& RedHat

OpenShift Container Platform 4.12

Specialized hardware and driver enablement

Learn about hardware enablement on OpenShift Container Platform

Last Updated: 2025-10-16

OpenShift Container Platform 4.12 Specialized hardware and driver
enablement

Learn about hardware enablement on OpenShift Container Platform

Legal Notice

Copyright © 2025 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides an overview of hardware enablement in OpenShift Container Platform.

Table of Contents

CHAPTER 1. ABOUT SPECIALIZED HARDWARE AND DRIVER ENABLEMENT

CHAPTER 2. DRIVER TOOLKIT .o e e it

2.1. ABOUT THE DRIVER TOOLKIT
Background
Purpose
2.2. PULLING THE DRIVER TOOLKIT CONTAINER IMAGE
2.2.1. Pulling the Driver Toolkit container image from registry.redhat.io
2.2.2. Finding the Driver Toolkit image URL in the payload
2.3. USING THE DRIVER TOOLKIT
2.3.1. Build and run the simple-kmod driver container on a cluster
2.4. ADDITIONAL RESOURCES

CHAPTER 3. NODE FEATURE DISCOVERY OPERATORiiiiiiii i

3.1.INSTALLING THE NODE FEATURE DISCOVERY OPERATOR
3.1.1. Installing the NFD Operator using the CLI
3.1.2. Installing the NFD Operator using the web console
3.2. USING THE NODE FEATURE DISCOVERY OPERATOR
3.2.1. Creating a NodeFeatureDiscovery CR by using the CLI
3.2.2. Creating a NodeFeatureDiscovery CR by using the CLI in a disconnected environment
3.2.3. Creating a NodeFeatureDiscovery CR by using the web console
3.3. CONFIGURING THE NODE FEATURE DISCOVERY OPERATOR
3.3.1. core
core.sleeplnterval
core.sources
core.labelWhiteList
core.noPublish
core.klog
core.klog.addDirHeader
core.klog.alsologtostderr
core.klog.logBacktraceAt
core.klog.logDir
core.klog.logFile
core.klog.logFileMaxSize
core.klog.logtostderr
core.klog.skipHeaders
core.klog.skipLogHeaders
core.klog.stderrthreshold
core.klog.v
core.klog.vmodule
3.3.2. sources
sources.cpu.cpuid.attributeBlacklist
sources.cpu.cpuid.attributeWhitelist
sources.kernel.kconfigFile
sources.kernel.configOpts
sources.pci.deviceClassWhitelist
sources.pci.devicelabelFields
sources.usb.deviceClassWhitelist
sources.usb.devicelabelFields
sources.custom
3.4. ABOUT THE NODEFEATURERULE CUSTOM RESOURCE

Table of Contents

(o]

W 00 N N NN OO

OpenShift Container Platform 4.12 Specialized hardware and driver enablement

3.5. USING THE NODEFEATURERULE CUSTOM RESOURCE
3.6. USING THE NFD TOPOLOGY UPDATER
3.6.1. NodeResourceTopology CR
3.6.2. NFD Topology Updater command-line flags
-ca-file
-cert-file
-h, -help
-key-file
-kubelet-config-file
-no-publish
3.6.2.1. -oneshot
-podresources-socket
-server
-server-name-override
-sleep-interval
-version
-watch-namespace

CHAPTER 4. KERNEL MODULE MANAGEMENT OPERATOR iiiiiiiiiiiiiiiia

4.1. ABOUT THE KERNEL MODULE MANAGEMENT OPERATOR
4.2. INSTALLING THE KERNEL MODULE MANAGEMENT OPERATOR

4.2.1. Installing the Kernel Module Management Operator using the web console

4.2.2. Installing the Kernel Module Management Operator by using the CLI

26
27
27
28
28
29
29
29
29
29
30
30
30
30
30

31

31

32
32
32
32
33

4.2.3. Installing the Kernel Module Management Operator on earlier versions of OpenShift Container Platform

4.3. KERNEL MODULE DEPLOYMENT
4.3.1. The Module custom resource definition
4.3.2. Security and permissions
4.3.2.1. ServiceAccounts and SecurityContextConstraints
4.3.2.2. Pod security standards
4.3.3. Example Module CR
4.4, USING A MODULELOADER IMAGE
4.4.1. Running depmod
4.4.1.1. Example Dockerfile
4.4.2. Building in the cluster
4.4.3. Using the Driver Toolkit
4.5, USING SIGNING WITH KERNEL MODULE MANAGEMENT (KMM)
4.6. ADDING THE KEYS FOR SECUREBOOT
4.6.1. Checking the keys
4.7.SIGNING A PRE-BUILT DRIVER CONTAINER
4.8. BUILDING AND SIGNING A MODULELOADER CONTAINER IMAGE
4.9. DEBUGGING AND TROUBLESHOOTING
4.10. KMM FIRMWARE SUPPORT
4.10.1. Configuring the lookup path on nodes
4.10.2. Building a ModuleLoader image
4.10.3. Tuning the Module resource
41. TROUBLESHOOTING KMM
4.11.1. Using the must-gather tool
4.11.1.1. Gathering data for KMM
4.11.1.2. Gathering data for KMM-Hub
4.12. KMM HUB AND SPOKE
4.12.1. KMM-Hub
4.12.2. Installing KMM-Hub

34
36
37
37
38
38
38

41

41

41
42
43
43
44
45
45
46
48
48
48
49
49
50
50
50
52
54
54
55

Table of Contents

4.12.2.1. Installing KMM-Hub using the Operator Lifecycle Manager 55
4.12.2.2. Installing KMM-Hub by creating KMM resources 55
4.12.3. Using the ManagedClusterModule CRD 55
4.12.4. Running KMM on the spoke 56

OpenShift Container Platform 4.12 Specialized hardware and driver enablement

CHAPTER 1. ABOUT SPECIALIZED HARDWARE AND DRIVER ENABLEMENT

CHAPTER 1. ABOUT SPECIALIZED HARDWARE AND DRIVER
ENABLEMENT

The Driver Toolkit (DTK) is a container image in the OpenShift Container Platform payload which is
meant to be used as a base image on which to build driver containers. The Driver Toolkit image contains
the kernel packages commonly required as dependencies to build or install kernel modules as well as a
few tools needed in driver containers. The version of these packages will match the kernel version
running on the RHCOS nodes in the corresponding OpenShift Container Platform release.

Driver containers are container images used for building and deploying out-of-tree kernel modules and
drivers on container operating systems such as Red Hat Enterprise Linux CoreOS (RHCOS). Kernel
modules and drivers are software libraries running with a high level of privilege in the operating system
kernel. They extend the kernel functionalities or provide the hardware-specific code required to control
new devices. Examples include hardware devices like field-programmable gate arrays (FPGA) or
graphics processing units (GPU), and software-defined storage solutions, which all require kernel
modules on client machines. Driver containers are the first layer of the software stack used to enable
these technologies on OpenShift Container Platform deployments.

OpenShift Container Platform 4.12 Specialized hardware and driver enablement

CHAPTER 2. DRIVER TOOLKIT

Learn about the Driver Toolkit and how you can use it as a base image for driver containers for enabling
special software and hardware devices on OpenShift Container Platform deployments.

2.1. ABOUT THE DRIVER TOOLKIT

Background
The Driver Toolkit is a container image in the OpenShift Container Platform payload used as a base
image on which you can build driver containers. The Driver Toolkit image includes the kernel packages
commonly required as dependencies to build or install kernel modules, as well as a few tools needed in
driver containers. The version of these packages will match the kernel version running on the Red Hat
Enterprise Linux CoreOS (RHCOS) nodes in the corresponding OpenShift Container Platform release.
Driver containers are container images used for building and deploying out-of-tree kernel modules and
drivers on container operating systems like RHCOS. Kernel modules and drivers are software libraries
running with a high level of privilege in the operating system kernel. They extend the kernel
functionalities or provide the hardware-specific code required to control new devices. Examples include
hardware devices like Field Programmable Gate Arrays (FPGA) or GPUs, and software-defined storage
(SDS) solutions, such as Lustre parallel file systems, which require kernel modules on client machines.
Driver containers are the first layer of the software stack used to enable these technologies on
Kubernetes.
The list of kernel packages in the Driver Toolkit includes the following and their dependencies:

® kernel-core

® kernel-devel

e kernel-headers

e kernel-modules

® kernel-modules-extra
In addition, the Driver Toolkit also includes the corresponding real-time kernel packages:

e Kkernel-rt-core

e Kkernel-rt-devel

e kernel-rt-modules

o kernel-rt-modules-extra

The Driver Toolkit also has several tools that are commonly needed to build and install kernel modules,
including:

o elfutils-libelf-devel
e kmod
e binutilskabi-dw

o kernel-abi-whitelists

CHAPTER 2. DRIVER TOOLKIT

® dependencies for the above

Purpose

Prior to the Driver Toolkit's existence, users would install kernel packages in a pod or build config on
OpenShift Container Platform using entitled builds or by installing from the kernel RPMs in the hosts
machine-os-content. The Driver Toolkit simplifies the process by removing the entitlement step, and
avoids the privileged operation of accessing the machine-os-content in a pod. The Driver Toolkit can
also be used by partners who have access to pre-released OpenShift Container Platform versions to
prebuild driver-containers for their hardware devices for future OpenShift Container Platform releases.

The Driver Toolkit is also used by the Kernel Module Management (KMM), which is currently available as
a community Operator on OperatorHub. KMM supports out-of-tree and third-party kernel drivers and
the support software for the underlying operating system. Users can create modules for KMM to build
and deploy a driver container, as well as support software like a device plugin, or metrics. Modules can
include a build config to build a driver container-based on the Driver Toolkit, or KMM can deploy a
prebuilt driver container.

2.2. PULLING THE DRIVER TOOLKIT CONTAINER IMAGE

The driver-toolkit image is available from the Containerimages section of the Red Hat Ecosystem
Catalog and in the OpenShift Container Platform release payload. The image corresponding to the
most recent minor release of OpenShift Container Platform will be tagged with the version number in
the catalog. The image URL for a specific release can be found using the oc adm CLI command.

2.2.1. Pulling the Driver Toolkit container image from registry.redhat.io

Instructions for pulling the driver-toolkit image from registry.redhat.io with podman or in OpenShift
Container Platform can be found on the Red Hat Ecosystem Catalog. The driver-toolkit image for the
latest minor release are tagged with the minor release version on registry.redhat.io, for example:
registry.redhat.io/openshift4/driver-toolkit-rhel8:v4.12.

2.2.2. Finding the Driver Toolkit image URL in the payload

Prerequisites

® You obtained the image pull secret from the Red Hat OpenShift Cluster Manager .

® You installed the OpenShift CLI (o¢).

Procedure

1. Use the oc adm command to extract the image URL of the driver-toolkit corresponding to a
certain release:

® Foranx86 image, enter the following command:

$ oc adm release info quay.io/openshift-release-dev/ocp-release:4.12.z-x86_64 --image-
for=driver-toolkit

® Foran ARM image, enter the following command:

$ oc adm release info quay.io/openshift-release-dev/ocp-release:4.12.z-aarch64 --
image-for=driver-toolkit

https://www.openshift.com/blog/how-to-use-entitled-image-builds-to-build-drivercontainers-with-ubi-on-openshift
https://registry.redhat.io/
https://catalog.redhat.com/software/containers/openshift4/driver-toolkit-rhel8/604009d6122bd89307e00865?container-tabs=gti
https://console.redhat.com/openshift/install/pull-secret

OpenShift Container Platform 4.12 Specialized hardware and driver enablement

Example output

quay.io/openshift-release-dev/ocp-v4.0-art-
dev@sha256:0fd84aee79606178b6561ac71f8540f404d518ae5deff45f6d6ac8f02636¢714

2. Obtain this image by using a valid pull secret, such as the pull secret required to install
OpenShift Container Platform:

$ podman pull --authfile=path/to/pullsecret.json quay.io/openshift-release-dev/ocp-v4.0-art-
dev@sha256:<SHA>

2.3. USING THE DRIVER TOOLKIT

As an example, the Driver Toolkit can be used as the base image for building a very simple kernel module
called simple-kmod.

NOTE

The Driver Toolkit includes the necessary dependencies, openssl, mokutil, and keyutils,
needed to sign a kernel module. However, in this example, the simple-kmod kernel
module is not signed and therefore cannot be loaded on systems with Secure Boot
enabled.

2.3.1. Build and run the simple-kmod driver container on a cluster

Prerequisites

® You have a running OpenShift Container Platform cluster.

® You set the Image Registry Operator state to Managed for your cluster.

® You installed the OpenShift CLI (o¢).

® You are logged into the OpenShift CLI as a user with cluster-admin privileges.

