& RedHat

OpenShift Container Platform 4.17

Network Observability

Configuring and using the Network Observability Operator in OpenShift Container
Platform

Last Updated: 2026-01-16

OpenShift Container Platform 4.17 Network Observability

Configuring and using the Network Observability Operator in OpenShift Container Platform

Legal Notice

Copyright © Red Hat.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Use the Network Observability Operator to observe and analyze network traffic flows for OpenShift
Container Platform clusters.

Table of Contents

Table of Contents

CHAPTER 1. NETWORK OBSERVABILITY OPERATORRELEASENOTES ..ottt i 10
1.1. NETWORK OBSERVABILITY OPERATOR 1.10.1 ADVISORY 10
1.2. NETWORK OBSERVABILITY OPERATOR 1.10.1 CVES 10
1.3. NETWORK OBSERVABILITY OPERATOR 1.10.1 FIXED ISSUES 10
1.4. NETWORK OBSERVABILITY OPERATOR 1.10 ADVISORY 1
1.5. NETWORK OBSERVABILITY OPERATOR 1.10 NEW FEATURES AND ENHANCEMENTS 1

1.5.1. Network policy updates 1
1.5.2. Network Observability Operator CLI Ul updates 1
1.5.3. Network observability console improvements 12
1.5.4. Performance improvements 12
1.6. NETWORK OBSERVABILITY OPERATOR 1.10 TECHNOLOGY PREVIEW FEATURES 12
1.6.1. Network Observability Operator custom alerts (Technology Preview) 12
1.6.2. Network Observability Operator Network Health dashboard (Technology Preview) 12
1.7.NETWORK OBSERVABILITY OPERATOR 1.10 REMOVED FEATURES 12
1.7.1. FlowCollector API version vibetal has been removed 12
1.8. NETWORK OBSERVABILITY OPERATOR 1.10 KNOWN ISSUES 13
1.8.1. Upgrading to 1.10 fails on OpenShift Container Platform 4.14 and earlier 13
1.8.2. eBPF agent compatibility with older OpenShift Container Platform versions 14
1.8.3. eBPF Agent fails to send flows with OpenShiftSDN when NetworkPolicy is enabled 14
1.9. NETWORK OBSERVABILITY OPERATOR 1.10 FIXED ISSUES 14
1.9.1. MetricName and Remap fields are validated 14
1.9.2. Improved html-to-image export performance 15
1.9.3. Improved warnings for eBPF privileged mode 15
1.9.4. Subnet labels added to OpenTelemetry exporter 15
1.9.5. Reduced default tolerations for network observability components 15

CHAPTER 2. NETWORK OBSERVABILITY OPERATOR RELEASE NOTESARCHIVEcccvvun.. 16

2.1. NETWORK OBSERVABILITY OPERATOR RELEASE NOTES ARCHIVE 16
2.1.1. Network Observability Operator 1.9.3 advisory 16
2.1.2. Network Observability Operator 1.9.2 advisory 16
2.1.3. Network observability 1.9.2 bug fixes 16
2.1.4. Network Observability Operator 1.9.1 advisory 16
2.1.5. Network Observability Operator 1.9.1 fixed issues 16
2.1.6. Network Observability Operator 1.9.0 advisory 17
2.1.7. Network Observability Operator 1.9.0 new features and enhancements 17

2.1.7.1. User-defined networks with network observability 17
2.1.7.2. Filter flowlogs at ingestion 17
2.1.7.3. IPsec support 17
2.1.7.4. Network Observability CLI 18
2.1.8. Network Observability Operator release notes 1.9.0 notable technical changes 18
2.1.9. Network Observability Operator 1.9.0 Technology Preview features 18
2.1.9.1. eBPF Manager Operator with network observability 18
2.1.10. Network Observability Operator 1.9.0 CVEs 18
2.1.11. Network Observability Operator 1.9.0 fixed issues 19
2.1.12. Network Observability Operator 1.9.0 known issues 20
2.1.13. Network Observability Operator 1.8.1 advisory 20
2.1.14. Network Observability Operator 1.8.1 CVEs 20
2.115. Network Observability Operator 1.8.1 fixed issues 20
2.1.16. Network Observability Operator 1.8.0 advisory 20
2.1.17. Network Observability Operator 1.8.0 new features and enhancements 20
2.1.17.1. Packet translation 20

OpenShift Container Platform 4.17 Network Observability

2.117.2. OVN-Kubernetes networking events tracking
2.1.17.3. eBPF performance improvements in 1.8
2.1.17.4. Network Observability CLI
2.118. Network Observability Operator release notes 1.8.0 fixed issues
2.1.19. Network Observability Operator release notes 1.8.0 known issues
2.1.20. Network Observability Operator 1.7.0 advisory
2.1.21. Network Observability Operator 1.7.0 new features and enhancements
2.1.21.1. OpenTelemetry support
2.1.21.2. Network observability Developer perspective
2.1.21.3. TCP flags filtering
2.1.21.4. Network observability for OpenShift Virtualization
2.1.21.5. Network policy deploys in the FlowCollector custom resource (CR)
2.1.21.6. FIPS compliance
2.1.21.7. eBPF agent enhancements
2.1.21.8. Network Observability CLI
2.1.22. Network Observability Operator 1.7.0 fixed issues
2.1.23. Network Observability Operator 1.7.0 known issues
2.1.24. Network Observability Operator release notes 1.6.2 advisory
2.1.25. Network Observability Operator release notes 1.6.2 CVEs
2.1.26. Network Observability Operator release notes 1.6.2 fixed issues
2.1.27. Network Observability Operator release notes 1.6.2 known issues
2.1.28. Network Observability Operator release notes 1.6.1 advisory
2.1.29. Network Observability Operator release notes 1.6.1 CVEs
2.1.30. Network Observability Operator release notes 1.6.1 fixed issues
2.1.31. Network Observability Operator release notes 1.6.0 advisory
2.1.32. Network Observability Operator 1.6.0 new features and enhancements
2.1.32.1. Enhanced use of Network Observability Operator without Loki
2.1.32.2. Custom metrics API
2.1.32.3. eBPF performance enhancements
2.1.32.4. eBPF collection rule-based filtering
2.1.33. Network Observability Operator 1.6.0 fixed issues
2.1.34. Network Observability Operator 1.6.0 known issues
2.1.35. Network Observability Operator 1.5.0 advisory
2.1.36. Network Observability Operator 1.5.0 new features and enhancements
2.1.36.1. DNS tracking enhancements
2.1.36.2. Round-trip time (RTT)
2.1.36.3. Metrics, dashboards, and alerts enhancements
2.1.36.4. Improvements for network observability without Loki
2.1.36.5. Availability zones
2.1.36.6. Notable enhancements
2.1.36.7. Performance enhancements
2.1.36.8. Web console enhancements:
2.1.36.9. Configuration enhancements:
2.1.37. Network Observability Operator 1.5.0 fixed issues
2.1.38. Network Observability Operator 1.5.0 known issues
2.1.39. Network Observability Operator 1.4.2 advisory
2.1.40. Network Observability Operator 1.4.2 CVEs
2.1.41. Network Observability Operator 1.4.1 advisory
2.1.42. Network Observability Operator release 1.4.1 CVEs
2.1.43. Network Observability Operator release notes 1.4.1 fixed issues
2.1.44. Network observability release notes 1.4.0 advisory

2.1.45. Network observability release notes 1.4.0 new features and enhancements

2.1.45.1. Notable enhancements

21
21
21
22
23
23
23
23
24
24
24
24
24
25
25
25
26
27
27
27
27
28
28
28
29
29
29
29
30
30
30

31
32
32
32
32
32
32
33
33
33
33
33
34
34
35
35
35
35
35
35
36
36

Table of Contents

2.1.45.2. Web console enhancements: 36
2.1.45.3. Configuration enhancements: 36
2.1.45.4. Network observability without Loki 37
2.1.45.5. DNS tracking 37
2.1.45.6. SR-I0OV support 37
2.1.45.7. IPFIX exporter support 37
2.1.45.8. Packet drops 37
2.1.45.9. s390x architecture support 37
2.1.46. Network observability release notes 1.4.0 removed features 38
2.1.46.1. Channel removal 38
2.1.47. Network observability release notes 1.4.0 fixed issues 38
2.1.48. Network observability release notes 1.4.0 known issues 38
2.1.49. Network Observability Operator 1.3.0 advisory 39
2.1.50. Network Observability Operator 1.3.0 new features and enhancements 39
2.1.50.1. Multi-tenancy in network observability 39
2.1.50.2. Flow-based metrics dashboard 39
2.1.50.3. Troubleshooting with the must-gather tool 39
2.1.50.4. Multiple architectures now supported 39
2.1.51. Network Observability Operator 1.3.0 deprecated features 40
2.1.51.1. Channel deprecation 40
2.1.51.2. Deprecated configuration parameter setting 40
2.1.52. Network Observability Operator 1.3.0 fixed issues 40
2.1.53. Network Observability Operator 1.3.0 known issues 41
2.1.54. Network observability release notes 1.2.0 preparing for the next update 41
2.1.55. Network Observability Operator 1.2.0 advisory 41
2.1.56. Network Observability Operator 1.2.0 new features and enhancements 41
2.1.56.1. Histogram in Traffic Flows view 41
2.1.56.2. Conversation tracking 42
2.1.56.3. Network observability health alerts 42
2.1.57. Network Observability Operator 1.2.0 bug fixes 42
2.1.58. Network Observability Operator 1.2.0 known issues 42
2.1.59. Network Observability Operator 1.2.0 notable technical changes 43
2.1.60. Network Observability Operator 1.1.0 enhancements 43
2.1.61. Network Observability Operator 1.1.0 fixed issues 43
2.1.62. Additional resources 43
CHAPTER 3. ABOUT NETWORK OBSERV ABILITY .ttt ittt eit ettt eieenneraneennnenns 44
3.1. NETWORK OBSERVABILITY OPERATOR 44
3.2. OPTIONAL DEPENDENCIES OF THE NETWORK OBSERVABILITY OPERATOR 44
3.3. OPENSHIFT CONTAINER PLATFORM CONSOLE INTEGRATION 44
3.3.1. Network observability metrics dashboards 45
3.3.2. Network observability topology views 45
3.3.3. Traffic flow tables 45
3.4. NETWORK OBSERVABILITY CLI 46
CHAPTER 4. INSTALLING THE NETWORK OBSERVABILITY OPERATORiiiiiiiiii i, 47
4. NETWORK OBSERVABILITY WITHOUT LOKI 47
4.2. INSTALLING THE LOKI OPERATOR 48
4.2.1. Creating a secret for Loki storage 48
4.2.2. Creating a LokiStack custom resource 49
4.2.3. Creating a new group for the cluster-admin user role 50
4.2.4. Custom admin group access 51
4.2.5. Loki deployment sizing 52

OpenShift Container Platform 4.17 Network Observability

4.2.6. LokiStack ingestion limits and health alerts

4.3.INSTALLING THE NETWORK OBSERVABILITY OPERATOR

4.4, ENABLING MULTI-TENANCY IN NETWORK OBSERVABILITY

45. IMPORTANT FLOW COLLECTOR CONFIGURATION CONSIDERATIONS
4.5.1. Migrating removed stored versions of the FlowCollector CRD

4.6. INSTALLING KAFKA (OPTIONAL)

4.7. UNINSTALLING THE NETWORK OBSERVABILITY OPERATOR

CHAPTER 5. NETWORK OBSERVABILITY OPERATOR IN OPENSHIFT CONTAINER PLATFORM
5.1. VIEWING STATUSES
5.2.NETWORK OBSERVABLITY OPERATOR ARCHITECTURE
5.3. VIEWING NETWORK OBSERVABILITY OPERATOR STATUS AND CONFIGURATION

CHAPTER 6. CONFIGURING THE NETWORK OBSERVABILITY OPERATORccvvvnvennn.
6.1. VIEW THE FLOWCOLLECTOR RESOURCE
6.1.1. Example of a FlowCollector resource
6.1.1.1. Sample FlowCollector resource
6.2. CONFIGURING THE FLOWCOLLECTOR RESOURCE WITH KAFKA
6.3. EXPORT ENRICHED NETWORK FLOW DATA
6.4. UPDATING THE FLOWCOLLECTOR RESOURCE
6.5. FILTER NETWORK FLOWS AT INGESTION
6.5.1. eBPF agent filters
6.5.2. Flowlogs-pipeline filters
6.6. CONFIGURING QUICK FILTERS
6.7. RESOURCE MANAGEMENT AND PERFORMANCE CONSIDERATIONS
6.7.1. Resource considerations
6.7.2. Total average memory and CPU usage

CHAPTER 7. NETWORK POLICY . i e i ettt
7.1. CONFIGURING NETWORK POLICY BY USING THE FLOWCOLLECTOR CUSTOM RESOURCE

CHAPTER 8. OBSERVING THE NETWORK TRAFFIC ... ittt e e
8.1. OBSERVING THE NETWORK TRAFFIC FROM THE OVERVIEW VIEW
8.1.1. Working with the Overview view
8.1.2. Configuring advanced options for the Overview view
8.1.2.1. Managing panels and display
8.1.3. Packet drop tracking
8.1.3.1. Types of packet drops
8.1.4. DNS tracking
8.1.5. Round-Trip Time
8.1.6. eBPF flow rule filter
8.1.6.1. Ingress and egress traffic filtering
8.1.6.2. Dashboard and metrics integrations
8.1.6.3. Flow filter configuration parameters
8.1.7. User-defined networks
8.1.8. OVN-Kubernetes networking events
8.2. OBSERVING THE NETWORK TRAFFIC FROM THE TRAFFIC FLOWS VIEW
8.2.1. Working with the Traffic flows view
8.2.2. Configuring advanced options for the Traffic flows view
8.2.2.1. Managing columns
8.2.2.2. Exporting the traffic flow data
8.2.3. Configuring IPsec with the FlowCollector custom resource
8.2.4. Working with conversation tracking
8.2.5. Working with packet drops

52
53
54
55
55
57
57

59
59
60
62

63
63
63
63
65
66
68
68
68
68
69

71
72
73

75

77
77
77
77
78
78
78
79
80
80

81

81

81
83
83
84
84
85
85
85
85
86
87

Table of Contents

8.2.6. Working with DNS tracking 88
8.2.7. Working with RTT tracing 90
8.2.8. Working with the eBPF Manager Operator 91
8.2.9. Using the histogram 92
8.2.10. Working with availability zones 92
8.2.11. Filtering eBPF flow data using multiple rules 93
8.2.12. Endpoint translation (xlat) 95
8.2.13. Working with endpoint translation (xlat) 95
8.2.14. Working with user-defined networks 96
8.2.15. Viewing network events 97
8.3. OBSERVING THE NETWORK TRAFFIC FROM THE TOPOLOGY VIEW 99
8.3.1. Working with the Topology view 99
8.3.2. Configuring the advanced options for the Topology view 100
8.3.2.1. Exporting the topology view 100
8.4. FILTERING THE NETWORK TRAFFIC 100
CHAPTER 9. NETWORK OBSERVABILITY ALERTS ..ottt ettt et e eaneeenneeannens 103
9.1. ABOUT NETWORK OBSERVABILITY ALERTS 103
9.1.1. List of default alert templates 103
9.1.2. Network Health dashboard 104
9.2. ENABLING TECHNOLOGY PREVIEW ALERTS IN NETWORK OBSERVABILITY 104
9.2.1. Configuring predefined alerts 105
9.2.2. About the PromQL expression for alerts 105
9.2.2.1. An example query for an alert in a surge of incoming traffic 106
9.2.2.2. Alert metadata fields 107
9.2.3. Creating custom alert rules 108
9.2.4. Disabling predefined alerts 109
CHAPTER 10. USING METRICS WITH DASHBOARDS AND ALERTS ...ttt i iiinaens 110
10.1. VIEWING NETWORK OBSERVABILITY METRICS DASHBOARDS 110
10.2. NETWORK OBSERVABILITY METRICS 110
10.3. CREATING ALERTS 12
10.4. CUSTOM METRICS 13
10.5. CONFIGURING CUSTOM METRICS BY USING FLOWMETRIC API 13
10.6. CREATING METRICS FROM NESTED OR ARRAY FIELDS IN THE TRAFFIC FLOWS TABLE 15
10.7. CONFIGURING CUSTOM CHARTS USING FLOWMETRIC API n7
10.8. DETECTING SYN FLOODING USING THE FLOWMETRIC API AND TCP FLAGS 119
CHAPTER 11. MONITORING THE NETWORK OBSERVABILITY OPERATORiiiiiiiiiiiiiennnnn 122
11.1. HEALTH DASHBOARDS 122
1.2. HEALTH ALERTS 122
11.3. VIEWING HEALTH INFORMATION 122
11.3.1. Disabling health alerts 123
11.4. CREATING LOKI RATE LIMIT ALERTS FOR THE NETOBSERV DASHBOARD 123
11.5. USING THE EBPF AGENT ALERT 124
CHAPTER 12. SCHEDULING RESOURGCEStiiittttitttiitttiiteeaeeaneeeaneennneeaneeeaneennneenn 126
12.1. NETWORK OBSERVABILITY DEPLOYMENT IN SPECIFIC NODES 126
CHAPTER 13. SECONDARY NETWORKS ..ttt taeieeaeennneeaneenaneennneenn 128
13.1. PREREQUISITES 128
13.2. CONFIGURING MONITORING FOR SR-IOV INTERFACE TRAFFIC 128
13.3. CONFIGURING VIRTUAL MACHINE (VM) SECONDARY NETWORK INTERFACES FOR NETWORK
OBSERVABILITY 129

OpenShift Container Platform 4.17 Network Observability

CHAPTER 14. NETWORK OBSERVABILITY CLI 1\ttt ittt i eie e eeaeeeneeeaneennneenn 132
14.1. INSTALLING THE NETWORK OBSERVABILITY CLI 132
14.1.1. About the Network Observability CLI 132
14.1.2. Installing the Network Observability CLI 132
14.2. USING THE NETWORK OBSERVABILITY CLI 133
14.2.1. Capturing flows 133
14.2.2. Capturing packets 135
14.2.3. Capturing metrics 135
14.2.4. Cleaning the Network Observability CLI 136
14.3. NETWORK OBSERVABILITY CLI (OC NETOBSERV) REFERENCE 136
14.3.1. Network Observability CLI usage 136
14.3.1.1. Syntax 137
14.3.1.2. Basic commands 137
14.3.1.3. Flows capture options 137
14.3.1.4. Packets capture options 140
14.3.1.5. Metrics capture options 141
CHAPTER 15. FLOWCOLLECTOR APIREFERENCEttt tii e e eaneeenneennnens 144
15.1. FLOWCOLLECTOR API SPECIFICATIONS 144
15.1.1. .metadata 145
15.1.2. .spec 145
15.1.3. .spec.agent 147
15.1.4. .spec.agent.ebpf 147
15.1.5. .spec.agent.ebpf.advanced 151
15.1.6. .spec.agent.ebpf.advanced.scheduling 151
15.1.7. .spec.agent.ebpf.advanced.scheduling.affinity 152
15.1.8. .spec.agent.ebpf.advanced.scheduling.tolerations 152
15.1.9. .spec.agent.ebpf.flowFilter 153
15.1.10. .spec.agent.ebpf.flowFilter.rules 155
15.1.11. .spec.agent.ebpf.flowFilter.rules[] 155
15.1.12. .spec.agent.ebpf.metrics 158
15.1.13. .spec.agent.ebpf.metrics.server 158
15.1.14. .spec.agent.ebpf.metrics.server.tls 159
15.1.15. .spec.agent.ebpf.metrics.server.tls.provided 159
15.1.16. .spec.agent.ebpf.metrics.server.tls.providedCaFile 160
15.1.17. .spec.agent.ebpf.resources 161
15.1.18. .spec.consolePlugin 161
15.1.19. .spec.consolePlugin.advanced 163
15.1.20. .spec.consolePlugin.advanced.scheduling 164
15.1.21. .spec.consolePlugin.advanced.scheduling.affinity 165
15.1.22. .spec.consolePlugin.advanced.scheduling.tolerations 165
15.1.23. .spec.consolePlugin.autoscaler 165
15.1.24. .spec.consolePlugin.portNaming 165
15.1.25. .spec.consolePlugin.quickFilters 166
15.1.26. .spec.consolePlugin.quickFilters[] 166
15.1.27. .spec.consolePlugin.resources 167
15.1.28. .spec.exporters 167
15.1.29. .spec.exporters|[] 167
15.1.30. .spec.exporters[].ipfix 168
15.1.31. .spec.exporters[].kafka 169
15.1.32. .spec.exporters[].kafka.sasl 169
15.1.33. .spec.exporters[].kafka.sasl.clientiIDReference 170
15.1.34. .spec.exporters[].kafka.sasl.clientSecretReference 170

15.1.35.
15.1.36.
15.1.37.
15.1.38.
15.1.39.

spec.exporters[].kafka.tls
spec.exporters[].kafka.tls.caCert
.spec.exporters[].kafka.tls.userCert
.spec.exporters[].openTelemetry
.spec.exporters[].openTelemetry.fieldsMapping

15.1.40. .spec.exporters[].openTelemetry.fieldsMapping[]

15.1.41.

.spec.exporters[].openTelemetry.logs

15.1.42. .spec.exporters[].openTelemetry.metrics

15.1.43.
15.1.44.
15.1.45.
15.1.46.
15.1.47.
15.1.48.
15.1.49.
15.1.50.

15.1.51.

15.1.52.
15.1.53.
15.1.54.
15.1.55.
15.1.56.
15.1.57.
15.1.58.
15.1.59.

.spec.exporters[].openTelemetry.tls
.spec.exporters[].openTelemetry.tls.caCert
.spec.exporters[].openTelemetry.tls.userCert
.spec.kafka
.spec.kafka.sasl
spec.kafka.sasl.clientiDReference
.spec.kafka.sasl.clientSecretReference
.spec.kafka.tls
.spec.kafka.tls.caCert
.spec.kafka.tls.userCert

.spec.loki

.spec.loki.advanced

.spec.loki.lokiStack

.spec.loki.manual
.spec.loki.manual.statusTls
.spec.loki.manual.statusTls.caCert
.spec.loki.manual.statusTls.userCert

15.1.60. .spec.loki.manual.tls

15.1.61.

15.1.62.

15.1.63

15.1.64.
15.1.65.
15.1.66.
15.1.67.
15.1.68.
15.1.69.
15.1.70.

15.1.71.
15.1.72.

15.1.73.
15.1.74.
15.1.75.
15.1.76.

15.1.77.

15.1.78.
15.1.79.
15.1.80.

15.1.81.

15.1.82.
15.1.83.
15.1.84.
15.1.85.
15.1.86.
15.1.87.

.spec.loki.manual.tls.caCert
.spec.loki.manual.tls.userCert

. .spec.loki.microservices
.spec.loki.microservices.tls
.spec.loki.microservices.tls.caCert
.spec.loki.microservices.tls.userCert
.spec.loki.monolithic

.spec.loki.monolithic.tls
.spec.loki.monolithic.tls.caCert
.spec.loki.monolithic.tls.userCert
.spec.networkPolicy

.spec.processor

.spec.processor.advanced
.spec.processor.advanced.scheduling
.spec.processor.advanced.scheduling.affinity
.spec.processor.advanced.scheduling.tolerations
.spec.processor.advanced.secondaryNetworks
.spec.processor.advanced.secondaryNetworks[]
.spec.processor.deduper
.spec.processor.filters

.spec.processor.filters[]
.spec.processor.kafkaConsumerAutoscaler
.spec.processor.metrics
.spec.processor.metrics.alerts
.spec.processor.metrics.alerts[]
.spec.processor.metrics.alerts[].variants
.spec.processor.metrics.alerts[].variants[]

Table of Contents

171
171
172
173
174
174
174
175
175
176
176
177
178
178
179
179
180
181
182
184
184
185
187
187
188
189
189
190
191
191
192
193
194
194
195
195
196
197
200
202
203
203
203
203
204
205
205
206
206
208
209
209
209

OpenShift Container Platform 4.17 Network Observability

15.1.88. .spec.processor.metrics.alerts[].variants[].thresholds 210
15.1.89. .spec.processor.metrics.server 21
15.1.90. .spec.processor.metrics.server.tls 21
15.1.91. .spec.processor.metrics.server.tls.provided 212
15.1.92. .spec.processor.metrics.server.tls.providedCaFile 213
15.1.93. .spec.processor.resources 213
15.1.94. spec.processor.subnetlLabels 214
15.1.95. .spec.processor.subnetlLabels.customLabels 215
15.1.96. .spec.processor.subnetlLabels.customlLabels[] 215
15.1.97. .spec.prometheus 216
15.1.98. .spec.prometheus.querier 216
15.1.99. .spec.prometheus.querier.manual 217
15.1.100. .spec.prometheus.querier.manual.tls 218
15.1.101. .spec.prometheus.querier.manual.tls.caCert 218
15.1.102. .spec.prometheus.querier.manual.tls.userCert 219
CHAPTER 16. FLOWMETRIC CONFIGURATION PARAMETERS ... ittt e iiieennnenns 221
16.1. FLOWMETRIC [FLOWS.NETOBSERV.IO/VIALPHAT] 221
16.1.1. .metadata 222
16.1.2. .spec 222
16.1.3. .spec.charts 225
16.1.4. .spec.charts[] 225
16.1.5. .spec.charts[].queries 226
16.1.6. .spec.charts[].queries[] 226
16.1.7. .spec filters 227
16.1.8. .spec.filters[] 228
CHAPTER 17.NETWORK FLOWS FORMAT REFERENCEttt et ieieaieennneennnns 229
17.1. NETWORK FLOWS FORMAT REFERENCE 229
CHAPTER 18. TROUBLESHOOTING NETWORK OBSERVABILITY ..ottt iii i, 236
18.1. USING THE MUST-GATHER TOOL 236
18.2. CONFIGURING NETWORK TRAFFIC MENU ENTRY IN THE OPENSHIFT CONTAINER PLATFORM
CONSOLE 236
18.3. FLOWLOGS-PIPELINE DOES NOT CONSUME NETWORK FLOWS AFTER INSTALLING KAFKA 238
18.4. FAILING TO SEE NETWORK FLOWS FROM BOTH BR-INT AND BR-EX INTERFACES 238
18.5. NETWORK OBSERVABILITY CONTROLLER MANAGER POD RUNS OUT OF MEMORY 239
18.6. RUNNING CUSTOM QUERIES TO LOKI 240
18.7. TROUBLESHOOTING LOKI RESOURCEEXHAUSTED ERROR 240
18.8. LOKI EMPTY RING ERROR 241
18.9. RESOURCE TROUBLESHOOTING 241
18.10. LOKISTACK RATE LIMIT ERRORS 241
18.11. RUNNING A LARGE QUERY RESULTS IN LOKI ERRORS 242

Table of Contents

OpenShift Container Platform 4.17 Network Observability

CHAPTER 1. NETWORK OBSERVABILITY OPERATOR RELEASE
NOTES

The Network Observability Operator enables administrators to observe and analyze network traffic flows
for OpenShift Container Platform clusters.

These release notes track the development of the Network Observability Operator in the OpenShift
Container Platform.

For an overview of the Network Observability Operator, see About network observability.

1.1. NETWORK OBSERVABILITY OPERATOR 1.10.1 ADVISORY

You can review the advisory for Network Observability Operator 1.10.1 release.

® RHEA-2025:22761 Network Observability Operator 1.10.1

1.2. NETWORK OBSERVABILITY OPERATOR 1.10.1 CVES

You can review the CVEs for the Network Observability Operator 1.10.1 release.

e CVE-2025-47907

1.3. NETWORK OBSERVABILITY OPERATOR 1.10.1 FIXED ISSUES

The Network Observability Operator 1.10.1 release contains several fixed issues that improve
performance and the user experience.

Warning Generated for Direct Mode on Clusters Over 15 Nodes

Before this update, the recommendation against using the Direct deployment model on large
clusters was only available in the documentation.

With this release, the Network Observability Operator now generates a warning when the Direct
deployment mode is used on a cluster exceeding 15 nodes.

NETOBSERV-2460

Network policy deployment disabled on OpenShiftSDN

Before this update, when OpenShift SDN was the cluster network plugin, enabling the
FlowCollector network policy would break communication between network observability pods. This
issue does not occur with OVN-Kubernetes, which is the default supported network plugin.

With this release, the Network Observability Operator no longer attempts to deploy the network
policy when OpenShift SDN is detected; a warning is displayed instead. Additionally, the default
value for enabling the network policy is modified: it is now enabled by default only when OVN-
Kubernetes is detected as the cluster network plugin.

NETOBSERV-2450

Validation added for subnet label characters

Before this update, there were no restrictions on characters allowed in the subnet labels "name”
configuration, meaning users could enter text containing spaces or special characters. This
generated errors in the web console plugin when users tried to apply filters, and clicking the filter
icon for a subnet label often failed.

10

https://access.redhat.com/errata/RHEA-2025:22761
https://access.redhat.com/security/cve/cve-2025-47907
https://issues.redhat.com/browse/NETOBSERV-2460
https://issues.redhat.com/browse/NETOBSERV-2450

CHAPTER 1. NETWORK OBSERVABILITY OPERATOR RELEASE NOTES

With this release, the configured subnet label name is validated immediately when configured in the
FlowCollector custom resource. The validation ensures the name contains only alphanumeric
characters, :, _, and -. As a result, filtering on subnet labels from the web console plugin now works as
expected.

NETOBSERV-2438

Network Observability CLI uses unique temporary directory per run

Before this update, the Network Observability CLI created or reused a single temporary (tmp)

directory in the current working directory. This could lead to conflicts or data corruption between
separate runs.

With this release, the Network Observability CLI now creates a unique temporary directory for each
run, preventing potential conflicts and improving file management hygiene.

NETOBSERV-2481

1.4. NETWORK OBSERVABILITY OPERATOR 1.10 ADVISORY

Review the advisory that is available for the Network Observability Operator 1.10:

® RHEA-2025:19153 Network Observability Operator 1.10

1.5. NETWORK OBSERVABILITY OPERATOR 1.10 NEW FEATURES AND
ENHANCEMENTS

The Network Observability Operator 1.10 release enhances security, improves performance, and
introduces new CLI Ul tools for better network flow management.

1.5.1. Network policy updates

The Network Observability Operator now supports configuring both ingress and egress network policies
to control pod traffic. This enhancement improves security.

By default, the spec.NetworkPolicy.enable specification is now set to true. This means that if you use
Loki or Kafka, it is recommended that you deploy the Loki Operator and Kafka instances into dedicated
namespaces. This ensures that the network policies can be configured correctly to allow communication
between all components.

1.5.2. Network Observability Operator CLI Ul updates

This release brings the following new features and updates to the Network Observability Operator CLI
(oc netobserv) user interface (Ul):

Table view enhancements

® Customizable columns: Click Manage Columns to select which columns to display, and tailor the
table to your needs.

® Smart filtering: Live filters now include auto-suggestions, making it easier to select the right
keys and values.

® Packet preview: When capturing packets, click a row to inspect the pcap content directly.

1

https://issues.redhat.com/browse/NETOBSERV-2438
https://issues.redhat.com/browse/NETOBSERV-2481
https://access.redhat.com/errata/RHEA-2025:19153

OpenShift Container Platform 4.17 Network Observability

Terminal-based line charts enhancements
® Metrics visualization: Real-time graphs are rendered directly in the CLI.

® Panel selection: Choose from predefined views or customize views by using the Manage Panels
pop-up menu to selectively view charts of specific metrics.

1.5.3. Network observability console improvements

The network observability console plugin includes a new view to configure the FlowCollector custom
resource (CR). From this view, you can complete the following tasks:

e Configure the FlowCollector CR.
e Calculate your resource footprint.

® Gainincreased of issues such as configuration warnings or high metrics cardinality.

1.5.4. Performance improvements

Network Observability Operator 1.10 has improved the performance and memory footprint of the
Operator, especially visible on large clusters.

1.6. NETWORK OBSERVABILITY OPERATOR 1.10 TECHNOLOGY
PREVIEW FEATURES

1.6.1. Network Observability Operator custom alerts (Technology Preview)

This release introduces new alert functionality, and custom alert configuration. These capabilities are
Technology Preview features, and must be explicitly enabled.

To view the new alerts, in the OpenShift Container Platform web console, click Observe — Alerting —
Alerting rules.

1.6.2. Network Observability Operator Network Health dashboard (Technology
Preview)

When you enable the Technology Preview alerts functionality in the Network Observability Operator, you
can view a a new Network Health dashboard in the OpenShift Container Platform web console by
clicking Observe.

The Network Health dashboard provides a summary of triggered alerts, distinguishing between critical,
warning, and minor issues, and also shows pending alerts.

1.7.NETWORK OBSERVABILITY OPERATOR 1.10 REMOVED FEATURES

Review the removed features that might affect your use of the Network Observability Operator 1.10
release.

1.7.1. FlowCollector API version vibetal has been removed

The FlowCollector custom resource (CR) APl version vibetal has been removed and is no longer
supported. Use the vibeta2 version.

12

CHAPTER 1. NETWORK OBSERVABILITY OPERATOR RELEASE NOTES

1.8. NETWORK OBSERVABILITY OPERATOR 1.10 KNOWN ISSUES

Review the following known issues and their recommended workarounds (where available) that might
affect your use of the Network Observability Operator 110 release.

1.8.1. Upgrading to 1.10 fails on OpenShift Container Platform 4.14 and earlier

Upgrading to the Network Observability Operator 1.10 on OpenShift Container Platform 4.14 and earlier
can fail due to a FlowCollector custom resource definition (CRD) validation error in the software

catalog.

To workaround this problem, you must:

1.

6.

Uninstall both versions of the Network Observability Operator from the software catalog in the
OpenShift Container Platform web console.

a. Keep the FlowCollector CRD installed so that it doesn’t cause any disruption in the flow
collection process.

Check the current name of the FlowCollector CRD by running the following command:

I $ oc get crd flowcollectors.flows.netobserv.io -0 jsonpath="{.spec.versions[0].name}'
Expected output:

I vibetal

Check the current serving status of the FlowCollector CRD by running the following command:
I $ oc get crd flowcollectors.flows.netobserv.io -0 jsonpath="{.spec.versions[0].served}'
Expected output:

I true

Set the served flag for the vibeta1 version to false by running the following command:

$ oc patch crd flowcollectors.flows.netobserv.io --type='json' -p "[{'op": 'replace’, 'path":
'/spec/versions/0/served’, 'value': false}]"

Verify that the served flag is set to false by running the following command:
I $ oc get crd flowcollectors.flows.netobserv.io -0 jsonpath="{.spec.versions[0].served}'
Expected output:

I false

Install Network Observability Operator 1.10.

OCPBUGS-63208, NETOBSERV-2451

13

https://issues.redhat.com/browse/OCPBUGS-63208
https://issues.redhat.com/browse/NETOBSERV-2451

OpenShift Container Platform 4.17 Network Observability

1.8.2. eBPF agent compatibility with older OpenShift Container Platform versions

The eBPF agent used in the Network Observability Command Line Interface (CLI) packet capture
feature is incompatible with OpenShift Container Platform versions 4.16 and older.

This limitation prevents the eBPF-based Packet Capture Agent (PCA) from functioning correctly on
those older clusters.

To work around this problem, you must manually configure PCA to use an older, compatible eBPF agent
container image. For more information, see the Red Hat Knowledgebase Solution eBPF agent
compatibility with older Openshift versions in Network Observability CLI 1.10+.

NETOBSERV-2358

1.8.3. eBPF Agent fails to send flows with OpenShiftSDN when NetworkPolicy is
enabled

When running Network Observability Operator 1.10 on OpenShift Container Platform 4.14 clusters that
use the OpenShiftSDN CNI plugin, the eBPF agent is unable to send flow records to the flowlogs-
pipeline component. This occurs when the FlowCollector custom resource is created with
NetworkPolicy enabled (spec.networkPolicy.enable: true).

As a consequence, flow data is not processed by the flowlogs-pipeline component and does not appear
in the Network Traffic dashboard or the configured storage (Loki). The eBPF agent pod logs show i/o
timeout errors when attempting to connect to the collector:

time="2025-10-17T13:53:44Z" level=error msg="couldn't send flow records to collector"
collector="10.0.68.187:2055" component=exporter/GRPCProto error="rpc error: code = Unavailable
desc = connection error: desc = \"transport: Error while dialing: dial tcp 10.0.68.187:2055: i/o
timeout\""

To work around this problem, set spec.networkPolicy.enable to false to disable NetworkPolicy in the
FlowCollector resource for Network Observability Operator 1.10.

This will allow the eBPF agent to communicate with the flowlogs-pipeline component without
interference from the automatically deployed network policy.

NETOBSERV-2450

1.9. NETWORK OBSERVABILITY OPERATOR 1.10 FIXED ISSUES

The Network Observability Operator 1.10 release contains several fixed issues that improve performance
and the user experience.
1.9.1. MetricName and Remap fields are validated

Before this update, users could create a FlowMetric custom resource (CR) with an invalid metric name.
Although the FlowMetric CR was successfully created, the underlying metric would fail silently without
providing any error feedback to the user.

With this release, the FlowMetric, metricName, and remap fields are now validated before creation, so
users are immediately notified if they enter an invalid name.

NETOBSERV-2348

14

https://access.redhat.com/solutions/7132671
https://issues.redhat.com/browse/NETOBSERV-2358
https://issues.redhat.com/browse/NETOBSERV-2450
https://issues.redhat.com/browse/NETOBSERV-2348

CHAPTER 1. NETWORK OBSERVABILITY OPERATOR RELEASE NOTES

1.9.2. Improved html-to-image export performance

Before this update, performance issues in the underlying library caused the html-to-image export
function to take a long time, leading to browser freezing.

With this release, the performance of the html-to-image library has been improved, reducing export wait
times and eliminating browser freezing during image generation.

NETOBSERV-2314

1.9.3. Improved warnings for eBPF privileged mode

Before this update, when users selected eBPF features that require privileged mode, the features
would often fail without clearly informing the user that privileged mode was missing or needed to be
enabled.

With this release, a validation hook immediately warns the user if the configuration is inconsistent. This
improves user understanding and prevents misconfiguration.

NETOBSERV-2268

1.9.4. Subnet labels added to OpenTelemetry exporter

Before this update, the OpenTelemetry metrics exporter was missing the network flow labels
SrcSubnetLabel and DstSubnetLabel, causing them to show as empty.

With this release, these labels are now correctly provided by the exporter. They have also been renamed
to source.subnet.label and destination.subnet.label for improved clarity and consistency with
OpenTelemetry standards.

