. The annotation needs a higher value than the one from the current secret so that the Cluster Operator can roll the pods and update the certificates. The
strimzi.io/ca-cert-generation
has to be incremented on each CA certificate renewal.Save the secret with the new CA certificate and certificate generation annotation value.
Example secret configuration updated with a new CA certificate
apiVersion: v1 kind: Secret data: ca.crt: GCa6LS3RTHeKFiFDGBOUDYFAZ0F... 1 metadata: annotations: strimzi.io/ca-cert-generation: "1" 2 labels: strimzi.io/cluster: my-cluster strimzi.io/kind: Kafka name: my-cluster-cluster-ca-cert #... type: Opaque
On the next reconciliation, the Cluster Operator performs a rolling update of ZooKeeper, Kafka, and other components to trust the new CA certificate.
If maintenance time windows are configured, the Cluster Operator will roll the pods at the first reconciliation within the next maintenance time window.
15.6.3. Renewing or replacing CA certificates and private keys with your own
If you are using your own CA certificates and private keys, you need to renew them manually. The Cluster Operator will not renew them automatically. Renew the CA certificates in the renewal period before they expire. You can also use the same procedure to replace the CA certificates and private keys generated by the AMQ Streams operators with your own.
Perform the steps in this procedure when you are renewing or replacing CA certificates and private keys. If you are only renewing your own CA certificates, see Section 15.6.2, “Renewing your own CA certificates”.
The procedure describes the renewal of CA certificates and private keys in PEM format.
Before going through the following steps, make sure that the CN (Common Name) of the new CA certificate is different from the current one. For example, when the Cluster Operator renews certificates automatically it adds a v<version_number> suffix to identify a version. Do the same with your own CA certificate by adding a different suffix on each renewal. By using a different key to generate a new CA certificate, you retain the current CA certificate stored in the Secret
.
Prerequisites
- The Cluster Operator is running.
- You have new cluster or clients X.509 certificates and keys in PEM format.
Procedure
Pause the reconciliation of the
Kafka
custom resource.Annotate the custom resource in OpenShift, setting the
pause-reconciliation
annotation totrue
:oc annotate Kafka <name_of_custom_resource> strimzi.io/pause-reconciliation="true"
For example, for a
Kafka
custom resource namedmy-cluster
:oc annotate Kafka my-cluster strimzi.io/pause-reconciliation="true"
Check that the status conditions of the custom resource show a change to
ReconciliationPaused
:oc describe Kafka <name_of_custom_resource>
The
type
condition changes toReconciliationPaused
at thelastTransitionTime
.
Update the
Secret
for the CA certificate.Edit the existing secret to add the new CA certificate and update the certificate generation annotation value.
oc edit secret <ca_certificate_secret_name>
<ca_certificate_secret_name> is the name of the
Secret
, which isKAFKA-CLUSTER-NAME-cluster-ca-cert
for the cluster CA certificate andKAFKA-CLUSTER-NAME-clients-ca-cert
for the clients CA certificate.The following example shows a secret for a cluster CA certificate that’s associated with a Kafka cluster named
my-cluster
.Example secret configuration for a cluster CA certificate
apiVersion: v1 kind: Secret data: ca.crt: LS0tLS1CRUdJTiBDRVJUSUZJQ0F... 1 metadata: annotations: strimzi.io/ca-cert-generation: "0" 2 labels: strimzi.io/cluster: my-cluster strimzi.io/kind: Kafka name: my-cluster-cluster-ca-cert #... type: Opaque
Rename the current CA certificate to retain it.
Rename the current
ca.crt
property underdata
asca-<date>.crt
, where <date> is the certificate expiry date in the format YEAR-MONTH-DAYTHOUR-MINUTE-SECONDZ. For exampleca-2023-01-26T17-32-00Z.crt:
. Leave the value for the property as it is to retain the current CA certificate.Encode your new CA certificate into base64.
cat <path_to_new_certificate> | base64
Update the CA certificate.
Create a new
ca.crt
property underdata
and copy the base64-encoded CA certificate from the previous step as the value forca.crt
property.Increase the value of the CA certificate generation annotation.
Update the
strimzi.io/ca-cert-generation
annotation with a higher incremental value. For example, changestrimzi.io/ca-cert-generation=0
tostrimzi.io/ca-cert-generation=1
. If theSecret
is missing the annotation, the value is treated as0
, so add the annotation with a value of1
.When AMQ Streams generates certificates, the certificate generation annotation is automatically incremented by the Cluster Operator. For your own CA certificates, set the annotations with a higher incremental value. The annotation needs a higher value than the one from the current secret so that the Cluster Operator can roll the pods and update the certificates. The
strimzi.io/ca-cert-generation
has to be incremented on each CA certificate renewal.Save the secret with the new CA certificate and certificate generation annotation value.
Example secret configuration updated with a new CA certificate
apiVersion: v1 kind: Secret data: ca.crt: GCa6LS3RTHeKFiFDGBOUDYFAZ0F... 1 ca-2023-01-26T17-32-00Z.crt: LS0tLS1CRUdJTiBDRVJUSUZJQ0F... 2 metadata: annotations: strimzi.io/ca-cert-generation: "1" 3 labels: strimzi.io/cluster: my-cluster strimzi.io/kind: Kafka name: my-cluster-cluster-ca-cert #... type: Opaque
Update the
Secret
for the CA key used to sign your new CA certificate.Edit the existing secret to add the new CA key and update the key generation annotation value.
oc edit secret <ca_key_name>
<ca_key_name> is the name of CA key, which is
<kafka_cluster_name>-cluster-ca
for the cluster CA key and<kafka_cluster_name>-clients-ca
for the clients CA key.The following example shows a secret for a cluster CA key that’s associated with a Kafka cluster named
my-cluster
.Example secret configuration for a cluster CA key
apiVersion: v1 kind: Secret data: ca.key: SA1cKF1GFDzOIiPOIUQBHDNFGDFS... 1 metadata: annotations: strimzi.io/ca-key-generation: "0" 2 labels: strimzi.io/cluster: my-cluster strimzi.io/kind: Kafka name: my-cluster-cluster-ca #... type: Opaque
Encode the CA key into base64.
cat <path_to_new_key> | base64
Update the CA key.
Copy the base64-encoded CA key from the previous step as the value for the
ca.key
property underdata
.Increase the value of the CA key generation annotation.
Update the
strimzi.io/ca-key-generation
annotation with a higher incremental value. For example, changestrimzi.io/ca-key-generation=0
tostrimzi.io/ca-key-generation=1
. If theSecret
is missing the annotation, it is treated as0
, so add the annotation with a value of1
.When AMQ Streams generates certificates, the key generation annotation is automatically incremented by the Cluster Operator. For your own CA certificates together with a new CA key, set the annotation with a higher incremental value. The annotation needs a higher value than the one from the current secret so that the Cluster Operator can roll the pods and update the certificates and keys. The
strimzi.io/ca-key-generation
has to be incremented on each CA certificate renewal.
Save the secret with the new CA key and key generation annotation value.
Example secret configuration updated with a new CA key
apiVersion: v1 kind: Secret data: ca.key: AB0cKF1GFDzOIiPOIUQWERZJQ0F... 1 metadata: annotations: strimzi.io/ca-key-generation: "1" 2 labels: strimzi.io/cluster: my-cluster strimzi.io/kind: Kafka name: my-cluster-cluster-ca #... type: Opaque
Resume from the pause.
To resume the
Kafka
custom resource reconciliation, set thepause-reconciliation
annotation tofalse
.oc annotate --overwrite Kafka <name_of_custom_resource> strimzi.io/pause-reconciliation="false"
You can also do the same by removing the
pause-reconciliation
annotation.oc annotate Kafka <name_of_custom_resource> strimzi.io/pause-reconciliation-
On the next reconciliation, the Cluster Operator performs a rolling update of ZooKeeper, Kafka, and other components to trust the new CA certificate. When the rolling update is complete, the Cluster Operator will start a new one to generate new server certificates signed by the new CA key.
If maintenance time windows are configured, the Cluster Operator will roll the pods at the first reconciliation within the next maintenance time window.
- Wait until the rolling updates to move to the new CA certificate are complete.
Remove any outdated certificates from the secret configuration to ensure that the cluster no longer trusts them.
oc edit secret <ca_certificate_secret_name>
Example secret configuration with the old certificate removed
apiVersion: v1 kind: Secret data: ca.crt: GCa6LS3RTHeKFiFDGBOUDYFAZ0F... metadata: annotations: strimzi.io/ca-cert-generation: "1" labels: strimzi.io/cluster: my-cluster strimzi.io/kind: Kafka name: my-cluster-cluster-ca-cert #... type: Opaque
Start a manual rolling update of your cluster to pick up the changes made to the secret configuration.
See Section 27.9, “Starting rolling updates of Kafka and ZooKeeper clusters using annotations”.
Chapter 16. Applying security context to AMQ Streams pods and containers
Security context defines constraints on pods and containers. By specifying a security context, pods and containers only have the permissions they need. For example, permissions can control runtime operations or access to resources.
16.1. Handling of security context by OpenShift platform
Handling of security context depends on the tooling of the OpenShift platform you are using.
For example, OpenShift uses built-in security context constraints (SCCs) to control permissions. SCCs are the settings and strategies that control the security features a pod has access to.
By default, OpenShift injects security context configuration automatically. In most cases, this means you don’t need to configure security context for the pods and containers created by the Cluster Operator. Although you can still create and manage your own SCCs.
For more information, see the OpenShift documentation.
Chapter 17. Scaling clusters by adding or removing brokers
Scaling Kafka clusters by adding brokers can increase the performance and reliability of the cluster. Adding more brokers increases available resources, allowing the cluster to handle larger workloads and process more messages. It can also improve fault tolerance by providing more replicas and backups. Conversely, removing underutilized brokers can reduce resource consumption and improve efficiency. Scaling must be done carefully to avoid disruption or data loss. By redistributing partitions across all brokers in the cluster, the resource utilization of each broker is reduced, which can increase the overall throughput of the cluster.
To increase the throughput of a Kafka topic, you can increase the number of partitions for that topic. This allows the load of the topic to be shared between different brokers in the cluster. However, if every broker is constrained by a specific resource (such as I/O), adding more partitions will not increase the throughput. In this case, you need to add more brokers to the cluster.
Adjusting the Kafka.spec.kafka.replicas
configuration affects the number of brokers in the cluster that act as replicas. The actual replication factor for topics is determined by settings for the default.replication.factor
and min.insync.replicas
, and the number of available brokers. For example, a replication factor of 3 means that each partition of a topic is replicated across three brokers, ensuring fault tolerance in the event of a broker failure.
Example replica configuration
apiVersion: kafka.strimzi.io/v1beta2 kind: Kafka metadata: name: my-cluster spec: kafka: replicas: 3 # ... config: # ... default.replication.factor: 3 min.insync.replicas: 2 # ...
When adding brokers through the Kafka
configuration, node IDs start at 0 (zero) and the Cluster Operator assigns the next lowest ID to a new node. The broker removal process starts from the broker pod with the highest ID in the cluster.
If you are managing nodes in the cluster using the the preview of the node pools feature, you adjust the KafkaNodePool.spec.replicas
configuration to change the number of nodes in the node pool. Additionally, when scaling existing clusters with node pools, you can assign node IDs for the scaling operations.
When you add add or remove brokers, Kafka does not automatically reassign partitions. The best way to do this is using Cruise Control. You can use Cruise Control’s add-brokers
and remove-brokers
modes when scaling a cluster up or down.
-
Use the
add-brokers
mode after scaling up a Kafka cluster to move partition replicas from existing brokers to the newly added brokers. -
Use the
remove-brokers
mode before scaling down a Kafka cluster to move partition replicas off the brokers that are going to be removed.
Chapter 18. Rebalancing clusters using Cruise Control
Cruise Control is an open source system that supports the following Kafka operations:
- Monitoring cluster workload
- Rebalancing a cluster based on predefined constraints
The operations help with running a more balanced Kafka cluster that uses broker pods more efficiently.
A typical cluster can become unevenly loaded over time. Partitions that handle large amounts of message traffic might not be evenly distributed across the available brokers. To rebalance the cluster, administrators must monitor the load on brokers and manually reassign busy partitions to brokers with spare capacity.
Cruise Control automates the cluster rebalancing process. It constructs a workload model of resource utilization for the cluster—based on CPU, disk, and network load—and generates optimization proposals (that you can approve or reject) for more balanced partition assignments. A set of configurable optimization goals is used to calculate these proposals.
You can generate optimization proposals in specific modes. The default full
mode rebalances partitions across all brokers. You can also use the add-brokers
and remove-brokers
modes to accommodate changes when scaling a cluster up or down.
When you approve an optimization proposal, Cruise Control applies it to your Kafka cluster. You configure and generate optimization proposals using a KafkaRebalance
resource. You can configure the resource using an annotation so that optimization proposals are approved automatically or manually.
AMQ Streams provides example configuration files for Cruise Control.
18.1. Cruise Control components and features
Cruise Control consists of four main components—the Load Monitor, the Analyzer, the Anomaly Detector, and the Executor—and a REST API for client interactions. AMQ Streams utilizes the REST API to support the following Cruise Control features:
- Generating optimization proposals from optimization goals.
- Rebalancing a Kafka cluster based on an optimization proposal.
- Optimization goals
An optimization goal describes a specific objective to achieve from a rebalance. For example, a goal might be to distribute topic replicas across brokers more evenly. You can change what goals to include through configuration. A goal is defined as a hard goal or soft goal. You can add hard goals through Cruise Control deployment configuration. You also have main, default, and user-provided goals that fit into each of these categories.
- Hard goals are preset and must be satisfied for an optimization proposal to be successful.
- Soft goals do not need to be satisfied for an optimization proposal to be successful. They can be set aside if it means that all hard goals are met.
- Main goals are inherited from Cruise Control. Some are preset as hard goals. Main goals are used in optimization proposals by default.
- Default goals are the same as the main goals by default. You can specify your own set of default goals.
- User-provided goals are a subset of default goals that are configured for generating a specific optimization proposal.
- Optimization proposals
Optimization proposals comprise the goals you want to achieve from a rebalance. You generate an optimization proposal to create a summary of proposed changes and the results that are possible with the rebalance. The goals are assessed in a specific order of priority. You can then choose to approve or reject the proposal. You can reject the proposal to run it again with an adjusted set of goals.
You can generate an optimization proposal in one of three modes.
-
full
is the default mode and runs a full rebalance. -
add-brokers
is the mode you use after adding brokers when scaling up a Kafka cluster. -
remove-brokers
is the mode you use before removing brokers when scaling down a Kafka cluster.
-
Other Cruise Control features are not currently supported, including self healing, notifications, write-your-own goals, and changing the topic replication factor.
Additional resources
18.2. Optimization goals overview
Optimization goals are constraints on workload redistribution and resource utilization across a Kafka cluster. To rebalance a Kafka cluster, Cruise Control uses optimization goals to generate optimization proposals, which you can approve or reject.
18.2.1. Goals order of priority
AMQ Streams supports most of the optimization goals developed in the Cruise Control project. The supported goals, in the default descending order of priority, are as follows:
- Rack-awareness
- Minimum number of leader replicas per broker for a set of topics
- Replica capacity
Capacity goals
- Disk capacity
- Network inbound capacity
- Network outbound capacity
- CPU capacity
- Replica distribution
- Potential network output
Resource distribution goals
- Disk utilization distribution
- Network inbound utilization distribution
- Network outbound utilization distribution
- CPU utilization distribution
- Leader bytes-in rate distribution
- Topic replica distribution
- Leader replica distribution
- Preferred leader election
- Intra-broker disk capacity
- Intra-broker disk usage distribution
For more information on each optimization goal, see Goals in the Cruise Control Wiki.
"Write your own" goals and Kafka assigner goals are not yet supported.
18.2.2. Goals configuration in AMQ Streams custom resources
You configure optimization goals in Kafka
and KafkaRebalance
custom resources. Cruise Control has configurations for hard optimization goals that must be satisfied, as well as main, default, and user-provided optimization goals.
You can specify optimization goals in the following configuration:
-
Main goals —
Kafka.spec.cruiseControl.config.goals
-
Hard goals —
Kafka.spec.cruiseControl.config.hard.goals
-
Default goals —
Kafka.spec.cruiseControl.config.default.goals
-
User-provided goals —
KafkaRebalance.spec.goals
Resource distribution goals are subject to capacity limits on broker resources.
18.2.3. Hard and soft optimization goals
Hard goals are goals that must be satisfied in optimization proposals. Goals that are not configured as hard goals are known as soft goals. You can think of soft goals as best effort goals: they do not need to be satisfied in optimization proposals, but are included in optimization calculations. An optimization proposal that violates one or more soft goals, but satisfies all hard goals, is valid.
Cruise Control will calculate optimization proposals that satisfy all the hard goals and as many soft goals as possible (in their priority order). An optimization proposal that does not satisfy all the hard goals is rejected by Cruise Control and not sent to the user for approval.
For example, you might have a soft goal to distribute a topic’s replicas evenly across the cluster (the topic replica distribution goal). Cruise Control will ignore this goal if doing so enables all the configured hard goals to be met.
In Cruise Control, the following main optimization goals are preset as hard goals:
RackAwareGoal; MinTopicLeadersPerBrokerGoal; ReplicaCapacityGoal; DiskCapacityGoal; NetworkInboundCapacityGoal; NetworkOutboundCapacityGoal; CpuCapacityGoal
You configure hard goals in the Cruise Control deployment configuration, by editing the hard.goals
property in Kafka.spec.cruiseControl.config
.
-
To inherit the preset hard goals from Cruise Control, do not specify the
hard.goals
property inKafka.spec.cruiseControl.config
-
To change the preset hard goals, specify the desired goals in the
hard.goals
property, using their fully-qualified domain names.
Example Kafka
configuration for hard optimization goals
apiVersion: kafka.strimzi.io/v1beta2 kind: Kafka metadata: name: my-cluster spec: kafka: # ... zookeeper: # ... entityOperator: topicOperator: {} userOperator: {} cruiseControl: brokerCapacity: inboundNetwork: 10000KB/s outboundNetwork: 10000KB/s config: # Note that `default.goals` (superset) must also include all `hard.goals` (subset) default.goals: > com.linkedin.kafka.cruisecontrol.analyzer.goals.NetworkInboundCapacityGoal, com.linkedin.kafka.cruisecontrol.analyzer.goals.NetworkOutboundCapacityGoal hard.goals: > com.linkedin.kafka.cruisecontrol.analyzer.goals.NetworkInboundCapacityGoal, com.linkedin.kafka.cruisecontrol.analyzer.goals.NetworkOutboundCapacityGoal # ...
Increasing the number of configured hard goals will reduce the likelihood of Cruise Control generating valid optimization proposals.
If skipHardGoalCheck: true
is specified in the KafkaRebalance
custom resource, Cruise Control does not check that the list of user-provided optimization goals (in KafkaRebalance.spec.goals
) contains all the configured hard goals (hard.goals
). Therefore, if some, but not all, of the user-provided optimization goals are in the hard.goals
list, Cruise Control will still treat them as hard goals even if skipHardGoalCheck: true
is specified.
18.2.4. Main optimization goals
The main optimization goals are available to all users. Goals that are not listed in the main optimization goals are not available for use in Cruise Control operations.
Unless you change the Cruise Control deployment configuration, AMQ Streams will inherit the following main optimization goals from Cruise Control, in descending priority order:
RackAwareGoal; ReplicaCapacityGoal; DiskCapacityGoal; NetworkInboundCapacityGoal; NetworkOutboundCapacityGoal; CpuCapacityGoal; ReplicaDistributionGoal; PotentialNwOutGoal; DiskUsageDistributionGoal; NetworkInboundUsageDistributionGoal; NetworkOutboundUsageDistributionGoal; CpuUsageDistributionGoal; TopicReplicaDistributionGoal; LeaderReplicaDistributionGoal; LeaderBytesInDistributionGoal; PreferredLeaderElectionGoal
Some of these goals are preset as hard goals.
To reduce complexity, we recommend that you use the inherited main optimization goals, unless you need to completely exclude one or more goals from use in KafkaRebalance
resources. The priority order of the main optimization goals can be modified, if desired, in the configuration for default optimization goals.
You configure main optimization goals, if necessary, in the Cruise Control deployment configuration: Kafka.spec.cruiseControl.config.goals
-
To accept the inherited main optimization goals, do not specify the
goals
property inKafka.spec.cruiseControl.config
. -
If you need to modify the inherited main optimization goals, specify a list of goals, in descending priority order, in the
goals
configuration option.
To avoid errors when generating optimization proposals, make sure that any changes you make to the goals
or default.goals
in Kafka.spec.cruiseControl.config
include all of the hard goals specified for the hard.goals
property. To clarify, the hard goals must also be specified (as a subset) for the main optimization goals and default goals.
18.2.5. Default optimization goals
Cruise Control uses the default optimization goals to generate the cached optimization proposal. For more information about the cached optimization proposal, see Section 18.3, “Optimization proposals overview”.
You can override the default optimization goals by setting user-provided optimization goals in a KafkaRebalance
custom resource.
Unless you specify default.goals
in the Cruise Control deployment configuration, the main optimization goals are used as the default optimization goals. In this case, the cached optimization proposal is generated using the main optimization goals.
-
To use the main optimization goals as the default goals, do not specify the
default.goals
property inKafka.spec.cruiseControl.config
. -
To modify the default optimization goals, edit the
default.goals
property inKafka.spec.cruiseControl.config
. You must use a subset of the main optimization goals.
Example Kafka
configuration for default optimization goals
apiVersion: kafka.strimzi.io/v1beta2 kind: Kafka metadata: name: my-cluster spec: kafka: # ... zookeeper: # ... entityOperator: topicOperator: {} userOperator: {} cruiseControl: brokerCapacity: inboundNetwork: 10000KB/s outboundNetwork: 10000KB/s config: # Note that `default.goals` (superset) must also include all `hard.goals` (subset) default.goals: > com.linkedin.kafka.cruisecontrol.analyzer.goals.RackAwareGoal, com.linkedin.kafka.cruisecontrol.analyzer.goals.ReplicaCapacityGoal, com.linkedin.kafka.cruisecontrol.analyzer.goals.DiskCapacityGoal hard.goals: > com.linkedin.kafka.cruisecontrol.analyzer.goals.RackAwareGoal # ...
If no default optimization goals are specified, the cached proposal is generated using the main optimization goals.
18.2.6. User-provided optimization goals
User-provided optimization goals narrow down the configured default goals for a particular optimization proposal. You can set them, as required, in spec.goals
in a KafkaRebalance
custom resource:
KafkaRebalance.spec.goals
User-provided optimization goals can generate optimization proposals for different scenarios. For example, you might want to optimize leader replica distribution across the Kafka cluster without considering disk capacity or disk utilization. So, you create a KafkaRebalance
custom resource containing a single user-provided goal for leader replica distribution.
User-provided optimization goals must:
- Include all configured hard goals, or an error occurs
- Be a subset of the main optimization goals
To ignore the configured hard goals when generating an optimization proposal, add the skipHardGoalCheck: true
property to the KafkaRebalance
custom resource. See Section 18.6, “Generating optimization proposals”.
Additional resources
- Configuring and deploying Cruise Control with Kafka
- Configurations in the Cruise Control Wiki.
18.3. Optimization proposals overview
Configure a KafkaRebalance
resource to generate optimization proposals and apply the suggested changes. An optimization proposal is a summary of proposed changes that would produce a more balanced Kafka cluster, with partition workloads distributed more evenly among the brokers.
Each optimization proposal is based on the set of optimization goals that was used to generate it, subject to any configured capacity limits on broker resources.
All optimization proposals are estimates of the impact of a proposed rebalance. You can approve or reject a proposal. You cannot approve a cluster rebalance without first generating the optimization proposal.
You can run optimization proposals in one of the following rebalancing modes:
-
full
-
add-brokers
-
remove-brokers
18.3.1. Rebalancing modes
You specify a rebalancing mode using the spec.mode
property of the KafkaRebalance
custom resource.
full
-
The
full
mode runs a full rebalance by moving replicas across all the brokers in the cluster. This is the default mode if thespec.mode
property is not defined in theKafkaRebalance
custom resource. add-brokers
-
The
add-brokers
mode is used after scaling up a Kafka cluster by adding one or more brokers. Normally, after scaling up a Kafka cluster, new brokers are used to host only the partitions of newly created topics. If no new topics are created, the newly added brokers are not used and the existing brokers remain under the same load. By using theadd-brokers
mode immediately after adding brokers to the cluster, the rebalancing operation moves replicas from existing brokers to the newly added brokers. You specify the new brokers as a list using thespec.brokers
property of theKafkaRebalance
custom resource. remove-brokers
-
The
remove-brokers
mode is used before scaling down a Kafka cluster by removing one or more brokers. If you scale down a Kafka cluster, brokers are shut down even if they host replicas. This can lead to under-replicated partitions and possibly result in some partitions being under their minimum ISR (in-sync replicas). To avoid this potential problem, theremove-brokers
mode moves replicas off the brokers that are going to be removed. When these brokers are not hosting replicas anymore, you can safely run the scaling down operation. You specify the brokers you’re removing as a list in thespec.brokers
property in theKafkaRebalance
custom resource.
In general, use the full
rebalance mode to rebalance a Kafka cluster by spreading the load across brokers. Use the add-brokers
and remove-brokers
modes only if you want to scale your cluster up or down and rebalance the replicas accordingly.
The procedure to run a rebalance is actually the same across the three different modes. The only difference is with specifying a mode through the spec.mode
property and, if needed, listing brokers that have been added or will be removed through the spec.brokers
property.
18.3.2. The results of an optimization proposal
When an optimization proposal is generated, a summary and broker load is returned.
- Summary
-
The summary is contained in the
KafkaRebalance
resource. The summary provides an overview of the proposed cluster rebalance and indicates the scale of the changes involved. A summary of a successfully generated optimization proposal is contained in theStatus.OptimizationResult
property of theKafkaRebalance
resource. The information provided is a summary of the full optimization proposal. - Broker load
- The broker load is stored in a ConfigMap that contains data as a JSON string. The broker load shows before and after values for the proposed rebalance, so you can see the impact on each of the brokers in the cluster.
18.3.3. Manually approving or rejecting an optimization proposal
An optimization proposal summary shows the proposed scope of changes.
You can use the name of the KafkaRebalance
resource to return a summary from the command line.
Returning an optimization proposal summary
oc describe kafkarebalance <kafka_rebalance_resource_name> -n <namespace>
You can also use the jq
command line JSON parser tool.
Returning an optimization proposal summary using jq
oc get kafkarebalance -o json | jq <jq_query>
.
Use the summary to decide whether to approve or reject an optimization proposal.
- Approving an optimization proposal
-
You approve the optimization proposal by setting the
strimzi.io/rebalance
annotation of theKafkaRebalance
resource toapprove
. Cruise Control applies the proposal to the Kafka cluster and starts a cluster rebalance operation. - Rejecting an optimization proposal
-
If you choose not to approve an optimization proposal, you can change the optimization goals or update any of the rebalance performance tuning options, and then generate another proposal. You can generate a new optimization proposal for a
KafkaRebalance
resource by setting thestrimzi.io/rebalance
annotation torefresh
.
Use optimization proposals to assess the movements required for a rebalance. For example, a summary describes inter-broker and intra-broker movements. Inter-broker rebalancing moves data between separate brokers. Intra-broker rebalancing moves data between disks on the same broker when you are using a JBOD storage configuration. Such information can be useful even if you don’t go ahead and approve the proposal.
You might reject an optimization proposal, or delay its approval, because of the additional load on a Kafka cluster when rebalancing.
In the following example, the proposal suggests the rebalancing of data between separate brokers. The rebalance involves the movement of 55 partition replicas, totaling 12MB of data, across the brokers. Though the inter-broker movement of partition replicas has a high impact on performance, the total amount of data is not large. If the total data was much larger, you could reject the proposal, or time when to approve the rebalance to limit the impact on the performance of the Kafka cluster.
Rebalance performance tuning options can help reduce the impact of data movement. If you can extend the rebalance period, you can divide the rebalance into smaller batches. Fewer data movements at a single time reduces the load on the cluster.
Example optimization proposal summary
Name: my-rebalance Namespace: myproject Labels: strimzi.io/cluster=my-cluster Annotations: API Version: kafka.strimzi.io/v1alpha1 Kind: KafkaRebalance Metadata: # ... Status: Conditions: Last Transition Time: 2022-04-05T14:36:11.900Z Status: ProposalReady Type: State Observed Generation: 1 Optimization Result: Data To Move MB: 0 Excluded Brokers For Leadership: Excluded Brokers For Replica Move: Excluded Topics: Intra Broker Data To Move MB: 12 Monitored Partitions Percentage: 100 Num Intra Broker Replica Movements: 0 Num Leader Movements: 24 Num Replica Movements: 55 On Demand Balancedness Score After: 82.91290759174306 On Demand Balancedness Score Before: 78.01176356230222 Recent Windows: 5 Session Id: a4f833bd-2055-4213-bfdd-ad21f95bf184
The proposal will also move 24 partition leaders to different brokers. This requires a change to the ZooKeeper configuration, which has a low impact on performance.