Procedure

Create a namespace. For example:
I $ oc new-project simple-kmod-demo

1. The YAML defines an ImageStream for storing the simple-kmod driver container image, and a
BuildConfig for building the container. Save this YAML as 0000-buildconfig.yaml.template.

apiVersion: image.openshift.io/v1
kind: ImageStream
metadata:
labels:
app: simple-kmod-driver-container
name: simple-kmod-driver-container
namespace: simple-kmod-demo
spec: {}

CHAPTER 2. DRIVER TOOLKIT

apiVersion: build.openshift.io/v1
kind: BuildConfig
metadata:
labels:
app: simple-kmod-driver-build
name: simple-kmod-driver-build
namespace: simple-kmod-demo
spec:
nodeSelector:
node-role.kubernetes.io/worker: "
runPolicy: "Serial”
triggers:
- type: "ConfigChange"
- type: "ImageChange”
source:
dockerfile: |
ARG DTK
FROM ${DTK} as builder

ARG KVER

WORKDIR /build/

RUN git clone https://github.com/openshift-psap/simple-kmod.git
WORKDIR /build/simple-kmod

RUN make all install KVER=${KVER}

FROM registry.redhat.io/ubi8/ubi-minimal

ARG KVER

Required for installing "'modprobe’
RUN microdnf install kmod

COPY --from=builder /lib/modules/${KVER}/simple-kmod.ko /lib/modules/${KVERY}/
COPY --from=builder /lib/modules/${KVER}/simple-procfs-kmod.ko
/lib/modules/${KVER}/
RUN depmod ${KVER}
strategy:
dockerStrategy:
buildArgs:
- name: KMODVER
value: DEMO
$ oc adm release info quay.io/openshift-release-dev/ocp-release:<cluster version>-
x86_64 --image-for=driver-toolkit
- name: DTK
value: quay.io/openshift-release-dev/ocp-v4.0-art-
dev@sha256:34864 ccd2f4b6e385705a730864c04a40908e57acede44457a783d739e377cae
- name: KVER
value: 4.18.0-372.26.1.el8_6.x86_64
output:
to:
kind: ImageStreamTag
name: simple-kmod-driver-container:demo

OpenShift Container Platform 4.12 Specialized hardware and driver enablement

10

2. Substitute the correct driver toolkit image for the OpenShift Container Platform version you are
running in place of “DRIVER_TOOLKIT_IMAGE" with the following commands.

I $ OCP_VERSION=$(oc get clusterversion/version -ojsonpath={.status.desired.version})

I $ DRIVER_TOOLKIT_IMAGE=$(oc adm release info $OCP_VERSION --image-for=driver-
toolkit)

$ sed "s#DRIVER_TOOLKIT_IMAGE#${DRIVER_TOOLKIT_IMAGE}#" 0000-
buildconfig.yaml.template > 0000-buildconfig.yaml

3. Create the image stream and build config with

I $ oc create -f 0000-buildconfig.yaml

4. After the builder pod completes successfully, deploy the driver container image as a
DaemonSet.

a. The driver container must run with the privileged security context in order to load the kernel
modules on the host. The following YAML file contains the RBAC rules and the DaemonSet
for running the driver container. Save this YAML as 1000-drivercontainer.yaml.

apiVersion: vi
kind: ServiceAccount
metadata:

name: simple-kmod-driver-container
apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:

name: simple-kmod-driver-container
rules:
- apiGroups:

- security.openshift.io

resources:

- securitycontextconstraints

verbs:

- use

resourceNames:

- privileged
apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:

name: simple-kmod-driver-container
roleRef:

apiGroup: rbac.authorization.k8s.io

kind: Role

name: simple-kmod-driver-container
subjects:
- kind: ServiceAccount

name: simple-kmod-driver-container
userNames:
- system:serviceaccount:simple-kmod-demo:simple-kmod-driver-container

CHAPTER 2. DRIVER TOOLKIT

apiVersion: apps/v1
kind: DaemonSet
metadata:
name: simple-kmod-driver-container
spec:
selector:
matchLabels:
app: simple-kmod-driver-container
template:
metadata:
labels:
app: simple-kmod-driver-container
spec:
serviceAccount: simple-kmod-driver-container
serviceAccountName: simple-kmod-driver-container
containers:
- image: image-registry.openshift-image-registry.svc:5000/simple-kmod-
demo/simple-kmod-driver-container:demo
name: simple-kmod-driver-container
imagePullPolicy: Always
command: [sleep, infinity]
lifecycle:
postStart:
exec:
command: ["'modprobe”, "-v", "-a" , "simple-kmod", "simple-procfs-kmod"]
preStop:
exec:
command: ["'modprobe”, "-r", "-a" , "simple-kmod", "simple-procfs-kmod"]
securityContext:
privileged: true
nodeSelector:
node-role.kubernetes.io/worker: "

b. Create the RBAC rules and daemon set:

I $ oc create -f 1000-drivercontainer.yaml

5. After the pods are running on the worker nodes, verify that the simple_kmod kernel module is
loaded successfully on the host machines with Ismod.

a. Verify that the pods are running:

I $ oc get pod -n simple-kmod-demo
Example output

NAME READY STATUS RESTARTS AGE
simple-kmod-driver-build-1-build 0/1 Completed 0 6m
simple-kmod-driver-container-b22fd 1/1 Running 0 40s
simple-kmod-driver-container-jzZ9vn 1/1 Running 0 40s
simple-kmod-driver-container-p45cc 1/1 Running 0 40s

b. Execute the Ismod command in the driver container pod:

1

OpenShift Container Platform 4.12 Specialized hardware and driver enablement

I $ oc exec -it pod/simple-kmod-driver-container-p45cc -- Ismod | grep simple

Example output
simple_procfs_kmod 16384 0
simple_kmod 16384 0

2.4. ADDITIONAL RESOURCES

® For more information about configuring registry storage for your cluster, see Image Registry
Operator in OpenShift Container Platform.

12

https://docs.redhat.com/en/documentation/openshift_container_platform/4.12/html-single/registry/#registry-removed_configuring-registry-operator

CHAPTER 3. NODE FEATURE DISCOVERY OPERATOR

CHAPTER 3. NODE FEATURE DISCOVERY OPERATOR

Learn about the Node Feature Discovery (NFD) Operator and how you can use it to expose node-level
information by orchestrating Node Feature Discovery, a Kubernetes add-on for detecting hardware
features and system configuration.

The Node Feature Discovery Operator (NFD) manages the detection of hardware features and
configuration in an OpenShift Container Platform cluster by labeling the nodes with hardware-specific
information. NFD labels the host with node-specific attributes, such as PCl cards, kernel, operating
system version, and so on.

The NFD Operator can be found on the Operator Hub by searching for “Node Feature Discovery”.

3.1. INSTALLING THE NODE FEATURE DISCOVERY OPERATOR

The Node Feature Discovery (NFD) Operator orchestrates all resources needed to run the NFD
daemon set. As a cluster administrator, you can install the NFD Operator by using the OpenShift
Container Platform CLI or the web console.

3.1.1. Installing the NFD Operator using the CLI

As a cluster administrator, you can install the NFD Operator using the CLI.

Prerequisites

® An OpenShift Container Platform cluster
® |Install the OpenShift CLI (oc).

® | ogin as a user with cluster-admin privileges.

Procedure
1. Create a namespace for the NFD Operator.

a. Create the following Namespace custom resource (CR) that defines the openshift-nfd
namespace, and then save the YAML in the nfd-namespace.yaml file. Set cluster-
monitoring to "true”.

apiVersion: vi
kind: Namespace
metadata:
name: openshift-nfd
labels:
name: openshift-nfd
openshift.io/cluster-monitoring: "true"

b. Create the namespace by running the following command:

I $ oc create -f nfd-namespace.yaml

2. Install the NFD Operator in the namespace you created in the previous step by creating the
following objects:

- [TSNS S N | S S © VR Ry NS T i B 2 N N S I BRR " PN |

13

OpenShift Container Platform 4.12 Specialized hardware and driver enablement

d. Lreate ine roliowing vperatoraroup L ana save tne vy AviL In tne nra-=
operatorgroup.yaml file:

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
generateName: openshift-nfd-
name: openshift-nfd
namespace: openshift-nfd
spec:
targetNamespaces:
- openshift-nfd

b. Create the OperatorGroup CR by running the following command:

I $ oc create -f nfd-operatorgroup.yami

c. Create the following Subscription CR and save the YAML in the nfd-sub.yaml file:

Example Subscription

apiVersion: operators.coreos.com/vialphai
kind: Subscription
metadata:
name: nfd
namespace: openshift-nfd
spec:
channel: "stable"
installPlanApproval: Automatic
name: nfd
source: redhat-operators
sourceNamespace: openshift-marketplace

d. Create the subscription object by running the following command:
I $ oc create -f nfd-sub.yaml
e. Change to the openshift-nfd project:
I $ oc project openshift-nfd
Verification
® To verify that the Operator deployment is successful, run:
I $ oc get pods
Example output

NAME READY STATUS RESTARTS AGE
nfd-controller-manager-7f86ccfb58-vgrdx 2/2 Running 0 10m

A successful deployment shows a Running status.

14

CHAPTER 3. NODE FEATURE DISCOVERY OPERATOR

3.1.2. Installing the NFD Operator using the web console

As a cluster administrator, you can install the NFD Operator using the web console.

Procedure

1. In the OpenShift Container Platform web console, click Operators - OperatorHub.
2. Choose Node Feature Discovery from the list of available Operators, and then click Install.

3. On theInstall Operator page, select A specific namespace on the cluster and then click
Install. You do not need to create a namespace because it is created for you.

Verification

To verify that the NFD Operator installed successfully:
1. Navigate to the Operators — Installed Operators page.

2. Ensure that Node Feature Discovery is listed in the openshift-nfd project with a Status of
InstallSucceeded.

NOTE

During installation an Operator might display a Failed status. If the installation
later succeeds with an InstallSucceeded message, you can ignore the Failed
message.

Troubleshooting

If the Operator does not appear as installed, troubleshoot further:

1. Navigate to the Operators — Installed Operators page and inspect the Operator
Subscriptions and Install Plans tabs for any failure or errors under Status.

2. Navigate to the Workloads = Pods page and check the logs for pods in the openshift-nfd

project.

3.2. USING THE NODE FEATURE DISCOVERY OPERATOR

The Node Feature Discovery (NFD) Operator orchestrates all resources needed to run the Node-
Feature-Discovery daemon set by watching for a NodeFeatureDiscovery custom resource (CR). Based
on the NodeFeatureDiscovery CR, the Operator creates the operand (NFD) components in the
selected namespace. You can edit the CR to use another namespace, image, image pull policy, and nfd-
worker-conf config map, among other options.

As a cluster administrator, you can create a NodeFeatureDiscovery CR by using the OpenShift CLI (o¢)
or the web console.

3.2.1. Creating a NodeFeatureDiscovery CR by using the CLI

As a cluster administrator, you can create a NodeFeatureDiscovery CR instance by using the OpenShift
CLI (oc).

Prerequisites

15

OpenShift Container Platform 4.12 Specialized hardware and driver enablement

® You have access to an OpenShift Container Platform cluster
® You installed the OpenShift CLI (o¢).
® Youloggedin as a user with cluster-admin privileges.

® You installed the NFD Operator.

Procedure

16

1. Create a NodeFeatureDiscovery CR:

Example NodeFeatureDiscovery CR

apiVersion: nfd.openshift.io/v1
kind: NodeFeatureDiscovery
metadata:
name: nfd-instance
namespace: openshift-nfd
spec:
instance: " # instance is empty by default
topologyupdater: false # False by default
operand:
image: registry.redhat.io/openshift4/ose-node-feature-discovery:v4.12
imagePullPolicy: Always
workerConfig:
configData: |
core:
labelWhiteList:
noPublish: false
sleeplinterval: 60s
sources: [all]
klog:
addDirHeader: false
alsologtostderr: false
logBackiraceAt:
logtostderr: true
skipHeaders: false
stderrthreshold: 2
v:0
vmodule:
NOTE: the following options are not dynamically run-time configurable
and require a nfd-worker restart to take effect after being changed
logDir:
logFile:
logFileMaxSize: 1800
skipLogHeaders: false
sources:
cpu:
cpuid:
NOTE: whitelist has priority over blacklist
attributeBlacklist:
-"BMIT"
- "BMI2"
- "CLMuUL"
-"CMOV"

Hh

%%#%%%%%%%%%

CHAPTER 3. NODE FEATURE DISCOVERY OPERATOR

-"CX16"
- "ERMS"
-"F16C"
-"HTT"
- "LZCNT"
- "MMX"
- "MMXEXT"
- "NX"
- "POPCNT"
- "RDRAND"
- "RDSEED"
-"RDTSCP"
- "SGX"
- "SSE"
- "SSE2"
- "SSE3"
-"SSE4.1"
- "SSE4.2"
- "SSSE3"
attributeWhitelist:
kernel:
kconfigFile: "/path/to/kconfig"
configOpts:
-"NO_Hz"
- "X86"
- "DMI"
pci:
deviceClassWhitelist:
-"0200"
-"03"
-"2"
devicelLabelFields:
- "class"
customConfig:
configData: |
- name: "more.kernel.features"
matchOn:
- loadedKMod: ["example_kmod3"]

2. Create the NodeFeatureDiscovery CR by running the following command:

I $ oc apply -f <filename>

Verification
1. Check that the NodeFeatureDiscovery CR was created by running the following command:

I $ oc get pods

Example output

NAME READY STATUS RESTARTS AGE
nfd-controller-manager-7f86ccfb58-vgrdx 2/2 Running 0 11m
nfd-master-hcn64 1/1 Running 0 60s

17

OpenShift Container Platform 4.12 Specialized hardware and driver enablement

nfd-master-Innxx 1/1 Running 0 60s
nfd-master-mp6hr 1/1 Running 0 60s
nfd-worker-vgcz9 1/1 Running 0 60s
nfd-worker-xgbws 1/1 Running 0 60s

A successful deployment shows a Running status.

