
OpenShift Container Platform 4.17

Network Observability

Configuring and using the Network Observability Operator in OpenShift Container
Platform

Last Updated: 2026-01-16

OpenShift Container Platform 4.17 Network Observability

Configuring and using the Network Observability Operator in OpenShift Container Platform

Legal Notice

Copyright © Red Hat.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Use the Network Observability Operator to observe and analyze network traffic flows for OpenShift
Container Platform clusters.

. .

. .

Table of Contents

CHAPTER 1. NETWORK OBSERVABILITY OPERATOR RELEASE NOTES
1.1. NETWORK OBSERVABILITY OPERATOR 1.10.1 ADVISORY
1.2. NETWORK OBSERVABILITY OPERATOR 1.10.1 CVES
1.3. NETWORK OBSERVABILITY OPERATOR 1.10.1 FIXED ISSUES
1.4. NETWORK OBSERVABILITY OPERATOR 1.10 ADVISORY
1.5. NETWORK OBSERVABILITY OPERATOR 1.10 NEW FEATURES AND ENHANCEMENTS

1.5.1. Network policy updates
1.5.2. Network Observability Operator CLI UI updates
1.5.3. Network observability console improvements
1.5.4. Performance improvements

1.6. NETWORK OBSERVABILITY OPERATOR 1.10 TECHNOLOGY PREVIEW FEATURES
1.6.1. Network Observability Operator custom alerts (Technology Preview)
1.6.2. Network Observability Operator Network Health dashboard (Technology Preview)

1.7. NETWORK OBSERVABILITY OPERATOR 1.10 REMOVED FEATURES
1.7.1. FlowCollector API version v1beta1 has been removed

1.8. NETWORK OBSERVABILITY OPERATOR 1.10 KNOWN ISSUES
1.8.1. Upgrading to 1.10 fails on OpenShift Container Platform 4.14 and earlier
1.8.2. eBPF agent compatibility with older OpenShift Container Platform versions
1.8.3. eBPF Agent fails to send flows with OpenShiftSDN when NetworkPolicy is enabled

1.9. NETWORK OBSERVABILITY OPERATOR 1.10 FIXED ISSUES
1.9.1. MetricName and Remap fields are validated
1.9.2. Improved html-to-image export performance
1.9.3. Improved warnings for eBPF privileged mode
1.9.4. Subnet labels added to OpenTelemetry exporter
1.9.5. Reduced default tolerations for network observability components

CHAPTER 2. NETWORK OBSERVABILITY OPERATOR RELEASE NOTES ARCHIVE
2.1. NETWORK OBSERVABILITY OPERATOR RELEASE NOTES ARCHIVE

2.1.1. Network Observability Operator 1.9.3 advisory
2.1.2. Network Observability Operator 1.9.2 advisory
2.1.3. Network observability 1.9.2 bug fixes
2.1.4. Network Observability Operator 1.9.1 advisory
2.1.5. Network Observability Operator 1.9.1 fixed issues
2.1.6. Network Observability Operator 1.9.0 advisory
2.1.7. Network Observability Operator 1.9.0 new features and enhancements

2.1.7.1. User-defined networks with network observability
2.1.7.2. Filter flowlogs at ingestion
2.1.7.3. IPsec support
2.1.7.4. Network Observability CLI

2.1.8. Network Observability Operator release notes 1.9.0 notable technical changes
2.1.9. Network Observability Operator 1.9.0 Technology Preview features

2.1.9.1. eBPF Manager Operator with network observability
2.1.10. Network Observability Operator 1.9.0 CVEs
2.1.11. Network Observability Operator 1.9.0 fixed issues
2.1.12. Network Observability Operator 1.9.0 known issues
2.1.13. Network Observability Operator 1.8.1 advisory
2.1.14. Network Observability Operator 1.8.1 CVEs
2.1.15. Network Observability Operator 1.8.1 fixed issues
2.1.16. Network Observability Operator 1.8.0 advisory
2.1.17. Network Observability Operator 1.8.0 new features and enhancements

2.1.17.1. Packet translation

10
10
10
10
11
11
11
11

12
12
12
12
12
12
12
13
13
14
14
14
14
15
15
15
15

16
16
16
16
16
16
16
17
17
17
17
17
18
18
18
18
18
19

20
20
20
20
20
20
20

Table of Contents

1

2.1.17.2. OVN-Kubernetes networking events tracking
2.1.17.3. eBPF performance improvements in 1.8
2.1.17.4. Network Observability CLI

2.1.18. Network Observability Operator release notes 1.8.0 fixed issues
2.1.19. Network Observability Operator release notes 1.8.0 known issues
2.1.20. Network Observability Operator 1.7.0 advisory
2.1.21. Network Observability Operator 1.7.0 new features and enhancements

2.1.21.1. OpenTelemetry support
2.1.21.2. Network observability Developer perspective
2.1.21.3. TCP flags filtering
2.1.21.4. Network observability for OpenShift Virtualization
2.1.21.5. Network policy deploys in the FlowCollector custom resource (CR)
2.1.21.6. FIPS compliance
2.1.21.7. eBPF agent enhancements
2.1.21.8. Network Observability CLI

2.1.22. Network Observability Operator 1.7.0 fixed issues
2.1.23. Network Observability Operator 1.7.0 known issues
2.1.24. Network Observability Operator release notes 1.6.2 advisory
2.1.25. Network Observability Operator release notes 1.6.2 CVEs
2.1.26. Network Observability Operator release notes 1.6.2 fixed issues
2.1.27. Network Observability Operator release notes 1.6.2 known issues
2.1.28. Network Observability Operator release notes 1.6.1 advisory
2.1.29. Network Observability Operator release notes 1.6.1 CVEs
2.1.30. Network Observability Operator release notes 1.6.1 fixed issues
2.1.31. Network Observability Operator release notes 1.6.0 advisory
2.1.32. Network Observability Operator 1.6.0 new features and enhancements

2.1.32.1. Enhanced use of Network Observability Operator without Loki
2.1.32.2. Custom metrics API
2.1.32.3. eBPF performance enhancements
2.1.32.4. eBPF collection rule-based filtering

2.1.33. Network Observability Operator 1.6.0 fixed issues
2.1.34. Network Observability Operator 1.6.0 known issues
2.1.35. Network Observability Operator 1.5.0 advisory
2.1.36. Network Observability Operator 1.5.0 new features and enhancements

2.1.36.1. DNS tracking enhancements
2.1.36.2. Round-trip time (RTT)
2.1.36.3. Metrics, dashboards, and alerts enhancements
2.1.36.4. Improvements for network observability without Loki
2.1.36.5. Availability zones
2.1.36.6. Notable enhancements
2.1.36.7. Performance enhancements
2.1.36.8. Web console enhancements:
2.1.36.9. Configuration enhancements:

2.1.37. Network Observability Operator 1.5.0 fixed issues
2.1.38. Network Observability Operator 1.5.0 known issues
2.1.39. Network Observability Operator 1.4.2 advisory
2.1.40. Network Observability Operator 1.4.2 CVEs
2.1.41. Network Observability Operator 1.4.1 advisory
2.1.42. Network Observability Operator release 1.4.1 CVEs
2.1.43. Network Observability Operator release notes 1.4.1 fixed issues
2.1.44. Network observability release notes 1.4.0 advisory
2.1.45. Network observability release notes 1.4.0 new features and enhancements

2.1.45.1. Notable enhancements

21
21
21
22
23
23
23
23
24
24
24
24
24
25
25
25
26
27
27
27
27
28
28
28
29
29
29
29
30
30
30
31
32
32
32
32
32
32
33
33
33
33
33
34
34
35
35
35
35
35
35
36
36

OpenShift Container Platform 4.17 Network Observability

2

. .

. .

2.1.45.2. Web console enhancements:
2.1.45.3. Configuration enhancements:
2.1.45.4. Network observability without Loki
2.1.45.5. DNS tracking
2.1.45.6. SR-IOV support
2.1.45.7. IPFIX exporter support
2.1.45.8. Packet drops
2.1.45.9. s390x architecture support

2.1.46. Network observability release notes 1.4.0 removed features
2.1.46.1. Channel removal

2.1.47. Network observability release notes 1.4.0 fixed issues
2.1.48. Network observability release notes 1.4.0 known issues
2.1.49. Network Observability Operator 1.3.0 advisory
2.1.50. Network Observability Operator 1.3.0 new features and enhancements

2.1.50.1. Multi-tenancy in network observability
2.1.50.2. Flow-based metrics dashboard
2.1.50.3. Troubleshooting with the must-gather tool
2.1.50.4. Multiple architectures now supported

2.1.51. Network Observability Operator 1.3.0 deprecated features
2.1.51.1. Channel deprecation
2.1.51.2. Deprecated configuration parameter setting

2.1.52. Network Observability Operator 1.3.0 fixed issues
2.1.53. Network Observability Operator 1.3.0 known issues
2.1.54. Network observability release notes 1.2.0 preparing for the next update
2.1.55. Network Observability Operator 1.2.0 advisory
2.1.56. Network Observability Operator 1.2.0 new features and enhancements

2.1.56.1. Histogram in Traffic Flows view
2.1.56.2. Conversation tracking
2.1.56.3. Network observability health alerts

2.1.57. Network Observability Operator 1.2.0 bug fixes
2.1.58. Network Observability Operator 1.2.0 known issues
2.1.59. Network Observability Operator 1.2.0 notable technical changes
2.1.60. Network Observability Operator 1.1.0 enhancements
2.1.61. Network Observability Operator 1.1.0 fixed issues
2.1.62. Additional resources

CHAPTER 3. ABOUT NETWORK OBSERVABILITY
3.1. NETWORK OBSERVABILITY OPERATOR
3.2. OPTIONAL DEPENDENCIES OF THE NETWORK OBSERVABILITY OPERATOR
3.3. OPENSHIFT CONTAINER PLATFORM CONSOLE INTEGRATION

3.3.1. Network observability metrics dashboards
3.3.2. Network observability topology views
3.3.3. Traffic flow tables

3.4. NETWORK OBSERVABILITY CLI

CHAPTER 4. INSTALLING THE NETWORK OBSERVABILITY OPERATOR
4.1. NETWORK OBSERVABILITY WITHOUT LOKI
4.2. INSTALLING THE LOKI OPERATOR

4.2.1. Creating a secret for Loki storage
4.2.2. Creating a LokiStack custom resource
4.2.3. Creating a new group for the cluster-admin user role
4.2.4. Custom admin group access
4.2.5. Loki deployment sizing

36
36
37
37
37
37
37
37
38
38
38
38
39
39
39
39
39
39
40
40
40
40
41
41
41
41
41

42
42
42
42
43
43
43
43

44
44
44
44
45
45
45
46

47
47
48
48
49
50
51
52

Table of Contents

3

. .

. .

. .

. .

4.2.6. LokiStack ingestion limits and health alerts
4.3. INSTALLING THE NETWORK OBSERVABILITY OPERATOR
4.4. ENABLING MULTI-TENANCY IN NETWORK OBSERVABILITY
4.5. IMPORTANT FLOW COLLECTOR CONFIGURATION CONSIDERATIONS

4.5.1. Migrating removed stored versions of the FlowCollector CRD
4.6. INSTALLING KAFKA (OPTIONAL)
4.7. UNINSTALLING THE NETWORK OBSERVABILITY OPERATOR

CHAPTER 5. NETWORK OBSERVABILITY OPERATOR IN OPENSHIFT CONTAINER PLATFORM
5.1. VIEWING STATUSES
5.2. NETWORK OBSERVABLITY OPERATOR ARCHITECTURE
5.3. VIEWING NETWORK OBSERVABILITY OPERATOR STATUS AND CONFIGURATION

CHAPTER 6. CONFIGURING THE NETWORK OBSERVABILITY OPERATOR
6.1. VIEW THE FLOWCOLLECTOR RESOURCE

6.1.1. Example of a FlowCollector resource
6.1.1.1. Sample FlowCollector resource

6.2. CONFIGURING THE FLOWCOLLECTOR RESOURCE WITH KAFKA
6.3. EXPORT ENRICHED NETWORK FLOW DATA
6.4. UPDATING THE FLOWCOLLECTOR RESOURCE
6.5. FILTER NETWORK FLOWS AT INGESTION

6.5.1. eBPF agent filters
6.5.2. Flowlogs-pipeline filters

6.6. CONFIGURING QUICK FILTERS
6.7. RESOURCE MANAGEMENT AND PERFORMANCE CONSIDERATIONS

6.7.1. Resource considerations
6.7.2. Total average memory and CPU usage

CHAPTER 7. NETWORK POLICY
7.1. CONFIGURING NETWORK POLICY BY USING THE FLOWCOLLECTOR CUSTOM RESOURCE

CHAPTER 8. OBSERVING THE NETWORK TRAFFIC
8.1. OBSERVING THE NETWORK TRAFFIC FROM THE OVERVIEW VIEW

8.1.1. Working with the Overview view
8.1.2. Configuring advanced options for the Overview view

8.1.2.1. Managing panels and display
8.1.3. Packet drop tracking

8.1.3.1. Types of packet drops
8.1.4. DNS tracking
8.1.5. Round-Trip Time
8.1.6. eBPF flow rule filter

8.1.6.1. Ingress and egress traffic filtering
8.1.6.2. Dashboard and metrics integrations
8.1.6.3. Flow filter configuration parameters

8.1.7. User-defined networks
8.1.8. OVN-Kubernetes networking events

8.2. OBSERVING THE NETWORK TRAFFIC FROM THE TRAFFIC FLOWS VIEW
8.2.1. Working with the Traffic flows view
8.2.2. Configuring advanced options for the Traffic flows view

8.2.2.1. Managing columns
8.2.2.2. Exporting the traffic flow data

8.2.3. Configuring IPsec with the FlowCollector custom resource
8.2.4. Working with conversation tracking
8.2.5. Working with packet drops

52
53
54
55
55
57
57

59
59
60
62

63
63
63
63
65
66
68
68
68
68
69
71
72
73

75
75

77
77
77
77
78
78
78
79
80
80
81
81
81

83
83
84
84
85
85
85
85
86
87

OpenShift Container Platform 4.17 Network Observability

4

. .

. .

. .

. .

. .

8.2.6. Working with DNS tracking
8.2.7. Working with RTT tracing
8.2.8. Working with the eBPF Manager Operator
8.2.9. Using the histogram
8.2.10. Working with availability zones
8.2.11. Filtering eBPF flow data using multiple rules
8.2.12. Endpoint translation (xlat)
8.2.13. Working with endpoint translation (xlat)
8.2.14. Working with user-defined networks
8.2.15. Viewing network events

8.3. OBSERVING THE NETWORK TRAFFIC FROM THE TOPOLOGY VIEW
8.3.1. Working with the Topology view
8.3.2. Configuring the advanced options for the Topology view

8.3.2.1. Exporting the topology view
8.4. FILTERING THE NETWORK TRAFFIC

CHAPTER 9. NETWORK OBSERVABILITY ALERTS
9.1. ABOUT NETWORK OBSERVABILITY ALERTS

9.1.1. List of default alert templates
9.1.2. Network Health dashboard

9.2. ENABLING TECHNOLOGY PREVIEW ALERTS IN NETWORK OBSERVABILITY
9.2.1. Configuring predefined alerts
9.2.2. About the PromQL expression for alerts

9.2.2.1. An example query for an alert in a surge of incoming traffic
9.2.2.2. Alert metadata fields

9.2.3. Creating custom alert rules
9.2.4. Disabling predefined alerts

CHAPTER 10. USING METRICS WITH DASHBOARDS AND ALERTS
10.1. VIEWING NETWORK OBSERVABILITY METRICS DASHBOARDS
10.2. NETWORK OBSERVABILITY METRICS
10.3. CREATING ALERTS
10.4. CUSTOM METRICS
10.5. CONFIGURING CUSTOM METRICS BY USING FLOWMETRIC API
10.6. CREATING METRICS FROM NESTED OR ARRAY FIELDS IN THE TRAFFIC FLOWS TABLE
10.7. CONFIGURING CUSTOM CHARTS USING FLOWMETRIC API
10.8. DETECTING SYN FLOODING USING THE FLOWMETRIC API AND TCP FLAGS

CHAPTER 11. MONITORING THE NETWORK OBSERVABILITY OPERATOR
11.1. HEALTH DASHBOARDS
11.2. HEALTH ALERTS
11.3. VIEWING HEALTH INFORMATION

11.3.1. Disabling health alerts
11.4. CREATING LOKI RATE LIMIT ALERTS FOR THE NETOBSERV DASHBOARD
11.5. USING THE EBPF AGENT ALERT

CHAPTER 12. SCHEDULING RESOURCES
12.1. NETWORK OBSERVABILITY DEPLOYMENT IN SPECIFIC NODES

CHAPTER 13. SECONDARY NETWORKS
13.1. PREREQUISITES
13.2. CONFIGURING MONITORING FOR SR-IOV INTERFACE TRAFFIC
13.3. CONFIGURING VIRTUAL MACHINE (VM) SECONDARY NETWORK INTERFACES FOR NETWORK
OBSERVABILITY

88
90
91

92
92
93
95
95
96
97
99
99

100
100
100

103
103
103
104
104
105
105
106
107
108
109

110
110
110
112
113
113
115
117
119

122
122
122
122
123
123
124

126
126

128
128
128

129

Table of Contents

5

. .

. .

CHAPTER 14. NETWORK OBSERVABILITY CLI
14.1. INSTALLING THE NETWORK OBSERVABILITY CLI

14.1.1. About the Network Observability CLI
14.1.2. Installing the Network Observability CLI

14.2. USING THE NETWORK OBSERVABILITY CLI
14.2.1. Capturing flows
14.2.2. Capturing packets
14.2.3. Capturing metrics
14.2.4. Cleaning the Network Observability CLI

14.3. NETWORK OBSERVABILITY CLI (OC NETOBSERV) REFERENCE
14.3.1. Network Observability CLI usage

14.3.1.1. Syntax
14.3.1.2. Basic commands
14.3.1.3. Flows capture options
14.3.1.4. Packets capture options
14.3.1.5. Metrics capture options

CHAPTER 15. FLOWCOLLECTOR API REFERENCE
15.1. FLOWCOLLECTOR API SPECIFICATIONS

15.1.1. .metadata
15.1.2. .spec
15.1.3. .spec.agent
15.1.4. .spec.agent.ebpf
15.1.5. .spec.agent.ebpf.advanced
15.1.6. .spec.agent.ebpf.advanced.scheduling
15.1.7. .spec.agent.ebpf.advanced.scheduling.affinity
15.1.8. .spec.agent.ebpf.advanced.scheduling.tolerations
15.1.9. .spec.agent.ebpf.flowFilter
15.1.10. .spec.agent.ebpf.flowFilter.rules
15.1.11. .spec.agent.ebpf.flowFilter.rules[]
15.1.12. .spec.agent.ebpf.metrics
15.1.13. .spec.agent.ebpf.metrics.server
15.1.14. .spec.agent.ebpf.metrics.server.tls
15.1.15. .spec.agent.ebpf.metrics.server.tls.provided
15.1.16. .spec.agent.ebpf.metrics.server.tls.providedCaFile
15.1.17. .spec.agent.ebpf.resources
15.1.18. .spec.consolePlugin
15.1.19. .spec.consolePlugin.advanced
15.1.20. .spec.consolePlugin.advanced.scheduling
15.1.21. .spec.consolePlugin.advanced.scheduling.affinity
15.1.22. .spec.consolePlugin.advanced.scheduling.tolerations
15.1.23. .spec.consolePlugin.autoscaler
15.1.24. .spec.consolePlugin.portNaming
15.1.25. .spec.consolePlugin.quickFilters
15.1.26. .spec.consolePlugin.quickFilters[]
15.1.27. .spec.consolePlugin.resources
15.1.28. .spec.exporters
15.1.29. .spec.exporters[]
15.1.30. .spec.exporters[].ipfix
15.1.31. .spec.exporters[].kafka
15.1.32. .spec.exporters[].kafka.sasl
15.1.33. .spec.exporters[].kafka.sasl.clientIDReference
15.1.34. .spec.exporters[].kafka.sasl.clientSecretReference

132
132
132
132
133
133
135
135
136
136
136
137
137
137
140
141

144
144
145
145
147
147
151
151
152
152
153
155
155
158
158
159
159
160
161
161

163
164
165
165
165
165
166
166
167
167
167
168
169
169
170
170

OpenShift Container Platform 4.17 Network Observability

6

15.1.35. .spec.exporters[].kafka.tls
15.1.36. .spec.exporters[].kafka.tls.caCert
15.1.37. .spec.exporters[].kafka.tls.userCert
15.1.38. .spec.exporters[].openTelemetry
15.1.39. .spec.exporters[].openTelemetry.fieldsMapping
15.1.40. .spec.exporters[].openTelemetry.fieldsMapping[]
15.1.41. .spec.exporters[].openTelemetry.logs
15.1.42. .spec.exporters[].openTelemetry.metrics
15.1.43. .spec.exporters[].openTelemetry.tls
15.1.44. .spec.exporters[].openTelemetry.tls.caCert
15.1.45. .spec.exporters[].openTelemetry.tls.userCert
15.1.46. .spec.kafka
15.1.47. .spec.kafka.sasl
15.1.48. .spec.kafka.sasl.clientIDReference
15.1.49. .spec.kafka.sasl.clientSecretReference
15.1.50. .spec.kafka.tls
15.1.51. .spec.kafka.tls.caCert
15.1.52. .spec.kafka.tls.userCert
15.1.53. .spec.loki
15.1.54. .spec.loki.advanced
15.1.55. .spec.loki.lokiStack
15.1.56. .spec.loki.manual
15.1.57. .spec.loki.manual.statusTls
15.1.58. .spec.loki.manual.statusTls.caCert
15.1.59. .spec.loki.manual.statusTls.userCert
15.1.60. .spec.loki.manual.tls
15.1.61. .spec.loki.manual.tls.caCert
15.1.62. .spec.loki.manual.tls.userCert
15.1.63. .spec.loki.microservices
15.1.64. .spec.loki.microservices.tls
15.1.65. .spec.loki.microservices.tls.caCert
15.1.66. .spec.loki.microservices.tls.userCert
15.1.67. .spec.loki.monolithic
15.1.68. .spec.loki.monolithic.tls
15.1.69. .spec.loki.monolithic.tls.caCert
15.1.70. .spec.loki.monolithic.tls.userCert
15.1.71. .spec.networkPolicy
15.1.72. .spec.processor
15.1.73. .spec.processor.advanced
15.1.74. .spec.processor.advanced.scheduling
15.1.75. .spec.processor.advanced.scheduling.affinity
15.1.76. .spec.processor.advanced.scheduling.tolerations
15.1.77. .spec.processor.advanced.secondaryNetworks
15.1.78. .spec.processor.advanced.secondaryNetworks[]
15.1.79. .spec.processor.deduper
15.1.80. .spec.processor.filters
15.1.81. .spec.processor.filters[]
15.1.82. .spec.processor.kafkaConsumerAutoscaler
15.1.83. .spec.processor.metrics
15.1.84. .spec.processor.metrics.alerts
15.1.85. .spec.processor.metrics.alerts[]
15.1.86. .spec.processor.metrics.alerts[].variants
15.1.87. .spec.processor.metrics.alerts[].variants[]

171
171
172
173
174
174
174
175
175
176
176
177
178
178
179
179
180
181

182
184
184
185
187
187
188
189
189
190
191
191

192
193
194
194
195
195
196
197

200
202
203
203
203
203
204
205
205
206
206
208
209
209
209

Table of Contents

7

. .

. .

. .

15.1.88. .spec.processor.metrics.alerts[].variants[].thresholds
15.1.89. .spec.processor.metrics.server
15.1.90. .spec.processor.metrics.server.tls
15.1.91. .spec.processor.metrics.server.tls.provided
15.1.92. .spec.processor.metrics.server.tls.providedCaFile
15.1.93. .spec.processor.resources
15.1.94. .spec.processor.subnetLabels
15.1.95. .spec.processor.subnetLabels.customLabels
15.1.96. .spec.processor.subnetLabels.customLabels[]
15.1.97. .spec.prometheus
15.1.98. .spec.prometheus.querier
15.1.99. .spec.prometheus.querier.manual
15.1.100. .spec.prometheus.querier.manual.tls
15.1.101. .spec.prometheus.querier.manual.tls.caCert
15.1.102. .spec.prometheus.querier.manual.tls.userCert

CHAPTER 16. FLOWMETRIC CONFIGURATION PARAMETERS
16.1. FLOWMETRIC [FLOWS.NETOBSERV.IO/V1ALPHA1]

16.1.1. .metadata
16.1.2. .spec
16.1.3. .spec.charts
16.1.4. .spec.charts[]
16.1.5. .spec.charts[].queries
16.1.6. .spec.charts[].queries[]
16.1.7. .spec.filters
16.1.8. .spec.filters[]

CHAPTER 17. NETWORK FLOWS FORMAT REFERENCE
17.1. NETWORK FLOWS FORMAT REFERENCE

CHAPTER 18. TROUBLESHOOTING NETWORK OBSERVABILITY
18.1. USING THE MUST-GATHER TOOL
18.2. CONFIGURING NETWORK TRAFFIC MENU ENTRY IN THE OPENSHIFT CONTAINER PLATFORM
CONSOLE
18.3. FLOWLOGS-PIPELINE DOES NOT CONSUME NETWORK FLOWS AFTER INSTALLING KAFKA
18.4. FAILING TO SEE NETWORK FLOWS FROM BOTH BR-INT AND BR-EX INTERFACES
18.5. NETWORK OBSERVABILITY CONTROLLER MANAGER POD RUNS OUT OF MEMORY
18.6. RUNNING CUSTOM QUERIES TO LOKI
18.7. TROUBLESHOOTING LOKI RESOURCEEXHAUSTED ERROR
18.8. LOKI EMPTY RING ERROR
18.9. RESOURCE TROUBLESHOOTING
18.10. LOKISTACK RATE LIMIT ERRORS
18.11. RUNNING A LARGE QUERY RESULTS IN LOKI ERRORS

210
211
211
212
213
213
214
215
215
216
216
217
218
218
219

221
221
222
222
225
225
226
226
227
228

229
229

236
236

236
238
238
239
240
240
241
241
241
242

OpenShift Container Platform 4.17 Network Observability

8

Table of Contents

9

CHAPTER 1. NETWORK OBSERVABILITY OPERATOR RELEASE
NOTES

The Network Observability Operator enables administrators to observe and analyze network traffic flows
for OpenShift Container Platform clusters.

These release notes track the development of the Network Observability Operator in the OpenShift
Container Platform.

For an overview of the Network Observability Operator, see About network observability.

1.1. NETWORK OBSERVABILITY OPERATOR 1.10.1 ADVISORY

You can review the advisory for Network Observability Operator 1.10.1 release.

RHEA-2025:22761 Network Observability Operator 1.10.1

1.2. NETWORK OBSERVABILITY OPERATOR 1.10.1 CVES

You can review the CVEs for the Network Observability Operator 1.10.1 release.

CVE-2025-47907

1.3. NETWORK OBSERVABILITY OPERATOR 1.10.1 FIXED ISSUES

The Network Observability Operator 1.10.1 release contains several fixed issues that improve
performance and the user experience.

Warning Generated for Direct Mode on Clusters Over 15 Nodes

Before this update, the recommendation against using the Direct deployment model on large
clusters was only available in the documentation.
With this release, the Network Observability Operator now generates a warning when the Direct
deployment mode is used on a cluster exceeding 15 nodes.

NETOBSERV-2460

Network policy deployment disabled on OpenShiftSDN

Before this update, when OpenShift SDN was the cluster network plugin, enabling the
FlowCollector network policy would break communication between network observability pods. This
issue does not occur with OVN-Kubernetes, which is the default supported network plugin.
With this release, the Network Observability Operator no longer attempts to deploy the network
policy when OpenShift SDN is detected; a warning is displayed instead. Additionally, the default
value for enabling the network policy is modified: it is now enabled by default only when OVN-
Kubernetes is detected as the cluster network plugin.

NETOBSERV-2450

Validation added for subnet label characters

Before this update, there were no restrictions on characters allowed in the subnet labels "name"
configuration, meaning users could enter text containing spaces or special characters. This
generated errors in the web console plugin when users tried to apply filters, and clicking the filter
icon for a subnet label often failed.

With this release, the configured subnet label name is validated immediately when configured in the

OpenShift Container Platform 4.17 Network Observability

10

https://access.redhat.com/errata/RHEA-2025:22761
https://access.redhat.com/security/cve/cve-2025-47907
https://issues.redhat.com/browse/NETOBSERV-2460
https://issues.redhat.com/browse/NETOBSERV-2450

With this release, the configured subnet label name is validated immediately when configured in the
FlowCollector custom resource. The validation ensures the name contains only alphanumeric
characters, :, _, and -. As a result, filtering on subnet labels from the web console plugin now works as
expected.

NETOBSERV-2438

Network Observability CLI uses unique temporary directory per run

Before this update, the Network Observability CLI created or reused a single temporary (tmp)
directory in the current working directory. This could lead to conflicts or data corruption between
separate runs.
With this release, the Network Observability CLI now creates a unique temporary directory for each
run, preventing potential conflicts and improving file management hygiene.

NETOBSERV-2481

1.4. NETWORK OBSERVABILITY OPERATOR 1.10 ADVISORY

Review the advisory that is available for the Network Observability Operator 1.10:

RHEA-2025:19153 Network Observability Operator 1.10

1.5. NETWORK OBSERVABILITY OPERATOR 1.10 NEW FEATURES AND
ENHANCEMENTS

The Network Observability Operator 1.10 release enhances security, improves performance, and
introduces new CLI UI tools for better network flow management.

1.5.1. Network policy updates

The Network Observability Operator now supports configuring both ingress and egress network policies
to control pod traffic. This enhancement improves security.

By default, the spec.NetworkPolicy.enable specification is now set to true. This means that if you use
Loki or Kafka, it is recommended that you deploy the Loki Operator and Kafka instances into dedicated
namespaces. This ensures that the network policies can be configured correctly to allow communication
between all components.

1.5.2. Network Observability Operator CLI UI updates

This release brings the following new features and updates to the Network Observability Operator CLI
(oc netobserv) user interface (UI):

Table view enhancements

Customizable columns: Click Manage Columns to select which columns to display, and tailor the
table to your needs.

Smart filtering: Live filters now include auto-suggestions, making it easier to select the right
keys and values.

Packet preview: When capturing packets, click a row to inspect the pcap content directly.

CHAPTER 1. NETWORK OBSERVABILITY OPERATOR RELEASE NOTES

11

https://issues.redhat.com/browse/NETOBSERV-2438
https://issues.redhat.com/browse/NETOBSERV-2481
https://access.redhat.com/errata/RHEA-2025:19153

Terminal-based line charts enhancements

Metrics visualization: Real-time graphs are rendered directly in the CLI.

Panel selection: Choose from predefined views or customize views by using the Manage Panels
pop-up menu to selectively view charts of specific metrics.

1.5.3. Network observability console improvements

The network observability console plugin includes a new view to configure the FlowCollector custom
resource (CR). From this view, you can complete the following tasks:

Configure the FlowCollector CR.

Calculate your resource footprint.

Gain increased of issues such as configuration warnings or high metrics cardinality.

1.5.4. Performance improvements

Network Observability Operator 1.10 has improved the performance and memory footprint of the
Operator, especially visible on large clusters.

1.6. NETWORK OBSERVABILITY OPERATOR 1.10 TECHNOLOGY
PREVIEW FEATURES

1.6.1. Network Observability Operator custom alerts (Technology Preview)

This release introduces new alert functionality, and custom alert configuration. These capabilities are
Technology Preview features, and must be explicitly enabled.

To view the new alerts, in the OpenShift Container Platform web console, click Observe → Alerting →
Alerting rules.

1.6.2. Network Observability Operator Network Health dashboard (Technology
Preview)

When you enable the Technology Preview alerts functionality in the Network Observability Operator, you
can view a a new Network Health dashboard in the OpenShift Container Platform web console by
clicking Observe.

The Network Health dashboard provides a summary of triggered alerts, distinguishing between critical,
warning, and minor issues, and also shows pending alerts.

1.7. NETWORK OBSERVABILITY OPERATOR 1.10 REMOVED FEATURES

Review the removed features that might affect your use of the Network Observability Operator 1.10
release.

1.7.1. FlowCollector API version v1beta1 has been removed

The FlowCollector custom resource (CR) API version v1beta1 has been removed and is no longer
supported. Use the v1beta2 version.

OpenShift Container Platform 4.17 Network Observability

12

1.8. NETWORK OBSERVABILITY OPERATOR 1.10 KNOWN ISSUES

Review the following known issues and their recommended workarounds (where available) that might
affect your use of the Network Observability Operator 1.10 release.

1.8.1. Upgrading to 1.10 fails on OpenShift Container Platform 4.14 and earlier

Upgrading to the Network Observability Operator 1.10 on OpenShift Container Platform 4.14 and earlier
can fail due to a FlowCollector custom resource definition (CRD) validation error in the software
catalog.

To workaround this problem, you must:

1. Uninstall both versions of the Network Observability Operator from the software catalog in the
OpenShift Container Platform web console.

a. Keep the FlowCollector CRD installed so that it doesn’t cause any disruption in the flow
collection process.

2. Check the current name of the FlowCollector CRD by running the following command:

Expected output:

3. Check the current serving status of the FlowCollector CRD by running the following command:

Expected output:

4. Set the served flag for the v1beta1 version to false by running the following command:

5. Verify that the served flag is set to false by running the following command:

Expected output:

6. Install Network Observability Operator 1.10.

OCPBUGS-63208, NETOBSERV-2451

$ oc get crd flowcollectors.flows.netobserv.io -o jsonpath='{.spec.versions[0].name}'

v1beta1

$ oc get crd flowcollectors.flows.netobserv.io -o jsonpath='{.spec.versions[0].served}'

true

$ oc patch crd flowcollectors.flows.netobserv.io --type='json' -p "[{'op': 'replace', 'path':
'/spec/versions/0/served', 'value': false}]"

$ oc get crd flowcollectors.flows.netobserv.io -o jsonpath='{.spec.versions[0].served}'

false

CHAPTER 1. NETWORK OBSERVABILITY OPERATOR RELEASE NOTES

13

https://issues.redhat.com/browse/OCPBUGS-63208
https://issues.redhat.com/browse/NETOBSERV-2451

1.8.2. eBPF agent compatibility with older OpenShift Container Platform versions

The eBPF agent used in the Network Observability Command Line Interface (CLI) packet capture
feature is incompatible with OpenShift Container Platform versions 4.16 and older.

This limitation prevents the eBPF-based Packet Capture Agent (PCA) from functioning correctly on
those older clusters.

To work around this problem, you must manually configure PCA to use an older, compatible eBPF agent
container image. For more information, see the Red Hat Knowledgebase Solution eBPF agent
compatibility with older Openshift versions in Network Observability CLI 1.10+.

NETOBSERV-2358

1.8.3. eBPF Agent fails to send flows with OpenShiftSDN when NetworkPolicy is
enabled

When running Network Observability Operator 1.10 on OpenShift Container Platform 4.14 clusters that
use the OpenShiftSDN CNI plugin, the eBPF agent is unable to send flow records to the flowlogs-
pipeline component. This occurs when the FlowCollector custom resource is created with
NetworkPolicy enabled (spec.networkPolicy.enable: true).

As a consequence, flow data is not processed by the flowlogs-pipeline component and does not appear
in the Network Traffic dashboard or the configured storage (Loki). The eBPF agent pod logs show i/o
timeout errors when attempting to connect to the collector:

To work around this problem, set spec.networkPolicy.enable to false to disable NetworkPolicy in the
FlowCollector resource for Network Observability Operator 1.10.

This will allow the eBPF agent to communicate with the flowlogs-pipeline component without
interference from the automatically deployed network policy.

NETOBSERV-2450

1.9. NETWORK OBSERVABILITY OPERATOR 1.10 FIXED ISSUES

The Network Observability Operator 1.10 release contains several fixed issues that improve performance
and the user experience.

1.9.1. MetricName and Remap fields are validated

Before this update, users could create a FlowMetric custom resource (CR) with an invalid metric name.
Although the FlowMetric CR was successfully created, the underlying metric would fail silently without
providing any error feedback to the user.

With this release, the FlowMetric, metricName, and remap fields are now validated before creation, so
users are immediately notified if they enter an invalid name.

NETOBSERV-2348

time="2025-10-17T13:53:44Z" level=error msg="couldn't send flow records to collector"
collector="10.0.68.187:2055" component=exporter/GRPCProto error="rpc error: code = Unavailable
desc = connection error: desc = \"transport: Error while dialing: dial tcp 10.0.68.187:2055: i/o
timeout\""

OpenShift Container Platform 4.17 Network Observability

14

https://access.redhat.com/solutions/7132671
https://issues.redhat.com/browse/NETOBSERV-2358
https://issues.redhat.com/browse/NETOBSERV-2450
https://issues.redhat.com/browse/NETOBSERV-2348

1.9.2. Improved html-to-image export performance

Before this update, performance issues in the underlying library caused the html-to-image export
function to take a long time, leading to browser freezing.

With this release, the performance of the html-to-image library has been improved, reducing export wait
times and eliminating browser freezing during image generation.

NETOBSERV-2314

1.9.3. Improved warnings for eBPF privileged mode

Before this update, when users selected eBPF features that require privileged mode, the features
would often fail without clearly informing the user that privileged mode was missing or needed to be
enabled.

With this release, a validation hook immediately warns the user if the configuration is inconsistent. This
improves user understanding and prevents misconfiguration.

NETOBSERV-2268

1.9.4. Subnet labels added to OpenTelemetry exporter

Before this update, the OpenTelemetry metrics exporter was missing the network flow labels
SrcSubnetLabel and DstSubnetLabel, causing them to show as empty.

With this release, these labels are now correctly provided by the exporter. They have also been renamed
to source.subnet.label and destination.subnet.label for improved clarity and consistency with
OpenTelemetry standards.

NETOBSERV-2405

1.9.5. Reduced default tolerations for network observability components

Before this update, a default toleration was set on all network observability components to allow them to
be scheduled on any node, including those tainted with NoSchedule. This could potentially block cluster
upgrades.

With this release, the default toleration is now only maintained for the eBPF agents and the Flowlogs-
Pipeline when configured in Direct mode. The toleration has been removed from the OpenShift
Container Platform web console plugin and the Flowlogs-Pipeline when configured in Kafka mode.

Additionally, while tolerations were always configurable in the FlowCollector custom resource (CR), it
was previously impossible to replace the tolerations with an empty list. It is now possible to replace the
tolerations with an empty list.

NETOBSERV-2434

CHAPTER 1. NETWORK OBSERVABILITY OPERATOR RELEASE NOTES

15

https://issues.redhat.com/browse/NETOBSERV-2314
https://issues.redhat.com/browse/NETOBSERV-2268
https://issues.redhat.com/browse/NETOBSERV-2405
https://issues.redhat.com/browse/NETOBSERV-2434

CHAPTER 2. NETWORK OBSERVABILITY OPERATOR
RELEASE NOTES ARCHIVE

2.1. NETWORK OBSERVABILITY OPERATOR RELEASE NOTES
ARCHIVE

These release notes track past developments of the Network Observability Operator in the OpenShift
Container Platform. They are for reference purposes only.

The Network Observability Operator enables administrators to observe and analyze network traffic flows
for OpenShift Container Platform clusters.

2.1.1. Network Observability Operator 1.9.3 advisory

The following advisory is available for the Network Observability Operator 1.9.3:

RHEA-2025:15780 Network Observability Operator 1.9.3

2.1.2. Network Observability Operator 1.9.2 advisory

The following advisory is available for the Network Observability Operator 1.9.2:

RHEA-2025:14150 Network Observability Operator 1.9.2

2.1.3. Network observability 1.9.2 bug fixes

Before this update, OpenShift Container Platform versions 4.15 and earlier did not support the
TC_ATTACH_MODE configuration. This led to command-line interface (CLI) errors and
prevented the observation of packets and flows. With this release, the Traffic Control eXtension
(TCX) hook attachment mode has been adjusted for these older versions. This eliminates tcx
hook errors and enables flow and packet observation.

2.1.4. Network Observability Operator 1.9.1 advisory

You can review the advisory for the Network Observability Operator 1.9.1 release.

The following advisory is available for the Network Observability Operator 1.9.1:

2025:12024 Network Observability Operator 1.9.1

2.1.5. Network Observability Operator 1.9.1 fixed issues

You can review the fixed issues for the Network Observability Operator 1.9.1 release.

Before this update, network flows were not observed on OpenShift Container Platform 4.15 due
to an incorrect attach mode setting. This stopped users from monitoring network flows
correctly, especially with certain catalogs. With this release, the default attach mode for
OpenShift Container Platform versions older than 4.16.0 is set to tc, so flows are now observed
on OpenShift Container Platform 4.15. (NETOBSERV-2333)

Before this update, if an IPFIX collector restarted, configuring an IPFIX exporter could lose its
connection and stop sending network flows to the collector. With this release, the connection is
restored, and network flows continue to be sent to the collector. (NETOBSERV-2315)

OpenShift Container Platform 4.17 Network Observability

16

https://access.redhat.com/errata/RHEA-2025:15780
https://access.redhat.com/errata/RHEA-2025:14150
https://access.redhat.com/errata/RHEA-2025:12024
https://issues.redhat.com/browse/NETOBSERV-2333
https://issues.redhat.com/browse/NETOBSERV-2315

Before this update, when you configured an IPFIX exporter, flows without port information (such
as ICMP traffic) were ignored, which caused errors in logs. TCP flags and ICMP data were also
missing from IPFIX exports. With this release, these details are now included. Missing fields (like
ports) no longer cause errors and are part of the exported data. (NETOBSERV-2307)

Before this update, the User Defined Networks (UDN) Mapping feature showed a configuration
issue and warning on OpenShift Container Platform 4.18 because the OpenShift version was
incorrectly set in the code. This impacted the user experience. With this release, UDN Mapping
now supports OpenShift Container Platform 4.18 without warnings, making the user experience
smooth. (NETOBSERV-2305)

Before this update, the expand function on the Network Traffic page had compatibility
problems with OpenShift Container Platform Console 4.19. This resulted in empty menu space
when expanding and an inconsistent user interface. With this release, the compatibility problem
in the NetflowTraffic part and theme hook is resolved. The side menu in the Network Traffic
view is now properly managed, which improves how you interact with the user interface.
(NETOBSERV-2304)

2.1.6. Network Observability Operator 1.9.0 advisory

You can review the advisory for the Network Observability Operator 1.9.0 release.

Network Observability Operator 1.9

2.1.7. Network Observability Operator 1.9.0 new features and enhancements

You can review the new features and enhancements for the Network Observability Operator 1.9.0
release.

2.1.7.1. User-defined networks with network observability

With this release, user-defined networks (UDN) feature is generally available with network observability.
When the UDNMapping feature is enabled in network observability, the Traffic flow table has a UDN
labels column. You can filter logs on Source Network Name and Destination Network Name
information.

2.1.7.2. Filter flowlogs at ingestion

With this release, you can create filters to reduce the number of generated network flows and the
resource usage of network observability components. The following filters can be configured:

eBPF Agent filters

Flowlogs-pipeline filters

2.1.7.3. IPsec support

This update brings the following enhancements to network observability when IPsec is enabled on
OpenShift Container Platform:

A new column named IPsec Status is displayed in the network observability Traffic flows view to
show whether a flow was successfully IPsec-encrypted or if there was an error during
encryption/decryption.

A new dashboard showing the percentage of encrypted traffic is generated.

CHAPTER 2. NETWORK OBSERVABILITY OPERATOR RELEASE NOTES ARCHIVE

17

https://issues.redhat.com/browse/NETOBSERV-2307
https://issues.redhat.com/browse/NETOBSERV-2305
https://issues.redhat.com/browse/NETOBSERV-2304
https://access.redhat.com/errata/RHSA-2025:10020
https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/multiple_networks/#understanding-multiple-networks

2.1.7.4. Network Observability CLI

The following filtering options are now available for packets, flows, and metrics capture:

Configure the ratio of packets being sampled by using the --sampling option.

Filter flows using a custom query by using the --query option.

Specify interfaces to monitor by using the --interfaces option.

Specify interfaces to exclude by using the --exclude_interfaces option.

Specify metric names to generate by using the --include_list option.

For more information, see:

Network Observability CLI reference

2.1.8. Network Observability Operator release notes 1.9.0 notable technical changes

You can review the notable technical changes for the Network Observability Operator 1.6.0 release.

The NetworkEvents feature in network observability 1.9 has been updated to work with the
newer Linux kernel of OpenShift Container Platform 4.19. This update breaks compatibility with
older kernels. As a result, the NetworkEvents feature can only be used with OpenShift
Container Platform 4.19. If you are using this feature with network observability 1.8 and
OpenShift Container Platform 4.18, consider avoiding a network observability upgrade or
upgrade to network observability 1.9 and OpenShift Container Platform to 4.19.

The netobserv-reader cluster role has been renamed to netobserv-loki-reader.

Improved CPU performance of the eBPF agents.

2.1.9. Network Observability Operator 1.9.0 Technology Preview features

You can review the Technology Preview features for the Network Observability Operator 1.9.0 release.

Some features in this release are currently in Technology Preview. These experimental features are not
intended for production use. Note the following scope of support on the Red Hat Customer Portal for
these features:

Technology Preview Features Support Scope

2.1.9.1. eBPF Manager Operator with network observability

The eBPF Manager Operator reduces the attack surface and ensures compliance, security, and conflict
prevention by managing all eBPF programs. Network observability can use the eBPF Manager Operator
to load hooks. This eliminates the need to provide the eBPF Agent with privileged mode or additional
Linux capabilities like CAP_BPF and CAP_PERFMON. The eBPF Manager Operator with network
observability is only supported on 64-bit AMD architecture.

2.1.10. Network Observability Operator 1.9.0 CVEs

You can review the CVEs for the Network Observability Operator 1.9.0 release.

OpenShift Container Platform 4.17 Network Observability

18

https://access.redhat.com/support/offerings/techpreview

CVE-2025-26791

2.1.11. Network Observability Operator 1.9.0 fixed issues

You can review the fixed issues for the Network Observability Operator 1.9.0 release.

Previously, when filtering by source or destination IP from the console plugin, using a Classless
Inter-Domain Routing (CIDR) notation such as 10.128.0.0/24 did not work, returning results that
should be filtered out. With this update, it is now possible to use a CIDR notation, with the results
being filtered as expected. (NETOBSERV-2276)

Previously, network flows might have incorrectly identified the network interfaces in use,
especially with a risk of mixing up eth0 and ens5. This issue only occurred when the eBPF
agents were configured as Privileged. With this update, it has been fixed partially, and almost all
network interfaces are correctly identified. Refer to the known issues below for more details.
(NETOBSERV-2257)

Previously, when the Operator checked for available Kubernetes APIs in order to adapt its
behavior, if there was a stale API, this resulted in an error that prevented the Operator from
starting normally. With this update, the Operator ignores error on unrelated APIs, logs errors on
related APIs, and continues to run normally. (NETOBSERV-2240)

Previously, users could not sort flows by Bytes or Packets in the Traffic flows view of the
Console plugin. With this update, users can sort flows by Bytes and Packets. (NETOBSERV-
2239)

Previously, when configuring the FlowCollector resource with an IPFIX exporter, MAC
addresses in the IPFIX flows were truncated to their 2 first bytes. With this update, MAC
addresses are fully represented in the IPFIX flows. (NETOBSERV-2208)

Previously, some of the warnings sent from the Operator validation webhook could lack clarity
on what needed to be done. With this update, some of these messages have been reviewed and
amended to make them more actionable. (NETOBSERV-2178)

Previously, it was not obvious to figure out there was an issue when referencing a LokiStack
from the FlowCollector resource, such as in case of typing error. With this update, the
FlowCollector status clearly states that the referenced LokiStack is not found in that case.
(NETOBSERV-2174)

Previously, in the console plugin Traffic flows view, in case of text overflow, text ellipses
sometimes hid much of the text to be displayed. With this update, it displays as much text as
possible. (NETOBSERV-2119)

Previously, the console plugin for network observability 1.8.1 and earlier did not work with the
OpenShift Container Platform 4.19 web console, making the Network Traffic page inaccessible.
With this update, the console plugin is compatible and the Network Traffic page is accessible in
network observability 1.9.0. (NETOBSERV-2046)

Previously, when using conversation tracking (logTypes: Conversations or logTypes: All in
the FlowCollector resource), the Traffic rates metrics visible in the dashboards were flawed,
wrongly showing an out-of-control increase in traffic. Now, the metrics show more accurate
traffic rates. However, note that in Conversations and EndedConversations modes, these
metrics are still not completely accurate as they do not include long-standing connections. This
information has been added to the documentation. The default mode logTypes: Flows is
recommended to avoid these inaccuracy. (NETOBSERV-1955)

CHAPTER 2. NETWORK OBSERVABILITY OPERATOR RELEASE NOTES ARCHIVE

19

https://access.redhat.com/security/cve/CVE-2025-26791
https://issues.redhat.com/browse/NETOBSERV-2276
https://issues.redhat.com/browse/NETOBSERV-2257
https://issues.redhat.com/browse/NETOBSERV-2240
https://issues.redhat.com/browse/NETOBSERV-2239
https://issues.redhat.com/browse/NETOBSERV-2208
https://issues.redhat.com/browse/NETOBSERV-2178
https://issues.redhat.com/browse/NETOBSERV-2174
https://issues.redhat.com/browse/NETOBSERV-2119
https://issues.redhat.com/browse/NETOBSERV-2046
https://issues.redhat.com/browse/NETOBSERV-1955

2.1.12. Network Observability Operator 1.9.0 known issues

You can review the known issues for the Network Observability Operator 1.9.0 release.

The user-defined network (UDN) feature displays a configuration issue and a warning when
used with OpenShift Container Platform 4.18, even though it is supported. This warning can be
ignored. (NETOBSERV-2305)

In some rare cases, the eBPF agent is unable to appropriately correlate flows with the involved
interfaces when running in privileged modes with several network namespaces. A large part of
these issues have been identified and resolved in this release, but some inconsistencies remain,
especially with the ens5 interface. (NETOBSERV-2287)

2.1.13. Network Observability Operator 1.8.1 advisory

You can review the advisory for the Network Observability Operator 1.8.1 release.

Network Observability Operator 1.8.1

2.1.14. Network Observability Operator 1.8.1 CVEs

You can review the CVEs for the Network Observability Operator 1.8.1 release.

CVE-2024-56171

CVE-2025-24928

2.1.15. Network Observability Operator 1.8.1 fixed issues

You can review the fixed issues for the Network Observability Operator 1.8.1 release.

This fix ensures that the Observe menu appears only once in future versions of OpenShift
Container Platform. (NETOBSERV-2139)

2.1.16. Network Observability Operator 1.8.0 advisory

You can review the advisory for the Network Observability Operator 1.8.0 release.