The balancedness scores are measurements of the overall balance of the Kafka cluster before and after the optimization proposal is approved. A balancedness score is based on optimization goals. If all goals are satisfied, the score is 100. The score is reduced for each goal that will not be met. Compare the balancedness scores to see whether the Kafka cluster is less balanced than it could be following a rebalance.
18.3.4. Automatically approving an optimization proposal
To save time, you can automate the process of approving optimization proposals. With automation, when you generate an optimization proposal it goes straight into a cluster rebalance.
To enable the optimization proposal auto-approval mechanism, create the KafkaRebalance
resource with the strimzi.io/rebalance-auto-approval
annotation set to true
. If the annotation is not set or set to false
, the optimization proposal requires manual approval.
Example rebalance request with auto-approval mechanism enabled
apiVersion: kafka.strimzi.io/v1beta2 kind: KafkaRebalance metadata: name: my-rebalance labels: strimzi.io/cluster: my-cluster annotations: strimzi.io/rebalance-auto-approval: "true" spec: mode: # any mode # ...
You can still check the status when automatically approving an optimization proposal. The status of the KafkaRebalance
resource moves to Ready
when the rebalance is complete.
18.3.5. Optimization proposal summary properties
The following table explains the properties contained in the optimization proposal’s summary section.
JSON property | Description |
---|---|
| The total number of partition replicas that will be transferred between the disks of the cluster’s brokers.
Performance impact during rebalance operation: Relatively high, but lower than |
| Not yet supported. An empty list is returned. |
| The number of partition replicas that will be moved between separate brokers. Performance impact during rebalance operation: Relatively high. |
| A measurement of the overall balancedness of a Kafka Cluster, before and after the optimization proposal was generated.
The score is calculated by subtracting the sum of the
The |
|
The sum of the size of each partition replica that will be moved between disks on the same broker (see also
Performance impact during rebalance operation: Variable. The larger the number, the longer the cluster rebalance will take to complete. Moving a large amount of data between disks on the same broker has less impact than between separate brokers (see |
| The number of metrics windows upon which the optimization proposal is based. |
|
The sum of the size of each partition replica that will be moved to a separate broker (see also Performance impact during rebalance operation: Variable. The larger the number, the longer the cluster rebalance will take to complete. |
|
The percentage of partitions in the Kafka cluster covered by the optimization proposal. Affected by the number of |
|
If you specified a regular expression in the |
| The number of partitions whose leaders will be switched to different replicas. This involves a change to ZooKeeper configuration. Performance impact during rebalance operation: Relatively low. |
| Not yet supported. An empty list is returned. |
18.3.6. Broker load properties
The broker load is stored in a ConfigMap (with the same name as the KafkaRebalance custom resource) as a JSON formatted string. This JSON string consists of a JSON object with keys for each broker IDs linking to a number of metrics for each broker. Each metric consist of three values. The first is the metric value before the optimization proposal is applied, the second is the expected value of the metric after the proposal is applied, and the third is the difference between the first two values (after minus before).
The ConfigMap appears when the KafkaRebalance resource is in the ProposalReady
state and remains after the rebalance is complete.
You can use the name of the ConfigMap to view its data from the command line.
Returning ConfigMap data
oc describe configmaps <my_rebalance_configmap_name> -n <namespace>
You can also use the jq
command line JSON parser tool to extract the JSON string from the ConfigMap.
Extracting the JSON string from the ConfigMap using jq
oc get configmaps <my_rebalance_configmap_name> -o json | jq '.["data"]["brokerLoad.json"]|fromjson|.'
The following table explains the properties contained in the optimization proposal’s broker load ConfigMap:
JSON property | Description |
---|---|
| The number of replicas on this broker that are partition leaders. |
| The number of replicas on this broker. |
| The CPU utilization as a percentage of the defined capacity. |
| The disk utilization as a percentage of the defined capacity. |
| The absolute disk usage in MB. |
| The total network output rate for the broker. |
| The network input rate for all partition leader replicas on this broker. |
| The network input rate for all follower replicas on this broker. |
| The hypothetical maximum network output rate that would be realized if this broker became the leader of all the replicas it currently hosts. |
18.3.7. Cached optimization proposal
Cruise Control maintains a cached optimization proposal based on the configured default optimization goals. Generated from the workload model, the cached optimization proposal is updated every 15 minutes to reflect the current state of the Kafka cluster. If you generate an optimization proposal using the default optimization goals, Cruise Control returns the most recent cached proposal.
To change the cached optimization proposal refresh interval, edit the proposal.expiration.ms
setting in the Cruise Control deployment configuration. Consider a shorter interval for fast changing clusters, although this increases the load on the Cruise Control server.
18.4. Rebalance performance tuning overview
You can adjust several performance tuning options for cluster rebalances. These options control how partition replica and leadership movements in a rebalance are executed, as well as the bandwidth that is allocated to a rebalance operation.
18.4.1. Partition reassignment commands
Optimization proposals are comprised of separate partition reassignment commands. When you approve a proposal, the Cruise Control server applies these commands to the Kafka cluster.
A partition reassignment command consists of either of the following types of operations:
Partition movement: Involves transferring the partition replica and its data to a new location. Partition movements can take one of two forms:
- Inter-broker movement: The partition replica is moved to a log directory on a different broker.
- Intra-broker movement: The partition replica is moved to a different log directory on the same broker.
- Leadership movement: This involves switching the leader of the partition’s replicas.
Cruise Control issues partition reassignment commands to the Kafka cluster in batches. The performance of the cluster during the rebalance is affected by the number of each type of movement contained in each batch.
18.4.2. Replica movement strategies
Cluster rebalance performance is also influenced by the replica movement strategy that is applied to the batches of partition reassignment commands. By default, Cruise Control uses the BaseReplicaMovementStrategy
, which simply applies the commands in the order they were generated. However, if there are some very large partition reassignments early in the proposal, this strategy can slow down the application of the other reassignments.
Cruise Control provides four alternative replica movement strategies that can be applied to optimization proposals:
-
PrioritizeSmallReplicaMovementStrategy
: Order reassignments in order of ascending size. -
PrioritizeLargeReplicaMovementStrategy
: Order reassignments in order of descending size. -
PostponeUrpReplicaMovementStrategy
: Prioritize reassignments for replicas of partitions which have no out-of-sync replicas. -
PrioritizeMinIsrWithOfflineReplicasStrategy
: Prioritize reassignments with (At/Under)MinISR partitions with offline replicas. This strategy will only work ifcruiseControl.config.concurrency.adjuster.min.isr.check.enabled
is set totrue
in theKafka
custom resource’s spec.
These strategies can be configured as a sequence. The first strategy attempts to compare two partition reassignments using its internal logic. If the reassignments are equivalent, then it passes them to the next strategy in the sequence to decide the order, and so on.
18.4.3. Intra-broker disk balancing
Moving a large amount of data between disks on the same broker has less impact than between separate brokers. If you are running a Kafka deployment that uses JBOD storage with multiple disks on the same broker, Cruise Control can balance partitions between the disks.
If you are using JBOD storage with a single disk, intra-broker disk balancing will result in a proposal with 0 partition movements since there are no disks to balance between.
To perform an intra-broker disk balance, set rebalanceDisk
to true
under the KafkaRebalance.spec
. When setting rebalanceDisk
to true
, do not set a goals
field in the KafkaRebalance.spec
, as Cruise Control will automatically set the intra-broker goals and ignore the inter-broker goals. Cruise Control does not perform inter-broker and intra-broker balancing at the same time.
18.4.4. Rebalance tuning options
Cruise Control provides several configuration options for tuning the rebalance parameters discussed above. You can set these tuning options when configuring and deploying Cruise Control with Kafka or optimization proposal levels:
-
The Cruise Control server setting can be set in the Kafka custom resource under
Kafka.spec.cruiseControl.config
. -
The individual rebalance performance configurations can be set under
KafkaRebalance.spec
.
The relevant configurations are summarized in the following table.
Cruise Control properties | KafkaRebalance properties | Default | Description |
---|---|---|---|
|
| 5 | The maximum number of inter-broker partition movements in each partition reassignment batch |
|
| 2 | The maximum number of intra-broker partition movements in each partition reassignment batch |
|
| 1000 | The maximum number of partition leadership changes in each partition reassignment batch |
|
| Null (no limit) | The bandwidth (in bytes per second) to assign to partition reassignment |
|
|
|
The list of strategies (in priority order) used to determine the order in which partition reassignment commands are executed for generated proposals. For the server setting, use a comma separated string with the fully qualified names of the strategy class (add |
- |
| false | Enables intra-broker disk balancing, which balances disk space utilization between disks on the same broker. Only applies to Kafka deployments that use JBOD storage with multiple disks. |
Changing the default settings affects the length of time that the rebalance takes to complete, as well as the load placed on the Kafka cluster during the rebalance. Using lower values reduces the load but increases the amount of time taken, and vice versa.
Additional resources
18.5. Configuring and deploying Cruise Control with Kafka
Configure a Kafka
resource to deploy Cruise Control alongside a Kafka cluster. You can use the cruiseControl
properties of the Kafka
resource to configure the deployment. Deploy one instance of Cruise Control per Kafka cluster.
Use goals
configuration in the Cruise Control config
to specify optimization goals for generating optimization proposals. You can use brokerCapacity
to change the default capacity limits for goals related to resource distribution. If brokers are running on nodes with heterogeneous network resources, you can use overrides
to set network capacity limits for each broker.
If an empty object ({}
) is used for the cruiseControl
configuration, all properties use their default values.
For more information on the configuration options for Cruise Control, see the AMQ Streams Custom Resource API Reference.
Prerequisites
- An OpenShift cluster
- A running Cluster Operator
Procedure
Edit the
cruiseControl
property for theKafka
resource.The properties you can configure are shown in this example configuration:
apiVersion: kafka.strimzi.io/v1beta2 kind: Kafka metadata: name: my-cluster spec: # ... cruiseControl: brokerCapacity: 1 inboundNetwork: 10000KB/s outboundNetwork: 10000KB/s overrides: 2 - brokers: [0] inboundNetwork: 20000KiB/s outboundNetwork: 20000KiB/s - brokers: [1, 2] inboundNetwork: 30000KiB/s outboundNetwork: 30000KiB/s # ... config: 3 # Note that `default.goals` (superset) must also include all `hard.goals` (subset) default.goals: > 4 com.linkedin.kafka.cruisecontrol.analyzer.goals.RackAwareGoal, com.linkedin.kafka.cruisecontrol.analyzer.goals.ReplicaCapacityGoal, com.linkedin.kafka.cruisecontrol.analyzer.goals.DiskCapacityGoal # ... hard.goals: > com.linkedin.kafka.cruisecontrol.analyzer.goals.RackAwareGoal # ... cpu.balance.threshold: 1.1 metadata.max.age.ms: 300000 send.buffer.bytes: 131072 webserver.http.cors.enabled: true 5 webserver.http.cors.origin: "*" webserver.http.cors.exposeheaders: "User-Task-ID,Content-Type" # ... resources: 6 requests: cpu: 1 memory: 512Mi limits: cpu: 2 memory: 2Gi logging: 7 type: inline loggers: rootLogger.level: INFO template: 8 pod: metadata: labels: label1: value1 securityContext: runAsUser: 1000001 fsGroup: 0 terminationGracePeriodSeconds: 120 readinessProbe: 9 initialDelaySeconds: 15 timeoutSeconds: 5 livenessProbe: initialDelaySeconds: 15 timeoutSeconds: 5 metricsConfig: 10 type: jmxPrometheusExporter valueFrom: configMapKeyRef: name: cruise-control-metrics key: metrics-config.yml # ...
- 1
- Capacity limits for broker resources.
- 2
- Overrides set network capacity limits for specific brokers when running on nodes with heterogeneous network resources.
- 3
- Cruise Control configuration. Standard Cruise Control configuration may be provided, restricted to those properties not managed directly by AMQ Streams.
- 4
- Optimization goals configuration, which can include configuration for default optimization goals (
default.goals
), main optimization goals (goals
), and hard goals (hard.goals
). - 5
- CORS enabled and configured for read-only access to the Cruise Control API.
- 6
- Requests for reservation of supported resources, currently
cpu
andmemory
, and limits to specify the maximum resources that can be consumed. - 7
- Cruise Control loggers and log levels added directly (
inline
) or indirectly (external
) through a ConfigMap. A custom Log4j configuration must be placed under thelog4j.properties
key in the ConfigMap. Cruise Control has a single logger namedrootLogger.level
. You can set the log level to INFO, ERROR, WARN, TRACE, DEBUG, FATAL or OFF. - 8
- Template customization. Here a pod is scheduled with additional security attributes.
- 9
- Healthchecks to know when to restart a container (liveness) and when a container can accept traffic (readiness).
- 10
- Prometheus metrics enabled. In this example, metrics are configured for the Prometheus JMX Exporter (the default metrics exporter).
Create or update the resource:
oc apply -f <kafka_configuration_file>
Check the status of the deployment:
oc get deployments -n <my_cluster_operator_namespace>
Output shows the deployment name and readiness
NAME READY UP-TO-DATE AVAILABLE my-cluster-cruise-control 1/1 1 1
my-cluster
is the name of the Kafka cluster.READY
shows the number of replicas that are ready/expected. The deployment is successful when theAVAILABLE
output shows1
.
Auto-created topics
The following table shows the three topics that are automatically created when Cruise Control is deployed. These topics are required for Cruise Control to work properly and must not be deleted or changed. You can change the name of the topic using the specified configuration option.
Auto-created topic configuration | Default topic name | Created by | Function |
---|---|---|---|
|
| AMQ Streams Metrics Reporter | Stores the raw metrics from the Metrics Reporter in each Kafka broker. |
|
| Cruise Control | Stores the derived metrics for each partition. These are created by the Metric Sample Aggregator. |
|
| Cruise Control | Stores the metrics samples used to create the Cluster Workload Model. |
To prevent the removal of records that are needed by Cruise Control, log compaction is disabled in the auto-created topics.
If the names of the auto-created topics are changed in a Kafka cluster that already has Cruise Control enabled, the old topics will not be deleted and should be manually removed.
What to do next
After configuring and deploying Cruise Control, you can generate optimization proposals.
Additional resources
18.6. Generating optimization proposals
When you create or update a KafkaRebalance
resource, Cruise Control generates an optimization proposal for the Kafka cluster based on the configured optimization goals. Analyze the information in the optimization proposal and decide whether to approve it. You can use the results of the optimization proposal to rebalance your Kafka cluster.
You can run the optimization proposal in one of the following modes:
-
full
(default) -
add-brokers
-
remove-brokers
The mode you use depends on whether you are rebalancing across all the brokers already running in the Kafka cluster; or you want to rebalance after scaling up or before scaling down your Kafka cluster. For more information, see Rebalancing modes with broker scaling.
Prerequisites
- You have deployed Cruise Control to your AMQ Streams cluster.
- You have configured optimization goals and, optionally, capacity limits on broker resources.
For more information on configuring Cruise Control, see Section 18.5, “Configuring and deploying Cruise Control with Kafka”.
Procedure
Create a
KafkaRebalance
resource and specify the appropriate mode.full
mode (default)To use the default optimization goals defined in the
Kafka
resource, leave thespec
property empty. Cruise Control rebalances a Kafka cluster infull
mode by default.Example configuration with full rebalancing by default
apiVersion: kafka.strimzi.io/v1beta2 kind: KafkaRebalance metadata: name: my-rebalance labels: strimzi.io/cluster: my-cluster spec: {}
You can also run a full rebalance by specifying the
full
mode through thespec.mode
property.Example configuration specifying
full
modeapiVersion: kafka.strimzi.io/v1beta2 kind: KafkaRebalance metadata: name: my-rebalance labels: strimzi.io/cluster: my-cluster spec: mode: full
add-brokers
modeIf you want to rebalance a Kafka cluster after scaling up, specify the
add-brokers
mode.In this mode, existing replicas are moved to the newly added brokers. You need to specify the brokers as a list.
Example configuration specifying
add-brokers
modeapiVersion: kafka.strimzi.io/v1beta2 kind: KafkaRebalance metadata: name: my-rebalance labels: strimzi.io/cluster: my-cluster spec: mode: add-brokers brokers: [3, 4] 1
- 1
- List of newly added brokers added by the scale up operation. This property is mandatory.
remove-brokers
modeIf you want to rebalance a Kafka cluster before scaling down, specify the
remove-brokers
mode.In this mode, replicas are moved off the brokers that are going to be removed. You need to specify the brokers that are being removed as a list.
Example configuration specifying
remove-brokers
modeapiVersion: kafka.strimzi.io/v1beta2 kind: KafkaRebalance metadata: name: my-rebalance labels: strimzi.io/cluster: my-cluster spec: mode: remove-brokers brokers: [3, 4] 1
- 1
- List of brokers to be removed by the scale down operation. This property is mandatory.
NoteThe following steps and the steps to approve or stop a rebalance are the same regardless of the rebalance mode you are using.
To configure user-provided optimization goals instead of using the default goals, add the
goals
property and enter one or more goals.In the following example, rack awareness and replica capacity are configured as user-provided optimization goals:
apiVersion: kafka.strimzi.io/v1beta2 kind: KafkaRebalance metadata: name: my-rebalance labels: strimzi.io/cluster: my-cluster spec: goals: - RackAwareGoal - ReplicaCapacityGoal
To ignore the configured hard goals, add the
skipHardGoalCheck: true
property:apiVersion: kafka.strimzi.io/v1beta2 kind: KafkaRebalance metadata: name: my-rebalance labels: strimzi.io/cluster: my-cluster spec: goals: - RackAwareGoal - ReplicaCapacityGoal skipHardGoalCheck: true
(Optional) To approve the optimization proposal automatically, set the
strimzi.io/rebalance-auto-approval
annotation totrue
:apiVersion: kafka.strimzi.io/v1beta2 kind: KafkaRebalance metadata: name: my-rebalance labels: strimzi.io/cluster: my-cluster annotations: strimzi.io/rebalance-auto-approval: "true" spec: goals: - RackAwareGoal - ReplicaCapacityGoal skipHardGoalCheck: true
Create or update the resource:
oc apply -f <kafka_rebalance_configuration_file>
The Cluster Operator requests the optimization proposal from Cruise Control. This might take a few minutes depending on the size of the Kafka cluster.
If you used the automatic approval mechanism, wait for the status of the optimization proposal to change to
Ready
. If you haven’t enabled the automatic approval mechanism, wait for the status of the optimization proposal to change toProposalReady
:oc get kafkarebalance -o wide -w -n <namespace>
PendingProposal
-
A
PendingProposal
status means the rebalance operator is polling the Cruise Control API to check if the optimization proposal is ready. ProposalReady
-
A
ProposalReady
status means the optimization proposal is ready for review and approval.
When the status changes to
ProposalReady
, the optimization proposal is ready to approve.Review the optimization proposal.
The optimization proposal is contained in the
Status.Optimization Result
property of theKafkaRebalance
resource.oc describe kafkarebalance <kafka_rebalance_resource_name>
Example optimization proposal
Status: Conditions: Last Transition Time: 2020-05-19T13:50:12.533Z Status: ProposalReady Type: State Observed Generation: 1 Optimization Result: Data To Move MB: 0 Excluded Brokers For Leadership: Excluded Brokers For Replica Move: Excluded Topics: Intra Broker Data To Move MB: 0 Monitored Partitions Percentage: 100 Num Intra Broker Replica Movements: 0 Num Leader Movements: 0 Num Replica Movements: 26 On Demand Balancedness Score After: 81.8666802863978 On Demand Balancedness Score Before: 78.01176356230222 Recent Windows: 1 Session Id: 05539377-ca7b-45ef-b359-e13564f1458c
The properties in the
Optimization Result
section describe the pending cluster rebalance operation. For descriptions of each property, see Contents of optimization proposals.
Insufficient CPU capacity
If a Kafka cluster is overloaded in terms of CPU utilization, you might see an insufficient CPU capacity error in the KafkaRebalance
status. It’s worth noting that this utilization value is unaffected by the excludedTopics
configuration. Although optimization proposals will not reassign replicas of excluded topics, their load is still considered in the utilization calculation.
Example CPU utilization error
com.linkedin.kafka.cruisecontrol.exception.OptimizationFailureException: [CpuCapacityGoal] Insufficient capacity for cpu (Utilization 615.21, Allowed Capacity 420.00, Threshold: 0.70). Add at least 3 brokers with the same cpu capacity (100.00) as broker-0. Add at least 3 brokers with the same cpu capacity (100.00) as broker-0.
The error shows CPU capacity as a percentage rather than the number of CPU cores. For this reason, it does not directly map to the number of CPUs configured in the Kafka custom resource. It is like having a single virtual CPU per broker, which has the cycles of the CPUs configured in Kafka.spec.kafka.resources.limits.cpu
. This has no effect on the rebalance behavior, since the ratio between CPU utilization and capacity remains the same.
What to do next
Additional resources
18.7. Approving an optimization proposal
You can approve an optimization proposal generated by Cruise Control, if its status is ProposalReady
. Cruise Control will then apply the optimization proposal to the Kafka cluster, reassigning partitions to brokers and changing partition leadership.
This is not a dry run. Before you approve an optimization proposal, you must:
- Refresh the proposal in case it has become out of date.
- Carefully review the contents of the proposal.
Prerequisites
- You have generated an optimization proposal from Cruise Control.
-
The
KafkaRebalance
custom resource status isProposalReady
.
Procedure
Perform these steps for the optimization proposal that you want to approve.
Unless the optimization proposal is newly generated, check that it is based on current information about the state of the Kafka cluster. To do so, refresh the optimization proposal to make sure it uses the latest cluster metrics:
Annotate the
KafkaRebalance
resource in OpenShift withstrimzi.io/rebalance=refresh
:oc annotate kafkarebalance <kafka_rebalance_resource_name> strimzi.io/rebalance=refresh
Wait for the status of the optimization proposal to change to
ProposalReady
:oc get kafkarebalance -o wide -w -n <namespace>
PendingProposal
-
A
PendingProposal
status means the rebalance operator is polling the Cruise Control API to check if the optimization proposal is ready. ProposalReady
-
A
ProposalReady
status means the optimization proposal is ready for review and approval.
When the status changes to
ProposalReady
, the optimization proposal is ready to approve.Approve the optimization proposal that you want Cruise Control to apply.
Annotate the
KafkaRebalance
resource in OpenShift withstrimzi.io/rebalance=approve
:oc annotate kafkarebalance <kafka_rebalance_resource_name> strimzi.io/rebalance=approve
- The Cluster Operator detects the annotated resource and instructs Cruise Control to rebalance the Kafka cluster.
Wait for the status of the optimization proposal to change to
Ready
:oc get kafkarebalance -o wide -w -n <namespace>
Rebalancing
-
A
Rebalancing
status means the rebalancing is in progress. Ready
-
A
Ready
status means the rebalance is complete. NotReady
-
A
NotReady
status means an error occurred—see Fixing problems with aKafkaRebalance
resource.
When the status changes to
Ready
, the rebalance is complete.To use the same
KafkaRebalance
custom resource to generate another optimization proposal, apply therefresh
annotation to the custom resource. This moves the custom resource to thePendingProposal
orProposalReady
state. You can then review the optimization proposal and approve it, if desired.
18.8. Stopping a cluster rebalance
Once started, a cluster rebalance operation might take some time to complete and affect the overall performance of the Kafka cluster.
If you want to stop a cluster rebalance operation that is in progress, apply the stop
annotation to the KafkaRebalance
custom resource. This instructs Cruise Control to finish the current batch of partition reassignments and then stop the rebalance. When the rebalance has stopped, completed partition reassignments have already been applied; therefore, the state of the Kafka cluster is different when compared to prior to the start of the rebalance operation. If further rebalancing is required, you should generate a new optimization proposal.
The performance of the Kafka cluster in the intermediate (stopped) state might be worse than in the initial state.
Prerequisites
-
You have approved the optimization proposal by annotating the
KafkaRebalance
custom resource withapprove
. -
The status of the
KafkaRebalance
custom resource isRebalancing
.
Procedure
Annotate the
KafkaRebalance
resource in OpenShift:oc annotate kafkarebalance rebalance-cr-name strimzi.io/rebalance=stop
Check the status of the
KafkaRebalance
resource:oc describe kafkarebalance rebalance-cr-name
-
Wait until the status changes to
Stopped
.
Additional resources
18.9. Fixing problems with a KafkaRebalance
resource
If an issue occurs when creating a KafkaRebalance
resource or interacting with Cruise Control, the error is reported in the resource status, along with details of how to fix it. The resource also moves to the NotReady
state.
To continue with the cluster rebalance operation, you must fix the problem in the KafkaRebalance
resource itself or with the overall Cruise Control deployment. Problems might include the following:
-
A misconfigured parameter in the
KafkaRebalance
resource. -
The
strimzi.io/cluster
label for specifying the Kafka cluster in theKafkaRebalance
resource is missing. -
The Cruise Control server is not deployed as the
cruiseControl
property in theKafka
resource is missing. - The Cruise Control server is not reachable.
After fixing the issue, you need to add the refresh
annotation to the KafkaRebalance
resource. During a “refresh”, a new optimization proposal is requested from the Cruise Control server.
Prerequisites
- You have approved an optimization proposal.
-
The status of the
KafkaRebalance
custom resource for the rebalance operation isNotReady
.
Procedure
Get information about the error from the
KafkaRebalance
status:oc describe kafkarebalance rebalance-cr-name
-
Attempt to resolve the issue in the
KafkaRebalance
resource. Annotate the
KafkaRebalance
resource in OpenShift:oc annotate kafkarebalance rebalance-cr-name strimzi.io/rebalance=refresh
Check the status of the
KafkaRebalance
resource:oc describe kafkarebalance rebalance-cr-name
-
Wait until the status changes to
PendingProposal
, or directly toProposalReady
.
Additional resources
Chapter 19. Using the partition reassignment tool
When scaling a Kafka cluster, you may need to add or remove brokers and update the distribution of partitions or the replication factor of topics. To update partitions and topics, you can use the kafka-reassign-partitions.sh
tool.
Neither the AMQ Streams Cruise Control integration nor the Topic Operator support changing the replication factor of a topic. However, you can change the replication factor of a topic using the kafka-reassign-partitions.sh
tool.
The tool can also be used to reassign partitions and balance the distribution of partitions across brokers to improve performance. However, it is recommended to use Cruise Control for automated partition reassignments and cluster rebalancing. Cruise Control can move topics from one broker to another without any downtime, and it is the most efficient way to reassign partitions.
It is recommended to run the kafka-reassign-partitions.sh
tool as a separate interactive pod rather than within the broker container. Running the Kafka bin/
scripts within the broker container may cause a JVM to start with the same settings as the Kafka broker, which can potentially cause disruptions. By running the kafka-reassign-partitions.sh
tool in a separate pod, you can avoid this issue. Running a pod with the -ti
option creates an interactive pod with a terminal for running shell commands inside the pod.
Running an interactive pod with a terminal
oc run helper-pod -ti --image=registry.redhat.io/amq-streams/kafka-35-rhel8:2.5.2 --rm=true --restart=Never -- bash
19.1. Partition reassignment tool overview
The partition reassignment tool provides the following capabilities for managing Kafka partitions and brokers:
- Redistributing partition replicas
- Scale your cluster up and down by adding or removing brokers, and move Kafka partitions from heavily loaded brokers to under-utilized brokers. To do this, you must create a partition reassignment plan that identifies which topics and partitions to move and where to move them. Cruise Control is recommended for this type of operation as it automates the cluster rebalancing process.
- Scaling topic replication factor up and down
- Increase or decrease the replication factor of your Kafka topics. To do this, you must create a partition reassignment plan that identifies the existing replication assignment across partitions and an updated assignment with the replication factor changes.
- Changing the preferred leader
- Change the preferred leader of a Kafka partition. This can be useful if the current preferred leader is unavailable or if you want to redistribute load across the brokers in the cluster. To do this, you must create a partition reassignment plan that specifies the new preferred leader for each partition by changing the order of replicas.
- Changing the log directories to use a specific JBOD volume
- Change the log directories of your Kafka brokers to use a specific JBOD volume. This can be useful if you want to move your Kafka data to a different disk or storage device. To do this, you must create a partition reassignment plan that specifies the new log directory for each topic.
19.1.1. Generating a partition reassignment plan
The partition reassignment tool (kafka-reassign-partitions.sh
) works by generating a partition assignment plan that specifies which partitions should be moved from their current broker to a new broker.