3.2.2. Creating a NodeFeatureDiscovery CR by using the CLI in a disconnected
environment

As a cluster administrator, you can create a NodeFeatureDiscovery CR instance by using the OpenShift
CLI (oc).

Prerequisites

® You have access to an OpenShift Container Platform cluster
® You installed the OpenShift CLI (o¢).

® Youloggedin as a user with cluster-admin privileges.

® You installed the NFD Operator.

® You have access to a mirror registry with the required images.

® You installed the skopeo CLI tool.

Procedure
1. Determine the digest of the registry image:

a. Run the following command:

$ skopeo inspect docker://registry.redhat.io/openshift4/ose-node-feature-discovery:
<openshift_version>

Example command

I $ skopeo inspect docker://registry.redhat.io/openshift4/ose-node-feature-discovery:v4.12

b. Inspect the output to identify the image digest:

Example output

{

"Digest™:
"sha256:1234567890abcdef1234567890abcdef1234567890abcdef1234567890abcdef",

}...

2. Use the skopeo CLI tool to copy the image from registry.redhat.io to your mirror registry, by
running the following command:

18

CHAPTER 3. NODE FEATURE DISCOVERY OPERATOR

skopeo copy docker://registry.redhat.io/openshift4/ose-node-feature-
discovery@<image_digest> docker://<mirror_registry>/openshift4/ose-node-feature-
discovery@<image_digest>

Example command

skopeo copy docker://registry.redhat.io/openshift4/ose-node-feature-
discovery@sha256:1234567890abcdef1234567890abcdef1234567890abcdef1234567890abcd
ef docker://<your-mirror-registry>/openshift4/ose-node-feature-
discovery@sha256:1234567890abcdef1234567890abcdef1234567890abcdef1234567890abcd
ef

3. Create a NodeFeatureDiscovery CR:

Example NodeFeatureDiscovery CR

apiVersion: nfd.openshift.io/v1
kind: NodeFeatureDiscovery
metadata:
name: nfd-instance
spec:
operand:
image: <mirror_registry>/openshift4/ose-node-feature-discovery@<image_digest>
imagePullPolicy: Always
workerConfig:
configData: |
core:
labelWhiteList:
noPublish: false
sleeplinterval: 60s
sources: [all]
klog:
addDirHeader: false
alsologtostderr: false
logBackiraceAt:
logtostderr: true
SkipHeaders: false
stderrthreshold: 2
v:0
vmodule:
NOTE: the following options are not dynamically run-time configurable
and require a nfd-worker restart to take effect after being changed
logDir:
logFile:
logFileMaxSize: 1800
skipLogHeaders: false
sources:
cpu:
cpuid:
NOTE: whitelist has priority over blacklist
attributeBlacklist:
-"BMIT"
- "BMI2"
- "CLMuUL"
-"CMOV"

Hh

%%#%%%%%%%%%

19

OpenShift Container Platform 4.12 Specialized hardware and driver enablement

-"CX16"
- "ERMS"
-"F16C"
-"HTT"
- "LZCNT"
- "MMX"
- "MMXEXT"
- "NX"
- "POPCNT"
- "RDRAND"
- "RDSEED"
-"RDTSCP"
- "SGX"
- "SSE"
- "SSE2"
- "SSE3"
-"SSE4.1"
- "SSE4.2"
- "SSSE3"
attributeWhitelist:
kernel:
kconfigFile: "/path/to/kconfig"
configOpts:
-"NO_Hz"
- "X86"
- "DMI"
pci:
deviceClassWhitelist:
-"0200"
-"03"
-"2"
devicelLabelFields:
- "class"
customConfig:
configData: |
- name: "more.kernel.features"
matchOn:
- loadedKMod: ["example_kmod3"]

4. Create the NodeFeatureDiscovery CR by running the following command:

I $ oc apply -f <filename>

Verification

1. Check the status of the NodeFeatureDiscovery CR by running the following command:

I $ oc get nodefeaturediscovery nfd-instance -o yaml

2. Check that the pods are running without ImagePullBackOff errors by running the following
command:

I $ oc get pods -n <nfd_namespace>

20

CHAPTER 3. NODE FEATURE DISCOVERY OPERATOR

3.2.3. Creating a NodeFeatureDiscovery CR by using the web console

As a cluster administrator, you can create a NodeFeatureDiscovery CR by using the OpenShift
Container Platform web console.

Prerequisites

® You have access to an OpenShift Container Platform cluster
® Youloggedin as a user with cluster-admin privileges.

® You installed the NFD Operator.

Procedure

1. Navigate to the Operators — Installed Operators page.
2. Inthe Node Feature Discovery section, under Provided APIs, click Create instance
3. Edit the values of the NodeFeatureDiscovery CR.

4. Click Create.
3.3. CONFIGURING THE NODE FEATURE DISCOVERY OPERATOR

3.3.1. core

The core section contains common configuration settings that are not specific to any particular feature
source.

core.sleeplinterval

core.sleeplinterval specifies the interval between consecutive passes of feature detection or re-
detection, and thus also the interval between node re-labeling. A non-positive value implies infinite
sleep interval; no re-detection or re-labeling is done.

This value is overridden by the deprecated --sleep-interval command-line flag, if specified.

Example usage

core:
sleepinterval: 60s ﬂ

The default value is 60s.

core.sources

core.sources specifies the list of enabled feature sources. A special value all enables all feature
sources.

This value is overridden by the deprecated --sources command-line flag, if specified.

Default: [all]

Example usage

21

OpenShift Container Platform 4.12 Specialized hardware and driver enablement

core:
sources:

- system

- custom

core.labelWhiteList
core.labelWhiteList specifies a regular expression for filtering feature labels based on the label name.
Non-matching labels are not published.

The regular expression is only matched against the basename part of the label, the part of the name
after /. The label prefix, or namespace, is omitted.

This value is overridden by the deprecated --label-whitelist command-line flag, if specified.

Default: null

Example usage

core:
labelWhiteList: "*cpu-cpuid'

core.noPublish
Setting core.noPublish to true disables all communication with the nfd-master. It is effectively a dry
run flag; nfd-worker runs feature detection normally, but no labeling requests are sent to nfd-master.

This value is overridden by the --no-publish command-line flag, if specified.
Example:

Example usage

core:
noPublish: true 0

The default value is false.

core.klog
The following options specify the logger configuration, most of which can be dynamically adjusted at
run-time.

The logger options can also be specified using command-line flags, which take precedence over any
corresponding config file options.

core.klog.addDirHeader
If set to true, core.klog.addDirHeader adds the file directory to the header of the log messages.

Default: false
Run-time configurable: yes

core.klog.alsologtostderr
Log to standard error as well as files.

Default: false

22

Run-time configurable: yes

core.klog.logBacktraceAt

When logging hits line file:N, emit a stack trace.

Default: empty
Run-time configurable: yes

core.klog.logDir
If non-empty, write log files in this directory.

Default: empty
Run-time configurable: no

core.klog.logFile
If not empty, use this log file.

Default: empty
Run-time configurable: no

core.klog.logFileMaxSize

CHAPTER 3. NODE FEATURE DISCOVERY OPERATOR

core.klog.logFileMaxSize defines the maximum size a log file can grow to. Unit is megabytes. If the

value is 0, the maximum file size is unlimited.
Default: 1800
Run-time configurable: no

core.klog.logtostderr
Log to standard error instead of files

Default: true
Run-time configurable: yes

core.klog.skipHeaders

If core.klog.skipHeaders is set to true, avoid header prefixes in the log messages.

Default: false
Run-time configurable: yes

core.klog.skipLogHeaders

If core.klog.skipLogHeaders is set to true, avoid headers when opening log files.

Default: false
Run-time configurable: no

core.klog.stderrthreshold
Logs at or above this threshold go to stderr.

Default: 2

23

OpenShift Container Platform 4.12 Specialized hardware and driver enablement

Run-time configurable: yes

core.klog.v
core.klog.v is the number for the log level verbosity.

Default: 0
Run-time configurable: yes

core.klog.vmodule
core.klog.vmodule is a comma-separated list of pattern=N settings for file-filtered logging.

Default: empty

Run-time configurable: yes

3.3.2. sources

The sources section contains feature source specific configuration parameters.

sources.cpu.cpuid.attributeBlacklist
Prevent publishing cpuid features listed in this option.

This value is overridden by sources.cpu.cpuid.attributeWhitelist, if specified.

Default: [BMI1, BMI2, CLMUL, CMOV, CX16, ERMS, F16C, HTT, LZCNT, MMX, MMXEXT, NX,
POPCNT, RDRAND, RDSEED, RDTSCP, SGX, SGXLC, SSE, SSE2, SSE3, SSE4.1, SSE4.2, SSSE3]

Example usage

sources:
cpu:
cpuid:
attributeBlacklist: [MMX, MMXEXT]

sources.cpu.cpuid.attributeWhitelist
Only publish the cpuid features listed in this option.

sources.cpu.cpuid.attributeWhitelist takes precedence over sources.cpu.cpuid.attributeBlacklist.
Default: empty

Example usage

sources:
cpu:
cpuid:
attributeWhitelist: [AVX512BW, AVX512CD, AVX512DQ, AVX512F, AVX512VL]

sources.kernel.kconfigFile
sources.kernel.kconfigFile is the path of the kernel config file. If empty, NFD runs a search in the well-
known standard locations.

Default: empty

24

CHAPTER 3. NODE FEATURE DISCOVERY OPERATOR

Example usage

sources:
kernel:
kconfigFile: "/path/to/kconfig”

sources.kernel.configOpts
sources.kernel.configOpts represents kernel configuration options to publish as feature labels.

Default: [NO_HZ, NO_HZ_IDLE, NO_HZ_FULL, PREEMPT]

Example usage

sources:
kernel:
configOpts: [NO_HZ, X86, DMI]

sources.pci.deviceClassWhitelist

sources.pci.deviceClassWhitelist is a list of PCl device class IDs for which to publish a label. It can be
specified as a main class only (for example, 03) or full class-subclass combination (for example 0300).
The former implies that all subclasses are accepted. The format of the labels can be further configured
with devicelLabelFields.

Default: ["03", "0b40", "12"]

Example usage

sources:
pci:
deviceClassWhitelist: ['0200", "03"]

sources.pci.deviceLabelFields

sources.pci.deviceLabelFields is the set of PCI ID fields to use when constructing the name of the
feature label. Valid fields are class, vendor, device, subsystem_vendor and subsystem_device.
Default: [class, vendor]

Example usage

sources:
pci:
devicelLabelFields: [class, vendor, device]

With the example config above, NFD would publish labels such as feature.node.kubernetes.io/pci-
<class-id>_<vendor-id>_<device-id>.present=true

sources.usb.deviceClassWhitelist
sources.usb.deviceClassWhitelist is a list of USB device class IDs for which to publish a feature label.
The format of the labels can be further configured with deviceLabelFields.

Default: ["'0e", "ef", "fe", "ff"]

Example usage

25

https://pci-ids.ucw.cz/read/PD
https://www.usb.org/defined-class-codes

OpenShift Container Platform 4.12 Specialized hardware and driver enablement

sources:
usb:
deviceClassWhitelist: ["ef", "ff"]

sources.usb.devicelLabelFields
sources.usb.deviceLabelFields is the set of USB ID fields from which to compose the name of the
feature label. Valid fields are class, vendor, and device.

Default: [class, vendor, device]

Example usage

sources:
pci:
devicelLabelFields: [class, vendor]

With the example config above, NFD would publish labels like: feature.node.kubernetes.io/usb-<class-
id>_<vendor-id>.present=true.

sources.custom
sources.custom is the list of rules to process in the custom feature source to create user-specific
labels.

Default: empty

Example usage

source:
custom:
- name: "my.custom.feature"
matchOn:
- loadedKMod: ["'e1000e"]
- pcild:
class: ['0200"
vendor: ["8086"]

3.4. ABOUT THE NODEFEATURERULE CUSTOM RESOURCE

NodeFeatureRule objects are a NodeFeatureDiscovery custom resource designed for rule-based
custom labeling of nodes. Some use cases include application-specific labeling or distribution by
hardware vendors to create specific labels for their devices.

NodeFeatureRule objects provide a method to create vendor- or application-specific labels and taints.
It uses a flexible rule-based mechanism for creating labels and optionally taints based on node features.

3.5. USING THE NODEFEATURERULE CUSTOM RESOURCE

Create a NodeFeatureRule object to label nodes if a set of rules match the conditions.

Procedure

1. Create a custom resource file named nodefeaturerule.yaml that contains the following text:

26

CHAPTER 3. NODE FEATURE DISCOVERY OPERATOR

apiVersion: nfd.openshift.io/v1
kind: NodeFeatureRule
metadata:
name: example-rule
spec:
rules:
- name: "example rule"
labels:
"example-custom-feature": "true"
Label is created if all of the rules below match
matchFeatures:
Match if "veth" kernel module is loaded
- feature: kernel.loadedmodule
matchExpressions:
veth: {op: Exists}
Match if any PCI device with vendor 8086 exists in the system
- feature: pci.device
matchExpressions:
vendor: {op: In, value: ["8086"]}

This custom resource specifies that labelling occurs when the veth module is loaded and any
PCl device with vendor code 8086 exists in the cluster.

