& RedHat

OpenShift Container Platform 4.14

Network Observability

Configuring and using the Network Observability Operator in OpenShift Container
Platform

Last Updated: 2025-10-24

OpenShift Container Platform 4.14 Network Observability

Configuring and using the Network Observability Operator in OpenShift Container Platform

Legal Notice

Copyright © 2025 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Use the Network Observability Operator to observe and analyze network traffic flows for OpenShift
Container Platform clusters.

Table of Contents

Table of Contents

CHAPTER 1. NETWORK OBSERVABILITY OPERATOR RELEASENOTES 1.9.3ttt eennnn 9
1.1. NETWORK OBSERVABILITY OPERATOR 1.9.3 ADVISORY 9
CHAPTER 2. NETWORK OBSERVABILITY OPERATOR RELEASENOTES1.9.2ottt 10
2.1. NETWORK OBSERVABILITY OPERATOR 1.9.2 ADVISORY 10
2.2. NETWORK OBSERVABILITY 1.9.2 BUG FIXES 10
CHAPTER 3. NETWORK OBSERVABILITY OPERATORRELEASENOTESciiiiiiiiiiiiiiiiieennnn, n
3.1. NETWORK OBSERVABILITY OPERATOR 1.9.1 1
3.1.1. Bug fixes 1
3.2.NETWORK OBSERVABILITY OPERATOR 1.9 1
3.2.1. New features and enhancements 1
3.2.1.1. User-defined networks with network observability 12
3.2.1.2. Filter flowlogs at ingestion 12
3.2.1.3. IPsec support 12
3.2.1.4. Network Observability CLI 12
3.2.2. Notable technical changes 12
3.2.3. Technology Preview features 13
3.2.3.1. eBPF Manager Operator with network observability 13
3.2.4.CVE 13
3.2.5. Bug fixes 13
3.2.6. Known issues 14
3.3. NETWORK OBSERVABILITY OPERATOR 1.8.1 14
3.31.CVEs 14
3.3.2. Bug fixes 14
3.4. NETWORK OBSERVABILITY OPERATOR 1.8.0 14
3.4.1. New features and enhancements 14
3.4.1.1. Packet translation 15
3.4.1.2. Network Observability CLI 15
3.4.2. Bug fixes 15
3.4.3. Known issues 16
3.5. NETWORK OBSERVABILITY OPERATOR 1.7.0 17
3.5.1. New features and enhancements 17
3.5.1.1. OpenTelemetry support 17
3.5.1.2. Network observability Developer perspective 17
3.5.1.3. TCP flags filtering 17
3.5.1.4. Network observability for OpenShift Virtualization 17
3.5.1.5. Network policy deploys in the FlowCollector custom resource (CR) 17
3.5.1.6. FIPS compliance 17
3.5.1.7. eBPF agent enhancements 18
3.5.1.8. Network Observability CLI 18
3.5.2. Bug fixes 18
3.5.3. Known issues 19
3.6. NETWORK OBSERVABILITY OPERATOR 1.6.2 20
3.6.1. CVEs 20
3.6.2. Bug fixes 20
3.6.3. Known issues 20
3.7.NETWORK OBSERVABILITY OPERATOR 1.6.1 20
3.7.1.CVEs 20
3.7.2. Bug fixes 20
3.8. NETWORK OBSERVABILITY OPERATOR 1.6.0 21

OpenShift Container Platform 4.14 Network Observability

3.8.1. New features and enhancements

3.8.1.1. Enhanced use of Network Observability Operator without Loki

3.8.1.2. Custom metrics API
3.8.1.3. eBPF performance enhancements
3.8.1.4. eBPF collection rule-based filtering
3.8.2. Technology Preview features
3.8.2.1. Network Observability CLI
3.8.3. Bug fixes
3.8.4. Known issues
3.9. NETWORK OBSERVABILITY OPERATOR 15.0
3.9.1. New features and enhancements
3.9.1.1. DNS tracking enhancements
3.9.1.2. Round-trip time (RTT)

3.9.1.3. Metrics, dashboards, and alerts enhancements
3.9.1.4. Improvements for network observability without Loki

3.9.1.5. Availability zones
3.9.1.6. Notable enhancements
3.9.1.6.1. Performance enhancements
3.9.1.6.2. Web console enhancements:
3.9.1.6.3. Configuration enhancements:
3.9.2. Bug fixes
3.9.3. Known issues
3.10. NETWORK OBSERVABILITY OPERATOR 1.4.2
3.10.1. CVEs
3.11. NETWORK OBSERVABILITY OPERATOR 1.4.1
3.11.1. CVEs
3.11.2. Bug fixes
3.12. NETWORK OBSERVABILITY OPERATOR 1.4.0
3.12.1. Channel removal
3.12.2. New features and enhancements
3.12.2.1. Notable enhancements
3.12.2.1.1. Web console enhancements:
3.12.2.1.2. Configuration enhancements:
3.12.2.2. Network observability without Loki
3.12.2.3. DNS tracking
3.12.2.4. SR-IOV support
3.12.2.5. IPFIX exporter support
3.12.2.6. Packet drops
3.12.2.7. s390x architecture support
3.12.3. Bug fixes
3.12.4. Known issues
3.13. NETWORK OBSERVABILITY OPERATOR 1.3.0
3.13.1. Channel deprecation
3.13.2. New features and enhancements
3.13.2.1. Multi-tenancy in network observability
3.13.2.2. Flow-based metrics dashboard

3.13.2.3. Troubleshooting with the must-gather tool

3.13.2.4. Multiple architectures now supported
3.13.3. Deprecated features

3.13.3.1. Deprecated configuration parameter setting

3.13.4. Bug fixes
3.13.5. Known issues
3.14. NETWORK OBSERVABILITY OPERATOR 1.2.0

22
22
22
22
23
23
23
23
23
24
24
24
24
24
24
25
25
25
25
25
26
26
26
27
27
27
27
27
27
27
28
28
28
28
28
28
29
29
29
29
29
30
30
30
30
30
30

31

31

31

31
32
32

Table of Contents

3.14.1. Preparing for the next update 32
3.14.2. New features and enhancements 32
3.14.2.1. Histogram in Traffic Flows view 32
3.14.2.2. Conversation tracking 32
3.14.2.3. Network observability health alerts 32
3.14.3. Bug fixes 33
3.14.4. Known issue 33
3.14.5. Notable technical changes 33
3.15. NETWORK OBSERVABILITY OPERATOR 1.1.0 34
3.15.1. Bug fix 34
CHAPTER 4. ABOUT NETWORK OBSERVABILITY ..ttt ittt et eeieeaeeannennneenn, 35
41.NETWORK OBSERVABILITY OPERATOR 35
4.2. OPTIONAL DEPENDENCIES OF THE NETWORK OBSERVABILITY OPERATOR 35
4.3. OPENSHIFT CONTAINER PLATFORM CONSOLE INTEGRATION 35
4.3.1. Network observability metrics dashboards 36
4.3.2. Network observability topology views 36
4.3.3. Traffic flow tables 36
4.4 NETWORK OBSERVABILITY CLI 36
CHAPTERS. INSTALLING THE NETWORK OBSERVABILITY OPERATOR ..ottt 37
5.1. NETWORK OBSERVABILITY WITHOUT LOKI 37
5.2. INSTALLING THE LOKI OPERATOR 38
5.2.1. Creating a secret for Loki storage 39
5.2.2. Creating a LokiStack custom resource 40
5.2.3. Creating a new group for the cluster-admin user role 41
5.2.4. Custom admin group access 41
5.2.5. Loki deployment sizing 42
5.2.6. LokiStack ingestion limits and health alerts 42
5.3. INSTALLING THE NETWORK OBSERVABILITY OPERATOR 43
5.4. ENABLING MULTI-TENANCY IN NETWORK OBSERVABILITY 44
5.5. IMPORTANT FLOW COLLECTOR CONFIGURATION CONSIDERATIONS 45
5.5.1. Migrating removed stored versions of the FlowCollector CRD 46
5.6. INSTALLING KAFKA (OPTIONAL) 47
5.7.UNINSTALLING THE NETWORK OBSERVABILITY OPERATOR 47
CHAPTER 6. NETWORK OBSERVABILITY OPERATOR IN OPENSHIFT CONTAINER PLATFORM 49
6.1. VIEWING STATUSES 49
6.2. NETWORK OBSERVABLITY OPERATOR ARCHITECTURE 50
6.3. VIEWING NETWORK OBSERVABILITY OPERATOR STATUS AND CONFIGURATION 52
CHAPTER 7. CONFIGURING THE NETWORK OBSERVABILITY OPERATORiiiiiiiiiiiiiinnnenn, 53
7.1.VIEW THE FLOWCOLLECTOR RESOURCE 53
7.2. CONFIGURING THE FLOW COLLECTOR RESOURCE WITH KAFKA 55
7.3. EXPORT ENRICHED NETWORK FLOW DATA 56
7.4. UPDATING THE FLOW COLLECTOR RESOURCE 58
7.5.FILTER NETWORK FLOWS AT INGESTION 58
7.5.1. eBPF agent filters 58
7.5.2. Flowlogs-pipeline filters 58
7.6. CONFIGURING QUICK FILTERS 59
7.7. RESOURCE MANAGEMENT AND PERFORMANCE CONSIDERATIONS 61
7.7.1. Resource considerations 62
7.7.2. Total average memory and CPU usage 63

OpenShift Container Platform 4.14 Network Observability

CHAPTER 8. NETWORK POLICY .. e e e e

65

8.1. CONFIGURING AN INGRESS NETWORK POLICY BY USING THE FLOWCOLLECTOR CUSTOM RESOURCE

8.2. CREATING A NETWORK POLICY FOR NETWORK OBSERVABILITY

CHAPTER 9. OBSERVING THE NETWORK TRAFFIC

9.1. OBSERVING THE NETWORK TRAFFIC FROM THE OVERVIEW VIEW
9.1.1. Working with the Overview view
9.1.2. Configuring advanced options for the Overview view
9.1.2.1. Managing panels and display
9.1.3. Packet drop tracking
9.1.3.1. Types of packet drops
9.1.4. DNS tracking
9.1.5. Round-Trip Time
9.1.6. eBPF flow rule filter
9.1.6.1. Ingress and egress traffic filtering
9.1.6.2. Dashboard and metrics integrations
9.1.6.3. Flow filter configuration parameters
9.2. OBSERVING THE NETWORK TRAFFIC FROM THE TRAFFIC FLOWS VIEW
9.2.1. Working with the Traffic flows view
9.2.2. Configuring advanced options for the Traffic flows view
9.2.2.1. Managing columns
9.2.2.2. Exporting the traffic flow data
9.2.3. Configuring IPsec with the FlowCollector custom resource
9.2.4. Working with conversation tracking
9.2.5. Working with packet drops
9.2.6. Working with DNS tracking
9.2.7. Working with RTT tracing
9.2.7.1. Using the histogram
9.2.8. Working with availability zones
9.2.9. Filtering eBPF flow data using multiple rules
9.2.10. Endpoint translation (xlat)
9.2.11. Working with endpoint translation (xlat)
9.3. OBSERVING THE NETWORK TRAFFIC FROM THE TOPOLOGY VIEW
9.3.1. Working with the Topology view
9.3.2. Configuring the advanced options for the Topology view
9.3.2.1. Exporting the topology view
9.4. FILTERING THE NETWORK TRAFFIC

CHAPTER 10. USING METRICS WITH DASHBOARDS AND ALERTSooiiiiiat,

10.1. VIEWING NETWORK OBSERVABILITY METRICS DASHBOARDS
10.2. PREDEFINED METRICS

10.3. NETWORK OBSERVABILITY METRICS

10.4. CREATING ALERTS

10.5. CUSTOM METRICS

10.6. CONFIGURING CUSTOM METRICS BY USING FLOWMETRIC API
10.7. CONFIGURING CUSTOM CHARTS USING FLOWMETRIC API

10.8. DETECTING SYN FLOODING USING THE FLOWMETRIC API AND TCP FLAGS

CHAPTER 11. MONITORING THE NETWORK OBSERVABILITY OPERATOR

11.1. HEALTH DASHBOARDS

1.2. HEALTH ALERTS

11.3. VIEWING HEALTH INFORMATION
11.3.1. Disabling health alerts

65
66

68
68
68
68
69
69
70
70
71
71
71
71
73
73
73
73
74
74
75
76
77
78
79
79
80
82
83
84
84
84
84
84

87
87
87
87
89
90
90
92
94

97
97
97
97
98

11.4. CREATING LOKI RATE LIMIT ALERTS FOR THE NETOBSERV DASHBOARD

11.5. USING THE EBPF AGENT ALERT

CHAPTER

12.SCHEDULING RESOURCES e

12.1. NETWORK OBSERVABILITY DEPLOYMENT IN SPECIFIC NODES

CHAPTER

13.SECONDARY NETWORKS

13.1. PREREQUISITES

13.2. CONFIGURING MONITORING FOR SR-IOV INTERFACE TRAFFIC

Table of Contents

13.3. CONFIGURING VIRTUAL MACHINE (VM) SECONDARY NETWORK INTERFACES FOR NETWORK
OBSERVABILITY

CHAPTER

14. NETWORK OBSERVABILITY CLI ...

14.1. INSTALLING THE NETWORK OBSERVABILITY CLI
14.1.1. About the Network Observability CLI

14.1.2.1

nstalling the Network Observability CLI

14.2. USING THE NETWORK OBSERVABILITY CLI
14.2.1. Capturing flows

14.2.2.
14.2.3.
14.2.4.

Capturing packets
Capturing metrics
Cleaning the Network Observability CLI

14.3. NETWORK OBSERVABILITY CLI (OC NETOBSERV) REFERENCE
14.3.1. Network Observability CLI usage
14.3.1.1. Syntax
14.3.1.2. Basic commands

14.3.1.3. Flows capture options

14.3.1.4. Packets capture options

14.3.1.5. Metrics capture options

CHAPTER
15.1. FLO

15. FLOWCOLLECTORAPIREFERENCEccoiiiiiiiiii,

WCOLLECTOR API SPECIFICATIONS

15.1.1. .metadata
15.1.2. .spec

15.1.3..
15.1.4..
15.1.5..
15.1.6..
15.1.7..
15.1.8..
15.1.9..
15.1.10.
15.1.1..
15.1.12.
15.1.13.
15.1.14.
15.1.15.
15.1.16.
15.1.17.
15.1.18.
15.1.19.
15.1.20
15.1.21.

spec.agent

spec.agent.ebpf

spec.agent.ebpf.advanced
spec.agent.ebpf.advanced.scheduling
spec.agent.ebpf.advanced.scheduling.affinity
spec.agent.ebpf.advanced.scheduling.tolerations
spec.agent.ebpf.flowFilter
.spec.agent.ebpf.flowFilter.rules
spec.agent.ebpf.flowFilter.rules[]
.spec.agent.ebpf.metrics
.spec.agent.ebpf.metrics.server
.spec.agent.ebpf.metrics.server.tls
.spec.agent.ebpf.metrics.server.tls.provided
.spec.agent.ebpf.metrics.server.tls.providedCaFile
.spec.agent.ebpf.resources

.spec.consolePlugin
.spec.consolePlugin.advanced

. .spec.consolePlugin.advanced.scheduling
.spec.consolePlugin.advanced.scheduling.affinity

15.1.22. .spec.consolePlugin.advanced.scheduling.tolerations

15.1.23. .spec.consolePlugin.autoscaler

104

....................... 106

106
106
106
107
107
109
109
110
110
110
110
m
m
13
15

....................... n8

18

19

19

121

121
125
126
127
127
127
130
130
132
133
133
134
135
135
136
137
138
139
139
140

OpenShift Container Platform 4.14 Network Observability

15.1.24.
15.1.25.
15.1.26.
15.1.27.
15.1.28.
15.1.29.
15.1.30.

15.1.31.

15.1.32.
15.1.33.
15.1.34.
15.1.35.
15.1.36.
15.1.37.
15.1.38.
15.1.39.
15.1.40.

15.1.41.

.spec.consolePlugin.portNaming
.spec.consolePlugin.quickFilters
.spec.consolePlugin.quickFilters[]
.spec.consolePlugin.resources

.spec.exporters

.spec.exporters[]

.spec.exporters[l.ipfix
.spec.exporters[].kafka
.spec.exporters[].kafka.sasl
.spec.exporters[].kafka.sasl.clientiDReference

spec.exporters[].kafka.tls
spec.exporters[].kafka.tls.caCert
.spec.exporters[].kafka.tls.userCert
.spec.exporters[].openTelemetry
spec.exporters[].openTelemetry.fieldsMapping

.spec.exporters[].openTelemetry.logs

15.1.42. .spec.exporters[].openTelemetry.metrics

15.1.43.
15.1.44.
15.1.45.
15.1.46.
15.1.47.
15.1.48.
15.1.49.

15.1.50
15.1.51.

15.1.52.
15.1.53.
15.1.54.
15.1.55.
15.1.56.
15.1.57.
15.1.58.
15.1.59.
15.1.60.

15.1.61.

15.1.62.

15.1.63

15.1.64.
15.1.65.
15.1.66.
15.1.67.
15.1.68.
15.1.69.
15.1.70.

15.1.71.
15.1.72.

15.1.73.
15.1.74.
15.1.75.
15.1.76.

.spec.exporters[].openTelemetry.tls
.spec.exporters[].openTelemetry.tls.caCert
.spec.exporters[].openTelemetry.tls.userCert
.spec.kafka

.spec.kafka.sasl
spec.kafka.sasl.clientiDReference
.spec.kafka.sasl.clientSecretReference

. .spec.kafka.tls

.spec.kafka.tls.caCert
.spec.kafka.tls.userCert

.spec.loki

.spec.loki.advanced

.spec.loki.lokiStack

.spec.loki.manual
.spec.loki.manual.statusTls
.spec.loki.manual.statusTls.caCert
.spec.loki.manual.statusTls.userCert
.spec.loki.manual.tls
.spec.loki.manual.tls.caCert
.spec.loki.manual.tls.userCert

. .spec.loki.microservices
.spec.loki.microservices.tls
.spec.loki.microservices.tls.caCert
.spec.loki.microservices.tls.userCert
.spec.loki.monolithic
.spec.loki.monolithic.tls
.spec.loki.monolithic.tls.caCert
.spec.loki.monolithic.tls.userCert
.spec.networkPolicy

.spec.processor

.spec.processor.advanced
.spec.processor.advanced.scheduling
.spec.processor.advanced.scheduling.affinity
.spec.processor.advanced.scheduling.tolerations

.spec.exporters[].kafka.sasl.clientSecretReference

.spec.exporters[].openTelemetry.fieldsMapping[]

140
140
140

141

141
142
142
143
143
144
144
145
145
146
147
148
148
149
149
149
150

151

151
152
152
153
154
154
155
156
158
158
159

161

161
162
163
163
164
165
165
166
167
168
168
169
169
170

171
175
176
177
177

Table of Contents

15.1.77. .spec.processor.advanced.secondaryNetworks 178
15.1.78. .spec.processor.advanced.secondaryNetworks[] 178
15.1.79. .spec.processor.deduper 178
15.1.80. .spec.processor filters 179
15.1.81. .spec.processor filters[] 179
15.1.82. .spec.processor.kafkaConsumerAutoscaler 180
15.1.83. .spec.processor.metrics 180
15.1.84. .spec.processor.metrics.server 182
15.1.85. .spec.processor.metrics.server.tls 183
15.1.86. .spec.processor.metrics.server.tls.provided 183
15.1.87. .spec.processor.metrics.server.tls.providedCaFile 184
15.1.88. .spec.processor.resources 185
15.1.89. .spec.processor.subnetlLabels 185
15.1.90. .spec.processor.subnetlLabels.customLabels 186
15.1.91. .spec.processor.subnetlLabels.customLabels[] 186
15.1.92. .spec.prometheus 187
15.1.93. .spec.prometheus.querier 187
15.1.94. spec.prometheus.querier.manual 188
15.1.95. .spec.prometheus.querier.manual.tls 189
15.1.96. .spec.prometheus.querier.manual.tls.caCert 189
15.1.97. .spec.prometheus.querier.manual.tls.userCert 190
CHAPTER 16. FLOWMETRIC CONFIGURATION PARAMETERS ... ittt ittt ieieieieennnenns 192
16.1. FLOWMETRIC [FLOWS.NETOBSERV.IO/VIALPHAT] 192
16.1.1. .metadata 193
16.1.2. .spec 193
16.1.3. .spec.charts 196
16.1.4. .spec.charts[] 196
16.1.5. .spec.charts[].queries 197
16.1.6. .spec.charts[].queries[] 197
16.1.7. .spec filters 198
16.1.8. .spec.filters[] 199
CHAPTER 17. NETWORK FLOWS FORMAT REFERENCE i iittiiitiii it ieieraieeenneennnns 200
17.1. NETWORK FLOWS FORMAT REFERENCE 200
CHAPTER 18. TROUBLESHOOTING NETWORK OBSERVABILITY ..ottt iii i, 207
18.1. USING THE MUST-GATHER TOOL 207
18.2. CONFIGURING NETWORK TRAFFIC MENU ENTRY IN THE OPENSHIFT CONTAINER PLATFORM
CONSOLE 207
18.3. FLOWLOGS-PIPELINE DOES NOT CONSUME NETWORK FLOWS AFTER INSTALLING KAFKA 209
18.4. FAILING TO SEE NETWORK FLOWS FROM BOTH BR-INT AND BR-EX INTERFACES 209
18.5. NETWORK OBSERVABILITY CONTROLLER MANAGER POD RUNS OUT OF MEMORY 210
18.6. RUNNING CUSTOM QUERIES TO LOKI 210
18.7. TROUBLESHOOTING LOKI RESOURCEEXHAUSTED ERROR 21
18.8. LOKI EMPTY RING ERROR 212
18.9. RESOURCE TROUBLESHOOTING 212
18.10. LOKISTACK RATE LIMIT ERRORS 212
18.11. RUNNING A LARGE QUERY RESULTS IN LOKI ERRORS 213

OpenShift Container Platform 4.14 Network Observability

CHAPTER 1. NETWORK OBSERVABILITY OPERATOR RELEASE NOTES 1.9.3

CHAPTER 1. NETWORK OBSERVABILITY OPERATOR RELEASE
NOTES 1.9.3

With the Network Observability Operator, administrators can observe and analyze network traffic flows
for OpenShift Container Platform clusters.

These release notes track the development of the Network Observability Operator in the OpenShift
Container Platform.

For an overview of the Network Observability Operator, see Network Observability Operator.

1.1. NETWORK OBSERVABILITY OPERATOR 1.9.3 ADVISORY

The following advisory is available for the Network Observability Operator 1.9.3:

® RHEA-2025:15780 Network Observability Operator 1.9.3

https://access.redhat.com/errata/RHEA-2025:15780

OpenShift Container Platform 4.14 Network Observability

CHAPTER 2. NETWORK OBSERVABILITY OPERATOR
RELEASE NOTES 1.9.2

The Network Observability Operator enables administrators to observe and analyze network traffic flows
for OpenShift Container Platform clusters.

These release notes track the development of the Network Observability Operator in the OpenShift
Container Platform.

For an overview of the Network Observability Operator, see Network Observability Operator.

2.1.NETWORK OBSERVABILITY OPERATOR 1.9.2 ADVISORY

The following advisory is available for the Network Observability Operator 1.9.2:

® RHEA-2025:14150 Network Observability Operator 1.9.2

2.2. NETWORK OBSERVABILITY 1.9.2 BUG FIXES

e Before this update, OpenShift Container Platform versions 4.15 and earlier did not support the
TC_ATTACH_MODE configuration. This led to command-line interface (CLI) errors and
prevented the observation of packets and flows. With this release, the Traffic Control eXtension
(TCX) hook attachment mode has been adjusted for these older versions. This eliminates tex
hook errors and enables flow and packet observation.

10

https://access.redhat.com/errata/RHEA-2025:14150

CHAPTER 3. NETWORK OBSERVABILITY OPERATOR RELEASE NOTES

CHAPTER 3. NETWORK OBSERVABILITY OPERATOR
RELEASE NOTES

The Network Observability Operator enables administrators to observe and analyze network traffic flows
for OpenShift Container Platform clusters.

These release notes track the development of the Network Observability Operator in the OpenShift
Container Platform.

For an overview of the Network Observability Operator, see About network observability.

3.1. NETWORK OBSERVABILITY OPERATOR1.9.1

The following advisory is available for the Network Observability Operator 1.9.1:

2025:12024 Network Observability Operator 1.9.1

3.1.1. Bug fixes

Before this update, network flows were not observed on OpenShift Container Platform 4.15 due
to anincorrect attach mode setting. This stopped users from monitoring network flows
correctly, especially with certain catalogs. With this release, the default attach mode for
OpenShift Container Platform versions older than 4.16.0 is set to te, so flows are now observed
on OpenShift Container Platform 4.15. (NETOBSERV-2333)

Before this update, if an IPFIX collector restarted, configuring an IPFIX exporter could lose its
connection and stop sending network flows to the collector. With this release, the connection is
restored, and network flows continue to be sent to the collector. (NETOBSERV-2315)

Before this update, when you configured an IPFIX exporter, flows without port information (such
as ICMP traffic) were ignored, which caused errors in logs. TCP flags and ICMP data were also
missing from IPFIX exports. With this release, these details are now included. Missing fields (like
ports) no longer cause errors and are part of the exported data. (NETOBSERV-2307)

Before this update, the User Defined Networks (UDN) Mapping feature showed a configuration
issue and warning on OpenShift Container Platform 4.18 because the OpenShift version was
incorrectly set in the code. This impacted the user experience. With this release, UDN Mapping
now supports OpenShift Container Platform 4.18 without warnings, making the user experience
smooth. (NETOBSERV-2305)

Before this update, the expand function on the Network Traffic page had compatibility
problems with OpenShift Container Platform Console 4.19. This resulted in empty menu space
when expanding and an inconsistent user interface. With this release, the compatibility problem
in the NetflowTraffic part and theme hook is resolved. The side menu in the Network Traffic
view is now properly managed, which improves how you interact with the user interface.
(NETOBSERV-2304)

3.2.NETWORK OBSERVABILITY OPERATOR 1.9

The following advisory is available for the Network Observability Operator 1.9:

Network Observability Operator 1.9

3.2.1. New features and enhancements

1

https://access.redhat.com/errata/RHEA-2025:12024
https://issues.redhat.com/browse/NETOBSERV-2333
https://issues.redhat.com/browse/NETOBSERV-2315
https://issues.redhat.com/browse/NETOBSERV-2307
https://issues.redhat.com/browse/NETOBSERV-2305
https://issues.redhat.com/browse/NETOBSERV-2304
https://access.redhat.com/errata/RHSA-2025:10020

OpenShift Container Platform 4.14 Network Observability

3.2.1.1. User-defined networks with network observability

With this release, user-defined networks (UDN) feature is generally available with network observability.
When the UDNMapping feature is enabled in network observability, the Traffic flow table hasa UDN
labels column. You can filter logs on Source Network Nameand Destination Network Name
information.

3.2.1.2. Filter flowlogs at ingestion

With this release, you can create filters to reduce the number of generated network flows and the
resource usage of network observability components. The following filters can be configured:

® eBPF Agent filters

® Flowlogs-pipeline filters

3.2.1.3. IPsec support

This update brings the following enhancements to network observability when IPsec is enabled on
OpenShift Container Platform:

® A new column named IPsec Status is displayed in the network observability Traffic flows view to
show whether a flow was successfully IPsec-encrypted or if there was an error during

encryption/decryption.

® A new dashboard showing the percentage of encrypted traffic is generated.

3.2.1.4. Network Observability CLI

The following filtering options are now available for packets, flows, and metrics capture:
e Configure the ratio of packets being sampled by using the --sampling option.
e Filter flows using a custom query by using the --query option.
e Specify interfaces to monitor by using the --interfaces option.
e Specify interfaces to exclude by using the --exclude_interfaces option.
® Specify metric names to generate by using the --include_list option.

For more information, see Network Observability CLI reference.

3.2.2. Notable technical changes

® The NetworkEvents feature in network observability 1.9 has been updated to work with the
newer Linux kernel of OpenShift Container Platform 4.19. This update breaks compatibility with
older kernels. As a result, the NetworkEvents feature can only be used with OpenShift
Container Platform 4.19. If you are using this feature with network observability 1.8 and
OpenShift Container Platform 4.18, consider avoiding a network observability upgrade or
upgrade to network observability 1.9 and OpenShift Container Platform to 4.19.

® The netobserv-reader cluster role has been renamed to netobserv-loki-reader.

® Improved CPU performance of the eBPF agents.

12

https://docs.redhat.com/en/documentation/openshift_container_platform/4.14/html-single/networking/#understanding-multiple-networks

CHAPTER 3. NETWORK OBSERVABILITY OPERATOR RELEASE NOTES

3.2.3. Technology Preview features

Some features in this release are currently in Technology Preview. These experimental features are not
intended for production use. Note the following scope of support on the Red Hat Customer Portal for
these features:

Technology Preview Features Support Scope

3.2.3.1. eBPF Manager Operator with network observability

The eBPF Manager Operator reduces the attack surface and ensures compliance, security, and conflict
prevention by managing all eBPF programs. Network observability can use the eBPF Manager Operator
to load hooks. This eliminates the need to provide the eBPF Agent with privileged mode or additional
Linux capabilities like CAP_BPF and CAP_PERFMON. The eBPF Manager Operator with network

observability is only supported on 64-bit AMD architecture.

3.24.CVE

e CVE-2025-26791

3.2.5. Bug fixes

® Previously, when filtering by source or destination IP from the console plugin, using a Classless
Inter-Domain Routing (CIDR) notation such as 10.128.0.0/24 did not work, returning results that
should be filtered out. With this update, it is now possible to use a CIDR notation, with the results
being filtered as expected. (NETOBSERV-2276)

® Previously, network flows might have incorrectly identified the network interfaces in use,
especially with a risk of mixing up eth0 and ens5. This issue only occurred when the eBPF
agents were configured as Privileged. With this update, it has been fixed partially, and almost all
network interfaces are correctly identified. Refer to the known issues below for more details.
(NETOBSERV-2257)

® Previously, when the Operator checked for available Kubernetes APls in order to adapt its
behavior, if there was a stale API, this resulted in an error that prevented the Operator from
starting normally. With this update, the Operator ignores error on unrelated APIs, logs errors on
related APls, and continues to run normally. (NETOBSERV-2240)

® Previously, users could not sort flows by Bytes or Packets in the Traffic flows view of the
Console plugin. With this update, users can sort flows by Bytes and Packets. (NETOBSERV-
2239)

® Previously, when configuring the FlowCollector resource with an IPFIX exporter, MAC
addresses in the IPFIX flows were truncated to their 2 first bytes. With this update, MAC
addresses are fully represented in the IPFIX flows. (NETOBSERV-2208)

® Previously, some of the warnings sent from the Operator validation webhook could lack clarity
on what needed to be done. With this update, some of these messages have been reviewed and
amended to make them more actionable. (NETOBSERV-2178)

® Previously, it was not obvious to figure out there was an issue when referencing a LokiStack
from the FlowCollector resource, such as in case of typing error. With this update, the
FlowCollector status clearly states that the referenced LokiStack is not found in that case.
(NETOBSERV-2174)

13

https://access.redhat.com/support/offerings/techpreview
https://access.redhat.com/security/cve/CVE-2025-26791
https://issues.redhat.com/browse/NETOBSERV-2276
https://issues.redhat.com/browse/NETOBSERV-2257
https://issues.redhat.com/browse/NETOBSERV-2240
https://issues.redhat.com/browse/NETOBSERV-2239
https://issues.redhat.com/browse/NETOBSERV-2208
https://issues.redhat.com/browse/NETOBSERV-2178
https://issues.redhat.com/browse/NETOBSERV-2174

OpenShift Container Platform 4.14 Network Observability

® Previously, in the console plugin Traffic flows view, in case of text overflow, text ellipses
sometimes hid much of the text to be displayed. With this update, it displays as much text as
possible. (NETOBSERV-2119)

® Previously, the console plugin for network observability 1.8.1 and earlier did not work with the
OpenShift Container Platform 4.19 web console, making the Network Traffic page inaccessible.
With this update, the console plugin is compatible and the Network Traffic page is accessible in
network observability 1.9.0. (NETOBSERV-2046)

® Previously, when using conversation tracking (logTypes: Conversations or logTypes: All in
the FlowCollector resource), the Traffic rates metrics visible in the dashboards were flawed,
wrongly showing an out-of-control increase in traffic. Now, the metrics show more accurate
traffic rates. However, note that in Conversations and EndedConversations modes, these
metrics are still not completely accurate as they do not include long-standing connections. This
information has been added to the documentation. The default mode logTypes: Flows is
recommended to avoid these inaccuracy. (NETOBSERV-1955)

3.2.6. Known issues

® The user-defined network (UDN) feature displays a configuration issue and a warning when
used with OpenShift Container Platform 4.18, even though it is supported. This warning can be
ignored. (NETOBSERV-2305)

® |nsome rare cases, the eBPF agent is unable to appropriately correlate flows with the involved
interfaces when running in privileged modes with several network namespaces. A large part of

these issues have been identified and resolved in this release, but some inconsistencies remain,
especially with the ens5 interface. (NETOBSERV-2287)

3.3. NETWORK OBSERVABILITY OPERATOR 1.8.1

The following advisory is available for the Network Observability Operator 1.8.1:

® Network Observability Operator 1.8.1

3.3.1.CVEs

e CVE-2024-56171

e CVE-2025-24928

3.3.2. Bug fixes

® This fix ensures that the Observe menu appears only once in future versions of OpenShift
Container Platform. (NETOBSERV-2139)

3.4. NETWORK OBSERVABILITY OPERATOR 1.8.0

The following advisory is available for the Network Observability Operator 1.8.0:

® Network Observability Operator 1.8.0

3.4.1. New features and enhancements

14

https://issues.redhat.com/browse/NETOBSERV-2119
https://issues.redhat.com/browse/NETOBSERV-2046
https://issues.redhat.com/browse/NETOBSERV-1955
https://issues.redhat.com/browse/NETOBSERV-2305
https://issues.redhat.com/browse/NETOBSERV-2287
https://access.redhat.com/errata/RHSA-2025:3867
https://access.redhat.com/security/cve/CVE-2024-56171
https://access.redhat.com/security/cve/CVE-2025-24928
https://issues.redhat.com/browse/NETOBSERV-2139
https://access.redhat.com/errata/RHEA-2025:1940

CHAPTER 3. NETWORK OBSERVABILITY OPERATOR RELEASE NOTES

3.4.1.1. Packet translation

You can now enrich network flows with translated endpoint information, showing not only the service
but also the specific backend pod, so you can see which pod served a request.

3.4.1.2. Network Observability CLI

The following new features, options, and filters are added to the Network Observability CLI for this
release:

e Capture metrics with filters enabled by running the oc netobserv metrics command.

® Run the CLIin the background by using the --background option with flows and packets
capture and running oc netobserv follow to see the progress of the background run and oc
netobserv copy to download the generated logs.

e Enrich flows and metrics capture with Machines, Pods, and Services subnets by using the --get-
subnets option.

e New filtering options available with packets, flows, and metrics capture:
o eBPF filters on IPs, Ports, Protocol, Action, TCP Flags and more.
o Custom nodes using --node-selector
o Drops only using --drops
o Any field using --regexes

For more information, see Network Observability CLI reference.

3.4.2. Bug fixes

® Previously, the Network Observability Operator came with a "kube-rbac-proxy" container to
manage RBAC for its metrics server. Since this external component is deprecated, it was
necessary to remove it. It is now replaced with direct TLS and RBAC management through
Kubernetes controller-runtime, without the need for a side-car proxy. (NETOBSERV-1999)

® Previously in the OpenShift Container Platform console plugin, filtering on a key that was not
equal to multiple values would not filter anything. With this fix, the expected results are
returned, which is all flows not having any of the filtered values. (NETOBSERV-1990)

® Previously in the OpenShift Container Platform console plugin with disabled Loki, it was very
likely to generate a "Can't build query” error due to selecting an incompatible set of filters and
aggregations. Now this error is avoided avoid by automatically disabling incompatible filters
while still making the user aware of the filter incompatibility. (NETOBSERV-1977)

® Previously, when viewing flow details from the console plugin, the ICMP info was always
displayed in the side panel, showing "undefined" values for non-ICMP flows. With this fix, ICMP
info is not displayed for non-ICMP flows. (NETOBSERV-1969)

® Previously, the "Export data" link from the Traffic flows view did not work as intended,
generating empty CSV reports. Now, the export feature is restored, generating non-empty CSV

data. (NETOBSERV-1958)

® Previously, it was possible to configure the FlowCollector with processor.logTypes

15

https://issues.redhat.com/browse/NETOBSERV-1999
https://issues.redhat.com/browse/NETOBSERV-1990
https://issues.redhat.com/browse/NETOBSERV-1977
https://issues.redhat.com/browse/NETOBSERV-1969
https://issues.redhat.com/browse/NETOBSERV-1958

OpenShift Container Platform 4.14 Network Observability

Conversations, EndedConversations or All with loki.enable set to false, despite the
conversation logs being only useful when Loki is enabled. This resulted in resource usage waste.
Now, this configuration is invalid and is rejected by the validation webhook. (NETOBSERV-
1957)

Configuring the FlowCollector with processor.logTypes set to All consumes much more
resources, such as CPU, memory and network bandwidth, than the other options. This was
previously not documented. It is now documented, and triggers a warning from the validation
webhook. (NETOBSERV-1956)

Previously, under high stress, some flows generated by the eBPF agent were mistakenly
dismissed, resulting in traffic bandwidth under-estimation. Now, those generated flows are not
dismissed. (NETOBSERV-1954)

Previously, when enabling the network policy in the FlowCollector configuration, the traffic to
the Operator webhooks was blocked, breaking the FlowMetrics API validation. Now traffic to
the webhooks is allowed. (NETOBSERV-1934)

Previously, when deploying the default network policy, namespaces openshift-console and
openshift-monitoring were set by default in the additionalNamespaces field, resulting in
duplicated rules. Now there is no additional namespace set by default, which helps avoid getting
duplicated rules.(NETOBSERV-1933)

Previously from the OpenShift Container Platform console plugin, filtering on TCP flags would
match flows having only the exact desired flag. Now, any flow having at least the desired flag
appears in filtered flows. (NETOBSERV-1890)

When the eBPF agent runs in privileged mode and pods are continuously added or deleted, a
file descriptor (FD) leak occurs. The fix ensures proper closure of the FD when a network
namespace is deleted. (NETOBSERV-2063)

Previously, the CLI agent DaemonSet did not deploy on master nodes. Now, a toleration is
added on the agent DaemonSet to schedule on every node when taints are set. Now, CLI agent
DaemonSet pods run on all nodes. (NETOBSERV-2030)

Previously, the Source Resource and Source Destination filters autocomplete were not
working when using Prometheus storage only. Now this issue is fixed and suggestions displays as
expected. (NETOBSERV-1885)

Previously, a resource using multiple IPs was displayed separately in the Topology view. Now,
the resource shows as a single topology node in the view. (NETOBSERV-1818)

Previously, the console refreshed the Network traffic table view contents when the mouse
pointer hovered over the columns. Now, the display is fixed, so row height remains constant with
a mouse hover. (NETOBSERV-2049)

3.4.3. Known issues

16

If there is traffic that uses overlapping subnets in your cluster, there is a small risk that the eBPF
Agent mixes up the flows from overlapped IPs. This can happen if different connections happen
to have the exact same source and destination IPs and if ports and protocol are withina 5
seconds time frame and happening on the same node. This should not be possible unless you
configured secondary networks or UDN. Even in that case, it is still very unlikely in usual traffic,
as source ports are usually a good differentiator. (NETOBSERV-2115)

After selecting a type of exporter to configure in the FlowCollector resource spec.exporters

https://issues.redhat.com/browse/NETOBSERV-1957
https://issues.redhat.com/browse/NETOBSERV-1956
https://issues.redhat.com/browse/NETOBSERV-1954
https://issues.redhat.com/browse/NETOBSERV-1934
https://issues.redhat.com/browse/NETOBSERV-1933
https://issues.redhat.com/browse/NETOBSERV-1890
https://issues.redhat.com/browse/NETOBSERV-2063
https://issues.redhat.com/browse/NETOBSERV-2030
https://issues.redhat.com/browse/NETOBSERV-1885
https://issues.redhat.com/browse/NETOBSERV-1818
https://issues.redhat.com/browse/NETOBSERV-2049
https://issues.redhat.com/browse/NETOBSERV-2115

CHAPTER 3. NETWORK OBSERVABILITY OPERATOR RELEASE NOTES

section from the OpenShift Container Platform web console form view, the detailed
configuration for that type does not show up in the form. The workaround is to configure
directly the YAML. (NETOBSERV-1981)

3.5.NETWORK OBSERVABILITY OPERATOR1.7.0

The following advisory is available for the Network Observability Operator 1.7.0:

® Network Observability Operator 1.7.0

3.5.1. New features and enhancements

3.5.1.1. OpenTelemetry support

You can now export enriched network flows to a compatible OpenTelemetry endpoint, such as the
Red Hat build of OpenTelemetry. For more information see Export enriched network flow data .
3.5.1.2. Network observability Developer perspective

You can now use network observability in the Developer perspective. For more information, see
OpenShift Container Platform console integration.

3.5.1.3. TCP flags filtering

You can now use the tcpFlags filter to limit the volume of packets processed by the eBPF program. For
more information, see Flow filter configuration parameters, eBPF flow rule filter, and Detecting SYN
flooding using the FlowMetric APl and TCP flags.

3.5.1.4. Network observability for OpenShift Virtualization

You can observe networking patterns on an OpenShift Virtualization setup by identifying eBPF-
enriched network flows coming from VMs that are connected to secondary networks, such as through
Open Virtual Network (OVN)-Kubernetes. For more information, see Configuring virtual machine (VM)
secondary network interfaces for network observability.

3.5.1.5. Network policy deploys in the FlowCollector custom resource (CR)

With this release, you can configure the FlowCollector CR to deploy a network policy for network
observability. Previously, if you wanted a network policy, you had to manually create one. The option to
manually create a network policy is still available. For more information, see Configuring an ingress
network policy by using the FlowCollector custom resource.

3.5.1.6. FIPS compliance

® You caninstall and use the Network Observability Operator in an OpenShift Container Platform
cluster running in FIPS mode.

IMPORTANT

To enable FIPS mode for your cluster, you must run the installation program from
a RHEL computer configured to operate in FIPS mode. For more information
about configuring FIPS mode on RHEL, see Installing the system in FIPS mode.

17

https://issues.redhat.com/browse/NETOBSERV-1981
https://access.redhat.com/errata/RHSA-2024:8014

OpenShift Container Platform 4.14 Network Observability

3.5.1.7. eBPF agent enhancements

The following enhancements are available for the eBPF agent:

If the DNS service maps to a different port than 53, you can specify this DNS tracking port using
spec.agent.ebpf.advanced.env.DNS_TRACKING_PORT.

You can now use two ports for transport protocols (TCP, UDP, or SCTP) filtering rules.

You can now filter on transport ports with a wildcard protocol by leaving the protocol field
empty.

For more information, see FlowCollector API specifications.

3.5.1.8. Network Observability CLI

The Network Observability CLI (oc netobserv), is now generally available. The following enhancements
have been made since the 1.6 Technology Preview release: * There are now eBPF enrichment filters for
packet capture similar to flow capture. * You can now use filter tep_flags with both flow and packets
capture. * The auto-teardown option is available when max-bytes or max-time is reached. For more
information, see Network Observability CLI and Network Observability CLI1.7.0.