If you are satisfied with the plan, you can execute it. The tool then does the following:
- Migrates the partition data to the new broker
- Updates the metadata on the Kafka brokers to reflect the new partition assignments
- Triggers a rolling restart of the Kafka brokers to ensure that the new assignments take effect
The partition reassignment tool has three different modes:
--generate
- Takes a set of topics and brokers and generates a reassignment JSON file which will result in the partitions of those topics being assigned to those brokers. Because this operates on whole topics, it cannot be used when you only want to reassign some partitions of some topics.
--execute
- Takes a reassignment JSON file and applies it to the partitions and brokers in the cluster. Brokers that gain partitions as a result become followers of the partition leader. For a given partition, once the new broker has caught up and joined the ISR (in-sync replicas) the old broker will stop being a follower and will delete its replica.
--verify
-
Using the same reassignment JSON file as the
--execute
step,--verify
checks whether all the partitions in the file have been moved to their intended brokers. If the reassignment is complete,--verify
also removes any traffic throttles (--throttle
) that are in effect. Unless removed, throttles will continue to affect the cluster even after the reassignment has finished.
It is only possible to have one reassignment running in a cluster at any given time, and it is not possible to cancel a running reassignment. If you must cancel a reassignment, wait for it to complete and then perform another reassignment to revert the effects of the first reassignment. The kafka-reassign-partitions.sh
will print the reassignment JSON for this reversion as part of its output. Very large reassignments should be broken down into a number of smaller reassignments in case there is a need to stop in-progress reassignment.
19.1.2. Specifying topics in a partition reassignment JSON file
The kafka-reassign-partitions.sh
tool uses a reassignment JSON file that specifies the topics to reassign. You can generate a reassignment JSON file or create a file manually if you want to move specific partitions.
A basic reassignment JSON file has the structure presented in the following example, which describes three partitions belonging to two Kafka topics. Each partition is reassigned to a new set of replicas, which are identified by their broker IDs. The version
, topic
, partition
, and replicas
properties are all required.
Example partition reassignment JSON file structure
{ "version": 1, 1 "partitions": [ 2 { "topic": "example-topic-1", 3 "partition": 0, 4 "replicas": [1, 2, 3] 5 }, { "topic": "example-topic-1", "partition": 1, "replicas": [2, 3, 4] }, { "topic": "example-topic-2", "partition": 0, "replicas": [3, 4, 5] } ] }
- 1
- The version of the reassignment JSON file format. Currently, only version 1 is supported, so this should always be 1.
- 2
- An array that specifies the partitions to be reassigned.
- 3
- The name of the Kafka topic that the partition belongs to.
- 4
- The ID of the partition being reassigned.
- 5
- An ordered array of the IDs of the brokers that should be assigned as replicas for this partition. The first broker in the list is the leader replica.
Partitions not included in the JSON are not changed.
If you specify only topics using a topics
array, the partition reassignment tool reassigns all the partitions belonging to the specified topics.
Example reassignment JSON file structure for reassigning all partitions for a topic
{ "version": 1, "topics": [ { "topic": "my-topic"} ] }
19.1.3. Reassigning partitions between JBOD volumes
When using JBOD storage in your Kafka cluster, you can reassign the partitions between specific volumes and their log directories (each volume has a single log directory).
To reassign a partition to a specific volume, add log_dirs
values for each partition in the reassignment JSON file. Each log_dirs
array contains the same number of entries as the replicas
array, since each replica should be assigned to a specific log directory. The log_dirs
array contains either an absolute path to a log directory or the special value any
. The any
value indicates that Kafka can choose any available log directory for that replica, which can be useful when reassigning partitions between JBOD volumes.
Example reassignment JSON file structure with log directories
{ "version": 1, "partitions": [ { "topic": "example-topic-1", "partition": 0, "replicas": [1, 2, 3] "log_dirs": ["/var/lib/kafka/data-0/kafka-log1", "any", "/var/lib/kafka/data-1/kafka-log2"] }, { "topic": "example-topic-1", "partition": 1, "replicas": [2, 3, 4] "log_dirs": ["any", "/var/lib/kafka/data-2/kafka-log3", "/var/lib/kafka/data-3/kafka-log4"] }, { "topic": "example-topic-2", "partition": 0, "replicas": [3, 4, 5] "log_dirs": ["/var/lib/kafka/data-4/kafka-log5", "any", "/var/lib/kafka/data-5/kafka-log6"] } ] }
19.1.4. Throttling partition reassignment
Partition reassignment can be a slow process because it involves transferring large amounts of data between brokers. To avoid a detrimental impact on clients, you can throttle the reassignment process. Use the --throttle
parameter with the kafka-reassign-partitions.sh
tool to throttle a reassignment. You specify a maximum threshold in bytes per second for the movement of partitions between brokers. For example, --throttle 5000000
sets a maximum threshold for moving partitions of 50 MBps.
Throttling might cause the reassignment to take longer to complete.
- If the throttle is too low, the newly assigned brokers will not be able to keep up with records being published and the reassignment will never complete.
- If the throttle is too high, clients will be impacted.
For example, for producers, this could manifest as higher than normal latency waiting for acknowledgment. For consumers, this could manifest as a drop in throughput caused by higher latency between polls.
19.2. Generating a reassignment JSON file to reassign partitions
Generate a reassignment JSON file with the kafka-reassign-partitions.sh
tool to reassign partitions after scaling a Kafka cluster. Adding or removing brokers does not automatically redistribute the existing partitions. To balance the partition distribution and take full advantage of the new brokers, you can reassign the partitions using the kafka-reassign-partitions.sh
tool.
You run the tool from an interactive pod container connected to the Kafka cluster.
The following procedure describes a secure reassignment process that uses mTLS. You’ll need a Kafka cluster that uses TLS encryption and mTLS authentication.
You’ll need the following to establish a connection:
- The cluster CA certificate and password generated by the Cluster Operator when the Kafka cluster is created
- The user CA certificate and password generated by the User Operator when a user is created for client access to the Kafka cluster
In this procedure, the CA certificates and corresponding passwords are extracted from the cluster and user secrets that contain them in PKCS #12 (.p12
and .password
) format. The passwords allow access to the .p12
stores that contain the certificates. You use the .p12
stores to specify a truststore and keystore to authenticate connection to the Kafka cluster.
Prerequisites
- You have a running Cluster Operator.
You have a running Kafka cluster based on a
Kafka
resource configured with internal TLS encryption and mTLS authentication.Kafka configuration with TLS encryption and mTLS authentication
apiVersion: kafka.strimzi.io/v1beta2 kind: Kafka metadata: name: my-cluster spec: kafka: # ... listeners: # ... - name: tls port: 9093 type: internal tls: true 1 authentication: type: tls 2 # ...
The running Kafka cluster contains a set of topics and partitions to reassign.
Example topic configuration for
my-topic
apiVersion: kafka.strimzi.io/v1beta2 kind: KafkaTopic metadata: name: my-topic labels: strimzi.io/cluster: my-cluster spec: partitions: 10 replicas: 3 config: retention.ms: 7200000 segment.bytes: 1073741824 # ...
You have a
KafkaUser
configured with ACL rules that specify permission to produce and consume topics from the Kafka brokers.Example Kafka user configuration with ACL rules to allow operations on
my-topic
andmy-cluster
apiVersion: kafka.strimzi.io/v1beta2 kind: KafkaUser metadata: name: my-user labels: strimzi.io/cluster: my-cluster spec: authentication: 1 type: tls authorization: type: simple 2 acls: # access to the topic - resource: type: topic name: my-topic operations: - Create - Describe - Read - AlterConfigs host: "*" # access to the cluster - resource: type: cluster operations: - Alter - AlterConfigs host: "*" # ... # ...
Procedure
Extract the cluster CA certificate and password from the
<cluster_name>-cluster-ca-cert
secret of the Kafka cluster.oc get secret <cluster_name>-cluster-ca-cert -o jsonpath='{.data.ca\.p12}' | base64 -d > ca.p12
oc get secret <cluster_name>-cluster-ca-cert -o jsonpath='{.data.ca\.password}' | base64 -d > ca.password
Replace <cluster_name> with the name of the Kafka cluster. When you deploy Kafka using the
Kafka
resource, a secret with the cluster CA certificate is created with the Kafka cluster name (<cluster_name>-cluster-ca-cert
). For example,my-cluster-cluster-ca-cert
.Run a new interactive pod container using the AMQ Streams Kafka image to connect to a running Kafka broker.
oc run --restart=Never --image=registry.redhat.io/amq-streams/kafka-35-rhel8:2.5.2 <interactive_pod_name> -- /bin/sh -c "sleep 3600"
Replace <interactive_pod_name> with the name of the pod.
Copy the cluster CA certificate to the interactive pod container.
oc cp ca.p12 <interactive_pod_name>:/tmp
Extract the user CA certificate and password from the secret of the Kafka user that has permission to access the Kafka brokers.
oc get secret <kafka_user> -o jsonpath='{.data.user\.p12}' | base64 -d > user.p12
oc get secret <kafka_user> -o jsonpath='{.data.user\.password}' | base64 -d > user.password
Replace <kafka_user> with the name of the Kafka user. When you create a Kafka user using the
KafkaUser
resource, a secret with the user CA certificate is created with the Kafka user name. For example,my-user
.Copy the user CA certificate to the interactive pod container.
oc cp user.p12 <interactive_pod_name>:/tmp
The CA certificates allow the interactive pod container to connect to the Kafka broker using TLS.
Create a
config.properties
file to specify the truststore and keystore used to authenticate connection to the Kafka cluster.Use the certificates and passwords you extracted in the previous steps.
bootstrap.servers=<kafka_cluster_name>-kafka-bootstrap:9093 1 security.protocol=SSL 2 ssl.truststore.location=/tmp/ca.p12 3 ssl.truststore.password=<truststore_password> 4 ssl.keystore.location=/tmp/user.p12 5 ssl.keystore.password=<keystore_password> 6
- 1
- The bootstrap server address to connect to the Kafka cluster. Use your own Kafka cluster name to replace <kafka_cluster_name>.
- 2
- The security protocol option when using TLS for encryption.
- 3
- The truststore location contains the public key certificate (
ca.p12
) for the Kafka cluster. - 4
- The password (
ca.password
) for accessing the truststore. - 5
- The keystore location contains the public key certificate (
user.p12
) for the Kafka user. - 6
- The password (
user.password
) for accessing the keystore.
Copy the
config.properties
file to the interactive pod container.oc cp config.properties <interactive_pod_name>:/tmp/config.properties
Prepare a JSON file named
topics.json
that specifies the topics to move.Specify topic names as a comma-separated list.
Example JSON file to reassign all the partitions of
my-topic
{ "version": 1, "topics": [ { "topic": "my-topic"} ] }
You can also use this file to change the replication factor of a topic.
Copy the
topics.json
file to the interactive pod container.oc cp topics.json <interactive_pod_name>:/tmp/topics.json
Start a shell process in the interactive pod container.
oc exec -n <namespace> -ti <interactive_pod_name> /bin/bash
Replace <namespace> with the OpenShift namespace where the pod is running.
Use the
kafka-reassign-partitions.sh
command to generate the reassignment JSON.Example command to move the partitions of
my-topic
to specified brokersbin/kafka-reassign-partitions.sh --bootstrap-server my-cluster-kafka-bootstrap:9093 \ --command-config /tmp/config.properties \ --topics-to-move-json-file /tmp/topics.json \ --broker-list 0,1,2,3,4 \ --generate
19.3. Reassigning partitions after adding brokers
Use a reassignment file generated by the kafka-reassign-partitions.sh
tool to reassign partitions after increasing the number of brokers in a Kafka cluster. The reassignment file should describe how partitions are reassigned to brokers in the enlarged Kafka cluster. You apply the reassignment specified in the file to the brokers and then verify the new partition assignments.
This procedure describes a secure scaling process that uses TLS. You’ll need a Kafka cluster that uses TLS encryption and mTLS authentication.
The kafka-reassign-partitions.sh
tool can be used to reassign partitions within a Kafka cluster, regardless of whether you are managing all nodes through the cluster or using the node pools preview to manage groups of nodes within the cluster.
Though you can use the kafka-reassign-partitions.sh
tool, Cruise Control is recommended for automated partition reassignments and cluster rebalancing. Cruise Control can move topics from one broker to another without any downtime, and it is the most efficient way to reassign partitions.
Prerequisites
-
You have a running Kafka cluster based on a
Kafka
resource configured with internal TLS encryption and mTLS authentication. -
You have generated a reassignment JSON file named
reassignment.json
. - You are running an interactive pod container that is connected to the running Kafka broker.
-
You are connected as a
KafkaUser
configured with ACL rules that specify permission to manage the Kafka cluster and its topics.
Procedure
-
Add as many new brokers as you need by increasing the
Kafka.spec.kafka.replicas
configuration option. - Verify that the new broker pods have started.
-
If you haven’t done so, run an interactive pod container to generate a reassignment JSON file named
reassignment.json
. Copy the
reassignment.json
file to the interactive pod container.oc cp reassignment.json <interactive_pod_name>:/tmp/reassignment.json
Replace <interactive_pod_name> with the name of the pod.
Start a shell process in the interactive pod container.
oc exec -n <namespace> -ti <interactive_pod_name> /bin/bash
Replace <namespace> with the OpenShift namespace where the pod is running.
Run the partition reassignment using the
kafka-reassign-partitions.sh
script from the interactive pod container.bin/kafka-reassign-partitions.sh --bootstrap-server <cluster_name>-kafka-bootstrap:9093 \ --command-config /tmp/config.properties \ --reassignment-json-file /tmp/reassignment.json \ --execute
Replace <cluster_name> with the name of your Kafka cluster. For example,
my-cluster-kafka-bootstrap:9093
If you are going to throttle replication, you can also pass the
--throttle
option with an inter-broker throttled rate in bytes per second. For example:bin/kafka-reassign-partitions.sh --bootstrap-server <cluster_name>-kafka-bootstrap:9093 \ --command-config /tmp/config.properties \ --reassignment-json-file /tmp/reassignment.json \ --throttle 5000000 \ --execute
This command will print out two reassignment JSON objects. The first records the current assignment for the partitions being moved. You should save this to a local file (not a file in the pod) in case you need to revert the reassignment later on. The second JSON object is the target reassignment you have passed in your reassignment JSON file.
If you need to change the throttle during reassignment, you can use the same command with a different throttled rate. For example:
bin/kafka-reassign-partitions.sh --bootstrap-server <cluster_name>-kafka-bootstrap:9093 \ --command-config /tmp/config.properties \ --reassignment-json-file /tmp/reassignment.json \ --throttle 10000000 \ --execute
Verify that the reassignment has completed using the
kafka-reassign-partitions.sh
command line tool from any of the broker pods. This is the same command as the previous step, but with the--verify
option instead of the--execute
option.bin/kafka-reassign-partitions.sh --bootstrap-server <cluster_name>-kafka-bootstrap:9093 \ --command-config /tmp/config.properties \ --reassignment-json-file /tmp/reassignment.json \ --verify
The reassignment has finished when the
--verify
command reports that each of the partitions being moved has completed successfully. This final--verify
will also have the effect of removing any reassignment throttles.- You can now delete the revert file if you saved the JSON for reverting the assignment to their original brokers.
19.4. Reassigning partitions before removing brokers
Use a reassignment file generated by the kafka-reassign-partitions.sh
tool to reassign partitions before decreasing the number of brokers in a Kafka cluster. The reassignment file must describe how partitions are reassigned to the remaining brokers in the Kafka cluster. You apply the reassignment specified in the file to the brokers and then verify the new partition assignments. Brokers in the highest numbered pods are removed first.
This procedure describes a secure scaling process that uses TLS. You’ll need a Kafka cluster that uses TLS encryption and mTLS authentication.
The kafka-reassign-partitions.sh
tool can be used to reassign partitions within a Kafka cluster, regardless of whether you are managing all nodes through the cluster or using the node pools preview to manage groups of nodes within the cluster.
Though you can use the kafka-reassign-partitions.sh
tool, Cruise Control is recommended for automated partition reassignments and cluster rebalancing. Cruise Control can move topics from one broker to another without any downtime, and it is the most efficient way to reassign partitions.
Prerequisites
-
You have a running Kafka cluster based on a
Kafka
resource configured with internal TLS encryption and mTLS authentication. -
You have generated a reassignment JSON file named
reassignment.json
. - You are running an interactive pod container that is connected to the running Kafka broker.
-
You are connected as a
KafkaUser
configured with ACL rules that specify permission to manage the Kafka cluster and its topics.
Procedure
-
If you haven’t done so, run an interactive pod container to generate a reassignment JSON file named
reassignment.json
. Copy the
reassignment.json
file to the interactive pod container.oc cp reassignment.json <interactive_pod_name>:/tmp/reassignment.json
Replace <interactive_pod_name> with the name of the pod.
Start a shell process in the interactive pod container.
oc exec -n <namespace> -ti <interactive_pod_name> /bin/bash
Replace <namespace> with the OpenShift namespace where the pod is running.
Run the partition reassignment using the
kafka-reassign-partitions.sh
script from the interactive pod container.bin/kafka-reassign-partitions.sh --bootstrap-server <cluster_name>-kafka-bootstrap:9093 \ --command-config /tmp/config.properties \ --reassignment-json-file /tmp/reassignment.json \ --execute
Replace <cluster_name> with the name of your Kafka cluster. For example,
my-cluster-kafka-bootstrap:9093
If you are going to throttle replication, you can also pass the
--throttle
option with an inter-broker throttled rate in bytes per second. For example:bin/kafka-reassign-partitions.sh --bootstrap-server <cluster_name>-kafka-bootstrap:9093 \ --command-config /tmp/config.properties \ --reassignment-json-file /tmp/reassignment.json \ --throttle 5000000 \ --execute
This command will print out two reassignment JSON objects. The first records the current assignment for the partitions being moved. You should save this to a local file (not a file in the pod) in case you need to revert the reassignment later on. The second JSON object is the target reassignment you have passed in your reassignment JSON file.
If you need to change the throttle during reassignment, you can use the same command with a different throttled rate. For example:
bin/kafka-reassign-partitions.sh --bootstrap-server <cluster_name>-kafka-bootstrap:9093 \ --command-config /tmp/config.properties \ --reassignment-json-file /tmp/reassignment.json \ --throttle 10000000 \ --execute
Verify that the reassignment has completed using the
kafka-reassign-partitions.sh
command line tool from any of the broker pods. This is the same command as the previous step, but with the--verify
option instead of the--execute
option.bin/kafka-reassign-partitions.sh --bootstrap-server <cluster_name>-kafka-bootstrap:9093 \ --command-config /tmp/config.properties \ --reassignment-json-file /tmp/reassignment.json \ --verify
The reassignment has finished when the
--verify
command reports that each of the partitions being moved has completed successfully. This final--verify
will also have the effect of removing any reassignment throttles.- You can now delete the revert file if you saved the JSON for reverting the assignment to their original brokers.
When all the partition reassignments have finished, the brokers being removed should not have responsibility for any of the partitions in the cluster. You can verify this by checking that the broker’s data log directory does not contain any live partition logs. If the log directory on the broker contains a directory that does not match the extended regular expression
\.[a-z0-9]-delete$
, the broker still has live partitions and should not be stopped.You can check this by executing the command:
oc exec my-cluster-kafka-0 -c kafka -it -- \ /bin/bash -c \ "ls -l /var/lib/kafka/kafka-log_<n>_ | grep -E '^d' | grep -vE '[a-zA-Z0-9.-]+\.[a-z0-9]+-delete$'"
where n is the number of the pods being deleted.
If the above command prints any output then the broker still has live partitions. In this case, either the reassignment has not finished or the reassignment JSON file was incorrect.
-
When you have confirmed that the broker has no live partitions, you can edit the
Kafka.spec.kafka.replicas
property of yourKafka
resource to reduce the number of brokers.
19.5. Changing the replication factor of topics
To change the replication factor of topics in a Kafka cluster, use the kafka-reassign-partitions.sh
tool. This can be done by running the tool from an interactive pod container that is connected to the Kafka cluster, and using a reassignment file to describe how the topic replicas should be changed.
This procedure describes a secure process that uses TLS. You’ll need a Kafka cluster that uses TLS encryption and mTLS authentication.
Prerequisites
-
You have a running Kafka cluster based on a
Kafka
resource configured with internal TLS encryption and mTLS authentication. - You are running an interactive pod container that is connected to the running Kafka broker.
-
You have generated a reassignment JSON file named
reassignment.json
. -
You are connected as a
KafkaUser
configured with ACL rules that specify permission to manage the Kafka cluster and its topics.
See Generating reassignment JSON files.
In this procedure, a topic called my-topic
has 4 replicas and we want to reduce it to 3. A JSON file named topics.json
specifies the topic, and was used to generate the reassignment.json
file.
Example JSON file specifies my-topic
{ "version": 1, "topics": [ { "topic": "my-topic"} ] }
Procedure
If you haven’t done so, run an interactive pod container to generate a reassignment JSON file named
reassignment.json
.Example reassignment JSON file showing the current and proposed replica assignment
Current partition replica assignment {"version":1,"partitions":[{"topic":"my-topic","partition":0,"replicas":[3,4,2,0],"log_dirs":["any","any","any","any"]},{"topic":"my-topic","partition":1,"replicas":[0,2,3,1],"log_dirs":["any","any","any","any"]},{"topic":"my-topic","partition":2,"replicas":[1,3,0,4],"log_dirs":["any","any","any","any"]}]} Proposed partition reassignment configuration {"version":1,"partitions":[{"topic":"my-topic","partition":0,"replicas":[0,1,2,3],"log_dirs":["any","any","any","any"]},{"topic":"my-topic","partition":1,"replicas":[1,2,3,4],"log_dirs":["any","any","any","any"]},{"topic":"my-topic","partition":2,"replicas":[2,3,4,0],"log_dirs":["any","any","any","any"]}]}
Save a copy of this file locally in case you need to revert the changes later on.
Edit the
reassignment.json
to remove a replica from each partition.For example use
jq
to remove the last replica in the list for each partition of the topic:Removing the last topic replica for each partition
jq '.partitions[].replicas |= del(.[-1])' reassignment.json > reassignment.json
Example reassignment file showing the updated replicas
{"version":1,"partitions":[{"topic":"my-topic","partition":0,"replicas":[0,1,2],"log_dirs":["any","any","any","any"]},{"topic":"my-topic","partition":1,"replicas":[1,2,3],"log_dirs":["any","any","any","any"]},{"topic":"my-topic","partition":2,"replicas":[2,3,4],"log_dirs":["any","any","any","any"]}]}
Copy the
reassignment.json
file to the interactive pod container.oc cp reassignment.json <interactive_pod_name>:/tmp/reassignment.json
Replace <interactive_pod_name> with the name of the pod.
Start a shell process in the interactive pod container.
oc exec -n <namespace> -ti <interactive_pod_name> /bin/bash
Replace <namespace> with the OpenShift namespace where the pod is running.
Make the topic replica change using the
kafka-reassign-partitions.sh
script from the interactive pod container.bin/kafka-reassign-partitions.sh --bootstrap-server <cluster_name>-kafka-bootstrap:9093 \ --command-config /tmp/config.properties \ --reassignment-json-file /tmp/reassignment.json \ --execute
NoteRemoving replicas from a broker does not require any inter-broker data movement, so there is no need to throttle replication. If you are adding replicas, then you may want to change the throttle rate.
Verify that the change to the topic replicas has completed using the
kafka-reassign-partitions.sh
command line tool from any of the broker pods. This is the same command as the previous step, but with the--verify
option instead of the--execute
option.bin/kafka-reassign-partitions.sh --bootstrap-server <cluster_name>-kafka-bootstrap:9093 \ --command-config /tmp/config.properties \ --reassignment-json-file /tmp/reassignment.json \ --verify
The reassignment has finished when the
--verify
command reports that each of the partitions being moved has completed successfully. This final--verify
will also have the effect of removing any reassignment throttles.Run the
bin/kafka-topics.sh
command with the--describe
option to see the results of the change to the topics.bin/kafka-topics.sh --bootstrap-server <cluster_name>-kafka-bootstrap:9093 \ --command-config /tmp/config.properties \ --describe
Results of reducing the number of replicas for a topic
my-topic Partition: 0 Leader: 0 Replicas: 0,1,2 Isr: 0,1,2 my-topic Partition: 1 Leader: 2 Replicas: 1,2,3 Isr: 1,2,3 my-topic Partition: 2 Leader: 3 Replicas: 2,3,4 Isr: 2,3,4
Chapter 20. Setting up metrics and dashboards for AMQ Streams
Collecting metrics is critical for understanding the health and performance of your Kafka deployment. By monitoring metrics, you can actively identify issues before they become critical and make informed decisions about resource allocation and capacity planning. Without metrics, you may be left with limited visibility into the behavior of your Kafka deployment, which can make troubleshooting more difficult and time-consuming. Setting up metrics can save you time and resources in the long run, and help ensure the reliability of your Kafka deployment.
Metrics are available for each component in AMQ Streams, providing valuable insights into their individual performance. While other components require configuration to expose metrics metric exposure, AMQ Streams operators automatically expose Prometheus metrics by default. These metrics include:
- Reconciliation count
- Custom Resource count being processed
- Reconciliation duration
- JVM metrics
You can also collect metrics specific to oauth
authentication and opa
or keycloak
authorization by enabling the enableMetrics
property in the listener or authorization configuration of the Kafka
resource. Similarly, you can enable metrics for oauth
authentication in custom resources such as KafkaBridge
, KafkaConnect
, KafkaMirrorMaker
, and KafkaMirrorMaker2
.
You can use Prometheus and Grafana to monitor AMQ Streams. Prometheus consumes metrics from the running pods in your cluster when configured with Prometheus rules. Grafana visualizes these metrics on dashboards, providing an intuitive interface for monitoring.
To facilitate metrics integration, AMQ Streams provides example Prometheus rules and Grafana dashboards for AMQ Streams components. You can customize the example Grafana dashboards to suit your specific deployment requirements. You can use rules to define conditions that trigger alerts based on specific metrics.
Depending on your monitoring requirements, you can do the following:
Additionally, you can configure your deployment to track messages end-to-end by setting up distributed tracing, or retrieve troubleshooting data using the diagnostics tool (report.sh
).
AMQ Streams provides example installation files for Prometheus and Grafana, which can serve as a starting point for monitoring your AMQ Streams deployment. For further support, try engaging with the Prometheus and Grafana developer communities.
Supporting documentation for metrics and monitoring tools
For more information on the metrics and monitoring tools, refer to the supporting documentation:
- Prometheus
- Prometheus configuration
- Kafka Exporter
- Grafana Labs
- Apache Kafka Monitoring describes JMX metrics exposed by Apache Kafka
- ZooKeeper JMX describes JMX metrics exposed by Apache ZooKeeper
20.1. Monitoring consumer lag with Kafka Exporter
Kafka Exporter is an open source project to enhance monitoring of Apache Kafka brokers and clients. You can configure the Kafka
resource to deploy Kafka Exporter with your Kafka cluster. Kafka Exporter extracts additional metrics data from Kafka brokers related to offsets, consumer groups, consumer lag, and topics. The metrics data is used, for example, to help identify slow consumers. Lag data is exposed as Prometheus metrics, which can then be presented in Grafana for analysis.
Kafka Exporter reads from the __consumer_offsets
topic, which stores information on committed offsets for consumer groups. For Kafka Exporter to be able to work properly, consumer groups needs to be in use.
A Grafana dashboard for Kafka Exporter is one of a number of example Grafana dashboards provided by AMQ Streams.
Kafka Exporter provides only additional metrics related to consumer lag and consumer offsets. For regular Kafka metrics, you have to configure the Prometheus metrics in Kafka brokers.
Consumer lag indicates the difference in the rate of production and consumption of messages. Specifically, consumer lag for a given consumer group indicates the delay between the last message in the partition and the message being currently picked up by that consumer.
The lag reflects the position of the consumer offset in relation to the end of the partition log.
Consumer lag between the producer and consumer offset
This difference is sometimes referred to as the delta between the producer offset and consumer offset: the read and write positions in the Kafka broker topic partitions.
Suppose a topic streams 100 messages a second. A lag of 1000 messages between the producer offset (the topic partition head) and the last offset the consumer has read means a 10-second delay.
The importance of monitoring consumer lag
For applications that rely on the processing of (near) real-time data, it is critical to monitor consumer lag to check that it does not become too big. The greater the lag becomes, the further the process moves from the real-time processing objective.
Consumer lag, for example, might be a result of consuming too much old data that has not been purged, or through unplanned shutdowns.
Reducing consumer lag
Use the Grafana charts to analyze lag and to check if actions to reduce lag are having an impact on an affected consumer group. If, for example, Kafka brokers are adjusted to reduce lag, the dashboard will show the Lag by consumer group chart going down and the Messages consumed per minute chart going up.