2. Apply the nodefeaturerule.yaml file to your cluster by running the following command:

$ oc apply -f https://raw.githubusercontent.com/kubernetes-sigs/node-feature-
discovery/v0.13.6/examples/nodefeaturerule.yaml

The example applies the feature label on nodes with the veth module loaded and any PCI
device with vendor code 8086 exists.

NOTE

A relabeling delay of up to 1 minute might occur.

3.6. USING THE NFD TOPOLOGY UPDATER

The Node Feature Discovery (NFD) Topology Updater is a daemon responsible for examining allocated
resources on a worker node. It accounts for resources that are available to be allocated to new pod on a
per-zone basis, where a zone can be a Non-Uniform Memory Access (NUMA) node. The NFD Topology
Updater communicates the information to nfd-master, which creates a NodeResourceTopology
custom resource (CR) corresponding to all of the worker nodes in the cluster. One instance of the NFD
Topology Updater runs on each node of the cluster.

To enable the Topology Updater workers in NFD, set the topologyupdater variable to true in the
NodeFeatureDiscovery CR, as described in the section Using the Node Feature Discovery Operator.

3.6.1. NodeResourceTopology CR

When run with NFD Topology Updater, NFD creates custom resource instances corresponding to the
node resource hardware topology, such as:

apiVersion: topology.node.k8s.io/vialphai
kind: NodeResourceTopology

27

OpenShift Container Platform 4.12 Specialized hardware and driver enablement

metadata:
name: node1
topologyPolicies: ['SingleNUMANodeContainerLevel"]
zones:
- name: node-0
type: Node
resources:

- name: cpu
capacity: 20
allocatable: 16
available: 10

- name: vendor/nic1
capacity: 3
allocatable: 3
available: 3

- name: node-1
type: Node
resources:

- name: cpu
capacity: 30
allocatable: 30
available: 15

- name: vendor/nic2
capacity: 6
allocatable: 6
available: 6

- name: node-2
type: Node
resources:

- name: cpu
capacity: 30
allocatable: 30
available: 15

- name: vendor/nic1
capacity: 3
allocatable: 3
available: 3

3.6.2. NFD Topology Updater command-line flags

To view available command-line flags, run the nfd-topology-updater -help command. For example, in a
podman container, run the following command:

I $ podman run gcr.io/k8s-staging-nfd/node-feature-discovery:master nfd-topology-updater -help
-ca-file
The -ca-file flag is one of the three flags, together with the -cert-file and " -key-file *flags, that controls

the mutual TLS authentication on the NFD Topology Updater. This flag specifies the TLS root
certificate that is used for verifying the authenticity of nfd-master.

Default: empty

IMPORTANT

The -ca-file flag must be specified together with the -cert-file and -key-file flags.

28

CHAPTER 3. NODE FEATURE DISCOVERY OPERATOR

Example

$ nfd-topology-updater -ca-file=/opt/nfd/ca.crt -cert-file=/opt/nfd/updater.crt -key-
file=/opt/nfd/updater.key

-cert-file

The -cert-file flag is one of the three flags, together with the -ca-file and -key-file flags, that controls
mutual TLS authentication on the NFD Topology Updater. This flag specifies the TLS certificate
presented for authenticating outgoing requests.

Default: empty

IMPORTANT

The -cert-file flag must be specified together with the -ca-file and -key-file flags.

Example

$ nfd-topology-updater -cert-file=/opt/nfd/updater.crt -key-file=/opt/nfd/updater.key -ca-
file=/opt/nfd/ca.crt

-h, -help
Print usage and exit.

-key-file

The -key-file flag is one of the three flags, together with the -ca-file and -cert-file flags, that controls
the mutual TLS authentication on the NFD Topology Updater. This flag specifies the private key
corresponding the given certificate file, or -cert-file, that is used for authenticating outgoing requests.

Default: empty

IMPORTANT

The -key-file flag must be specified together with the -ca-file and -cert-file flags.

Example

$ nfd-topology-updater -key-file=/opt/nfd/updater.key -cert-file=/opt/nfd/updater.crt -ca-
file=/opt/nfd/ca.crt

-kubelet-config-file
The -kubelet-config-file specifies the path to the Kubelet's configuration file.

Default: /host-var/lib/kubelet/config.yaml

Example

I $ nfd-topology-updater -kubelet-config-file=/var/lib/kubelet/config.yaml

-no-publish

29

OpenShift Container Platform 4.12 Specialized hardware and driver enablement

The -no-publish flag disables all communication with the nfd-master, making it a dry run flag for nfd-
topology-updater. NFD Topology Updater runs resource hardware topology detection normally, but no
CR requests are sent to nfd-master.

Default: false

Example

I $ nfd-topology-updater -no-publish

3.6.2.1. -oneshot

The -oneshot flag causes the NFD Topology Updater to exit after one pass of resource hardware
topology detection.

Default: false

Example
I $ nfd-topology-updater -oneshot -no-publish

-podresources-socket
The -podresources-socket flag specifies the path to the Unix socket where kubelet exports a gRPC
service to enable discovery of in-use CPUs and devices, and to provide metadata for them.

Default: /host-var/liblib/kubelet/pod-resources/kubelet.sock

Example
I $ nfd-topology-updater -podresources-socket=/var/lib/kubelet/pod-resources/kubelet.sock

-server
The -server flag specifies the address of the nfd-master endpoint to connect to.

Default: localhost:8080

Example
I $ nfd-topology-updater -server=nfd-master.nfd.svc.cluster.local:443

-server-name-override
The -server-name-override flag specifies the common name (CN) which to expect from the nfd-master
TLS certificate. This flag is mostly intended for development and debugging purposes.

Default: empty

Example
I $ nfd-topology-updater -server-name-override=localhost

-sleep-interval

30

CHAPTER 3. NODE FEATURE DISCOVERY OPERATOR

The -sleep-interval flag specifies the interval between resource hardware topology re-examination and
custom resource updates. A non-positive value implies infinite sleep interval and no re-detection is
done.

Default: 60s

Example
I $ nfd-topology-updater -sleep-interval=1h

-version
Print version and exit.

-watch-namespace

The -watch-namespace flag specifies the namespace to ensure that resource hardware topology
examination only happens for the pods running in the specified namespace. Pods that are not running in
the specified namespace are not considered during resource accounting. This is particularly useful for
testing and debugging purposes. A * value means that all of the pods across all namespaces are
considered during the accounting process.

Default: *

Example

I $ nfd-topology-updater -watch-namespace=rte

31

OpenShift Container Platform 4.12 Specialized hardware and driver enablement

CHAPTER 4. KERNEL MODULE MANAGEMENT OPERATOR

Learn about the Kernel Module Management (KMM) Operator and how you can use it to deploy out-of-
tree kernel modules and device plugins on OpenShift Container Platform clusters.

4.1. ABOUT THE KERNEL MODULE MANAGEMENT OPERATOR

The Kernel Module Management (KMM) Operator manages, builds, signs, and deploys out-of-tree
kernel modules and device plugins on OpenShift Container Platform clusters.

KMM adds a new Module CRD which describes an out-of-tree kernel module and its associated device
plugin. You can use Module resources to configure how to load the module, define ModuleLoader
images for kernel versions, and include instructions for building and signing modules for specific kernel
versions.

KMM is designed to accommodate multiple kernel versions at once for any kernel module, allowing for
seamless node upgrades and reduced application downtime.

4.2. INSTALLING THE KERNEL MODULE MANAGEMENT OPERATOR

As a cluster administrator, you can install the Kernel Module Management (KMM) Operator by using the
OpenShift CLI or the web console.

The KMM Operator is supported on OpenShift Container Platform 4.12 and later. Installing KMM on
version 4.11 does not require specific additional steps. For details on installing KMM on version 4.10 and

earlier, see the section "Installing the Kernel Module Management Operator on earlier versions of
OpenShift Container Platform”.

4.2.1. Installing the Kernel Module Management Operator using the web console

As a cluster administrator, you can install the Kernel Module Management (KMM) Operator using the
OpenShift Container Platform web console.

Procedure

1. Login to the OpenShift Container Platform web console.

2. Install the Kernel Module Management Operator:

a. Inthe OpenShift Container Platform web console, click Operators = OperatorHub.

b. Select Kernel Module Management Operator from the list of available Operators, and
then click Install.

c. On the Install Operator page, select the Installation mode as A specific namespace on
the cluster.

d. From the Installed Namespace list, select the openshift-kmm namespace.
e. Click Install.

Verification

To verify that KMM Operator installed successfully:

32

CHAPTER 4. KERNEL MODULE MANAGEMENT OPERATOF

1. Navigate to the Operators — Installed Operators page.

2. Ensure that Kernel Module Management Operatoris listed in the openshift-kmm project with
a Status of InstallSucceeded.

NOTE

During installation, an Operator might display a Failed status. If the installation
later succeeds with an InstallSucceeded message, you can ignore the Failed
message.

Troubleshooting
1. To troubleshoot issues with Operator installation:

a. Navigate to the Operators — Installed Operators page and inspect the Operator
Subscriptions and Install Plans tabs for any failure or errors under Status.

b. Navigate to the Workloads = Pods page and check the logs for pods in the openshift-
Kmm project.

4.2.2. Installing the Kernel Module Management Operator by using the CLI

As a cluster administrator, you can install the Kernel Module Management (KMM) Operator by using the
OpenShift CLI.

Prerequisites

® You have a running OpenShift Container Platform cluster.
® You installed the OpenShift CLI (o¢).

® You are logged into the OpenShift CLI as a user with cluster-admin privileges.

Procedure
1. Install KMM in the openshift-kmm namespace:

a. Create the following Namespace CR and save the YAML file, for example, kmm-
namespace.yaml:

apiVersion: vi
kind: Namespace
metadata:

name: openshift-kmm

b. Create the following OperatorGroup CR and save the YAML file, for example, kmm-op-
group.yaml:

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
name: kernel-module-management
namespace: openshift-kmm

33

OpenShift Container Platform 4.12 Specialized hardware and driver enablement

c. Create the following Subscription CR and save the YAML file, for example, kmm-
sub.yaml:

apiVersion: operators.coreos.com/vialphai
kind: Subscription
metadata:
name: kernel-module-management
namespace: openshift-kmm
spec:
channel: release-1.0
installPlanApproval: Automatic
name: kernel-module-management
source: redhat-operators
sourceNamespace: openshift-marketplace
startingCSV: kernel-module-management.v1.0.0

d. Create the subscription object by running the following command:

I $ oc create -f kmm-sub.yaml

Verification

® To verify that the Operator deployment is successful, run the following command:

I $ oc get -n openshift-kmm deployments.apps kmm-operator-controller-manager

Example output

NAME READY UP-TO-DATE AVAILABLE AGE
kmm-operator-controller-manager 1/1 1 1 97s

The Operator is available.

4.2.3. Installing the Kernel Module Management Operator on earlier versions of
OpenShift Container Platform

The KMM Operator is supported on OpenShift Container Platform 4.12 and later. For version 4.10 and
earlier, you must create a new SecurityContextConstraint object and bind it to the Operator's
ServiceAccount. As a cluster administrator, you can install the Kernel Module Management (KMM)
Operator by using the OpenShift CLI.

Prerequisites

® You have a running OpenShift Container Platform cluster.
® You installed the OpenShift CLI (o¢).

® You are logged into the OpenShift CLI as a user with cluster-admin privileges.

Procedure

1. Install KMM in the openshift-kmm namespace:

- [TSNS S N | IS R | P AP o alo N/ANAL £ £ Neemmaan

34

CHAPTER 4. KERNEL MODULE MANAGEMENT OPERATOF

d. Lreate ine rolowing Naimespace L ana save tne Y AIvVIL Tiie, TOr exampie, Kimim-
namespace.yaml file:

apiVersion: vi
kind: Namespace
metadata:

name: openshift-kmm

b. Create the following SecurityContextConstraint object and save the YAML file, for
example, kmm-security-constraint.yaml:

allowHostDirVolumePlugin: false
allowHostIPC: false
allowHostNetwork: false
allowHostPID: false
allowHostPorts: false
allowPrivilegeEscalation: false
allowPrivilegedContainer: false
allowedCapabilities:

- NET_BIND_SERVICE
apiVersion: security.openshift.io/v1
defaultAddCapabilities: null
fsGroup:

type: MustRunAs
groups: []
kind: SecurityContextConstraints
metadata:

name: restricted-v2
priority: null
readOnlyRootFilesystem: false
requiredDropCapabilities:

- ALL
runAsUser:

type: MustRunAsRange
seLinuxContext:

type: MustRunAs
seccompProfiles:

- runtime/default
supplementalGroups:

type: RunAsAny
users: []
volumes:

- configMap

- downwardAPI

- emptyDir

- persistentVolumeClaim

- projected

- secret

c. Bind the SecurityContextConstraint object to the Operator's ServiceAccount by running
the following commands:

I $ oc apply -f kmm-security-constraint.yaml

35

OpenShift Container Platform 4.12 Specialized hardware and driver enablement

$ oc adm policy add-scc-to-user kmm-security-constraint -z kmm-operator-controller-

I manager -n openshift-kmm

d. Create the following OperatorGroup CR and save the YAML file, for example, kmm-op-

group.yaml:

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
name: kernel-module-management
namespace: openshift-kmm

e. Create the following Subscription CR and save the YAML file, for example, kmm-
sub.yaml:

apiVersion: operators.coreos.com/vialphai
kind: Subscription
metadata:
name: kernel-module-management
namespace: openshift-kmm
spec:
channel: release-1.0
installPlanApproval: Automatic
name: kernel-module-management
source: redhat-operators
sourceNamespace: openshift-marketplace
startingCSV: kernel-module-management.v1.0.0

f. Create the subscription object by running the following command:

I $ oc create -f kmm-sub.yaml

Verification

® To verify that the Operator deployment is successful, run the following command:

I $ oc get -n openshift-kmm deployments.apps kmm-operator-controller-manager

Example output

NAME READY UP-TO-DATE AVAILABLE AGE
kmm-operator-controller-manager 1/1 1 1 97s

The Operator is available.