NETOBSERV-2405

1.9.5. Reduced default tolerations for network observability components

Before this update, a default toleration was set on all network observability components to allow them to
be scheduled on any node, including those tainted with NoSchedule. This could potentially block cluster
upgrades.

With this release, the default toleration is now only maintained for the eBPF agents and the Flowlogs-
Pipeline when configured in Direct mode. The toleration has been removed from the OpenShift
Container Platform web console plugin and the Flowlogs-Pipeline when configured in Kafka mode.

Additionally, while tolerations were always configurable in the FlowCollector custom resource (CR), it
was previously impossible to replace the tolerations with an empty list. It is now possible to replace the

tolerations with an empty list.

NETOBSERV-2434

15

https://issues.redhat.com/browse/NETOBSERV-2314
https://issues.redhat.com/browse/NETOBSERV-2268
https://issues.redhat.com/browse/NETOBSERV-2405
https://issues.redhat.com/browse/NETOBSERV-2434

OpenShift Container Platform 4.17 Network Observability

CHAPTER 2. NETWORK OBSERVABILITY OPERATOR
RELEASE NOTES ARCHIVE

2.1.NETWORK OBSERVABILITY OPERATOR RELEASE NOTES
ARCHIVE

These release notes track past developments of the Network Observability Operator in the OpenShift
Container Platform. They are for reference purposes only.

The Network Observability Operator enables administrators to observe and analyze network traffic flows
for OpenShift Container Platform clusters.
2.1.1. Network Observability Operator 1.9.3 advisory

The following advisory is available for the Network Observability Operator 1.9.3:

® RHEA-2025:15780 Network Observability Operator 1.9.3

2.1.2. Network Observability Operator 1.9.2 advisory
The following advisory is available for the Network Observability Operator 1.9.2:

® RHEA-2025:14150 Network Observability Operator 1.9.2

2.1.3. Network observability 1.9.2 bug fixes

® Before this update, OpenShift Container Platform versions 4.15 and earlier did not support the
TC_ATTACH_MODE configuration. This led to command-line interface (CLI) errors and
prevented the observation of packets and flows. With this release, the Traffic Control eXtension
(TCX) hook attachment mode has been adjusted for these older versions. This eliminates tex
hook errors and enables flow and packet observation.

2.1.4. Network Observability Operator 1.9.1 advisory
You can review the advisory for the Network Observability Operator 1.9.1 release.
The following advisory is available for the Network Observability Operator 1.9.1:

® 2025:12024 Network Observability Operator 1.9.1

2.1.5. Network Observability Operator 1.9.1 fixed issues

You can review the fixed issues for the Network Observability Operator 1.9.1 release.

® Before this update, network flows were not observed on OpenShift Container Platform 4.15 due
to anincorrect attach mode setting. This stopped users from monitoring network flows
correctly, especially with certain catalogs. With this release, the default attach mode for
OpenShift Container Platform versions older than 4.16.0 is set to te, so flows are now observed
on OpenShift Container Platform 4.15. (NETOBSERV-2333)

e Before this update, if an IPFIX collector restarted, configuring an IPFIX exporter could lose its

connection and stop sending network flows to the collector. With this release, the connection is
restored, and network flows continue to be sent to the collector. (NETOBSERV-2315)

16

https://access.redhat.com/errata/RHEA-2025:15780
https://access.redhat.com/errata/RHEA-2025:14150
https://access.redhat.com/errata/RHEA-2025:12024
https://issues.redhat.com/browse/NETOBSERV-2333
https://issues.redhat.com/browse/NETOBSERV-2315

CHAPTER 2. NETWORK OBSERVABILITY OPERATOR RELEASE NOTES ARCHIVE

e Before this update, when you configured an IPFIX exporter, flows without port information (such
as ICMP traffic) were ignored, which caused errors in logs. TCP flags and ICMP data were also
missing from IPFIX exports. With this release, these details are now included. Missing fields (like
ports) no longer cause errors and are part of the exported data. (NETOBSERV-2307)

e Before this update, the User Defined Networks (UDN) Mapping feature showed a configuration
issue and warning on OpenShift Container Platform 4.18 because the OpenShift version was
incorrectly set in the code. This impacted the user experience. With this release, UDN Mapping
now supports OpenShift Container Platform 4.18 without warnings, making the user experience
smooth. (NETOBSERV-2305)

e Before this update, the expand function on the Network Traffic page had compatibility
problems with OpenShift Container Platform Console 4.19. This resulted in empty menu space
when expanding and an inconsistent user interface. With this release, the compatibility problem
in the NetflowTraffic part and theme hook is resolved. The side menu in the Network Traffic

view is now properly managed, which improves how you interact with the user interface.
(NETOBSERV-2304)

2.1.6. Network Observability Operator 1.9.0 advisory

You can review the advisory for the Network Observability Operator 1.9.0 release.

® Network Observability Operator 1.9

2.1.7. Network Observability Operator 1.9.0 new features and enhancements

You can review the new features and enhancements for the Network Observability Operator 1.9.0
release.

2.1.7.1. User-defined networks with network observability

With this release, user-defined networks (UDN) feature is generally available with network observability.
When the UDNMapping feature is enabled in network observability, the Traffic flow table hasa UDN
labels column. You can filter logs on Source Network Nameand Destination Network Name
information.

2.1.7.2. Filter flowlogs at ingestion

With this release, you can create filters to reduce the number of generated network flows and the
resource usage of network observability components. The following filters can be configured:

® eBPF Agent filters

® Flowlogs-pipeline filters

2.1.7.3. IPsec support

This update brings the following enhancements to network observability when IPsec is enabled on
OpenShift Container Platform:

® A new column named IPsec Status is displayed in the network observability Traffic flows view to
show whether a flow was successfully IPsec-encrypted or if there was an error during

encryption/decryption.

® A new dashboard showing the percentage of encrypted traffic is generated.

17

https://issues.redhat.com/browse/NETOBSERV-2307
https://issues.redhat.com/browse/NETOBSERV-2305
https://issues.redhat.com/browse/NETOBSERV-2304
https://access.redhat.com/errata/RHSA-2025:10020
https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/multiple_networks/#understanding-multiple-networks

OpenShift Container Platform 4.17 Network Observability

2.1.7.4. Network Observability CLI

The following filtering options are now available for packets, flows, and metrics capture:
e Configure the ratio of packets being sampled by using the --sampling option.
e Filter flows using a custom query by using the --query option.
® Specify interfaces to monitor by using the --interfaces option.
e Specify interfaces to exclude by using the --exclude_interfaces option.
® Specify metric names to generate by using the --include_list option.

For more information, see:

® Network Observability CLI reference

2.1.8. Network Observability Operator release notes 1.9.0 notable technical changes

You can review the notable technical changes for the Network Observability Operator 1.6.0 release.

® The NetworkEvents feature in network observability 1.9 has been updated to work with the

newer Linux kernel of OpenShift Container Platform 4.19. This update breaks compatibility with
older kernels. As a result, the NetworkEvents feature can only be used with OpenShift
Container Platform 4.19. If you are using this feature with network observability 1.8 and
OpenShift Container Platform 4.18, consider avoiding a network observability upgrade or
upgrade to network observability 1.9 and OpenShift Container Platform to 4.19.

® The netobserv-reader cluster role has been renamed to netobserv-loki-reader.

® Improved CPU performance of the eBPF agents.

2.1.9. Network Observability Operator 1.9.0 Technology Preview features

You can review the Technology Preview features for the Network Observability Operator 1.9.0 release.

Some features in this release are currently in Technology Preview. These experimental features are not
intended for production use. Note the following scope of support on the Red Hat Customer Portal for
these features:

Technology Preview Features Support Scope

2.1.9.1. eBPF Manager Operator with network observability

The eBPF Manager Operator reduces the attack surface and ensures compliance, security, and conflict
prevention by managing all eBPF programs. Network observability can use the eBPF Manager Operator
to load hooks. This eliminates the need to provide the eBPF Agent with privileged mode or additional
Linux capabilities like CAP_BPF and CAP_PERFMON. The eBPF Manager Operator with network

observability is only supported on 64-bit AMD architecture.

2.1.10. Network Observability Operator 1.9.0 CVEs

You can review the CVEs for the Network Observability Operator 1.9.0 release.

18

https://access.redhat.com/support/offerings/techpreview

CHAPTER 2. NETWORK OBSERVABILITY OPERATOR RELEASE NOTES ARCHIVE

CVE-2025-26791

2.1.11. Network Observability Operator 1.9.0 fixed issues

You can review the fixed issues for the Network Observability Operator 1.9.0 release.

Previously, when filtering by source or destination IP from the console plugin, using a Classless
Inter-Domain Routing (CIDR) notation such as 10.128.0.0/24 did not work, returning results that
should be filtered out. With this update, it is now possible to use a CIDR notation, with the results
being filtered as expected. (NETOBSERV-2276)

Previously, network flows might have incorrectly identified the network interfaces in use,
especially with a risk of mixing up eth0 and ens5. This issue only occurred when the eBPF
agents were configured as Privileged. With this update, it has been fixed partially, and almost all
network interfaces are correctly identified. Refer to the known issues below for more details.
(NETOBSERV-2257)

Previously, when the Operator checked for available Kubernetes APIs in order to adapt its
behavior, if there was a stale API, this resulted in an error that prevented the Operator from
starting normally. With this update, the Operator ignores error on unrelated APlIs, logs errors on
related APIs, and continues to run normally. (NETOBSERV-2240)

Previously, users could not sort flows by Bytes or Packets in the Traffic flows view of the
Console plugin. With this update, users can sort flows by Bytes and Packets. (NETOBSERV-
2239)

Previously, when configuring the FlowCollector resource with an IPFIX exporter, MAC
addresses in the IPFIX flows were truncated to their 2 first bytes. With this update, MAC
addresses are fully represented in the IPFIX flows. (NETOBSERV-2208)

Previously, some of the warnings sent from the Operator validation webhook could lack clarity
on what needed to be done. With this update, some of these messages have been reviewed and
amended to make them more actionable. (NETOBSERV-2178)

Previously, it was not obvious to figure out there was an issue when referencing a LokiStack
from the FlowCollector resource, such as in case of typing error. With this update, the
FlowCollector status clearly states that the referenced LokiStack is not found in that case.
(NETOBSERV-2174)

Previously, in the console plugin Traffic flows view, in case of text overflow, text ellipses
sometimes hid much of the text to be displayed. With this update, it displays as much text as
possible. (NETOBSERV-2119)

Previously, the console plugin for network observability 1.8.1 and earlier did not work with the
OpenShift Container Platform 4.19 web console, making the Network Traffic page inaccessible.
With this update, the console plugin is compatible and the Network Traffic page is accessible in
network observability 1.9.0. (NETOBSERV-2046)

Previously, when using conversation tracking (logTypes: Conversations or logTypes: All in
the FlowCollector resource), the Traffic rates metrics visible in the dashboards were flawed,
wrongly showing an out-of-control increase in traffic. Now, the metrics show more accurate
traffic rates. However, note that in Conversations and EndedConversations modes, these
metrics are still not completely accurate as they do not include long-standing connections. This
information has been added to the documentation. The default mode logTypes: Flows is
recommended to avoid these inaccuracy. (NETOBSERV-1955)

19

https://access.redhat.com/security/cve/CVE-2025-26791
https://issues.redhat.com/browse/NETOBSERV-2276
https://issues.redhat.com/browse/NETOBSERV-2257
https://issues.redhat.com/browse/NETOBSERV-2240
https://issues.redhat.com/browse/NETOBSERV-2239
https://issues.redhat.com/browse/NETOBSERV-2208
https://issues.redhat.com/browse/NETOBSERV-2178
https://issues.redhat.com/browse/NETOBSERV-2174
https://issues.redhat.com/browse/NETOBSERV-2119
https://issues.redhat.com/browse/NETOBSERV-2046
https://issues.redhat.com/browse/NETOBSERV-1955

OpenShift Container Platform 4.17 Network Observability

2.1.12. Network Observability Operator 1.9.0 known issues

You can review the known issues for the Network Observability Operator 1.9.0 release.
® The user-defined network (UDN) feature displays a configuration issue and a warning when
used with OpenShift Container Platform 4.18, even though it is supported. This warning can be
ignored. (NETOBSERV-2305)

® |nsome rare cases, the eBPF agent is unable to appropriately correlate flows with the involved
interfaces when running in privileged modes with several network namespaces. A large part of
these issues have been identified and resolved in this release, but some inconsistencies remain,
especially with the ens5 interface. (NETOBSERV-2287)

2.1.13. Network Observability Operator 1.8.1 advisory

You can review the advisory for the Network Observability Operator 1.8.1 release.

Network Observability Operator 1.8.1

2.1.14. Network Observability Operator 1.8.1 CVEs

You can review the CVEs for the Network Observability Operator 1.8.1 release.
e CVE-2024-56171

e CVE-2025-24928

2.1.15. Network Observability Operator 1.8.1 fixed issues

You can review the fixed issues for the Network Observability Operator 1.8.1 release.

® This fix ensures that the Observe menu appears only once in future versions of OpenShift
Container Platform. (NETOBSERV-2139)

2.1.16. Network Observability Operator 1.8.0 advisory

You can review the advisory for the Network Observability Operator 1.8.0 release.

® Network Observability Operator 1.8.0

2.1.17. Network Observability Operator 1.8.0 new features and enhancements

You can review the new features and enhancements for the Network Observability Operator 1.8.0
release.

2.1.17.1. Packet translation

You can now enrich network flows with translated endpoint information, showing not only the service
but also the specific backend pod, so you can see which pod served a request.

For more information, see:
® Endpoint translation (xlat)

® Working with endpoint translation (xlat)

20

https://issues.redhat.com/browse/NETOBSERV-2305
https://issues.redhat.com/browse/NETOBSERV-2287
https://access.redhat.com/errata/RHSA-2025:3867
https://access.redhat.com/security/cve/CVE-2024-56171
https://access.redhat.com/security/cve/CVE-2025-24928
https://issues.redhat.com/browse/NETOBSERV-2139
https://access.redhat.com/errata/RHEA-2025:1940

CHAPTER 2. NETWORK OBSERVABILITY OPERATOR RELEASE NOTES ARCHIVE

2.1.17.2. OVN-Kubernetes networking events tracking

IMPORTANT

OVN-Kubernetes networking events tracking is a Technology Preview feature only.
Technology Preview features are not supported with Red Hat production service level
agreements (SLAs) and might not be functionally complete. Red Hat does not
recommend using them in production. These features provide early access to upcoming
product features, enabling customers to test functionality and provide feedback during
the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope.

You can now use network event tracking in network observability to gain insight into OVN-Kubernetes
events, including network policies, admin network policies, and egress firewalls.

For more information, see:

® Viewing network events

2.1.17.3. eBPF performance improvements in 1.8

® Network observability now uses hash maps instead of per-CPU maps. This means that network
flows data is now tracked in the kernel space and new packets are also aggregated there. The
de-duplication of network flows can now occur in the kernel, so the size of data transfer
between the kernel and the user spaces yields better performance. With these eBPF
performance improvements, there is potential to observe a CPU resource reduction between
40% and 57% in the eBPF Agent.

2.1.17.4. Network Observability CLI

The following new features, options, and filters are added to the Network Observability CLI for this
release:

e Capture metrics with filters enabled by running the oc netobserv metrics command.

® Run the CLIin the background by using the --background option with flows and packets
capture and running oc netobserv follow to see the progress of the background run and oc
netobserv copy to download the generated logs.

e Enrich flows and metrics capture with Machines, Pods, and Services subnets by using the --get-
subnets option.

e New filtering options available with packets, flows, and metrics capture:

o eBPF filters on IPs, Ports, Protocol, Action, TCP Flags and more
o Custom nodes using --node-selector

o Drops only using --drops

o Any field using --regexes

For more information, see:

21

https://access.redhat.com/support/offerings/techpreview/

OpenShift Container Platform 4.17 Network Observability

Network Observability CLI reference

2.1.18. Network Observability Operator release notes 1.8.0 fixed issues

You can review the fixed issues for the Network Observability Operator 1.8.0 release.

22

Previously, the Network Observability Operator came with a "kube-rbac-proxy" container to
manage RBAC for its metrics server. Since this external component is deprecated, it was
necessary to remove it. It is now replaced with direct TLS and RBAC management through
Kubernetes controller-runtime, without the need for a side-car proxy. (NETOBSERV-1999)

Previously in the OpenShift Container Platform console plugin, filtering on a key that was not
equal to multiple values would not filter anything. With this fix, the expected results are
returned, which is all flows not having any of the filtered values. (NETOBSERV-1990)

Previously in the OpenShift Container Platform console plugin with disabled Loki, it was very
likely to generate a "Can't build query” error due to selecting an incompatible set of filters and
aggregations. Now this error is avoided avoid by automatically disabling incompatible filters
while still making the user aware of the filter incompatibility. (NETOBSERV-1977)

Previously, when viewing flow details from the console plugin, the ICMP info was always
displayed in the side panel, showing "undefined" values for non-ICMP flows. With this fix, (ICMP
info is not displayed for non-ICMP flows. (NETOBSERV-1969)

Previously, the "Export data" link from the Traffic flows view did not work as intended,
generating empty CSV reports. Now, the export feature is restored, generating non-empty CSV
data. (NETOBSERV-1958)

Previously, it was possible to configure the FlowCollector with processor.logTypes
Conversations, EndedConversations or All with loki.enable set to false, despite the
conversation logs being only useful when Loki is enabled. This resulted in resource usage waste.
Now, this configuration is invalid and is rejected by the validation webhook. (NETOBSERV-
1957)

Configuring the FlowCollector with processor.logTypes set to All consumes much more
resources, such as CPU, memory and network bandwidth, than the other options. This was
previously not documented. It is now documented, and triggers a warning from the validation
webhook. (NETOBSERV-1956)

Previously, under high stress, some flows generated by the eBPF agent were mistakenly
dismissed, resulting in traffic bandwidth under-estimation. Now, those generated flows are not
dismissed. (NETOBSERV-1954)

Previously, when enabling the network policy in the FlowCollector configuration, the traffic to
the Operator webhooks was blocked, breaking the FlowMetrics API validation. Now traffic to
the webhooks is allowed. (NETOBSERV-1934)

Previously, when deploying the default network policy, namespaces openshift-console and
openshift-monitoring were set by default in the additionalNamespaces field, resulting in
duplicated rules. Now there is no additional namespace set by default, which helps avoid getting
duplicated rules.(NETOBSERV-1933)

Previously from the OpenShift Container Platform console plugin, filtering on TCP flags would
match flows having only the exact desired flag. Now, any flow having at least the desired flag
appears in filtered flows. (NETOBSERV-1890)

https://issues.redhat.com/browse/NETOBSERV-1999
https://issues.redhat.com/browse/NETOBSERV-1990
https://issues.redhat.com/browse/NETOBSERV-1977
https://issues.redhat.com/browse/NETOBSERV-1969
https://issues.redhat.com/browse/NETOBSERV-1958
https://issues.redhat.com/browse/NETOBSERV-1957
https://issues.redhat.com/browse/NETOBSERV-1956
https://issues.redhat.com/browse/NETOBSERV-1954
https://issues.redhat.com/browse/NETOBSERV-1934
https://issues.redhat.com/browse/NETOBSERV-1933
https://issues.redhat.com/browse/NETOBSERV-1890

CHAPTER 2. NETWORK OBSERVABILITY OPERATOR RELEASE NOTES ARCHIVE

When the eBPF agent runs in privileged mode and pods are continuously added or deleted, a
file descriptor (FD) leak occurs. The fix ensures proper closure of the FD when a network
namespace is deleted. (NETOBSERV-2063)

Previously, the CLI agent DaemonSet did not deploy on master nodes. Now, a toleration is
added on the agent DaemonSet to schedule on every node when taints are set. Now, CLI agent
DaemonSet pods run on all nodes. (NETOBSERV-2030)

Previously, the Source Resource and Source Destination filters autocomplete were not
working when using Prometheus storage only. Now this issue is fixed and suggestions displays as
expected. (NETOBSERV-1885)

Previously, a resource using multiple IPs was displayed separately in the Topology view. Now,
the resource shows as a single topology node in the view. (NETOBSERV-1818)

Previously, the console refreshed the Network traffic table view contents when the mouse
pointer hovered over the columns. Now, the display is fixed, so row height remains constant with
a mouse hover. (NETOBSERV-2049)

2.1.19. Network Observability Operator release notes 1.8.0 known issues

You can review the known issues for the Network Observability Operator 1.8.0 release.

If there is traffic that uses overlapping subnets in your cluster, there is a small risk that the eBPF
Agent mixes up the flows from overlapped IPs. This can happen if different connections happen
to have the exact same source and destination IPs and if ports and protocol are within a 5
seconds time frame and happening on the same node. This should not be possible unless you
configured secondary networks or UDN. Even in that case, it is still very unlikely in usual traffic,
as source ports are usually a good differentiator. (NETOBSERV-2115)

After selecting a type of exporter to configure in the FlowCollector resource spec.exporters
section from the OpenShift Container Platform web console form view, the detailed
configuration for that type does not show up in the form. The workaround is to configure
directly the YAML. (NETOBSERV-1981)

2.1.20. Network Observability Operator 1.7.0 advisory

You can review the advisory for the Network Observability Operator 1.7.0 release.

Network Observability Operator 1.7.0

2.1.21. Network Observability Operator 1.7.0 new features and enhancements

You can review the following new features and enhancements for the Network Observability Operator
1.7.0 release.

2.1.21.1. OpenTelemetry support

You can now export enriched network flows to a compatible OpenTelemetry endpoint, such as the
Red Hat build of OpenTelemetry.

For more information, see:

Export enriched network flow data

23

https://issues.redhat.com/browse/NETOBSERV-2063
https://issues.redhat.com/browse/NETOBSERV-2030
https://issues.redhat.com/browse/NETOBSERV-1885
https://issues.redhat.com/browse/NETOBSERV-1818
https://issues.redhat.com/browse/NETOBSERV-2049
https://issues.redhat.com/browse/NETOBSERV-2115
https://issues.redhat.com/browse/NETOBSERV-1981
https://access.redhat.com/errata/RHSA-2024:8014

OpenShift Container Platform 4.17 Network Observability

2.1.21.2. Network observability Developer perspective

You can now use network observability in the Developer perspective.
For more information, see:

® OpenShift Container Platform console integration

2.1.21.3. TCP flags filtering

You can now use the tcpFlags filter to limit the volume of packets processed by the eBPF program.
For more information, see:

® Flow filter configuration parameters

® cBPF flow rule filter

® Detecting SYN flooding using the FlowMetric APl and TCP flags

2.1.21.4. Network observability for OpenShift Virtualization

You can observe networking patterns on an OpenShift Virtualization setup by identifying eBPF-
enriched network flows coming from VMs that are connected to secondary networks, such as through
Open Virtual Network (OVN)-Kubernetes.

For more information, see:

® Configuring virtual machine (VM) secondary network interfaces for network observability

2.1.21.5. Network policy deploys in the FlowCollector custom resource (CR)

With this release, you can configure the FlowCollector custom resource (CR) to deploy a network policy
for network observability. Previously, if you wanted a network policy, you had to manually create one.
The option to manually create a network policy is still available.

For more information, see:

® Configuring an ingress network policy by using the FlowCollector custom resource

2.1.21.6. FIPS compliance

® You caninstall and use the Network Observability Operator in an OpenShift Container Platform
cluster running in FIPS mode.

24

CHAPTER 2. NETWORK OBSERVABILITY OPERATOR RELEASE NOTES ARCHIVE

IMPORTANT

To enable FIPS mode for your cluster, you must run the installation program from
a Red Hat Enterprise Linux (RHEL) computer configured to operate in FIPS
mode. For more information about configuring FIPS mode on RHEL, see
Switching RHEL to FIPS mode .

When running Red Hat Enterprise Linux (RHEL) or Red Hat Enterprise Linux
CoreOS (RHCOS) booted in FIPS mode, OpenShift Container Platform core
components use the RHEL cryptographic libraries that have been submitted to
NIST for FIPS 140-2/140-3 Validation on only the x86_64, ppc64le, and s390x
architectures.

2.1.21.7. eBPF agent enhancements

The following enhancements are available for the eBPF agent:

® |f the DNS service maps to a different port than 53, you can specify this DNS tracking port using
spec.agent.ebpf.advanced.env.DNS_TRACKING_PORT.

® You can now use two ports for transport protocols (TCP, UDP, or SCTP) filtering rules.

® You can now filter on transport ports with a wildcard protocol by leaving the protocol field
empty.

For more information, see:

® FlowCollector API specifications

2.1.21.8. Network Observability CLI

The Network Observability CLI (oc netobserv), is now generally available. The following enhancements
have been made since the 1.6 Technology Preview release:

® There are now eBPF enrichment filters for packet capture similar to flow capture.

® You can now use filter tep_flags with both flow and packets capture.

® The auto-teardown option is available when max-bytes or max-time is reached.
For more information, see:

® About the Network Observability CLI

® Network Observability CLI1.7.0

2.1.22. Network Observability Operator 1.7.0 fixed issues

You can review the following fixed issues for the Network Observability Operator 1.7.0 release.

® Previously, when using a RHEL 9.2 real-time kernel, some of the webhooks did not work. Now, a
fix is in place to check whether this RHEL 9.2 real-time kernel is being used. If the kernel is being
used, a warning is displayed about the features that do not work, such as packet drop and
neither Round-trip Time when using §390x architecture. The fix is in OpenShift 4.16 and later.
(NETOBSERV-1808)

25

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/9/html/security_hardening/switching-rhel-to-fips-mode_security-hardening
https://access.redhat.com/errata/RHEA-2024:8264
https://issues.redhat.com/browse/NETOBSERV-1808

OpenShift Container Platform 4.17 Network Observability

Previously, in the Manage panelsdialog in the Overview tab, filtering on total, bar, donut, or
line did not show a result. Now the available panels are correctly filtered. (NETOBSERV-1540)

Previously, under high stress, the eBPF agents were susceptible to enter into a state where they
generated a high number of small flows, almost not aggregated. With this fix, the aggregation
process is still maintained under high stress, resulting in less flows being created. This fix
improves the resource consumption not only in the eBPF agent but also in flowlogs-pipeline
and Loki. (NETOBSERV-1564)

Previously, when the workload_flows_total metric was enabled instead of the
namespace_flows_total metric, the health dashboard stopped showing By namespace flow
charts. With this fix, the health dashboard now shows the flow charts when the
workload_flows_total is enabled. (NETOBSERV-1746)

Previously, when you used the FlowMetrics API to generate a custom metric and later modified
its labels, such as by adding a new label, the metric stopped populating and an error was shown

in the flowlogs-pipeline logs. With this fix, you can modify the labels, and the error is no longer

raised in the flowlogs-pipeline logs. (NETOBSERV-1748)

Previously, there was an inconsistency with the default Loki WriteBatchSize configuration: it
was set to 100 KB in the FlowCollector CRD default, and 10 MB in the OLM sample or default
configuration. Both are now aligned to 10 MB, which generally provides better performances and
less resource footprint. (NETOBSERV-1766)

Previously, the eBPF flow filter on ports was ignored if you did not specify a protocol. With this
fix, you can set eBPF flow filters independently on ports and or protocols. (NETOBSERV-1779)

Previously, traffic from Pods to Services was hidden from the Topology view. Only the return
traffic from Services to Pods was visible. With this fix, that traffic is correctly displayed.
(NETOBSERV-1788)

Previously, non-cluster administrator users that had access to Network Observability saw an
error in the console plugin when they tried to filter for something that triggered auto-
completion, such as a namespace. With this fix, no error is displayed, and the auto-completion
returns the expected results. (NETOBSERV-1798)

When the secondary interface support was added, you had to iterate multiple times to register
the per network namespace with the netlink to learn about interface notifications. At the same
time, unsuccessful handlers caused a leaking file descriptor because with TCX hook, unlike TC,
handlers needed to be explicitly removed when the interface went down. Furthermore, when the
network namespace was deleted, there was no Go close channel event to terminate the netlink
goroutine socket, which caused go threads to leak. Now, there are no longer leaking file
descriptors or go threads when you create or delete pods. (NETOBSERV-1805)

Previously, the ICMP type and value were displaying 'n/a' in the Traffic flows table even when
related data was available in the flow JSON. With this fix, ICMP columns display related values as
expected in the flow table. (NETOBSERV-1806)

Previously in the console plugin, it wasn't always possible to filter for unset fields, such as unset
DNS latency. With this fix, filtering on unset fields is now possible. INETOBSERV-1816)

Previously, when you cleared filters in the OpenShift web console plugin, sometimes the filters
reappeared after you navigated to another page and returned to the page with filters. With this
fix, filters do not unexpectedly reappear after they are cleared. (NETOBSERV-1733)

2.1.23. Network Observability Operator 1.7.0 known issues

26

https://issues.redhat.com/browse/NETOBSERV-1540
https://issues.redhat.com/browse/NETOBSERV-1564
https://issues.redhat.com/browse/NETOBSERV-1746
https://issues.redhat.com/browse/NETOBSERV-1748
https://issues.redhat.com/browse/NETOBSERV-1766
https://issues.redhat.com/browse/NETOBSERV-1779
https://issues.redhat.com/browse/NETOBSERV-1788
https://issues.redhat.com/browse/NETOBSERV-1798
https://issues.redhat.com/browse/NETOBSERV-1805
https://issues.redhat.com/browse/NETOBSERV-1806
https://issues.redhat.com/browse/NETOBSERV-1816
https://issues.redhat.com/browse/NETOBSERV-1733

CHAPTER 2. NETWORK OBSERVABILITY OPERATOR RELEASE NOTES ARCHIVE

You can review the following known issues for the Network Observability Operator 1.7.0 release.

® When you use the must-gather tool with network observability, logs are not collected when the
cluster has FIPS enabled. (NETOBSERV-1830)

® When the spec.networkPolicy is enabled in the FlowCollector, which installs a network policy
on the netobserv namespace, it is impossible to use the FlowMetrics API. The network policy
blocks calls to the validation webhook. As a workaround, use the following network policy:

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
name: allow-from-hostnetwork
namespace: netobserv
spec:
podSelector:
matchLabels:
app: netobserv-operator
ingress:
- from:
- namespaceSelector:
matchLabels:
policy-group.network.openshift.io/host-network: "
policyTypes:
- Ingress

(NETOBSERV-193)

2.1.24. Network Observability Operator release notes 1.6.2 advisory

You can review the advisory for the Network Observability Operator 1.6.2 release.

® 2024:7074 Network Observability Operator 1.6.2

2.1.25. Network Observability Operator release notes 1.6.2 CVEs

You can review the CVEs for the Network Observability Operator 1.6.2 release.

® CVE-2024-24791

2.1.26. Network Observability Operator release notes 1.6.2 fixed issues

You can review the fixed issues for the Network Observability Operator 1.6.2 release.

® When the secondary interface support was added, there was a need to iterate multiple times to
register the per network namespace with the netlink to learn about interface notifications. At
the same time, unsuccessful handlers caused a leaking file descriptor because with TCX hook,
unlike TC, handlers needed to be explicitly removed when the interface went down. Now, there
are no longer leaking file descriptors when creating and deleting pods. (NETOBSERV-1805)
2.1.27. Network Observability Operator release notes 1.6.2 known issues

You can review the known issues for the Network Observability Operator 1.6.2 release.

® There was a compatibility issue with console plugins that would have prevented network

27

https://issues.redhat.com/browse/NETOBSERV-1830
https://issues.redhat.com/browse/NETOBSERV-1934
https://access.redhat.com/errata/RHSA-2024:7074
https://access.redhat.com/security/cve/CVE-2024-24791
https://issues.redhat.com/browse/NETOBSERV-1805

OpenShift Container Platform 4.17 Network Observability

observability from being installed on future versions of an OpenShift Container Platform cluster.
By upgrading to 1.6.2, the compatibility issue is resolved and network observability can be
installed as expected. (NETOBSERV-1737)

2.1.28. Network Observability Operator release notes 1.6.1 advisory

You can review the advisory for the Network Observability Operator 1.6.1 release.

2024:4785 Network Observability Operator 1.6.1

2.1.29. Network Observability Operator release notes 1.6.1 CVEs

You can review the CVEs for the Network Observability Operator 1.6.1 release.

RHSA-2024:4237

RHSA-2024:4212

2.1.30. Network Observability Operator release notes 1.6.1 fixed issues

You can review the fixed issues for the Network Observability Operator 1.6.1 release.

28

Previously, information about packet drops, such as the cause and TCP state, was only available
in the Loki datastore and not in Prometheus. For that reason, the drop statistics in the
OpenShift web console plugin Overview was only available with Loki. With this fix, information
about packet drops is also added to metrics, so you can view drops statistics when Loki is
disabled. (NETOBSERV-1649)

When the eBPF agent PacketDrop feature was enabled, and sampling was configured to a value
greater than 1, reported dropped bytes and dropped packets ignored the sampling
configuration. While this was done on purpose, so as not to miss any drops, a side effect was that
the reported proportion of drops compared with non-drops became biased. For example, at a
very high sampling rate, such as 1:1000, it was likely that almost all the traffic appears to be
dropped when observed from the console plugin. With this fix, the sampling configuration is
honored with dropped bytes and packets. (NETOBSERV-1676)

Previously, the SR-IOV secondary interface was not detected if the interface was created first
and then the eBPF agent was deployed. It was only detected if the agent was deployed first and
then the SR-IOV interface was created. With this fix, the SR-IOV secondary interface is
detected no matter the sequence of the deployments. (NETOBSERV-1697)

Previously, when Loki was disabled, the Topology view in the OpenShift web console displayed
the Cluster and Zone aggregation options in the slider beside the network topology diagram,
even when the related features were not enabled. With this fix, the slider now only displays
options according to the enabled features. (NETOBSERV-1705)

Previously, when Loki was disabled, and the OpenShift web console was first loading, an error
would occur: Request failed with status code 400 Loki is disabled. With this fix, the errors no
longer occur. (NETOBSERV-1706)

Previously, in the Topology view of the OpenShift web console, when clicking on the Step into
icon next to any graph node, the filters were not applied as required in order to set the focus to
the selected graph node, resulting in showing a wide view of the Topology view in the OpenShift

https://issues.redhat.com/browse/NETOBSERV-1737
https://access.redhat.com/errata/RHSA-2024:4785
https://access.redhat.com/errata/RHSA-2024:4237
https://access.redhat.com/errata/RHSA-2024:4212
https://issues.redhat.com/browse/NETOBSERV-1649
https://issues.redhat.com/browse/NETOBSERV-1676
https://issues.redhat.com/browse/NETOBSERV-1697
https://issues.redhat.com/browse/NETOBSERV-1705
https://issues.redhat.com/browse/NETOBSERV-1706

CHAPTER 2. NETWORK OBSERVABILITY OPERATOR RELEASE NOTES ARCHIVE

web console. With this fix, the filters are correctly set, effectively narrowing down the Topology.
As part of this change, clicking the Step into icon on a Node now brings you to the Resource
scope instead of the Namespaces scope. (NETOBSERV-1720)

® Previously, when Loki was disabled, in the Topology view of the OpenShift web console with the
Scope set to Owner, clicking on the Step into icon next to any graph node would bring the
Scope to Resource, which is not available without Loki, so an error message was shown. With
this fix, the Step into icon is hidden in the Owner scope when Loki is disabled, so this scenario
no longer occurs. (NETOBSERV-1721)

® Previously, when Loki was disabled, an error was displayed in the Topology view of the
OpenShift web console when a group was set, but then the scope was changed so that the
group becomes invalid. With this fix, the invalid group is removed, preventing the error.
(NETOBSERV-1722)

® When creating a FlowCollector resource from the OpenShift web console Form view, as
opposed to the YAML view, the following settings were incorrectly managed by the web
console: agent.ebpf.metrics.enable and processor.subnetLabels.openShiftAutoDetect.
These settings can only be disabled in the YAML view, not in the Form view. To avoid any
confusion, these settings have been removed from the Form view. They are still accessible in
the YAML view. (NETOBSERV-1731)

® Previously, the eBPF agent was unable to clean up traffic control flows installed before an
ungraceful crash, for example a crash due to a SIGTERM signal. This led to the creation of
multiple traffic control flow filters with the same name, since the older ones were not removed.
With this fix, all previously installed traffic control flows are cleaned up when the agent starts,
before installing new ones. (NETOBSERV-1732)

® Previously, when configuring custom subnet labels and keeping the OpenShift subnets auto-
detection enabled, OpenShift subnets would take precedence over the custom ones,
preventing the definition of custom labels for in cluster subnets. With this fix, custom defined

subnets take precedence, allowing the definition of custom labels for in cluster subnets.
(NETOBSERV-1734)

2.1.31. Network Observability Operator release notes 1.6.0 advisory

You can review the advisory for the Network Observability Operator 1.6.0 release.

® Network Observability Operator 1.6.0

2.1.32. Network Observability Operator 1.6.0 new features and enhancements

You can review the following new features and enhancements for the Network Observability Operator
1.6.0.

2.1.32.1. Enhanced use of Network Observability Operator without Loki

You can now use Prometheus metrics and rely less on Loki for storage when using the Network
Observability Operator.

For more information, see:

® Network observability without Loki

2.1.32.2. Custom metrics API

29

https://issues.redhat.com/browse/NETOBSERV-1720
https://issues.redhat.com/browse/NETOBSERV-1721
https://issues.redhat.com/browse/NETOBSERV-1722
https://issues.redhat.com/browse/NETOBSERV-1731
https://issues.redhat.com/browse/NETOBSERV-1732
https://issues.redhat.com/browse/NETOBSERV-1734
https://access.redhat.com/errata/RHSA-2024:3868

OpenShift Container Platform 4.17 Network Observability

You can create custom metrics out of flowlogs data by using the FlowMetrics API. Flowlogs data can be
used with Prometheus labels to customize cluster information on your dashboards. You can add custom
labels for any subnet that you want to identify in your flows and metrics. This enhancement can also be
used to more easily identify external traffic by using the new labels SrcSubnetLabel and
DstSubnetLabel, which exists both in flow logs and in metrics. Those fields are empty when there is
external traffic, which gives a way to identify it.

For more information, see:
® Custom metrics

® FlowMetric APl reference

2.1.32.3. eBPF performance enhancements

Experience improved performances of the eBPF agent, in terms of CPU and memory, with the following
updates:

® The eBPF agent now uses TCX webhooks instead of TC.