3.5.2. Bug fixes

18

Previously, when using a RHEL 9.2 real-time kernel, some of the webhooks did not work. Now, a
fix is in place to check whether this RHEL 9.2 real-time kernel is being used. If the kernel is being
used, a warning is displayed about the features that do not work, such as packet drop and
neither Round-trip Time when using 8390x architecture. The fix is in OpenShift 4.16 and later.
(NETOBSERV-1808)

Previously, in the Manage panelsdialog in the Overview tab, filtering on total, bar, donut, or
line did not show a result. Now the available panels are correctly filtered. (NETOBSERV-1540)

Previously, under high stress, the eBPF agents were susceptible to enter into a state where they
generated a high number of small flows, almost not aggregated. With this fix, the aggregation
process is still maintained under high stress, resulting in less flows being created. This fix
improves the resource consumption not only in the eBPF agent but also in flowlogs-pipeline
and Loki. (NETOBSERV-1564)

Previously, when the workload_flows_total metric was enabled instead of the
namespace_flows_total metric, the health dashboard stopped showing By namespace flow
charts. With this fix, the health dashboard now shows the flow charts when the
workload_flows_total is enabled. (NETOBSERV-1746)

Previously, when you used the FlowMetrics API to generate a custom metric and later modified
its labels, such as by adding a new label, the metric stopped populating and an error was shown

in the flowlogs-pipeline logs. With this fix, you can modify the labels, and the error is no longer

raised in the flowlogs-pipeline logs. (NETOBSERV-1748)

Previously, there was an inconsistency with the default Loki WriteBatchSize configuration: it
was set to 100 KB in the FlowCollector CRD default, and 10 MB in the OLM sample or default
configuration. Both are now aligned to 10 MB, which generally provides better performances and
less resource footprint. (NETOBSERV-1766)

https://access.redhat.com/errata/RHEA-2024:8264
https://issues.redhat.com/browse/NETOBSERV-1808
https://issues.redhat.com/browse/NETOBSERV-1540
https://issues.redhat.com/browse/NETOBSERV-1564
https://issues.redhat.com/browse/NETOBSERV-1746
https://issues.redhat.com/browse/NETOBSERV-1748
https://issues.redhat.com/browse/NETOBSERV-1766

CHAPTER 3. NETWORK OBSERVABILITY OPERATOR RELEASE NOTES

® Previously, the eBPF flow filter on ports was ignored if you did not specify a protocol. With this
fix, you can set eBPF flow filters independently on ports and or protocols. (NETOBSERV-1779)

® Previously, traffic from Pods to Services was hidden from the Topology view. Only the return
traffic from Services to Pods was visible. With this fix, that traffic is correctly displayed.
(NETOBSERV-1788)

® Previously, non-cluster administrator users that had access to Network Observability saw an
error in the console plugin when they tried to filter for something that triggered auto-
completion, such as a namespace. With this fix, no error is displayed, and the auto-completion
returns the expected results. (NETOBSERV-1798)

® When the secondary interface support was added, you had to iterate multiple times to register
the per network namespace with the netlink to learn about interface notifications. At the same
time, unsuccessful handlers caused a leaking file descriptor because with TCX hook, unlike TC,
handlers needed to be explicitly removed when the interface went down. Furthermore, when the
network namespace was deleted, there was no Go close channel event to terminate the netlink
goroutine socket, which caused go threads to leak. Now, there are no longer leaking file
descriptors or go threads when you create or delete pods. (NETOBSERV-1805)

® Previously, the ICMP type and value were displaying 'n/a" in the Traffic flows table even when
related data was available in the flow JSON. With this fix, ICMP columns display related values as
expected in the flow table. (NETOBSERV-1806)

® Previously in the console plugin, it wasn't always possible to filter for unset fields, such as unset
DNS latency. With this fix, filtering on unset fields is now possible. INETOBSERV-1816)

® Previously, when you cleared filters in the OpenShift web console plugin, sometimes the filters
reappeared after you navigated to another page and returned to the page with filters. With this
fix, filters do not unexpectedly reappear after they are cleared. (NETOBSERV-1733)

3.5.3. Known issues

® WWhen you use the must-gather tool with network observability, logs are not collected when
the cluster has FIPS enabled. (NETOBSERV-1830)

® When the spec.networkPolicy is enabled in the FlowCollector, which installs a network policy
on the netobserv namespace, it is impossible to use the FlowMetrics API. The network policy
blocks calls to the validation webhook. As a workaround, use the following network policy:

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
name: allow-from-hostnetwork
namespace: netobserv
spec:
podSelector:
matchLabels:
app: netobserv-operator
ingress:
- from:
- namespaceSelector:
matchLabels:
policy-group.network.openshift.io/host-network: "
policyTypes:
- Ingress

19

https://issues.redhat.com/browse/NETOBSERV-1779
https://issues.redhat.com/browse/NETOBSERV-1788
https://issues.redhat.com/browse/NETOBSERV-1798
https://issues.redhat.com/browse/NETOBSERV-1805
https://issues.redhat.com/browse/NETOBSERV-1806
https://issues.redhat.com/browse/NETOBSERV-1816
https://issues.redhat.com/browse/NETOBSERV-1733
https://issues.redhat.com/browse/NETOBSERV-1830

OpenShift Container Platform 4.14 Network Observability
(NETOBSERV-193)

3.6. NETWORK OBSERVABILITY OPERATOR 1.6.2

The following advisory is available for the Network Observability Operator 1.6.2:

® 2024:7074 Network Observability Operator 1.6.2

3.6.1. CVEs

® CVE-2024-24791

3.6.2. Bug fixes

® When the secondary interface support was added, there was a need to iterate multiple times to
register the per network namespace with the netlink to learn about interface notifications. At
the same time, unsuccessful handlers caused a leaking file descriptor because with TCX hook,
unlike TC, handlers needed to be explicitly removed when the interface went down. Now, there
is no longer leaking file descriptors when creating and deleting pods. (NETOBSERV-1805)

3.6.3. Known issues

There was a compatibility issue with console plugins that would have prevented network observability
from being installed on future versions of an OpenShift Container Platform cluster. By upgrading to
1.6.2, the compatibility issue is resolved and network observability can be installed as expected.
(NETOBSERV-1737)

3.7.NETWORK OBSERVABILITY OPERATOR 1.6.1

The following advisory is available for the Network Observability Operator 1.6.1:

® 2024:4785 Network Observability Operator 1.6.1

3.7.1.CVEs

® RHSA-2024:4237

® RHSA-2024:4212

3.7.2. Bug fixes

® Previously, information about packet drops, such as the cause and TCP state, was only available
in the Loki datastore and not in Prometheus. For that reason, the drop statistics in the
OpenShift web console plugin Overview was only available with Loki. With this fix, information
about packet drops is also added to metrics, so you can view drops statistics when Loki is
disabled. (NETOBSERV-1649)

e When the eBPF agent PacketDrop feature was enabled, and sampling was configured to a value
greater than 1, reported dropped bytes and dropped packets ignored the sampling
configuration. While this was done on purpose, so as not to miss any drops, a side effect was that
the reported proportion of drops compared with non-drops became biased. For example, at a

20

https://issues.redhat.com/browse/NETOBSERV-1934
https://access.redhat.com/errata/RHSA-2024:7074
https://access.redhat.com/security/cve/CVE-2024-24791
https://issues.redhat.com/browse/NETOBSERV-1805
https://issues.redhat.com/browse/NETOBSERV-1737
https://access.redhat.com/errata/RHSA-2024:4785
https://access.redhat.com/errata/RHSA-2024:4237
https://access.redhat.com/errata/RHSA-2024:4212
https://issues.redhat.com/browse/NETOBSERV-1649

CHAPTER 3. NETWORK OBSERVABILITY OPERATOR RELEASE NOTES

very high sampling rate, such as 1:1000, it was likely that almost all the traffic appears to be
dropped when observed from the console plugin. With this fix, the sampling configuration is
honored with dropped bytes and packets. (NETOBSERV-1676)

® Previously, the SR-IOV secondary interface was not detected if the interface was created first
and then the eBPF agent was deployed. It was only detected if the agent was deployed first and
then the SR-IOV interface was created. With this fix, the SR-IOV secondary interface is
detected no matter the sequence of the deployments. (NETOBSERV-1697)

® Previously, when Loki was disabled, the Topology view in the OpenShift web console displayed
the Cluster and Zone aggregation options in the slider beside the network topology diagram,
even when the related features were not enabled. With this fix, the slider now only displays
options according to the enabled features. (NETOBSERV-1705)

® Previously, when Loki was disabled, and the OpenShift web console was first loading, an error
would occur: Request failed with status code 400 Loki is disabled. With this fix, the errors no
longer occur. (NETOBSERV-1706)

® Previously, in the Topology view of the OpenShift web console, when clicking on the Step into
icon next to any graph node, the filters were not applied as required in order to set the focus to
the selected graph node, resulting in showing a wide view of the Topology view in the OpenShift
web console. With this fix, the filters are correctly set, effectively narrowing down the Topology.
As part of this change, clicking the Step into icon on a Node now brings you to the Resource
scope instead of the Namespaces scope. (NETOBSERV-1720)

® Previously, when Loki was disabled, in the Topology view of the OpenShift web console with the
Scope set to Owner, clicking on the Step into icon next to any graph node would bring the
Scope to Resource, which is not available without Loki, so an error message was shown. With
this fix, the Step into icon is hidden in the Owner scope when Loki is disabled, so this scenario
no longer occurs.(NETOBSERV-1721)

® Previously, when Loki was disabled, an error was displayed in the Topology view of the
OpenShift web console when a group was set, but then the scope was changed so that the
group becomes invalid. With this fix, the invalid group is removed, preventing the error.
(NETOBSERV-1722)

® When creating a FlowCollector resource from the OpenShift web console Form view, as
opposed to the YAML view, the following settings were incorrectly managed by the web
console: agent.ebpf.metrics.enable and processor.subnetLabels.openShiftAutoDetect.
These settings can only be disabled in the YAML view, not in the Form view. To avoid any
confusion, these settings have been removed from the Form view. They are still accessible in
the YAML view. (NETOBSERV-1731)

® Previously, the eBPF agent was unable to clean up traffic control flows installed before an
ungraceful crash, for example a crash due to a SIGTERM signal. This led to the creation of
multiple traffic control flow filters with the same name, since the older ones were not removed.
With this fix, all previously installed traffic control flows are cleaned up when the agent starts,
before installing new ones. (NETOBSERV-1732)

® Previously, when configuring custom subnet labels and keeping the OpenShift subnets auto-
detection enabled, OpenShift subnets would take precedence over the custom ones,
preventing the definition of custom labels for in cluster subnets. With this fix, custom defined
subnets take precedence, allowing the definition of custom labels for in cluster subnets.
(NETOBSERV-1734)

3.8. NETWORK OBSERVABILITY OPERATOR 1.6.0

21

https://issues.redhat.com/browse/NETOBSERV-1676
https://issues.redhat.com/browse/NETOBSERV-1697
https://issues.redhat.com/browse/NETOBSERV-1705
https://issues.redhat.com/browse/NETOBSERV-1706
https://issues.redhat.com/browse/NETOBSERV-1720
https://issues.redhat.com/browse/NETOBSERV-1721
https://issues.redhat.com/browse/NETOBSERV-1722
https://issues.redhat.com/browse/NETOBSERV-1731
https://issues.redhat.com/browse/NETOBSERV-1732
https://issues.redhat.com/browse/NETOBSERV-1734

OpenShift Container Platform 4.14 Network Observability

The following advisory is available for the Network Observability Operator 1.6.0:

® Network Observability Operator 1.6.0

IMPORTANT

Before upgrading to the latest version of the Network Observability Operator, you must
Migrate removed stored versions of the FlowCollector CRD . An automated solution to
this workaround is planned with NETOBSERV-1747.

3.8.1. New features and enhancements

3.8.1.1. Enhanced use of Network Observability Operator without Loki

You can now use Prometheus metrics and rely less on Loki for storage when using the Network
Observability Operator. For more information, see Network observability without Loki.

3.8.1.2. Custom metrics API

You can create custom metrics out of flowlogs data by using the FlowMetrics API. Flowlogs data can be
used with Prometheus labels to customize cluster information on your dashboards. You can add custom
labels for any subnet that you want to identify in your flows and metrics. This enhancement can also be
used to more easily identify external traffic by using the new labels SrcSubnetLabel and
DstSubnetLabel, which exists both in flow logs and in metrics. Those fields are empty when there is
external traffic, which gives a way to identify it. For more information, see Custom metrics and
FlowMetric APl reference.

3.8.1.3. eBPF performance enhancements

Experience improved performances of the eBPF agent, in terms of CPU and memory, with the following
updates:

® The eBPF agent now uses TCX webhooks instead of TC.

® The NetObserv / Healthdashboard has a new section that shows eBPF metrics.

o Based on the new eBPF metrics, an alert notifies you when the eBPF agent is dropping
flows.

® | oki storage demand decreases significantly now that duplicated flows are removed. Instead of
having multiple, individual duplicated flows per network interface, there is one de-duplicated
flow with a list of related network interfaces.

IMPORTANT

With the duplicated flows update, the Interface and Interface Direction fields in the
Network Traffic table are renamed to Interfaces and Interface Directions, so any
bookmarked Quick filter queries using these fields need to be updated to interfaces and
ifdirections.

For more information, see Using the eBPF agent alert and For more information, see Network
observability metrics dashboards and Filtering the network traffic.

22

https://access.redhat.com/errata/RHSA-2024:3868
https://issues.redhat.com/browse/NETOBSERV-1747

CHAPTER 3. NETWORK OBSERVABILITY OPERATOR RELEASE NOTES

3.8.1.4. eBPF collection rule-based filtering

You can use rule-based filtering to reduce the volume of created flows. When this option is enabled, the
Netobserv / Healthdashboard for eBPF agent statistics has the Filtered flows rate view. For more
information, see eBPF flow rule filter.

3.8.2. Technology Preview features

Some features in this release are currently in Technology Preview. These experimental features are not
intended for production use. Note the following scope of support on the Red Hat Customer Portal for
these features:

Technology Preview Features Support Scope

3.8.2.1. Network Observability CLI

You can debug and troubleshoot network traffic issues without needing to install the Network
Observability Operator by using the Network Observability CLI. Capture and visualize flow and packet
data in real-time with no persistent storage requirement during the capture. For more information, see
Network Observability CLI and Network Observability CLI 1.6.0.

3.8.3. Bug fixes

® Previously, a dead link to the OpenShift containter platform documentation was displayed in the
Operator Lifecycle Manager (OLM) form for the FlowMetrics API creation. Now the link has
been updated to point to a valid page. (NETOBSERV-1607)

® Previously, the Network Observability Operator description in the Operator Hub displayed a
broken link to the documentation. With this fix, this link is restored. (NETOBSERV-1544)

® Previously, if Loki was disabled and the Loki Mode was set to LokiStack, or if Loki manual TLS
configuration was configured, the Network Observability Operator still tried to read the Loki CA
certificates. With this fix, when Loki is disabled, the Loki certificates are not read, even if there
are settings in the Loki configuration. (NETOBSERV-1647)

® Previously, the oc must-gather plugin for the Network Observability Operator was only working
on the amd64 architecture and failing on all others because the plugin was using amd64 for the
oc binary. Now, the Network Observability Operator oc must-gather plugin collects logs on any
architecture platform.

® Previously, when filtering on IP addresses using not equal to, the Network Observability
Operator would return a request error. Now, the IP filtering works in both equal and not equal
to cases for IP addresses and ranges. (NETOBSERV-1630)

® Previously, when a user was not an admin, the error messages were not consistent with the
selected tab of the Network Traffic view in the web console. Now, the user not admin error
displays on any tab with improved display.(NETOBSERV-1621)

3.8.4. Known issues

e When the eBPF agent PacketDrop feature is enabled, and sampling is configured to a value
greater than 1, reported dropped bytes and dropped packets ignore the sampling
configuration. While this is done on purpose to not miss any drops, a side effect is that the

23

https://access.redhat.com/support/offerings/techpreview
https://access.redhat.com/errata/RHEA-2024:3869
https://issues.redhat.com/browse/NETOBSERV-1607
https://issues.redhat.com/browse/NETOBSERV-1544
https://issues.redhat.com/browse/NETOBSERV-1647
https://issues.redhat.com/browse/NETOBSERV-1630
https://issues.redhat.com/browse/NETOBSERV-1621

OpenShift Container Platform 4.14 Network Observability

reported proportion of drops compared to non-drops becomes biased. For example, at a very
high sampling rate, such as 1:1000, it is likely that almost all the traffic appears to be dropped
when observed from the console plugin. (NETOBSERV-1676)

® |n the Manage panels pop-up window in the Overview tab, filtering on total, bar, donut, or line
does not show any result. (NETOBSERV-1540)

® The SR-IOV secondary interface is not detected if the interface was created first and then the
eBPF agent was deployed. It is only detected if the agent was deployed first and then the SR-
IOV interface is created. (NETOBSERV-1697)

® When Loki is disabled, the Topology view in the OpenShift web console always shows the
Cluster and Zone aggregation options in the slider beside the network topology diagram, even
when the related features are not enabled. There is no specific workaround, besides ignoring
these slider options. (NETOBSERV-1705)

e When Lokiis disabled, and the OpenShift web console first loads, it might display an error:
Request failed with status code 400 Loki is disabled. As a workaround, you can continue
switching content on the Network Traffic page, such as clicking between the Topology and the
Overview tabs. The error should disappear. (NETOBSERV-1706)

3.9. NETWORK OBSERVABILITY OPERATOR 1.5.0

The following advisory is available for the Network Observability Operator 1.5.0:

® Network Observability Operator 1.5.0

3.9.1. New features and enhancements

3.9.1.1. DNS tracking enhancements

In 1.5, the TCP protocol is now supported in addition to UDP. New dashboards are also added to the
Overview view of the Network Traffic page. For more information, see Configuring DNS tracking and
Working with DNS tracking.

3.9.1.2. Round-trip time (RTT)

You can use TCP handshake Round-Trip Time (RTT) captured from the fentry/tcp_rcv_established
Extended Berkeley Packet Filter (eBPF) hookpoint to read smoothed round-trip time (SRTT) and
analyze network flows. In the Overview, Network Traffic, and Topology pages in web console, you can
monitor network traffic and troubleshoot with RTT metrics, filtering, and edge labeling. For more
information, see RTT Overview and Working with RTT.

3.9.1.3. Metrics, dashboards, and alerts enhancements

The network observability metrics dashboards in Observe = Dashboards —» NetObserv have new
metrics types you can use to create Prometheus alerts. You can now define available metrics in the
includelList specification. In previous releases, these metrics were defined in the ignoreTags
specification. For a complete list of these metrics, see Network observability metrics.

3.9.1.4. Improvements for network observability without Loki

You can create Prometheus alerts for the Netobserv dashboard using DNS, Packet drop, and RTT
metrics, even if you don't use Loki. In the previous version of network observability, 1.4, these metrics

24

https://issues.redhat.com/browse/NETOBSERV-1676
https://issues.redhat.com/browse/NETOBSERV-1540
https://issues.redhat.com/browse/NETOBSERV-1697
https://issues.redhat.com/browse/NETOBSERV-1705
https://issues.redhat.com/browse/NETOBSERV-1706
https://access.redhat.com/errata/RHSA-2024:0853

CHAPTER 3. NETWORK OBSERVABILITY OPERATOR RELEASE NOTES

were only available for querying and analysis in the Network Traffic, Overview, and Topology views,
which are not available without Loki. For more information, see Network observability metrics
3.9.1.5. Availability zones

You can configure the FlowCollector resource to collect information about the cluster availability
zones. This configuration enriches the network flow data with the topology.kubernetes.io/zone label
value applied to the nodes. For more information, see Working with availability zones.

3.9.1.6. Notable enhancements

The 1.5 release of the Network Observability Operator adds improvements and new capabilities to the
OpenShift Container Platform web console plugin and the Operator configuration.

3.9.1.6.1. Performance enhancements
e The spec.agent.ebpf.kafkaBatchSize default is changed from 10MB to 1MB to enhance eBPF

performance when using Kafka.

IMPORTANT

When upgrading from an existing installation, this new value is not set
automatically in the configuration. If you monitor a performance regression with
the eBPF Agent memory consumption after upgrading, you might consider
reducing the kafkaBatchSize to the new value.

3.9.1.6.2. Web console enhancements:

® There are new panels added to the Overview view for DNS and RTT: Min, Max, P90, P99.

There are new panel display options added:

o Focus on one panel while keeping others viewable but with smaller focus.
o Switch graph type.
o Show Top and Overall.
® A collection latency warning is shown in the Custom time range pop-up window.

® There is enhanced visibility for the contents of the Manage panelsand Manage columns pop-
up windows.

® The Differentiated Services Code Point (DSCP) field for egress QoS is available for filtering
QoS DSCP in the web console Network Traffic page.

3.9.1.6.3. Configuration enhancements:

e The LokiStack mode in the spec.loki.mode specification simplifies installation by automatically
setting URLs, TLS, cluster roles and a cluster role binding, as well as the authToken value. The
Manual mode allows more control over configuration of these settings.

® The APl version changes from flows.netobserv.io/vibeta1 to flows.netobserv.io/vibeta2.

25

https://kubernetes.io/docs/reference/labels-annotations-taints/#topologykubernetesiozone

OpenShift Container Platform 4.14 Network Observability

3.9.2. Bug fixes

Previously, it was not possible to register the console plugin manually in the web console
interface if the automatic registration of the console plugin was disabled. If the
spec.console.register value was set to false in the FlowCollector resource, the Operator
would override and erase the plugin registration. With this fix, setting the spec.console.register
value to false does not impact the console plugin registration or registration removal. As a
result, the plugin can be safely registered manually. (NETOBSERV-1134)

Previously, using the default metrics settings, the NetObserv/Health dashboard was showing
an empty graph named Flows Overhead. This metric was only available by removing
"namespaces-flows" and "namespaces” from the ignoreTags list. With this fix, this metric is
visible when you use the default metrics setting. (NETOBSERV-1351)

Previously, the node on which the eBPF Agent was running would not resolve with a specific
cluster configuration. This resulted in cascading consequences that culminated in a failure to
provide some of the traffic metrics. With this fix, the eBPF agent’s node IP is safely provided by
the Operator, inferred from the pod status. Now, the missing metrics are restored.
(NETOBSERV-1430)

Previously, the Loki error 'Input size too long' error for the Loki Operator did not include
additional information to troubleshoot the problem. With this fix, help is directly displayed in the
web console next to the error with a direct link for more guidance. (NETOBSERV-1464)

Previously, the console plugin read timeout was forced to 30s. With the FlowCollector vibeta2
APl update, you can configure the spec.loki.readTimeout specification to update this value
according to the Loki Operator queryTimeout limit. (NETOBSERV-1443)

Previously, the Operator bundle did not display some of the supported features by CSV
annotations as expected, such as features.operators.openshift.io/... With this fix, these
annotations are set in the CSV as expected. (NETOBSERV-1305)

Previously, the FlowCollector status sometimes oscillated between DeploymentinProgress
and Ready states during reconciliation. With this fix, the status only becomes Ready when all of
the underlying components are fully ready. (NETOBSERV-1293)

3.9.3. Known issues

When trying to access the web console, cache issues on OCP 4.14.10 prevent access to the
Observe view. The web console shows the error message: Failed to get a valid plugin
manifest from /api/plugins/monitoring-plugin/. The recommended workaround is to update
the cluster to the latest minor version. If this does not work, you need to apply the workarounds
described in this Red Hat Knowledgebase article (NETOBSERV-1493)

Since the 1.3.0 release of the Network Observability Operator, installing the Operator causes a
warning kernel taint to appear. The reason for this error is that the network observability eBPF
agent has memory constraints that prevent preallocating the entire hashmap table. The

Operator eBPF agent sets the BPF_F_NO_PREALLOC flag so that pre-allocation is disabled

when the hashmap is too memory expansive.

3.10. NETWORK OBSERVABILITY OPERATOR 1.4.2

The following advisory is available for the Network Observability Operator 1.4.2:

26

2023:6787 Network Observability Operator 1.4.2

https://issues.redhat.com/browse/NETOBSERV-1134
https://issues.redhat.com/browse/NETOBSERV-1351
https://issues.redhat.com/browse/NETOBSERV-1430
https://issues.redhat.com/browse/NETOBSERV-1464
https://issues.redhat.com/browse/NETOBSERV-1443
https://issues.redhat.com/browse/NETOBSERV-1305
https://issues.redhat.com/browse/NETOBSERV-1293
https://access.redhat.com/solutions/7052408
https://issues.redhat.com/browse/NETOBSERV-1493
https://access.redhat.com/errata/RHSA-2023:6787

3.10.1. CVEs

® 2023-39325

o 2023-44487

CHAPTER 3. NETWORK OBSERVABILITY OPERATOR RELEASE NOTES

3.11. NETWORK OBSERVABILITY OPERATOR 1.4.1

The following advisory is available for the Network Observability Operator 1.4.1:

® 2023:5974 Network Observability Operator 1.4.1

3.11.1.CVEs

2023-44487

2023-39325

2023-29406

2023-29409

2023-39322

2023-39318

2023-39319

2023-39321

3.11.2. Bug fixes

In 1.4, there was a known issue when sending network flow data to Kafka. The Kafka message key
was ignored, causing an error with connection tracking. Now the key is used for partitioning, so
each flow from the same connection is sent to the same processor. (NETOBSERV-926)

In 1.4, the Inner flow direction was introduced to account for flows between pods running on the
same node. Flows with the Inner direction were not taken into account in the generated
Prometheus metrics derived from flows, resulting in under-evaluated bytes and packets rates.
Now, derived metrics are including flows with the Inner direction, providing correct bytes and
packets rates. (NETOBSERV-1344)

3.12. NETWORK OBSERVABILITY OPERATOR 1.4.0

The following advisory is available for the Network Observability Operator 1.4.0:

® RHSA-2023:5379 Network Observability Operator 1.4.0

3.12.1. Channel removal

You must switch your channel from v1.0.x to stable to receive the latest Operator updates. The v1.0.x

channel is now removed.

3.12.2. New features and enhancements

27

https://access.redhat.com/security/cve/CVE-2023-39325
https://access.redhat.com/security/cve/CVE-2023-44487
https://access.redhat.com/errata/RHSA-2023:5974
https://access.redhat.com/security/cve/cve-2023-44487
https://access.redhat.com/security/cve/cve-2023-39325
https://access.redhat.com/security/cve/cve-2023-29406
https://access.redhat.com/security/cve/CVE-2023-29409
https://access.redhat.com/security/cve/cve-2023-39322
https://access.redhat.com/security/cve/cve-2023-39318
https://access.redhat.com/security/cve/cve-2023-39319
https://access.redhat.com/security/cve/cve-2023-39321
https://issues.redhat.com/browse/NETOBSERV-926
https://issues.redhat.com/browse/NETOBSERV-1344
https://access.redhat.com/errata/RHSA-2023:5379

OpenShift Container Platform 4.14 Network Observability

3.12.2.1. Notable enhancements

The 1.4 release of the Network Observability Operator adds improvements and new capabilities to the
OpenShift Container Platform web console plugin and the Operator configuration.

3.12.2.1.1. Web console enhancements:

® |nthe Query Options, the Duplicate flows checkbox is added to choose whether or not to
show duplicated flows.

® You can now filter source and destination traffic with T One-way, T J« Back-and-forth, and
Swap filters.

® The network observability metrics dashboards in Observe - Dashboards - NetObserv and
NetObserv / Healthare modified as follows:

o The NetObserv dashboard shows top bytes, packets sent, packets received per nodes,
namespaces, and workloads. Flow graphs are removed from this dashboard.

o The NetObserv / Health dashboard shows flows overhead as well as top flow rates per
nodes, namespaces, and workloads.

o Infrastructure and Application metrics are shown in a split-view for namespaces and
workloads.

For more information, see Network observability metrics dashboards and Quick filters.

3.12.2.1.2. Configuration enhancements:

® You now have the option to specify different namespaces for any configured ConfigMap or
Secret reference, such as in certificates configuration.

® The spec.processor.clusterName parameter is added so that the name of the cluster appears
in the flows data. This is useful in a multi-cluster context. When using OpenShift Container
Platform, leave empty to make it automatically determined.

For more information, see Flow Collector sample resource and Flow Collector APl Reference.

3.12.2.2. Network observability without Loki

The Network Observability Operator is now functional and usable without Loki. If Loki is not installed, it
can only export flows to KAFKA or IPFIX format and provide metrics in the network observability metrics
dashboards. For more information, see Network observability without Loki.

3.12.2.3. DNS tracking

In 1.4, the Network Observability Operator makes use of eBPF tracepoint hooks to enable DNS tracking.
You can monitor your network, conduct security analysis, and troubleshoot DNS issues in the Network
Traffic and Overview pages in the web console.

For more information, see Configuring DNS tracking and Working with DNS tracking.

3.12.2.4. SR-IOV support

You can now collect traffic from a cluster with Single Root I/O Virtualization (SR-IOV) device. For more
information, see Configuring the monitoring of SR-IOV interface traffic.

28

CHAPTER 3. NETWORK OBSERVABILITY OPERATOR RELEASE NOTES

3.12.2.5. IPFIX exporter support

You can now export eBPF-enriched network flows to the IPFIX collector. For more information, see
Export enriched network flow data .

3.12.2.6. Packet drops

In the 1.4 release of the Network Observability Operator, eBPF tracepoint hooks are used to enable
packet drop tracking. You can now detect and analyze the cause for packet drops and make decisions to
optimize network performance. In OpenShift Container Platform 4.14 and later, both host drops and
OVS drops are detected. In OpenShift Container Platform 4.13, only host drops are detected. For more
information, see Configuring packet drop tracking and Working with packet drops.

3.12.2.7. s390x architecture support

Network Observability Operator can now run on §390x architecture. Previously it ran on amd64,
ppc64le, or armé64.

3.12.3. Bug fixes

® Previously, the Prometheus metrics exported by network observability were computed out of
potentially duplicated network flows. In the related dashboards, from Observe — Dashboards,
this could result in potentially doubled rates. Note that dashboards from the Network Traffic
view were not affected. Now, network flows are filtered to eliminate duplicates before metrics
calculation, which results in correct traffic rates displayed in the dashboards. (NETOBSERV-
131)

® Previously, the Network Observability Operator agents were not able to capture traffic on
network interfaces when configured with Multus or SR-IOV, non-default network namespaces.
Now, all available network namespaces are recognized and used for capturing flows, allowing
capturing traffic for SR-IOV. There are configurations needed for the FlowCollector and
SRIOVnetwork custom resource to collect traffic. (NETOBSERV-1283)

® Previously, in the Network Observability Operator details from Operators — Installed
Operators, the FlowCollector Status field might have reported incorrect information about
the state of the deployment. The status field now shows the proper conditions with improved
messages. The history of events is kept, ordered by event date. (NETOBSERV-1224)

® Previously, during spikes of network traffic load, certain eBPF pods were OOM-killed and went
into a CrashLoopBackOff state. Now, the eBPF agent memory footprint is improved, so pods
are not OOM-killed and entering a CrashLoopBackOff state. (NETOBSERV-975)

® Previously when processor.metrics.tls was set to PROVIDED the insecureSkipVerify option
value was forced to be true. Now you can set insecureSkipVerify to true or false, and provide
a CA certificate if needed. (NETOBSERV-1087)

3.12.4. Known issues

® Since the 1.2.0 release of the Network Observability Operator, using Loki Operator 5.6, a Loki
certificate change periodically affects the flowlogs-pipeline pods and results in dropped flows
rather than flows written to Loki. The problem self-corrects after some time, but it still causes
temporary flow data loss during the Loki certificate change. This issue has only been observed in
large-scale environments of 120 nodes or greater. (NETOBSERV-980)

® Currently, when spec.agent.ebpf.features includes DNSTracking, larger DNS packets require

29

https://issues.redhat.com/browse/NETOBSERV-1131
https://issues.redhat.com/browse/NETOBSERV-1283
https://issues.redhat.com/browse/NETOBSERV-1224
https://issues.redhat.com/browse/NETOBSERV-975
https://issues.redhat.com/browse/NETOBSERV-1087
https://issues.redhat.com/browse/NETOBSERV-980

OpenShift Container Platform 4.14 Network Observability

the eBPF agent to look for DNS header outside of the 1st socket buffer (SKB) segment. A new
eBPF agent helper function needs to be implemented to support it. Currently, there is no
workaround for this issue. (NETOBSERV-1304)

e Currently, when spec.agent.ebpf.features includes DNSTracking, DNS over TCP packets
requires the eBPF agent to look for DNS header outside of the 1st SKB segment. Anew eBPF

agent helper function needs to be implemented to support it. Currently, there is no workaround
for this issue. (NETOBSERV-1245)

e Currently, when using a KAFKA deployment model, if conversation tracking is configured,
conversation events might be duplicated across Kafka consumers, resulting in inconsistent
tracking of conversations, and incorrect volumetric data. For that reason, it is not recommended
to configure conversation tracking when deploymentModel is set to KAFKA. (NETOBSERV-
926)

e Currently, when the processor.metrics.server.tls.type is configured to use a PROVIDED
certificate, the operator enters an unsteady state that might affect its performance and
resource consumption. It is recommended to not use a PROVIDED certificate until this issue is
resolved, and instead using an auto-generated certificate, setting
processor.metrics.server.tls.type to AUTO. (NETOBSERV-1293

® Since the 1.3.0 release of the Network Observability Operator, installing the Operator causes a
warning kernel taint to appear. The reason for this error is that the network observability eBPF
agent has memory constraints that prevent preallocating the entire hashmap table. The
Operator eBPF agent sets the BPF_F_NO_PREALLOC flag so that pre-allocation is disabled

when the hashmap is too memory expansive.

3.13. NETWORK OBSERVABILITY OPERATOR1.3.0

The following advisory is available for the Network Observability Operator 1.3.0:

® RHSA-2023:3905 Network Observability Operator 1.3.0

3.13.1. Channel deprecation

You must switch your channel from v1.0.x to stable to receive future Operator updates. The v1.0.x
channel is deprecated and planned for removal in the next release.

3.13.2. New features and enhancements

3.13.2.1. Multi-tenancy in network observability

® System administrators can allow and restrict individual user access, or group access, to the
flows stored in Loki. For more information, see Multi-tenancy in network observability .

3.13.2.2. Flow-based metrics dashboard

® This release adds a new dashboard, which provides an overview of the network flows in your
OpenShift Container Platform cluster. For more information, see Network observability metrics
dashboards.

3.13.2.3. Troubleshooting with the must-gather tool

30

https://issues.redhat.com/browse/NETOBSERV-1304
https://issues.redhat.com/browse/NETOBSERV-1245
https://issues.redhat.com/browse/NETOBSERV-926
https://issues.redhat.com/browse/NETOBSERV-1293)
https://access.redhat.com/errata/RHSA-2023:3905

CHAPTER 3. NETWORK OBSERVABILITY OPERATOR RELEASE NOTES

Information about the Network Observability Operator can now be included in the must-gather
data for troubleshooting. For more information, see Network observability must-gather.

3.13.2.4. Multiple architectures now supported

Network Observability Operator can now run on an amd64, ppc64le, or arm64 architectures.
Previously, it only ran on amd64.

3.13.3. Deprecated features

3.13.3.1. Deprecated configuration parameter setting

The release of Network Observability Operator 1.3 deprecates the spec.Loki.authToken HOST setting.
When using the Loki Operator, you must now only use the FORWARD setting.

3.13.4. Bug fixes

Previously, when the Operator was installed from the CLI, the Role and RoleBinding that are
necessary for the Cluster Monitoring Operator to read the metrics were not installed as
expected. The issue did not occur when the operator was installed from the web console. Now,
either way of installing the Operator installs the required Role and RoleBinding.
(NETOBSERV-1003)

Since version 1.2, the Network Observability Operator can raise alerts when a problem occurs
with the flows collection. Previously, due to a bug, the related configuration to disable alerts,
spec.processor.metrics.disableAlerts was not working as expected and sometimes
ineffectual. Now, this configuration is fixed so that it is possible to disable the alerts.
(NETOBSERV-976)

Previously, when network observability was configured with spec.loki.authToken set to
DISABLED, only a kubeadmin cluster administrator was able to view network flows. Other

types of cluster administrators received authorization failure. Now, any cluster administrator is
able to view network flows. (NETOBSERV-972)

Previously, a bug prevented users from setting spec.consolePlugin.portNaming.enable to
false. Now, this setting can be set to false to disable port-to-service name translation.
(NETOBSERV-971)

Previously, the metrics exposed by the console plugin were not collected by the Cluster
Monitoring Operator (Prometheus), due to an incorrect configuration. Now the configuration
has been fixed so that the console plugin metrics are correctly collected and accessible from
the OpenShift Container Platform web console. (NETOBSERV-765)

Previously, when processor.metrics.tls was set to AUTO in the FlowCollector, the flowlogs-
pipeline servicemonitor did not adapt the appropriate TLS scheme, and metrics were not
visible in the web console. Now the issue is fixed for AUTO mode. (NETOBSERV-1070)

Previously, certificate configuration, such as used for Kafka and Loki, did not allow specifying a
namespace field, implying that the certificates had to be in the same namespace where network
observability is deployed. Moreover, when using Kafka with TLS/mTLS, the user had to manually
copy the certificate(s) to the privileged namespace where the eBPF agent pods are deployed
and manually manage certificate updates, such as in the case of certificate rotation. Now,
network observability setup is simplified by adding a namespace field for certificates in the
FlowCollector resource. As a result, users can now install Loki or Kafka in different namespaces

31

https://issues.redhat.com/browse/NETOBSERV-1003
https://issues.redhat.com/browse/NETOBSERV-976
https://issues.redhat.com/browse/NETOBSERV-972
https://issues.redhat.com/browse/NETOBSERV-971
https://issues.redhat.com/browse/NETOBSERV-765
https://issues.redhat.com/browse/NETOBSERV-1070

OpenShift Container Platform 4.14 Network Observability

without needing to manually copy their certificates in the network observability namespace. The
original certificates are watched so that the copies are automatically updated when needed.
(NETOBSERV-773)

® Previously, the SCTP, ICMPv4 and ICMPV6 protocols were not covered by the network
observability agents, resulting in a less comprehensive network flows coverage. These protocols
are now recognized to improve the flows coverage. (NETOBSERV-934)

3.13.5. Known issues

® When processor.metrics.tls is set to PROVIDED in the FlowCollector, the flowlogs-pipeline
servicemonitor is not adapted to the TLS scheme. (NETOBSERV-1087)

® Since the 1.2.0 release of the Network Observability Operator, using Loki Operator 5.6, a Loki
certificate change periodically affects the flowlogs-pipeline pods and results in dropped flows
rather than flows written to Loki. The problem self-corrects after some time, but it still causes
temporary flow data loss during the Loki certificate change. This issue has only been observed in
large-scale environments of 120 nodes or greater.(NETOBSERV-980)

® When you install the Operator, a warning kernel taint can appear. The reason for this error is that
the network observability eBPF agent has memory constraints that prevent preallocating the
entire hashmap table. The Operator eBPF agent sets the BPF_F_NO_PREALLOC flag so that

pre-allocation is disabled when the hashmap is too memory expansive.

3.14. NETWORK OBSERVABILITY OPERATOR 1.2.0

The following advisory is available for the Network Observability Operator 1.2.0:

® RHSA-2023:1817 Network Observability Operator 1.2.0

3.14.1. Preparing for the next update

The subscription of an installed Operator specifies an update channel that tracks and receives updates
for the Operator. Until the 1.2 release of the Network Observability Operator, the only channel available
was v1.0.x. The 1.2 release of the Network Observability Operator introduces the stable update channel
for tracking and receiving updates. You must switch your channel from v1.0.x to stable to receive future
Operator updates. The v1.0.x channel is deprecated and planned for removal in a following release.

3.14.2. New features and enhancements

3.14.2.1. Histogram in Traffic Flows view

® You can now choose to show a histogram bar chart of flows over time. The histogram enables
you to visualize the history of flows without hitting the Loki query limit. For more information,
see Using the histogram.

3.14.2.2. Conversation tracking

® You can now query flows by Log Type, which enables grouping network flows that are part of
the same conversation. For more information, see Working with conversations.

3.14.2.3. Network observability health alerts

32

https://issues.redhat.com/browse/NETOBSERV-773
https://issues.redhat.com/browse/NETOBSERV-934
https://issues.redhat.com/browse/NETOBSERV-1087
https://issues.redhat.com/browse/NETOBSERV-980
https://access.redhat.com/errata/RHSA-2023:1817

CHAPTER 3. NETWORK OBSERVABILITY OPERATOR RELEASE NOTES

® The Network Observability Operator now creates automatic alerts if the flowlogs-pipeline is

3.14.3.

3.14.4.

3.14.5.

dropping flows because of errors at the write stage or if the Loki ingestion rate limit has been
reached. For more information, see Health dashboards.

Bug fixes

Previously, after changing the namespace value in the FlowCollector spec, eBPF agent pods
running in the previous namespace were not appropriately deleted. Now, the pods running in the
previous namespace are appropriately deleted. (NETOBSERV-774)

Previously, after changing the caCert.name value in the FlowCollector spec (such as in Loki
section), FlowLogs-Pipeline pods and Console plug-in pods were not restarted, therefore they
were unaware of the configuration change. Now, the pods are restarted, so they get the
configuration change. (NETOBSERV-772)

Previously, network flows between pods running on different nodes were sometimes not
correctly identified as being duplicates because they are captured by different network
interfaces. This resulted in over-estimated metrics displayed in the console plug-in. Now, flows
are correctly identified as duplicates, and the console plug-in displays accurate metrics.
(NETOBSERV-755)

The "reporter” option in the console plug-in is used to filter flows based on the observation
point of either source node or destination node. Previously, this option mixed the flows
regardless of the node observation point. This was due to network flows being incorrectly
reported as Ingress or Egress at the node level. Now, the network flow direction reporting is
correct. The "reporter” option filters for source observation point, or destination observation
point, as expected. (NETOBSERV-696)

Previously, for agents configured to send flows directly to the processor as gRPC+protobuf
requests, the submitted payload could be too large and is rejected by the processors' GRPC
server. This occurred under very-high-load scenarios and with only some configurations of the
agent. The agent logged an error message, such as: grpc: received message larger than max . As
a consequence, there was information loss about those flows. Now, the gRPC payload is split
into several messages when the size exceeds a threshold. As a result, the server maintains
connectivity. (NETOBSERV-617)

Known issue

In the 1.2.0 release of the Network Observability Operator, using Loki Operator 5.6, a Loki
certificate transition periodically affects the flowlogs-pipeline pods and results in dropped
flows rather than flows written to Loki. The problem self-corrects after some time, but it still
causes temporary flow data loss during the Loki certificate transition. (NETOBSERV-980)

Notable technical changes

Previously, you could install the Network Observability Operator using a custom namespace.
This release introduces the conversion webhook which changes the ClusterServiceVersion.
Because of this change, all the available namespaces are no longer listed. Additionally, to enable
Operator metrics collection, namespaces that are shared with other Operators, like the
openshift-operators namespace, cannot be used. Now, the Operator must be installed in the
openshift-netobserv-operator namespace. You cannot automatically upgrade to the new
Operator version if you previously installed the Network Observability Operator using a custom
namespace. If you previously installed the Operator using a custom namespace, you must delete
the instance of the Operator that was installed and re-install your operator in the openshift-

33

https://issues.redhat.com/browse/NETOBSERV-774
https://issues.redhat.com/browse/NETOBSERV-772
https://issues.redhat.com/browse/NETOBSERV-755
https://issues.redhat.com/browse/NETOBSERV-696
https://issues.redhat.com/browse/NETOBSERV-617
https://issues.redhat.com/browse/NETOBSERV-980

OpenShift Container Platform 4.14 Network Observability

netobserv-operator namespace. It is important to note that custom namespaces, such as the
commonly used netobserv namespace, are still possible for the FlowCollector, Loki, Kafka, and
other plug-ins. (NETOBSERV-907)(NETOBSERV-956)

3.15. NETWORK OBSERVABILITY OPERATOR 1.1.0

The following advisory is available for the Network Observability Operator 1.1.0:

® RHSA-2023:0786 Network Observability Operator Security Advisory Update

The Network Observability Operator is now stable and the release channel is upgraded to v1.1.0.