Network Observability Operator 1.8.0

2.1.17. Network Observability Operator 1.8.0 new features and enhancements

You can review the new features and enhancements for the Network Observability Operator 1.8.0
release.

2.1.17.1. Packet translation

You can now enrich network flows with translated endpoint information, showing not only the service
but also the specific backend pod, so you can see which pod served a request.

For more information, see:

Endpoint translation (xlat)

Working with endpoint translation (xlat)

OpenShift Container Platform 4.17 Network Observability

20

https://issues.redhat.com/browse/NETOBSERV-2305
https://issues.redhat.com/browse/NETOBSERV-2287
https://access.redhat.com/errata/RHSA-2025:3867
https://access.redhat.com/security/cve/CVE-2024-56171
https://access.redhat.com/security/cve/CVE-2025-24928
https://issues.redhat.com/browse/NETOBSERV-2139
https://access.redhat.com/errata/RHEA-2025:1940

2.1.17.2. OVN-Kubernetes networking events tracking

IMPORTANT

OVN-Kubernetes networking events tracking is a Technology Preview feature only.
Technology Preview features are not supported with Red Hat production service level
agreements (SLAs) and might not be functionally complete. Red Hat does not
recommend using them in production. These features provide early access to upcoming
product features, enabling customers to test functionality and provide feedback during
the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

You can now use network event tracking in network observability to gain insight into OVN-Kubernetes
events, including network policies, admin network policies, and egress firewalls.

For more information, see:

Viewing network events

2.1.17.3. eBPF performance improvements in 1.8

Network observability now uses hash maps instead of per-CPU maps. This means that network
flows data is now tracked in the kernel space and new packets are also aggregated there. The
de-duplication of network flows can now occur in the kernel, so the size of data transfer
between the kernel and the user spaces yields better performance. With these eBPF
performance improvements, there is potential to observe a CPU resource reduction between
40% and 57% in the eBPF Agent.

2.1.17.4. Network Observability CLI

The following new features, options, and filters are added to the Network Observability CLI for this
release:

Capture metrics with filters enabled by running the oc netobserv metrics command.

Run the CLI in the background by using the --background option with flows and packets
capture and running oc netobserv follow to see the progress of the background run and oc
netobserv copy to download the generated logs.

Enrich flows and metrics capture with Machines, Pods, and Services subnets by using the --get-
subnets option.

New filtering options available with packets, flows, and metrics capture:

eBPF filters on IPs, Ports, Protocol, Action, TCP Flags and more

Custom nodes using --node-selector

Drops only using --drops

Any field using --regexes

For more information, see:

CHAPTER 2. NETWORK OBSERVABILITY OPERATOR RELEASE NOTES ARCHIVE

21

https://access.redhat.com/support/offerings/techpreview/

Network Observability CLI reference

2.1.18. Network Observability Operator release notes 1.8.0 fixed issues

You can review the fixed issues for the Network Observability Operator 1.8.0 release.

Previously, the Network Observability Operator came with a "kube-rbac-proxy" container to
manage RBAC for its metrics server. Since this external component is deprecated, it was
necessary to remove it. It is now replaced with direct TLS and RBAC management through
Kubernetes controller-runtime, without the need for a side-car proxy. (NETOBSERV-1999)

Previously in the OpenShift Container Platform console plugin, filtering on a key that was not
equal to multiple values would not filter anything. With this fix, the expected results are
returned, which is all flows not having any of the filtered values. (NETOBSERV-1990)

Previously in the OpenShift Container Platform console plugin with disabled Loki, it was very
likely to generate a "Can’t build query" error due to selecting an incompatible set of filters and
aggregations. Now this error is avoided avoid by automatically disabling incompatible filters
while still making the user aware of the filter incompatibility. (NETOBSERV-1977)

Previously, when viewing flow details from the console plugin, the ICMP info was always
displayed in the side panel, showing "undefined" values for non-ICMP flows. With this fix, ICMP
info is not displayed for non-ICMP flows. (NETOBSERV-1969)

Previously, the "Export data" link from the Traffic flows view did not work as intended,
generating empty CSV reports. Now, the export feature is restored, generating non-empty CSV
data. (NETOBSERV-1958)

Previously, it was possible to configure the FlowCollector with processor.logTypes
Conversations, EndedConversations or All with loki.enable set to false, despite the
conversation logs being only useful when Loki is enabled. This resulted in resource usage waste.
Now, this configuration is invalid and is rejected by the validation webhook. (NETOBSERV-
1957)

Configuring the FlowCollector with processor.logTypes set to All consumes much more
resources, such as CPU, memory and network bandwidth, than the other options. This was
previously not documented. It is now documented, and triggers a warning from the validation
webhook. (NETOBSERV-1956)

Previously, under high stress, some flows generated by the eBPF agent were mistakenly
dismissed, resulting in traffic bandwidth under-estimation. Now, those generated flows are not
dismissed. (NETOBSERV-1954)

Previously, when enabling the network policy in the FlowCollector configuration, the traffic to
the Operator webhooks was blocked, breaking the FlowMetrics API validation. Now traffic to
the webhooks is allowed. (NETOBSERV-1934)

Previously, when deploying the default network policy, namespaces openshift-console and
openshift-monitoring were set by default in the additionalNamespaces field, resulting in
duplicated rules. Now there is no additional namespace set by default, which helps avoid getting
duplicated rules.(NETOBSERV-1933)

Previously from the OpenShift Container Platform console plugin, filtering on TCP flags would
match flows having only the exact desired flag. Now, any flow having at least the desired flag
appears in filtered flows. (NETOBSERV-1890)

When the eBPF agent runs in privileged mode and pods are continuously added or deleted, a

OpenShift Container Platform 4.17 Network Observability

22

https://issues.redhat.com/browse/NETOBSERV-1999
https://issues.redhat.com/browse/NETOBSERV-1990
https://issues.redhat.com/browse/NETOBSERV-1977
https://issues.redhat.com/browse/NETOBSERV-1969
https://issues.redhat.com/browse/NETOBSERV-1958
https://issues.redhat.com/browse/NETOBSERV-1957
https://issues.redhat.com/browse/NETOBSERV-1956
https://issues.redhat.com/browse/NETOBSERV-1954
https://issues.redhat.com/browse/NETOBSERV-1934
https://issues.redhat.com/browse/NETOBSERV-1933
https://issues.redhat.com/browse/NETOBSERV-1890

When the eBPF agent runs in privileged mode and pods are continuously added or deleted, a
file descriptor (FD) leak occurs. The fix ensures proper closure of the FD when a network
namespace is deleted. (NETOBSERV-2063)

Previously, the CLI agent DaemonSet did not deploy on master nodes. Now, a toleration is
added on the agent DaemonSet to schedule on every node when taints are set. Now, CLI agent
DaemonSet pods run on all nodes. (NETOBSERV-2030)

Previously, the Source Resource and Source Destination filters autocomplete were not
working when using Prometheus storage only. Now this issue is fixed and suggestions displays as
expected. (NETOBSERV-1885)

Previously, a resource using multiple IPs was displayed separately in the Topology view. Now,
the resource shows as a single topology node in the view. (NETOBSERV-1818)

Previously, the console refreshed the Network traffic table view contents when the mouse
pointer hovered over the columns. Now, the display is fixed, so row height remains constant with
a mouse hover. (NETOBSERV-2049)

2.1.19. Network Observability Operator release notes 1.8.0 known issues

You can review the known issues for the Network Observability Operator 1.8.0 release.

If there is traffic that uses overlapping subnets in your cluster, there is a small risk that the eBPF
Agent mixes up the flows from overlapped IPs. This can happen if different connections happen
to have the exact same source and destination IPs and if ports and protocol are within a 5
seconds time frame and happening on the same node. This should not be possible unless you
configured secondary networks or UDN. Even in that case, it is still very unlikely in usual traffic,
as source ports are usually a good differentiator. (NETOBSERV-2115)

After selecting a type of exporter to configure in the FlowCollector resource spec.exporters
section from the OpenShift Container Platform web console form view, the detailed
configuration for that type does not show up in the form. The workaround is to configure
directly the YAML. (NETOBSERV-1981)

2.1.20. Network Observability Operator 1.7.0 advisory

You can review the advisory for the Network Observability Operator 1.7.0 release.

Network Observability Operator 1.7.0

2.1.21. Network Observability Operator 1.7.0 new features and enhancements

You can review the following new features and enhancements for the Network Observability Operator
1.7.0 release.

2.1.21.1. OpenTelemetry support

You can now export enriched network flows to a compatible OpenTelemetry endpoint, such as the
Red Hat build of OpenTelemetry.

For more information, see:

Export enriched network flow data

CHAPTER 2. NETWORK OBSERVABILITY OPERATOR RELEASE NOTES ARCHIVE

23

https://issues.redhat.com/browse/NETOBSERV-2063
https://issues.redhat.com/browse/NETOBSERV-2030
https://issues.redhat.com/browse/NETOBSERV-1885
https://issues.redhat.com/browse/NETOBSERV-1818
https://issues.redhat.com/browse/NETOBSERV-2049
https://issues.redhat.com/browse/NETOBSERV-2115
https://issues.redhat.com/browse/NETOBSERV-1981
https://access.redhat.com/errata/RHSA-2024:8014

2.1.21.2. Network observability Developer perspective

You can now use network observability in the Developer perspective.

For more information, see:

OpenShift Container Platform console integration

2.1.21.3. TCP flags filtering

You can now use the tcpFlags filter to limit the volume of packets processed by the eBPF program.

For more information, see:

Flow filter configuration parameters

eBPF flow rule filter

Detecting SYN flooding using the FlowMetric API and TCP flags

2.1.21.4. Network observability for OpenShift Virtualization

You can observe networking patterns on an OpenShift Virtualization setup by identifying eBPF-
enriched network flows coming from VMs that are connected to secondary networks, such as through
Open Virtual Network (OVN)-Kubernetes.

For more information, see:

Configuring virtual machine (VM) secondary network interfaces for network observability

2.1.21.5. Network policy deploys in the FlowCollector custom resource (CR)

With this release, you can configure the FlowCollector custom resource (CR) to deploy a network policy
for network observability. Previously, if you wanted a network policy, you had to manually create one.
The option to manually create a network policy is still available.

For more information, see:

Configuring an ingress network policy by using the FlowCollector custom resource

2.1.21.6. FIPS compliance

You can install and use the Network Observability Operator in an OpenShift Container Platform
cluster running in FIPS mode.

IMPORTANT

OpenShift Container Platform 4.17 Network Observability

24

IMPORTANT

To enable FIPS mode for your cluster, you must run the installation program from
a Red Hat Enterprise Linux (RHEL) computer configured to operate in FIPS
mode. For more information about configuring FIPS mode on RHEL, see
Switching RHEL to FIPS mode .

When running Red Hat Enterprise Linux (RHEL) or Red Hat Enterprise Linux
CoreOS (RHCOS) booted in FIPS mode, OpenShift Container Platform core
components use the RHEL cryptographic libraries that have been submitted to
NIST for FIPS 140-2/140-3 Validation on only the x86_64, ppc64le, and s390x
architectures.

2.1.21.7. eBPF agent enhancements

The following enhancements are available for the eBPF agent:

If the DNS service maps to a different port than 53, you can specify this DNS tracking port using
spec.agent.ebpf.advanced.env.DNS_TRACKING_PORT.

You can now use two ports for transport protocols (TCP, UDP, or SCTP) filtering rules.

You can now filter on transport ports with a wildcard protocol by leaving the protocol field
empty.

For more information, see:

FlowCollector API specifications

2.1.21.8. Network Observability CLI

The Network Observability CLI (oc netobserv), is now generally available. The following enhancements
have been made since the 1.6 Technology Preview release:

There are now eBPF enrichment filters for packet capture similar to flow capture.

You can now use filter tcp_flags with both flow and packets capture.

The auto-teardown option is available when max-bytes or max-time is reached.

For more information, see:

About the Network Observability CLI

Network Observability CLI 1.7.0

2.1.22. Network Observability Operator 1.7.0 fixed issues

You can review the following fixed issues for the Network Observability Operator 1.7.0 release.

Previously, when using a RHEL 9.2 real-time kernel, some of the webhooks did not work. Now, a
fix is in place to check whether this RHEL 9.2 real-time kernel is being used. If the kernel is being
used, a warning is displayed about the features that do not work, such as packet drop and
neither Round-trip Time when using s390x architecture. The fix is in OpenShift 4.16 and later.
(NETOBSERV-1808)

Previously, in the Manage panels dialog in the Overview tab, filtering on total, bar, donut, or

CHAPTER 2. NETWORK OBSERVABILITY OPERATOR RELEASE NOTES ARCHIVE

25

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/9/html/security_hardening/switching-rhel-to-fips-mode_security-hardening
https://access.redhat.com/errata/RHEA-2024:8264
https://issues.redhat.com/browse/NETOBSERV-1808

Previously, in the Manage panels dialog in the Overview tab, filtering on total, bar, donut, or
line did not show a result. Now the available panels are correctly filtered. (NETOBSERV-1540)

Previously, under high stress, the eBPF agents were susceptible to enter into a state where they
generated a high number of small flows, almost not aggregated. With this fix, the aggregation
process is still maintained under high stress, resulting in less flows being created. This fix
improves the resource consumption not only in the eBPF agent but also in flowlogs-pipeline
and Loki. (NETOBSERV-1564)

Previously, when the workload_flows_total metric was enabled instead of the
namespace_flows_total metric, the health dashboard stopped showing By namespace flow
charts. With this fix, the health dashboard now shows the flow charts when the
workload_flows_total is enabled. (NETOBSERV-1746)

Previously, when you used the FlowMetrics API to generate a custom metric and later modified
its labels, such as by adding a new label, the metric stopped populating and an error was shown
in the flowlogs-pipeline logs. With this fix, you can modify the labels, and the error is no longer
raised in the flowlogs-pipeline logs. (NETOBSERV-1748)

Previously, there was an inconsistency with the default Loki WriteBatchSize configuration: it
was set to 100 KB in the FlowCollector CRD default, and 10 MB in the OLM sample or default
configuration. Both are now aligned to 10 MB, which generally provides better performances and
less resource footprint. (NETOBSERV-1766)

Previously, the eBPF flow filter on ports was ignored if you did not specify a protocol. With this
fix, you can set eBPF flow filters independently on ports and or protocols. (NETOBSERV-1779)

Previously, traffic from Pods to Services was hidden from the Topology view. Only the return
traffic from Services to Pods was visible. With this fix, that traffic is correctly displayed.
(NETOBSERV-1788)

Previously, non-cluster administrator users that had access to Network Observability saw an
error in the console plugin when they tried to filter for something that triggered auto-
completion, such as a namespace. With this fix, no error is displayed, and the auto-completion
returns the expected results. (NETOBSERV-1798)

When the secondary interface support was added, you had to iterate multiple times to register
the per network namespace with the netlink to learn about interface notifications. At the same
time, unsuccessful handlers caused a leaking file descriptor because with TCX hook, unlike TC,
handlers needed to be explicitly removed when the interface went down. Furthermore, when the
network namespace was deleted, there was no Go close channel event to terminate the netlink
goroutine socket, which caused go threads to leak. Now, there are no longer leaking file
descriptors or go threads when you create or delete pods. (NETOBSERV-1805)

Previously, the ICMP type and value were displaying 'n/a' in the Traffic flows table even when
related data was available in the flow JSON. With this fix, ICMP columns display related values as
expected in the flow table. (NETOBSERV-1806)

Previously in the console plugin, it wasn’t always possible to filter for unset fields, such as unset
DNS latency. With this fix, filtering on unset fields is now possible. (NETOBSERV-1816)

Previously, when you cleared filters in the OpenShift web console plugin, sometimes the filters
reappeared after you navigated to another page and returned to the page with filters. With this
fix, filters do not unexpectedly reappear after they are cleared. (NETOBSERV-1733)

2.1.23. Network Observability Operator 1.7.0 known issues

OpenShift Container Platform 4.17 Network Observability

26

https://issues.redhat.com/browse/NETOBSERV-1540
https://issues.redhat.com/browse/NETOBSERV-1564
https://issues.redhat.com/browse/NETOBSERV-1746
https://issues.redhat.com/browse/NETOBSERV-1748
https://issues.redhat.com/browse/NETOBSERV-1766
https://issues.redhat.com/browse/NETOBSERV-1779
https://issues.redhat.com/browse/NETOBSERV-1788
https://issues.redhat.com/browse/NETOBSERV-1798
https://issues.redhat.com/browse/NETOBSERV-1805
https://issues.redhat.com/browse/NETOBSERV-1806
https://issues.redhat.com/browse/NETOBSERV-1816
https://issues.redhat.com/browse/NETOBSERV-1733

You can review the following known issues for the Network Observability Operator 1.7.0 release.

When you use the must-gather tool with network observability, logs are not collected when the
cluster has FIPS enabled. (NETOBSERV-1830)

When the spec.networkPolicy is enabled in the FlowCollector, which installs a network policy
on the netobserv namespace, it is impossible to use the FlowMetrics API. The network policy
blocks calls to the validation webhook. As a workaround, use the following network policy:

(NETOBSERV-193)

2.1.24. Network Observability Operator release notes 1.6.2 advisory

You can review the advisory for the Network Observability Operator 1.6.2 release.

2024:7074 Network Observability Operator 1.6.2

2.1.25. Network Observability Operator release notes 1.6.2 CVEs

You can review the CVEs for the Network Observability Operator 1.6.2 release.

CVE-2024-24791

2.1.26. Network Observability Operator release notes 1.6.2 fixed issues

You can review the fixed issues for the Network Observability Operator 1.6.2 release.

When the secondary interface support was added, there was a need to iterate multiple times to
register the per network namespace with the netlink to learn about interface notifications. At
the same time, unsuccessful handlers caused a leaking file descriptor because with TCX hook,
unlike TC, handlers needed to be explicitly removed when the interface went down. Now, there
are no longer leaking file descriptors when creating and deleting pods. (NETOBSERV-1805)

2.1.27. Network Observability Operator release notes 1.6.2 known issues

You can review the known issues for the Network Observability Operator 1.6.2 release.

There was a compatibility issue with console plugins that would have prevented network

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: allow-from-hostnetwork
 namespace: netobserv
spec:
 podSelector:
 matchLabels:
 app: netobserv-operator
 ingress:
 - from:
 - namespaceSelector:
 matchLabels:
 policy-group.network.openshift.io/host-network: ''
 policyTypes:
 - Ingress

CHAPTER 2. NETWORK OBSERVABILITY OPERATOR RELEASE NOTES ARCHIVE

27

https://issues.redhat.com/browse/NETOBSERV-1830
https://issues.redhat.com/browse/NETOBSERV-1934
https://access.redhat.com/errata/RHSA-2024:7074
https://access.redhat.com/security/cve/CVE-2024-24791
https://issues.redhat.com/browse/NETOBSERV-1805

observability from being installed on future versions of an OpenShift Container Platform cluster.
By upgrading to 1.6.2, the compatibility issue is resolved and network observability can be
installed as expected. (NETOBSERV-1737)

2.1.28. Network Observability Operator release notes 1.6.1 advisory

You can review the advisory for the Network Observability Operator 1.6.1 release.

2024:4785 Network Observability Operator 1.6.1

2.1.29. Network Observability Operator release notes 1.6.1 CVEs

You can review the CVEs for the Network Observability Operator 1.6.1 release.

RHSA-2024:4237

RHSA-2024:4212

2.1.30. Network Observability Operator release notes 1.6.1 fixed issues

You can review the fixed issues for the Network Observability Operator 1.6.1 release.

Previously, information about packet drops, such as the cause and TCP state, was only available
in the Loki datastore and not in Prometheus. For that reason, the drop statistics in the
OpenShift web console plugin Overview was only available with Loki. With this fix, information
about packet drops is also added to metrics, so you can view drops statistics when Loki is
disabled. (NETOBSERV-1649)

When the eBPF agent PacketDrop feature was enabled, and sampling was configured to a value
greater than 1, reported dropped bytes and dropped packets ignored the sampling
configuration. While this was done on purpose, so as not to miss any drops, a side effect was that
the reported proportion of drops compared with non-drops became biased. For example, at a
very high sampling rate, such as 1:1000, it was likely that almost all the traffic appears to be
dropped when observed from the console plugin. With this fix, the sampling configuration is
honored with dropped bytes and packets. (NETOBSERV-1676)

Previously, the SR-IOV secondary interface was not detected if the interface was created first
and then the eBPF agent was deployed. It was only detected if the agent was deployed first and
then the SR-IOV interface was created. With this fix, the SR-IOV secondary interface is
detected no matter the sequence of the deployments. (NETOBSERV-1697)

Previously, when Loki was disabled, the Topology view in the OpenShift web console displayed
the Cluster and Zone aggregation options in the slider beside the network topology diagram,
even when the related features were not enabled. With this fix, the slider now only displays
options according to the enabled features. (NETOBSERV-1705)

Previously, when Loki was disabled, and the OpenShift web console was first loading, an error
would occur: Request failed with status code 400 Loki is disabled. With this fix, the errors no
longer occur. (NETOBSERV-1706)

Previously, in the Topology view of the OpenShift web console, when clicking on the Step into
icon next to any graph node, the filters were not applied as required in order to set the focus to
the selected graph node, resulting in showing a wide view of the Topology view in the OpenShift

OpenShift Container Platform 4.17 Network Observability

28

https://issues.redhat.com/browse/NETOBSERV-1737
https://access.redhat.com/errata/RHSA-2024:4785
https://access.redhat.com/errata/RHSA-2024:4237
https://access.redhat.com/errata/RHSA-2024:4212
https://issues.redhat.com/browse/NETOBSERV-1649
https://issues.redhat.com/browse/NETOBSERV-1676
https://issues.redhat.com/browse/NETOBSERV-1697
https://issues.redhat.com/browse/NETOBSERV-1705
https://issues.redhat.com/browse/NETOBSERV-1706

web console. With this fix, the filters are correctly set, effectively narrowing down the Topology.
As part of this change, clicking the Step into icon on a Node now brings you to the Resource
scope instead of the Namespaces scope. (NETOBSERV-1720)

Previously, when Loki was disabled, in the Topology view of the OpenShift web console with the
Scope set to Owner, clicking on the Step into icon next to any graph node would bring the
Scope to Resource, which is not available without Loki, so an error message was shown. With
this fix, the Step into icon is hidden in the Owner scope when Loki is disabled, so this scenario
no longer occurs. (NETOBSERV-1721)

Previously, when Loki was disabled, an error was displayed in the Topology view of the
OpenShift web console when a group was set, but then the scope was changed so that the
group becomes invalid. With this fix, the invalid group is removed, preventing the error.
(NETOBSERV-1722)

When creating a FlowCollector resource from the OpenShift web console Form view, as
opposed to the YAML view, the following settings were incorrectly managed by the web
console: agent.ebpf.metrics.enable and processor.subnetLabels.openShiftAutoDetect.
These settings can only be disabled in the YAML view, not in the Form view. To avoid any
confusion, these settings have been removed from the Form view. They are still accessible in
the YAML view. (NETOBSERV-1731)

Previously, the eBPF agent was unable to clean up traffic control flows installed before an
ungraceful crash, for example a crash due to a SIGTERM signal. This led to the creation of
multiple traffic control flow filters with the same name, since the older ones were not removed.
With this fix, all previously installed traffic control flows are cleaned up when the agent starts,
before installing new ones. (NETOBSERV-1732)

Previously, when configuring custom subnet labels and keeping the OpenShift subnets auto-
detection enabled, OpenShift subnets would take precedence over the custom ones,
preventing the definition of custom labels for in cluster subnets. With this fix, custom defined
subnets take precedence, allowing the definition of custom labels for in cluster subnets.
(NETOBSERV-1734)

2.1.31. Network Observability Operator release notes 1.6.0 advisory

You can review the advisory for the Network Observability Operator 1.6.0 release.

Network Observability Operator 1.6.0

2.1.32. Network Observability Operator 1.6.0 new features and enhancements

You can review the following new features and enhancements for the Network Observability Operator
1.6.0.

2.1.32.1. Enhanced use of Network Observability Operator without Loki

You can now use Prometheus metrics and rely less on Loki for storage when using the Network
Observability Operator.

For more information, see:

Network observability without Loki

2.1.32.2. Custom metrics API

CHAPTER 2. NETWORK OBSERVABILITY OPERATOR RELEASE NOTES ARCHIVE

29

https://issues.redhat.com/browse/NETOBSERV-1720
https://issues.redhat.com/browse/NETOBSERV-1721
https://issues.redhat.com/browse/NETOBSERV-1722
https://issues.redhat.com/browse/NETOBSERV-1731
https://issues.redhat.com/browse/NETOBSERV-1732
https://issues.redhat.com/browse/NETOBSERV-1734
https://access.redhat.com/errata/RHSA-2024:3868

You can create custom metrics out of flowlogs data by using the FlowMetrics API. Flowlogs data can be
used with Prometheus labels to customize cluster information on your dashboards. You can add custom
labels for any subnet that you want to identify in your flows and metrics. This enhancement can also be
used to more easily identify external traffic by using the new labels SrcSubnetLabel and
DstSubnetLabel, which exists both in flow logs and in metrics. Those fields are empty when there is
external traffic, which gives a way to identify it.

For more information, see:

Custom metrics

FlowMetric API reference

2.1.32.3. eBPF performance enhancements

Experience improved performances of the eBPF agent, in terms of CPU and memory, with the following
updates:

The eBPF agent now uses TCX webhooks instead of TC.

The NetObserv / Health dashboard has a new section that shows eBPF metrics.

Based on the new eBPF metrics, an alert notifies you when the eBPF agent is dropping
flows.

Loki storage demand decreases significantly now that duplicated flows are removed. Instead of
having multiple, individual duplicated flows per network interface, there is one de-duplicated
flow with a list of related network interfaces.

IMPORTANT

With the duplicated flows update, the Interface and Interface Direction fields in the
Network Traffic table are renamed to Interfaces and Interface Directions, so any
bookmarked Quick filter queries using these fields need to be updated to interfaces and
ifdirections.

For more information, see:

Using the eBPF agent alert

Network observability metrics dashboards

Filtering the network traffic

2.1.32.4. eBPF collection rule-based filtering

You can use rule-based filtering to reduce the volume of created flows. When this option is enabled, the
Netobserv / Health dashboard for eBPF agent statistics has the Filtered flows rate view.

For more information, see:

eBPF flow rule filter

2.1.33. Network Observability Operator 1.6.0 fixed issues

OpenShift Container Platform 4.17 Network Observability

30

You can review the following fixed issues for the Network Observability Operator 1.6.0.

Previously, a dead link to the OpenShift Container Platform documentation was displayed in the
Operator Lifecycle Manager (OLM) form for the FlowMetrics API creation. Now the link has
been updated to point to a valid page. (NETOBSERV-1607)

Previously, the Network Observability Operator description in the Operator Hub displayed a
broken link to the documentation. With this fix, this link is restored. (NETOBSERV-1544)

Previously, if Loki was disabled and the Loki Mode was set to LokiStack, or if Loki manual TLS
configuration was configured, the Network Observability Operator still tried to read the Loki CA
certificates. With this fix, when Loki is disabled, the Loki certificates are not read, even if there
are settings in the Loki configuration. (NETOBSERV-1647)

Previously, the oc must-gather plugin for the Network Observability Operator was only working
on the amd64 architecture and failing on all others because the plugin was using amd64 for the
oc binary. Now, the Network Observability Operator oc must-gather plugin collects logs on any
architecture platform.

Previously, when filtering on IP addresses using not equal to, the Network Observability
Operator would return a request error. Now, the IP filtering works in both equal and not equal
to cases for IP addresses and ranges. (NETOBSERV-1630)

Previously, when a user was not an admin, the error messages were not consistent with the
selected tab of the Network Traffic view in the web console. Now, the user not admin error
displays on any tab with improved display.(NETOBSERV-1621)

2.1.34. Network Observability Operator 1.6.0 known issues

You can review the following known issues for the Network Observability Operator 1.6.0.

When the eBPF agent PacketDrop feature is enabled, and sampling is configured to a value
greater than 1, reported dropped bytes and dropped packets ignore the sampling
configuration. While this is done on purpose to not miss any drops, a side effect is that the
reported proportion of drops compared to non-drops becomes biased. For example, at a very
high sampling rate, such as 1:1000, it is likely that almost all the traffic appears to be dropped
when observed from the console plugin. (NETOBSERV-1676)

In the Manage panels window in the Overview tab, filtering on total, bar, donut, or line does
not show any result. (NETOBSERV-1540)

The SR-IOV secondary interface is not detected if the interface was created first and then the
eBPF agent was deployed. It is only detected if the agent was deployed first and then the SR-
IOV interface is created. (NETOBSERV-1697)

When Loki is disabled, the Topology view in the OpenShift web console always shows the
Cluster and Zone aggregation options in the slider beside the network topology diagram, even
when the related features are not enabled. There is no specific workaround, besides ignoring
these slider options. (NETOBSERV-1705)

When Loki is disabled, and the OpenShift web console first loads, it might display an error:
Request failed with status code 400 Loki is disabled. As a workaround, you can continue
switching content on the Network Traffic page, such as clicking between the Topology and the
Overview tabs. The error should disappear. (NETOBSERV-1706)

CHAPTER 2. NETWORK OBSERVABILITY OPERATOR RELEASE NOTES ARCHIVE

31

https://issues.redhat.com/browse/NETOBSERV-1607
https://issues.redhat.com/browse/NETOBSERV-1544
https://issues.redhat.com/browse/NETOBSERV-1647
https://issues.redhat.com/browse/NETOBSERV-1630
https://issues.redhat.com/browse/NETOBSERV-1621
https://issues.redhat.com/browse/NETOBSERV-1676
https://issues.redhat.com/browse/NETOBSERV-1540
https://issues.redhat.com/browse/NETOBSERV-1697
https://issues.redhat.com/browse/NETOBSERV-1705
https://issues.redhat.com/browse/NETOBSERV-1706

2.1.35. Network Observability Operator 1.5.0 advisory

You can view the following advisory for the Network Observability Operator 1.5 release.

Network Observability Operator 1.5.0

2.1.36. Network Observability Operator 1.5.0 new features and enhancements

You can view the following new features and enhancements for the Network Observability Operator 1.5
release.

2.1.36.1. DNS tracking enhancements

In 1.5, the TCP protocol is now supported in addition to UDP. New dashboards are also added to the
Overview view of the Network Traffic page.

For more information, see:

Configuring DNS tracking

Working with DNS tracking

2.1.36.2. Round-trip time (RTT)

You can use TCP handshake Round-Trip Time (RTT) captured from the fentry/tcp_rcv_established
Extended Berkeley Packet Filter (eBPF) hookpoint to read smoothed round-trip time (SRTT) and
analyze network flows. In the Overview, Network Traffic, and Topology pages in web console, you can
monitor network traffic and troubleshoot with RTT metrics, filtering, and edge labeling.

For more information, see:

RTT Overview

Working with RTT

2.1.36.3. Metrics, dashboards, and alerts enhancements

The network observability metrics dashboards in Observe → Dashboards → NetObserv have new
metrics types you can use to create Prometheus alerts. You can now define available metrics in the
includeList specification. In previous releases, these metrics were defined in the ignoreTags
specification.

For a complete list of these metrics, see:

Network observability metrics

2.1.36.4. Improvements for network observability without Loki

You can create Prometheus alerts for the Netobserv dashboard using DNS, Packet drop, and RTT
metrics, even if you don’t use Loki. In the previous version of network observability, 1.4, these metrics
were only available for querying and analysis in the Network Traffic, Overview, and Topology views,
which are not available without Loki.

For more information, see:

OpenShift Container Platform 4.17 Network Observability

32

https://access.redhat.com/errata/RHSA-2024:0853

Network observability metrics

2.1.36.5. Availability zones

You can configure the FlowCollector resource to collect information about the cluster availability
zones. This configuration enriches the network flow data with the topology.kubernetes.io/zone label
value applied to the nodes.

For more information, see:

Working with availability zones

2.1.36.6. Notable enhancements

The 1.5 release of the Network Observability Operator adds improvements and new capabilities to the
OpenShift Container Platform web console plugin and the Operator configuration.

2.1.36.7. Performance enhancements

The spec.agent.ebpf.kafkaBatchSize default is changed from 10MB to 1MB to enhance eBPF
performance when using Kafka.

IMPORTANT

When upgrading from an existing installation, this new value is not set
automatically in the configuration. If you monitor a performance regression with
the eBPF Agent memory consumption after upgrading, you might consider
reducing the kafkaBatchSize to the new value.

2.1.36.8. Web console enhancements:

There are new panels added to the Overview view for DNS and RTT: Min, Max, P90, P99.

There are new panel display options added:

Focus on one panel while keeping others viewable but with smaller focus.

Switch graph type.

Show Top and Overall.

A collection latency warning is shown in the Custom time range window.

There is enhanced visibility for the contents of the Manage panels and Manage columns pop-
up windows.

The Differentiated Services Code Point (DSCP) field for egress QoS is available for filtering
QoS DSCP in the web console Network Traffic page.

2.1.36.9. Configuration enhancements:

The LokiStack mode in the spec.loki.mode specification simplifies installation by automatically
setting URLs, TLS, cluster roles and a cluster role binding, as well as the authToken value. The
Manual mode allows more control over configuration of these settings.

CHAPTER 2. NETWORK OBSERVABILITY OPERATOR RELEASE NOTES ARCHIVE

33

https://kubernetes.io/docs/reference/labels-annotations-taints/#topologykubernetesiozone

The API version changes from flows.netobserv.io/v1beta1 to flows.netobserv.io/v1beta2.

2.1.37. Network Observability Operator 1.5.0 fixed issues

You can view the following fixed issues for the Network Observability Operator 1.5 release.

Previously, it was not possible to register the console plugin manually in the web console
interface if the automatic registration of the console plugin was disabled. If the
spec.console.register value was set to false in the FlowCollector resource, the Operator
would override and erase the plugin registration. With this fix, setting the spec.console.register
value to false does not impact the console plugin registration or registration removal. As a
result, the plugin can be safely registered manually. (NETOBSERV-1134)

Previously, using the default metrics settings, the NetObserv/Health dashboard was showing
an empty graph named Flows Overhead. This metric was only available by removing
"namespaces-flows" and "namespaces" from the ignoreTags list. With this fix, this metric is
visible when you use the default metrics setting. (NETOBSERV-1351)

Previously, the node on which the eBPF Agent was running would not resolve with a specific
cluster configuration. This resulted in cascading consequences that culminated in a failure to
provide some of the traffic metrics. With this fix, the eBPF agent’s node IP is safely provided by
the Operator, inferred from the pod status. Now, the missing metrics are restored.
(NETOBSERV-1430)

Previously, the Loki error 'Input size too long' error for the Loki Operator did not include
additional information to troubleshoot the problem. With this fix, help is directly displayed in the
web console next to the error with a direct link for more guidance. (NETOBSERV-1464)

Previously, the console plugin read timeout was forced to 30s. With the FlowCollector v1beta2
API update, you can configure the spec.loki.readTimeout specification to update this value
according to the Loki Operator queryTimeout limit. (NETOBSERV-1443)

Previously, the Operator bundle did not display some of the supported features by CSV
annotations as expected, such as features.operators.openshift.io/… ​ With this fix, these
annotations are set in the CSV as expected. (NETOBSERV-1305)

Previously, the FlowCollector status sometimes oscillated between DeploymentInProgress
and Ready states during reconciliation. With this fix, the status only becomes Ready when all of
the underlying components are fully ready. (NETOBSERV-1293)

2.1.38. Network Observability Operator 1.5.0 known issues

You can view the following known issues for the Network Observability Operator 1.5 release.

When trying to access the web console, cache issues on OCP 4.14.10 prevent access to the
Observe view. The web console shows the error message: Failed to get a valid plugin
manifest from /api/plugins/monitoring-plugin/. The recommended workaround is to update
the cluster to the latest minor version. If this does not work, you need to apply the workarounds
described in this Red Hat Knowledgebase article .(NETOBSERV-1493)

Since the 1.3.0 release of the Network Observability Operator, installing the Operator causes a
warning kernel taint to appear. The reason for this error is that the network observability eBPF
agent has memory constraints that prevent preallocating the entire hashmap table. The
Operator eBPF agent sets the BPF_F_NO_PREALLOC flag so that pre-allocation is disabled
when the hashmap is too memory expansive.

OpenShift Container Platform 4.17 Network Observability

34

https://issues.redhat.com/browse/NETOBSERV-1134
https://issues.redhat.com/browse/NETOBSERV-1351
https://issues.redhat.com/browse/NETOBSERV-1430
https://issues.redhat.com/browse/NETOBSERV-1464
https://issues.redhat.com/browse/NETOBSERV-1443
https://issues.redhat.com/browse/NETOBSERV-1305
https://issues.redhat.com/browse/NETOBSERV-1293
https://access.redhat.com/solutions/7052408
https://issues.redhat.com/browse/NETOBSERV-1493

2.1.39. Network Observability Operator 1.4.2 advisory

The following advisory is available for the Network Observability Operator 1.4.2:

2023:6787 Network Observability Operator 1.4.2

2.1.40. Network Observability Operator 1.4.2 CVEs

You can review the following CVEs in the Network Observability Operator 1.4.2 release.

2023-39325

2023-44487

2.1.41. Network Observability Operator 1.4.1 advisory

You can review the following advisory for the Network Observability Operator 1.4.1.

2023:5974 Network Observability Operator 1.4.1

2.1.42. Network Observability Operator release 1.4.1 CVEs

You can review the following CVEs in the Network Observability Operator 1.4.1 release.

2023-44487

2023-39325

2023-29406

2023-29409

2023-39322

2023-39318

2023-39319

2023-39321

2.1.43. Network Observability Operator release notes 1.4.1 fixed issues

You can review the following fixed issues in the Network Observability Operator 1.4.1 release.

In 1.4, there was a known issue when sending network flow data to Kafka. The Kafka message key
was ignored, causing an error with connection tracking. Now the key is used for partitioning, so
each flow from the same connection is sent to the same processor. (NETOBSERV-926)

In 1.4, the Inner flow direction was introduced to account for flows between pods running on the
same node. Flows with the Inner direction were not taken into account in the generated
Prometheus metrics derived from flows, resulting in under-evaluated bytes and packets rates.
Now, derived metrics are including flows with the Inner direction, providing correct bytes and
packets rates. (NETOBSERV-1344)

2.1.44. Network observability release notes 1.4.0 advisory

CHAPTER 2. NETWORK OBSERVABILITY OPERATOR RELEASE NOTES ARCHIVE

35

https://access.redhat.com/errata/RHSA-2023:6787
https://access.redhat.com/security/cve/CVE-2023-39325
https://access.redhat.com/security/cve/CVE-2023-44487
https://access.redhat.com/errata/RHSA-2023:5974
https://access.redhat.com/security/cve/cve-2023-44487
https://access.redhat.com/security/cve/cve-2023-39325
https://access.redhat.com/security/cve/cve-2023-29406
https://access.redhat.com/security/cve/CVE-2023-29409
https://access.redhat.com/security/cve/cve-2023-39322
https://access.redhat.com/security/cve/cve-2023-39318
https://access.redhat.com/security/cve/cve-2023-39319
https://access.redhat.com/security/cve/cve-2023-39321
https://issues.redhat.com/browse/NETOBSERV-926
https://issues.redhat.com/browse/NETOBSERV-1344

You can review the following advisory for the Network Observability Operator 1.4.0 release.

RHSA-2023:5379 Network Observability Operator 1.4.0

2.1.45. Network observability release notes 1.4.0 new features and enhancements

You can review the following new features and enhancements in the Network Observability Operator
1.4.0 release.

2.1.45.1. Notable enhancements

The 1.4 release of the Network Observability Operator adds improvements and new capabilities to the
OpenShift Container Platform web console plugin and the Operator configuration.

2.1.45.2. Web console enhancements:

In the Query Options, the Duplicate flows checkbox is added to choose whether or not to
show duplicated flows.

You can now filter source and destination traffic with One-way, Back-and-forth, and
Swap filters.

The network observability metrics dashboards in Observe → Dashboards → NetObserv and
NetObserv / Health are modified as follows:

The NetObserv dashboard shows top bytes, packets sent, packets received per nodes,
namespaces, and workloads. Flow graphs are removed from this dashboard.

The NetObserv / Health dashboard shows flows overhead as well as top flow rates per
nodes, namespaces, and workloads.

Infrastructure and Application metrics are shown in a split-view for namespaces and
workloads.

For more information, see:

Network observability metrics dashboards

Quick filters

2.1.45.3. Configuration enhancements:

You now have the option to specify different namespaces for any configured ConfigMap or
Secret reference, such as in certificates configuration.

The spec.processor.clusterName parameter is added so that the name of the cluster appears
in the flows data. This is useful in a multi-cluster context. When using OpenShift Container
Platform, leave empty to make it automatically determined.

For more information, see:

Flow Collector sample resource

Flow Collector API Reference

OpenShift Container Platform 4.17 Network Observability

36

https://access.redhat.com/errata/RHSA-2023:5379

2.1.45.4. Network observability without Loki

The Network Observability Operator is now functional and usable without Loki. If Loki is not installed, it
can only export flows to KAFKA or IPFIX format and provide metrics in the network observability metrics
dashboards.

For more information, see:

Network observability without Loki

2.1.45.5. DNS tracking

In 1.4, the Network Observability Operator makes use of eBPF tracepoint hooks to enable DNS tracking.
You can monitor your network, conduct security analysis, and troubleshoot DNS issues in the Network
Traffic and Overview pages in the web console.

For more information, see:

Configuring DNS tracking

Working with DNS tracking

2.1.45.6. SR-IOV support

You can now collect traffic from a cluster with Single Root I/O Virtualization (SR-IOV) device.

For more information, see:

Configuring the monitoring of SR-IOV interface traffic

2.1.45.7. IPFIX exporter support

You can now export eBPF-enriched network flows to the IPFIX collector.

For more information, see:

Export enriched network flow data

2.1.45.8. Packet drops

In the 1.4 release of the Network Observability Operator, eBPF tracepoint hooks are used to enable
packet drop tracking. You can now detect and analyze the cause for packet drops and make decisions to
optimize network performance. In OpenShift Container Platform 4.14 and later, both host drops and
OVS drops are detected. In OpenShift Container Platform 4.13, only host drops are detected.

For more information, see:

Configuring packet drop tracking

Working with packet drops

2.1.45.9. s390x architecture support

Network Observability Operator can now run on s390x architecture. Previously it ran on amd64,
ppc64le, or arm64.

CHAPTER 2. NETWORK OBSERVABILITY OPERATOR RELEASE NOTES ARCHIVE

37

2.1.46. Network observability release notes 1.4.0 removed features

You can review the following removed features from the Network Observability Operator 1.4.0 release.

2.1.46.1. Channel removal

You must switch your channel from v1.0.x to stable to receive the latest Operator updates. The v1.0.x
channel is now removed.

2.1.47. Network observability release notes 1.4.0 fixed issues

You can review the following fixed issues in the Network Observability Operator 1.4.0 release.

Previously, the Prometheus metrics exported by network observability were computed out of
potentially duplicated network flows. In the related dashboards, from Observe → Dashboards,
this could result in potentially doubled rates. Note that dashboards from the Network Traffic
view were not affected. Now, network flows are filtered to eliminate duplicates before metrics
calculation, which results in correct traffic rates displayed in the dashboards. (NETOBSERV-
1131)

Previously, the Network Observability Operator agents were not able to capture traffic on
network interfaces when configured with Multus or SR-IOV, non-default network namespaces.
Now, all available network namespaces are recognized and used for capturing flows, allowing
capturing traffic for SR-IOV. There are configurations needed for the FlowCollector and
SRIOVnetwork custom resource to collect traffic. (NETOBSERV-1283)

Previously, in the Network Observability Operator details from Operators → Installed
Operators, the FlowCollector Status field might have reported incorrect information about
the state of the deployment. The status field now shows the proper conditions with improved
messages. The history of events is kept, ordered by event date. (NETOBSERV-1224)

Previously, during spikes of network traffic load, certain eBPF pods were OOM-killed and went
into a CrashLoopBackOff state. Now, the eBPF agent memory footprint is improved, so pods
are not OOM-killed and entering a CrashLoopBackOff state. (NETOBSERV-975)

Previously when processor.metrics.tls was set to PROVIDED the insecureSkipVerify option
value was forced to be true. Now you can set insecureSkipVerify to true or false, and provide
a CA certificate if needed. (NETOBSERV-1087)

2.1.48. Network observability release notes 1.4.0 known issues

You can review the following known issues in the Network Observability Operator 1.4.0 release.

Since the 1.2.0 release of the Network Observability Operator, using Loki Operator 5.6, a Loki
certificate change periodically affects the flowlogs-pipeline pods and results in dropped flows
rather than flows written to Loki. The problem self-corrects after some time, but it still causes
temporary flow data loss during the Loki certificate change. This issue has only been observed in
large-scale environments of 120 nodes or greater. (NETOBSERV-980)

Currently, when spec.agent.ebpf.features includes DNSTracking, larger DNS packets require
the eBPF agent to look for DNS header outside of the 1st socket buffer (SKB) segment. A new
eBPF agent helper function needs to be implemented to support it. Currently, there is no
workaround for this issue. (NETOBSERV-1304)

Currently, when spec.agent.ebpf.features includes DNSTracking, DNS over TCP packets

OpenShift Container Platform 4.17 Network Observability

38

https://issues.redhat.com/browse/NETOBSERV-1131
https://issues.redhat.com/browse/NETOBSERV-1283
https://issues.redhat.com/browse/NETOBSERV-1224
https://issues.redhat.com/browse/NETOBSERV-975
https://issues.redhat.com/browse/NETOBSERV-1087
https://issues.redhat.com/browse/NETOBSERV-980
https://issues.redhat.com/browse/NETOBSERV-1304

requires the eBPF agent to look for DNS header outside of the 1st SKB segment. A new eBPF
agent helper function needs to be implemented to support it. Currently, there is no workaround
for this issue. (NETOBSERV-1245)

Currently, when using a KAFKA deployment model, if conversation tracking is configured,
conversation events might be duplicated across Kafka consumers, resulting in inconsistent
tracking of conversations, and incorrect volumetric data. For that reason, it is not recommended
to configure conversation tracking when deploymentModel is set to KAFKA. (NETOBSERV-
926)

Currently, when the processor.metrics.server.tls.type is configured to use a PROVIDED
certificate, the operator enters an unsteady state that might affect its performance and
resource consumption. It is recommended to not use a PROVIDED certificate until this issue is
resolved, and instead using an auto-generated certificate, setting
processor.metrics.server.tls.type to AUTO. (NETOBSERV-1293

Since the 1.3.0 release of the Network Observability Operator, installing the Operator causes a
warning kernel taint to appear. The reason for this error is that the network observability eBPF
agent has memory constraints that prevent preallocating the entire hashmap table. The
Operator eBPF agent sets the BPF_F_NO_PREALLOC flag so that pre-allocation is disabled
when the hashmap is too memory expansive.

2.1.49. Network Observability Operator 1.3.0 advisory

You can review the following advisory in the Network Observability Operator 1.3.0 release.

RHSA-2023:3905 Network Observability Operator 1.3.0

2.1.50. Network Observability Operator 1.3.0 new features and enhancements

You can review the following new features and enhancements in the Network Observability Operator
1.3.0 release.

2.1.50.1. Multi-tenancy in network observability

System administrators can allow and restrict individual user access, or group access, to the
flows stored in Loki. For more information, see "Multi-tenancy in network observability".

2.1.50.2. Flow-based metrics dashboard

This release adds a new dashboard, which provides an overview of the network flows in your
OpenShift Container Platform cluster. For more information, see "Network observability metrics
dashboards".

2.1.50.3. Troubleshooting with the must-gather tool

Information about the Network Observability Operator can now be included in the must-gather
data for troubleshooting. For more information, see "Network observability must-gather".

2.1.50.4. Multiple architectures now supported

Network Observability Operator can now run on an amd64, ppc64le, or arm64 architectures.
Previously, it only ran on amd64.

CHAPTER 2. NETWORK OBSERVABILITY OPERATOR RELEASE NOTES ARCHIVE

39

https://issues.redhat.com/browse/NETOBSERV-1245
https://issues.redhat.com/browse/NETOBSERV-926
https://issues.redhat.com/browse/NETOBSERV-1293)
https://access.redhat.com/errata/RHSA-2023:3905

2.1.51. Network Observability Operator 1.3.0 deprecated features

You can review the following deprecated features in the Network Observability Operator 1.3.0 release.

2.1.51.1. Channel deprecation

You must switch your channel from v1.0.x to stable to receive future Operator updates. The v1.0.x
channel is deprecated and planned for removal in the next release.

2.1.51.2. Deprecated configuration parameter setting

The release of Network Observability Operator 1.3 deprecates the spec.Loki.authToken HOST setting.
When using the Loki Operator, you must now only use the FORWARD setting.

2.1.52. Network Observability Operator 1.3.0 fixed issues

You can review the following fixed issues in the Network Observability Operator 1.3.0 release.

Previously, when the Operator was installed from the CLI, the Role and RoleBinding that are
necessary for the Cluster Monitoring Operator to read the metrics were not installed as
expected. The issue did not occur when the operator was installed from the web console. Now,
either way of installing the Operator installs the required Role and RoleBinding.
(NETOBSERV-1003)

Since version 1.2, the Network Observability Operator can raise alerts when a problem occurs
with the flows collection. Previously, due to a bug, the related configuration to disable alerts,
spec.processor.metrics.disableAlerts was not working as expected and sometimes
ineffectual. Now, this configuration is fixed so that it is possible to disable the alerts.
(NETOBSERV-976)

Previously, when network observability was configured with spec.loki.authToken set to
DISABLED, only a kubeadmin cluster administrator was able to view network flows. Other
types of cluster administrators received authorization failure. Now, any cluster administrator is
able to view network flows. (NETOBSERV-972)

Previously, a bug prevented users from setting spec.consolePlugin.portNaming.enable to
false. Now, this setting can be set to false to disable port-to-service name translation.
(NETOBSERV-971)

Previously, the metrics exposed by the console plugin were not collected by the Cluster
Monitoring Operator (Prometheus), due to an incorrect configuration. Now the configuration
has been fixed so that the console plugin metrics are correctly collected and accessible from
the OpenShift Container Platform web console. (NETOBSERV-765)

Previously, when processor.metrics.tls was set to AUTO in the FlowCollector, the flowlogs-
pipeline servicemonitor did not adapt the appropriate TLS scheme, and metrics were not
visible in the web console. Now the issue is fixed for AUTO mode. (NETOBSERV-1070)

Previously, certificate configuration, such as used for Kafka and Loki, did not allow specifying a
namespace field, implying that the certificates had to be in the same namespace where network
observability is deployed. Moreover, when using Kafka with TLS/mTLS, the user had to manually
copy the certificate(s) to the privileged namespace where the eBPF agent pods are deployed
and manually manage certificate updates, such as in the case of certificate rotation. Now,
network observability setup is simplified by adding a namespace field for certificates in the
FlowCollector resource. As a result, users can now install Loki or Kafka in different namespaces

OpenShift Container Platform 4.17 Network Observability

40

https://issues.redhat.com/browse/NETOBSERV-1003
https://issues.redhat.com/browse/NETOBSERV-976
https://issues.redhat.com/browse/NETOBSERV-972
https://issues.redhat.com/browse/NETOBSERV-971
https://issues.redhat.com/browse/NETOBSERV-765
https://issues.redhat.com/browse/NETOBSERV-1070

without needing to manually copy their certificates in the network observability namespace. The
original certificates are watched so that the copies are automatically updated when needed.
(NETOBSERV-773)

Previously, the SCTP, ICMPv4 and ICMPv6 protocols were not covered by the network
observability agents, resulting in a less comprehensive network flows coverage. These protocols
are now recognized to improve the flows coverage. (NETOBSERV-934)

2.1.53. Network Observability Operator 1.3.0 known issues

You can review the following issues and their workarounds, if available, to troubleshoot issues with the
Network Observability Operator 1.3.0 release.