® The NetObserv / Healthdashboard has a new section that shows eBPF metrics.

o Based on the new eBPF metrics, an alert notifies you when the eBPF agent is dropping
flows.

® | oki storage demand decreases significantly now that duplicated flows are removed. Instead of
having multiple, individual duplicated flows per network interface, there is one de-duplicated
flow with a list of related network interfaces.

IMPORTANT

With the duplicated flows update, the Interface and Interface Direction fields in the
Network Traffic table are renamed to Interfaces and Interface Directions, so any
bookmarked Quick filter queries using these fields need to be updated to interfaces and
ifdirections.

For more information, see:
® Using the eBPF agent alert
® Network observability metrics dashboards

® Filtering the network traffic

2.1.32.4. eBPF collection rule-based filtering

You can use rule-based filtering to reduce the volume of created flows. When this option is enabled, the
Netobserv / Healthdashboard for eBPF agent statistics has the Filtered flows rate view.

For more information, see:

® cBPF flow rule filter

2.1.33. Network Observability Operator 1.6.0 fixed issues

30

CHAPTER 2. NETWORK OBSERVABILITY OPERATOR RELEASE NOTES ARCHIVE

You can review the following fixed issues for the Network Observability Operator 1.6.0.

Previously, a dead link to the OpenShift Container Platform documentation was displayed in the
Operator Lifecycle Manager (OLM) form for the FlowMetrics API creation. Now the link has
been updated to point to a valid page. (NETOBSERV-1607)

Previously, the Network Observability Operator description in the Operator Hub displayed a
broken link to the documentation. With this fix, this link is restored. (NETOBSERV-1544)

Previously, if Loki was disabled and the Loki Mode was set to LokiStack, or if Loki manual TLS
configuration was configured, the Network Observability Operator still tried to read the Loki CA
certificates. With this fix, when Loki is disabled, the Loki certificates are not read, even if there
are settings in the Loki configuration. (NETOBSERV-1647)

Previously, the oc must-gather plugin for the Network Observability Operator was only working
on the amd64 architecture and failing on all others because the plugin was using amd64 for the
oc binary. Now, the Network Observability Operator oc must-gather plugin collects logs on any
architecture platform.

Previously, when filtering on IP addresses using not equal to, the Network Observability
Operator would return a request error. Now, the IP filtering works in both equal and not equal
to cases for IP addresses and ranges. (NETOBSERV-1630)

Previously, when a user was not an admin, the error messages were not consistent with the
selected tab of the Network Traffic view in the web console. Now, the user not admin error
displays on any tab with improved display.(NETOBSERV-1621)

2.1.34. Network Observability Operator 1.6.0 known issues

You can review the following known issues for the Network Observability Operator 1.6.0.

When the eBPF agent PacketDrop feature is enabled, and sampling is configured to a value
greater than 1, reported dropped bytes and dropped packets ignore the sampling
configuration. While this is done on purpose to not miss any drops, a side effect is that the
reported proportion of drops compared to non-drops becomes biased. For example, at a very
high sampling rate, such as 1:1000, it is likely that almost all the traffic appears to be dropped
when observed from the console plugin. (NETOBSERV-1676)

In the Manage panelswindow in the Overview tab, filtering on total, bar, donut, or line does
not show any result. (NETOBSERV-1540)

The SR-IOV secondary interface is not detected if the interface was created first and then the
eBPF agent was deployed. It is only detected if the agent was deployed first and then the SR-
IOV interface is created. (NETOBSERV-1697)

When Loki is disabled, the Topology view in the OpenShift web console always shows the
Cluster and Zone aggregation options in the slider beside the network topology diagram, even
when the related features are not enabled. There is no specific workaround, besides ignoring
these slider options. (NETOBSERV-1705)

When Loki is disabled, and the OpenShift web console first loads, it might display an error:
Request failed with status code 400 Loki is disabled. As a workaround, you can continue
switching content on the Network Traffic page, such as clicking between the Topology and the
Overview tabs. The error should disappear. (NETOBSERV-1706)

31

https://issues.redhat.com/browse/NETOBSERV-1607
https://issues.redhat.com/browse/NETOBSERV-1544
https://issues.redhat.com/browse/NETOBSERV-1647
https://issues.redhat.com/browse/NETOBSERV-1630
https://issues.redhat.com/browse/NETOBSERV-1621
https://issues.redhat.com/browse/NETOBSERV-1676
https://issues.redhat.com/browse/NETOBSERV-1540
https://issues.redhat.com/browse/NETOBSERV-1697
https://issues.redhat.com/browse/NETOBSERV-1705
https://issues.redhat.com/browse/NETOBSERV-1706

OpenShift Container Platform 4.17 Network Observability

2.1.35. Network Observability Operator 1.5.0 advisory

You can view the following advisory for the Network Observability Operator 1.5 release.

Network Observability Operator 1.5.0

2.1.36. Network Observability Operator 1.5.0 new features and enhancements

You can view the following new features and enhancements for the Network Observability Operator 1.5
release.

2.1.36.1. DNS tracking enhancements

In 1.5, the TCP protocol is now supported in addition to UDP. New dashboards are also added to the
Overview view of the Network Traffic page.

For more information, see:
® Configuring DNS tracking

® Working with DNS tracking

2.1.36.2. Round-trip time (RTT)

You can use TCP handshake Round-Trip Time (RTT) captured from the fentry/tcp_rcv_established
Extended Berkeley Packet Filter (eBPF) hookpoint to read smoothed round-trip time (SRTT) and
analyze network flows. In the Overview, Network Traffic, and Topology pages in web console, you can
monitor network traffic and troubleshoot with RTT metrics, filtering, and edge labeling.

For more information, see:
® RTT Overview

® Working with RTT

2.1.36.3. Metrics, dashboards, and alerts enhancements

The network observability metrics dashboards in Observe = Dashboards —» NetObserv have new
metrics types you can use to create Prometheus alerts. You can now define available metrics in the
includelList specification. In previous releases, these metrics were defined in the ignoreTags
specification.

For a complete list of these metrics, see:

® Network observability metrics

2.1.36.4. Improvements for network observability without Loki

You can create Prometheus alerts for the Netobserv dashboard using DNS, Packet drop, and RTT
metrics, even if you don't use Loki. In the previous version of network observability, 1.4, these metrics
were only available for querying and analysis in the Network Traffic, Overview, and Topology views,
which are not available without Loki.

For more information, see:

32

https://access.redhat.com/errata/RHSA-2024:0853

CHAPTER 2. NETWORK OBSERVABILITY OPERATOR RELEASE NOTES ARCHIVE

® Network observability metrics

2.1.36.5. Availability zones

You can configure the FlowCollector resource to collect information about the cluster availability
zones. This configuration enriches the network flow data with the topology.kubernetes.io/zone label
value applied to the nodes.

For more information, see:

® Working with availability zones

2.1.36.6. Notable enhancements
The 1.5 release of the Network Observability Operator adds improvements and new capabilities to the
OpenShift Container Platform web console plugin and the Operator configuration.
2.1.36.7. Performance enhancements
e The spec.agent.ebpf.kafkaBatchSize default is changed from 10MB to 1MB to enhance eBPF

performance when using Kafka.

IMPORTANT

When upgrading from an existing installation, this new value is not set
automatically in the configuration. If you monitor a performance regression with
the eBPF Agent memory consumption after upgrading, you might consider
reducing the kafkaBatchSize to the new value.

2.1.36.8. Web console enhancements:

® There are new panels added to the Overview view for DNS and RTT: Min, Max, P90, P99.

® There are new panel display options added:

o Focus on one panel while keeping others viewable but with smaller focus.
o Switch graph type.
o Show Top and Overall.

® A collection latency warning is shown in the Custom time range window.

® There is enhanced visibility for the contents of the Manage panelsand Manage columns pop-
up windows.

e The Differentiated Services Code Point (DSCP) field for egress QoS is available for filtering
QoS DSCP in the web console Network Traffic page.
2.1.36.9. Configuration enhancements:

e The LokiStack mode in the spec.loki.mode specification simplifies installation by automatically
setting URLs, TLS, cluster roles and a cluster role binding, as well as the authToken value. The
Manual mode allows more control over configuration of these settings.

33

https://kubernetes.io/docs/reference/labels-annotations-taints/#topologykubernetesiozone

OpenShift Container Platform 4.17 Network Observability

The API version changes from flows.netobserv.io/vibetal to flows.netobserv.io/vibeta2.

2.1.37. Network Observability Operator 1.5.0 fixed issues

You can view the following fixed issues for the Network Observability Operator 1.5 release.

Previously, it was not possible to register the console plugin manually in the web console
interface if the automatic registration of the console plugin was disabled. If the
spec.console.register value was set to false in the FlowCollector resource, the Operator
would override and erase the plugin registration. With this fix, setting the spec.console.register
value to false does not impact the console plugin registration or registration removal. As a
result, the plugin can be safely registered manually. (NETOBSERV-1134)

Previously, using the default metrics settings, the NetObserv/Health dashboard was showing
an empty graph named Flows Overhead. This metric was only available by removing
"namespaces-flows" and "namespaces” from the ignoreTags list. With this fix, this metric is
visible when you use the default metrics setting. (NETOBSERV-1351)

Previously, the node on which the eBPF Agent was running would not resolve with a specific
cluster configuration. This resulted in cascading consequences that culminated in a failure to
provide some of the traffic metrics. With this fix, the eBPF agent’s node IP is safely provided by
the Operator, inferred from the pod status. Now, the missing metrics are restored.
(NETOBSERV-1430)

Previously, the Loki error 'Input size too long' error for the Loki Operator did not include
additional information to troubleshoot the problem. With this fix, help is directly displayed in the
web console next to the error with a direct link for more guidance. (NETOBSERV-1464)

Previously, the console plugin read timeout was forced to 30s. With the FlowCollector vibeta2
APl update, you can configure the spec.loki.readTimeout specification to update this value
according to the Loki Operator queryTimeout limit. (NETOBSERV-1443)

Previously, the Operator bundle did not display some of the supported features by CSV
annotations as expected, such as features.operators.openshift.io/... With this fix, these
annotations are set in the CSV as expected. (NETOBSERV-1305)

Previously, the FlowCollector status sometimes oscillated between DeploymentinProgress
and Ready states during reconciliation. With this fix, the status only becomes Ready when all of
the underlying components are fully ready. (NETOBSERV-1293)

2.1.38. Network Observability Operator 1.5.0 known issues

You can view the following known issues for the Network Observability Operator 1.5 release.

34

When trying to access the web console, cache issues on OCP 4.14.10 prevent access to the
Observe view. The web console shows the error message: Failed to get a valid plugin
manifest from /api/plugins/monitoring-plugin/. The recommended workaround is to update
the cluster to the latest minor version. If this does not work, you need to apply the workarounds
described in this Red Hat Knowledgebase article . (NETOBSERV-1493)

Since the 1.3.0 release of the Network Observability Operator, installing the Operator causes a
warning kernel taint to appear. The reason for this error is that the network observability eBPF
agent has memory constraints that prevent preallocating the entire hashmap table. The

Operator eBPF agent sets the BPF_F_NO_PREALLOC flag so that pre-allocation is disabled

when the hashmap is too memory expansive.

https://issues.redhat.com/browse/NETOBSERV-1134
https://issues.redhat.com/browse/NETOBSERV-1351
https://issues.redhat.com/browse/NETOBSERV-1430
https://issues.redhat.com/browse/NETOBSERV-1464
https://issues.redhat.com/browse/NETOBSERV-1443
https://issues.redhat.com/browse/NETOBSERV-1305
https://issues.redhat.com/browse/NETOBSERV-1293
https://access.redhat.com/solutions/7052408
https://issues.redhat.com/browse/NETOBSERV-1493

CHAPTER 2. NETWORK OBSERVABILITY OPERATOR RELEASE NOTES ARCHIVE

2.1.39. Network Observability Operator 1.4.2 advisory

The following advisory is available for the Network Observability Operator 1.4.2:

® 2023:6787 Network Observability Operator 1.4.2

2.1.40. Network Observability Operator 1.4.2 CVEs

You can review the following CVEs in the Network Observability Operator 1.4.2 release.
e 2023-39325

o 2023-44487

2.1.41. Network Observability Operator 1.4.1 advisory

You can review the following advisory for the Network Observability Operator 1.4.1.

® 2023:5974 Network Observability Operator 1.4.1

2.1.42. Network Observability Operator release 1.4.1 CVEs

You can review the following CVEs in the Network Observability Operator 1.4.1 release.
o 2023-44487
e 2023-39325
® 2023-29406
® 2023-29409
® 2023-39322
e 2023-39318
e 2023-39319

® 2023-39321

2.1.43. Network Observability Operator release notes 1.4.1 fixed issues

You can review the following fixed issues in the Network Observability Operator 1.4.1 release.

® |n 1.4, there was a known issue when sending network flow data to Kafka. The Kafka message key
was ignored, causing an error with connection tracking. Now the key is used for partitioning, so
each flow from the same connection is sent to the same processor. (NETOBSERV-926)

® |n 14, the Inner flow direction was introduced to account for flows between pods running on the
same node. Flows with the Inner direction were not taken into account in the generated
Prometheus metrics derived from flows, resulting in under-evaluated bytes and packets rates.
Now, derived metrics are including flows with the Inner direction, providing correct bytes and
packets rates. (NETOBSERV-1344)

2.1.44. Network observability release notes 1.4.0 advisory

35

https://access.redhat.com/errata/RHSA-2023:6787
https://access.redhat.com/security/cve/CVE-2023-39325
https://access.redhat.com/security/cve/CVE-2023-44487
https://access.redhat.com/errata/RHSA-2023:5974
https://access.redhat.com/security/cve/cve-2023-44487
https://access.redhat.com/security/cve/cve-2023-39325
https://access.redhat.com/security/cve/cve-2023-29406
https://access.redhat.com/security/cve/CVE-2023-29409
https://access.redhat.com/security/cve/cve-2023-39322
https://access.redhat.com/security/cve/cve-2023-39318
https://access.redhat.com/security/cve/cve-2023-39319
https://access.redhat.com/security/cve/cve-2023-39321
https://issues.redhat.com/browse/NETOBSERV-926
https://issues.redhat.com/browse/NETOBSERV-1344

OpenShift Container Platform 4.17 Network Observability

You can review the following advisory for the Network Observability Operator 1.4.0 release.

® RHSA-2023:5379 Network Observability Operator 1.4.0

2.1.45. Network observability release notes 1.4.0 new features and enhancements

You can review the following new features and enhancements in the Network Observability Operator
1.4.0 release.

2.1.45.1. Notable enhancements

The 1.4 release of the Network Observability Operator adds improvements and new capabilities to the
OpenShift Container Platform web console plugin and the Operator configuration.

2.1.45.2. Web console enhancements:

® |n the Query Options, the Duplicate flows checkbox is added to choose whether or not to
show duplicated flows.

® You can now filter source and destination traffic with T One-way, T J« Back-and-forth, and
Swap filters.

® The network observability metrics dashboards in Observe — Dashboards - NetObserv and
NetObserv / Healthare modified as follows:

o The NetObserv dashboard shows top bytes, packets sent, packets received per nodes,
namespaces, and workloads. Flow graphs are removed from this dashboard.

o The NetObserv / Health dashboard shows flows overhead as well as top flow rates per
nodes, namespaces, and workloads.

o Infrastructure and Application metrics are shown in a split-view for namespaces and
workloads.

For more information, see:
® Network observability metrics dashboards

® Quick filters

2.1.45.3. Configuration enhancements:

® You now have the option to specify different namespaces for any configured ConfigMap or
Secret reference, such as in certificates configuration.

® The spec.processor.clusterName parameter is added so that the name of the cluster appears
in the flows data. This is useful in a multi-cluster context. When using OpenShift Container
Platform, leave empty to make it automatically determined.

For more information, see:
® Flow Collector sample resource

® F[low Collector API Reference

36

https://access.redhat.com/errata/RHSA-2023:5379

CHAPTER 2. NETWORK OBSERVABILITY OPERATOR RELEASE NOTES ARCHIVE

2.1.45.4. Network observability without Loki

The Network Observability Operator is now functional and usable without Loki. If Loki is not installed, it
can only export flows to KAFKA or IPFIX format and provide metrics in the network observability metrics
dashboards.

For more information, see:

® Network observability without Loki

2.1.45.5. DNS tracking

In 1.4, the Network Observability Operator makes use of eBPF tracepoint hooks to enable DNS tracking.
You can monitor your network, conduct security analysis, and troubleshoot DNS issues in the Network
Traffic and Overview pages in the web console.

For more information, see:

® Configuring DNS tracking

® Working with DNS tracking

2.1.45.6. SR-10V support

You can now collect traffic from a cluster with Single Root I/O Virtualization (SR-IOV) device.
For more information, see:

® Configuring the monitoring of SR-IOV interface traffic

2.1.45.7. IPFIX exporter support

You can now export eBPF-enriched network flows to the IPFIX collector.
For more information, see:

® Export enriched network flow data

2.1.45.8. Packet drops

In the 1.4 release of the Network Observability Operator, eBPF tracepoint hooks are used to enable
packet drop tracking. You can now detect and analyze the cause for packet drops and make decisions to
optimize network performance. In OpenShift Container Platform 4.14 and later, both host drops and
OVS drops are detected. In OpenShift Container Platform 4.13, only host drops are detected.

For more information, see:

® Configuring packet drop tracking

® Working with packet drops

2.1.45.9. s390x architecture support

Network Observability Operator can now run on §390x architecture. Previously it ran on amd64,
ppc64le, or armé64.

37

OpenShift Container Platform 4.17 Network Observability

2.1.46. Network observability release notes 1.4.0 removed features

You can review the following removed features from the Network Observability Operator 1.4.0 release.

2.1.46.1. Channel removal

You must switch your channel from v1.0.x to stable to receive the latest Operator updates. The v1.0.x
channel is now removed.

2.1.47. Network observability release notes 1.4.0 fixed issues

You can review the following fixed issues in the Network Observability Operator 1.4.0 release.

® Previously, the Prometheus metrics exported by network observability were computed out of
potentially duplicated network flows. In the related dashboards, from Observe — Dashboards,
this could result in potentially doubled rates. Note that dashboards from the Network Traffic
view were not affected. Now, network flows are filtered to eliminate duplicates before metrics
calculation, which results in correct traffic rates displayed in the dashboards. (NETOBSERV-
131)

® Previously, the Network Observability Operator agents were not able to capture traffic on
network interfaces when configured with Multus or SR-IOV, non-default network namespaces.
Now, all available network namespaces are recognized and used for capturing flows, allowing
capturing traffic for SR-IOV. There are configurations needed for the FlowCollector and
SRIOVnetwork custom resource to collect traffic. (NETOBSERV-1283)

® Previously, in the Network Observability Operator details from Operators — Installed
Operators, the FlowCollector Status field might have reported incorrect information about
the state of the deployment. The status field now shows the proper conditions with improved
messages. The history of events is kept, ordered by event date. (NETOBSERV-1224)

® Previously, during spikes of network traffic load, certain eBPF pods were OOM-killed and went
into a CrashLoopBackOff state. Now, the eBPF agent memory footprint is improved, so pods
are not OOM-killed and entering a CrashLoopBackOff state. (NETOBSERV-975)

® Previously when processor.metrics.tls was set to PROVIDED the insecureSkipVerify option
value was forced to be true. Now you can set insecureSkipVerify to true or false, and provide
a CA certificate if needed. (NETOBSERV-1087)

2.1.48. Network observability release notes 1.4.0 known issues

You can review the following known issues in the Network Observability Operator 1.4.0 release.

® Since the 1.2.0 release of the Network Observability Operator, using Loki Operator 5.6, a Loki
certificate change periodically affects the flowlogs-pipeline pods and results in dropped flows
rather than flows written to Loki. The problem self-corrects after some time, but it still causes
temporary flow data loss during the Loki certificate change. This issue has only been observed in
large-scale environments of 120 nodes or greater. (NETOBSERV-980)

e Currently, when spec.agent.ebpf.features includes DNSTracking, larger DNS packets require
the eBPF agent to look for DNS header outside of the 1st socket buffer (SKB) segment. A new
eBPF agent helper function needs to be implemented to support it. Currently, there is no
workaround for this issue. (NETOBSERV-1304)

e Currently, when spec.agent.ebpf.features includes DNSTracking, DNS over TCP packets

38

https://issues.redhat.com/browse/NETOBSERV-1131
https://issues.redhat.com/browse/NETOBSERV-1283
https://issues.redhat.com/browse/NETOBSERV-1224
https://issues.redhat.com/browse/NETOBSERV-975
https://issues.redhat.com/browse/NETOBSERV-1087
https://issues.redhat.com/browse/NETOBSERV-980
https://issues.redhat.com/browse/NETOBSERV-1304

CHAPTER 2. NETWORK OBSERVABILITY OPERATOR RELEASE NOTES ARCHIVE

requires the eBPF agent to look for DNS header outside of the 1st SKB segment. Anew eBPF

agent helper function needs to be implemented to support it. Currently, there is no workaround
for this issue. (NETOBSERV-1245)

e Currently, when using a KAFKA deployment model, if conversation tracking is configured,
conversation events might be duplicated across Kafka consumers, resulting in inconsistent
tracking of conversations, and incorrect volumetric data. For that reason, it is not recommended
to configure conversation tracking when deploymentModel is set to KAFKA. (NETOBSERV-
926)

e Currently, when the processor.metrics.server.tls.type is configured to use a PROVIDED
certificate, the operator enters an unsteady state that might affect its performance and
resource consumption. It is recommended to not use a PROVIDED certificate until this issue is
resolved, and instead using an auto-generated certificate, setting
processor.metrics.server.tls.type to AUTO. (NETOBSERV-1293

® Since the 1.3.0 release of the Network Observability Operator, installing the Operator causes a
warning kernel taint to appear. The reason for this error is that the network observability eBPF
agent has memory constraints that prevent preallocating the entire hashmap table. The
Operator eBPF agent sets the BPF_F_NO_PREALLOC flag so that pre-allocation is disabled
when the hashmap is too memory expansive.

2.1.49. Network Observability Operator 1.3.0 advisory

You can review the following advisory in the Network Observability Operator 1.3.0 release.

® RHSA-2023:3905 Network Observability Operator 1.3.0

2.1.50. Network Observability Operator 1.3.0 new features and enhancements

You can review the following new features and enhancements in the Network Observability Operator
1.3.0 release.

2.1.50.1. Multi-tenancy in network observability

® System administrators can allow and restrict individual user access, or group access, to the
flows stored in Loki. For more information, see "Multi-tenancy in network observability".

2.1.50.2. Flow-based metrics dashboard

® This release adds a new dashboard, which provides an overview of the network flows in your
OpenShift Container Platform cluster. For more information, see "Network observability metrics
dashboards".

2.1.50.3. Troubleshooting with the must-gather tool

e |nformation about the Network Observability Operator can now be included in the must-gather
data for troubleshooting. For more information, see "Network observability must-gather”.

2.1.50.4. Multiple architectures now supported

® Network Observability Operator can now run on an amd64, ppc64le, or arm64 architectures.
Previously, it only ran on amd64.

39

https://issues.redhat.com/browse/NETOBSERV-1245
https://issues.redhat.com/browse/NETOBSERV-926
https://issues.redhat.com/browse/NETOBSERV-1293)
https://access.redhat.com/errata/RHSA-2023:3905

OpenShift Container Platform 4.17 Network Observability

2.1.51. Network Observability Operator 1.3.0 deprecated features

You can review the following deprecated features in the Network Observability Operator 1.3.0 release.

2.1.51.1. Channel deprecation

You must switch your channel from v1.0.x to stable to receive future Operator updates. The v1.0.x
channel is deprecated and planned for removal in the next release.

2.1.51.2. Deprecated configuration parameter setting

The release of Network Observability Operator 1.3 deprecates the spec.Loki.authToken HOST setting.
When using the Loki Operator, you must now only use the FORWARD setting.

2.1.52. Network Observability Operator 1.3.0 fixed issues

You can review the following fixed issues in the Network Observability Operator 1.3.0 release.

® Previously, when the Operator was installed from the CLI, the Role and RoleBinding that are
necessary for the Cluster Monitoring Operator to read the metrics were not installed as
expected. The issue did not occur when the operator was installed from the web console. Now,
either way of installing the Operator installs the required Role and RoleBinding.
(NETOBSERV-1003)

® Since version 1.2, the Network Observability Operator can raise alerts when a problem occurs
with the flows collection. Previously, due to a bug, the related configuration to disable alerts,
spec.processor.metrics.disableAlerts was not working as expected and sometimes
ineffectual. Now, this configuration is fixed so that it is possible to disable the alerts.
(NETOBSERV-976)

® Previously, when network observability was configured with spec.loki.authToken set to
DISABLED, only a kubeadmin cluster administrator was able to view network flows. Other

types of cluster administrators received authorization failure. Now, any cluster administrator is
able to view network flows. (NETOBSERV-972)

® Previously, a bug prevented users from setting spec.consolePlugin.portNaming.enable to
false. Now, this setting can be set to false to disable port-to-service name translation.
(NETOBSERV-971)

® Previously, the metrics exposed by the console plugin were not collected by the Cluster
Monitoring Operator (Prometheus), due to an incorrect configuration. Now the configuration
has been fixed so that the console plugin metrics are correctly collected and accessible from
the OpenShift Container Platform web console. (NETOBSERV-765)

® Previously, when processor.metrics.tls was set to AUTO in the FlowCollector, the flowlogs-
pipeline servicemonitor did not adapt the appropriate TLS scheme, and metrics were not
visible in the web console. Now the issue is fixed for AUTO mode. (NETOBSERV-1070)

® Previously, certificate configuration, such as used for Kafka and Loki, did not allow specifying a
namespace field, implying that the certificates had to be in the same namespace where network
observability is deployed. Moreover, when using Kafka with TLS/mTLS, the user had to manually
copy the certificate(s) to the privileged namespace where the eBPF agent pods are deployed
and manually manage certificate updates, such as in the case of certificate rotation. Now,
network observability setup is simplified by adding a namespace field for certificates in the
FlowCollector resource. As a result, users can now install Loki or Kafka in different namespaces

40

https://issues.redhat.com/browse/NETOBSERV-1003
https://issues.redhat.com/browse/NETOBSERV-976
https://issues.redhat.com/browse/NETOBSERV-972
https://issues.redhat.com/browse/NETOBSERV-971
https://issues.redhat.com/browse/NETOBSERV-765
https://issues.redhat.com/browse/NETOBSERV-1070

CHAPTER 2. NETWORK OBSERVABILITY OPERATOR RELEASE NOTES ARCHIVE

without needing to manually copy their certificates in the network observability namespace. The
original certificates are watched so that the copies are automatically updated when needed.
(NETOBSERV-773)

® Previously, the SCTP, ICMPv4 and ICMPV6 protocols were not covered by the network
observability agents, resulting in a less comprehensive network flows coverage. These protocols
are now recognized to improve the flows coverage. (NETOBSERV-934)

2.1.53. Network Observability Operator 1.3.0 known issues

You can review the following issues and their workarounds, if available, to troubleshoot issues with the
Network Observability Operator 1.3.0 release.

® When processor.metrics.tls is set to PROVIDED in the FlowCollector, the flowlogs-pipeline
servicemonitor is not adapted to the TLS scheme. (NETOBSERV-1087)

® Since the 1.2.0 release of the Network Observability Operator, using Loki Operator 5.6, a Loki
certificate change periodically affects the flowlogs-pipeline pods and results in dropped flows
rather than flows written to Loki. The problem self-corrects after some time, but it still causes
temporary flow data loss during the Loki certificate change. This issue has only been observed in
large-scale environments of 120 nodes or greater.(NETOBSERV-980)

® When you install the Operator, a warning kernel taint can appear. The reason for this error is that
the network observability eBPF agent has memory constraints that prevent preallocating the
entire hashmap table. The Operator eBPF agent sets the BPF_F_NO_PREALLOC flag so that
pre-allocation is disabled when the hashmap is too memory expansive.

2.1.54. Network observability release notes 1.2.0 preparing for the next update

Switch the Network Observability Operator’s update channel from the deprecated v1.0.x to the stable
channel to continue receiving future releases and updates.

The subscription of an installed Operator specifies an update channel that tracks and receives updates
for the Operator. Until the 1.2 release of the Network Observability Operator, the only channel available
was v1.0.x. The 1.2 release of the Network Observability Operator introduces the stable update channel
for tracking and receiving updates. You must switch your channel from v1.0.x to stable to receive future
Operator updates. The v1.0.x channel is deprecated and planned for removal in a following release.

2.1.55. Network Observability Operator 1.2.0 advisory

You can view the following advisory for the Network Observability Operator 1.2.0 release.

® RHSA-2023:1817 Network Observability Operator 1.2.0

2.1.56. Network Observability Operator 1.2.0 new features and enhancements

You can view the following new features and enhancements for the Network Observability Operator
1.2.0 release.

2.1.56.1. Histogram in Traffic Flows view

You can now choose to show a histogram of flows over time. The histogram enables you to visualize the
history of flows without hitting the Loki query limit. For more information, see "Using the histogram".

41

https://issues.redhat.com/browse/NETOBSERV-773
https://issues.redhat.com/browse/NETOBSERV-934
https://issues.redhat.com/browse/NETOBSERV-1087
https://issues.redhat.com/browse/NETOBSERV-980
https://access.redhat.com/errata/RHSA-2023:1817

OpenShift Container Platform 4.17 Network Observability

2.1.56.2. Conversation tracking

You can now query flows by Log Type, which enables grouping network flows that are part of the same
conversation. For more information, see "Working with conversations".

2.1.56.3. Network observability health alerts

The Network Observability Operator now creates automatic alerts if the flowlogs-pipeline is dropping
flows because of errors at the write stage or if the Loki ingestion rate limit has been reached. For more
information, see "Health dashboards".

2.1.57. Network Observability Operator 1.2.0 bug fixes

You can view the following fixed issues for the Network Observability Operator 1.2.0 release.

Previously, after changing the namespace value in the FlowCollector spec, eBPF agent pods
running in the previous namespace were not appropriately deleted. Now, the pods running in the
previous namespace are appropriately deleted. (NETOBSERV-774)

Previously, after changing the caCert.name value in the FlowCollector spec (such as in Loki
section), FlowLogs-Pipeline pods and Console plug-in pods were not restarted, therefore they
were unaware of the configuration change. Now, the pods are restarted, so they get the
configuration change. (NETOBSERV-772)

Previously, network flows between pods running on different nodes were sometimes not
correctly identified as being duplicates because they are captured by different network
interfaces. This resulted in over-estimated metrics displayed in the console plug-in. Now, flows
are correctly identified as duplicates, and the console plug-in displays accurate metrics.
(NETOBSERV-755)

The "reporter” option in the console plug-in is used to filter flows based on the observation
point of either source node or destination node. Previously, this option mixed the flows
regardless of the node observation point. This was due to network flows being incorrectly
reported as Ingress or Egress at the node level. Now, the network flow direction reporting is
correct. The "reporter” option filters for source observation point, or destination observation
point, as expected. (NETOBSERV-696)

Previously, for agents configured to send flows directly to the processor as gRPC+protobuf
requests, the submitted payload could be too large and is rejected by the processors' GRPC
server. This occurred under very-high-load scenarios and with only some configurations of the
agent. The agent logged an error message, such as: grpc: received message larger than max . As
a consequence, there was information loss about those flows. Now, the gRPC payload is split
into several messages when the size exceeds a threshold. As a result, the server maintains
connectivity. (NETOBSERV-617)

2.1.58. Network Observability Operator 1.2.0 known issues

You can review the following issues and their workarounds, if available, to troubleshoot issues with the
Network Observability Operator 1.2.0 release.

42

In the 1.2.0 release of the Network Observability Operator, using Loki Operator 5.6, a Loki
certificate transition periodically affects the flowlogs-pipeline pods and results in dropped
flows rather than flows written to Loki. The problem self-corrects after some time, but it still
causes temporary flow data loss during the Loki certificate transition. (NETOBSERV-980)

https://issues.redhat.com/browse/NETOBSERV-774
https://issues.redhat.com/browse/NETOBSERV-772
https://issues.redhat.com/browse/NETOBSERV-755
https://issues.redhat.com/browse/NETOBSERV-696
https://issues.redhat.com/browse/NETOBSERV-617
https://issues.redhat.com/browse/NETOBSERV-980

CHAPTER 2. NETWORK OBSERVABILITY OPERATOR RELEASE NOTES ARCHIVE

2.1.59. Network Observability Operator 1.2.0 notable technical changes

The Network Observability Operator 1.2.0 release requires installation in the openshift-netobserv-
operator namespace due to new technical changes. Users who previously used a custom namespace
must delete the old instance and reinstall the Operator.

Previously, you could install the Network Observability Operator using a custom namespace. This release
introduces the conversion webhook which changes the ClusterServiceVersion. Because of this
change, all the available namespaces are no longer listed. Additionally, to enable Operator metrics
collection, namespaces that are shared with other Operators, like the openshift-operators namespace,
cannot be used.

Now, the Operator must be installed in the openshift-netobserv-operator namespace.

You cannot automatically upgrade to the new Operator version if you previously installed the Network
Observability Operator using a custom namespace. If you previously installed the Operator using a
custom namespace, you must delete the instance of the Operator that was installed and re-install your
operator in the openshift-netobserv-operator namespace. It is important to note that custom

namespaces, such as the commonly used netobserv namespace, are still possible for the
FlowCollector, Loki, Kafka, and other plug-ins.

e NETOBSERV-907

e NETOBSERV-956

2.1.60. Network Observability Operator 1.1.0 enhancements

You can view the following advisory for the Network Observability Operator 1.1.0:
® RHSA-2023:0786 Network Observability Operator Security Advisory Update

The Network Observability Operator is now stable and the release channel is upgraded to v1.1.0.

2.1.61. Network Observability Operator 1.1.0 fixed issues

You can view the following fixed issues for the Network Observability Operator 1.1.0 release.

® Previously, unless the Loki authToken configuration was set to FORWARD mode,

authentication was not enforced, allowing unauthorized users to retrieve flows. Now, regardless
of the Loki authToken mode, only cluster administrators can retrieve flows. (BZ#2169468)

2.1.62. Additional resources

® Multi-tenancy in network observability

® Network observability metrics dashboards
® Network observability must-gather

® Using the histogram

® Working with conversations

® Health dashboards

43

https://issues.redhat.com/browse/NETOBSERV-907
https://https//issues.redhat.com/browse/NETOBSERV-956
https://access.redhat.com/errata/RHSA-2023:0786
https://bugzilla.redhat.com/show_bug.cgi?id=2169468

OpenShift Container Platform 4.17 Network Observability

CHAPTER 3. ABOUT NETWORK OBSERVABILITY

Use the Network Observability Operator to observe network traffic via @BPF technology, providing
troubleshooting insights through Prometheus metrics and Loki logs.

You can view and analyze this stored information in the OpenShift Container Platform console for
further insight and troubleshooting.

3.1. NETWORK OBSERVABILITY OPERATOR

The Network Observability Operator provides the cluster-scoped FlowCollector API custom resource,

which manages a pipeline of eBPF agents and services that collect, enrich, and store network flows in
Loki or Prometheus.

A FlowCollector instance deploys pods and services that form a monitoring pipeline.

The eBPF agent is deployed as a daemonset object and creates the network flows. The pipeline

collects and enriches network flows with Kubernetes metadata before storing them in Loki or generating
Prometheus metrics.

3.2. OPTIONAL DEPENDENCIES OF THE NETWORK OBSERVABILITY
OPERATOR

Integrate the Network Observability Operator with optional dependencies, such as the Loki Operator for
flow storage and AMQ Streams (Kafka) for resilient, large-scale data handling and scalability.

Supported optional dependencies include the Loki Operator for flow storage, and AMQ Streams for
large-scale data handling with Kafka.

Loki Operator

You can use Loki as the backend to store all collected flows with a maximal level of details. It is
recommended to use the Red Hat supported Loki Operator to install Loki. You can also choose to
use network observability without Loki, but you need to consider some factors. For more information,
see "Network observability without Loki".

AMQ Streams Operator

Kafka provides scalability, resiliency and high availability in the OpenShift Container Platform cluster
for large scale deployments.

NOTE

If you choose to use Kafka, it is recommended to use Red Hat supported AMQ
Streams Operator.

&

Additional resources

® Network observability without Loki

3.3. OPENSHIFT CONTAINER PLATFORM CONSOLE INTEGRATION

The Network Observability Operator integrates with the OpenShift Container Platform console,
providing an overview, topology view, and traffic flow tables.

44

CHAPTER 3. ABOUT NETWORK OBSERVABILITY

The Network observability metrics dashboards in Observe = Dashboards are available only to users
with administrator access.

NOTE

To enable multi-tenancy for developer access and for administrators with limited access
to namespaces, you must specify permissions by defining roles. For more information,
see "Enabling multi-tenancy in network observability".

Additional resources

® Enabling multi-tenancy in network observability

3.3.1. Network observability metrics dashboards

Review the network observability metrics dashboards in the OpenShift Container Platform console,
which provide overall traffic flow aggregation, filtering options, and dedicated dashboards for
monitoring operator health.

In the OpenShift Container Platform console on the Overview tab, you can view the overall aggregated
metrics of the network traffic flow on the cluster. You can choose to display the information by cluster,
node, namespace, owner, pod, and service. Filters and display options can further refine the metrics. For
more information, see "Observing the network traffic from the Overview view".

In Observe - Dashboards, the Netobserv dashboards provide a quick overview of the network flows in
your OpenShift Container Platform cluster. The Netobserv/Health dashboard provides metrics about
the health of the Operator. For more information, see "Network observability metrics" and "Viewing
health information”.

Additional resources

® Observing the network traffic from the Overview view
® Network observability metrics

® Health dashboards

3.3.2. Network observability topology views

The network observability topology view in the OpenShift Container Platform console displays a
graphical representation of traffic flow between components, which you can refine using various filters
and display options.

The OpenShift Container Platform console offers the Topology tab which represents traffic between
the OpenShift Container Platform components as a network graph. You can refine the graph by using
the filters and display options. You can access the information for cluster, zone, udn, node, namespace,
owner, pod, and service.

3.3.3. Traffic flow tables

The Traffic flow tables in the OpenShift Container Platform web console provide a detailed view of raw
network flows, offering powerful filtering options and configurable columns for in-depth analysis.

The Traffic flows tab in the OpenShift Container Platform web console displays the data of the
network flows and the amount of traffic.