3.15.1. Bug fix

® Previously, unless the Loki authToken configuration was set to FORWARD mode,
authentication was no longer enforced, allowing any user who could connect to the OpenShift
Container Platform console in an OpenShift Container Platform cluster to retrieve flows
without authentication. Now, regardless of the Loki authToken mode, only cluster
administrators can retrieve flows. (BZ#2169468)

34

https://issues.redhat.com/browse/NETOBSERV-907
https://https//issues.redhat.com/browse/NETOBSERV-956
https://access.redhat.com/errata/RHSA-2023:0786
https://bugzilla.redhat.com/show_bug.cgi?id=2169468

CHAPTER 4. ABOUT NETWORK OBSERVABILITY

CHAPTER 4. ABOUT NETWORK OBSERVABILITY

Red Hat offers cluster administrators and developers the Network Observability Operator to observe
the network traffic for OpenShift Container Platform clusters. The Network Observability Operator uses
the eBPF technology to create network flows, which are then enriched with OpenShift Container
Platform information. The flows are available as Prometheus metrics or as logs in Loki. You can view and
analyze this stored information in the OpenShift Container Platform console for further insight and
troubleshooting.

4.1. NETWORK OBSERVABILITY OPERATOR

The Network Observability Operator provides the FlowCollector API custom resource. A
FlowCollector instance is a cluster-scoped resource that enables configuration of network flow
collection. This instance deploys pods and services that form a monitoring pipeline.

The eBPF agent is deployed as a daemonset object and creates the network flows. The pipeline
collects and enriches network flows with Kubernetes metadata before storing them in Loki or generating
Prometheus metrics.

4.2. OPTIONAL DEPENDENCIES OF THE NETWORK OBSERVABILITY
OPERATOR

You can optionally integrate the Network Observability Operator with other components to enhance its
functionality and scalability. Supported optional dependencies include the Loki Operator for flow
storage, and AMQ Streams for large-scale data handling with Kafka.

Loki Operator

You can use Loki as the backend to store all collected flows with a maximal level of details. It is
recommended to use the Red Hat supported Loki Operator to install Loki. You can also choose to
use network observability without Loki, but you need to consider some factors. For more information,
see "Network observability without Loki".

AMQ Streams Operator

Kafka provides scalability, resiliency and high availability in the OpenShift Container Platform cluster
for large scale deployments. If you choose to use Kafka, it is recommended to use Red Hat supported
AMQ Streams Operator.

Additional resources

® Network observability without Loki

4.3. OPENSHIFT CONTAINER PLATFORM CONSOLE INTEGRATION

OpenShift Container Platform console integration offers an overview, a topology view, and traffic flow
tables. The Network observability metrics dashboards in Observe — Dashboards are available only to
users with administrator access.

NOTE

To enable multi-tenancy for developer access and for administrators with limited access
to namespaces, you must specify permissions by defining roles. For more information,
see "Enabling multi-tenancy in network observability".

35

OpenShift Container Platform 4.14 Network Observability

Additional resources

® Enabling multi-tenancy in network observability

4.3.1. Network observability metrics dashboards

In the OpenShift Container Platform console on the Overview tab, you can view the overall aggregated
metrics of the network traffic flow on the cluster. You can choose to display the information by cluster,
node, namespace, owner, pod, and service. Filters and display options can further refine the metrics. For
more information, see "Observing the network traffic from the Overview view".

In Observe - Dashboards, the Netobserv dashboards provide a quick overview of the network flows in
your OpenShift Container Platform cluster. The Netobserv/Health dashboard provides metrics about
the health of the Operator. For more information, see "Network observability metrics" and "Viewing
health information”.

Additional resources
® Observing the network traffic from the Overview view
® Network observability metrics

® Health dashboards

4.3.2. Network observability topology views

The OpenShift Container Platform console offers the Topology tab which displays a graphical
representation of the network flows and the amount of traffic. The topology view represents traffic
between the OpenShift Container Platform components as a network graph. You can refine the graph
by using the filters and display options. You can access the information for cluster, zone, udn, node,
namespace, owner, pod, and service.

4.3.3. Traffic flow tables

The Traffic flow table view provides a view for raw flows, non aggregated filtering options, and
configurable columns. The OpenShift Container Platform console offers the Traffic flows tab which
displays the data of the network flows and the amount of traffic.

4.4. NETWORK OBSERVABILITY CLI

You can quickly debug and troubleshoot networking issues with network observability by using the
Network Observability command-line interface (CLI), oc netobserv. The Network Observability CLI is a
flow and packet visualization tool that relies on eBPF agents to stream collected data to an ephemeral
collector pod. It requires no persistent storage during the capture. After the run, the output is
transferred to your local machine. This enables quick, live insight into packets and flow data without
installing the Network Observability Operator.

36

CHAPTER 5. INSTALLING THE NETWORK OBSERVABILITY OPERATOFR

CHAPTER 5. INSTALLING THE NETWORK OBSERVABILITY
OPERATOR

Installing Loki is a recommended prerequisite for using the Network Observability Operator. You can
choose to use Network observability without Loki, but there are some considerations for doing this,
described in the previously linked section.

The Loki Operator integrates a gateway that implements multi-tenancy and authentication with Loki for
data flow storage. The LokiStack resource manages Loki, which is a scalable, highly-available, multi-
tenant log aggregation system, and a web proxy with OpenShift Container Platform authentication. The
LokiStack proxy uses OpenShift Container Platform authentication to enforce multi-tenancy and
facilitate the saving and indexing of data in Loki log stores.

NOTE

The Loki Operator can also be used for configuring the LokiStack log store . The Network
Observability Operator requires a dedicated LokiStack separate from the logging.

5.1. NETWORK OBSERVABILITY WITHOUT LOKI

You can use network observability without Loki by not performing the Loki installation steps and
skipping directly to "Installing the Network Observability Operator”. If you only want to export flows to a
Kafka consumer or IPFIX collector, or you only need dashboard metrics, then you do not need to install
Loki or provide storage for Loki. The following table compares available features with and without Loki.

Table 5.1. Comparison of feature availability with and without Loki

With Loki Without Loki
Exporters X X
Multi-tenancy X X
Complete filtering and X

aggregations capabilities [']

Partial filtering and X X

aggregations capabilities [?]

Flow-based metrics and X X
dashboards

Traffic flows view overview [°] X X
Traffic flows view table X

Topology view X X

37

https://docs.redhat.com/en/documentation/openshift_container_platform/4.14/html-single/logging/#cluster-logging-loki

OpenShift Container Platform 4.14 Network Observability

With Loki Without Loki
OpenShift Container Platform X X
console Network Traffic tab
integration

1. Such as per pod.
2. Such as per workload or namespace.

3. Statistics on packet drops are only available with Loki.

Additional resources

® Export enriched network flow data

5.2. INSTALLING THE LOKI OPERATOR

The Loki Operator versions 5.7+ are the supported Loki Operator versions for Network Observability;
these versions provide the ability to create a LokiStack instance using the openshift-network tenant
configuration mode and provide fully-automatic, in-cluster authentication and authorization support for
Network Observability. There are several ways you can install Loki. One way is by using the OpenShift
Container Platform web console Operator Hub.

Prerequisites

® Supported Log Store (AWS S3, Google Cloud Storage, Azure, Swift, Minio, OpenShift Data
Foundation)

® OpenShift Container Platform 4.10+

® Linux kernel 4.18+

Procedure
1. In the OpenShift Container Platform web console, click Operators - OperatorHub.
2. Choose Loki Operator from the list of available Operators, and click Install.

3. Under Installation Mode, select All namespaces on the cluster.

Verification

1. Verify that you installed the Loki Operator. Visit the Operators — Installed Operators page and
look for Loki Operator.

2. Verify that Loki Operator is listed with Status as Succeeded in all the projects.

38

https://catalog.redhat.com/software/containers/openshift-logging/loki-rhel9-operator/64479927e1820602a81cdf13

CHAPTER 5. INSTALLING THE NETWORK OBSERVABILITY OPERATOFR

IMPORTANT

To uninstall Loki, refer to the uninstallation process that corresponds with the method
you used to install Loki. You might have remaining ClusterRoles and
ClusterRoleBindings, data stored in object store, and persistent volume that must be
removed.

5.2.1. Creating a secret for Loki storage

The Loki Operator supports a few log storage options, such as AWS S3, Google Cloud Storage, Azure,
Swift, Minio, OpenShift Data Foundation. The following example shows how to create a secret for AWS
S3 storage. The secret created in this example, loki-s3, is referenced in "Creating a LokiStack custom
resource”. You can create this secret in the web console or CLI.

1. Using the web console, navigate to the Project — All Projects dropdown and select Create
Project.

2. Name the project netobserv and click Create.

3. Navigate to the Importicon, +, in the top right corner. Paste your YAML file into the editor.
The following shows an example secret YAML file for S3 storage:

apiVersion: vi
kind: Secret
metadata:
name: loki-s3
namespace: netobserv ﬂ
stringData:
access_key_id: QUIJQUIPUOZPRE5ONOVYQU1QTEUK
access_key_secret:
dOphbHJYVXRuRkVNSS9LNO1ERU5HL2JQeFJmaUNZRVhBTVBMRUtFWQo=
bucketnames: s3-bucket-name
endpoint: https://s3.eu-central-1.amazonaws.com
region: eu-central-1

The installation examples in this documentation use the same namespace, netobserv,

across all components. You can optionally use a different namespace for the different
components

Verification

e After you create the secret, you view the secret listed under Workloads = Secrets in the web
console.

Additional resources

® Creating a LokiStack custom resource

® F[low Collector API Reference

® Flow Collector sample resource

® | oki object storage

39

https://docs.redhat.com/en/documentation/openshift_container_platform/4.14/html-single/logging/#logging-loki-storage_installing-log-storage

OpenShift Container Platform 4.14 Network Observability

5.2.2. Creating a LokiStack custom resource

You can deploy a LokiStack custom resource (CR) by using the web console or OpenShift CLI (o¢) to
create a namespace, or new project.

Procedure

1. Navigate to Operators = Installed Operators, viewing All projects from the Project
dropdown.

2. Look for Loki Operator. In the details, under Provided APIs, select LokiStack.

3. Click Create LokiStack
4. Ensure the following fields are specified in either Form View or YAML view:

apiVersion: loki.grafana.com/v1
kind: LokiStack
metadata:
name: loki
namespace: netobserv ﬂ
spec:
size: 1x.small 9
storage:
schemas:
- version: vi2
effectiveDate: '2022-06-01"
secret:
name: loki-s3
type: s3
storageClassName: gp3 6
tenants:
mode: openshift-network

ﬂ The installation examples in this documentation use the same namespace, netobserv,
across all components. You can optionally use a different namespace.

9 Specify the deployment size. In the Loki Operator 5.8 and later versions, the supported size
options for production instances of Loki are 1x.extra-small, 1x.small, or 1x.medium.

IMPORTANT

It is not possible to change the number 1x for the deployment size.

9 Use a storage class name that is available on the cluster for ReadWriteOnce access mode.
You can use oc get storageclasses to see what is available on your cluster.

IMPORTANT

You must not reuse the same LokiStack CR that is used for logging.

5. Click Create.

40

CHAPTER 5. INSTALLING THE NETWORK OBSERVABILITY OPERATOFR

5.2.3. Creating a new group for the cluster-admin user role

IMPORTANT

Querying application logs for multiple namespaces as a cluster-admin user, where the
sum total of characters of all of the namespaces in the cluster is greater than 5120, results
in the error Parse error: input size too long (XXXX > 5120). For better control over

access to logs in LokiStack, make the cluster-admin user a member of the cluster-
admin group. If the cluster-admin group does not exist, create it and add the desired
users to it.

Use the following procedure to create a new group for users with cluster-admin permissions.

Procedure

1. Enter the following command to create a new group:

I $ oc adm groups new cluster-admin

2. Enter the following command to add the desired user to the cluster-admin group:

I $ oc adm groups add-users cluster-admin <username>

3. Enter the following command to add cluster-admin user role to the group:

I $ oc adm policy add-cluster-role-to-group cluster-admin cluster-admin

5.2.4. Custom admin group access

If you need to see cluster-wide logs without necessarily being an administrator, or if you already have
any group defined that you want to use here, you can specify a custom group using the adminGroup
field. Users who are members of any group specified in the adminGroups field of the LokiStack
custom resource (CR) have the same read access to logs as administrators.

Administrator users have access to all network logs across the cluster.

Example LokiStack CR

apiVersion: loki.grafana.com/v1
kind: LokiStack
metadata:
name: loki
namespace: netobserv
spec:
tenants:
mode: openshift-network ﬂ
openshift:
adminGroups: 9
- cluster-admin

- custom-admin-group 6

41

OpenShift Container Platform 4.14 Network Observability

ﬂ Custom admin groups are only available in this mode.

9 Entering an empty list [] value for this field disables admin groups.

9 Overrides the default groups (system:cluster-admins, cluster-admin, dedicated-admin)

5.2.5. Loki deployment sizing

Sizing for Loki follows the format of 1x.<size> where the value 1xis number of instances and <size>
specifies performance capabilities.

IMPORTANT

It is not possible to change the number 1x for the deployment size.

Table 5.2. Loki sizing

Data transfer

Queries per
second (QPS)

Replication factor

Total CPU
requests

Total memory
requests

Total disk
requests

5.2.6. LokiStack ingestion limits and health alerts

1x.demo

Demo use only

Demo use only

None

None

None

40Gi

1x.extra-small

100GB/day

1-25 QPS at

200ms

14 vCPUs

31Gi

430Gi

x.small

500GB/day

25-50 QPS at

200ms

34 vCPUs

67Gi

430Gi

Ix.medium

2TB/day

25-75 QPS at
200ms

54 vCPUs

139Gi

590Gi

The LokiStack instance comes with default settings according to the configured size. It is possible to
override some of these settings, such as the ingestion and query limits. An automatic alert in the web
console notifies you when these limits are reached.

NOTE

You might want to update the ingestion and query limits if you get Loki errors showing up
in the Console plugin, or in flowlogs-pipeline logs.

-

Here is an example of configured limits:

I spec:

42

CHAPTER 5. INSTALLING THE NETWORK OBSERVABILITY OPERATOFR

limits:
global:

ingestion:
ingestionBurstSize: 40
ingestionRate: 20
maxGlobalStreamsPerTenant: 25000

queries:
maxChunksPerQuery: 2000000
maxEntriesLimitPerQuery: 10000
maxQuerySeries: 3000

For more information about these settings, see the LokiStack API reference.

5.3.INSTALLING THE NETWORK OBSERVABILITY OPERATOR

You can install the Network Observability Operator using the OpenShift Container Platform web
console Operator Hub. When you install the Operator, it provides the FlowCollector custom resource
definition (CRD). You can set specifications in the web console when you create the FlowCollector.

IMPORTANT

The actual memory consumption of the Operator depends on your cluster size and the
number of resources deployed. Memory consumption might need to be adjusted
accordingly. For more information refer to "Network Observability controller manager
pod runs out of memory" in the "Important Flow Collector configuration considerations"
section.

Prerequisites

® |f you choose to use Loki, install the Loki Operator version 5.7+,

® You must have cluster-admin privileges.

® One of the following supported architectures is required: amd64, ppc64le, arm64, or s390x.
® Any CPU supported by Red Hat Enterprise Linux (RHEL) 9.

® Must be configured with OVN-Kubernetes or OpenShift SDN as the main network plugin, and
optionally using secondary interfaces with Multus and SR-IOV.

NOTE

Additionally, this installation example uses the netobserv namespace, which is used
across all components. You can optionally use a different namespace.

Procedure

1. In the OpenShift Container Platform web console, click Operators - OperatorHub.

2. Choose Network Observability Operator from the list of available Operators in the
OperatorHub, and click Install.

3. Select the checkbox Enable Operator recommended cluster monitoring on this Namespace.

https://loki-operator.dev/docs/api.md/#loki-grafana-com-v1-IngestionLimitSpec
https://catalog.redhat.com/software/containers/openshift-logging/loki-rhel8-operator/622b46bcae289285d6fcda39

OpenShift Container Platform 4.14 Network Observability

4. Navigate to Operators — Installed Operators. Under Provided APIs for Network Observability,
select the Flow Collector link.

5. Navigate to the Flow Collector tab, and click Create FlowCollector. Make the following
selections in the form view:

a. spec.agent.ebpf.Sampling: Specify a sampling size for flows. Lower sampling sizes will have
higher impact on resource utilization. For more information, see the "FlowCollector API
reference", spec.agent.ebpf.

b. If you are not using Loki, click Loki client settings and change Enable to False. The setting
is True by default.

c. If you are using Loki, set the following specifications:

i. spec.loki.mode: Set this to the LokiStack mode, which automatically sets URLs, TLS,
cluster roles and a cluster role binding, as well as the authToken value. Alternatively, the
Manual mode allows more control over configuration of these settings.

ii. spec.loki.lokistack.name: Set this to the name of your LokiStack resource. In this
documentation, loki is used.

d. Optional: If you are in a large-scale environment, consider configuring the FlowCollector
with Kafka for forwarding data in a more resilient, scalable way. See "Configuring the Flow
Collector resource with Kafka storage” in the "Important Flow Collector configuration
considerations" section.

e. Optional: Configure other optional settings before the next step of creating the
FlowCollector. For example, if you choose not to use Loki, then you can configure
exporting flows to Kafka or IPFIX. See "Export enriched network flow data to Kafka and
IPFIX" and more in the "Important Flow Collector configuration considerations" section.

6. Click Create.

Verification

To confirm this was successful, when you navigate to Observe you should see Network Traffic listed in
the options.

In the absence of Application Traffic within the OpenShift Container Platform cluster, default filters
might show that there are "No results", which results in no visual flow. Beside the filter selections, select
Clear all filtersto see the flow.

5.4. ENABLING MULTI-TENANCY IN NETWORK OBSERVABILITY

Multi-tenancy in the Network Observability Operator allows and restricts individual user access, or
group access, to the flows stored in Loki and or Prometheus. Access is enabled for project
administrators. Project administrators who have limited access to some namespaces can access flows
for only those namespaces.

For Developers, multi-tenancy is available for both Loki and Prometheus but requires different access
rights.

Prerequisite

® |f you are using Loki, you have installed at least Loki Operator version 5.7.

44

https://catalog.redhat.com/software/containers/openshift-logging/loki-rhel8-operator/622b46bcae289285d6fcda39

CHAPTER 5. INSTALLING THE NETWORK OBSERVABILITY OPERATOFR

® You must be logged in as a project administrator.

Procedure

® For per-tenant access, you must have the netobserv-loki-reader cluster role and the
netobserv-metrics-reader namespace role to use the developer perspective. Run the following
commands for this level of access:

I $ oc adm policy add-cluster-role-to-user netobserv-loki-reader <user_group_or_name>

$ oc adm policy add-role-to-user netobserv-metrics-reader <user_group_or_name> -n
<namespace>

® For cluster-wide access, non-cluster-administrators must have the netobserv-loki-reader,
cluster-monitoring-view, and netobserv-metrics-reader cluster roles. In this scenario, you can
use either the admin perspective or the developer perspective. Run the following commands for
this level of access:

I $ oc adm policy add-cluster-role-to-user netobserv-loki-reader <user_group_or_name>
I $ oc adm policy add-cluster-role-to-user cluster-monitoring-view <user_group_or_name>

I $ oc adm policy add-cluster-role-to-user netobserv-metrics-reader <user_group_or_name>

5.5.IMPORTANT FLOW COLLECTOR CONFIGURATION
CONSIDERATIONS

Once you create the FlowCollector instance, you can reconfigure it, but the pods are terminated and
recreated again, which can be disruptive. Therefore, you can consider configuring the following options
when creating the FlowCollector for the first time:

® Configuring the Flow Collector resource with Kafka

® Export enriched network flow data to Kafka or IPFIX
® Configuring monitoring for SR-IOV interface traffic
® Working with conversation tracking

® Working with DNS tracking

® Working with packet drops

Additional resources

® Flow Collector APl Reference
® Flow Collector sample resource
® Resource considerations

® Troubleshooting network observability controller manager pod runs out of memory

45

OpenShift Container Platform 4.14 Network Observability
® Network observability architecture

5.5.1. Migrating removed stored versions of the FlowCollector CRD

Network Observability Operator version 1.6 removes the old and deprecated vialpha1 version of the
FlowCollector API. If you previously installed this version on your cluster, it might still be referenced in
the storedVersion of the FlowCollector CRD, even if it is removed from the etcd store, which blocks
the upgrade process. These references need to be manually removed.

There are two options to remove stored versions:
1. Use the Storage Version Migrator Operator.

2. Uninstall and reinstall the Network Observability Operator, ensuring that the installationisin a
clean state.

Prerequisites

® You have an older version of the Operator installed, and you want to prepare your cluster to
install the latest version of the Operator. Or you have attempted to install the Network
Observability Operator 1.6 and run into the error: Failed risk of data loss updating
"flowcollectors.flows.netobserv.io": new CRD removes version vialpha1 that is listed as a
stored version on the existing CRD.

Procedure

1. Verify that the old FlowCollector CRD version is still referenced in the storedVersion:

I $ oc get crd flowcollectors.flows.netobserv.io -ojsonpath="{.status.storedVersions}'

2. If vialpha1 appears in the list of results, proceed with Step a to use the Kubernetes Storage
Version Migrator or Step b to uninstall and reinstall the CRD and the Operator.

a. Option 1: Kubernetes Storage Version Migrator Create a YAML to define the
StorageVersionMigration object, for example migrate-flowcollector-vialphai.yaml:

apiVersion: migration.k8s.io/vialpha1i
kind: StorageVersionMigration
metadata:
name: migrate-flowcollector-vialphal
spec:
resource:
group: flows.netobserv.io
resource: flowcollectors
version: vialphal

i. Save the file.

i. Apply the StorageVersionMigration by running the following command:

I $ oc apply -f migrate-flowcollector-vialphat.yaml

ii. Update the FlowCollector CRD to manually remove vialphal from the
storedVersion:

46

CHAPTER 5. INSTALLING THE NETWORK OBSERVABILITY OPERATOFR

I $ oc edit crd flowcollectors.flows.netobserv.io

b. Option 2: Reinstall Save the Network Observability Operator 1.5 version of the
FlowCollector CR to a file, for example flowcollector-1.5.yaml.

I $ oc get flowcollector cluster -o yaml > flowcollector-1.5.yaml

i. Follow the steps in "Uninstalling the Network Observability Operator”, which uninstalls
the Operator and removes the existing FlowCollector CRD.

ii. Install the Network Observability Operator latest version, 1.6.0.

iii. Create the FlowCollector using backup that was saved in Step b.

Verification

® Run the following command:

I $ oc get crd flowcollectors.flows.netobserv.io -ojsonpath="{.status.storedVersions}'

The list of results should no longer show vialpha1 and only show the latest version, vibetal.

Additional resources

® Kubernetes Storage Version Migrator Operator

5.6. INSTALLING KAFKA (OPTIONAL)

The Kafka Operator is supported for large scale environments. Kafka provides high-throughput and low-
latency data feeds for forwarding network flow data in a more resilient, scalable way. You can install the
Kafka Operator as Red Hat AMQ Streams from the Operator Hub, just as the Loki Operator and
Network Observability Operator were installed. Refer to "Configuring the FlowCollector resource with
Kafka" to configure Kafka as a storage option.

NOTE

To uninstall Kafka, refer to the uninstallation process that corresponds with the method
you used to install.

Additional resources

® Configuring the FlowCollector resource with Kafka

5.7. UNINSTALLING THE NETWORK OBSERVABILITY OPERATOR

You can uninstall the Network Observability Operator using the OpenShift Container Platform web
console Operator Hub, working in the Operators — Installed Operators area.

Procedure

1. Remove the FlowCollector custom resource.

47

https://docs.redhat.com/en/documentation/openshift_container_platform/4.14/html-single/operators/#cluster-kube-storage-version-migrator-operator_operator-reference
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.2

OpenShift Container Platform 4.14 Network Observability

a. Click Flow Collector, which is next to the Network Observability Operatorin the Provided
APIs column.

b. Click the options menu for the cluster and select Delete FlowCollector.

2. Uninstall the Network Observability Operator.

a. Navigate back to the Operators — Installed Operators area.

b. Click the options menu next to the Network Observability Operator and select
Uninstall Operator.

c. Home - Projects and select openshift-netobserv-operator
d. Navigate to Actions and select Delete Project
3. Remove the FlowCollector custom resource definition (CRD).

a. Navigate to Administration = CustomResourceDefinitions.

b. Look for FlowCollector and click the options menu

c. Select Delete CustomResourceDefinition.

IMPORTANT

The Loki Operator and Kafka remain if they were installed and must be
removed separately. Additionally, you might have remaining data stored in an
object store, and a persistent volume that must be removed.

48

CHAPTER 6. NETWORK OBSERVABILITY OPERATOR IN OPENSHIFT CONTAINER PLATFORM

CHAPTER 6. NETWORK OBSERVABILITY OPERATORIN
OPENSHIFT CONTAINER PLATFORM

Network Observability is an OpenShift operator that deploys a monitoring pipeline to collect and enrich
network traffic flows that are produced by the Network Observability eBPF agent.

6.1. VIEWING STATUSES

The Network Observability Operator provides the Flow Collector API. When a Flow Collector resource is
created, it deploys pods and services to create and store network flows in the Loki log store, as well as to
display dashboards, metrics, and flows in the OpenShift Container Platform web console.

Procedure

1. Run the following command to view the state of FlowCollector:

I $ oc get flowcollector/cluster

Example output

NAME AGENT SAMPLING (EBPF) DEPLOYMENT MODEL STATUS
cluster EBPF 50 DIRECT Ready

2. Check the status of pods running in the netobserv namespace by entering the following
command:

I $ oc get pods -n netobserv

Example output

NAME READY STATUS RESTARTS AGE
flowlogs-pipeline-56hbp 1/1 Running 0 147m
flowlogs-pipeline-9plvv 1/1 Running 0 147m
flowlogs-pipeline-h5gkb 1/1 Running 0 147m
flowlogs-pipeline-hh6kf 1/1 Running 0 147m
flowlogs-pipeline-w7vv5 1/1 Running 0 147m

netobserv-plugin-cdd7dc6c-j8ggp 1/1 Running 0 147m

The flowlogs-pipeline pods collect flows, enriches the collected flows, then send flows to the
Loki storage. netobserv-plugin pods create a visualization plugin for the OpenShift Container
Platform Console.

3. Check the status of pods running in the namespace netobserv-privileged by entering the
following command:

I $ oc get pods -n netobserv-privileged

Example output

NAME READY STATUS RESTARTS AGE
netobserv-ebpf-agent-4lpp6 1/1 Running 0 151m

49

OpenShift Container Platform 4.14 Network Observability

netobserv-ebpf-agent-6gbrk 1/1 Running 0 151m
netobserv-ebpf-agent-kipl9 1/1 Running 0 151m
netobserv-ebpf-agent-vrenf 1/1 Running 0 151m
netobserv-ebpf-agent-xf5jh 1/1 Running 0 151m

The netobserv-ebpf-agent pods monitor network interfaces of the nodes to get flows and send
them to flowlogs-pipeline pods.

4. If you are using the Loki Operator, check the status of the component pods of LokiStack
custom resource in the netobserv namespace by entering the following command:

I $ oc get pods -n netobserv

Example output

NAME READY STATUS RESTARTS AGE
lokistack-compactor-0 1/1 Running 0 18h
lokistack-distributor-654f87c5bc-ghkhv 1/1 Running 0 18h
lokistack-distributor-654f87c5bc-skxgm 1/1 Running 0 18h
lokistack-gateway-796dc6ff7-c54gz 2/2 Running 0 18h
lokistack-index-gateway-0 1/1 Running 0 18h
lokistack-index-gateway-1 1/1 Running 0 18h
lokistack-ingester-0 1/1 Running 0 18h
lokistack-ingester-1 1/1 Running 0 18h
lokistack-ingester-2 1/1 Running 0 18h
lokistack-querier-66747dc666-6vh5x 1/1 Running 0 18h
lokistack-querier-66747dc666-cjr45 1/1 Running 0 18h
lokistack-querier-66747dc666-xh8rq 1/1 Running 0 18h
lokistack-query-frontend-85c6db4fbd-b2xfb 1/1 Running 0 18h
lokistack-query-frontend-85c6db4fbd-jm94f 1/1 Running 0 18h

6.2. NETWORK OBSERVABLITY OPERATOR ARCHITECTURE

The Network Observability Operator provides the FlowCollector API, which is instantiated at
installation and configured to reconcile the eBPF agent, the flowlogs-pipeline, and the netobserv-
plugin components. Only a single FlowCollector per cluster is supported.

The eBPF agent runs on each cluster node with some privileges to collect network flows. The flowlogs-
pipeline receives the network flows data and enriches the data with Kubernetes identifiers. If you

choose to use Loki, the flowlogs-pipeline sends flow logs data to Loki for storing and indexing. The
netobserv-plugin, which is a dynamic OpenShift Container Platform web console plugin, queries Loki to
fetch network flows data. Cluster-admins can view the data in the web console.

If you do not use Loki, you can generate metrics with Prometheus. Those metrics and their related

dashboards are accessible in the web console. For more information, see "Network Observability without
Loki".

50

CHAPTER 6. NETWORK OBSERVABILITY OPERATOR IN OPENSHIFT CONTAINER PLATFORM

Network Kubernetes
Observability Operator objects’
(FlowCollector) metadata
I T — |
v
eBPF agent Raw) Flowlogs- | /I Enriched - - netobserv-
(privileged) flow data pipeline [~ flow data > ,, “--> plugin
b Loki storage
Lo (optional)
i
I 1
Lo . -
e e
o Prometheus
Lo storage
o Ntel':'\%vork / Packet listening at Vo [ESSOSSRSSo900000 3
Intertaces Traffic Control ingress/egress Lo Enriched i Kafka i

poUTTTTTTTTTTT TTT flowdata ’i (optional)
I 1 1

%Odes s S| Enriched ! IPFIX

(DaemonSet) flow data ! (optional) !

If you are using the Kafka option, the eBPF agent sends the network flow data to Kafka, and the
flowlogs-pipeline reads from the Kafka topic before sending to Loki, as shown in the following diagram.

Network Kubernetes
Observability Operator objects’
(FlowCollector) metadata
| o ‘
v
eBPF agent > > Flowlogs- Enriched - netobserv-
(privileged) Kafka pipeline | flowdata > ,, 4> plugin
P Loki storage
P (optional)
-
o .
e Y
Packet listening at . Prometheus
Network Traffic Control ingress/egress 10 storage R .
interfaces 0o) i q
O Enriched > Kafka '
! flow data ! (optional) i
1 1 1
%Odes s L Enriched > IPFIX 5
(DaemonSet) flow data ! (optional) !

Additional resources

® Network Observability without Loki

51

OpenShift Container Platform 4.14 Network Observability

6.3. VIEWING NETWORK OBSERVABILITY OPERATOR STATUS AND
CONFIGURATION

You can inspect the status and view the details of the FlowCollector using the oc describe command.

Procedure

1. Run the following command to view the status and configuration of the Network Observability
Operator:

I $ oc describe flowcollector/cluster

52

CHAPTER 7. CONFIGURING THE NETWORK OBSERVABILITY OPERATOF

CHAPTER 7. CONFIGURING THE NETWORK OBSERVABILITY
OPERATOR

You can update the FlowCollector API resource to configure the Network Observability Operator and
its managed components. The FlowCollector is explicitly created during installation. Since this resource
operates cluster-wide, only a single FlowCollector is allowed, and it must be named cluster. For more
information, see the FlowCollector API reference.

7.1.VIEW THE FLOWCOLLECTOR RESOURCE

You can view and edit YAML directly in the OpenShift Container Platform web console.

Procedure

1. In the web console, navigate to Operators — Installed Operators.
2. Under the Provided APIs heading for the NetObserv Operator, select Flow Collector.

3. Select cluster then select the YAML tab. There, you can modify the FlowCollector resource to
configure the Network Observability Operator.

The following example shows a sample FlowCollector resource for OpenShift Container Platform
Network Observability Operator:

Sample FlowCollector resource

apiVersion: flows.netobserv.io/vibeta2
kind: FlowCollector
metadata:
name: cluster
spec:
namespace: netobserv
deploymentModel: Direct
agent:
type: eBPF ﬂ
ebpf:
sampling: 50 9
logLevel: info
privileged: false
resources:
requests:
memory: 50Mi
cpu: 100m
limits:
memory: 800Mi

processor: 6
logLevel: info

resources:
requests:
memory: 100Mi
cpu: 100m
limits:
memory: 800Mi
logTypes: Flows

53

OpenShift Container Platform 4.14 Network Observability

54

advanced:
conversationEndTimeout: 10s
conversationHeartbeatInterval: 30s
loki: (4]
mode: LokiStack 6
consolePlugin:
register: true
logLevel: info
portNaming:
enable: true
portNames:
"3100": loki
quickFilters:
- name: Applications
filter:
src_namespace!: 'openshift-,netobserv'
dst_namespace!: 'openshift-,netobserv'
default: true
- name: Infrastructure
filter:
src_namespace: 'openshift-,netobserv'
dst_namespace: 'openshift-,netobserv'
- name: Pods network
filter:
src_kind: 'Pod'
dst_kind: 'Pod'
default: true
- name: Services network
filter:
dst_kind: 'Service'

The Agent specification, spec.agent.type, must be EBPF. eBPF is the only OpenShift Container
Platform supported option.

You can set the Sampling specification, spec.agent.ebpf.sampling, to manage resources. Lower
sampling values might consume a large amount of computational, memory and storage resources.
You can mitigate this by specifying a sampling ratio value. A value of 100 means 1flow every 100 is
sampled. A value of O or 1 means all flows are captured. The lower the value, the increase in
returned flows and the accuracy of derived metrics. By default, eBPF sampling is set to a value of
50, so 1flow every 50 is sampled. Note that more sampled flows also means more storage needed.
It is recommend to start with default values and refine empirically, to determine which setting your
cluster can manage.

The Processor specification spec.processor. can be set to enable conversation tracking. When
enabled, conversation events are queryable in the web console. The spec.processor.logTypes
value is Flows. The spec.processor.advanced values are Conversations, EndedConversations,
or ALL. Storage requirements are highest for All and lowest for EndedConversations.

The Loki specification, spec.loki, specifies the Loki client. The default values match the Loki install
paths mentioned in the Installing the Loki Operator section. If you used another installation method
for Loki, specify the appropriate client information for your install.

The LokiStack mode automatically sets a few configurations: querierUrl, ingesterUrl and
statusUrl, tenantlD, and corresponding TLS configuration. Cluster roles and a cluster role binding
are created for reading and writing logs to Loki. And authToken is set to Forward. You can set

CHAPTER 7. CONFIGURING THE NETWORK OBSERVABILITY OPERATOF

these manually using the Manual mode.

6 The spec.quickFilters specification defines filters that show up in the web console. The
Application filter keys,src_namespace and dst_namespace, are negated (1), so the Application
filter shows all traffic that does not originate from, or have a destination to, any openshift- or
netobserv namespaces. For more information, see Configuring quick filters below.

Additional resources

® FlowCollector APl reference

® Working with conversation tracking

7.2. CONFIGURING THE FLOW COLLECTOR RESOURCE WITH KAFKA

You can configure the FlowCollector resource to use Kafka for high-throughput and low-latency data
feeds. A Kafka instance needs to be running, and a Kafka topic dedicated to OpenShift Container
Platform Network Observability must be created in that instance. For more information, see Kafka
documentation with AMQ Streams.

Prerequisites

e Kafkais installed. Red Hat supports Kafka with AMQ Streams Operator.

Procedure

1. In the web console, navigate to Operators — Installed Operators.

2. Under the Provided APIs heading for the Network Observability Operator, select Flow
Collector.

3. Select the cluster and then click the YAML tab.

4. Modify the FlowCollector resource for OpenShift Container Platform Network Observability
Operator to use Kafka, as shown in the following sample YAML:

Sample Kafka configuration in FlowCollector resource

apiVersion: flows.netobserv.io/vibeta2
kind: FlowCollector
metadata:
name: cluster
spec:
deploymentModel: Kafka ﬂ
kafka:
address: "kafka-cluster-kafka-bootstrap.netobserv" g
topic: network-flows
tls:
enable: false °

ﬂ Set spec.deploymentModel to Kafka instead of Direct to enable the Kafka deployment model.

55

https://access.redhat.com/documentation/en-us/red_hat_amq/7.7/html/using_amq_streams_on_openshift/using-the-topic-operator-str

OpenShift Container Platform 4.14 Network Observability

9 spec.kafka.address refers to the Kafka bootstrap server address. You can specify a port if needed,
for instance kafka-cluster-kafka-bootstrap.netobserv:9093 for using TLS on port 9093.

9 spec.kafka.topic should match the name of a topic created in Kafka.

Q spec.kafka.tls can be used to encrypt all communications to and from Kafka with TLS or mTLS.
When enabled, the Kafka CA certificate must be available as a ConfigMap or a Secret, both in the
namespace where the flowlogs-pipeline processor component is deployed (default: netobserv)
and where the eBPF agents are deployed (default: netobserv-privileged). It must be referenced
with spec.kafka.tls.caCert. When using mTLS, client secrets must be available in these
namespaces as well (they can be generated for instance using the AMQ Streams User Operator)
and referenced with spec.kafka.tls.userCert.

7.3. EXPORT ENRICHED NETWORK FLOW DATA

You can send network flows to Kafka, IPFIX, the Red Hat build of OpenTelemetry, or all three at the
same time. For Kafka or IPFIX, any processor or storage that supports those inputs, such as Splunk,
Elasticsearch, or Fluentd, can consume the enriched network flow data. For OpenTelemetry, network
flow data and metrics can be exported to a compatible OpenTelemetry endpoint, such as Red Hat build
of OpenTelemetry, Jaeger, or Prometheus.

Prerequisites

® Your Kafka, IPFIX, or OpenTelemetry collector endpoints are available from Network
Observability flowlogs-pipeline pods.

Procedure

1. In the web console, navigate to Operators — Installed Operators.
2. Under the Provided APIs heading for the NetObserv Operator, select Flow Collector.
3. Select cluster and then select the YAML tab.

4. Edit the FlowCollector to configure spec.exporters as follows:

apiVersion: flows.netobserv.io/vibeta?2
kind: FlowCollector
metadata:
name: cluster
spec:
exporters:
- type: Kafka ﬂ
kafka:
address: "kafka-cluster-kafka-bootstrap.netobserv"
topic: netobserv-flows-export 9
tls:

enable: false
- type: IPFIX

ipfix:
targetHost: "ipfix-collector.ipfix.svc.cluster.local"
targetPort: 4739

transport: tcp or udp 9

56

CHAPTER 7. CONFIGURING THE NETWORK OBSERVABILITY OPERATOF

- type: OpenTelemetry G
openTelemetry:

targetHost: my-otelcol-collector-headless.otlp.svc
targetPort: 4317

type: grpc ﬂ

logs: G
enable: true

metrics: Q
enable: true

prefix: netobserv
pushTimelnterval: 20s @
expiryTime: 2m

fieldsMapping: m

input: SrcAdadr

output: source.address

You can export flows to IPFIX, OpenTelemetry, and Kafka individually or concurrently.

The Network Observability Operator exports all flows to the configured Kafka topic.

o

You can encrypt all communications to and from Kafka with SSL/TLS or mTLS. When
enabled, the Kafka CA certificate must be available as a ConfigMap or a Secret, both in the
namespace where the flowlogs-pipeline processor component is deployed (default:
netobserv). It must be referenced with spec.exporters.tls.caCert. When using mTLS,
client secrets must be available in these namespaces as well (they can be generated for
instance using the AMQ Streams User Operator) and referenced with
spec.exporters.tls.userCert.

You have the option to specify transport. The default value is tep but you can also specify
udp.

The protocol of OpenTelemetry connection. The available options are http and grpc.

OpenTelemetry configuration for exporting logs, which are the same as the logs created
for Loki.

OpenTelemetry configuration for exporting metrics, which are the same as the metrics
created for Prometheus. These configurations are specified in the
spec.processor.metrics.includeList parameter of the FlowCollector custom resource,
along with any custom metrics you defined using the FlowMetrics custom resource.

O 990 o

The time interval that metrics are sent to the OpenTelemetry collector.

o0

Optional:Network Observability network flows formats get automatically renamed to an
OpenTelemetry compliant format. The fieldsMapping specification gives you the ability to
customize the OpenTelemetry format output. For example in the YAML sample, SrcAddr
is the Network Observability input field, and it is being renamed source.address in
OpenTelemetry output. You can see both Network Observability and OpenTelemetry
formats in the "Network flows format reference”.

After configuration, network flows data can be sent to an available output in a JSON format. For more
information, see "Network flows format reference".

Additional resources

57

OpenShift Container Platform 4.14 Network Observability

® Network flows format reference

7.4. UPDATING THE FLOW COLLECTOR RESOURCE

As an alternative to editing YAML in the OpenShift Container Platform web console, you can configure
specifications, such as eBPF sampling, by patching the flowcollector custom resource (CR):

Procedure

1. Run the following command to patch the flowcollector CR and update the
spec.agent.ebpf.sampling value:

$ oc patch flowcollector cluster --type=json -p "[{"op": "replace", "path":
"/spec/agent/ebpf/sampling”, "value": <new value>}] -n netobserv"

7.5.FILTER NETWORK FLOWS AT INGESTION

You can create filters to reduce the number of generated network flows. Filtering network flows can
reduce the resource usage of the network observability components.

You can configure two kinds of filters:
® eBPF agent filters

® Flowlogs-pipeline filters

7.5.1. eBPF agent filters

eBPF agent filters maximize performance because they take effect at the earliest stage of the network
flows collection process.

To configure eBPF agent filters with the Network Observability Operator, see "Filtering eBPF flow data
using multiple rules”.

7.5.2. Flowlogs-pipeline filters

Flowlogs-pipeline filters provide greater control over traffic selection because they take effect later in
the network flows collection process. They are primarily used to improve data storage.

Flowlogs-pipeline filters use a simple query language to filter network flow, as shown in the following
example:

(srcnamespace="netobserv" OR (srcnamespace="ingress" AND dstnamespace="netobserv")) AND
srckind!="service"

The query language uses the following syntax:

Table 7.1. Query language syntax

58

CHAPTER 7. CONFIGURING THE NETWORK OBSERVABILITY OPERATOF

Category Operators

Logical boolean and, or
operators (not case-

sensitive)

Comparison operators = (equals),

= (not equals),

=~ (matches regexp),

I~ (not matches regexp),

</ <= (less than or equal to),
>/ >= (greater than or equal to)

Unary operations with(field) (field is present),
without(field) (field is absent)

You can configure flowlogs-pipeline filters in the spec.processor.filters section of the FlowCollector
resource. For example:

Example YAML Flowlogs-pipeline filter

apiVersion: flows.netobserv.io/vibeta2
kind: FlowCollector
metadata:

name: cluster
spec:

namespace: netobserv

agent:

processor:

filters:
- query: |
(SrcK8S_Namespace="netobserv" OR (SrcK8S_Namespace="openshift-ingress" AND
DstK8S_Namespace="netobserv"))
outputTarget: Loki ﬂ

sampling: 10

ﬂ Sends matching flows to a specific output, such as Loki, Prometheus, or an external system. When
omitted, sends to all configured outputs.