When processor.metrics.tls is set to PROVIDED in the FlowCollector, the flowlogs-pipeline
servicemonitor is not adapted to the TLS scheme. (NETOBSERV-1087)

Since the 1.2.0 release of the Network Observability Operator, using Loki Operator 5.6, a Loki
certificate change periodically affects the flowlogs-pipeline pods and results in dropped flows
rather than flows written to Loki. The problem self-corrects after some time, but it still causes
temporary flow data loss during the Loki certificate change. This issue has only been observed in
large-scale environments of 120 nodes or greater.(NETOBSERV-980)

When you install the Operator, a warning kernel taint can appear. The reason for this error is that
the network observability eBPF agent has memory constraints that prevent preallocating the
entire hashmap table. The Operator eBPF agent sets the BPF_F_NO_PREALLOC flag so that
pre-allocation is disabled when the hashmap is too memory expansive.

2.1.54. Network observability release notes 1.2.0 preparing for the next update

Switch the Network Observability Operator’s update channel from the deprecated v1.0.x to the stable
channel to continue receiving future releases and updates.

The subscription of an installed Operator specifies an update channel that tracks and receives updates
for the Operator. Until the 1.2 release of the Network Observability Operator, the only channel available
was v1.0.x. The 1.2 release of the Network Observability Operator introduces the stable update channel
for tracking and receiving updates. You must switch your channel from v1.0.x to stable to receive future
Operator updates. The v1.0.x channel is deprecated and planned for removal in a following release.

2.1.55. Network Observability Operator 1.2.0 advisory

You can view the following advisory for the Network Observability Operator 1.2.0 release.

RHSA-2023:1817 Network Observability Operator 1.2.0

2.1.56. Network Observability Operator 1.2.0 new features and enhancements

You can view the following new features and enhancements for the Network Observability Operator
1.2.0 release.

2.1.56.1. Histogram in Traffic Flows view

You can now choose to show a histogram of flows over time. The histogram enables you to visualize the
history of flows without hitting the Loki query limit. For more information, see "Using the histogram".

CHAPTER 2. NETWORK OBSERVABILITY OPERATOR RELEASE NOTES ARCHIVE

41

https://issues.redhat.com/browse/NETOBSERV-773
https://issues.redhat.com/browse/NETOBSERV-934
https://issues.redhat.com/browse/NETOBSERV-1087
https://issues.redhat.com/browse/NETOBSERV-980
https://access.redhat.com/errata/RHSA-2023:1817

2.1.56.2. Conversation tracking

You can now query flows by Log Type, which enables grouping network flows that are part of the same
conversation. For more information, see "Working with conversations".

2.1.56.3. Network observability health alerts

The Network Observability Operator now creates automatic alerts if the flowlogs-pipeline is dropping
flows because of errors at the write stage or if the Loki ingestion rate limit has been reached. For more
information, see "Health dashboards".

2.1.57. Network Observability Operator 1.2.0 bug fixes

You can view the following fixed issues for the Network Observability Operator 1.2.0 release.

Previously, after changing the namespace value in the FlowCollector spec, eBPF agent pods
running in the previous namespace were not appropriately deleted. Now, the pods running in the
previous namespace are appropriately deleted. (NETOBSERV-774)

Previously, after changing the caCert.name value in the FlowCollector spec (such as in Loki
section), FlowLogs-Pipeline pods and Console plug-in pods were not restarted, therefore they
were unaware of the configuration change. Now, the pods are restarted, so they get the
configuration change. (NETOBSERV-772)

Previously, network flows between pods running on different nodes were sometimes not
correctly identified as being duplicates because they are captured by different network
interfaces. This resulted in over-estimated metrics displayed in the console plug-in. Now, flows
are correctly identified as duplicates, and the console plug-in displays accurate metrics.
(NETOBSERV-755)

The "reporter" option in the console plug-in is used to filter flows based on the observation
point of either source node or destination node. Previously, this option mixed the flows
regardless of the node observation point. This was due to network flows being incorrectly
reported as Ingress or Egress at the node level. Now, the network flow direction reporting is
correct. The "reporter" option filters for source observation point, or destination observation
point, as expected. (NETOBSERV-696)

Previously, for agents configured to send flows directly to the processor as gRPC+protobuf
requests, the submitted payload could be too large and is rejected by the processors' GRPC
server. This occurred under very-high-load scenarios and with only some configurations of the
agent. The agent logged an error message, such as: grpc: received message larger than max . As
a consequence, there was information loss about those flows. Now, the gRPC payload is split
into several messages when the size exceeds a threshold. As a result, the server maintains
connectivity. (NETOBSERV-617)

2.1.58. Network Observability Operator 1.2.0 known issues

You can review the following issues and their workarounds, if available, to troubleshoot issues with the
Network Observability Operator 1.2.0 release.

In the 1.2.0 release of the Network Observability Operator, using Loki Operator 5.6, a Loki
certificate transition periodically affects the flowlogs-pipeline pods and results in dropped
flows rather than flows written to Loki. The problem self-corrects after some time, but it still
causes temporary flow data loss during the Loki certificate transition. (NETOBSERV-980)

OpenShift Container Platform 4.17 Network Observability

42

https://issues.redhat.com/browse/NETOBSERV-774
https://issues.redhat.com/browse/NETOBSERV-772
https://issues.redhat.com/browse/NETOBSERV-755
https://issues.redhat.com/browse/NETOBSERV-696
https://issues.redhat.com/browse/NETOBSERV-617
https://issues.redhat.com/browse/NETOBSERV-980

2.1.59. Network Observability Operator 1.2.0 notable technical changes

The Network Observability Operator 1.2.0 release requires installation in the openshift-netobserv-
operator namespace due to new technical changes. Users who previously used a custom namespace
must delete the old instance and reinstall the Operator.

Previously, you could install the Network Observability Operator using a custom namespace. This release
introduces the conversion webhook which changes the ClusterServiceVersion. Because of this
change, all the available namespaces are no longer listed. Additionally, to enable Operator metrics
collection, namespaces that are shared with other Operators, like the openshift-operators namespace,
cannot be used.

Now, the Operator must be installed in the openshift-netobserv-operator namespace.

You cannot automatically upgrade to the new Operator version if you previously installed the Network
Observability Operator using a custom namespace. If you previously installed the Operator using a
custom namespace, you must delete the instance of the Operator that was installed and re-install your
operator in the openshift-netobserv-operator namespace. It is important to note that custom
namespaces, such as the commonly used netobserv namespace, are still possible for the
FlowCollector, Loki, Kafka, and other plug-ins.

NETOBSERV-907

NETOBSERV-956

2.1.60. Network Observability Operator 1.1.0 enhancements

You can view the following advisory for the Network Observability Operator 1.1.0:

RHSA-2023:0786 Network Observability Operator Security Advisory Update

The Network Observability Operator is now stable and the release channel is upgraded to v1.1.0.

2.1.61. Network Observability Operator 1.1.0 fixed issues

You can view the following fixed issues for the Network Observability Operator 1.1.0 release.

Previously, unless the Loki authToken configuration was set to FORWARD mode,
authentication was not enforced, allowing unauthorized users to retrieve flows. Now, regardless
of the Loki authToken mode, only cluster administrators can retrieve flows. (BZ#2169468)

2.1.62. Additional resources

Multi-tenancy in network observability

Network observability metrics dashboards

Network observability must-gather

Using the histogram

Working with conversations

Health dashboards

CHAPTER 2. NETWORK OBSERVABILITY OPERATOR RELEASE NOTES ARCHIVE

43

https://issues.redhat.com/browse/NETOBSERV-907
https://https//issues.redhat.com/browse/NETOBSERV-956
https://access.redhat.com/errata/RHSA-2023:0786
https://bugzilla.redhat.com/show_bug.cgi?id=2169468

CHAPTER 3. ABOUT NETWORK OBSERVABILITY
Use the Network Observability Operator to observe network traffic via eBPF technology, providing
troubleshooting insights through Prometheus metrics and Loki logs.

You can view and analyze this stored information in the OpenShift Container Platform console for
further insight and troubleshooting.

3.1. NETWORK OBSERVABILITY OPERATOR

The Network Observability Operator provides the cluster-scoped FlowCollector API custom resource,
which manages a pipeline of eBPF agents and services that collect, enrich, and store network flows in
Loki or Prometheus.

A FlowCollector instance deploys pods and services that form a monitoring pipeline.

The eBPF agent is deployed as a daemonset object and creates the network flows. The pipeline
collects and enriches network flows with Kubernetes metadata before storing them in Loki or generating
Prometheus metrics.

3.2. OPTIONAL DEPENDENCIES OF THE NETWORK OBSERVABILITY
OPERATOR

Integrate the Network Observability Operator with optional dependencies, such as the Loki Operator for
flow storage and AMQ Streams (Kafka) for resilient, large-scale data handling and scalability.

Supported optional dependencies include the Loki Operator for flow storage, and AMQ Streams for
large-scale data handling with Kafka.

Loki Operator

You can use Loki as the backend to store all collected flows with a maximal level of details. It is
recommended to use the Red Hat supported Loki Operator to install Loki. You can also choose to
use network observability without Loki, but you need to consider some factors. For more information,
see "Network observability without Loki".

AMQ Streams Operator

Kafka provides scalability, resiliency and high availability in the OpenShift Container Platform cluster
for large scale deployments.

NOTE

If you choose to use Kafka, it is recommended to use Red Hat supported AMQ
Streams Operator.

Additional resources

Network observability without Loki

3.3. OPENSHIFT CONTAINER PLATFORM CONSOLE INTEGRATION

The Network Observability Operator integrates with the OpenShift Container Platform console,
providing an overview, topology view, and traffic flow tables.

OpenShift Container Platform 4.17 Network Observability

44

The Network observability metrics dashboards in Observe → Dashboards are available only to users
with administrator access.

NOTE

To enable multi-tenancy for developer access and for administrators with limited access
to namespaces, you must specify permissions by defining roles. For more information,
see "Enabling multi-tenancy in network observability".

Additional resources

Enabling multi-tenancy in network observability

3.3.1. Network observability metrics dashboards

Review the network observability metrics dashboards in the OpenShift Container Platform console,
which provide overall traffic flow aggregation, filtering options, and dedicated dashboards for
monitoring operator health.

In the OpenShift Container Platform console on the Overview tab, you can view the overall aggregated
metrics of the network traffic flow on the cluster. You can choose to display the information by cluster,
node, namespace, owner, pod, and service. Filters and display options can further refine the metrics. For
more information, see "Observing the network traffic from the Overview view".

In Observe → Dashboards, the Netobserv dashboards provide a quick overview of the network flows in
your OpenShift Container Platform cluster. The Netobserv/Health dashboard provides metrics about
the health of the Operator. For more information, see "Network observability metrics" and "Viewing
health information".

Additional resources

Observing the network traffic from the Overview view

Network observability metrics

Health dashboards

3.3.2. Network observability topology views

The network observability topology view in the OpenShift Container Platform console displays a
graphical representation of traffic flow between components, which you can refine using various filters
and display options.

The OpenShift Container Platform console offers the Topology tab which represents traffic between
the OpenShift Container Platform components as a network graph. You can refine the graph by using
the filters and display options. You can access the information for cluster, zone, udn, node, namespace,
owner, pod, and service.

3.3.3. Traffic flow tables

The Traffic flow tables in the OpenShift Container Platform web console provide a detailed view of raw
network flows, offering powerful filtering options and configurable columns for in-depth analysis.

The Traffic flows tab in the OpenShift Container Platform web console displays the data of the
network flows and the amount of traffic.

CHAPTER 3. ABOUT NETWORK OBSERVABILITY

45

3.4. NETWORK OBSERVABILITY CLI

The Network Observability CLI (oc netobserv) is a lightweight tool that streams flow and packet data
for quick, live insight into networking issues without requiring the full Network Observability Operator
installation.

The Network Observability CLI is a flow and packet visualization tool that relies on eBPF agents to
stream collected data to an ephemeral collector pod. It requires no persistent storage during the
capture. After the run, the output is transferred to your local machine. This enables quick, live insight into
packets and flow data without installing the Network Observability Operator.

OpenShift Container Platform 4.17 Network Observability

46

CHAPTER 4. INSTALLING THE NETWORK OBSERVABILITY
OPERATOR

Installing the Loki Operator is recommended before using the Network Observability Operator. You can
use network observability without Loki, but special considerations apply if you only need metrics or
external exporters.

The Loki Operator integrates a gateway that implements multi-tenancy and authentication with Loki for
data flow storage. The LokiStack resource manages Loki, which is a scalable, highly-available, multi-
tenant log aggregation system, and a web proxy with OpenShift Container Platform authentication. The
LokiStack proxy uses OpenShift Container Platform authentication to enforce multi-tenancy and
facilitate the saving and indexing of data in Loki log stores.

4.1. NETWORK OBSERVABILITY WITHOUT LOKI

Compare the features available with network observability with and without installing the Loki Operator.

If you only want to export flows to a Kafka consumer or IPFIX collector, or you only need dashboard
metrics, then you do not need to install Loki or provide storage for Loki. The following table compares
available features with and without Loki.

Table 4.1. Comparison of feature availability with and without Loki

 With Loki Without Loki

Exporters X X

Multi-tenancy X X

Complete filtering and

aggregations capabilities [1]

X

Partial filtering and

aggregations capabilities [2]

X X

Flow-based metrics and
dashboards

X X

Traffic flows view overview [3] X X

Traffic flows view table X

Topology view X X

OpenShift Container Platform
console Network Traffic tab
integration

X X

1. Such as per pod.

CHAPTER 4. INSTALLING THE NETWORK OBSERVABILITY OPERATOR

47

2. Such as per workload or namespace.

3. Statistics on packet drops are only available with Loki.

Additional resources

Export enriched network flow data

4.2. INSTALLING THE LOKI OPERATOR

Install the supported Loki Operator version from the software catalog to enable the secure LokiStack
instance, which provides automatic in-cluster authentication and authorization for network observability.

The Loki Operator versions 6.0+ are the supported Loki Operator versions for network observability;
these versions provide the ability to create a LokiStack instance using the openshift-network tenant
configuration mode and provide fully-automatic, in-cluster authentication and authorization support for
network observability.

Prerequisites

You have administrator permissions.

You have access to the OpenShift Container Platform web console.

You have access to a supported object store. For example: AWS S3, Google Cloud Storage,
Azure, Swift, Minio, or OpenShift Data Foundation.

Procedure

1. In the OpenShift Container Platform web console, click Operators → OperatorHub.

2. Choose Loki Operator from the list of available Operators, and click Install.

3. Under Installation Mode, select All namespaces on the cluster.

Verification

1. Verify that you installed the Loki Operator. Visit the Operators → Installed Operators page and
look for Loki Operator.

2. Verify that Loki Operator is listed with Status as Succeeded in all the projects.

IMPORTANT

To uninstall Loki, refer to the uninstallation process that corresponds with the method
you used to install Loki. You might have remaining ClusterRoles and
ClusterRoleBindings, data stored in object store, and persistent volume that must be
removed.

4.2.1. Creating a secret for Loki storage

Create a secret with cloud storage credentials, such as for Amazon Web Services (AWS), to allow the
Loki Operator to access the necessary object store for log persistence.

The Loki Operator supports a few log storage options, such as AWS S3, Google Cloud Storage, Azure,

OpenShift Container Platform 4.17 Network Observability

48

https://catalog.redhat.com/software/containers/openshift-logging/loki-rhel9-operator/64479927e1820602a81cdf13

1

The Loki Operator supports a few log storage options, such as AWS S3, Google Cloud Storage, Azure,
Swift, Minio, OpenShift Data Foundation. The following example shows how to create a secret for AWS
S3 storage. The secret created in this example, loki-s3, is referenced in "Creating a LokiStack custom
resource". You can create this secret in the web console or CLI.

Procedure

1. Using the web console, navigate to the Project → All Projects dropdown and select Create
Project.

2. Name the project netobserv and click Create.

3. Navigate to the Import icon, +, in the top right corner. Paste your YAML file into the editor.
The following shows an example secret YAML file for S3 storage:

The installation examples in this documentation use the same namespace, netobserv,
across all components. You can optionally use a different namespace for the different
components

Verification

After you create the secret, you view the secret listed under Workloads → Secrets in the web
console.

Additional resources

Creating a LokiStack custom resource

Flow Collector API Reference

Flow Collector sample resource

4.2.2. Creating a LokiStack custom resource

Deploy the LokiStack custom resource using the web console or OpenShift CLI (oc), ensuring you
configure the correct namespace, deployment size, and secret name for Loki object storage.

You can deploy a LokiStack custom resource (CR) to create a namespace or new project.

Procedure

apiVersion: v1
kind: Secret
metadata:
 name: loki-s3
 namespace: netobserv 1
stringData:
 access_key_id: QUtJQUlPU0ZPRE5ON0VYQU1QTEUK
 access_key_secret:
d0phbHJYVXRuRkVNSS9LN01ERU5HL2JQeFJmaUNZRVhBTVBMRUtFWQo=
 bucketnames: s3-bucket-name
 endpoint: https://s3.eu-central-1.amazonaws.com
 region: eu-central-1

CHAPTER 4. INSTALLING THE NETWORK OBSERVABILITY OPERATOR

49

1

2

3

1. Navigate to Operators → Installed Operators, viewing All projects from the Project
dropdown.

2. Look for Loki Operator. In the details, under Provided APIs, select LokiStack.

3. Click Create LokiStack.

4. Ensure the following fields are specified in either Form View or YAML view:

The installation examples in this documentation use the same namespace, netobserv,
across all components. You can optionally use a different namespace.

Specify the deployment size. In the Loki Operator 5.8 and later versions, the supported size
options for production instances of Loki are 1x.extra-small, 1x.small, or 1x.medium.

IMPORTANT

It is not possible to change the number 1x for the deployment size.

Use a storage class name that is available on the cluster for ReadWriteOnce access mode.
For best performance, specify a storage class that allocates block storage. You can use oc
get storageclasses to see what is available on your cluster.

IMPORTANT

You must not reuse the same LokiStack CR that is used for logging.

5. Click Create.

4.2.3. Creating a new group for the cluster-admin user role

IMPORTANT

apiVersion: loki.grafana.com/v1
kind: LokiStack
metadata:
 name: loki
 namespace: netobserv 1
spec:
 size: 1x.small 2
 storage:
 schemas:
 - version: v12
 effectiveDate: '2022-06-01'
 secret:
 name: loki-s3
 type: s3
 storageClassName: gp3 3
 tenants:
 mode: openshift-network

OpenShift Container Platform 4.17 Network Observability

50

1

2

IMPORTANT

Querying application logs for multiple namespaces as a cluster-admin user, where the
sum total of characters of all of the namespaces in the cluster is greater than 5120, results
in the error Parse error: input size too long (XXXX > 5120). For better control over
access to logs in LokiStack, make the cluster-admin user a member of the cluster-
admin group. If the cluster-admin group does not exist, create it and add the desired
users to it.

Use the following procedure to create a new group for users with cluster-admin permissions.

Procedure

1. Enter the following command to create a new group:

2. Enter the following command to add the desired user to the cluster-admin group:

3. Enter the following command to add cluster-admin user role to the group:

4.2.4. Custom admin group access

If you need to see cluster-wide logs without necessarily being an administrator, or if you already have
any group defined that you want to use here, you can specify a custom group using the adminGroup
field. Users who are members of any group specified in the adminGroups field of the LokiStack
custom resource (CR) have the same read access to logs as administrators.

Administrator users have access to all network logs across the cluster.

Example LokiStack CR

Custom admin groups are only available in this mode.

Entering an empty list [] value for this field disables admin groups.

$ oc adm groups new cluster-admin

$ oc adm groups add-users cluster-admin <username>

$ oc adm policy add-cluster-role-to-group cluster-admin cluster-admin

apiVersion: loki.grafana.com/v1
kind: LokiStack
metadata:
 name: loki
 namespace: netobserv
spec:
 tenants:
 mode: openshift-network 1
 openshift:
 adminGroups: 2
 - cluster-admin
 - custom-admin-group 3

CHAPTER 4. INSTALLING THE NETWORK OBSERVABILITY OPERATOR

51

3 Overrides the default groups (system:cluster-admins, cluster-admin, dedicated-admin)

4.2.5. Loki deployment sizing

Sizing for Loki follows the format of 1x.<size> where the value 1x is number of instances and <size>
specifies performance capabilities.

IMPORTANT

It is not possible to change the number 1x for the deployment size.

Table 4.2. Loki sizing

 1x.demo 1x.extra-small 1x.small 1x.medium

Data transfer Demo use only 100GB/day 500GB/day 2TB/day

Queries per
second (QPS)

Demo use only 1-25 QPS at
200ms

25-50 QPS at
200ms

25-75 QPS at
200ms

Replication factor None 2 2 2

Total CPU
requests

None 14 vCPUs 34 vCPUs 54 vCPUs

Total memory
requests

None 31Gi 67Gi 139Gi

Total disk
requests

40Gi 430Gi 430Gi 590Gi

4.2.6. LokiStack ingestion limits and health alerts

The LokiStack instance includes default ingestion and query limits that can be overridden by
administrators to manage performance and prevent system alerts or errors.

NOTE

You might want to update the ingestion and query limits if you get Loki errors showing up
in the Console plugin, or in flowlogs-pipeline logs.

Here is an example of configured limits:

spec:
 limits:
 global:
 ingestion:
 ingestionBurstSize: 40
 ingestionRate: 20

OpenShift Container Platform 4.17 Network Observability

52

For more information about these settings, see the LokiStack API reference.

4.3. INSTALLING THE NETWORK OBSERVABILITY OPERATOR

Install the Network Observability Operator and use the setup wizard to create the FlowCollector
custom resource definition (CRD) to complete the initial configuration.

You can set specifications in the web console when you create the FlowCollector.

IMPORTANT

The actual memory consumption of the Operator depends on your cluster size and the
number of resources deployed. Memory consumption might need to be adjusted
accordingly. For more information refer to "Network Observability controller manager
pod runs out of memory" in the "Important Flow Collector configuration considerations"
section.

Prerequisites

If you choose to use Loki, install the Loki Operator version 5.7+.

You must have cluster-admin privileges.

One of the following supported architectures is required: amd64, ppc64le, arm64, or s390x.

Any CPU supported by Red Hat Enterprise Linux (RHEL) 9.

Must be configured with OVN-Kubernetes as the main network plugin, and optionally using
secondary interfaces with Multus and SR-IOV.

NOTE

Additionally, this installation example uses the netobserv namespace, which is used
across all components. You can optionally use a different namespace.

Procedure

1. In the OpenShift Container Platform web console, click Operators → OperatorHub.

2. Choose Network Observability Operator from the list of available Operators in the
OperatorHub, and click Install.

3. Select the checkbox Enable Operator recommended cluster monitoring on this Namespace.

4. Navigate to Operators → Installed Operators. Under Provided APIs for Network Observability,
select the Flow Collector link.

5. Follow the Network Observability FlowCollector setup wizard.

 maxGlobalStreamsPerTenant: 25000
 queries:
 maxChunksPerQuery: 2000000
 maxEntriesLimitPerQuery: 10000
 maxQuerySeries: 3000

CHAPTER 4. INSTALLING THE NETWORK OBSERVABILITY OPERATOR

53

https://loki-operator.dev/docs/api.md/#loki-grafana-com-v1-IngestionLimitSpec
https://catalog.redhat.com/software/containers/openshift-logging/loki-rhel8-operator/622b46bcae289285d6fcda39

6. Click Create.

Verification

To confirm this was successful, when you navigate to Observe you should see Network Traffic listed in
the options.

In the absence of Application Traffic within the OpenShift Container Platform cluster, default filters
might show that there are "No results", which results in no visual flow. Beside the filter selections, select
Clear all filters to see the flow.

4.4. ENABLING MULTI-TENANCY IN NETWORK OBSERVABILITY

Enable multi-tenancy in network observability by configuring cluster roles and namespace roles to grant
project administrators and developers granular, restricted access to flows and metrics in Loki and
Prometheus.

Access is enabled for project administrators. Project administrators who have limited access to some
namespaces can access flows for only those namespaces.

For Developers, multi-tenancy is available for both Loki and Prometheus but requires different access
rights.

Prerequisite

If you are using Loki, you have installed at least Loki Operator version 5.7.

You must be logged in as a project administrator.

Procedure

For per-tenant access, you must have the netobserv-loki-reader cluster role and the
netobserv-metrics-reader namespace role to use the developer perspective. Run the following
commands for this level of access:

For cluster-wide access, non-cluster-administrators must have the netobserv-loki-reader,
cluster-monitoring-view, and netobserv-metrics-reader cluster roles. In this scenario, you can
use either the admin perspective or the developer perspective. Run the following commands for
this level of access:

4.5. IMPORTANT FLOW COLLECTOR CONFIGURATION

$ oc adm policy add-cluster-role-to-user netobserv-loki-reader <user_group_or_name>

$ oc adm policy add-role-to-user netobserv-metrics-reader <user_group_or_name> -n
<namespace>

$ oc adm policy add-cluster-role-to-user netobserv-loki-reader <user_group_or_name>

$ oc adm policy add-cluster-role-to-user cluster-monitoring-view <user_group_or_name>

$ oc adm policy add-cluster-role-to-user netobserv-metrics-reader <user_group_or_name>

OpenShift Container Platform 4.17 Network Observability

54

https://catalog.redhat.com/software/containers/openshift-logging/loki-rhel8-operator/622b46bcae289285d6fcda39

4.5. IMPORTANT FLOW COLLECTOR CONFIGURATION
CONSIDERATIONS

Once you create the FlowCollector instance, you can reconfigure it, but the pods are terminated and
recreated again, which can be disruptive. Therefore, you can consider configuring the following options
when creating the FlowCollector for the first time:

Configuring the Flow Collector resource with Kafka

Export enriched network flow data to Kafka or IPFIX

Configuring monitoring for SR-IOV interface traffic

Working with conversation tracking

Working with DNS tracking

Working with packet drops

Additional resources

Flow Collector API Reference

Flow Collector sample resource

Resource considerations

Troubleshooting network observability controller manager pod runs out of memory

Network observability architecture

4.5.1. Migrating removed stored versions of the FlowCollector CRD

Manually remove the deprecated v1alpha1 version from the FlowCollector custom resource definition
(CRD) storedVersion list to prevent upgrade errors and successfully migrate to Network Observability
Operator 1.6.

There are two options to remove stored versions:

1. Use the Storage Version Migrator Operator.

2. Uninstall and reinstall the Network Observability Operator, ensuring that the installation is in a
clean state.

Prerequisites

You have an older version of the Operator installed, and you want to prepare your cluster to
install the latest version of the Operator. Or you have attempted to install the Network
Observability Operator 1.6 and run into the error: Failed risk of data loss updating
"flowcollectors.flows.netobserv.io": new CRD removes version v1alpha1 that is listed as a
stored version on the existing CRD.

Procedure

1. Verify that the old FlowCollector CRD version is still referenced in the storedVersion:

CHAPTER 4. INSTALLING THE NETWORK OBSERVABILITY OPERATOR

55

2. If v1alpha1 appears in the list of results, proceed with Step a to use the Kubernetes Storage
Version Migrator or Step b to uninstall and reinstall the CRD and the Operator.

a. Option 1: Kubernetes Storage Version Migrator: Create a YAML to define the
StorageVersionMigration object, for example migrate-flowcollector-v1alpha1.yaml:

i. Save the file.

ii. Apply the StorageVersionMigration by running the following command:

iii. Update the FlowCollector CRD to manually remove v1alpha1 from the
storedVersion:

b. Option 2: Reinstall: Save the Network Observability Operator 1.5 version of the
FlowCollector CR to a file, for example flowcollector-1.5.yaml.

i. Follow the steps in "Uninstalling the Network Observability Operator", which uninstalls
the Operator and removes the existing FlowCollector CRD.

ii. Install the Network Observability Operator latest version, 1.6.0.

iii. Create the FlowCollector using backup that was saved in Step b.

Verification

Run the following command:

The list of results should no longer show v1alpha1 and only show the latest version, v1beta1.

Additional resources

Kubernetes Storage Version Migrator Operator

$ oc get crd flowcollectors.flows.netobserv.io -ojsonpath='{.status.storedVersions}'

apiVersion: migration.k8s.io/v1alpha1
kind: StorageVersionMigration
metadata:
 name: migrate-flowcollector-v1alpha1
spec:
 resource:
 group: flows.netobserv.io
 resource: flowcollectors
 version: v1alpha1

$ oc apply -f migrate-flowcollector-v1alpha1.yaml

$ oc edit crd flowcollectors.flows.netobserv.io

$ oc get flowcollector cluster -o yaml > flowcollector-1.5.yaml

$ oc get crd flowcollectors.flows.netobserv.io -ojsonpath='{.status.storedVersions}'

OpenShift Container Platform 4.17 Network Observability

56

https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/operators/#cluster-kube-storage-version-migrator-operator_operator-reference

4.6. INSTALLING KAFKA (OPTIONAL)

The Kafka Operator is supported for large-scale environments. Kafka provides high-throughput and
low-latency data feeds for forwarding network flow data in a more resilient, scalable way.

You can install the Kafka Operator as Red Hat AMQ Streams from the Operator Hub, just as the Loki
Operator and Network Observability Operator were installed. Refer to "Configuring the FlowCollector
resource with Kafka" to configure Kafka as a storage option.

NOTE

To uninstall Kafka, refer to the uninstallation process that corresponds with the method
you used to install.

Additional resources

Configuring the FlowCollector resource with Kafka

4.7. UNINSTALLING THE NETWORK OBSERVABILITY OPERATOR

Uninstall the Network Observability Operator using the OpenShift Container Platform web console
Operator Hub, working in the Ecosystem → Installed Operators area.

Procedure

1. Remove the FlowCollector custom resource.

a. Click Flow Collector, which is next to the Network Observability Operator in the Provided
APIs column.

b. Click the Options menu for the cluster and select Delete FlowCollector.

2. Uninstall the Network Observability Operator.

a. Navigate back to the Operators → Installed Operators area.

b. Click the Options menu next to the Network Observability Operator and select
Uninstall Operator.

c. Home → Projects and select openshift-netobserv-operator

d. Navigate to Actions and select Delete Project

3. Remove the FlowCollector custom resource definition (CRD).

a. Navigate to Administration → CustomResourceDefinitions.

b. Look for FlowCollector and click the Options menu .

c. Select Delete CustomResourceDefinition.

IMPORTANT

CHAPTER 4. INSTALLING THE NETWORK OBSERVABILITY OPERATOR

57

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.2

IMPORTANT

The Loki Operator and Kafka remain if they were installed and must be
removed separately. Additionally, you might have remaining data stored in an
object store, and a persistent volume that must be removed.

OpenShift Container Platform 4.17 Network Observability

58

CHAPTER 5. NETWORK OBSERVABILITY OPERATOR IN
OPENSHIFT CONTAINER PLATFORM

The Network Observability Operator for OpenShift Container Platform deploys a monitoring pipeline.
This pipeline collects and enriches network traffic flows generated by the eBPF agent.

5.1. VIEWING STATUSES

View the operational status of the Network Observability Operator by using the oc get command to
check the FlowCollector resource status, as well as the status of the eBPF agent, flowlogs-pipeline,
and console plugin Pods.

The Network Observability Operator provides the Flow Collector API. When a Flow Collector resource is
created, it deploys pods and services to create and store network flows in the Loki log store, as well as to
display dashboards, metrics, and flows in the OpenShift Container Platform web console.

Procedure

1. Run the following command to view the state of FlowCollector:

Example output

NAME AGENT SAMPLING (EBPF) DEPLOYMENT MODEL STATUS
cluster EBPF 50 DIRECT Ready

2. Check the status of pods running in the netobserv namespace by entering the following
command:

Example output

NAME READY STATUS RESTARTS AGE
flowlogs-pipeline-56hbp 1/1 Running 0 147m
flowlogs-pipeline-9plvv 1/1 Running 0 147m
flowlogs-pipeline-h5gkb 1/1 Running 0 147m
flowlogs-pipeline-hh6kf 1/1 Running 0 147m
flowlogs-pipeline-w7vv5 1/1 Running 0 147m
netobserv-plugin-cdd7dc6c-j8ggp 1/1 Running 0 147m

The flowlogs-pipeline pods collect flows, enriches the collected flows, then send flows to the
Loki storage. netobserv-plugin pods create a visualization plugin for the OpenShift Container
Platform Console.

3. Check the status of pods running in the namespace netobserv-privileged by entering the
following command:

$ oc get flowcollector/cluster

$ oc get pods -n netobserv

$ oc get pods -n netobserv-privileged

CHAPTER 5. NETWORK OBSERVABILITY OPERATOR IN OPENSHIFT CONTAINER PLATFORM

59

Example output

NAME READY STATUS RESTARTS AGE
netobserv-ebpf-agent-4lpp6 1/1 Running 0 151m
netobserv-ebpf-agent-6gbrk 1/1 Running 0 151m
netobserv-ebpf-agent-klpl9 1/1 Running 0 151m
netobserv-ebpf-agent-vrcnf 1/1 Running 0 151m
netobserv-ebpf-agent-xf5jh 1/1 Running 0 151m

The netobserv-ebpf-agent pods monitor network interfaces of the nodes to get flows and send
them to flowlogs-pipeline pods.

4. If you are using the Loki Operator, check the status of the component pods of LokiStack
custom resource in the netobserv namespace by entering the following command:

Example output

NAME READY STATUS RESTARTS AGE
lokistack-compactor-0 1/1 Running 0 18h
lokistack-distributor-654f87c5bc-qhkhv 1/1 Running 0 18h
lokistack-distributor-654f87c5bc-skxgm 1/1 Running 0 18h
lokistack-gateway-796dc6ff7-c54gz 2/2 Running 0 18h
lokistack-index-gateway-0 1/1 Running 0 18h
lokistack-index-gateway-1 1/1 Running 0 18h
lokistack-ingester-0 1/1 Running 0 18h
lokistack-ingester-1 1/1 Running 0 18h
lokistack-ingester-2 1/1 Running 0 18h
lokistack-querier-66747dc666-6vh5x 1/1 Running 0 18h
lokistack-querier-66747dc666-cjr45 1/1 Running 0 18h
lokistack-querier-66747dc666-xh8rq 1/1 Running 0 18h
lokistack-query-frontend-85c6db4fbd-b2xfb 1/1 Running 0 18h
lokistack-query-frontend-85c6db4fbd-jm94f 1/1 Running 0 18h

5.2. NETWORK OBSERVABLITY OPERATOR ARCHITECTURE

Review the Network Observability Operator architecture, detailing how the FlowCollector resource
manages the eBPF agent, which collects and enriches flows, sending the data to Loki for storage or
Prometheus for metrics.

The Network Observability Operator provides the FlowCollector API, which is instantiated at
installation and configured to reconcile the eBPF agent, the flowlogs-pipeline, and the netobserv-
plugin components. Only a single FlowCollector per cluster is supported.

The eBPF agent runs on each cluster node with some privileges to collect network flows. The flowlogs-
pipeline receives the network flows data and enriches the data with Kubernetes identifiers. If you
choose to use Loki, the flowlogs-pipeline sends flow logs data to Loki for storing and indexing. The
netobserv-plugin, which is a dynamic OpenShift Container Platform web console plugin, queries Loki to
fetch network flows data. Cluster-admins can view the data in the web console.

If you do not use Loki, you can generate metrics with Prometheus. Those metrics and their related

$ oc get pods -n netobserv

OpenShift Container Platform 4.17 Network Observability

60

If you do not use Loki, you can generate metrics with Prometheus. Those metrics and their related
dashboards are accessible in the web console. For more information, see "Network Observability without
Loki".

If you are using the Kafka option, the eBPF agent sends the network flow data to Kafka, and the
flowlogs-pipeline reads from the Kafka topic before sending to Loki, as shown in the following diagram.

CHAPTER 5. NETWORK OBSERVABILITY OPERATOR IN OPENSHIFT CONTAINER PLATFORM

61

Additional resources

Network Observability without Loki

5.3. VIEWING NETWORK OBSERVABILITY OPERATOR STATUS AND
CONFIGURATION

Inspect the current status, configuration details, and generated resources of the Network Observability
Operator by using the oc describe flowcollector/cluster command.

Procedure

1. Run the following command to view the status and configuration of the Network Observability
Operator:

$ oc describe flowcollector/cluster

OpenShift Container Platform 4.17 Network Observability

62

CHAPTER 6. CONFIGURING THE NETWORK OBSERVABILITY
OPERATOR

Configure the Network Observability Operator by updating the cluster-wide FlowCollector API
resource (cluster) to manage component configurations and flow collection settings.

The FlowCollector is explicitly created during installation. Since this resource operates cluster-wide,
only a single FlowCollector is allowed, and it must be named cluster. For more information, see the
FlowCollector API reference.

6.1. VIEW THE FLOWCOLLECTOR RESOURCE

View and modify the FlowCollector resource in the OpenShift Container Platform web console through
the integrated setup, advanced form, or by editing the YAML directly to configure the Network
Observability Operator.

Procedure

1. In the web console, navigate to Operators → Installed Operators.

2. Under the Provided APIs heading for the NetObserv Operator, select Flow Collector.

3. Select cluster then select the YAML tab. There, you can modify the FlowCollector resource to
configure the Network Observability Operator.

6.1.1. Example of a FlowCollector resource

Review a comprehensive, annotated example of the FlowCollector custom resource that demonstrates
configurations for eBPF sampling, conversation tracking, Loki integration, and console quick filters.

6.1.1.1. Sample FlowCollector resource

apiVersion: flows.netobserv.io/v1beta2
kind: FlowCollector
metadata:
 name: cluster
spec:
 namespace: netobserv
 deploymentModel: Direct
 agent:
 type: eBPF 1
 ebpf:
 sampling: 50 2
 logLevel: info
 privileged: false
 resources:
 requests:
 memory: 50Mi
 cpu: 100m
 limits:
 memory: 800Mi
 processor: 3
 logLevel: info

CHAPTER 6. CONFIGURING THE NETWORK OBSERVABILITY OPERATOR

63

1

2

3

4

The Agent specification, spec.agent.type, must be EBPF. eBPF is the only OpenShift Container
Platform supported option.

You can set the Sampling specification, spec.agent.ebpf.sampling, to manage resources. By
default, eBPF sampling is set to 50, so a flow has a 1 in 50 chance of being sampled. A lower
sampling interval value requires more computational, memory, and storage resources. A value of 0
or 1 means all flows are sampled. It is recommended to start with the default value and refine it
empirically to determine the optimal setting for your cluster.

The Processor specification spec.processor. can be set to enable conversation tracking. When
enabled, conversation events are queryable in the web console. The spec.processor.logTypes
value is Flows. The spec.processor.advanced values are Conversations, EndedConversations,
or ALL. Storage requirements are highest for All and lowest for EndedConversations.

The Loki specification, spec.loki, specifies the Loki client. The default values match the Loki install
paths mentioned in the Installing the Loki Operator section. If you used another installation method
for Loki, specify the appropriate client information for your install.

 resources:
 requests:
 memory: 100Mi
 cpu: 100m
 limits:
 memory: 800Mi
 logTypes: Flows
 advanced:
 conversationEndTimeout: 10s
 conversationHeartbeatInterval: 30s
 loki: 4
 mode: LokiStack 5
 consolePlugin:
 register: true
 logLevel: info
 portNaming:
 enable: true
 portNames:
 "3100": loki
 quickFilters: 6
 - name: Applications
 filter:
 src_namespace!: 'openshift-,netobserv'
 dst_namespace!: 'openshift-,netobserv'
 default: true
 - name: Infrastructure
 filter:
 src_namespace: 'openshift-,netobserv'
 dst_namespace: 'openshift-,netobserv'
 - name: Pods network
 filter:
 src_kind: 'Pod'
 dst_kind: 'Pod'
 default: true
 - name: Services network
 filter:
 dst_kind: 'Service'

OpenShift Container Platform 4.17 Network Observability

64

5

6

The LokiStack mode automatically sets a few configurations: querierUrl, ingesterUrl and
statusUrl, tenantID, and corresponding TLS configuration. Cluster roles and a cluster role binding

The spec.quickFilters specification defines filters that show up in the web console. The
Application filter keys,src_namespace and dst_namespace, are negated (!), so the Application
filter shows all traffic that does not originate from, or have a destination to, any openshift- or
netobserv namespaces. For more information, see Configuring quick filters below.

Additional resources

FlowCollector API reference

Working with conversation tracking

6.2. CONFIGURING THE FLOWCOLLECTOR RESOURCE WITH KAFKA

Configure the FlowCollector resource to use Kafka for high-throughput and low-latency data feeds.

A Kafka instance needs to be running, and a Kafka topic dedicated to OpenShift Container Platform
Network Observability must be created in that instance. For more information, see Kafka
documentation with AMQ Streams.

Prerequisites

Kafka is installed. Red Hat supports Kafka with AMQ Streams Operator.

Procedure

1. In the web console, navigate to Operators → Installed Operators.

2. Under the Provided APIs heading for the Network Observability Operator, select Flow
Collector.

3. Select the cluster and then click the YAML tab.

4. Modify the FlowCollector resource for OpenShift Container Platform Network Observability
Operator to use Kafka, as shown in the following sample YAML:

Sample Kafka configuration in FlowCollector resource

apiVersion: flows.netobserv.io/v1beta2
kind: FlowCollector
metadata:
 name: cluster
spec:
 deploymentModel: Kafka 1
 kafka:
 address: "kafka-cluster-kafka-bootstrap.netobserv" 2
 topic: network-flows 3
 tls:
 enable: false 4

CHAPTER 6. CONFIGURING THE NETWORK OBSERVABILITY OPERATOR

65

https://access.redhat.com/documentation/en-us/red_hat_amq/7.7/html/using_amq_streams_on_openshift/using-the-topic-operator-str

1

2

3

4

Set spec.deploymentModel to Kafka instead of Direct to enable the Kafka deployment
model.

spec.kafka.address refers to the Kafka bootstrap server address. You can specify a port if
needed, for instance kafka-cluster-kafka-bootstrap.netobserv:9093 for using TLS on
port 9093.

spec.kafka.topic should match the name of a topic created in Kafka.

spec.kafka.tls can be used to encrypt all communications to and from Kafka with TLS or
mTLS. When enabled, the Kafka CA certificate must be available as a ConfigMap or a
Secret, both in the namespace where the flowlogs-pipeline processor component is
deployed (default: netobserv) and where the eBPF agents are deployed (default:
netobserv-privileged). It must be referenced with spec.kafka.tls.caCert. When using
mTLS, client secrets must be available in these namespaces as well (they can be generated
for instance using the AMQ Streams User Operator) and referenced with
spec.kafka.tls.userCert.

6.3. EXPORT ENRICHED NETWORK FLOW DATA

Configure the FlowCollector resource to export enriched network flow data simultaneously to Kafka,
IPFIX, or an OpenTelemetry endpoint for external consumption by tools like Splunk or Prometheus.

For Kafka or IPFIX, any processor or storage that supports those inputs, such as Splunk, Elasticsearch, or
Fluentd, can consume the enriched network flow data.

For OpenTelemetry, network flow data and metrics can be exported to a compatible OpenTelemetry
endpoint, such as Red Hat build of OpenTelemetry or Prometheus.

Prerequisites

Your Kafka, IPFIX, or OpenTelemetry collector endpoints are available from Network
Observability flowlogs-pipeline pods.

Procedure

1. In the web console, navigate to Operators → Installed Operators.

2. Under the Provided APIs heading for the NetObserv Operator, select Flow Collector.

3. Select cluster and then select the YAML tab.

4. Edit the FlowCollector to configure spec.exporters as follows:

apiVersion: flows.netobserv.io/v1beta2
kind: FlowCollector
metadata:
 name: cluster
spec:
 exporters:
 - type: Kafka 1
 kafka:
 address: "kafka-cluster-kafka-bootstrap.netobserv"
 topic: netobserv-flows-export 2

OpenShift Container Platform 4.17 Network Observability

66

1 4 6

2

3

5

7

8

9

10

11

You can export flows to IPFIX, OpenTelemetry, and Kafka individually or concurrently.

The Network Observability Operator exports all flows to the configured Kafka topic.

You can encrypt all communications to and from Kafka with SSL/TLS or mTLS. When
enabled, the Kafka CA certificate must be available as a ConfigMap or a Secret, both in the
namespace where the flowlogs-pipeline processor component is deployed (default:
netobserv). It must be referenced with spec.exporters.tls.caCert. When using mTLS,
client secrets must be available in these namespaces as well (they can be generated for
instance using the AMQ Streams User Operator) and referenced with
spec.exporters.tls.userCert.

You have the option to specify transport. The default value is tcp but you can also specify
udp.

The protocol of OpenTelemetry connection. The available options are http and grpc.

OpenTelemetry configuration for exporting logs, which are the same as the logs created
for Loki.

OpenTelemetry configuration for exporting metrics, which are the same as the metrics
created for Prometheus. These configurations are specified in the
spec.processor.metrics.includeList parameter of the FlowCollector custom resource,
along with any custom metrics you defined using the FlowMetrics custom resource.

The time interval that metrics are sent to the OpenTelemetry collector.

Optional:Network Observability network flows formats get automatically renamed to an
OpenTelemetry compliant format. The fieldsMapping specification gives you the ability to
customize the OpenTelemetry format output. For example in the YAML sample, SrcAddr
is the Network Observability input field, and it is being renamed source.address in
OpenTelemetry output. You can see both Network Observability and OpenTelemetry

 tls:
 enable: false 3
 - type: IPFIX 4
 ipfix:
 targetHost: "ipfix-collector.ipfix.svc.cluster.local"
 targetPort: 4739
 transport: tcp or udp 5
 - type: OpenTelemetry 6
 openTelemetry:
 targetHost: my-otelcol-collector-headless.otlp.svc
 targetPort: 4317
 type: grpc 7
 logs: 8
 enable: true
 metrics: 9
 enable: true
 prefix: netobserv
 pushTimeInterval: 20s 10
 expiryTime: 2m
 # fieldsMapping: 11
 # input: SrcAddr
 # output: source.address

CHAPTER 6. CONFIGURING THE NETWORK OBSERVABILITY OPERATOR

67

formats in the "Network flows format reference".

After configuration, network flows data can be sent to an available output in a JSON format. For more
information, see "Network flows format reference".

Additional resources

Network flows format reference

6.4. UPDATING THE FLOWCOLLECTOR RESOURCE

As an alternative to using the web console, use the oc patch command with the flowcollector custom
resource to quickly update specific specifications, such as eBPF sampling

Procedure

1. Run the following command to patch the flowcollector CR and update the
spec.agent.ebpf.sampling value:

6.5. FILTER NETWORK FLOWS AT INGESTION

Create filters to reduce the number of generated network flows. Filtering network flows can reduce the
resource usage of the network observability components.

You can configure two kinds of filters:

eBPF agent filters

Flowlogs-pipeline filters

6.5.1. eBPF agent filters

eBPF agent filters maximize performance because they take effect at the earliest stage of the network
flows collection process.

To configure eBPF agent filters with the Network Observability Operator, see "Filtering eBPF flow data
using multiple rules".

6.5.2. Flowlogs-pipeline filters

Flowlogs-pipeline filters provide greater control over traffic selection because they take effect later in
the network flows collection process. They are primarily used to improve data storage.

Flowlogs-pipeline filters use a simple query language to filter network flow, as shown in the following
example:

$ oc patch flowcollector cluster --type=json -p "[{"op": "replace", "path":
"/spec/agent/ebpf/sampling", "value": <new value>}] -n netobserv"

(srcnamespace="netobserv" OR (srcnamespace="ingress" AND dstnamespace="netobserv")) AND
srckind!="service"

OpenShift Container Platform 4.17 Network Observability

68

1

2

The query language uses the following syntax:

Table 6.1. Query language syntax

Category Operators

Logical boolean
operators (not case-
sensitive)

and, or

Comparison operators = (equals),
!= (not equals),
=~ (matches regexp),
!~ (not matches regexp),
< / <= (less than or equal to),
> / >= (greater than or equal to)

Unary operations with(field) (field is present),
without(field) (field is absent)

You can configure flowlogs-pipeline filters in the spec.processor.filters section of the FlowCollector
resource. For example:

Example YAML Flowlogs-pipeline filter

Sends matching flows to a specific output, such as Loki, Prometheus, or an external system. When
omitted, sends to all configured outputs.

Optional. Applies a sampling interval to limit the number of matching flows to be stored or
exported. For example, sampling: 10 means that there is a 1 in 10 chance that a flow will be kept.

Additional resources

Filtering eBPF flow data using multiple rules

6.6. CONFIGURING QUICK FILTERS

apiVersion: flows.netobserv.io/v1beta2
kind: FlowCollector
metadata:
 name: cluster
spec:
 namespace: netobserv
 agent:
 processor:
 filters:
 - query: |
 (SrcK8S_Namespace="netobserv" OR (SrcK8S_Namespace="openshift-ingress" AND
DstK8S_Namespace="netobserv"))
 outputTarget: Loki 1
 sampling: 10 2

CHAPTER 6. CONFIGURING THE NETWORK OBSERVABILITY OPERATOR

69

Use the list of available source, destination, and universal filter keys to modify quick filters within the
FlowCollector resource.

Exact matches are possible using double-quotes around values. Otherwise, partial matches are used for
textual values. The bang (!) character, placed at the end of a key, means negation. See the sample
FlowCollector resource for more context about modifying the YAML.

NOTE

The filter matching types "all of" or "any of" is a UI setting that the users can modify from
the query options. It is not part of this resource configuration.