45

OpenShift Container Platform 4.17 Network Observability

3.4. NETWORK OBSERVABILITY CLI

The Network Observability CLI (oc netobserv) is a lightweight tool that streams flow and packet data
for quick, live insight into networking issues without requiring the full Network Observability Operator
installation.

The Network Observability CLI is a flow and packet visualization tool that relies on eBPF agents to
stream collected data to an ephemeral collector pod. It requires no persistent storage during the
capture. After the run, the output is transferred to your local machine. This enables quick, live insight into
packets and flow data without installing the Network Observability Operator.

46

CHAPTER 4. INSTALLING THE NETWORK OBSERVABILITY OPERATOF

CHAPTER 4. INSTALLING THE NETWORK OBSERVABILITY
OPERATOR

Installing the Loki Operator is recommended before using the Network Observability Operator. You can
use network observability without Loki, but special considerations apply if you only need metrics or
external exporters.

The Loki Operator integrates a gateway that implements multi-tenancy and authentication with Loki for
data flow storage. The LokiStack resource manages Loki, which is a scalable, highly-available, multi-
tenant log aggregation system, and a web proxy with OpenShift Container Platform authentication. The
LokiStack proxy uses OpenShift Container Platform authentication to enforce multi-tenancy and
facilitate the saving and indexing of data in Loki log stores.

4.1. NETWORK OBSERVABILITY WITHOUT LOKI
Compare the features available with network observability with and without installing the Loki Operator.

If you only want to export flows to a Kafka consumer or IPFIX collector, or you only need dashboard
metrics, then you do not need to install Loki or provide storage for Loki. The following table compares
available features with and without Loki.

Table 4.1. Comparison of feature availability with and without Loki

With Loki Without Loki
Exporters X X
Multi-tenancy X X
Complete filtering and X

aggregations capabilities [']

Partial filtering and X X

aggregations capabilities [?]

Flow-based metrics and X X
dashboards

Traffic flows view overview [*] X X
Traffic flows view table X

Topology view X X
OpenShift Container Platform X X
console Network Traffic tab

integration

1. Such as per pod.

47

OpenShift Container Platform 4.17 Network Observability

2. Such as per workload or namespace.

3. Statistics on packet drops are only available with Loki.

Additional resources

® Export enriched network flow data

4.2. INSTALLING THE LOKI OPERATOR

Install the supported Loki Operator version from the software catalog to enable the secure LokiStack
instance, which provides automatic in-cluster authentication and authorization for network observability.

The Loki Operator versions 6.0+ are the supported Loki Operator versions for network observability;
these versions provide the ability to create a LokiStack instance using the openshift-network tenant
configuration mode and provide fully-automatic, in-cluster authentication and authorization support for
network observability.

Prerequisites

® You have administrator permissions.
® You have access to the OpenShift Container Platform web console.

® You have access to a supported object store. For example: AWS S3, Google Cloud Storage,
Azure, Swift, Minio, or OpenShift Data Foundation.

Procedure
1. In the OpenShift Container Platform web console, click Operators - OperatorHub.
2. Choose Loki Operator from the list of available Operators, and click Install.

3. Under Installation Mode, select All namespaces on the cluster.

Verification

1. Verify that you installed the Loki Operator. Visit the Operators — Installed Operators page and
look for Loki Operator.

2. Verify that Loki Operator is listed with Status as Succeeded in all the projects.

IMPORTANT

To uninstall Loki, refer to the uninstallation process that corresponds with the method
you used to install Loki. You might have remaining ClusterRoles and
ClusterRoleBindings, data stored in object store, and persistent volume that must be
removed.

4.2.1. Creating a secret for Loki storage

Create a secret with cloud storage credentials, such as for Amazon Web Services (AWS), to allow the
Loki Operator to access the necessary object store for log persistence.

48

https://catalog.redhat.com/software/containers/openshift-logging/loki-rhel9-operator/64479927e1820602a81cdf13

CHAPTER 4. INSTALLING THE NETWORK OBSERVABILITY OPERATOF

The Loki Operator supports a few log storage options, such as AWS S3, Google Cloud Storage, Azure,
Swift, Minio, OpenShift Data Foundation. The following example shows how to create a secret for AWS
S3 storage. The secret created in this example, loki-s3, is referenced in "Creating a LokiStack custom
resource”. You can create this secret in the web console or CLI.

Procedure

1. Using the web console, navigate to the Project — All Projects dropdown and select Create
Project.

2. Name the project netobserv and click Create.

3. Navigate to the Importicon, +, in the top right corner. Paste your YAML file into the editor.
The following shows an example secret YAML file for S3 storage:

apiVersion: vi

kind: Secret

metadata:
name: loki-s3

namespace: netobserv ﬂ
stringData:

access_key_id: QUIJQUIPUOZPRE5ONOVYQU1QTEUK
access_key_secret:

dOphbHJYVXRuRkVNSS9LNO1ERU5HL2JQeFJmaUNZRVhBTVBMRUtFWQo=
bucketnames: s3-bucket-name

endpoint: https://s3.eu-central-1.amazonaws.com
region: eu-central-1

ﬂ The installation examples in this documentation use the same namespace, netobserv,

across all components. You can optionally use a different namespace for the different
components

Verification

e After you create the secret, you view the secret listed under Workloads = Secrets in the web
console.

Additional resources
® Creating a LokiStack custom resource
® Flow Collector APl Reference

® Flow Collector sample resource

4.2.2. Creating a LokiStack custom resource

Deploy the LokiStack custom resource using the web console or OpenShift CLI (0¢), ensuring you
configure the correct namespace, deployment size, and secret name for Loki object storage.

You can deploy a LokiStack custom resource (CR) to create a namespace or new project.

Procedure

49

OpenShift Container Platform 4.17 Network Observability

1. Navigate to Operators — Installed Operators, viewing All projects from the Project
dropdown.

2. Look for Loki Operator. In the details, under Provided APIs, select LokiStack.
3. Click Create LokiStack

4. Ensure the following fields are specified in either Form View or YAML view:

apiVersion: loki.grafana.com/v1
kind: LokiStack
metadata:
name: loki
namespace: netobserv ﬂ
spec:
size: 1x.small 9
storage:
schemas:
- version: vi2
effectiveDate: '2022-06-01"
secret:
name: loki-s3
type: s3
storageClassName: gp3 6
tenants:
mode: openshift-network

ﬂ The installation examples in this documentation use the same namespace, netobserv,
across all components. You can optionally use a different namespace.

9 Specify the deployment size. In the Loki Operator 5.8 and later versions, the supported size
options for production instances of Loki are 1x.extra-small, 1x.small, or 1x.medium.

IMPORTANT

It is not possible to change the number 1x for the deployment size.

9 Use a storage class name that is available on the cluster for ReadWriteOnce access mode.
For best performance, specify a storage class that allocates block storage. You can use oc
get storageclasses to see what is available on your cluster.

IMPORTANT

You must not reuse the same LokiStack CR that is used for logging.

5. Click Create.

4.2.3. Creating a new group for the cluster-admin user role

50

CHAPTER 4. INSTALLING THE NETWORK OBSERVABILITY OPERATOF

IMPORTANT

Querying application logs for multiple namespaces as a cluster-admin user, where the

in the error Parse error: input size too long (XXXX > 5120). For better control over
access to logs in LokiStack, make the cluster-admin user a member of the cluster-
admin group. If the cluster-admin group does not exist, create it and add the desired
users to it.

Use the following procedure to create a new group for users with cluster-admin permissions.

Procedure

1. Enter the following command to create a new group:

I $ oc adm groups new cluster-admin

2. Enter the following command to add the desired user to the cluster-admin group:

I $ oc adm groups add-users cluster-admin <username>

3. Enter the following command to add cluster-admin user role to the group:

I $ oc adm policy add-cluster-role-to-group cluster-admin cluster-admin

4.2.4. Custom admin group access

If you need to see cluster-wide logs without necessarily being an administrator, or if you already have
any group defined that you want to use here, you can specify a custom group using the adminGroup
field. Users who are members of any group specified in the adminGroups field of the LokiStack
custom resource (CR) have the same read access to logs as administrators.

Administrator users have access to all network logs across the cluster.

Example LokiStack CR

apiVersion: loki.grafana.com/v1
kind: LokiStack
metadata:
name: loki
namespace: netobserv
spec:
tenants:
mode: openshift-network ﬂ
openshift:
adminGroups: 9
- cluster-admin

- custom-admin-group 6

Custom admin groups are only available in this mode.

Entering an empty list [] value for this field disables admin groups.

®9

sum total of characters of all of the namespaces in the cluster is greater than 5120, results

51

OpenShift Container Platform 4.17 Network Observability

9 Overrides the default groups (system:cluster-admins, cluster-admin, dedicated-admin)

4.2.5. Loki deployment sizing

Sizing for Loki follows the format of 1x.<size> where the value 1xis number of instances and <size>
specifies performance capabilities.

IMPORTANT

Itis not possible to change the number 1x for the deployment size.

Table 4.2. Loki sizing

Data transfer

Queries per
second (QPS)

Replication factor

Total CPU
requests

Total memory
requests

Total disk
requests

4.2.6. LokiStack ingestion limits and health alerts

1x.demo

Demo use only

Demo use only

None

None

None

40Gi

1x.extra-small

100GB/day

1-25 QPS at

200ms

14 vCPUs

31Gi

430Gi

x.small

500GB/day

25-50 QPS at

200ms

34 vCPUs

67Gi

430Gi

Ix.medium

2TB/day

25-75 QPS at
200ms

54 vCPUs

139Gi

590Gi

The LokiStack instance includes default ingestion and query limits that can be overridden by

administrators to manage performance and prevent system alerts or errors.

NOTE

You might want to update the ingestion and query limits if you get Loki errors showing up
in the Console plugin, or in flowlogs-pipeline logs.

Here is an example of configured limits:

spec:
limits:
global:
ingestion:

ingestionBurstSize: 40
ingestionRate: 20

52

CHAPTER 4. INSTALLING THE NETWORK OBSERVABILITY OPERATOF

maxGlobalStreamsPerTenant: 25000
queries:

maxChunksPerQuery: 2000000

maxEntriesLimitPerQuery: 10000

maxQuerySeries: 3000

For more information about these settings, see the LokiStack API reference.

4.3. INSTALLING THE NETWORK OBSERVABILITY OPERATOR

Install the Network Observability Operator and use the setup wizard to create the FlowCollector
custom resource definition (CRD) to complete the initial configuration.

You can set specifications in the web console when you create the FlowCollector.

IMPORTANT

The actual memory consumption of the Operator depends on your cluster size and the
number of resources deployed. Memory consumption might need to be adjusted
accordingly. For more information refer to "Network Observability controller manager
pod runs out of memory" in the "Important Flow Collector configuration considerations”
section.

Prerequisites

e |f you choose to use Loki, install the Loki Operator version 5.7+,

® You must have cluster-admin privileges.

® One of the following supported architectures is required: amd64, ppc64le, arm64, or s390x.
® Any CPU supported by Red Hat Enterprise Linux (RHEL) 9.

® Must be configured with OVN-Kubernetes as the main network plugin, and optionally using
secondary interfaces with Multus and SR-IOV.

NOTE

Additionally, this installation example uses the netobserv namespace, which is used
across all components. You can optionally use a different namespace.

Procedure

1. In the OpenShift Container Platform web console, click Operators - OperatorHub.

2. Choose Network Observability Operator from the list of available Operators in the
OperatorHub, and click Install.

3. Select the checkbox Enable Operator recommended cluster monitoring on this Namespace.

4. Navigate to Operators — Installed Operators. Under Provided APIs for Network Observability,
select the Flow Collector link.

5. Follow the Network Observability FlowCollector setup wizard.

53

https://loki-operator.dev/docs/api.md/#loki-grafana-com-v1-IngestionLimitSpec
https://catalog.redhat.com/software/containers/openshift-logging/loki-rhel8-operator/622b46bcae289285d6fcda39

OpenShift Container Platform 4.17 Network Observability

6. Click Create.

Verification

To confirm this was successful, when you navigate to Observe you should see Network Traffic listed in
the options.

In the absence of Application Traffic within the OpenShift Container Platform cluster, default filters

might show that there are "No results”, which results in no visual flow. Beside the filter selections, select
Clear all filtersto see the flow.

4.4, ENABLING MULTI-TENANCY IN NETWORK OBSERVABILITY
Enable multi-tenancy in network observability by configuring cluster roles and namespace roles to grant
project administrators and developers granular, restricted access to flows and metrics in Loki and

Prometheus.

Access is enabled for project administrators. Project administrators who have limited access to some
namespaces can access flows for only those namespaces.

For Developers, multi-tenancy is available for both Loki and Prometheus but requires different access
rights.

Prerequisite

® |f you are using Loki, you have installed at least Loki Operator version 5.7.

® You must be logged in as a project administrator.

Procedure

® For per-tenant access, you must have the netobserv-loki-reader cluster role and the
netobserv-metrics-reader namespace role to use the developer perspective. Run the following
commands for this level of access:

I $ oc adm policy add-cluster-role-to-user netobserv-loki-reader <user_group_or_name>

$ oc adm policy add-role-to-user netobserv-metrics-reader <user_group_or_name> -n
<namespace>

® [or cluster-wide access, non-cluster-administrators must have the netobserv-loki-reader,
cluster-monitoring-view, and netobserv-metrics-reader cluster roles. In this scenario, you can
use either the admin perspective or the developer perspective. Run the following commands for
this level of access:

I $ oc adm policy add-cluster-role-to-user netobserv-loki-reader <user_group_or_name>
I $ oc adm policy add-cluster-role-to-user cluster-monitoring-view <user_group_or_name>

I $ oc adm policy add-cluster-role-to-user netobserv-metrics-reader <user_group_or_name>

54

https://catalog.redhat.com/software/containers/openshift-logging/loki-rhel8-operator/622b46bcae289285d6fcda39

CHAPTER 4. INSTALLING THE NETWORK OBSERVABILITY OPERATOF

4.5. IMPORTANT FLOW COLLECTOR CONFIGURATION
CONSIDERATIONS

Once you create the FlowCollector instance, you can reconfigure it, but the pods are terminated and
recreated again, which can be disruptive. Therefore, you can consider configuring the following options
when creating the FlowCollector for the first time:

® Configuring the Flow Collector resource with Kafka

® Export enriched network flow data to Kafka or IPFIX
® Configuring monitoring for SR-IOV interface traffic
® Working with conversation tracking

® Working with DNS tracking

® Working with packet drops

Additional resources

® F[low Collector API Reference

Flow Collector sample resource

® Resource considerations

Troubleshooting network observability controller manager pod runs out of memory

Network observability architecture

4.5.1. Migrating removed stored versions of the FlowCollector CRD

Manually remove the deprecated vialphal version from the FlowCollector custom resource definition
(CRD) storedVersion list to prevent upgrade errors and successfully migrate to Network Observability
Operator 1.6.

There are two options to remove stored versions:
1. Use the Storage Version Migrator Operator.

2. Uninstall and reinstall the Network Observability Operator, ensuring that the installationisin a
clean state.

Prerequisites

® You have an older version of the Operator installed, and you want to prepare your cluster to
install the latest version of the Operator. Or you have attempted to install the Network
Observability Operator 1.6 and run into the error: Failed risk of data loss updating
"flowcollectors.flows.netobserv.io": new CRD removes version vialpha1 that is listed as a
stored version on the existing CRD.

Procedure

1. Verify that the old FlowCollector CRD version is still referenced in the storedVersion:

55

OpenShift Container Platform 4.17 Network Observability

I $ oc get crd flowcollectors.flows.netobserv.io -ojsonpath="{.status.storedVersions}'

2. If vialpha1 appears in the list of results, proceed with Step a to use the Kubernetes Storage
Version Migrator or Step b to uninstall and reinstall the CRD and the Operator.

a. Option 1: Kubernetes Storage Version Migrator Create a YAML to define the
StorageVersionMigration object, for example migrate-flowcollector-vialphai.yaml:

apiVersion: migration.k8s.io/vialpha1i
kind: StorageVersionMigration
metadata:
name: migrate-flowcollector-vialphal
spec:
resource:
group: flows.netobserv.io

resource: flowcollectors
version: vialphal

i. Save the file.

i. Apply the StorageVersionMigration by running the following command:

I $ oc apply -f migrate-flowcollector-vialphat.yaml

ii. Update the FlowCollector CRD to manually remove vialphal from the
storedVersion:

I $ oc edit crd flowcollectors.flows.netobserv.io

b. Option 2: Reinstall Save the Network Observability Operator 1.5 version of the
FlowCollector CR to a file, for example flowcollector-1.5.yaml.

I $ oc get flowcollector cluster -o yaml > flowcollector-1.5.yaml

i. Follow the steps in "Uninstalling the Network Observability Operator”, which uninstalls
the Operator and removes the existing FlowCollector CRD.

ii. Install the Network Observability Operator latest version, 1.6.0.

iii. Create the FlowCollector using backup that was saved in Step b.

Verification

® Run the following command:

I $ oc get crd flowcollectors.flows.netobserv.io -ojsonpath="{.status.storedVersions}'

The list of results should no longer show vialpha1 and only show the latest version, vibetal.

Additional resources

® Kubernetes Storage Version Migrator Operator

56

https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/operators/#cluster-kube-storage-version-migrator-operator_operator-reference

CHAPTER 4. INSTALLING THE NETWORK OBSERVABILITY OPERATOF

4.6. INSTALLING KAFKA (OPTIONAL)

The Kafka Operator is supported for large-scale environments. Kafka provides high-throughput and
low-latency data feeds for forwarding network flow data in a more resilient, scalable way.

You can install the Kafka Operator as Red Hat AMQ Streams from the Operator Hub, just as the Loki
Operator and Network Observability Operator were installed. Refer to "Configuring the FlowCollector
resource with Kafka" to configure Kafka as a storage option.

NOTE

To uninstall Kafka, refer to the uninstallation process that corresponds with the method
you used to install.

Additional resources

® Configuring the FlowCollector resource with Kafka

4.7. UNINSTALLING THE NETWORK OBSERVABILITY OPERATOR

Uninstall the Network Observability Operator using the OpenShift Container Platform web console
Operator Hub, working in the Ecosystem — Installed Operators area.

Procedure
1. Remove the FlowCollector custom resource.

a. Click Flow Collector, which is next to the Network Observability Operatorin the Provided
APIs column.

b. Click the Options menu for the cluster and select Delete FlowCollector.

2. Uninstall the Network Observability Operator.

a. Navigate back to the Operators — Installed Operators area.

b. Click the Options menu next to the Network Observability Operator and select
Uninstall Operator.

c. Home - Projects and select openshift-netobserv-operator
d. Navigate to Actions and select Delete Project
3. Remove the FlowCollector custom resource definition (CRD).

a. Navigate to Administration = CustomResourceDefinitions.

b. Look for FlowCollector and click the Options menu

c. Select Delete CustomResourceDefinition.

57

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.2

OpenShift Container Platform 4.17 Network Observability

IMPORTANT

The Loki Operator and Kafka remain if they were installed and must be
removed separately. Additionally, you might have remaining data stored in an
object store, and a persistent volume that must be removed.

58

CHAPTER 5. NETWORK OBSERVABILITY OPERATOR IN OPENSHIFT CONTAINER PLATFORWM

CHAPTER 5. NETWORK OBSERVABILITY OPERATOR IN
OPENSHIFT CONTAINER PLATFORM

The Network Observability Operator for OpenShift Container Platform deploys a monitoring pipeline.
This pipeline collects and enriches network traffic flows generated by the eBPF agent.

5.1. VIEWING STATUSES

View the operational status of the Network Observability Operator by using the oc get command to
check the FlowCollector resource status, as well as the status of the eBPF agent, flowlogs-pipeline,
and console plugin Pods.

The Network Observability Operator provides the Flow Collector API. When a Flow Collector resource is
created, it deploys pods and services to create and store network flows in the Loki log store, as well as to
display dashboards, metrics, and flows in the OpenShift Container Platform web console.

Procedure

1. Run the following command to view the state of FlowCollector:

I $ oc get flowcollector/cluster

Example output

NAME AGENT SAMPLING (EBPF) DEPLOYMENT MODEL STATUS
cluster EBPF 50 DIRECT Ready

2. Check the status of pods running in the netobserv namespace by entering the following
command:

I $ oc get pods -n netobserv

Example output

NAME READY STATUS RESTARTS AGE
flowlogs-pipeline-56hbp 1/1 Running 0 147m
flowlogs-pipeline-9plvv 1/1 Running 0 147m
flowlogs-pipeline-h5gkb 1/1 Running 0 147m
flowlogs-pipeline-hh6kf 1/1 Running 0 147m
flowlogs-pipeline-w7vv5 1/1 Running 0 147m

netobserv-plugin-cdd7dc6c-j8ggp 1/1 Running 0 147m

The flowlogs-pipeline pods collect flows, enriches the collected flows, then send flows to the
Loki storage. netobserv-plugin pods create a visualization plugin for the OpenShift Container
Platform Console.

3. Check the status of pods running in the namespace netobserv-privileged by entering the
following command:

I $ oc get pods -n netobserv-privileged

59

OpenShift Container Platform 4.17 Network Observability

Example output

NAME READY STATUS RESTARTS AGE
netobserv-ebpf-agent-4lpp6 1/1 Running 0 151m
netobserv-ebpf-agent-6gbrk 1/1 Running 0 151m
netobserv-ebpf-agent-kipl9 1/1 Running 0 151m
netobserv-ebpf-agent-vrenf 1/1 Running 0 151m
netobserv-ebpf-agent-xf5jh 1/1 Running 0 151m

The netobserv-ebpf-agent pods monitor network interfaces of the nodes to get flows and send
them to flowlogs-pipeline pods.

4. If you are using the Loki Operator, check the status of the component pods of LokiStack
custom resource in the netobserv namespace by entering the following command:

I $ oc get pods -n netobserv

Example output

NAME READY STATUS RESTARTS AGE
lokistack-compactor-0 1/1 Running 0 18h
lokistack-distributor-654f87c5bc-ghkhv 1/1 Running 0 18h
lokistack-distributor-654f87c5bc-skxgm 1/1 Running 0 18h
lokistack-gateway-796dc6ff7-c54gz 2/2 Running 0 18h
lokistack-index-gateway-0 1/1 Running 0 18h
lokistack-index-gateway-1 1/1 Running 0 18h
lokistack-ingester-0 1/1 Running 0 18h
lokistack-ingester-1 1/1 Running 0 18h
lokistack-ingester-2 1/1 Running 0 18h
lokistack-querier-66747dc666-6vh5x 1/1 Running 0 18h
lokistack-querier-66747dc666-cjr45 1/1 Running 0 18h
lokistack-querier-66747dc666-xh8rq 1/1 Running 0 18h
lokistack-query-frontend-85c6db4fbd-b2xfb 1/1 Running 0 18h
lokistack-query-frontend-85c6db4fbd-jm94f 1/1 Running 0 18h

5.2. NETWORK OBSERVABLITY OPERATOR ARCHITECTURE

Review the Network Observability Operator architecture, detailing how the FlowCollector resource
manages the eBPF agent, which collects and enriches flows, sending the data to Loki for storage or
Prometheus for metrics.

The Network Observability Operator provides the FlowCollector API, which is instantiated at
installation and configured to reconcile the eBPF agent, the flowlogs-pipeline, and the netobserv-
plugin components. Only a single FlowCollector per cluster is supported.

The eBPF agent runs on each cluster node with some privileges to collect network flows. The flowlogs-
pipeline receives the network flows data and enriches the data with Kubernetes identifiers. If you

choose to use Loki, the flowlogs-pipeline sends flow logs data to Loki for storing and indexing. The
netobserv-plugin, which is a dynamic OpenShift Container Platform web console plugin, queries Loki to
fetch network flows data. Cluster-admins can view the data in the web console.

60

CHAPTER 5. NETWORK OBSERVABILITY OPERATOR IN OPENSHIFT CONTAINER PLATFORWM

If you do not use Loki, you can generate metrics with Prometheus. Those metrics and their related
dashboards are accessible in the web console. For more information, see "Network Observability without
Loki".

Network Kubernetes
Observability Operator objects’
(FlowCollector) metadata
I T — |
v
eBPF agent Raw) Flowlogs- | /I Enriched - - netobserv-
(privileged) flow data pipeline [~ flowdata "~ ,, 4> plugin
b Loki storage
b (optional)
Lo
] 1
P . -
T mevie
o Prometheus
L storage
. Ntef_‘%vork / Packet listening at I e H
Intertaces Traffic Control ingress/egress Lo Enriched i Kafka i

A T flowdata bj (optional)
I 1)

%Odes s L L Enriched ! IPFIX

(DaemonSet) flow data ! (optional) !

If you are using the Kafka option, the eBPF agent sends the network flow data to Kafka, and the
flowlogs-pipeline reads from the Kafka topic before sending to Loki, as shown in the following diagram.

Network Kubernetes
Observability Operator objects’
(FlowCollector) metadata
I } |
v
eBPF agent > > Flowlogs- Enriched - netobserv-
(privileged) Kafka pipeline | flowdata > ,, <> plugin
P Loki storage
bt (optional)
B
1 I
P Derived -
E 3 meerl:\r,iis \,
Packet listening at i 0 Prometheus
Network Traffic Control ingress/egress I storage B .
interfaces 0o . i i
O Enriched > ' Kafka '
! flow data ! (optional) i
1 1 1
%Odes s L Enriched > IPFIX 5
(DaemonSet) flow data ! (optional) !

61

OpenShift Container Platform 4.17 Network Observability

Additional resources

® Network Observability without Loki

5.3. VIEWING NETWORK OBSERVABILITY OPERATOR STATUS AND
CONFIGURATION

Inspect the current status, configuration details, and generated resources of the Network Observability
Operator by using the oc describe flowcollector/cluster command.

Procedure

1. Run the following command to view the status and configuration of the Network Observability
Operator:

I $ oc describe flowcollector/cluster

62

CHAPTER 6. CONFIGURING THE NETWORK OBSERVABILITY OPERATOR

CHAPTER 6. CONFIGURING THE NETWORK OBSERVABILITY
OPERATOR

Configure the Network Observability Operator by updating the cluster-wide FlowCollector API
resource (cluster) to manage component configurations and flow collection settings.

The FlowCollector is explicitly created during installation. Since this resource operates cluster-wide,
only a single FlowCollector is allowed, and it must be named cluster. For more information, see the
FlowCollector APl reference.

6.1. VIEW THE FLOWCOLLECTOR RESOURCE

View and modify the FlowCollector resource in the OpenShift Container Platform web console through
the integrated setup, advanced form, or by editing the YAML directly to configure the Network
Observability Operator.

Procedure

1. In the web console, navigate to Operators — Installed Operators.
2. Under the Provided APIs heading for the NetObserv Operator, select Flow Collector.

3. Select cluster then select the YAML tab. There, you can modify the FlowCollector resource to
configure the Network Observability Operator.

6.1.1. Example of a FlowCollector resource

Review a comprehensive, annotated example of the FlowCollector custom resource that demonstrates
configurations for eBPF sampling, conversation tracking, Loki integration, and console quick filters.

6.1.1.1. Sample FlowCollector resource

apiVersion: flows.netobserv.io/vibeta2
kind: FlowCollector
metadata:
name: cluster
spec:
namespace: netobserv
deploymentModel: Direct
agent:
type: eBPF ﬂ
ebpf:
sampling: 50 9
logLevel: info
privileged: false
resources:
requests:
memory: 50Mi
cpu: 100m
limits:
memory: 800Mi

processor: 6
logLevel: info

63

OpenShift Container Platform 4.17 Network Observability

resources:
requests:
memory: 100Mi
cpu: 100m
limits:
memory: 800Mi
logTypes: Flows
advanced:
conversationEndTimeout: 10s
conversationHeartbeatInterval: 30s
loki: (4]
mode: LokiStack 6
consolePlugin:
register: true
logLevel: info
portNaming:
enable: true
portNames:
"3100": loki
quickFilters:
- name: Applications
filter:
src_namespace!: 'openshift-,netobserv'
dst_namespace!: 'openshift-,netobserv'
default: true
- name: Infrastructure
filter:
src_namespace: 'openshift-,netobserv'
dst_namespace: 'openshift-,netobserv'
- name: Pods network
filter:
src_kind: 'Pod'
dst_kind: 'Pod'
default: true
- name: Services network
filter:
dst_kind: 'Service'

The Agent specification, spec.agent.type, must be EBPF. eBPF is the only OpenShift Container
Platform supported option.

9 You can set the Sampling specification, spec.agent.ebpf.sampling, to manage resources. By
default, eBPF sampling is set to 50, so a flow has a 1in 50 chance of being sampled. A lower
sampling interval value requires more computational, memory, and storage resources. A value of 0
or 1 means all flows are sampled. It is recommended to start with the default value and refine it
empirically to determine the optimal setting for your cluster.

9 The Processor specification spec.processor. can be set to enable conversation tracking. When
enabled, conversation events are queryable in the web console. The spec.processor.logTypes
value is Flows. The spec.processor.advanced values are Conversations, EndedConversations,
or ALL. Storage requirements are highest for All and lowest for EndedConversations.

Q The Loki specification, spec.loki, specifies the Loki client. The default values match the Loki install

paths mentioned in the Installing the Loki Operator section. If you used another installation method
for Loki, specify the appropriate client information for your install.

64

CHAPTER 6. CONFIGURING THE NETWORK OBSERVABILITY OPERATOR

g The LokiStack mode automatically sets a few configurations: querierUrl, ingesterUrl and
statusUrl, tenantlD, and corresponding TLS configuration. Cluster roles and a cluster role binding

6 The spec.quickFilters specification defines filters that show up in the web console. The
Application filter keys,src_namespace and dst_namespace, are negated (1), so the Application
filter shows all traffic that does not originate from, or have a destination to, any openshift- or
netobserv namespaces. For more information, see Configuring quick filters below.

Additional resources

® FlowCollector API reference

® Working with conversation tracking

6.2. CONFIGURING THE FLOWCOLLECTOR RESOURCE WITH KAFKA

Configure the FlowCollector resource to use Kafka for high-throughput and low-latency data feeds.

A Kafka instance needs to be running, and a Kafka topic dedicated to OpenShift Container Platform
Network Observability must be created in that instance. For more information, see Kafka
documentation with AMQ Streams.

Prerequisites

e Kafkais installed. Red Hat supports Kafka with AMQ Streams Operator.

Procedure

1. In the web console, navigate to Operators — Installed Operators.

2. Under the Provided APIs heading for the Network Observability Operator, select Flow
Collector.

3. Select the cluster and then click the YAML tab.

4. Modify the FlowCollector resource for OpenShift Container Platform Network Observability
Operator to use Kafka, as shown in the following sample YAML:

Sample Kafka configuration in FlowCollector resource

apiVersion: flows.netobserv.io/vibeta2
kind: FlowCollector
metadata:

name: cluster
spec:

deploymentModel: Kafka ﬂ

kafka:

address: "kafka-cluster-kafka-bootstrap.netobserv" g

topic: network-flows
tls:

enable: false °

65

https://access.redhat.com/documentation/en-us/red_hat_amq/7.7/html/using_amq_streams_on_openshift/using-the-topic-operator-str

OpenShift Container Platform 4.17 Network Observability

ﬂ Set spec.deploymentModel to Kafka instead of Direct to enable the Kafka deployment
model.

spec.kafka.address refers to the Kafka bootstrap server address. You can specify a port if
needed, for instance kafka-cluster-kafka-bootstrap.netobserv:9093 for using TLS on
port 9093.

spec.kafka.tls can be used to encrypt all communications to and from Kafka with TLS or
mTLS. When enabled, the Kafka CA certificate must be available as a ConfigMap or a
Secret, both in the namespace where the flowlogs-pipeline processor component is
deployed (default: netobserv) and where the eBPF agents are deployed (default:
netobserv-privileged). It must be referenced with spec.kafka.tls.caCert. When using
mTLS, client secrets must be available in these namespaces as well (they can be generated
for instance using the AMQ Streams User Operator) and referenced with
spec.kafka.tls.userCert.

9 spec.kafka.topic should match the name of a topic created in Kafka.

6.3. EXPORT ENRICHED NETWORK FLOW DATA

Configure the FlowCollector resource to export enriched network flow data simultaneously to Kafka,
IPFIX, or an OpenTelemetry endpoint for external consumption by tools like Splunk or Prometheus.

For Kafka or IPFIX, any processor or storage that supports those inputs, such as Splunk, Elasticsearch, or
Fluentd, can consume the enriched network flow data.

For OpenTelemetry, network flow data and metrics can be exported to a compatible OpenTelemetry
endpoint, such as Red Hat build of OpenTelemetry or Prometheus.

Prerequisites

® Your Kafka, IPFIX, or OpenTelemetry collector endpoints are available from Network
Observability flowlogs-pipeline pods.

Procedure

1. In the web console, navigate to Operators — Installed Operators.
2. Under the Provided APIs heading for the NetObserv Operator, select Flow Collector.
3. Select cluster and then select the YAML tab.

4. Edit the FlowCollector to configure spec.exporters as follows:

apiVersion: flows.netobserv.io/vibeta2
kind: FlowCollector
metadata:

name: cluster
spec:

exporters:

- type: Kafka ﬂ

kafka:
address: "kafka-cluster-kafka-bootstrap.netobserv"

topic: netobserv-flows-export 9

66

CHAPTER 6. CONFIGURING THE NETWORK OBSERVABILITY OPERATOR

tls:

enable: false
- type: IPFIX

ipfix:
targetHost: "ipfix-collector.ipfix.svc.cluster.local"
targetPort: 4739

transport: tcp or udp 6
- type: OpenTelemetry G
openTelemetry:
targetHost: my-otelcol-collector-headless.otlp.svc
targetPort: 4317

type: grpc ﬂ

logs: G
enable: true

metrics: Q
enable: true

prefix: netobserv
pushTimelnterval: 20s ()
expiryTime: 2m

fieldsMapping: m
input: SrcAdadr
output: source.address

MYOU can export flows to IPFIX, OpenTelemetry, and Kafka individually or concurrently.

The Network Observability Operator exports all flows to the configured Kafka topic.

o

You can encrypt all communications to and from Kafka with SSL/TLS or mTLS. When
enabled, the Kafka CA certificate must be available as a ConfigMap or a Secret, both in the
namespace where the flowlogs-pipeline processor component is deployed (default:
netobserv). It must be referenced with spec.exporters.tls.caCert. When using mTLS,
client secrets must be available in these namespaces as well (they can be generated for
instance using the AMQ Streams User Operator) and referenced with
spec.exporters.tls.userCert.

You have the option to specify transport. The default value is tep but you can also specify
udp.

The protocol of OpenTelemetry connection. The available options are http and grpc.

OpenTelemetry configuration for exporting logs, which are the same as the logs created
for Loki.

OpenTelemetry configuration for exporting metrics, which are the same as the metrics
created for Prometheus. These configurations are specified in the
spec.processor.metrics.includeList parameter of the FlowCollector custom resource,
along with any custom metrics you defined using the FlowMetrics custom resource.

O 990 O

The time interval that metrics are sent to the OpenTelemetry collector.

o0

Optional:Network Observability network flows formats get automatically renamed to an
OpenTelemetry compliant format. The fieldsMapping specification gives you the ability to
customize the OpenTelemetry format output. For example in the YAML sample, SrcAddr
is the Network Observability input field, and it is being renamed source.address in
OpenTelemetry output. You can see both Network Observability and OpenTelemetry

67

OpenShift Container Platform 4.17 Network Observability

formats in the "Network flows format reference”.

After configuration, network flows data can be sent to an available output in a JSON format. For more
information, see "Network flows format reference".

Additional resources

® Network flows format reference

6.4. UPDATING THE FLOWCOLLECTOR RESOURCE

As an alternative to using the web console, use the oc patch command with the flowcollector custom
resource to quickly update specific specifications, such as eBPF sampling

Procedure

1. Run the following command to patch the flowcollector CR and update the
spec.agent.ebpf.sampling value:

$ oc patch flowcollector cluster --type=json -p "[{"op": "replace", "path":
"/spec/agent/ebpf/sampling”, "value": <new value>}] -n netobserv"

6.5. FILTER NETWORK FLOWS AT INGESTION

Create filters to reduce the number of generated network flows. Filtering network flows can reduce the
resource usage of the network observability components.

You can configure two kinds of filters:
e eBPF agent filters

® Flowlogs-pipeline filters

6.5.1. eBPF agent filters

eBPF agent filters maximize performance because they take effect at the earliest stage of the network
flows collection process.

To configure eBPF agent filters with the Network Observability Operator, see "Filtering eBPF flow data
using multiple rules”.

6.5.2. Flowlogs-pipeline filters

Flowlogs-pipeline filters provide greater control over traffic selection because they take effect later in
the network flows collection process. They are primarily used to improve data storage.

Flowlogs-pipeline filters use a simple query language to filter network flow, as shown in the following
example:

(srcnamespace="netobserv" OR (srcnamespace="ingress" AND dstnamespace="netobserv")) AND
srckind!="service"

68

CHAPTER 6. CONFIGURING THE NETWORK OBSERVABILITY OPERATOR

The query language uses the following syntax:

Table 6.1. Query language syntax

Category Operators

Logical boolean and, or
operators (not case-

sensitive)

Comparison operators = (equals),

= (not equals),

=~ (matches regexp),

I~ (not matches regexp),

</ <= (less than or equal to),
>/ >= (greater than or equal to)

Unary operations with(field) (field is present),
without(field) (field is absent)

You can configure flowlogs-pipeline filters in the spec.processor.filters section of the FlowCollector
resource. For example:

Example YAML Flowlogs-pipeline filter

apiVersion: flows.netobserv.io/vibeta2
kind: FlowCollector
metadata:
name: cluster
spec:
namespace: netobserv
agent:
processor:
filters:
- query: |
(SrcK8S_Namespace="netobserv" OR (SrcK8S_Namespace="openshift-ingress" AND
DstK8S_Namespace="netobserv"))
outputTarget: Loki ﬂ

sampling: 10

ﬂ Sends matching flows to a specific output, such as Loki, Prometheus, or an external system. When
omitted, sends to all configured outputs.

9 Optional. Applies a sampling interval to limit the number of matching flows to be stored or
exported. For example, sampling: 10 means that there is a 1in 10 chance that a flow will be kept.

Additional resources

® Filtering eBPF flow data using multiple rules

6.6. CONFIGURING QUICK FILTERS

69

OpenShift Container Platform 4.17 Network Observability

Use the list of available source, destination, and universal filter keys to modify quick filters within the
FlowCollector resource.

Exact matches are possible using double-quotes around values. Otherwise, partial matches are used for
textual values. The bang (!) character, placed at the end of a key, means negation. See the sample
FlowCollector resource for more context about modifying the YAML.