9 Optional. Applies a sampling ratio to limit the number of matching flows to be stored or exported.
For example, sampling: 10 means 1/10 of the flows are kept.

Additional resources

® Filtering eBPF flow data using multiple rules

7.6. CONFIGURING QUICK FILTERS

You can modify the filters in the FlowCollector resource. Exact matches are possible using double-
quotes around values. Otherwise, partial matches are used for textual values. The bang (!) character,

59

OpenShift Container Platform 4.14 Network Observability

placed at the end of a key, means negation. See the sample FlowCollector resource for more context

about modifying the YAML.

e

NOTE

The filter matching types "all of" or "any of" is a Ul setting that the users can modify from
the query options. It is not part of this resource configuration.

Here is a list of all available filter keys:

Table 7.2. Filter keys

Description

names
pace

name

kind

owner
_name

resour
ce

addre
ss

mac

port

host_a
ddres

60

src_n
ames
pace

src_n
ame

src_k
ind

src_o
wner
nam

src_r
esou
rce

src_a
ddre
ss

src_
mac

src_p
ort

src_h
ost a
ddre
ss

dst n
ames
pace

dst n
ame

dst_k
ind

dst o
whner
nam

dst r
esou
rce

dst a
ddre
ss

dst_
mac

dst p
ort

dst_h
ost_a
ddre
ss

Filter traffic related to a specific namespace.

Filter traffic related to a given leaf resource name, such as a specific pod,
service, or node (for host-network traffic).

Filter traffic related to a given resource kind. The resource kinds include the leaf
resource (Pod, Service or Node), or the owner resource (Deployment and
StatefulSet).

Filter traffic related to a given resource owner; that is, a workload or a set of
pods. For example, it can be a Deployment name, a StatefulSet name, etc.

Filter traffic related to a specific resource that is denoted by its canonical
name, that identifies it uniquely. The canonical notation is
kind.namespace.name for namespaced kinds, ornode.name for nodes.
For example, Deployment.my-namespace.my-web-server.

Filter traffic related to an IP address. IPv4 and IPv6 are supported. CIDR

ranges are also supported.

Filter traffic related to a MAC address.

Filter traffic related to a specific port.

Filter traffic related to the host IP address where the pods are running.

CHAPTER 7. CONFIGURING THE NETWORK OBSERVABILITY OPERATOF

Unive Sourc Destin Description

rsal* e ation

proto N/A N/A Filter traffic related to a protocol, such as TCP or UDP.
col

e Universal keys filter for any of source or destination. For example, filtering name: 'my-pod’
means all traffic from my-pod and all traffic to my-pod, regardless of the matching type used,
whether Match all or Match any.

7.7. RESOURCE MANAGEMENT AND PERFORMANCE
CONSIDERATIONS

The amount of resources required by network observability depends on the size of your cluster and your
requirements for the cluster to ingest and store observability data. To manage resources and set
performance criteria for your cluster, consider configuring the following settings. Configuring these
settings might meet your optimal setup and observability needs.

The following settings can help you manage resources and performance from the outset:

eBPF Sampling

You can set the Sampling specification, spec.agent.ebpf.sampling, to manage resources. Smaller
sampling values might consume a large amount of computational, memory and storage resources.
You can mitigate this by specifying a sampling ratio value. A value of 100 means 1 flow every 100 is
sampled. A value of 0 or 1 means all flows are captured. Smaller values result in an increase in
returned flows and the accuracy of derived metrics. By default, eBPF sampling is set to a value of 50,
so 1flow every 50 is sampled. Note that more sampled flows also means more storage needed.
Consider starting with the default values and refine empirically, in order to determine which setting
your cluster can manage.

eBPF features

The more features that are enabled, the more CPU and memory are impacted. See "Observing the
network traffic" for a complete list of these features.

Without Loki

You can reduce the amount of resources that network observability requires by not using Loki and

instead relying on Prometheus. For example, when network observability is configured without Loki,
the total savings of memory usage are in the 20-65% range and CPU utilization is lower by 10-30%,
depending upon the sampling value. See "Network observability without Loki" for more information.

Restricting or excluding interfaces

Reduce the overall observed traffic by setting the values for spec.agent.ebpf.interfaces and
spec.agent.ebpf.excludelnterfaces. By default, the agent fetches all the interfaces in the system,
except the ones listed in excludelnterfaces and lo (local interface). Note that the interface names
might vary according to the Container Network Interface (CNI) used.

Performance fine-tuning
The following settings can be used to fine-tune performance after the Network Observability has

been running for a while:

® Resource requirements and limits Adapt the resource requirements and limits to the load
and memory usage you expect on your cluster by using the spec.agent.ebpf.resources and
spec.processor.resources specifications. The default limits of 800MB might be sufficient

61

OpenShift Container Platform 4.14 Network Observability

for most medium-sized clusters.

® Cache max flows timeout Control how often flows are reported by the agents by using the
eBPF agent's spec.agent.ebpf.cacheMaxFlows and
spec.agent.ebpf.cacheActiveTimeout specifications. A larger value results in less traffic
being generated by the agents, which correlates with a lower CPU load. However, a larger
value leads to a slightly higher memory consumption, and might generate more latency in the

flow collection.

7.7.1. Resource considerations

The following table outlines examples of resource considerations for clusters with certain workload
sizes.

IMPORTANT

Table 7.3. Resource recommendations

Worker Node vCPU
and memory

LokiStack size

Network Observability
controller memory limit

eBPF sampling rate

eBPF memory limit

cacheMaxSize

FLP memory limit

FLP Kafka partitions

Kafka consumer
replicas

Kafka brokers

Extra small (10 nodes)

4 vCPUs| 16GiB mem[!]

1x.extra-small

400Mi (default)

50 (default)

800Mi (default)

50,000

800Mi (default)

1. Tested with AWS M6i instances.

62

Small (25 nodes)

16 vCPUs| 64GiB mem

n

1x.small

400Mi (default)

50 (default)

800Mi (default)

100,000 (default)

800Mi (default)

48

3 (default)

The examples outlined in the table demonstrate scenarios that are tailored to specific
workloads. Consider each example only as a baseline from which adjustments can be
made to accommodate your workload needs.

Large (250 nodes)[2]

16 vCPUs| 64GiB Mem
m

1x.medium

400Mi (default)

50 (default)

1600Mi

100,000 (default)

800OMi (default)

48

18

3 (default)

CHAPTER 7. CONFIGURING THE NETWORK OBSERVABILITY OPERATOF

2. In addition to this worker and its controller, 3 infra nodes (size M6i.12xlarge) and 1 workload
node (size M6i.8xlarge) were tested.

7.7.2. Total average memory and CPU usage

The following table outlines averages of total resource usage for clusters with a sampling value of 1 and
50 for two different tests: Test 1 and Test 2. The tests differ in the following ways:

e Test 1 takes into account high ingress traffic volume in addition to the total number of
namespace, pods and services in an OpenShift Container Platform cluster, places load on the
eBPF agent, and represents use cases with a high number of workloads for a given cluster size.
For example, Test 1 consists of 76 Namespaces, 5153 Pods, and 2305 Services with a network
traffic scale of ~350 MB/s.

e Test 2 takes into account high ingress traffic volume in addition to the total number of
namespace, pods and services in an OpenShift Container Platform cluster and represents use
cases with a high number of workloads for a given cluster size. For example, Test 2 consists of
553 Namespaces, 6998 Pods, and 2508 Services with a network traffic scale of ~950 MB/s.

Since different types of cluster use cases are exemplified in the different tests, the numbers in this table
do not scale linearly when compared side-by-side. Instead, they are intended to be used as a benchmark
for evaluating your personal cluster usage. The examples outlined in the table demonstrate scenarios
that are tailored to specific workloads. Consider each example only as a baseline from which adjustments
can be made to accommodate your workload needs.

NOTE
Metrics exported to Prometheus can impact the resource usage. Cardinality values for

the metrics can help determine how much resources are impacted. For more information,
see "Network Flows format" in the Additional resources section.

Table 7.4. Total average resource usage

Sampling value Resources used Test 1(25 nodes) Test 2 (250 nodes)
Sampling =50 Total NetObserv CPU 1.35 5.39

Usage

Total NetObserv RSS 16 GB 63 GB

(Memory) Usage

Sampling =1 Total NetObserv CPU 1.82 11.99
Usage
Total NetObserv RSS 22 GB 87 GB

(Memory) Usage

Summary: This table shows average total resource usage of Network Observability, which includes
Agents, FLP, Kafka, and Loki with all features enabled. For details about what features are enabled, see
the features covered in "Observing the network traffic", which comprises all the features that are
enabled for this testing.

63

OpenShift Container Platform 4.14 Network Observability

Additional resources

® Observing the network traffic from the traffic flows view
® Network observability without Loki

® Network Flows format reference

64

CHAPTER 8. NETWORK POLICY

CHAPTER 8. NETWORK POLICY

As a user with the admin role, you can create a network policy for the netobserv namespace to secure
inbound access to the Network Observability Operator.

8.1. CONFIGURING AN INGRESS NETWORK POLICY BY USING THE
FLOWCOLLECTOR CUSTOM RESOURCE

You can configure the FlowCollector custom resource (CR) to deploy an ingress network policy for
network observability by setting the spec.NetworkPolicy.enable specification to true. By default, the
specification is false.

If you have installed Loki, Kafka or any exporter in a different namespace that also has a network policy,
you must ensure that the Network Observability components can communicate with them. Consider the
following about your setup:

® Connection to Loki (as defined in the FlowCollector CR spec.loki parameter)
e Connection to Kafka (as defined in the FlowCollector CR spec.kafka parameter)
e Connection to any exporter (as defined in FlowCollector CR spec.exporters parameter)

e |fyou are using Loki and including it in the policy target, connection to an external object storage
(as defined in your LokiStack related secret)

Procedure

1. In the web console, go to Operators — Installed Operators page.
2. Under the Provided APIs heading for Network Observability, select Flow Collector.
3. Select cluster then select the YAML tab.

4. Configure the FlowCollector CR. A sample configuration is as follows:

Example FlowCollector CR for network policy

apiVersion: flows.netobserv.io/vibeta2
kind: FlowCollector
metadata:
name: cluster
spec:
namespace: netobserv
networkPolicy:

enable: true ﬂ
additionalNamespaces: ["openshift-console”, "openshift-monitoring"] 9

#...

Q By default, the enable value is false.

9 Default values are ["openshift-console”, "openshift-monitoring"].

65

OpenShift Container Platform 4.14 Network Observability

8.2. CREATING A NETWORK POLICY FOR NETWORK OBSERVABILITY

If you want to further customize the network policies for the netobserv and netobserv-privileged
namespaces, you must disable the managed installation of the policy from the FlowCollector CR, and
create your own. You can use the network policy resources that are enabled from the FlowCollector CR
as a starting point for the procedure that follows:

Example netobserv network policy

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
spec:
ingress:
- from:
- podSelector: {}
- namespaceSelector:
matchLabels:
kubernetes.io/metadata.name: netobserv-privileged
- from:
- namespaceSelector:
matchLabels:
kubernetes.io/metadata.name: openshift-console
ports:
- port: 9001
protocol: TCP
- from:
- namespaceSelector:
matchLabels:
kubernetes.io/metadata.name: openshift-monitoring
podSelector: {}
policyTypes:
- Ingress

Example netobserv-privileged network policy

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:

name: netobserv

namespace: netobserv-privileged
spec:

ingress:

- from:

- namespaceSelector:
matchLabels:
kubernetes.io/metadata.name: openshift-monitoring

podSelector: {}

policyTypes:

- Ingress

Procedure

1. Navigate to Networking = NetworkPolicies.

66

CHAPTER 8. NETWORK POLICY

2. Select the netobserv project from the Project dropdown menu.

w

Name the policy. For this example, the policy name is allow-ingress.

i

. Click Add ingress rule three times to create three ingress rules.

ul

. Specify the following in the form:
a. Make the following specifications for the first Ingress rule:

i. From the Add allowed source dropdown menu, select Allow pods from the same
namespace.

b. Make the following specifications for the second Ingress rule:

i. From the Add allowed source dropdown menu, select Allow pods from inside the
cluster.

ii. Click+ Add namespace selector.
iii. Add the label, kubernetes.io/metadata.name, and the selector, openshift-console.

c. Make the following specifications for the third Ingress rule:

i. From the Add allowed source dropdown menu, select Allow pods from inside the
cluster.

ii. Click+ Add namespace selector.

iii. Add the label, kubernetes.io/metadata.name, and the selector, openshift-monitoring.

Verification

1. Navigate to Observe — Network Traffic.
2. View the Traffic Flows tab, or any tab, to verify that the data is displayed.

3. Navigate to Observe = Dashboards. In the NetObserv/Health selection, verify that the flows
are being ingested and sent to Loki, which is represented in the first graph.

Additional resources

® Creating a network policy using the CLI

67

https://docs.redhat.com/en/documentation/openshift_container_platform/4.14/html-single/networking/#nw-networkpolicy-create-cli_creating-network-policy

OpenShift Container Platform 4.14 Network Observability

CHAPTER 9. OBSERVING THE NETWORK TRAFFIC

As an administrator, you can observe the network traffic in the OpenShift Container Platform console
for detailed troubleshooting and analysis. This feature helps you get insights from different graphical
representations of traffic flow. There are several available views to observe the network traffic.

9.1. OBSERVING THE NETWORK TRAFFIC FROM THE OVERVIEW VIEW

The Overview view displays the overall aggregated metrics of the network traffic flow on the cluster. As
an administrator, you can monitor the statistics with the available display options.

9.1.1. Working with the Overview view

As an administrator, you can navigate to the Overview view to see the graphical representation of the
flow rate statistics.

Procedure

1. Navigate to Observe — Network Traffic.
2. In the Network Traffic page, click the Overview tab.

You can configure the scope of each flow rate data by clicking the menu icon.

9.1.2. Configuring advanced options for the Overview view

You can customize the graphical view by using advanced options. To access the advanced options, click
Show advanced options. You can configure the details in the graph by using the Display options drop-
down menu. The options available are as follows:
® Scope: Select to view the components that network traffic flows between. You can set the
scope to Node, Namespace, Owner, Zones, Cluster or Resource. Owner is an aggregation of
resources. Resource can be a pod, service, node, in case of host-network traffic, or an unknown
IP address. The default value is Namespace.

® Truncate labels: Select the required width of the label from the drop-down list. The default
value is M.

9.1.2.1. Managing panels and display

You can select the required panels to be displayed, reorder them, and focus on a specific panel. To add
or remove panels, click Manage panels.

The following panels are shown by default:
® Top X average bytes rates
® Top X bytes rates stacked with total
Other panels can be added in Manage panels:
® Top X average packets rates

® Top X packets rates stacked with total

68

CHAPTER 9. OBSERVING THE NETWORK TRAFFIC

Query options allows you to choose whether to show the Top 5, Top 10, or Top 15rates.

9.1.3. Packet drop tracking

You can configure graphical representation of network flow records with packet loss in the Overview
view. By employing eBPF tracepoint hooks, you can gain valuable insights into packet drops for TCP,
UDP, SCTP, ICMPv4, and ICMPv6 protocols, which can result in the following actions:

e |dentification: Pinpoint the exact locations and network paths where packet drops are occurring.
Determine whether specific devices, interfaces, or routes are more prone to drops.

® Root cause analysis: Examine the data collected by the eBPF program to understand the causes
of packet drops. For example, are they a result of congestion, buffer issues, or specific network
events?
® Performance optimization: With a clearer picture of packet drops, you can take steps to optimize
network performance, such as adjust buffer sizes, reconfigure routing paths, or implement
Quality of Service (QoS) measures.
When packet drop tracking is enabled, you can see the following panels in the Overview by default:
® Top X packet dropped state stacked with total
® Top X packet dropped cause stacked with total
® Top X average dropped packets rates
® Top X dropped packets rates stacked with total
Other packet drop panels are available to add in Manage panels:

® Top X average dropped bytes rates

® Top X dropped bytes rates stacked with total

9.1.3.1. Types of packet drops

Two kinds of packet drops are detected by Network Observability: host drops and OVS drops. Host
drops are prefixed with SKB_DROP and OVS drops are prefixed with OVS_DROP. Dropped flows are
shown in the side panel of the Traffic flows table along with a link to a description of each drop type.
Examples of host drop reasons are as follows:

e SKB_DROP_REASON_NO_SOCKET: the packet dropped due to a missing socket.
e SKB _DROP_REASON_TCP_CSUM: the packet dropped due to a TCP checksum error.
Examples of OVS drops reasons are as follows:

e OVS DROP_LAST_ACTION: OVS packets dropped due to an implicit drop action, for example
due to a configured network policy.

® OVS_DROP_IP_TTL: OVS packets dropped due to an expired IP TTL.

See the Additional resources of this section for more information about enabling and working with
packet drop tracking.

69

OpenShift Container Platform 4.14 Network Observability

Additional resources

® Working with packet drops

® Network Observability metrics

9.1.4. DNS tracking

You can configure graphical representation of Domain Name System (DNS) tracking of network flows in
the Overview view. Using DNS tracking with extended Berkeley Packet Filter (eBPF) tracepoint hooks
can serve various purposes:

® Network Monitoring: Gain insights into DNS queries and responses, helping network
administrators identify unusual patterns, potential bottlenecks, or performance issues.

® Security Analysis: Detect suspicious DNS activities, such as domain name generation algorithms
(DGA) used by malware, or identify unauthorized DNS resolutions that might indicate a security
breach.

® Troubleshooting: Debug DNS-related issues by tracing DNS resolution steps, tracking latency,
and identifying misconfigurations.

By default, when DNS tracking is enabled, you can see the following non-empty metrics represented in a
donut or line chart in the Overview:

® Top X DNS Response Code
® Top X average DNS latencies with overall
® Top X 90th percentile DNS latencies
Other DNS tracking panels can be added in Manage panels:
® Bottom X minimum DNS latencies
® Top X maximum DNS latencies
® Top X 99th percentile DNS latencies
This feature is supported for IPv4 and IPv6 UDP and TCP protocols.

See the Additional resources in this section for more information about enabling and working with this
view.

Additional resources

® Working with DNS tracking

® Network Observability metrics

9.1.5. Round-Trip Time

You can use TCP smoothed Round-Trip Time (sRTT) to analyze network flow latencies. You can use
RTT captured from the fentry/tcp_rcv_established eBPF hookpoint to read sRTT from the TCP socket

to help with the following:

70

CHAPTER 9. OBSERVING THE NETWORK TRAFFIC

® Network Monitoring: Gain insights into TCP latencies, helping network administrators identify
unusual patterns, potential bottlenecks, or performance issues.

® Troubleshooting: Debug TCP-related issues by tracking latency and identifying
misconfigurations.

By default, when RTT is enabled, you can see the following TCP RTT metrics represented in the
Overview:

® Top X 90th percentile TCP Round Trip Time with overall

® Top X average TCP Round Trip Time with overall

® Bottom X minimum TCP Round Trip Time with overall
Other RTT panels can be added in Manage panels

® Top X maximum TCP Round Trip Time with overall

® Top X 99th percentile TCP Round Trip Time with overall

See the Additional resources in this section for more information about enabling and working with this
view.

Additional resources

® Working with RTT tracing

9.1.6. eBPF flow rule filter

You can use rule-based filtering to control the volume of packets cached in the eBPF flow table. For
example, a filter can specify that only packets coming from port 100 should be captured. Then only the
packets that match the filter are captured and the rest are dropped.

You can apply multiple filter rules.

9.1.6.1. Ingress and egress traffic filtering

Classless Inter-Domain Routing (CIDR) notation efficiently represents IP address ranges by combining
the base IP address with a prefix length. For both ingress and egress traffic, the source IP address is first
used to match filter rules configured with CIDR notation. If there is a match, then the filtering proceeds.
If there is no match, then the destination IP is used to match filter rules configured with CIDR notation.

After matching either the source IP or the destination IP CIDR, you can pinpoint specific endpoints using
the peerlIP to differentiate the destination IP address of the packet. Based on the provisioned action,
the flow data is either cached in the eBPF flow table or not cached.

9.1.6.2. Dashboard and metrics integrations

When this option is enabled, the Netobserv/Health dashboard for eBPF agent statistics now has the
Filtered flows rate view. Additionally, in Observe — Metrics you can query
netobserv_agent_filtered_flows_total to observe metrics with the reason in
FlowFilterAcceptCounter, FlowFilterNoMatchCounter or FlowFilterRecjectCounter.

9.1.6.3. Flow filter configuration parameters

71

OpenShift Container Platform 4.14 Network Observability

The flow filter rules consist of required and optional parameters.

Table 9.1. Required configuration parameters

Parameter Description

enable

cidr

action

Set enable to true to enable the eBPF flow filtering feature.

Provides the IP address and CIDR mask for the flow filter rule. Supports both
IPv4 and IPv6 address format. If you want to match against any IP, you can use
0.0.0.0/0 for IPv4 or::/0 for IPv6.

Describes the action that is taken for the flow filter rule. The possible values are
Accept or Reject.

e Forthe Accept action matching rule, the flow data is cached in the
eBPF table and updated with the global metric,
FlowFilterAcceptCounter.

e Forthe Reject action matching rule, the flow data is dropped and not
cached in the eBPF table. The flow data is updated with the global
metric, FlowFilterRejectCounter.

e If the rule is not matched, the flow is cached in the eBPF table and
updated with the global metric, FlowFilterNoMatchCounter.

Table 9.2. Optional configuration parameters

Parameter Description

direction

protocol

tcpFlags

ports

sourcePorts

72

Defines the direction of the flow filter rule. Possible values are Ingress or
Egress.

Defines the protocol of the flow filter rule. Possible values are TCP, UDP,
SCTP, ICMP, and ICMPV6.

Defines the TCP flags to filter flows. Possible values are SYN, SYN-ACK,
ACK, FIN, RST,PSH, URG, ECE, CWR, FIN-ACK, and RST-ACK.

Defines the ports to use for filtering flows. It can be used for either source or
destination ports. To filter a single port, set a single port as an integer value. For
example ports: 80. To filter a range of ports, use a "start-end" range in string
format. For example ports: "80-100"

Defines the source port to use for filtering flows. To filter a single port, set a
single port as an integer value, for example sourcePorts: 80. To filter a range
of ports, use a "start-end" range, string format, for example sourcePorts:
"80-100".

CHAPTER 9. OBSERVING THE NETWORK TRAFFIC

Parameter Description

destPorts DestPorts defines the destination ports to use for filtering flows. To filter a
single port, set a single port as an integer value, for example destPorts: 80. To

filter a range of ports, use a "start-end" range in string format, for example
destPorts: "80-100".

icmpType Defines the ICMP type to use for filtering flows.
icmpCode Defines the ICMP code to use for filtering flows.
peerlP Defines the IP address to use for filtering flows, for example: 10.10.10.10.

Additional resources

® Filtering eBPF flow data with rules
® Network Observability metrics

® Health dashboards

9.2. OBSERVING THE NETWORK TRAFFIC FROM THE TRAFFIC FLOWS
VIEW

The Traffic flows view displays the data of the network flows and the amount of traffic in a table. As an

administrator, you can monitor the amount of traffic across the application by using the traffic flow
table.

9.2.1. Working with the Traffic flows view

As an administrator, you can navigate to Traffic flows table to see network flow information.

Procedure

1. Navigate to Observe — Network Traffic.
2. Inthe Network Traffic page, click the Traffic flows tab.

You can click on each row to get the corresponding flow information.

9.2.2. Configuring advanced options for the Traffic flows view

You can customize and export the view by using Show advanced options. You can set the row size by
using the Display options drop-down menu. The default value is Normal.

9.2.2.1. Managing columns

73

OpenShift Container Platform 4.14 Network Observability

You can select the required columns to be displayed, and reorder them. To manage columns, click
Manage columns.

9.2.2.2. Exporting the traffic flow data

You can export data from the Traffic flows view.

Procedure

1. Click Export data.

2. In the pop-up window, you can select the Export all data checkbox to export all the data, and
clear the checkbox to select the required fields to be exported.

3. Click Export.

9.2.3. Configuring IPsec with the FlowCollector custom resource

In OpenShift Container Platform, IPsec is disabled by default. You can enable IPsec by following the
instructions in "Configuring IPsec encryption”.

Prerequisite

® You have enabled IPsec encryption on OpenShift Container Platform.

Procedure

1. In the web console, navigate to Operators — Installed Operators.
2. Under the Provided APIs heading for the NetObserv Operator, select Flow Collector.
3. Select cluster then select the YAML tab.

4. Configure the FlowCollector custom resource for IPsec:

Example configuration of FlowCollector for IPsec

apiVersion: flows.netobserv.io/vibeta2
kind: FlowCollector
metadata:
name: cluster
spec:
namespace: netobserv
agent:
type: eBPF
ebpf:
features:
- "IPSec”

Verification

When IPsec is enabled:

74

CHAPTER 9. OBSERVING THE NETWORK TRAFFIC

® A new column named IPsec Status is displayed in the network observability Traffic flows view
to show whether a flow was successfully IPsec-encrypted or if there was an error during
encryption/decryption.

® A new dashboard showing the percent of encrypted traffic is generated.

Additional resources

® Configuring IPsec encryption

9.2.4. Working with conversation tracking

As an administrator, you can group network flows that are part of the same conversation. A conversation
is defined as a grouping of peers that are identified by their IP addresses, ports, and protocols, resulting
in an unique Conversation Id. You can query conversation events in the web console. These events are
represented in the web console as follows:

e Conversation start: This event happens when a connection is starting or TCP flag intercepted

e Conversation tick: This event happens at each specified interval defined in the FlowCollector
spec.processor.conversationHeartbeatlnterval parameter while the connection is active.

® Conversation end: This event happens when the FlowCollector
spec.processor.conversationEndTimeout parameter is reached or the TCP flag is
intercepted.

® Flow: This is the network traffic flow that occurs within the specified interval.

Procedure

1. In the web console, navigate to Operators — Installed Operators.
2. Under the Provided APIs heading for the NetObserv Operator, select Flow Collector.
3. Select cluster then select the YAML tab.

4. Configure the FlowCollector custom resource so that spec.processor.logTypes,
conversationEndTimeout, and conversationHeartbeatInterval parameters are set according
to your observation needs. A sample configuration is as follows:

Configure FlowCollector for conversation tracking

apiVersion: flows.netobserv.io/vibeta2
kind: FlowCollector
metadata:
name: cluster
spec:
processor:

logTypes: Flows ﬂ
advanced:

conversationEndTimeout: 10s 9
conversationHeartbeatlInterval: 30s 6

75

https://docs.redhat.com/en/documentation/openshift_container_platform/4.14/html-single/networking/#configuring-ipsec-ovn

OpenShift Container Platform 4.14 Network Observability

o When logTypes is set to Flows, only the Flow event is exported. If you set the value to All,
both conversation and flow events are exported and visible in the Network Traffic page.
To focus only on conversation events, you can specify Conversations which exports the
Conversation start, Conversation tick and Conversation end events; or
EndedConversations exports only the Conversation end events. Storage requirements
are highest for All and lowest for EndedConversations.

9 The Conversation end event represents the point when the conversationEndTimeout is
reached or the TCP flag is intercepted.

9 The Conversation tick event represents each specified interval defined in the
FlowCollector conversationHeartbeatInterval parameter while the network connection is
active.

NOTE

If you update the logType option, the flows from the previous selection do not
clear from the console plugin. For example, if you initially set logType to
Conversations for a span of time until 10 AM and then move to
EndedConversations, the console plugin shows all conversation events before
10 AM and only ended conversations after 10 AM.

5. Refresh the Network Traffic page on the Traffic flows tab. Notice there are two new columns,
Event/Type and Conversation Id. All the Event/Type fields are Flow when Flow is the
selected query option.

6. Select Query Options and choose the Log Type, Conversation. Now the Event/Type shows
all of the desired conversation events.

7. Next you can filter on a specific conversation ID or switch between the Conversation and Flow
log type options from the side panel.

9.2.5. Working with packet drops

Packet loss occurs when one or more packets of network flow data fail to reach their destination. You
can track these drops by editing the FlowCollector to the specifications in the following YAML example.

IMPORTANT

CPU and memory usage increases when this feature is enabled.

Procedure

1. In the web console, navigate to Operators — Installed Operators.
2. Under the Provided APIs heading for the NetObserv Operator, select Flow Collector.
3. Select cluster, and then select the YAML tab.

4. Configure the FlowCollector custom resource for packet drops, for example:

Example FlowCollector configuration

76

CHAPTER 9. OBSERVING THE NETWORK TRAFFIC

apiVersion: flows.netobserv.io/vibeta2
kind: FlowCollector
metadata:
name: cluster
spec:
namespace: netobserv
agent:
type: eBPF
ebpf:
features:
- PacketDrop ﬂ

privileged: true

ﬂ You can start reporting the packet drops of each network flow by listing the PacketDrop
parameter in the spec.agent.ebpf.features specification list.

9 The spec.agent.ebpf.privileged specification value must be true for packet drop tracking.

Verification

® When you refresh the Network Traffic page, the Overview, Traffic Flow, and Topology views
display new information about packet drops:

a. Select new choices in Manage panels to choose which graphical visualizations of packet
drops to display in the Overview.

b. Select new choices in Manage columns to choose which packet drop information to display
in the Traffic flows table.

i. Inthe Traffic Flows view, you can also expand the side panel to view more information
about packet drops. Host drops are prefixed with SKB_DROP and OVS drops are
prefixed with OVS_DROP.

c. Inthe Topology view, red lines are displayed where drops are present.

9.2.6. Working with DNS tracking

Using DNS tracking, you can monitor your network, conduct security analysis, and troubleshoot DNS
issues. You can track DNS by editing the FlowCollector to the specifications in the following YAML
example.

IMPORTANT

CPU and memory usage increases are observed in the eBPF agent when this feature is
enabled.

Procedure

1. In the web console, navigate to Operators — Installed Operators.
2. Under the Provided APIs heading for Network Observability, select Flow Collector.

3. Select cluster then select the YAML tab.

77

OpenShift Container Platform 4.14 Network Observability

4. Configure the FlowCollector custom resource. A sample configuration is as follows:

Configure FlowCollector for DNS tracking

apiVersion: flows.netobserv.io/vibeta2
kind: FlowCollector
metadata:
name: cluster
spec:
namespace: netobserv
agent:
type: eBPF
ebpf:
features:
- DNSTracking (1]

sampling: 1

ﬂ You can set the spec.agent.ebpf.features parameter list to enable DNS tracking of each
network flow in the web console.

9 You can set sampling to a value of 1 for more accurate metrics and to capture DNS
latency. For a sampling value greater than 1, you can observe flows with DNS Response
Code and DNS Id, and it is unlikely that DNS Latency can be observed.

5. When you refresh the Network Traffic page, there are new DNS representations you can
choose to view in the Overview and Traffic Flow views and new filters you can apply.

a. Select new DNS choices in Manage panels to display graphical visualizations and DNS
metrics in the Overview.

b. Select new choices in Manage columns to add DNS columns to the Traffic Flows view.
c. Filter on specific DNS metrics, such as DNS Id, DNS Error DNS Latency and DNS

Response Code, and see more information from the side panel. The DNS Latency and
DNS Response Code columns are shown by default.

NOTE

TCP handshake packets do not have DNS headers. TCP protocol flows without DNS

headers are shown in the traffic flow data with DNS Latency, ID, and Response code
values of "n/a". You can filter out flow data to view only flows that have DNS headers
using the Common filter "DNSError" equal to "0".

9.2.7. Working with RTT tracing

You can track RTT by editing the FlowCollector to the specifications in the following YAML example.

Procedure
1. In the web console, navigate to Operators — Installed Operators.
2. Inthe Provided APlIs heading for the NetObserv Operator, select Flow Collector.

3. Select cluster, and then select the YAML tab.

78

CHAPTER 9. OBSERVING THE NETWORK TRAFFIC

4. Configure the FlowCollector custom resource for RTT tracing, for example:

Example FlowCollector configuration

apiVersion: flows.netobserv.io/vibeta2
kind: FlowCollector
metadata:
name: cluster
spec:
namespace: netobserv
agent:
type: eBPF
ebpf:
features:
- FlowRTT @

ﬂ You can start tracing RTT network flows by listing the FIoWRTT parameter in the
spec.agent.ebpf.features specification list.

Verification

When you refresh the Network Traffic page, the Overview, Traffic Flow, and Topology views display
new information about RTT:

a. Inthe Overview, select new choices in Manage panelsto choose which graphical visualizations
of RTT to display.

b. In the Traffic flows table, the Flow RTT column can be seen, and you can manage display in
Manage columns.

c. Inthe Traffic Flows view, you can also expand the side panel to view more information about
RTT.

Example filtering

i. Click the Common filters = Protocol.

ii. Filter the network flow data based on TCP, Ingress direction, and look for FlowRTT values
greater than 10,000,000 nanoseconds (10ms).

iii. Remove the Protocol filter.
iv. Filter for Flow RTT values greater than O in the Common filters.

d. Inthe Topology view, click the Display option dropdown. Then click RTT in the edge labels
drop-down list.

9.2.7.1. Using the histogram

You can click Show histogram to display a toolbar view for visualizing the history of flows as a bar chart.
The histogram shows the number of logs over time. You can select a part of the histogram to filter the
network flow data in the table that follows the toolbar.

9.2.8. Working with availability zones

79

OpenShift Container Platform 4.14 Network Observability

You can configure the FlowCollector to collect information about the cluster availability zones. This
allows you to enrich network flow data with the topology.kubernetes.io/zone label value applied to the
nodes.

Procedure
1. In the web console, go to Operators — Installed Operators.
2. Under the Provided APIs heading for the NetObserv Operator, select Flow Collector.
3. Select cluster then select the YAML tab.

4. Configure the FlowCollector custom resource so that the spec.processor.addZone
parameter is set to true. A sample configuration is as follows:

Configure FlowCollector for availability zones collection

apiVersion: flows.netobserv.io/vibeta2
kind: FlowCollector
metadata:
name: cluster
spec:
#...
processor:
addZone: true
#...

Verification

When you refresh the Network Traffic page, the Overview, Traffic Flow, and Topology views display
new information about availability zones:

1. In the Overview tab, you can see Zones as an available Scope.

2. In Network Traffic » Traffic flows, Zones are viewable under the SrcK8S_Zone and
DstK8S_Zone fields.

3. Inthe Topology view, you can set Zones as Scope or Group.

9.2.9. Filtering eBPF flow data using multiple rules

You can configure the FlowCollector custom resource to filter eBPF flows using multiple rules to
control the flow of packets cached in the eBPF flow table.

IMPORTANT
® You cannot use duplicate Classless Inter-Domain Routing (CIDRs) in filter rules.

® When an IP address matches multiple filter rules, the rule with the most specific
CIDR prefix (longest prefix) takes precedence.

Procedure

1. In the web console, navigate to Operators — Installed Operators.

80

https://kubernetes.io/docs/reference/labels-annotations-taints/#topologykubernetesiozone

CHAPTER 9. OBSERVING THE NETWORK TRAFFIC

2. Under the Provided APIs heading for Network Observability, select Flow Collector.
3. Select cluster, then select the YAML tab.

4. Configure the FlowCollector custom resource, similar to the following sample configurations:

Example YAML to sample all North-South traffic, and 1:50 East-West traffic

By default, all other flows are rejected.

apiVersion: flows.netobserv.io/vibeta2
kind: FlowCollector
metadata:
name: cluster
spec:
namespace: netobserv
deploymentModel: Direct
agent:
type: eBPF
ebpf:
flowFilter:
enable: true ﬂ
rules:
- action: Accept 9
cidr: 0.0.0.0/0 €)
sampling: 1 ﬂ
- action: Accept
cidr: 10.128.0.0/14
peerCIDR: 10.128.0.0/149
- action: Accept
cidr: 172.30.0.0/16
peerCIDR: 10.128.0.0/14
sampling: 50

To enable eBPF flow filtering, set spec.agent.ebpf.flowFilter.enable to true.

To define the action for the flow filter rule, set the required action parameter. Valid values are
Accept or Reject.

To define the IP address and CIDR mask for the flow filter rule, set the required cidr parameter.

This parameter supports both IPv4 and IPv6 address formats. To match any IP address, use
0.0.0.0/0 for IPv4 or ::/0 for IPv6.

To define the sampling rate for matched flows and override the global sampling setting
spec.agent.ebpf.sampling, set the sampling parameter.

® O o 09

To filter flows by Peer IP CIDR, set the peerCIDR parameter.

Example YAML to filter flows with packet drops

By default, all other flows are rejected.

apiVersion: flows.netobserv.io/vibeta2
kind: FlowCollector
metadata:

81

OpenShift Container Platform 4.14 Network Observability

name: cluster
spec:
namespace: netobserv
deploymentModel: Direct
agent:
type: eBPF
ebpf:
privileged: true 0
features:
- PacketDrop 9
flowFilter:
enable: true 6
rules:
- action: Accept ﬂ
cidr: 172.30.0.0/16

pktDrops: true 9

To enable packet drops, set spec.agent.ebpf.privileged to true.

To report packet drops for each network flow, add the PacketDrop value to the
spec.agent.ebpf.features list.

To enable eBPF flow filtering, set spec.agent.ebpf.flowFilter.enable to true.

o0 o090

To define the action for the flow filter rule, set the required action parameter. Valid values are
Accept or Reject.

9 To filter flows containing drops, set pktDrops to true.

9.2.10. Endpoint translation (xlat)

You can gain visibility into the endpoints serving traffic in a consolidated view using network
observability and extended Berkeley Packet Filter (eBPF). Typically, when traffic flows through a
service, egresslP, or load balancer, the traffic flow information is abstracted as it is routed to one of the
available pods. If you try to get information about the traffic, you can only view service related info, such
as service IP and port, and not information about the specific pod that is serving the request. Often the
information for both the service traffic and the virtual service endpoint is captured as two separate
flows, which complicates troubleshooting.

To solve this, endpoint xlat can help in the following ways:
e Capture the network flows at the kernel level, which has a minimal impact on performance.

® Enrich the network flows with translated endpoint information, showing not only the service but
also the specific backend pod, so you can see which pod served a request.

As network packets are processed, the eBPF hook enriches flow logs with metadata about the
translated endpoint that includes the following pieces of information that you can view in the Network
Traffic page in a single row:

® Source Pod IP

® Source Port

82

CHAPTER 9. OBSERVING THE NETWORK TRAFFIC

® Destination Pod IP
® Destination Port

® Conntrack Zone ID

9.2.11. Working with endpoint translation (xlat)

You can use network observability and eBPF to enrich network flows from a Kubernetes service with
translated endpoint information, gaining insight into the endpoints serving traffic.

Procedure

1. In the web console, navigate to Operators — Installed Operators.
2. Inthe Provided APIs heading for the NetObserv Operator, select Flow Collector.
3. Select cluster, and then select the YAML tab.

4. Configure the FlowCollector custom resource for PacketTranslation, for example:

Example FlowCollector configuration

apiVersion: flows.netobserv.io/vibeta2
kind: FlowCollector
metadata:
name: cluster
spec:
namespace: netobserv
agent:
type: eBPF
ebpf:
features:
- PacketTranslation ﬂ

You can start enriching network flows with translated packet information by listing the
PacketTranslation parameter in the spec.agent.ebpf.features specification list.

Example filtering

When you refresh the Network Traffic page you can filter for information about translated packets:
1. Filter the network flow data based on Destination kind: Service

2. You can see the xlat column, which distinguishes where translated information is displayed, and
the following default columns:

® XlatZoneID
® Xlat Src Kubernetes Object
e Xlat Dst Kubernetes Object

You can manage the display of additional xlat columns in Manage columns.

83

https://lwn.net/Articles/370152/#:~:text=A zone is simply a,to seperate conntrack defragmentation queues.

OpenShift Container Platform 4.14 Network Observability

9.3. OBSERVING THE NETWORK TRAFFIC FROM THE TOPOLOGY
VIEW

The Topology view provides a graphical representation of the network flows and the amount of traffic.
As an administrator, you can monitor the traffic data across the application by using the Topology view.

9.3.1. Working with the Topology view

As an administrator, you can navigate to the Topology view to see the details and metrics of the
component.

Procedure

1. Navigate to Observe — Network Traffic.
2. In the Network Traffic page, click the Topology tab.

You can click each component in the Topology to view the details and metrics of the component.

9.3.2. Configuring the advanced options for the Topology view

You can customize and export the view by using Show advanced options. The advanced options view
has the following features:

® Findin view: To search the required components in the view.

® Display options: To configure the following options:

o Edge labels: To show the specified measurements as edge labels. The default is to show
the Average ratein Bytes.

o Scope: To select the scope of components between which the network traffic flows. The
default value is Namespace.

o Groups: To enhance the understanding of ownership by grouping the components. The
default value is None.

o Layout: To select the layout of the graphical representation. The default value is
ColaNoForce.

o Show: To select the details that need to be displayed. All the options are checked by
default. The options available are: Edges, Edges label, and Badges.

o Truncate labels: To select the required width of the label from the drop-down list. The
default value is M.

o Collapse groups: To expand or collapse the groups. The groups are expanded by default.
This option is disabled if Groups has the value of None.

9.3.2.1. Exporting the topology view

To export the view, click Export topology view. The view is downloaded in PNG format.

9.4. FILTERING THE NETWORK TRAFFIC

84

CHAPTER 9. OBSERVING THE NETWORK TRAFFIC

By default, the Network Traffic page displays the traffic flow data in the cluster based on the default
filters configured in the FlowCollector instance. You can use the filter options to observe the required
data by changing the preset filter.

Alternatively, you can access the traffic flow data in the Network Traffic tab of the Namespaces,
Services, Routes, Nodes, and Workloads pages which provide the filtered data of the corresponding
aggregations.

Query Options

You can use Query Options to optimize the search results, as listed below:

® | og Type: The available options Conversation and Flows provide the ability to query flows
by log type, such as flow log, new conversation, completed conversation, and a heartbeat,
which is a periodic record with updates for long conversations. A conversation is an
aggregation of flows between the same peers.

® Match filters: You can determine the relation between different filter parameters selected in
the advanced filter. The available options are Match all and Match any. Match all provides
results that match all the values, and Match any provides results that match any of the
values entered. The default value is Match all.

e Datasource: You can choose the datasource to use for queries: Loki, Prometheus, or Auto.
Notable performance improvements can be realized when using Prometheus as a datasource
rather than Loki, but Prometheus supports a limited set of filters and aggregations. The
default datasource is Auto, which uses Prometheus on supported queries or uses Loki if the
query does not support Prometheus.

® Drops filter: You can view different levels of dropped packets with the following query
options:

o Fully dropped shows flow records with fully dropped packets.

o Containing drops shows flow records that contain drops but can be sent.
o Without drops shows records that contain sent packets.

o Allshows all the aforementioned records.

e Limit: The data limit for internal backend queries. Depending upon the matching and the
filter settings, the number of traffic flow data is displayed within the specified limit.

Quick filters

The default values in Quick filters drop-down menu are defined in the FlowCollector configuration.
You can modify the options from console.