Here is a list of all available filter keys:

Table 6.2. Filter keys

Unive
rsal*

Sourc
e

Destin
ation

Description

names
pace

src_n
ames
pace

dst_n
ames
pace

Filter traffic related to a specific namespace.

name src_n
ame

dst_n
ame

Filter traffic related to a given leaf resource name, such as a specific pod,
service, or node (for host-network traffic).

kind src_k
ind

dst_k
ind

Filter traffic related to a given resource kind. The resource kinds include the leaf
resource (Pod, Service or Node), or the owner resource (Deployment and
StatefulSet).

owner
_name

src_o
wner
_nam
e

dst_o
wner
_nam
e

Filter traffic related to a given resource owner; that is, a workload or a set of
pods. For example, it can be a Deployment name, a StatefulSet name, etc.

resour
ce

src_r
esou
rce

dst_r
esou
rce

Filter traffic related to a specific resource that is denoted by its canonical
name, that identifies it uniquely. The canonical notation is
kind.namespace.name for namespaced kinds, or node.name for nodes.
For example, Deployment.my-namespace.my-web-server.

addre
ss

src_a
ddre
ss

dst_a
ddre
ss

Filter traffic related to an IP address. IPv4 and IPv6 are supported. CIDR
ranges are also supported.

mac src_
mac

dst_
mac

Filter traffic related to a MAC address.

port src_p
ort

dst_p
ort

Filter traffic related to a specific port.

OpenShift Container Platform 4.17 Network Observability

70

host_a
ddres
s

src_h
ost_a
ddre
ss

dst_h
ost_a
ddre
ss

Filter traffic related to the host IP address where the pods are running.

proto
col

N/A N/A Filter traffic related to a protocol, such as TCP or UDP.

Unive
rsal*

Sourc
e

Destin
ation

Description

Universal keys filter for any of source or destination. For example, filtering name: 'my-pod'
means all traffic from my-pod and all traffic to my-pod, regardless of the matching type used,
whether Match all or Match any.

6.7. RESOURCE MANAGEMENT AND PERFORMANCE
CONSIDERATIONS

Review the key configuration settings, including eBPF sampling, feature enablement, and resource
limits, necessary to manage performance criteria and optimize resource consumption for network
observability.

The amount of resources required by network observability depends on the size of your cluster and your
requirements for the cluster to ingest and store observability data. To manage resources and set
performance criteria for your cluster, consider configuring the following settings. Configuring these
settings might meet your optimal setup and observability needs.

The following settings can help you manage resources and performance from the outset:

eBPF Sampling

You can set the Sampling specification, spec.agent.ebpf.sampling, to manage resources. By
default, eBPF sampling is set to 50, so a flow has a 1 in 50 chance of being sampled. A lower sampling
interval value requires more computational, memory, and storage resources. A value of 0 or 1 means
all flows are sampled. It is recommended to start with the default value and refine it empirically to
determine the optimal setting for your cluster.

eBPF features

The more features that are enabled, the more CPU and memory are impacted. See "Observing the
network traffic" for a complete list of these features.

Without Loki

You can reduce the amount of resources that network observability requires by not using Loki and
instead relying on Prometheus. For example, when network observability is configured without Loki,
the total savings of memory usage are in the 20-65% range and CPU utilization is lower by 10-30%,
depending upon the sampling interval value. See "Network observability without Loki" for more
information.

Restricting or excluding interfaces

Reduce the overall observed traffic by setting the values for spec.agent.ebpf.interfaces and
spec.agent.ebpf.excludeInterfaces. By default, the agent fetches all the interfaces in the system,
except the ones listed in excludeInterfaces and lo (local interface). Note that the interface names
might vary according to the Container Network Interface (CNI) used.

CHAPTER 6. CONFIGURING THE NETWORK OBSERVABILITY OPERATOR

71

Performance fine-tuning

The following settings can be used to fine-tune performance after the Network Observability has
been running for a while:

Resource requirements and limits: Adapt the resource requirements and limits to the load
and memory usage you expect on your cluster by using the spec.agent.ebpf.resources and
spec.processor.resources specifications. The default limits of 800MB might be sufficient
for most medium-sized clusters.

Cache max flows timeout: Control how often flows are reported by the agents by using the
eBPF agent’s spec.agent.ebpf.cacheMaxFlows and
spec.agent.ebpf.cacheActiveTimeout specifications. A larger value results in less traffic
being generated by the agents, which correlates with a lower CPU load. However, a larger
value leads to a slightly higher memory consumption, and might generate more latency in the
flow collection.

6.7.1. Resource considerations

Review the resource considerations table, which provides baseline examples for configuration settings,
such as eBPF memory limits and LokiStack size, tailored to various cluster workload sizes.

The following table outlines examples of resource considerations for clusters with certain workload
sizes.

IMPORTANT

The examples outlined in the table demonstrate scenarios that are tailored to specific
workloads. Consider each example only as a baseline from which adjustments can be
made to accommodate your workload needs.

Table 6.3. Resource recommendations

 Extra small (10 nodes) Small (25 nodes) Large (250 nodes) [2]

Worker Node vCPU
and memory

4 vCPUs| 16GiB mem [1] 16 vCPUs| 64GiB mem
[1]

16 vCPUs| 64GiB Mem
[1]

LokiStack size 1x.extra-small 1x.small 1x.medium

Network Observability
controller memory limit

400Mi (default) 400Mi (default) 400Mi (default)

eBPF sampling interval 50 (default) 50 (default) 50 (default)

eBPF memory limit 800Mi (default) 800Mi (default) 1600Mi

cacheMaxSize 50,000 100,000 (default) 100,000 (default)

FLP memory limit 800Mi (default) 800Mi (default) 800Mi (default)

OpenShift Container Platform 4.17 Network Observability

72

FLP Kafka partitions – 48 48

Kafka consumer
replicas

– 6 18

Kafka brokers – 3 (default) 3 (default)

 Extra small (10 nodes) Small (25 nodes) Large (250 nodes) [2]

1. Tested with AWS M6i instances.

2. In addition to this worker and its controller, 3 infra nodes (size M6i.12xlarge) and 1 workload
node (size M6i.8xlarge) were tested.

6.7.2. Total average memory and CPU usage

Review the table detailing the total average CPU and memory usage for network observability
components under two distinct traffic scenarios (Test 1 and Test 2) at different eBPF sampling values.

The following table outlines averages of total resource usage for clusters with a sampling value of 1 and
50 for two different tests: Test 1 and Test 2. The tests differ in the following ways:

Test 1 takes into account high ingress traffic volume in addition to the total number of
namespace, pods and services in an OpenShift Container Platform cluster, places load on the
eBPF agent, and represents use cases with a high number of workloads for a given cluster size.
For example, Test 1 consists of 76 Namespaces, 5153 Pods, and 2305 Services with a network
traffic scale of ~350 MB/s.

Test 2 takes into account high ingress traffic volume in addition to the total number of
namespace, pods and services in an OpenShift Container Platform cluster and represents use
cases with a high number of workloads for a given cluster size. For example, Test 2 consists of
553 Namespaces, 6998 Pods, and 2508 Services with a network traffic scale of ~950 MB/s.

Since different types of cluster use cases are exemplified in the different tests, the numbers in this table
do not scale linearly when compared side-by-side. Instead, they are intended to be used as a benchmark
for evaluating your personal cluster usage. The examples outlined in the table demonstrate scenarios
that are tailored to specific workloads. Consider each example only as a baseline from which adjustments
can be made to accommodate your workload needs.

NOTE

Metrics exported to Prometheus can impact the resource usage. Cardinality values for
the metrics can help determine how much resources are impacted. For more information,
see "Network Flows format" in the Additional resources section.

Table 6.4. Total average resource usage

Sampling value Resources used Test 1 (25 nodes) Test 2 (250 nodes)

Sampling = 50 Total NetObserv CPU
Usage

1.35 5.39

CHAPTER 6. CONFIGURING THE NETWORK OBSERVABILITY OPERATOR

73

Total NetObserv RSS
(Memory) Usage

16 GB 63 GB

Sampling = 1 Total NetObserv CPU
Usage

1.82 11.99

Total NetObserv RSS
(Memory) Usage

22 GB 87 GB

Sampling value Resources used Test 1 (25 nodes) Test 2 (250 nodes)

Summary: This table shows average total resource usage of Network Observability, which includes
Agents, FLP, Kafka, and Loki with all features enabled. For details about what features are enabled, see
the features covered in "Observing the network traffic", which comprises all the features that are
enabled for this testing.

Additional resources

Observing the network traffic from the traffic flows view

Network observability without Loki

Network Flows format reference

OpenShift Container Platform 4.17 Network Observability

74

1

CHAPTER 7. NETWORK POLICY
As an administrator, you can create a network policy for the netobserv namespace. This policy secures
inbound and outbound access to the Network Observability Operator.

7.1. CONFIGURING NETWORK POLICY BY USING THE
FLOWCOLLECTOR CUSTOM RESOURCE

You can set up ingress and egress network policies to control pod traffic. This enhances security and
collects only the network flow data you need. This reduces noise, supports compliance, and improves
visibility into network communication.

You can configure the FlowCollector custom resource (CR) to deploy an egress and ingress network
policy for network observability. By default, the spec.NetworkPolicy.enable specification is set to true.

If you have installed Loki, Kafka or any exporter in a different namespace that also has a network policy,
you must ensure that the network observability components can communicate with them. Consider the
following about your setup:

Connection to Loki (as defined in the FlowCollector CR spec.loki parameter)

Connection to Kafka (as defined in the FlowCollector CR spec.kafka parameter)

Connection to any exporter (as defined in FlowCollector CR spec.exporters parameter)

If you are using Loki and including it in the policy target, connection to an external object storage
(as defined in your LokiStack related secret)

Procedure

1. In the web console, go to Operators → Installed Operators page.

2. Under the Provided APIs heading for Network Observability, select Flow Collector.

3. Select cluster then select the YAML tab.

4. Configure the FlowCollector CR. A sample configuration is as follows:

Example FlowCollector CR for network policy

By default, the enable value is true.

apiVersion: flows.netobserv.io/v1beta2
kind: FlowCollector
metadata:
 name: cluster
spec:
 namespace: netobserv
 networkPolicy:
 enable: true 1
 additionalNamespaces: ["openshift-console", "openshift-monitoring"] 2
...

CHAPTER 7. NETWORK POLICY

75

2 Default values are ["openshift-console", "openshift-monitoring"].

Additional resources

Creating a network policy using the CLI

OpenShift Container Platform 4.17 Network Observability

76

https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/network_security/#nw-networkpolicy-object_creating-network-policy

CHAPTER 8. OBSERVING THE NETWORK TRAFFIC
As an administrator, you can observe the network traffic in the OpenShift Container Platform web
console for detailed troubleshooting and analysis. This feature helps you get insights from different
graphical representations of traffic flow.

8.1. OBSERVING THE NETWORK TRAFFIC FROM THE OVERVIEW VIEW

The Network Traffic Overview view provides aggregated flow metrics and visual insights into
application communications. Administrators can use the metrics to monitor data volume, troubleshoot
connectivity, and detect unusual traffic patterns across the cluster.

The Overview view shows aggregate network traffic in your OpenShift Container Platform cluster,
allowing you to see which applications are communicating and the volume of data being transferred. It
provides detailed insights by source, destination, and flow type, along with the top traffic flows and
average byte rates.

As an administrator, you can troubleshoot connectivity issues, detect unusual traffic patterns, and
optimize application performance. It provides a quick overview of network behavior, making it easier to
prioritize actions and ensure efficient resource usage.

8.1.1. Working with the Overview view

Navigate to the network traffic Overview view in the OpenShift Container Platform console to see
graphical representations of flow rate statistics and configure the display scope using available options.

Prerequisite

Access to the cluster with administrator rights.

Procedure

1. Navigate to Observe → Network Traffic.

2. In the Network Traffic page, click the Overview tab.

You can configure the scope of each flow rate data by clicking the menu icon.

8.1.2. Configuring advanced options for the Overview view

Customize the network traffic Overview view by configuring advanced options, such as graph scope,
label truncation, and panel management, to refine the display of flow rate statistics and traffic data.

To access the advanced options, click Show advanced options. You can configure the details in the
graph by using the Display options drop-down menu. The options available are as follows:

Scope: Select to view the components that network traffic flows between. You can set the
scope to Node, Namespace, Owner, Zones, Cluster or Resource. Owner is an aggregation of
resources. Resource can be a pod, service, node, in case of host-network traffic, or an unknown
IP address. The default value is Namespace.

Truncate labels: Select the required width of the label from the drop-down list. The default
value is M.

CHAPTER 8. OBSERVING THE NETWORK TRAFFIC

77

8.1.2.1. Managing panels and display

You can select the required panels to be displayed, reorder them, and focus on a specific panel. To add
or remove panels, click Manage panels.

The following panels are shown by default:

Top X average bytes rates

Top X bytes rates stacked with total

Other panels can be added in Manage panels:

Top X average packets rates

Top X packets rates stacked with total

Query options allows you to choose whether to show the Top 5, Top 10, or Top 15 rates.

8.1.3. Packet drop tracking

Monitor and analyze network packet loss by using eBPF-based packet drop tracking, which identifies
drop locations, detects host or OVS-specific drop reasons, and provides dedicated graphical panels in
the Overview view.

You can configure graphical representation of network flow records with packet loss in the Overview
view. By employing eBPF tracepoint hooks, you can gain valuable insights into packet drops for TCP,
UDP, SCTP, ICMPv4, and ICMPv6 protocols, which can result in the following actions:

Identification: Pinpoint the exact locations and network paths where packet drops are occurring.
Determine whether specific devices, interfaces, or routes are more prone to drops.

Root cause analysis: Examine the data collected by the eBPF program to understand the causes
of packet drops. For example, are they a result of congestion, buffer issues, or specific network
events?

Performance optimization: With a clearer picture of packet drops, you can take steps to optimize
network performance, such as adjust buffer sizes, reconfigure routing paths, or implement
Quality of Service (QoS) measures.

When packet drop tracking is enabled, you can see the following panels in the Overview by default:

Top X packet dropped state stacked with total

Top X packet dropped cause stacked with total

Top X average dropped packets rates

Top X dropped packets rates stacked with total

Other packet drop panels are available to add in Manage panels:

Top X average dropped bytes rates

Top X dropped bytes rates stacked with total

8.1.3.1. Types of packet drops

OpenShift Container Platform 4.17 Network Observability

78

Two kinds of packet drops are detected by network observability: host drops and OVS drops. Host
drops are prefixed with SKB_DROP and OVS drops are prefixed with OVS_DROP. Dropped flows are
shown in the side panel of the Traffic flows table along with a link to a description of each drop type.
Examples of host drop reasons are as follows:

SKB_DROP_REASON_NO_SOCKET: the packet dropped due to a missing socket.

SKB_DROP_REASON_TCP_CSUM: the packet dropped due to a TCP checksum error.

Examples of OVS drops reasons are as follows:

OVS_DROP_LAST_ACTION: OVS packets dropped due to an implicit drop action, for example
due to a configured network policy.

OVS_DROP_IP_TTL: OVS packets dropped due to an expired IP TTL.

See the Additional resources of this section for more information about enabling and working with
packet drop tracking.

Additional resources

Working with packet drops

Network Observability metrics

8.1.4. DNS tracking

Monitor DNS activity by using eBPF-based DNS tracking to gain insights into query patterns, detect
security threats, and troubleshoot latency issues through dedicated graphical panels in the Overview
view.

You can configure graphical representation of Domain Name System (DNS) tracking of network flows in
the Overview view. Using DNS tracking with extended Berkeley Packet Filter (eBPF) tracepoint hooks
can serve various purposes:

Network Monitoring: Gain insights into DNS queries and responses, helping network
administrators identify unusual patterns, potential bottlenecks, or performance issues.

Security Analysis: Detect suspicious DNS activities, such as domain name generation algorithms
(DGA) used by malware, or identify unauthorized DNS resolutions that might indicate a security
breach.

Troubleshooting: Debug DNS-related issues by tracing DNS resolution steps, tracking latency,
and identifying misconfigurations.

By default, when DNS tracking is enabled, you can see the following non-empty metrics represented in a
donut or line chart in the Overview:

Top X DNS Response Code

Top X average DNS latencies with overall

Top X 90th percentile DNS latencies

Other DNS tracking panels can be added in Manage panels:

CHAPTER 8. OBSERVING THE NETWORK TRAFFIC

79

Bottom X minimum DNS latencies

Top X maximum DNS latencies

Top X 99th percentile DNS latencies

This feature is supported for IPv4 and IPv6 UDP and TCP protocols.

See the Additional resources in this section for more information about enabling and working with this
view.

Additional resources

Working with DNS tracking

Network Observability metrics

8.1.5. Round-Trip Time

Analyze network flow latencies by using TCP Round-Trip Time (RTT) metrics, which use eBPF
hookpoints to identify performance bottlenecks and troubleshoot TCP-related issues through
dedicated panels in the Overview view.

You can use TCP smoothed Round-Trip Time (sRTT) to analyze network flow latencies. You can use
RTT captured from the fentry/tcp_rcv_established eBPF hookpoint to read sRTT from the TCP socket
to help with the following:

Network Monitoring: Gain insights into TCP latencies, helping network administrators identify
unusual patterns, potential bottlenecks, or performance issues.

Troubleshooting: Debug TCP-related issues by tracking latency and identifying
misconfigurations.

By default, when RTT is enabled, you can see the following TCP RTT metrics represented in the
Overview:

Top X 90th percentile TCP Round Trip Time with overall

Top X average TCP Round Trip Time with overall

Bottom X minimum TCP Round Trip Time with overall

Other RTT panels can be added in Manage panels:

Top X maximum TCP Round Trip Time with overall

Top X 99th percentile TCP Round Trip Time with overall

See the Additional resources in this section for more information about enabling and working with this
view.

Additional resources

Working with RTT tracing

8.1.6. eBPF flow rule filter
Control packet capture volume by using eBPF flow rule filtering to specify capture criteria based on

OpenShift Container Platform 4.17 Network Observability

80

Control packet capture volume by using eBPF flow rule filtering to specify capture criteria based on
ports and CIDR notation, while monitoring filter performance through dedicated health dashboards and
Prometheus metrics.

You can use rule-based filtering to control the volume of packets cached in the eBPF flow table. For
example, a filter can specify that only packets coming from port 100 should be captured. Then only the
packets that match the filter are captured and the rest are dropped.

You can apply multiple filter rules.

8.1.6.1. Ingress and egress traffic filtering

Classless Inter-Domain Routing (CIDR) notation efficiently represents IP address ranges by combining
the base IP address with a prefix length. For both ingress and egress traffic, the source IP address is first
used to match filter rules configured with CIDR notation. If there is a match, then the filtering proceeds.
If there is no match, then the destination IP is used to match filter rules configured with CIDR notation.

After matching either the source IP or the destination IP CIDR, you can pinpoint specific endpoints using
the peerIP to differentiate the destination IP address of the packet. Based on the provisioned action,
the flow data is either cached in the eBPF flow table or not cached.

8.1.6.2. Dashboard and metrics integrations

When this option is enabled, the Netobserv/Health dashboard for eBPF agent statistics now has the
Filtered flows rate view. Additionally, in Observe → Metrics you can query
netobserv_agent_filtered_flows_total to observe metrics with the reason in
FlowFilterAcceptCounter, FlowFilterNoMatchCounter or FlowFilterRecjectCounter.

8.1.6.3. Flow filter configuration parameters

Reference the required and optional parameters for configuring flow filter rules in the FlowCollector
resource, including CIDR ranges, filter actions, protocols, and specific port configurations.

Table 8.1. Required configuration parameters

Parameter Description

enable Set enable to true to enable the eBPF flow filtering feature.

cidr Provides the IP address and CIDR mask for the flow filter rule. Supports both
IPv4 and IPv6 address format. If you want to match against any IP, you can use
0.0.0.0/0 for IPv4 or ::/0 for IPv6.

CHAPTER 8. OBSERVING THE NETWORK TRAFFIC

81

action Describes the action that is taken for the flow filter rule. The possible values are
Accept or Reject.

For the Accept action matching rule, the flow data is cached in the
eBPF table and updated with the global metric,
FlowFilterAcceptCounter.

For the Reject action matching rule, the flow data is dropped and not
cached in the eBPF table. The flow data is updated with the global
metric, FlowFilterRejectCounter.

If the rule is not matched, the flow is cached in the eBPF table and
updated with the global metric, FlowFilterNoMatchCounter.

Parameter Description

Table 8.2. Optional configuration parameters

Parameter Description

direction Defines the direction of the flow filter rule. Possible values are Ingress or
Egress.

protocol Defines the protocol of the flow filter rule. Possible values are TCP, UDP,
SCTP, ICMP, and ICMPv6.

tcpFlags Defines the TCP flags to filter flows. Possible values are SYN, SYN-ACK,
ACK, FIN, RST, PSH, URG, ECE, CWR, FIN-ACK, and RST-ACK.

ports Defines the ports to use for filtering flows. It can be used for either source or
destination ports. To filter a single port, set a single port as an integer value. For
example ports: 80. To filter a range of ports, use a "start-end" range in string
format. For example ports: "80-100"

sourcePorts Defines the source port to use for filtering flows. To filter a single port, set a
single port as an integer value, for example sourcePorts: 80. To filter a range
of ports, use a "start-end" range, string format, for example sourcePorts:
"80-100".

destPorts DestPorts defines the destination ports to use for filtering flows. To filter a
single port, set a single port as an integer value, for example destPorts: 80. To
filter a range of ports, use a "start-end" range in string format, for example
destPorts: "80-100".

icmpType Defines the ICMP type to use for filtering flows.

icmpCode Defines the ICMP code to use for filtering flows.

peerIP Defines the IP address to use for filtering flows, for example: 10.10.10.10.

OpenShift Container Platform 4.17 Network Observability

82

Additional resources

Filtering eBPF flow data with rules

Network Observability metrics

Health dashboards

8.1.7. User-defined networks

Understand how you can use user-defined networks (UDN) for flexible network segmentation and
leverage the Network Observability Operator to monitor these segments through dedicated labels and
name filters in the traffic flow table.

User-defined networks (UDN) improve the flexibility and segmentation capabilities of the default Layer
3 topology for a Kubernetes pod network by enabling custom Layer 2 and Layer 3 network segments,
where all these segments are isolated by default. These segments act as primary or secondary networks
for container pods and virtual machines that use the default OVN-Kubernetes CNI plugin.

UDNs enable a wide range of network architectures and topologies, enhancing network flexibility,
security, and performance.

When the UDNMapping feature is enabled with Network Observability, the Traffic flow table has a UDN
labels column. You can filter on Source Network Name and Destination Network Name.

Additional resources

About user-defined networks

Creating a UserDefinedNetwork by using the CLI

Creating a UserDefinedNetwork by using the web console

Working with user-defined networks

8.1.8. OVN-Kubernetes networking events

Use OVN-Kubernetes network event tracking to monitor and audit network policies, admin network
policies, and egress firewall rules in your cluster.

IMPORTANT

OVN-Kubernetes networking events tracking is a Technology Preview feature only.
Technology Preview features are not supported with Red Hat production service level
agreements (SLAs) and might not be functionally complete. Red Hat does not
recommend using them in production. These features provide early access to upcoming
product features, enabling customers to test functionality and provide feedback during
the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

You can use the insights from tracking network events to help with the following tasks:

Network monitoring: Monitor allowed and blocked traffic, detecting whether packets are

CHAPTER 8. OBSERVING THE NETWORK TRAFFIC

83

https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/multiple_networks/#about-user-defined-networks
https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/multiple_networks/#nw-udn-cr_about-user-defined-networks
https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/multiple_networks/#nw-udn-cr-ui_about-user-defined-networks
https://access.redhat.com/support/offerings/techpreview/

Network monitoring: Monitor allowed and blocked traffic, detecting whether packets are
allowed or blocked based on network policies and admin network policies.

Network security: You can track outbound traffic and see whether it adheres to egress firewall
rules. Detect unauthorized outbound connections and flag outbound traffic that violates egress
rules.

See the Additional resources in this section for more information about enabling and working with this
view.

Additional resources

Viewing network events

8.2. OBSERVING THE NETWORK TRAFFIC FROM THE TRAFFIC FLOWS
VIEW

Use the Traffic flows view to monitor real-time and historical network communication between cluster
components. By analyzing granular flow data collected via eBPF, you can audit network traffic, validate
network policies, and export data for external reporting and analysis.

The Traffic flows view in the Network Observability Operator provides a granular, tabular
representation of network activity across a OpenShift Container Platform cluster. By leveraging eBPF
technology to collect flow data, this view allows administrators to monitor real-time and historical
communication between pods, services, and nodes. This visibility is essential for auditing network traffic,
validating network policies, and identifying unexpected communication patterns within the cluster
infrastructure.

In the Traffic flows interface, you can analyze specific connection details by interacting with individual
rows to retrieve detailed flow information. The view supports advanced customization through the
Display options menu, where you can adjust row density and manage columns. By selecting and
reordering specific columns, you can tailor the table to highlight the most relevant data points for your
environment, such as source and destination endpoints or traffic volume.

To support external analysis and reporting, the Traffic flows view includes data export capabilities. You
can export the entire dataset or select specific fields to generate a targeted report of network activity.
This functionality ensures that network flow data is accessible for long-term auditing or for use in third-
party monitoring tools, providing a flexible way to document and analyze the network health of your
OpenShift Container Platform environment.

8.2.1. Working with the Traffic flows view

View and analyze detailed network flow information by using the Traffic flows table.

As an administrator, you can navigate to Traffic flows table to see network flow information.

Prerequisite

You have administrator access.

Procedure

1. Navigate to Observe → Network Traffic.

2. In the Network Traffic page, click the Traffic flows tab.

OpenShift Container Platform 4.17 Network Observability

84

You can click on each row to get the corresponding flow information.

8.2.2. Configuring advanced options for the Traffic flows view

Customize the Traffic flows view by adjusting row density, selecting specific data columns, and
exporting filtered flow data for external analysis.

You can customize and export the view by using Show advanced options. You can set the row size by
using the Display options drop-down menu. The default value is Normal.

8.2.2.1. Managing columns

You can select the required columns to be displayed, and reorder them. To manage columns, click
Manage columns.

8.2.2.2. Exporting the traffic flow data

You can export data from the Traffic flows view.

Procedure

1. Click Export data.

2. In the pop-up window, you can select the Export all data checkbox to export all the data, and
clear the checkbox to select the required fields to be exported.

3. Click Export.

8.2.3. Configuring IPsec with the FlowCollector custom resource

Enable IPsec tracking in the FlowCollector resource to monitor encrypted traffic, adding an IPsec
status column to the traffic flow view and generating a dedicated encryption dashboard.

In OpenShift Container Platform, IPsec is disabled by default. You can enable IPsec by following the
instructions in "Configuring IPsec encryption".

Prerequisite

You have enabled IPsec encryption on OpenShift Container Platform.

Procedure

1. In the web console, navigate to Operators → Installed Operators.

2. Under the Provided APIs heading for the NetObserv Operator, select Flow Collector.

3. Select cluster then select the YAML tab.

4. Configure the FlowCollector custom resource for IPsec:

Example configuration of FlowCollector for IPsec

apiVersion: flows.netobserv.io/v1beta2
kind: FlowCollector

CHAPTER 8. OBSERVING THE NETWORK TRAFFIC

85

Verification

When IPsec is enabled:

A new column named IPsec Status is displayed in the network observability Traffic flows view
to show whether a flow was successfully IPsec-encrypted or if there was an error during
encryption/decryption.

A new dashboard showing the percent of encrypted traffic is generated.

Additional resources

Configuring IPsec encryption

8.2.4. Working with conversation tracking

Configure the FlowCollector custom resource to enable conversation tracking for grouping and
analyzing related network flows in the web console.

As an administrator, you can group network flows that are part of the same conversation. A conversation
is defined as a grouping of peers that are identified by their IP addresses, ports, and protocols, resulting
in an unique Conversation Id. You can query conversation events in the web console. These events are
represented in the web console as follows:

Conversation start: This event happens when a connection is starting or TCP flag intercepted

Conversation tick: This event happens at each specified interval defined in the FlowCollector
spec.processor.conversationHeartbeatInterval parameter while the connection is active.

Conversation end: This event happens when the FlowCollector
spec.processor.conversationEndTimeout parameter is reached or the TCP flag is
intercepted.

Flow: This is the network traffic flow that occurs within the specified interval.

Procedure

1. In the web console, navigate to Operators → Installed Operators.

2. Under the Provided APIs heading for the NetObserv Operator, select Flow Collector.

3. Select cluster then select the YAML tab.

4. Configure the FlowCollector custom resource so that spec.processor.logTypes,
conversationEndTimeout, and conversationHeartbeatInterval parameters are set according
to your observation needs. A sample configuration is as follows:

Configure FlowCollector for conversation tracking

metadata:
 name: cluster
spec:
 namespace: netobserv
 agent:
 type: eBPF
 ebpf:
 features:
 - "IPSec"

OpenShift Container Platform 4.17 Network Observability

86

https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/network_security/#configuring-ipsec-ovn

1

2

3

Configure FlowCollector for conversation tracking

When logTypes is set to Flows, only the Flow event is exported. If you set the value to All,
both conversation and flow events are exported and visible in the Network Traffic page.
To focus only on conversation events, you can specify Conversations which exports the
Conversation start, Conversation tick and Conversation end events; or
EndedConversations exports only the Conversation end events. Storage requirements
are highest for All and lowest for EndedConversations.

The Conversation end event represents the point when the conversationEndTimeout is
reached or the TCP flag is intercepted.

The Conversation tick event represents each specified interval defined in the
FlowCollector conversationHeartbeatInterval parameter while the network connection is
active.

NOTE

If you update the logType option, the flows from the previous selection do not
clear from the console plugin. For example, if you initially set logType to
Conversations for a span of time until 10 AM and then move to
EndedConversations, the console plugin shows all conversation events before
10 AM and only ended conversations after 10 AM.

5. Refresh the Network Traffic page on the Traffic flows tab. Notice there are two new columns,
Event/Type and Conversation Id. All the Event/Type fields are Flow when Flow is the
selected query option.

6. Select Query Options and choose the Log Type, Conversation. Now the Event/Type shows
all of the desired conversation events.

7. Next you can filter on a specific conversation ID or switch between the Conversation and Flow
log type options from the side panel.

8.2.5. Working with packet drops

Enable packet drop tracking in the Network Observability Operator by configuring the FlowCollector
resource to monitor and visualize network data loss in the web console.

Packet loss occurs when one or more packets of network flow data fail to reach their destination. You
can track these drops by editing the FlowCollector to the specifications in the following YAML example.

apiVersion: flows.netobserv.io/v1beta2
kind: FlowCollector
metadata:
 name: cluster
spec:
 processor:
 logTypes: Flows 1
 advanced:
 conversationEndTimeout: 10s 2
 conversationHeartbeatInterval: 30s 3

CHAPTER 8. OBSERVING THE NETWORK TRAFFIC

87

1

2

IMPORTANT

CPU and memory usage increases when this feature is enabled.

Procedure

1. In the web console, navigate to Operators → Installed Operators.

2. Under the Provided APIs heading for the NetObserv Operator, select Flow Collector.

3. Select cluster, and then select the YAML tab.

4. Configure the FlowCollector custom resource for packet drops, for example:

Example FlowCollector configuration

You can start reporting the packet drops of each network flow by listing the PacketDrop
parameter in the spec.agent.ebpf.features specification list.

The spec.agent.ebpf.privileged specification value must be true for packet drop tracking.

Verification

When you refresh the Network Traffic page, the Overview, Traffic Flow, and Topology views
display new information about packet drops:

a. Select new choices in Manage panels to choose which graphical visualizations of packet
drops to display in the Overview.

b. Select new choices in Manage columns to choose which packet drop information to display
in the Traffic flows table.

i. In the Traffic Flows view, you can also expand the side panel to view more information
about packet drops. Host drops are prefixed with SKB_DROP and OVS drops are
prefixed with OVS_DROP.

c. In the Topology view, red lines are displayed where drops are present.

8.2.6. Working with DNS tracking

Configure the FlowCollector custom resource to enable DNS tracking for monitoring network

apiVersion: flows.netobserv.io/v1beta2
kind: FlowCollector
metadata:
 name: cluster
spec:
 namespace: netobserv
 agent:
 type: eBPF
 ebpf:
 features:
 - PacketDrop 1
 privileged: true 2

OpenShift Container Platform 4.17 Network Observability

88

1

2

Configure the FlowCollector custom resource to enable DNS tracking for monitoring network
performance, security analysis, and DNS troubleshooting in the web console.

You can track DNS by editing the FlowCollector to the specifications in the following YAML example.

IMPORTANT

CPU and memory usage increases are observed in the eBPF agent when this feature is
enabled.

Procedure

1. In the web console, navigate to Operators → Installed Operators.

2. Under the Provided APIs heading for Network Observability, select Flow Collector.

3. Select cluster then select the YAML tab.

4. Configure the FlowCollector custom resource. A sample configuration is as follows:

Configure FlowCollector for DNS tracking

You can set the spec.agent.ebpf.features parameter list to enable DNS tracking of each
network flow in the web console.

You can set sampling to a value of 1 for more accurate metrics and to capture DNS
latency. For a sampling value greater than 1, you can observe flows with DNS Response
Code and DNS Id, and it is unlikely that DNS Latency can be observed.

5. When you refresh the Network Traffic page, there are new DNS representations you can
choose to view in the Overview and Traffic Flow views and new filters you can apply.

a. Select new DNS choices in Manage panels to display graphical visualizations and DNS
metrics in the Overview.

b. Select new choices in Manage columns to add DNS columns to the Traffic Flows view.

c. Filter on specific DNS metrics, such as DNS Id, DNS Error DNS Latency and DNS
Response Code, and see more information from the side panel. The DNS Latency and
DNS Response Code columns are shown by default.

NOTE

apiVersion: flows.netobserv.io/v1beta2
kind: FlowCollector
metadata:
 name: cluster
spec:
 namespace: netobserv
 agent:
 type: eBPF
 ebpf:
 features:
 - DNSTracking 1
 sampling: 1 2

CHAPTER 8. OBSERVING THE NETWORK TRAFFIC

89

1

NOTE

TCP handshake packets do not have DNS headers. TCP protocol flows without DNS
headers are shown in the traffic flow data with DNS Latency, ID, and Response code
values of "n/a". You can filter out flow data to view only flows that have DNS headers
using the Common filter "DNSError" equal to "0".

8.2.7. Working with RTT tracing

Enable Round Trip Time (RTT) tracing by configuring the FlowCollector custom resource to monitor
and analyze network latency across your cluster by using the web console.

You can track RTT by editing the FlowCollector to the specifications in the following YAML example.

Procedure

1. In the web console, navigate to Operators → Installed Operators.

2. In the Provided APIs heading for the NetObserv Operator, select Flow Collector.

3. Select cluster, and then select the YAML tab.

4. Configure the FlowCollector custom resource for RTT tracing, for example:

Example FlowCollector configuration

You can start tracing RTT network flows by listing the FlowRTT parameter in the
spec.agent.ebpf.features specification list.

Verification

When you refresh the Network Traffic page, the Overview, Traffic Flow, and Topology views display
new information about RTT:

a. In the Overview, select new choices in Manage panels to choose which graphical visualizations
of RTT to display.

b. In the Traffic flows table, the Flow RTT column can be seen, and you can manage display in
Manage columns.

c. In the Traffic Flows view, you can also expand the side panel to view more information about
RTT.

apiVersion: flows.netobserv.io/v1beta2
kind: FlowCollector
metadata:
 name: cluster
spec:
 namespace: netobserv
 agent:
 type: eBPF
 ebpf:
 features:
 - FlowRTT 1

OpenShift Container Platform 4.17 Network Observability

90

Example filtering

i. Click the Common filters → Protocol.

ii. Filter the network flow data based on TCP, Ingress direction, and look for FlowRTT values
greater than 10,000,000 nanoseconds (10ms).

iii. Remove the Protocol filter.

iv. Filter for Flow RTT values greater than 0 in the Common filters.

d. In the Topology view, click the Display option dropdown. Then click RTT in the edge labels
drop-down list.

8.2.8. Working with the eBPF Manager Operator

Integrate the eBPF Manager Operator with Network Observability to manage eBPF programs and
reduce the need for privileged agent permissions.

The eBPF Manager Operator reduces the attack surface and ensures compliance, security, and conflict
prevention by managing all eBPF programs. Network observability can use the eBPF Manager Operator
to load hooks. As a result, you no longer need to provide the eBPF Agent with privileged mode or
additional Linux capabilities such as CAP_BPF and CAP_PERFMON. The eBPF Manager Operator with
network observability is only supported on 64-bit AMD architecture.

IMPORTANT

eBPF Manager Operator with network observability is a Technology Preview feature only.
Technology Preview features are not supported with Red Hat production service level
agreements (SLAs) and might not be functionally complete. Red Hat does not
recommend using them in production. These features provide early access to upcoming
product features, enabling customers to test functionality and provide feedback during
the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

Procedure

1. In the web console, navigate to Operators → Operator Hub.

2. Install eBPF Manager.

3. Check Workloads → Pods in the bpfman namespace to make sure they are all up and running.

4. Configure the FlowCollector custom resource to use the eBPF Manager Operator:

Example FlowCollector configuration

apiVersion: flows.netobserv.io/v1beta2
kind: FlowCollector
metadata:
 name: cluster
spec:
 agent:
 ebpf:

CHAPTER 8. OBSERVING THE NETWORK TRAFFIC

91

https://access.redhat.com/support/offerings/techpreview/

Verification

1. In the web console, navigate to Operators → Installed Operators.

2. Click eBPF Manager Operator → All instances tab.
For each node, verify that a BpfApplication named netobserv and a pair of BpfProgram
objects, one for Traffic Control (TCx) ingress and another for TCx egress, exist. If you enable
other eBPF Agent features, you might have more objects.

Additional resources

Installing the eBPF Manager Operator

8.2.9. Using the histogram

The histogram provides a visualization of network flow logs that you can use to analyze traffic volume
trends and filter flow data by specific time intervals.

You can click Show histogram to display a toolbar view for visualizing the history of flows as a bar chart.
The histogram shows the number of logs over time. You can select a part of the histogram to filter the
network flow data in the table that follows the toolbar.

8.2.10. Working with availability zones

Configure the FlowCollector custom resource to collect availability zone data, enabling the visualization
and analysis of network traffic across different cluster zones in the web console.

You can configure the FlowCollector to collect information about the cluster availability zones. This
allows you to enrich network flow data with the topology.kubernetes.io/zone label value applied to the
nodes.

Procedure

1. In the web console, go to Operators → Installed Operators.

2. Under the Provided APIs heading for the NetObserv Operator, select Flow Collector.

3. Select cluster then select the YAML tab.

4. Configure the FlowCollector custom resource so that the spec.processor.addZone
parameter is set to true. A sample configuration is as follows:

Configure FlowCollector for availability zones collection

 features:
 - EbpfManager

apiVersion: flows.netobserv.io/v1beta2
kind: FlowCollector
metadata:
 name: cluster
spec:
...

OpenShift Container Platform 4.17 Network Observability

92

https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/networking_operators/#installing-the-ebpf-manager-operator
https://kubernetes.io/docs/reference/labels-annotations-taints/#topologykubernetesiozone

Verification

When you refresh the Network Traffic page, the Overview, Traffic Flow, and Topology views display
new information about availability zones:

1. In the Overview tab, you can see Zones as an available Scope.

2. In Network Traffic → Traffic flows, Zones are viewable under the SrcK8S_Zone and
DstK8S_Zone fields.

3. In the Topology view, you can set Zones as Scope or Group.

8.2.11. Filtering eBPF flow data using multiple rules

Configure multiple filtering rules in the FlowCollector custom resource to refine network traffic data
collection by accepting or rejecting specific eBPF flows based on IP addresses and packet conditions.

IMPORTANT

You cannot use duplicate Classless Inter-Domain Routing (CIDRs) in filter rules.

When an IP address matches multiple filter rules, the rule with the most specific
CIDR prefix (longest prefix) takes precedence.

Procedure

1. In the web console, navigate to Operators → Installed Operators.

2. Under the Provided APIs heading for Network Observability, select Flow Collector.

3. Select cluster, then select the YAML tab.

4. Configure the FlowCollector custom resource, similar to the following sample configurations:

Example YAML to sample all North-South traffic, and 1:50 East-West traffic

By default, all other flows are rejected.

 processor:
 addZone: true
...

apiVersion: flows.netobserv.io/v1beta2
kind: FlowCollector
metadata:
 name: cluster
spec:
 namespace: netobserv
 deploymentModel: Direct
 agent:
 type: eBPF
 ebpf:
 flowFilter:
 enable: true 1
 rules:
 - action: Accept 2

CHAPTER 8. OBSERVING THE NETWORK TRAFFIC

93

1

2

3

4

5

1

2

To enable eBPF flow filtering, set spec.agent.ebpf.flowFilter.enable to true.

To define the action for the flow filter rule, set the required action parameter. Valid values are
Accept or Reject.

To define the IP address and CIDR mask for the flow filter rule, set the required cidr parameter.
This parameter supports both IPv4 and IPv6 address formats. To match any IP address, use
0.0.0.0/0 for IPv4 or `::/0 for IPv6.

To define the sampling interval for matched flows and override the global sampling setting
spec.agent.ebpf.sampling, set the sampling parameter.

To filter flows by Peer IP CIDR, set the peerCIDR parameter.

Example YAML to filter flows with packet drops

By default, all other flows are rejected.

To enable packet drops, set spec.agent.ebpf.privileged to true.

To report packet drops for each network flow, add the PacketDrop value to the
spec.agent.ebpf.features list.

 cidr: 0.0.0.0/0 3
 sampling: 1 4
 - action: Accept
 cidr: 10.128.0.0/14
 peerCIDR: 10.128.0.0/14 5
 - action: Accept
 cidr: 172.30.0.0/16
 peerCIDR: 10.128.0.0/14
 sampling: 50

apiVersion: flows.netobserv.io/v1beta2
kind: FlowCollector
metadata:
 name: cluster
spec:
 namespace: netobserv
 deploymentModel: Direct
 agent:
 type: eBPF
 ebpf:
 privileged: true 1
 features:
 - PacketDrop 2
 flowFilter:
 enable: true 3
 rules:
 - action: Accept 4
 cidr: 172.30.0.0/16
 pktDrops: true 5

OpenShift Container Platform 4.17 Network Observability

94

3

4

5

To enable eBPF flow filtering, set spec.agent.ebpf.flowFilter.enable to true.

To define the action for the flow filter rule, set the required action parameter. Valid values are
Accept or Reject.

To filter flows containing drops, set pktDrops to true.

8.2.12. Endpoint translation (xlat)

Endpoint translation (xlat) uses eBPF to enrich network flow logs with translated pod-level metadata,
providing visibility into the specific backend pods serving traffic behind services or load balancers.

You can gain visibility into the endpoints serving traffic in a consolidated view using network
observability and extended Berkeley Packet Filter (eBPF). Typically, when traffic flows through a
service, egressIP, or load balancer, the traffic flow information is abstracted as it is routed to one of the
available pods. If you try to get information about the traffic, you can only view service related info, such
as service IP and port, and not information about the specific pod that is serving the request. Often the
information for both the service traffic and the virtual service endpoint is captured as two separate
flows, which complicates troubleshooting.

To solve this, endpoint xlat can help in the following ways:

Capture the network flows at the kernel level, which has a minimal impact on performance.

Enrich the network flows with translated endpoint information, showing not only the service but
also the specific backend pod, so you can see which pod served a request.

As network packets are processed, the eBPF hook enriches flow logs with metadata about the
translated endpoint that includes the following pieces of information that you can view in the Network
Traffic page in a single row:

Source Pod IP

Source Port

Destination Pod IP

Destination Port

Conntrack Zone ID

8.2.13. Working with endpoint translation (xlat)

Enable endpoint translation (xlat) in the FlowCollector resource to enrich network flows with translated
packet information. You can use this information to identify the specific pods and objects serving
service traffic through dedicated xlat columns.

You can use network observability and eBPF to enrich network flows from a Kubernetes service with
translated endpoint information, gaining insight into the endpoints serving traffic.

Procedure

1. In the web console, navigate to Operators → Installed Operators.

2. In the Provided APIs heading for the NetObserv Operator, select Flow Collector.

CHAPTER 8. OBSERVING THE NETWORK TRAFFIC

95

https://lwn.net/Articles/370152/#:~:text=A zone is simply a,to seperate conntrack defragmentation queues.

1

3. Select cluster, and then select the YAML tab.

4. Configure the FlowCollector custom resource for PacketTranslation, for example:

Example FlowCollector configuration

You can start enriching network flows with translated packet information by listing the
PacketTranslation parameter in the spec.agent.ebpf.features specification list.

Example filtering

When you refresh the Network Traffic page you can filter for information about translated packets:

1. Filter the network flow data based on Destination kind: Service.

2. You can see the xlat column, which distinguishes where translated information is displayed, and
the following default columns:

Xlat Zone ID

Xlat Src Kubernetes Object

Xlat Dst Kubernetes Object

You can manage the display of additional xlat columns in Manage columns.

8.2.14. Working with user-defined networks

Configure the FlowCollector custom resource to enable user-defined network (UDN) mapping,
providing visibility into traffic across custom network interfaces within the web console.

You can enable user-defined networks (UDN) in network observability resources. The following example
shows the configuration for the FlowCollector resource.

Prerequisite

You have configured UDN in Red Hat OpenShift Networking. For more information, see
"Creating a UserDefinedNetwork by using the CLI" or "Creating a UserDefinedNetwork by using
the web console."

Procedure

apiVersion: flows.netobserv.io/v1beta2
kind: FlowCollector
metadata:
 name: cluster
spec:
 namespace: netobserv
 agent:
 type: eBPF
 ebpf:
 features:
 - PacketTranslation 1

OpenShift Container Platform 4.17 Network Observability

96

1

1. Edit the network observability FlowCollector resource by running the following command:

2. Configure the ebpf section of the FlowCollector resource:

Recommended so all flows are observed.

Verification

Refresh the Network Traffic page to view updated UDN information in the Traffic Flow and
Topology views:

In Network Traffic > Traffic flows, you can view UDNs under the SrcK8S_NetworkName
and DstK8S_NetworkName fields.

In the Topology view, you can set Network as Scope or Group.

Additional resources

Creating a UserDefinedNetwork by using the CLI

Creating a UserDefinedNetwork by using the web console

8.2.15. Viewing network events

Configure the FlowCollector custom resource to enable network event tracking for auditing how
security policies, firewalls, and isolation rules affect traffic flows in the web console.

IMPORTANT

OVN-Kubernetes networking events tracking is a Technology Preview feature only.
Technology Preview features are not supported with Red Hat production service level
agreements (SLAs) and might not be functionally complete. Red Hat does not
recommend using them in production. These features provide early access to upcoming
product features, enabling customers to test functionality and provide feedback during
the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

$ oc edit flowcollector

apiVersion: flows.netobserv.io/v1beta2
kind: FlowCollector
metadata:
 name: cluster
spec:
 agent:
 ebpf:
 sampling: 1 1
 privileged: true
 features:
 - UDNMapping

CHAPTER 8. OBSERVING THE NETWORK TRAFFIC

97

https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/multiple_networks/#nw-udn-cr_about-user-defined-networks
https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/multiple_networks/#nw-udn-cr-ui_about-user-defined-networks
https://access.redhat.com/support/offerings/techpreview/

1

You can edit the FlowCollector to view information about network traffic events, such as network flows
that are dropped or allowed by the following resources:

NetworkPolicy

AdminNetworkPolicy

BaselineNetworkPolicy

EgressFirewall

UserDefinedNetwork isolation

Multicast ACLs

Prerequisites

You must have OVNObservability enabled by setting the TechPreviewNoUpgrade feature set
in the FeatureGate custom resource (CR) named cluster. For more information, see "Enabling
feature sets using the CLI" and "Checking OVN-Kubernetes network traffic with OVS sampling
using the CLI".

You have created at least one of the following network APIs: NetworkPolicy,
AdminNetworkPolicy, BaselineNetworkPolicy, UserDefinedNetwork isolation, multicast, or
EgressFirewall.

Procedure

1. In the web console, navigate to Operators → Installed Operators.

2. In the Provided APIs heading for the NetObserv Operator, select Flow Collector.

3. Select cluster, and then select the YAML tab.

4. Configure the FlowCollector CR to enable viewing NetworkEvents, for example:

Example FlowCollector configuration

Optional: The sampling parameter is set to a value of 1 so that all network events are
captured. If sampling 1 is too resource heavy, set sampling to something more appropriate
for your needs.

apiVersion: flows.netobserv.io/v1beta2
kind: FlowCollector
metadata:
 name: cluster
spec:
 agent:
 type: eBPF
 ebpf:
 # sampling: 1 1
 privileged: true 2
 features:
 - "NetworkEvents"

OpenShift Container Platform 4.17 Network Observability

98

2 The privileged parameter is set to true because the OVN observability library needs to
access local Open vSwitch (OVS) socket and OpenShift Virtual Network (OVN) databases.

Verification

1. Navigate to the Network Traffic view and select the Traffic flows table.

2. You should see the new column, Network Events, where you can view information about
impacts of one of the following network APIs you have enabled: NetworkPolicy,
AdminNetworkPolicy, BaselineNetworkPolicy, UserDefinedNetwork isolation, multicast, or
egress firewalls.

An example of the kind of events you could see in this column is as follows:

Example of Network Events output

Additional resources

Enabling feature sets using the CLI

Checking OVN-Kubernetes network traffic with OVS sampling using the CLI

8.3. OBSERVING THE NETWORK TRAFFIC FROM THE TOPOLOGY
VIEW

The Topology view in the Network Traffic page provides a graphical representation of network flows
and traffic volume across your OpenShift Container Platform cluster. As an administrator, you can use
this view to monitor application traffic data and visualize the relationships between various network
components.

The visualization represents network entities as nodes and traffic flows as edges. By selecting individual
components within the graph, you can access a side panel containing specific metrics and health details
for that resource. This interactive approach allows for rapid identification of traffic patterns and
connectivity issues within the cluster.

To manage complex environments, the Topology view includes advanced configuration options that
allow you to customize the layout and data density. You can adjust the Scope of the view, apply Groups
to represent resource ownership, and choose different Layout algorithms to optimize the graphical
display. Additionally, you can enable Edge labels to show real-time measurements, such as the average
byte rate, directly on the flow lines.

For reporting or external analysis, the Topology view provides an export feature. You can download the
current graphical representation as a PNG image or generate a direct link to the specific view
configuration to share with other administrators. These tools ensure that network insights are both
accessible and easily documented.

8.3.1. Working with the Topology view

Access the Topology view to visually inspect cluster network relationships and select individual
components to view detailed traffic metrics and metadata.

As an administrator, you can navigate to the Topology view to see the details and metrics of the

<Dropped_or_Allowed> by <network_event_and_event_name>, direction <Ingress_or_Egress>

CHAPTER 8. OBSERVING THE NETWORK TRAFFIC

99

https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/nodes/#nodes-cluster-enabling-features-cli_nodes-cluster-enabling-features
https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/ovn-kubernetes_network_plugin/#nw-ovn-kubernetes-observability_ovn-kubernetes-sources-of-troubleshooting-information

As an administrator, you can navigate to the Topology view to see the details and metrics of the
component.

Prerequisites

You have administrator access.

Procedure

1. Navigate to Observe → Network Traffic.

2. In the Network Traffic page, click the Topology tab.

You can click each component in the Topology to view the details and metrics of the component.