NOTE

The filter matching types "all of" or "any of" is a Ul setting that the users can modify from
the query options. It is not part of this resource configuration.

Here is a list of all available filter keys:

Table 6.2. Filter keys

Destin
ation

Description

names
pace

name

kind

owner
_name

resour
ce

addre
ss

mac

port

70

src_n
ames
pace

src_n
ame

src_k
ind

src_o
wner
nam

src_r
esou
rce

src_a
ddre
Ss

src_
mac

src_p
ort

dst n
ames
pace

dst n
ame

dst_k
ind

dst o
whner
nam

dst r
esou
rce

dst a
ddre
ss

dst_
mac

dst p
ort

Filter traffic related to a specific namespace.

Filter traffic related to a given leaf resource name, such as a specific pod,
service, or node (for host-network traffic).

Filter traffic related to a given resource kind. The resource kinds include the leaf
resource (Pod, Service or Node), or the owner resource (Deployment and
StatefulSet).

Filter traffic related to a given resource owner; that is, a workload or a set of
pods. For example, it can be a Deployment name, a StatefulSet name, etc.

Filter traffic related to a specific resource that is denoted by its canonical
name, that identifies it uniquely. The canonical notation is
kind.namespace.name for namespaced kinds, ornode.name for nodes.
For example, Deployment.my-namespace.my-web-server.

Filter traffic related to an IP address. IPv4 and IPv6 are supported. CIDR

ranges are also supported.

Filter traffic related to a MAC address.

Filter traffic related to a specific port.

CHAPTER 6. CONFIGURING THE NETWORK OBSERVABILITY OPERATOR

Destin Description

ation

host.ta src_h dst h Filter traffic related to the host IP address where the pods are running.
ddres ost. a ost a

s ddre ddre

SS SS
proto N/A N/A Filter traffic related to a protocol, such as TCP or UDP.
col

e Universal keys filter for any of source or destination. For example, filtering name: 'my-pod’
means all traffic from my-pod and all traffic to my-pod, regardless of the matching type used,
whether Match all or Match any.

6.7. RESOURCE MANAGEMENT AND PERFORMANCE
CONSIDERATIONS

Review the key configuration settings, including eBPF sampling, feature enablement, and resource
limits, necessary to manage performance criteria and optimize resource consumption for network
observability.

The amount of resources required by network observability depends on the size of your cluster and your
requirements for the cluster to ingest and store observability data. To manage resources and set
performance criteria for your cluster, consider configuring the following settings. Configuring these
settings might meet your optimal setup and observability needs.

The following settings can help you manage resources and performance from the outset:

eBPF Sampling

You can set the Sampling specification, spec.agent.ebpf.sampling, to manage resources. By
default, eBPF sampling is set to 50, so a flow has a 1in 50 chance of being sampled. A lower sampling
interval value requires more computational, memory, and storage resources. A value of 0 or 1 means
all flows are sampled. It is recommended to start with the default value and refine it empirically to
determine the optimal setting for your cluster.

eBPF features

The more features that are enabled, the more CPU and memory are impacted. See "Observing the
network traffic" for a complete list of these features.

Without Loki

You can reduce the amount of resources that network observability requires by not using Loki and
instead relying on Prometheus. For example, when network observability is configured without Loki,
the total savings of memory usage are in the 20-65% range and CPU utilization is lower by 10-30%,
depending upon the sampling interval value. See "Network observability without Loki" for more
information.

Restricting or excluding interfaces

Reduce the overall observed traffic by setting the values for spec.agent.ebpf.interfaces and
spec.agent.ebpf.excludelnterfaces. By default, the agent fetches all the interfaces in the system,
except the ones listed in excludelnterfaces and lo (local interface). Note that the interface names
might vary according to the Container Network Interface (CNI) used.

71

OpenShift Container Platform 4.17 Network Observability

Performance fine-tuning

The following settings can be used to fine-tune performance after the Network Observability has
been running for a while:

® Resource requirements and limits Adapt the resource requirements and limits to the load
and memory usage you expect on your cluster by using the spec.agent.ebpf.resources and
spec.processor.resources specifications. The default limits of 800MB might be sufficient
for most medium-sized clusters.

® Cache max flows timeout Control how often flows are reported by the agents by using the
eBPF agent's spec.agent.ebpf.cacheMaxFlows and
spec.agent.ebpf.cacheActiveTimeout specifications. A larger value results in less traffic
being generated by the agents, which correlates with a lower CPU load. However, a larger
value leads to a slightly higher memory consumption, and might generate more latency in the
flow collection.

6.7.1. Resource considerations

Review the resource considerations table, which provides baseline examples for configuration settings,
such as eBPF memory limits and LokiStack size, tailored to various cluster workload sizes.

The following table outlines examples of resource considerations for clusters with certain workload
sizes.

IMPORTANT

The examples outlined in the table demonstrate scenarios that are tailored to specific
workloads. Consider each example only as a baseline from which adjustments can be
made to accommodate your workload needs.

Table 6.3. Resource recommendations

Extra small (10 nodes) Small (25 nodes) Large (250 nodes)[2]

Worker Node vCPU 4 vCPUs| 16GiB mem [] 16 vCPUs| 64GiB mem 16 vCPUs| 64GiB Mem
and memory M n
LokiStack size 1x.extra-small 1x.small 1x.medium

Network Observability
controller memory limit

eBPF sampling interval

eBPF memory limit

cacheMaxSize

FLP memory limit

72

400Mi (default)

50 (default)

800Mi (default)

50,000

800Mi (default)

400Mi (default)

50 (default)

800Mi (default)

100,000 (default)

800Mi (default)

400Mi (default)

50 (default)

1600Mi

100,000 (default)

800OMi (default)

CHAPTER 6. CONFIGURING THE NETWORK OBSERVABILITY OPERATOR

Extra small (10 nodes) Small (25 nodes) Large (250 nodes)[2]
FLP Kafka partitions - 48 48
Kafka consumer - 6 18
replicas
Kafka brokers - 3 (default) 3 (default)

1. Tested with AWS M6i instances.

2. In addition to this worker and its controller, 3 infra nodes (size M6i.12xlarge) and 1 workload
node (size M6i.8xlarge) were tested.

6.7.2. Total average memory and CPU usage

Review the table detailing the total average CPU and memory usage for network observability
components under two distinct traffic scenarios (Test 1 and Test 2) at different eBPF sampling values.

The following table outlines averages of total resource usage for clusters with a sampling value of 1 and
50 for two different tests: Test 1 and Test 2. The tests differ in the following ways:

e Test 1 takes into account high ingress traffic volume in addition to the total number of
namespace, pods and services in an OpenShift Container Platform cluster, places load on the
eBPF agent, and represents use cases with a high number of workloads for a given cluster size.
For example, Test 1 consists of 76 Namespaces, 5153 Pods, and 2305 Services with a network
traffic scale of ~350 MB/s.

e Test 2 takes into account high ingress traffic volume in addition to the total number of
namespace, pods and services in an OpenShift Container Platform cluster and represents use
cases with a high number of workloads for a given cluster size. For example, Test 2 consists of
553 Namespaces, 6998 Pods, and 2508 Services with a network traffic scale of ~950 MB/s.

Since different types of cluster use cases are exemplified in the different tests, the numbers in this table
do not scale linearly when compared side-by-side. Instead, they are intended to be used as a benchmark
for evaluating your personal cluster usage. The examples outlined in the table demonstrate scenarios
that are tailored to specific workloads. Consider each example only as a baseline from which adjustments
can be made to accommodate your workload needs.

NOTE

Metrics exported to Prometheus can impact the resource usage. Cardinality values for
the metrics can help determine how much resources are impacted. For more information,
see "Network Flows format" in the Additional resources section.

Table 6.4. Total average resource usage

Sampling value Resources used Test 1(25 nodes) Test 2 (250 nodes)
Sampling =50 Total NetObserv CPU 1.35 5.39
Usage

73

OpenShift Container Platform 4.17 Network Observability

Sampling value Resources used Test 1(25 nodes) Test 2 (250 nodes)

Total NetObserv RSS 16 GB 63 GB
(Memory) Usage

Sampling =1 Total NetObserv CPU 1.82 11.99
Usage
Total NetObserv RSS 22GB 87 GB

(Memory) Usage

Summary: This table shows average total resource usage of Network Observability, which includes
Agents, FLP, Kafka, and Loki with all features enabled. For details about what features are enabled, see
the features covered in "Observing the network traffic", which comprises all the features that are
enabled for this testing.

Additional resources
® Observing the network traffic from the traffic flows view
® Network observability without Loki

® Network Flows format reference

74

CHAPTER 7. NETWORK POLICY

CHAPTER 7. NETWORK POLICY

As an administrator, you can create a network policy for the netobserv namespace. This policy secures
inbound and outbound access to the Network Observability Operator.

7.1. CONFIGURING NETWORK POLICY BY USING THE
FLOWCOLLECTOR CUSTOM RESOURCE

You can set up ingress and egress network policies to control pod traffic. This enhances security and
collects only the network flow data you need. This reduces noise, supports compliance, and improves
visibility into network communication.

You can configure the FlowCollector custom resource (CR) to deploy an egress and ingress network
policy for network observability. By default, the spec.NetworkPolicy.enable specification is set to true.

If you have installed Loki, Kafka or any exporter in a different namespace that also has a network policy,
you must ensure that the network observability components can communicate with them. Consider the
following about your setup:

® Connection to Loki (as defined in the FlowCollector CR spec.loki parameter)
e Connection to Kafka (as defined in the FlowCollector CR spec.kafka parameter)
e Connection to any exporter (as defined in FlowCollector CR spec.exporters parameter)

e |fyou are using Loki and including it in the policy target, connection to an external object storage
(as defined in your LokiStack related secret)

Procedure

1. In the web console, go to Operators — Installed Operators page.
2. Under the Provided APIs heading for Network Observability, select Flow Collector.
3. Select cluster then select the YAML tab.

4. Configure the FlowCollector CR. A sample configuration is as follows:

Example FlowCollector CR for network policy

apiVersion: flows.netobserv.io/vibeta2
kind: FlowCollector
metadata:
name: cluster
spec:
namespace: netobserv
networkPolicy:

enable: true ﬂ

additionalNamespaces: ["openshift-console”, "openshift-monitoring"] 9
#...

Q By default, the enable value is true.

75

OpenShift Container Platform 4.17 Network Observability

Q Default values are ["openshift-console”, "openshift-monitoring"].

Additional resources

® Creating a network policy using the CLI

76

https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/network_security/#nw-networkpolicy-object_creating-network-policy

CHAPTER 8. OBSERVING THE NETWORK TRAFFIC

CHAPTER 8. OBSERVING THE NETWORK TRAFFIC

As an administrator, you can observe the network traffic in the OpenShift Container Platform web
console for detailed troubleshooting and analysis. This feature helps you get insights from different
graphical representations of traffic flow.

8.1. OBSERVING THE NETWORK TRAFFIC FROM THE OVERVIEW VIEW

The Network Traffic Overview view provides aggregated flow metrics and visual insights into
application communications. Administrators can use the metrics to monitor data volume, troubleshoot
connectivity, and detect unusual traffic patterns across the cluster.

The Overview view shows aggregate network traffic in your OpenShift Container Platform cluster,
allowing you to see which applications are communicating and the volume of data being transferred. It
provides detailed insights by source, destination, and flow type, along with the top traffic flows and
average byte rates.

As an administrator, you can troubleshoot connectivity issues, detect unusual traffic patterns, and

optimize application performance. It provides a quick overview of network behavior, making it easier to
prioritize actions and ensure efficient resource usage.

8.1.1. Working with the Overview view

Navigate to the network traffic Overview view in the OpenShift Container Platform console to see
graphical representations of flow rate statistics and configure the display scope using available options.

Prerequisite

® Access to the cluster with administrator rights.

Procedure
1. Navigate to Observe — Network Traffic.
2. In the Network Traffic page, click the Overview tab.

You can configure the scope of each flow rate data by clicking the menu icon.

8.1.2. Configuring advanced options for the Overview view

Customize the network traffic Overview view by configuring advanced options, such as graph scope,
label truncation, and panel management, to refine the display of flow rate statistics and traffic data.

To access the advanced options, click Show advanced options. You can configure the details in the
graph by using the Display options drop-down menu. The options available are as follows:

® Scope: Select to view the components that network traffic flows between. You can set the
scope to Node, Namespace, Owner, Zones, Cluster or Resource. Owner is an aggregation of
resources. Resource can be a pod, service, node, in case of host-network traffic, or an unknown
IP address. The default value is Namespace.

® Truncate labels: Select the required width of the label from the drop-down list. The default
value is M.

77

OpenShift Container Platform 4.17 Network Observability

8.1.2.1. Managing panels and display

You can select the required panels to be displayed, reorder them, and focus on a specific panel. To add
or remove panels, click Manage panels.

The following panels are shown by default:

® Top X average bytes rates

® Top X bytes rates stacked with total
Other panels can be added in Manage panels:

® Top X average packets rates

® Top X packets rates stacked with total

Query options allows you to choose whether to show the Top 5, Top 10, or Top 15rates.

8.1.3. Packet drop tracking

Monitor and analyze network packet loss by using eBPF-based packet drop tracking, which identifies
drop locations, detects host or OVS-specific drop reasons, and provides dedicated graphical panels in
the Overview view.

You can configure graphical representation of network flow records with packet loss in the Overview
view. By employing eBPF tracepoint hooks, you can gain valuable insights into packet drops for TCP,
UDP, SCTP, ICMPv4, and ICMPvV6 protocols, which can result in the following actions:

® |dentification: Pinpoint the exact locations and network paths where packet drops are occurring.
Determine whether specific devices, interfaces, or routes are more prone to drops.

® Root cause analysis: Examine the data collected by the eBPF program to understand the causes
of packet drops. For example, are they a result of congestion, buffer issues, or specific network
events?
e Performance optimization: With a clearer picture of packet drops, you can take steps to optimize
network performance, such as adjust buffer sizes, reconfigure routing paths, or implement
Quality of Service (QoS) measures.
When packet drop tracking is enabled, you can see the following panels in the Overview by default:
® Top X packet dropped state stacked with total
® Top X packet dropped cause stacked with total
® Top X average dropped packets rates
® Top X dropped packets rates stacked with total
Other packet drop panels are available to add in Manage panels:

® Top X average dropped bytes rates

® Top X dropped bytes rates stacked with total

8.1.3.1. Types of packet drops

78

CHAPTER 8. OBSERVING THE NETWORK TRAFFIC

Two kinds of packet drops are detected by network observability: host drops and OVS drops. Host
drops are prefixed with SKB_DROP and OVS drops are prefixed with OVS_DROP. Dropped flows are
shown in the side panel of the Traffic flows table along with a link to a description of each drop type.
Examples of host drop reasons are as follows:

e SKB_DROP_REASON_NO_SOCKET: the packet dropped due to a missing socket.

o SKB_DROP_REASON_TCP_CSUM: the packet dropped due to a TCP checksum error.

Examples of OVS drops reasons are as follows:

e OVS DROP_LAST_ACTION: OVS packets dropped due to an implicit drop action, for example
due to a configured network policy.

® OVS_DROP_IP_TTL: OVS packets dropped due to an expired IP TTL.

See the Additional resources of this section for more information about enabling and working with
packet drop tracking.

Additional resources

® Working with packet drops

® Network Observability metrics

8.1.4. DNS tracking

Monitor DNS activity by using eBPF-based DNS tracking to gain insights into query patterns, detect
security threats, and troubleshoot latency issues through dedicated graphical panels in the Overview
view.

You can configure graphical representation of Domain Name System (DNS) tracking of network flows in
the Overview view. Using DNS tracking with extended Berkeley Packet Filter (eBPF) tracepoint hooks
can serve various purposes:

® Network Monitoring: Gain insights into DNS queries and responses, helping network
administrators identify unusual patterns, potential bottlenecks, or performance issues.

® Security Analysis: Detect suspicious DNS activities, such as domain name generation algorithms
(DGA) used by malware, or identify unauthorized DNS resolutions that might indicate a security

breach.

® Troubleshooting: Debug DNS-related issues by tracing DNS resolution steps, tracking latency,
and identifying misconfigurations.

By default, when DNS tracking is enabled, you can see the following non-empty metrics represented in a
donut or line chart in the Overview:

® Top X DNS Response Code
® Top X average DNS latencies with overall
® Top X 90th percentile DNS latencies

Other DNS tracking panels can be added in Manage panels:

79

OpenShift Container Platform 4.17 Network Observability

® Bottom X minimum DNS latencies
® Top X maximum DNS latencies
® Top X 99th percentile DNS latencies
This feature is supported for IPv4 and IPv6 UDP and TCP protocols.

See the Additional resources in this section for more information about enabling and working with this
view.

Additional resources

® Working with DNS tracking

® Network Observability metrics

8.1.5. Round-Trip Time

Analyze network flow latencies by using TCP Round-Trip Time (RTT) metrics, which use eBPF
hookpoints to identify performance bottlenecks and troubleshoot TCP-related issues through
dedicated panels in the Overview view.

You can use TCP smoothed Round-Trip Time (sRTT) to analyze network flow latencies. You can use
RTT captured from the fentry/tcp_rcv_established eBPF hookpoint to read sRTT from the TCP socket
to help with the following:

® Network Monitoring: Gain insights into TCP latencies, helping network administrators identify
unusual patterns, potential bottlenecks, or performance issues.

® Troubleshooting: Debug TCP-related issues by tracking latency and identifying
misconfigurations.

By default, when RTT is enabled, you can see the following TCP RTT metrics represented in the
Overview:

® Top X 90th percentile TCP Round Trip Time with overall

® Top X average TCP Round Trip Time with overall

® Bottom X minimum TCP Round Trip Time with overall
Other RTT panels can be added in Manage panels.

® Top X maximum TCP Round Trip Time with overall

® Top X 99th percentile TCP Round Trip Time with overall

See the Additional resources in this section for more information about enabling and working with this
view.

Additional resources

® Working with RTT tracing

8.1.6. eBPF flow rule filter

80

CHAPTER 8. OBSERVING THE NETWORK TRAFFIC

Control packet capture volume by using eBPF flow rule filtering to specify capture criteria based on
ports and CIDR notation, while monitoring filter performance through dedicated health dashboards and
Prometheus metrics.

You can use rule-based filtering to control the volume of packets cached in the eBPF flow table. For
example, a filter can specify that only packets coming from port 100 should be captured. Then only the
packets that match the filter are captured and the rest are dropped.

You can apply multiple filter rules.

8.1.6.1. Ingress and egress traffic filtering

Classless Inter-Domain Routing (CIDR) notation efficiently represents IP address ranges by combining
the base IP address with a prefix length. For both ingress and egress traffic, the source IP address is first
used to match filter rules configured with CIDR notation. If there is a match, then the filtering proceeds.
If there is no match, then the destination IP is used to match filter rules configured with CIDR notation.

After matching either the source IP or the destination IP CIDR, you can pinpoint specific endpoints using
the peerlIP to differentiate the destination IP address of the packet. Based on the provisioned action,
the flow data is either cached in the eBPF flow table or not cached.

8.1.6.2. Dashboard and metrics integrations

When this option is enabled, the Netobserv/Health dashboard for eBPF agent statistics now has the
Filtered flows rate view. Additionally, in Observe — Metrics you can query
netobserv_agent_filtered_flows_total to observe metrics with the reason in
FlowFilterAcceptCounter, FlowFilterNoMatchCounter or FlowFilterRecjectCounter.

8.1.6.3. Flow filter configuration parameters

Reference the required and optional parameters for configuring flow filter rules in the FlowCollector
resource, including CIDR ranges, filter actions, protocols, and specific port configurations.

Table 8.1. Required configuration parameters

Parameter Description

enable Set enable to true to enable the eBPF flow filtering feature.

cidr Provides the IP address and CIDR mask for the flow filter rule. Supports both
IPv4 and IPv6 address format. If you want to match against any IP, you can use
0.0.0.0/0 for IPv4 or::/0 for IPv6.

81

OpenShift Container Platform 4.17 Network Observability

Parameter

Description

action

Describes the action that is taken for the flow filter rule. The possible values are
Accept or Reject.

e Forthe Accept action matching rule, the flow data is cached in the
eBPF table and updated with the global metric,
FlowFilterAcceptCounter.

e Forthe Reject action matching rule, the flow data is dropped and not
cached in the eBPF table. The flow data is updated with the global
metric, FlowFilterRejectCounter.

® If the rule is not matched, the flow is cached in the eBPF table and
updated with the global metric, FlowFilterNoMatchCounter.

Table 8.2. Optional configuration parameters

Parameter

Description

direction

protocol

tcpFlags

ports

sourcePorts

destPorts

icmpType

icmpCode

peerlP

82

Defines the direction of the flow filter rule. Possible values are Ingress or
Egress.

Defines the protocol of the flow filter rule. Possible values are TCP, UDP,
SCTP, ICMP, and ICMPV6.

Defines the TCP flags to filter flows. Possible values are SYN, SYN-ACK,
ACK, FIN, RST,PSH, URG, ECE, CWR, FIN-ACK, and RST-ACK.

Defines the ports to use for filtering flows. It can be used for either source or
destination ports. To filter a single port, set a single port as an integer value. For
example ports: 80. To filter a range of ports, use a "start-end" range in string
format. For example ports: "80-100"

Defines the source port to use for filtering flows. To filter a single port, set a
single port as an integer value, for example sourcePorts: 80. To filter a range
of ports, use a "start-end" range, string format, for example sourcePorts:
"80-100".

DestPorts defines the destination ports to use for filtering flows. To filter a
single port, set a single port as an integer value, for example destPorts: 80. To

filter a range of ports, use a "start-end" range in string format, for example
destPorts: "80-100".

Defines the ICMP type to use for filtering flows.

Defines the ICMP code to use for filtering flows.

Defines the IP address to use for filtering flows, for example: 10.10.10.10.

CHAPTER 8. OBSERVING THE NETWORK TRAFFIC

Additional resources

® Filtering eBPF flow data with rules
® Network Observability metrics

® Health dashboards

8.1.7. User-defined networks

Understand how you can use user-defined networks (UDN) for flexible network segmentation and
leverage the Network Observability Operator to monitor these segments through dedicated labels and
name filters in the traffic flow table.

User-defined networks (UDN) improve the flexibility and segmentation capabilities of the default Layer
3 topology for a Kubernetes pod network by enabling custom Layer 2 and Layer 3 network segments,
where all these segments are isolated by default. These segments act as primary or secondary networks
for container pods and virtual machines that use the default OVN-Kubernetes CNI plugin.

UDNSs enable a wide range of network architectures and topologies, enhancing network flexibility,
security, and performance.

When the UDNMapping feature is enabled with Network Observability, the Traffic flow table hasa UDN
labels column. You can filter on Source Network Nameand Destination Network Name.

Additional resources
® About user-defined networks
® Creating a UserDefinedNetwork by using the CLI
® Creating a UserDefinedNetwork by using the web console

® Working with user-defined networks

8.1.8. OVN-Kubernetes networking events

Use OVN-Kubernetes network event tracking to monitor and audit network policies, admin network
policies, and egress firewall rules in your cluster.

IMPORTANT

OVN-Kubernetes networking events tracking is a Technology Preview feature only.
Technology Preview features are not supported with Red Hat production service level
agreements (SLAs) and might not be functionally complete. Red Hat does not
recommend using them in production. These features provide early access to upcoming
product features, enabling customers to test functionality and provide feedback during
the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope.

You can use the insights from tracking network events to help with the following tasks:

83

https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/multiple_networks/#about-user-defined-networks
https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/multiple_networks/#nw-udn-cr_about-user-defined-networks
https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/multiple_networks/#nw-udn-cr-ui_about-user-defined-networks
https://access.redhat.com/support/offerings/techpreview/

OpenShift Container Platform 4.17 Network Observability

® Network monitoring: Monitor allowed and blocked traffic, detecting whether packets are
allowed or blocked based on network policies and admin network policies.

® Network security: You can track outbound traffic and see whether it adheres to egress firewall
rules. Detect unauthorized outbound connections and flag outbound traffic that violates egress
rules.

See the Additional resources in this section for more information about enabling and working with this
view.

Additional resources

® Viewing network events

8.2. OBSERVING THE NETWORK TRAFFIC FROM THE TRAFFIC FLOWS
VIEW

Use the Traffic flows view to monitor real-time and historical network communication between cluster
components. By analyzing granular flow data collected via eBPF, you can audit network traffic, validate
network policies, and export data for external reporting and analysis.

The Traffic flows view in the Network Observability Operator provides a granular, tabular
representation of network activity across a OpenShift Container Platform cluster. By leveraging eBPF
technology to collect flow data, this view allows administrators to monitor real-time and historical
communication between pods, services, and nodes. This visibility is essential for auditing network traffic,
validating network policies, and identifying unexpected communication patterns within the cluster
infrastructure.

In the Traffic flows interface, you can analyze specific connection details by interacting with individual
rows to retrieve detailed flow information. The view supports advanced customization through the
Display options menu, where you can adjust row density and manage columns. By selecting and
reordering specific columns, you can tailor the table to highlight the most relevant data points for your
environment, such as source and destination endpoints or traffic volume.

To support external analysis and reporting, the Traffic flows view includes data export capabilities. You
can export the entire dataset or select specific fields to generate a targeted report of network activity.
This functionality ensures that network flow data is accessible for long-term auditing or for use in third-

party monitoring tools, providing a flexible way to document and analyze the network health of your
OpenShift Container Platform environment.

8.2.1. Working with the Traffic flows view

View and analyze detailed network flow information by using the Traffic flows table.

As an administrator, you can navigate to Traffic flows table to see network flow information.

Prerequisite

® You have administrator access.

Procedure

1. Navigate to Observe — Network Traffic.

2. Inthe Network Traffic page, click the Traffic flows tab.

84

CHAPTER 8. OBSERVING THE NETWORK TRAFFIC
You can click on each row to get the corresponding flow information.

8.2.2. Configuring advanced options for the Traffic flows view

Customize the Traffic flows view by adjusting row density, selecting specific data columns, and
exporting filtered flow data for external analysis.

You can customize and export the view by using Show advanced options. You can set the row size by
using the Display options drop-down menu. The default value is Normal.

8.2.2.1. Managing columns

You can select the required columns to be displayed, and reorder them. To manage columns, click
Manage columns.

8.2.2.2. Exporting the traffic flow data

You can export data from the Traffic flows view.

Procedure

1. Click Export data.

2. In the pop-up window, you can select the Export all data checkbox to export all the data, and
clear the checkbox to select the required fields to be exported.

3. Click Export.

8.2.3. Configuring IPsec with the FlowCollector custom resource

Enable IPsec tracking in the FlowCollector resource to monitor encrypted traffic, adding an IPsec
status column to the traffic flow view and generating a dedicated encryption dashboard.

In OpenShift Container Platform, IPsec is disabled by default. You can enable IPsec by following the
instructions in "Configuring IPsec encryption”.

Prerequisite

® You have enabled IPsec encryption on OpenShift Container Platform.

Procedure

1. In the web console, navigate to Operators — Installed Operators.
2. Under the Provided APIs heading for the NetObserv Operator, select Flow Collector.
3. Select cluster then select the YAML tab.

4. Configure the FlowCollector custom resource for IPsec:

Example configuration of FlowCollector for IPsec

apiVersion: flows.netobserv.io/vibeta2
kind: FlowCollector

85

OpenShift Container Platform 4.17 Network Observability

metadata:
name: cluster
spec:
namespace: netobserv
agent:
type: eBPF
ebpf:
features:
- "IPSec”

Verification

When IPsec is enabled:

® A new column named IPsec Status is displayed in the network observability Traffic flows view
to show whether a flow was successfully IPsec-encrypted or if there was an error during
encryption/decryption.

® A new dashboard showing the percent of encrypted traffic is generated.

Additional resources

® Configuring IPsec encryption

8.2.4. Working with conversation tracking

Configure the FlowCollector custom resource to enable conversation tracking for grouping and
analyzing related network flows in the web console.

As an administrator, you can group network flows that are part of the same conversation. A conversation
is defined as a grouping of peers that are identified by their IP addresses, ports, and protocols, resulting
in an unique Conversation Id. You can query conversation events in the web console. These events are
represented in the web console as follows:

® Conversation start: This event happens when a connection is starting or TCP flag intercepted

® Conversation tick: This event happens at each specified interval defined in the FlowCollector
spec.processor.conversationHeartbeatlnterval parameter while the connection is active.

® Conversation end: This event happens when the FlowCollector
spec.processor.conversationEndTimeout parameter is reached or the TCP flagis
intercepted.

® Flow: This is the network traffic flow that occurs within the specified interval.

Procedure

1. In the web console, navigate to Operators — Installed Operators.
2. Under the Provided APIs heading for the NetObserv Operator, select Flow Collector.
3. Select cluster then select the YAML tab.

4. Configure the FlowCollector custom resource so that spec.processor.logTypes,
conversationEndTimeout, and conversationHeartbeatInterval parameters are set according
to your observation needs. A sample configuration is as follows:

86

https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/network_security/#configuring-ipsec-ovn

CHAPTER 8. OBSERVING THE NETWORK TRAFFIC

Configure FlowCollector for conversation tracking

apiVersion: flows.netobserv.io/vibeta2
kind: FlowCollector
metadata:
name: cluster
spec:
processor:
logTypes: Flows 0
advanced:
conversationEndTimeout: 10s 9

conversationHeartbeatInterval: 30s 6

ﬂ When logTypes is set to Flows, only the Flow event is exported. If you set the value to All,
both conversation and flow events are exported and visible in the Network Traffic page.
To focus only on conversation events, you can specify Conversations which exports the
Conversation start, Conversation tick and Conversation end events; or
EndedConversations exports only the Conversation end events. Storage requirements
are highest for All and lowest for EndedConversations.

9 The Conversation end event represents the point when the conversationEndTimeout is
reached or the TCP flag is intercepted.

9 The Conversation tick event represents each specified interval defined in the
FlowCollector conversationHeartbeatInterval parameter while the network connection is
active.

NOTE

If you update the logType option, the flows from the previous selection do not
clear from the console plugin. For example, if you initially set logType to
Conversations for a span of time until 10 AM and then move to
EndedConversations, the console plugin shows all conversation events before
10 AM and only ended conversations after 10 AM.

5. Refresh the Network Traffic page on the Traffic flows tab. Notice there are two new columns,
Event/Type and Conversation Id. All the Event/Type fields are Flow when Flow is the
selected query option.

6. Select Query Options and choose the Log Type, Conversation. Now the Event/Type shows
all of the desired conversation events.

7. Next you can filter on a specific conversation ID or switch between the Conversation and Flow
log type options from the side panel.

8.2.5. Working with packet drops

Enable packet drop tracking in the Network Observability Operator by configuring the FlowCollector
resource to monitor and visualize network data loss in the web console.

Packet loss occurs when one or more packets of network flow data fail to reach their destination. You
can track these drops by editing the FlowCollector to the specifications in the following YAML example.

87

OpenShift Container Platform 4.17 Network Observability

IMPORTANT

CPU and memory usage increases when this feature is enabled.

Procedure
1. In the web console, navigate to Operators — Installed Operators.
2. Under the Provided APIs heading for the NetObserv Operator, select Flow Collector.
3. Select cluster, and then select the YAML tab.

4. Configure the FlowCollector custom resource for packet drops, for example:

Example FlowCollector configuration

apiVersion: flows.netobserv.io/vibeta2
kind: FlowCollector
metadata:
name: cluster
spec:
namespace: netobserv
agent:
type: eBPF
ebpf:
features:
- PacketDrop ﬂ

privileged: true

ﬂ You can start reporting the packet drops of each network flow by listing the PacketDrop
parameter in the spec.agent.ebpf.features specification list.

9 The spec.agent.ebpf.privileged specification value must be true for packet drop tracking.

Verification

® When you refresh the Network Traffic page, the Overview, Traffic Flow, and Topology views
display new information about packet drops:

a. Select new choices in Manage panels to choose which graphical visualizations of packet
drops to display in the Overview.

b. Select new choices in Manage columns to choose which packet drop information to display
in the Traffic flows table.

i. Inthe Traffic Flows view, you can also expand the side panel to view more information
about packet drops. Host drops are prefixed with SKB_DROP and OVS drops are
prefixed with OVS_DROP.

c. Inthe Topology view, red lines are displayed where drops are present.

8.2.6. Working with DNS tracking

88

CHAPTER 8. OBSERVING THE NETWORK TRAFFIC

Configure the FlowCollector custom resource to enable DNS tracking for monitoring network
performance, security analysis, and DNS troubleshooting in the web console.

You can track DNS by editing the FlowCollector to the specifications in the following YAML example.

IMPORTANT

CPU and memory usage increases are observed in the eBPF agent when this feature is
enabled.

Procedure

1. In the web console, navigate to Operators — Installed Operators.
2. Under the Provided APIs heading for Network Observability, select Flow Collector.
3. Select cluster then select the YAML tab.

4. Configure the FlowCollector custom resource. A sample configuration is as follows:

Configure FlowCollector for DNS tracking

apiVersion: flows.netobserv.io/vibeta2
kind: FlowCollector
metadata:
name: cluster
spec:
namespace: netobserv
agent:
type: eBPF
ebpf:
features:
- DNSTracking (1]

sampling: 1

ﬂ You can set the spec.agent.ebpf.features parameter list to enable DNS tracking of each
network flow in the web console.

9 You can set sampling to a value of 1 for more accurate metrics and to capture DNS
latency. For a sampling value greater than 1, you can observe flows with DNS Response
Code and DNS Id, and it is unlikely that DNS Latency can be observed.

5. When you refresh the Network Traffic page, there are new DNS representations you can
choose to view in the Overview and Traffic Flow views and new filters you can apply.

a. Select new DNS choices in Manage panels to display graphical visualizations and DNS
metrics in the Overview.

b. Select new choices in Manage columns to add DNS columns to the Traffic Flows view.
c. Filter on specific DNS metrics, such as DNS Id, DNS Error DNS Latency and DNS

Response Code, and see more information from the side panel. The DNS Latency and
DNS Response Code columns are shown by default.

89

OpenShift Container Platform 4.17 Network Observability

NOTE

TCP handshake packets do not have DNS headers. TCP protocol flows without DNS

headers are shown in the traffic flow data with DNS Latency, ID, and Response code
values of "n/a". You can filter out flow data to view only flows that have DNS headers
using the Common filter "DNSError" equal to "0".

8.2.7. Working with RTT tracing

Enable Round Trip Time (RTT) tracing by configuring the FlowCollector custom resource to monitor
and analyze network latency across your cluster by using the web console.

You can track RTT by editing the FlowCollector to the specifications in the following YAML example.

Procedure

1. In the web console, navigate to Operators — Installed Operators.
2. Inthe Provided APIs heading for the NetObserv Operator, select Flow Collector.
3. Select cluster, and then select the YAML tab.

4. Configure the FlowCollector custom resource for RTT tracing, for example:

Example FlowCollector configuration

apiVersion: flows.netobserv.io/vibeta2
kind: FlowCollector
metadata:
name: cluster
spec:
namespace: netobserv
agent:
type: eBPF
ebpf:
features:
- FlowRTT @)

ﬂ You can start tracing RTT network flows by listing the FIoWRTT parameter in the
spec.agent.ebpf.features specification list.

Verification

When you refresh the Network Traffic page, the Overview, Traffic Flow, and Topology views display
new information about RTT:

a. Inthe Overview, select new choices in Manage panelsto choose which graphical visualizations
of RTT to display.

b. In the Traffic flows table, the Flow RTT column can be seen, and you can manage display in
Manage columns.

c. Inthe Traffic Flows view, you can also expand the side panel to view more information about
RTT.

90

CHAPTER 8. OBSERVING THE NETWORK TRAFFIC

Example filtering

i. Click the Common filters = Protocol.

ii. Filter the network flow data based on TCP, Ingress direction, and look for FlowRTT values
greater than 10,000,000 nanoseconds (10ms).

iii. Remove the Protocol filter.
iv. Filter for Flow RTT values greater than O in the Common filters.

d. Inthe Topology view, click the Display option dropdown. Then click RTT in the edge labels
drop-down list.

8.2.8. Working with the eBPF Manager Operator

Integrate the eBPF Manager Operator with Network Observability to manage eBPF programs and
reduce the need for privileged agent permissions.

The eBPF Manager Operator reduces the attack surface and ensures compliance, security, and conflict
prevention by managing all eBPF programs. Network observability can use the eBPF Manager Operator
to load hooks. As a result, you no longer need to provide the eBPF Agent with privileged mode or

additional Linux capabilities such as CAP_BPF and CAP_PERFMON. The eBPF Manager Operator with

network observability is only supported on 64-bit AMD architecture.

IMPORTANT

eBPF Manager Operator with network observability is a Technology Preview feature only.
Technology Preview features are not supported with Red Hat production service level
agreements (SLAs) and might not be functionally complete. Red Hat does not
recommend using them in production. These features provide early access to upcoming
product features, enabling customers to test functionality and provide feedback during
the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope.

Procedure

1. In the web console, navigate to Operators - Operator Hub.
2. Install eBPF Manager.
3. Check Workloads = Pods in the bpfman namespace to make sure they are all up and running.

4. Configure the FlowCollector custom resource to use the eBPF Manager Operator:

Example FlowCollector configuration

apiVersion: flows.netobserv.io/vibeta2
kind: FlowCollector
metadata:
name: cluster
spec:
agent:
ebpf:

o1

https://access.redhat.com/support/offerings/techpreview/

OpenShift Container Platform 4.17 Network Observability

features:
- EbpfManager

Verification

1. In the web console, navigate to Operators — Installed Operators.

2. Click eBPF Manager Operator — All instances tab.
For each node, verify that a BpfApplication named netobserv and a pair of BpfProgram
objects, one for Traffic Control (TCx) ingress and another for TCx egress, exist. If you enable
other eBPF Agent features, you might have more objects.

Additional resources

® |nstalling the eBPF Manager Operator

8.2.9. Using the histogram

The histogram provides a visualization of network flow logs that you can use to analyze traffic volume
trends and filter flow data by specific time intervals.

You can click Show histogram to display a toolbar view for visualizing the history of flows as a bar chart.
The histogram shows the number of logs over time. You can select a part of the histogram to filter the
network flow data in the table that follows the toolbar.

8.2.10. Working with availability zones

Configure the FlowCollector custom resource to collect availability zone data, enabling the visualization
and analysis of network traffic across different cluster zones in the web console.