Typical actions to reduce lag include:
- Scaling-up consumer groups by adding new consumers
- Increasing the retention time for a message to remain in a topic
- Adding more disk capacity to increase the message buffer
Actions to reduce consumer lag depend on the underlying infrastructure and the use cases AMQ Streams is supporting. For instance, a lagging consumer is less likely to benefit from the broker being able to service a fetch request from its disk cache. And in certain cases, it might be acceptable to automatically drop messages until a consumer has caught up.
20.2. Monitoring Cruise Control operations
Cruise Control monitors Kafka brokers in order to track the utilization of brokers, topics, and partitions. Cruise Control also provides a set of metrics for monitoring its own performance.
The Cruise Control metrics reporter collects raw metrics data from Kafka brokers. The data is produced to topics that are automatically created by Cruise Control. The metrics are used to generate optimization proposals for Kafka clusters.
Cruise Control metrics are available for real-time monitoring of Cruise Control operations. For example, you can use Cruise Control metrics to monitor the status of rebalancing operations that are running or provide alerts on any anomalies that are detected in an operation’s performance.
You expose Cruise Control metrics by enabling the Prometheus JMX Exporter in the Cruise Control configuration.
For a full list of available Cruise Control metrics, which are known as sensors, see the Cruise Control documentation
20.2.1. Monitoring balancedness scores
Cruise Control metrics include a balancedness score. Balancedness is the measure of how evenly a workload is distributed in a Kafka cluster.
The Cruise Control metric for balancedness score (balancedness-score
) might differ from the balancedness score in the KafkaRebalance
resource. Cruise Control calculates each score using anomaly.detection.goals
which might not be the same as the default.goals
used in the KafkaRebalance
resource. The anomaly.detection.goals
are specified in the spec.cruiseControl.config
of the Kafka
custom resource.
Refreshing the KafkaRebalance
resource fetches an optimization proposal. The latest cached optimization proposal is fetched if one of the following conditions applies:
-
KafkaRebalance
goals
match the goals configured in thedefault.goals
section of theKafka
resource -
KafkaRebalance
goals
are not specified
Otherwise, Cruise Control generates a new optimization proposal based on KafkaRebalance goals
. If new proposals are generated with each refresh, this can impact performance monitoring.
20.2.2. Setting up alerts for anomaly detection
Cruise control’s anomaly detector provides metrics data for conditions that block the generation of optimization goals, such as broker failures. If you want more visibility, you can use the metrics provided by the anomaly detector to set up alerts and send out notifications. You can set up Cruise Control’s anomaly notifier to route alerts based on these metrics through a specified notification channel. Alternatively, you can set up Prometheus to scrape the metrics data provided by the anomaly detector and generate alerts. Prometheus Alertmanager can then route the alerts generated by Prometheus.
The Cruise Control documentation provides information on AnomalyDetector
metrics and the anomaly notifier.
20.3. Example metrics files
You can find example Grafana dashboards and other metrics configuration files in the example configuration files provided by AMQ Streams.
Example metrics files provided with AMQ Streams
metrics ├── grafana-dashboards 1 │ ├── strimzi-cruise-control.json │ ├── strimzi-kafka-bridge.json │ ├── strimzi-kafka-connect.json │ ├── strimzi-kafka-exporter.json │ ├── strimzi-kafka-mirror-maker-2.json │ ├── strimzi-kafka.json │ ├── strimzi-operators.json │ └── strimzi-zookeeper.json ├── grafana-install │ └── grafana.yaml 2 ├── prometheus-additional-properties │ └── prometheus-additional.yaml 3 ├── prometheus-alertmanager-config │ └── alert-manager-config.yaml 4 ├── prometheus-install │ ├── alert-manager.yaml 5 │ ├── prometheus-rules.yaml 6 │ ├── prometheus.yaml 7 │ └── strimzi-pod-monitor.yaml 8 ├── kafka-bridge-metrics.yaml 9 ├── kafka-connect-metrics.yaml 10 ├── kafka-cruise-control-metrics.yaml 11 ├── kafka-metrics.yaml 12 └── kafka-mirror-maker-2-metrics.yaml 13
- 1
- Example Grafana dashboards for the different AMQ Streams components.
- 2
- Installation file for the Grafana image.
- 3
- Additional configuration to scrape metrics for CPU, memory and disk volume usage, which comes directly from the OpenShift cAdvisor agent and kubelet on the nodes.
- 4
- Hook definitions for sending notifications through Alertmanager.
- 5
- Resources for deploying and configuring Alertmanager.
- 6
- Alerting rules examples for use with Prometheus Alertmanager (deployed with Prometheus).
- 7
- Installation resource file for the Prometheus image.
- 8
- PodMonitor definitions translated by the Prometheus Operator into jobs for the Prometheus server to be able to scrape metrics data directly from pods.
- 9
- Kafka Bridge resource with metrics enabled.
- 10
- Metrics configuration that defines Prometheus JMX Exporter relabeling rules for Kafka Connect.
- 11
- Metrics configuration that defines Prometheus JMX Exporter relabeling rules for Cruise Control.
- 12
- Metrics configuration that defines Prometheus JMX Exporter relabeling rules for Kafka and ZooKeeper.
- 13
- Metrics configuration that defines Prometheus JMX Exporter relabeling rules for Kafka Mirror Maker 2.0.
20.3.1. Example Prometheus metrics configuration
AMQ Streams uses the Prometheus JMX Exporter to expose metrics through an HTTP endpoint, which can be scraped by the Prometheus server.
Grafana dashboards are dependent on Prometheus JMX Exporter relabeling rules, which are defined for AMQ Streams components in the custom resource configuration.
A label is a name-value pair. Relabeling is the process of writing a label dynamically. For example, the value of a label may be derived from the name of a Kafka server and client ID.
AMQ Streams provides example custom resource configuration YAML files with relabeling rules. When deploying Prometheus metrics configuration, you can can deploy the example custom resource or copy the metrics configuration to your own custom resource definition.
Component | Custom resource | Example YAML file |
---|---|---|
Kafka and ZooKeeper |
|
|
Kafka Connect |
|
|
Kafka MirrorMaker 2 |
|
|
Kafka Bridge |
|
|
Cruise Control |
|
|
20.3.2. Example Prometheus rules for alert notifications
Example Prometheus rules for alert notifications are provided with the example metrics configuration files provided by AMQ Streams. The rules are specified in the example prometheus-rules.yaml
file for use in a Prometheus deployment.
The prometheus-rules.yaml
file contains example rules for the following components:
- Kafka
- ZooKeeper
- Entity Operator
- Kafka Connect
- Kafka Bridge
- MirrorMaker
- Kafka Exporter
A description of each of the example rules is provided in the file.
Alerting rules provide notifications about specific conditions observed in metrics. Rules are declared on the Prometheus server, but Prometheus Alertmanager is responsible for alert notifications.
Prometheus alerting rules describe conditions using PromQL expressions that are continuously evaluated.
When an alert expression becomes true, the condition is met and the Prometheus server sends alert data to the Alertmanager. Alertmanager then sends out a notification using the communication method configured for its deployment.
General points about the alerting rule definitions:
-
A
for
property is used with the rules to determine the period of time a condition must persist before an alert is triggered. -
A tick is a basic ZooKeeper time unit, which is measured in milliseconds and configured using the
tickTime
parameter ofKafka.spec.zookeeper.config
. For example, if ZooKeepertickTime=3000
, 3 ticks (3 x 3000) equals 9000 milliseconds. -
The availability of the
ZookeeperRunningOutOfSpace
metric and alert is dependent on the OpenShift configuration and storage implementation used. Storage implementations for certain platforms may not be able to supply the information on available space required for the metric to provide an alert.
Alertmanager can be configured to use email, chat messages or other notification methods. Adapt the default configuration of the example rules according to your specific needs.
20.3.3. Example Grafana dashboards
If you deploy Prometheus to provide metrics, you can use the example Grafana dashboards provided with AMQ Streams to monitor AMQ Streams components.
Example dashboards are provided in the examples/metrics/grafana-dashboards
directory as JSON files.
All dashboards provide JVM metrics, as well as metrics specific to the component. For example, the Grafana dashboard for AMQ Streams operators provides information on the number of reconciliations or custom resources they are processing.
The example dashboards don’t show all the metrics supported by Kafka. The dashboards are populated with a representative set of metrics for monitoring.
Component | Example JSON file |
---|---|
AMQ Streams operators |
|
Kafka |
|
ZooKeeper |
|
Kafka Connect |
|
Kafka MirrorMaker 2 |
|
Kafka Bridge |
|
Cruise Control |
|
Kafka Exporter |
|
When metrics are not available to the Kafka Exporter, because there is no traffic in the cluster yet, the Kafka Exporter Grafana dashboard will show N/A
for numeric fields and No data to show
for graphs.
20.4. Enabling Prometheus metrics through configuration
To enable and expose metrics in AMQ Streams for Prometheus, use metrics configuration properties.
The following components require metricsConfig
configuration to expose metrics:
- Kafka
- KafkaConnect
- MirrorMaker
- Cruise Control
- ZooKeeper
This configuration enables the Prometheus JMX Exporter to expose metrics through an HTTP endpoint. The port for the JMX exporter HTTP endpoint is 9404. Prometheus scrapes this endpoint to collect Kafka metrics.
You set the enableMetrics
property to true
in order to expose metrics for these components:
- Kafka Bridge
- OAuth 2.0 authentication and authorization framework
- Open Policy Agent (OPA) for authorization
To deploy Prometheus metrics configuration in AMQ Streams, you can use your own configuration or the example custom resource configuration files provided with AMQ Streams:
-
kafka-metrics.yaml
-
kafka-connect-metrics.yaml
-
kafka-mirror-maker-2-metrics.yaml
-
kafka-bridge-metrics.yaml
-
kafka-cruise-control-metrics.yaml
-
oauth-metrics.yaml
These files contain the necessary relabeling rules and configuration to enable Prometheus metrics. They are a good starting point for trying Prometheus with AMQ Streams.
This procedure shows how to deploy example Prometheus metrics configuration in the Kafka
resource. The process is the same when deploying the example files for other resources.
If you wish to include Kafka Exporter metrics, add kafkaExporter
configuration to your Kafka
resource.
Kafka Exporter only provides additional metrics related to consumer lag and consumer offsets. For regular Kafka metrics, you must configure the Prometheus metrics in Kafka brokers.
Procedure
Deploy the example custom resource with the Prometheus configuration.
For example, for each
Kafka
resource you can apply thekafka-metrics.yaml
file.Deploying the example configuration
oc apply -f kafka-metrics.yaml
Alternatively, you can copy the example configuration in
kafka-metrics.yaml
to your ownKafka
resource.Copying the example configuration
oc edit kafka <kafka_configuration_file>
Copy the
metricsConfig
property and theConfigMap
it references to yourKafka
resource.Example metrics configuration for Kafka
apiVersion: kafka.strimzi.io/v1beta2 kind: Kafka metadata: name: my-cluster spec: kafka: # ... metricsConfig: 1 type: jmxPrometheusExporter valueFrom: configMapKeyRef: name: kafka-metrics key: kafka-metrics-config.yml --- kind: ConfigMap 2 apiVersion: v1 metadata: name: kafka-metrics labels: app: strimzi data: kafka-metrics-config.yml: | # metrics configuration...
To deploy Kafka Exporter, add
kafkaExporter
configuration.kafkaExporter
configuration is only specified in theKafka
resource.Example configuration for deploying Kafka Exporter
apiVersion: kafka.strimzi.io/v1beta2 kind: Kafka metadata: name: my-cluster spec: # ... kafkaExporter: image: my-registry.io/my-org/my-exporter-cluster:latest 1 groupRegex: ".*" 2 topicRegex: ".*" 3 groupExcludeRegex: "^excluded-.*" 4 topicExcludeRegex: "^excluded-.*" 5 resources: 6 requests: cpu: 200m memory: 64Mi limits: cpu: 500m memory: 128Mi logging: debug 7 enableSaramaLogging: true 8 template: 9 pod: metadata: labels: label1: value1 imagePullSecrets: - name: my-docker-credentials securityContext: runAsUser: 1000001 fsGroup: 0 terminationGracePeriodSeconds: 120 readinessProbe: 10 initialDelaySeconds: 15 timeoutSeconds: 5 livenessProbe: 11 initialDelaySeconds: 15 timeoutSeconds: 5 # ...
- 1
- ADVANCED OPTION: Container image configuration, which is recommended only in special situations.
- 2
- A regular expression to specify the consumer groups to include in the metrics.
- 3
- A regular expression to specify the topics to include in the metrics.
- 4
- A regular expression to specify the consumer groups to exclude in the metrics.
- 5
- A regular expression to specify the topics to exclude in the metrics.
- 6
- CPU and memory resources to reserve.
- 7
- Logging configuration, to log messages with a given severity (debug, info, warn, error, fatal) or above.
- 8
- Boolean to enable Sarama logging, a Go client library used by Kafka Exporter.
- 9
- Customization of deployment templates and pods.
- 10
- Healthcheck readiness probes.
- 11
- Healthcheck liveness probes.
For Kafka Exporter to be able to work properly, consumer groups need to be in use.
Enabling metrics for Kafka Bridge
To expose metrics for Kafka Bridge, set the enableMetrics
property to true
in the KafkaBridge
resource.
Example metrics configuration for Kafka Bridge
apiVersion: kafka.strimzi.io/v1beta2 kind: KafkaBridge metadata: name: my-bridge spec: # ... bootstrapServers: my-cluster-kafka:9092 http: # ... enableMetrics: true # ...
Enabling metrics for OAuth 2.0 and OPA
To expose metrics for OAuth 2.0 or OPA, set the enableMetrics
property to true
in the appropriate custom resource.
- OAuth 2.0 metrics
Enable metrics for Kafka cluster authorization and Kafka listener authentication in the
Kafka
resource.You can also enable metrics for OAuth 2.0 authentication in the custom resource of other supported components.
- OPA metrics
-
Enable metrics for Kafka cluster authorization the
Kafka
resource in the same way as for OAuth 2.0.
In the following example, metrics are enabled for OAuth 2.0 listener authentication and OAuth 2.0 (keycloak
) cluster authorization.
Example cluster configuration with metrics enabled for OAuth 2.0
apiVersion: kafka.strimzi.io/v1beta2 kind: Kafka metadata: name: my-cluster namespace: myproject spec: kafka: # ... listeners: - name: external port: 9094 type: loadbalancer tls: true authentication: type: oauth enableMetrics: true configuration: #... authorization: type: keycloak enableMetrics: true # ...
To use the OAuth 2.0 metrics with Prometheus, you can use the oauth-metrics.yaml
file to deploy example Prometheus metrics configuration. Copy the ConfigMap
configuration the oauth-metrics.yaml
file contains to the same Kafka
resource configuration file where you enabled metrics for OAuth 2.0.
20.5. Viewing Kafka metrics and dashboards in OpenShift
When AMQ Streams is deployed to OpenShift Container Platform, metrics are provided through monitoring for user-defined projects. This OpenShift feature gives developers access to a separate Prometheus instance for monitoring their own projects (for example, a Kafka
project).
If monitoring for user-defined projects is enabled, the openshift-user-workload-monitoring
project contains the following components:
- A Prometheus operator
- A Prometheus instance (automatically deployed by the Prometheus Operator)
- A Thanos Ruler instance
AMQ Streams uses these components to consume metrics.
A cluster administrator must enable monitoring for user-defined projects and then grant developers and other users permission to monitor applications within their own projects.
Grafana deployment
You can deploy a Grafana instance to the project containing your Kafka cluster. The example Grafana dashboards can then be used to visualize Prometheus metrics for AMQ Streams in the Grafana user interface.
The openshift-monitoring
project provides monitoring for core platform components. Do not use the Prometheus and Grafana components in this project to configure monitoring for AMQ Streams on OpenShift Container Platform 4.x.
Procedure outline
To set up AMQ Streams monitoring in OpenShift Container Platform, follow these procedures in order:
20.5.1. Prerequisites
- You have deployed the Prometheus metrics configuration using the example YAML files.
-
Monitoring for user-defined projects is enabled. A cluster administrator has created a
cluster-monitoring-config
config map in your OpenShift cluster. -
A cluster administrator has assigned you a
monitoring-rules-edit
ormonitoring-edit
role.
For more information on creating a cluster-monitoring-config
config map and granting users permission to monitor user-defined projects, see the OpenShift documentation.
20.5.2. Deploying the Prometheus resources
Use Prometheus to obtain monitoring data in your Kafka cluster.
You can use your own Prometheus deployment or deploy Prometheus using the example metrics configuration files provided by AMQ Streams. To use the example files, you configure and deploy the PodMonitor
resources. The PodMonitors
scrape data directly from pods for Apache Kafka, ZooKeeper, Operators, the Kafka Bridge, and Cruise Control.
You then deploy the example alerting rules for Alertmanager.
Prerequisites
- A running Kafka cluster.
- Check the example alerting rules provided with AMQ Streams.
Procedure
Check that monitoring for user-defined projects is enabled:
oc get pods -n openshift-user-workload-monitoring
If enabled, pods for the monitoring components are returned. For example:
NAME READY STATUS RESTARTS AGE prometheus-operator-5cc59f9bc6-kgcq8 1/1 Running 0 25s prometheus-user-workload-0 5/5 Running 1 14s prometheus-user-workload-1 5/5 Running 1 14s thanos-ruler-user-workload-0 3/3 Running 0 14s thanos-ruler-user-workload-1 3/3 Running 0 14s
If no pods are returned, monitoring for user-defined projects is disabled. See the Prerequisites in Section 20.5, “Viewing Kafka metrics and dashboards in OpenShift”.
Multiple
PodMonitor
resources are defined inexamples/metrics/prometheus-install/strimzi-pod-monitor.yaml
.For each
PodMonitor
resource, edit thespec.namespaceSelector.matchNames
property:apiVersion: monitoring.coreos.com/v1 kind: PodMonitor metadata: name: cluster-operator-metrics labels: app: strimzi spec: selector: matchLabels: strimzi.io/kind: cluster-operator namespaceSelector: matchNames: - <project-name> 1 podMetricsEndpoints: - path: /metrics port: http # ...
- 1
- The project where the pods to scrape the metrics from are running, for example,
Kafka
.
Deploy the
strimzi-pod-monitor.yaml
file to the project where your Kafka cluster is running:oc apply -f strimzi-pod-monitor.yaml -n MY-PROJECT
Deploy the example Prometheus rules to the same project:
oc apply -f prometheus-rules.yaml -n MY-PROJECT
20.5.3. Creating a service account for Grafana
A Grafana instance for AMQ Streams needs to run with a service account that is assigned the cluster-monitoring-view
role.
Create a service account if you are using Grafana to present metrics for monitoring.
Prerequisites
Procedure
Create a
ServiceAccount
for Grafana in the project containing your Kafka cluster:oc create sa grafana-service-account -n my-project
In this example, a service account named
grafana-service-account
is created in themy-project
namespace.Create a
ClusterRoleBinding
resource that assigns thecluster-monitoring-view
role to the GrafanaServiceAccount
. Here the resource is namedgrafana-cluster-monitoring-binding
.apiVersion: rbac.authorization.k8s.io/v1 kind: ClusterRoleBinding metadata: name: grafana-cluster-monitoring-binding labels: app: strimzi subjects: - kind: ServiceAccount name: grafana-service-account namespace: my-project roleRef: kind: ClusterRole name: cluster-monitoring-view apiGroup: rbac.authorization.k8s.io
Deploy the
ClusterRoleBinding
to the same project:oc apply -f grafana-cluster-monitoring-binding.yaml -n my-project
Create a token secret for the service account:
apiVersion: v1 kind: Secret metadata: name: secret-sa annotations: kubernetes.io/service-account.name: "grafana-service-account" 1 type: kubernetes.io/service-account-token 2
Create the
Secret
object and access token:oc create -f <secret_configuration>.yaml
You need the access token when deploying Grafana.
20.5.4. Deploying Grafana with a Prometheus datasource
Deploy Grafana to present Prometheus metrics. A Grafana application requires configuration for the OpenShift Container Platform monitoring stack.
OpenShift Container Platform includes a Thanos Querier instance in the openshift-monitoring
project. Thanos Querier is used to aggregate platform metrics.
To consume the required platform metrics, your Grafana instance requires a Prometheus data source that can connect to Thanos Querier. To configure this connection, you create a config map that authenticates, by using a token, to the oauth-proxy
sidecar that runs alongside Thanos Querier. A datasource.yaml
file is used as the source of the config map.
Finally, you deploy the Grafana application with the config map mounted as a volume to the project containing your Kafka cluster.
Prerequisites
Procedure
Get the access token of the Grafana
ServiceAccount
:oc describe sa/grafana-service-account | grep Tokens: oc describe secret grafana-service-account-token-mmlp9 | grep token:
In this example, the service account is named
grafana-service-account
. Copy the access token to use in the next step.Create a
datasource.yaml
file containing the Thanos Querier configuration for Grafana.Paste the access token into the
httpHeaderValue1
property as indicated.apiVersion: 1 datasources: - name: Prometheus type: prometheus url: https://thanos-querier.openshift-monitoring.svc.cluster.local:9091 access: proxy basicAuth: false withCredentials: false isDefault: true jsonData: timeInterval: 5s tlsSkipVerify: true httpHeaderName1: "Authorization" secureJsonData: httpHeaderValue1: "Bearer ${GRAFANA-ACCESS-TOKEN}" 1 editable: true
- 1
GRAFANA-ACCESS-TOKEN
: The value of the access token for the GrafanaServiceAccount
.
Create a config map named
grafana-config
from thedatasource.yaml
file:oc create configmap grafana-config --from-file=datasource.yaml -n MY-PROJECT
Create a Grafana application consisting of a
Deployment
and aService
.The
grafana-config
config map is mounted as a volume for the datasource configuration.apiVersion: apps/v1 kind: Deployment metadata: name: grafana labels: app: strimzi spec: replicas: 1 selector: matchLabels: name: grafana template: metadata: labels: name: grafana spec: serviceAccountName: grafana-service-account containers: - name: grafana image: grafana/grafana:10.0.3 ports: - name: grafana containerPort: 3000 protocol: TCP volumeMounts: - name: grafana-data mountPath: /var/lib/grafana - name: grafana-logs mountPath: /var/log/grafana - name: grafana-config mountPath: /etc/grafana/provisioning/datasources/datasource.yaml readOnly: true subPath: datasource.yaml readinessProbe: httpGet: path: /api/health port: 3000 initialDelaySeconds: 5 periodSeconds: 10 livenessProbe: httpGet: path: /api/health port: 3000 initialDelaySeconds: 15 periodSeconds: 20 volumes: - name: grafana-data emptyDir: {} - name: grafana-logs emptyDir: {} - name: grafana-config configMap: name: grafana-config --- apiVersion: v1 kind: Service metadata: name: grafana labels: app: strimzi spec: ports: - name: grafana port: 3000 targetPort: 3000 protocol: TCP selector: name: grafana type: ClusterIP
Deploy the Grafana application to the project containing your Kafka cluster:
oc apply -f <grafana-application> -n <my-project>
20.5.5. Creating a route to the Grafana Service
You can access the Grafana user interface through a Route that exposes the Grafana service.
Prerequisites
Procedure
Create an edge route to the
grafana
service:oc create route edge <my-grafana-route> --service=grafana --namespace=KAFKA-NAMESPACE
20.5.6. Importing the example Grafana dashboards
Use Grafana to provide visualizations of Prometheus metrics on customizable dashboards.
AMQ Streams provides example dashboard configuration files for Grafana in JSON format.
-
examples/metrics/grafana-dashboards
This procedure uses the example Grafana dashboards.
The example dashboards are a good starting point for monitoring key metrics, but they don’t show all the metrics supported by Kafka. You can modify the example dashboards or add other metrics, depending on your infrastructure.
Prerequisites
Procedure
Get the details of the Route to the Grafana Service. For example:
oc get routes NAME HOST/PORT PATH SERVICES MY-GRAFANA-ROUTE MY-GRAFANA-ROUTE-amq-streams.net grafana
- In a web browser, access the Grafana login screen using the URL for the Route host and port.
Enter your user name and password, and then click Log In.
The default Grafana user name and password are both
admin
. After logging in for the first time, you can change the password.- In Configuration > Data Sources, check that the Prometheus data source was created. The data source was created in Section 20.5.4, “Deploying Grafana with a Prometheus datasource”.
- Click the + icon and then click Import.
-
In
examples/metrics/grafana-dashboards
, copy the JSON of the dashboard to import. - Paste the JSON into the text box, and then click Load.
- Repeat steps 5-7 for the other example Grafana dashboards.
The imported Grafana dashboards are available to view from the Dashboards home page.
Chapter 21. Introducing distributed tracing
Distributed tracing tracks the progress of transactions between applications in a distributed system. In a microservices architecture, tracing tracks the progress of transactions between services. Trace data is useful for monitoring application performance and investigating issues with target systems and end-user applications.
In AMQ Streams, tracing facilitates the end-to-end tracking of messages: from source systems to Kafka, and then from Kafka to target systems and applications. Distributed tracing complements the monitoring of metrics in Grafana dashboards, as well as the component loggers.
Support for tracing is built in to the following Kafka components:
- MirrorMaker to trace messages from a source cluster to a target cluster
- Kafka Connect to trace messages consumed and produced by Kafka Connect
- Kafka Bridge to trace messages between Kafka and HTTP client applications
Tracing is not supported for Kafka brokers.
You enable and configure tracing for these components through their custom resources. You add tracing configuration using spec.template
properties.
You enable tracing by specifying a tracing type using the spec.tracing.type
property:
opentelemetry
-
Specify
type: opentelemetry
to use OpenTelemetry. By Default, OpenTelemetry uses the OTLP (OpenTelemetry Protocol) exporter and endpoint to get trace data. You can specify other tracing systems supported by OpenTelemetry, including Jaeger tracing. To do this, you change the OpenTelemetry exporter and endpoint in the tracing configuration. jaeger
-
Specify
type:jaeger
to use OpenTracing and the Jaeger client to get trace data.
Support for type: jaeger
tracing is deprecated. The Jaeger clients are now retired and the OpenTracing project archived. As such, we cannot guarantee their support for future Kafka versions. If possible, we will maintain the support for type: jaeger
tracing until June 2023 and remove it afterwards. Please migrate to OpenTelemetry as soon as possible.
21.1. Tracing options
Use OpenTelemetry or OpenTracing (deprecated) with the Jaeger tracing system.
OpenTelemetry and OpenTracing provide API specifications that are independent from the tracing or monitoring system.
You use the APIs to instrument application code for tracing.
- Instrumented applications generate traces for individual requests across the distributed system.
- Traces are composed of spans that define specific units of work over time.
Jaeger is a tracing system for microservices-based distributed systems.
- Jaeger implements the tracing APIs and provides client libraries for instrumentation.
- The Jaeger user interface allows you to query, filter, and analyze trace data.
The Jaeger user interface showing a simple query
Additional resources
21.2. Environment variables for tracing
Use environment variables when you are enabling tracing for Kafka components or initializing a tracer for Kafka clients.
Tracing environment variables are subject to change. For the latest information, see the OpenTelemetry documentation and OpenTracing documentation.
The following tables describe the key environment variables for setting up a tracer.
Property | Required | Description |
---|---|---|
| Yes | The name of the Jaeger tracing service for OpenTelemetry. |
| Yes | The exporter used for tracing. |
| Yes |
The exporter used for tracing. Set to |
Property | Required | Description |
---|---|---|
| Yes | The name of the Jaeger tracer service. |
| No |
The hostname for communicating with the |
| No |
The port used for communicating with the |
21.3. Setting up distributed tracing
Enable distributed tracing in Kafka components by specifying a tracing type in the custom resource. Instrument tracers in Kafka clients for end-to-end tracking of messages.
To set up distributed tracing, follow these procedures in order:
- Enable tracing for MirrorMaker, Kafka Connect, and the Kafka Bridge
Set up tracing for clients:
Instrument clients with tracers:
21.3.1. Prerequisites
Before setting up distributed tracing, make sure Jaeger backend components are deployed to your OpenShift cluster. We recommend using the Jaeger operator for deploying Jaeger on your OpenShift cluster.
For deployment instructions, see the Jaeger documentation.
Setting up tracing for applications and systems beyond AMQ Streams is outside the scope of this content.
21.3.2. Enabling tracing in MirrorMaker, Kafka Connect, and Kafka Bridge resources
Distributed tracing is supported for MirrorMaker, MirrorMaker 2, Kafka Connect, and the AMQ Streams Kafka Bridge. Configure the custom resource of the component to specify and enable a tracer service.
Enabling tracing in a resource triggers the following events:
- Interceptor classes are updated in the integrated consumers and producers of the component.
- For MirrorMaker, MirrorMaker 2, and Kafka Connect, the tracing agent initializes a tracer based on the tracing configuration defined in the resource.
- For the Kafka Bridge, a tracer based on the tracing configuration defined in the resource is initialized by the Kafka Bridge itself.
You can enable tracing that uses OpenTelemetry or OpenTracing.