Advanced filters

You can set the advanced filters, Common, Source, or Destination, by selecting the parameter to be
filtered from the dropdown list. The flow data is filtered based on the selection. To enable or disable
the applied filter, you can click on the applied filter listed below the filter options.

You can toggle between T One way and ™l Back and forthfiltering. The T One way filter shows

only Source and Destination traffic according to your filter selections. You can use Swap to change the
directional view of the Source and Destination traffic. The T 4 Back and forthfilter includes return
traffic with the Source and Destination filters. The directional flow of network traffic is shown in the
Direction column in the Traffic flows table as Ingress or "Egress for inter-node traffic and “Innerfor
traffic inside a single node.

85

OpenShift Container Platform 4.14 Network Observability

You can click Reset defaults to remove the existing filters, and apply the filter defined in FlowCollector
configuration.

NOTE

To understand the rules of specifying the text value, click Learn More.

Additional resources

® Configuring Quick Filters

® Flow Collector sample resource

86

CHAPTER 10. USING METRICS WITH DASHBOARDS AND ALERTS

CHAPTER 10. USING METRICS WITH DASHBOARDS AND
ALERTS

The Network Observability Operator uses the flowlogs-pipeline to generate metrics from flow logs.
You can utilize these metrics by setting custom alerts and viewing dashboards.

10.1. VIEWING NETWORK OBSERVABILITY METRICS DASHBOARDS
On the Overview tab in the OpenShift Container Platform console, you can view the overall aggregated
metrics of the network traffic flow on the cluster. You can choose to display the information by node,

namespace, owner, pod, and service. You can also use filters and display options to further refine the
metrics.

Procedure

1. In the web console Observe — Dashboards, select the Netobserv dashboard.

2. View network traffic metrics in the following categories, with each having the subset per node,
namespace, source, and destination:

® Byte rates
® Packet drops
e DNS
e RTT
3. Select the Netobserv/Health dashboard.

4. View metrics about the health of the Operator in the following categories, with each having the
subset per node, namespace, source, and destination.

® Flows

® Flows Overhead
® Flow rates

® Agents

® Processor

® Operator

Infrastructure and Application metrics are shown in a split-view for namespace and workloads.

10.2. PREDEFINED METRICS

Metrics generated by the flowlogs-pipeline are configurable in the
spec.processor.metrics.includeList of the FlowCollector custom resource to add or remove metrics.

10.3. NETWORK OBSERVABILITY METRICS

87

OpenShift Container Platform 4.14 Network Observability

You can also create alerts by using the includeList metrics in Prometheus rules, as shown in the
example "Creating alerts".

When looking for these metrics in Prometheus, such as in the Console through Observe — Metrics, or
when defining alerts, all the metrics names are prefixed with netobserv_. For example,

netobserv_namespace_flows_total. Available metrics names are as follows:

includeList metrics names

Names followed by an asterisk * are enabled by default.
® namespace_egress_bytes_total
® namespace_egress_packets_total
® npamespace_ingress_bytes_total
® npamespace_ingress_packets_total
e npamespace_flows_total *
® node_egress_bytes_total
® node_egress_packets_total
e node_ingress_bytes total *
® node_ingress_packets_total
e node_flows_total
e workload_egress_bytes_total
o workload_egress_packets_total
e workload_ingress_bytes_total *
o workload_ingress_packets_total

o workload_flows_total

PacketDrop metrics names

When the PacketDrop feature is enabled in spec.agent.ebpf.features (with privileged mode), the
following additional metrics are available:

® namespace_drop_bytes_total

® npamespace_drop_packets_total *
e node_drop_bytes_total

e node_drop_packets_total

e workload_drop_bytes_total

o workload_drop_packets_total

88

CHAPTER 10. USING METRICS WITH DASHBOARDS AND ALERTS

DNS metrics names
When the DNSTracking feature is enabled in spec.agent.ebpf.features, the following additional

metrics are available:

e npamespace_dns_latency_seconds *
e node_dns_latency_seconds

e workload_dns_latency_seconds

FlowRTT metrics names

When the FIowRTT feature is enabled in spec.agent.ebpf.features, the following additional metrics
are available:

® namespace_rtt_seconds *
e node_rtt_seconds

e workload_rtt_seconds

10.4. CREATING ALERTS

You can create custom alerting rules for the Netobserv dashboard metrics to trigger alerts when some
defined conditions are met.

Prerequisites

® You have access to the cluster as a user with the cluster-admin role or with view permissions for
all projects.

® You have the Network Observability Operator installed.

Procedure

1. Create a YAML file by clicking the import icon, +.

2. Add an alerting rule configuration to the YAML file. In the YAML sample that follows, an alert is
created for when the cluster ingress traffic reaches a given threshold of 10 MBps per destination
workload.

apiVersion: monitoring.openshift.io/v1
kind: AlertingRule
metadata:
name: netobserv-alerts
namespace: openshift-monitoring
spec:
groups:
- name: NetObservAlerts
rules:
- alert: NetObservincomingBandwidth
annotations:
message: |-
{{ $labels.job }}: incoming traffic exceeding 10 MBps for 30s on {{

89

OpenShift Container Platform 4.14 Network Observability

$labels.DstkK8S_OwnerType }} {{ $labels.Dstk8S_OwnerName }} ({{
$labels.DstkK8S_Namespace }}).
summary: "High incoming traffic."
expr: sum(rate(netobserv_workload_ingress_bytes_total
{SrcK8S_Namespace="openshift-ingress"}[1m])) by (job, DstkK8S_Namespace,

DstK8S_OwnerName, DstK8S_OwnerType) > 10000000
for: 30s
labels:
severity: warning

Q The netobserv_workload_ingress_bytes_total metric is enabled by default in
spec.processor.metrics.includeList.

3. Click Create to apply the configuration file to the cluster.

10.5. CUSTOM METRICS

You can create custom metrics out of the flowlogs data using the FlowMetric API. In every flowlogs data
that is collected, there are several fields labeled per log, such as source name and destination name.
These fields can be leveraged as Prometheus labels to enable the customization of cluster information
on your dashboard.

10.6. CONFIGURING CUSTOM METRICS BY USING FLOWMETRIC API

You can configure the FlowMetric API to create custom metrics by using flowlogs data fields as
Prometheus labels. You can add multiple FlowMetric resources to a project to see multiple dashboard
views.

Procedure

1. In the web console, navigate to Operators — Installed Operators.

2. Inthe Provided APIs heading for the NetObserv Operator, select FlowMetric.

3. In the Project: dropdown list, select the project of the Network Observability Operator instance.
4. Click Create FlowMetric.

5. Configure the FlowMetric resource, similar to the following sample configurations:

sources

kind: FlowMetric

metadata:
name: flowmetric-cluster-external-ingress-traffic
namespace: netobserv ﬂ

spec:
metricName: cluster_external_ingress_bytes_total 9

type: Counter
valueField: Bytes

direction: Ingress ﬂ

Example 10.1. Generate a metric that tracks ingress bytes received from cluster external
labels:

‘ apiVersion: flows.netobserv.io/vialphai

90

CHAPTER 10. USING METRICS WITH DASHBOARDS AND ALERTS

[DstK8S_HostName,DstK8S_Namespace,DstK8S_OwnerName,DstK8S_OwnerType] 6

filters: G

- field: SrcSubnetLabel
matchType: Absence

The FlowMetric resources need to be created in the namespace defined in the
FlowCollector spec.namespace, which is netobserv by default.

The name of the Prometheus metric, which in the web console appears with the prefix
netobserv-<metricName>.

The type specifies the type of metric. The Counter type is useful for counting bytes or
packets.

The direction of traffic to capture. If not specified, both ingress and egress are
captured, which can lead to duplicated counts.

Labels define what the metrics look like and the relationship between the different
entities and also define the metrics cardinality. For example, SrcK8S_Name is a high
cardinality metric.

@ ® 6 9 ¢ o0 —m

Refines results based on the listed criteria. In this example, selecting only the cluster
external traffic is done by matching only flows where SrcSubnetLabel is absent. This
assumes the subnet labels feature is enabled (via spec.processor.subnetLabels),
which is done by default.

Verification

1. Once the pods refresh, navigate to Observe = Metrics.

2. In the Expression field, type the metric name to view the corresponding result. You can
also enter an expression, such as topk(5,
sum(rate(netobserv_cluster_external_ingress_bytes_total{DstK8S_Namespace=
my-namespace"}[2m])) by (DstK8S_HostName, DstK8S_OwnerName,
DstK8S_OwnerType))

metadata:
name: flowmetric-cluster-external-ingress-rtt

namespace: netobserv ﬂ
spec:

metricName: cluster_external_ingress_rtt_seconds

type: Histogram

valueField: TimeFlowRttNs

direction: Ingress

labels:
[DstK8S_HostName,DstK8S_Namespace,DstK8S_OwnerName,DstK8S_OwnerType]

filters:

- field: SrcSubnetLabel

Example 10.2. Show RTT latency for cluster external ingress traffic
matchType: Absence

apiVersion: flows.netobserv.io/vialphai
kind: FlowMetric

o1

OpenShift Container Platform 4.14 Network Observability

- field: TimeFlowR{ttNs
matchType: Presence

divider: "1000000000" €)
buckets: [".001 "’ ".005"’ ".01"’ ".02"’ ".03"’ ".04"’ ".05"’ ".075"’ ".1"’ ".25"’ "1 "] °

ﬂ The FlowMetric resources need to be created in the namespace defined in the
FlowCollector spec.namespace, which is netobserv by default.

9 The type specifies the type of metric. The Histogram type is useful for a latency value
(TimeFlowRttNs).

9 Since the Round-trip time (RTT) is provided as nanos in flows, use a divider of 1billion
to convert into seconds, which is standard in Prometheus guidelines.

Q The custom buckets specify precision on RTT, with optimal precision ranging between
5ms and 250ms.

Verification

1. Once the pods refresh, navigate to Observe = Metrics.

2. In the Expression field, you can type the metric name to view the corresponding result.

IMPORTANT

High cardinality can affect the memory usage of Prometheus. You can check whether
specific labels have high cardinality in the Network Flows format reference.

10.7. CONFIGURING CUSTOM CHARTS USING FLOWMETRIC API

You can generate charts for dashboards in the OpenShift Container Platform web console, which you
can view as an administrator in the Dashboard menu by defining the charts section of the FlowMetric
resource.

Procedure

1.

2.

3.

4.

5.

92

In the web console, navigate to Operators — Installed Operators.
In the Provided APIs heading for the NetObserv Operator, select FlowMetric.

In the Project: dropdown list, select the project of the Network Observability Operator instance.

Click Create FlowMetric.

Configure the FlowMetric resource, similar to the following sample configurations:

apiVersion: flows.netobserv.io/vialphai
kind: FlowMetric
metadata:
name: flowmetric-cluster-external-ingress-traffic

Example 10.3. Chart for tracking ingress bytes received from cluster external sources
namespace: netobserv 0

../../observability/network_observability/json-flows-format-reference.adocl#network-observability-flows-format_json_reference

CHAPTER 10. USING METRICS WITH DASHBOARDS AND ALERTS

#...
charts:
- dashboardName: Main g
title: External ingress traffic
unit: Bps
type: SingleStat
queries:
- promQL: "sum(rate($METRIC[2m]))"
legend: "
- dashboardName: Main 6
sectionName: External
title: Top external ingress traffic per workload
unit: Bps
type: StackArea
queries:
- promQL: "sum(rate($METRIC{DstK8S_Namespace!=\"\"}[2m])) by (DstK8S_Namespace,
DstK8S_OwnerName)"
legend: "{{DstK8S_Namespace}} / {{DstK8S_OwnerName}}"
#...

ﬂ The FlowMetric resources need to be created in the namespace defined in the FlowCollector
spec.namespace, which is netobserv by default.

Verification

1. Once the pods refresh, navigate to Observe - Dashboards.

2. Search for the NetObserv / Main dashboard. View two panels under the NetObserv / Main
dashboard, or optionally a dashboard name that you create:

® A textual single statistic showing the global external ingress rate summed across all
dimensions

® A timeseries graph showing the same metric per destination workload

For more information about the query language, refer to the Prometheus documentation.

Example 10.4. Chart for RTT latency for cluster external ingress traffic

apiVersion: flows.netobserv.io/vialphai
kind: FlowMetric
metadata:
name: flowmetric-cluster-external-ingress-traffic
namespace: netobserv ﬂ
#...
charts:
- dashboardName: Main g
title: External ingress TCP latency
unit: seconds
type: SingleStat

queries:
- promQL: "histogram_quantile(0.99, sum(rate($METRIC_bucket[2m])) by (le)) > 0"
legend: "p99"

93

https://prometheus.io/docs/prometheus/latest/querying/basics/

OpenShift Container Platform 4.14 Network Observability

- dashboardName: Main 6
sectionName: External
title: "Top external ingress sRTT per workload, p50 (ms)"
unit: seconds
type: Line
queries:
- promQL: "histogram_quantile(0.5, sum(rate(SMETRIC_bucket{DstK8S_Namespace!=\"\"}
[2m])) by (le,DstK8S_Namespace,DstK8S_OwnerName))*1000 > 0"
legend: "{{DstK8S_Namespace}} / {{DstK8S_OwnerName}}"
- dashboardName: Main
sectionName: External
title: "Top external ingress sRTT per workload, p99 (ms)"
unit: seconds
type: Line
queries:
- promQL: "histogram_quantile(0.99, sum(rate(SMETRIC_bucket{DstKk8S_Namespace!=\"\"}
[2m])) by (le,DstK8S_Namespace,DstK8S_OwnerName))*1000 > 0"
legend: "{{DstK8S_Namespace}} / {{DstK8S_OwnerName}}"
#...

ﬂ The FlowMetric resources need to be created in the namespace defined in the FlowCollector
spec.namespace, which is netobserv by default.

sing a different dashboardName creates a new dashboard that is prefixed with
Netobserv. For example, Netobserv / <dashboard_name>.
This example uses the histogram_quantile function to show p50 and p99.

You can show averages of histograms by dividing the metric, SMETRIC_sum, by the metric,
$METRIC_count, which are automatically generated when you create a histogram. With the
preceding example, the Prometheus query to do this is as follows:

promQL: "(sum(rate(SMETRIC_sum{DstK8S_Namespace!=\"\"}[2m])) by
(DstK8S_Namespace,DstK8S_OwnerName) /
sum(rate(SMETRIC_count{DstK8S_Namespace!=\"\"}[2m])) by
(DstK8S_Namespace,DstK8S_OwnerName))*1000"

Verification

1. Once the pods refresh, navigate to Observe - Dashboards.

2. Search for the NetObserv / Main dashboard. View the new panel under the NetObserv /
Main dashboard, or optionally a dashboard name that you create.

For more information about the query language, refer to the Prometheus documentation.

10.8. DETECTING SYN FLOODING USING THE FLOWMETRIC API AND
TCP FLAGS

You can create an AlertingRule resouce to alert for SYN flooding.

Procedure

94

https://prometheus.io/docs/prometheus/latest/querying/basics/

CHAPTER 10. USING METRICS WITH DASHBOARDS AND ALERTS

1. In the web console, navigate to Operators — Installed Operators.

2. Inthe Provided APIs heading for the NetObserv Operator, select FlowMetric.

3. Inthe Project dropdown list, select the project of the Network Observability Operator instance.
4. Click Create FlowMetric.

5. Create FlowMetric resources to add the following configurations:

Configuration counting flows per destination host and resource, with TCP flags

apiVersion: flows.netobserv.io/vialphai
kind: FlowMetric
metadata:

name: flows-with-flags-per-destination
spec:

metricName: flows_with_flags_per_destination_total

type: Counter

labels:
[SrcSubnetLabel,DstSubnetLabel,DstK8S_Name,DstK8S_Type,DstK8S_HostName,DstK8S_N
amespace,Flags]

Configuration counting flows per source host and resource, with TCP flags

apiVersion: flows.netobserv.io/vialphai
kind: FlowMetric
metadata:

name: flows-with-flags-per-source
spec:

metricName: flows_with_flags_per_source_total

type: Counter

labels:
[DstSubnetLabel,SrcSubnetLabel,SrcK8S_Name,SrcK8S_Type,SrcK8S_HostName,SrcK8S_N
amespace,Flags]

6. Deploy the following AlertingRule resource to alert for SYN flooding:

AlertingRule for SYN flooding

apiVersion: monitoring.openshift.io/v1
kind: AlertingRule
metadata:
name: netobserv-syn-alerts
namespace: openshift-monitoring
#...
spec:
groups:
- name: NetObservSYNAlerts
rules:
- alert: NetObserv-SYNFlood-in
annotations:
message: |-
{{ $labels.job }}: incoming SYN-flood attack suspected to Host={{
$labels.DstkK8S_HostName}}, Namespace={{ $labels.DstK8S_Namespace }}, Resource={{

95

OpenShift Container Platform 4.14 Network Observability

$labels.DstkK8S_Name }}. This is characterized by a high volume of SYN-only flows with
different source IPs and/or ports.
summary: "Incoming SYN-flood"
expr: sum(rate(netobserv_flows_with_flags_per_destination_total{Flags="2"}[1m])) by
(job, Dstk8S_HostName, DstK8S_Namespace, DstK8S_Name) > 300
for: 15s
labels:
severity: warning
app: netobserv
- alert: NetObserv-SYNFlood-out
annotations:
message: |-

{{ $labels.job }}: outgoing SYN-flood attack suspected from Host={{
$labels.SrcK8S_HostName}}, Namespace={{ $labels.SrcK8S_Namespace }}, Resource={{
$labels.SrcK8S_Name }}. This is characterized by a high volume of SYN-only flows with
different source IPs and/or ports.

summary: "Outgoing SYN-flood"
expr: sum(rate(netobserv_flows_with_flags_per_source_total{Flags="2"}[1m])) by (job,
SrcK8S_HostName, SrcK8S_Namespace, SrcK8S_Name) > 300
for: 15s
labels:
severity: warning
app: netobserv
#...

n this example, the threshold for the alert is 300; however, you can adapt this value
empirically. A threshold that is too low might produce false-positives, and if it's too high it
might miss actual attacks.

Verification

1. In the web console, click Manage Columnsin the Network Traffic table view and click TCP
flags.

2. In the Network Traffic table view, filter on TCP protocol SYN TCPFlag A large number of
flows with the same byteSize indicates a SYN flood.

3. Go to Observe — Alerting and select the Alerting Rules tab.

4. Filter on netobserv-synflood-in alert. The alert should fire when SYN flooding occurs.

Additional resources

® Filtering eBPF flow data using a global rule
® Creating alerting rules for user-defined projects

® Troubleshooting high cardinality metrics- Determining why Prometheus is consuming a lot of
disk space

96

https://docs.redhat.com/en/documentation/openshift_container_platform/4.14/html-single/monitoring/#creating-alerting-rules-for-user-defined-projects_managing-alerts-as-a-developer
https://docs.redhat.com/en/documentation/openshift_container_platform/4.14/html-single/support/#determining-why-prometheus-is-consuming-disk-space_investigating-monitoring-issues

CHAPTER 11. MONITORING THE NETWORK OBSERVABILITY OPERATOR

CHAPTER 1. MONITORING THE NETWORK OBSERVABILITY

OPERATOR

You can use the web console to monitor alerts related to the health of the Network Observability
Operator.

11.1. HEALTH DASHBOARDS

Metrics about health and resource usage of the Network Observability Operator are located in the
Observe = Dashboards page in the web console. You can view metrics about the health of the
Operator in the following categories:

Flows per second

Sampling

Errors last minute

Dropped flows per second
Flowlogs-pipeline statistics
Flowlogs-pipleine statistics views
eBPF agent statistics views
Operator statistics

Resource usage

11.2. HEALTH ALERTS

A health alert banner that directs you to the dashboard can appear on the Network Trafficand Home
pages if an alert is triggered. Alerts are generated in the following cases:

The NetObservLokiError alert occurs if the flowlogs-pipeline workload is dropping flows
because of Loki errors, such as if the Loki ingestion rate limit has been reached.

The NetObservNoFlows alert occurs if no flows are ingested for a certain amount of time.

The NetObservFlowsDropped alert occurs if the Network Observability eBPF agent hashmap
table is full, and the eBPF agent processes flows with degraded performance, or when the
capacity limiter is triggered.

11.3. VIEWING HEALTH INFORMATION

You can access metrics about health and resource usage of the Network Observability Operator from
the Dashboards page in the web console.

Prerequisites

You have the Network Observability Operator installed.

97

OpenShift Container Platform 4.14 Network Observability

® You have access to the cluster as a user with the cluster-admin role or with view permissions
for all projects.

Procedure
1. From the Administrator perspective in the web console, navigate to Observe - Dashboards.
2. From the Dashboards dropdown, select Netobserv/Health.

3. View the metrics about the health of the Operator that are displayed on the page.

11.3.1. Disabling health alerts

You can opt out of health alerting by editing the FlowCollector resource:
1. In the web console, navigate to Operators — Installed Operators.
2. Under the Provided APIs heading for the NetObserv Operator, select Flow Collector.
3. Select cluster then select the YAML tab.

4. Add spec.processor.metrics.disableAlerts to disable health alerts, as in the following YAML
sample:

apiVersion: flows.netobserv.io/vibeta2
kind: FlowCollector
metadata:
name: cluster
spec:
processor:
metrics:

disableAlerts: [NetObservLokiError, NetObservNoFlows] ﬂ

ﬂ You can specify one or a list with both types of alerts to disable.

11.4. CREATING LOKI RATE LIMIT ALERTS FOR THE NETOBSERV
DASHBOARD

You can create custom alerting rules for the Netobserv dashboard metrics to trigger alerts when Loki
rate limits have been reached.

Prerequisites

® You have access to the cluster as a user with the cluster-admin role or with view permissions for
all projects.

® You have the Network Observability Operator installed.

Procedure

1. Create a YAML file by clicking the importicon, +.

98

CHAPTER 11. MONITORING THE NETWORK OBSERVABILITY OPERATOR

2. Add an alerting rule configuration to the YAML file. In the YAML sample that follows, an alert is
created for when Loki rate limits have been reached:

apiVersion: monitoring.openshift.io/v1
kind: AlertingRule
metadata:
name: loki-alerts
namespace: openshift-monitoring
spec:
groups:
- name: LokiRateLimitAlerts
rules:
- alert: LokiTenantRateLimit
annotations:
message: |-
{{ $labels.job }} {{ $labels.route }} is experiencing 429 errors.
summary: "At any number of requests are responded with the rate limit error code."
expr: sum(irate(loki_request_duration_seconds_count{status_code="429"}[1m])) by (job,
namespace, route) / sum(irate(loki_request_duration_seconds_count[1m])) by (job,
namespace, route) * 100> 0
for: 10s
labels:
severity: warning

3. Click Create to apply the configuration file to the cluster.

11.5. USING THE EBPF AGENT ALERT

An alert, NetObservAgentFlowsDropped, is triggered when the network observability eBPF agent
hashmap table is full or when the capacity limiter is triggered. If you see this alert, consider increasing the
cacheMaxFlows in the FlowCollector, as shown in the following example.

NOTE

Increasing the cacheMaxFlows might increase the memory usage of the eBPF agent.

Procedure

1. In the web console, navigate to Operators — Installed Operators.

2. Under the Provided APlIs heading for the Network Observability Operator, select Flow
Collector.

3. Select cluster, and then select the YAML tab.

4. Increase the spec.agent.ebpf.cacheMaxFlows value, as shown in the following YAML sample:

apiVersion: flows.netobserv.io/vibeta2
kind: FlowCollector
metadata:
name: cluster
spec:
namespace: netobserv
deploymentModel: Direct

99

OpenShift Container Platform 4.14 Network Observability

agent:
type: eBPF
ebpf:
cacheMaxFlows: 200000 €))

Increase the cacheMaxFlows value from its value at the time of the
NetObservAgentFlowsDropped alert.

Additional resources

® Creating alerting rules for user-defined projects

100

https://docs.redhat.com/en/documentation/openshift_container_platform/4.14/html-single/monitoring/#creating-alerting-rules-for-user-defined-projects_managing-alerts-as-a-developer

CHAPTER 12. SCHEDULING RESOURCES

CHAPTER 12. SCHEDULING RESOURCES

Taints and tolerations allow the node to control which pods should (or should not) be scheduled on
them.

A node selector specifies a map of key/value pairs that are defined using custom labels on nodes and
selectors specified in pods.

For the pod to be eligible to run on a node, the pod must have the same key/value node selector as the
label on the node.

12.1. NETWORK OBSERVABILITY DEPLOYMENT IN SPECIFIC NODES

You can configure the FlowCollector to control the deployment of network observability components
in specific nodes. The spec.agent.ebpf.advanced.scheduling,
spec.processor.advanced.scheduling, and spec.consolePlugin.advanced.scheduling
specifications have the following configurable settings:

® NodeSelector

e Tolerations

o Affinity

® PriorityClassName

Sample FlowCollector resource for spec.<component>.advanced.scheduling

apiVersion: flows.netobserv.io/vibeta2
kind: FlowCollector
metadata:
name: cluster
spec:
#...
advanced:
scheduling:

tolerations:

- key: "<taint key>"
operator: "Equal”
value: "<taint value>"
effect: "<taint effect>"
nodeSelector:

<key>: <value>
affinity:
nodeAffinity:
requiredDuringSchedulinglgnoredDuringExecution:
nodeSelectorTerms:
- matchExpressions:
- key: name
operator: In
values:
- app-worker-node
priorityClassName: """
#...

101

OpenShift Container Platform 4.14 Network Observability

Additional resources

® Understanding taints and tolerations
® Assign Pods to Nodes (Kubernetes documentation)

® Pod Priority and Preemption (Kubernetes documentation)

102

https://docs.redhat.com/en/documentation/openshift_container_platform/4.14/html-single/nodes/#nodes-scheduler-taints-tolerations-about_nodes-scheduler-taints-tolerations
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/
https://kubernetes.io/docs/concepts/scheduling-eviction/pod-priority-preemption/#priorityclass

CHAPTER 13. SECONDARY NETWORKS

CHAPTER 13. SECONDARY NETWORKS

You can configure the Network Observability Operator to collect and enrich network flow data from
secondary networks, such as SR-IOV and OVN-Kubernetes.

13.1. PREREQUISITES

® Access to an OpenShift Container Platform cluster with an additional network interface, such as
a secondary interface or an L2 network.

13.2. CONFIGURING MONITORING FOR SR-IOV INTERFACE TRAFFIC

In order to collect traffic from a cluster with a Single Root I/O Virtualization (SR-IOV) device, you must
set the FlowCollector spec.agent.ebpf.privileged field to true. Then, the eBPF agent monitors other
network namespaces in addition to the host network namespaces, which are monitored by default. When
a pod with a virtual functions (VF) interface is created, a new network namespace is created. With
SRIOVNetwork policy IPAM configurations specified, the VF interface is migrated from the host
network namespace to the pod network namespace.

Prerequisites
® Access to an OpenShift Container Platform cluster with a SR-IOV device.

® The SRIOVNetwork custom resource (CR) spec.ipam configuration must be set with an IP
address from the range that the interface lists or from other plugins.

Procedure

1. In the web console, navigate to Operators — Installed Operators.
2. Under the Provided APIs heading for the NetObserv Operator, select Flow Collector.
3. Select cluster and then select the YAML tab.

4. Configure the FlowCollector custom resource. A sample configuration is as follows:

Configure FlowCollector for SR-IOV monitoring

apiVersion: flows.netobserv.io/vibeta2
kind: FlowCollector
metadata:
name: cluster
spec:
namespace: netobserv
deploymentModel: Direct
agent:
type: eBPF
ebpf:

privileged: true 0

Q The spec.agent.ebpf.privileged field value must be set to true to enable SR-IOV
monitoring.

103

OpenShift Container Platform 4.14 Network Observability

Additional resources

® Configuring an SR-IOV network device

13.3. CONFIGURING VIRTUAL MACHINE (VM) SECONDARY NETWORK
INTERFACES FOR NETWORK OBSERVABILITY

You can observe network traffic on an OpenShift Virtualization setup by identifying eBPF-enriched
network flows coming from VMs that are connected to secondary networks, such as through OVN-
Kubernetes. Network flows coming from VMs that are connected to the default internal pod network are
automatically captured by Network Observability.

Procedure

1. Getinformation about the virtual machine launcher pod by running the following command. This
information is used in Step 5:

I $ oc get pod virt-launcher-<vm_namex>-<suffix> -n <namespace> -0 yaml

apiVersion: vi
kind: Pod
metadata:
annotations:
k8s.v1.cni.cncf.io/network-status: |-
[{
"name": "ovn-kubernetes",
"interface": "eth0",
"ips": [
"10.129.2.39"
]

"mac": "0a:58:0a:81:02:27",
"default": true,
"dns": {}
b
{
"name": "my-vms/I2-network”, ﬂ
"interface": "podc0f69e19ba2", @)
"ips": [
"10.10.10.15"
1,
"mac": "02:fb:f8:00:00:12", °
"dns": {}
1]
name: virt-launcher-fedora-aqua-fowl-13-zr2x9
namespace: my-vms
spec:
..
status:
..

ﬂ The name of the secondary network.

9 The network interface name of the secondary network.

104

https://docs.redhat.com/en/documentation/openshift_container_platform/4.14/html-single/networking/#cnf-creating-an-additional-sriov-network-with-vrf-plug-in_configuring-sriov-device

CHAPTER 13. SECONDARY NETWORKS

g The list of IPs used by the secondary network.

Q The MAC address used for secondary network.

2. Inthe web console, navigate to Operators — Installed Operators.
3. Under the Provided APIs heading for the NetObserv Operator, select Flow Collector.
4. Select cluster and then select the YAML tab.

5. Configure FlowCollector based on the information you found from the additional network
investigation:

apiVersion: flows.netobserv.io/vibeta2
kind: FlowCollector
metadata:
name: cluster
spec:
agent:
ebpf:
privileged: true ﬂ
processor:
advanced:
secondaryNetworks:

- index: 9
-MAC ©

name: my-vms/I2-network ﬂ
#...

ﬂ Ensure that the eBPF agent is in privileged mode so that flows are collected for
secondary interfaces.

9 Define the fields to use for indexing the virtual machine launcher pods. It is recommended
to use the MAC address as the indexing field to get network flows enrichment for

secondary interfaces. If you have overlapping MAC address between pods, then additional
indexing fields, such as IP and Interface, could be added to have accurate enrichment.

9 If your additional network information has a MAC address, add MAC to the field list.
Q Specify the name of the network found in the k8s.v1.cni.cncf.io/network-status

annotation. Usually <namespace>/<network_attachement_definition_name>.

6. Observe VM traffic:

a. Navigate to the Network Traffic page.

b. Filter by Source IP using your virtual machine IP found in k8s.v1.cni.cncf.io/network-
status annotation.

c. View both Source and Destination fields, which should be enriched, and identify the VM
launcher pods and the VM instance as owners.

105

OpenShift Container Platform 4.14 Network Observability

CHAPTER 14. NETWORK OBSERVABILITY CLI

14.1. INSTALLING THE NETWORK OBSERVABILITY CLI

The Network Observability CLI (oc netobserv) is deployed separately from the Network Observability
Operator. The CLlI is available as an OpenShift CLI (o¢) plugin. It provides a lightweight way to quickly
debug and troubleshoot with network observability.

14.1.1. About the Network Observability CLI

You can quickly debug and troubleshoot networking issues by using the Network Observability CLI (oc
netobserv). The Network Observability CLI is a flow and packet visualization tool that relies on eBPF
agents to stream collected data to an ephemeral collector pod. It requires no persistent storage during
the capture. After the run, the output is transferred to your local machine. This enables quick, live insight
into packets and flow data without installing the Network Observability Operator.

IMPORTANT

CLI capture is meant to run only for short durations, such as 8-10 minutes. If it runs for
too long, it can be difficult to delete the running process.

14.1.2. Installing the Network Observability CLI

Installing the Network Observability CLI (oc netobserv) is a separate procedure from the Network
Observability Operator installation. This means that, even if you have the Operator installed from
OperatorHub, you need to install the CLI separately.

NOTE

You can optionally use Krew to install the netobserv CLI plugin. For more information,
see "Installing a CLI plugin with Krew".

Prerequisites

® You must install the OpenShift CLI (oc¢).
® You must have a macOS or Linux operating system.

Procedure

1. Download the oc netobserv file that corresponds with your architecture. For example, for the
amd64 archive:

I $ curl -LO https://mirror.openshift.com/pub/cgw/netobserv/latest/oc-netobserv-amdé4

2. Make the file executable:

I $ chmod +x ./oc-netobserv-amd64

3. Move the extracted netobserv-cli binary to a directory that is on your PATH, such as
/usr/local/bin/:

106

https://mirror.openshift.com/pub/cgw/netobserv/latest/

CHAPTER 14. NETWORK OBSERVABILITY CLI

I $ sudo mv ./oc-netobserv-amd64 /usr/local/bin/oc-netobserv

Verification

e Verify that oc netobserv is available:

I $ oc netobserv version

Example output

I Netobserv CLI version <version>

Additional resources

® |nstalling and using CLI plugins

® |nstalling a CLI plugin with Krew

14.2. USING THE NETWORK OBSERVABILITY CLI

You can visualize and filter the flows and packets data directly in the terminal to see specific usage, such
as identifying who is using a specific port. The Network Observability CLI collects flows as JSON and
database files or packets as a PCAP file, which you can use with third-party tools.

14.2.1. Capturing flows

You can capture flows and filter on any resource or zone in the data to solve use cases, such as
displaying Round-Trip Time (RTT) between two zones. Table visualization in the CLI provides viewing
and flow search capabilities.

Prerequisites

e Install the OpenShift CLI (oc).

® [nstall the Network Observability CLI (oc netobserv) plugin.

Procedure

1. Capture flows with filters enabled by running the following command:

$ oc netobserv flows --enable_filter=true --action=Accept --cidr=0.0.0.0/0 --protocol=TCP --
port=49051

2. Add filters to the live table filter prompt in the terminal to further refine the incoming flows.
For example:

I live table filter: [SrcK8S_Zone:us-west-1b] press enter to match multiple regular expressions
at once

3. Use the PageUp and PageDown keys to toggle between None, Resource, Zone, Host, Owner
and all of the above.

107

https://docs.redhat.com/en/documentation/openshift_container_platform/4.14/html-single/cli_tools/#cli-installing-plugins_cli-extend-plugins
https://docs.redhat.com/en/documentation/openshift_container_platform/4.14/html-single/cli_tools/#cli-krew-install-plugin_managing-cli-plugins-krew

OpenShift Container Platform 4.14 Network Observability

4. To stop capturing, press Ctrl+C. The data that was captured is written to two separate files in an
Joutput directory located in the same path used to install the CLI.

5. View the captured data in the ./output/flow/<capture_date_times.json JSON file, which
contains JSON arrays of the captured data.

Example JSON file

{
"AgentlP": "10.0.1.76",

"Bytes": 561,

"DnsErrno": 0,

"Dscp": 20,

"DstAddr": "f904:ece9:ba63:6ac7:8018:1e5:7130:0",
"DstMac": "0A:58:0A:80:00:37",
"DstPort™: 9999,

"Duplicate": false,

"Etype": 2048,

"Flags": 16,

"FlowDirection": 0,

"IfDirection": 0,

"Interface": "ens5",
"K8S_FlowLayer": "infra",

"Packets": 1,

"Proto": 6,

"SrcAddr": "3e06:6¢10:6440:2:a80:37:b756:270f",
"SrcMac": "0A:58:0A:80:00:01",
"SrcPort": 46934,

"TimeFlowEndMs": 1709741962111,
"TimeFlowRttNs": 121000,
"TimeFlowStartMs": 1709741962111,
"TimeReceived": 1709741964

6. You can use SQLite to inspect the ./output/flow/<capture_date_time>.db database file. For
example:

a. Open the file by running the following command:

I $ sqlite3 ./output/flow/<capture_date_time>.db

b. Query the data by running a SQLite SELECT statement, for example:

sqlite> SELECT DnsLatencyMs, DnsFlagsResponseCode, Dnsld, DstAddr, DstPort,
Interface, Proto, SrcAddr, SrcPort, Bytes, Packets FROM flow WHERE DnsLatencyMs
>10 LIMIT 10;

Example output

12|NoError|58747|10.128.0.63|57856|17]172.30.0.10|53|284/1
11|NoError|20486|10.128.0.52|56575||17|169.254.169.254|53|225|1
11|NoError|59544|10.128.0.103|51089||17|172.30.0.10|53|307|1
13|NoError|32519]|10.128.0.52|55241(|17|169.254.169.254|53|254|1
12|NoError|32519]10.0.0.3|55241[17|169.254.169.254|53|254] 1
15|NoError|57673|10.128.0.19]59051(]17]172.30.0.10|53|313|1

108

CHAPTER 14. NETWORK OBSERVABILITY CLI

13|NoError|35652|10.0.0.3|46532]|17|169.254.169.254|53|183| 1
32|NoError|37326|10.0.0.3|52718||17|169.254.169.254|53|169| 1
14|NoError|14530|10.0.0.3|58203||17|169.254.169.254|53|246| 1
15|NoError|40548)10.0.0.3|45933||17|169.254.169.254|53|174|1

14.2.2. Capturing packets

You can capture packets using the Network Observability CLI.

Prerequisites

e Install the OpenShift CLI (oc).

® |nstall the Network Observability CLI (oc netobserv) plugin.

Procedure

1. Run the packet capture with filters enabled:

I $ oc netobserv packets --action=Accept --cidr=0.0.0.0/0 --protocol=TCP --port=49051

2. Add filters to the live table filter prompt in the terminal to refine the incoming packets. An
example filter is as follows:

I live table filter: [SrcK8S_Zone:us-west-1b] press enter to match multiple regular expressions
at once

3. Use the PageUp and PageDown keys to toggle between None, Resource, Zone, Host, Owner
and all of the above.

4. To stop capturing, press Ctrl+C.

5. View the captured data, which is written to a single file in an ./output/pcap directory located in
the same path that was used to install the CLI:

a. The ./Joutput/pcap/<capture_date_times.pcap file can be opened with Wireshark.

14.2.3. Capturing metrics

You can generate on-demand dashboards in Prometheus by using a service monitor for network
observability.

Prerequisites

e Install the OpenShift CLI (oc).

® |nstall the Network Observability CLI (oc netobserv) plugin.

Procedure

1. Capture metrics with filters enabled by running the following command:

Example output

109

OpenShift Container Platform 4.14 Network Observability

I $ oc netobserv metrics --enable_filter=true --cidr=0.0.0.0/0 --protocol=TCP --port=49051

2. Open the link provided in the terminal to view the NetObserv / On-Demanddashboard:

Example URL

https://console-openshift-
console.apps.rosa...openshiftapps.com/monitoring/dashboards/netobserv-cli

NOTE

Features that are not enabled present as empty graphs.

14.2.4. Cleaning the Network Observability CLI

You can manually clean the CLI workload by running oc netobserv cleanup. This command removes all
the CLI components from your cluster.

When you end a capture, this command is run automatically by the client. You might be required to
manually run it if you experience connectivity issues.

Procedure
® Run the following command:

I $ oc netobserv cleanup

Additional resources

® Network Observability CLI reference

14.3. NETWORK OBSERVABILITY CLI (OC NETOBSERV) REFERENCE

The Network Observability CLI (oc netobserv) has most features and filtering options that are available
for the Network Observability Operator. You can pass command-line arguments to enable features or
filtering options.

14.3.1. Network Observability CLI usage

You can use the Network Observability CLI (oc netobserv) to pass command-line arguments to
capture flows data, packets data, and metrics for further analysis and enable features supported by the
Network Observability Operator.

14.3.1.1. Syntax

The basic syntax for oc hetobserv commands:

oc netobserv syntax

I $ oc netobserv [<command>] [<feature_option>] [<command_options>] ﬂ

110

CHAPTER 14. NETWORK OBSERVABILITY CLI

ﬂ Feature options can only be used with the oc netobserv flows command. They cannot be used
with the oc netobserv packets command.

14.3.1.2. Basic commands

Table 14.1. Basic commands

Command Description

flows Capture flows information. For subcommands, see the "Flows capture options”
table.

packets Capture packets data. For subcommands, see the "Packets capture options”
table.

metrics Capture metrics data. For subcommands, see the "Metrics capture options”
table.

follow Follow collector logs when running in background.

stop Stop collection by removing agent daemonset.

copy Copy collector generated files locally.

cleanup Remove the Network Observability CLI components.

version Print the software version.

help Show help.

14.3.1.3. Flows capture options

Flows capture has mandatory commands as well as additional options, such as enabling extra features
about packet drops, DNS latencies, Round-trip time, and filtering.

oc netobserv flows syntax

I $ oc netobserv flows [<feature_option>] [<xcommand_options>]

Option Description Default
--enable_all enable all eBPF features false
--enable_dns enable DNS tracking false
--enable_ipsec enable IPsec tracking false

m

OpenShift Container Platform 4.14 Network Observability

Option Description Default
--enable_network_events enable network events monitoring false
--enable_pkt_translation enable packet translation false
--enable_pkt_drop enable packet drop false
--enable_rtt enable RTT tracking false
--enable_udn_mapping enable User Defined Network false
mapping

--get-subnets get subnets information false
--sampling value that determines the ratio of 1

packets being sampled

--background run in background false
--copy copy the output files locally prompt
--log-level components logs info
--max-time maximum capture time 5m
--max-bytes maximum capture bytes 50000000 = 50MB
--action filter action Accept
--cidr filter CIDR 0.0.0.0/0
--direction filter direction -
--dport filter destination port -
--dport_range filter destination port range -
--dports filter on either of two destination -
ports
--drops filter flows with only dropped false
packets
--icmp_code filter ICMP code -
—-icmp_type filter ICMP type -

12

CHAPTER 14. NETWORK OBSERVABILITY CLI

Option Description Default
--node-selector capture on specific nodes -
--peer_ip filter peer IP -
--peer_cidr filter peer CIDR -
--port_range filter port range -
--port filter port -
--ports filter on either of two ports -
--protocol filter protocol -
--query filter flows by using a custom -
query
--sport_range filter source port range -
--sport filter source port -
--sports filter on either of two source ports -
--tcp_flags filter TCP flags -
--interfaces list of interfaces to monitor, -

comma separated

--exclude_interfaces list of interfaces to exclude, lo
comma separated

Example running flows capture on TCP protocol and port 49051 with PacketDrop and RTT
features enabled:

$ oc netobserv flows --enable_pkt_drop --enable_rtt --action=Accept --cidr=0.0.0.0/0 --protocol=TCP
--port=49051

14.3.1.4. Packets capture options

You can filter packets capture data the as same as flows capture by using the filters. Certain features,
such as packets drop, DNS, RTT, and network events, are only available for flows and metrics capture.

oc netobserv packets syntax

I $ oc netobserv packets [<option>]

13

OpenShift Container Platform 4.14 Network Observability

Option Description Default
--background run in background false
--copy copy the output files locally prompt
--log-level components logs info
--max-time maximum capture time 5m
--max-bytes maximum capture bytes 50000000 =50MB
--action filter action Accept
--cidr filter CIDR 0.0.0.0/0
--direction filter direction -
--dport filter destination port -
--dport_range filter destination port range -
--dports filter on either of two destination -

ports
--drops filter flows with only dropped false

packets
--icmp_code filter ICMP code -
--icmp_type filter ICMP type -
--node-selector capture on specific nodes -
--peer_ip filter peer IP -
--peer_cidr filter peer CIDR -
--port_range filter port range -
--port filter port -
--ports filter on either of two ports -
--protocol filter protocol -

14

CHAPTER 14. NETWORK OBSERVABILITY CLI

Option Description Default
--query filter flows by using a custom -

query
--sport_range filter source port range -
--sport filter source port -
--sports filter on either of two source ports -
--tcp_flags filter TCP flags -

Example running packets capture on TCP protocol and port 49051:

I $ oc netobserv packets --action=Accept --cidr=0.0.0.0/0 --protocol=TCP --port=49051

14.3.1.5. Metrics capture options

You can enable features and use filters on metrics capture, the same as flows capture. The generated
graphs fill accordingly in the dashboard.

oc netobserv metrics syntax

I $ oc netobserv metrics [<option>]

Option Description Default
--enable_all enable all eBPF features false
--enable_dns enable DNS tracking false
--enable_ipsec enable IPsec tracking false
--enable_network_events enable network events monitoring false
--enable_pkt_translation enable packet translation false
--enable_pkt_drop enable packet drop false
--enable_rtt enable RTT tracking false
--enable_udn_mapping enable User Defined Network false
mapping
--get-subnets get subnets information false

115

OpenShift Container Platform 4.14 Network Observability

Option Description Default

--sampling value that defines the ratio of 1
packets being sampled

--action filter action Accept
--cidr filter CIDR 0.0.0.0/0
--direction filter direction -
--dport filter destination port -
--dport_range filter destination port range -
--dports filter on either of two destination -
ports
--drops filter flows with only dropped false
packets
--icmp_code filter ICMP code -
--icmp_type filter ICMP type -
--node-selector capture on specific nodes -
--peer_ip filter peer IP -
--peer_cidr filter peer CIDR -
--port_range filter port range -
--port filter port -
--ports filter on either of two ports -
--protocol filter protocol -
--query filter flows by using a custom -
query
--sport_range filter source port range -
--sport filter source port -
--sports filter on either of two source ports -

16

CHAPTER 14. NETWORK OBSERVABILITY CLI

Option Description Default
--tcp_flags filter TCP flags -
--include_list list of metric names to generate, namespace_flows_total,node_ingr
comma separated ess_bytes_total,node_egress_byt
es_total,workload_ingress_bytes_t
otal
--interfaces list of interfaces to monitor, -

comma separated

--exclude_interfaces list of interfaces to exclude, lo
comma separated

Example running metrics capture for TCP drops

I $ oc netobserv metrics --enable_pkt_drop --protocol=TCP

Example running metrics capture for list of metric names to generate

I $ oc netobserv metrics --include_list=node,workload

I $ oc netobserv metrics --include_list=node_egress_bytes_total,workload_egress_packets_total
I $ oc netobserv metrics --enable_all --include_list=node,namespace,workload

Example output for list of metric names

opt: include_list, value: node,workload
Matching metrics:

- node_egress_bytes_total

- node_ingress_bytes_total

- workload_egress_bytes_total

- workload_ingress_bytes_total

- workload_egress_packets_total
- workload_ingress_packets_total
- workload_flows_total

- workload_drop_packets_total

- workload_drop_bytes_total

17

OpenShift Container Platform 4.14 Network Observability

CHAPTER15. FLOWCOLLECTOR API REFERENCE

FlowCollector is the Schema for the network flows collection API, which pilots and configures the
underlying deployments.