You can configure the FlowCollector to collect information about the cluster availability zones. This
allows you to enrich network flow data with the topology.kubernetes.io/zone label value applied to the
nodes.

Procedure

1. In the web console, go to Operators — Installed Operators.
2. Under the Provided APIs heading for the NetObserv Operator, select Flow Collector.
3. Select cluster then select the YAML tab.

4. Configure the FlowCollector custom resource so that the spec.processor.addZone
parameter is set to true. A sample configuration is as follows:

Configure FlowCollector for availability zones collection

apiVersion: flows.netobserv.io/vibeta2
kind: FlowCollector
metadata:
name: cluster
spec:
#...

92

https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/networking_operators/#installing-the-ebpf-manager-operator
https://kubernetes.io/docs/reference/labels-annotations-taints/#topologykubernetesiozone

CHAPTER 8. OBSERVING THE NETWORK TRAFFIC

processor:
addZone: true
#...

Verification

When you refresh the Network Traffic page, the Overview, Traffic Flow, and Topology views display
new information about availability zones:

1. In the Overview tab, you can see Zones as an available Scope.

2. In Network Traffic - Traffic flows, Zones are viewable under the SrcK8S_Zone and
DstK8S_Zone fields.

3. Inthe Topology view, you can set Zones as Scope or Group.

8.2.11. Filtering eBPF flow data using multiple rules

Configure multiple filtering rules in the FlowCollector custom resource to refine network traffic data
collection by accepting or rejecting specific eBPF flows based on IP addresses and packet conditions.

IMPORTANT
® You cannot use duplicate Classless Inter-Domain Routing (CIDRs) in filter rules.

® When an IP address matches multiple filter rules, the rule with the most specific
CIDR prefix (longest prefix) takes precedence.

Procedure

1. In the web console, navigate to Operators — Installed Operators.
2. Under the Provided APIs heading for Network Observability, select Flow Collector.
3. Select cluster, then select the YAML tab.

4. Configure the FlowCollector custom resource, similar to the following sample configurations:

Example YAML to sample all North-South traffic, and 1:50 East-West traffic

By default, all other flows are rejected.

apiVersion: flows.netobserv.io/vibeta2
kind: FlowCollector
metadata:
name: cluster
spec:
namespace: netobserv
deploymentModel: Direct
agent:
type: eBPF
ebpf:
flowFilter:
enable: true ﬂ
rules:

- action: Accept 9

93

OpenShift Container Platform 4.17 Network Observability

cidr: 0.0.0.0/0 €
sampling: 1 ﬂ
- action: Accept
cidr: 10.128.0.0/14
peerCIDR: 10.128.0.0/146
- action: Accept
cidr: 172.30.0.0/16
peerCIDR: 10.128.0.0/14
sampling: 50

To enable eBPF flow filtering, set spec.agent.ebpf.flowFilter.enable to true.

To define the action for the flow filter rule, set the required action parameter. Valid values are
Accept or Reject.

To define the IP address and CIDR mask for the flow filter rule, set the required cidr parameter.

This parameter supports both IPv4 and IPv6 address formats. To match any IP address, use
0.0.0.0/0 for IPv4 or "::/0 for IPv6.

To define the sampling interval for matched flows and override the global sampling setting
spec.agent.ebpf.sampling, set the sampling parameter.

® O o 09

To filter flows by Peer IP CIDR, set the peerCIDR parameter.

Example YAML to filter flows with packet drops

By default, all other flows are rejected.

apiVersion: flows.netobserv.io/vibeta2
kind: FlowCollector
metadata:
name: cluster
spec:
namespace: netobserv
deploymentModel: Direct
agent:
type: eBPF
ebpf:
privileged: true 0
features:
- PacketDrop 9
flowFilter:
enable: true 6
rules:
- action: Accept ﬂ
cidr: 172.30.0.0/16

pktDrops: true 6

Q To enable packet drops, set spec.agent.ebpf.privileged to true.

9 To report packet drops for each network flow, add the PacketDrop value to the
spec.agent.ebpf.features list.

94

CHAPTER 8. OBSERVING THE NETWORK TRAFFIC

9 To enable eBPF flow filtering, set spec.agent.ebpf.flowFilter.enable to true.

Q To define the action for the flow filter rule, set the required action parameter. Valid values are
Accept or Reject.

9 To filter flows containing drops, set pktDrops to true.

8.2.12. Endpoint translation (xlat)

Endpoint translation (xlat) uses eBPF to enrich network flow logs with translated pod-level metadata,
providing visibility into the specific backend pods serving traffic behind services or load balancers.

You can gain visibility into the endpoints serving traffic in a consolidated view using network
observability and extended Berkeley Packet Filter (eBPF). Typically, when traffic flows through a
service, egressl|P, or load balancer, the traffic flow information is abstracted as it is routed to one of the
available pods. If you try to get information about the traffic, you can only view service related info, such
as service IP and port, and not information about the specific pod that is serving the request. Often the
information for both the service traffic and the virtual service endpoint is captured as two separate
flows, which complicates troubleshooting.

To solve this, endpoint xlat can help in the following ways:
® Capture the network flows at the kernel level, which has a minimal impact on performance.

® Enrich the network flows with translated endpoint information, showing not only the service but
also the specific backend pod, so you can see which pod served a request.

As network packets are processed, the eBPF hook enriches flow logs with metadata about the
translated endpoint that includes the following pieces of information that you can view in the Network
Traffic page in a single row:

® Source PodIP

® Source Port

® Destination Pod IP
® Destination Port

® Conntrack Zone ID

8.2.13. Working with endpoint translation (xlat)

Enable endpoint translation (xlat) in the FlowCollector resource to enrich network flows with translated
packet information. You can use this information to identify the specific pods and objects serving
service traffic through dedicated xlat columns.

You can use network observability and eBPF to enrich network flows from a Kubernetes service with
translated endpoint information, gaining insight into the endpoints serving traffic.

Procedure

1. In the web console, navigate to Operators — Installed Operators.

2. Inthe Provided APlIs heading for the NetObserv Operator, select Flow Collector.

95

https://lwn.net/Articles/370152/#:~:text=A zone is simply a,to seperate conntrack defragmentation queues.

OpenShift Container Platform 4.17 Network Observability

3. Select cluster, and then select the YAML tab.

4. Configure the FlowCollector custom resource for PacketTranslation, for example:

Example FlowCollector configuration

apiVersion: flows.netobserv.io/vibeta2
kind: FlowCollector
metadata:
name: cluster
spec:
namespace: netobserv
agent:
type: eBPF
ebpf:
features:
- PacketTranslation ﬂ

You can start enriching network flows with translated packet information by listing the
PacketTranslation parameter in the spec.agent.ebpf.features specification list.

Example filtering

When you refresh the Network Traffic page you can filter for information about translated packets:

1. Filter the network flow data based on Destination kind: Service

2. You can see the xlat column, which distinguishes where translated information is displayed, and

the following default columns:

® XlatZonelID
® Xlat Src Kubernetes Object
e Xlat Dst Kubernetes Object

You can manage the display of additional xlat columns in Manage columns.

8.2.14. Working with user-defined networks

Configure the FlowCollector custom resource to enable user-defined network (UDN) mapping,
providing visibility into traffic across custom network interfaces within the web console.

You can enable user-defined networks (UDN) in network observability resources. The following example

shows the configuration for the FlowCollector resource.

Prerequisite

® You have configured UDN in Red Hat OpenShift Networking. For more information, see

"Creating a UserDefinedNetwork by using the CLI" or "Creating a UserDefinedNetwork by using

the web console."

Procedure

96

CHAPTER 8. OBSERVING THE NETWORK TRAFFIC

1. Edit the network observability FlowCollector resource by running the following command:

I $ oc edit flowcollector

2. Configure the ebpf section of the FlowCollector resource:

apiVersion: flows.netobserv.io/vibeta2
kind: FlowCollector
metadata:
name: cluster
spec:
agent:
ebpf:
sampling: 1 ﬂ
privileged: true
features:
- UDNMapping

ﬂ Recommended so all flows are observed.

Verification

® Refresh the Network Traffic page to view updated UDN information in the Traffic Flow and
Topology views:

o In Network Traffic > Traffic flows, you can view UDNs under the SrcK8S_NetworkName
and DstK8S_NetworkName fields.

o Inthe Topology view, you can set Network as Scope or Group.

Additional resources

® Creating a UserDefinedNetwork by using the CLI

® Creating a UserDefinedNetwork by using the web console

8.2.15. Viewing network events

Configure the FlowCollector custom resource to enable network event tracking for auditing how
security policies, firewalls, and isolation rules affect traffic flows in the web console.

IMPORTANT

OVN-Kubernetes networking events tracking is a Technology Preview feature only.
Technology Preview features are not supported with Red Hat production service level
agreements (SLAs) and might not be functionally complete. Red Hat does not
recommend using them in production. These features provide early access to upcoming
product features, enabling customers to test functionality and provide feedback during
the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope.

97

https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/multiple_networks/#nw-udn-cr_about-user-defined-networks
https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/multiple_networks/#nw-udn-cr-ui_about-user-defined-networks
https://access.redhat.com/support/offerings/techpreview/

OpenShift Container Platform 4.17 Network Observability

You can edit the FlowCollector to view information about network traffic events, such as network flows
that are dropped or allowed by the following resources:

o NetworkPolicy

e AdminNetworkPolicy

o BaselineNetworkPolicy
o EgressFirewall

o UserDefinedNetwork isolation

Multicast ACLs

Prerequisites

® You must have OVNObservability enabled by setting the TechPreviewNoUpgrade feature set
in the FeatureGate custom resource (CR) named cluster. For more information, see "Enabling
feature sets using the CLI" and "Checking OVN-Kubernetes network traffic with OVS sampling
using the CLI".

® You have created at least one of the following network APIs: NetworkPolicy,
AdminNetworkPolicy, BaselineNetworkPolicy, UserDefinedNetwork isolation, multicast, or
EgressFirewall.

Procedure

1. In the web console, navigate to Operators — Installed Operators.
2. Inthe Provided APIs heading for the NetObserv Operator, select Flow Collector.
3. Select cluster, and then select the YAML tab.

4. Configure the FlowCollector CR to enable viewing NetworkEvents, for example:

Example FlowCollector configuration

apiVersion: flows.netobserv.io/vibeta2
kind: FlowCollector
metadata:
name: cluster
spec:
agent:
type: eBPF
ebpf:

sampling: 1 a
privileged: true
features:

- "NetworkEvents"

Optional: The sampling parameter is set to a value of 1so that all network events are
captured. If sampling 1 is too resource heavy, set sampling to something more appropriate
for your needs.

98

CHAPTER 8. OBSERVING THE NETWORK TRAFFIC

9 The privileged parameter is set to true because the OVN observability library needs to
access local Open vSwitch (OVS) socket and OpenShift Virtual Network (OVN) databases.

Verification

1. Navigate to the Network Traffic view and select the Traffic flows table.

2. You should see the new column, Network Events, where you can view information about
impacts of one of the following network APIs you have enabled: NetworkPolicy,
AdminNetworkPolicy, BaselineNetworkPolicy, UserDefinedNetwork isolation, multicast, or
egress firewalls.

An example of the kind of events you could see in this column is as follows:

Example of Network Events output

I <Dropped_or_Allowed> by <network_event_and_event_name>, direction <Ingress_or_Egress>

Additional resources

® FEnabling feature sets using the CLI

® Checking OVN-Kubernetes network traffic with OVS sampling using the CLI

8.3. OBSERVING THE NETWORK TRAFFIC FROM THE TOPOLOGY
VIEW

The Topology view in the Network Traffic page provides a graphical representation of network flows
and traffic volume across your OpenShift Container Platform cluster. As an administrator, you can use
this view to monitor application traffic data and visualize the relationships between various network
components.

The visualization represents network entities as nodes and traffic flows as edges. By selecting individual
components within the graph, you can access a side panel containing specific metrics and health details
for that resource. This interactive approach allows for rapid identification of traffic patterns and
connectivity issues within the cluster.

To manage complex environments, the Topology view includes advanced configuration options that
allow you to customize the layout and data density. You can adjust the Scope of the view, apply Groups
to represent resource ownership, and choose different Layout algorithms to optimize the graphical
display. Additionally, you can enable Edge labels to show real-time measurements, such as the average
byte rate, directly on the flow lines.

For reporting or external analysis, the Topology view provides an export feature. You can download the
current graphical representation as a PNG image or generate a direct link to the specific view
configuration to share with other administrators. These tools ensure that network insights are both
accessible and easily documented.

8.3.1. Working with the Topology view

Access the Topology view to visually inspect cluster network relationships and select individual
components to view detailed traffic metrics and metadata.

99

https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/nodes/#nodes-cluster-enabling-features-cli_nodes-cluster-enabling-features
https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/ovn-kubernetes_network_plugin/#nw-ovn-kubernetes-observability_ovn-kubernetes-sources-of-troubleshooting-information

OpenShift Container Platform 4.17 Network Observability

As an administrator, you can navigate to the Topology view to see the details and metrics of the
component.

Prerequisites

® You have administrator access.

Procedure

1. Navigate to Observe — Network Traffic.
2. In the Network Traffic page, click the Topology tab.

You can click each component in the Topology to view the details and metrics of the component.

8.3.2. Configuring the advanced options for the Topology view

Review the available advanced options in the Topology view to customize display settings, configure
component grouping and layouts, and export the network graph as an image.

You can customize and export the view by using Show advanced options. The advanced options view
has the following features:

® Findin view: To search the required components in the view.

e Display options: To configure the following options:

o Edge labels: To show the specified measurements as edge labels. The default is to show
the Average ratein Bytes.

o Scope: To select the scope of components between which the network traffic flows. The
default value is Namespace.

o Groups: To enhance the understanding of ownership by grouping the components. The
default value is None.

o Layout: To select the layout of the graphical representation. The default value is
ColaNoForce.

o Show: To select the details that need to be displayed. All the options are checked by
default. The options available are: Edges, Edges label, and Badges.

o Truncate labels: To select the required width of the label from the drop-down list. The
default value is M.

o Collapse groups: To expand or collapse the groups. The groups are expanded by default.
This option is disabled if Groups has the value of None.

8.3.2.1. Exporting the topology view

To export the view, click Export topology view. The view is downloaded in PNG format.

8.4. FILTERING THE NETWORK TRAFFIC

Review the available query options and filtering parameters in the Network Traffic view to optimize
data searches, analyze specific log types, and manage directional traffic visibility.

100

CHAPTER 8. OBSERVING THE NETWORK TRAFFIC

By default, the Network Traffic page displays the traffic flow data in the cluster based on the default
filters configured in the FlowCollector instance. You can use the filter options to observe the required
data by changing the preset filter.

Alternatively, you can access the traffic flow data in the Network Traffic tab of the Namespaces,
Services, Routes, Nodes, and Workloads pages which provide the filtered data of the corresponding
aggregations.

Query Options

You can use Query Options to optimize the search results, as listed below:

® | og Type: The available options Conversation and Flows provide the ability to query flows
by log type, such as flow log, new conversation, completed conversation, and a heartbeat,
which is a periodic record with updates for long conversations. A conversation is an
aggregation of flows between the same peers.

® Match filters: You can determine the relation between different filter parameters selected in
the advanced filter. The available options are Match all and Match any. Match all provides
results that match all the values, and Match any provides results that match any of the
values entered. The default value is Match all.

e Datasource: You can choose the datasource to use for queries: Loki, Prometheus, or Auto.
Notable performance improvements can be realized when using Prometheus as a datasource
rather than Loki, but Prometheus supports a limited set of filters and aggregations. The
default datasource is Auto, which uses Prometheus on supported queries or uses Loki if the
query does not support Prometheus.

® Drops filter: You can view different levels of dropped packets with the following query
options:

o Fully dropped shows flow records with fully dropped packets.

o Containing drops shows flow records that contain drops but can be sent.
o Without drops shows records that contain sent packets.

o Allshows all the aforementioned records.

e Limit: The data limit for internal backend queries. Depending upon the matching and the
filter settings, the number of traffic flow data is displayed within the specified limit.

Quick filters

The default values in Quick filters drop-down menu are defined in the FlowCollector configuration.
You can modify the options from console.

Advanced filters

You can set the advanced filters, Common, Source, or Destination, by selecting the parameter to be
filtered from the dropdown list. The flow data is filtered based on the selection. To enable or disable
the applied filter, you can click on the applied filter listed below the filter options.

You can toggle between T One way and ™4 Back and forthfiltering. The T One way filter shows

only Source and Destination traffic according to your filter selections. You can use Swap to change the
directional view of the Source and Destination traffic. The T 4 Back and forthfilter includes return
traffic with the Source and Destination filters. The directional flow of network traffic is shown in the
Direction column in the Traffic flows table as Ingress or "Egress for inter-node traffic and “Innerfor
traffic inside a single node.

101

OpenShift Container Platform 4.17 Network Observability

You can click Reset defaults to remove the existing filters, and apply the filter defined in FlowCollector
configuration.

NOTE

To understand the rules of specifying the text value, click Learn More.

Additional resources

® Configuring Quick Filters

® Flow Collector sample resource

102

CHAPTER 9. NETWORK OBSERVABILITY ALERTS

CHAPTER 9. NETWORK OBSERVABILITY ALERTS

The Network Observability Operator provides alerts using built-in metrics and the OpenShift Container
Platform monitoring stack to quickly indicate your cluster’s network health.

IMPORTANT

Network observability alerts is a Technology Preview feature only. Technology Preview
features are not supported with Red Hat production service level agreements (SLAs) and
might not be functionally complete. Red Hat does not recommend using them in
production. These features provide early access to upcoming product features, enabling
customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope.

9.1. ABOUT NETWORK OBSERVABILITY ALERTS

Network observability includes predefined alerts. Use these alerts to gain insight into the health and
performance of your OpenShift Container Platform applications and infrastructure.

The predefined alerts provide a quick health indication of your cluster’s network in the Network Health
dashboard. You can also customize alerts using Prometheus Query Language (PromQL) queries.

By default, network observability creates alerts that are contextual to the features you enable.

For example, packet drop-related alerts are created only if the PacketDrop agent feature is enabled in
the FlowCollector custom resource (CR). Alerts are built on metrics, and you might see configuration
warnings if enabled alerts are missing their required metrics.

You can configure these metrics in the spec.processor.metrics.includeList object of the
FlowCollector CR.

9.1.1. List of default alert templates

These alert templates are installed by default:

PacketDropsByDevice

Triggers on high percentage of packet drops from devices (/proc/net/dev).
PacketDropsByKernel

Triggers on high percentage of packet drops by the kernel; it requires the PacketDrop agent feature.
IPsecErrors

Triggers when IPsec encryption errors are detected by network observability; it requires the IPSec
agent feature.

NetpolDenied

Triggers when traffic denied by network policies is detected by network observability; it requires the
NetworkEvents agent feature.

LatencyHighTrend

Triggers when an increase of TCP latency is detected by network observability; it requires the
FlowRTT agent feature.

103

https://access.redhat.com/support/offerings/techpreview/

OpenShift Container Platform 4.17 Network Observability

DNSErrors

Triggers when DNS errors are detected by network observability; it requires the DNSTracking agent
feature.

These are operational alerts that relate to the self-health of network observability:

NetObservNoFlows

Triggers when no flows are being observed for a certain period.
NetObservLokiError

Triggers when flows are being dropped due to Loki errors.

You can configure, extend, or disable alerts for network observability. You can view the resulting
PrometheusRule resource in the default netobserv namespace by running the following command:

I $ oc get prometheusrules -n netobserv -oyaml

9.1.2. Network Health dashboard

When alerts are enabled in the Network Observability Operator, two things happen:

® New alerts appear in Observe — Alerting = Alerting rules tab in the OpenShift Container
Platform web console.

® A new Network Health dashboard appears in OpenShift Container Platform web console =
Observe.

The Network Health dashboard provides a summary of triggered alerts and pending alerts,
distinguishing between critical, warning, and minor issues. Alerts for rule violations are displayed in the
following tabs:

® Global: Shows alerts that are global to the cluster.

® Nodes: Shows alerts for rule violations per node.

® Namespaces: Shows alerts for rule violations per namespace.
Click on a resource card to see more information. Next to each alert, a three dot menu appears. From

this menu, you can navigate to Network Traffic = Traffic flows to see more detailed information for
the selected resource.

9.2. ENABLING TECHNOLOGY PREVIEW ALERTS IN NETWORK
OBSERVABILITY

Network Observability Operator alerts are a Technology Preview feature. To use this feature, you must
enable it in the FlowCollector custom resource (CR), and then continue with configuring alerts to your
specific needs.

Procedure

1. Edit the FlowCollector CR to set the experimental alerts flag to true:

apiVersion: flows.netobserv.io/vibetai
kind: FlowCollector

104

CHAPTER 9. NETWORK OBSERVABILITY ALERTS

metadata:
name: flow-collector
spec:
processor:
advanced:
env:
EXPERIMENTAL_ALERTS_HEALTH: "true"

You can still use the existing method for creating alerts. For more information, see "Creating alerts".

9.2.1. Configuring predefined alerts

Alerts in the Network Observability Operator are defined using alert templates and variants in the
spec.processor.metrics.alerts object of the FlowCollector custom resource (CR). You can customize
the default templates and variants for flexible, fine-grained alerting.

After you enable alerts, the Network Health dashboard appears in the Observe section of the
OpenShift Container Platform web console.

For each template, you can define a list of variants, each with their own thresholds and grouping
configurations. For more information, see the "List of default alert templates”.

Here is an example:

apiVersion: flows.netobserv.io/vibetai
kind: FlowCollector

metadata:
name: flow-collector
spec:
processor:
metrics:
alerts:
- template: PacketDropsByKernel
variants:
triggered when the whole cluster traffic (no grouping) reaches 10% of drops
- thresholds:
critical: "10"
triggered when per-node traffic reaches 5% of drops, with gradual severity
- thresholds:
critical: "15"
warning: "10"
info: "5"

groupBy: Node

NOTE

Customizing an alert replaces the default configuration for that template. If you want to
keep the default configurations, you must manually replicate them.

9.2.2. About the PromQL expression for alerts

Learn about the base query for Prometheus Query Language (PromQL), and how to customize it so
you can configure network observability alerts for your specific needs.

105

OpenShift Container Platform 4.17 Network Observability

The alerting APl in the network observability FlowCollector custom resource (CR) is mapped to the
Prometheus Operator API, generating a PrometheusRule. You can see the PrometheusRule in the
default netobserv namespace by running the following command:

I $ oc get prometheusrules -n netobserv -oyaml

9.2.2.1. An example query for an alert in a surge of incoming traffic

This example provides the base PromQL query pattern for an alert about a surge in incoming traffic:

sum(rate(netobserv_workload_ingress_bytes_total{SrcK8S_Namespace="openshift-ingress"}[30m]))
by (DstK8S_Namespace)

This query calculates the byte rate coming from the openshift-ingress namespace to any of your

workloads' namespaces over the past 30 minutes.

You can customize the query, including retaining only some rates, running the query for specific time
periods, and setting a final threshold.

Filtering noise

Appending > 1000 to this query retains only the rates observed that are greater than 1 KB/s, which
eliminates noise from low-bandwidth consumers.
(sum(rate(netobserv_workload_ingress_bytes_total{SrcK8S_Namespace="openshift-
ingress"}[30m])) by (DstK8S_Namespace) > 1000)

The byte rate is relative to the sampling interval defined in the FlowCollector custom resource (CR)
configuration. If the sampling interval is 1:100, the actual traffic might be approximately 100 times
higher than the reported metrics.

Time comparison

You can run the same query for a particular period of time using the offset modifier. For example, a
query for one day earlier can be run using offset 1d, and a query for five hours ago can be run using
offset 5h.
sum(rate(netobserv_workload_ingress_bytes_total{SrcK8S_Namespace="openshift-ingress"}
[30m] offset 1d)) by (DstK8S_Namespace))

You can use the formula 100 * (<query nows - <query from the previous day>) / <query from the
previous day> to calculate the percentage of increase compared to the previous day. This value can
be negative if the byte rate today is lower than the previous day.

Final threshold

You can apply a final threshold to filter increases that are lower than the desired percentage. For
example, > 100 eliminates increases that are lower than 100%.

Together, the complete expression for the PrometheusRule looks like the following:

expr: |-
(100 *
(
(sum(rate(netobserv_workload_ingress_bytes_total{SrcK8S_Namespace="openshift-ingress"}
[30m])) by (DstK8S_Namespace) > 1000)

106

CHAPTER 9. NETWORK OBSERVABILITY ALERTS

- sum(rate(netobserv_workload_ingress_bytes_total{SrcK8S_Namespace="openshift-
ingress"}[30m] offset 1d)) by (DstK8S_Namespace)
)
/ sum(rate(netobserv_workload_ingress_bytes_total{SrcK8S_Namespace="openshift-ingress"}
[30m] offset 1d)) by (DstK8S_Namespace))
> 100

9.2.2.2. Alert metadata fields

The Network Observability Operator uses components from other OpenShift Container Platform
features, such as the monitoring stack, to enhance visibility into network traffic. For more information,
see: "Monitoring stack architecture”.

Some metadata must be configured for the alert definitions. This metadata is used by Prometheus and
the Alertmanager service from the monitoring stack, or by the Network Health dashboard.

The following example shows an AlertingRule resource with the configured metadata:

apiVersion: monitoring.openshift.io/v1
kind: AlertingRule
metadata:
name: netobserv-alerts
namespace: openshift-monitoring
spec:
groups:
- name: NetObservAlerts
rules:
- alert: NetObservincomingBandwidth
annotations:
netobserv_io_network_health: '{"namespacelLabels":
['DstK8S_Namespace"],"threshold":"100","unit":"%","upperBound":"500"}'
message: |-
NetObserv is detecting a surge of incoming traffic: current traffic to {{
$labels.DstkK8S_Namespace }} has increased by more than 100% since yesterday.
summary: "Surge in incoming traffic"
expr: |-
(100 *
(
(sum(rate(netobserv_workload_ingress_bytes_total{SrcK8S_Namespace="openshift-ingress"}
[30m])) by (DstK8S_Namespace) > 1000)
- sum(rate(netobserv_workload_ingress_bytes_total{SrcK8S_Namespace="openshift-
ingress"}[30m] offset 1d)) by (DstK8S_Namespace)
)
/ sum(rate(netobserv_workload_ingress_bytes_total{SrcK8S_Namespace="openshift-ingress"}
[30m] offset 1d)) by (DstK8S_Namespace))
> 100
for: 1m
labels:
app: netobserv
netobserv: "true"
severity: warning

where:

spec.groups.rules.alert.labels.netobserv

107

OpenShift Container Platform 4.17 Network Observability

Specifies the alert for the Network Health dashboard to detect when set to true.
spec.groups.rules.alert.labels.severity

Specifies the severity of the alert. The following values are valid: critical, warning, or info.

You can leverage the output labels from the defined PromQL expression in the message annotation. In
the example, since results are grouped per DstK8S_Namespace, the expression {{
$labels.DstK8S_Namespace }} is used in the message text.

The netobserv_io_network_health annotation is optional, and controls how the alert is rendered on
the Network Health page.

The netobserv_io_network_health annotation is a JSON string consisting of the following fields:

Table 9.1. Fields for the netobserv_io_network_health annotation

Field Type Description

namespaceLab List of strings One or more labels that hold namespaces. When provided, the
els alert appears under the Namespaces tab.

nodeLabels List of strings One or more labels that hold node names. When provided, the

alert appears under the Nodes tab.

threshold String The alert threshold, expected to match the threshold defined in
the PromQL expression.

unit String The data unit, used only for display purposes.

upperBound String An upper bound value used to compute the score on a closed
scale. Metric values exceeding this bound are clamped.

links List of objects A list of links to display contextually with the alert. Each link
requires a name (display name) and url.

trafficLinkFilter String An additional filter to inject into the URL for the Network Traffic
page.

The namespaceLabels and nodeLabels are mutually exclusive. If neither is provided, the alert appears
under the Global tab.

9.2.3. Creating custom alert rules

Use the Prometheus Query Language (PromQL) to define a custom AlertingRule resource to trigger
alerts based on specific network metrics (e.g., traffic surges).

Prerequisites

® Familiarity with PromQL.

® You have installed OpenShift Container Platform 4.14 or later.

108

CHAPTER 9. NETWORK OBSERVABILITY ALERTS

® You have access to the cluster as a user with the cluster-admin role.

® You have installed the Network Observability Operator.

Procedure

1. Create a YAML file named custom-alert.yaml that contains your AlertingRule resource.
2. Apply the custom alert rule by running the following command:

I $ oc apply -f custom-alert.yami

Verification

1. Verify that the PrometheusRule resource was created in the netobserv namespace by running
the following command:

I $ oc get prometheusrules -n netobserv -oyaml

The output should include the netobserv-alerts rule you just created, confirming that the
resource was generated correctly.

2. Confirm the rule is active by checking the Network Health dashboard in the OpenShift
Container Platform web console = Observe.

9.2.4. Disabling predefined alerts

Alert templates can be disabled in the spec.processor.metrics.disableAlerts field of the
FlowCollector custom resource (CR). This setting accepts a list of alert template names. For a list of
alert template names, see: "List of default alerts".

If a template is disabled and overridden in the spec.processor.metrics.alerts field, the disable setting
takes precedence and the alert rule is not created.

Additional resources

® List of default alerts
® Viewing network observability metrics dashboards
® Creating alerts

® Monitoring stack architecture

109

https://docs.redhat.com/en/documentation/monitoring_stack_for_red_hat_openshift/4.17/html/about_monitoring/monitoring-stack-architecture

OpenShift Container Platform 4.17 Network Observability

CHAPTER 10. USING METRICS WITH DASHBOARDS AND
ALERTS

The Network Observability Operator uses the flowlogs-pipeline component to generate metrics from
flow logs. Use these metrics to set custom alerts and view dashboards for network activity analysis.

10.1. VIEWING NETWORK OBSERVABILITY METRICS DASHBOARDS
View network observability metrics dashboards using the Overview tab in the OpenShift Container

Platform console to monitor overall traffic flow and system health, with options to filter metrics by node,
namespace, owner, pod, and service.

Procedure

1. In the web console Observe — Dashboards, select the Netobserv dashboard.

2. View network traffic metrics in the following categories, with each having the subset per node,
namespace, source, and destination:

® Byte rates
® Packet drops
e DNS
e RTT
3. Select the Netobserv/Health dashboard.

4. View metrics about the health of the Operator in the following categories, with each having the
subset per node, namespace, source, and destination.

® Flows

® Flows Overhead
® Flow rates

® Agents

® Processor

® Operator

Infrastructure and Application metrics are shown in a split-view for namespace and workloads.

10.2. NETWORK OBSERVABILITY METRICS

Review the comprehensive list of network observability metrics, prefixed by netobserv_, which you can
configure in the FlowCollector resource and use to monitor traffic and create Prometheus alerts.

Metrics generated by the flowlogs-pipeline are configurable in the
spec.processor.metrics.includeList of the FlowCollector custom resource to add or remove metrics.

110

CHAPTER 10. USING METRICS WITH DASHBOARDS AND ALERTS

You can also create alerts by using the includeList metrics in Prometheus rules, as shown in the
example "Creating alerts".

When looking for these metrics in Prometheus, such as in the Console through Observe — Metrics, or
when defining alerts, all the metrics names are prefixed with netobserv_. For example,

netobserv_namespace_flows_total. Available metrics names are as follows:

includeList metrics names

Names followed by an asterisk * are enabled by default.
® npamespace_egress_bytes_total
® namespace_egress_packets_total
® npamespace_ingress_bytes_total
® npamespace_ingress_packets_total
® npamespace_flows_total *
® node_egress_bytes_total
® node_egress_packets_total
e node_ingress_bytes total *
® node_ingress_packets_total
e node_flows_total
o workload_egress_bytes_total
o workload_egress_packets_total
o workload_ingress_bytes_total *
o workload_ingress_packets_total

e workload_flows_total

PacketDrop metrics names

When the PacketDrop feature is enabled in spec.agent.ebpf.features (with privileged mode), the
following additional metrics are available:

e namespace_drop_bytes_total

® npamespace_drop_packets_total *
e node_drop_bytes_total

e node_drop_packets_total

e workload_drop_bytes_total

e workload_drop_packets_total

m

OpenShift Container Platform 4.17 Network Observability

DNS metrics names

When the DNSTracking feature is enabled in spec.agent.ebpf.features, the following additional
metrics are available:

e npamespace_dns_latency_seconds *
e node_dns_latency_seconds

e workload_dns_latency_seconds

FlowRTT metrics names

When the FIowRTT feature is enabled in spec.agent.ebpf.features, the following additional metrics
are available:

® namespace_rtt_seconds *
e node_rit_seconds

e workload_rit_seconds

Network events metrics names

When NetworkEvents feature is enabled, this metric is available by default:

® npamespace_network_policy_events_total

10.3. CREATING ALERTS

Create custom AlertingRule resources based on Netobserv dashboard metrics to define conditions
that trigger alerts in the OpenShift Container Platform console.

Prerequisites

® You have access to the cluster as a user with the cluster-admin role or with view permissions for
all projects.

® You have the Network Observability Operator installed.

Procedure

1. Create a YAML file by clicking the import icon, +.

2. Add an alerting rule configuration to the YAML file. In the YAML sample that follows, an alert is
created for when the cluster ingress traffic reaches a given threshold of 10 MBps per destination
workload.

apiVersion: monitoring.openshift.io/v1
kind: AlertingRule
metadata:
name: netobserv-alerts
namespace: openshift-monitoring
spec:
groups:
- name: NetObservAlerts

12

CHAPTER 10. USING METRICS WITH DASHBOARDS AND ALERTS

rules:
- alert: NetObservincomingBandwidth
annotations:
message: |-

{{ $labels.job }}: incoming traffic exceeding 10 MBps for 30s on {{
$labels.DstkK8S_OwnerType }} {{ $labels.Dstk8S_OwnerName }} ({{
$labels.DstkK8S_Namespace }}).

summary: "High incoming traffic."
expr: sum(rate(netobserv_workload_ingress_bytes_total
{SrcK8S_Namespace="openshift-ingress"}[1m])) by (job, DstkK8S_Namespace,

DstK8S_OwnerName, DstK8S_OwnerType) > 10000000
for: 30s
labels:
severity: warning

Q The netobserv_workload_ingress_bytes_total metric is enabled by default in
spec.processor.metrics.includeList.

3. Click Create to apply the configuration file to the cluster.

10.4. CUSTOM METRICS

Define custom metrics from flowlog data using the FlowMetric API, leveraging log fields as Prometheus
labels to customize dashboard information and monitor specific cluster data.

In every flowlogs data that is collected, there are several fields labeled per log, such as source name and

destination name. These fields can be leveraged as Prometheus labels to enable the customization of
cluster information on your dashboard.

10.5. CONFIGURING CUSTOM METRICS BY USING FLOWMETRIC API

Configure the FlowMetric API to create custom Prometheus metrics by mapping flow log fields as labels
to meet specific monitoring needs.

Procedure

1. In the web console, navigate to Operators — Installed Operators.

2. Inthe Provided APIs heading for the NetObserv Operator, select FlowMetric.

3. In the Project: dropdown list, select the project of the Network Observability Operator instance.
4. Click Create FlowMetric.

5. Configure the FlowMetric resource, similar to the following sample configurations:

Generate a metric that tracks ingress bytes received from cluster external sources

apiVersion: flows.netobserv.io/vialphai
kind: FlowMetric

metadata:
name: flowmetric-cluster-external-ingress-traffic
namespace: netobserv ﬂ

13

OpenShift Container Platform 4.17 Network Observability

spec:
metricName: cluster_external_ingress_bytes_total 9
type: Counter
valueField: Bytes
direction: Ingress ﬂ
labels:
[DstK8S_HostName,DstK8S_Namespace,DstK8S_OwnerName,DstK8S_OwnerType] 9

filters: G

- field: SrcSubnetLabel
matchType: Absence

The FlowMetric resources need to be created in the namespace defined in the
FlowCollector spec.namespace, which is netobserv by default.

The name of the Prometheus metric, which in the web console appears with the prefix
netobserv-<metricName>.

The type specifies the type of metric. The Counter type is useful for counting bytes or
packets.

The direction of traffic to capture. If not specified, both ingress and egress are captured,
which can lead to duplicated counts.

Labels define what the metrics look like and the relationship between the different entities
and also define the metrics cardinality. For example, SrcK8S_Name is a high cardinality
metric.

@ ® 6 0 o 9o

Refines results based on the listed criteria. In this example, selecting only the cluster
external traffic is done by matching only flows where SrcSubnetLabel is absent. This
assumes the subnet labels feature is enabled (via spec.processor.subnetLabels), which
is done by default.

Verification

14

1. Once the pods refresh, navigate to Observe = Metrics.

2. In the Expression field, type the metric name to view the corresponding result. You can also
enter an expression, such as topk(5,
sum(rate(netobserv_cluster_external_ingress_bytes total{DstK8S_Namespace="my-
namespace'}[2m])) by (DstK8S_HostName, DstK8S_OwnerName, DstK8S_OwnerType))

Show RTT latency for cluster external ingress traffic

apiVersion: flows.netobserv.io/vialphai
kind: FlowMetric
metadata:
name: flowmetric-cluster-external-ingress-rtt

namespace: netobserv ﬂ
spec:
metricName: cluster_external_ingress_rtt_seconds
type: Histogram
valueField: TimeFlowRttNs
direction: Ingress

CHAPTER 10. USING METRICS WITH DASHBOARDS AND ALERTS

labels:
[DstK8S_HostName,DstK8S_Namespace,DstK8S_OwnerName,DstK8S_OwnerType]
filters:
- field: SrcSubnetLabel
matchType: Absence
- field: TimeFlowRttNs
matchType: Presence
divider: "1000000000" @)

bUCketS [11.00111, 11.00511, 11.01||, 11.02||, 11.03", 11.04||, 11.05||, 11.07511, 11.111, 11.25||, 11111] °

ﬂ The FlowMetric resources need to be created in the namespace defined in the
FlowCollector spec.namespace, which is netobserv by default.

9 The type specifies the type of metric. The Histogram type is useful for a latency value
(TimeFlowRttNs).

9 Since the Round-trip time (RTT) is provided as nanos in flows, use a divider of 1billion to
convert into seconds, which is standard in Prometheus guidelines.

Q The custom buckets specify precision on RTT, with optimal precision ranging between 5ms
and 250ms.