Tracing in MirrorMaker and MirrorMaker 2
For MirrorMaker and MirrorMaker 2, messages are traced from the source cluster to the target cluster. The trace data records messages entering and leaving the MirrorMaker or MirrorMaker 2 component.
Tracing in Kafka Connect
For Kafka Connect, only messages produced and consumed by Kafka Connect are traced. To trace messages sent between Kafka Connect and external systems, you must configure tracing in the connectors for those systems.
Tracing in the Kafka Bridge
For the Kafka Bridge, messages produced and consumed by the Kafka Bridge are traced. Incoming HTTP requests from client applications to send and receive messages through the Kafka Bridge are also traced. To have end-to-end tracing, you must configure tracing in your HTTP clients.
Procedure
Perform these steps for each KafkaMirrorMaker
, KafkaMirrorMaker2
, KafkaConnect
, and KafkaBridge
resource.
In the
spec.template
property, configure the tracer service.- Use the tracing environment variables as template configuration properties.
-
For OpenTelemetry, set the
spec.tracing.type
property toopentelemetry
. -
For OpenTracing, set the
spec.tracing.type
property tojaeger
.
Example tracing configuration for Kafka Connect using OpenTelemetry
apiVersion: kafka.strimzi.io/v1beta2 kind: KafkaConnect metadata: name: my-connect-cluster spec: #... template: connectContainer: env: - name: OTEL_SERVICE_NAME value: my-otel-service - name: OTEL_EXPORTER_OTLP_ENDPOINT value: "http://otlp-host:4317" tracing: type: opentelemetry #...
Example tracing configuration for MirrorMaker using OpenTelemetry
apiVersion: kafka.strimzi.io/v1beta2 kind: KafkaMirrorMaker metadata: name: my-mirror-maker spec: #... template: mirrorMakerContainer: env: - name: OTEL_SERVICE_NAME value: my-otel-service - name: OTEL_EXPORTER_OTLP_ENDPOINT value: "http://otlp-host:4317" tracing: type: opentelemetry #...
Example tracing configuration for MirrorMaker 2 using OpenTelemetry
apiVersion: kafka.strimzi.io/v1beta2 kind: KafkaMirrorMaker2 metadata: name: my-mm2-cluster spec: #... template: connectContainer: env: - name: OTEL_SERVICE_NAME value: my-otel-service - name: OTEL_EXPORTER_OTLP_ENDPOINT value: "http://otlp-host:4317" tracing: type: opentelemetry #...
Example tracing configuration for the Kafka Bridge using OpenTelemetry
apiVersion: kafka.strimzi.io/v1beta2 kind: KafkaBridge metadata: name: my-bridge spec: #... template: bridgeContainer: env: - name: OTEL_SERVICE_NAME value: my-otel-service - name: OTEL_EXPORTER_OTLP_ENDPOINT value: "http://otlp-host:4317" tracing: type: opentelemetry #...
Example tracing configuration for Kafka Connect using OpenTracing
apiVersion: kafka.strimzi.io/v1beta2 kind: KafkaConnect metadata: name: my-connect-cluster spec: #... template: connectContainer: env: - name: JAEGER_SERVICE_NAME value: my-jaeger-service - name: JAEGER_AGENT_HOST value: jaeger-agent-name - name: JAEGER_AGENT_PORT value: "6831" tracing: type: jaeger #...
Example tracing configuration for MirrorMaker using OpenTracing
apiVersion: kafka.strimzi.io/v1beta2 kind: KafkaMirrorMaker metadata: name: my-mirror-maker spec: #... template: mirrorMakerContainer: env: - name: JAEGER_SERVICE_NAME value: my-jaeger-service - name: JAEGER_AGENT_HOST value: jaeger-agent-name - name: JAEGER_AGENT_PORT value: "6831" tracing: type: jaeger #...
Example tracing configuration for MirrorMaker 2 using OpenTracing
apiVersion: kafka.strimzi.io/v1beta2 kind: KafkaMirrorMaker2 metadata: name: my-mm2-cluster spec: #... template: connectContainer: env: - name: JAEGER_SERVICE_NAME value: my-jaeger-service - name: JAEGER_AGENT_HOST value: jaeger-agent-name - name: JAEGER_AGENT_PORT value: "6831" tracing: type: jaeger #...
Example tracing configuration for the Kafka Bridge using OpenTracing
apiVersion: kafka.strimzi.io/v1beta2 kind: KafkaBridge metadata: name: my-bridge spec: #... template: bridgeContainer: env: - name: JAEGER_SERVICE_NAME value: my-jaeger-service - name: JAEGER_AGENT_HOST value: jaeger-agent-name - name: JAEGER_AGENT_PORT value: "6831" tracing: type: jaeger #...
Create or update the resource:
oc apply -f <resource_configuration_file>
21.3.3. Initializing tracing for Kafka clients
Initialize a tracer, then instrument your client applications for distributed tracing. You can instrument Kafka producer and consumer clients, and Kafka Streams API applications. You can initialize a tracer for OpenTracing or OpenTelemetry.
Configure and initialize a tracer using a set of tracing environment variables.
Procedure
In each client application add the dependencies for the tracer:
Add the Maven dependencies to the
pom.xml
file for the client application:Dependencies for OpenTelemetry
<dependency> <groupId>io.opentelemetry</groupId> <artifactId>opentelemetry-sdk-extension-autoconfigure</artifactId> <version>1.19.0.redhat-00002</version> </dependency> <dependency> <groupId>io.opentelemetry.instrumentation</groupId> <artifactId>opentelemetry-kafka-clients-{OpenTelemetryKafkaClient}</artifactId> <version>1.19.0.redhat-00002</version> </dependency> <dependency> <groupId>io.opentelemetry</groupId> <artifactId>opentelemetry-exporter-otlp</artifactId> <version>1.19.0.redhat-00002</version> </dependency>
Dependencies for OpenTracing
<dependency> <groupId>io.jaegertracing</groupId> <artifactId>jaeger-client</artifactId> <version>1.8.1.redhat-00002</version> </dependency> <dependency> <groupId>io.opentracing.contrib</groupId> <artifactId>opentracing-kafka-client</artifactId> <version>0.1.15.redhat-00006</version> </dependency>
- Define the configuration of the tracer using the tracing environment variables.
Create a tracer, which is initialized with the environment variables:
Creating a tracer for OpenTelemetry
OpenTelemetry ot = GlobalOpenTelemetry.get();
Creating a tracer for OpenTracing
Tracer tracer = Configuration.fromEnv().getTracer();
Register the tracer as a global tracer:
GlobalTracer.register(tracer);
Instrument your client:
21.3.4. Instrumenting producers and consumers for tracing
Instrument application code to enable tracing in Kafka producers and consumers. Use a decorator pattern or interceptors to instrument your Java producer and consumer application code for tracing. You can then record traces when messages are produced or retrieved from a topic.
OpenTelemetry and OpenTracing instrumentation projects provide classes that support instrumentation of producers and consumers.
- Decorator instrumentation
- For decorator instrumentation, create a modified producer or consumer instance for tracing. Decorator instrumentation is different for OpenTelemetry and OpenTracing.
- Interceptor instrumentation
- For interceptor instrumentation, add the tracing capability to the consumer or producer configuration. Interceptor instrumentation is the same for OpenTelemetry and OpenTracing.
Prerequisites
You have initialized tracing for the client.
You enable instrumentation in producer and consumer applications by adding the tracing JARs as dependencies to your project.
Procedure
Perform these steps in the application code of each producer and consumer application. Instrument your client application code using either a decorator pattern or interceptors.
To use a decorator pattern, create a modified producer or consumer instance to send or receive messages.
You pass the original
KafkaProducer
orKafkaConsumer
class.Example decorator instrumentation for OpenTelemetry
// Producer instance Producer < String, String > op = new KafkaProducer < > ( configs, new StringSerializer(), new StringSerializer() ); Producer < String, String > producer = tracing.wrap(op); KafkaTracing tracing = KafkaTracing.create(GlobalOpenTelemetry.get()); producer.send(...); //consumer instance Consumer<String, String> oc = new KafkaConsumer<>( configs, new StringDeserializer(), new StringDeserializer() ); Consumer<String, String> consumer = tracing.wrap(oc); consumer.subscribe(Collections.singleton("mytopic")); ConsumerRecords<Integer, String> records = consumer.poll(1000); ConsumerRecord<Integer, String> record = ... SpanContext spanContext = TracingKafkaUtils.extractSpanContext(record.headers(), tracer);
Example decorator instrumentation for OpenTracing
//producer instance KafkaProducer<Integer, String> producer = new KafkaProducer<>(senderProps); TracingKafkaProducer<Integer, String> tracingProducer = new TracingKafkaProducer<>(producer, tracer); TracingKafkaProducer.send(...) //consumer instance KafkaConsumer<Integer, String> consumer = new KafkaConsumer<>(consumerProps); TracingKafkaConsumer<Integer, String> tracingConsumer = new TracingKafkaConsumer<>(consumer, tracer); tracingConsumer.subscribe(Collections.singletonList("mytopic")); ConsumerRecords<Integer, String> records = tracingConsumer.poll(1000); ConsumerRecord<Integer, String> record = ... SpanContext spanContext = TracingKafkaUtils.extractSpanContext(record.headers(), tracer);
To use interceptors, set the interceptor class in the producer or consumer configuration.
You use the
KafkaProducer
andKafkaConsumer
classes in the usual way. TheTracingProducerInterceptor
andTracingConsumerInterceptor
interceptor classes take care of the tracing capability.Example producer configuration using interceptors
senderProps.put(ProducerConfig.INTERCEPTOR_CLASSES_CONFIG, TracingProducerInterceptor.class.getName()); KafkaProducer<Integer, String> producer = new KafkaProducer<>(senderProps); producer.send(...);
Example consumer configuration using interceptors
consumerProps.put(ConsumerConfig.INTERCEPTOR_CLASSES_CONFIG, TracingConsumerInterceptor.class.getName()); KafkaConsumer<Integer, String> consumer = new KafkaConsumer<>(consumerProps); consumer.subscribe(Collections.singletonList("messages")); ConsumerRecords<Integer, String> records = consumer.poll(1000); ConsumerRecord<Integer, String> record = ... SpanContext spanContext = TracingKafkaUtils.extractSpanContext(record.headers(), tracer);
21.3.5. Instrumenting Kafka Streams applications for tracing
Instrument application code to enable tracing in Kafka Streams API applications. Use a decorator pattern or interceptors to instrument your Kafka Streams API applications for tracing. You can then record traces when messages are produced or retrieved from a topic.
- Decorator instrumentation
-
For decorator instrumentation, create a modified Kafka Streams instance for tracing. The OpenTracing instrumentation project provides a
TracingKafkaClientSupplier
class that supports instrumentation of Kafka Streams. You create a wrapped instance of theTracingKafkaClientSupplier
supplier interface, which provides tracing instrumentation for Kafka Streams. For OpenTelemetry, the process is the same but you need to create a customTracingKafkaClientSupplier
class to provide the support. - Interceptor instrumentation
- For interceptor instrumentation, add the tracing capability to the Kafka Streams producer and consumer configuration.
Prerequisites
You have initialized tracing for the client.
You enable instrumentation in Kafka Streams applications by adding the tracing JARs as dependencies to your project.
-
To instrument Kafka Streams with OpenTelemetry, you’ll need to write a custom
TracingKafkaClientSupplier
. The custom
TracingKafkaClientSupplier
can extend Kafka’sDefaultKafkaClientSupplier
, overriding the producer and consumer creation methods to wrap the instances with the telemetry-related code.Example custom
TracingKafkaClientSupplier
private class TracingKafkaClientSupplier extends DefaultKafkaClientSupplier { @Override public Producer<byte[], byte[]> getProducer(Map<String, Object> config) { KafkaTelemetry telemetry = KafkaTelemetry.create(GlobalOpenTelemetry.get()); return telemetry.wrap(super.getProducer(config)); } @Override public Consumer<byte[], byte[]> getConsumer(Map<String, Object> config) { KafkaTelemetry telemetry = KafkaTelemetry.create(GlobalOpenTelemetry.get()); return telemetry.wrap(super.getConsumer(config)); } @Override public Consumer<byte[], byte[]> getRestoreConsumer(Map<String, Object> config) { return this.getConsumer(config); } @Override public Consumer<byte[], byte[]> getGlobalConsumer(Map<String, Object> config) { return this.getConsumer(config); } }
Procedure
Perform these steps for each Kafka Streams API application.
To use a decorator pattern, create an instance of the
TracingKafkaClientSupplier
supplier interface, then provide the supplier interface toKafkaStreams
.Example decorator instrumentation
KafkaClientSupplier supplier = new TracingKafkaClientSupplier(tracer); KafkaStreams streams = new KafkaStreams(builder.build(), new StreamsConfig(config), supplier); streams.start();
To use interceptors, set the interceptor class in the Kafka Streams producer and consumer configuration.
The
TracingProducerInterceptor
andTracingConsumerInterceptor
interceptor classes take care of the tracing capability.Example producer and consumer configuration using interceptors
props.put(StreamsConfig.PRODUCER_PREFIX + ProducerConfig.INTERCEPTOR_CLASSES_CONFIG, TracingProducerInterceptor.class.getName()); props.put(StreamsConfig.CONSUMER_PREFIX + ConsumerConfig.INTERCEPTOR_CLASSES_CONFIG, TracingConsumerInterceptor.class.getName());
21.3.6. Introducing a different OpenTelemetry tracing system
Instead of the default OTLP system, you can specify other tracing systems that are supported by OpenTelemetry. You do this by adding the required artifacts to the Kafka image provided with AMQ Streams. Any required implementation specific environment variables must also be set. You then enable the new tracing implementation using the OTEL_TRACES_EXPORTER
environment variable.
This procedure shows how to implement Zipkin tracing.
Procedure
Add the tracing artifacts to the
/opt/kafka/libs/
directory of the AMQ Streams Kafka image.You can use the Kafka container image on the Red Hat Ecosystem Catalog as a base image for creating a new custom image.
OpenTelemetry artifact for Zipkin
io.opentelemetry:opentelemetry-exporter-zipkin
Set the tracing exporter and endpoint for the new tracing implementation.
Example Zikpin tracer configuration
apiVersion: kafka.strimzi.io/v1beta2 kind: KafkaMirrorMaker2 metadata: name: my-mm2-cluster spec: #... template: connectContainer: env: - name: OTEL_SERVICE_NAME value: my-zipkin-service - name: OTEL_EXPORTER_ZIPKIN_ENDPOINT value: http://zipkin-exporter-host-name:9411/api/v2/spans 1 - name: OTEL_TRACES_EXPORTER value: zipkin 2 tracing: type: opentelemetry #...
21.3.7. Custom span names
A tracing span is a logical unit of work in Jaeger, with an operation name, start time, and duration. Spans have built-in names, but you can specify custom span names in your Kafka client instrumentation where used.
Specifying custom span names is optional and only applies when using a decorator pattern in producer and consumer client instrumentation or Kafka Streams instrumentation.
21.3.7.1. Specifying span names for OpenTelemetry
Custom span names cannot be specified directly with OpenTelemetry. Instead, you retrieve span names by adding code to your client application to extract additional tags and attributes.
Example code to extract attributes
//Defines attribute extraction for a producer private static class ProducerAttribExtractor implements AttributesExtractor < ProducerRecord < ? , ? > , Void > { @Override public void onStart(AttributesBuilder attributes, ProducerRecord < ? , ? > producerRecord) { set(attributes, AttributeKey.stringKey("prod_start"), "prod1"); } @Override public void onEnd(AttributesBuilder attributes, ProducerRecord < ? , ? > producerRecord, @Nullable Void unused, @Nullable Throwable error) { set(attributes, AttributeKey.stringKey("prod_end"), "prod2"); } } //Defines attribute extraction for a consumer private static class ConsumerAttribExtractor implements AttributesExtractor < ConsumerRecord < ? , ? > , Void > { @Override public void onStart(AttributesBuilder attributes, ConsumerRecord < ? , ? > producerRecord) { set(attributes, AttributeKey.stringKey("con_start"), "con1"); } @Override public void onEnd(AttributesBuilder attributes, ConsumerRecord < ? , ? > producerRecord, @Nullable Void unused, @Nullable Throwable error) { set(attributes, AttributeKey.stringKey("con_end"), "con2"); } } //Extracts the attributes public static void main(String[] args) throws Exception { Map < String, Object > configs = new HashMap < > (Collections.singletonMap(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092")); System.setProperty("otel.traces.exporter", "jaeger"); System.setProperty("otel.service.name", "myapp1"); KafkaTracing tracing = KafkaTracing.newBuilder(GlobalOpenTelemetry.get()) .addProducerAttributesExtractors(new ProducerAttribExtractor()) .addConsumerAttributesExtractors(new ConsumerAttribExtractor()) .build();
21.3.7.2. Specifying span names for OpenTracing
To specify custom span names for OpenTracing, pass a BiFunction
object as an additional argument when instrumenting producers and consumers.
For more information on built-in names and specifying custom span names to instrument client application code in a decorator pattern, see the OpenTracing Apache Kafka client instrumentation.
Chapter 22. Retrieving diagnostic and troubleshooting data
The report.sh
diagnostics tool is a script provided by Red Hat to gather essential data for troubleshooting AMQ Streams deployments on OpenShift. It collects relevant logs, configuration files, and other diagnostic data to assist in identifying and resolving issues. When you run the script, you can specify additional parameters to retrieve specific data.
Prerequisites
- Bash 4 or newer
-
The OpenShift
oc
command-line tool is installed and configured to connect to the running cluster.
This establishes the necessary authentication for the oc
command-line tool to interact with your cluster and retrieve the required diagnostic data.
Procedure
Download and extract the tool.
The diagnostics tool is available from AMQ Streams software downloads page.
From the directory where you extracted the tool, open a terminal and run the reporting tool:
./report.sh --namespace=<cluster_namespace> --cluster=<cluster_name> --out-dir=<local_output_directory>
Replace
<cluster_namespace>
with the actual OpenShift namespace of your AMQ Streams deployment,<cluster_name>
with the name of your Kafka cluster, and<local_output_directory>
with the path to the local directory where you want to save the generated report. If you don’t specify a directory, a temporary directory is created.Include other optional reporting options, as necessary:
- --bridge=<string>
- Specify the name of the Kafka Bridge cluster to get data on its pods and logs.
- --connect=<string>
- Specify the name of the Kafka Connect cluster to get data on its pods and logs.
- --mm2=<string>
- Specify the name of the Mirror Maker 2 cluster to get data on its pods and logs.
- --secrets=(off|hidden|all)
Specify the secret verbosity level. The default is
hidden
. The available options are as follows:-
all
: Secret keys and data values are reported. -
hidden
: Secrets with only keys are reported. Data values, such as passwords, are removed. -
off
: Secrets are not reported at all.
-
Example request with data collection options
./report.sh --namespace=my-amq-streams-namespace --cluster=my-kafka-cluster --bridge=my-bridge-component --secrets=all --out-dir=~/reports
NoteIf required, assign execute permissions on the script to your user with the
chmod
command. For example,chmod +x report.sh
.
After the script has finished executing, the output directory contains files and directories of logs, configurations, and other diagnostic data collected for each component of your AMQ Streams deployment.
Data collected by the reporting diagnostics tool
Data on the following components is returned if present:
Cluster Operator
- Deployment YAML and logs
- All related pods and their logs
- YAML files for resources related to the cluster operator (ClusterRoles, ClusterRoleBindings)
Drain Cleaner (if present)
- Deployment YAML and logs
- Pod logs
Custom Resources
- Custom Resource Definitions (CRD) YAML
- YAML files for all related Custom Resources (CR)
Events
- Events related to the specified namespace
Configurations
-
Kafka pod logs and configuration file (
strimzi.properties
) -
Zookeeper pod logs and configuration file (
zookeeper.properties
) - Entity Operator (Topic Operator, User Operator) pod logs
- Cruise Control pod logs
- Kafka Exporter pod logs
- Bridge pod logs if specified in the options
- Connect pod logs if specified in the options
- MirrorMaker 2 pod logs if specified in the options
Secrets (if requested in the options)
- YAML files for all secrets related to the specified Kafka cluster
Chapter 23. Upgrading AMQ Streams
Upgrade your AMQ Streams installation to version 2.5 and benefit from new features, performance improvements, and enhanced security options. During the upgrade, Kafka is also be updated to the latest supported version, introducing additional features and bug fixes to your AMQ Streams deployment.
If you encounter any issues with the new version, AMQ Streams can be downgraded to the previous version.
Released AMQ Streams versions can be found at AMQ Streams software downloads page.
Upgrade without downtime
For topics configured with high availability (replication factor of at least 3 and evenly distributed partitions), the upgrade process should not cause any downtime for consumers and producers.
The upgrade triggers rolling updates, where brokers are restarted one by one at different stages of the process. During this time, overall cluster availability is temporarily reduced, which may increase the risk of message loss in the event of a broker failure.
23.1. AMQ Streams upgrade paths
Two upgrade paths are available for AMQ Streams.
- Incremental upgrade
- An incremental upgrade involves upgrading AMQ Streams from the previous minor version to version 2.5.
- Multi-version upgrade
- A multi-version upgrade involves upgrading an older version of AMQ Streams to version 2.5 within a single upgrade, skipping one or more intermediate versions. For example, upgrading directly from AMQ Streams 2.3 to AMQ Streams 2.5 is possible.
23.1.1. Support for Kafka versions when upgrading
When upgrading AMQ Streams, it is important to ensure compatibility with the Kafka version being used.
Multi-version upgrades are possible even if the supported Kafka versions differ between the old and new versions. However, if you attempt to upgrade to a new AMQ Streams version that does not support the current Kafka version, an error indicating that the Kafka version is not supported is generated. In this case, you must upgrade the Kafka version as part of the AMQ Streams upgrade by changing the spec.kafka.version
in the Kafka
custom resource to the supported version for the new AMQ Streams version.
- Kafka 3.5.0 is supported for production use.
- Kafka 3.4.0 is supported only for the purpose of upgrading to AMQ Streams 2.5.
23.1.2. Upgrading from an AMQ Streams version earlier than 1.7
If you are upgrading to the latest version of AMQ Streams from a version prior to version 1.7, do the following:
- Upgrade AMQ Streams to version 1.7 following the standard sequence.
-
Convert AMQ Streams custom resources to
v1beta2
using the API conversion tool provided with AMQ Streams. Do one of the following:
-
Upgrade to AMQ Streams 1.8 (where the
ControlPlaneListener
feature gate is disabled by default). -
Upgrade to AMQ Streams 2.0 or 2.2 (where the
ControlPlaneListener
feature gate is enabled by default) with theControlPlaneListener
feature gate disabled.
-
Upgrade to AMQ Streams 1.8 (where the
-
Enable the
ControlPlaneListener
feature gate. - Upgrade to AMQ Streams 2.5 following the standard sequence.
AMQ Streams custom resources started using the v1beta2
API version in release 1.7. CRDs and custom resources must be converted before upgrading to AMQ Streams 1.8 or newer. For information on using the API conversion tool, see the AMQ Streams 1.7 upgrade documentation.
As an alternative to first upgrading to version 1.7, you can install the custom resources from version 1.7 and then convert the resources.
The ControlPlaneListener
feature is now permanently enabled in AMQ Streams. You must upgrade to a version of AMQ Streams where it is disabled, then enable it using the STRIMZI_FEATURE_GATES
environment variable in the Cluster Operator configuration.
Disabling the ControlPlaneListener
feature gate
env: - name: STRIMZI_FEATURE_GATES value: -ControlPlaneListener
Enabling the ControlPlaneListener
feature gate
env: - name: STRIMZI_FEATURE_GATES value: +ControlPlaneListener
23.2. Required upgrade sequence
To upgrade brokers and clients without downtime, you must complete the AMQ Streams upgrade procedures in the following order:
Make sure your OpenShift cluster version is supported.
AMQ Streams 2.5 is supported by OpenShift 4.12 and later.
- Upgrade the Cluster Operator.
- Upgrade all Kafka brokers and client applications to the latest supported Kafka version.
23.3. Upgrading OpenShift with minimal downtime
If you are upgrading OpenShift, refer to the OpenShift upgrade documentation to check the upgrade path and the steps to upgrade your nodes correctly. Before upgrading OpenShift, check the supported versions for your version of AMQ Streams.
When performing your upgrade, you’ll want to keep your Kafka clusters available.
You can employ one of the following strategies:
- Configuring pod disruption budgets
Rolling pods by one of these methods:
- Using the AMQ Streams Drain Cleaner
- Manually by applying an annotation to your pod
When using either of the methods to roll the pods, you must set a pod disruption budget of zero using the maxUnavailable
property.
StrimziPodSet
custom resources manage Kafka and ZooKeeper pods using a custom controller that cannot use the maxUnavailable
value directly. Instead, the maxUnavailable
value is converted to a minAvailable
value. If there are three broker pods and the maxUnavailable
property is set to 0
(zero), the minAvailable
setting is 3
, requiring all three broker pods to be available and allowing zero pods to be unavailable.
For Kafka to stay operational, topics must also be replicated for high availability. This requires topic configuration that specifies a replication factor of at least 3 and a minimum number of in-sync replicas to 1 less than the replication factor.
Kafka topic replicated for high availability
apiVersion: kafka.strimzi.io/v1beta2 kind: KafkaTopic metadata: name: my-topic labels: strimzi.io/cluster: my-cluster spec: partitions: 1 replicas: 3 config: # ... min.insync.replicas: 2 # ...
In a highly available environment, the Cluster Operator maintains a minimum number of in-sync replicas for topics during the upgrade process so that there is no downtime.
23.3.1. Rolling pods using the AMQ Streams Drain Cleaner
You can use the AMQ Streams Drain Cleaner to evict nodes during an upgrade. The AMQ Streams Drain Cleaner annotates pods with a rolling update pod annotation. This informs the Cluster Operator to perform a rolling update of an evicted pod.
A pod disruption budget allows only a specified number of pods to be unavailable at a given time. During planned maintenance of Kafka broker pods, a pod disruption budget ensures Kafka continues to run in a highly available environment.
You specify a pod disruption budget using a template
customization for a Kafka component. By default, pod disruption budgets allow only a single pod to be unavailable at a given time.
In order to use the Drain Cleaner to roll pods, you set maxUnavailable
to 0
(zero). Reducing the pod disruption budget to zero prevents voluntary disruptions, so pods must be evicted manually.
Specifying a pod disruption budget
apiVersion: kafka.strimzi.io/v1beta2 kind: Kafka metadata: name: my-cluster namespace: myproject spec: kafka: # ... template: podDisruptionBudget: maxUnavailable: 0 # ...
23.3.2. Rolling pods manually while keeping topics available
During an upgrade, you can trigger a manual rolling update of pods through the Cluster Operator. Using Pod
resources, rolling updates restart the pods of resources with new pods. As with using the AMQ Streams Drain Cleaner, you’ll need to set the maxUnavailable
value to zero for the pod disruption budget.
You need to watch the pods that need to be drained. You then add a pod annotation to make the update.
Here, the annotation updates a Kafka broker.
Performing a manual rolling update on a Kafka broker pod
oc annotate pod <cluster_name>-kafka-<index> strimzi.io/manual-rolling-update=true
You replace <cluster_name> with the name of the cluster. Kafka broker pods are named <cluster-name>-kafka-<index>, where <index> starts at zero and ends at the total number of replicas minus one. For example, my-cluster-kafka-0
.
23.4. Upgrading the Cluster Operator
Use the same method to upgrade the Cluster Operator as the initial method of deployment.
- Using installation files
- If you deployed the Cluster Operator using the installation YAML files, perform your upgrade by modifying the Operator installation files, as described in Upgrading the Cluster Operator using installation files.
- Using the OperatorHub
If you deployed AMQ Streams from the OperatorHub, use the Operator Lifecycle Manager (OLM) to change the update channel for the AMQ Streams operators to a new AMQ Streams version.
Updating the channel starts one of the following types of upgrade, depending on your chosen upgrade strategy:
- An automatic upgrade is initiated
- A manual upgrade that requires approval before installation begins
NoteIf you subscribe to the stable channel, you can get automatic updates without changing channels. However, enabling automatic updates is not recommended because of the potential for missing any pre-installation upgrade steps. Use automatic upgrades only on version-specific channels.
For more information on using the OperatorHub to upgrade Operators, see Upgrading installed Operators (OpenShift documentation).
23.4.1. Upgrading the Cluster Operator returns Kafka version error
If you upgrade the Cluster Operator to a version that does not support the current version of Kafka you are using, you get an unsupported Kafka version error. This error applies to all installation methods and means that you must upgrade Kafka to a supported Kafka version. Change the spec.kafka.version
in the Kafka
resource to the supported version.
You can use oc
to check for error messages like this in the status
of the Kafka
resource.