8.3.2. Configuring the advanced options for the Topology view

Review the available advanced options in the Topology view to customize display settings, configure
component grouping and layouts, and export the network graph as an image.

You can customize and export the view by using Show advanced options. The advanced options view
has the following features:

Find in view: To search the required components in the view.

Display options: To configure the following options:

Edge labels: To show the specified measurements as edge labels. The default is to show
the Average rate in Bytes.

Scope: To select the scope of components between which the network traffic flows. The
default value is Namespace.

Groups: To enhance the understanding of ownership by grouping the components. The
default value is None.

Layout: To select the layout of the graphical representation. The default value is
ColaNoForce.

Show: To select the details that need to be displayed. All the options are checked by
default. The options available are: Edges, Edges label, and Badges.

Truncate labels: To select the required width of the label from the drop-down list. The
default value is M.

Collapse groups: To expand or collapse the groups. The groups are expanded by default.
This option is disabled if Groups has the value of None.

8.3.2.1. Exporting the topology view

To export the view, click Export topology view. The view is downloaded in PNG format.

8.4. FILTERING THE NETWORK TRAFFIC

Review the available query options and filtering parameters in the Network Traffic view to optimize
data searches, analyze specific log types, and manage directional traffic visibility.

OpenShift Container Platform 4.17 Network Observability

100

By default, the Network Traffic page displays the traffic flow data in the cluster based on the default
filters configured in the FlowCollector instance. You can use the filter options to observe the required
data by changing the preset filter.

Alternatively, you can access the traffic flow data in the Network Traffic tab of the Namespaces,
Services, Routes, Nodes, and Workloads pages which provide the filtered data of the corresponding
aggregations.

Query Options

You can use Query Options to optimize the search results, as listed below:

Log Type: The available options Conversation and Flows provide the ability to query flows
by log type, such as flow log, new conversation, completed conversation, and a heartbeat,
which is a periodic record with updates for long conversations. A conversation is an
aggregation of flows between the same peers.

Match filters: You can determine the relation between different filter parameters selected in
the advanced filter. The available options are Match all and Match any. Match all provides
results that match all the values, and Match any provides results that match any of the
values entered. The default value is Match all.

Datasource: You can choose the datasource to use for queries: Loki, Prometheus, or Auto.
Notable performance improvements can be realized when using Prometheus as a datasource
rather than Loki, but Prometheus supports a limited set of filters and aggregations. The
default datasource is Auto, which uses Prometheus on supported queries or uses Loki if the
query does not support Prometheus.

Drops filter: You can view different levels of dropped packets with the following query
options:

Fully dropped shows flow records with fully dropped packets.

Containing drops shows flow records that contain drops but can be sent.

Without drops shows records that contain sent packets.

All shows all the aforementioned records.

Limit: The data limit for internal backend queries. Depending upon the matching and the
filter settings, the number of traffic flow data is displayed within the specified limit.

Quick filters

The default values in Quick filters drop-down menu are defined in the FlowCollector configuration.
You can modify the options from console.

Advanced filters

You can set the advanced filters, Common, Source, or Destination, by selecting the parameter to be
filtered from the dropdown list. The flow data is filtered based on the selection. To enable or disable
the applied filter, you can click on the applied filter listed below the filter options.

You can toggle between One way and Back and forth filtering. The One way filter shows
only Source and Destination traffic according to your filter selections. You can use Swap to change the
directional view of the Source and Destination traffic. The Back and forth filter includes return
traffic with the Source and Destination filters. The directional flow of network traffic is shown in the
Direction column in the Traffic flows table as Ingress`or `Egress for inter-node traffic and `Inner`for
traffic inside a single node.

CHAPTER 8. OBSERVING THE NETWORK TRAFFIC

101

You can click Reset defaults to remove the existing filters, and apply the filter defined in FlowCollector
configuration.

NOTE

To understand the rules of specifying the text value, click Learn More.

Additional resources

Configuring Quick Filters

Flow Collector sample resource

OpenShift Container Platform 4.17 Network Observability

102

CHAPTER 9. NETWORK OBSERVABILITY ALERTS
The Network Observability Operator provides alerts using built-in metrics and the OpenShift Container
Platform monitoring stack to quickly indicate your cluster’s network health.

IMPORTANT

Network observability alerts is a Technology Preview feature only. Technology Preview
features are not supported with Red Hat production service level agreements (SLAs) and
might not be functionally complete. Red Hat does not recommend using them in
production. These features provide early access to upcoming product features, enabling
customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

9.1. ABOUT NETWORK OBSERVABILITY ALERTS

Network observability includes predefined alerts. Use these alerts to gain insight into the health and
performance of your OpenShift Container Platform applications and infrastructure.

The predefined alerts provide a quick health indication of your cluster’s network in the Network Health
dashboard. You can also customize alerts using Prometheus Query Language (PromQL) queries.

By default, network observability creates alerts that are contextual to the features you enable.

For example, packet drop-related alerts are created only if the PacketDrop agent feature is enabled in
the FlowCollector custom resource (CR). Alerts are built on metrics, and you might see configuration
warnings if enabled alerts are missing their required metrics.

You can configure these metrics in the spec.processor.metrics.includeList object of the
FlowCollector CR.

9.1.1. List of default alert templates

These alert templates are installed by default:

PacketDropsByDevice

Triggers on high percentage of packet drops from devices (/proc/net/dev).

PacketDropsByKernel

Triggers on high percentage of packet drops by the kernel; it requires the PacketDrop agent feature.

IPsecErrors

Triggers when IPsec encryption errors are detected by network observability; it requires the IPSec
agent feature.

NetpolDenied

Triggers when traffic denied by network policies is detected by network observability; it requires the
NetworkEvents agent feature.

LatencyHighTrend

Triggers when an increase of TCP latency is detected by network observability; it requires the
FlowRTT agent feature.

CHAPTER 9. NETWORK OBSERVABILITY ALERTS

103

https://access.redhat.com/support/offerings/techpreview/

DNSErrors

Triggers when DNS errors are detected by network observability; it requires the DNSTracking agent
feature.

These are operational alerts that relate to the self-health of network observability:

NetObservNoFlows

Triggers when no flows are being observed for a certain period.

NetObservLokiError

Triggers when flows are being dropped due to Loki errors.

You can configure, extend, or disable alerts for network observability. You can view the resulting
PrometheusRule resource in the default netobserv namespace by running the following command:

9.1.2. Network Health dashboard

When alerts are enabled in the Network Observability Operator, two things happen:

New alerts appear in Observe → Alerting → Alerting rules tab in the OpenShift Container
Platform web console.

A new Network Health dashboard appears in OpenShift Container Platform web console →
Observe.

The Network Health dashboard provides a summary of triggered alerts and pending alerts,
distinguishing between critical, warning, and minor issues. Alerts for rule violations are displayed in the
following tabs:

Global: Shows alerts that are global to the cluster.

Nodes: Shows alerts for rule violations per node.

Namespaces: Shows alerts for rule violations per namespace.

Click on a resource card to see more information. Next to each alert, a three dot menu appears. From
this menu, you can navigate to Network Traffic → Traffic flows to see more detailed information for
the selected resource.

9.2. ENABLING TECHNOLOGY PREVIEW ALERTS IN NETWORK
OBSERVABILITY

Network Observability Operator alerts are a Technology Preview feature. To use this feature, you must
enable it in the FlowCollector custom resource (CR), and then continue with configuring alerts to your
specific needs.

Procedure

1. Edit the FlowCollector CR to set the experimental alerts flag to true:

$ oc get prometheusrules -n netobserv -oyaml

apiVersion: flows.netobserv.io/v1beta1
kind: FlowCollector

OpenShift Container Platform 4.17 Network Observability

104

You can still use the existing method for creating alerts. For more information, see "Creating alerts".

9.2.1. Configuring predefined alerts

Alerts in the Network Observability Operator are defined using alert templates and variants in the
spec.processor.metrics.alerts object of the FlowCollector custom resource (CR). You can customize
the default templates and variants for flexible, fine-grained alerting.

After you enable alerts, the Network Health dashboard appears in the Observe section of the
OpenShift Container Platform web console.

For each template, you can define a list of variants, each with their own thresholds and grouping
configurations. For more information, see the "List of default alert templates".

Here is an example:

NOTE

Customizing an alert replaces the default configuration for that template. If you want to
keep the default configurations, you must manually replicate them.

9.2.2. About the PromQL expression for alerts

Learn about the base query for Prometheus Query Language (PromQL), and how to customize it so
you can configure network observability alerts for your specific needs.

metadata:
 name: flow-collector
spec:
 processor:
 advanced:
 env:
 EXPERIMENTAL_ALERTS_HEALTH: "true"

apiVersion: flows.netobserv.io/v1beta1
kind: FlowCollector
metadata:
 name: flow-collector
spec:
 processor:
 metrics:
 alerts:
 - template: PacketDropsByKernel
 variants:
 # triggered when the whole cluster traffic (no grouping) reaches 10% of drops
 - thresholds:
 critical: "10"
 # triggered when per-node traffic reaches 5% of drops, with gradual severity
 - thresholds:
 critical: "15"
 warning: "10"
 info: "5"
 groupBy: Node

CHAPTER 9. NETWORK OBSERVABILITY ALERTS

105

The alerting API in the network observability FlowCollector custom resource (CR) is mapped to the
Prometheus Operator API, generating a PrometheusRule. You can see the PrometheusRule in the
default netobserv namespace by running the following command:

9.2.2.1. An example query for an alert in a surge of incoming traffic

This example provides the base PromQL query pattern for an alert about a surge in incoming traffic:

This query calculates the byte rate coming from the openshift-ingress namespace to any of your
workloads' namespaces over the past 30 minutes.

You can customize the query, including retaining only some rates, running the query for specific time
periods, and setting a final threshold.

Filtering noise

Appending > 1000 to this query retains only the rates observed that are greater than 1 KB/s, which
eliminates noise from low-bandwidth consumers.
(sum(rate(netobserv_workload_ingress_bytes_total{SrcK8S_Namespace="openshift-
ingress"}[30m])) by (DstK8S_Namespace) > 1000)

The byte rate is relative to the sampling interval defined in the FlowCollector custom resource (CR)
configuration. If the sampling interval is 1:100, the actual traffic might be approximately 100 times
higher than the reported metrics.

Time comparison

You can run the same query for a particular period of time using the offset modifier. For example, a
query for one day earlier can be run using offset 1d, and a query for five hours ago can be run using
offset 5h.
sum(rate(netobserv_workload_ingress_bytes_total{SrcK8S_Namespace="openshift-ingress"}
[30m] offset 1d)) by (DstK8S_Namespace))

You can use the formula 100 * (<query now> - <query from the previous day>) / <query from the
previous day> to calculate the percentage of increase compared to the previous day. This value can
be negative if the byte rate today is lower than the previous day.

Final threshold

You can apply a final threshold to filter increases that are lower than the desired percentage. For
example, > 100 eliminates increases that are lower than 100%.

Together, the complete expression for the PrometheusRule looks like the following:

$ oc get prometheusrules -n netobserv -oyaml

sum(rate(netobserv_workload_ingress_bytes_total{SrcK8S_Namespace="openshift-ingress"}[30m]))
by (DstK8S_Namespace)

...
 expr: |-
 (100 *
 (
 (sum(rate(netobserv_workload_ingress_bytes_total{SrcK8S_Namespace="openshift-ingress"}
[30m])) by (DstK8S_Namespace) > 1000)

OpenShift Container Platform 4.17 Network Observability

106

9.2.2.2. Alert metadata fields

The Network Observability Operator uses components from other OpenShift Container Platform
features, such as the monitoring stack, to enhance visibility into network traffic. For more information,
see: "Monitoring stack architecture".

Some metadata must be configured for the alert definitions. This metadata is used by Prometheus and
the Alertmanager service from the monitoring stack, or by the Network Health dashboard.

The following example shows an AlertingRule resource with the configured metadata:

where:

spec.groups.rules.alert.labels.netobserv

 - sum(rate(netobserv_workload_ingress_bytes_total{SrcK8S_Namespace="openshift-
ingress"}[30m] offset 1d)) by (DstK8S_Namespace)
)
 / sum(rate(netobserv_workload_ingress_bytes_total{SrcK8S_Namespace="openshift-ingress"}
[30m] offset 1d)) by (DstK8S_Namespace))
 > 100

apiVersion: monitoring.openshift.io/v1
kind: AlertingRule
metadata:
 name: netobserv-alerts
 namespace: openshift-monitoring
spec:
 groups:
 - name: NetObservAlerts
 rules:
 - alert: NetObservIncomingBandwidth
 annotations:
 netobserv_io_network_health: '{"namespaceLabels":
["DstK8S_Namespace"],"threshold":"100","unit":"%","upperBound":"500"}'
 message: |-
 NetObserv is detecting a surge of incoming traffic: current traffic to {{
$labels.DstK8S_Namespace }} has increased by more than 100% since yesterday.
 summary: "Surge in incoming traffic"
 expr: |-
 (100 *
 (
 (sum(rate(netobserv_workload_ingress_bytes_total{SrcK8S_Namespace="openshift-ingress"}
[30m])) by (DstK8S_Namespace) > 1000)
 - sum(rate(netobserv_workload_ingress_bytes_total{SrcK8S_Namespace="openshift-
ingress"}[30m] offset 1d)) by (DstK8S_Namespace)
)
 / sum(rate(netobserv_workload_ingress_bytes_total{SrcK8S_Namespace="openshift-ingress"}
[30m] offset 1d)) by (DstK8S_Namespace))
 > 100
 for: 1m
 labels:
 app: netobserv
 netobserv: "true"
 severity: warning

CHAPTER 9. NETWORK OBSERVABILITY ALERTS

107

Specifies the alert for the Network Health dashboard to detect when set to true.

spec.groups.rules.alert.labels.severity

Specifies the severity of the alert. The following values are valid: critical, warning, or info.

You can leverage the output labels from the defined PromQL expression in the message annotation. In
the example, since results are grouped per DstK8S_Namespace, the expression {{
$labels.DstK8S_Namespace }} is used in the message text.

The netobserv_io_network_health annotation is optional, and controls how the alert is rendered on
the Network Health page.

The netobserv_io_network_health annotation is a JSON string consisting of the following fields:

Table 9.1. Fields for the netobserv_io_network_health annotation

Field Type Description

namespaceLab
els

List of strings One or more labels that hold namespaces. When provided, the
alert appears under the Namespaces tab.

nodeLabels List of strings One or more labels that hold node names. When provided, the
alert appears under the Nodes tab.

threshold String The alert threshold, expected to match the threshold defined in
the PromQL expression.

unit String The data unit, used only for display purposes.

upperBound String An upper bound value used to compute the score on a closed
scale. Metric values exceeding this bound are clamped.

links List of objects A list of links to display contextually with the alert. Each link
requires a name (display name) and url.

trafficLinkFilter String An additional filter to inject into the URL for the Network Traffic
page.

The namespaceLabels and nodeLabels are mutually exclusive. If neither is provided, the alert appears
under the Global tab.

9.2.3. Creating custom alert rules

Use the Prometheus Query Language (PromQL) to define a custom AlertingRule resource to trigger
alerts based on specific network metrics (e.g., traffic surges).

Prerequisites

Familiarity with PromQL.

You have installed OpenShift Container Platform 4.14 or later.

OpenShift Container Platform 4.17 Network Observability

108

You have access to the cluster as a user with the cluster-admin role.

You have installed the Network Observability Operator.

Procedure

1. Create a YAML file named custom-alert.yaml that contains your AlertingRule resource.

2. Apply the custom alert rule by running the following command:

Verification

1. Verify that the PrometheusRule resource was created in the netobserv namespace by running
the following command:

The output should include the netobserv-alerts rule you just created, confirming that the
resource was generated correctly.

2. Confirm the rule is active by checking the Network Health dashboard in the OpenShift
Container Platform web console → Observe.

9.2.4. Disabling predefined alerts

Alert templates can be disabled in the spec.processor.metrics.disableAlerts field of the
FlowCollector custom resource (CR). This setting accepts a list of alert template names. For a list of
alert template names, see: "List of default alerts".

If a template is disabled and overridden in the spec.processor.metrics.alerts field, the disable setting
takes precedence and the alert rule is not created.

Additional resources

List of default alerts

Viewing network observability metrics dashboards

Creating alerts

Monitoring stack architecture

$ oc apply -f custom-alert.yaml

$ oc get prometheusrules -n netobserv -oyaml

CHAPTER 9. NETWORK OBSERVABILITY ALERTS

109

https://docs.redhat.com/en/documentation/monitoring_stack_for_red_hat_openshift/4.17/html/about_monitoring/monitoring-stack-architecture

CHAPTER 10. USING METRICS WITH DASHBOARDS AND
ALERTS

The Network Observability Operator uses the flowlogs-pipeline component to generate metrics from
flow logs. Use these metrics to set custom alerts and view dashboards for network activity analysis.

10.1. VIEWING NETWORK OBSERVABILITY METRICS DASHBOARDS

View network observability metrics dashboards using the Overview tab in the OpenShift Container
Platform console to monitor overall traffic flow and system health, with options to filter metrics by node,
namespace, owner, pod, and service.

Procedure

1. In the web console Observe → Dashboards, select the Netobserv dashboard.

2. View network traffic metrics in the following categories, with each having the subset per node,
namespace, source, and destination:

Byte rates

Packet drops

DNS

RTT

3. Select the Netobserv/Health dashboard.

4. View metrics about the health of the Operator in the following categories, with each having the
subset per node, namespace, source, and destination.

Flows

Flows Overhead

Flow rates

Agents

Processor

Operator

Infrastructure and Application metrics are shown in a split-view for namespace and workloads.

10.2. NETWORK OBSERVABILITY METRICS

Review the comprehensive list of network observability metrics, prefixed by netobserv_, which you can
configure in the FlowCollector resource and use to monitor traffic and create Prometheus alerts.

Metrics generated by the flowlogs-pipeline are configurable in the
spec.processor.metrics.includeList of the FlowCollector custom resource to add or remove metrics.

You can also create alerts by using the includeList metrics in Prometheus rules, as shown in the

OpenShift Container Platform 4.17 Network Observability

110

You can also create alerts by using the includeList metrics in Prometheus rules, as shown in the
example "Creating alerts".

When looking for these metrics in Prometheus, such as in the Console through Observe → Metrics, or
when defining alerts, all the metrics names are prefixed with netobserv_. For example,
netobserv_namespace_flows_total. Available metrics names are as follows:

includeList metrics names

Names followed by an asterisk * are enabled by default.

namespace_egress_bytes_total

namespace_egress_packets_total

namespace_ingress_bytes_total

namespace_ingress_packets_total

namespace_flows_total *

node_egress_bytes_total

node_egress_packets_total

node_ingress_bytes_total *

node_ingress_packets_total

node_flows_total

workload_egress_bytes_total

workload_egress_packets_total

workload_ingress_bytes_total *

workload_ingress_packets_total

workload_flows_total

PacketDrop metrics names

When the PacketDrop feature is enabled in spec.agent.ebpf.features (with privileged mode), the
following additional metrics are available:

namespace_drop_bytes_total

namespace_drop_packets_total *

node_drop_bytes_total

node_drop_packets_total

workload_drop_bytes_total

workload_drop_packets_total

CHAPTER 10. USING METRICS WITH DASHBOARDS AND ALERTS

111

DNS metrics names

When the DNSTracking feature is enabled in spec.agent.ebpf.features, the following additional
metrics are available:

namespace_dns_latency_seconds *

node_dns_latency_seconds

workload_dns_latency_seconds

FlowRTT metrics names

When the FlowRTT feature is enabled in spec.agent.ebpf.features, the following additional metrics
are available:

namespace_rtt_seconds *

node_rtt_seconds

workload_rtt_seconds

Network events metrics names

When NetworkEvents feature is enabled, this metric is available by default:

namespace_network_policy_events_total

10.3. CREATING ALERTS

Create custom AlertingRule resources based on Netobserv dashboard metrics to define conditions
that trigger alerts in the OpenShift Container Platform console.

Prerequisites

You have access to the cluster as a user with the cluster-admin role or with view permissions for
all projects.

You have the Network Observability Operator installed.

Procedure

1. Create a YAML file by clicking the import icon, +.

2. Add an alerting rule configuration to the YAML file. In the YAML sample that follows, an alert is
created for when the cluster ingress traffic reaches a given threshold of 10 MBps per destination
workload.

apiVersion: monitoring.openshift.io/v1
kind: AlertingRule
metadata:
 name: netobserv-alerts
 namespace: openshift-monitoring
spec:
 groups:
 - name: NetObservAlerts

OpenShift Container Platform 4.17 Network Observability

112

1 The netobserv_workload_ingress_bytes_total metric is enabled by default in
spec.processor.metrics.includeList.

3. Click Create to apply the configuration file to the cluster.

10.4. CUSTOM METRICS

Define custom metrics from flowlog data using the FlowMetric API, leveraging log fields as Prometheus
labels to customize dashboard information and monitor specific cluster data.

In every flowlogs data that is collected, there are several fields labeled per log, such as source name and
destination name. These fields can be leveraged as Prometheus labels to enable the customization of
cluster information on your dashboard.

10.5. CONFIGURING CUSTOM METRICS BY USING FLOWMETRIC API

Configure the FlowMetric API to create custom Prometheus metrics by mapping flow log fields as labels
to meet specific monitoring needs.

Procedure

1. In the web console, navigate to Operators → Installed Operators.

2. In the Provided APIs heading for the NetObserv Operator, select FlowMetric.

3. In the Project: dropdown list, select the project of the Network Observability Operator instance.

4. Click Create FlowMetric.

5. Configure the FlowMetric resource, similar to the following sample configurations:

Generate a metric that tracks ingress bytes received from cluster external sources

 rules:
 - alert: NetObservIncomingBandwidth
 annotations:
 message: |-
 {{ $labels.job }}: incoming traffic exceeding 10 MBps for 30s on {{
$labels.DstK8S_OwnerType }} {{ $labels.DstK8S_OwnerName }} ({{
$labels.DstK8S_Namespace }}).
 summary: "High incoming traffic."
 expr: sum(rate(netobserv_workload_ingress_bytes_total
{SrcK8S_Namespace="openshift-ingress"}[1m])) by (job, DstK8S_Namespace,
DstK8S_OwnerName, DstK8S_OwnerType) > 10000000 1
 for: 30s
 labels:
 severity: warning

apiVersion: flows.netobserv.io/v1alpha1
kind: FlowMetric
metadata:
 name: flowmetric-cluster-external-ingress-traffic
 namespace: netobserv 1

CHAPTER 10. USING METRICS WITH DASHBOARDS AND ALERTS

113

1

2

3

4

5

6

The FlowMetric resources need to be created in the namespace defined in the
FlowCollector spec.namespace, which is netobserv by default.

The name of the Prometheus metric, which in the web console appears with the prefix
netobserv-<metricName>.

The type specifies the type of metric. The Counter type is useful for counting bytes or
packets.

The direction of traffic to capture. If not specified, both ingress and egress are captured,
which can lead to duplicated counts.

Labels define what the metrics look like and the relationship between the different entities
and also define the metrics cardinality. For example, SrcK8S_Name is a high cardinality
metric.

Refines results based on the listed criteria. In this example, selecting only the cluster
external traffic is done by matching only flows where SrcSubnetLabel is absent. This
assumes the subnet labels feature is enabled (via spec.processor.subnetLabels), which
is done by default.

Verification

1. Once the pods refresh, navigate to Observe → Metrics.

2. In the Expression field, type the metric name to view the corresponding result. You can also
enter an expression, such as topk(5,
sum(rate(netobserv_cluster_external_ingress_bytes_total{DstK8S_Namespace="my-
namespace"}[2m])) by (DstK8S_HostName, DstK8S_OwnerName, DstK8S_OwnerType))

Show RTT latency for cluster external ingress traffic

spec:
 metricName: cluster_external_ingress_bytes_total 2
 type: Counter 3
 valueField: Bytes
 direction: Ingress 4
 labels:
[DstK8S_HostName,DstK8S_Namespace,DstK8S_OwnerName,DstK8S_OwnerType] 5
 filters: 6
 - field: SrcSubnetLabel
 matchType: Absence

apiVersion: flows.netobserv.io/v1alpha1
kind: FlowMetric
metadata:
 name: flowmetric-cluster-external-ingress-rtt
 namespace: netobserv 1
spec:
 metricName: cluster_external_ingress_rtt_seconds
 type: Histogram 2
 valueField: TimeFlowRttNs
 direction: Ingress

OpenShift Container Platform 4.17 Network Observability

114

1

2

3

4

The FlowMetric resources need to be created in the namespace defined in the
FlowCollector spec.namespace, which is netobserv by default.

The type specifies the type of metric. The Histogram type is useful for a latency value
(TimeFlowRttNs).

Since the Round-trip time (RTT) is provided as nanos in flows, use a divider of 1 billion to
convert into seconds, which is standard in Prometheus guidelines.

The custom buckets specify precision on RTT, with optimal precision ranging between 5ms
and 250ms.

Verification

1. Once the pods refresh, navigate to Observe → Metrics.

2. In the Expression field, you can type the metric name to view the corresponding result.

10.6. CREATING METRICS FROM NESTED OR ARRAY FIELDS IN THE
TRAFFIC FLOWS TABLE

Create a FlowMetric custom resource to generate metrics for nested or array fields in the Traffic flows
table, such as Network events or Interfaces.

IMPORTANT

OVN Observability / Viewing NetworkEvents is a Technology Preview feature only.
Technology Preview features are not supported with Red Hat production service level
agreements (SLAs) and might not be functionally complete. Red Hat does not
recommend using them in production. These features provide early access to upcoming
product features, enabling customers to test functionality and provide feedback during
the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

IMPORTANT

OVN Observability and the ability to view and track network events is available only in
OpenShift Container Platform 4.17 and 4.18.

The following example shows how to generate metrics from the Network events field for network policy

 labels:
[DstK8S_HostName,DstK8S_Namespace,DstK8S_OwnerName,DstK8S_OwnerType]
 filters:
 - field: SrcSubnetLabel
 matchType: Absence
 - field: TimeFlowRttNs
 matchType: Presence
 divider: "1000000000" 3
 buckets: [".001", ".005", ".01", ".02", ".03", ".04", ".05", ".075", ".1", ".25", "1"] 4

CHAPTER 10. USING METRICS WITH DASHBOARDS AND ALERTS

115

https://access.redhat.com/support/offerings/techpreview/

1

2

3

The following example shows how to generate metrics from the Network events field for network policy
events.

Prerequisites

Enable NetworkEvents feature. See the Additional resources for how to do this.

A network policy specified.

Procedure

1. In the web console, navigate to Operators → Installed Operators.

2. In the Provided APIs heading for the NetObserv Operator, select FlowMetric.

3. In the Project dropdown list, select the project of the Network Observability Operator instance.

4. Click Create FlowMetric.

5. Create FlowMetric resources to add the following configurations:

Configuration counting network policy events per policy name and namespace

These labels represent the nested fields for Network Events from the Traffic flows table.
Each network event has a specific type, namespace, name, action, and direction. You can
alternatively specify the Interfaces if NetworkEvents is unavailable in your OpenShift
Container Platform version.

Optional: You can choose to represent a field that contains a list of items as distinct items.

Optional: You can rename the fields in Prometheus.

Verification

apiVersion: flows.netobserv.io/v1alpha1
kind: FlowMetric
metadata:
 name: network-policy-events
 namespace: netobserv
spec:
 metricName: network_policy_events_total
 type: Counter
 labels: [NetworkEvents>Type, NetworkEvents>Namespace, NetworkEvents>Name,
NetworkEvents>Action, NetworkEvents>Direction] 1
 filters:
 - field: NetworkEvents>Feature
 value: acl
 flatten: [NetworkEvents] 2
 remap: 3
 "NetworkEvents>Type": type
 "NetworkEvents>Namespace": namespace
 "NetworkEvents>Name": name
 "NetworkEvents>Direction": direction

OpenShift Container Platform 4.17 Network Observability

116

1. In the web console, navigate to Observe → Dashboards and scroll down to see the Network
Policy tab.

2. You should begin seeing metrics filter in based on the metric you created along with the
network policy specifications.

IMPORTANT

High cardinality can affect the memory usage of Prometheus. You can check whether
specific labels have high cardinality in the Network Flows format reference .

10.7. CONFIGURING CUSTOM CHARTS USING FLOWMETRIC API

Generate custom charts for OpenShift Container Platform web console dashboards by defining the
charts section of the FlowMetric custom resource.

You can view custom charts as an administrator in the Dashboard menu.

Procedure

1. In the web console, navigate to Operators → Installed Operators.

2. In the Provided APIs heading for the NetObserv Operator, select FlowMetric.

3. In the Project: dropdown list, select the project of the Network Observability Operator instance.

4. Click Create FlowMetric.

5. Configure the FlowMetric resource, similar to the following sample configurations:

Chart for tracking ingress bytes received from cluster external sources

apiVersion: flows.netobserv.io/v1alpha1
kind: FlowMetric
metadata:
 name: flowmetric-cluster-external-ingress-traffic
 namespace: netobserv 1
...
 charts:
 - dashboardName: Main 2
 title: External ingress traffic
 unit: Bps
 type: SingleStat
 queries:
 - promQL: "sum(rate($METRIC[2m]))"
 legend: ""
 - dashboardName: Main 3
 sectionName: External
 title: Top external ingress traffic per workload
 unit: Bps
 type: StackArea
 queries:
 - promQL: "sum(rate($METRIC{DstK8S_Namespace!=\"\"}[2m])) by (DstK8S_Namespace,

CHAPTER 10. USING METRICS WITH DASHBOARDS AND ALERTS

117

1 The FlowMetric resources need to be created in the namespace defined in the
FlowCollector spec.namespace, which is netobserv by default.

Verification

1. Once the pods refresh, navigate to Observe → Dashboards.

2. Search for the NetObserv / Main dashboard. View two panels under the NetObserv / Main
dashboard, or optionally a dashboard name that you create:

A textual single statistic showing the global external ingress rate summed across all
dimensions

A timeseries graph showing the same metric per destination workload

For more information about the query language, refer to the Prometheus documentation.

Chart for RTT latency for cluster external ingress traffic

DstK8S_OwnerName)"
 legend: "{{DstK8S_Namespace}} / {{DstK8S_OwnerName}}"
...

apiVersion: flows.netobserv.io/v1alpha1
kind: FlowMetric
metadata:
 name: flowmetric-cluster-external-ingress-traffic
 namespace: netobserv 1
...
 charts:
 - dashboardName: Main 2
 title: External ingress TCP latency
 unit: seconds
 type: SingleStat
 queries:
 - promQL: "histogram_quantile(0.99, sum(rate($METRIC_bucket[2m])) by (le)) > 0"
 legend: "p99"
 - dashboardName: Main 3
 sectionName: External
 title: "Top external ingress sRTT per workload, p50 (ms)"
 unit: seconds
 type: Line
 queries:
 - promQL: "histogram_quantile(0.5, sum(rate($METRIC_bucket{DstK8S_Namespace!=\"\"}[2m]))
by (le,DstK8S_Namespace,DstK8S_OwnerName))*1000 > 0"
 legend: "{{DstK8S_Namespace}} / {{DstK8S_OwnerName}}"
 - dashboardName: Main 4
 sectionName: External
 title: "Top external ingress sRTT per workload, p99 (ms)"
 unit: seconds
 type: Line
 queries:
 - promQL: "histogram_quantile(0.99, sum(rate($METRIC_bucket{DstK8S_Namespace!=\"\"}[2m]))

OpenShift Container Platform 4.17 Network Observability

118

https://prometheus.io/docs/prometheus/latest/querying/basics/

1

2 3 4

The FlowMetric resources need to be created in the namespace defined in the FlowCollector
spec.namespace, which is netobserv by default.

Using a different dashboardName creates a new dashboard that is prefixed with Netobserv.
For example, Netobserv / <dashboard_name>.

This example uses the histogram_quantile function to show p50 and p99.

You can show averages of histograms by dividing the metric, $METRIC_sum, by the metric,
$METRIC_count, which are automatically generated when you create a histogram. With the preceding
example, the Prometheus query to do this is as follows:

Verification

1. Once the pods refresh, navigate to Observe → Dashboards.

2. Search for the NetObserv / Main dashboard. View the new panel under the NetObserv / Main
dashboard, or optionally a dashboard name that you create.

For more information about the query language, refer to the Prometheus documentation.

10.8. DETECTING SYN FLOODING USING THE FLOWMETRIC API AND
TCP FLAGS

Deploy a custom AlertingRule and FlowMetric configuration to monitor TCP flags, enabling real-time
detection and alerting for SYN flooding attacks on the cluster.

Procedure

1. In the web console, navigate to Operators → Installed Operators.

2. In the Provided APIs heading for the NetObserv Operator, select FlowMetric.

3. In the Project dropdown list, select the project of the Network Observability Operator instance.

4. Click Create FlowMetric.

5. Create FlowMetric resources to add the following configurations:

Configuration counting flows per destination host and resource, with TCP flags

by (le,DstK8S_Namespace,DstK8S_OwnerName))*1000 > 0"
 legend: "{{DstK8S_Namespace}} / {{DstK8S_OwnerName}}"
...

promQL: "(sum(rate($METRIC_sum{DstK8S_Namespace!=\"\"}[2m])) by
(DstK8S_Namespace,DstK8S_OwnerName) / sum(rate($METRIC_count{DstK8S_Namespace!=\"\"}
[2m])) by (DstK8S_Namespace,DstK8S_OwnerName))*1000"

apiVersion: flows.netobserv.io/v1alpha1
kind: FlowMetric
metadata:
 name: flows-with-flags-per-destination

CHAPTER 10. USING METRICS WITH DASHBOARDS AND ALERTS

119

https://prometheus.io/docs/prometheus/latest/querying/basics/

Configuration counting flows per source host and resource, with TCP flags

6. Deploy the following AlertingRule resource to alert for SYN flooding:

AlertingRule for SYN flooding

spec:
 metricName: flows_with_flags_per_destination_total
 type: Counter
 labels:
[SrcSubnetLabel,DstSubnetLabel,DstK8S_Name,DstK8S_Type,DstK8S_HostName,DstK8S_N
amespace,Flags]

apiVersion: flows.netobserv.io/v1alpha1
kind: FlowMetric
metadata:
 name: flows-with-flags-per-source
spec:
 metricName: flows_with_flags_per_source_total
 type: Counter
 labels:
[DstSubnetLabel,SrcSubnetLabel,SrcK8S_Name,SrcK8S_Type,SrcK8S_HostName,SrcK8S_N
amespace,Flags]

apiVersion: monitoring.openshift.io/v1
kind: AlertingRule
metadata:
 name: netobserv-syn-alerts
 namespace: openshift-monitoring
...
 spec:
 groups:
 - name: NetObservSYNAlerts
 rules:
 - alert: NetObserv-SYNFlood-in
 annotations:
 message: |-
 {{ $labels.job }}: incoming SYN-flood attack suspected to Host={{
$labels.DstK8S_HostName}}, Namespace={{ $labels.DstK8S_Namespace }}, Resource={{
$labels.DstK8S_Name }}. This is characterized by a high volume of SYN-only flows with
different source IPs and/or ports.
 summary: "Incoming SYN-flood"
 expr: sum(rate(netobserv_flows_with_flags_per_destination_total{Flags="2"}[1m])) by
(job, DstK8S_HostName, DstK8S_Namespace, DstK8S_Name) > 300 1
 for: 15s
 labels:
 severity: warning
 app: netobserv
 - alert: NetObserv-SYNFlood-out
 annotations:
 message: |-
 {{ $labels.job }}: outgoing SYN-flood attack suspected from Host={{
$labels.SrcK8S_HostName}}, Namespace={{ $labels.SrcK8S_Namespace }}, Resource={{
$labels.SrcK8S_Name }}. This is characterized by a high volume of SYN-only flows with
different source IPs and/or ports.

OpenShift Container Platform 4.17 Network Observability

120

1 2 In this example, the threshold for the alert is 300; however, you can adapt this value
empirically. A threshold that is too low might produce false-positives, and if it’s too high it
might miss actual attacks.

Verification

1. In the web console, click Manage Columns in the Network Traffic table view and click TCP
flags.

2. In the Network Traffic table view, filter on TCP protocol SYN TCPFlag. A large number of
flows with the same byteSize indicates a SYN flood.

3. Go to Observe → Alerting and select the Alerting Rules tab.

4. Filter on netobserv-synflood-in alert. The alert should fire when SYN flooding occurs.

Additional resources

Filtering eBPF flow data using a global rule

Creating alerting rules for user-defined projects

Troubleshooting high cardinality metrics- Determining why Prometheus is consuming a lot of
disk space

 summary: "Outgoing SYN-flood"
 expr: sum(rate(netobserv_flows_with_flags_per_source_total{Flags="2"}[1m])) by (job,
SrcK8S_HostName, SrcK8S_Namespace, SrcK8S_Name) > 300 2
 for: 15s
 labels:
 severity: warning
 app: netobserv
...

CHAPTER 10. USING METRICS WITH DASHBOARDS AND ALERTS

121

https://docs.redhat.com/en/documentation/monitoring_stack_for_red_hat_openshift/4.17/html/managing_alerts/managing-alerts-as-a-developer#creating-alerting-rules-for-user-defined-projects_managing-alerts-as-a-developer
https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/support/#determining-why-prometheus-is-consuming-disk-space_investigating-monitoring-issues

CHAPTER 11. MONITORING THE NETWORK OBSERVABILITY
OPERATOR

Use the OpenShift Container Platform web console to monitor alerts related to the Network
Observability Operator’s health. This helps you maintain system stability and quickly detect operational
issues.

11.1. HEALTH DASHBOARDS

View the Network Observability Operator health dashboards in the OpenShift Container Platform web
console to monitor the health status, resource usage, and internal statistics of the operator and its
components.

Metrics are located in the Observe → Dashboards page in the OpenShift Container Platform web
console. You can view metrics about the health of the Network Observability Operator in the following
categories:

Flows per second

Sampling

Errors last minute

Dropped flows per second

Flowlogs-pipeline statistics

Flowlogs-pipleine statistics views

eBPF agent statistics views

Operator statistics

Resource usage

11.2. HEALTH ALERTS

Understand the health alerts generated by the Network Observability Operator, which trigger banners
when conditions like Loki ingestion errors, zero flow ingestion, or dropped eBPF flows occur.

A health alert banner that directs you to the dashboard can appear on the Network Traffic and Home
pages if an alert is triggered. Alerts are generated in the following cases:

The NetObservLokiError alert occurs if the flowlogs-pipeline workload is dropping flows
because of Loki errors, such as if the Loki ingestion rate limit has been reached.

The NetObservNoFlows alert occurs if no flows are ingested for a certain amount of time.

The NetObservFlowsDropped alert occurs if the Network Observability eBPF agent hashmap
table is full, and the eBPF agent processes flows with degraded performance, or when the
capacity limiter is triggered.

11.3. VIEWING HEALTH INFORMATION

View the Netobserv/Health dashboard within the OpenShift Container Platform web console to

OpenShift Container Platform 4.17 Network Observability

122

1

View the Netobserv/Health dashboard within the OpenShift Container Platform web console to
monitor the health status and resource usage of the Network Observability Operator and its
components.

Prerequisites

You have the Network Observability Operator installed.

You have access to the cluster as a user with the cluster-admin role or with view permissions
for all projects.

Procedure

1. From the Administrator perspective in the web console, navigate to Observe → Dashboards.

2. From the Dashboards dropdown, select Netobserv/Health.

3. View the metrics about the health of the Operator that are displayed on the page.

11.3.1. Disabling health alerts

Disable specific health alerts, such as NetObservLokiError or NetObservNoFlows, by editing the
FlowCollector resource and using the spec.processor.metrics.disableAlerts specification.

Procedure

1. In the web console, navigate to Operators → Installed Operators.

2. Under the Provided APIs heading for the NetObserv Operator, select Flow Collector.

3. Select cluster then select the YAML tab.

4. Add spec.processor.metrics.disableAlerts to disable health alerts, as in the following YAML
sample:

You can specify one or a list with both types of alerts to disable.

11.4. CREATING LOKI RATE LIMIT ALERTS FOR THE NETOBSERV
DASHBOARD

Create a custom AlertingRule resource based on Loki metrics to monitor for and trigger alerts when the
Loki ingestion rate limits are reached, indicated by HTTP 429 errors.

You can create custom alerting rules for the Netobserv dashboard metrics to trigger alerts when Loki

apiVersion: flows.netobserv.io/v1beta2
kind: FlowCollector
metadata:
 name: cluster
spec:
 processor:
 metrics:
 disableAlerts: [NetObservLokiError, NetObservNoFlows] 1

CHAPTER 11. MONITORING THE NETWORK OBSERVABILITY OPERATOR

123

You can create custom alerting rules for the Netobserv dashboard metrics to trigger alerts when Loki
rate limits have been reached.

Prerequisites

You have access to the cluster as a user with the cluster-admin role or with view permissions for
all projects.

You have the Network Observability Operator installed.

Procedure

1. Create a YAML file by clicking the import icon, +.

2. Add an alerting rule configuration to the YAML file. In the YAML sample that follows, an alert is
created for when Loki rate limits have been reached:

3. Click Create to apply the configuration file to the cluster.

11.5. USING THE EBPF AGENT ALERT

Resolve the NetObservAgentFlowsDropped alert, which occurs when the eBPF agent hashmap is full,
by increasing the spec.agent.ebpf.cacheMaxFlows value in the FlowCollector custom resource.

An alert, NetObservAgentFlowsDropped, is also triggered when the capacity limiter is triggered. If you
see this alert, consider increasing the cacheMaxFlows in the FlowCollector, as shown in the following
example.

NOTE

Increasing the cacheMaxFlows might increase the memory usage of the eBPF agent.

Procedure

apiVersion: monitoring.openshift.io/v1
kind: AlertingRule
metadata:
 name: loki-alerts
 namespace: openshift-monitoring
spec:
 groups:
 - name: LokiRateLimitAlerts
 rules:
 - alert: LokiTenantRateLimit
 annotations:
 message: |-
 {{ $labels.job }} {{ $labels.route }} is experiencing 429 errors.
 summary: "At any number of requests are responded with the rate limit error code."
 expr: sum(irate(loki_request_duration_seconds_count{status_code="429"}[1m])) by (job,
namespace, route) / sum(irate(loki_request_duration_seconds_count[1m])) by (job,
namespace, route) * 100 > 0
 for: 10s
 labels:
 severity: warning

OpenShift Container Platform 4.17 Network Observability

124

1

1. In the web console, navigate to Operators → Installed Operators.

2. Under the Provided APIs heading for the Network Observability Operator, select Flow
Collector.

3. Select cluster, and then select the YAML tab.

4. Increase the spec.agent.ebpf.cacheMaxFlows value, as shown in the following YAML sample:

apiVersion: flows.netobserv.io/v1beta2
kind: FlowCollector
metadata:
 name: cluster
spec:
 namespace: netobserv
 deploymentModel: Direct
 agent:
 type: eBPF
 ebpf:
 cacheMaxFlows: 200000 1

Increase the cacheMaxFlows value from its value at the time of the
NetObservAgentFlowsDropped alert.

Additional resources

Creating alerting rules for user-defined projects

CHAPTER 11. MONITORING THE NETWORK OBSERVABILITY OPERATOR

125

https://docs.redhat.com/en/documentation/monitoring_stack_for_red_hat_openshift/4.17/html/managing_alerts/managing-alerts-as-a-developer#creating-alerting-rules-for-user-defined-projects_managing-alerts-as-a-developer

CHAPTER 12. SCHEDULING RESOURCES
Taints and tolerations help you control which nodes host certain pods. Use these tools, along with node
selectors, to guide the placement of network observability components.

A node selector specifies a map of key/value pairs that are defined using custom labels on nodes and
selectors specified in pods.

For the pod to be eligible to run on a node, the pod must have the same key/value node selector as the
label on the node.

12.1. NETWORK OBSERVABILITY DEPLOYMENT IN SPECIFIC NODES

Configure the FlowCollector resource using scheduling specifications, including NodeSelector,
Tolerations, and Affinity, to control the deployment of network observability components on specific
nodes.

The spec.agent.ebpf.advanced.scheduling, spec.processor.advanced.scheduling, and
spec.consolePlugin.advanced.scheduling specifications have the following configurable settings:

NodeSelector

Tolerations

Affinity

PriorityClassName

Sample FlowCollector resource for spec.<component>.advanced.scheduling

apiVersion: flows.netobserv.io/v1beta2
kind: FlowCollector
metadata:
 name: cluster
spec:
...
advanced:
 scheduling:
 tolerations:
 - key: "<taint key>"
 operator: "Equal"
 value: "<taint value>"
 effect: "<taint effect>"
 nodeSelector:
 <key>: <value>
 affinity:
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: name
 operator: In
 values:

OpenShift Container Platform 4.17 Network Observability

126

Additional resources

Understanding taints and tolerations

Assign Pods to Nodes (Kubernetes documentation)

Pod Priority and Preemption (Kubernetes documentation)

 - app-worker-node
 priorityClassName: """
...

CHAPTER 12. SCHEDULING RESOURCES

127

https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/nodes/#nodes-scheduler-taints-tolerations-about_nodes-scheduler-taints-tolerations
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/
https://kubernetes.io/docs/concepts/scheduling-eviction/pod-priority-preemption/#priorityclass

CHAPTER 13. SECONDARY NETWORKS
You can configure the Network Observability Operator to collect and enrich network flow data from
secondary networks, such as SR-IOV and OVN-Kubernetes.

13.1. PREREQUISITES

Access to an OpenShift Container Platform cluster with an additional network interface, such as
a secondary interface or an L2 network.

13.2. CONFIGURING MONITORING FOR SR-IOV INTERFACE TRAFFIC

Configure the FlowCollector resource to monitor traffic on Single Root I/O Virtualization (SR-IOV)
device by setting the spec.agent.ebpf.privileged field to true, which enables the eBPF agent to
monitor other network namespaces.

The eBPF agent monitors other network namespaces in addition to the host network namespaces, which
are monitored by default. When a pod with a virtual functions (VF) interface is created, a new network
namespace is created. With SRIOVNetwork policy IPAM configurations specified, the VF interface is
migrated from the host network namespace to the pod network namespace.

Prerequisites

Access to an OpenShift Container Platform cluster with a SR-IOV device.

The SRIOVNetwork custom resource (CR) spec.ipam configuration must be set with an IP
address from the range that the interface lists or from other plugins.

Procedure

1. In the web console, navigate to Operators → Installed Operators.

2. Under the Provided APIs heading for the NetObserv Operator, select Flow Collector.

3. Select cluster and then select the YAML tab.

4. Configure the FlowCollector custom resource. A sample configuration is as follows:

Configure FlowCollector for SR-IOV monitoring

The spec.agent.ebpf.privileged field value must be set to true to enable SR-IOV

apiVersion: flows.netobserv.io/v1beta2
kind: FlowCollector
metadata:
 name: cluster
spec:
 namespace: netobserv
 deploymentModel: Direct
 agent:
 type: eBPF
 ebpf:
 privileged: true 1

OpenShift Container Platform 4.17 Network Observability

128

1 The spec.agent.ebpf.privileged field value must be set to true to enable SR-IOV
monitoring.

Additional resources

Configuring an SR-IOV network device

13.3. CONFIGURING VIRTUAL MACHINE (VM) SECONDARY NETWORK
INTERFACES FOR NETWORK OBSERVABILITY

Configure the FlowCollector to monitor VM secondary network traffic by setting the eBPF agent to
privileged mode and defining the indexing for secondary networks, enabling the capture and
enrichment of flows from OpenShift Virtualization.

Network flows coming from VMs that are connected to the default internal pod network are
automatically captured by network observability.

Procedure

1. Get information about the virtual machine launcher pod by running the following command. This
information is used in Step 5:

$ oc get pod virt-launcher-<vm_name>-<suffix> -n <namespace> -o yaml

apiVersion: v1
kind: Pod
metadata:
 annotations:
 k8s.v1.cni.cncf.io/network-status: |-
 [{
 "name": "ovn-kubernetes",
 "interface": "eth0",
 "ips": [
 "10.129.2.39"
],
 "mac": "0a:58:0a:81:02:27",
 "default": true,
 "dns": {}
 },
 {
 "name": "my-vms/l2-network", 1
 "interface": "podc0f69e19ba2", 2
 "ips": [3
 "10.10.10.15"
],
 "mac": "02:fb:f8:00:00:12", 4
 "dns": {}
 }]
 name: virt-launcher-fedora-aqua-fowl-13-zr2x9
 namespace: my-vms
spec:

CHAPTER 13. SECONDARY NETWORKS

129

https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/hardware_networks/#cnf-creating-an-additional-sriov-network-with-vrf-plug-in_configuring-sriov-device

1

2

3

4

1

2

3

4

The name of the secondary network.

The network interface name of the secondary network.

The list of IPs used by the secondary network.

The MAC address used for secondary network.

2. In the web console, navigate to Operators → Installed Operators.

3. Under the Provided APIs heading for the NetObserv Operator, select Flow Collector.

4. Select cluster and then select the YAML tab.

5. Configure FlowCollector based on the information you found from the additional network
investigation:

Ensure that the eBPF agent is in privileged mode so that flows are collected for
secondary interfaces.

Define the fields to use for indexing the virtual machine launcher pods. It is recommended
to use the MAC address as the indexing field to get network flows enrichment for
secondary interfaces. If you have overlapping MAC address between pods, then additional
indexing fields, such as IP and Interface, could be added to have accurate enrichment.

If your additional network information has a MAC address, add MAC to the field list.

Specify the name of the network found in the k8s.v1.cni.cncf.io/network-status
annotation. Usually <namespace>/<network_attachement_definition_name>.

6. Observe VM traffic:

a. Navigate to the Network Traffic page.

...
status:
...

apiVersion: flows.netobserv.io/v1beta2
kind: FlowCollector
metadata:
 name: cluster
spec:
 agent:
 ebpf:
 privileged: true 1
 processor:
 advanced:
 secondaryNetworks:
 - index: 2
 - MAC 3
 name: my-vms/l2-network 4
...

OpenShift Container Platform 4.17 Network Observability

130

b. Filter by Source IP using your virtual machine IP found in k8s.v1.cni.cncf.io/network-
status annotation.

c. View both Source and Destination fields, which should be enriched, and identify the VM
launcher pods and the VM instance as owners.

CHAPTER 13. SECONDARY NETWORKS

131

CHAPTER 14. NETWORK OBSERVABILITY CLI

14.1. INSTALLING THE NETWORK OBSERVABILITY CLI

The Network Observability CLI (oc netobserv) is deployed separately from the Network Observability
Operator. The CLI is available as an OpenShift CLI (oc) plugin. It provides a lightweight way to quickly
debug and troubleshoot with network observability.

14.1.1. About the Network Observability CLI

Use the Network Observability CLI (oc netobserv) to quickly debug and troubleshoot networking
issues. This tool provides instant, live insight into flows and packets without installing the Network
Observability Operator.