15.1. FLOWCOLLECTOR API SPECIFICATIONS

Description

FlowCollector is the schema for the network flows collection API, which pilots and configures the
underlying deployments.

Type
object

Property Type Description

apiVersion string APIVersion defines the versioned
schema of this representation of
an object. Servers should convert
recognized schemas to the latest
internal value, and might reject
unrecognized values. More info:
https://git.k8s.io/community/con
tributors/devel/sig-
architecture/api-
conventions.md#resources

kind string Kind is a string value representing
the REST resource this object
represents. Servers might infer
this from the endpoint the client
submits requests to. Cannot be
updated. In CamelCase. More
info:
https://git.k8s.io/community/con
tributors/devel/sig-
architecture/api-
conventions.md#types-kinds

metadata object Standard object’s metadata. More
info:
https://git.k8s.io/community/con
tributors/devel/sig-
architecture/api-
conventions.md#metadata

18

https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#resources
https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#types-kinds
https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata

CHAPTER 15. FLOWCOLLECTOR API REFERENCE

Property Type Description

spec object Defines the desired state of the
FlowCollector resource.

*: the mention of "unsupported"”
or "deprecated"” for a feature
throughout this document means
that this feature is not officially
supported by Red Hat. It might
have been, for example,
contributed by the community
and accepted without a formal
agreement for maintenance. The
product maintainers might
provide some support for these
features as a best effort only.

15.1.1. .metadata

Description

Standard object’s metadata. More info: https://git.k8s.io/community/contributors/devel/sig-
architecture/api-conventions.md#metadata

Type
object

15.1.2. .spec

Description

Defines the desired state of the FlowCollector resource.

*: the mention of "unsupported” or "deprecated" for a feature throughout this document means that
this feature is not officially supported by Red Hat. It might have been, for example, contributed by
the community and accepted without a formal agreement for maintenance. The product maintainers
might provide some support for these features as a best effort only.

Type
object
Property Type Description
agent object Agent configuration for flows
extraction.
consolePlugin object consolePlugin defines the

settings related to the OpenShift
Container Platform Console
plugin, when available.

19

https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata

OpenShift Container Platform 4.14 Network Observability

Property

deploymentModel

exporters

kafka

loki

namespace

networkPolicy

processor

120

Type

string

array

object

object

string

object

object

Description

deploymentModel defines the
desired type of deployment for
flow processing. Possible values
are:

- Direct (default) to make the
flow processor listen directly from
the agents.

- Kafka to make flows sent to a
Kafka pipeline before
consumption by the processor.

Kafka can provide better
scalability, resiliency, and high
availability (for more details, see
https://www.redhat.com/en/topic
s/integration/what-is-apache-
kafka).

exporters defines additional
optional exporters for custom
consumption or storage.

Kafka configuration, allowing to
use Kafka as a broker as part of
the flow collection pipeline.
Available when the
spec.deploymentModel is
Kafka.

loki, the flow store, client
settings.

Namespace where Network
Observability pods are deployed.

networkPolicy defines ingress
network policy settings for
Network Observability
components isolation.

processor defines the settings
of the component that receives
the flows from the agent, enriches
them, generates metrics, and
forwards them to the Loki
persistence layer and/or any
available exporter.

https://www.redhat.com/en/topics/integration/what-is-apache-kafka

CHAPTER 15. FLOWCOLLECTOR API REFERENCE

Property Type Description

prometheus object prometheus defines
Prometheus settings, such as
querier configuration used to
fetch metrics from the Console

plugin.

15.1.3. .spec.agent

Description

Agent configuration for flows extraction.

Property Description

ebpf object ebpf describes the settings
related to the eBPF-based flow
reporter when spec.agent.type
is set to eBPF.

type string type [deprecated (*)] selects the
flows tracing agent. Previously,
this field allowed to select
between eBPF orIPFIX. Only
eBPF is allowed now, so this field
is deprecated and is planned for

removal in a future version of the
API.

15.1.4. .spec.agent.ebpf

Description

ebpf describes the settings related to the eBPF-based flow reporter when spec.agent.type is set to
eBPF.

Property Type Description

121

OpenShift Container Platform 4.14 Network Observability

Property

advanced

cacheActiveTimeout

cacheMaxFlows

excludelnterfaces

features

122

Type

object

string

integer

array (string)

array (string)

Description

advanced allows setting some
aspects of the internal
configuration of the eBPF agent.
This section is aimed mostly for
debugging and fine-grained
performance optimizations, such
as GOGC and GOMAXPROCS
environment variables. Set these
values at your own risk. You can
also override the default Linux
capabilities from there.

cacheActiveTimeout is the
max period during which the
reporter aggregates flows before
sending. Increasing
cacheMaxFlows and
cacheActiveTimeout can
decrease the network traffic
overhead and the CPU load,
however you can expect higher
memory consumption and an
increased latency in the flow
collection.

cacheMaxFlows is the max
number of flows in an aggregate;
when reached, the reporter sends
the flows. Increasing
cacheMaxFlows and
cacheActiveTimeout can
decrease the network traffic
overhead and the CPU load,
however you can expect higher
memory consumption and an
increased latency in the flow
collection.

excludelnterfaces contains the
interface names that are
excluded from flow tracing. An
entry enclosed by slashes, such as
/br-/,is matched as a regular
expression. Otherwise it is
matched as a case-sensitive
string.

List of additional features to
enable. They are all disabled by
default. Enabling additional

CHAPTER 15. FLOWCOLLECTOR API REFERENCE

- PacketDrop: Enable the
packets drop flows logging
feature. This feature requires
mounting the kernel debug
filesystem, so the eBPF agent
pods must run as privileged. If the
spec.agent.ebpf.privileged
parameter is not set, an error is
reported.

- DNSTracking: Enable the DNS
tracking feature.

- FlowRTT: Enable flow latency
(sRTT) extraction in the eBPF
agent from TCP traffic.

- NetworkEvents: Enable the
network events monitoring
feature, such as correlating flows
and network policies. This feature
requires mounting the kernel
debug filesystem, so the eBPF
agent pods must run as privileged.
It requires using the OVN-
Kubernetes network plugin with
the Observability feature.
IMPORTANT: This feature is
available as a Technology
Preview.

- PacketTranslation: Enable
enriching flows with packet
translation information, such as
Service NAT.

- EbpfManager: [Unsupported
(")]- Use eBPF Manager to
manage Network Observability
eBPF programs. Pre-requisite: the
eBPF Manager operator (or
upstream bpfman operator) must
be installed.

- UDNMapping: Enable
interfaces mapping to User
Defined Networks (UDN).

This feature requires mounting
the kernel debug filesystem, so
the eBPF agent pods must run as
privileged. It requires using the
OVN-Kubernetes network plugin
with the Observability feature.

123

OpenShift Container Platform 4.14 Network Observability

flowFilter object flowFilter defines the eBPF
agent configuration regarding
flow filtering.

imagePullPolicy string imagePullPolicy is the

Kubernetes pull policy for the
image defined above

interfaces array (string) interfaces contains the interface
names from where flows are
collected. If empty, the agent
fetches all the interfaces in the
system, excepting the ones listed
in excludelnterfaces. An entry
enclosed by slashes, such as /br-/,
is matched as a regular
expression. Otherwise it is
matched as a case-sensitive
string.

kafkaBatchSize integer kafkaBatchSize limits the
maximum size of a request in
bytes before being sent to a
partition. Ignored when not using
Kafka. Default: IMB.

logLevel string logLevel defines the log level for
the Network Observability eBPF
Agent

metrics object metrics defines the eBPF agent

configuration regarding metrics.

124

CHAPTER 15. FLOWCOLLECTOR API REFERENCE

Property Type Description

privileged boolean Privileged mode for the eBPF
Agent container. When ignored or
set to false, the operator sets
granular capabilities (BPF,
PERFMON, NET_ADMIN) to the
container. If for some reason
these capabilities cannot be set,
such as if an old kernel version not
knowing CAP_BPF is in use, then
you can turn on this mode for
more global privileges. Some
agent features require the
privileged mode, such as packet
drops tracking (see features)
and SR-IOV support.

resources object resources are the compute
resources required by this
container. For more information,
see
https://kubernetes.io/docs/conc
epts/configuration/manage-
resources-containers/

sampling integer Sampling ratio of the eBPF probe.
100 means one packet on 100 is
sent. O or 1 means all packets are
sampled.

15.1.5. .spec.agent.ebpf.advanced

Description

advanced allows setting some aspects of the internal configuration of the eBPF agent. This section
is aimed mostly for debugging and fine-grained performance optimizations, such as GOGC and
GOMAXPROCS environment variables. Set these values at your own risk. You can also override the
default Linux capabilities from there.

Type
object
Property Type Description
capOverride array (string) Linux capabilities override, when

not running as privileged. Default
capabilities are BPF, PERFMON
and NET_ADMIN.

125

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/

OpenShift Container Platform 4.14 Network Observability

Property Type Description

env object (string) env allows passing custom
environment variables to
underlying components. Useful
for passing some very concrete
performance-tuning options, such
as GOGC and GOMAXPROCS,
that should not be publicly
exposed as part of the
FlowCollector descriptor, as they
are only useful in edge debug or
support scenarios.

scheduling object scheduling controls how the pods
are scheduled on nodes.

15.1.6. .spec.agent.ebpf.advanced.scheduling

Description

scheduling controls how the pods are scheduled on nodes.

Type
object

Property Type Description

affinity object If specified, the pod's scheduling
constraints. For documentation,
refer to
https://kubernetes.io/docs/refer
ence/kubernetes-api/workload-
resources/pod-vl/#scheduling.

nodeSelector object (string) nodeSelector allows scheduling

of pods only onto nodes that have
each of the specified labels. For
documentation, refer to
https://kubernetes.io/docs/conc
epts/configuration/assign-pod-
node/.

126

https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-v1/#scheduling
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/

CHAPTER 15. FLOWCOLLECTOR API REFERENCE

Property Type Description

priorityClassName string If specified, indicates the pod's
priority. For documentation, refer
to

https://kubernetes.io/docs/conc
epts/scheduling-eviction/pod-
priority-preemption/#how-to-
use-priority-and-preemption. If
not specified, default priority is
used, or zero if there is no default.

tolerations array tolerations is a list of tolerations
that allow the pod to schedule
onto nodes with matching taints.
For documentation, refer to
https://kubernetes.io/docs/refer
ence/kubernetes-api/workload-
resources/pod-vl/#scheduling.

15.1.7. .spec.agent.ebpf.advanced.scheduling.affinity

Description

If specified, the pod'’s scheduling constraints. For documentation, refer to
https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-vl/#scheduling.

Type
object

15.1.8. .spec.agent.ebpf.advanced.scheduling.tolerations

Description

tolerations is a list of tolerations that allow the pod to schedule onto nodes with matching taints. For
documentation, refer to https://kubernetes.io/docs/reference/kubernetes-api/workload-
resources/pod-vl/#scheduling.

Type
array

15.1.9. .spec.agent.ebpf.flowFilter

Description
flowFilter defines the eBPF agent configuration regarding flow filtering.
Type

object

Property Type Description

127

https://kubernetes.io/docs/concepts/scheduling-eviction/pod-priority-preemption/#how-to-use-priority-and-preemption
https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-v1/#scheduling
https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-v1/#scheduling
https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-v1/#scheduling

OpenShift Container Platform 4.14 Network Observability

Property

action

cidr

destPorts

direction

enable

icmpCode

icmpType

peerCIDR

peerlP

128

Type

string

string

integer-or-string

string

boolean

integer

integer

string

string

Description

action defines the action to
perform on the flows that match
the filter. The available options
are Accept, which is the default,
and Reject.

cidr defines the IP CIDR to filter
flows by. Examples:
10.10.10.0/24 or
100:100:100:100::/64

destPorts optionally defines the
destination ports to filter flows by.
To filter a single port, set a single
port as an integer value. For
example, destPorts: 80. To filter
arange of ports, use a "start-end"
range in string format. For
example, destPorts: "80-100".
To filter two ports, use a
"portl,port2" in string format. For
example, ports: "80,100".

direction optionally defines a
direction to filter flows by. The
available options are Ingress and
Egress.

Set enable to true to enable the
eBPF flow filtering feature.

icmpCode, for Internet Control
Message Protocol (ICMP) traffic,
optionally defines the ICMP code
to filter flows by.

icmpType, for ICMP traffic,
optionally defines the ICMP type
to filter flows by.

peerCIDR defines the Peer IP

CIDR to filter flows by. Examples:
10.10.10.0/24 or

100:100:100:100::/64

peerlP optionally defines the

remote IP address to filter flows
by. Example: 10.10.10.10.

Property

pktDrops

ports

protocol

rules

sampling

Type

boolean

integer-or-string

string

array

integer

CHAPTER 15. FLOWCOLLECTOR API REFERENCE

Description

pktDrops optionally filters only
flows containing packet drops.

ports optionally defines the ports
to filter flows by. It is used both
for source and destination ports.
To filter a single port, set a single
port as an integer value. For
example, ports: 80. To filter a
range of ports, use a "start-end"
range in string format. For
example, ports: "80-100". To
filter two ports, use a "portl,port2"
in string format. For example,

ports: "80,100".

protocol optionally defines a
protocol to filter flows by. The
available options are TCP, UDP,
ICMP, ICMPV6, and SCTP.

rules defines a list of filtering
rules on the eBPF Agents. When
filtering is enabled, by default,
flows that don't match any rule
are rejected. To change the
default, you can define a rule that
accepts everything: { action:
"Accept", cidr: "0.0.0.0/0" },
and then refine with rejecting
rules.

sampling is the sampling ratio
for the matched packets,
overriding the global sampling
defined at
spec.agent.ebpf.sampling.

129

OpenShift Container Platform 4.14 Network Observability

Property

sourcePorts

tcpFlags

Type

integer-or-string

string

15.1.10. .spec.agent.ebpf.flowFilter.rules

Description

Description

sourcePorts optionally defines
the source ports to filter flows by.
To filter a single port, set a single
port as an integer value. For
example, sourcePorts: 80. To
filter a range of ports, use a
"start-end" range in string format.
For example, sourcePorts: "80-
100". To filter two ports, use a
"portl,port2" in string format. For
example, ports: "80,100".

tcpFlags optionally defines TCP
flags to filter flows by. In addition
to the standard flags (RFC-
9293), you can also filter by one
of the three following
combinations: SYN-ACK, FIN-
ACK, and RST-ACK.

rules defines a list of filtering rules on the eBPF Agents. When filtering is enabled, by default, flows
that don't match any rule are rejected. To change the default, you can define a rule that accepts
everything: { action: "Accept", cidr: "0.0.0.0/0" }, and then refine with rejecting rules.

Type
array

15.1.11. .spec.agent.ebpf.flowFilter.rules[]

Description

EBPFFlowFilterRule defines the desired eBPF agent configuration regarding flow filtering rule.

Type
object

Property

action

130

Type

string

Description

action defines the action to
perform on the flows that match
the filter. The available options
are Accept, which is the default,
and Reject.

CHAPTER 15. FLOWCOLLECTOR API REFERENCE

Property Type Description

cidr string cidr defines the IP CIDR to filter
flows by. Examples:
10.10.10.0/24 or

100:100:100:100::/64

destPorts integer-or-string destPorts optionally defines the
destination ports to filter flows by.
To filter a single port, set a single
port as an integer value. For
example, destPorts: 80. To filter
a range of ports, use a "start-end"
range in string format. For
example, destPorts: "80-100".
To filter two ports, use a
"portl,port2" in string format. For
example, ports: "80,100".

direction string direction optionally defines a
direction to filter flows by. The
available options are Ingress and
Egress.

icmpCode integer icmpCode, for Internet Control
Message Protocol (ICMP) traffic,
optionally defines the ICMP code
to filter flows by.

icmpType integer icmpType, for ICMP traffic,
optionally defines the ICMP type
to filter flows by.

peerCIDR string peerCIDR defines the Peer IP

CIDR to filter flows by. Examples:
10.10.10.0/24 or

100:100:100:100::/64

peerlP string peerlP optionally defines the

remote IP address to filter flows
by. Example: 10.10.10.10.

pktDrops boolean pktDrops optionally filters only
flows containing packet drops.

131

OpenShift Container Platform 4.14 Network Observability

Property Type

ports integer-or-string
protocol string

sampling integer
sourcePorts integer-or-string
tcpFlags string

15.1.12. .spec.agent.ebpf.metrics

Description

metrics defines the eBPF agent configuration regarding metrics.

Type

132

Description

ports optionally defines the ports
to filter flows by. It is used both
for source and destination ports.
To filter a single port, set a single
port as an integer value. For
example, ports: 80. To filter a
range of ports, use a "start-end"
range in string format. For
example, ports: "80-100". To
filter two ports, use a "portl,port2"
in string format. For example,

ports: "80,100".

protocol optionally defines a
protocol to filter flows by. The
available options are TCP, UDP,
ICMP, ICMPV6, and SCTP.

sampling is the sampling ratio
for the matched packets,
overriding the global sampling
defined at
spec.agent.ebpf.sampling.

sourcePorts optionally defines
the source ports to filter flows by.
To filter a single port, set a single
port as an integer value. For
example, sourcePorts: 80. To
filter a range of ports, use a
"start-end" range in string format.
For example, sourcePorts: "80-
100". To filter two ports, use a
"portl,port2" in string format. For
example, ports: "80,100".

tcpFlags optionally defines TCP
flags to filter flows by. In addition
to the standard flags (RFC-
9293), you can also filter by one
of the three following
combinations: SYN-ACK, FIN-
ACK, and RST-ACK

CHAPTER 15. FLOWCOLLECTOR API REFERENCE

object
Property Type Description
disableAlerts array (string) disableAlerts is a list of alerts
that should be disabled. Possible
values are:
NetObservDroppedFlows,
which is triggered when the eBPF
agent is missing packets or flows,
such as when the BPF hashmap is
busy or full, or the capacity limiter
is being triggered.
enable boolean Set enable to false to disable
eBPF agent metrics collection. It
is enabled by default.
server object Metrics server endpoint
configuration for the Prometheus
scraper.
15.1.13. .spec.agent.ebpf.metrics.server
Description
Metrics server endpoint configuration for the Prometheus scraper.
Type
object
Property Type Description
port integer The metrics server HTTP port.
tis object TLS configuration.

15.1.14. .spec.agent.ebpf.metrics.server.tls

Description

TLS configuration

Type
object

Required

* type

133

OpenShift Container Platform 4.14 Network Observability

Property Type Description

insecureSkipVerify boolean insecureSkipVerify allows
skipping client-side verification of
the provided certificate. If set to
true, the providedCaFile field is
ignored.

provided object TLS configuration when type is
set to Provided.

providedCaFile object Reference to the CA file when
type is set to Provided.

type string Select the type of TLS
configuration:

- Disabled (default) to not
configure TLS for the endpoint. -
Provided to manually provide
cert file and a key file.
[Unsupported (*)]. - Auto to use
OpensShift Container Platform
auto generated certificate using
annotations.

15.1.15. .spec.agent.ebpf.metrics.server.tls.provided

Description

TLS configuration when type is set to Provided.

Type
object

Property Type Description

certFile string certFile defines the path to the
certificate file name within the
config map or secret.

certKey string certKey defines the path to the
certificate private key file name
within the config map or secret.
Omit when the key is not
necessary.

hame string Name of the config map or secret

containing certificates.

134

CHAPTER 15. FLOWCOLLECTOR API REFERENCE

Property Type Description

namespace string Namespace of the config map or
secret containing certificates. If
omitted, the default is to use the
same namespace as where
Network Observability is
deployed. If the namespace is
different, the config map or the
secret is copied so that it can be
mounted as required.

type string Type for the certificate reference:
configmap orsecret.

15.1.16. .spec.agent.ebpf.metrics.server.tls.providedCaFile

Description

Reference to the CA file when type is set to Provided.

Type
object

Property Type Description

file string File name within the config map
or secret.

hame string Name of the config map or secret
containing the file.

namespace string Namespace of the config map or
secret containing the file. If
omitted, the default is to use the
same namespace as where
Network Observability is
deployed. If the namespace is
different, the config map or the
secret is copied so that it can be
mounted as required.

type string Type for the file reference:

configmap orsecret.

15.1.17. .spec.agent.ebpf.resources

Description

135

OpenShift Container Platform 4.14 Network Observability

resources are the compute resources required by this container. For more information, see
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/

Type
object

Property

limits

requests

15.1.18. .spec.consolePlugin

Description

Type

integer-or-string

integer-or-string

Description

Limits describes the maximum
amount of compute resources
allowed. More info:
https://kubernetes.io/docs/conc
epts/configuration/manage-
resources-containers/

Requests describes the minimum
amount of compute resources
required. If Requests is omitted
for a container, it defaults to
Limits if that is explicitly specified,
otherwise to an implementation-
defined value. Requests cannot
exceed Limits. More info:
https://kubernetes.io/docs/conc
epts/configuration/manage-
resources-containers/

consolePlugin defines the settings related to the OpenShift Container Platform Console plugin,

when available.

Type
object

Property

Description

advanced

136

object

advanced allows setting some
aspects of the internal
configuration of the console
plugin. This section is aimed
mostly for debugging and fine-
grained performance
optimizations, such as GOGC and
GOMAXPROCS environment

variables. Set these values at your
own risk.

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/

Property

autoscaler

enable

imagePullPolicy

logLevel

portNaming

quickFilters

replicas

resources

15.1.19. .spec.consolePlugin.advanced

Description

Type

object

boolean

string

string

object

array

integer

object

CHAPTER 15. FLOWCOLLECTOR API REFERENCE

Description

autoscaler spec of a horizontal
pod autoscaler to set up for the
plugin Deployment. Refer to
HorizontalPodAutoscaler
documentation (autoscaling/v2).

Enables the console plugin
deployment.

imagePullPolicy is the
Kubernetes pull policy for the
image defined above

logLevel for the console plugin
backend

portNaming defines the
configuration of the port-to-
service name translation

quickFilters configures quick
filter presets for the Console
plugin

replicas defines the number of
replicas (pods) to start.

resources, in terms of compute
resources, required by this
container. For more information,
see
https://kubernetes.io/docs/conc
epts/configuration/manage-
resources-containers/

advanced allows setting some aspects of the internal configuration of the console plugin. This
section is aimed mostly for debugging and fine-grained performance optimizations, such as GOGC
and GOMAXPROCS environment variables. Set these values at your own risk.

Type
object

137

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/

OpenShift Container Platform 4.14 Network Observability

Property Type

args array (string)
env object (string)
port integer
register boolean
scheduling object

15.1.20. .spec.consolePlugin.advanced.scheduling

Description

138

Description

args allows passing custom
arguments to underlying
components. Useful for overriding
some parameters, such as a URL
or a configuration path, that
should not be publicly exposed as
part of the FlowCollector
descriptor, as they are only useful
in edge debug or support
scenarios.

env allows passing custom
environment variables to
underlying components. Useful
for passing some very concrete
performance-tuning options, such
as GOGC and GOMAXPROCS,
that should not be publicly
exposed as part of the
FlowCollector descriptor, as they
are only useful in edge debug or
support scenarios.

portis the plugin service port. Do
not use 9002, which is reserved
for metrics.

register allows, when set to true,
to automatically register the
provided console plugin with the
OpensShift Container Platform
Console operator. When set to
false, you can still register it
manually by editing
console.operator.openshift.io/clus
ter with the following command:
oc patch
console.operator.openshift.i
o cluster --type="json’ -p
'[{"op": "add", "path":
"/spec/plugins/-", "value":
"netobserv-plugin"}]’

scheduling controls how the
pods are scheduled on nodes.

CHAPTER 15. FLOWCOLLECTOR API REFERENCE

scheduling controls how the pods are scheduled on nodes.

Type
object

Property Type Description

affinity object If specified, the pod's scheduling
constraints. For documentation,
refer to
https://kubernetes.io/docs/refer
ence/kubernetes-api/workload-
resources/pod-vl/#scheduling.

nodeSelector object (string) nodeSelector allows scheduling
of pods only onto nodes that have
each of the specified labels. For
documentation, refer to
https://kubernetes.io/docs/conc
epts/configuration/assign-pod-
node/.

priorityClassName string If specified, indicates the pod's
priority. For documentation, refer
to
https://kubernetes.io/docs/conc
epts/scheduling-eviction/pod-
priority-preemption/#how-to-
use-priority-and-preemption. If
not specified, default priority is
used, or zero if there is no default.

tolerations array tolerations is a list of tolerations
that allow the pod to schedule
onto nodes with matching taints.
For documentation, refer to
https://kubernetes.io/docs/refer
ence/kubernetes-api/workload-
resources/pod-vl/#scheduling.

15.1.21. .spec.consolePlugin.advanced.scheduling.affinity

Description

If specified, the pod'’s scheduling constraints. For documentation, refer to
https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-vl/#scheduling.

Type
object

15.1.22. .spec.consolePlugin.advanced.scheduling.tolerations

Description

139

https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-v1/#scheduling
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/
https://kubernetes.io/docs/concepts/scheduling-eviction/pod-priority-preemption/#how-to-use-priority-and-preemption
https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-v1/#scheduling
https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-v1/#scheduling

OpenShift Container Platform 4.14 Network Observability

tolerations is a list of tolerations that allow the pod to schedule onto nodes with matching taints. For
documentation, refer to https://kubernetes.io/docs/reference/kubernetes-api/workload-
resources/pod-vl/#scheduling.

Type
array

15.1.23. .spec.consolePlugin.autoscaler

Description

autoscaler spec of a horizontal pod autoscaler to set up for the plugin Deployment. Refer to
HorizontalPodAutoscaler documentation (autoscaling/v2).

Type
object
15.1.24. .spec.consolePlugin.portNaming

Description

portNaming defines the configuration of the port-to-service name translation

Type
object
Property Type Description
enable boolean Enable the console plugin port-
to-service name translation
portNames object (string) portNames defines additional

port names to use in the console,
for example, portNames:
{"3100": "loki"}.

15.1.25. .spec.consolePlugin.quickFilters
Description
quickFilters configures quick filter presets for the Console plugin

Type
array

15.1.26. .spec.consolePlugin.quickFilters[]

Description

QuickFilter defines preset configuration for Console’s quick filters

Type
object

Required

o filter

140

https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-v1/#scheduling

CHAPTER 15. FLOWCOLLECTOR API REFERENCE

® name

Property Type Description

default boolean default defines whether this filter
should be active by default or not

filter object (string) filter is a set of keys and values to
be set when this filter is selected.
Each key can relate to a list of
values using a coma-separated
string, for example, filter:
{"src_namespace":
"namespacel,namespace2"}.

name string Name of the filter, that is
displayed in the Console

15.1.27. .spec.consolePlugin.resources

Description

resources, in terms of compute resources, required by this container. For more information, see
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/

Type
object

Property Type Description

limits integer-or-string Limits describes the maximum
amount of compute resources
allowed. More info:
https://kubernetes.io/docs/conc
epts/configuration/manage-
resources-containers/

requests integer-or-string Requests describes the minimum
amount of compute resources
required. If Requests is omitted
for a container, it defaults to
Limits if that is explicitly specified,
otherwise to an implementation-
defined value. Requests cannot
exceed Limits. More info:
https://kubernetes.io/docs/conc
epts/configuration/manage-
resources-containers/

15.1.28. .spec.exporters

141

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/

OpenShift Container Platform 4.14 Network Observability

Description
exporters defines additional optional exporters for custom consumption or storage.

Type
array

15.1.29. .spec.exporters[]

Description

FlowCollectorExporter defines an additional exporter to send enriched flows to.

Type
object
Required
® type
Property Type Description
ipfix object IPFIX configuration, such as the IP
address and port to send enriched
IPFIX flows to.
kafka object Kafka configuration, such as the
address and topic, to send
enriched flows to.
openTelemetry object OpenTelemetry configuration,
such as the IP address and port to
send enriched logs or metrics to.
type string type selects the type of

exporters. The available options
are Kafka, IPFIX and
OpenTelemetry.

15.1.30. .spec.exporters[].ipfix

Description

IPFIX configuration, such as the IP address and port to send enriched IPFIX flows to.

Type
object

Required

e targetHost

e targetPort

142

CHAPTER 15. FLOWCOLLECTOR API REFERENCE

Property Type Description

targetHost string Address of the IPFIX external
receiver.

targetPort integer Port for the IPFIX external
receiver.

transport string Transport protocol (TCP or

UDP) to be used for the IPFIX
connection, defaults to TCP.

15.1.31. .spec.exporters[].kafka

Description

Kafka configuration, such as the address and topic, to send enriched flows to.
Type

object

Required

o address

e topic

Property Type Description
address string Address of the Kafka server
sasl object SASL authentication

configuration. [Unsupported (*)].

tis object TLS client configuration. When
using TLS, verify that the address
matches the Kafka port used for
TLS, generally 9093.

topic string Kafka topic to use. It must exist.
Network Observability does not
createit.

15.1.32. .spec.exporters[].kafka.sasl

Description

SASL authentication configuration. [Unsupported (*)].
Type

object

143

OpenShift Container Platform 4.14 Network Observability

Property Type Description

clientiDReference object Reference to the secret or config
map containing the client ID

clientSecretReference object Reference to the secret or config
map containing the client secret

type string Type of SASL authentication to
use, or Disabled if SASL is not

used

15.1.33. .spec.exporters[].kafka.sasl.clientiDReference

Description

Reference to the secret or config map containing the client ID

Type
object

Property Type Description

file string File name within the config map
or secret.

hame string Name of the config map or secret
containing the file.

namespace string Namespace of the config map or
secret containing the file. If
omitted, the default is to use the
same namespace as where
Network Observability is
deployed. If the namespace is
different, the config map or the
secret is copied so that it can be
mounted as required.

type strin Type for the file reference:

d

configmap orsecret.

15.1.34. .spec.exporters[].kafka.sasl.clientSecretReference

Description

Reference to the secret or config map containing the client secret

144

CHAPTER 15. FLOWCOLLECTOR API REFERENCE

Property Type Description

file string File name within the config map
or secret.

hame string Name of the config map or secret

containing the file.

namespace string Namespace of the config map or
secret containing the file. If
omitted, the default is to use the
same namespace as where
Network Observability is
deployed. If the namespace is
different, the config map or the
secret is copied so that it can be
mounted as required.

type string Type for the file reference:
configmap orsecret.

15.1.35. .spec.exporters[].kafka.tls

Description

TLS client configuration. When using TLS, verify that the address matches the Kafka port used for
TLS, generally 9093.

Type
object

Property Description

caCert object caCert defines the reference of
the certificate for the Certificate
Authority.

enable boolean Enable TLS

insecureSkipVerify boolean insecureSkipVerify allows

skipping client-side verification of
the server certificate. If set to
true, the caCert field is ignored.

userCert object userCert defines the user
certificate reference and is used
for mTLS. When you use one-way
TLS, you can ignore this property.

15.1.36. .spec.exporters[].kafka.tls.caCert

145

OpenShift Container Platform 4.14 Network Observability

Description
caCert defines the reference of the certificate for the Certificate Authority.

Type
object

Property Type Description

certFile string certFile defines the path to the
certificate file name within the
config map or secret.

certKey string certKey defines the path to the
certificate private key file name
within the config map or secret.
Omit when the key is not
necessary.

hame string Name of the config map or secret
containing certificates.

namespace string Namespace of the config map or
secret containing certificates. If
omitted, the default is to use the
same namespace as where
Network Observability is
deployed. If the namespace is
different, the config map or the
secret is copied so that it can be
mounted as required.

type string Type for the certificate reference:
configmap orsecret.

15.1.37. .spec.exporters[].kafka.tls.userCert

Description

userCert defines the user certificate reference and is used for mTLS. When you use one-way TLS,
you can ignore this property.

Type
object

Property Type Description

certFile string certFile defines the path to the
certificate file name within the
config map or secret.

146

CHAPTER 15. FLOWCOLLECTOR API REFERENCE

Property Type Description

certKey string certKey defines the path to the
certificate private key file name
within the config map or secret.
Omit when the key is not
necessary.

hame string Name of the config map or secret
containing certificates.

namespace string Namespace of the config map or
secret containing certificates. If
omitted, the default is to use the
same namespace as where
Network Observability is
deployed. If the namespace is
different, the config map or the
secret is copied so that it can be
mounted as required.

type string Type for the certificate reference:
configmap orsecret.

15.1.38. .spec.exporters[].openTelemetry

Description

OpenTelemetry configuration, such as the IP address and port to send enriched logs or metrics to.

Type
object

Required
e targetHost

e targetPort

Property Type Description

147

OpenShift Container Platform 4.14 Network Observability

Property Type Description

fieldsMapping array Custom fields mapping to an
OpenTelemetry conformant
format. By default, Network
Observability format proposal is
used:
https://github.com/rhobs/observ
ability-data-
model/blob/main/network-
observability.md#format-
proposal . As there is currently no
accepted standard for L3 or L4
enriched network logs, you can
freely override it with your own.

headers object (string) Headers to add to messages
(optional)

logs object OpenTelemetry configuration for
logs.

metrics object OpenTelemetry configuration for
metrics.

protocol string Protocol of the OpenTelemetry
connection. The available options
are http and grpc.

targetHost string Address of the OpenTelemetry
receiver.

targetPort integer Port for the OpenTelemetry
receiver.

tis object TLS client configuration.

15.1.39. .spec.exporters[].openTelemetry.fieldsMapping

Description

Custom fields mapping to an OpenTelemetry conformant format. By default, Network Observability
format proposal is used: https://github.com/rhobs/observability-data-model/blob/main/network-
observability.nd#format-proposal . As there is currently no accepted standard for L3 or L4 enriched
network logs, you can freely override it with your own.

Type
array

15.1.40. .spec.exporters[].openTelemetry.fieldsMapping[]

Description

148

https://github.com/rhobs/observability-data-model/blob/main/network-observability.md#format-proposal
https://github.com/rhobs/observability-data-model/blob/main/network-observability.md#format-proposal

CHAPTER 15. FLOWCOLLECTOR API REFERENCE

Type
object
Property Type Description
input string
multiplier integer
output string

15.1.41. .spec.exporters[].openTelemetry.logs

Description

OpenTelemetry configuration for logs.

Type
object
Property Type Description
enable boolean Set enable to true to send logs

to an OpenTelemetry receiver.

15.1.42. .spec.exporters[].openTelemetry.metrics

Description

OpenTelemetry configuration for metrics.

Property Type Description

enable boolean Set enable to true to send
metrics to an OpenTelemetry
receiver.

pushTimelnterval string Specify how often metrics are

sent to a collector.
15.1.43. .spec.exporters[].openTelemetry.tls

Description

TLS client configuration.

149

OpenShift Container Platform 4.14 Network Observability

Property Type Description

caCert object caCert defines the reference of
the certificate for the Certificate
Authority.

enable boolean Enable TLS

insecureSkipVerify boolean insecureSkipVerify allows

skipping client-side verification of
the server certificate. If set to
true, the caCert field is ignored.

userCert object userCert defines the user
certificate reference and is used
for mTLS. When you use one-way
TLS, you can ignore this property.

15.1.44. .spec.exporters[].openTelemetry.tls.caCert

Description

caCert defines the reference of the certificate for the Certificate Authority.

Type
object

Property Type Description

certFile string certFile defines the path to the
certificate file name within the
config map or secret.

certKey string certKey defines the path to the
certificate private key file name
within the config map or secret.
Omit when the key is not
necessary.

hame string Name of the config map or secret
containing certificates.

namespace string Namespace of the config map or

secret containing certificates. If
omitted, the default is to use the
same namespace as where
Network Observability is
deployed. If the namespace is
different, the config map or the
secret is copied so that it can be
mounted as required.

150

CHAPTER 15. FLOWCOLLECTOR API REFERENCE

Property Type Description

type string Type for the certificate reference:
configmap orsecret.

15.1.45. .spec.exporters[].openTelemetry.tls.userCert

Description

userCert defines the user certificate reference and is used for mTLS. When you use one-way TLS,
you can ignore this property.

Property Type Description

certFile string certFile defines the path to the
certificate file name within the
config map or secret.

certKey string certKey defines the path to the
certificate private key file name
within the config map or secret.
Omit when the key is not
necessary.

hame string Name of the config map or secret
containing certificates.

namespace string Namespace of the config map or
secret containing certificates. If
omitted, the default is to use the
same namespace as where
Network Observability is
deployed. If the namespace is
different, the config map or the
secret is copied so that it can be
mounted as required.

type string Type for the certificate reference:
configmap orsecret.

15.1.46. .spec.kafka

Description

Kafka configuration, allowing to use Kafka as a broker as part of the flow collection pipeline. Available
when the spec.deploymentModel is Kafka.

151

OpenShift Container Platform 4.14 Network Observability

Required
e address
e topic
Property Type Description
address string Address of the Kafka server
sasl object SASL authentication
configuration. [Unsupported (*)].
tis object TLS client configuration. When
using TLS, verify that the address
matches the Kafka port used for
TLS, generally 9093.
topic string Kafka topic to use. It must exist.
Network Observability does not
createit.
15.1.47. .spec.kafka.sasl
Description
SASL authentication configuration. [Unsupported (*)].
Type
object
Property Type Description
clientiDReference object Reference to the secret or config
map containing the client ID
clientSecretReference object Reference to the secret or config
map containing the client secret
type string Type of SASL authentication to
use, or Disabled if SASL is not
used

15.1.48. .spec.kafka.sasl.clientiIDReference

Description

Reference to the secret or config map containing the client ID
Type

object

152

CHAPTER 15. FLOWCOLLECTOR API REFERENCE

Property Type Description

file string File name within the config map
or secret.

hame string Name of the config map or secret

containing the file.

namespace string Namespace of the config map or
secret containing the file. If
omitted, the default is to use the
same namespace as where
Network Observability is
deployed. If the namespace is
different, the config map or the
secret is copied so that it can be
mounted as required.

type string Type for the file reference:
configmap orsecret.

15.1.49. .spec.kafka.sasl.clientSecretReference

Description

Reference to the secret or config map containing the client secret

Type
object

Property Type Description

file string File name within the config map
or secret.

hame string Name of the config map or secret
containing the file.

namespace string Namespace of the config map or
secret containing the file. If
omitted, the default is to use the
same namespace as where
Network Observability is
deployed. If the namespace is
different, the config map or the
secret is copied so that it can be
mounted as required.

type string Type for the file reference:

configmap orsecret.

153

OpenShift Container Platform 4.14 Network Observability

15.1.50. .spec.kafka.tls

Description

TLS client configuration. When using TLS, verify that the address matches the Kafka port used for
TLS, generally 9093.

Type
object

Property Type Description

caCert object caCert defines the reference of
the certificate for the Certificate
Authority.

enable boolean Enable TLS

insecureSkipVerify boolean insecureSkipVerify allows
skipping client-side verification of
the server certificate. If set to
true, the caCert field is ignored.

userCert object userCert defines the user

certificate reference and is used
for mTLS. When you use one-way
TLS, you can ignore this property.

15.1.51. .spec.kafka.tls.caCert

Description

caCert defines the reference of the certificate for the Certificate Authority.

Type
object

Property Type Description

certFile string certFile defines the path to the
certificate file name within the
config map or secret.

certKey string certKey defines the path to the
certificate private key file name
within the config map or secret.
Omit when the key is not
necessary.

hame string Name of the config map or secret

containing certificates.

154

CHAPTER 15. FLOWCOLLECTOR API REFERENCE

Property Type Description

namespace string Namespace of the config map or
secret containing certificates. If
omitted, the default is to use the
same namespace as where
Network Observability is
deployed. If the namespace is
different, the config map or the
secret is copied so that it can be
mounted as required.

type string Type for the certificate reference:
configmap orsecret.

15.1.52. .spec.kafka.tls.userCert

Description

userCert defines the user certificate reference and is used for mTLS. When you use one-way TLS,
you can ignore this property.

Type
object

Property Type Description

certFile string certFile defines the path to the
certificate file name within the
config map or secret.

certKey string certKey defines the path to the
certificate private key file name
within the config map or secret.
Omit when the key is not
necessary.

hame string Name of the config map or secret
containing certificates.

namespace string Namespace of the config map or

secret containing certificates. If
omitted, the default is to use the
same namespace as where
Network Observability is
deployed. If the namespace is
different, the config map or the
secret is copied so that it can be
mounted as required.

155

OpenShift Container Platform 4.14 Network Observability

Property Type Description

type string Type for the certificate reference:
configmap orsecret.

15.1.53. .spec.loki

Description

loki, the flow store, client settings.