4.3. KERNEL MODULE DEPLOYMENT

For each Module resource, Kernel Module Management (KMM) can create a number of DaemonSet

resources:

® One ModuleLoader DaemonSet per compatible kernel version running in the cluster.

36

CHAPTER 4. KERNEL MODULE MANAGEMENT OPERATOF

® One device plugin DaemonSet, if configured.

The module loader daemon set resources run ModuleLoader images to load kernel modules. A module
loader image is an OCl image that contains the .ko files and both the modprobe and sleep binaries.

When the module loader pod is created, the pod runs modprobe to insert the specified module into the
kernel. It then enters a sleep state until it is terminated. When that happens, the ExecPreStop hook runs
modprobe -r to unload the kernel module.

If the .spec.devicePlugin attribute is configured in a Module resource, then KMM creates a device
plugin daemon set in the cluster. That daemon set targets:

® Nodes that match the .spec.selector of the Module resource.

® Nodes with the kernel module loaded (where the module loader pod is in the Ready condition).

4.3.1. The Module custom resource definition

The Module custom resource definition (CRD) represents a kernel module that can be loaded on all or
select nodes in the cluster, through a module loader image. A Module custom resource (CR) specifies
one or more kernel versions with which it is compatible, and a node selector.

The compatible versions for a Module resource are listed under
.spec.moduleLoader.container.kernelMappings. A kernel mapping can either match a literal version,
or use regexp to match many of them at the same time.

The reconciliation loop for the Module resource runs the following steps:
1. List all nodes matching .spec.selector.
2. Build a set of all kernel versions running on those nodes.

3. For each kernel version:

a. Go through .spec.moduleLoader.container.kernelMappings and find the appropriate
container image name. If the kernel mapping has build or sign defined and the container
image does not already exist, run the build, the signing job, or both, as needed.

b. Create a module loader daemon set with the container image determined in the previous
step.

c. If .spec.devicePlugin is defined, create a device plugin daemon set using the configuration
specified under .spec.devicePlugin.container.

4. Run garbage-collect on:

a. Existing daemon set resources targeting kernel versions that are not run by any node in the
cluster.

b. Successful build jobs.

c. Successful signing jobs.

4.3.2. Security and permissions

37

https://kubernetes.io/docs/concepts/extend-kubernetes/compute-storage-net/device-plugins/

OpenShift Container Platform 4.12 Specialized hardware and driver enablement

IMPORTANT

Loading kernel modules is a highly sensitive operation. After they are loaded, kernel
modules have all possible permissions to do any kind of operation on the node.

4.3.2.1. ServiceAccounts and SecurityContextConstraints

Kernel Module Management (KMM) creates a privileged workload to load the kernel modules on nodes.
That workload needs ServiceAccounts allowed to use the privileged SecurityContextConstraint
(SCC) resource.

The authorization model for that workload depends on the namespace of the Module resource, as well
as its spec.

e |f the .spec.moduleLoader.serviceAccountName or
.spec.devicePlugin.serviceAccountName fields are set, they are always used.

® |f those fields are not set, then:

o If the Module resource is created in the operator’s namespace (openshift-kmm by
default), then KMM uses its default, powerful ServiceAccounts to run the daemon sets.

o If the Module resource is created in any other namespace, then KMM runs the daemon sets
as the namespace’s default ServiceAccount. The Module resource cannot run a privileged
workload unless you manually enable it to use the privileged SCC.

IMPORTANT

openshift-kmm is a trusted namespace.

When setting up RBAC permissions, remember that any user or ServiceAccount
creating a Module resource in the openshift-kmm namespace results in KMM
automatically running privileged workloads on potentially all nodes in the cluster.

To allow any ServiceAccount to use the privileged SCC and therefore to run module loader or device
plugin pods, use the following command:

I $ oc adm policy add-scc-to-user privileged -z "${serviceAccountName}" [-n "${namespace}"]

4.3.2.2. Pod security standards

OpenShift runs a synchronization mechanism that sets the namespace Pod Security level automatically
based on the security contexts in use. No action is needed.

Additional resources

® Understanding and managing pod security admission .

4.3.3. Example Module CR

The following is an annotated Module example:

I apiVersion: kmm.sigs.x-k8s.io/v1ibetal

38

https://docs.redhat.com/en/documentation/openshift_container_platform/4.12/html-single/authentication_and_authorization/#understanding-and-managing-pod-security-admission

CHAPTER 4. KERNEL MODULE MANAGEMENT OPERATOF

kind: Module
metadata:
name: <my_kmod>

spec:
modulelLoader:
container:
modprobe:
moduleName: <my_kmod> ﬂ
dirName: /opt 9
firmwarePath: /firmware 6
parameters: ﬂ
- param=1

kernelMappings: 6
- literal: 6.0.15-300.fc37.x86_64
containerlmage: some.registry/org/my-kmod:6.0.15-300.fc37.x86_64

- regexp: ".+\fc37\.x86_64%' G
containerlmage: "some.other.registry/org/<my_kmod>:${KERNEL_FULL_VERSION}"

- regexp: "".+$' a
containerlmage: "some.registry/org/<my_kmod>:${KERNEL_FULL_VERSION}"

build:
buildArgs: 6
- name: ARG_NAME
value: <some_value>
secrets:
- name: <some_kubernetes_secret> Q
baselmageRegistryTLS: @
insecure: false
insecureSkipTLSVerify: false {§)
dockerfileConfigMap: @
name: <my_kmod_dockerfile>
sign:
certSecret:
name: <cert_secret> @
keySecret:
name: <key_secret> @
filesToSign:
- /opt/lib/modules/${KERNEL_FULL_VERSION}/<my_kmod>.ko
registryTLS: @
insecure: false @
insecureSkipTLSVerify: false
serviceAccountName: <sa_module_loader> m
devicePlugin: @
container:
image: some.registry/org/device-plugin:latest @
env:
- name: MY_DEVICE_PLUGIN_ENV_VAR
value: SOME_VALUE
volumeMounts:
- mountPath: /some/mountPath
name: <device_plugin_volume>
volumes:
- name: <device_plugin_volume>
configMap:

39

OpenShift Container Platform 4.12 Specialized hardware and driver enablement

name: <some_configmap>
serviceAccountName: <sa_device_plugin> @
imageRepoSecret: @
name: <secret_name>
selector:
node-role.kubernetes.io/worker:

:

equired.

Optional.

Optional: Copies /firmware/* into /var/lib/firmware/ on the node.
Optional.

At least one kernel item is required.

For each node running a kernel matching the regular expression, KMM creates a DaemonSet
resource running the image specified in containerimage with ${KERNEL_FULL_VERSION}
replaced with the kernel version.

For any other kernel, build the image using the Dockerfile in the my-kmod ConfigMap.
Optional.

Optional: A value for some-kubernetes-secret can be obtained from the build environment at
/run/secrets/some-kubernetes-secret.

Optional: Avoid using this parameter. If set to true, the build is allowed to pull the image in the
Dockerfile FROM instruction using plain HTTP.

Optional: Avoid using this parameter. If set to true, the build will skip any TLS server certificate
validation when pulling the image in the Dockerfile FROM instruction using plain HTTP.

Required.
Required: A secret holding the public secureboot key with the key 'cert’.
Required: A secret holding the private secureboot key with the key 'key".

Optional: Avoid using this parameter. If set to true, KMM will be allowed to check if the container
image already exists using plain HTTP.

Optional: Avoid using this parameter. If set to true, KMM will skip any TLS server certificate
validation when checking if the container image already exists.

Optional.
Optional.
Required: If the device plugin section is present.
Optional.

Optional.

990090 9 9900 O 0 9090 9206006

40

CHAPTER 4. KERNEL MODULE MANAGEMENT OPERATOF

@ Optional.

@ Optional: Used to pull module loader and device plugin images.

4.4. USING A MODULELOADER IMAGE

Kernel Module Management (KMM) works with purpose-built module loader images. These are standard
OClimages that must satisfy the following requirements:

® ko files must be located in /opt/lib/modules/${KERNEL_VERSION}.

¢ modprobe and sleep binaries must be defined in the $PATH variable.

4.4.1. Running depmod

If your module loader image contains several kernel modules and if one of the modules depends on
another module, it is best practice to run depmod at the end of the build process to generate
dependencies and map files.

NOTE

You must have a Red Hat subscription to download the kernel-devel package.

Procedure

1. To generate modules.dep and .map files for a specific kernel version, run depmod -b /opt
${KERNEL_VERSION}.

4.4.1.1. Example Dockerfile

If you are building your image on OpenShift Container Platform, consider using the Driver Tool Kit
(DTK).

For further information, see using an entitled build.

apiVersion: vi
kind: ConfigMap
metadata:
name: kmme-ci-dockerfile
data:
dockerfile: |
ARG DTK_AUTO
FROM ${DTK_AUTO} as builder
ARG KERNEL_VERSION
WORKDIR /usr/src
RUN ["git", "clone", "https://github.com/rh-ecosystem-edge/kernel-module-management.git"]
WORKDIR /usr/src/kernel-module-management/ci’/lkmm-kmod
RUN KERNEL_SRC_DIR=/lib/modules/${KERNEL_VERSION}/build make all
FROM registry.redhat.io/ubi8/ubi-minimal
ARG KERNEL_VERSION
RUN microdnf install kmod
COPY --from=builder /usr/src/kernel-module-management/ci’/lkmm-kmod/kmm_ci_a.ko
/opt/lib/modules/${KERNEL_VERSION}/

41

https://cloud.redhat.com/blog/how-to-use-entitled-image-builds-to-build-drivercontainers-with-ubi-on-openshift

OpenShift Container Platform 4.12 Specialized hardware and driver enablement

COPY --from=builder /usr/src/kernel-module-management/ci’/lkmm-kmod/kmm_ci_b.ko
/opt/lib/modules/${KERNEL_VERSION}/
RUN depmod -b /opt ${KERNEL_VERSION}

Additional resources

® Driver Toolkit.

4.4.2. Building in the cluster

KMM can build module loader images in the cluster. Follow these guidelines:
® Provide build instructions using the build section of a kernel mapping.

® Copy the Dockerfile for your container image into a ConfigMap resource, under the dockerfile
key.

® Ensure that the ConfigMap is located in the same namespace as the Module.

KMM checks if the image name specified in the containerlmage field exists. If it does, the build is
skipped.

Otherwise, KMM creates a Build resource to build your image. After the image is built, KMM proceeds
with the Module reconciliation. See the following example.

#...

- regexp: "N +$'
containerlmage: "some.registry/org/<my_kmod>:${KERNEL_FULL_VERSION}"
build:

buildArgs: ﬂ
- name: ARG_NAME

value: <some_value>

secrets: 9

- name: <some_kubernetes_secret> 6
baselmageRegistryTLS:

insecure: false ﬂ
insecureSkipTLSVerify: false @)
dockerfileConfigMap: G
name: <my_kmod_dockerfile>
registryTLS:
insecure: false ﬂ
insecureSkipTLS Verify: false @)

Optional.
Optional.
Will be mounted in the build pod as /run/secrets/some-kubernetes-secret.

Optional: Avoid using this parameter. If set to true, the build will be allowed to pull the image in the
Dockerfile FROM instruction using plain HTTP.

Optional: Avoid using this parameter. If set to true, the build will skip any TLS server certificate
validation when pulling the image in the Dockerfile FROM instruction using plain HTTP.

® 00009

42

CHAPTER 4. KERNEL MODULE MANAGEMENT OPERATOF

6 Required.
Q Optional: Avoid using this parameter. If set to true, KMM will be allowed to check if the container
image already exists using plain HTTP.

@ Optional: Avoid using this parameter. If set to true, KMM will skip any TLS server certificate
validation when checking if the container image already exists.

Additional resources

® Build configuration resources.

4.4.3. Using the Driver Toolkit

The Driver Toolkit (DTK) is a convenient base image for building build module loader images. It contains
tools and libraries for the OpenShift version currently running in the cluster.

Procedure

Use DTK as the first stage of a multi-stage Dockerfile.
1. Build the kernel modules.
2. Copy the .ko files into a smaller end-user image such as ubi-minimal.

3. Toleverage DTK in your in-cluster build, use the DTK_AUTO build argument. The value is
automatically set by KMM when creating the Build resource. See the following example.