Checking the Kafka status for errors
oc get kafka <kafka_cluster_name> -n <namespace> -o jsonpath='{.status.conditions}'
Replace <kafka_cluster_name> with the name of your Kafka cluster and <namespace> with the OpenShift namespace where the pod is running.
23.4.2. Upgrading from AMQ Streams 1.7 or earlier using the OperatorHub
Action required if upgrading from AMQ Streams 1.7 or earlier using the OperatorHub
Before you upgrade the AMQ Streams Operator to version 2.5, you need to make the following changes:
-
Convert custom resources and CRDs to
v1beta2
-
Upgrade to a version of AMQ Streams where the
ControlPlaneListener
feature gate is disabled
These requirements are described in Section 23.1.2, “Upgrading from an AMQ Streams version earlier than 1.7”.
If you are upgrading from AMQ Streams 1.7 or earlier, do the following:
- Upgrade to AMQ Streams 1.7.
- Download the Red Hat AMQ Streams API Conversion Tool provided with AMQ Streams 1.8 from the AMQ Streams software downloads page.
Convert custom resources and CRDs to
v1beta2
.For more information, see the AMQ Streams 1.7 upgrade documentation.
- In the OperatorHub, delete version 1.7 of the AMQ Streams Operator.
If it also exists, delete version 2.5 of the AMQ Streams Operator.
If it does not exist, go to the next step.
If the Approval Strategy for the AMQ Streams Operator was set to Automatic, version 2.5 of the operator might already exist in your cluster. If you did not convert custom resources and CRDs to the
v1beta2
API version before release, the operator-managed custom resources and CRDs will be using the old API version. As a result, the 2.5 Operator is stuck in Pending status. In this situation, you need to delete version 2.5 of the AMQ Streams Operator as well as version 1.7.If you delete both operators, reconciliations are paused until the new operator version is installed. Follow the next steps immediately so that any changes to custom resources are not delayed.
In the OperatorHub, do one of the following:
-
Upgrade to version 1.8 of the AMQ Streams Operator (where the
ControlPlaneListener
feature gate is disabled by default). -
Upgrade to version 2.0 or 2.2 of the AMQ Streams Operator (where the
ControlPlaneListener
feature gate is enabled by default) with theControlPlaneListener
feature gate disabled.
-
Upgrade to version 1.8 of the AMQ Streams Operator (where the
Upgrade to version 2.5 of the AMQ Streams Operator immediately.
The installed 2.5 operator begins to watch the cluster and performs rolling updates. You might notice a temporary decrease in cluster performance during this process.
23.4.3. Upgrading the Cluster Operator using installation files
This procedure describes how to upgrade a Cluster Operator deployment to use AMQ Streams 2.5.
Follow this procedure if you deployed the Cluster Operator using the installation YAML files.
The availability of Kafka clusters managed by the Cluster Operator is not affected by the upgrade operation.
Refer to the documentation supporting a specific version of AMQ Streams for information on how to upgrade to that version.
Prerequisites
- An existing Cluster Operator deployment is available.
- You have downloaded the release artifacts for AMQ Streams 2.5.
Procedure
-
Take note of any configuration changes made to the existing Cluster Operator resources (in the
/install/cluster-operator
directory). Any changes will be overwritten by the new version of the Cluster Operator. - Update your custom resources to reflect the supported configuration options available for AMQ Streams version 2.5.
Update the Cluster Operator.
Modify the installation files for the new Cluster Operator version according to the namespace the Cluster Operator is running in.
On Linux, use:
sed -i 's/namespace: .*/namespace: my-cluster-operator-namespace/' install/cluster-operator/*RoleBinding*.yaml
On MacOS, use:
sed -i '' 's/namespace: .*/namespace: my-cluster-operator-namespace/' install/cluster-operator/*RoleBinding*.yaml
-
If you modified one or more environment variables in your existing Cluster Operator
Deployment
, edit theinstall/cluster-operator/060-Deployment-strimzi-cluster-operator.yaml
file to use those environment variables.
When you have an updated configuration, deploy it along with the rest of the installation resources:
oc replace -f install/cluster-operator
Wait for the rolling updates to complete.
If the new Operator version no longer supports the Kafka version you are upgrading from, the Cluster Operator returns an error message to say the version is not supported. Otherwise, no error message is returned.
If the error message is returned, upgrade to a Kafka version that is supported by the new Cluster Operator version:
-
Edit the
Kafka
custom resource. -
Change the
spec.kafka.version
property to a supported Kafka version.
-
Edit the
- If the error message is not returned, go to the next step. You will upgrade the Kafka version later.
Get the image for the Kafka pod to ensure the upgrade was successful:
oc get pods my-cluster-kafka-0 -o jsonpath='{.spec.containers[0].image}'
The image tag shows the new Operator version. For example:
registry.redhat.io/amq-streams/strimzi-kafka-35-rhel8:2.5.2
Your Cluster Operator was upgraded to version 2.5 but the version of Kafka running in the cluster it manages is unchanged.
Following the Cluster Operator upgrade, you must perform a Kafka upgrade.
23.5. Upgrading Kafka
After you have upgraded your Cluster Operator to 2.5, the next step is to upgrade all Kafka brokers to the latest supported version of Kafka.
Kafka upgrades are performed by the Cluster Operator through rolling updates of the Kafka brokers.
The Cluster Operator initiates rolling updates based on the Kafka cluster configuration.
If Kafka.spec.kafka.config contains… | The Cluster Operator initiates… |
---|---|
Both the |
A single rolling update. After the update, the |
Either the | Two rolling updates. |
No configuration for the | Two rolling updates. |
From Kafka 3.0.0, when the inter.broker.protocol.version
is set to 3.0
or higher, the log.message.format.version
option is ignored and doesn’t need to be set. The log.message.format.version
property for brokers and the message.format.version
property for topics are deprecated and will be removed in a future release of Kafka.
As part of the Kafka upgrade, the Cluster Operator initiates rolling updates for ZooKeeper.
- A single rolling update occurs even if the ZooKeeper version is unchanged.
- Additional rolling updates occur if the new version of Kafka requires a new ZooKeeper version.
23.5.1. Kafka versions
Kafka’s log message format version and inter-broker protocol version specify, respectively, the log format version appended to messages and the version of the Kafka protocol used in a cluster. To ensure the correct versions are used, the upgrade process involves making configuration changes to existing Kafka brokers and code changes to client applications (consumers and producers).
The following table shows the differences between Kafka versions:
AMQ Streams version | Kafka version | Inter-broker protocol version | Log message format version | ZooKeeper version |
---|---|---|---|---|
2.5 | 3.5.0 | 3.5 | 3.5 | 3.6.4 |
2.4 | 3.4.0 | 3.4 | 3.4 | 3.6.3 |
AMQ Streams 2.5 uses Kafka 3.5.0, but Kafka 3.4.0 is also supported for the purpose of upgrading.
Inter-broker protocol version
In Kafka, the network protocol used for inter-broker communication is called the inter-broker protocol. Each version of Kafka has a compatible version of the inter-broker protocol. The minor version of the protocol typically increases to match the minor version of Kafka, as shown in the preceding table.
The inter-broker protocol version is set cluster wide in the Kafka
resource. To change it, you edit the inter.broker.protocol.version
property in Kafka.spec.kafka.config
.
Log message format version
When a producer sends a message to a Kafka broker, the message is encoded using a specific format. The format can change between Kafka releases, so messages specify which version of the message format they were encoded with.
The properties used to set a specific message format version are as follows:
-
message.format.version
property for topics -
log.message.format.version
property for Kafka brokers
From Kafka 3.0.0, the message format version values are assumed to match the inter.broker.protocol.version
and don’t need to be set. The values reflect the Kafka version used.
When upgrading to Kafka 3.0.0 or higher, you can remove these settings when you update the inter.broker.protocol.version
. Otherwise, set the message format version based on the Kafka version you are upgrading to.
The default value of message.format.version
for a topic is defined by the log.message.format.version
that is set on the Kafka broker. You can manually set the message.format.version
of a topic by modifying its topic configuration.
23.5.2. Strategies for upgrading clients
Upgrading Kafka clients ensures that they benefit from the features, fixes, and improvements that are introduced in new versions of Kafka. Upgraded clients maintain compatibility with other upgraded Kafka components. The performance and stability of the clients might also be improved.
Consider the best approach for upgrading Kafka clients and brokers to ensure a smooth transition. The chosen upgrade strategy depends on whether you are upgrading brokers or clients first. Since Kafka 3.0, you can upgrade brokers and client independently and in any order. The decision to upgrade clients or brokers first depends on several factors, such as the number of applications that need to be upgraded and how much downtime is tolerable.
If you upgrade clients before brokers, some new features may not work as they are not yet supported by brokers. However, brokers can handle producers and consumers running with different versions and supporting different log message versions.
Upgrading clients when using Kafka versions older than Kafka 3.0
Before Kafka 3.0, you would configure a specific message format for brokers using the log.message.format.version
property (or the message.format.version
property at the topic level). This allowed brokers to support older Kafka clients that were using an outdated message format. Otherwise, the brokers would need to convert the messages from the older clients, which came with a significant performance cost.
Apache Kafka Java clients have supported the latest message format version since version 0.11. If all of your clients are using the latest message version, you can remove the log.message.format.version
or message.format.version
overrides when upgrading your brokers.
However, if you still have clients that are using an older message format version, we recommend upgrading your clients first. Start with the consumers, then upgrade the producers before removing the log.message.format.version
or message.format.version
overrides when upgrading your brokers. This will ensure that all of your clients can support the latest message format version and that the upgrade process goes smoothly.
You can track Kafka client names and versions using this metric:
-
kafka.server:type=socket-server-metrics,clientSoftwareName=<name>,clientSoftwareVersion=<version>,listener=<listener>,networkProcessor=<processor>
The following Kafka broker metrics help monitor the performance of message down-conversion:
-
kafka.network:type=RequestMetrics,name=MessageConversionsTimeMs,request={Produce|Fetch}
provides metrics on the time taken to perform message conversion. -
kafka.server:type=BrokerTopicMetrics,name={Produce|Fetch}MessageConversionsPerSec,topic=([-.\w]+)
provides metrics on the number of messages converted over a period of time.
23.5.3. Kafka version and image mappings
When upgrading Kafka, consider your settings for the STRIMZI_KAFKA_IMAGES
environment variable and the Kafka.spec.kafka.version
property.
-
Each
Kafka
resource can be configured with aKafka.spec.kafka.version
. The Cluster Operator’s
STRIMZI_KAFKA_IMAGES
environment variable provides a mapping between the Kafka version and the image to be used when that version is requested in a givenKafka
resource.-
If
Kafka.spec.kafka.image
is not configured, the default image for the given version is used. -
If
Kafka.spec.kafka.image
is configured, the default image is overridden.
-
If
The Cluster Operator cannot validate that an image actually contains a Kafka broker of the expected version. Take care to ensure that the given image corresponds to the given Kafka version.
23.5.4. Upgrading Kafka brokers and client applications
Upgrade an AMQ Streams Kafka cluster to the latest supported Kafka version and inter-broker protocol version.
You should also choose a strategy for upgrading clients. Kafka clients are upgraded in step 6 of this procedure.
Prerequisites
- The Cluster Operator is up and running.
-
Before you upgrade the AMQ Streams Kafka cluster, check that the
Kafka.spec.kafka.config
properties of theKafka
resource do not contain configuration options that are not supported in the new Kafka version.
Procedure
Update the Kafka cluster configuration:
oc edit kafka <my_cluster>
If configured, check that the
inter.broker.protocol.version
andlog.message.format.version
properties are set to the current version.For example, the current version is 3.4 if upgrading from Kafka version 3.4.0 to 3.5.0:
kind: Kafka spec: # ... kafka: version: 3.4.0 config: log.message.format.version: "3.4" inter.broker.protocol.version: "3.4" # ...
If
log.message.format.version
andinter.broker.protocol.version
are not configured, AMQ Streams automatically updates these versions to the current defaults after the update to the Kafka version in the next step.NoteThe value of
log.message.format.version
andinter.broker.protocol.version
must be strings to prevent them from being interpreted as floating point numbers.Change the
Kafka.spec.kafka.version
to specify the new Kafka version; leave thelog.message.format.version
andinter.broker.protocol.version
at the defaults for the current Kafka version.NoteChanging the
kafka.version
ensures that all brokers in the cluster will be upgraded to start using the new broker binaries. During this process, some brokers are using the old binaries while others have already upgraded to the new ones. Leaving theinter.broker.protocol.version
unchanged at the current setting ensures that the brokers can continue to communicate with each other throughout the upgrade.For example, if upgrading from Kafka 3.4.0 to 3.5.0:
apiVersion: kafka.strimzi.io/v1beta2 kind: Kafka spec: # ... kafka: version: 3.5.0 1 config: log.message.format.version: "3.4" 2 inter.broker.protocol.version: "3.4" 3 # ...
WarningYou cannot downgrade Kafka if the
inter.broker.protocol.version
for the new Kafka version changes. The inter-broker protocol version determines the schemas used for persistent metadata stored by the broker, including messages written to__consumer_offsets
. The downgraded cluster will not understand the messages.If the image for the Kafka cluster is defined in the Kafka custom resource, in
Kafka.spec.kafka.image
, update theimage
to point to a container image with the new Kafka version.Save and exit the editor, then wait for rolling updates to complete.
Check the progress of the rolling updates by watching the pod state transitions:
oc get pods my-cluster-kafka-0 -o jsonpath='{.spec.containers[0].image}'
The rolling updates ensure that each pod is using the broker binaries for the new version of Kafka.
Depending on your chosen strategy for upgrading clients, upgrade all client applications to use the new version of the client binaries.
If required, set the
version
property for Kafka Connect and MirrorMaker as the new version of Kafka:-
For Kafka Connect, update
KafkaConnect.spec.version
. -
For MirrorMaker, update
KafkaMirrorMaker.spec.version
. -
For MirrorMaker 2, update
KafkaMirrorMaker2.spec.version
.
-
For Kafka Connect, update
If configured, update the Kafka resource to use the new
inter.broker.protocol.version
version. Otherwise, go to step 9.For example, if upgrading to Kafka 3.5.0:
apiVersion: kafka.strimzi.io/v1beta2 kind: Kafka spec: # ... kafka: version: 3.5.0 config: log.message.format.version: "3.4" inter.broker.protocol.version: "3.5" # ...
- Wait for the Cluster Operator to update the cluster.
If configured, update the Kafka resource to use the new
log.message.format.version
version. Otherwise, go to step 10.For example, if upgrading to Kafka 3.5.0:
apiVersion: kafka.strimzi.io/v1beta2 kind: Kafka spec: # ... kafka: version: 3.5.0 config: log.message.format.version: "3.5" inter.broker.protocol.version: "3.5" # ...
ImportantFrom Kafka 3.0.0, when the
inter.broker.protocol.version
is set to3.0
or higher, thelog.message.format.version
option is ignored and doesn’t need to be set.Wait for the Cluster Operator to update the cluster.
- The Kafka cluster and clients are now using the new Kafka version.
- The brokers are configured to send messages using the inter-broker protocol version and message format version of the new version of Kafka.
23.6. Switching to FIPS mode when upgrading AMQ Streams
Upgrade AMQ Streams to run in FIPS mode on FIPS-enabled OpenShift clusters. Until AMQ Streams 2.4, running on FIPS-enabled OpenShift clusters was possible only by disabling FIPS mode using the FIPS_MODE
environment variable. From release 2.4, AMQ Streams supports FIPS mode. If you run AMQ Streams on a FIPS-enabled OpenShift cluster with the FIPS_MODE
set to disabled
, you can enable it by following this procedure.
Prerequisites
- FIPS-enabled OpenShift cluster
-
An existing Cluster Operator deployment with the
FIPS_MODE
environment variable set todisabled
Procedure
-
Upgrade the Cluster Operator to version 2.4 or newer but keep the
FIPS_MODE
environment variable set todisabled
. If you initially deployed an AMQ Streams version older than 2.3, it might use old encryption and digest algorithms in its PKCS #12 stores, which are not supported with FIPS enabled. To recreate the certificates with updated algorithms, renew the cluster and clients CA certificates.
-
To renew the CAs generated by the Cluster Operator, add the
force-renew
annotation to the CA secrets to trigger a renewal. -
To renew your own CAs, add the new certificate to the CA secret and update the
ca-cert-generation
annotation with a higher incremental value to capture the update.
-
To renew the CAs generated by the Cluster Operator, add the
If you use SCRAM-SHA-512 authentication, check the password length of your users. If they are less than 32 characters long, generate a new password in one of the following ways:
- Delete the user secret so that the User Operator generates a new one with a new password of sufficient length.
-
If you provided your password using the
.spec.authentication.password
properties of theKafkaUser
custom resource, update the password in the OpenShift secret referenced in the same password configuration. Don’t forget to update your clients to use the new passwords.
- Ensure that the CA certificates are using the correct algorithms and the SCRAM-SHA-512 passwords are of sufficient length. You can then enable the FIPS mode.
-
Remove the
FIPS_MODE
environment variable from the Cluster Operator deployment. This restarts the Cluster Operator and rolls all the operands to enable the FIPS mode. After the restart is complete, all Kafka clusters now run with FIPS mode enabled.
Chapter 24. Downgrading AMQ Streams
If you are encountering issues with the version of AMQ Streams you upgraded to, you can revert your installation to the previous version.
If you used the YAML installation files to install AMQ Streams, you can use the YAML installation files from the previous release to perform the following downgrade procedures:
If the previous version of AMQ Streams does not support the version of Kafka you are using, you can also downgrade Kafka as long as the log message format versions appended to messages match.
The following downgrade instructions are only suitable if you installed AMQ Streams using the installation files. If you installed AMQ Streams using another method, like OperatorHub, downgrade may not be supported by that method unless specified in their documentation. To ensure a successful downgrade process, it is essential to use a supported approach.
24.1. Downgrading the Cluster Operator to a previous version
If you are encountering issues with AMQ Streams, you can revert your installation.
This procedure describes how to downgrade a Cluster Operator deployment to a previous version.
Prerequisites
- An existing Cluster Operator deployment is available.
- You have downloaded the installation files for the previous version.
Before you begin
Check the downgrade requirements of the AMQ Streams feature gates. If a feature gate is permanently enabled, you may need to downgrade to a version that allows you to disable it before downgrading to your target version.
Procedure
-
Take note of any configuration changes made to the existing Cluster Operator resources (in the
/install/cluster-operator
directory). Any changes will be overwritten by the previous version of the Cluster Operator. - Revert your custom resources to reflect the supported configuration options available for the version of AMQ Streams you are downgrading to.
Update the Cluster Operator.
Modify the installation files for the previous version according to the namespace the Cluster Operator is running in.
On Linux, use:
sed -i 's/namespace: .*/namespace: my-cluster-operator-namespace/' install/cluster-operator/*RoleBinding*.yaml
On MacOS, use:
sed -i '' 's/namespace: .*/namespace: my-cluster-operator-namespace/' install/cluster-operator/*RoleBinding*.yaml
-
If you modified one or more environment variables in your existing Cluster Operator
Deployment
, edit theinstall/cluster-operator/060-Deployment-strimzi-cluster-operator.yaml
file to use those environment variables.
When you have an updated configuration, deploy it along with the rest of the installation resources:
oc replace -f install/cluster-operator
Wait for the rolling updates to complete.
Get the image for the Kafka pod to ensure the downgrade was successful:
oc get pod my-cluster-kafka-0 -o jsonpath='{.spec.containers[0].image}'
The image tag shows the new AMQ Streams version followed by the Kafka version. For example,
NEW-STRIMZI-VERSION-kafka-CURRENT-KAFKA-VERSION
.
Your Cluster Operator was downgraded to the previous version.
24.2. Downgrading Kafka
Kafka version downgrades are performed by the Cluster Operator.
24.2.1. Kafka version compatibility for downgrades
Kafka downgrades are dependent on compatible current and target Kafka versions, and the state at which messages have been logged.
You cannot revert to the previous Kafka version if that version does not support any of the inter.broker.protocol.version
settings which have ever been used in that cluster, or messages have been added to message logs that use a newer log.message.format.version
.
The inter.broker.protocol.version
determines the schemas used for persistent metadata stored by the broker, such as the schema for messages written to __consumer_offsets
. If you downgrade to a version of Kafka that does not understand an inter.broker.protocol.version
that has ever been previously used in the cluster the broker will encounter data it cannot understand.
If the target downgrade version of Kafka has:
-
The same
log.message.format.version
as the current version, the Cluster Operator downgrades by performing a single rolling restart of the brokers. A different
log.message.format.version
, downgrading is only possible if the running cluster has always hadlog.message.format.version
set to the version used by the downgraded version. This is typically only the case if the upgrade procedure was aborted before thelog.message.format.version
was changed. In this case, the downgrade requires:- Two rolling restarts of the brokers if the interbroker protocol of the two versions is different
- A single rolling restart if they are the same
Downgrading is not possible if the new version has ever used a log.message.format.version
that is not supported by the previous version, including when the default value for log.message.format.version
is used. For example, this resource can be downgraded to Kafka version 3.4.0 because the log.message.format.version
has not been changed:
apiVersion: kafka.strimzi.io/v1beta2 kind: Kafka spec: # ... kafka: version: 3.5.0 config: log.message.format.version: "3.4" # ...
The downgrade would not be possible if the log.message.format.version
was set at "3.5"
or a value was absent, so that the parameter took the default value for a 3.5.0 broker of 3.5.
From Kafka 3.0.0, when the inter.broker.protocol.version
is set to 3.0
or higher, the log.message.format.version
option is ignored and doesn’t need to be set.
24.2.2. Downgrading Kafka brokers and client applications
Downgrade an AMQ Streams Kafka cluster to a lower (previous) version of Kafka, such as downgrading from 3.5.0 to 3.4.0.
Prerequisites
- The Cluster Operator is up and running.
Before you downgrade the AMQ Streams Kafka cluster, check the following for the
Kafka
resource:- IMPORTANT: Compatibility of Kafka versions.
-
Kafka.spec.kafka.config
does not contain options that are not supported by the Kafka version being downgraded to. Kafka.spec.kafka.config
has alog.message.format.version
andinter.broker.protocol.version
that is supported by the Kafka version being downgraded to.From Kafka 3.0.0, when the
inter.broker.protocol.version
is set to3.0
or higher, thelog.message.format.version
option is ignored and doesn’t need to be set.
Procedure
Update the Kafka cluster configuration.
oc edit kafka KAFKA-CONFIGURATION-FILE
Change the
Kafka.spec.kafka.version
to specify the previous version.For example, if downgrading from Kafka 3.5.0 to 3.4.0:
apiVersion: kafka.strimzi.io/v1beta2 kind: Kafka spec: # ... kafka: version: 3.4.0 1 config: log.message.format.version: "3.4" 2 inter.broker.protocol.version: "3.4" 3 # ...
NoteThe value of
log.message.format.version
andinter.broker.protocol.version
must be strings to prevent them from being interpreted as floating point numbers.If the image for the Kafka version is different from the image defined in
STRIMZI_KAFKA_IMAGES
for the Cluster Operator, updateKafka.spec.kafka.image
.Save and exit the editor, then wait for rolling updates to complete.
Check the update in the logs or by watching the pod state transitions:
oc logs -f CLUSTER-OPERATOR-POD-NAME | grep -E "Kafka version downgrade from [0-9.]+ to [0-9.]+, phase ([0-9]+) of \1 completed"
oc get pod -w
Check the Cluster Operator logs for an
INFO
level message:Reconciliation #NUM(watch) Kafka(NAMESPACE/NAME): Kafka version downgrade from FROM-VERSION to TO-VERSION, phase 1 of 1 completed
Downgrade all client applications (consumers) to use the previous version of the client binaries.
The Kafka cluster and clients are now using the previous Kafka version.
If you are reverting back to a version of AMQ Streams earlier than 1.7, which uses ZooKeeper for the storage of topic metadata, delete the internal topic store topics from the Kafka cluster.
oc run kafka-admin -ti --image=registry.redhat.io/amq-streams/kafka-35-rhel8:2.5.2 --rm=true --restart=Never -- ./bin/kafka-topics.sh --bootstrap-server localhost:9092 --topic __strimzi-topic-operator-kstreams-topic-store-changelog --delete && ./bin/kafka-topics.sh --bootstrap-server localhost:9092 --topic __strimzi_store_topic --delete
Chapter 25. Handling high volumes of messages
If your AMQ Streams deployment needs to handle a high volume of messages, you can use configuration options to optimize for throughput and latency.
Producer and consumer configuration can help control the size and frequency of requests to Kafka brokers. For more information on the configuration options, see the following:
You can also use the same configuration options with the producers and consumers used by the Kafka Connect runtime source connectors (including MirrorMaker 2) and sink connectors.
- Source connectors
- Producers from the Kafka Connect runtime send messages to the Kafka cluster.
- For MirrorMaker 2, since the source system is Kafka, consumers retrieve messages from a source Kafka cluster.
- Sink connectors
- Consumers from the Kafka Connect runtime retrieve messages from the Kafka cluster.
For consumers, you might increase the amount of data fetched in a single fetch request to reduce latency. You increase the fetch request size using the fetch.max.bytes
and max.partition.fetch.bytes
properties. You can also set a maximum limit on the number of messages returned from the consumer buffer using the max.poll.records
property.
For MirrorMaker 2, configure the fetch.max.bytes
, max.partition.fetch.bytes
, and max.poll.records
values at the source connector level (consumer.*
), as they relate to the specific consumer that fetches messages from the source.
For producers, you might increase the size of the message batches sent in a single produce request. You increase the batch size using the batch.size
property. A larger batch size reduces the number of outstanding messages ready to be sent and the size of the backlog in the message queue. Messages being sent to the same partition are batched together. A produce request is sent to the target cluster when the batch size is reached. By increasing the batch size, produce requests are delayed and more messages are added to the batch and sent to brokers at the same time. This can improve throughput when you have just a few topic partitions that handle large numbers of messages.
Consider the number and size of the records that the producer handles for a suitable producer batch size.
Use linger.ms
to add a wait time in milliseconds to delay produce requests when producer load decreases. The delay means that more records can be added to batches if they are under the maximum batch size.
Configure the batch.size
and linger.ms
values at the source connector level (producer.override.*
), as they relate to the specific producer that sends messages to the target Kafka cluster.
For Kafka Connect source connectors, the data streaming pipeline to the target Kafka cluster is as follows:
Data streaming pipeline for Kafka Connect source connector
external data source → (Kafka Connect tasks) source message queue → producer buffer → target Kafka topic
For Kafka Connect sink connectors, the data streaming pipeline to the target external data source is as follows:
Data streaming pipeline for Kafka Connect sink connector
source Kafka topic → (Kafka Connect tasks) sink message queue → consumer buffer → external data source
For MirrorMaker 2, the data mirroring pipeline to the target Kafka cluster is as follows:
Data mirroring pipeline for MirrorMaker 2
source Kafka topic → (Kafka Connect tasks) source message queue → producer buffer → target Kafka topic
The producer sends messages in its buffer to topics in the target Kafka cluster. While this is happening, Kafka Connect tasks continue to poll the data source to add messages to the source message queue.
The size of the producer buffer for the source connector is set using the producer.override.buffer.memory
property. Tasks wait for a specified timeout period (offset.flush.timeout.ms
) before the buffer is flushed. This should be enough time for the sent messages to be acknowledged by the brokers and offset data committed. The source task does not wait for the producer to empty the message queue before committing offsets, except during shutdown.
If the producer is unable to keep up with the throughput of messages in the source message queue, buffering is blocked until there is space available in the buffer within a time period bounded by max.block.ms
. Any unacknowledged messages still in the buffer are sent during this period. New messages are not added to the buffer until these messages are acknowledged and flushed.
You can try the following configuration changes to keep the underlying source message queue of outstanding messages at a manageable size:
-
Increasing the default value in milliseconds of the
offset.flush.timeout.ms
- Ensuring that there are enough CPU and memory resources
Increasing the number of tasks that run in parallel by doing the following:
-
Increasing the number of tasks that run in parallel using the
tasksMax
property -
Increasing the number of worker nodes that run tasks using the
replicas
property
-
Increasing the number of tasks that run in parallel using the
Consider the number of tasks that can run in parallel according to the available CPU and memory resources and number of worker nodes. You might need to keep adjusting the configuration values until they have the desired effect.
25.1. Configuring Kafka Connect for high-volume messages
Kafka Connect fetches data from the source external data system and hands it to the Kafka Connect runtime producers so that it’s replicated to the target cluster.
The following example shows configuration for Kafka Connect using the KafkaConnect
custom resource.
Example Kafka Connect configuration for handling high volumes of messages
apiVersion: kafka.strimzi.io/v1beta2 kind: KafkaConnect metadata: name: my-connect-cluster annotations: strimzi.io/use-connector-resources: "true" spec: replicas: 3 config: offset.flush.timeout.ms: 10000 # ... resources: requests: cpu: "1" memory: 2Gi limits: cpu: "2" memory: 2Gi # ...