The Network Observability CLI is a flow and packet visualization tool that relies on eBPF agents to
stream collected data to an ephemeral collector pod. It requires no persistent storage during the
capture. After the run, the output is transferred to your local machine.

IMPORTANT

CLI capture is meant to run only for short durations, such as 8-10 minutes. If it runs for
too long, it can be difficult to delete the running process.

14.1.2. Installing the Network Observability CLI

The Network Observability CLI gives you a lightweight way to quickly debug and troubleshoot network
observability. It must be installed separately.

Installing the Network Observability CLI (oc netobserv) is a separate procedure from the Network
Observability Operator installation. This means that, even if the Operator is installed from the software
catalog, the CLI must be installed separately.

NOTE

Users can optionally use Krew to install the netobserv CLI plugin. For more information,
see "Installing a CLI plugin with Krew".

Prerequisites

You must install the OpenShift CLI (oc).

You must have a macOS or Linux operating system.

You must install either docker or podman.

NOTE

You can use podman or docker to run the installation commands. This procedure uses
podman.

Procedure

OpenShift Container Platform 4.17 Network Observability

132

1. Log in to the Red Hat registry by running the following command:

2. Extract the oc-netobserv file from the image by running the following commands:

3. Move the extracted file to a directory that is on the system’s PATH, such as /usr/local/bin/, by
running the following command:

Verification

1. Verify that oc netobserv is available:

This command should produce an outcome similar to the following example:

Netobserv CLI version <version>

Additional resources

Installing and using CLI plugins

Installing the CLI Manager Operator

14.2. USING THE NETWORK OBSERVABILITY CLI

You can visualize and filter the flows and packets data directly in the terminal to see specific usage, such
as identifying who is using a specific port. The Network Observability CLI collects flows as JSON and
database files or packets as a PCAP file, which you can use with third-party tools.

14.2.1. Capturing flows

Capture network flows and apply filters based on resources or zones directly in the CLI. This helps you
solve complex use cases, such as visualizing the Round-Trip Time (RTT) between two different zones.

Table visualization in the CLI provides viewing and flow search capabilities.

Prerequisites

Install the OpenShift CLI (oc).

Install the Network Observability CLI (oc netobserv) plugin.

Procedure

$ podman login registry.redhat.io

$ podman create --name netobserv-cli registry.redhat.io/network-observability/network-
observability-cli-rhel9:1.10
$ podman cp netobserv-cli:/oc-netobserv .
$ podman rm netobserv-cli

$ sudo mv oc-netobserv /usr/local/bin/

$ oc netobserv version

CHAPTER 14. NETWORK OBSERVABILITY CLI

133

https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/cli_tools/#cli-installing-plugins_cli-extend-plugins
https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/cli_tools/#installing-cli-manager

1. Capture flows with filters enabled by running the following command:

2. Add filters to the live table filter prompt in the terminal to further refine the incoming flows.
For example:

3. Use the PageUp and PageDown keys to toggle between None, Resource, Zone, Host, Owner
and all of the above.

4. To stop capturing, press Ctrl+C. The data that was captured is written to two separate files in an
./output directory located in the same path used to install the CLI.

5. View the captured data in the ./output/flow/<capture_date_time>.json JSON file, which
contains JSON arrays of the captured data.

Example JSON file

6. You can use SQLite to inspect the ./output/flow/<capture_date_time>.db database file. For
example:

a. Open the file by running the following command:

$ oc netobserv flows --enable_filter=true --action=Accept --cidr=0.0.0.0/0 --protocol=TCP --
port=49051

live table filter: [SrcK8S_Zone:us-west-1b] press enter to match multiple regular expressions
at once

{
 "AgentIP": "10.0.1.76",
 "Bytes": 561,
 "DnsErrno": 0,
 "Dscp": 20,
 "DstAddr": "f904:ece9:ba63:6ac7:8018:1e5:7130:0",
 "DstMac": "0A:58:0A:80:00:37",
 "DstPort": 9999,
 "Duplicate": false,
 "Etype": 2048,
 "Flags": 16,
 "FlowDirection": 0,
 "IfDirection": 0,
 "Interface": "ens5",
 "K8S_FlowLayer": "infra",
 "Packets": 1,
 "Proto": 6,
 "SrcAddr": "3e06:6c10:6440:2:a80:37:b756:270f",
 "SrcMac": "0A:58:0A:80:00:01",
 "SrcPort": 46934,
 "TimeFlowEndMs": 1709741962111,
 "TimeFlowRttNs": 121000,
 "TimeFlowStartMs": 1709741962111,
 "TimeReceived": 1709741964
}

$ sqlite3 ./output/flow/<capture_date_time>.db

OpenShift Container Platform 4.17 Network Observability

134

b. Query the data by running a SQLite SELECT statement, for example:

Example output

14.2.2. Capturing packets

Use the Network Observability CLI to capture network packets. You can apply filters and refine them live
in the terminal for accurate, real-time debugging.

Prerequisites

Install the OpenShift CLI (oc).

Install the Network Observability CLI (oc netobserv) plugin.

Procedure

1. Run the packet capture with filters enabled:

2. Add filters to the live table filter prompt in the terminal to refine the incoming packets. An
example filter is as follows:

3. Use the PageUp and PageDown keys to toggle between None, Resource, Zone, Host, Owner
and all of the above.

4. To stop capturing, press Ctrl+C.

5. View the captured data, which is written to a single file in an ./output/pcap directory located in
the same path that was used to install the CLI:

a. The ./output/pcap/<capture_date_time>.pcap file can be opened with Wireshark.

14.2.3. Capturing metrics

sqlite> SELECT DnsLatencyMs, DnsFlagsResponseCode, DnsId, DstAddr, DstPort,
Interface, Proto, SrcAddr, SrcPort, Bytes, Packets FROM flow WHERE DnsLatencyMs
>10 LIMIT 10;

12|NoError|58747|10.128.0.63|57856||17|172.30.0.10|53|284|1
11|NoError|20486|10.128.0.52|56575||17|169.254.169.254|53|225|1
11|NoError|59544|10.128.0.103|51089||17|172.30.0.10|53|307|1
13|NoError|32519|10.128.0.52|55241||17|169.254.169.254|53|254|1
12|NoError|32519|10.0.0.3|55241||17|169.254.169.254|53|254|1
15|NoError|57673|10.128.0.19|59051||17|172.30.0.10|53|313|1
13|NoError|35652|10.0.0.3|46532||17|169.254.169.254|53|183|1
32|NoError|37326|10.0.0.3|52718||17|169.254.169.254|53|169|1
14|NoError|14530|10.0.0.3|58203||17|169.254.169.254|53|246|1
15|NoError|40548|10.0.0.3|45933||17|169.254.169.254|53|174|1

$ oc netobserv packets --action=Accept --cidr=0.0.0.0/0 --protocol=TCP --port=49051

live table filter: [SrcK8S_Zone:us-west-1b] press enter to match multiple regular expressions
at once

CHAPTER 14. NETWORK OBSERVABILITY CLI

135

Generate on-demand network observability dashboards in Prometheus using a service monitor. This
allows you to quickly view and analyze network metrics.

Prerequisites

Install the OpenShift CLI (oc).

Install the Network Observability CLI (oc netobserv) plugin.

Procedure

1. Capture metrics with filters enabled by running the following command:

Example output

2. Open the link provided in the terminal to view the NetObserv / On-Demand dashboard:

Example URL

NOTE

Features that are not enabled present as empty graphs.

14.2.4. Cleaning the Network Observability CLI

Use oc netobserv cleanup to manually remove all components installed by the Network Observability
CLI from your cluster. While the client runs this command automatically after a capture, you may need to
run it manually if you face connectivity issues.

Procedure

Run the following command:

Additional resources

Network Observability CLI reference

14.3. NETWORK OBSERVABILITY CLI (OC NETOBSERV) REFERENCE

The Network Observability CLI (oc netobserv) has most features and filtering options that are available
for the Network Observability Operator. You can pass command-line arguments to enable features or
filtering options.

14.3.1. Network Observability CLI usage

You can use the Network Observability CLI (oc netobserv) to pass command line arguments to capture

$ oc netobserv metrics --enable_filter=true --cidr=0.0.0.0/0 --protocol=TCP --port=49051

https://console-openshift-
console.apps.rosa...openshiftapps.com/monitoring/dashboards/netobserv-cli

$ oc netobserv cleanup

OpenShift Container Platform 4.17 Network Observability

136

1

You can use the Network Observability CLI (oc netobserv) to pass command line arguments to capture
flows data, packets data, and metrics for further analysis and enable features supported by the Network
Observability Operator.

14.3.1.1. Syntax

The basic syntax for oc netobserv commands:

oc netobserv syntax

Feature options can only be used with the oc netobserv flows command. They cannot be used
with the oc netobserv packets command.

14.3.1.2. Basic commands

Table 14.1. Basic commands

Command Description

flows Capture flows information. For subcommands, see the "Flows capture options"
table.

packets Capture packets data. For subcommands, see the "Packets capture options"
table.

metrics Capture metrics data. For subcommands, see the "Metrics capture options"
table.

follow Follow collector logs when running in background.

stop Stop collection by removing agent daemonset.

copy Copy collector generated files locally.

cleanup Remove the Network Observability CLI components.

version Print the software version.

help Show help.

14.3.1.3. Flows capture options

Flows capture has mandatory commands as well as additional options, such as enabling extra features
about packet drops, DNS latencies, Round-trip time, and filtering.

oc netobserv flows syntax

$ oc netobserv [<command>] [<feature_option>] [<command_options>] 1

CHAPTER 14. NETWORK OBSERVABILITY CLI

137

Option Description Default

--enable_all enable all eBPF features false

--enable_dns enable DNS tracking false

--enable_ipsec enable IPsec tracking false

--enable_network_events enable network events monitoring false

--enable_pkt_translation enable packet translation false

--enable_pkt_drop enable packet drop false

--enable_rtt enable RTT tracking false

--enable_udn_mapping enable User Defined Network
mapping

false

--get-subnets get subnets information false

--privileged force eBPF agent privileged
mode

auto

--sampling packets sampling interval 1

--background run in background false

--copy copy the output files locally prompt

--log-level components logs info

--max-time maximum capture time 5m

--max-bytes maximum capture bytes 50000000 = 50MB

--action filter action Accept

--cidr filter CIDR 0.0.0.0/0

--direction filter direction -

--dport filter destination port -

--dport_range filter destination port range -

$ oc netobserv flows [<feature_option>] [<command_options>]

OpenShift Container Platform 4.17 Network Observability

138

--dports filter on either of two destination
ports

-

--drops filter flows with only dropped
packets

false

--icmp_code filter ICMP code -

--icmp_type filter ICMP type -

--node-selector capture on specific nodes -

--peer_ip filter peer IP -

--peer_cidr filter peer CIDR -

--port_range filter port range -

--port filter port -

--ports filter on either of two ports -

--protocol filter protocol -

--query filter flows using a custom query -

--sport_range filter source port range -

--sport filter source port -

--sports filter on either of two source ports -

--tcp_flags filter TCP flags -

--interfaces list of interfaces to monitor,
comma separated

-

--exclude_interfaces list of interfaces to exclude,
comma separated

lo

Option Description Default

Example running flows capture on TCP protocol and port 49051 with PacketDrop and RTT
features enabled:

$ oc netobserv flows --enable_pkt_drop --enable_rtt --action=Accept --cidr=0.0.0.0/0 --protocol=TCP
--port=49051

CHAPTER 14. NETWORK OBSERVABILITY CLI

139

14.3.1.4. Packets capture options

You can filter packets capture data the as same as flows capture by using the filters. Certain features,
such as packets drop, DNS, RTT, and network events, are only available for flows and metrics capture.

oc netobserv packets syntax

Option Description Default

--background run in background false

--copy copy the output files locally prompt

--log-level components logs info

--max-time maximum capture time 5m

--max-bytes maximum capture bytes 50000000 = 50MB

--action filter action Accept

--cidr filter CIDR 0.0.0.0/0

--direction filter direction -

--dport filter destination port -

--dport_range filter destination port range -

--dports filter on either of two destination
ports

-

--drops filter flows with only dropped
packets

false

--icmp_code filter ICMP code -

--icmp_type filter ICMP type -

--node-selector capture on specific nodes -

--peer_ip filter peer IP -

--peer_cidr filter peer CIDR -

--port_range filter port range -

$ oc netobserv packets [<option>]

OpenShift Container Platform 4.17 Network Observability

140

--port filter port -

--ports filter on either of two ports -

--protocol filter protocol -

--query filter flows using a custom query -

--sport_range filter source port range -

--sport filter source port -

--sports filter on either of two source ports -

--tcp_flags filter TCP flags -

Option Description Default

Example running packets capture on TCP protocol and port 49051:

14.3.1.5. Metrics capture options

You can enable features and use filters on metrics capture, the same as flows capture. The generated
graphs fill accordingly in the dashboard.

oc netobserv metrics syntax

Option Description Default

--enable_all enable all eBPF features false

--enable_dns enable DNS tracking false

--enable_ipsec enable IPsec tracking false

--enable_network_events enable network events monitoring false

--enable_pkt_translation enable packet translation false

--enable_pkt_drop enable packet drop false

--enable_rtt enable RTT tracking false

$ oc netobserv packets --action=Accept --cidr=0.0.0.0/0 --protocol=TCP --port=49051

$ oc netobserv metrics [<option>]

CHAPTER 14. NETWORK OBSERVABILITY CLI

141

--enable_udn_mapping enable User Defined Network
mapping

false

--get-subnets get subnets information false

--privileged force eBPF agent privileged
mode

auto

--sampling packets sampling interval 1

--background run in background false

--log-level components logs info

--max-time maximum capture time 1h

--action filter action Accept

--cidr filter CIDR 0.0.0.0/0

--direction filter direction -

--dport filter destination port -

--dport_range filter destination port range -

--dports filter on either of two destination
ports

-

--drops filter flows with only dropped
packets

false

--icmp_code filter ICMP code -

--icmp_type filter ICMP type -

--node-selector capture on specific nodes -

--peer_ip filter peer IP -

--peer_cidr filter peer CIDR -

--port_range filter port range -

--port filter port -

Option Description Default

OpenShift Container Platform 4.17 Network Observability

142

--ports filter on either of two ports -

--protocol filter protocol -

--query filter flows using a custom query -

--sport_range filter source port range -

--sport filter source port -

--sports filter on either of two source ports -

--tcp_flags filter TCP flags -

--include_list list of metric names to generate,
comma separated

namespace_flows_total,node_ingr
ess_bytes_total,node_egress_byt
es_total,workload_ingress_bytes_t
otal

--interfaces list of interfaces to monitor,
comma separated

-

--exclude_interfaces list of interfaces to exclude,
comma separated

lo

Option Description Default

Example running metrics capture for TCP drops

$ oc netobserv metrics --enable_pkt_drop --protocol=TCP

CHAPTER 14. NETWORK OBSERVABILITY CLI

143

CHAPTER 15. FLOWCOLLECTOR API REFERENCE
The FlowCollector API is the underlying schema used to pilot and configure the deployments for
collecting network flows. This reference guide helps you manage those critical settings.

15.1. FLOWCOLLECTOR API SPECIFICATIONS

Description

FlowCollector is the schema for the network flows collection API, which pilots and configures the
underlying deployments.

Type

object

Property Type Description

apiVersion string APIVersion defines the versioned
schema of this representation of
an object. Servers should convert
recognized schemas to the latest
internal value, and might reject
unrecognized values. More info:
https://git.k8s.io/community/con
tributors/devel/sig-
architecture/api-
conventions.md#resources

kind string Kind is a string value representing
the REST resource this object
represents. Servers might infer
this from the endpoint the client
submits requests to. Cannot be
updated. In CamelCase. More
info:
https://git.k8s.io/community/con
tributors/devel/sig-
architecture/api-
conventions.md#types-kinds

metadata object Standard object’s metadata. More
info:
https://git.k8s.io/community/con
tributors/devel/sig-
architecture/api-
conventions.md#metadata

OpenShift Container Platform 4.17 Network Observability

144

https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#resources
https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#types-kinds
https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata

spec object Defines the desired state of the
FlowCollector resource.

*: the mention of "unsupported"
or "deprecated" for a feature
throughout this document means
that this feature is not officially
supported by Red Hat. It might
have been, for example,
contributed by the community
and accepted without a formal
agreement for maintenance. The
product maintainers might
provide some support for these
features as a best effort only.

Property Type Description

15.1.1. .metadata

Description

Standard object’s metadata. More info: https://git.k8s.io/community/contributors/devel/sig-
architecture/api-conventions.md#metadata

Type

object

15.1.2. .spec

Description

Defines the desired state of the FlowCollector resource.

*: the mention of "unsupported" or "deprecated" for a feature throughout this document means that
this feature is not officially supported by Red Hat. It might have been, for example, contributed by
the community and accepted without a formal agreement for maintenance. The product maintainers
might provide some support for these features as a best effort only.

Type

object

Property Type Description

agent object Agent configuration for flows
extraction.

consolePlugin object consolePlugin defines the
settings related to the OpenShift
Container Platform Console
plugin, when available.

CHAPTER 15. FLOWCOLLECTOR API REFERENCE

145

https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata

deploymentModel string deploymentModel defines the
desired type of deployment for
flow processing. Possible values
are:

- Direct (default) to make the
flow processor listen directly from
the agents. Only recommended
on small clusters, below 15 nodes.

- Kafka to make flows sent to a
Kafka pipeline before
consumption by the processor.

Kafka can provide better
scalability, resiliency, and high
availability (for more details, see
https://www.redhat.com/en/topic
s/integration/what-is-apache-
kafka).

exporters array exporters defines additional
optional exporters for custom
consumption or storage.

kafka object Kafka configuration, allowing to
use Kafka as a broker as part of
the flow collection pipeline.
Available when the
spec.deploymentModel is
Kafka.

loki object loki, the flow store, client
settings.

namespace string Namespace where Network
Observability pods are deployed.

networkPolicy object networkPolicy defines network
policy settings for Network
Observability components
isolation.

Property Type Description

OpenShift Container Platform 4.17 Network Observability

146

https://www.redhat.com/en/topics/integration/what-is-apache-kafka

processor object processor defines the settings
of the component that receives
the flows from the agent, enriches
them, generates metrics, and
forwards them to the Loki
persistence layer and/or any
available exporter.

prometheus object prometheus defines
Prometheus settings, such as
querier configuration used to
fetch metrics from the Console
plugin.

Property Type Description

15.1.3. .spec.agent

Description

Agent configuration for flows extraction.

Type

object

Property Type Description

ebpf object ebpf describes the settings
related to the eBPF-based flow
reporter when spec.agent.type
is set to eBPF.

type string type [deprecated (*)] selects the
flows tracing agent. Previously,
this field allowed to select
between eBPF or IPFIX. Only
eBPF is allowed now, so this field
is deprecated and is planned for
removal in a future version of the
API.

15.1.4. .spec.agent.ebpf

Description

ebpf describes the settings related to the eBPF-based flow reporter when spec.agent.type is set to
eBPF.

Type

object

CHAPTER 15. FLOWCOLLECTOR API REFERENCE

147

Property Type Description

advanced object advanced allows setting some
aspects of the internal
configuration of the eBPF agent.
This section is aimed mostly for
debugging and fine-grained
performance optimizations, such
as GOGC and GOMAXPROCS
environment variables. Set these
values at your own risk. You can
also override the default Linux
capabilities from there.

cacheActiveTimeout string cacheActiveTimeout is the
max period during which the
reporter aggregates flows before
sending. Increasing
cacheMaxFlows and
cacheActiveTimeout can
decrease the network traffic
overhead and the CPU load,
however you can expect higher
memory consumption and an
increased latency in the flow
collection.

cacheMaxFlows integer cacheMaxFlows is the max
number of flows in an aggregate;
when reached, the reporter sends
the flows. Increasing
cacheMaxFlows and
cacheActiveTimeout can
decrease the network traffic
overhead and the CPU load,
however you can expect higher
memory consumption and an
increased latency in the flow
collection.

excludeInterfaces array (string) excludeInterfaces contains the
interface names that are
excluded from flow tracing. An
entry enclosed by slashes, such as
/br-/, is matched as a regular
expression. Otherwise it is
matched as a case-sensitive
string.

features array (string) List of additional features to
enable. They are all disabled by
default. Enabling additional

OpenShift Container Platform 4.17 Network Observability

148

features might have performance
impacts. Possible values are:

- PacketDrop: Enable the
packets drop flows logging
feature. This feature requires
mounting the kernel debug
filesystem, so the eBPF agent
pods must run as privileged via
spec.agent.ebpf.privileged.

- DNSTracking: Enable the DNS
tracking feature.

- FlowRTT: Enable flow latency
(sRTT) extraction in the eBPF
agent from TCP traffic.

- NetworkEvents: Enable the
network events monitoring
feature, such as correlating flows
and network policies. This feature
requires mounting the kernel
debug filesystem, so the eBPF
agent pods must run as privileged
via
spec.agent.ebpf.privileged. It
requires using the OVN-
Kubernetes network plugin with
the Observability feature.
IMPORTANT: This feature is
available as a Technology
Preview.

- PacketTranslation: Enable
enriching flows with packet
translation information, such as
Service NAT.

- EbpfManager: [Unsupported
(*)]. Use eBPF Manager to
manage Network Observability
eBPF programs. Pre-requisite: the
eBPF Manager operator (or
upstream bpfman operator) must
be installed.

- UDNMapping: Enable
interfaces mapping to User
Defined Networks (UDN).

This feature requires mounting
the kernel debug filesystem, so
the eBPF agent pods must run as
privileged via
spec.agent.ebpf.privileged. It

Property Type Description

CHAPTER 15. FLOWCOLLECTOR API REFERENCE

149

requires using the OVN-
Kubernetes network plugin with
the Observability feature.

- IPSec, to track flows between
nodes with IPsec encryption. flowFilter object flowFilter defines the eBPF
agent configuration regarding
flow filtering.

imagePullPolicy string imagePullPolicy is the
Kubernetes pull policy for the
image defined above

interfaces array (string) interfaces contains the interface
names from where flows are
collected. If empty, the agent
fetches all the interfaces in the
system, excepting the ones listed
in excludeInterfaces. An entry
enclosed by slashes, such as /br-/,
is matched as a regular
expression. Otherwise it is
matched as a case-sensitive
string.

kafkaBatchSize integer kafkaBatchSize limits the
maximum size of a request in
bytes before being sent to a
partition. Ignored when not using
Kafka. Default: 1MB.

logLevel string logLevel defines the log level for
the Network Observability eBPF
Agent

metrics object metrics defines the eBPF agent
configuration regarding metrics.

privileged boolean Privileged mode for the eBPF
Agent container. When set to
true, the agent is able to capture
more traffic, including from
secondary interfaces. When
ignored or set to false, the
operator sets granular capabilities
(BPF, PERFMON, NET_ADMIN)
to the container. Some agent
features require the privileged
mode, such as packet drops
tracking (see features) and SR-
IOV support.

Property Type Description

OpenShift Container Platform 4.17 Network Observability

150

resources object resources are the compute
resources required by this
container. For more information,
see
https://kubernetes.io/docs/conc
epts/configuration/manage-
resources-containers/

sampling integer Sampling interval of the eBPF
probe. 100 means one packet on
100 is sent. 0 or 1 means all
packets are sampled.

Property Type Description

15.1.5. .spec.agent.ebpf.advanced

Description

advanced allows setting some aspects of the internal configuration of the eBPF agent. This section
is aimed mostly for debugging and fine-grained performance optimizations, such as GOGC and
GOMAXPROCS environment variables. Set these values at your own risk. You can also override the
default Linux capabilities from there.

Type

object

Property Type Description

capOverride array (string) Linux capabilities override, when
not running as privileged. Default
capabilities are BPF, PERFMON
and NET_ADMIN.

env object (string) env allows passing custom
environment variables to
underlying components. Useful
for passing some very concrete
performance-tuning options, such
as GOGC and GOMAXPROCS,
that should not be publicly
exposed as part of the
FlowCollector descriptor, as they
are only useful in edge debug or
support scenarios.

scheduling object scheduling controls how the pods
are scheduled on nodes.

15.1.6. .spec.agent.ebpf.advanced.scheduling

CHAPTER 15. FLOWCOLLECTOR API REFERENCE

151

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/

Description

scheduling controls how the pods are scheduled on nodes.

Type

object

Property Type Description

affinity object If specified, the pod’s scheduling
constraints. For documentation,
refer to
https://kubernetes.io/docs/refer
ence/kubernetes-api/workload-
resources/pod-v1/#scheduling.

nodeSelector object (string) nodeSelector allows scheduling
of pods only onto nodes that have
each of the specified labels. For
documentation, refer to
https://kubernetes.io/docs/conc
epts/configuration/assign-pod-
node/.

priorityClassName string If specified, indicates the pod’s
priority. For documentation, refer
to
https://kubernetes.io/docs/conc
epts/scheduling-eviction/pod-
priority-preemption/#how-to-
use-priority-and-preemption. If
not specified, default priority is
used, or zero if there is no default.

tolerations array tolerations is a list of tolerations
that allow the pod to schedule
onto nodes with matching taints.
For documentation, refer to
https://kubernetes.io/docs/refer
ence/kubernetes-api/workload-
resources/pod-v1/#scheduling.

15.1.7. .spec.agent.ebpf.advanced.scheduling.affinity

Description

If specified, the pod’s scheduling constraints. For documentation, refer to
https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-v1/#scheduling.

Type

object

15.1.8. .spec.agent.ebpf.advanced.scheduling.tolerations

OpenShift Container Platform 4.17 Network Observability

152

https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-v1/#scheduling
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/
https://kubernetes.io/docs/concepts/scheduling-eviction/pod-priority-preemption/#how-to-use-priority-and-preemption
https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-v1/#scheduling
https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-v1/#scheduling

Description

tolerations is a list of tolerations that allow the pod to schedule onto nodes with matching taints. For
documentation, refer to https://kubernetes.io/docs/reference/kubernetes-api/workload-
resources/pod-v1/#scheduling.

Type

array

15.1.9. .spec.agent.ebpf.flowFilter

Description

flowFilter defines the eBPF agent configuration regarding flow filtering.

Type

object

Property Type Description

action string action defines the action to
perform on the flows that match
the filter. The available options
are Accept, which is the default,
and Reject.

cidr string cidr defines the IP CIDR to filter
flows by. Examples:
10.10.10.0/24 or
100:100:100:100::/64

destPorts integer-or-string destPorts optionally defines the
destination ports to filter flows by.
To filter a single port, set a single
port as an integer value. For
example, destPorts: 80. To filter
a range of ports, use a "start-end"
range in string format. For
example, destPorts: "80-100".
To filter two ports, use a
"port1,port2" in string format. For
example, ports: "80,100".

direction string direction optionally defines a
direction to filter flows by. The
available options are Ingress and
Egress.

enable boolean Set enable to true to enable the
eBPF flow filtering feature.

CHAPTER 15. FLOWCOLLECTOR API REFERENCE

153

https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-v1/#scheduling

icmpCode integer icmpCode, for Internet Control
Message Protocol (ICMP) traffic,
optionally defines the ICMP code
to filter flows by.

icmpType integer icmpType, for ICMP traffic,
optionally defines the ICMP type
to filter flows by.

peerCIDR string peerCIDR defines the Peer IP
CIDR to filter flows by. Examples:
10.10.10.0/24 or
100:100:100:100::/64

peerIP string peerIP optionally defines the
remote IP address to filter flows
by. Example: 10.10.10.10.

pktDrops boolean pktDrops optionally filters only
flows containing packet drops.

ports integer-or-string ports optionally defines the ports
to filter flows by. It is used both
for source and destination ports.
To filter a single port, set a single
port as an integer value. For
example, ports: 80. To filter a
range of ports, use a "start-end"
range in string format. For
example, ports: "80-100". To
filter two ports, use a "port1,port2"
in string format. For example,
ports: "80,100".

protocol string protocol optionally defines a
protocol to filter flows by. The
available options are TCP, UDP,
ICMP, ICMPv6, and SCTP.

Property Type Description

OpenShift Container Platform 4.17 Network Observability

154

rules array rules defines a list of filtering
rules on the eBPF Agents. When
filtering is enabled, by default,
flows that don’t match any rule
are rejected. To change the
default, you can define a rule that
accepts everything: { action:
"Accept", cidr: "0.0.0.0/0" },
and then refine with rejecting
rules.

sampling integer sampling is the sampling interval
for the matched packets,
overriding the global sampling
defined at
spec.agent.ebpf.sampling.

sourcePorts integer-or-string sourcePorts optionally defines
the source ports to filter flows by.
To filter a single port, set a single
port as an integer value. For
example, sourcePorts: 80. To
filter a range of ports, use a
"start-end" range in string format.
For example, sourcePorts: "80-
100". To filter two ports, use a
"port1,port2" in string format. For
example, ports: "80,100".

tcpFlags string tcpFlags optionally defines TCP
flags to filter flows by. In addition
to the standard flags (RFC-
9293), you can also filter by one
of the three following
combinations: SYN-ACK, FIN-
ACK, and RST-ACK.

Property Type Description

15.1.10. .spec.agent.ebpf.flowFilter.rules

Description

rules defines a list of filtering rules on the eBPF Agents. When filtering is enabled, by default, flows
that don’t match any rule are rejected. To change the default, you can define a rule that accepts
everything: { action: "Accept", cidr: "0.0.0.0/0" }, and then refine with rejecting rules.

Type

array

15.1.11. .spec.agent.ebpf.flowFilter.rules[]

CHAPTER 15. FLOWCOLLECTOR API REFERENCE

155

Description

EBPFFlowFilterRule defines the desired eBPF agent configuration regarding flow filtering rule.

Type

object

Property Type Description

action string action defines the action to
perform on the flows that match
the filter. The available options
are Accept, which is the default,
and Reject.

cidr string cidr defines the IP CIDR to filter
flows by. Examples:
10.10.10.0/24 or
100:100:100:100::/64

destPorts integer-or-string destPorts optionally defines the
destination ports to filter flows by.
To filter a single port, set a single
port as an integer value. For
example, destPorts: 80. To filter
a range of ports, use a "start-end"
range in string format. For
example, destPorts: "80-100".
To filter two ports, use a
"port1,port2" in string format. For
example, ports: "80,100".

direction string direction optionally defines a
direction to filter flows by. The
available options are Ingress and
Egress.

icmpCode integer icmpCode, for Internet Control
Message Protocol (ICMP) traffic,
optionally defines the ICMP code
to filter flows by.

icmpType integer icmpType, for ICMP traffic,
optionally defines the ICMP type
to filter flows by.

peerCIDR string peerCIDR defines the Peer IP
CIDR to filter flows by. Examples:
10.10.10.0/24 or
100:100:100:100::/64

OpenShift Container Platform 4.17 Network Observability

156

peerIP string peerIP optionally defines the
remote IP address to filter flows
by. Example: 10.10.10.10.

pktDrops boolean pktDrops optionally filters only
flows containing packet drops.

ports integer-or-string ports optionally defines the ports
to filter flows by. It is used both
for source and destination ports.
To filter a single port, set a single
port as an integer value. For
example, ports: 80. To filter a
range of ports, use a "start-end"
range in string format. For
example, ports: "80-100". To
filter two ports, use a "port1,port2"
in string format. For example,
ports: "80,100".

protocol string protocol optionally defines a
protocol to filter flows by. The
available options are TCP, UDP,
ICMP, ICMPv6, and SCTP.

sampling integer sampling is the sampling interval
for the matched packets,
overriding the global sampling
defined at
spec.agent.ebpf.sampling.

sourcePorts integer-or-string sourcePorts optionally defines
the source ports to filter flows by.
To filter a single port, set a single
port as an integer value. For
example, sourcePorts: 80. To
filter a range of ports, use a
"start-end" range in string format.
For example, sourcePorts: "80-
100". To filter two ports, use a
"port1,port2" in string format. For
example, ports: "80,100".

Property Type Description

CHAPTER 15. FLOWCOLLECTOR API REFERENCE

157

tcpFlags string tcpFlags optionally defines TCP
flags to filter flows by. In addition
to the standard flags (RFC-
9293), you can also filter by one
of the three following
combinations: SYN-ACK, FIN-
ACK, and RST-ACK.

Property Type Description

15.1.12. .spec.agent.ebpf.metrics

Description

metrics defines the eBPF agent configuration regarding metrics.

Type

object

Property Type Description

disableAlerts array (string) disableAlerts is a list of alerts
that should be disabled. Possible
values are:

NetObservDroppedFlows,
which is triggered when the eBPF
agent is missing packets or flows,
such as when the BPF hashmap is
busy or full, or the capacity limiter
is being triggered.

enable boolean Set enable to false to disable
eBPF agent metrics collection. It
is enabled by default.

server object Metrics server endpoint
configuration for the Prometheus
scraper.

15.1.13. .spec.agent.ebpf.metrics.server

Description

Metrics server endpoint configuration for the Prometheus scraper.

Type

object

OpenShift Container Platform 4.17 Network Observability

158

Property Type Description

port integer The metrics server HTTP port.

tls object TLS configuration.

15.1.14. .spec.agent.ebpf.metrics.server.tls

Description

TLS configuration.

Type

object

Required

type

Property Type Description

insecureSkipVerify boolean insecureSkipVerify allows
skipping client-side verification of
the provided certificate. If set to
true, the providedCaFile field is
ignored.

provided object TLS configuration when type is
set to Provided.

providedCaFile object Reference to the CA file when
type is set to Provided.

type string Select the type of TLS
configuration:

- Disabled (default) to not
configure TLS for the endpoint. -
Provided to manually provide
cert file and a key file.
[Unsupported (*)]. - Auto to use
OpenShift Container Platform
auto generated certificate using
annotations.

15.1.15. .spec.agent.ebpf.metrics.server.tls.provided

Description

TLS configuration when type is set to Provided.

Type

CHAPTER 15. FLOWCOLLECTOR API REFERENCE

159

object

Property Type Description

certFile string certFile defines the path to the
certificate file name within the
config map or secret.

certKey string certKey defines the path to the
certificate private key file name
within the config map or secret.
Omit when the key is not
necessary.

name string Name of the config map or secret
containing certificates.

namespace string Namespace of the config map or
secret containing certificates. If
omitted, the default is to use the
same namespace as where
Network Observability is
deployed. If the namespace is
different, the config map or the
secret is copied so that it can be
mounted as required.

type string Type for the certificate reference:
configmap or secret.

15.1.16. .spec.agent.ebpf.metrics.server.tls.providedCaFile

Description

Reference to the CA file when type is set to Provided.

Type

object

Property Type Description

file string File name within the config map
or secret.

name string Name of the config map or secret
containing the file.

OpenShift Container Platform 4.17 Network Observability

160

namespace string Namespace of the config map or
secret containing the file. If
omitted, the default is to use the
same namespace as where
Network Observability is
deployed. If the namespace is
different, the config map or the
secret is copied so that it can be
mounted as required.

type string Type for the file reference:
configmap or secret.

Property Type Description

15.1.17. .spec.agent.ebpf.resources

Description

resources are the compute resources required by this container. For more information, see
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/

Type

object

Property Type Description

limits integer-or-string Limits describes the maximum
amount of compute resources
allowed. More info:
https://kubernetes.io/docs/conc
epts/configuration/manage-
resources-containers/

requests integer-or-string Requests describes the minimum
amount of compute resources
required. If Requests is omitted
for a container, it defaults to
Limits if that is explicitly specified,
otherwise to an implementation-
defined value. Requests cannot
exceed Limits. More info:
https://kubernetes.io/docs/conc
epts/configuration/manage-
resources-containers/

15.1.18. .spec.consolePlugin

Description

consolePlugin defines the settings related to the OpenShift Container Platform Console plugin,
when available.

CHAPTER 15. FLOWCOLLECTOR API REFERENCE

161

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/

Type

object

Property Type Description

advanced object advanced allows setting some
aspects of the internal
configuration of the console
plugin. This section is aimed
mostly for debugging and fine-
grained performance
optimizations, such as GOGC and
GOMAXPROCS environment
variables. Set these values at your
own risk.

autoscaler object autoscaler spec of a horizontal
pod autoscaler to set up for the
plugin Deployment. Refer to
HorizontalPodAutoscaler
documentation (autoscaling/v2).

enable boolean Enables the console plugin
deployment.

imagePullPolicy string imagePullPolicy is the
Kubernetes pull policy for the
image defined above

logLevel string logLevel for the console plugin
backend

portNaming object portNaming defines the
configuration of the port-to-
service name translation

quickFilters array quickFilters configures quick
filter presets for the Console
plugin

replicas integer replicas defines the number of
replicas (pods) to start.

resources object resources, in terms of compute
resources, required by this
container. For more information,
see
https://kubernetes.io/docs/conc
epts/configuration/manage-
resources-containers/

OpenShift Container Platform 4.17 Network Observability

162

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/

15.1.19. .spec.consolePlugin.advanced

Description

advanced allows setting some aspects of the internal configuration of the console plugin. This
section is aimed mostly for debugging and fine-grained performance optimizations, such as GOGC
and GOMAXPROCS environment variables. Set these values at your own risk.

Type

object

Property Type Description

args array (string) args allows passing custom
arguments to underlying
components. Useful for overriding
some parameters, such as a URL
or a configuration path, that
should not be publicly exposed as
part of the FlowCollector
descriptor, as they are only useful
in edge debug or support
scenarios.

env object (string) env allows passing custom
environment variables to
underlying components. Useful
for passing some very concrete
performance-tuning options, such
as GOGC and GOMAXPROCS,
that should not be publicly
exposed as part of the
FlowCollector descriptor, as they
are only useful in edge debug or
support scenarios.

port integer port is the plugin service port. Do
not use 9002, which is reserved
for metrics.

CHAPTER 15. FLOWCOLLECTOR API REFERENCE

163

register boolean register allows, when set to true,
to automatically register the
provided console plugin with the
OpenShift Container Platform
Console operator. When set to
false, you can still register it
manually by editing
console.operator.openshift.io/clus
ter with the following command:
oc patch
console.operator.openshift.i
o cluster --type='json' -p
'[{"op": "add", "path":
"/spec/plugins/-", "value":
"netobserv-plugin"}]'

scheduling object scheduling controls how the
pods are scheduled on nodes.

Property Type Description

15.1.20. .spec.consolePlugin.advanced.scheduling

Description

scheduling controls how the pods are scheduled on nodes.

Type

object

Property Type Description

affinity object If specified, the pod’s scheduling
constraints. For documentation,
refer to
https://kubernetes.io/docs/refer
ence/kubernetes-api/workload-
resources/pod-v1/#scheduling.

nodeSelector object (string) nodeSelector allows scheduling
of pods only onto nodes that have
each of the specified labels. For
documentation, refer to
https://kubernetes.io/docs/conc
epts/configuration/assign-pod-
node/.

OpenShift Container Platform 4.17 Network Observability

164

https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-v1/#scheduling
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/

priorityClassName string If specified, indicates the pod’s
priority. For documentation, refer
to
https://kubernetes.io/docs/conc
epts/scheduling-eviction/pod-
priority-preemption/#how-to-
use-priority-and-preemption. If
not specified, default priority is
used, or zero if there is no default.

tolerations array tolerations is a list of tolerations
that allow the pod to schedule
onto nodes with matching taints.
For documentation, refer to
https://kubernetes.io/docs/refer
ence/kubernetes-api/workload-
resources/pod-v1/#scheduling.

Property Type Description

15.1.21. .spec.consolePlugin.advanced.scheduling.affinity

Description

If specified, the pod’s scheduling constraints. For documentation, refer to
https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-v1/#scheduling.

Type

object

15.1.22. .spec.consolePlugin.advanced.scheduling.tolerations

Description

tolerations is a list of tolerations that allow the pod to schedule onto nodes with matching taints. For
documentation, refer to https://kubernetes.io/docs/reference/kubernetes-api/workload-
resources/pod-v1/#scheduling.

Type

array

15.1.23. .spec.consolePlugin.autoscaler

Description

autoscaler spec of a horizontal pod autoscaler to set up for the plugin Deployment. Refer to
HorizontalPodAutoscaler documentation (autoscaling/v2).

Type

object

15.1.24. .spec.consolePlugin.portNaming

Description

CHAPTER 15. FLOWCOLLECTOR API REFERENCE

165

https://kubernetes.io/docs/concepts/scheduling-eviction/pod-priority-preemption/#how-to-use-priority-and-preemption
https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-v1/#scheduling
https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-v1/#scheduling
https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-v1/#scheduling

portNaming defines the configuration of the port-to-service name translation

Type

object

Property Type Description

enable boolean Enable the console plugin port-
to-service name translation

portNames object (string) portNames defines additional
port names to use in the console,
for example, portNames:
{"3100": "loki"}.

15.1.25. .spec.consolePlugin.quickFilters

Description

quickFilters configures quick filter presets for the Console plugin

Type

array

15.1.26. .spec.consolePlugin.quickFilters[]

Description

QuickFilter defines preset configuration for Console’s quick filters

Type

object

Required

filter

name

Property Type Description

default boolean default defines whether this filter
should be active by default or not

filter object (string) filter is a set of keys and values to
be set when this filter is selected.
Each key can relate to a list of
values using a coma-separated
string, for example, filter:
{"src_namespace":
"namespace1,namespace2"}.

OpenShift Container Platform 4.17 Network Observability

166

name string Name of the filter, that is
displayed in the Console

Property Type Description

15.1.27. .spec.consolePlugin.resources

Description

resources, in terms of compute resources, required by this container. For more information, see
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/

Type

object

Property Type Description

limits integer-or-string Limits describes the maximum
amount of compute resources
allowed. More info:
https://kubernetes.io/docs/conc
epts/configuration/manage-
resources-containers/

requests integer-or-string Requests describes the minimum
amount of compute resources
required. If Requests is omitted
for a container, it defaults to
Limits if that is explicitly specified,
otherwise to an implementation-
defined value. Requests cannot
exceed Limits. More info:
https://kubernetes.io/docs/conc
epts/configuration/manage-
resources-containers/

15.1.28. .spec.exporters

Description

exporters defines additional optional exporters for custom consumption or storage.

Type

array

15.1.29. .spec.exporters[]

Description

FlowCollectorExporter defines an additional exporter to send enriched flows to.

Type

CHAPTER 15. FLOWCOLLECTOR API REFERENCE

167

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/

object

Required

type

Property Type Description

ipfix object IPFIX configuration, such as the IP
address and port to send enriched
IPFIX flows to.

kafka object Kafka configuration, such as the
address and topic, to send
enriched flows to.

openTelemetry object OpenTelemetry configuration,
such as the IP address and port to
send enriched logs or metrics to.

type string type selects the type of
exporters. The available options
are Kafka, IPFIX, and
OpenTelemetry.

15.1.30. .spec.exporters[].ipfix

Description

IPFIX configuration, such as the IP address and port to send enriched IPFIX flows to.

Type

object

Required

targetHost

targetPort

Property Type Description

targetHost string Address of the IPFIX external
receiver.

targetPort integer Port for the IPFIX external
receiver.

transport string Transport protocol (TCP or
UDP) to be used for the IPFIX
connection, defaults to TCP.

OpenShift Container Platform 4.17 Network Observability

168

15.1.31. .spec.exporters[].kafka

Description

Kafka configuration, such as the address and topic, to send enriched flows to.

Type

object

Required

address

topic

Property Type Description

address string Address of the Kafka server

sasl object SASL authentication
configuration. [Unsupported (*)].

tls object TLS client configuration. When
using TLS, verify that the address
matches the Kafka port used for
TLS, generally 9093.

topic string Kafka topic to use. It must exist.
Network Observability does not
create it.

15.1.32. .spec.exporters[].kafka.sasl

Description

SASL authentication configuration. [Unsupported (*)].

Type

object

Property Type Description

clientIDReference object Reference to the secret or config
map containing the client ID

clientSecretReference object Reference to the secret or config
map containing the client secret

type string Type of SASL authentication to
use, or Disabled if SASL is not
used

CHAPTER 15. FLOWCOLLECTOR API REFERENCE

169

15.1.33. .spec.exporters[].kafka.sasl.clientIDReference

Description

Reference to the secret or config map containing the client ID

Type

object

Property Type Description

file string File name within the config map
or secret.

name string Name of the config map or secret
containing the file.

namespace string Namespace of the config map or
secret containing the file. If
omitted, the default is to use the
same namespace as where
Network Observability is
deployed. If the namespace is
different, the config map or the
secret is copied so that it can be
mounted as required.

type string Type for the file reference:
configmap or secret.

15.1.34. .spec.exporters[].kafka.sasl.clientSecretReference

Description

Reference to the secret or config map containing the client secret

Type

object

Property Type Description

file string File name within the config map
or secret.

name string Name of the config map or secret
containing the file.

OpenShift Container Platform 4.17 Network Observability

170

namespace string Namespace of the config map or
secret containing the file. If
omitted, the default is to use the
same namespace as where
Network Observability is
deployed. If the namespace is
different, the config map or the
secret is copied so that it can be
mounted as required.

type string Type for the file reference:
configmap or secret.

Property Type Description

15.1.35. .spec.exporters[].kafka.tls

Description

TLS client configuration. When using TLS, verify that the address matches the Kafka port used for
TLS, generally 9093.

Type

object

Property Type Description

caCert object caCert defines the reference of
the certificate for the Certificate
Authority.

enable boolean Enable TLS

insecureSkipVerify boolean insecureSkipVerify allows
skipping client-side verification of
the server certificate. If set to
true, the caCert field is ignored.

userCert object userCert defines the user
certificate reference and is used
for mTLS. When you use one-way
TLS, you can ignore this property.

15.1.36. .spec.exporters[].kafka.tls.caCert

Description

caCert defines the reference of the certificate for the Certificate Authority.

Type

object

CHAPTER 15. FLOWCOLLECTOR API REFERENCE

171

Property Type Description

certFile string certFile defines the path to the
certificate file name within the
config map or secret.

certKey string certKey defines the path to the
certificate private key file name
within the config map or secret.
Omit when the key is not
necessary.

name string Name of the config map or secret
containing certificates.

namespace string Namespace of the config map or
secret containing certificates. If
omitted, the default is to use the
same namespace as where
Network Observability is
deployed. If the namespace is
different, the config map or the
secret is copied so that it can be
mounted as required.

type string Type for the certificate reference:
configmap or secret.

15.1.37. .spec.exporters[].kafka.tls.userCert

Description

userCert defines the user certificate reference and is used for mTLS. When you use one-way TLS,
you can ignore this property.

Type

object

Property Type Description

certFile string certFile defines the path to the
certificate file name within the
config map or secret.

certKey string certKey defines the path to the
certificate private key file name
within the config map or secret.
Omit when the key is not
necessary.

OpenShift Container Platform 4.17 Network Observability

172

name string Name of the config map or secret
containing certificates.

namespace string Namespace of the config map or
secret containing certificates. If
omitted, the default is to use the
same namespace as where
Network Observability is
deployed. If the namespace is
different, the config map or the
secret is copied so that it can be
mounted as required.

type string Type for the certificate reference:
configmap or secret.

Property Type Description

15.1.38. .spec.exporters[].openTelemetry

Description

OpenTelemetry configuration, such as the IP address and port to send enriched logs or metrics to.

Type

object

Required

targetHost

targetPort

Property Type Description

fieldsMapping array Custom fields mapping to an
OpenTelemetry conformant
format. By default, Network
Observability format proposal is
used:
https://github.com/rhobs/observ
ability-data-
model/blob/main/network-
observability.md#format-
proposal . As there is currently no
accepted standard for L3 or L4
enriched network logs, you can
freely override it with your own.

headers object (string) Headers to add to messages
(optional)

CHAPTER 15. FLOWCOLLECTOR API REFERENCE

173

https://github.com/rhobs/observability-data-model/blob/main/network-observability.md#format-proposal

logs object OpenTelemetry configuration for
logs.

metrics object OpenTelemetry configuration for
metrics.

protocol string Protocol of the OpenTelemetry
connection. The available options
are http and grpc.

targetHost string Address of the OpenTelemetry
receiver.

targetPort integer Port for the OpenTelemetry
receiver.

tls object TLS client configuration.

Property Type Description

15.1.39. .spec.exporters[].openTelemetry.fieldsMapping

Description

Custom fields mapping to an OpenTelemetry conformant format. By default, Network Observability
format proposal is used: https://github.com/rhobs/observability-data-model/blob/main/network-
observability.md#format-proposal . As there is currently no accepted standard for L3 or L4 enriched
network logs, you can freely override it with your own.

Type

array

15.1.40. .spec.exporters[].openTelemetry.fieldsMapping[]

Description

Type

object

Property Type Description

input string

multiplier integer

output string

15.1.41. .spec.exporters[].openTelemetry.logs

OpenShift Container Platform 4.17 Network Observability

174

https://github.com/rhobs/observability-data-model/blob/main/network-observability.md#format-proposal

Description

OpenTelemetry configuration for logs.

Type

object

Property Type Description

enable boolean Set enable to true to send logs
to an OpenTelemetry receiver.

15.1.42. .spec.exporters[].openTelemetry.metrics

Description

OpenTelemetry configuration for metrics.

Type

object

Property Type Description

enable boolean Set enable to true to send
metrics to an OpenTelemetry
receiver.

pushTimeInterval string Specify how often metrics are
sent to a collector.

15.1.43. .spec.exporters[].openTelemetry.tls

Description

TLS client configuration.

Type

object

Property Type Description

caCert object caCert defines the reference of
the certificate for the Certificate
Authority.

enable boolean Enable TLS

insecureSkipVerify boolean insecureSkipVerify allows
skipping client-side verification of
the server certificate. If set to
true, the caCert field is ignored.

CHAPTER 15. FLOWCOLLECTOR API REFERENCE

175

userCert object userCert defines the user
certificate reference and is used
for mTLS. When you use one-way
TLS, you can ignore this property.

Property Type Description

15.1.44. .spec.exporters[].openTelemetry.tls.caCert

Description

caCert defines the reference of the certificate for the Certificate Authority.

Type

object

Property Type Description

certFile string certFile defines the path to the
certificate file name within the
config map or secret.

certKey string certKey defines the path to the
certificate private key file name
within the config map or secret.
Omit when the key is not
necessary.

name string Name of the config map or secret
containing certificates.

namespace string Namespace of the config map or
secret containing certificates. If
omitted, the default is to use the
same namespace as where
Network Observability is
deployed. If the namespace is
different, the config map or the
secret is copied so that it can be
mounted as required.

type string Type for the certificate reference:
configmap or secret.

15.1.45. .spec.exporters[].openTelemetry.tls.userCert

Description

userCert defines the user certificate reference and is used for mTLS. When you use one-way TLS,
you can ignore this property.

Type

OpenShift Container Platform 4.17 Network Observability

176

object

Property Type Description

certFile string certFile defines the path to the
certificate file name within the
config map or secret.

certKey string certKey defines the path to the
certificate private key file name
within the config map or secret.
Omit when the key is not
necessary.

name string Name of the config map or secret
containing certificates.

namespace string Namespace of the config map or
secret containing certificates. If
omitted, the default is to use the
same namespace as where
Network Observability is
deployed. If the namespace is
different, the config map or the
secret is copied so that it can be
mounted as required.

type string Type for the certificate reference:
configmap or secret.