ARG DTK_AUTO

FROM ${DTK_AUTO} as builder

ARG KERNEL_VERSION

WORKDIR /usr/src

RUN ["git", "clone", "https://github.com/rh-ecosystem-edge/kernel-module-management.git"]
WORKDIR /usr/src/kernel-module-management/ci/kmm-kmod

RUN KERNEL_SRC_DIR=/lib/modules/${KERNEL_VERSION}/build make all

FROM registry.redhat.io/ubi8/ubi-minimal

ARG KERNEL_VERSION

RUN microdnf install kmod

COPY --from=Dbuilder /usr/src/kernel-module-management/ci/kmm-kmod/kmm_ci_a.ko
/opt/lib/modules/${KERNEL_VERSION}/

COPY --from=Dbuilder /usr/src/kernel-module-management/ci/kmm-kmod/kmm_ci_b.ko
/opt/lib/modules/${KERNEL_VERSION}/

RUN depmod -b /opt ${KERNEL_VERSION}

Additional resources

® Driver Toolkit.

4.5. USING SIGNING WITH KERNEL MODULE MANAGEMENT (KMM)

On a Secure Boot enabled system, all kernel modules (kmods) must be signed with a public/private key-
pair enrolled into the Machine Owner’s Key (MOK) database. Drivers distributed as part of a distribution
should already be signed by the distribution’s private key, but for kernel modules build out-of-tree, KMM
supports signing kernel modules using the sign section of the kernel mapping.

43

https://docs.redhat.com/en/documentation/openshift_container_platform/4.12/html-single/builds/#build-configuration
https://catalog.redhat.com/software/containers/ubi8/ubi-minimal

OpenShift Container Platform 4.12 Specialized hardware and driver enablement

For more details on using Secure Boot, see Generating a public and private key pair

Prerequisites
® A public private key pair in the correct (DER) format.
® At least one secure-boot enabled node with the public key enrolled in its MOK database.

® Either a pre-built driver container image, or the source code and Dockerfile needed to build one
in-cluster.

4.6. ADDING THE KEYS FOR SECUREBOOT

To use KMM Kernel Module Management (KMM) to sign kernel modules, a certificate and private key
are required. For details on how to create these, see Generating a public and private key pair.

For details on how to extract the public and private key pair, see Signing kernel modules with the private
key. Use steps 1through 4 to extract the keys into files.

Procedure

1. Create the sb_cert.cer file that contains the certificate and the sb_cert.priv file that contains
the private key:

$ openssl req -x509 -new -nodes -utf8 -sha256 -days 36500 -batch -config
configuration_file.config -outform DER -out my_signing_key_pub.der -keyout
my_signing_key.priv

2. Add the files by using one of the following methods:
® Add the files as secrets directly:

I $ oc create secret generic my-signing-key --from-file=key=<my_signing_key.priv>

$ oc create secret generic my-signing-key-pub --from-file=cert=
<my_signing_key_pub.der>

® Add the files by base64 encoding them:

I $ cat sb_cert.priv | base64 -w 0 > my_signing_key2.base64

I $ cat sb_cert.cer | base64 -w 0 > my_signing_key_pub.base64

3. Add the encoded text to a YAML file:

apiVersion: vi
kind: Secret
metadata:
name: my-signing-key-pub
namespace: default ﬂ
type: Opaque
data:
cert: <base64_encoded_secureboot_public_key>

44

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_monitoring_and_updating_the_kernel/signing-a-kernel-and-modules-for-secure-boot_managing-monitoring-and-updating-the-kernel#generating-a-public-and-private-key-pair_signing-a-kernel-and-modules-for-secure-boot
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_monitoring_and_updating_the_kernel/signing-a-kernel-and-modules-for-secure-boot_managing-monitoring-and-updating-the-kernel#generating-a-public-and-private-key-pair_signing-a-kernel-and-modules-for-secure-boot
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_monitoring_and_updating_the_kernel/signing-a-kernel-and-modules-for-secure-boot_managing-monitoring-and-updating-the-kernel#signing-kernel-modules-with-the-private-key_signing-a-kernel-and-modules-for-secure-boot
https://kubernetes.io/docs/concepts/configuration/secret/

CHAPTER 4. KERNEL MODULE MANAGEMENT OPERATOF

apiVersion: vi
kind: Secret
metadata:
name: my-signing-key
namespace: default
type: Opaque
data:
key: <baseb4_encoded_secureboot_private_key>

wnamespace - Replace default with a valid namespace.

4. Apply the YAML file:

I $ oc apply -f <yaml_filename>

4.6.1. Checking the keys

After you have added the keys, you must check them to ensure they are set correctly.

Procedure

1. Check to ensure the public key secret is set correctly:

$ oc get secret -0 yaml <certificate secret name> | awk '/cert/{print $2; exit}' | base64 -d |
openssl x509 -inform der -text

This should display a certificate with a Serial Number, Issuer, Subject, and more.

2. Check to ensure the private key secret is set correctly:

I $ oc get secret -0 yaml <private key secret name> | awk /key/{print $2; exit}' | base64 -d

This should display the key enclosed in the ===-- BEGIN PRIVATE KEY----- and ====- END
PRIVATE KEY----- lines.

4.7. SIGNING A PRE-BUILT DRIVER CONTAINER

Use this procedure if you have a pre-built image, such as an image either distributed by a hardware
vendor or built elsewhere.

The following YAML file adds the public/private key-pair as secrets with the required key names - key
for the private key, cert for the public key. The cluster then pulls down the unsignedimage image,
opens it, signs the kernel modules listed in filesToSign, adds them back, and pushes the resulting image
as containerlmage.

Kernel Module Management (KMM) should then deploy the DaemonSet that loads the signed kmods
onto all the nodes that match the selector. The driver containers should run successfully on any nodes
that have the public key in their MOK database, and any nodes that are not secure-boot enabled, which
ignore the signature. They should fail to load on any that have secure-boot enabled but do not have that
key in their MOK database.

45

OpenShift Container Platform 4.12 Specialized hardware and driver enablement

Prerequisites

® The keySecret and certSecret secrets have been created.

Procedure

1. Apply the YAML file:

apiVersion: kmm.sigs.x-k8s.io/v1ibetal
kind: Module
metadata:
name: example-module
spec:
moduleLoader:
serviceAccountName: default
container:
modprobe: ﬂ
moduleName: '<your module name>'
kernelMappings:
the kmods will be deployed on all nodes in the cluster with a kernel that matches the
regexp
- regexp: '"*.*\.x86_64%'
the container to produce containing the signed kmods
containerlmage: <image name e.g. quay.io/myuser/my-driver:<kernelversion>-signed>
sign:
the image containing the unsigned kmods (we need this because we are not
building the kmods within the cluster)
unsignedimage: <image name e.g. quay.io/myuser/my-driver:<kernelversion> >
keySecret: # a secret holding the private secureboot key with the key ‘key’
name: <private key secret name>
certSecret: # a secret holding the public secureboot key with the key ‘cert’
name: <certificate secret name>
filesToSign: # full path within the unsignedimage container to the kmod(s) to sign
- /opt/lib/modules/4.18.0-348.2.1.el8_5.x86_64/kmm_ci_a.ko
imageRepoSecret:
the name of a secret containing credentials to pull unsignedimage and push
containerlmage to the registry
name: repo-pull-secret
selector:
kubernetes.io/arch: amd64

ﬂ modprobe - The name of the kmod to load.

4.8. BUILDING AND SIGNING A MODULELOADER CONTAINER IMAGE
Use this procedure if you have source code and must build your image first.

The following YAML file builds a new container image using the source code from the repository. The
image produced is saved back in the registry with a temporary name, and this temporary image is then

signed using the parameters in the sign section.

The temporary image name is based on the final image name and is set to be <containerimage>:<tag>-
<namespace>_<module name>_kmm_unsigned.

46

CHAPTER 4. KERNEL MODULE MANAGEMENT OPERATOF

For example, using the following YAML file, Kernel Module Management (KMM) builds an image named

example.org/repository/minimal-driver:final-default_example-module_kmm_unsigned containing
the build with unsigned kmods and push it to the registry. Then it creates a second image named
example.org/repository/minimal-driver:final that contains the signed kmods. It is this second image

that is loaded by the DaemonSet object and deploys the kmods to the cluster nodes.

After it is signed, the temporary image can be safely deleted from the registry. It will be rebuilt, if needed.

Prerequisites

® The keySecret and certSecret secrets have been created.

Procedure

1. Apply the YAML file:

apiVersion: vi
kind: ConfigMap
metadata:
name: example-module-dockerfile
namespace: default ﬂ
data:
dockerfile: |
ARG DTK_AUTO
ARG KERNEL_VERSION
FROM ${DTK_AUTO} as builder
WORKDIR /build/

RUN git clone -b main --single-branch https://github.com/rh-ecosystem-edge/kernel-

module-management.git
WORKDIR kernel-module-management/ci/lkmm-kmod/
RUN make
FROM registry.access.redhat.com/ubi8/ubi:latest
ARG KERNEL_VERSION
RUN yum -y install kmod && yum clean all
RUN mkdir -p /opt/lib/modules/${KERNEL_VERSION}

COPY --from=builder /build/kernel-module-management/ci/lkmm-kmod/*.ko

/opt/lib/modules/${KERNEL_VERSION}/
RUN /usr/sbin/depmod -b /opt
apiVersion: kmm.sigs.x-k8s.io/v1ibetal
kind: Module
metadata:
name: example-module

namespace: default 9
spec:
moduleLoader:
serviceAccountName: default 6
container:
modprobe:
moduleName: simple_kmod
kernelMappings:
- regexp: '"*.*\.x86_64%'
containerlmage: < the name of the final driver container to produce>
build:

47

OpenShift Container Platform 4.12 Specialized hardware and driver enablement

dockerfileConfigMap:
name: example-module-dockerfile
sign:
keySecret:
name: <private key secret name>
certSecret:
name: <certificate secret name>
filesToSign:
- /opt/lib/modules/4.18.0-348.2.1.el8_5.x86_64/kmm_ci_a.ko

imageRepoSecret: ﬂ
name: repo-pull-secret

selector: # top-level selector
kubernetes.io/arch: amd64

wnamespace - Replace default with a valid namespace.

9 serviceAccountName - The default serviceAccountName does not have the required
permissions to run a module that is privileged. For information on creating a service account, see
"Creating service accounts" in the "Additional resources” of this section.

Q imageRepoSecret - Used as imagePullSecrets in the DaemonSet object and to pull and push for
the build and sign features.

Additional resources

For information on creating a service account, see Creating service accounts.

4.9. DEBUGGING AND TROUBLESHOOTING

If the kmods in your driver container are not signed or are signed with the wrong key, then the container
can enter a PostStartHookError or CrashLoopBackOff status. You can verify by running the oc
describe command on your container, which displays the following message in this scenario:

I modprobe: ERROR: could not insert '<your_kmod_name>": Required key not available

4.10. KMM FIRMWARE SUPPORT

Kernel modules sometimes need to load firmware files from the file system. KMM supports copying
firmware files from the ModuleLoader image to the node’s file system.

The contents of .spec.moduleLoader.container.modprobe.firmwarePath are copied into the
/var/lib/firmware path on the node before running the modprobe command to insert the kernel
module.

All files and empty directories are removed from that location before running the modprobe -r
command to unload the kernel module, when the pod is terminated.

Additional resources

® Creating a ModuleLoader image.

4.10.1. Configuring the lookup path on nodes

48

https://docs.openshift.com/container-platform/4.12/authentication/understanding-and-creating-service-accounts.html#service-accounts-managing_understanding-service-accounts

CHAPTER 4. KERNEL MODULE MANAGEMENT OPERATOF

On OpenShift Container Platform nodes, the set of default lookup paths for firmwares does not include
the /var/lib/firmware path.

Procedure

1. Use the Machine Config Operator to create a MachineConfig custom resource (CR) that
contains the /var/lib/firmware path:

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:

labels:

machineconfiguration.openshift.io/role: worker ﬂ
name: 99-worker-kernel-args-firmware-path
spec:
kernelArguments:
- 'firmware_class.path=/var/lib/firmware'

You can configure the label based on your needs. In the case of single-node OpenShift,
use either control-pane or master objects.

2. By applying the MachineConfig CR, the nodes are automatically rebooted.

Additional resources

® Machine Config Operator.

4.10.2. Building a ModuleLoader image

Procedure

® |n addition to building the kernel module itself, include the binary firmware in the builder image:
FROM registry.redhat.io/ubi8/ubi-minimal as builder
Build the kmod

RUN ["mkdir", "/firmware"]
RUN ["curl", "-0", "/firmware/firmware.bin", "https://artifacts.example.com/firmware.bin"]

FROM registry.redhat.io/ubi8/ubi-minimal
Copy the kmod, install modprobe, run depmod

COPY --from=Dbuilder /firmware /firmware

4.10.3. Tuning the Module resource

Procedure

® Set.spec.moduleLoader.container.modprobe.firmwarePath in the Module custom resource
(CR):

49

https://docs.redhat.com/en/documentation/openshift_container_platform/4.12/html-single/post-installation_configuration/#understanding-the-machine-config-operator

OpenShift Container Platform 4.12 Specialized hardware and driver enablement

apiVersion: kmm.sigs.x-k8s.io/v1ibetal
kind: Module
metadata:

name: my-kmod
spec:

moduleLoader:

container:
modprobe:
moduleName: my-kmod # Required

firmwarePath: /firmware 0

ﬂ Optional: Copies /firmware/* into /var/lib/firmware/ on the node.