Producer configuration is added for the source connector, which is managed using the KafkaConnector
custom resource.
Example source connector configuration for handling high volumes of messages
apiVersion: kafka.strimzi.io/v1beta2 kind: KafkaConnector metadata: name: my-source-connector labels: strimzi.io/cluster: my-connect-cluster spec: class: org.apache.kafka.connect.file.FileStreamSourceConnector tasksMax: 2 config: producer.override.batch.size: 327680 producer.override.linger.ms: 100 # ...
FileStreamSourceConnector
and FileStreamSinkConnector
are provided as example connectors. For information on deploying them as KafkaConnector
resources, see Section 6.4.3.3, “Deploying KafkaConnector resources”.
Consumer configuration is added for the sink connector.
Example sink connector configuration for handling high volumes of messages
apiVersion: kafka.strimzi.io/v1beta2 kind: KafkaConnector metadata: name: my-sink-connector labels: strimzi.io/cluster: my-connect-cluster spec: class: org.apache.kafka.connect.file.FileStreamSinkConnector tasksMax: 2 config: consumer.fetch.max.bytes: 52428800 consumer.max.partition.fetch.bytes: 1048576 consumer.max.poll.records: 500 # ...
If you are using the Kafka Connect API instead of the KafkaConnector
custom resource to manage your connectors, you can add the connector configuration as a JSON object.
Example curl request to add source connector configuration for handling high volumes of messages
curl -X POST \ http://my-connect-cluster-connect-api:8083/connectors \ -H 'Content-Type: application/json' \ -d '{ "name": "my-source-connector", "config": { "connector.class":"org.apache.kafka.connect.file.FileStreamSourceConnector", "file": "/opt/kafka/LICENSE", "topic":"my-topic", "tasksMax": "4", "type": "source" "producer.override.batch.size": 327680 "producer.override.linger.ms": 100 } }'
25.2. Configuring MirrorMaker 2 for high-volume messages
MirrorMaker 2 fetches data from the source cluster and hands it to the Kafka Connect runtime producers so that it’s replicated to the target cluster.
The following example shows the configuration for MirrorMaker 2 using the KafkaMirrorMaker2
custom resource.
Example MirrorMaker 2 configuration for handling high volumes of messages
apiVersion: kafka.strimzi.io/v1beta2 kind: KafkaMirrorMaker2 metadata: name: my-mirror-maker2 spec: version: 3.5.0 replicas: 1 connectCluster: "my-cluster-target" clusters: - alias: "my-cluster-source" bootstrapServers: my-cluster-source-kafka-bootstrap:9092 - alias: "my-cluster-target" config: offset.flush.timeout.ms: 10000 bootstrapServers: my-cluster-target-kafka-bootstrap:9092 mirrors: - sourceCluster: "my-cluster-source" targetCluster: "my-cluster-target" sourceConnector: tasksMax: 2 config: producer.override.batch.size: 327680 producer.override.linger.ms: 100 consumer.fetch.max.bytes: 52428800 consumer.max.partition.fetch.bytes: 1048576 consumer.max.poll.records: 500 # ... resources: requests: cpu: "1" memory: Gi limits: cpu: "2" memory: 4Gi
25.3. Checking the MirrorMaker 2 message flow
If you are using Prometheus and Grafana to monitor your deployment, you can check the MirrorMaker 2 message flow.
The example MirrorMaker 2 Grafana dashboards provided with AMQ Streams show the following metrics related to the flush pipeline.
- The number of messages in Kafka Connect’s outstanding messages queue
- The available bytes of the producer buffer
- The offset commit timeout in milliseconds
You can use these metrics to gauge whether or not you need to tune your configuration based on the volume of messages.
Chapter 26. Finding information on Kafka restarts
After the Cluster Operator restarts a Kafka pod in an OpenShift cluster, it emits an OpenShift event into the pod’s namespace explaining why the pod restarted. For help in understanding cluster behavior, you can check restart events from the command line.
You can export and monitor restart events using metrics collection tools like Prometheus. Use the metrics tool with an event exporter that can export the output in a suitable format.
26.1. Reasons for a restart event
The Cluster Operator initiates a restart event for a specific reason. You can check the reason by fetching information on the restart event.
Event | Description |
---|---|
CaCertHasOldGeneration | The pod is still using a server certificate signed with an old CA, so needs to be restarted as part of the certificate update. |
CaCertRemoved | Expired CA certificates have been removed, and the pod is restarted to run with the current certificates. |
CaCertRenewed | CA certificates have been renewed, and the pod is restarted to run with the updated certificates. |
ClientCaCertKeyReplaced | The key used to sign clients CA certificates has been replaced, and the pod is being restarted as part of the CA renewal process. |
ClusterCaCertKeyReplaced | The key used to sign the cluster’s CA certificates has been replaced, and the pod is being restarted as part of the CA renewal process. |
ConfigChangeRequiresRestart | Some Kafka configuration properties are changed dynamically, but others require that the broker be restarted. |
FileSystemResizeNeeded | The file system size has been increased, and a restart is needed to apply it. |
KafkaCertificatesChanged | One or more TLS certificates used by the Kafka broker have been updated, and a restart is needed to use them. |
ManualRollingUpdate |
A user annotated the pod, or the |
PodForceRestartOnError | An error occurred that requires a pod restart to rectify. |
PodHasOldRevision |
A disk was added or removed from the Kafka volumes, and a restart is needed to apply the change. When using |
PodHasOldRevision |
The |
PodStuck | The pod is still pending, and is not scheduled or cannot be scheduled, so the operator has restarted the pod in a final attempt to get it running. |
PodUnresponsive | AMQ Streams was unable to connect to the pod, which can indicate a broker not starting correctly, so the operator restarted it in an attempt to resolve the issue. |
26.2. Restart event filters
When checking restart events from the command line, you can specify a field-selector
to filter on OpenShift event fields.
The following fields are available when filtering events with field-selector
.
regardingObject.kind
-
The object that was restarted, and for restart events, the kind is always
Pod
. regarding.namespace
- The namespace that the pod belongs to.
regardingObject.name
-
The pod’s name, for example,
strimzi-cluster-kafka-0
. regardingObject.uid
- The unique ID of the pod.
reason
-
The reason the pod was restarted, for example,
JbodVolumesChanged
. reportingController
-
The reporting component is always
strimzi.io/cluster-operator
for AMQ Streams restart events. source
-
source
is an older version ofreportingController
. The reporting component is alwaysstrimzi.io/cluster-operator
for AMQ Streams restart events. type
-
The event type, which is either
Warning
orNormal
. For AMQ Streams restart events, the type isNormal
.
In older versions of OpenShift, the fields using the regarding
prefix might use an involvedObject
prefix instead. reportingController
was previously called reportingComponent
.
26.3. Checking Kafka restarts
Use a oc
command to list restart events initiated by the Cluster Operator. Filter restart events emitted by the Cluster Operator by setting the Cluster Operator as the reporting component using the reportingController
or source
event fields.
Prerequisites
- The Cluster Operator is running in the OpenShift cluster.
Procedure
Get all restart events emitted by the Cluster Operator:
oc -n kafka get events --field-selector reportingController=strimzi.io/cluster-operator
Example showing events returned
LAST SEEN TYPE REASON OBJECT MESSAGE 2m Normal CaCertRenewed pod/strimzi-cluster-kafka-0 CA certificate renewed 58m Normal PodForceRestartOnError pod/strimzi-cluster-kafka-1 Pod needs to be forcibly restarted due to an error 5m47s Normal ManualRollingUpdate pod/strimzi-cluster-kafka-2 Pod was manually annotated to be rolled
You can also specify a
reason
or otherfield-selector
options to constrain the events returned.Here, a specific reason is added:
oc -n kafka get events --field-selector reportingController=strimzi.io/cluster-operator,reason=PodForceRestartOnError
Use an output format, such as YAML, to return more detailed information about one or more events.
oc -n kafka get events --field-selector reportingController=strimzi.io/cluster-operator,reason=PodForceRestartOnError -o yaml
Example showing detailed events output
apiVersion: v1 items: - action: StrimziInitiatedPodRestart apiVersion: v1 eventTime: "2022-05-13T00:22:34.168086Z" firstTimestamp: null involvedObject: kind: Pod name: strimzi-cluster-kafka-1 namespace: kafka kind: Event lastTimestamp: null message: Pod needs to be forcibly restarted due to an error metadata: creationTimestamp: "2022-05-13T00:22:34Z" generateName: strimzi-event name: strimzi-eventwppk6 namespace: kafka resourceVersion: "432961" uid: 29fcdb9e-f2cf-4c95-a165-a5efcd48edfc reason: PodForceRestartOnError reportingController: strimzi.io/cluster-operator reportingInstance: strimzi-cluster-operator-6458cfb4c6-6bpdp source: {} type: Normal kind: List metadata: resourceVersion: "" selfLink: ""
The following fields are deprecated, so they are not populated for these events:
-
firstTimestamp
-
lastTimestamp
-
source
Chapter 27. Managing AMQ Streams
Managing AMQ Streams requires performing various tasks to keep the Kafka clusters and associated resources running smoothly. Use oc
commands to check the status of resources, configure maintenance windows for rolling updates, and leverage tools such as the AMQ Streams Drain Cleaner and Kafka Static Quota plugin to manage your deployment effectively.
27.1. Working with custom resources
You can use oc
commands to retrieve information and perform other operations on AMQ Streams custom resources.
Using oc
with the status
subresource of a custom resource allows you to get the information about the resource.
27.1.1. Performing oc
operations on custom resources
Use oc
commands, such as get
, describe
, edit
, or delete
, to perform operations on resource types. For example, oc get kafkatopics
retrieves a list of all Kafka topics and oc get kafkas
retrieves all deployed Kafka clusters.
When referencing resource types, you can use both singular and plural names: oc get kafkas
gets the same results as oc get kafka
.
You can also use the short name of the resource. Learning short names can save you time when managing AMQ Streams. The short name for Kafka
is k
, so you can also run oc get k
to list all Kafka clusters.
oc get k NAME DESIRED KAFKA REPLICAS DESIRED ZK REPLICAS my-cluster 3 3
AMQ Streams resource | Long name | Short name |
---|---|---|
Kafka | kafka | k |
Kafka Topic | kafkatopic | kt |
Kafka User | kafkauser | ku |
Kafka Connect | kafkaconnect | kc |
Kafka Connector | kafkaconnector | kctr |
Kafka Mirror Maker | kafkamirrormaker | kmm |
Kafka Mirror Maker 2 | kafkamirrormaker2 | kmm2 |
Kafka Bridge | kafkabridge | kb |
Kafka Rebalance | kafkarebalance | kr |
27.1.1.1. Resource categories
Categories of custom resources can also be used in oc
commands.
All AMQ Streams custom resources belong to the category strimzi
, so you can use strimzi
to get all the AMQ Streams resources with one command.
For example, running oc get strimzi
lists all AMQ Streams custom resources in a given namespace.
oc get strimzi NAME DESIRED KAFKA REPLICAS DESIRED ZK REPLICAS kafka.kafka.strimzi.io/my-cluster 3 3 NAME PARTITIONS REPLICATION FACTOR kafkatopic.kafka.strimzi.io/kafka-apps 3 3 NAME AUTHENTICATION AUTHORIZATION kafkauser.kafka.strimzi.io/my-user tls simple
The oc get strimzi -o name
command returns all resource types and resource names. The -o name
option fetches the output in the type/name format
oc get strimzi -o name kafka.kafka.strimzi.io/my-cluster kafkatopic.kafka.strimzi.io/kafka-apps kafkauser.kafka.strimzi.io/my-user
You can combine this strimzi
command with other commands. For example, you can pass it into a oc delete
command to delete all resources in a single command.
oc delete $(oc get strimzi -o name) kafka.kafka.strimzi.io "my-cluster" deleted kafkatopic.kafka.strimzi.io "kafka-apps" deleted kafkauser.kafka.strimzi.io "my-user" deleted
Deleting all resources in a single operation might be useful, for example, when you are testing new AMQ Streams features.
27.1.1.2. Querying the status of sub-resources
There are other values you can pass to the -o
option. For example, by using -o yaml
you get the output in YAML format. Using -o json
will return it as JSON.
You can see all the options in oc get --help
.
One of the most useful options is the JSONPath support, which allows you to pass JSONPath expressions to query the Kubernetes API. A JSONPath expression can extract or navigate specific parts of any resource.
For example, you can use the JSONPath expression {.status.listeners[?(@.name=="tls")].bootstrapServers}
to get the bootstrap address from the status of the Kafka custom resource and use it in your Kafka clients.
Here, the command finds the bootstrapServers
value of the listener named tls
:
oc get kafka my-cluster -o=jsonpath='{.status.listeners[?(@.name=="tls")].bootstrapServers}{"\n"}' my-cluster-kafka-bootstrap.myproject.svc:9093
By changing the name condition you can also get the address of the other Kafka listeners.
You can use jsonpath
to extract any other property or group of properties from any custom resource.
27.1.2. AMQ Streams custom resource status information
Status properties provide status information for certain custom resources.
The following table lists the custom resources that provide status information (when deployed) and the schemas that define the status properties.
For more information on the schemas, see the AMQ Streams Custom Resource API Reference.
AMQ Streams resource | Schema reference | Publishes status information on… |
---|---|---|
|
| The Kafka cluster |
|
| Kafka topics in the Kafka cluster |
|
| Kafka users in the Kafka cluster |
|
| The Kafka Connect cluster |
|
|
|
|
| The Kafka MirrorMaker 2 cluster |
|
| The Kafka MirrorMaker cluster |
|
| The AMQ Streams Kafka Bridge |
|
| The status and results of a rebalance |
The status
property of a resource provides information on the state of the resource. The status.conditions
and status.observedGeneration
properties are common to all resources.
status.conditions
-
Status conditions describe the current state of a resource. Status condition properties are useful for tracking progress related to the resource achieving its desired state, as defined by the configuration specified in its
spec
. Status condition properties provide the time and reason the state of the resource changed, and details of events preventing or delaying the operator from realizing the desired state. status.observedGeneration
-
Last observed generation denotes the latest reconciliation of the resource by the Cluster Operator. If the value of
observedGeneration
is different from the value ofmetadata.generation
((the current version of the deployment), the operator has not yet processed the latest update to the resource. If these values are the same, the status information reflects the most recent changes to the resource.
The status
properties also provide resource-specific information. For example, KafkaStatus
provides information on listener addresses, and the ID of the Kafka cluster.
AMQ Streams creates and maintains the status of custom resources, periodically evaluating the current state of the custom resource and updating its status accordingly. When performing an update on a custom resource using oc edit
, for example, its status
is not editable. Moreover, changing the status
would not affect the configuration of the Kafka cluster.
Here we see the status
properties for a Kafka
custom resource.
Kafka custom resource status
apiVersion: kafka.strimzi.io/v1beta2 kind: Kafka metadata: spec: # ... status: clusterId: XP9FP2P-RByvEy0W4cOEUA 1 conditions: 2 - lastTransitionTime: '2023-01-20T17:56:29.396588Z' status: 'True' type: Ready 3 listeners: 4 - addresses: - host: my-cluster-kafka-bootstrap.prm-project.svc port: 9092 bootstrapServers: 'my-cluster-kafka-bootstrap.prm-project.svc:9092' name: plain type: plain - addresses: - host: my-cluster-kafka-bootstrap.prm-project.svc port: 9093 bootstrapServers: 'my-cluster-kafka-bootstrap.prm-project.svc:9093' certificates: - | -----BEGIN CERTIFICATE----- -----END CERTIFICATE----- name: tls type: tls - addresses: - host: >- 2054284155.us-east-2.elb.amazonaws.com port: 9095 bootstrapServers: >- 2054284155.us-east-2.elb.amazonaws.com:9095 certificates: - | -----BEGIN CERTIFICATE----- -----END CERTIFICATE----- name: external2 type: external2 - addresses: - host: ip-10-0-172-202.us-east-2.compute.internal port: 31644 bootstrapServers: 'ip-10-0-172-202.us-east-2.compute.internal:31644' certificates: - | -----BEGIN CERTIFICATE----- -----END CERTIFICATE----- name: external1 type: external1 observedGeneration: 3 5
- 1
- The Kafka cluster ID.
- 2
- Status
conditions
describe the current state of the Kafka cluster. - 3
- The
Ready
condition indicates that the Cluster Operator considers the Kafka cluster able to handle traffic. - 4
- The
listeners
describe Kafka bootstrap addresses by type. - 5
- The
observedGeneration
value indicates the last reconciliation of theKafka
custom resource by the Cluster Operator.
The Kafka bootstrap addresses listed in the status do not signify that those endpoints or the Kafka cluster is in a Ready
state.
Accessing status information
You can access status information for a resource from the command line. For more information, see Section 27.1.3, “Finding the status of a custom resource”.
27.1.3. Finding the status of a custom resource
This procedure describes how to find the status of a custom resource.
Prerequisites
- An OpenShift cluster.
- The Cluster Operator is running.
Procedure
Specify the custom resource and use the
-o jsonpath
option to apply a standard JSONPath expression to select thestatus
property:oc get kafka <kafka_resource_name> -o jsonpath='{.status}'
This expression returns all the status information for the specified custom resource. You can use dot notation, such as
status.listeners
orstatus.observedGeneration
, to fine-tune the status information you wish to see.
Additional resources
- Section 27.1.2, “AMQ Streams custom resource status information”
- For more information about using JSONPath, see JSONPath support.
27.2. Discovering services using labels and annotations
Service discovery makes it easier for client applications running in the same OpenShift cluster as AMQ Streams to interact with a Kafka cluster.
A service discovery label and annotation is generated for services used to access the Kafka cluster:
- Internal Kafka bootstrap service
- HTTP Bridge service
The label helps to make the service discoverable, and the annotation provides connection details that a client application can use to make the connection.
The service discovery label, strimzi.io/discovery
, is set as true
for the Service
resources. The service discovery annotation has the same key, providing connection details in JSON format for each service.
Example internal Kafka bootstrap service
apiVersion: v1 kind: Service metadata: annotations: strimzi.io/discovery: |- [ { "port" : 9092, "tls" : false, "protocol" : "kafka", "auth" : "scram-sha-512" }, { "port" : 9093, "tls" : true, "protocol" : "kafka", "auth" : "tls" } ] labels: strimzi.io/cluster: my-cluster strimzi.io/discovery: "true" strimzi.io/kind: Kafka strimzi.io/name: my-cluster-kafka-bootstrap name: my-cluster-kafka-bootstrap spec: #...
Example HTTP Bridge service
apiVersion: v1 kind: Service metadata: annotations: strimzi.io/discovery: |- [ { "port" : 8080, "tls" : false, "auth" : "none", "protocol" : "http" } ] labels: strimzi.io/cluster: my-bridge strimzi.io/discovery: "true" strimzi.io/kind: KafkaBridge strimzi.io/name: my-bridge-bridge-service
27.2.1. Returning connection details on services
You can find the services by specifying the discovery label when fetching services from the command line or a corresponding API call.
oc get service -l strimzi.io/discovery=true
The connection details are returned when retrieving the service discovery label.
27.3. Connecting to ZooKeeper from a terminal
ZooKeeper services are secured with encryption and authentication and are not intended to be used by external applications that are not part of AMQ Streams.
However, if you want to use CLI tools that require a connection to ZooKeeper, you can use a terminal inside a ZooKeeper pod and connect to localhost:12181
as the ZooKeeper address.
Prerequisites
- An OpenShift cluster is available.
- A Kafka cluster is running.
- The Cluster Operator is running.
Procedure
Open the terminal using the OpenShift console or run the
exec
command from your CLI.For example:
oc exec -ti my-cluster-zookeeper-0 -- bin/zookeeper-shell.sh localhost:12181 ls /
Be sure to use
localhost:12181
.
27.4. Pausing reconciliation of custom resources
Sometimes it is useful to pause the reconciliation of custom resources managed by AMQ Streams Operators, so that you can perform fixes or make updates. If reconciliations are paused, any changes made to custom resources are ignored by the Operators until the pause ends.
If you want to pause reconciliation of a custom resource, set the strimzi.io/pause-reconciliation
annotation to true
in its configuration. This instructs the appropriate Operator to pause reconciliation of the custom resource. For example, you can apply the annotation to the KafkaConnect
resource so that reconciliation by the Cluster Operator is paused.
You can also create a custom resource with the pause annotation enabled. The custom resource is created, but it is ignored.
Prerequisites
- The AMQ Streams Operator that manages the custom resource is running.
Procedure
Annotate the custom resource in OpenShift, setting
pause-reconciliation
totrue
:oc annotate <kind_of_custom_resource> <name_of_custom_resource> strimzi.io/pause-reconciliation="true"
For example, for the
KafkaConnect
custom resource:oc annotate KafkaConnect my-connect strimzi.io/pause-reconciliation="true"
Check that the status conditions of the custom resource show a change to
ReconciliationPaused
:oc describe <kind_of_custom_resource> <name_of_custom_resource>
The
type
condition changes toReconciliationPaused
at thelastTransitionTime
.Example custom resource with a paused reconciliation condition type
apiVersion: kafka.strimzi.io/v1beta2 kind: KafkaConnect metadata: annotations: strimzi.io/pause-reconciliation: "true" strimzi.io/use-connector-resources: "true" creationTimestamp: 2021-03-12T10:47:11Z #... spec: # ... status: conditions: - lastTransitionTime: 2021-03-12T10:47:41.689249Z status: "True" type: ReconciliationPaused
Resuming from pause
-
To resume reconciliation, you can set the annotation to
false
, or remove the annotation.
Additional resources
27.5. Maintenance time windows for rolling updates
Maintenance time windows allow you to schedule certain rolling updates of your Kafka and ZooKeeper clusters to start at a convenient time.
27.5.1. Maintenance time windows overview
In most cases, the Cluster Operator only updates your Kafka or ZooKeeper clusters in response to changes to the corresponding Kafka
resource. This enables you to plan when to apply changes to a Kafka
resource to minimize the impact on Kafka client applications.
However, some updates to your Kafka and ZooKeeper clusters can happen without any corresponding change to the Kafka
resource. For example, the Cluster Operator will need to perform a rolling restart if a CA (certificate authority) certificate that it manages is close to expiry.
While a rolling restart of the pods should not affect availability of the service (assuming correct broker and topic configurations), it could affect performance of the Kafka client applications. Maintenance time windows allow you to schedule such spontaneous rolling updates of your Kafka and ZooKeeper clusters to start at a convenient time. If maintenance time windows are not configured for a cluster then it is possible that such spontaneous rolling updates will happen at an inconvenient time, such as during a predictable period of high load.
27.5.2. Maintenance time window definition
You configure maintenance time windows by entering an array of strings in the Kafka.spec.maintenanceTimeWindows
property. Each string is a cron expression interpreted as being in UTC (Coordinated Universal Time, which for practical purposes is the same as Greenwich Mean Time).
The following example configures a single maintenance time window that starts at midnight and ends at 01:59am (UTC), on Sundays, Mondays, Tuesdays, Wednesdays, and Thursdays:
# ... maintenanceTimeWindows: - "* * 0-1 ? * SUN,MON,TUE,WED,THU *" # ...
In practice, maintenance windows should be set in conjunction with the Kafka.spec.clusterCa.renewalDays
and Kafka.spec.clientsCa.renewalDays
properties of the Kafka
resource, to ensure that the necessary CA certificate renewal can be completed in the configured maintenance time windows.
AMQ Streams does not schedule maintenance operations exactly according to the given windows. Instead, for each reconciliation, it checks whether a maintenance window is currently "open". This means that the start of maintenance operations within a given time window can be delayed by up to the Cluster Operator reconciliation interval. Maintenance time windows must therefore be at least this long.
27.5.3. Configuring a maintenance time window
You can configure a maintenance time window for rolling updates triggered by supported processes.
Prerequisites
- An OpenShift cluster.
- The Cluster Operator is running.
Procedure
Add or edit the
maintenanceTimeWindows
property in theKafka
resource. For example to allow maintenance between 0800 and 1059 and between 1400 and 1559 you would set themaintenanceTimeWindows
as shown below:apiVersion: kafka.strimzi.io/v1beta2 kind: Kafka metadata: name: my-cluster spec: kafka: # ... zookeeper: # ... maintenanceTimeWindows: - "* * 8-10 * * ?" - "* * 14-15 * * ?"
Create or update the resource:
oc apply -f <kafka_configuration_file>
27.6. Evicting pods with the AMQ Streams Drain Cleaner
Kafka and ZooKeeper pods might be evicted during OpenShift upgrades, maintenance, or pod rescheduling. If your Kafka broker and ZooKeeper pods were deployed by AMQ Streams, you can use the AMQ Streams Drain Cleaner tool to handle the pod evictions. The AMQ Streams Drain Cleaner handles the eviction instead of OpenShift. You must set the podDisruptionBudget
for your Kafka deployment to 0
(zero). OpenShift will then no longer be allowed to evict the pod automatically.
By deploying the AMQ Streams Drain Cleaner, you can use the Cluster Operator to move Kafka pods instead of OpenShift. The Cluster Operator ensures that topics are never under-replicated. Kafka can remain operational during the eviction process. The Cluster Operator waits for topics to synchronize, as the OpenShift worker nodes drain consecutively.
An admission webhook notifies the AMQ Streams Drain Cleaner of pod eviction requests to the Kubernetes API. The AMQ Streams Drain Cleaner then adds a rolling update annotation to the pods to be drained. This informs the Cluster Operator to perform a rolling update of an evicted pod.
If you are not using the AMQ Streams Drain Cleaner, you can add pod annotations to perform rolling updates manually.
Webhook configuration
The AMQ Streams Drain Cleaner deployment files include a ValidatingWebhookConfiguration
resource file. The resource provides the configuration for registering the webhook with the Kubernetes API.
The configuration defines the rules
for the Kubernetes API to follow in the event of a pod eviction request. The rules specify that only CREATE
operations related to pods/eviction
sub-resources are intercepted. If these rules are met, the API forwards the notification.
The clientConfig
points to the AMQ Streams Drain Cleaner service and /drainer
endpoint that exposes the webhook. The webhook uses a secure TLS connection, which requires authentication. The caBundle
property specifies the certificate chain to validate HTTPS communication. Certificates are encoded in Base64.
Webhook configuration for pod eviction notifications
apiVersion: admissionregistration.k8s.io/v1 kind: ValidatingWebhookConfiguration # ... webhooks: - name: strimzi-drain-cleaner.strimzi.io rules: - apiGroups: [""] apiVersions: ["v1"] operations: ["CREATE"] resources: ["pods/eviction"] scope: "Namespaced" clientConfig: service: namespace: "strimzi-drain-cleaner" name: "strimzi-drain-cleaner" path: /drainer port: 443 caBundle: Cg== # ...
27.6.1. Downloading the AMQ Streams Drain Cleaner deployment files
To deploy and use the AMQ Streams Drain Cleaner, you need to download the deployment files.
The AMQ Streams Drain Cleaner deployment files are available from the AMQ Streams software downloads page.
27.6.2. Deploying the AMQ Streams Drain Cleaner using installation files
Deploy the AMQ Streams Drain Cleaner to the OpenShift cluster where the Cluster Operator and Kafka cluster are running.
AMQ Streams sets a default PodDisruptionBudget
(PDB) that allows only one Kafka or ZooKeeper pod to be unavailable at any given time. To use the Drain Cleaner for planned maintenance or upgrades, you must set a PDB of zero. This is to prevent voluntary evictions of pods, and ensure that the Kafka or ZooKeeper cluster remains available. You do this by setting the maxUnavailable
value to zero in the Kafka
or ZooKeeper
template. StrimziPodSet
custom resources manage Kafka and ZooKeeper pods using a custom controller that cannot use the maxUnavailable
value directly. Instead, the maxUnavailable
value is converted to a minAvailable
value. For example, if there are three broker pods and the maxUnavailable
property is set to 0
(zero), the minAvailable
setting is 3
, requiring all three broker pods to be available and allowing zero pods to be unavailable.
Prerequisites
- You have downloaded the AMQ Streams Drain Cleaner deployment files.
- You have a highly available Kafka cluster deployment running with OpenShift worker nodes that you would like to update.
Topics are replicated for high availability.
Topic configuration specifies a replication factor of at least 3 and a minimum number of in-sync replicas to 1 less than the replication factor.
Kafka topic replicated for high availability
apiVersion: kafka.strimzi.io/v1beta2 kind: KafkaTopic metadata: name: my-topic labels: strimzi.io/cluster: my-cluster spec: partitions: 1 replicas: 3 config: # ... min.insync.replicas: 2 # ...
Excluding Kafka or ZooKeeper
If you don’t want to include Kafka or ZooKeeper pods in Drain Cleaner operations, change the default environment variables in the Drain Cleaner Deployment
configuration file.