Type
object
Required
® mode
Property Type Description
advanced object advanced allows setting some
aspects of the internal
configuration of the Loki clients.
This section is aimed mostly for
debugging and fine-grained
performance optimizations.
enable boolean Set enable to true to store flows

in Loki. The Console plugin can
use either Loki or Prometheus as
a data source for metrics (see also
spec.prometheus.querier), or
both. Not all queries are
transposable from Loki to
Prometheus. Hence, if Loki is
disabled, some features of the
plugin are disabled as well, such as
getting per-pod information or
viewing raw flows. If both
Prometheus and Loki are enabled,
Prometheus takes precedence
and Loki is used as a fallback for
queries that Prometheus cannot
handle. If they are both disabled,
the Console plugin is not
deployed.

156

Property Type

lokiStack object
manual object
microservices object
mode string
monolithic object
readTimeout string

CHAPTER 15. FLOWCOLLECTOR API REFERENCE

Description

Loki configuration for LokiStack
mode. This is useful for an easy
Loki Operator configuration. It is
ignored for other modes.

Loki configuration for Manual
mode. This is the most flexible
configuration. It is ignored for
other modes.

Loki configuration for
Microservices mode. Use this
option when Loki is installed using
the microservices deployment
mode
(https://grafana.com/docs/loki/la
test/fundamentals/architecture/
deployment-
modes/#microservices-mode). It
is ignored for other modes.

mode must be set according to
the installation mode of Loki:

- Use LokiStack when Lokiis
managed using the Loki Operator

- Use Monolithic when Loki is
installed as a monolithic workload

- Use Microservices when Loki
is installed as microservices, but
without Loki Operator

- Use Manual if none of the
options above match your setup

Loki configuration for
Monolithic mode. Use this
option when Loki is installed using
the monolithic deployment mode
(https://grafana.com/docs/loki/la
test/fundamentals/architecture/
deployment-modes/#monolithic-
mode). It is ignored for other
modes.

readTimeout is the maximum
console plugin loki query total
time limit. A timeout of zero
means no timeout.

157

https://grafana.com/docs/loki/latest/fundamentals/architecture/deployment-modes/#microservices-mode
https://grafana.com/docs/loki/latest/fundamentals/architecture/deployment-modes/#monolithic-mode

OpenShift Container Platform 4.14 Network Observability

Property Type Description

writeBatchSize integer writeBatchSize is the maximum
batch size (in bytes) of Loki logs
to accumulate before sending.

writeBatchWait string writeBatchWait is the maximum
time to wait before sending a Loki
batch.

writeTimeout string writeTimeout is the maximum

Loki time connection / request
limit. A timeout of zero means no
timeout.

15.1.54. .spec.loki.advanced

Description

advanced allows setting some aspects of the internal configuration of the Loki clients. This section is
aimed mostly for debugging and fine-grained performance optimizations.

Type
object

Property Type Description

staticLabels object (string) staticLabels is a map of
common labels to set on each
flow in Loki storage.

writeMaxBackoff string writeMaxBackoff is the
maximum backoff time for Loki
client connection between retries.

writeMaxRetries integer writeMaxRetries is the
maximum number of retries for
Loki client connections.

writeMinBackoff string writeMinBackoff is the initial

backoff time for Loki client
connection between retries.

15.1.55. .spec.loki.lokiStack

Description

158

CHAPTER 15. FLOWCOLLECTOR API REFERENCE

Loki configuration for LokiStack mode. This is useful for an easy Loki Operator configuration. It is
ignored for other modes.

Type
object
Required
® name
Property Type Description
name string Name of an existing LokiStack
resource to use.
namespace string Namespace where this

LokiStack resource is located. If
omitted, it is assumed to be the
same as spec.namespace.

15.1.56. .spec.loki.manual

Description

Loki configuration for Manual mode. This is the most flexible configuration. It is ignored for other
modes.

Property Description

authToken string authToken describes the way to
get a token to authenticate to
Loki.

- Disabled does not send any
token with the request.

- Forward forwards the user
token for authorization.

- Host [deprecated (*)] - uses
the local pod service account to
authenticate to Loki.

When using the Loki Operator,
this must be set to Forward.

159

OpenShift Container Platform 4.14 Network Observability

Property

ingesterUrl

querierUrl

statusTls

statusUrl

tenantiD

tls

160

Type

string

string

object

string

string

object

Description

ingesterUrl is the address of an
existing Loki ingester service to
push the flows to. When using the
Loki Operator, set it to the Loki
gateway service with the
network tenant set in path, for
example https://loki-gateway-
http.netobserv.svc:8080/api/logs
/V1/network.

querierUrl specifies the address
of the Loki querier service. When
using the Loki Operator, set it to
the Loki gateway service with the
network tenant set in path, for
example https://loki-gateway-
http.netobserv.svc:8080/api/logs
/V1/network.

TLS client configuration for Loki
status URL.

statusUrl specifies the address
of the Loki/ready, /metrics and
/config endpoints, in case it is
different from the Loki querier
URL. If empty, the querierUrl
value is used. This is useful to
show error messages and some
context in the frontend. When
using the Loki Operator, set it to
the Loki HTTP query frontend
service, for example https://loki-
query-frontend-
http.netobserv.svc:3100/.
statusTLS configuration is used
when statusUrl is set.

tenantID is the Loki X-Scope-
OrgID that identifies the tenant
for each request. When using the
Loki Operator, set it to hetwork,
which corresponds to a special
tenant mode.

TLS client configuration for Loki
URL.

https://loki-gateway-http.netobserv.svc:8080/api/logs/v1/network
https://loki-gateway-http.netobserv.svc:8080/api/logs/v1/network
https://loki-query-frontend-http.netobserv.svc:3100/

CHAPTER 15. FLOWCOLLECTOR API REFERENCE

15.1.57. .spec.loki.manual.statusTIs

Description
TLS client configuration for Loki status URL.
Type
object
Property Type Description
caCert object caCert defines the reference of
the certificate for the Certificate
Authority.
enable boolean Enable TLS
insecureSkipVerify boolean insecureSkipVerify allows
skipping client-side verification of
the server certificate. If set to
true, the caCert field is ignored.
userCert object userCert defines the user

certificate reference and is used
for mTLS. When you use one-way
TLS, you can ignore this property.

15.1.58. .spec.loki.manual.statusTls.caCert

Description

caCert defines the reference of the certificate for the Certificate Authority.

Type
object

Property Type Description

certFile string certFile defines the path to the
certificate file name within the
config map or secret.

certKey string certKey defines the path to the
certificate private key file name
within the config map or secret.
Omit when the key is not
necessary.

hame string Name of the config map or secret

containing certificates.

161

OpenShift Container Platform 4.14 Network Observability

Property Type Description

namespace string Namespace of the config map or
secret containing certificates. If
omitted, the default is to use the
same namespace as where
Network Observability is
deployed. If the namespace is
different, the config map or the
secret is copied so that it can be
mounted as required.

type string Type for the certificate reference:
configmap orsecret.

15.1.59. .spec.loki.manual.statusTIs.userCert

Description

userCert defines the user certificate reference and is used for mTLS. When you use one-way TLS,
you can ignore this property.

Type
object

Property Type Description

certFile string certFile defines the path to the
certificate file name within the
config map or secret.

certKey string certKey defines the path to the
certificate private key file name
within the config map or secret.
Omit when the key is not
necessary.

hame string Name of the config map or secret
containing certificates.

namespace string Namespace of the config map or

secret containing certificates. If
omitted, the default is to use the
same namespace as where
Network Observability is
deployed. If the namespace is
different, the config map or the
secret is copied so that it can be
mounted as required.

162

CHAPTER 15. FLOWCOLLECTOR API REFERENCE

Property Type Description

type string Type for the certificate reference:
configmap orsecret.

15.1.60. .spec.loki.manual.tls

Description
TLS client configuration for Loki URL.
Type
object
Property Type Description
caCert object caCert defines the reference of
the certificate for the Certificate
Authority.
enable boolean Enable TLS
insecureSkipVerify boolean insecureSkipVerify allows
skipping client-side verification of
the server certificate. If set to
true, the caCert field is ignored.
userCert object userCert defines the user

certificate reference and is used
for mTLS. When you use one-way
TLS, you can ignore this property.

15.1.61. .spec.loki.manual.tls.caCert

Description

caCert defines the reference of the certificate for the Certificate Authority.

Type
object
Property Type Description
certFile string certFile defines the path to the

certificate file name within the
config map or secret.

163

OpenShift Container Platform 4.14 Network Observability

Property Type Description

certKey string certKey defines the path to the
certificate private key file name
within the config map or secret.
Omit when the key is not
necessary.

hame string Name of the config map or secret
containing certificates.

namespace string Namespace of the config map or
secret containing certificates. If
omitted, the default is to use the
same namespace as where
Network Observability is
deployed. If the namespace is
different, the config map or the
secret is copied so that it can be
mounted as required.

type string Type for the certificate reference:
configmap orsecret.

15.1.62. .spec.loki.manual.tls.userCert

Description

userCert defines the user certificate reference and is used for mTLS. When you use one-way TLS,
you can ignore this property.

Type
object

Property Type Description

certFile string certFile defines the path to the
certificate file name within the
config map or secret.

certKey string certKey defines the path to the
certificate private key file name
within the config map or secret.
Omit when the key is not
necessary.

hame string Name of the config map or secret

containing certificates.

164

CHAPTER 15. FLOWCOLLECTOR API REFERENCE

Property Type Description

namespace string Namespace of the config map or
secret containing certificates. If
omitted, the default is to use the
same namespace as where
Network Observability is
deployed. If the namespace is
different, the config map or the
secret is copied so that it can be
mounted as required.

type string Type for the certificate reference:
configmap orsecret.

15.1.63. .spec.loki.microservices

Description

Loki configuration for Microservices mode. Use this option when Loki is installed using the
microservices deployment mode
(https://grafana.com/docs/loki/latest/fundamentals/architecture/deployment-
modes/#microservices-mode). It is ignored for other modes.

Type
object

Property Type Description

ingesterUrl string ingesterUrl is the address of an
existing Loki ingester service to
push the flows to.

querierUrl string querierURL specifies the
address of the Loki querier
service.

tenantID string tenantlD is the Loki X-Scope-

OrgID header that identifies the
tenant for each request.

tis object TLS client configuration for Loki
URL.

15.1.64. .spec.loki.microservices.tls

Description
TLS client configuration for Loki URL.

165

https://grafana.com/docs/loki/latest/fundamentals/architecture/deployment-modes/#microservices-mode

OpenShift Container Platform 4.14 Network Observability

Type
object

Property Type Description

caCert object caCert defines the reference of
the certificate for the Certificate
Authority.

enable boolean Enable TLS

insecureSkipVerify boolean insecureSkipVerify allows
skipping client-side verification of
the server certificate. If set to
true, the caCert field is ignored.

userCert object userCert defines the user

certificate reference and is used
for mTLS. When you use one-way
TLS, you can ignore this property.

15.1.65. .spec.loki.microservices.tls.caCert

Description

caCert defines the reference of the certificate for the Certificate Authority.

Type
object

Property Type Description

certFile string certFile defines the path to the
certificate file name within the
config map or secret.

certKey string certKey defines the path to the
certificate private key file name
within the config map or secret.
Omit when the key is not
necessary.

hame string Name of the config map or secret

containing certificates.

166

CHAPTER 15. FLOWCOLLECTOR API REFERENCE

Property Type Description

namespace string Namespace of the config map or
secret containing certificates. If
omitted, the default is to use the
same namespace as where
Network Observability is
deployed. If the namespace is
different, the config map or the
secret is copied so that it can be
mounted as required.

type string Type for the certificate reference:
configmap orsecret.

15.1.66. .spec.loki.microservices.tls.userCert

Description

userCert defines the user certificate reference and is used for mTLS. When you use one-way TLS,
you can ignore this property.

Type
object

Property Type Description

certFile string certFile defines the path to the
certificate file name within the
config map or secret.

certKey string certKey defines the path to the
certificate private key file name
within the config map or secret.
Omit when the key is not
necessary.

hame string Name of the config map or secret
containing certificates.

namespace string Namespace of the config map or

secret containing certificates. If
omitted, the default is to use the
same namespace as where
Network Observability is
deployed. If the namespace is
different, the config map or the
secret is copied so that it can be
mounted as required.

167

OpenShift Container Platform 4.14 Network Observability

Property Type Description

type string Type for the certificate reference:
configmap orsecret.

15.1.67. .spec.loki.monolithic

Description

Loki configuration for Monolithic mode. Use this option when Loki is installed using the monolithic
deployment mode (https://grafana.com/docs/loki/latest/fundamentals/architecture/deployment-
modes/#monolithic-mode). It is ignored for other modes.

Property Type Description

tenantID string tenantlD is the Loki X-Scope-
OrgID header that identifies the
tenant for each request.

tis object TLS client configuration for Loki
URL.
url string url is the unique address of an

existing Loki service that points to
both the ingester and the querier.

15.1.68. .spec.loki.monolithic.tls

Description
TLS client configuration for Loki URL.
Type
object
Property Type Description
caCert object caCert defines the reference of
the certificate for the Certificate
Authority.
enable boolean Enable TLS
insecureSkipVerify boolean insecureSkipVerify allows

skipping client-side verification of
the server certificate. If set to
true, the caCert field is ignored.

168

https://grafana.com/docs/loki/latest/fundamentals/architecture/deployment-modes/#monolithic-mode

CHAPTER 15. FLOWCOLLECTOR API REFERENCE

Property Type Description

userCert object userCert defines the user
certificate reference and is used
for mTLS. When you use one-way
TLS, you can ignore this property.

15.1.69. .spec.loki.monolithic.tls.caCert

Description

caCert defines the reference of the certificate for the Certificate Authority.

Property Type Description

certFile string certFile defines the path to the
certificate file name within the
config map or secret.

certKey string certKey defines the path to the
certificate private key file name
within the config map or secret.
Omit when the key is not
necessary.

hame string Name of the config map or secret
containing certificates.

namespace string Namespace of the config map or
secret containing certificates. If
omitted, the default is to use the
same namespace as where
Network Observability is
deployed. If the namespace is
different, the config map or the
secret is copied so that it can be
mounted as required.

type string Type for the certificate reference:
configmap orsecret.

15.1.70. .spec.loki.monolithic.tls.userCert

Description

userCert defines the user certificate reference and is used for mTLS. When you use one-way TLS,
you can ignore this property.

Type

169

OpenShift Container Platform 4.14 Network Observability

object
Property Type
certFile string
certKey string
name string
namespace string
type string

15.1.71. .spec.networkPolicy

Description

Description

certFile defines the path to the
certificate file name within the
config map or secret.

certKey defines the path to the
certificate private key file name
within the config map or secret.
Omit when the key is not
necessary.

Name of the config map or secret
containing certificates.

Namespace of the config map or
secret containing certificates. If
omitted, the default is to use the
same namespace as where
Network Observability is
deployed. If the namespace is
different, the config map or the
secret is copied so that it can be
mounted as required.

Type for the certificate reference:
configmap orsecret.

networkPolicy defines ingress network policy settings for Network Observability components

isolation.

Type
object

Property

Description

170

CHAPTER 15. FLOWCOLLECTOR API REFERENCE

Property Type Description

additionalNamespaces array (string) additionalNamespaces
contains additional namespaces
allowed to connect to the
Network Observability
namespace. It provides flexibility
in the network policy
configuration, but if you need a
more specific configuration, you
can disable it and install your own
instead.

enable boolean Set enable to true to deploy
network policies on the
namespaces used by Network
Observability (main and
privileged). It is disabled by
default. These network policies
better isolate the Network
Observability components to
prevent undesired connections to
them. To increase the security of
connections, enable this option or
create your own network policy.

15.1.72. .spec.processor

Description

processor defines the settings of the component that receives the flows from the agent, enriches
them, generates metrics, and forwards them to the Loki persistence layer and/or any available
exporter.

Type
object
Property Type Description
addZone boolean addZone allows availability zone

awareness by labelling flows with
their source and destination
zones. This feature requires the
"topology.kubernetes.io/zone"
label to be set on nodes.

171

OpenShift Container Platform 4.14 Network Observability

Property

advanced

clusterName

deduper

filters

imagePullPolicy

kafkaConsumerAutoscaler

172

Type

object

string

object

array

string

object

Description

advanced allows setting some
aspects of the internal
configuration of the flow
processor. This section is aimed
mostly for debugging and fine-
grained performance
optimizations, such as GOGC and
GOMAXPROCS environment
variables. Set these values at your
own risk.

clusterName is the name of the
cluster to appear in the flows
data. This is useful in a multi-
cluster context. When using
OpensShift Container Platform,
leave empty to make it
automatically determined.

deduper allows you to sample or
drop flows identified as
duplicates, in order to save on
resource usage.

filters lets you define custom
filters to limit the amount of
generated flows. These filters
provide more flexibility than the
eBPF Agent filters (in
spec.agent.ebpf.flowFilter),
such as allowing to filter by
Kubernetes namespace, but with
a lesser improvement in
performance.

imagePullPolicy is the
Kubernetes pull policy for the
image defined above

kafkaConsumerAutoscaler is
the spec of a horizontal pod
autoscaler to set up for
flowlogs-pipeline-
transformer, which consumes
Kafka messages. This setting is
ignored when Kafka is disabled.
Refer to HorizontalPodAutoscaler
documentation (autoscaling/v2).

CHAPTER 15. FLOWCOLLECTOR API REFERENCE

Property Type Description

kafkaConsumerBatchSize integer kafkaConsumerBatchSize
indicates to the broker the
maximum batch size, in bytes, that
the consumer accepts. Ignored
when not using Kafka. Default:

10MB.
kafkaConsumerQueueCapaci integer kafkaConsumerQueueCapac
ty ity defines the capacity of the

internal message queue used in
the Kafka consumer client.
Ignored when not using Kafka.

kafkaConsumerReplicas integer kafkaConsumerReplicas
defines the number of replicas
(pods) to start for flowlogs-
pipeline-transformer, which
consumes Kafka messages. This
setting is ignored when Kafka is
disabled.

logLevel string logLevel of the processor
runtime

173

OpenShift Container Platform 4.14 Network Observability

Property

logTypes

metrics

multiClusterDeployment

resources

174

Type

string

object

boolean

object

Description

logTypes defines the desired

record types to generate.
Possible values are:

- Flows to export regular
network flows. This is the default.

- Conversations to generate
events for started conversations,
ended conversations as well as
periodic "tick" updates. Note that
in this mode, Prometheus metrics
are not accurate on long-standing
conversations.

- EndedConversations to
generate only ended
conversations events. Note thatin
this mode, Prometheus metrics
are not accurate on long-standing
conversations.

- All to generate both network
flows and all conversations events.
It is not recommended due to the
impact on resources footprint.

Metrics define the processor
configuration regarding metrics

Set multiClusterDeployment
to true to enable multi clusters
feature. This adds clusterName
label to flows data

resources are the compute
resources required by this
container. For more information,
see
https://kubernetes.io/docs/conc
epts/configuration/manage-
resources-containers/

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/

Property

subnetLabels

Type

object

15.1.73. .spec.processor.advanced

Description

CHAPTER 15. FLOWCOLLECTOR API REFERENCE

Description

subnetLabels allows to define
custom labels on subnets and IPs
or to enable automatic labelling of
recognized subnets in OpenShift
Container Platform, which is used
to identify cluster external traffic.
When a subnet matches the
source or destination IP of a flow,
a corresponding field is added:
SrcSubnetLabel or
DstSubnetLabel.

advanced allows setting some aspects of the internal configuration of the flow processor. This
section is aimed mostly for debugging and fine-grained performance optimizations, such as GOGC
and GOMAXPROCS environment variables. Set these values at your own risk.

Type
object

Property

Description

conversationEndTimeout

conversationHeartbeatinterv
al

conversationTerminatingTim
eout

dropUnusedFields

string

string

string

boolean

conversationEndTimeout is
the time to wait after a network
flow is received, to consider the
conversation ended. This delay is
ignored when a FIN packet is
collected for TCP flows (see
conversationTerminatingTim
eout instead).

conversationHeartbeatinterv
al is the time to wait between
"tick" events of a conversation

conversationTerminatingTim
eout is the time to wait from
detected FIN flag to end a
conversation. Only relevant for
TCP flows.

dropUnusedFields
[deprecated (*)] this setting is not
used anymore.

175

OpenShift Container Platform 4.14 Network Observability

Property

enableKubeProbes

env

healthPort

port

profilePort

scheduling

secondaryNetworks

15.1.74. .spec.processor.advanced.scheduling

Description

scheduling controls how the pods are scheduled on nodes.

176

Type

boolean

object (string)

integer

integer

integer

object

array

Description

enableKubeProbes is a flag to
enable or disable Kubernetes
liveness and readiness probes

env allows passing custom
environment variables to
underlying components. Useful
for passing some very concrete
performance-tuning options, such
as GOGC and GOMAXPROCS,
that should not be publicly
exposed as part of the
FlowCollector descriptor, as they
are only useful in edge debug or
support scenarios.

healthPort s a collector HTTP
port in the Pod that exposes the
health check API

Port of the flow collector (host
port). By convention, some values
are forbidden. It must be greater
than 1024 and different from
4500, 4789 and 6081.

profilePort allows setting up a
Go pprof profiler listening to this
port

scheduling controls how the pods
are scheduled on nodes.

Defines secondary networks to be
checked for resources
identification. To guarantee a
correct identification, indexed
values must form an unique
identifier across the cluster. If the
same index is used by several
resources, those resources might
be incorrectly labeled.

CHAPTER 15. FLOWCOLLECTOR API REFERENCE

Type
object

Property Type Description

affinity object If specified, the pod's scheduling
constraints. For documentation,
refer to
https://kubernetes.io/docs/refer
ence/kubernetes-api/workload-
resources/pod-vl/#scheduling.

nodeSelector object (string) nodeSelector allows scheduling
of pods only onto nodes that have
each of the specified labels. For
documentation, refer to
https://kubernetes.io/docs/conc
epts/configuration/assign-pod-
node/.

priorityClassName string If specified, indicates the pod's
priority. For documentation, refer
to
https://kubernetes.io/docs/conc
epts/scheduling-eviction/pod-
priority-preemption/#how-to-
use-priority-and-preemption. If
not specified, default priority is
used, or zero if there is no default.

tolerations array tolerations is a list of tolerations
that allow the pod to schedule
onto nodes with matching taints.
For documentation, refer to
https://kubernetes.io/docs/refer
ence/kubernetes-api/workload-
resources/pod-vl/#scheduling.

15.1.75. .spec.processor.advanced.scheduling.affinity

Description

If specified, the pod's scheduling constraints. For documentation, refer to
https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-vl/#scheduling.

Type
object

15.1.76. .spec.processor.advanced.scheduling.tolerations

Description

177

https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-v1/#scheduling
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/
https://kubernetes.io/docs/concepts/scheduling-eviction/pod-priority-preemption/#how-to-use-priority-and-preemption
https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-v1/#scheduling
https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-v1/#scheduling

OpenShift Container Platform 4.14 Network Observability

tolerations is a list of tolerations that allow the pod to schedule onto nodes with matching taints. For
documentation, refer to https://kubernetes.io/docs/reference/kubernetes-api/workload-
resources/pod-vl/#scheduling.

Type
array

15.1.77. .spec.processor.advanced.secondaryNetworks

Description

Defines secondary networks to be checked for resources identification. To guarantee a correct
identification, indexed values must form an unique identifier across the cluster. If the same index is
used by several resources, those resources might be incorrectly labeled.

Type
array

15.1.78. .spec.processor.advanced.secondaryNetworks[]

Description
Type
object
Required
® index
® nhame
Property Type Description
index array (string) index is a list of fields to use for
indexing the pods. They should
form a unique Pod identifier
across the cluster. Can be any of:
MAC, IP, Interface. Fields
absent from the
'k8s.vl.cni.cncf.io/network-status'
annotation must not be added to
the index.
name string name should match the network
name as visible in the pods
annotation

'k8s.vl.cni.cncf.io/network-status'.

15.1.79. .spec.processor.deduper

Description

deduper allows you to sample or drop flows identified as duplicates, in order to save on resource
usage.

178

https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-v1/#scheduling

CHAPTER 15. FLOWCOLLECTOR API REFERENCE

Type
object

Property Type Description

mode string Set the Processor de-duplication
mode. It comes in addition to the
Agent-based deduplication, since
the Agent cannot de-duplicate
same flows reported from
different nodes.

- Use Drop to drop every flow
considered as duplicates, allowing
saving more on resource usage
but potentially losing some
information such as the network
interfaces used from peer, or
network events.

- Use Sample to randomly keep
only one flow on 50, which is the
default, among the ones
considered as duplicates. Thisis a
compromise between dropping
every duplicate or keeping every
duplicate. This sampling action
comes in addition to the Agent-
based sampling. If both Agent and
Processor sampling values are 50,
the combined sampling is 1:2500.

- Use Disabled to turn off
Processor-based de-duplication.

sampling integer sampling is the sampling ratio
when deduper mode is Sample.
For example, a value of 50 means
that 1flow in 50 is sampled.

15.1.80. .spec.processor.filters

Description

filters lets you define custom filters to limit the amount of generated flows. These filters provide
more flexibility than the eBPF Agent filters (in spec.agent.ebpf.flowFilter), such as allowing to filter
by Kubernetes namespace, but with a lesser improvement in performance.

Type
array

15.1.81. .spec.processor.filters[]

Description

179

OpenShift Container Platform 4.14 Network Observability

FLPFilterSet defines the desired configuration for FLP-based filtering satisfying all conditions.

Type
object

Property Type Description

outputTarget string If specified, these filters target a
single output: Loki, Metrics or
Exporters. By default, all outputs
are targeted.

query string A query that selects the network
flows to keep. More information
about this query language in
https://github.com/netobserv/flo
wlogs-
pipeline/blob/main/docs/filtering
.md.

sampling integer sampling is an optional sampling

ratio to apply to this filter. For
example, a value of 50 means
that 1 matching flow in 50 is
sampled.

15.1.82. .spec.processor.kafkaConsumerAutoscaler

Description

kafkaConsumerAutoscaler is the spec of a horizontal pod autoscaler to set up for flowlogs-
pipeline-transformer, which consumes Kafka messages. This setting is ignored when Kafka is
disabled. Refer to HorizontalPodAutoscaler documentation (autoscaling/v2).

Type
object
15.1.83. .spec.processor.metrics

Description
Metrics define the processor configuration regarding metrics
Type

object

Property Type Description

180

https://github.com/netobserv/flowlogs-pipeline/blob/main/docs/filtering.md

CHAPTER 15. FLOWCOLLECTOR API REFERENCE

Property Type Description

disableAlerts array (string) disableAlerts is a list of alerts
that should be disabled. Possible
values are:

NetObservNoFlows, which is
triggered when no flows are being
observed for a certain period.

NetObservLokiError, which is
triggered when flows are being
dropped due to Loki errors.

181

OpenShift Container Platform 4.14 Network Observability

Property Type
includelList array (string)
server object

15.1.84. .spec.processor.metrics.server

Description

Metrics server endpoint configuration for Prometheus scraper

Type

182

Description

includeList is a list of metric
names to specify which ones to
generate. The names correspond
to the names in Prometheus
without the prefix. For example,
namespace_egress_packets
_total shows up as
netobserv_namespace_egre
ss_packets_total in
Prometheus. Note that the more
metrics you add, the bigger is the
impact on Prometheus workload
resources. Metrics enabled by
default are:
namespace_flows_total,
node_ingress_bytes_total,
node_egress_bytes_total,
workload_ingress_bytes_tot
al,
workload_egress_bytes_tota
I,
namespace_drop_packets_t
otal (when PacketDrop feature
is enabled),
namespace_rtt_seconds
(when FIOWRTT feature is
enabled),
namespace_dns_latency_se
conds (when DNSTracking
feature is enabled),
namespace_network_policy
events_total (when
NetworkEvents feature is
enabled). More information, with
full list of available metrics:
https://github.com/netobserv/ne
twork-observability-
operator/blob/main/docs/Metric
s.md

Metrics server endpoint
configuration for Prometheus
scraper

https://github.com/netobserv/network-observability-operator/blob/main/docs/Metrics.md

CHAPTER 15. FLOWCOLLECTOR API REFERENCE

object
Property Type Description
port integer The metrics server HTTP port.
tis object TLS configuration.

15.1.85. .spec.processor.metrics.server.tls

Description
TLS configuration.
Type
object
Required
* type
Property Type Description
insecureSkipVerify boolean insecureSkipVerify allows
skipping client-side verification of
the provided certificate. If set to
true, the providedCaFile field is
ignored.
provided object TLS configuration when type is
set to Provided.
providedCaFile object Reference to the CA file when
type is set to Provided.
type string Select the type of TLS

configuration:

- Disabled (default) to not
configure TLS for the endpoint. -
Provided to manually provide
cert file and a key file.
[Unsupported (*)]. - Auto to use
OpensShift Container Platform
auto generated certificate using
annotations.

15.1.86. .spec.processor.metrics.server.tls.provided

Description

183

OpenShift Container Platform 4.14 Network Observability

TLS configuration when type is set to Provided.

Type
object

Property Type Description

certFile string certFile defines the path to the
certificate file name within the
config map or secret.

certKey string certKey defines the path to the
certificate private key file name
within the config map or secret.
Omit when the key is not
necessary.

hame string Name of the config map or secret
containing certificates.

namespace string Namespace of the config map or
secret containing certificates. If
omitted, the default is to use the
same namespace as where
Network Observability is
deployed. If the namespace is
different, the config map or the
secret is copied so that it can be
mounted as required.

type string Type for the certificate reference:
configmap orsecret.

15.1.87. .spec.processor.metrics.server.tls.providedCaFile

Description

Reference to the CA file when type is set to Provided.

Type
object

Property Type Description

file string File name within the config map
or secret.

hame string Name of the config map or secret

containing the file.

184

CHAPTER 15. FLOWCOLLECTOR API REFERENCE

Property Type Description

namespace string Namespace of the config map or
secret containing the file. If
omitted, the default is to use the
same namespace as where
Network Observability is
deployed. If the namespace is
different, the config map or the
secret is copied so that it can be
mounted as required.

type string Type for the file reference:
configmap orsecret.

15.1.88. .spec.processor.resources

Description

resources are the compute resources required by this container. For more information, see
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/

Type
object

Property Type Description

limits integer-or-string Limits describes the maximum
amount of compute resources
allowed. More info:
https://kubernetes.io/docs/conc
epts/configuration/manage-
resources-containers/

requests integer-or-string Requests describes the minimum
amount of compute resources
required. If Requests is omitted
for a container, it defaults to
Limits if that is explicitly specified,
otherwise to an implementation-
defined value. Requests cannot
exceed Limits. More info:
https://kubernetes.io/docs/conc
epts/configuration/manage-
resources-containers/

15.1.89. .spec.processor.subnetLabels

Description

185

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/

OpenShift Container Platform 4.14 Network Observability

subnetLabels allows to define custom labels on subnets and IPs or to enable automatic labelling of
recognized subnets in OpenShift Container Platform, which is used to identify cluster external traffic.
When a subnet matches the source or destination IP of a flow, a corresponding field is added:
SrcSubnetLabel or DstSubnetLabel.

Type
object

Property Type Description

customLabels array customLabels allows to
customize subnets and IPs
labelling, such as to identify
cluster-external workloads or web
services. If you enable
openShiftAutoDetect,
customLabels can override the
detected subnets in case they
overlap.

openShiftAutoDetect boolean openShiftAutoDetect allows,

when set to true, to detect
automatically the machines, pods
and services subnets based on
the OpenShift Container
Platform install configuration and
the Cluster Network Operator
configuration. Indirectly, this is a
way to accurately detect external
traffic: flows that are not labeled
for those subnets are external to
the cluster. Enabled by default on
OpenShift Container Platform.

15.1.90. .spec.processor.subnetLabels.customLabels

Description
customLabels allows to customize subnets and IPs labelling, such as to identify cluster-external
workloads or web services. If you enable openShiftAutoDetect, customLabels can override the
detected subnets in case they overlap.

Type
array

15.1.91. .spec.processor.subnetLabels.customLabels[]

Description

SubnetLabel allows to label subnets and IPs, such as to identify cluster-external workloads or web
services.

Type
object

186

CHAPTER 15. FLOWCOLLECTOR API REFERENCE

Required
e cidrs
® name
Property Type Description
cidrs array (string) List of CIDRs, such as
["1.2.3.4/32"].
nhame string Label name, used to flag

matching flows.

15.1.92. .spec.prometheus

Description

prometheus defines Prometheus settings, such as querier configuration used to fetch metrics from
the Console plugin.

Property Description

uerier object Prometheus queryin
querying
configuration, such as client
settings, used in the Console

plugin.

15.1.93. .spec.prometheus.querier

Description

Prometheus querying configuration, such as client settings, used in the Console plugin.

Property Type Description

187

OpenShift Container Platform 4.14 Network Observability

Property Type
enable boolean
manual object
mode string
timeout string

15.1.94. .spec.prometheus.querier.manual

Description

188

Description

When enable is true, the
Console plugin queries flow
metrics from Prometheus instead
of Loki whenever possible. It is
enbaled by default: set it to false
to disable this feature. The
Console plugin can use either Loki
or Prometheus as a data source
for metrics (see also spec.loki),
or both. Not all queries are
transposable from Loki to
Prometheus. Hence, if Lokiis
disabled, some features of the
plugin are disabled as well, such as
getting per-pod information or
viewing raw flows. If both
Prometheus and Loki are enabled,
Prometheus takes precedence
and Loki is used as a fallback for
queries that Prometheus cannot
handle. If they are both disabled,
the Console plugin is not
deployed.

Prometheus configuration for
Manual mode.

mode must be set according to
the type of Prometheus
installation that stores Network
Observability metrics:

- Use Auto to try configuring
automatically. In OpenShift
Container Platform, it uses the
Thanos querier from OpenShift
Container Platform Cluster
Monitoring

- Use Manual for a manual setup

timeout is the read timeout for
console plugin queries to
Prometheus. A timeout of zero
means no timeout.

CHAPTER 15. FLOWCOLLECTOR API REFERENCE

Prometheus configuration for Manual mode.

Type
object

Property Type Description

forwardUserToken boolean Set true to forward logged in user
token in queries to Prometheus

tis object TLS client configuration for
Prometheus URL.

url string url is the address of an existing

Prometheus service to use for
querying metrics.

15.1.95. .spec.prometheus.querier.manual.tls

Description

TLS client configuration for Prometheus URL.

Type
object

Property Type Description

caCert object caCert defines the reference of
the certificate for the Certificate
Authority.

enable boolean Enable TLS

insecureSkipVerify boolean insecureSkipVerify allows
skipping client-side verification of
the server certificate. If set to
true, the caCert field is ignored.

userCert object userCert defines the user

certificate reference and is used
for mTLS. When you use one-way
TLS, you can ignore this property.

15.1.96. .spec.prometheus.querier.manual.tls.caCert

Description

caCert defines the reference of the certificate for the Certificate Authority.

189

OpenShift Container Platform 4.14 Network Observability

Property Type Description

certFile string certFile defines the path to the
certificate file name within the
config map or secret.

certKey string certKey defines the path to the
certificate private key file name
within the config map or secret.
Omit when the key is not
necessary.

hame string Name of the config map or secret
containing certificates.

namespace string Namespace of the config map or
secret containing certificates. If
omitted, the default is to use the
same namespace as where
Network Observability is
deployed. If the namespace is
different, the config map or the
secret is copied so that it can be
mounted as required.

type string Type for the certificate reference:
configmap orsecret.

15.1.97. .spec.prometheus.querier.manual.tls.userCert

Description

userCert defines the user certificate reference and is used for mTLS. When you use one-way TLS,
you can ignore this property.

Type
object
Property Type Description
certFile string certFile defines the path to the
certificate file name within the
config map or secret.
certKey string certKey defines the path to the

certificate private key file name
within the config map or secret.
Omit when the key is not
necessary.

190

Property

name

namespace

type

Type

string

string

string

CHAPTER 15. FLOWCOLLECTOR API REFERENCE

Description

Name of the config map or secret
containing certificates.

Namespace of the config map or
secret containing certificates. If
omitted, the default is to use the
same namespace as where
Network Observability is
deployed. If the namespace is
different, the config map or the
secret is copied so that it can be
mounted as required.

Type for the certificate reference:
configmap orsecret.

191

OpenShift Container Platform 4.14 Network Observability

CHAPTER 16. FLOWMETRIC CONFIGURATION PARAMETERS

FlowMetric is the API allowing to create custom metrics from the collected flow logs.

16.1. FLOWMETRIC [FLOWS.NETOBSERV.IO/V1ALPHAT]

Description

FlowMetric is the APl allowing to create custom metrics from the collected flow logs.
Type

object

Property Description

apiVersion string APIVersion defines the versioned
schema of this representation of
an object. Servers should convert
recognized schemas to the latest
internal value, and might reject
unrecognized values. More info:
https://git.k8s.io/community/con
tributors/devel/sig-
architecture/api-
conventions.md#resources

kind string Kind is a string value representing
the REST resource this object
represents. Servers might infer
this from the endpoint the client
submits requests to. Cannot be
updated. In CamelCase. More
info:
https://git.k8s.io/community/con
tributors/devel/sig-
architecture/api-
conventions.md#types-kinds

metadata object Standard object’s metadata. More
info:
https://git.k8s.io/community/con
tributors/devel/sig-
architecture/api-
conventions.md#metadata

192

https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#resources
https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#types-kinds
https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata

CHAPTER 16. FLOWMETRIC CONFIGURATION PARAMETERS

Property Type Description

spec object FlowMetricSpec defines the
desired state of FlowMetric The
provided API allows you to
customize these metrics
according to your needs.

When adding new metrics or
modifying existing labels, you
must carefully monitor the
memory usage of Prometheus
workloads as this could potentially
have a high impact. Cf
https://rhobs-
handbook.netlify.app/products/o
penshiftmonitoring/telemetry.md
/#what-is-the-cardinality-of-a-
metric

To check the cardinality of all
Network Observability metrics,
run as promql:
count({name=~"netobserv.*"
}) by (name).

16.1.1. .metadata

Description

Standard object’s metadata. More info: https://git.k8s.io/community/contributors/devel/sig-
architecture/api-conventions.md#metadata

Type
object

16.1.2. .spec

Description

FlowMetricSpec defines the desired state of FlowMetric The provided API allows you to customize
these metrics according to your needs.

When adding new metrics or modifying existing labels, you must carefully monitor the memory usage
of Prometheus workloads as this could potentially have a high impact. Cf https://rhobs-
handbook.netlify.app/products/openshiftmonitoring/telemetry.md/#what-is-the-cardinality-of-a-
metric

To check the cardinality of all Network Observability metrics, run as promql:
count({name=~"netobserv.*"}) by (name).

Type

object

Required

193

https://rhobs-handbook.netlify.app/products/openshiftmonitoring/telemetry.md/#what-is-the-cardinality-of-a-metric
https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata
https://rhobs-handbook.netlify.app/products/openshiftmonitoring/telemetry.md/#what-is-the-cardinality-of-a-metric

OpenShift Container Platform 4.14 Network Observability

e metricName

* type

Property

buckets

charts

direction

divider

filters

flatten

194

Type

array (string)

array

string

string

array

array (string)

Description

Alist of buckets to use when type
is "Histogram". The list must be
parsable as floats. When not set,
Prometheus default buckets are
used.

Charts configuration, for the
OpensShift Container Platform
Console in the administrator view,
Dashboards menu.

Filter for ingress, egress or any
direction flows. When set to
Ingress, it is equivalent to adding
the regular expression filter on
FlowDirection: 0|2. When set to
Egress, it is equivalent to adding
the regular expression filter on
FlowDirection: 1|2.

When nonzero, scale factor
(divider) of the value. Metric value
= Flow value / Divider.

filters is a list of fields and values
used to restrict which flows are
taken into account. Refer to the
documentation for the list of
available fields:
https://docs.openshift.com/conta
iner-
platform/latest/observability/net
work_observability/json-flows-
format-reference.html.

flatten is a list of array-type fields
that must be flattened, such as
Interfaces or NetworkEvents.
Flattened fields generate one
metric per item in that field. For
instance, when flattening
Interfaces on a bytes counter, a
flow having Interfaces [br-ex,
ens5] increases one counter for
br-ex and another forens5.

https://docs.openshift.com/container-platform/latest/observability/network_observability/json-flows-format-reference.html

Property

labels

metricName

remap

CHAPTER 16. FLOWMETRIC CONFIGURATION PARAMETERS

Type

array (string)

string

object (string)

Description

labels is a list of fields that
should be used as Prometheus
labels, also known as dimensions.
From choosing labels results the
level of granularity of this metric,
and the available aggregations at
query time. It must be done
carefully as it impacts the metric
cardinality (cf https://rhobs-
handbook.netlify.app/products/o
penshiftmonitoring/telemetry.md
/#what-is-the-cardinality-of-a-
metric). In general, avoid setting
very high cardinality labels such as
IP or MAC addresses.
"SrcK8S_OwnerName" or
"Dstk8S_OwnerName" should be
preferred over "SrcK8S_Name" or
"DstK8S_Name" as much as
possible. Refer to the
documentation for the list of
available fields:
https://docs.openshift.com/conta
iner-
platform/latest/observability/net
work_observability/json-flows-
format-reference .html.

Name of the metric. In
Prometheus, it is automatically
prefixed with "netobserv_".

Set the remap property to use
different names for the generated
metric labels than the flow fields.
Use the origin flow fields as keys,
and the desired label names as
values.

195

https://rhobs-handbook.netlify.app/products/openshiftmonitoring/telemetry.md/#what-is-the-cardinality-of-a-metric
https://docs.openshift.com/container-platform/latest/observability/network_observability/json-flows-format-reference.html

OpenShift Container Platform 4.14 Network Observability

Property Type Description

type string Metric type: "Counter”,
"Histogram" or "Gauge". Use
"Counter" for any value that
increases over time and on which
you can compute a rate, such as
Bytes or Packets. Use
"Histogram" for any value that
must be sampled independently,
such as latencies. Use "Gauge" for
other values that don't
necessitate accuracy over time
(gauges are sampled only every N
seconds when Prometheus
fetches the metric).

valueField string valueField is the flow field that
must be used as a value for this
metric. This field must hold
numeric values. Leave empty to
count flows rather than a specific
value per flow. Refer to the
documentation for the list of
available fields:
https://docs.openshift.com/conta
iner-
platform/latest/observability/net
work_observability/json-flows-
format-reference.html.

16.1.3. .spec.charts

Description

Charts configuration, for the OpenShift Container Platform Console in the administrator view,
Dashboards menu.

Type
array

16.1.4. .spec.charts[]

Description

Configures charts / dashboard generation associated to a metric

Type
object

Required

e dashboardName

196

https://docs.openshift.com/container-platform/latest/observability/network_observability/json-flows-format-reference.html

® queries

o title

* type
Property Type
dashboardName string
queries array
sectionName string
title string
type string
unit string

16.1.5. .spec.charts[].queries

Description

CHAPTER 16. FLOWMETRIC CONFIGURATION PARAMETERS

Description

Name of the containing
dashboard. If this name does not
refer to an existing dashboard, a
new dashboard is created.

List of queries to be displayed on
this chart. If type is SingleStat
and multiple queries are provided,
this chart is automatically
expanded in several panels (one

per query).

Name of the containing
dashboard section. If this name
does not refer to an existing
section, a new section is created.
If sectionName is omitted or
empty, the chartis placed in the
global top section.

Title of the chart.

Type of the chart.

Unit of this chart. Only a few units
are currently supported. Leave
empty to use generic number.

List of queries to be displayed on this chart. If type is SingleStat and multiple queries are provided,
this chart is automatically expanded in several panels (one per query).