15.1.46. .spec.kafka

Description

Kafka configuration, allowing to use Kafka as a broker as part of the flow collection pipeline. Available
when the spec.deploymentModel is Kafka.

Type

object

Required

address

topic

Property Type Description

address string Address of the Kafka server

CHAPTER 15. FLOWCOLLECTOR API REFERENCE

177

sasl object SASL authentication
configuration. [Unsupported (*)].

tls object TLS client configuration. When
using TLS, verify that the address
matches the Kafka port used for
TLS, generally 9093.

topic string Kafka topic to use. It must exist.
Network Observability does not
create it.

Property Type Description

15.1.47. .spec.kafka.sasl

Description

SASL authentication configuration. [Unsupported (*)].

Type

object

Property Type Description

clientIDReference object Reference to the secret or config
map containing the client ID

clientSecretReference object Reference to the secret or config
map containing the client secret

type string Type of SASL authentication to
use, or Disabled if SASL is not
used

15.1.48. .spec.kafka.sasl.clientIDReference

Description

Reference to the secret or config map containing the client ID

Type

object

Property Type Description

file string File name within the config map
or secret.

OpenShift Container Platform 4.17 Network Observability

178

name string Name of the config map or secret
containing the file.

namespace string Namespace of the config map or
secret containing the file. If
omitted, the default is to use the
same namespace as where
Network Observability is
deployed. If the namespace is
different, the config map or the
secret is copied so that it can be
mounted as required.

type string Type for the file reference:
configmap or secret.

Property Type Description

15.1.49. .spec.kafka.sasl.clientSecretReference

Description

Reference to the secret or config map containing the client secret

Type

object

Property Type Description

file string File name within the config map
or secret.

name string Name of the config map or secret
containing the file.

namespace string Namespace of the config map or
secret containing the file. If
omitted, the default is to use the
same namespace as where
Network Observability is
deployed. If the namespace is
different, the config map or the
secret is copied so that it can be
mounted as required.

type string Type for the file reference:
configmap or secret.

15.1.50. .spec.kafka.tls

Description

CHAPTER 15. FLOWCOLLECTOR API REFERENCE

179

TLS client configuration. When using TLS, verify that the address matches the Kafka port used for
TLS, generally 9093.

Type

object

Property Type Description

caCert object caCert defines the reference of
the certificate for the Certificate
Authority.

enable boolean Enable TLS

insecureSkipVerify boolean insecureSkipVerify allows
skipping client-side verification of
the server certificate. If set to
true, the caCert field is ignored.

userCert object userCert defines the user
certificate reference and is used
for mTLS. When you use one-way
TLS, you can ignore this property.

15.1.51. .spec.kafka.tls.caCert

Description

caCert defines the reference of the certificate for the Certificate Authority.

Type

object

Property Type Description

certFile string certFile defines the path to the
certificate file name within the
config map or secret.

certKey string certKey defines the path to the
certificate private key file name
within the config map or secret.
Omit when the key is not
necessary.

name string Name of the config map or secret
containing certificates.

OpenShift Container Platform 4.17 Network Observability

180

namespace string Namespace of the config map or
secret containing certificates. If
omitted, the default is to use the
same namespace as where
Network Observability is
deployed. If the namespace is
different, the config map or the
secret is copied so that it can be
mounted as required.

type string Type for the certificate reference:
configmap or secret.

Property Type Description

15.1.52. .spec.kafka.tls.userCert

Description

userCert defines the user certificate reference and is used for mTLS. When you use one-way TLS,
you can ignore this property.

Type

object

Property Type Description

certFile string certFile defines the path to the
certificate file name within the
config map or secret.

certKey string certKey defines the path to the
certificate private key file name
within the config map or secret.
Omit when the key is not
necessary.

name string Name of the config map or secret
containing certificates.

namespace string Namespace of the config map or
secret containing certificates. If
omitted, the default is to use the
same namespace as where
Network Observability is
deployed. If the namespace is
different, the config map or the
secret is copied so that it can be
mounted as required.

CHAPTER 15. FLOWCOLLECTOR API REFERENCE

181

type string Type for the certificate reference:
configmap or secret.

Property Type Description

15.1.53. .spec.loki

Description

loki, the flow store, client settings.

Type

object

Required

mode

Property Type Description

advanced object advanced allows setting some
aspects of the internal
configuration of the Loki clients.
This section is aimed mostly for
debugging and fine-grained
performance optimizations.

enable boolean Set enable to true to store flows
in Loki. The Console plugin can
use either Loki or Prometheus as
a data source for metrics (see also
spec.prometheus.querier), or
both. Not all queries are
transposable from Loki to
Prometheus. Hence, if Loki is
disabled, some features of the
plugin are disabled as well, such as
getting per-pod information or
viewing raw flows. If both
Prometheus and Loki are enabled,
Prometheus takes precedence
and Loki is used as a fallback for
queries that Prometheus cannot
handle. If they are both disabled,
the Console plugin is not
deployed.

lokiStack object Loki configuration for LokiStack
mode. This is useful for an easy
Loki Operator configuration. It is
ignored for other modes.

OpenShift Container Platform 4.17 Network Observability

182

manual object Loki configuration for Manual
mode. This is the most flexible
configuration. It is ignored for
other modes.

microservices object Loki configuration for
Microservices mode. Use this
option when Loki is installed using
the microservices deployment
mode
(https://grafana.com/docs/loki/la
test/fundamentals/architecture/
deployment-
modes/#microservices-mode). It
is ignored for other modes.

mode string mode must be set according to
the installation mode of Loki:

- Use LokiStack when Loki is
managed using the Loki Operator

- Use Monolithic when Loki is
installed as a monolithic workload

- Use Microservices when Loki
is installed as microservices, but
without Loki Operator

- Use Manual if none of the
options above match your setup

monolithic object Loki configuration for
Monolithic mode. Use this
option when Loki is installed using
the monolithic deployment mode
(https://grafana.com/docs/loki/la
test/fundamentals/architecture/
deployment-modes/#monolithic-
mode). It is ignored for other
modes.

readTimeout string readTimeout is the maximum
console plugin loki query total
time limit. A timeout of zero
means no timeout.

writeBatchSize integer writeBatchSize is the maximum
batch size (in bytes) of Loki logs
to accumulate before sending.

Property Type Description

CHAPTER 15. FLOWCOLLECTOR API REFERENCE

183

https://grafana.com/docs/loki/latest/fundamentals/architecture/deployment-modes/#microservices-mode
https://grafana.com/docs/loki/latest/fundamentals/architecture/deployment-modes/#monolithic-mode

writeBatchWait string writeBatchWait is the maximum
time to wait before sending a Loki
batch.

writeTimeout string writeTimeout is the maximum
Loki time connection / request
limit. A timeout of zero means no
timeout.

Property Type Description

15.1.54. .spec.loki.advanced

Description

advanced allows setting some aspects of the internal configuration of the Loki clients. This section is
aimed mostly for debugging and fine-grained performance optimizations.

Type

object

Property Type Description

excludeLabels array (string) excludeLabels is a list of fields
to be excluded from the list of
Loki labels. [Unsupported (*)].

staticLabels object (string) staticLabels is a map of
common labels to set on each
flow in Loki storage.

writeMaxBackoff string writeMaxBackoff is the
maximum backoff time for Loki
client connection between retries.

writeMaxRetries integer writeMaxRetries is the
maximum number of retries for
Loki client connections.

writeMinBackoff string writeMinBackoff is the initial
backoff time for Loki client
connection between retries.

15.1.55. .spec.loki.lokiStack

Description

Loki configuration for LokiStack mode. This is useful for an easy Loki Operator configuration. It is
ignored for other modes.

Type

OpenShift Container Platform 4.17 Network Observability

184

object

Required

name

Property Type Description

name string Name of an existing LokiStack
resource to use.

namespace string Namespace where this
LokiStack resource is located. If
omitted, it is assumed to be the
same as spec.namespace.

15.1.56. .spec.loki.manual

Description

Loki configuration for Manual mode. This is the most flexible configuration. It is ignored for other
modes.

Type

object

Property Type Description

authToken string authToken describes the way to
get a token to authenticate to
Loki.

- Disabled does not send any
token with the request.

- Forward forwards the user
token for authorization.

- Host [deprecated (*)] - uses
the local pod service account to
authenticate to Loki.

When using the Loki Operator,
this must be set to Forward.

CHAPTER 15. FLOWCOLLECTOR API REFERENCE

185

ingesterUrl string ingesterUrl is the address of an
existing Loki ingester service to
push the flows to. When using the
Loki Operator, set it to the Loki
gateway service with the
network tenant set in path, for
example https://loki-gateway-
http.netobserv.svc:8080/api/logs
/v1/network.

querierUrl string querierUrl specifies the address
of the Loki querier service. When
using the Loki Operator, set it to
the Loki gateway service with the
network tenant set in path, for
example https://loki-gateway-
http.netobserv.svc:8080/api/logs
/v1/network.

statusTls object TLS client configuration for Loki
status URL.

statusUrl string statusUrl specifies the address
of the Loki /ready, /metrics and
/config endpoints, in case it is
different from the Loki querier
URL. If empty, the querierUrl
value is used. This is useful to
show error messages and some
context in the frontend. When
using the Loki Operator, set it to
the Loki HTTP query frontend
service, for example https://loki-
query-frontend-
http.netobserv.svc:3100/.
statusTLS configuration is used
when statusUrl is set.

tenantID string tenantID is the Loki X-Scope-
OrgID that identifies the tenant
for each request. When using the
Loki Operator, set it to network,
which corresponds to a special
tenant mode.

tls object TLS client configuration for Loki
URL.

Property Type Description

OpenShift Container Platform 4.17 Network Observability

186

https://loki-gateway-http.netobserv.svc:8080/api/logs/v1/network
https://loki-gateway-http.netobserv.svc:8080/api/logs/v1/network
https://loki-query-frontend-http.netobserv.svc:3100/

15.1.57. .spec.loki.manual.statusTls

Description

TLS client configuration for Loki status URL.

Type

object

Property Type Description

caCert object caCert defines the reference of
the certificate for the Certificate
Authority.

enable boolean Enable TLS

insecureSkipVerify boolean insecureSkipVerify allows
skipping client-side verification of
the server certificate. If set to
true, the caCert field is ignored.

userCert object userCert defines the user
certificate reference and is used
for mTLS. When you use one-way
TLS, you can ignore this property.

15.1.58. .spec.loki.manual.statusTls.caCert

Description

caCert defines the reference of the certificate for the Certificate Authority.

Type

object

Property Type Description

certFile string certFile defines the path to the
certificate file name within the
config map or secret.

certKey string certKey defines the path to the
certificate private key file name
within the config map or secret.
Omit when the key is not
necessary.

name string Name of the config map or secret
containing certificates.

CHAPTER 15. FLOWCOLLECTOR API REFERENCE

187

namespace string Namespace of the config map or
secret containing certificates. If
omitted, the default is to use the
same namespace as where
Network Observability is
deployed. If the namespace is
different, the config map or the
secret is copied so that it can be
mounted as required.

type string Type for the certificate reference:
configmap or secret.

Property Type Description

15.1.59. .spec.loki.manual.statusTls.userCert

Description

userCert defines the user certificate reference and is used for mTLS. When you use one-way TLS,
you can ignore this property.

Type

object

Property Type Description

certFile string certFile defines the path to the
certificate file name within the
config map or secret.

certKey string certKey defines the path to the
certificate private key file name
within the config map or secret.
Omit when the key is not
necessary.

name string Name of the config map or secret
containing certificates.

namespace string Namespace of the config map or
secret containing certificates. If
omitted, the default is to use the
same namespace as where
Network Observability is
deployed. If the namespace is
different, the config map or the
secret is copied so that it can be
mounted as required.

OpenShift Container Platform 4.17 Network Observability

188

type string Type for the certificate reference:
configmap or secret.

Property Type Description

15.1.60. .spec.loki.manual.tls

Description

TLS client configuration for Loki URL.

Type

object

Property Type Description

caCert object caCert defines the reference of
the certificate for the Certificate
Authority.

enable boolean Enable TLS

insecureSkipVerify boolean insecureSkipVerify allows
skipping client-side verification of
the server certificate. If set to
true, the caCert field is ignored.

userCert object userCert defines the user
certificate reference and is used
for mTLS. When you use one-way
TLS, you can ignore this property.

15.1.61. .spec.loki.manual.tls.caCert

Description

caCert defines the reference of the certificate for the Certificate Authority.

Type

object

Property Type Description

certFile string certFile defines the path to the
certificate file name within the
config map or secret.

CHAPTER 15. FLOWCOLLECTOR API REFERENCE

189

certKey string certKey defines the path to the
certificate private key file name
within the config map or secret.
Omit when the key is not
necessary.

name string Name of the config map or secret
containing certificates.

namespace string Namespace of the config map or
secret containing certificates. If
omitted, the default is to use the
same namespace as where
Network Observability is
deployed. If the namespace is
different, the config map or the
secret is copied so that it can be
mounted as required.

type string Type for the certificate reference:
configmap or secret.

Property Type Description

15.1.62. .spec.loki.manual.tls.userCert

Description

userCert defines the user certificate reference and is used for mTLS. When you use one-way TLS,
you can ignore this property.

Type

object

Property Type Description

certFile string certFile defines the path to the
certificate file name within the
config map or secret.

certKey string certKey defines the path to the
certificate private key file name
within the config map or secret.
Omit when the key is not
necessary.

name string Name of the config map or secret
containing certificates.

OpenShift Container Platform 4.17 Network Observability

190

namespace string Namespace of the config map or
secret containing certificates. If
omitted, the default is to use the
same namespace as where
Network Observability is
deployed. If the namespace is
different, the config map or the
secret is copied so that it can be
mounted as required.

type string Type for the certificate reference:
configmap or secret.

Property Type Description

15.1.63. .spec.loki.microservices

Description

Loki configuration for Microservices mode. Use this option when Loki is installed using the
microservices deployment mode
(https://grafana.com/docs/loki/latest/fundamentals/architecture/deployment-
modes/#microservices-mode). It is ignored for other modes.

Type

object

Property Type Description

ingesterUrl string ingesterUrl is the address of an
existing Loki ingester service to
push the flows to.

querierUrl string querierURL specifies the
address of the Loki querier
service.

tenantID string tenantID is the Loki X-Scope-
OrgID header that identifies the
tenant for each request.

tls object TLS client configuration for Loki
URL.

15.1.64. .spec.loki.microservices.tls

Description

TLS client configuration for Loki URL.

CHAPTER 15. FLOWCOLLECTOR API REFERENCE

191

https://grafana.com/docs/loki/latest/fundamentals/architecture/deployment-modes/#microservices-mode

Type

object

Property Type Description

caCert object caCert defines the reference of
the certificate for the Certificate
Authority.

enable boolean Enable TLS

insecureSkipVerify boolean insecureSkipVerify allows
skipping client-side verification of
the server certificate. If set to
true, the caCert field is ignored.

userCert object userCert defines the user
certificate reference and is used
for mTLS. When you use one-way
TLS, you can ignore this property.

15.1.65. .spec.loki.microservices.tls.caCert

Description

caCert defines the reference of the certificate for the Certificate Authority.

Type

object

Property Type Description

certFile string certFile defines the path to the
certificate file name within the
config map or secret.

certKey string certKey defines the path to the
certificate private key file name
within the config map or secret.
Omit when the key is not
necessary.

name string Name of the config map or secret
containing certificates.

OpenShift Container Platform 4.17 Network Observability

192

namespace string Namespace of the config map or
secret containing certificates. If
omitted, the default is to use the
same namespace as where
Network Observability is
deployed. If the namespace is
different, the config map or the
secret is copied so that it can be
mounted as required.

type string Type for the certificate reference:
configmap or secret.

Property Type Description

15.1.66. .spec.loki.microservices.tls.userCert

Description

userCert defines the user certificate reference and is used for mTLS. When you use one-way TLS,
you can ignore this property.

Type

object

Property Type Description

certFile string certFile defines the path to the
certificate file name within the
config map or secret.

certKey string certKey defines the path to the
certificate private key file name
within the config map or secret.
Omit when the key is not
necessary.

name string Name of the config map or secret
containing certificates.

namespace string Namespace of the config map or
secret containing certificates. If
omitted, the default is to use the
same namespace as where
Network Observability is
deployed. If the namespace is
different, the config map or the
secret is copied so that it can be
mounted as required.

CHAPTER 15. FLOWCOLLECTOR API REFERENCE

193

type string Type for the certificate reference:
configmap or secret.

Property Type Description

15.1.67. .spec.loki.monolithic

Description

Loki configuration for Monolithic mode. Use this option when Loki is installed using the monolithic
deployment mode (https://grafana.com/docs/loki/latest/fundamentals/architecture/deployment-
modes/#monolithic-mode). It is ignored for other modes.

Type

object

Property Type Description

tenantID string tenantID is the Loki X-Scope-
OrgID header that identifies the
tenant for each request.

tls object TLS client configuration for Loki
URL.

url string url is the unique address of an
existing Loki service that points to
both the ingester and the querier.

15.1.68. .spec.loki.monolithic.tls

Description

TLS client configuration for Loki URL.

Type

object

Property Type Description

caCert object caCert defines the reference of
the certificate for the Certificate
Authority.

enable boolean Enable TLS

insecureSkipVerify boolean insecureSkipVerify allows
skipping client-side verification of
the server certificate. If set to
true, the caCert field is ignored.

OpenShift Container Platform 4.17 Network Observability

194

https://grafana.com/docs/loki/latest/fundamentals/architecture/deployment-modes/#monolithic-mode

userCert object userCert defines the user
certificate reference and is used
for mTLS. When you use one-way
TLS, you can ignore this property.

Property Type Description

15.1.69. .spec.loki.monolithic.tls.caCert

Description

caCert defines the reference of the certificate for the Certificate Authority.

Type

object

Property Type Description

certFile string certFile defines the path to the
certificate file name within the
config map or secret.

certKey string certKey defines the path to the
certificate private key file name
within the config map or secret.
Omit when the key is not
necessary.

name string Name of the config map or secret
containing certificates.

namespace string Namespace of the config map or
secret containing certificates. If
omitted, the default is to use the
same namespace as where
Network Observability is
deployed. If the namespace is
different, the config map or the
secret is copied so that it can be
mounted as required.

type string Type for the certificate reference:
configmap or secret.

15.1.70. .spec.loki.monolithic.tls.userCert

Description

userCert defines the user certificate reference and is used for mTLS. When you use one-way TLS,
you can ignore this property.

Type

CHAPTER 15. FLOWCOLLECTOR API REFERENCE

195

object

Property Type Description

certFile string certFile defines the path to the
certificate file name within the
config map or secret.

certKey string certKey defines the path to the
certificate private key file name
within the config map or secret.
Omit when the key is not
necessary.

name string Name of the config map or secret
containing certificates.

namespace string Namespace of the config map or
secret containing certificates. If
omitted, the default is to use the
same namespace as where
Network Observability is
deployed. If the namespace is
different, the config map or the
secret is copied so that it can be
mounted as required.

type string Type for the certificate reference:
configmap or secret.

15.1.71. .spec.networkPolicy

Description

networkPolicy defines network policy settings for Network Observability components isolation.

Type

object

Property Type Description

additionalNamespaces array (string) additionalNamespaces
contains additional namespaces
allowed to connect to the
Network Observability
namespace. It provides flexibility
in the network policy
configuration, but if you need a
more specific configuration, you
can disable it and install your own
instead.

OpenShift Container Platform 4.17 Network Observability

196

enable boolean Deploys network policies on the
namespaces used by Network
Observability (main and
privileged). These network
policies better isolate the Network
Observability components to
prevent undesired connections
from and to them. This option is
enabled by default when using
with OVNKubernetes, and
disabled otherwise (it has not
been tested with other CNIs).
When disabled, you can manually
create the network policies for the
Network Observability
components.

Property Type Description

15.1.72. .spec.processor

Description

processor defines the settings of the component that receives the flows from the agent, enriches
them, generates metrics, and forwards them to the Loki persistence layer and/or any available
exporter.

Type

object

Property Type Description

addZone boolean addZone allows availability zone
awareness by labelling flows with
their source and destination
zones. This feature requires the
"topology.kubernetes.io/zone"
label to be set on nodes.

advanced object advanced allows setting some
aspects of the internal
configuration of the flow
processor. This section is aimed
mostly for debugging and fine-
grained performance
optimizations, such as GOGC and
GOMAXPROCS environment
variables. Set these values at your
own risk.

CHAPTER 15. FLOWCOLLECTOR API REFERENCE

197

clusterName string clusterName is the name of the
cluster to appear in the flows
data. This is useful in a multi-
cluster context. When using
OpenShift Container Platform,
leave empty to make it
automatically determined.

deduper object deduper allows you to sample or
drop flows identified as
duplicates, in order to save on
resource usage.

filters array filters lets you define custom
filters to limit the amount of
generated flows. These filters
provide more flexibility than the
eBPF Agent filters (in
spec.agent.ebpf.flowFilter),
such as allowing to filter by
Kubernetes namespace, but with
a lesser improvement in
performance.

imagePullPolicy string imagePullPolicy is the
Kubernetes pull policy for the
image defined above

kafkaConsumerAutoscaler object kafkaConsumerAutoscaler is
the spec of a horizontal pod
autoscaler to set up for
flowlogs-pipeline-
transformer, which consumes
Kafka messages. This setting is
ignored when Kafka is disabled.
Refer to HorizontalPodAutoscaler
documentation (autoscaling/v2).

kafkaConsumerBatchSize integer kafkaConsumerBatchSize
indicates to the broker the
maximum batch size, in bytes, that
the consumer accepts. Ignored
when not using Kafka. Default:
10MB.

kafkaConsumerQueueCapaci
ty

integer kafkaConsumerQueueCapac
ity defines the capacity of the
internal message queue used in
the Kafka consumer client.
Ignored when not using Kafka.

Property Type Description

OpenShift Container Platform 4.17 Network Observability

198

kafkaConsumerReplicas integer kafkaConsumerReplicas
defines the number of replicas
(pods) to start for flowlogs-
pipeline-transformer, which
consumes Kafka messages. This
setting is ignored when Kafka is
disabled.

logLevel string logLevel of the processor
runtime

logTypes string logTypes defines the desired
record types to generate.
Possible values are:

- Flows to export regular
network flows. This is the default.

- Conversations to generate
events for started conversations,
ended conversations as well as
periodic "tick" updates. Note that
in this mode, Prometheus metrics
are not accurate on long-standing
conversations.

- EndedConversations to
generate only ended
conversations events. Note that in
this mode, Prometheus metrics
are not accurate on long-standing
conversations.

- All to generate both network
flows and all conversations events.
It is not recommended due to the
impact on resources footprint.

metrics object Metrics define the processor
configuration regarding metrics

Property Type Description

CHAPTER 15. FLOWCOLLECTOR API REFERENCE

199

multiClusterDeployment boolean Set multiClusterDeployment
to true to enable multi clusters
feature. This adds clusterName
label to flows data

resources object resources are the compute
resources required by this
container. For more information,
see
https://kubernetes.io/docs/conc
epts/configuration/manage-
resources-containers/

subnetLabels object subnetLabels allows to define
custom labels on subnets and IPs
or to enable automatic labelling of
recognized subnets in OpenShift
Container Platform, which is used
to identify cluster external traffic.
When a subnet matches the
source or destination IP of a flow,
a corresponding field is added:
SrcSubnetLabel or
DstSubnetLabel.

Property Type Description

15.1.73. .spec.processor.advanced

Description

advanced allows setting some aspects of the internal configuration of the flow processor. This
section is aimed mostly for debugging and fine-grained performance optimizations, such as GOGC
and GOMAXPROCS environment variables. Set these values at your own risk.

Type

object

Property Type Description

conversationEndTimeout string conversationEndTimeout is
the time to wait after a network
flow is received, to consider the
conversation ended. This delay is
ignored when a FIN packet is
collected for TCP flows (see
conversationTerminatingTim
eout instead).

OpenShift Container Platform 4.17 Network Observability

200

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/

conversationHeartbeatInterv
al

string conversationHeartbeatInterv
al is the time to wait between
"tick" events of a conversation

conversationTerminatingTim
eout

string conversationTerminatingTim
eout is the time to wait from
detected FIN flag to end a
conversation. Only relevant for
TCP flows.

dropUnusedFields boolean dropUnusedFields
[deprecated (*)] this setting is not
used anymore.

enableKubeProbes boolean enableKubeProbes is a flag to
enable or disable Kubernetes
liveness and readiness probes

env object (string) env allows passing custom
environment variables to
underlying components. Useful
for passing some very concrete
performance-tuning options, such
as GOGC and GOMAXPROCS,
that should not be publicly
exposed as part of the
FlowCollector descriptor, as they
are only useful in edge debug or
support scenarios.

healthPort integer healthPort is a collector HTTP
port in the Pod that exposes the
health check API

port integer Port of the flow collector (host
port). By convention, some values
are forbidden. It must be greater
than 1024 and different from
4500, 4789 and 6081.

profilePort integer profilePort allows setting up a
Go pprof profiler listening to this
port

scheduling object scheduling controls how the pods
are scheduled on nodes.

Property Type Description

CHAPTER 15. FLOWCOLLECTOR API REFERENCE

201

secondaryNetworks array Defines secondary networks to be
checked for resources
identification. To guarantee a
correct identification, indexed
values must form an unique
identifier across the cluster. If the
same index is used by several
resources, those resources might
be incorrectly labeled.

Property Type Description

15.1.74. .spec.processor.advanced.scheduling

Description

scheduling controls how the pods are scheduled on nodes.

Type

object

Property Type Description

affinity object If specified, the pod’s scheduling
constraints. For documentation,
refer to
https://kubernetes.io/docs/refer
ence/kubernetes-api/workload-
resources/pod-v1/#scheduling.

nodeSelector object (string) nodeSelector allows scheduling
of pods only onto nodes that have
each of the specified labels. For
documentation, refer to
https://kubernetes.io/docs/conc
epts/configuration/assign-pod-
node/.

priorityClassName string If specified, indicates the pod’s
priority. For documentation, refer
to
https://kubernetes.io/docs/conc
epts/scheduling-eviction/pod-
priority-preemption/#how-to-
use-priority-and-preemption. If
not specified, default priority is
used, or zero if there is no default.

OpenShift Container Platform 4.17 Network Observability

202

https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-v1/#scheduling
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/
https://kubernetes.io/docs/concepts/scheduling-eviction/pod-priority-preemption/#how-to-use-priority-and-preemption

tolerations array tolerations is a list of tolerations
that allow the pod to schedule
onto nodes with matching taints.
For documentation, refer to
https://kubernetes.io/docs/refer
ence/kubernetes-api/workload-
resources/pod-v1/#scheduling.

Property Type Description

15.1.75. .spec.processor.advanced.scheduling.affinity

Description

If specified, the pod’s scheduling constraints. For documentation, refer to
https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-v1/#scheduling.

Type

object

15.1.76. .spec.processor.advanced.scheduling.tolerations

Description

tolerations is a list of tolerations that allow the pod to schedule onto nodes with matching taints. For
documentation, refer to https://kubernetes.io/docs/reference/kubernetes-api/workload-
resources/pod-v1/#scheduling.

Type

array

15.1.77. .spec.processor.advanced.secondaryNetworks

Description

Defines secondary networks to be checked for resources identification. To guarantee a correct
identification, indexed values must form an unique identifier across the cluster. If the same index is
used by several resources, those resources might be incorrectly labeled.

Type

array

15.1.78. .spec.processor.advanced.secondaryNetworks[]

Description

Type

object

Required

index

CHAPTER 15. FLOWCOLLECTOR API REFERENCE

203

https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-v1/#scheduling
https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-v1/#scheduling
https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-v1/#scheduling

name

Property Type Description

index array (string) index is a list of fields to use for
indexing the pods. They should
form a unique Pod identifier
across the cluster. Can be any of:
MAC, IP, Interface. Fields
absent from the
'k8s.v1.cni.cncf.io/network-status'
annotation must not be added to
the index.

name string name should match the network
name as visible in the pods
annotation
'k8s.v1.cni.cncf.io/network-status'.

15.1.79. .spec.processor.deduper

Description

deduper allows you to sample or drop flows identified as duplicates, in order to save on resource
usage.

Type

object

Property Type Description

OpenShift Container Platform 4.17 Network Observability

204

mode string Set the Processor de-duplication
mode. It comes in addition to the
Agent-based deduplication, since
the Agent cannot de-duplicate
same flows reported from
different nodes.

- Use Drop to drop every flow
considered as duplicates, allowing
saving more on resource usage
but potentially losing some
information such as the network
interfaces used from peer, or
network events.

- Use Sample to randomly keep
only one flow on 50, which is the
default, among the ones
considered as duplicates. This is a
compromise between dropping
every duplicate or keeping every
duplicate. This sampling action
comes in addition to the Agent-
based sampling. If both Agent and
Processor sampling values are 50,
the combined sampling is 1:2500.

- Use Disabled to turn off
Processor-based de-duplication.

sampling integer sampling is the sampling interval
when deduper mode is Sample.
For example, a value of 50 means
that 1 flow in 50 is sampled.

Property Type Description

15.1.80. .spec.processor.filters

Description

filters lets you define custom filters to limit the amount of generated flows. These filters provide
more flexibility than the eBPF Agent filters (in spec.agent.ebpf.flowFilter), such as allowing to filter
by Kubernetes namespace, but with a lesser improvement in performance.

Type

array

15.1.81. .spec.processor.filters[]

Description

FLPFilterSet defines the desired configuration for FLP-based filtering satisfying all conditions.

Type

CHAPTER 15. FLOWCOLLECTOR API REFERENCE

205

object

Property Type Description

outputTarget string If specified, these filters target a
single output: Loki, Metrics or
Exporters. By default, all outputs
are targeted.

query string A query that selects the network
flows to keep. More information
about this query language in
https://github.com/netobserv/flo
wlogs-
pipeline/blob/main/docs/filtering
.md.

sampling integer sampling is an optional sampling
interval to apply to this filter. For
example, a value of 50 means
that 1 matching flow in 50 is
sampled.

15.1.82. .spec.processor.kafkaConsumerAutoscaler

Description

kafkaConsumerAutoscaler is the spec of a horizontal pod autoscaler to set up for flowlogs-
pipeline-transformer, which consumes Kafka messages. This setting is ignored when Kafka is
disabled. Refer to HorizontalPodAutoscaler documentation (autoscaling/v2).

Type

object

15.1.83. .spec.processor.metrics

Description

Metrics define the processor configuration regarding metrics

Type

object

Property Type Description

OpenShift Container Platform 4.17 Network Observability

206

https://github.com/netobserv/flowlogs-pipeline/blob/main/docs/filtering.md

alerts array alerts is a list of alerts to be
created for Prometheus
AlertManager, organized by
templates and variants
[Unsupported (*)]. This is
currently an experimental feature
behind a feature gate. To enable,
edit
spec.processor.advanced.en
v by adding
EXPERIMENTAL_ALERTS_H
EALTH set to true. More
information on alerts:
https://github.com/netobserv/ne
twork-observability-
operator/blob/main/docs/Alerts.
md

disableAlerts array (string) disableAlerts is a list of alert
groups that should be disabled
from the default set of alerts.
Possible values are:
NetObservNoFlows,
NetObservLokiError,
PacketDropsByKernel,
PacketDropsByDevice,
IPsecErrors, NetpolDenied,
LatencyHighTrend,
DNSErrors,
ExternalEgressHighTrend,
ExternalIngressHighTrend,
CrossAZ. More information on
alerts:
https://github.com/netobserv/ne
twork-observability-
operator/blob/main/docs/Alerts.
md

Property Type Description

CHAPTER 15. FLOWCOLLECTOR API REFERENCE

207

https://github.com/netobserv/network-observability-operator/blob/main/docs/Alerts.md
https://github.com/netobserv/network-observability-operator/blob/main/docs/Alerts.md

includeList array (string) includeList is a list of metric
names to specify which ones to
generate. The names correspond
to the names in Prometheus
without the prefix. For example,
namespace_egress_packets
_total shows up as
netobserv_namespace_egre
ss_packets_total in
Prometheus. Note that the more
metrics you add, the bigger is the
impact on Prometheus workload
resources. Metrics enabled by
default are:
namespace_flows_total,
node_ingress_bytes_total,
node_egress_bytes_total,
workload_ingress_bytes_tot
al,
workload_egress_bytes_tota
l,
namespace_drop_packets_t
otal (when PacketDrop feature
is enabled),
namespace_rtt_seconds
(when FlowRTT feature is
enabled),
namespace_dns_latency_se
conds (when DNSTracking
feature is enabled),
namespace_network_policy_
events_total (when
NetworkEvents feature is
enabled). More information, with
full list of available metrics:
https://github.com/netobserv/ne
twork-observability-
operator/blob/main/docs/Metric
s.md

server object Metrics server endpoint
configuration for Prometheus
scraper

Property Type Description

15.1.84. .spec.processor.metrics.alerts

Description

alerts is a list of alerts to be created for Prometheus AlertManager, organized by templates and
variants [Unsupported (*)]. This is currently an experimental feature behind a feature gate. To
enable, edit spec.processor.advanced.env by adding EXPERIMENTAL_ALERTS_HEALTH set to

OpenShift Container Platform 4.17 Network Observability

208

https://github.com/netobserv/network-observability-operator/blob/main/docs/Metrics.md

true. More information on alerts: https://github.com/netobserv/network-observability-
operator/blob/main/docs/Alerts.md

Type

array

15.1.85. .spec.processor.metrics.alerts[]

Description

Type

object

Required

template

variants

Property Type Description

template string Alert template name. Possible
values are:
PacketDropsByKernel,
PacketDropsByDevice,
IPsecErrors, NetpolDenied,
LatencyHighTrend,
DNSErrors,
ExternalEgressHighTrend,
ExternalIngressHighTrend,
CrossAZ. More information on
alerts:
https://github.com/netobserv/ne
twork-observability-
operator/blob/main/docs/Alerts.
md

variants array A list of variants for this template

15.1.86. .spec.processor.metrics.alerts[].variants

Description

A list of variants for this template

Type

array

15.1.87. .spec.processor.metrics.alerts[].variants[]

Description

Type

CHAPTER 15. FLOWCOLLECTOR API REFERENCE

209

https://github.com/netobserv/network-observability-operator/blob/main/docs/Alerts.md
https://github.com/netobserv/network-observability-operator/blob/main/docs/Alerts.md

object

Required

thresholds

Property Type Description

groupBy string Optional grouping criteria,
possible values are: Node,
Namespace, Workload.

lowVolumeThreshold string The low volume threshold allows
to ignore metrics with a too low
volume of traffic, in order to
improve signal-to-noise. It is
provided as an absolute rate
(bytes per second or packets per
second, depending on the
context). When provided, it must
be parsable as a float.

thresholds object Thresholds of the alert per
severity. They are expressed as a
percentage of errors above which
the alert is triggered. They must
be parsable as floats.

trendDuration string For trending alerts, the duration
interval for baseline comparison.
For example, "2h" means
comparing against a 2-hours
average. Defaults to 2h.

trendOffset string For trending alerts, the time offset
for baseline comparison. For
example, "1d" means comparing
against yesterday. Defaults to 1d.

15.1.88. .spec.processor.metrics.alerts[].variants[].thresholds

Description

Thresholds of the alert per severity. They are expressed as a percentage of errors above which the
alert is triggered. They must be parsable as floats.

Type

object

Property Type Description

OpenShift Container Platform 4.17 Network Observability

210

critical string Threshold for severity critical.
Leave empty to not generate a
Critical alert.

info string Threshold for severity info. Leave
empty to not generate an Info
alert.

warning string Threshold for severity warning.
Leave empty to not generate a
Warning alert.

Property Type Description

15.1.89. .spec.processor.metrics.server

Description

Metrics server endpoint configuration for Prometheus scraper

Type

object

Property Type Description

port integer The metrics server HTTP port.

tls object TLS configuration.

15.1.90. .spec.processor.metrics.server.tls

Description

TLS configuration.

Type

object

Required

type

Property Type Description

insecureSkipVerify boolean insecureSkipVerify allows
skipping client-side verification of
the provided certificate. If set to
true, the providedCaFile field is
ignored.

CHAPTER 15. FLOWCOLLECTOR API REFERENCE

211

provided object TLS configuration when type is
set to Provided.

providedCaFile object Reference to the CA file when
type is set to Provided.

type string Select the type of TLS
configuration:

- Disabled (default) to not
configure TLS for the endpoint. -
Provided to manually provide
cert file and a key file.
[Unsupported (*)]. - Auto to use
OpenShift Container Platform
auto generated certificate using
annotations.

Property Type Description

15.1.91. .spec.processor.metrics.server.tls.provided

Description

TLS configuration when type is set to Provided.

Type

object

Property Type Description

certFile string certFile defines the path to the
certificate file name within the
config map or secret.

certKey string certKey defines the path to the
certificate private key file name
within the config map or secret.
Omit when the key is not
necessary.

name string Name of the config map or secret
containing certificates.

OpenShift Container Platform 4.17 Network Observability

212

namespace string Namespace of the config map or
secret containing certificates. If
omitted, the default is to use the
same namespace as where
Network Observability is
deployed. If the namespace is
different, the config map or the
secret is copied so that it can be
mounted as required.

type string Type for the certificate reference:
configmap or secret.

Property Type Description

15.1.92. .spec.processor.metrics.server.tls.providedCaFile

Description

Reference to the CA file when type is set to Provided.

Type

object

Property Type Description

file string File name within the config map
or secret.

name string Name of the config map or secret
containing the file.

namespace string Namespace of the config map or
secret containing the file. If
omitted, the default is to use the
same namespace as where
Network Observability is
deployed. If the namespace is
different, the config map or the
secret is copied so that it can be
mounted as required.

type string Type for the file reference:
configmap or secret.

15.1.93. .spec.processor.resources

Description

resources are the compute resources required by this container. For more information, see

CHAPTER 15. FLOWCOLLECTOR API REFERENCE

213

resources are the compute resources required by this container. For more information, see
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/

Type

object

Property Type Description

limits integer-or-string Limits describes the maximum
amount of compute resources
allowed. More info:
https://kubernetes.io/docs/conc
epts/configuration/manage-
resources-containers/

requests integer-or-string Requests describes the minimum
amount of compute resources
required. If Requests is omitted
for a container, it defaults to
Limits if that is explicitly specified,
otherwise to an implementation-
defined value. Requests cannot
exceed Limits. More info:
https://kubernetes.io/docs/conc
epts/configuration/manage-
resources-containers/

15.1.94. .spec.processor.subnetLabels

Description

subnetLabels allows to define custom labels on subnets and IPs or to enable automatic labelling of
recognized subnets in OpenShift Container Platform, which is used to identify cluster external traffic.
When a subnet matches the source or destination IP of a flow, a corresponding field is added:
SrcSubnetLabel or DstSubnetLabel.

Type

object

Property Type Description

customLabels array customLabels allows to
customize subnets and IPs
labelling, such as to identify
cluster-external workloads or web
services. If you enable
openShiftAutoDetect,
customLabels can override the
detected subnets in case they
overlap.

OpenShift Container Platform 4.17 Network Observability

214

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/

openShiftAutoDetect boolean openShiftAutoDetect allows,
when set to true, to detect
automatically the machines, pods
and services subnets based on
the OpenShift Container
Platform install configuration and
the Cluster Network Operator
configuration. Indirectly, this is a
way to accurately detect external
traffic: flows that are not labeled
for those subnets are external to
the cluster. Enabled by default on
OpenShift Container Platform.

Property Type Description

15.1.95. .spec.processor.subnetLabels.customLabels

Description

customLabels allows to customize subnets and IPs labelling, such as to identify cluster-external
workloads or web services. If you enable openShiftAutoDetect, customLabels can override the
detected subnets in case they overlap.

Type

array

15.1.96. .spec.processor.subnetLabels.customLabels[]

Description

SubnetLabel allows to label subnets and IPs, such as to identify cluster-external workloads or web
services.

Type

object

Required

cidrs

name

Property Type Description

cidrs array (string) List of CIDRs, such as
["1.2.3.4/32"].

name string Label name, used to flag
matching flows.

CHAPTER 15. FLOWCOLLECTOR API REFERENCE

215

15.1.97. .spec.prometheus

Description

prometheus defines Prometheus settings, such as querier configuration used to fetch metrics from
the Console plugin.

Type

object

Property Type Description

querier object Prometheus querying
configuration, such as client
settings, used in the Console
plugin.

15.1.98. .spec.prometheus.querier

Description

Prometheus querying configuration, such as client settings, used in the Console plugin.

Type

object

Required

mode

Property Type Description

OpenShift Container Platform 4.17 Network Observability

216

enable boolean When enable is true, the
Console plugin queries flow
metrics from Prometheus instead
of Loki whenever possible. It is
enbaled by default: set it to false
to disable this feature. The
Console plugin can use either Loki
or Prometheus as a data source
for metrics (see also spec.loki),
or both. Not all queries are
transposable from Loki to
Prometheus. Hence, if Loki is
disabled, some features of the
plugin are disabled as well, such as
getting per-pod information or
viewing raw flows. If both
Prometheus and Loki are enabled,
Prometheus takes precedence
and Loki is used as a fallback for
queries that Prometheus cannot
handle. If they are both disabled,
the Console plugin is not
deployed.

manual object Prometheus configuration for
Manual mode.

mode string mode must be set according to
the type of Prometheus
installation that stores Network
Observability metrics:

- Use Auto to try configuring
automatically. In OpenShift
Container Platform, it uses the
Thanos querier from OpenShift
Container Platform Cluster
Monitoring

- Use Manual for a manual setup

timeout string timeout is the read timeout for
console plugin queries to
Prometheus. A timeout of zero
means no timeout.

Property Type Description

15.1.99. .spec.prometheus.querier.manual

Description

Prometheus configuration for Manual mode.

CHAPTER 15. FLOWCOLLECTOR API REFERENCE

217

Type

object

Property Type Description

forwardUserToken boolean Set true to forward logged in user
token in queries to Prometheus

tls object TLS client configuration for
Prometheus URL.

url string url is the address of an existing
Prometheus service to use for
querying metrics.

15.1.100. .spec.prometheus.querier.manual.tls

Description

TLS client configuration for Prometheus URL.

Type

object

Property Type Description

caCert object caCert defines the reference of
the certificate for the Certificate
Authority.

enable boolean Enable TLS

insecureSkipVerify boolean insecureSkipVerify allows
skipping client-side verification of
the server certificate. If set to
true, the caCert field is ignored.

userCert object userCert defines the user
certificate reference and is used
for mTLS. When you use one-way
TLS, you can ignore this property.

15.1.101. .spec.prometheus.querier.manual.tls.caCert

Description

caCert defines the reference of the certificate for the Certificate Authority.

Type

object

OpenShift Container Platform 4.17 Network Observability

218

Property Type Description

certFile string certFile defines the path to the
certificate file name within the
config map or secret.

certKey string certKey defines the path to the
certificate private key file name
within the config map or secret.
Omit when the key is not
necessary.

name string Name of the config map or secret
containing certificates.

namespace string Namespace of the config map or
secret containing certificates. If
omitted, the default is to use the
same namespace as where
Network Observability is
deployed. If the namespace is
different, the config map or the
secret is copied so that it can be
mounted as required.

type string Type for the certificate reference:
configmap or secret.

15.1.102. .spec.prometheus.querier.manual.tls.userCert

Description

userCert defines the user certificate reference and is used for mTLS. When you use one-way TLS,
you can ignore this property.

Type

object

Property Type Description

certFile string certFile defines the path to the
certificate file name within the
config map or secret.

certKey string certKey defines the path to the
certificate private key file name
within the config map or secret.
Omit when the key is not
necessary.

CHAPTER 15. FLOWCOLLECTOR API REFERENCE

219

name string Name of the config map or secret
containing certificates.

namespace string Namespace of the config map or
secret containing certificates. If
omitted, the default is to use the
same namespace as where
Network Observability is
deployed. If the namespace is
different, the config map or the
secret is copied so that it can be
mounted as required.

type string Type for the certificate reference:
configmap or secret.

Property Type Description

OpenShift Container Platform 4.17 Network Observability

220

CHAPTER 16. FLOWMETRIC CONFIGURATION PARAMETERS
The FlowMetric API is used to generate custom observability metrics from collected network flow logs.

16.1. FLOWMETRIC [FLOWS.NETOBSERV.IO/V1ALPHA1]

Description

FlowMetric is the API allowing to create custom metrics from the collected flow logs.

Type

object

Property Type Description

apiVersion string APIVersion defines the versioned
schema of this representation of
an object. Servers should convert
recognized schemas to the latest
internal value, and might reject
unrecognized values. More info:
https://git.k8s.io/community/con
tributors/devel/sig-
architecture/api-
conventions.md#resources

kind string Kind is a string value representing
the REST resource this object
represents. Servers might infer
this from the endpoint the client
submits requests to. Cannot be
updated. In CamelCase. More
info:
https://git.k8s.io/community/con
tributors/devel/sig-
architecture/api-
conventions.md#types-kinds

metadata object Standard object’s metadata. More
info:
https://git.k8s.io/community/con
tributors/devel/sig-
architecture/api-
conventions.md#metadata

CHAPTER 16. FLOWMETRIC CONFIGURATION PARAMETERS

221

https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#resources
https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#types-kinds
https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata

spec object FlowMetricSpec defines the
desired state of FlowMetric The
provided API allows you to
customize these metrics
according to your needs.

When adding new metrics or
modifying existing labels, you
must carefully monitor the
memory usage of Prometheus
workloads as this could potentially
have a high impact. Cf
https://rhobs-
handbook.netlify.app/products/o
penshiftmonitoring/telemetry.md
/#what-is-the-cardinality-of-a-
metric

To check the cardinality of all
Network Observability metrics,
run as promql:
count({name=~"netobserv.*"
}) by (name).

Property Type Description

16.1.1. .metadata

Description

Standard object’s metadata. More info: https://git.k8s.io/community/contributors/devel/sig-
architecture/api-conventions.md#metadata

Type

object

16.1.2. .spec

Description

FlowMetricSpec defines the desired state of FlowMetric The provided API allows you to customize
these metrics according to your needs.
When adding new metrics or modifying existing labels, you must carefully monitor the memory usage
of Prometheus workloads as this could potentially have a high impact. Cf https://rhobs-
handbook.netlify.app/products/openshiftmonitoring/telemetry.md/#what-is-the-cardinality-of-a-
metric

To check the cardinality of all Network Observability metrics, run as promql:
count({name=~"netobserv.*"}) by (name).

Type

object

Required

OpenShift Container Platform 4.17 Network Observability

222

https://rhobs-handbook.netlify.app/products/openshiftmonitoring/telemetry.md/#what-is-the-cardinality-of-a-metric
https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata
https://rhobs-handbook.netlify.app/products/openshiftmonitoring/telemetry.md/#what-is-the-cardinality-of-a-metric

type

Property Type Description

buckets array (string) A list of buckets to use when type
is "Histogram". The list must be
parsable as floats. When not set,
Prometheus default buckets are
used.

charts array Charts configuration, for the
OpenShift Container Platform
Console in the administrator view,
Dashboards menu.

direction string Filter for ingress, egress or any
direction flows. When set to
Ingress, it is equivalent to adding
the regular expression filter on
FlowDirection: 0|2. When set to
Egress, it is equivalent to adding
the regular expression filter on
FlowDirection: 1|2.

divider string When nonzero, scale factor
(divider) of the value. Metric value
= Flow value / Divider.

filters array filters is a list of fields and values
used to restrict which flows are
taken into account. Refer to the
documentation for the list of
available fields:
https://docs.redhat.com/en/docu
mentation/openshift_container_pl
atform/latest/html/network_obse
rvability/json-flows-format-
reference.

flatten array (string) flatten is a list of array-type fields
that must be flattened, such as
Interfaces or NetworkEvents.
Flattened fields generate one
metric per item in that field. For
instance, when flattening
Interfaces on a bytes counter, a
flow having Interfaces [br-ex,
ens5] increases one counter for
br-ex and another for ens5.

CHAPTER 16. FLOWMETRIC CONFIGURATION PARAMETERS

223

https://docs.redhat.com/en/documentation/openshift_container_platform/latest/html/network_observability/json-flows-format-reference

labels array (string) labels is a list of fields that
should be used as Prometheus
labels, also known as dimensions
(for example:
SrcK8S_Namespace). From
choosing labels results the level of
granularity of this metric, and the
available aggregations at query
time. It must be done carefully as
it impacts the metric cardinality
(cf https://rhobs-
handbook.netlify.app/products/o
penshiftmonitoring/telemetry.md
/#what-is-the-cardinality-of-a-
metric). In general, avoid setting
very high cardinality labels such as
IP or MAC addresses.
"SrcK8S_OwnerName" or
"DstK8S_OwnerName" should be
preferred over "SrcK8S_Name" or
"DstK8S_Name" as much as
possible. Refer to the
documentation for the list of
available fields:
https://docs.redhat.com/en/docu
mentation/openshift_container_pl
atform/latest/html/network_obse
rvability/json-flows-format-
reference.

metricName string Name of the metric. In
Prometheus, it is automatically
prefixed with "netobserv_". Leave
empty to generate the name
based on the FlowMetric
resource name.

remap object (string) Set the remap property to use
different names for the generated
metric labels than the flow fields.
Use the origin flow fields as keys,
and the desired label names as
values.

Property Type Description

OpenShift Container Platform 4.17 Network Observability

224

https://rhobs-handbook.netlify.app/products/openshiftmonitoring/telemetry.md/#what-is-the-cardinality-of-a-metric
https://docs.redhat.com/en/documentation/openshift_container_platform/latest/html/network_observability/json-flows-format-reference

type string Metric type: "Counter",
"Histogram" or "Gauge". Use
"Counter" for any value that
increases over time and on which
you can compute a rate, such as
Bytes or Packets. Use
"Histogram" for any value that
must be sampled independently,
such as latencies. Use "Gauge" for
other values that don’t
necessitate accuracy over time
(gauges are sampled only every N
seconds when Prometheus
fetches the metric).

valueField string valueField is the flow field that
must be used as a value for this
metric (for example: Bytes). This
field must hold numeric values.
Leave empty to count flows
rather than a specific value per
flow. Refer to the documentation
for the list of available fields:
https://docs.redhat.com/en/docu
mentation/openshift_container_pl
atform/latest/html/network_obse
rvability/json-flows-format-
reference.

Property Type Description

16.1.3. .spec.charts

Description

Charts configuration, for the OpenShift Container Platform Console in the administrator view,
Dashboards menu.