Verification

1. Once the pods refresh, navigate to Observe - Metrics.

2. In the Expression field, you can type the metric name to view the corresponding result.

10.6. CREATING METRICS FROM NESTED OR ARRAY FIELDS IN THE
TRAFFIC FLOWS TABLE

Create a FlowMetric custom resource to generate metrics for nested or array fields in the Traffic flows
table, such as Network events or Interfaces.

IMPORTANT

OVN Observability / Viewing NetworkEvents is a Technology Preview feature only.
Technology Preview features are not supported with Red Hat production service level
agreements (SLAs) and might not be functionally complete. Red Hat does not
recommend using them in production. These features provide early access to upcoming
product features, enabling customers to test functionality and provide feedback during
the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope.

IMPORTANT

OVN Observability and the ability to view and track network events is available only in
OpenShift Container Platform 4.17 and 4.18.

115

https://access.redhat.com/support/offerings/techpreview/

OpenShift Container Platform 4.17 Network Observability

The following example shows how to generate metrics from the Network events field for network policy
events.

Prerequisites
e [Enable NetworkEvents feature. See the Additional resources for how to do this.

® A network policy specified.

Procedure
1. In the web console, navigate to Operators — Installed Operators.
2. Inthe Provided APIs heading for the NetObserv Operator, select FlowMetric.
3. Inthe Project dropdown list, select the project of the Network Observability Operator instance.

4. Click Create FlowMetric.

ul

. Create FlowMetric resources to add the following configurations:
Configuration counting network policy events per policy name and namespace

apiVersion: flows.netobserv.io/vialphai
kind: FlowMetric
metadata:
name: network-policy-events
namespace: netobserv
spec:
metricName: network_policy_events_total
type: Counter
labels: [NetworkEvents>Type, NetworkEvents>Namespace, NetworkEvents>Name,
NetworkEvents>Action, NetworkEvents>Direction] ﬂ

filters:

- field: NetworkEvents>Feature
value: acl

flatten: [NetworkEvents] 9

remap:

"NetworkEvents>Type": type
"NetworkEvents>Namespace": namespace
"NetworkEvents>Name": name
"NetworkEvents>Direction": direction

ﬂ These labels represent the nested fields for Network Events from the Traffic flows table.
Each network event has a specific type, namespace, name, action, and direction. You can
alternatively specify the Interfaces if NetworkEvents is unavailable in your OpenShift
Container Platform version.

9 Optional: You can choose to represent a field that contains a list of items as distinct items.

g Optional: You can rename the fields in Prometheus.

Verification

16

CHAPTER 10. USING METRICS WITH DASHBOARDS AND ALERTS

1. In the web console, navigate to Observe — Dashboards and scroll down to see the Network
Policy tab.

2. You should begin seeing metrics filter in based on the metric you created along with the
network policy specifications.

IMPORTANT

High cardinality can affect the memory usage of Prometheus. You can check whether
specific labels have high cardinality in the Network Flows format reference.

10.7. CONFIGURING CUSTOM CHARTS USING FLOWMETRIC API

Generate custom charts for OpenShift Container Platform web console dashboards by defining the
charts section of the FlowMetric custom resource.

You can view custom charts as an administrator in the Dashboard menu.

Procedure
1. In the web console, navigate to Operators — Installed Operators.
2. Inthe Provided APIs heading for the NetObserv Operator, select FlowMetric.
3. Inthe Project: dropdown list, select the project of the Network Observability Operator instance.
4. Click Create FlowMetric.

5. Configure the FlowMetric resource, similar to the following sample configurations:
Chart for tracking ingress bytes received from cluster external sources

apiVersion: flows.netobserv.io/vialphai
kind: FlowMetric
metadata:
name: flowmetric-cluster-external-ingress-traffic
namespace: netobserv ﬂ
#...
charts:
- dashboardName: Main 9
title: External ingress traffic
unit: Bps
type: SingleStat
queries:
- promQL: "sum(rate($METRIC[2m]))"
legend: "
- dashboardName: Main 6
sectionName: External
title: Top external ingress traffic per workload
unit: Bps
type: StackArea
queries:
- promQL: "sum(rate($METRIC{DstK8S_Namespace!=\"\"}[2m])) by (DstK8S_Namespace,

17

OpenShift Container Platform 4.17 Network Observability

DstK8S_OwnerName)"
legend: "{{DstK8S_Namespace}} / {{DstK8S_OwnerName}}"
#...

The FlowMetric resources need to be created in the namespace defined in the
FlowCollector spec.namespace, which is netobserv by default.

Verification

1. Once the pods refresh, navigate to Observe - Dashboards.

2. Search for the NetObserv / Main dashboard. View two panels under the NetObserv / Main
dashboard, or optionally a dashboard name that you create:

® A textual single statistic showing the global external ingress rate summed across all
dimensions

® A timeseries graph showing the same metric per destination workload
For more information about the query language, refer to the Prometheus documentation.

Chart for RTT latency for cluster external ingress traffic

apiVersion: flows.netobserv.io/vialphai
kind: FlowMetric
metadata:
name: flowmetric-cluster-external-ingress-traffic
namespace: netobserv ﬂ
#...
charts:
- dashboardName: Main g
title: External ingress TCP latency
unit: seconds
type: SingleStat

queries:
- promQL: "histogram_quantile(0.99, sum(rate($METRIC_bucket[2m])) by (le)) > 0"
legend: "p99"

- dashboardName: Main 6
sectionName: External
title: "Top external ingress sRTT per workload, p50 (ms)"
unit: seconds
type: Line
queries:
- promQL: "histogram_quantile(0.5, sum(rate(SMETRIC_bucket{DstK8S_Namespace!=\"\"}[2m]))
by (le,DstK8S_Namespace,DstK8S_OwnerName))*1000 > 0"
legend: "{{DstK8S_Namespace}} / {{DstK8S_OwnerName}}"
- dashboardName: Main ﬂ
sectionName: External
title: "Top external ingress sRTT per workload, p99 (ms)"
unit: seconds
type: Line
queries:
- promQL: "histogram_quantile(0.99, sum(rate(SMETRIC_bucket{DstK8S_Namespace!=\"\"}[2m]))

18

https://prometheus.io/docs/prometheus/latest/querying/basics/

CHAPTER 10. USING METRICS WITH DASHBOARDS AND ALERTS

by (le,DstK8S_Namespace,DstK8S_OwnerName))*1000 > 0"
legend: "{{DstK8S_Namespace}} / {{DstK8S_OwnerName}}"
#...

ﬂ The FlowMetric resources need to be created in the namespace defined in the FlowCollector
spec.namespace, which is netobserv by default.

MSing a different dashboardName creates a new dashboard that is prefixed with Netobserv.
For example, Netobserv / <dashboard_name>.
This example uses the histogram_quantile function to show p50 and p99.

You can show averages of histograms by dividing the metric, SMETRIC_sum, by the metric,
$METRIC_count, which are automatically generated when you create a histogram. With the preceding
example, the Prometheus query to do this is as follows:

promQL: "(sum(rate(SMETRIC_sum{DstK8S_Namespace!=\"\"}[2m])) by
(DstK8S_Namespace,DstK8S_OwnerName) / sum(rate($METRIC_count{DstK8S_Namespace!=\"\"}
[2m])) by (DstK8S_Namespace,DstK8S_OwnerName))*1000"

Verification

1. Once the pods refresh, navigate to Observe - Dashboards.

2. Search for the NetObserv / Main dashboard. View the new panel under the NetObserv / Main
dashboard, or optionally a dashboard name that you create.

For more information about the query language, refer to the Prometheus documentation.

10.8. DETECTING SYN FLOODING USING THE FLOWMETRIC API AND
TCP FLAGS

Deploy a custom AlertingRule and FlowMetric configuration to monitor TCP flags, enabling real-time
detection and alerting for SYN flooding attacks on the cluster.

Procedure

1. In the web console, navigate to Operators — Installed Operators.

2. Inthe Provided APIs heading for the NetObserv Operator, select FlowMetric.

3. Inthe Project dropdown list, select the project of the Network Observability Operator instance.
4. Click Create FlowMetric.

5. Create FlowMetric resources to add the following configurations:
Configuration counting flows per destination host and resource, with TCP flags

apiVersion: flows.netobserv.io/vialphai
kind: FlowMetric
metadata:

name: flows-with-flags-per-destination

19

https://prometheus.io/docs/prometheus/latest/querying/basics/

OpenShift Container Platform 4.17 Network Observability

spec:

metricName: flows_with_flags_per_destination_total

type: Counter

labels:
[SrcSubnetLabel,DstSubnetLabel,DstkK8S_Name,DstK8S_Type,DstK8S_HostName,DstK8S_N
amespace,Flags]

Configuration counting flows per source host and resource, with TCP flags

apiVersion: flows.netobserv.io/vialphai
kind: FlowMetric
metadata:

name: flows-with-flags-per-source
spec:

metricName: flows_with_flags_per_source_total

type: Counter

labels:
[DstSubnetLabel,SrcSubnetLabel,SrcK8S_Name,SrcK8S_Type,SrcK8S_HostName,SrcK8S_N
amespace,Flags]

6. Deploy the following AlertingRule resource to alert for SYN flooding:

AlertingRule for SYN flooding

apiVersion: monitoring.openshift.io/v1
kind: AlertingRule
metadata:
name: netobserv-syn-alerts
namespace: openshift-monitoring
#...
spec:
groups:
- name: NetObservSYNAlerts
rules:
- alert: NetObserv-SYNFlood-in
annotations:
message: |-

{{ $labels.job }}: incoming SYN-flood attack suspected to Host={{
$labels.DstkK8S_HostName}}, Namespace={{ $labels.DstK8S_Namespace }}, Resource={{
$labels.DstK8S_Name }}. This is characterized by a high volume of SYN-only flows with
different source IPs and/or ports.

summary: "Incoming SYN-flood"
expr: sum(rate(netobserv_flows_with_flags_per_destination_total{Flags="2"}[1m])) by
(job, Dstk8S_HostName, DstK8S_Namespace, DstK8S_Name) > 300
for: 15s
labels:
severity: warning
app: netobserv
- alert: NetObserv-SYNFlood-out
annotations:
message: |-

{{ $labels.job }}: outgoing SYN-flood attack suspected from Host={{
$labels.SrcK8S_HostName}}, Namespace={{ $labels.SrcK8S_Namespace }}, Resource={{
$labels.SrcK8S_Name }}. This is characterized by a high volume of SYN-only flows with
different source IPs and/or ports.

120

CHAPTER 10. USING METRICS WITH DASHBOARDS AND ALERTS

summary: "Outgoing SYN-flood"
expr: sum(rate(netobserv_flows_with_flags_per_source_total{Flags="2"}[1m])) by (job,
SrcK8S_HostName, SrcK8S_Namespace, SrcK8S_Name) > 300
for: 15s
labels:
severity: warning
app: netobserv
#...

n this example, the threshold for the alert is 300; however, you can adapt this value
empirically. A threshold that is too low might produce false-positives, and if it's too high it
might miss actual attacks.

Verification

1. In the web console, click Manage Columnsin the Network Traffic table view and click TCP
flags.

2. In the Network Traffic table view, filter on TCP protocol SYN TCPFlag A large number of
flows with the same byteSize indicates a SYN flood.

3. Go to Observe — Alerting and select the Alerting Rules tab.

4. Filter on netobserv-synflood-in alert. The alert should fire when SYN flooding occurs.

Additional resources
® Filtering eBPF flow data using a global rule
® Creating alerting rules for user-defined projects

® Troubleshooting high cardinality metrics- Determining why Prometheus is consuming a lot of
disk space

121

https://docs.redhat.com/en/documentation/monitoring_stack_for_red_hat_openshift/4.17/html/managing_alerts/managing-alerts-as-a-developer#creating-alerting-rules-for-user-defined-projects_managing-alerts-as-a-developer
https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/support/#determining-why-prometheus-is-consuming-disk-space_investigating-monitoring-issues

OpenShift Container Platform 4.17 Network Observability

CHAPTER 1. MONITORING THE NETWORK OBSERVABILITY
OPERATOR

Use the OpenShift Container Platform web console to monitor alerts related to the Network
Observability Operator’s health. This helps you maintain system stability and quickly detect operational
issues.

11.1. HEALTH DASHBOARDS
View the Network Observability Operator health dashboards in the OpenShift Container Platform web
console to monitor the health status, resource usage, and internal statistics of the operator and its
components.
Metrics are located in the Observe - Dashboards page in the OpenShift Container Platform web
console. You can view metrics about the health of the Network Observability Operator in the following
categories:

® Flows per second

® Sampling

® Errors last minute

® Dropped flows per second

® Flowlogs-pipeline statistics

® Flowlogs-pipleine statistics views

® eBPF agent statistics views

® Operator statistics

® Resource usage

11.2. HEALTH ALERTS

Understand the health alerts generated by the Network Observability Operator, which trigger banners
when conditions like Loki ingestion errors, zero flow ingestion, or dropped eBPF flows occur.

A health alert banner that directs you to the dashboard can appear on the Network Trafficand Home
pages if an alert is triggered. Alerts are generated in the following cases:

o The NetObservLokiError alert occurs if the flowlogs-pipeline workload is dropping flows
because of Loki errors, such as if the Loki ingestion rate limit has been reached.

e The NetObservNoFlows alert occurs if no flows are ingested for a certain amount of time.
e The NetObservFlowsDropped alert occurs if the Network Observability eBPF agent hashmap

table is full, and the eBPF agent processes flows with degraded performance, or when the
capacity limiter is triggered.

1.3. VIEWING HEALTH INFORMATION

122

CHAPTER 11. MONITORING THE NETWORK OBSERVABILITY OPERATOR

View the Netobserv/Health dashboard within the OpenShift Container Platform web console to
monitor the health status and resource usage of the Network Observability Operator and its
components.

Prerequisites

® You have the Network Observability Operator installed.

® You have access to the cluster as a user with the cluster-admin role or with view permissions
for all projects.

Procedure

1. From the Administrator perspective in the web console, navigate to Observe - Dashboards.
2. From the Dashboards dropdown, select Netobserv/Health.

3. View the metrics about the health of the Operator that are displayed on the page.

11.3.1. Disabling health alerts

Disable specific health alerts, such as NetObservLokiError or NetObservNoFlows, by editing the
FlowCollector resource and using the spec.processor.metrics.disableAlerts specification.
Procedure

1. In the web console, navigate to Operators — Installed Operators.
2. Under the Provided APIs heading for the NetObserv Operator, select Flow Collector.
3. Select cluster then select the YAML tab.

4. Add spec.processor.metrics.disableAlerts to disable health alerts, as in the following YAML
sample:

apiVersion: flows.netobserv.io/vibeta2
kind: FlowCollector
metadata:
name: cluster
spec:
processor:
metrics:

disableAlerts: [NetObservLokiError, NetObservNoFlows] ﬂ

ﬂ You can specify one or a list with both types of alerts to disable.

11.4. CREATING LOKI RATE LIMIT ALERTS FOR THE NETOBSERV
DASHBOARD

Create a custom AlertingRule resource based on Loki metrics to monitor for and trigger alerts when the
Loki ingestion rate limits are reached, indicated by HTTP 429 errors.

123

OpenShift Container Platform 4.17 Network Observability

You can create custom alerting rules for the Netobserv dashboard metrics to trigger alerts when Loki
rate limits have been reached.

Prerequisites

® You have access to the cluster as a user with the cluster-admin role or with view permissions for
all projects.

® You have the Network Observability Operator installed.

Procedure

1. Create a YAML file by clicking the importicon, +.

2. Add an alerting rule configuration to the YAML file. In the YAML sample that follows, an alert is
created for when Loki rate limits have been reached:

apiVersion: monitoring.openshift.io/v1
kind: AlertingRule
metadata:
name: loki-alerts
namespace: openshift-monitoring
spec:
groups:
- name: LokiRateLimitAlerts
rules:
- alert: LokiTenantRateLimit
annotations:
message: |-
{{ $labels.job }} {{ $labels.route }} is experiencing 429 errors.
summary: "At any number of requests are responded with the rate limit error code."
expr: sum(irate(loki_request_duration_seconds_count{status_code="429"}[1m])) by (job,
namespace, route) / sum(irate(loki_request_duration_seconds_count[1m])) by (job,
namespace, route) * 100> 0
for: 10s
labels:
severity: warning

3. Click Create to apply the configuration file to the cluster.

11.5. USING THE EBPF AGENT ALERT

Resolve the NetObservAgentFlowsDropped alert, which occurs when the eBPF agent hashmap is full,
by increasing the spec.agent.ebpf.cacheMaxFlows value in the FlowCollector custom resource.

An alert, NetObservAgentFlowsDropped, is also triggered when the capacity limiter is triggered. If you
see this alert, consider increasing the cacheMaxFlows in the FlowCollector, as shown in the following
example.

NOTE

Increasing the cacheMaxFlows might increase the memory usage of the eBPF agent.

Procedure

124

CHAPTER 11. MONITORING THE NETWORK OBSERVABILITY OPERATOR

1. In the web console, navigate to Operators — Installed Operators.

2. Under the Provided APIs heading for the Network Observability Operator, select Flow
Collector.

3. Select cluster, and then select the YAML tab.

4. Increase the spec.agent.ebpf.cacheMaxFlows value, as shown in the following YAML sample:

apiVersion: flows.netobserv.io/vibeta2
kind: FlowCollector
metadata:
name: cluster
spec:
namespace: netobserv
deploymentModel: Direct
agent:
type: eBPF
ebpf:
cacheMaxFlows: 200000 €))

Increase the cacheMaxFlows value from its value at the time of the
NetObservAgentFlowsDropped alert.

Additional resources

® Creating alerting rules for user-defined projects

125

https://docs.redhat.com/en/documentation/monitoring_stack_for_red_hat_openshift/4.17/html/managing_alerts/managing-alerts-as-a-developer#creating-alerting-rules-for-user-defined-projects_managing-alerts-as-a-developer

OpenShift Container Platform 4.17 Network Observability

CHAPTER 12. SCHEDULING RESOURCES

Taints and tolerations help you control which nodes host certain pods. Use these tools, along with node
selectors, to guide the placement of network observability components.

A node selector specifies a map of key/value pairs that are defined using custom labels on nodes and
selectors specified in pods.

For the pod to be eligible to run on a node, the pod must have the same key/value node selector as the
label on the node.

12.1. NETWORK OBSERVABILITY DEPLOYMENT IN SPECIFIC NODES

Configure the FlowCollector resource using scheduling specifications, including NodeSelector,
Tolerations, and Affinity, to control the deployment of network observability components on specific
nodes.

The spec.agent.ebpf.advanced.scheduling, spec.processor.advanced.scheduling, and
spec.consolePlugin.advanced.scheduling specifications have the following configurable settings:

e NodeSelector

e Tolerations

o Affinity

® PriorityClassName

Sample FlowCollector resource for spec.<component>.advanced.scheduling

apiVersion: flows.netobserv.io/vibeta2
kind: FlowCollector
metadata:
name: cluster
spec:
#...
advanced:
scheduling:

tolerations:

- key: "<taint key>"
operator: "Equal”
value: "<taint value>"
effect: "<taint effect>"
nodeSelector:

<key>: <value>
affinity:
nodeAffinity:
requiredDuringSchedulinglgnoredDuringExecution:
nodeSelectorTerms:
- matchExpressions:
- key: name
operator: In
values:

126

CHAPTER 12. SCHEDULING RESOURCES

- app-worker-node
priorityClassName: """
#...

Additional resources

® Understanding taints and tolerations
® Assign Pods to Nodes (Kubernetes documentation)

® Pod Priority and Preemption (Kubernetes documentation)

127

https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/nodes/#nodes-scheduler-taints-tolerations-about_nodes-scheduler-taints-tolerations
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/
https://kubernetes.io/docs/concepts/scheduling-eviction/pod-priority-preemption/#priorityclass

OpenShift Container Platform 4.17 Network Observability

CHAPTER 13. SECONDARY NETWORKS

You can configure the Network Observability Operator to collect and enrich network flow data from
secondary networks, such as SR-IOV and OVN-Kubernetes.

13.1. PREREQUISITES

® Access to an OpenShift Container Platform cluster with an additional network interface, such as
a secondary interface or an L2 network.

13.2. CONFIGURING MONITORING FOR SR-IOV INTERFACE TRAFFIC

Configure the FlowCollector resource to monitor traffic on Single Root |I/O Virtualization (SR-IOV)
device by setting the spec.agent.ebpf.privileged field to true, which enables the eBPF agent to
monitor other network namespaces.

The eBPF agent monitors other network namespaces in addition to the host network namespaces, which
are monitored by default. When a pod with a virtual functions (VF) interface is created, a new network
namespace is created. With SRIOVNetwork policy IPAM configurations specified, the VF interface is
migrated from the host network namespace to the pod network namespace.

Prerequisites

® Access to an OpenShift Container Platform cluster with a SR-IOV device.

® The SRIOVNetwork custom resource (CR) spec.ipam configuration must be set with an IP
address from the range that the interface lists or from other plugins.

Procedure

1. In the web console, navigate to Operators — Installed Operators.
2. Under the Provided APIs heading for the NetObserv Operator, select Flow Collector.
3. Select cluster and then select the YAML tab.

4. Configure the FlowCollector custom resource. A sample configuration is as follows:

Configure FlowCollector for SR-IOV monitoring

apiVersion: flows.netobserv.io/vibeta2
kind: FlowCollector
metadata:
name: cluster
spec:
namespace: netobserv
deploymentModel: Direct
agent:
type: eBPF
ebpf:

privileged: true 0

128

Procedure

monitoring.

Additional resources

® Configuring an SR-IOV network device

CHAPTER 13. SECONDARY NETWORKS

o The spec.agent.ebpf.privileged field value must be set to true to enable SR-IOV

13.3. CONFIGURING VIRTUAL MACHINE (VM) SECONDARY NETWORK
INTERFACES FOR NETWORK OBSERVABILITY

Configure the FlowCollector to monitor VM secondary network traffic by setting the eBPF agent to
privileged mode and defining the indexing for secondary networks, enabling the capture and
enrichment of flows from OpenShift Virtualization.

Network flows coming from VMs that are connected to the default internal pod network are
automatically captured by network observability.

1. Getinformation about the virtual machine launcher pod by running the following command. This
information is used in Step 5:

I $ oc get pod virt-launcher-<vm_name>-<suffix> -n <namespace> -0 yaml

apiVersion: vi
kind: Pod
metadata:
annotations:
k8s.v1.cni.cncf.io/network-status: |-
[{
"name": "ovn-kubernetes",
"interface": "eth0",
"ips": [
"10.129.2.39"
],
"mac": "0a:58:0a:81:02:27",
"default": true,
"dns": {}
b
{

"name": "my-vms/I2-network”, ﬂ
"interface": "podc0f69e19ba2", g

"ipS": [e
"10.10.10.15"

],

"mac": "02:fb:f8:00:00:12", @)

"dns": {}

}]
name: virt-launcher-fedora-aqua-fowl-13-zr2x9
namespace: my-vms
spec:

129

https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/hardware_networks/#cnf-creating-an-additional-sriov-network-with-vrf-plug-in_configuring-sriov-device

OpenShift Container Platform 4.17 Network Observability

..
status:
..

ﬂ The name of the secondary network.
9 The network interface name of the secondary network.
9 The list of IPs used by the secondary network.

Q The MAC address used for secondary network.

2. Inthe web console, navigate to Operators — Installed Operators.
3. Under the Provided APIs heading for the NetObserv Operator, select Flow Collector.
4. Select cluster and then select the YAML tab.

5. Configure FlowCollector based on the information you found from the additional network
investigation:

apiVersion: flows.netobserv.io/vibeta2
kind: FlowCollector
metadata:
name: cluster
spec:
agent:
ebpf:
privileged: true ﬂ
processor:
advanced:
secondaryNetworks:
- index: 9
- MAC
name: my-vms/I2-network ﬂ
#...

ﬂ Ensure that the eBPF agent is in privileged mode so that flows are collected for
secondary interfaces.

9 Define the fields to use for indexing the virtual machine launcher pods. It is recommended
to use the MAC address as the indexing field to get network flows enrichment for
secondary interfaces. If you have overlapping MAC address between pods, then additional
indexing fields, such as IP and Interface, could be added to have accurate enrichment.

9 If your additional network information has a MAC address, add MAC to the field list.

Q Specify the name of the network found in the k8s.v1.cni.cncf.io/network-status
annotation. Usually <namespace>/<network_attachement_definition_name>.

6. Observe VM traffic:

a. Navigate to the Network Traffic page.

130

CHAPTER 13. SECONDARY NETWORKS

b. Filter by Source IP using your virtual machine IP found in k8s.v1.cni.cncf.io/network-
status annotation.

c. View both Source and Destination fields, which should be enriched, and identify the VM
launcher pods and the VM instance as owners.

131

OpenShift Container Platform 4.17 Network Observability

CHAPTER 14. NETWORK OBSERVABILITY CLI

14.1. INSTALLING THE NETWORK OBSERVABILITY CLI

The Network Observability CLI (oc netobserv) is deployed separately from the Network Observability
Operator. The CLlI is available as an OpenShift CLI (o¢) plugin. It provides a lightweight way to quickly
debug and troubleshoot with network observability.

14.1.1. About the Network Observability CLI

Use the Network Observability CLI (oc netobserv) to quickly debug and troubleshoot networking
issues. This tool provides instant, live insight into flows and packets without installing the Network
Observability Operator.

The Network Observability CLI is a flow and packet visualization tool that relies on eBPF agents to

stream collected data to an ephemeral collector pod. It requires no persistent storage during the
capture. After the run, the output is transferred to your local machine.

IMPORTANT

CLI capture is meant to run only for short durations, such as 8-10 minutes. If it runs for
too long, it can be difficult to delete the running process.

14.1.2. Installing the Network Observability CLI

The Network Observability CLI gives you a lightweight way to quickly debug and troubleshoot network
observability. It must be installed separately.

Installing the Network Observability CLI (oc netobserv) is a separate procedure from the Network
Observability Operator installation. This means that, even if the Operator is installed from the software
catalog, the CLI must be installed separately.

NOTE

Users can optionally use Krew to install the netobserv CLI plugin. For more information,
see "Installing a CLI plugin with Krew".

Prerequisites

® You must install the OpenShift CLI (oc¢).
® You must have a macOS or Linux operating system.

® You must install either docker or podman.

NOTE

You can use podman or docker to run the installation commands. This procedure uses
podman.

Procedure

132

CHAPTER 14. NETWORK OBSERVABILITY CLI

1. Login to the Red Hat registry by running the following command:

I $ podman login registry.redhat.io

2. Extract the oc-netobserv file from the image by running the following commands:
$ podman create --name netobserv-cli registry.redhat.io/network-observability/network-
observability-cli-rhel9:1.10

$ podman cp netobserv-cli:/oc-netobserv .
$ podman rm netobserv-cli

3. Move the extracted file to a directory that is on the system’s PATH, such as /usr/local/bin/, by
running the following command:

I $ sudo mv oc-netobserv /usr/local/bin/

Verification

1. Verify that oc netobserv is available:
I $ oc netobserv version
This command should produce an outcome similar to the following example:

I Netobserv CLI version <version>

Additional resources
® |nstalling and using CLI plugins

® |nstalling the CLI Manager Operator

14.2. USING THE NETWORK OBSERVABILITY CLI
You can visualize and filter the flows and packets data directly in the terminal to see specific usage, such

as identifying who is using a specific port. The Network Observability CLI collects flows as JSON and
database files or packets as a PCAP file, which you can use with third-party tools.

14.2.1. Capturing flows

Capture network flows and apply filters based on resources or zones directly in the CLI. This helps you
solve complex use cases, such as visualizing the Round-Trip Time (RTT) between two different zones.

Table visualization in the CLI provides viewing and flow search capabilities.

Prerequisites

e Install the OpenShift CLI (oc).

® |[nstall the Network Observability CLI (oc netobserv) plugin.

Procedure

133

https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/cli_tools/#cli-installing-plugins_cli-extend-plugins
https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/cli_tools/#installing-cli-manager

OpenShift Container Platform 4.17 Network Observability

1. Capture flows with filters enabled by running the following command:

$ oc netobserv flows --enable_filter=true --action=Accept --cidr=0.0.0.0/0 --protocol=TCP --
port=49051

2. Add filters to the live table filter prompt in the terminal to further refine the incoming flows.
For example:

I live table filter: [SrcK8S_Zone:us-west-1b] press enter to match multiple regular expressions
at once

3. Use the PageUp and PageDown keys to toggle between None, Resource, Zone, Host, Owner
and all of the above.

4. To stop capturing, press Ctrl+C. The data that was captured is written to two separate files in an
Joutput directory located in the same path used to install the CLI.

5. View the captured data in the ./output/flow/<capture_date_times.json JSON file, which
contains JSON arrays of the captured data.

Example JSON file

"AgentIP":"10.0.1.76",

"Bytes": 561,

"DnsErrno": 0,

"Dscp": 20,

"DstAddr": "f904:ece9:ba63:6ac7:8018:1e5:7130:0",
"DstMac": "0A:58:0A:80:00:37",
"DstPort": 9999,

"Duplicate": false,

"Etype": 2048,

"Flags": 16,

"FlowDirection": 0,

"IfDirection": 0,

"Interface": "ens5",
"K8S_FlowLayer": "infra",

"Packets": 1,

"Proto": 6,

"SrcAddr": "3e06:6¢10:6440:2:a80:37:b756:270f",
"SrcMac": "0A:58:0A:80:00:01",
"SrcPort": 46934,

"TimeFlowEndMs": 1709741962111,
"TimeFlowRttNs": 121000,
"TimeFlowStartMs": 1709741962111,
"TimeReceived": 1709741964

6. You can use SQLite to inspect the ./output/flow/<capture_date_time>.db database file. For
example:

a. Open the file by running the following command:

I $ sqlite3 ./output/flow/<capture_date_time>.db

134

CHAPTER 14. NETWORK OBSERVABILITY CLI

b. Query the data by running a SQLite SELECT statement, for example:

sqlite> SELECT DnsLatencyMs, DnsFlagsResponseCode, Dnsld, DstAddr, DstPort,
Interface, Proto, SrcAddr, SrcPort, Bytes, Packets FROM flow WHERE DnsLatencyMs
>10 LIMIT 10;

Example output

12|NoError|58747|10.128.0.63|57856]|17]172.30.0.10|53|284/1
11|NoError|20486/10.128.0.52|56575||17|169.254.169.254|53|225|1
11|NoError|59544|10.128.0.103|51089||17|172.30.0.10|53|307|1
13|NoError|32519|10.128.0.52|55241(|17|169.254.169.254|53|254|1
12|NoError|32519]10.0.0.3|55241|[17|169.254.169.254|53|254 1
15|NoError|57673|10.128.0.1959051(]17]172.30.0.10|53|313|1
13|NoError|35652|10.0.0.3|46532]|17|169.254.169.254|53|183| 1
32|NoError|37326|10.0.0.3|52718||17|169.254.169.254|53|169| 1
14|NoError|14530|10.0.0.3|58203||17|169.254.169.254|53|246| 1
15|NoError|40548)10.0.0.3|45933||17|169.254.169.254|53|174|1

14.2.2. Capturing packets

Use the Network Observability CLI to capture network packets. You can apply filters and refine them live
in the terminal for accurate, real-time debugging.

Prerequisites

e Install the OpenShift CLI (oc).

® |[nstall the Network Observability CLI (oc netobserv) plugin.

Procedure

1. Run the packet capture with filters enabled:

I $ oc netobserv packets --action=Accept --cidr=0.0.0.0/0 --protocol=TCP --port=49051

2. Add filters to the live table filter prompt in the terminal to refine the incoming packets. An
example filter is as follows:

I live table filter: [SrcK8S_Zone:us-west-1b] press enter to match multiple regular expressions
at once

3. Use the PageUp and PageDown keys to toggle between None, Resource, Zone, Host, Owner
and all of the above.

4. To stop capturing, press Ctrl+C.

5. View the captured data, which is written to a single file in an ./output/pcap directory located in
the same path that was used to install the CLI:

a. The ./Joutput/pcap/<capture_date_times.pcap file can be opened with Wireshark.
14.2.3. Capturing metrics

135

OpenShift Container Platform 4.17 Network Observability

Generate on-demand network observability dashboards in Prometheus using a service monitor. This
allows you to quickly view and analyze network metrics.

Prerequisites
® [nstall the OpenShift CLI (oc).

® |[nstall the Network Observability CLI (oc netobserv) plugin.

Procedure

1. Capture metrics with filters enabled by running the following command:

Example output

I $ oc netobserv metrics --enable_filter=true --cidr=0.0.0.0/0 --protocol=TCP --port=49051
2. Open the link provided in the terminal to view the NetObserv / On-Demanddashboard:

Example URL

https://console-openshift-
console.apps.rosa...openshiftapps.com/monitoring/dashboards/netobserv-cli

NOTE

Features that are not enabled present as empty graphs.

14.2.4. Cleaning the Network Observability CLI

Use oc netobserv cleanup to manually remove all components installed by the Network Observability
CLI from your cluster. While the client runs this command automatically after a capture, you may need to
run it manually if you face connectivity issues.

Procedure

® Run the following command:

I $ oc netobserv cleanup

Additional resources

® Network Observability CLI reference

14.3. NETWORK OBSERVABILITY CLI (OC NETOBSERV) REFERENCE

The Network Observability CLI (oc netobserv) has most features and filtering options that are available
for the Network Observability Operator. You can pass command-line arguments to enable features or
filtering options.

14.3.1. Network Observability CLI usage

136

CHAPTER 14. NETWORK OBSERVABILITY CLI

You can use the Network Observability CLI (oc netobserv) to pass command line arguments to capture

flows data, packets data, and metrics for further analysis and enable features supported by the Network
Observability Operator.

14.3.1.1. Syntax

The basic syntax for oc hetobserv commands:

oc netobserv syntax

I $ oc netobserv [<command>] [<feature_option>] [<command_options>] ﬂ

Feature options can only be used with the oc netobserv flows command. They cannot be used
with the oc netobserv packets command.

14.3.1.2. Basic commands

Table 14.1. Basic commands

Command Description

flows Capture flows information. For subcommands, see the "Flows capture options"
table.

packets Capture packets data. For subcommands, see the "Packets capture options”
table.

metrics Capture metrics data. For subcommands, see the "Metrics capture options”
table.

follow Follow collector logs when running in background.

stop Stop collection by removing agent daemonset.

copy Copy collector generated files locally.

cleanup Remove the Network Observability CLI components.

version Print the software version.

help Show help.

14.3.1.3. Flows capture options

Flows capture has mandatory commands as well as additional options, such as enabling extra features
about packet drops, DNS latencies, Round-trip time, and filtering.

oc netobserv flows syntax

137

OpenShift Container Platform 4.17 Network Observability

I $ oc netobserv flows [<feature_option>] [<xcommand_options>]

Option Description Default
--enable_all enable all eBPF features false
--enable_dns enable DNS tracking false
--enable_ipsec enable IPsec tracking false
--enable_network_events enable network events monitoring false
--enable_pkt_translation enable packet translation false
--enable_pkt_drop enable packet drop false
--enable_rtt enable RTT tracking false
--enable_udn_mapping enable User Defined Network false
mapping
--get-subnets get subnets information false
--privileged force eBPF agent privileged auto
mode
--sampling packets sampling interval 1
--background run in background false
--copy copy the output files locally prompt
--log-level components logs info
--max-time maximum capture time 5m
--max-bytes maximum capture bytes 50000000 =50MB
--action filter action Accept
--cidr filter CIDR 0.0.0.0/0
--direction filter direction -
--dport filter destination port -
--dport_range filter destination port range -

138

CHAPTER 14. NETWORK OBSERVABILITY CLI

Option Description Default
--dports filter on either of two destination -
ports
--drops filter flows with only dropped false
packets

--icmp_code filter ICMP code -
--icmp_type filter ICMP type -
--node-selector capture on specific nodes -
--peer_ip filter peer IP -
--peer_cidr filter peer CIDR -
--port_range filter port range -
--port filter port -
--ports filter on either of two ports -
--protocol filter protocol -
--query filter flows using a custom query -
--sport_range filter source port range -
--sport filter source port -
--sports filter on either of two source ports -
--tcp_flags filter TCP flags -
--interfaces list of interfaces to monitor, -

comma separated

--exclude_interfaces list of interfaces to exclude, lo
comma separated

Example running flows capture on TCP protocol and port 49051 with PacketDrop and RTT
features enabled:

$ oc netobserv flows --enable_pkt_drop --enable_rtt --action=Accept --cidr=0.0.0.0/0 --protocol=TCP
--port=49051

139

OpenShift Container Platform 4.17 Network Observability

14.3.1.4. Packets capture options

You can filter packets capture data the as same as flows capture by using the filters. Certain features,
such as packets drop, DNS, RTT, and network events, are only available for flows and metrics capture.

oc netobserv packets syntax

I $ oc netobserv packets [<option>]

Option Description Default
--background run in background false
--copy copy the output files locally prompt
--log-level components logs info
--max-time maximum capture time 5m
--max-bytes maximum capture bytes 50000000 =50MB
--action filter action Accept
--cidr filter CIDR 0.0.0.0/0
--direction filter direction -
--dport filter destination port -
--dport_range filter destination port range -
--dports filter on either of two destination -

ports
--drops filter flows with only dropped false

packets
--icmp_code filter ICMP code -
--icmp_type filter ICMP type -
--node-selector capture on specific nodes -
--peer_ip filter peer IP -
--peer_cidr filter peer CIDR -
--port_range filter port range -

140

CHAPTER 14. NETWORK OBSERVABILITY CLI

Option Description Default
--port filter port -
--ports filter on either of two ports -
--protocol filter protocol -
--query filter flows using a custom query -
--sport_range filter source port range -
--sport filter source port -
--sports filter on either of two source ports -
--tcp_flags filter TCP flags -

Example running packets capture on TCP protocol and port 49051:

I $ oc netobserv packets --action=Accept --cidr=0.0.0.0/0 --protocol=TCP --port=49051

14.3.1.5. Metrics capture options

You can enable features and use filters on metrics capture, the same as flows capture. The generated
graphs fill accordingly in the dashboard.

oc netobserv metrics syntax

I $ oc netobserv metrics [<option>]

Option Description Default
--enable_all enable all eBPF features false
--enable_dns enable DNS tracking false
--enable_ipsec enable IPsec tracking false
--enable_network_events enable network events monitoring false
--enable_pkt_translation enable packet translation false
--enable_pkt_drop enable packet drop false
--enable_rtt enable RTT tracking false

141

OpenShift Container Platform 4.17 Network Observability

Option Description Default
--enable_udn_mapping enable User Defined Network false
mapping
--get-subnets get subnets information false
--privileged force eBPF agent privileged auto
mode
--sampling packets sampling interval 1
--background run in background false
--log-level components logs info
--max-time maximum capture time Th
--action filter action Accept
--cidr filter CIDR 0.0.0.0/0
--direction filter direction -
--dport filter destination port -
--dport_range filter destination port range -
--dports filter on either of two destination -
ports
--drops filter flows with only dropped false
packets
--icmp_code filter ICMP code -
--icmp_type filter ICMP type -
--node-selector capture on specific nodes -
--peer_ip filter peer IP -
--peer_cidr filter peer CIDR -
--port_range filter port range -
--port filter port -

142

CHAPTER 14. NETWORK OBSERVABILITY CLI

Option Description Default

--ports filter on either of two ports -

--protocol filter protocol -

--query filter flows using a custom query -

--sport_range filter source port range -

--sport filter source port -

--sports filter on either of two source ports -

--tcp_flags filter TCP flags -

--include_list list of metric names to generate, namespace_flows_total,node_ingr

comma separated ess_bytes_total,node_egress_byt

es_total,workload_ingress_bytes_t
otal

--interfaces list of interfaces to monitor, -

comma separated

--exclude_interfaces list of interfaces to exclude, lo
comma separated

Example running metrics capture for TCP drops

I $ oc netobserv metrics --enable_pkt_drop --protocol=TCP

143

OpenShift Container Platform 4.17 Network Observability

CHAPTER15. FLOWCOLLECTOR API REFERENCE

The FlowCollector APl is the underlying schema used to pilot and configure the deployments for
collecting network flows. This reference guide helps you manage those critical settings.