4.11. TROUBLESHOOTING KMM

When troubleshooting KMM installation issues, you can monitor logs to determine at which stage issues
occur. Then, retrieve diagnostic data relevant to that stage.

4.11.1. Using the must-gather tool

The oc adm must-gather command is the preferred way to collect a support bundle and provide
debugging information to Red Hat Support. Collect specific information by running the command with
the appropriate arguments as described in the following sections.

Additional resources

® About the must-gather tool
4.11.1.1. Gathering data for KMM

Procedure
1. Gather the data for the KMM Operator controller manager:

a. Set the MUST_GATHER_IMAGE variable:
$ export MUST_GATHER_IMAGE=$(oc get deployment -n openshift-kmm kmm-
operator-controller-manager -ojsonpath='{.spec.template.spec.containers[?

(@.name=="manager")].env[?
(@.name=="RELATED_IMAGES_MUST_GATHER")].value})

NOTE

Use the -n <namespaces switch to specify a namespace if you installed
KMM in a custom namespace.

b. Run the must-gather tool:

I $ oc adm must-gather --image="${MUST_GATHER_IMAGE}" -- /usr/bin/gather

50

https://docs.redhat.com/en/documentation/openshift_container_platform/4.12/html-single/support/#about-must-gather_gathering-cluster-data

CHAPTER 4. KERNEL MODULE MANAGEMENT OPERATOF

2. View the Operator logs:

I $ oc logs -fn openshift-kmm deployments/kmm-operator-controller-manager

Example 4.1. Example output

10228 09:36:37.352405 1 request.go:682] Waited for 1.001998746s due to client-side
throttling, not priority and fairness, request:
GET:https://172.30.0.1:443/apis/machine.openshift.io/vibetal ?timeout=32s

10228 09:36:40.767060 1 listener.go:44] kmm/controller-runtime/metrics
"msg"="Metrics server is starting to listen" "addr"="127.0.0.1:8080"

10228 09:36:40.769483 1 main.go:234] kmm/setup "msg"="starting manager"
10228 09:36:40.769907 1 internal.go:366] kmm "msg"="Starting server" "addr"=
{"IP":"127.0.0.1","Port":8080,"Zone":""} "kind"="metrics" "path"="/metrics"

10228 09:36:40.770025 1 internal.go:366] kmm "msg"="Starting server" "addr"=
{"IP":"::","Port":8081,"Zone":""} "kind"="health probe"

10228 09:36:40.770128 1 leaderelection.go:248] attempting to acquire leader lease
openshift-kmm/kmm.sigs.x-k8s.io...

10228 09:36:40.784396 1 leaderelection.go:258] successfully acquired lease
openshift-kmm/kmm.sigs.x-k8s.io

10228 09:36:40.784876 1 controller.go:185] kmm "msg"="Starting EventSource"
"controller"="Module" "controllerGroup"="kmm.sigs.x-k8s.io" "controllerKind"="Module"
"source"="kind source: *vibetal.Module"

10228 09:36:40.784925 1 controller.go:185] kmm "msg"="Starting EventSource"
"controller"="Module" "controllerGroup"="kmm.sigs.x-k8s.io" "controllerKind"="Module"
"source"="kind source: *v1.DaemonSet"

10228 09:36:40.784968 1 controller.go:185] kmm "msg"="Starting EventSource"
"controller"="Module" "controllerGroup"="kmm.sigs.x-k8s.io" "controllerKind"="Module"
"source"="kind source: *v1.Build"

10228 09:36:40.785001 1 controller.go:185] kmm "msg"="Starting EventSource"
"controller"="Module" "controllerGroup"="kmm.sigs.x-k8s.io" "controllerKind"="Module"
"source"="kind source: *v1.Job"

10228 09:36:40.785025 1 controller.go:185] kmm "msg"="Starting EventSource"
"controller"="Module" "controllerGroup"="kmm.sigs.x-k8s.io" "controllerKind"="Module"
"source"="kind source: *v1.Node"

10228 09:36:40.785039 1 controller.go:193] kmm "msg"="Starting Controller"
"controller"="Module" "controllerGroup"="kmm.sigs.x-k8s.io" "controllerKind"="Module"
10228 09:36:40.785458 1 controller.go:185] kmm "msg"="Starting EventSource"
"controller"="PodNodeModule" "controllerGroup"="" "controllerKind"="Pod" "source"="kind
source: *v1.Pod"

10228 09:36:40.786947 1 controller.go:185] kmm "msg"="Starting EventSource"
"controller"="PreflightValidation" "controllerGroup"="kmm.sigs.x-k8s.io"
"controllerKind"="PreflightValidation" "source"="kind source: *vibetal.PreflightValidation"
10228 09:36:40.787406 1 controller.go:185] kmm "msg"="Starting EventSource"
"controller"="PreflightValidation" "controllerGroup"="kmm.sigs.x-k8s.io"
"controllerKind"="PreflightValidation" "source"="kind source: *v1.Build"

10228 09:36:40.787474 1 controller.go:185] kmm "msg"="Starting EventSource"
"controller"="PreflightValidation" "controllerGroup"="kmm.sigs.x-k8s.io"
"controllerKind"="PreflightValidation" "source"="kind source: *v1.Job"

10228 09:36:40.787488 1 controller.go:185] kmm "msg"="Starting EventSource"
"controller"="PreflightValidation" "controllerGroup"="kmm.sigs.x-k8s.io"
"controllerKind"="PreflightValidation" "source"="kind source: *v1betal.Module"

10228 09:36:40.787603 1 controller.go:185] kmm "msg"="Starting EventSource"
"controller"="NodeKernel" "controllerGroup"="" "controllerKind"="Node" "source"="kind
source: *v1.Node"

51

OpenShift Container Platform 4.12 Specialized hardware and driver enablement

10228 09:36:40.787634 1 controller.go:193] kmm "msg"="Starting Controller"
"controller"="NodeKernel" "controllerGroup"="" "controllerKind"="Node"
10228 09:36:40.787680 1 controller.go:193] kmm "msg"="Starting Controller"

"controller"="PreflightValidation" "controllerGroup"="kmm.sigs.x-k8s.io"
"controllerKind"="PreflightValidation"

10228 09:36:40.785607 1 controller.go:185] kmm "msg"="Starting EventSource"
"controller"="imagestream" "controllerGroup"="image.openshift.io"
"controllerKind"="ImageStream" "source"="kind source: *v1.ImageStream"

10228 09:36:40.787822 1 controller.go:185] kmm "msg"="Starting EventSource"
"controller"="preflightvalidationocp" "controllerGroup"="kmm.sigs.x-k8s.i0"
"controllerKind"="PreflightValidationOCP" "source"="kind source:
*vibetal.PreflightValidationOCP"

10228 09:36:40.787853 1 controller.go:193] kmm "msg"="Starting Controller"
"controller"="imagestream" "controllerGroup"="image.openshift.io"
"controllerKind"="ImageStream"

10228 09:36:40.787879 1 controller.go:185] kmm "msg"="Starting EventSource"
"controller"="preflightvalidationocp" "controllerGroup"="kmm.sigs.x-k8s.i0"
"controllerKind"="PreflightValidationOCP" "source"="kind source:
*vibetal.PreflightValidation"

10228 09:36:40.787905 1 controller.go:193] kmm "msg"="Starting Controller"
"controller"="preflightvalidationocp" "controllerGroup"="kmm.sigs.x-k8s.i0"
"controllerKind"="PreflightValidationOCP"

10228 09:36:40.786489 1 controller.go:193] kmm "msg"="Starting Controller"
"controller"="PodNodeModule" "controllerGroup"="" "controllerKind"="Pod"

4.11.1.2. Gathering data for KMM-Hub

Procedure
1. Gather the data for the KMM Operator hub controller manager:

a. Set the MUST_GATHER_IMAGE variable:

$ export MUST_GATHER_IMAGE=$(oc get deployment -n openshift-kmm-hub kmm-
operator-hub-controller-manager -ojsonpath='{.spec.template.spec.containers[?
(@.name=="manager")].env[?
(@.name=="RELATED_IMAGES_MUST_GATHER")].value}’)

NOTE

Use the -n <namespaces switch to specify a namespace if you installed
KMM in a custom namespace.

b. Run the must-gather tool:

I $ oc adm must-gather --image="${MUST_GATHER_IMAGE}" -- /usr/bin/gather -u

2. View the Operator logs:

I $ oc logs -fn openshift-kmm-hub deployments/kmm-operator-hub-controller-manager

I Example 4.2. Example output

52

CHAPTER 4. KERNEL MODULE MANAGEMENT OPERATOF

10417 11:34:08.807472 1 request.g0:682] Waited for 1.023403273s due to client-side
throttling, not priority and fairness, request:
GET:https://172.30.0.1:443/apis/tuned.openshift.io/v1 ?timeout=32s

10417 11:34:12.373413 1 listener.go:44] kmm-hub/controller-runtime/metrics
"msg"="Metrics server is starting to listen" "addr"="127.0.0.1:8080"

10417 11:34:12.376253 1 main.go:150] kmm-hub/setup "msg"="Adding controller"
"name"="ManagedClusterModule"

10417 11:34:12.376621 1 main.go:186] kmm-hub/setup "msg"="starting manager"
10417 11:34:12.377690 1 leaderelection.go:248] attempting to acquire leader lease
openshift-kmm-hub/kmm-hub.sigs.x-k8s.io...

10417 11:34:12.378078 1 internal.go:366] kmm-hub "msg"="Starting server" "addr"=
{"IP":"127.0.0.1","Port":8080,"Zone":""} "kind"="metrics" "path"="/metrics"

10417 11:34:12.378222 1 internal.go:366] kmm-hub "msg"="Starting server" "addr"=
{"IP":"::","Port":8081,"Zone":""} "kind"="health probe"

10417 11:34:12.395703 1 leaderelection.go:258] successfully acquired lease
openshift-kmm-hub/kmm-hub.sigs.x-k8s.io

10417 11:34:12.396334 1 controller.go:185] kmm-hub "msg"="Starting EventSource"
"controller"="ManagedClusterModule" "controllerGroup"="hub.kmm.sigs.x-k8s.i0"
"controllerKind"="ManagedClusterModule" "source"="kind source:
*vibetal.ManagedClusterModule"

10417 11:34:12.396403 1 controller.go:185] kmm-hub "msg"="Starting EventSource"
"controller"="ManagedClusterModule" "controllerGroup"="hub.kmm.sigs.x-k8s.i0"
"controllerKind"="ManagedClusterModule" "source"="kind source: *v1.ManifestWork"
10417 11:34:12.396430 1 controller.go:185] kmm-hub "msg"="Starting EventSource"
"controller"="ManagedClusterModule" "controllerGroup"="hub.kmm.sigs.x-k8s.i0"
"controllerKind"="ManagedClusterModule" "source"="kind source: *v1.Build"

10417 11:34:12.396469 1 controller.go:185] kmm-hub "msg"="Starting EventSource"
"controller"="ManagedClusterModule" "controllerGroup"="hub.kmm.sigs.x-k8s.i0"
"controllerKind"="ManagedClusterModule" "source"="kind source: *v1.Job"

10417 11:34:12.396522 1 controller.go:185] kmm-hub "msg"="Starting EventSource"
"controller"="ManagedClusterModule" "controllerGroup"="hub.kmm.sigs.x-k8s.io"
"controllerKind"="ManagedClusterModule" "source"="kind source: *v1.ManagedCluster"
10417 11:34:12.396543 1 controller.go:193] kmm-hub "msg"="Starting Controller"
"controller"="ManagedClusterModule" "controllerGroup"="hub.kmm.sigs.x-k8s.io"
"controllerKind"="ManagedClusterModule"

10417 11:34:12.397175 1 controller.go:185] kmm-hub "msg"= "Starting EventSource"
"controller"="imagestream" "controllerGroup"="image.openshift.io"
"controllerKind"="ImageStream" "source"="kind source: *v1.ImageStream"

10417 11:34:12.397221 1 controller.go:193] kmm-hub "msg"= "Starting Controller"
"controller"="imagestream" "controllerGroup"="image.openshift.io"
"controllerKind"="ImageStream"

10417 11:34:12.498335 1 filter.go:196] kmm-hub "msg"="Listing all
ManagedClusterModules" "managedcluster"="local-cluster"

10417 11:34:12.498570 1 filter.go:205] kmm-hub "msg"="Listed
ManagedClusterModules" "count"=0 "managedcluster"="local-cluster"

10417 11:34:12.498629 1 filter.go:238] kmm-hub "msg"="Adding reconciliation
requests” "count"=0 "managedcluster"="local-cluster"

10417 11:34:12.498687 1 filter.go:196] kmm-hub "msg"="Listing all
ManagedClusterModules" "managedcluster"="sno1-0"

10417 11:34:12.498750 1 filter.go:205] kmm-hub "msg"="Listed
ManagedClusterModules" "count"=0 "managedcluster"="sno1-0"

10417 11:34:12.498801 1 filter.go:238] kmm-hub "msg"="Adding reconciliation
requests” "count"=0 "managedcluster"="sno1-0"

10417 11:34:12.501947 1 controller.go:227] kmm-hub "msg"="Starting workers"
"controller"="imagestream" "controllerGroup"="image.openshift.io"
"controllerKind"="ImageStream" "worker count"=1

53

OpenShift Container Platform 4.12 Specialized hardware and driver enablement

10417 11:34:12.501948 1 controller.go:227] kmm-hub "msg"="Starting workers"
"controller"="ManagedClusterModule" "controllerGroup"="hub.kmm.sigs.x-k8s.i0"
"controllerKind"="ManagedClusterModule" "worker count"=1

10417 11:34:12.502285 1 imagestream_reconciler.go:50] kmm-hub "msg"="registered
imagestream info mapping” "ImageStream”"={"name":"driver-
toolkit","namespace":"openshift"} "controller"="imagestream"
"controllerGroup"="image.openshift.io" "controllerKind"="ImageStream"
"dtklmage"="quay.io/openshift-release-dev/ocp-v4.0-art-
dev@sha256:df42b4785a7a662b30da53bdb0d206120cf4d24b45674227b16051badb7c¢393
4" "name"="driver-toolkit" "namespace"="openshift"
"oslmageVersion"="412.86.202302211547-0" "reconcilelD"="e709ff0a-5664-4007-8270-
49b5dff8bae9"

4.12. KMM HUB AND SPOKE

In hub and spoke scenarios, many spoke clusters are connected to a central, powerful hub cluster. Kernel
Module Management (KMM) depends on Red Hat Advanced Cluster Management (RHACM) to operate
in hub and spoke environments.