Type
array

16.1.6. .spec.charts[].queries[]

Description

Configures PromQL queries

Type

197

OpenShift Container Platform 4.14 Network Observability

object

Required

® |egend
e promQL

® top

Property

legend

promQL

top

16.1.7. .spec.filters

Description

198

Type

string

string

integer

Description

The query legend that applies to
each timeseries represented in
this chart. When multiple
timeseries are displayed, you
should set a legend that
distinguishes each of them. It can
be done with the following format:
{{ Label }}. For example, if the
promQL groups timeseries per
label such as:
sum(rate($SMETRIC[2m])) by
(Label1, Label2), you might
write as the legend: Label1={{
Label1 }}, Label2={{ Label2

13

The promQL query to be run
against Prometheus. If the chart
type is SingleStat, this query
should only return a single
timeseries. For other types, a top
7 is displayed. You can use
$METRIC to refer to the metric
defined in this resource. For
example:
sum(rate($METRIC[2m])). To
learn more about promQL, refer
to the Prometheus
documentation:
https://prometheus.io/docs/pro
metheus/latest/querying/basics/

Top N series to display per
timestamp. Does not apply to
SingleStat chart type.

https://prometheus.io/docs/prometheus/latest/querying/basics/

CHAPTER 16. FLOWMETRIC CONFIGURATION PARAMETERS

filters is a list of fields and values used to restrict which flows are taken into account. Refer to the
documentation for the list of available fields: https://docs.openshift.com/container-
platform/latest/observability/network_observability/json-flows-format-reference.html.

Type
array

16.1.8. .spec.filters[]

Description

Type
object

Required

o field

e matchType

Property Type Description

field string Name of the field to filter on
matchType string Type of matching to apply
value string Value to filter on. When

matchType is Equal or
NotEqual, you can use field
injection with $(SomeField) to
refer to any other field of the flow.

199

https://docs.openshift.com/container-platform/latest/observability/network_observability/json-flows-format-reference.html

OpenShift Container Platform 4.14 Network Observability

CHAPTER 17. NETWORK FLOWS FORMAT REFERENCE

These are the specifications for network flows format, used both internally and when exporting flows to
Kafka.

17.1. NETWORK FLOWS FORMAT REFERENCE

This is the specification of the network flows format. That format is used when a Kafka exporter is
configured, for Prometheus metrics labels as well as internally for the Loki store.

The "Filter ID" column shows which related name to use when defining Quick Filters (see
spec.consolePlugin.quickFilters in the FlowCollector specification).

The "Loki label" column is useful when querying Loki directly: label fields need to be selected using
stream selectors.

The "Cardinality" column gives information about the implied metric cardinality if this field was to be
used as a Prometheus label with the FlowMetrics API. Refer to the FlowMetrics documentation for
more information on using this API.

Description Filter ID Cardinal OpenTel
(13 emetry

Bytes number Number of bytes n/a no avoid bytes
DnsErr number Error number returned from DNS dns_er no fine dns.errn
no tracker ebpf hook function rno o
DnsFla number DNS flags for DNS record n/a no fine dns.flag
gs S
DnsFla string Parsed DNS header RCODEs dns fla no fine dns.resp
gsResp name g_resp onsecod
onseCo onse_c e
de ode
Dnsid number DNS record id dns_id no avoid dns.id
DnsLat number Time between a DNS request and dns lat no avoid dns.late
encyMs response, in milliseconds ency ncy
Dscp number Differentiated Services Code dscp no fine dscp

Point (DSCP) value

DstAdd string Destination IP address (ipv4 or dst_ad no avoid destinati
r ipv6) dress on.addre
ss

200

https://grafana.com/docs/loki/latest/logql/log_queries/#log-stream-selector

CHAPTER 17. NETWORK FLOWS FORMAT REFERENCE

Description Filter ID Cardinal OpenTel
13 emetry
DstK8S string Destination node IP dst ho no fine destinati
_Hostl st_add on.k8s.h
P ress ost.addr
ess
DstK8S string Destination node name dst ho no fine destinati
_HostN st_nam on.k8s.h
ame e ost.nam
e
DstK8S string Name of the destination dst_na no careful destinati
_Name Kubernetes object, such as Pod me on.k8s.n
name, Service name or Node ame
name.
DstK8S string Destination namespace dst _na yes fine destinati
_Name mespa on.k8s.n
space ce amespa
ce.name
DstK8S string Destination network name dst net no fine n/a
_Netwo work
rkName
DstK8S string Name of the destination owner, dst ow yes fine destinati
_Owner such as Deployment name, ner_na on.k8s.0
Name StatefulSet name, etc. me wner.na
me
DstK8S string Kind of the destination owner, dst kin no fine destinati
_Owner such as Deployment, StatefulSet, d on.k8s.0
Type etc. wner.kin
d
DstK8S string Kind of the destination dst kin yes fine destinati
_Type Kubernetes object, such as Pod, d on.k8s ki
Service or Node. nd
DstK8S string Destination availability zone dst_zo yes fine destinati
_Zone ne on.zone
DstMac string Destination MAC address dst ma no avoid destinati
c on.mac
DstPort number Destination port dst_po no careful destinati
rt on.port

201

OpenShift Container Platform 4.14 Network Observability

Description Filter ID Loki Cardinal OpenTel
label ity emetry
DstSub string Destination subnet label dst_su no fine n/a
netLab bnet_la
el bel
Flags string[] List of TCP flags comprisedinthe tcp_fla no careful tep.flags

flow, according to RFC-9293, with gs
additional custom flags to

represent the following per-

packet combinations:

- SYN_ACK

- FIN_ACK

- RST_ACK
FlowDir number Flow interpreted direction from node_d yes fine host.dire
ection the node observation point. Can irectio ction

be one of: n

- O: Ingress (incoming traffic, from
the node observation point)

- 1: Egress (outgoing traffic, from
the node observation point)

- 2:Inner (with the same source
and destination node)

IPSecSt string Status of the IPsec encryption (on ipsec_ no fine n/a
atus egress, given by the kernel status

xfrm_output function) or

decryption (oningress, via

xfrm_input)
IcmpCo number ICMP code icmp_c no fine icmp.co
de ode de
IlcmpTy number ICMP type icmp_t no fine icmp.typ
pe ype e
IfDirect number[Flow directions from the network ifdirect no fine interfac
ions] interface observation point. Can ions e.directi

be one of: ons

- O: Ingress (interface incoming

traffic)

- 1: Egress (interface outgoing

traffic)
Interfac string[] Network interfaces interfa no careful interfac
es ces e.names

202

CHAPTER 17. NETWORK FLOWS FORMAT REFERENCE

Description Filter ID Cardinal OpenTel
ity emetry

K8S Cl string Cluster name or identifier cluster yes fine k8s.clust
usterN _hame er.name
ame
K8S_FI string Flow layer: 'app’ or 'infra’ flow_la vyes fine k8s.layer
owLaye yer
r
Networ object[] Network events, such as network hetwor no avoid n/a
kEvent policy actions, composed of k_even
s nested fields: ts

- Feature (such as "acl" for
network policies)

- Type (such as an
"AdminNetworkPolicy")

- Namespace (namespace where
the event applies, if any)

- Name (name of the resource
that triggered the event)

- Action (such as "allow" or "drop")
- Direction (Ingress or Egress)

Packet number Number of packets n/a no avoid packets
S

PkitDro number Number of bytes dropped by the n/a no avoid drops.by
pBytes kernel tes
PktDro string Latest drop cause pkt_dr no fine drops.lat
pLatest op_cau estcaus
DropCa se e

use

PktDro number TCP flags on last dropped packet n/a no fine drops.lat
pLatest estflags
Flags

PktDro string TCP state on last dropped packet pkt_dr no fine drops.lat
pLatest op_stat eststate
State e

PkitDro number Number of packets dropped by n/a no avoid drops.pa
pPacke the kernel ckets

ts

203

OpenShift Container Platform 4.14 Network Observability

Description

Filter ID

Cardinal

ity

OpenTel
emetry

Proto

Sampli
ng

SrcAdd
r

SrcK8S
_Hostl
P

SrcK8S
_HostN
ame

SrcK8S
_Name

SrcK8S
_Name
space

SrcK8S
_Netwo
rkName

SrcK8S
_Owner
Name

SrcK8S
_Owner

Type
SrcK8S
_Type

SrcK8S
_Zone

204

number

number

string

string

string

string

string

string

string

string

string

string

L4 protocol

Sampling rate used for this flow

Source IP address (ipv4 or ipv6)

Source node IP

Source node name

Name of the source Kubernetes
object, such as Pod name, Service
name or Node name.

Source namespace

Source network name

Name of the source owner, such
as Deployment name, StatefulSet
name, etc.

Kind of the source owner, such as
Deployment, StatefulSet, etc.

Kind of the source Kubernetes
object, such as Pod, Service or
Node.

Source availability zone

protoc
ol

n/a

src_ad
dress

src_ho
st_add
ress

src_ho
st_nam

src_na
me

src_na
mespa
ce

src_net
work

src_ow
ner_na
me

src_kin
d

src_kin

src_zo
ne

no

no

no

no

no

no

yes

no

yes

no

yes

yes

fine

fine

avoid

fine

fine

careful

fine

fine

fine

fine

fine

fine

protocol

source.a
ddress

source.k
8s.host.
address

source.k
8s.host.
name

source.k
8s.name

source.k
8s.name
space.na
me

n/a

source.k
8s.owne
r.name

source.k
8s.owne
r.kind

source.k
8s.kind

source.z
one

CHAPTER 17. NETWORK FLOWS FORMAT REFERENCE

Description Filter ID Cardinal OpenTel
ity emetry
SrcMac string Source MAC address src_ma no avoid source.
c mac
SrcPort number Source port src_po no careful source.p
rt ort
SrcSub string Source subnet label src_su no fine n/a
netLab bnet_la
el bel
TimeFl number End timestamp of this flow, in n/a no avoid timeflow
owEnd milliseconds end
Ms
TimeFI number TCP Smoothed Round Trip Time time_fl no avoid tep.rtt
owRLitN (SRTT), in nanoseconds ow_rit
S
TimeFI number Start timestamp of this flow, in n/a no avoid timeflow
owStart milliseconds start
Ms
TimeRe number Timestamp when this flow was n/a no avoid timerec
ceived received and processed by the eived
flow collector, in seconds
Udns string[] List of User Defined Networks udns no careful n/a
XlatDst string packet translation destination xlat ds no avoid n/a
Addr address t_addr
ess
XlatDst number packet translation destination port ~ xlat_ds no careful n/a
Port t_port
XlatSrc string packet translation source address xlat_sr no avoid n/a
Addr c_addr
ess
XlatSrc number packet translation source port xlat_sr no careful n/a
Port c_port
Zoneld number packet translation zone id xlat zo no avoid n/a
ne_id

205

OpenShift Container Platform 4.14 Network Observability

Description Filter ID

Cardinal

ity

OpenTel
emetry

_Hashl string
d

_Recor string
dType

206

In conversation tracking, the id
conversation identifier

Type of record: flowLog for type
regular flow logs, or

newConnection, heartbeat,
endConnection for

conversation tracking

no

yes

avoid

fine

n/a

CHAPTER 18. TROUBLESHOOTING NETWORK OBSERVABILITY

CHAPTER 18. TROUBLESHOOTING NETWORK
OBSERVABILITY

To assist in troubleshooting network observability issues, you can perform some troubleshooting
actions.

18.1. USING THE MUST-GATHER TOOL

You can use the must-gather tool to collect information about the Network Observability Operator
resources and cluster-wide resources, such as pod logs, FlowCollector, and webhook configurations.

Procedure
1. Navigate to the directory where you want to store the must-gather data.

2. Run the following command to collect cluster-wide must-gather resources:

$ oc adm must-gather
--image-stream=openshift/must-gather \
--image=quay.io/netobserv/must-gather

18.2. CONFIGURING NETWORK TRAFFIC MENU ENTRY IN THE
OPENSHIFT CONTAINER PLATFORM CONSOLE

Manually configure the network traffic menu entry in the OpenShift Container Platform console when
the network traffic menu entry is not listed in Observe menu in the OpenShift Container Platform
console.

Prerequisites

® You have installed OpenShift Container Platform version 4.10 or newer.

Procedure

1. Check if the spec.consolePlugin.register field is set to true by running the following
command:

I $ oc -n netobserv get flowcollector cluster -o yaml

Example output

apiVersion: flows.netobserv.io/vialphai
kind: FlowCollector
metadata:
name: cluster
spec:
consolePlugin:
register: false

2. Optional: Add the netobserv-plugin plugin by manually editing the Console Operator config:

207

OpenShift Container Platform 4.14 Network Observability

I $ oc edit console.operator.openshift.io cluster

Example output

spec:
plugins:
- netobserv-plugin

3. Optional: Set the spec.consolePlugin.register field to true by running the following command:

I $ oc -n netobserv edit flowcollector cluster -0 yaml

Example output

apiVersion: flows.netobserv.io/vialphai
kind: FlowCollector
metadata:
name: cluster
spec:
consolePlugin:
register: true

4. Ensure the status of console pods is running by running the following command:

I $ oc get pods -n openshift-console -I app=console

5. Restart the console pods by running the following command:

I $ oc delete pods -n openshift-console -1 app=console

6. Clear your browser cache and history.

7. Check the status of network observability plugin pods by running the following command:

I $ oc get pods -n netobserv -l app=netobserv-plugin

Example output

NAME READY STATUS RESTARTS AGE
netobserv-plugin-68c7bbb9bb-b69g6 1/1 Running 0 21s

8. Check the logs of the network observability plugin pods by running the following command:

I $ oc logs -n netobserv -I app=netobserv-plugin

Example output

208

CHAPTER 18. TROUBLESHOOTING NETWORK OBSERVABILITY

time="2022-12-13T12:06:49Z" level=info msg="Starting netobserv-console-plugin [build
version: , build date: 2022-10-21 15:15] at log level info" module=main
time="2022-12-13T12:06:49Z" level=info msg="listening on https://:9001" module=server

18.3. FLOWLOGS-PIPELINE DOES NOT CONSUME NETWORK FLOWS
AFTER INSTALLING KAFKA

If you deployed the flow collector first with deploymentModel: KAFKA and then deployed Kafka, the
flow collector might not connect correctly to Kafka. Manually restart the flow-pipeline pods where
Flowlogs-pipeline does not consume network flows from Kafka.

Procedure

1. Delete the flow-pipeline pods to restart them by running the following command:

I $ oc delete pods -n netobserv -I app=flowlogs-pipeline-transformer

18.4. FAILING TO SEE NETWORK FLOWS FROM BOTHBR-INT AND BR-EX
INTERFACES

br-ex™ and br-int are virtual bridge devices operated at OSl layer 2. The eBPF agent works at the IP and
TCP levels, layers 3 and 4 respectively. You can expect that the eBPF agent captures the network
traffic passing through br-ex and br-int, when the network traffic is processed by other interfaces such
as physical host or virtual pod interfaces. If you restrict the eBPF agent network interfaces to attach
only to br-ex and br-int, you do not see any network flow.

Manually remove the part in the interfaces or excludelnterfaces that restricts the network interfaces
to br-int and br-ex.

Procedure

1. Remove the interfaces: ['br-int’, 'br-ex’] field. This allows the agent to fetch information from
all the interfaces. Alternatively, you can specify the Layer-3 interface for example, eth0. Run the
following command:

I $ oc edit -n netobserv flowcollector.yaml -o yami

Example output

apiVersion: flows.netobserv.io/vialphai
kind: FlowCollector
metadata:
name: cluster
spec:
agent:
type: EBPF
ebpf:
interfaces: ['br-int', 'br-ex'] ﬂ

ﬂ Specifies the network interfaces.

209

OpenShift Container Platform 4.14 Network Observability

18.5. NETWORK OBSERVABILITY CONTROLLER MANAGER POD RUNS
OUT OF MEMORY

You can increase memory limits for the Network Observability Operator by editing the
spec.config.resources.limits.memory specification in the Subscription object.

Procedure

1. In the web console, navigate to Operators — Installed Operators
2. Click Network Observability and then select Subscription.

3. From the Actions menu, click Edit Subscription.

a. Alternatively, you can use the CLI to open the YAML configuration for the Subscription
object by running the following command:

I $ oc edit subscription netobserv-operator -n openshift-netobserv-operator

4. Edit the Subscription object to add the config.resources.limits.memory specification and set
the value to account for your memory requirements. See the Additional resources for more
information about resource considerations:

apiVersion: operators.coreos.com/vialphai
kind: Subscription
metadata:
name: netobserv-operator
namespace: openshift-netobserv-operator
spec:
channel: stable
config:
resources:
limits:
memory: 800Mi 0
requests:
cpu: 100m
memory: 100Mi
installPlanApproval: Automatic
name: netobserv-operator
source: redhat-operators
sourceNamespace: openshift-marketplace

startingCSV: <network_observability_operator_latest _version> g

ﬂ For example, you can increase the memory limit to 800Mi.

This value should not be edited, but note that it changes depending on the most current
release of the Operator.

18.6. RUNNING CUSTOM QUERIES TO LOKI

For troubleshooting, can run custom queries to Loki. There are two examples of ways to do this, which
you can adapt according to your needs by replacing the <api_token> with your own.

210

CHAPTER 18. TROUBLESHOOTING NETWORK OBSERVABILITY

NOTE

These examples use the netobserv namespace for the Network Observability Operator
and Loki deployments. Additionally, the examples assume that the LokiStack is named
loki. You can optionally use a different namespace and naming by adapting the examples,
specifically the -n netobserv or the loki-gateway URL.

Prerequisites

® |[nstalled Loki Operator for use with Network Observability Operator

Procedure

® To get all available labels, run the following:

$ oc exec deployment/netobserv-plugin -n netobserv -- curl -G -s -H 'X-Scope-
OrglD:network' -H 'Authorization: Bearer <api_token>' -k https://loki-gateway-
http.netobserv.svc:8080/api/logs/vi/network/loki/api/vi/labels | jq

® To get all flows from the source namespace, my-namespace, run the following:

$ oc exec deployment/netobserv-plugin -n netobserv -- curl -G -s -H 'X-Scope-
OrglD:network' -H 'Authorization: Bearer <api_token>' -k https://loki-gateway-
http.netobserv.svc:8080/api/logs/vi/network/loki/api/v1/query --data-urlencode 'query=
{SrcK8S_Namespace="my-namespace"}' | jq

Additional resources

® Resource considerations

18.7. TROUBLESHOOTING LOKI RESOURCEEXHAUSTED ERROR

Loki may return a ResourceExhausted error when network flow data sent by network observability
exceeds the configured maximum message size. If you are using the Red Hat Loki Operator, this
maximum message size is configured to 100 MiB.

Procedure

1. Navigate to Operators = Installed Operators, viewing All projects from the Project drop-
down menu.

2. Inthe Provided APIs list, select the Network Observability Operator.

3. Click the Flow Collector then the YAML view tab.

a. If you are using the Loki Operator, check that the spec.loki.batchSize value does not
exceed 98 MiB.

b. If you are using a Loki installation method that is different from the Red Hat Loki Operator,
such as Grafana Loki, verify that the grpc_server_max_recv_msg_size Grafana Loki
server setting is higher than the FlowCollector resource spec.loki.batchSize value. If it is
not, you must either increase the grpc_server_max_recv_msg_size value, or decrease the
spec.loki.batchSize value so that it is lower than the limit.

21

https://grafana.com/docs/loki/latest/configure/#server

OpenShift Container Platform 4.14 Network Observability
4. Click Save if you edited the FlowCollector.

18.8. LOKI EMPTY RING ERROR

The Loki "empty ring" error results in flows not being stored in Loki and not showing up in the web
console. This error might happen in various situations. A single workaround to address them all does not
exist. There are some actions you can take to investigate the logs in your Loki pods, and verify that the
LokiStack is healthy and ready.

Some of the situations where this error is observed are as follows:

e After a LokiStack is uninstalled and reinstalled in the same namespace, old PVCs are not
removed, which can cause this error.

o Action: You can try removing the LokiStack again, removing the PVC, then reinstalling the
LokiStack.

® After a certificate rotation, this error can prevent communication with the flowlogs-pipeline
and console-plugin pods.

o Action: You can restart the pods to restore the connectivity.

18.9. RESOURCE TROUBLESHOOTING

18.10. LOKISTACK RATE LIMIT ERRORS

A rate-limit placed on the Loki tenant can result in potential temporary loss of data and a 429 error: Per
stream rate limit exceeded (limit:xMB/sec) while attempting to ingest for stream. You might
consider having an alert set to notify you of this error. For more information, see "Creating Loki rate limit
alerts for the NetObserv dashboard" in the Additional resources of this section.

You can update the LokiStack CRD with the perStreamRateLimit and perStreamRateLimitBurst
specifications, as shown in the following procedure.

Procedure

1. Navigate to Operators — Installed Operators, viewing All projects from the Project
dropdown.

2. Look for Loki Operator, and select the LokiStack tab.

3. Create or edit an existing LokiStack instance using the YAML view to add the
perStreamRateLimit and perStreamRateLimitBurst specifications:

apiVersion: loki.grafana.com/v1
kind: LokiStack
metadata:

name: loki

namespace: netobserv
spec:

limits:

global:
ingestion:
perStreamRateLimit: 6 ﬂ

212

CHAPTER 18. TROUBLESHOOTING NETWORK OBSERVABILITY

perStreamRateLimitBurst: 30 9
tenants:
mode: openshift-network
managementState: Managed

Q The default value for perStreamRateLimit is 3.

9 The default value for perStreamRateLimitBurst is 15.

4. Click Save.

Verification

Once you update the perStreamRateLimit and perStreamRateLimitBurst specifications, the pods in
your cluster restart and the 429 rate-limit error no longer occurs.

18.11. RUNNING A LARGE QUERY RESULTS IN LOKI ERRORS

When running large queries for a long time, Loki errors can occur, such as a timeout or too many
outstanding requests. There is no complete corrective for this issue, but there are several ways to
mitigate it:

Adapt your query to add an indexed filter

With Loki queries, you can query on both indexed and non-indexed fields or labels. Queries that
contain filters on labels perform better. For example, if you query for a particular Pod, which is not an
indexed field, you can add its Namespace to the query. The list of indexed fields can be found in the
"Network flows format reference", in the Loki label column.

Consider querying Prometheus rather than Loki

Prometheus is a better fit than Loki to query on large time ranges. However, whether or not you can
use Prometheus instead of Loki depends on the use case. For example, queries on Prometheus are
much faster than on Loki, and large time ranges do not impact performance. But Prometheus
metrics do not contain as much information as flow logs in Loki. The Network Observability
OpenShift web console automatically favors Prometheus over Loki if the query is compatible;
otherwise, it defaults to Loki. If your query does not run against Prometheus, you can change some
filters or aggregations to make the switch. In the OpenShift web console, you can force the use of
Prometheus. An error message is displayed when incompatible queries fail, which can help you figure
out which labels to change to make the query compatible. For example, changing a filter or an
aggregation from Resource or Pods to Owner.

Consider using the FlowMetrics API to create your own metric

If the data that you need isn't available as a Prometheus metric, you can use the FlowMetrics API to
create your own metric. For more information, see "FlowMetrics APl Reference" and "Configuring
custom metrics by using FlowMetric API".

Configure Loki to improve the query performance

If the problem persists, you can consider configuring Loki to improve the query performance. Some
options depend on the installation mode you used for Loki, such as using the Operator and
LokiStack, or Monolithic mode, or Microservices mode.

® |n LokiStack or Microservices modes, try increasing the number of querier replicas .

® Increase the query timeout. You must also increase the Network Observability read timeout
to Loki in the FlowCollector spec.loki.readTimeout.

213

https://loki-operator.dev/docs/api.md/#loki-grafana-com-v1-LokiComponentSpec
https://loki-operator.dev/docs/api.md/#loki-grafana-com-v1-QueryLimitSpec

OpenShift Container Platform 4.14 Network Observability

Additional resources

® Network flows format reference
® FlowMetric APl reference

e Configuring custom metrics by using FlowMetric API

214

	Table of Contents
	CHAPTER 1. NETWORK OBSERVABILITY OPERATOR RELEASE NOTES 1.9.3
	1.1. NETWORK OBSERVABILITY OPERATOR 1.9.3 ADVISORY

	CHAPTER 2. NETWORK OBSERVABILITY OPERATOR RELEASE NOTES 1.9.2
	2.1. NETWORK OBSERVABILITY OPERATOR 1.9.2 ADVISORY
	2.2. NETWORK OBSERVABILITY 1.9.2 BUG FIXES

	CHAPTER 3. NETWORK OBSERVABILITY OPERATOR RELEASE NOTES
	3.1. NETWORK OBSERVABILITY OPERATOR 1.9.1
	3.1.1. Bug fixes

	3.2. NETWORK OBSERVABILITY OPERATOR 1.9
	3.2.1. New features and enhancements
	3.2.1.1. User-defined networks with network observability
	3.2.1.2. Filter flowlogs at ingestion
	3.2.1.3. IPsec support
	3.2.1.4. Network Observability CLI

	3.2.2. Notable technical changes
	3.2.3. Technology Preview features
	3.2.3.1. eBPF Manager Operator with network observability

	3.2.4. CVE
	3.2.5. Bug fixes
	3.2.6. Known issues

	3.3. NETWORK OBSERVABILITY OPERATOR 1.8.1
	3.3.1. CVEs
	3.3.2. Bug fixes

	3.4. NETWORK OBSERVABILITY OPERATOR 1.8.0
	3.4.1. New features and enhancements
	3.4.1.1. Packet translation
	3.4.1.2. Network Observability CLI

	3.4.2. Bug fixes
	3.4.3. Known issues

	3.5. NETWORK OBSERVABILITY OPERATOR 1.7.0
	3.5.1. New features and enhancements
	3.5.1.1. OpenTelemetry support
	3.5.1.2. Network observability Developer perspective
	3.5.1.3. TCP flags filtering
	3.5.1.4. Network observability for OpenShift Virtualization
	3.5.1.5. Network policy deploys in the FlowCollector custom resource (CR)
	3.5.1.6. FIPS compliance
	3.5.1.7. eBPF agent enhancements
	3.5.1.8. Network Observability CLI

	3.5.2. Bug fixes
	3.5.3. Known issues

	3.6. NETWORK OBSERVABILITY OPERATOR 1.6.2
	3.6.1. CVEs
	3.6.2. Bug fixes
	3.6.3. Known issues

	3.7. NETWORK OBSERVABILITY OPERATOR 1.6.1
	3.7.1. CVEs
	3.7.2. Bug fixes

	3.8. NETWORK OBSERVABILITY OPERATOR 1.6.0
	3.8.1. New features and enhancements
	3.8.1.1. Enhanced use of Network Observability Operator without Loki
	3.8.1.2. Custom metrics API
	3.8.1.3. eBPF performance enhancements
	3.8.1.4. eBPF collection rule-based filtering

	3.8.2. Technology Preview features
	3.8.2.1. Network Observability CLI

	3.8.3. Bug fixes
	3.8.4. Known issues

	3.9. NETWORK OBSERVABILITY OPERATOR 1.5.0
	3.9.1. New features and enhancements
	3.9.1.1. DNS tracking enhancements
	3.9.1.2. Round-trip time (RTT)
	3.9.1.3. Metrics, dashboards, and alerts enhancements
	3.9.1.4. Improvements for network observability without Loki
	3.9.1.5. Availability zones
	3.9.1.6. Notable enhancements

	3.9.2. Bug fixes
	3.9.3. Known issues

	3.10. NETWORK OBSERVABILITY OPERATOR 1.4.2
	3.10.1. CVEs

	3.11. NETWORK OBSERVABILITY OPERATOR 1.4.1
	3.11.1. CVEs
	3.11.2. Bug fixes

	3.12. NETWORK OBSERVABILITY OPERATOR 1.4.0
	3.12.1. Channel removal
	3.12.2. New features and enhancements
	3.12.2.1. Notable enhancements
	3.12.2.2. Network observability without Loki
	3.12.2.3. DNS tracking
	3.12.2.4. SR-IOV support
	3.12.2.5. IPFIX exporter support
	3.12.2.6. Packet drops
	3.12.2.7. s390x architecture support

	3.12.3. Bug fixes
	3.12.4. Known issues

	3.13. NETWORK OBSERVABILITY OPERATOR 1.3.0
	3.13.1. Channel deprecation
	3.13.2. New features and enhancements
	3.13.2.1. Multi-tenancy in network observability
	3.13.2.2. Flow-based metrics dashboard
	3.13.2.3. Troubleshooting with the must-gather tool
	3.13.2.4. Multiple architectures now supported

	3.13.3. Deprecated features
	3.13.3.1. Deprecated configuration parameter setting

	3.13.4. Bug fixes
	3.13.5. Known issues

	3.14. NETWORK OBSERVABILITY OPERATOR 1.2.0
	3.14.1. Preparing for the next update
	3.14.2. New features and enhancements
	3.14.2.1. Histogram in Traffic Flows view
	3.14.2.2. Conversation tracking
	3.14.2.3. Network observability health alerts

	3.14.3. Bug fixes
	3.14.4. Known issue
	3.14.5. Notable technical changes

	3.15. NETWORK OBSERVABILITY OPERATOR 1.1.0
	3.15.1. Bug fix

	CHAPTER 4. ABOUT NETWORK OBSERVABILITY
	4.1. NETWORK OBSERVABILITY OPERATOR
	4.2. OPTIONAL DEPENDENCIES OF THE NETWORK OBSERVABILITY OPERATOR
	4.3. OPENSHIFT CONTAINER PLATFORM CONSOLE INTEGRATION
	4.3.1. Network observability metrics dashboards
	4.3.2. Network observability topology views
	4.3.3. Traffic flow tables

	4.4. NETWORK OBSERVABILITY CLI

	CHAPTER 5. INSTALLING THE NETWORK OBSERVABILITY OPERATOR
	5.1. NETWORK OBSERVABILITY WITHOUT LOKI
	5.2. INSTALLING THE LOKI OPERATOR
	5.2.1. Creating a secret for Loki storage
	5.2.2. Creating a LokiStack custom resource
	5.2.3. Creating a new group for the cluster-admin user role
	5.2.4. Custom admin group access
	5.2.5. Loki deployment sizing
	5.2.6. LokiStack ingestion limits and health alerts

	5.3. INSTALLING THE NETWORK OBSERVABILITY OPERATOR
	5.4. ENABLING MULTI-TENANCY IN NETWORK OBSERVABILITY
	5.5. IMPORTANT FLOW COLLECTOR CONFIGURATION CONSIDERATIONS
	5.5.1. Migrating removed stored versions of the FlowCollector CRD

	5.6. INSTALLING KAFKA (OPTIONAL)
	5.7. UNINSTALLING THE NETWORK OBSERVABILITY OPERATOR

	CHAPTER 6. NETWORK OBSERVABILITY OPERATOR IN OPENSHIFT CONTAINER PLATFORM
	6.1. VIEWING STATUSES
	6.2. NETWORK OBSERVABLITY OPERATOR ARCHITECTURE
	6.3. VIEWING NETWORK OBSERVABILITY OPERATOR STATUS AND CONFIGURATION

	CHAPTER 7. CONFIGURING THE NETWORK OBSERVABILITY OPERATOR
	7.1. VIEW THE FLOWCOLLECTOR RESOURCE
	7.2. CONFIGURING THE FLOW COLLECTOR RESOURCE WITH KAFKA
	7.3. EXPORT ENRICHED NETWORK FLOW DATA
	7.4. UPDATING THE FLOW COLLECTOR RESOURCE
	7.5. FILTER NETWORK FLOWS AT INGESTION
	7.5.1. eBPF agent filters
	7.5.2. Flowlogs-pipeline filters

	7.6. CONFIGURING QUICK FILTERS
	7.7. RESOURCE MANAGEMENT AND PERFORMANCE CONSIDERATIONS
	7.7.1. Resource considerations
	7.7.2. Total average memory and CPU usage

	CHAPTER 8. NETWORK POLICY
	8.1. CONFIGURING AN INGRESS NETWORK POLICY BY USING THE FLOWCOLLECTOR CUSTOM RESOURCE
	8.2. CREATING A NETWORK POLICY FOR NETWORK OBSERVABILITY

	CHAPTER 9. OBSERVING THE NETWORK TRAFFIC
	9.1. OBSERVING THE NETWORK TRAFFIC FROM THE OVERVIEW VIEW
	9.1.1. Working with the Overview view
	9.1.2. Configuring advanced options for the Overview view
	9.1.2.1. Managing panels and display

	9.1.3. Packet drop tracking
	9.1.3.1. Types of packet drops

	9.1.4. DNS tracking
	9.1.5. Round-Trip Time
	9.1.6. eBPF flow rule filter
	9.1.6.1. Ingress and egress traffic filtering
	9.1.6.2. Dashboard and metrics integrations
	9.1.6.3. Flow filter configuration parameters

	9.2. OBSERVING THE NETWORK TRAFFIC FROM THE TRAFFIC FLOWS VIEW
	9.2.1. Working with the Traffic flows view
	9.2.2. Configuring advanced options for the Traffic flows view
	9.2.2.1. Managing columns
	9.2.2.2. Exporting the traffic flow data

	9.2.3. Configuring IPsec with the FlowCollector custom resource
	9.2.4. Working with conversation tracking
	9.2.5. Working with packet drops
	9.2.6. Working with DNS tracking
	9.2.7. Working with RTT tracing
	9.2.7.1. Using the histogram

	9.2.8. Working with availability zones
	9.2.9. Filtering eBPF flow data using multiple rules
	9.2.10. Endpoint translation (xlat)
	9.2.11. Working with endpoint translation (xlat)

	9.3. OBSERVING THE NETWORK TRAFFIC FROM THE TOPOLOGY VIEW
	9.3.1. Working with the Topology view
	9.3.2. Configuring the advanced options for the Topology view
	9.3.2.1. Exporting the topology view

	9.4. FILTERING THE NETWORK TRAFFIC

	CHAPTER 10. USING METRICS WITH DASHBOARDS AND ALERTS
	10.1. VIEWING NETWORK OBSERVABILITY METRICS DASHBOARDS
	10.2. PREDEFINED METRICS
	10.3. NETWORK OBSERVABILITY METRICS
	10.4. CREATING ALERTS
	10.5. CUSTOM METRICS
	10.6. CONFIGURING CUSTOM METRICS BY USING FLOWMETRIC API
	10.7. CONFIGURING CUSTOM CHARTS USING FLOWMETRIC API
	10.8. DETECTING SYN FLOODING USING THE FLOWMETRIC API AND TCP FLAGS

	CHAPTER 11. MONITORING THE NETWORK OBSERVABILITY OPERATOR
	11.1. HEALTH DASHBOARDS
	11.2. HEALTH ALERTS
	11.3. VIEWING HEALTH INFORMATION
	11.3.1. Disabling health alerts

	11.4. CREATING LOKI RATE LIMIT ALERTS FOR THE NETOBSERV DASHBOARD
	11.5. USING THE EBPF AGENT ALERT

	CHAPTER 12. SCHEDULING RESOURCES
	12.1. NETWORK OBSERVABILITY DEPLOYMENT IN SPECIFIC NODES

	CHAPTER 13. SECONDARY NETWORKS
	13.1. PREREQUISITES
	13.2. CONFIGURING MONITORING FOR SR-IOV INTERFACE TRAFFIC
	13.3. CONFIGURING VIRTUAL MACHINE (VM) SECONDARY NETWORK INTERFACES FOR NETWORK OBSERVABILITY

	CHAPTER 14. NETWORK OBSERVABILITY CLI
	14.1. INSTALLING THE NETWORK OBSERVABILITY CLI
	14.1.1. About the Network Observability CLI
	14.1.2. Installing the Network Observability CLI

	14.2. USING THE NETWORK OBSERVABILITY CLI
	14.2.1. Capturing flows
	14.2.2. Capturing packets
	14.2.3. Capturing metrics
	14.2.4. Cleaning the Network Observability CLI

	14.3. NETWORK OBSERVABILITY CLI (OC NETOBSERV) REFERENCE
	14.3.1. Network Observability CLI usage
	14.3.1.1. Syntax
	14.3.1.2. Basic commands
	14.3.1.3. Flows capture options
	14.3.1.4. Packets capture options
	14.3.1.5. Metrics capture options

	CHAPTER 15. FLOWCOLLECTOR API REFERENCE
	15.1. FLOWCOLLECTOR API SPECIFICATIONS
	15.1.1. .metadata
	15.1.2. .spec
	15.1.3. .spec.agent
	15.1.4. .spec.agent.ebpf
	15.1.5. .spec.agent.ebpf.advanced
	15.1.6. .spec.agent.ebpf.advanced.scheduling
	15.1.7. .spec.agent.ebpf.advanced.scheduling.affinity
	15.1.8. .spec.agent.ebpf.advanced.scheduling.tolerations
	15.1.9. .spec.agent.ebpf.flowFilter
	15.1.10. .spec.agent.ebpf.flowFilter.rules
	15.1.11. .spec.agent.ebpf.flowFilter.rules[]
	15.1.12. .spec.agent.ebpf.metrics
	15.1.13. .spec.agent.ebpf.metrics.server
	15.1.14. .spec.agent.ebpf.metrics.server.tls
	15.1.15. .spec.agent.ebpf.metrics.server.tls.provided
	15.1.16. .spec.agent.ebpf.metrics.server.tls.providedCaFile
	15.1.17. .spec.agent.ebpf.resources
	15.1.18. .spec.consolePlugin
	15.1.19. .spec.consolePlugin.advanced
	15.1.20. .spec.consolePlugin.advanced.scheduling
	15.1.21. .spec.consolePlugin.advanced.scheduling.affinity
	15.1.22. .spec.consolePlugin.advanced.scheduling.tolerations
	15.1.23. .spec.consolePlugin.autoscaler
	15.1.24. .spec.consolePlugin.portNaming
	15.1.25. .spec.consolePlugin.quickFilters
	15.1.26. .spec.consolePlugin.quickFilters[]
	15.1.27. .spec.consolePlugin.resources
	15.1.28. .spec.exporters
	15.1.29. .spec.exporters[]
	15.1.30. .spec.exporters[].ipfix
	15.1.31. .spec.exporters[].kafka
	15.1.32. .spec.exporters[].kafka.sasl
	15.1.33. .spec.exporters[].kafka.sasl.clientIDReference
	15.1.34. .spec.exporters[].kafka.sasl.clientSecretReference
	15.1.35. .spec.exporters[].kafka.tls
	15.1.36. .spec.exporters[].kafka.tls.caCert
	15.1.37. .spec.exporters[].kafka.tls.userCert
	15.1.38. .spec.exporters[].openTelemetry
	15.1.39. .spec.exporters[].openTelemetry.fieldsMapping
	15.1.40. .spec.exporters[].openTelemetry.fieldsMapping[]
	15.1.41. .spec.exporters[].openTelemetry.logs
	15.1.42. .spec.exporters[].openTelemetry.metrics
	15.1.43. .spec.exporters[].openTelemetry.tls
	15.1.44. .spec.exporters[].openTelemetry.tls.caCert
	15.1.45. .spec.exporters[].openTelemetry.tls.userCert
	15.1.46. .spec.kafka
	15.1.47. .spec.kafka.sasl
	15.1.48. .spec.kafka.sasl.clientIDReference
	15.1.49. .spec.kafka.sasl.clientSecretReference
	15.1.50. .spec.kafka.tls
	15.1.51. .spec.kafka.tls.caCert
	15.1.52. .spec.kafka.tls.userCert
	15.1.53. .spec.loki
	15.1.54. .spec.loki.advanced
	15.1.55. .spec.loki.lokiStack
	15.1.56. .spec.loki.manual
	15.1.57. .spec.loki.manual.statusTls
	15.1.58. .spec.loki.manual.statusTls.caCert
	15.1.59. .spec.loki.manual.statusTls.userCert
	15.1.60. .spec.loki.manual.tls
	15.1.61. .spec.loki.manual.tls.caCert
	15.1.62. .spec.loki.manual.tls.userCert
	15.1.63. .spec.loki.microservices
	15.1.64. .spec.loki.microservices.tls
	15.1.65. .spec.loki.microservices.tls.caCert
	15.1.66. .spec.loki.microservices.tls.userCert
	15.1.67. .spec.loki.monolithic
	15.1.68. .spec.loki.monolithic.tls
	15.1.69. .spec.loki.monolithic.tls.caCert
	15.1.70. .spec.loki.monolithic.tls.userCert
	15.1.71. .spec.networkPolicy
	15.1.72. .spec.processor
	15.1.73. .spec.processor.advanced
	15.1.74. .spec.processor.advanced.scheduling
	15.1.75. .spec.processor.advanced.scheduling.affinity
	15.1.76. .spec.processor.advanced.scheduling.tolerations
	15.1.77. .spec.processor.advanced.secondaryNetworks
	15.1.78. .spec.processor.advanced.secondaryNetworks[]
	15.1.79. .spec.processor.deduper
	15.1.80. .spec.processor.filters
	15.1.81. .spec.processor.filters[]
	15.1.82. .spec.processor.kafkaConsumerAutoscaler
	15.1.83. .spec.processor.metrics
	15.1.84. .spec.processor.metrics.server
	15.1.85. .spec.processor.metrics.server.tls
	15.1.86. .spec.processor.metrics.server.tls.provided
	15.1.87. .spec.processor.metrics.server.tls.providedCaFile
	15.1.88. .spec.processor.resources
	15.1.89. .spec.processor.subnetLabels
	15.1.90. .spec.processor.subnetLabels.customLabels
	15.1.91. .spec.processor.subnetLabels.customLabels[]
	15.1.92. .spec.prometheus
	15.1.93. .spec.prometheus.querier
	15.1.94. .spec.prometheus.querier.manual
	15.1.95. .spec.prometheus.querier.manual.tls
	15.1.96. .spec.prometheus.querier.manual.tls.caCert
	15.1.97. .spec.prometheus.querier.manual.tls.userCert

	CHAPTER 16. FLOWMETRIC CONFIGURATION PARAMETERS
	16.1. FLOWMETRIC [FLOWS.NETOBSERV.IO/V1ALPHA1]
	16.1.1. .metadata
	16.1.2. .spec
	16.1.3. .spec.charts
	16.1.4. .spec.charts[]
	16.1.5. .spec.charts[].queries
	16.1.6. .spec.charts[].queries[]
	16.1.7. .spec.filters
	16.1.8. .spec.filters[]

	CHAPTER 17. NETWORK FLOWS FORMAT REFERENCE
	17.1. NETWORK FLOWS FORMAT REFERENCE

	CHAPTER 18. TROUBLESHOOTING NETWORK OBSERVABILITY
	18.1. USING THE MUST-GATHER TOOL
	18.2. CONFIGURING NETWORK TRAFFIC MENU ENTRY IN THE OPENSHIFT CONTAINER PLATFORM CONSOLE
	18.3. FLOWLOGS-PIPELINE DOES NOT CONSUME NETWORK FLOWS AFTER INSTALLING KAFKA
	18.4. FAILING TO SEE NETWORK FLOWS FROM BOTH BR-INT AND BR-EX INTERFACES
	18.5. NETWORK OBSERVABILITY CONTROLLER MANAGER POD RUNS OUT OF MEMORY
	18.6. RUNNING CUSTOM QUERIES TO LOKI
	18.7. TROUBLESHOOTING LOKI RESOURCEEXHAUSTED ERROR
	18.8. LOKI EMPTY RING ERROR
	18.9. RESOURCE TROUBLESHOOTING
	18.10. LOKISTACK RATE LIMIT ERRORS
	18.11. RUNNING A LARGE QUERY RESULTS IN LOKI ERRORS