-
Set
STRIMZI_DRAIN_KAFKA
tofalse
to exclude Kafka pods -
Set
STRIMZI_DRAIN_ZOOKEEPER
tofalse
to exclude ZooKeeper pods
Example configuration to exclude ZooKeeper pods
apiVersion: apps/v1 kind: Deployment spec: # ... template: spec: serviceAccountName: strimzi-drain-cleaner containers: - name: strimzi-drain-cleaner # ... env: - name: STRIMZI_DRAIN_KAFKA value: "true" - name: STRIMZI_DRAIN_ZOOKEEPER value: "false" # ...
Procedure
Set
maxUnavailable
to0
(zero) in the Kafka and ZooKeeper sections of theKafka
resource usingtemplate
settings.Specifying a pod disruption budget
apiVersion: kafka.strimzi.io/v1beta2 kind: Kafka metadata: name: my-cluster namespace: myproject spec: kafka: template: podDisruptionBudget: maxUnavailable: 0 # ... zookeeper: template: podDisruptionBudget: maxUnavailable: 0 # ...
This setting prevents the automatic eviction of pods in case of planned disruptions, leaving the AMQ Streams Drain Cleaner and Cluster Operator to roll the pods on different worker nodes.
Add the same configuration for ZooKeeper if you want to use AMQ Streams Drain Cleaner to drain ZooKeeper nodes.
Update the
Kafka
resource:oc apply -f <kafka_configuration_file>
Deploy the AMQ Streams Drain Cleaner.
To run the Drain Cleaner on OpenShift, apply the resources in the
/install/drain-cleaner/openshift
directory.oc apply -f ./install/drain-cleaner/openshift
27.6.3. Using the AMQ Streams Drain Cleaner
Use the AMQ Streams Drain Cleaner in combination with the Cluster Operator to move Kafka broker or ZooKeeper pods from nodes that are being drained. When you run the AMQ Streams Drain Cleaner, it annotates pods with a rolling update pod annotation. The Cluster Operator performs rolling updates based on the annotation.
Prerequisites
- You have deployed the AMQ Streams Drain Cleaner.
Procedure
Drain a specified OpenShift node hosting the Kafka broker or ZooKeeper pods.
oc get nodes oc drain <name-of-node> --delete-emptydir-data --ignore-daemonsets --timeout=6000s --force
Check the eviction events in the AMQ Streams Drain Cleaner log to verify that the pods have been annotated for restart.
AMQ Streams Drain Cleaner log show annotations of pods
INFO ... Received eviction webhook for Pod my-cluster-zookeeper-2 in namespace my-project INFO ... Pod my-cluster-zookeeper-2 in namespace my-project will be annotated for restart INFO ... Pod my-cluster-zookeeper-2 in namespace my-project found and annotated for restart INFO ... Received eviction webhook for Pod my-cluster-kafka-0 in namespace my-project INFO ... Pod my-cluster-kafka-0 in namespace my-project will be annotated for restart INFO ... Pod my-cluster-kafka-0 in namespace my-project found and annotated for restart
Check the reconciliation events in the Cluster Operator log to verify the rolling updates.
Cluster Operator log shows rolling updates
INFO PodOperator:68 - Reconciliation #13(timer) Kafka(my-project/my-cluster): Rolling Pod my-cluster-zookeeper-2 INFO PodOperator:68 - Reconciliation #13(timer) Kafka(my-project/my-cluster): Rolling Pod my-cluster-kafka-0 INFO AbstractOperator:500 - Reconciliation #13(timer) Kafka(my-project/my-cluster): reconciled
27.6.4. Watching the TLS certificates used by the AMQ Streams Drain Cleaner
By default, the Drain Cleaner deployment watches the secret containing the TLS certificates its uses for authentication. The Drain Cleaner watches for changes, such as certificate renewals. If it detects a change, it restarts to reload the TLS certificates. The Drain Cleaner installation files enable this behavior by default. But you can disable the watching of certificates by setting the STRIMZI_CERTIFICATE_WATCH_ENABLED
environment variable to false
in the Deployment
configuration (060-Deployment.yaml
) of the Drain Cleaner installation files.
With STRIMZI_CERTIFICATE_WATCH_ENABLED
enabled, you can also use the following environment variables for watching TLS certificates.
Environment Variable | Description | Default |
---|---|---|
| Enables or disables the certificate watch |
|
| The namespace where the Drain Cleaner is deployed and where the certificate secret exists |
|
| The Drain Cleaner pod name | - |
| The name of the secret containing TLS certificates |
|
| The list of fields inside the secret that contain the TLS certificates |
|
Example environment variable configuration to control watch operations
apiVersion: apps/v1 kind: Deployment metadata: name: strimzi-drain-cleaner labels: app: strimzi-drain-cleaner namespace: strimzi-drain-cleaner spec: # ... spec: serviceAccountName: strimzi-drain-cleaner containers: - name: strimzi-drain-cleaner # ... env: - name: STRIMZI_DRAIN_KAFKA value: "true" - name: STRIMZI_DRAIN_ZOOKEEPER value: "true" - name: STRIMZI_CERTIFICATE_WATCH_ENABLED value: "true" - name: STRIMZI_CERTIFICATE_WATCH_NAMESPACE valueFrom: fieldRef: fieldPath: metadata.namespace - name: STRIMZI_CERTIFICATE_WATCH_POD_NAME valueFrom: fieldRef: fieldPath: metadata.name # ...
Use the Downward API mechanism to configure STRIMZI_CERTIFICATE_WATCH_NAMESPACE
and STRIMZI_CERTIFICATE_WATCH_POD_NAME
.
27.7. Deleting Kafka nodes using annotations
This procedure describes how to delete an existing Kafka node by using an OpenShift annotation. Deleting a Kafka node consists of deleting both the Pod
on which the Kafka broker is running and the related PersistentVolumeClaim
(if the cluster was deployed with persistent storage). After deletion, the Pod
and its related PersistentVolumeClaim
are recreated automatically.
Deleting a PersistentVolumeClaim
can cause permanent data loss and the availability of your cluster cannot be guaranteed. The following procedure should only be performed if you have encountered storage issues.
Prerequisites
- A running Cluster Operator
Procedure
Find the name of the
Pod
that you want to delete.Kafka broker pods are named <cluster-name>-kafka-<index>, where <index> starts at zero and ends at the total number of replicas minus one. For example,
my-cluster-kafka-0
.Annotate the
Pod
resource in OpenShift.Use
oc annotate
:oc annotate pod cluster-name-kafka-index strimzi.io/delete-pod-and-pvc=true
- Wait for the next reconciliation, when the annotated pod with the underlying persistent volume claim will be deleted and then recreated.
27.8. Deleting ZooKeeper nodes using annotations
This procedure describes how to delete an existing ZooKeeper node by using an OpenShift annotation. Deleting a ZooKeeper node consists of deleting both the Pod
on which ZooKeeper is running and the related PersistentVolumeClaim
(if the cluster was deployed with persistent storage). After deletion, the Pod
and its related PersistentVolumeClaim
are recreated automatically.
Deleting a PersistentVolumeClaim
can cause permanent data loss and the availability of your cluster cannot be guaranteed. The following procedure should only be performed if you have encountered storage issues.
Prerequisites
- A running Cluster Operator
Procedure
Find the name of the
Pod
that you want to delete.ZooKeeper pods are named <cluster-name>-zookeeper-<index>, where <index> starts at zero and ends at the total number of replicas minus one. For example,
my-cluster-zookeeper-0
.Annotate the
Pod
resource in OpenShift.Use
oc annotate
:oc annotate pod cluster-name-zookeeper-index strimzi.io/delete-pod-and-pvc=true
- Wait for the next reconciliation, when the annotated pod with the underlying persistent volume claim will be deleted and then recreated.
27.9. Starting rolling updates of Kafka and ZooKeeper clusters using annotations
AMQ Streams supports the use of annotations on resources to manually trigger a rolling update of Kafka and ZooKeeper clusters through the Cluster Operator. Rolling updates restart the pods of the resource with new ones.
Manually performing a rolling update on a specific pod or set of pods is usually only required in exceptional circumstances. However, rather than deleting the pods directly, if you perform the rolling update through the Cluster Operator you ensure the following:
- The manual deletion of the pod does not conflict with simultaneous Cluster Operator operations, such as deleting other pods in parallel.
- The Cluster Operator logic handles the Kafka configuration specifications, such as the number of in-sync replicas.
27.9.1. Performing a rolling update using a pod management annotation
This procedure describes how to trigger a rolling update of a Kafka cluster or ZooKeeper cluster. To trigger the update, you add an annotation to the StrimziPodSet
that manages the pods running on the cluster.
Prerequisites
To perform a manual rolling update, you need a running Cluster Operator and Kafka cluster.
Procedure
Find the name of the resource that controls the Kafka or ZooKeeper pods you want to manually update.
For example, if your Kafka cluster is named my-cluster, the corresponding names are my-cluster-kafka and my-cluster-zookeeper.
Use
oc annotate
to annotate the appropriate resource in OpenShift.Annotating a StrimziPodSet
oc annotate strimzipodset <cluster_name>-kafka strimzi.io/manual-rolling-update=true oc annotate strimzipodset <cluster_name>-zookeeper strimzi.io/manual-rolling-update=true
- Wait for the next reconciliation to occur (every two minutes by default). A rolling update of all pods within the annotated resource is triggered, as long as the annotation was detected by the reconciliation process. When the rolling update of all the pods is complete, the annotation is removed from the resource.
27.9.2. Performing a rolling update using a pod annotation
This procedure describes how to manually trigger a rolling update of an existing Kafka cluster or ZooKeeper cluster using an OpenShift Pod
annotation. When multiple pods are annotated, consecutive rolling updates are performed within the same reconciliation run.
Prerequisites
To perform a manual rolling update, you need a running Cluster Operator and Kafka cluster.
You can perform a rolling update on a Kafka cluster regardless of the topic replication factor used. But for Kafka to stay operational during the update, you’ll need the following:
- A highly available Kafka cluster deployment running with nodes that you wish to update.
Topics replicated for high availability.
Topic configuration specifies a replication factor of at least 3 and a minimum number of in-sync replicas to 1 less than the replication factor.
Kafka topic replicated for high availability
apiVersion: kafka.strimzi.io/v1beta2 kind: KafkaTopic metadata: name: my-topic labels: strimzi.io/cluster: my-cluster spec: partitions: 1 replicas: 3 config: # ... min.insync.replicas: 2 # ...
Procedure
Find the name of the Kafka or ZooKeeper
Pod
you want to manually update.For example, if your Kafka cluster is named my-cluster, the corresponding
Pod
names are my-cluster-kafka-index and my-cluster-zookeeper-index. The index starts at zero and ends at the total number of replicas minus one.Annotate the
Pod
resource in OpenShift.Use
oc annotate
:oc annotate pod cluster-name-kafka-index strimzi.io/manual-rolling-update=true oc annotate pod cluster-name-zookeeper-index strimzi.io/manual-rolling-update=true
-
Wait for the next reconciliation to occur (every two minutes by default). A rolling update of the annotated
Pod
is triggered, as long as the annotation was detected by the reconciliation process. When the rolling update of a pod is complete, the annotation is removed from thePod
.
27.10. Performing restarts of MirrorMaker 2 connectors using annotations
This procedure describes how to manually trigger a restart of a Kafka MirrorMaker 2 connector by using an OpenShift annotation.
Prerequisites
- The Cluster Operator is running.
Procedure
Find the name of the
KafkaMirrorMaker2
custom resource that controls the Kafka MirrorMaker 2 connector you want to restart:oc get KafkaMirrorMaker2
Find the name of the Kafka MirrorMaker 2 connector to be restarted from the
KafkaMirrorMaker2
custom resource.oc describe KafkaMirrorMaker2 KAFKAMIRRORMAKER-2-NAME
To restart the connector, annotate the
KafkaMirrorMaker2
resource in OpenShift. In this example,oc annotate
restarts a connector namedmy-source->my-target.MirrorSourceConnector
:oc annotate KafkaMirrorMaker2 KAFKAMIRRORMAKER-2-NAME "strimzi.io/restart-connector=my-source->my-target.MirrorSourceConnector"
Wait for the next reconciliation to occur (every two minutes by default).
The Kafka MirrorMaker 2 connector is restarted, as long as the annotation was detected by the reconciliation process. When the restart request is accepted, the annotation is removed from the
KafkaMirrorMaker2
custom resource.
Additional resources
27.11. Performing restarts of MirrorMaker 2 connector task using annotations
This procedure describes how to manually trigger a restart of a Kafka MirrorMaker 2 connector task by using an OpenShift annotation.
Prerequisites
- The Cluster Operator is running.
Procedure
Find the name of the
KafkaMirrorMaker2
custom resource that controls the Kafka MirrorMaker 2 connector you want to restart:oc get KafkaMirrorMaker2
Find the name of the Kafka MirrorMaker 2 connector and the ID of the task to be restarted from the
KafkaMirrorMaker2
custom resource. Task IDs are non-negative integers, starting from 0.oc describe KafkaMirrorMaker2 KAFKAMIRRORMAKER-2-NAME
To restart the connector task, annotate the
KafkaMirrorMaker2
resource in OpenShift. In this example,oc annotate
restarts task 0 of a connector namedmy-source->my-target.MirrorSourceConnector
:oc annotate KafkaMirrorMaker2 KAFKAMIRRORMAKER-2-NAME "strimzi.io/restart-connector-task=my-source->my-target.MirrorSourceConnector:0"
Wait for the next reconciliation to occur (every two minutes by default).
The Kafka MirrorMaker 2 connector task is restarted, as long as the annotation was detected by the reconciliation process. When the restart task request is accepted, the annotation is removed from the
KafkaMirrorMaker2
custom resource.
Additional resources
27.12. Recovering a cluster from persistent volumes
You can recover a Kafka cluster from persistent volumes (PVs) if they are still present.
You might want to do this, for example, after:
- A namespace was deleted unintentionally
- A whole OpenShift cluster is lost, but the PVs remain in the infrastructure
27.12.1. Recovery from namespace deletion
Recovery from namespace deletion is possible because of the relationship between persistent volumes and namespaces. A PersistentVolume
(PV) is a storage resource that lives outside of a namespace. A PV is mounted into a Kafka pod using a PersistentVolumeClaim
(PVC), which lives inside a namespace.
The reclaim policy for a PV tells a cluster how to act when a namespace is deleted. If the reclaim policy is set as:
- Delete (default), PVs are deleted when PVCs are deleted within a namespace
- Retain, PVs are not deleted when a namespace is deleted
To ensure that you can recover from a PV if a namespace is deleted unintentionally, the policy must be reset from Delete to Retain in the PV specification using the persistentVolumeReclaimPolicy
property:
apiVersion: v1
kind: PersistentVolume
# ...
spec:
# ...
persistentVolumeReclaimPolicy: Retain
Alternatively, PVs can inherit the reclaim policy of an associated storage class. Storage classes are used for dynamic volume allocation.
By configuring the reclaimPolicy
property for the storage class, PVs that use the storage class are created with the appropriate reclaim policy. The storage class is configured for the PV using the storageClassName
property.
apiVersion: v1 kind: StorageClass metadata: name: gp2-retain parameters: # ... # ... reclaimPolicy: Retain
apiVersion: v1
kind: PersistentVolume
# ...
spec:
# ...
storageClassName: gp2-retain
If you are using Retain as the reclaim policy, but you want to delete an entire cluster, you need to delete the PVs manually. Otherwise they will not be deleted, and may cause unnecessary expenditure on resources.
27.12.2. Recovery from loss of an OpenShift cluster
When a cluster is lost, you can use the data from disks/volumes to recover the cluster if they were preserved within the infrastructure. The recovery procedure is the same as with namespace deletion, assuming PVs can be recovered and they were created manually.
27.12.3. Recovering a deleted cluster from persistent volumes
This procedure describes how to recover a deleted cluster from persistent volumes (PVs).
In this situation, the Topic Operator identifies that topics exist in Kafka, but the KafkaTopic
resources do not exist.
When you get to the step to recreate your cluster, you have two options:
Use Option 1 when you can recover all
KafkaTopic
resources.The
KafkaTopic
resources must therefore be recovered before the cluster is started so that the corresponding topics are not deleted by the Topic Operator.Use Option 2 when you are unable to recover all
KafkaTopic
resources.In this case, you deploy your cluster without the Topic Operator, delete the Topic Operator topic store metadata, and then redeploy the Kafka cluster with the Topic Operator so it can recreate the
KafkaTopic
resources from the corresponding topics.
If the Topic Operator is not deployed, you only need to recover the PersistentVolumeClaim
(PVC) resources.
Before you begin
In this procedure, it is essential that PVs are mounted into the correct PVC to avoid data corruption. A volumeName
is specified for the PVC and this must match the name of the PV.
For more information, see Persistent storage.
The procedure does not include recovery of KafkaUser
resources, which must be recreated manually. If passwords and certificates need to be retained, secrets must be recreated before creating the KafkaUser
resources.
Procedure
Check information on the PVs in the cluster:
oc get pv
Information is presented for PVs with data.
Example output showing columns important to this procedure:
NAME RECLAIMPOLICY CLAIM pvc-5e9c5c7f-3317-11ea-a650-06e1eadd9a4c ... Retain ... myproject/data-my-cluster-zookeeper-1 pvc-5e9cc72d-3317-11ea-97b0-0aef8816c7ea ... Retain ... myproject/data-my-cluster-zookeeper-0 pvc-5ead43d1-3317-11ea-97b0-0aef8816c7ea ... Retain ... myproject/data-my-cluster-zookeeper-2 pvc-7e1f67f9-3317-11ea-a650-06e1eadd9a4c ... Retain ... myproject/data-0-my-cluster-kafka-0 pvc-7e21042e-3317-11ea-9786-02deaf9aa87e ... Retain ... myproject/data-0-my-cluster-kafka-1 pvc-7e226978-3317-11ea-97b0-0aef8816c7ea ... Retain ... myproject/data-0-my-cluster-kafka-2
- NAME shows the name of each PV.
- RECLAIM POLICY shows that PVs are retained.
- CLAIM shows the link to the original PVCs.
Recreate the original namespace:
oc create namespace myproject
Recreate the original PVC resource specifications, linking the PVCs to the appropriate PV:
For example:
apiVersion: v1 kind: PersistentVolumeClaim metadata: name: data-0-my-cluster-kafka-0 spec: accessModes: - ReadWriteOnce resources: requests: storage: 100Gi storageClassName: gp2-retain volumeMode: Filesystem volumeName: pvc-7e1f67f9-3317-11ea-a650-06e1eadd9a4c
Edit the PV specifications to delete the
claimRef
properties that bound the original PVC.For example:
apiVersion: v1 kind: PersistentVolume metadata: annotations: kubernetes.io/createdby: aws-ebs-dynamic-provisioner pv.kubernetes.io/bound-by-controller: "yes" pv.kubernetes.io/provisioned-by: kubernetes.io/aws-ebs creationTimestamp: "<date>" finalizers: - kubernetes.io/pv-protection labels: failure-domain.beta.kubernetes.io/region: eu-west-1 failure-domain.beta.kubernetes.io/zone: eu-west-1c name: pvc-7e226978-3317-11ea-97b0-0aef8816c7ea resourceVersion: "39431" selfLink: /api/v1/persistentvolumes/pvc-7e226978-3317-11ea-97b0-0aef8816c7ea uid: 7efe6b0d-3317-11ea-a650-06e1eadd9a4c spec: accessModes: - ReadWriteOnce awsElasticBlockStore: fsType: xfs volumeID: aws://eu-west-1c/vol-09db3141656d1c258 capacity: storage: 100Gi claimRef: apiVersion: v1 kind: PersistentVolumeClaim name: data-0-my-cluster-kafka-2 namespace: myproject resourceVersion: "39113" uid: 54be1c60-3319-11ea-97b0-0aef8816c7ea nodeAffinity: required: nodeSelectorTerms: - matchExpressions: - key: failure-domain.beta.kubernetes.io/zone operator: In values: - eu-west-1c - key: failure-domain.beta.kubernetes.io/region operator: In values: - eu-west-1 persistentVolumeReclaimPolicy: Retain storageClassName: gp2-retain volumeMode: Filesystem
In the example, the following properties are deleted:
claimRef: apiVersion: v1 kind: PersistentVolumeClaim name: data-0-my-cluster-kafka-2 namespace: myproject resourceVersion: "39113" uid: 54be1c60-3319-11ea-97b0-0aef8816c7ea
Deploy the Cluster Operator.
oc create -f install/cluster-operator -n my-project
Recreate your cluster.
Follow the steps depending on whether or not you have all the
KafkaTopic
resources needed to recreate your cluster.Option 1: If you have all the
KafkaTopic
resources that existed before you lost your cluster, including internal topics such as committed offsets from__consumer_offsets
:Recreate all
KafkaTopic
resources.It is essential that you recreate the resources before deploying the cluster, or the Topic Operator will delete the topics.
Deploy the Kafka cluster.
For example:
oc apply -f kafka.yaml
Option 2: If you do not have all the
KafkaTopic
resources that existed before you lost your cluster:Deploy the Kafka cluster, as with the first option, but without the Topic Operator by removing the
topicOperator
property from the Kafka resource before deploying.If you include the Topic Operator in the deployment, the Topic Operator will delete all the topics.
Delete the internal topic store topics from the Kafka cluster:
oc run kafka-admin -ti --image=registry.redhat.io/amq-streams/kafka-35-rhel8:2.5.2 --rm=true --restart=Never -- ./bin/kafka-topics.sh --bootstrap-server localhost:9092 --topic __strimzi-topic-operator-kstreams-topic-store-changelog --delete && ./bin/kafka-topics.sh --bootstrap-server localhost:9092 --topic __strimzi_store_topic --delete
The command must correspond to the type of listener and authentication used to access the Kafka cluster.
Enable the Topic Operator by redeploying the Kafka cluster with the
topicOperator
property to recreate theKafkaTopic
resources.For example:
apiVersion: kafka.strimzi.io/v1beta2 kind: Kafka metadata: name: my-cluster spec: #... entityOperator: topicOperator: {} 1 #...
- 1
- Here we show the default configuration, which has no additional properties. You specify the required configuration using the properties described in the
EntityTopicOperatorSpec
schema reference.
Verify the recovery by listing the
KafkaTopic
resources:oc get KafkaTopic
27.13. Uninstalling AMQ Streams
You can uninstall AMQ Streams on OpenShift 4.12 and later from the OperatorHub using the OpenShift Container Platform web console or CLI.
Use the same approach you used to install AMQ Streams.
When you uninstall AMQ Streams, you will need to identify resources created specifically for a deployment and referenced from the AMQ Streams resource.
Such resources include:
- Secrets (Custom CAs and certificates, Kafka Connect secrets, and other Kafka secrets)
-
Logging
ConfigMaps
(of typeexternal
)
These are resources referenced by Kafka
, KafkaConnect
, KafkaMirrorMaker
, or KafkaBridge
configuration.
Deleting CustomResourceDefinitions
results in the garbage collection of the corresponding custom resources (Kafka
, KafkaConnect
, KafkaMirrorMaker
, or KafkaBridge
) and the resources dependent on them (Deployments, StatefulSets, and other dependent resources).
27.13.1. Uninstalling AMQ Streams from the OperatorHub using the web console
This procedure describes how to uninstall AMQ Streams from the OperatorHub and remove resources related to the deployment.
You can perform the steps from the console or use alternative CLI commands.
Prerequisites
-
Access to an OpenShift Container Platform web console using an account with
cluster-admin
orstrimzi-admin
permissions. You have identified the resources to be deleted.
You can use the following
oc
CLI command to find resources and also verify that they have been removed when you have uninstalled AMQ Streams.Command to find resources related to an AMQ Streams deployment
oc get <resource_type> --all-namespaces | grep <kafka_cluster_name>
Replace <resource_type> with the type of the resource you are checking, such as
secret
orconfigmap
.
Procedure
- Navigate in the OpenShift web console to Operators > Installed Operators.
For the installed AMQ Streams operator, select the options icon (three vertical dots) and click Uninstall Operator.
The operator is removed from Installed Operators.
- Navigate to Home > Projects and select the project where you installed AMQ Streams and the Kafka components.
Click the options under Inventory to delete related resources.
Resources include the following:
- Deployments
- StatefulSets
- Pods
- Services
- ConfigMaps
- Secrets
TipUse the search to find related resources that begin with the name of the Kafka cluster. You can also find the resources under Workloads.
Alternative CLI commands
You can use CLI commands to uninstall AMQ Streams from the OperatorHub.
Delete the AMQ Streams subscription.
oc delete subscription amq-streams -n openshift-operators
Delete the cluster service version (CSV).
oc delete csv amqstreams.<version> -n openshift-operators
Remove related CRDs.
oc get crd -l app=strimzi -o name | xargs oc delete
27.13.2. Uninstalling AMQ Streams using the CLI
This procedure describes how to use the oc
command-line tool to uninstall AMQ Streams and remove resources related to the deployment.
Prerequisites
-
Access to an OpenShift cluster using an account with
cluster-admin
orstrimzi-admin
permissions. You have identified the resources to be deleted.
You can use the following
oc
CLI command to find resources and also verify that they have been removed when you have uninstalled AMQ Streams.Command to find resources related to an AMQ Streams deployment
oc get <resource_type> --all-namespaces | grep <kafka_cluster_name>
Replace <resource_type> with the type of the resource you are checking, such as
secret
orconfigmap
.
Procedure
Delete the Cluster Operator
Deployment
, relatedCustomResourceDefinitions
, andRBAC
resources.Specify the installation files used to deploy the Cluster Operator.
oc delete -f install/cluster-operator
Delete the resources you identified in the prerequisites.
oc delete <resource_type> <resource_name> -n <namespace>
Replace <resource_type> with the type of resource you are deleting and <resource_name> with the name of the resource.
Example to delete a secret
oc delete secret my-cluster-clients-ca-cert -n my-project
27.14. Frequently asked questions
Chapter 28. Using Metering on AMQ Streams
You can use the Metering tool that is available on OpenShift to generate metering reports from different data sources. As a cluster administrator, you can use metering to analyze what is happening in your cluster. You can either write your own, or use predefined SQL queries to define how you want to process data from the different data sources you have available. Using Prometheus as a default data source, you can generate reports on pods, namespaces, and most other OpenShift resources.
You can also use the OpenShift Metering operator to analyze your installed AMQ Streams components to determine whether you are in compliance with your Red Hat subscription.
To use metering with AMQ Streams, you must first install and configure the Metering operator on OpenShift Container Platform.
28.1. Metering resources
Metering has many resources which can be used to manage the deployment and installation of metering, as well as the reporting functionality metering provides. Metering is managed using the following CRDs:
Name | Description |
---|---|
| Configures the metering stack for deployment. Contains customizations and configuration options to control each component that makes up the metering stack. |
| Controls what query to use, when, and how often the query should be run, and where to store the results. |
|
Contains the SQL queries used to perform analysis on the data contained within |
| Controls the data available to ReportQueries and Reports. Allows configuring access to different databases for use within metering. |
28.2. Metering labels for AMQ Streams
The following table lists the metering labels for AMQ Streams infrastructure components and integrations.
Label | Possible values |
---|---|
|
|
|
|
|
|
|
|
|
|
| Infrastructure
|
Application
| |
|
|
Examples
Infrastructure example (where the infrastructure component is entity-operator)
com.company=Red_Hat rht.prod_name=Red_Hat_Application_Foundations rht.prod_ver=2023.Q3 rht.comp=AMQ_Streams rht.comp_ver=2.5 rht.subcomp=entity-operator rht.subcomp_t=infrastructure
Application example (where the integration deployment name is kafka-bridge)
com.company=Red_Hat rht.prod_name=Red_Hat_Application_Foundations rht.prod_ver=2023.Q3 rht.comp=AMQ_Streams rht.comp_ver=2.5 rht.subcomp=kafka-bridge rht.subcomp_t=application
Appendix A. Using your subscription
AMQ Streams is provided through a software subscription. To manage your subscriptions, access your account at the Red Hat Customer Portal.
Accessing Your Account
- Go to access.redhat.com.
- If you do not already have an account, create one.
- Log in to your account.
Activating a Subscription
- Go to access.redhat.com.
- Navigate to My Subscriptions.
- Navigate to Activate a subscription and enter your 16-digit activation number.
Downloading Zip and Tar Files
To access zip or tar files, use the customer portal to find the relevant files for download. If you are using RPM packages, this step is not required.
- Open a browser and log in to the Red Hat Customer Portal Product Downloads page at access.redhat.com/downloads.
- Locate the AMQ Streams for Apache Kafka entries in the INTEGRATION AND AUTOMATION category.
- Select the desired AMQ Streams product. The Software Downloads page opens.
- Click the Download link for your component.
Installing packages with DNF
To install a package and all the package dependencies, use:
dnf install <package_name>
To install a previously-downloaded package from a local directory, use:
dnf install <path_to_download_package>
Revised on 2024-08-12 11:04:59 UTC