KMM is compatible with hub and spoke environments through decoupling KMM features. A
ManagedClusterModule Custom Resource Definition (CRD) is provided to wrap the existing Module
CRD and extend it to select Spoke clusters. Also provided is KMM-Hub, a new standalone controller that
builds images and signs modules on the hub cluster.

In hub and spoke setups, spokes are focused, resource-constrained clusters that are centrally managed
by a hub cluster. Spokes run the single-cluster edition of KMM, with those resource-intensive features
disabled. To adapt KMM to this environment, you should reduce the workload running on the spokes to
the minimum, while the hub takes care of the expensive tasks.

Building kernel module images and signing the .ko files, should run on the hub. The scheduling of the
Module Loader and Device Plugin DaemonSets can only happen on the spokes.

Additional resources

® Red Hat Advanced Cluster Management (RHACM)

4.12.1. KMM-Hub

The KMM project provides KMM-Hub, an edition of KMM dedicated to hub clusters. KMM-Hub monitors
all kernel versions running on the spokes and determines the nodes on the cluster that should receive a
kernel module.

KMM-Hub runs all compute-intensive tasks such as image builds and kmod signing, and prepares the
trimmed-down Module to be transferred to the spokes through RHACM.

NOTE

KMM-Hub cannot be used to load kernel modules on the hub cluster. Install the regular
edition of KMM to load kernel modules.

Additional resources

® |nstalling KMM

54

https://www.redhat.com/en/technologies/management/advanced-cluster-management
https://openshift-kmm.netlify.app/documentation/install/

CHAPTER 4. KERNEL MODULE MANAGEMENT OPERATOF

4.12.2. Installing KMM-Hub

You can use one of the following methods to install KMM-Hub:
® Using the Operator Lifecycle Manager (OLM)

® Creating KMM resources

Additional resources

® KMM Operator bundle

4.12.2.1. Installing KMM-Hub using the Operator Lifecycle Manager

Use the Operators section of the OpenShift console to install KMM-Hub.
4.12.2.2. Installing KMM-Hub by creating KMM resources

Procedure

® |f you want to install KMM-Hub programmatically, you can use the following resources to create
the Namespace, OperatorGroup and Subscription resources:

apiVersion: vi
kind: Namespace
metadata:
name: openshift-kmm-hub
apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
name: kernel-module-management-hub
namespace: openshift-kmm-hub
apiVersion: operators.coreos.com/vialphai
kind: Subscription
metadata:
name: kernel-module-management-hub
namespace: openshift-kmm-hub
spec:
channel: stable
installPlanApproval: Automatic
name: kernel-module-management-hub
source: redhat-operators
sourceNamespace: openshift-marketplace

4.12.3. Using the ManagedClusterModule CRD

Use the ManagedClusterModule Custom Resource Definition (CRD) to configure the deployment of
kernel modules on spoke clusters. This CRD is cluster-scoped, wraps a Module spec and adds the
following additional fields:

I apiVersion: hub.kmm.sigs.x-k8s.io/v1ibetat

55

https://catalog.redhat.com/software/containers/kmm/kernel-module-management-hub-operator-bundle/63d84cc33862da54bb19b8c6?architecture=amd64&image=654273ac86f7e537ae452f6ehttps://catalog.redhat.com/software/containers/kmm/kernel-module-management-hub-operator-bundle/63d84cc33862da54bb19b8c6?architecture=amd64&image=654273ac86f7e537ae452f6e

OpenShift Container Platform 4.12 Specialized hardware and driver enablement

kind: ManagedClusterModule
metadata:

name: <my-mcm>

No namespace, because this resource is cluster-scoped.
spec:

moduleSpec: ﬂ

selector:
node-wants-my-mcm: 'true’

spokeNamespace: <some-namespace> 6

selector: ﬂ

wants-my-mcm: 'true’

moduleSpec: Contains moduleLoader and devicePlugin sections, similar to a Module resource.
Selects nodes within the ManagedCluster.
Specifies in which namespace the Module should be created.

Selects ManagedCluster objects.

-

If build or signing instructions are present in .spec.moduleSpec, those pods are run on the hub cluster in
the operator’s namespace.

When the .spec.selector matches one or more ManagedCluster resources, then KMM-Hub creates a
ManifestWork resource in the corresponding namespace(s). ManifestWork contains a trimmed-down
Module resource, with kernel mappings preserved but all build and sign subsections are removed.
containerlmage fields that contain image names ending with a tag are replaced with their digest
equivalent.

4.12.4. Running KMM on the spoke

After installing KMM on the spoke, no further action is required. Create a ManagedClusterModule
object from the hub to deploy kernel modules on spoke clusters.

Procedure

You can install KMM on the spokes cluster through a RHACM Policy object. In addition to installing
KMM from the Operator hub and running it in a lightweight spoke mode, the Policy configures
additional RBAC required for the RHACM agent to be able to manage Module resources.

® Use the following RHACM policy to install KMM on spoke clusters:

apiVersion: policy.open-cluster-management.io/v1
kind: Policy
metadata:

name: install-kmm
spec:

remediationAction: enforce

disabled: false

policy-templates:

- objectDefinition:

56

CHAPTER 4. KERNEL MODULE MANAGEMENT OPERATOF

apiVersion: policy.open-cluster-management.io/v1
kind: ConfigurationPolicy
metadata:
name: install-kmm
spec:
severity: high
object-templates:
- complianceType: mustonlyhave
objectDefinition:
apiVersion: v1
kind: Namespace
metadata:
name: openshift-kmm
- complianceType: mustonlyhave
objectDefinition:
apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
name: kmm
namespace: openshift-kmm
spec:
upgradeStrategy: Default
- complianceType: mustonlyhave
objectDefinition:
apiVersion: operators.coreos.com/vialphat
kind: Subscription
metadata:
name: kernel-module-management
namespace: openshift-kmm
spec:
channel: stable
config:
env:
- name: KMM_MANAGED
value: "1"
installPlanApproval: Automatic
name: kernel-module-management
source: redhat-operators
sourceNamespace: openshift-marketplace
- complianceType: mustonlyhave
objectDefinition:
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
name: kmm-module-manager
rules:
- apiGroups: [kmm.sigs.x-k8s.io]
resources: [modules]
verbs: [create, delete, get, list, patch, update, watch]
- complianceType: mustonlyhave
objectDefinition:
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
name: klusterlet-kmm
subjects:

57

OpenShift Container Platform 4.12 Specialized hardware and driver enablement

- kind: ServiceAccount
name: klusterlet-work-sa
namespace: open-cluster-management-agent
roleRef:
kind: ClusterRole
name: kmm-module-manager
apiGroup: rbac.authorization.k8s.io
apiVersion: apps.open-cluster-management.io/v1
kind: PlacementRule
metadata:
name: all-managed-clusters
spec:
clusterSelector: ﬂ
matchExpressions: []
apiVersion: policy.open-cluster-management.io/v1
kind: PlacementBinding
metadata:
name: install-kmm
placementRef:
apiGroup: apps.open-cluster-management.io
kind: PlacementRule
name: all-managed-clusters
subjects:
- apiGroup: policy.open-cluster-management.io
kind: Policy
name: install-kmm

ﬂ The spec.clusterSelector field can be customized to target select clusters only.

58

	Table of Contents
	CHAPTER 1. ABOUT SPECIALIZED HARDWARE AND DRIVER ENABLEMENT
	CHAPTER 2. DRIVER TOOLKIT
	2.1. ABOUT THE DRIVER TOOLKIT
	Background
	Purpose

	2.2. PULLING THE DRIVER TOOLKIT CONTAINER IMAGE
	2.2.1. Pulling the Driver Toolkit container image from registry.redhat.io
	2.2.2. Finding the Driver Toolkit image URL in the payload

	2.3. USING THE DRIVER TOOLKIT
	2.3.1. Build and run the simple-kmod driver container on a cluster

	2.4. ADDITIONAL RESOURCES

	CHAPTER 3. NODE FEATURE DISCOVERY OPERATOR
	3.1. INSTALLING THE NODE FEATURE DISCOVERY OPERATOR
	3.1.1. Installing the NFD Operator using the CLI
	3.1.2. Installing the NFD Operator using the web console

	3.2. USING THE NODE FEATURE DISCOVERY OPERATOR
	3.2.1. Creating a NodeFeatureDiscovery CR by using the CLI
	3.2.2. Creating a NodeFeatureDiscovery CR by using the CLI in a disconnected environment
	3.2.3. Creating a NodeFeatureDiscovery CR by using the web console

	3.3. CONFIGURING THE NODE FEATURE DISCOVERY OPERATOR
	3.3.1. core
	core.sleepInterval
	core.sources
	core.labelWhiteList
	core.noPublish
	core.klog

	3.3.2. sources
	sources.cpu.cpuid.attributeBlacklist
	sources.cpu.cpuid.attributeWhitelist
	sources.kernel.kconfigFile
	sources.kernel.configOpts
	sources.pci.deviceClassWhitelist
	sources.pci.deviceLabelFields
	sources.usb.deviceClassWhitelist
	sources.usb.deviceLabelFields
	sources.custom

	3.4. ABOUT THE NODEFEATURERULE CUSTOM RESOURCE
	3.5. USING THE NODEFEATURERULE CUSTOM RESOURCE
	3.6. USING THE NFD TOPOLOGY UPDATER
	3.6.1. NodeResourceTopology CR
	3.6.2. NFD Topology Updater command-line flags
	-ca-file
	-cert-file
	-h, -help
	-key-file
	-kubelet-config-file
	-no-publish
	3.6.2.1. -oneshot

	CHAPTER 4. KERNEL MODULE MANAGEMENT OPERATOR
	4.1. ABOUT THE KERNEL MODULE MANAGEMENT OPERATOR
	4.2. INSTALLING THE KERNEL MODULE MANAGEMENT OPERATOR
	4.2.1. Installing the Kernel Module Management Operator using the web console
	4.2.2. Installing the Kernel Module Management Operator by using the CLI
	4.2.3. Installing the Kernel Module Management Operator on earlier versions of OpenShift Container Platform

	4.3. KERNEL MODULE DEPLOYMENT
	4.3.1. The Module custom resource definition
	4.3.2. Security and permissions
	4.3.2.1. ServiceAccounts and SecurityContextConstraints
	4.3.2.2. Pod security standards

	4.3.3. Example Module CR

	4.4. USING A MODULELOADER IMAGE
	4.4.1. Running depmod
	4.4.1.1. Example Dockerfile

	4.4.2. Building in the cluster
	4.4.3. Using the Driver Toolkit

	4.5. USING SIGNING WITH KERNEL MODULE MANAGEMENT (KMM)
	4.6. ADDING THE KEYS FOR SECUREBOOT
	4.6.1. Checking the keys

	4.7. SIGNING A PRE-BUILT DRIVER CONTAINER
	4.8. BUILDING AND SIGNING A MODULELOADER CONTAINER IMAGE
	4.9. DEBUGGING AND TROUBLESHOOTING
	4.10. KMM FIRMWARE SUPPORT
	4.10.1. Configuring the lookup path on nodes
	4.10.2. Building a ModuleLoader image
	4.10.3. Tuning the Module resource

	4.11. TROUBLESHOOTING KMM
	4.11.1. Using the must-gather tool
	4.11.1.1. Gathering data for KMM
	4.11.1.2. Gathering data for KMM-Hub

	4.12. KMM HUB AND SPOKE
	4.12.1. KMM-Hub
	4.12.2. Installing KMM-Hub
	4.12.2.1. Installing KMM-Hub using the Operator Lifecycle Manager
	4.12.2.2. Installing KMM-Hub by creating KMM resources

	4.12.3. Using the ManagedClusterModule CRD
	4.12.4. Running KMM on the spoke