Type

array

16.1.4. .spec.charts[]

Description

Configures charts / dashboard generation associated to a metric

Type

object

Required

dashboardName

queries

CHAPTER 16. FLOWMETRIC CONFIGURATION PARAMETERS

225

https://docs.redhat.com/en/documentation/openshift_container_platform/latest/html/network_observability/json-flows-format-reference

title

type

Property Type Description

dashboardName string Name of the containing
dashboard. If this name does not
refer to an existing dashboard, a
new dashboard is created.

queries array List of queries to be displayed on
this chart. If type is SingleStat
and multiple queries are provided,
this chart is automatically
expanded in several panels (one
per query).

sectionName string Name of the containing
dashboard section. If this name
does not refer to an existing
section, a new section is created.
If sectionName is omitted or
empty, the chart is placed in the
global top section.

title string Title of the chart.

type string Type of the chart.

unit string Unit of this chart. Only a few units
are currently supported. Leave
empty to use generic number.

16.1.5. .spec.charts[].queries

Description

List of queries to be displayed on this chart. If type is SingleStat and multiple queries are provided,
this chart is automatically expanded in several panels (one per query).

Type

array

16.1.6. .spec.charts[].queries[]

Description

Configures PromQL queries

Type

object

OpenShift Container Platform 4.17 Network Observability

226

Required

legend

promQL

top

Property Type Description

legend string The query legend that applies to
each timeseries represented in
this chart. When multiple
timeseries are displayed, you
should set a legend that
distinguishes each of them. It can
be done with the following format:
{{ Label }}. For example, if the
promQL groups timeseries per
label such as:
sum(rate($METRIC[2m])) by
(Label1, Label2), you might
write as the legend: Label1={{
Label1 }}, Label2={{ Label2
}}.

promQL string The promQL query to be run
against Prometheus. If the chart
type is SingleStat, this query
should only return a single
timeseries. For other types, a top
7 is displayed. You can use
$METRIC to refer to the metric
defined in this resource. For
example:
sum(rate($METRIC[2m])). To
learn more about promQL, refer
to the Prometheus
documentation:
https://prometheus.io/docs/pro
metheus/latest/querying/basics/

top integer Top N series to display per
timestamp. Does not apply to
SingleStat chart type.

16.1.7. .spec.filters

Description

filters is a list of fields and values used to restrict which flows are taken into account. Refer to the
documentation for the list of available fields:

CHAPTER 16. FLOWMETRIC CONFIGURATION PARAMETERS

227

https://prometheus.io/docs/prometheus/latest/querying/basics/

https://docs.redhat.com/en/documentation/openshift_container_platform/latest/html/network_observability/json-
flows-format-reference.

Type

array

16.1.8. .spec.filters[]

Description

Type

object

Required

field

matchType

Property Type Description

field string Name of the field to filter on (for
example:
SrcK8S_Namespace).

matchType string Type of matching to apply

value string Value to filter on. When
matchType is Equal or
NotEqual, you can use field
injection with $(SomeField) to
refer to any other field of the flow.

OpenShift Container Platform 4.17 Network Observability

228

https://docs.redhat.com/en/documentation/openshift_container_platform/latest/html/network_observability/json-flows-format-reference

CHAPTER 17. NETWORK FLOWS FORMAT REFERENCE
Review the specifications for the network flow format, which is used internally and for exporting flow
data to Kafka.

17.1. NETWORK FLOWS FORMAT REFERENCE

This is the specification of the network flows format. That format is used when a Kafka exporter is
configured, for Prometheus metrics labels as well as internally for the Loki store.

The "Filter ID" column shows which related name to use when defining Quick Filters (see
spec.consolePlugin.quickFilters in the FlowCollector specification).

The "Loki label" column is useful when querying Loki directly: label fields need to be selected using
stream selectors.

The "Cardinality" column gives information about the implied metric cardinality if this field was to be
used as a Prometheus label with the FlowMetrics API. Refer to the FlowMetrics documentation for
more information on using this API.

Name Type Description Filter ID Loki
label

Cardinal
ity

OpenTel
emetry

Bytes number Number of bytes n/a no avoid bytes

DnsErr
no

number Error number returned from DNS
tracker ebpf hook function

dns_er
rno

no fine dns.errn
o

DnsFla
gs

number DNS flags for DNS record n/a no fine dns.flag
s

DnsFla
gsResp
onseCo
de

string Parsed DNS header RCODEs
name

dns_fla
g_resp
onse_c
ode

no fine dns.resp
onsecod
e

DnsId number DNS record id dns_id no avoid dns.id

DnsLat
encyMs

number Time between a DNS request and
response, in milliseconds

dns_lat
ency

no avoid dns.late
ncy

Dscp number Differentiated Services Code
Point (DSCP) value

dscp no fine dscp

DstAdd
r

string Destination IP address (ipv4 or
ipv6)

dst_ad
dress

no avoid destinati
on.addre
ss

CHAPTER 17. NETWORK FLOWS FORMAT REFERENCE

229

https://grafana.com/docs/loki/latest/logql/log_queries/#log-stream-selector

DstK8S
_HostI
P

string Destination node IP dst_ho
st_add
ress

no fine destinati
on.k8s.h
ost.addr
ess

DstK8S
_HostN
ame

string Destination node name dst_ho
st_nam
e

no fine destinati
on.k8s.h
ost.nam
e

DstK8S
_Name

string Name of the destination
Kubernetes object, such as Pod
name, Service name or Node
name.

dst_na
me

no careful destinati
on.k8s.n
ame

DstK8S
_Name
space

string Destination namespace dst_na
mespa
ce

yes fine destinati
on.k8s.n
amespa
ce.name

DstK8S
_Netwo
rkName

string Destination network name dst_net
work

no fine n/a

DstK8S
_Owner
Name

string Name of the destination owner,
such as Deployment name,
StatefulSet name, etc.

dst_ow
ner_na
me

yes fine destinati
on.k8s.o
wner.na
me

DstK8S
_Owner
Type

string Kind of the destination owner,
such as Deployment, StatefulSet,
etc.

dst_kin
d

no fine destinati
on.k8s.o
wner.kin
d

DstK8S
_Type

string Kind of the destination
Kubernetes object, such as Pod,
Service or Node.

dst_kin
d

yes fine destinati
on.k8s.ki
nd

DstK8S
_Zone

string Destination availability zone dst_zo
ne

yes fine destinati
on.zone

DstMac string Destination MAC address dst_ma
c

no avoid destinati
on.mac

DstPort number Destination port dst_po
rt

no careful destinati
on.port

Name Type Description Filter ID Loki
label

Cardinal
ity

OpenTel
emetry

OpenShift Container Platform 4.17 Network Observability

230

DstSub
netLab
el

string Destination subnet label dst_su
bnet_la
bel

no fine destinati
on.subn
et.label

Flags string[] List of TCP flags comprised in the
flow, according to RFC-9293, with
additional custom flags to
represent the following per-
packet combinations:
- SYN_ACK
- FIN_ACK
- RST_ACK

tcp_fla
gs

no careful tcp.flags

FlowDir
ection

number Flow interpreted direction from
the node observation point. Can
be one of:
- 0: Ingress (incoming traffic, from
the node observation point)
- 1: Egress (outgoing traffic, from
the node observation point)
- 2: Inner (with the same source
and destination node)

node_d
irectio
n

yes fine host.dire
ction

IPSecSt
atus

string Status of the IPsec encryption (on
egress, given by the kernel
xfrm_output function) or
decryption (on ingress, via
xfrm_input)

ipsec_
status

no fine n/a

IcmpCo
de

number ICMP code icmp_c
ode

no fine icmp.co
de

IcmpTy
pe

number ICMP type icmp_t
ype

no fine icmp.typ
e

IfDirect
ions

number[
]

Flow directions from the network
interface observation point. Can
be one of:
- 0: Ingress (interface incoming
traffic)
- 1: Egress (interface outgoing
traffic)

ifdirect
ions

no fine interfac
e.directi
ons

Interfac
es

string[] Network interfaces interfa
ces

no careful interfac
e.names

Name Type Description Filter ID Loki
label

Cardinal
ity

OpenTel
emetry

CHAPTER 17. NETWORK FLOWS FORMAT REFERENCE

231

K8S_Cl
usterN
ame

string Cluster name or identifier cluster
_name

yes fine k8s.clust
er.name

K8S_Fl
owLaye
r

string Flow layer: 'app' or 'infra' flow_la
yer

yes fine k8s.layer

Networ
kEvent
s

object[] Network events, such as network
policy actions, composed of
nested fields:
- Feature (such as "acl" for
network policies)
- Type (such as an
"AdminNetworkPolicy")
- Namespace (namespace where
the event applies, if any)
- Name (name of the resource
that triggered the event)
- Action (such as "allow" or "drop")
- Direction (Ingress or Egress)

networ
k_even
ts

no avoid n/a

Packet
s

number Number of packets n/a no avoid packets

PktDro
pBytes

number Number of bytes dropped by the
kernel

n/a no avoid drops.by
tes

PktDro
pLatest
DropCa
use

string Latest drop cause pkt_dr
op_cau
se

no fine drops.lat
estcaus
e

PktDro
pLatest
Flags

number TCP flags on last dropped packet n/a no fine drops.lat
estflags

PktDro
pLatest
State

string TCP state on last dropped packet pkt_dr
op_stat
e

no fine drops.lat
eststate

PktDro
pPacke
ts

number Number of packets dropped by
the kernel

n/a no avoid drops.pa
ckets

Name Type Description Filter ID Loki
label

Cardinal
ity

OpenTel
emetry

OpenShift Container Platform 4.17 Network Observability

232

Proto number L4 protocol protoc
ol

no fine protocol

Sampli
ng

number Sampling interval used for this
flow

n/a no fine n/a

SrcAdd
r

string Source IP address (ipv4 or ipv6) src_ad
dress

no avoid source.a
ddress

SrcK8S
_HostI
P

string Source node IP src_ho
st_add
ress

no fine source.k
8s.host.
address

SrcK8S
_HostN
ame

string Source node name src_ho
st_nam
e

no fine source.k
8s.host.
name

SrcK8S
_Name

string Name of the source Kubernetes
object, such as Pod name, Service
name or Node name.

src_na
me

no careful source.k
8s.name

SrcK8S
_Name
space

string Source namespace src_na
mespa
ce

yes fine source.k
8s.name
space.na
me

SrcK8S
_Netwo
rkName

string Source network name src_net
work

no fine n/a

SrcK8S
_Owner
Name

string Name of the source owner, such
as Deployment name, StatefulSet
name, etc.

src_ow
ner_na
me

yes fine source.k
8s.owne
r.name

SrcK8S
_Owner
Type

string Kind of the source owner, such as
Deployment, StatefulSet, etc.

src_kin
d

no fine source.k
8s.owne
r.kind

SrcK8S
_Type

string Kind of the source Kubernetes
object, such as Pod, Service or
Node.

src_kin
d

yes fine source.k
8s.kind

SrcK8S
_Zone

string Source availability zone src_zo
ne

yes fine source.z
one

Name Type Description Filter ID Loki
label

Cardinal
ity

OpenTel
emetry

CHAPTER 17. NETWORK FLOWS FORMAT REFERENCE

233

SrcMac string Source MAC address src_ma
c

no avoid source.
mac

SrcPort number Source port src_po
rt

no careful source.p
ort

SrcSub
netLab
el

string Source subnet label src_su
bnet_la
bel

no fine source.s
ubnet.la
bel

TimeFl
owEnd
Ms

number End timestamp of this flow, in
milliseconds

n/a no avoid timeflow
end

TimeFl
owRttN
s

number TCP Smoothed Round Trip Time
(SRTT), in nanoseconds

time_fl
ow_rtt

no avoid tcp.rtt

TimeFl
owStart
Ms

number Start timestamp of this flow, in
milliseconds

n/a no avoid timeflow
start

TimeRe
ceived

number Timestamp when this flow was
received and processed by the
flow collector, in seconds

n/a no avoid timerec
eived

Udns string[] List of User Defined Networks udns no careful n/a

XlatDst
Addr

string packet translation destination
address

xlat_ds
t_addr
ess

no avoid n/a

XlatDst
Port

number packet translation destination port xlat_ds
t_port

no careful n/a

XlatSrc
Addr

string packet translation source address xlat_sr
c_addr
ess

no avoid n/a

XlatSrc
Port

number packet translation source port xlat_sr
c_port

no careful n/a

ZoneId number packet translation zone id xlat_zo
ne_id

no avoid n/a

Name Type Description Filter ID Loki
label

Cardinal
ity

OpenTel
emetry

OpenShift Container Platform 4.17 Network Observability

234

_HashI
d

string In conversation tracking, the
conversation identifier

id no avoid n/a

_Recor
dType

string Type of record: flowLog for
regular flow logs, or
newConnection, heartbeat,
endConnection for
conversation tracking

type yes fine n/a

Name Type Description Filter ID Loki
label

Cardinal
ity

OpenTel
emetry

CHAPTER 17. NETWORK FLOWS FORMAT REFERENCE

235

CHAPTER 18. TROUBLESHOOTING NETWORK
OBSERVABILITY

Perform diagnostic actions to troubleshoot common issues related to the Network Observability
Operator and its components.

18.1. USING THE MUST-GATHER TOOL

Use the must-gather tool to collect diagnostic information about Network Observability Operator
resources, including pod logs and configuration details, to assist in troubleshooting cluster issues.

Procedure

1. Navigate to the directory where you want to store the must-gather data.

2. Run the following command to collect cluster-wide must-gather resources:

18.2. CONFIGURING NETWORK TRAFFIC MENU ENTRY IN THE
OPENSHIFT CONTAINER PLATFORM CONSOLE

Restore a missing network traffic menu entry in the Observe menu of the OpenShift Container Platform
console by manually registering the console plugin in the FlowCollector resource and the console
operator configuration.

Prerequisites

You have installed OpenShift Container Platform version 4.10 or newer.

Procedure

1. Check if the spec.consolePlugin.register field is set to true by running the following
command:

Example output

apiVersion: flows.netobserv.io/v1alpha1
kind: FlowCollector
metadata:
 name: cluster
spec:
 consolePlugin:
 register: false

2. Optional: Add the netobserv-plugin plugin by manually editing the Console Operator config:

$ oc adm must-gather
 --image-stream=openshift/must-gather \
 --image=quay.io/netobserv/must-gather

$ oc -n netobserv get flowcollector cluster -o yaml

OpenShift Container Platform 4.17 Network Observability

236

Example output

...
spec:
 plugins:
 - netobserv-plugin
...

3. Optional: Set the spec.consolePlugin.register field to true by running the following command:

Example output

apiVersion: flows.netobserv.io/v1alpha1
kind: FlowCollector
metadata:
 name: cluster
spec:
 consolePlugin:
 register: true

4. Ensure the status of console pods is running by running the following command:

5. Restart the console pods by running the following command:

6. Clear your browser cache and history.

7. Check the status of network observability plugin pods by running the following command:

Example output

NAME READY STATUS RESTARTS AGE
netobserv-plugin-68c7bbb9bb-b69q6 1/1 Running 0 21s

8. Check the logs of the network observability plugin pods by running the following command:

Example output

$ oc edit console.operator.openshift.io cluster

$ oc -n netobserv edit flowcollector cluster -o yaml

$ oc get pods -n openshift-console -l app=console

$ oc delete pods -n openshift-console -l app=console

$ oc get pods -n netobserv -l app=netobserv-plugin

$ oc logs -n netobserv -l app=netobserv-plugin

CHAPTER 18. TROUBLESHOOTING NETWORK OBSERVABILITY

237

18.3. FLOWLOGS-PIPELINE DOES NOT CONSUME NETWORK FLOWS
AFTER INSTALLING KAFKA

Resolve issues where the flow-pipeline fails to consume network flows from Kafka by manually restarting
the flow-pipeline pods to restore the connection between the flow collector and your Kafka deployment.

If you deployed the flow collector first with deploymentModel: KAFKA and then deployed Kafka, the
flow collector might not connect correctly to Kafka. Manually restart the flow-pipeline pods where
Flowlogs-pipeline does not consume network flows from Kafka.

Procedure

1. Delete the flow-pipeline pods to restart them by running the following command:

18.4. FAILING TO SEE NETWORK FLOWS FROM BOTH BR-INT AND BR-
EX INTERFACES

Resolve issues with missing network flows by removing interface restrictions on virtual bridge devices
like br-int and br-ex, ensuring the eBPF agent can attach to the appropriate Layer 3 interfaces.

br-ex and br-int are virtual bridge devices operated at OSI layer 2. The eBPF agent works at the IP and
TCP levels, layers 3 and 4 respectively. You can expect that the eBPF agent captures the network
traffic passing through br-ex and br-int, when the network traffic is processed by other interfaces such
as physical host or virtual pod interfaces. If you restrict the eBPF agent network interfaces to attach
only to br-ex and br-int, you do not see any network flow.

Manually remove the part in the interfaces or excludeInterfaces that restricts the network interfaces
to br-int and br-ex.

Procedure

1. Remove the interfaces: ['br-int', 'br-ex'] field. This allows the agent to fetch information from
all the interfaces. Alternatively, you can specify the Layer-3 interface for example, eth0. Run the
following command:

Example output

apiVersion: flows.netobserv.io/v1alpha1
kind: FlowCollector
metadata:
 name: cluster
spec:
 agent:
 type: EBPF

time="2022-12-13T12:06:49Z" level=info msg="Starting netobserv-console-plugin [build
version: , build date: 2022-10-21 15:15] at log level info" module=main
time="2022-12-13T12:06:49Z" level=info msg="listening on https://:9001" module=server

$ oc delete pods -n netobserv -l app=flowlogs-pipeline-transformer

$ oc edit -n netobserv flowcollector.yaml -o yaml

OpenShift Container Platform 4.17 Network Observability

238

1

1

 ebpf:
 interfaces: ['br-int', 'br-ex'] 1

Specifies the network interfaces.

18.5. NETWORK OBSERVABILITY CONTROLLER MANAGER POD RUNS
OUT OF MEMORY

Resolve memory issues with the Network Observability Operator by increasing the memory limits in the
Subscription object to prevent the controller manager pod from running out of memory.

You can increase memory limits for the Network Observability Operator by editing the
spec.config.resources.limits.memory specification in the Subscription object.

Procedure

1. In the web console, navigate to Operators → Installed Operators

2. Click Network Observability and then select Subscription.

3. From the Actions menu, click Edit Subscription.

a. Alternatively, you can use the CLI to open the YAML configuration for the Subscription
object by running the following command:

4. Edit the Subscription object to add the config.resources.limits.memory specification and set
the value to account for your memory requirements. See the Additional resources for more
information about resource considerations:

For example, you can increase the memory limit to 800Mi.

This value should not be edited, but note that it changes depending on the most current

$ oc edit subscription netobserv-operator -n openshift-netobserv-operator

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: netobserv-operator
 namespace: openshift-netobserv-operator
spec:
 channel: stable
 config:
 resources:
 limits:
 memory: 800Mi 1
 requests:
 cpu: 100m
 memory: 100Mi
 installPlanApproval: Automatic
 name: netobserv-operator
 source: redhat-operators
 sourceNamespace: openshift-marketplace
 startingCSV: <network_observability_operator_latest_version> 2

CHAPTER 18. TROUBLESHOOTING NETWORK OBSERVABILITY

239

2 This value should not be edited, but note that it changes depending on the most current
release of the Operator.

18.6. RUNNING CUSTOM QUERIES TO LOKI

Troubleshoot network flow data by running custom Loki queries to retrieve available labels or filter logs
by specific criteria, such as source namespaces, using the command-line interface.

There are two examples of ways to do this, which you can adapt according to your needs by replacing the
<api_token> with your own.

NOTE

These examples use the netobserv namespace for the Network Observability Operator
and Loki deployments. Additionally, the examples assume that the LokiStack is named
loki. You can optionally use a different namespace and naming by adapting the examples,
specifically the -n netobserv or the loki-gateway URL.

Prerequisites

Installed Loki Operator for use with Network Observability Operator.

Procedure

1. To get all available labels, run the following command:

2. To get all flows from the source namespace, my-namespace, run the following command:

Additional resources

Resource considerations

18.7. TROUBLESHOOTING LOKI RESOURCEEXHAUSTED ERROR

Resolve Loki ResourceExhausted errors by adjusting the batchSize in the FlowCollector resource or
the maximum message size settings in your Loki configuration to ensure flow data stays within memory
limits.

Loki may return a ResourceExhausted error when network flow data sent by network observability
exceeds the configured maximum message size. If you are using the Red Hat Loki Operator, this
maximum message size is configured to 100 MiB.

$ oc exec deployment/netobserv-plugin -n netobserv -- curl -G -s -H 'X-Scope-
OrgID:network' -H 'Authorization: Bearer <api_token>' -k https://loki-gateway-
http.netobserv.svc:8080/api/logs/v1/network/loki/api/v1/labels | jq

$ oc exec deployment/netobserv-plugin -n netobserv -- curl -G -s -H 'X-Scope-
OrgID:network' -H 'Authorization: Bearer <api_token>' -k https://loki-gateway-
http.netobserv.svc:8080/api/logs/v1/network/loki/api/v1/query --data-urlencode 'query=
{SrcK8S_Namespace="my-namespace"}' | jq

OpenShift Container Platform 4.17 Network Observability

240

Procedure

1. Navigate to Operators → Installed Operators, viewing All projects from the Project drop-
down menu.

2. In the Provided APIs list, select the Network Observability Operator.

3. Click the Flow Collector then the YAML view tab.

a. If you are using the Loki Operator, check that the spec.loki.batchSize value does not
exceed 98 MiB.

b. If you are using a Loki installation method that is different from the Red Hat Loki Operator,
such as Grafana Loki, verify that the grpc_server_max_recv_msg_size Grafana Loki
server setting is higher than the FlowCollector resource spec.loki.batchSize value. If it is
not, you must either increase the grpc_server_max_recv_msg_size value, or decrease the
spec.loki.batchSize value so that it is lower than the limit.

4. Click Save if you edited the FlowCollector.

18.8. LOKI EMPTY RING ERROR

Investigate and resolve Loki "empty ring" errors by checking pod health, clearing old persistent volume
claims, or restarting pods to restore connectivity and ensure network flows are properly stored and
displayed.

The Loki "empty ring" error results in flows not being stored in Loki and not showing up in the web
console. This error might happen in various situations. A single workaround to address them all does not
exist. There are some actions you can take to investigate the logs in your Loki pods, and verify that the
LokiStack is healthy and ready.

Some of the situations where this error is observed are as follows:

After a LokiStack is uninstalled and reinstalled in the same namespace, old PVCs are not
removed, which can cause this error.

Action: You can try removing the LokiStack again, removing the PVC, then reinstalling the
LokiStack.

After a certificate rotation, this error can prevent communication with the flowlogs-pipeline
and console-plugin pods.

Action: You can restart the pods to restore the connectivity.

18.9. RESOURCE TROUBLESHOOTING

18.10. LOKISTACK RATE LIMIT ERRORS

Resolve Loki rate limit errors and prevent data loss by updating the LokiStack resource to increase the
ingestion rate and burst limits for your network observability data streams.

A rate-limit placed on the Loki tenant can result in potential temporary loss of data and a 429 error: Per
stream rate limit exceeded (limit:xMB/sec) while attempting to ingest for stream. You might
consider having an alert set to notify you of this error. For more information, see "Creating Loki rate limit
alerts for the NetObserv dashboard" in the Additional resources of this section.

CHAPTER 18. TROUBLESHOOTING NETWORK OBSERVABILITY

241

https://grafana.com/docs/loki/latest/configure/#server

1

2

You can update the LokiStack CRD with the perStreamRateLimit and perStreamRateLimitBurst
specifications, as shown in the following procedure.

Procedure

1. Navigate to Operators → Installed Operators, viewing All projects from the Project
dropdown.

2. Look for Loki Operator, and select the LokiStack tab.

3. Create or edit an existing LokiStack instance using the YAML view to add the
perStreamRateLimit and perStreamRateLimitBurst specifications:

The default value for perStreamRateLimit is 3.

The default value for perStreamRateLimitBurst is 15.

4. Click Save.

Verification

Once you update the perStreamRateLimit and perStreamRateLimitBurst specifications, the pods in
your cluster restart and the 429 rate-limit error no longer occurs.

18.11. RUNNING A LARGE QUERY RESULTS IN LOKI ERRORS

Understand how you can mitigate Loki timeout and request errors when running large queries by using
indexed filters, leveraging Prometheus for long time ranges, creating custom metrics, or adjusting Loki
and FlowCollector performance settings.

When running large queries for a long time, Loki errors can occur, such as a timeout or too many
outstanding requests. There is no complete corrective for this issue, but there are several ways to
mitigate it:

Adapt your query to add an indexed filter

With Loki queries, you can query on both indexed and non-indexed fields or labels. Queries that
contain filters on labels perform better. For example, if you query for a particular Pod, which is not an
indexed field, you can add its Namespace to the query. The list of indexed fields can be found in the
"Network flows format reference", in the Loki label column.

apiVersion: loki.grafana.com/v1
kind: LokiStack
metadata:
 name: loki
 namespace: netobserv
spec:
 limits:
 global:
 ingestion:
 perStreamRateLimit: 6 1
 perStreamRateLimitBurst: 30 2
 tenants:
 mode: openshift-network
 managementState: Managed

OpenShift Container Platform 4.17 Network Observability

242

Consider querying Prometheus rather than Loki

Prometheus is a better fit than Loki to query on large time ranges. However, whether or not you can
use Prometheus instead of Loki depends on the use case. For example, queries on Prometheus are
much faster than on Loki, and large time ranges do not impact performance. But Prometheus
metrics do not contain as much information as flow logs in Loki. The Network Observability
OpenShift web console automatically favors Prometheus over Loki if the query is compatible;
otherwise, it defaults to Loki. If your query does not run against Prometheus, you can change some
filters or aggregations to make the switch. In the OpenShift web console, you can force the use of
Prometheus. An error message is displayed when incompatible queries fail, which can help you figure
out which labels to change to make the query compatible. For example, changing a filter or an
aggregation from Resource or Pods to Owner.

Consider using the FlowMetrics API to create your own metric

If the data that you need isn’t available as a Prometheus metric, you can use the FlowMetrics API to
create your own metric. For more information, see "FlowMetrics API Reference" and "Configuring
custom metrics by using FlowMetric API".

Configure Loki to improve the query performance

If the problem persists, you can consider configuring Loki to improve the query performance. Some
options depend on the installation mode you used for Loki, such as using the Operator and
LokiStack, or Monolithic mode, or Microservices mode.

In LokiStack or Microservices modes, try increasing the number of querier replicas .

Increase the query timeout. You must also increase the Network Observability read timeout
to Loki in the FlowCollector spec.loki.readTimeout.

Additional resources

Network flows format reference

FlowMetric API reference

Configuring custom metrics by using FlowMetric API

CHAPTER 18. TROUBLESHOOTING NETWORK OBSERVABILITY

243

https://loki-operator.dev/docs/api.md/#loki-grafana-com-v1-LokiComponentSpec
https://loki-operator.dev/docs/api.md/#loki-grafana-com-v1-QueryLimitSpec

	Table of Contents
	CHAPTER 1. NETWORK OBSERVABILITY OPERATOR RELEASE NOTES
	1.1. NETWORK OBSERVABILITY OPERATOR 1.10.1 ADVISORY
	1.2. NETWORK OBSERVABILITY OPERATOR 1.10.1 CVES
	1.3. NETWORK OBSERVABILITY OPERATOR 1.10.1 FIXED ISSUES
	1.4. NETWORK OBSERVABILITY OPERATOR 1.10 ADVISORY
	1.5. NETWORK OBSERVABILITY OPERATOR 1.10 NEW FEATURES AND ENHANCEMENTS
	1.5.1. Network policy updates
	1.5.2. Network Observability Operator CLI UI updates
	1.5.3. Network observability console improvements
	1.5.4. Performance improvements

	1.6. NETWORK OBSERVABILITY OPERATOR 1.10 TECHNOLOGY PREVIEW FEATURES
	1.6.1. Network Observability Operator custom alerts (Technology Preview)
	1.6.2. Network Observability Operator Network Health dashboard (Technology Preview)

	1.7. NETWORK OBSERVABILITY OPERATOR 1.10 REMOVED FEATURES
	1.7.1. FlowCollector API version v1beta1 has been removed

	1.8. NETWORK OBSERVABILITY OPERATOR 1.10 KNOWN ISSUES
	1.8.1. Upgrading to 1.10 fails on OpenShift Container Platform 4.14 and earlier
	1.8.2. eBPF agent compatibility with older OpenShift Container Platform versions
	1.8.3. eBPF Agent fails to send flows with OpenShiftSDN when NetworkPolicy is enabled

	1.9. NETWORK OBSERVABILITY OPERATOR 1.10 FIXED ISSUES
	1.9.1. MetricName and Remap fields are validated
	1.9.2. Improved html-to-image export performance
	1.9.3. Improved warnings for eBPF privileged mode
	1.9.4. Subnet labels added to OpenTelemetry exporter
	1.9.5. Reduced default tolerations for network observability components

	CHAPTER 2. NETWORK OBSERVABILITY OPERATOR RELEASE NOTES ARCHIVE
	2.1. NETWORK OBSERVABILITY OPERATOR RELEASE NOTES ARCHIVE
	2.1.1. Network Observability Operator 1.9.3 advisory
	2.1.2. Network Observability Operator 1.9.2 advisory
	2.1.3. Network observability 1.9.2 bug fixes
	2.1.4. Network Observability Operator 1.9.1 advisory
	2.1.5. Network Observability Operator 1.9.1 fixed issues
	2.1.6. Network Observability Operator 1.9.0 advisory
	2.1.7. Network Observability Operator 1.9.0 new features and enhancements
	2.1.7.1. User-defined networks with network observability
	2.1.7.2. Filter flowlogs at ingestion
	2.1.7.3. IPsec support
	2.1.7.4. Network Observability CLI

	2.1.8. Network Observability Operator release notes 1.9.0 notable technical changes
	2.1.9. Network Observability Operator 1.9.0 Technology Preview features
	2.1.9.1. eBPF Manager Operator with network observability

	2.1.10. Network Observability Operator 1.9.0 CVEs
	2.1.11. Network Observability Operator 1.9.0 fixed issues
	2.1.12. Network Observability Operator 1.9.0 known issues
	2.1.13. Network Observability Operator 1.8.1 advisory
	2.1.14. Network Observability Operator 1.8.1 CVEs
	2.1.15. Network Observability Operator 1.8.1 fixed issues
	2.1.16. Network Observability Operator 1.8.0 advisory
	2.1.17. Network Observability Operator 1.8.0 new features and enhancements
	2.1.17.1. Packet translation
	2.1.17.2. OVN-Kubernetes networking events tracking
	2.1.17.3. eBPF performance improvements in 1.8
	2.1.17.4. Network Observability CLI

	2.1.18. Network Observability Operator release notes 1.8.0 fixed issues
	2.1.19. Network Observability Operator release notes 1.8.0 known issues
	2.1.20. Network Observability Operator 1.7.0 advisory
	2.1.21. Network Observability Operator 1.7.0 new features and enhancements
	2.1.21.1. OpenTelemetry support
	2.1.21.2. Network observability Developer perspective
	2.1.21.3. TCP flags filtering
	2.1.21.4. Network observability for OpenShift Virtualization
	2.1.21.5. Network policy deploys in the FlowCollector custom resource (CR)
	2.1.21.6. FIPS compliance
	2.1.21.7. eBPF agent enhancements
	2.1.21.8. Network Observability CLI

	2.1.22. Network Observability Operator 1.7.0 fixed issues
	2.1.23. Network Observability Operator 1.7.0 known issues
	2.1.24. Network Observability Operator release notes 1.6.2 advisory
	2.1.25. Network Observability Operator release notes 1.6.2 CVEs
	2.1.26. Network Observability Operator release notes 1.6.2 fixed issues
	2.1.27. Network Observability Operator release notes 1.6.2 known issues
	2.1.28. Network Observability Operator release notes 1.6.1 advisory
	2.1.29. Network Observability Operator release notes 1.6.1 CVEs
	2.1.30. Network Observability Operator release notes 1.6.1 fixed issues
	2.1.31. Network Observability Operator release notes 1.6.0 advisory
	2.1.32. Network Observability Operator 1.6.0 new features and enhancements
	2.1.32.1. Enhanced use of Network Observability Operator without Loki
	2.1.32.2. Custom metrics API
	2.1.32.3. eBPF performance enhancements
	2.1.32.4. eBPF collection rule-based filtering

	2.1.33. Network Observability Operator 1.6.0 fixed issues
	2.1.34. Network Observability Operator 1.6.0 known issues
	2.1.35. Network Observability Operator 1.5.0 advisory
	2.1.36. Network Observability Operator 1.5.0 new features and enhancements
	2.1.36.1. DNS tracking enhancements
	2.1.36.2. Round-trip time (RTT)
	2.1.36.3. Metrics, dashboards, and alerts enhancements
	2.1.36.4. Improvements for network observability without Loki
	2.1.36.5. Availability zones
	2.1.36.6. Notable enhancements
	2.1.36.7. Performance enhancements
	2.1.36.8. Web console enhancements:
	2.1.36.9. Configuration enhancements:

	2.1.37. Network Observability Operator 1.5.0 fixed issues
	2.1.38. Network Observability Operator 1.5.0 known issues
	2.1.39. Network Observability Operator 1.4.2 advisory
	2.1.40. Network Observability Operator 1.4.2 CVEs
	2.1.41. Network Observability Operator 1.4.1 advisory
	2.1.42. Network Observability Operator release 1.4.1 CVEs
	2.1.43. Network Observability Operator release notes 1.4.1 fixed issues
	2.1.44. Network observability release notes 1.4.0 advisory
	2.1.45. Network observability release notes 1.4.0 new features and enhancements
	2.1.45.1. Notable enhancements
	2.1.45.2. Web console enhancements:
	2.1.45.3. Configuration enhancements:
	2.1.45.4. Network observability without Loki
	2.1.45.5. DNS tracking
	2.1.45.6. SR-IOV support
	2.1.45.7. IPFIX exporter support
	2.1.45.8. Packet drops
	2.1.45.9. s390x architecture support

	2.1.46. Network observability release notes 1.4.0 removed features
	2.1.46.1. Channel removal

	2.1.47. Network observability release notes 1.4.0 fixed issues
	2.1.48. Network observability release notes 1.4.0 known issues
	2.1.49. Network Observability Operator 1.3.0 advisory
	2.1.50. Network Observability Operator 1.3.0 new features and enhancements
	2.1.50.1. Multi-tenancy in network observability
	2.1.50.2. Flow-based metrics dashboard
	2.1.50.3. Troubleshooting with the must-gather tool
	2.1.50.4. Multiple architectures now supported

	2.1.51. Network Observability Operator 1.3.0 deprecated features
	2.1.51.1. Channel deprecation
	2.1.51.2. Deprecated configuration parameter setting

	2.1.52. Network Observability Operator 1.3.0 fixed issues
	2.1.53. Network Observability Operator 1.3.0 known issues
	2.1.54. Network observability release notes 1.2.0 preparing for the next update
	2.1.55. Network Observability Operator 1.2.0 advisory
	2.1.56. Network Observability Operator 1.2.0 new features and enhancements
	2.1.56.1. Histogram in Traffic Flows view
	2.1.56.2. Conversation tracking
	2.1.56.3. Network observability health alerts

	2.1.57. Network Observability Operator 1.2.0 bug fixes
	2.1.58. Network Observability Operator 1.2.0 known issues
	2.1.59. Network Observability Operator 1.2.0 notable technical changes
	2.1.60. Network Observability Operator 1.1.0 enhancements
	2.1.61. Network Observability Operator 1.1.0 fixed issues
	2.1.62. Additional resources

	CHAPTER 3. ABOUT NETWORK OBSERVABILITY
	3.1. NETWORK OBSERVABILITY OPERATOR
	3.2. OPTIONAL DEPENDENCIES OF THE NETWORK OBSERVABILITY OPERATOR
	3.3. OPENSHIFT CONTAINER PLATFORM CONSOLE INTEGRATION
	3.3.1. Network observability metrics dashboards
	3.3.2. Network observability topology views
	3.3.3. Traffic flow tables

	3.4. NETWORK OBSERVABILITY CLI

	CHAPTER 4. INSTALLING THE NETWORK OBSERVABILITY OPERATOR
	4.1. NETWORK OBSERVABILITY WITHOUT LOKI
	4.2. INSTALLING THE LOKI OPERATOR
	4.2.1. Creating a secret for Loki storage
	4.2.2. Creating a LokiStack custom resource
	4.2.3. Creating a new group for the cluster-admin user role
	4.2.4. Custom admin group access
	4.2.5. Loki deployment sizing
	4.2.6. LokiStack ingestion limits and health alerts

	4.3. INSTALLING THE NETWORK OBSERVABILITY OPERATOR
	4.4. ENABLING MULTI-TENANCY IN NETWORK OBSERVABILITY
	4.5. IMPORTANT FLOW COLLECTOR CONFIGURATION CONSIDERATIONS
	4.5.1. Migrating removed stored versions of the FlowCollector CRD

	4.6. INSTALLING KAFKA (OPTIONAL)
	4.7. UNINSTALLING THE NETWORK OBSERVABILITY OPERATOR

	CHAPTER 5. NETWORK OBSERVABILITY OPERATOR IN OPENSHIFT CONTAINER PLATFORM
	5.1. VIEWING STATUSES
	5.2. NETWORK OBSERVABLITY OPERATOR ARCHITECTURE
	5.3. VIEWING NETWORK OBSERVABILITY OPERATOR STATUS AND CONFIGURATION

	CHAPTER 6. CONFIGURING THE NETWORK OBSERVABILITY OPERATOR
	6.1. VIEW THE FLOWCOLLECTOR RESOURCE
	6.1.1. Example of a FlowCollector resource
	6.1.1.1. Sample FlowCollector resource

	6.2. CONFIGURING THE FLOWCOLLECTOR RESOURCE WITH KAFKA
	6.3. EXPORT ENRICHED NETWORK FLOW DATA
	6.4. UPDATING THE FLOWCOLLECTOR RESOURCE
	6.5. FILTER NETWORK FLOWS AT INGESTION
	6.5.1. eBPF agent filters
	6.5.2. Flowlogs-pipeline filters

	6.6. CONFIGURING QUICK FILTERS
	6.7. RESOURCE MANAGEMENT AND PERFORMANCE CONSIDERATIONS
	6.7.1. Resource considerations
	6.7.2. Total average memory and CPU usage

	CHAPTER 7. NETWORK POLICY
	7.1. CONFIGURING NETWORK POLICY BY USING THE FLOWCOLLECTOR CUSTOM RESOURCE

	CHAPTER 8. OBSERVING THE NETWORK TRAFFIC
	8.1. OBSERVING THE NETWORK TRAFFIC FROM THE OVERVIEW VIEW
	8.1.1. Working with the Overview view
	8.1.2. Configuring advanced options for the Overview view
	8.1.2.1. Managing panels and display

	8.1.3. Packet drop tracking
	8.1.3.1. Types of packet drops

	8.1.4. DNS tracking
	8.1.5. Round-Trip Time
	8.1.6. eBPF flow rule filter
	8.1.6.1. Ingress and egress traffic filtering
	8.1.6.2. Dashboard and metrics integrations
	8.1.6.3. Flow filter configuration parameters

	8.1.7. User-defined networks
	8.1.8. OVN-Kubernetes networking events

	8.2. OBSERVING THE NETWORK TRAFFIC FROM THE TRAFFIC FLOWS VIEW
	8.2.1. Working with the Traffic flows view
	8.2.2. Configuring advanced options for the Traffic flows view
	8.2.2.1. Managing columns
	8.2.2.2. Exporting the traffic flow data

	8.2.3. Configuring IPsec with the FlowCollector custom resource
	8.2.4. Working with conversation tracking
	8.2.5. Working with packet drops
	8.2.6. Working with DNS tracking
	8.2.7. Working with RTT tracing
	8.2.8. Working with the eBPF Manager Operator
	8.2.9. Using the histogram
	8.2.10. Working with availability zones
	8.2.11. Filtering eBPF flow data using multiple rules
	8.2.12. Endpoint translation (xlat)
	8.2.13. Working with endpoint translation (xlat)
	8.2.14. Working with user-defined networks
	8.2.15. Viewing network events

	8.3. OBSERVING THE NETWORK TRAFFIC FROM THE TOPOLOGY VIEW
	8.3.1. Working with the Topology view
	8.3.2. Configuring the advanced options for the Topology view
	8.3.2.1. Exporting the topology view

	8.4. FILTERING THE NETWORK TRAFFIC

	CHAPTER 9. NETWORK OBSERVABILITY ALERTS
	9.1. ABOUT NETWORK OBSERVABILITY ALERTS
	9.1.1. List of default alert templates
	9.1.2. Network Health dashboard

	9.2. ENABLING TECHNOLOGY PREVIEW ALERTS IN NETWORK OBSERVABILITY
	9.2.1. Configuring predefined alerts
	9.2.2. About the PromQL expression for alerts
	9.2.2.1. An example query for an alert in a surge of incoming traffic
	9.2.2.2. Alert metadata fields

	9.2.3. Creating custom alert rules
	9.2.4. Disabling predefined alerts

	CHAPTER 10. USING METRICS WITH DASHBOARDS AND ALERTS
	10.1. VIEWING NETWORK OBSERVABILITY METRICS DASHBOARDS
	10.2. NETWORK OBSERVABILITY METRICS
	10.3. CREATING ALERTS
	10.4. CUSTOM METRICS
	10.5. CONFIGURING CUSTOM METRICS BY USING FLOWMETRIC API
	10.6. CREATING METRICS FROM NESTED OR ARRAY FIELDS IN THE TRAFFIC FLOWS TABLE
	10.7. CONFIGURING CUSTOM CHARTS USING FLOWMETRIC API
	10.8. DETECTING SYN FLOODING USING THE FLOWMETRIC API AND TCP FLAGS

	CHAPTER 11. MONITORING THE NETWORK OBSERVABILITY OPERATOR
	11.1. HEALTH DASHBOARDS
	11.2. HEALTH ALERTS
	11.3. VIEWING HEALTH INFORMATION
	11.3.1. Disabling health alerts

	11.4. CREATING LOKI RATE LIMIT ALERTS FOR THE NETOBSERV DASHBOARD
	11.5. USING THE EBPF AGENT ALERT

	CHAPTER 12. SCHEDULING RESOURCES
	12.1. NETWORK OBSERVABILITY DEPLOYMENT IN SPECIFIC NODES

	CHAPTER 13. SECONDARY NETWORKS
	13.1. PREREQUISITES
	13.2. CONFIGURING MONITORING FOR SR-IOV INTERFACE TRAFFIC
	13.3. CONFIGURING VIRTUAL MACHINE (VM) SECONDARY NETWORK INTERFACES FOR NETWORK OBSERVABILITY

	CHAPTER 14. NETWORK OBSERVABILITY CLI
	14.1. INSTALLING THE NETWORK OBSERVABILITY CLI
	14.1.1. About the Network Observability CLI
	14.1.2. Installing the Network Observability CLI

	14.2. USING THE NETWORK OBSERVABILITY CLI
	14.2.1. Capturing flows
	14.2.2. Capturing packets
	14.2.3. Capturing metrics
	14.2.4. Cleaning the Network Observability CLI

	14.3. NETWORK OBSERVABILITY CLI (OC NETOBSERV) REFERENCE
	14.3.1. Network Observability CLI usage
	14.3.1.1. Syntax
	14.3.1.2. Basic commands
	14.3.1.3. Flows capture options
	14.3.1.4. Packets capture options
	14.3.1.5. Metrics capture options

	CHAPTER 15. FLOWCOLLECTOR API REFERENCE
	15.1. FLOWCOLLECTOR API SPECIFICATIONS
	15.1.1. .metadata
	15.1.2. .spec
	15.1.3. .spec.agent
	15.1.4. .spec.agent.ebpf
	15.1.5. .spec.agent.ebpf.advanced
	15.1.6. .spec.agent.ebpf.advanced.scheduling
	15.1.7. .spec.agent.ebpf.advanced.scheduling.affinity
	15.1.8. .spec.agent.ebpf.advanced.scheduling.tolerations
	15.1.9. .spec.agent.ebpf.flowFilter
	15.1.10. .spec.agent.ebpf.flowFilter.rules
	15.1.11. .spec.agent.ebpf.flowFilter.rules[]
	15.1.12. .spec.agent.ebpf.metrics
	15.1.13. .spec.agent.ebpf.metrics.server
	15.1.14. .spec.agent.ebpf.metrics.server.tls
	15.1.15. .spec.agent.ebpf.metrics.server.tls.provided
	15.1.16. .spec.agent.ebpf.metrics.server.tls.providedCaFile
	15.1.17. .spec.agent.ebpf.resources
	15.1.18. .spec.consolePlugin
	15.1.19. .spec.consolePlugin.advanced
	15.1.20. .spec.consolePlugin.advanced.scheduling
	15.1.21. .spec.consolePlugin.advanced.scheduling.affinity
	15.1.22. .spec.consolePlugin.advanced.scheduling.tolerations
	15.1.23. .spec.consolePlugin.autoscaler
	15.1.24. .spec.consolePlugin.portNaming
	15.1.25. .spec.consolePlugin.quickFilters
	15.1.26. .spec.consolePlugin.quickFilters[]
	15.1.27. .spec.consolePlugin.resources
	15.1.28. .spec.exporters
	15.1.29. .spec.exporters[]
	15.1.30. .spec.exporters[].ipfix
	15.1.31. .spec.exporters[].kafka
	15.1.32. .spec.exporters[].kafka.sasl
	15.1.33. .spec.exporters[].kafka.sasl.clientIDReference
	15.1.34. .spec.exporters[].kafka.sasl.clientSecretReference
	15.1.35. .spec.exporters[].kafka.tls
	15.1.36. .spec.exporters[].kafka.tls.caCert
	15.1.37. .spec.exporters[].kafka.tls.userCert
	15.1.38. .spec.exporters[].openTelemetry
	15.1.39. .spec.exporters[].openTelemetry.fieldsMapping
	15.1.40. .spec.exporters[].openTelemetry.fieldsMapping[]
	15.1.41. .spec.exporters[].openTelemetry.logs
	15.1.42. .spec.exporters[].openTelemetry.metrics
	15.1.43. .spec.exporters[].openTelemetry.tls
	15.1.44. .spec.exporters[].openTelemetry.tls.caCert
	15.1.45. .spec.exporters[].openTelemetry.tls.userCert
	15.1.46. .spec.kafka
	15.1.47. .spec.kafka.sasl
	15.1.48. .spec.kafka.sasl.clientIDReference
	15.1.49. .spec.kafka.sasl.clientSecretReference
	15.1.50. .spec.kafka.tls
	15.1.51. .spec.kafka.tls.caCert
	15.1.52. .spec.kafka.tls.userCert
	15.1.53. .spec.loki
	15.1.54. .spec.loki.advanced
	15.1.55. .spec.loki.lokiStack
	15.1.56. .spec.loki.manual
	15.1.57. .spec.loki.manual.statusTls
	15.1.58. .spec.loki.manual.statusTls.caCert
	15.1.59. .spec.loki.manual.statusTls.userCert
	15.1.60. .spec.loki.manual.tls
	15.1.61. .spec.loki.manual.tls.caCert
	15.1.62. .spec.loki.manual.tls.userCert
	15.1.63. .spec.loki.microservices
	15.1.64. .spec.loki.microservices.tls
	15.1.65. .spec.loki.microservices.tls.caCert
	15.1.66. .spec.loki.microservices.tls.userCert
	15.1.67. .spec.loki.monolithic
	15.1.68. .spec.loki.monolithic.tls
	15.1.69. .spec.loki.monolithic.tls.caCert
	15.1.70. .spec.loki.monolithic.tls.userCert
	15.1.71. .spec.networkPolicy
	15.1.72. .spec.processor
	15.1.73. .spec.processor.advanced
	15.1.74. .spec.processor.advanced.scheduling
	15.1.75. .spec.processor.advanced.scheduling.affinity
	15.1.76. .spec.processor.advanced.scheduling.tolerations
	15.1.77. .spec.processor.advanced.secondaryNetworks
	15.1.78. .spec.processor.advanced.secondaryNetworks[]
	15.1.79. .spec.processor.deduper
	15.1.80. .spec.processor.filters
	15.1.81. .spec.processor.filters[]
	15.1.82. .spec.processor.kafkaConsumerAutoscaler
	15.1.83. .spec.processor.metrics
	15.1.84. .spec.processor.metrics.alerts
	15.1.85. .spec.processor.metrics.alerts[]
	15.1.86. .spec.processor.metrics.alerts[].variants
	15.1.87. .spec.processor.metrics.alerts[].variants[]
	15.1.88. .spec.processor.metrics.alerts[].variants[].thresholds
	15.1.89. .spec.processor.metrics.server
	15.1.90. .spec.processor.metrics.server.tls
	15.1.91. .spec.processor.metrics.server.tls.provided
	15.1.92. .spec.processor.metrics.server.tls.providedCaFile
	15.1.93. .spec.processor.resources
	15.1.94. .spec.processor.subnetLabels
	15.1.95. .spec.processor.subnetLabels.customLabels
	15.1.96. .spec.processor.subnetLabels.customLabels[]
	15.1.97. .spec.prometheus
	15.1.98. .spec.prometheus.querier
	15.1.99. .spec.prometheus.querier.manual
	15.1.100. .spec.prometheus.querier.manual.tls
	15.1.101. .spec.prometheus.querier.manual.tls.caCert
	15.1.102. .spec.prometheus.querier.manual.tls.userCert

	CHAPTER 16. FLOWMETRIC CONFIGURATION PARAMETERS
	16.1. FLOWMETRIC [FLOWS.NETOBSERV.IO/V1ALPHA1]
	16.1.1. .metadata
	16.1.2. .spec
	16.1.3. .spec.charts
	16.1.4. .spec.charts[]
	16.1.5. .spec.charts[].queries
	16.1.6. .spec.charts[].queries[]
	16.1.7. .spec.filters
	16.1.8. .spec.filters[]

	CHAPTER 17. NETWORK FLOWS FORMAT REFERENCE
	17.1. NETWORK FLOWS FORMAT REFERENCE

	CHAPTER 18. TROUBLESHOOTING NETWORK OBSERVABILITY
	18.1. USING THE MUST-GATHER TOOL
	18.2. CONFIGURING NETWORK TRAFFIC MENU ENTRY IN THE OPENSHIFT CONTAINER PLATFORM CONSOLE
	18.3. FLOWLOGS-PIPELINE DOES NOT CONSUME NETWORK FLOWS AFTER INSTALLING KAFKA
	18.4. FAILING TO SEE NETWORK FLOWS FROM BOTH BR-INT AND BR-EX INTERFACES
	18.5. NETWORK OBSERVABILITY CONTROLLER MANAGER POD RUNS OUT OF MEMORY
	18.6. RUNNING CUSTOM QUERIES TO LOKI
	18.7. TROUBLESHOOTING LOKI RESOURCEEXHAUSTED ERROR
	18.8. LOKI EMPTY RING ERROR
	18.9. RESOURCE TROUBLESHOOTING
	18.10. LOKISTACK RATE LIMIT ERRORS
	18.11. RUNNING A LARGE QUERY RESULTS IN LOKI ERRORS