15.1. FLOWCOLLECTOR API SPECIFICATIONS

Description

FlowCollector is the schema for the network flows collection API, which pilots and configures the
underlying deployments.

Type
object

Property Type Description

apiVersion string APIVersion defines the versioned
schema of this representation of
an object. Servers should convert
recognized schemas to the latest
internal value, and might reject
unrecognized values. More info:
https://git.k8s.io/community/con
tributors/devel/sig-
architecture/api-
conventions.md#resources

kind string Kind is a string value representing
the REST resource this object
represents. Servers might infer
this from the endpoint the client
submits requests to. Cannot be
updated. In CamelCase. More
info:
https://git.k8s.io/community/con
tributors/devel/sig-
architecture/api-
conventions.md#types-kinds

metadata object Standard object’s metadata. More
info:
https://git.k8s.io/community/con
tributors/devel/sig-
architecture/api-
conventions.md#metadata

144

https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#resources
https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#types-kinds
https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata

CHAPTER 15. FLOWCOLLECTOR API REFERENCE

Property Type Description

spec object Defines the desired state of the
FlowCollector resource.

*: the mention of "unsupported"”
or "deprecated"” for a feature
throughout this document means
that this feature is not officially
supported by Red Hat. It might
have been, for example,
contributed by the community
and accepted without a formal
agreement for maintenance. The
product maintainers might
provide some support for these
features as a best effort only.

15.1.1. .metadata

Description

Standard object’s metadata. More info: https://git.k8s.io/community/contributors/devel/sig-
architecture/api-conventions.md#metadata

Type
object

15.1.2. .spec

Description

Defines the desired state of the FlowCollector resource.

*: the mention of "unsupported” or "deprecated" for a feature throughout this document means that
this feature is not officially supported by Red Hat. It might have been, for example, contributed by
the community and accepted without a formal agreement for maintenance. The product maintainers
might provide some support for these features as a best effort only.

Type
object
Property Type Description
agent object Agent configuration for flows
extraction.
consolePlugin object consolePlugin defines the

settings related to the OpenShift
Container Platform Console
plugin, when available.

145

https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata

OpenShift Container Platform 4.17 Network Observability

Property

deploymentModel

exporters

kafka

loki

namespace

networkPolicy

146

Type

string

array

object

object

string

object

Description

deploymentModel defines the
desired type of deployment for
flow processing. Possible values
are:

- Direct (default) to make the
flow processor listen directly from
the agents. Only recommended
on small clusters, below 15 nodes.

- Kafka to make flows sent to a
Kafka pipeline before
consumption by the processor.

Kafka can provide better
scalability, resiliency, and high
availability (for more details, see
https://www.redhat.com/en/topic
s/integration/what-is-apache-
kafka).

exporters defines additional
optional exporters for custom
consumption or storage.

Kafka configuration, allowing to
use Kafka as a broker as part of
the flow collection pipeline.
Available when the
spec.deploymentModel is
Kafka.

loki, the flow store, client
settings.

Namespace where Network
Observability pods are deployed.

networkPolicy defines network
policy settings for Network
Observability components
isolation.

https://www.redhat.com/en/topics/integration/what-is-apache-kafka

CHAPTER 15. FLOWCOLLECTOR API REFERENCE

Property Type Description

processor object processor defines the settings
of the component that receives
the flows from the agent, enriches
them, generates metrics, and
forwards them to the Loki
persistence layer and/or any
available exporter.

prometheus object prometheus defines
Prometheus settings, such as
querier configuration used to
fetch metrics from the Console

plugin.
15.1.3. .spec.agent
Description
Agent configuration for flows extraction.
Type
object
Property Type Description
ebpf object ebpf describes the settings
related to the eBPF-based flow
reporter when spec.agent.type
is set to eBPF.
type string type [deprecated (*)] selects the

flows tracing agent. Previously,
this field allowed to select
between eBPF orIPFIX. Only
eBPF is allowed now, so this field
is deprecated and is planned for
removal in a future version of the
API.

15.1.4. .spec.agent.ebpf

Description

ebpf describes the settings related to the eBPF-based flow reporter when spec.agent.type is set to
eBPF.

Type
object

147

OpenShift Container Platform 4.17 Network Observability

Property

advanced

cacheActiveTimeout

cacheMaxFlows

excludelnterfaces

features

148

Type

object

string

integer

array (string)

array (string)

Description

advanced allows setting some
aspects of the internal
configuration of the eBPF agent.
This section is aimed mostly for
debugging and fine-grained
performance optimizations, such
as GOGC and GOMAXPROCS
environment variables. Set these
values at your own risk. You can
also override the default Linux
capabilities from there.

cacheActiveTimeout is the
max period during which the
reporter aggregates flows before
sending. Increasing
cacheMaxFlows and
cacheActiveTimeout can
decrease the network traffic
overhead and the CPU load,
however you can expect higher
memory consumption and an
increased latency in the flow
collection.

cacheMaxFlows is the max
number of flows in an aggregate;
when reached, the reporter sends
the flows. Increasing
cacheMaxFlows and
cacheActiveTimeout can
decrease the network traffic
overhead and the CPU load,
however you can expect higher
memory consumption and an
increased latency in the flow
collection.

excludelnterfaces contains the
interface names that are
excluded from flow tracing. An
entry enclosed by slashes, such as
/br-/,is matched as a regular
expression. Otherwise it is
matched as a case-sensitive
string.

List of additional features to
enable. They are all disabled by
default. Enabling additional

CHAPTER 15. FLOWCOLLECTOR API REFERENCE

- PacketDrop: Enable the
packets drop flows logging
feature. This feature requires
mounting the kernel debug
filesystem, so the eBPF agent
pods must run as privileged via
spec.agent.ebpf.privileged.

- DNSTracking: Enable the DNS
tracking feature.

- FlowRTT: Enable flow latency
(sRTT) extraction in the eBPF
agent from TCP traffic.

- NetworkEvents: Enable the
network events monitoring
feature, such as correlating flows
and network policies. This feature
requires mounting the kernel
debug filesystem, so the eBPF
agent pods must run as privileged
via
spec.agent.ebpf.privileged. It
requires using the OVN-
Kubernetes network plugin with
the Observability feature.
IMPORTANT: This feature is
available as a Technology
Preview.

- PacketTranslation: Enable
enriching flows with packet
translation information, such as
Service NAT.

- EbpfManager: [Unsupported
(")]- Use eBPF Manager to
manage Network Observability
eBPF programs. Pre-requisite: the
eBPF Manager operator (or
upstream bpfman operator) must
be installed.

- UDNMapping: Enable
interfaces mapping to User
Defined Networks (UDN).

This feature requires mounting
the kernel debug filesystem, so
the eBPF agent pods must run as
privileged via
spec.agent.ebpf.privileged. It

149

OpenShift Container Platform 4.17 Network Observability

e Observabllity teature.

- IPSec, to track flows between

flowFilter object HowEilter detices hoeiit
agent configuration regarding
flow filtering.

imagePullPolicy string imagePullPolicy is the

Kubernetes pull policy for the
image defined above

interfaces array (string) interfaces contains the interface
names from where flows are
collected. If empty, the agent
fetches all the interfaces in the
system, excepting the ones listed
in excludelnterfaces. An entry
enclosed by slashes, such as /br-/,
is matched as a regular
expression. Otherwise it is
matched as a case-sensitive
string.

kafkaBatchSize integer kafkaBatchSize limits the
maximum size of a request in
bytes before being sent to a
partition. Ignored when not using
Kafka. Default: IMB.

logLevel string logLevel defines the log level for
the Network Observability eBPF
Agent

metrics object metrics defines the eBPF agent

configuration regarding metrics.

privileged boolean Privileged mode for the eBPF
Agent container. When set to
true, the agentis able to capture
more traffic, including from
secondary interfaces. When
ignored or set to false, the
operator sets granular capabilities
(BPF, PERFMON, NET_ADMIN)
to the container. Some agent
features require the privileged
mode, such as packet drops
tracking (see features) and SR-
IOV support.

150

CHAPTER 15. FLOWCOLLECTOR API REFERENCE

Property Type Description

resources object resources are the compute
resources required by this
container. For more information,
see
https://kubernetes.io/docs/conc
epts/configuration/manage-
resources-containers/

sampling integer Sampling interval of the eBPF
probe. 100 means one packet on
100 is sent. O or 1 means all
packets are sampled.

15.1.5. .spec.agent.ebpf.advanced

Description

advanced allows setting some aspects of the internal configuration of the eBPF agent. This section
is aimed mostly for debugging and fine-grained performance optimizations, such as GOGC and
GOMAXPROCS environment variables. Set these values at your own risk. You can also override the
default Linux capabilities from there.

Type
object

Property Type Description

capOverride array (string) Linux capabilities override, when
not running as privileged. Default
capabilities are BPF, PERFMON
and NET_ADMIN.

env object (string) env allows passing custom
environment variables to
underlying components. Useful
for passing some very concrete
performance-tuning options, such
as GOGC and GOMAXPROCS,
that should not be publicly
exposed as part of the
FlowCollector descriptor, as they
are only useful in edge debug or
support scenarios.

scheduling object scheduling controls how the pods

are scheduled on nodes.

15.1.6. .spec.agent.ebpf.advanced.scheduling

151

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/

OpenShift Container Platform 4.17 Network Observability

Description

scheduling controls how the pods are scheduled on nodes.

Type
object

Property Description

affinity object If specified, the pod's scheduling
constraints. For documentation,
refer to

https://kubernetes.io/docs/refer
ence/kubernetes-api/workload-
resources/pod-vl/#scheduling.

nodeSelector object (string) nodeSelector allows scheduling
of pods only onto nodes that have
each of the specified labels. For
documentation, refer to
https://kubernetes.io/docs/conc
epts/configuration/assign-pod-
node/.

priorityClassName string If specified, indicates the pod's
priority. For documentation, refer
to
https://kubernetes.io/docs/conc
epts/scheduling-eviction/pod-
priority-preemption/#how-to-
use-priority-and-preemption. If
not specified, default priority is
used, or zero if there is no default.

tolerations array tolerations is a list of tolerations
that allow the pod to schedule
onto nodes with matching taints.
For documentation, refer to
https://kubernetes.io/docs/refer
ence/kubernetes-api/workload-
resources/pod-vl/#scheduling.

15.1.7. .spec.agent.ebpf.advanced.scheduling.affinity

Description

If specified, the pod'’s scheduling constraints. For documentation, refer to
https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-vl/#scheduling.

Type
object

15.1.8. .spec.agent.ebpf.advanced.scheduling.tolerations

152

https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-v1/#scheduling
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/
https://kubernetes.io/docs/concepts/scheduling-eviction/pod-priority-preemption/#how-to-use-priority-and-preemption
https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-v1/#scheduling
https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-v1/#scheduling

CHAPTER 15. FLOWCOLLECTOR API REFERENCE

Description

tolerations is a list of tolerations that allow the pod to schedule onto nodes with matching taints. For
documentation, refer to https://kubernetes.io/docs/reference/kubernetes-api/workload-
resources/pod-vl/#scheduling.

Type
array

15.1.9. .spec.agent.ebpf.flowFilter

Description

flowFilter defines the eBPF agent configuration regarding flow filtering.

Type
object

Property Type Description

action string action defines the action to
perform on the flows that match
the filter. The available options
are Accept, which is the default,
and Reject.

cidr string cidr defines the IP CIDR to filter
flows by. Examples:
10.10.10.0/24 or
100:100:100:100::/64

destPorts integer-or-string destPorts optionally defines the
destination ports to filter flows by.
To filter a single port, set a single
port as an integer value. For
example, destPorts: 80. To filter
a range of ports, use a "start-end"
range in string format. For
example, destPorts: "80-100".
To filter two ports, use a
"portl,port2" in string format. For
example, ports: "80,100".

direction string direction optionally defines a
direction to filter flows by. The
available options are Ingress and
Egress.

enable boolean Set enable to true to enable the
eBPF flow filtering feature.

153

https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-v1/#scheduling

OpenShift Container Platform 4.17 Network Observability

Property

icmpCode

icmpType

peerCIDR

peerlP

pktDrops

ports

protocol

154

Type

integer

integer

string

string

boolean

integer-or-string

string

Description

icmpCode, for Internet Control
Message Protocol (ICMP) traffic,
optionally defines the ICMP code
to filter flows by.

icmpType, for ICMP traffic,
optionally defines the ICMP type
to filter flows by.

peerCIDR defines the Peer IP
CIDR to filter flows by. Examples:
10.10.10.0/24 or
100:100:100:100::/64

peerlP optionally defines the

remote IP address to filter flows
by. Example: 10.10.10.10.

pktDrops optionally filters only
flows containing packet drops.

ports optionally defines the ports
to filter flows by. It is used both
for source and destination ports.
To filter a single port, set a single
port as an integer value. For
example, ports: 80. To filter a
range of ports, use a "start-end"
range in string format. For
example, ports: "80-100". To
filter two ports, use a "portl,port2"
in string format. For example,

ports: "80,100".

protocol optionally defines a
protocol to filter flows by. The
available options are TCP, UDP,
ICMP, ICMPV6, and SCTP.

Property Type

rules array

sampling integer
sourcePorts integer-or-string
tcpFlags string

15.1.10. .spec.agent.ebpf.flowFilter.rules

Description

CHAPTER 15. FLOWCOLLECTOR API REFERENCE

Description

rules defines a list of filtering
rules on the eBPF Agents. When
filtering is enabled, by default,
flows that don't match any rule
are rejected. To change the
default, you can define a rule that
accepts everything: { action:
"Accept", cidr: "0.0.0.0/0" },
and then refine with rejecting
rules.

sampling is the sampling interval
for the matched packets,
overriding the global sampling
defined at
spec.agent.ebpf.sampling.

sourcePorts optionally defines
the source ports to filter flows by.
To filter a single port, set a single
port as an integer value. For
example, sourcePorts: 80. To
filter a range of ports, use a
"start-end" range in string format.
For example, sourcePorts: "80-
100". To filter two ports, use a
"portl,port2" in string format. For
example, ports: "80,100".

tcpFlags optionally defines TCP
flags to filter flows by. In addition
to the standard flags (RFC-
9293), you can also filter by one
of the three following
combinations: SYN-ACK, FIN-
ACK, and RST-ACK.

rules defines a list of filtering rules on the eBPF Agents. When filtering is enabled, by default, flows
that don't match any rule are rejected. To change the default, you can define a rule that accepts
everything: { action: "Accept", cidr: "0.0.0.0/0" }, and then refine with rejecting rules.

Type
array

15.1.11. .spec.agent.ebpf.flowFilter.rules[]

155

OpenShift Container Platform 4.17 Network Observability

Description

EBPFFlowFilterRule defines the desired eBPF agent configuration regarding flow filtering rule.

Type
object

Property

Type

Description

action

cidr

destPorts

direction

icmpCode

icmpType

peerCIDR

156

string

string

integer-or-string

string

integer

integer

string

action defines the action to
perform on the flows that match
the filter. The available options
are Accept, which is the default,
and Reject.

cidr defines the IP CIDR to filter
flows by. Examples:
10.10.10.0/24 or
100:100:100:100::/64

destPorts optionally defines the
destination ports to filter flows by.
To filter a single port, set a single
port as an integer value. For
example, destPorts: 80. To filter
arange of ports, use a "start-end"
range in string format. For
example, destPorts: "80-100".
To filter two ports, use a
"portl,port2" in string format. For
example, ports: "80,100".

direction optionally defines a
direction to filter flows by. The
available options are Ingress and
Egress.

icmpCode, for Internet Control
Message Protocol (ICMP) traffic,
optionally defines the ICMP code
to filter flows by.

icmpType, for ICMP traffic,
optionally defines the ICMP type
to filter flows by.

peerCIDR defines the Peer IP

CIDR to filter flows by. Examples:
10.10.10.0/24 or

100:100:100:100::/64

CHAPTER 15. FLOWCOLLECTOR API REFERENCE

Property Type Description

peerlP string peerlP optionally defines the

remote IP address to filter flows
by. Example: 10.10.10.10.

pktDrops boolean pktDrops optionally filters only
flows containing packet drops.

ports integer-or-string ports optionally defines the ports
to filter flows by. It is used both
for source and destination ports.
To filter a single port, set a single
port as an integer value. For
example, ports: 80. To filter a
range of ports, use a "start-end"
range in string format. For
example, ports: "80-100". To
filter two ports, use a "portl,port2"
in string format. For example,

ports: "80,100".

protocol string protocol optionally defines a
protocol to filter flows by. The
available options are TCP, UDP,
ICMP, ICMPV6, and SCTP.

sampling integer sampling is the sampling interval
for the matched packets,
overriding the global sampling
defined at
spec.agent.ebpf.sampling.

sourcePorts integer-or-string sourcePorts optionally defines
the source ports to filter flows by.
To filter a single port, set a single
port as an integer value. For
example, sourcePorts: 80. To
filter a range of ports, use a
"start-end" range in string format.
For example, sourcePorts: "80-
100". To filter two ports, use a
"portl,port2" in string format. For
example, ports: "80,100".

157

OpenShift Container Platform 4.17 Network Observability

Property Type Description

tcpFlags string tcpFlags optionally defines TCP
flags to filter flows by. In addition
to the standard flags (RFC-
9293), you can also filter by one
of the three following
combinations: SYN-ACK, FIN-
ACK, and RST-ACK.

15.1.12. .spec.agent.ebpf.metrics

Description

metrics defines the eBPF agent configuration regarding metrics.

Property Type Description

disableAlerts array (string) disableAlerts is a list of alerts

that should be disabled. Possible
values are:

NetObservDroppedFlows,
which is triggered when the eBPF
agent is missing packets or flows,
such as when the BPF hashmap is
busy or full, or the capacity limiter
is being triggered.

enable boolean Set enable to false to disable

eBPF agent metrics collection. It
is enabled by default.

server object Metrics server endpoint
configuration for the Prometheus
scraper.

15.1.13. .spec.agent.ebpf.metrics.server

Description

Metrics server endpoint configuration for the Prometheus scraper.

158

CHAPTER 15. FLOWCOLLECTOR API REFERENCE

Property Type Description
port integer The metrics server HTTP port.
tis object TLS configuration.

15.1.14. .spec.agent.ebpf.metrics.server.tls

Description
TLS configuration.
Type
object
Required
* type
Property Type Description
insecureSkipVerify boolean insecureSkipVerify allows
skipping client-side verification of
the provided certificate. If set to
true, the providedCaFile field is
ignored.
provided object TLS configuration when type is
set to Provided.
providedCaFile object Reference to the CA file when
type is set to Provided.
type string Select the type of TLS

configuration:

- Disabled (default) to not
configure TLS for the endpoint. -
Provided to manually provide
cert file and a key file.
[Unsupported (*)]. - Auto to use
OpensShift Container Platform
auto generated certificate using
annotations.

15.1.15. .spec.agent.ebpf.metrics.server.tls.provided

Description

TLS configuration when type is set to Provided.

Type

159

OpenShift Container Platform 4.17 Network Observability
object

Property Type Description

certFile string certFile defines the path to the
certificate file name within the
config map or secret.

certKey string certKey defines the path to the
certificate private key file name
within the config map or secret.
Omit when the key is not
necessary.

hame string Name of the config map or secret
containing certificates.

namespace string Namespace of the config map or
secret containing certificates. If
omitted, the default is to use the
same namespace as where
Network Observability is
deployed. If the namespace is
different, the config map or the
secret is copied so that it can be
mounted as required.

type string Type for the certificate reference:
configmap orsecret.

15.1.16. .spec.agent.ebpf.metrics.server.tls.providedCaFile

Description

Reference to the CA file when type is set to Provided.

Type
object
Property Type Description
file string File name within the config map
or secret.
hame string Name of the config map or secret

containing the file.

160

CHAPTER 15. FLOWCOLLECTOR API REFERENCE

Property Type Description

namespace string Namespace of the config map or
secret containing the file. If
omitted, the default is to use the
same namespace as where
Network Observability is
deployed. If the namespace is
different, the config map or the
secret is copied so that it can be
mounted as required.

type string Type for the file reference:
configmap orsecret.

15.1.17. .spec.agent.ebpf.resources

Description
resources are the compute resources required by this container. For more information, see
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/

Type
object

Property Type Description

limits integer-or-string Limits describes the maximum
amount of compute resources
allowed. More info:
https://kubernetes.io/docs/conc
epts/configuration/manage-
resources-containers/

requests integer-or-string Requests describes the minimum
amount of compute resources
required. If Requests is omitted
for a container, it defaults to
Limits if that is explicitly specified,
otherwise to an implementation-
defined value. Requests cannot
exceed Limits. More info:
https://kubernetes.io/docs/conc
epts/configuration/manage-
resources-containers/

15.1.18. .spec.consolePlugin

Description

consolePlugin defines the settings related to the OpenShift Container Platform Console plugin,
when available.

161

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/

OpenShift Container Platform 4.17 Network Observability

Type
object

Property

advanced

autoscaler

enable

imagePullPolicy

logLevel

portNaming

quickFilters

replicas

resources

162

Type

object

object

boolean

string

string

object

array

integer

object

Description

advanced allows setting some
aspects of the internal
configuration of the console
plugin. This section is aimed
mostly for debugging and fine-
grained performance
optimizations, such as GOGC and
GOMAXPROCS environment
variables. Set these values at your
own risk.

autoscaler spec of a horizontal
pod autoscaler to set up for the
plugin Deployment. Refer to
HorizontalPodAutoscaler
documentation (autoscaling/v2).

Enables the console plugin
deployment.

imagePullPolicy is the
Kubernetes pull policy for the
image defined above

logLevel for the console plugin
backend

portNaming defines the
configuration of the port-to-
service name translation

quickFilters configures quick
filter presets for the Console
plugin

replicas defines the number of
replicas (pods) to start.

resources, in terms of compute
resources, required by this
container. For more information,
see
https://kubernetes.io/docs/conc
epts/configuration/manage-
resources-containers/

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/

CHAPTER 15. FLOWCOLLECTOR API REFERENCE

15.1.19. .spec.consolePlugin.advanced

Description

advanced allows setting some aspects of the internal configuration of the console plugin. This
section is aimed mostly for debugging and fine-grained performance optimizations, such as GOGC
and GOMAXPROCS environment variables. Set these values at your own risk.

Type
object

Property Type Description

args array (string) args allows passing custom
arguments to underlying
components. Useful for overriding
some parameters, such as a URL
or a configuration path, that
should not be publicly exposed as
part of the FlowCollector
descriptor, as they are only useful
in edge debug or support
scenarios.

env object (string) env allows passing custom
environment variables to
underlying components. Useful
for passing some very concrete
performance-tuning options, such
as GOGC and GOMAXPROCS,
that should not be publicly
exposed as part of the
FlowCollector descriptor, as they
are only useful in edge debug or
support scenarios.

port integer portis the plugin service port. Do
not use 9002, which is reserved
for metrics.

163

OpenShift Container Platform 4.17 Network Observability

Property Type Description

register boolean register allows, when set to true,
to automatically register the
provided console plugin with the
OpensShift Container Platform
Console operator. When set to
false, you can still register it
manually by editing
console.operator.openshift.io/clus
ter with the following command:
oc patch
console.operator.openshift.i
o cluster --type='json’ -p
'[{"op": "add", "path":
"/spec/plugins/-", "value":
"netobserv-plugin"}]’

scheduling object scheduling controls how the
pods are scheduled on nodes.

15.1.20. .spec.consolePlugin.advanced.scheduling

Description

scheduling controls how the pods are scheduled on nodes.

Type
object

Property Type Description

affinity object If specified, the pod's scheduling
constraints. For documentation,
refer to
https://kubernetes.io/docs/refer
ence/kubernetes-api/workload-
resources/pod-vl/#scheduling.

nodeSelector object (string) nodeSelector allows scheduling

of pods only onto nodes that have
each of the specified labels. For
documentation, refer to
https://kubernetes.io/docs/conc
epts/configuration/assign-pod-
node/.

164

https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-v1/#scheduling
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/

CHAPTER 15. FLOWCOLLECTOR API REFERENCE

Property Type Description
priorityClassName strin If specified, indicates the pod's
g
priority. For documentation, refer
to

https://kubernetes.io/docs/conc
epts/scheduling-eviction/pod-
priority-preemption/#how-to-
use-priority-and-preemption. If
not specified, default priority is
used, or zero if there is no default.

tolerations array tolerations is a list of tolerations
that allow the pod to schedule
onto nodes with matching taints.
For documentation, refer to
https://kubernetes.io/docs/refer
ence/kubernetes-api/workload-
resources/pod-vl/#scheduling.

15.1.21. .spec.consolePlugin.advanced.scheduling.affinity

Description

If specified, the pod's scheduling constraints. For documentation, refer to
https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-vl/#scheduling.

Type
object

15.1.22. .spec.consolePlugin.advanced.scheduling.tolerations

Description

tolerations is a list of tolerations that allow the pod to schedule onto nodes with matching taints. For
documentation, refer to https://kubernetes.io/docs/reference/kubernetes-api/workload-
resources/pod-vl/#scheduling.

Type
array

15.1.23. .spec.consolePlugin.autoscaler

Description

autoscaler spec of a horizontal pod autoscaler to set up for the plugin Deployment. Refer to
HorizontalPodAutoscaler documentation (autoscaling/v2).

Type
object

15.1.24. .spec.consolePlugin.portNaming

Description

165

https://kubernetes.io/docs/concepts/scheduling-eviction/pod-priority-preemption/#how-to-use-priority-and-preemption
https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-v1/#scheduling
https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-v1/#scheduling
https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-v1/#scheduling

OpenShift Container Platform 4.17 Network Observability

portNaming defines the configuration of the port-to-service name translation

Type
object
Property Type Description
enable boolean Enable the console plugin port-
to-service name translation
portNames object (string) portNames defines additional

port names to use in the console,
for example, portNames:
{"3100": "loki"}.

15.1.25. .spec.consolePlugin.quickFilters
Description
quickFilters configures quick filter presets for the Console plugin

Type
array

15.1.26. .spec.consolePlugin.quickFilters[]

Description

QuickFilter defines preset configuration for Console’s quick filters
Type

object

Required

o filter

® name

Property Type Description

default boolean default defines whether this filter
should be active by default or not

filter object (string) filter is a set of keys and values to
be set when this filter is selected.
Each key can relate to a list of
values using a coma-separated
string, for example, filter:
{"src_namespace":
"namespacel,namespace2"}.

166

CHAPTER 15. FLOWCOLLECTOR API REFERENCE

Property Type Description

name string Name of the filter, that is
displayed in the Console

15.1.27. .spec.consolePlugin.resources

Description

resources, in terms of compute resources, required by this container. For more information, see
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/

Type
object

Property Type Description

limits integer-or-string Limits describes the maximum
amount of compute resources
allowed. More info:
https://kubernetes.io/docs/conc
epts/configuration/manage-
resources-containers/

requests integer-or-string Requests describes the minimum

amount of compute resources
required. If Requests is omitted
for a container, it defaults to
Limits if that is explicitly specified,
otherwise to an implementation-
defined value. Requests cannot
exceed Limits. More info:
https://kubernetes.io/docs/conc
epts/configuration/manage-
resources-containers/

15.1.28. .spec.exporters

Description

exporters defines additional optional exporters for custom consumption or storage.

15.1.29. .spec.exporters[]

Description

FlowCollectorExporter defines an additional exporter to send enriched flows to.

Type

167

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/

OpenShift Container Platform 4.17 Network Observability

object

Required

* type

Property Description

ipfix object IPFIX configuration, such as the IP
address and port to send enriched
IPFIX flows to.

kafka object Kafka configuration, such as the

address and topic, to send
enriched flows to.

openTelemetry object OpenTelemetry configuration,
such as the IP address and port to
send enriched logs or metrics to.

type string type selects the type of

exporters. The available options
are Kafka, IPFIX and
OpenTelemetry.

15.1.30. .spec.exporters[].ipfix

Description

IPFIX configuration, such as the IP address and port to send enriched IPFIX flows to.
Type

object

Required

e targetHost

e targetPort

Property Type Description

targetHost string Address of the IPFIX external
receiver.

targetPort integer Port for the IPFIX external
receiver.

transport string Transport protocol (TCP or

UDP) to be used for the IPFIX
connection, defaults to TCP.

168

CHAPTER 15. FLOWCOLLECTOR API REFERENCE

15.1.31. .spec.exporters[].kafka

Description

Kafka configuration, such as the address and topic, to send enriched flows to.

Type
object
Required
e address
e topic
Property Type Description
address string Address of the Kafka server
sasl object SASL authentication
configuration. [Unsupported (*)].
tls object TLS client configuration. When
using TLS, verify that the address
matches the Kafka port used for
TLS, generally 9093.
topic string Kafka topic to use. It must exist.
Network Observability does not
createit.
15.1.32. .spec.exporters[].kafka.sasl
Description
SASL authentication configuration. [Unsupported (*)].
Type
object
Property Type Description
clientiDReference object Reference to the secret or config
map containing the client ID
clientSecretReference object Reference to the secret or config
map containing the client secret
type string Type of SASL authentication to
use, or Disabled if SASL is not
used

169

OpenShift Container Platform 4.17 Network Observability

15.1.33. .spec.exporters[].kafka.sasl.clientiDReference

Description

Reference to the secret or config map containing the client ID

Type
object

Property Type Description

file string File name within the config map
or secret.

hame string Name of the config map or secret
containing the file.

namespace string Namespace of the config map or
secret containing the file. If
omitted, the default is to use the
same namespace as where
Network Observability is
deployed. If the namespace is
different, the config map or the
secret is copied so that it can be
mounted as required.

type string Type for the file reference:

configmap orsecret.

15.1.34. .spec.exporters[].kafka.sasl.clientSecretReference

Description

Reference to the secret or config map containing the client secret

Type
object

Property Type Description

file string File name within the config map
or secret.

hame string Name of the config map or secret

containing the file.

170

CHAPTER 15. FLOWCOLLECTOR API REFERENCE

Property Type Description

namespace string Namespace of the config map or
secret containing the file. If
omitted, the default is to use the
same namespace as where
Network Observability is
deployed. If the namespace is
different, the config map or the
secret is copied so that it can be
mounted as required.

type string Type for the file reference:
configmap orsecret.

15.1.35. .spec.exporters[].kafka.tls

Description

TLS client configuration. When using TLS, verify that the address matches the Kafka port used for
TLS, generally 9093.

Type
object

Property Type Description

caCert object caCert defines the reference of
the certificate for the Certificate
Authority.

enable boolean Enable TLS

insecureSkipVerify boolean insecureSkipVerify allows
skipping client-side verification of
the server certificate. If set to
true, the caCert field is ignored.

userCert object userCert defines the user

certificate reference and is used
for mTLS. When you use one-way
TLS, you can ignore this property.

15.1.36. .spec.exporters[].kafka.tls.caCert

Description

caCert defines the reference of the certificate for the Certificate Authority.

Type
object

171

OpenShift Container Platform 4.17 Network Observability

Property Type Description

certFile string certFile defines the path to the
certificate file name within the
config map or secret.

certKey string certKey defines the path to the
certificate private key file name
within the config map or secret.
Omit when the key is not
necessary.

hame string Name of the config map or secret
containing certificates.

namespace string Namespace of the config map or
secret containing certificates. If
omitted, the default is to use the
same namespace as where
Network Observability is
deployed. If the namespace is
different, the config map or the
secret is copied so that it can be
mounted as required.

type string Type for the certificate reference:
configmap orsecret.

15.1.37. .spec.exporters[].kafka.tls.userCert

Description

userCert defines the user certificate reference and is used for mTLS. When you use one-way TLS,
you can ignore this property.

Type
object
Property Type Description
certFile string certFile defines the path to the
certificate file name within the
config map or secret.
certKey string certKey defines the path to the

certificate private key file name
within the config map or secret.
Omit when the key is not
necessary.

172

CHAPTER 15. FLOWCOLLECTOR API REFERENCE

Property Type Description

hame string Name of the config map or secret
containing certificates.

namespace string Namespace of the config map or
secret containing certificates. If
omitted, the default is to use the
same namespace as where
Network Observability is
deployed. If the namespace is
different, the config map or the
secret is copied so that it can be
mounted as required.

type string Type for the certificate reference:
configmap orsecret.

15.1.38. .spec.exporters[].openTelemetry

Description

OpenTelemetry configuration, such as the IP address and port to send enriched logs or metrics to.

Type
object
Required
e targetHost
e targetPort

Property Type Description

fieldsMapping array Custom fields mapping to an
OpenTelemetry conformant
format. By default, Network
Observability format proposal is
used:
https://github.com/rhobs/observ
ability-data-
model/blob/main/network-
observability. md#format-
proposal . As there is currently no
accepted standard for L3 or L4
enriched network logs, you can
freely override it with your own.

headers object (string) Headers to add to messages

(optional)

173

https://github.com/rhobs/observability-data-model/blob/main/network-observability.md#format-proposal

OpenShift Container Platform 4.17 Network Observability

Property Type Description

logs object OpenTelemetry configuration for
logs.

metrics object OpenTelemetry configuration for
metrics.

protocol string Protocol of the OpenTelemetry
connection. The available options
are http and grpc.

targetHost string Address of the OpenTelemetry
receiver.

targetPort integer Port for the OpenTelemetry
receiver.

tis object TLS client configuration.

15.1.39. .spec.exporters[].openTelemetry.fieldsMapping

Description

Custom fields mapping to an OpenTelemetry conformant format. By default, Network Observability
format proposal is used: https://github.com/rhobs/observability-data-model/blob/main/network-
observability.nd#format-proposal . As there is currently no accepted standard for L3 or L4 enriched
network logs, you can freely override it with your own.

Type
array

15.1.40. .spec.exporters[].openTelemetry.fieldsMapping[]

Description

Type
object

Property Type Description
input string

multiplier integer

output string

15.1.41. .spec.exporters[].openTelemetry.logs

174

https://github.com/rhobs/observability-data-model/blob/main/network-observability.md#format-proposal

CHAPTER 15. FLOWCOLLECTOR API REFERENCE

Description

OpenTelemetry configuration for logs.

Property Type Description

enable boolean Set enable to true to send logs
to an OpenTelemetry receiver.

15.1.42. .spec.exporters[].openTelemetry.metrics

Description

OpenTelemetry configuration for metrics.

Type
object
Property Type Description
enable boolean Set enable to true to send
metrics to an OpenTelemetry
receiver.
pushTimelnterval string Specify how often metrics are

sent to a collector.

15.1.43. .spec.exporters[].openTelemetry.tls

Description

TLS client configuration

Type
object

Property Type Description

caCert object caCert defines the reference of
the certificate for the Certificate
Authority.

enable boolean Enable TLS

insecureSkipVerify boolean insecureSkipVerify allows

skipping client-side verification of
the server certificate. If set to
true, the caCert field is ignored.

175

OpenShift Container Platform 4.17 Network Observability

Property Type Description

userCert object userCert defines the user
certificate reference and is used
for mTLS. When you use one-way
TLS, you can ignore this property.

15.1.44. .spec.exporters[].openTelemetry.tls.caCert

Description

caCert defines the reference of the certificate for the Certificate Authority.

Property Type Description

certFile string certFile defines the path to the
certificate file name within the
config map or secret.

certKey string certKey defines the path to the
certificate private key file name
within the config map or secret.
Omit when the key is not
necessary.

hame string Name of the config map or secret
containing certificates.

namespace string Namespace of the config map or
secret containing certificates. If
omitted, the default is to use the
same namespace as where
Network Observability is
deployed. If the namespace is
different, the config map or the
secret is copied so that it can be
mounted as required.

type string Type for the certificate reference:
configmap orsecret.

15.1.45. .spec.exporters[].openTelemetry.tls.userCert

Description

userCert defines the user certificate reference and is used for mTLS. When you use one-way TLS,
you can ignore this property.

Type

176

CHAPTER 15. FLOWCOLLECTOR API REFERENCE
object

Property Type Description

certFile string certFile defines the path to the
certificate file name within the
config map or secret.

certKey string certKey defines the path to the
certificate private key file name
within the config map or secret.
Omit when the key is not
necessary.

hame string Name of the config map or secret
containing certificates.

namespace string Namespace of the config map or
secret containing certificates. If
omitted, the default is to use the
same namespace as where
Network Observability is
deployed. If the namespace is
different, the config map or the
secret is copied so that it can be
mounted as required.

type string Type for the certificate reference:
configmap orsecret.

15.1.46. .spec.kafka

Description

Kafka configuration, allowing to use Kafka as a broker as part of the flow collection pipeline. Available
when the spec.deploymentModel is Kafka.

Type
object

Required

o address

e topic

Property Type Description

address string Address of the Kafka server

177

OpenShift Container Platform 4.17 Network Observability

Property Type Description

sasl object SASL authentication
configuration. [Unsupported (*)].

tls object TLS client configuration. When
using TLS, verify that the address
matches the Kafka port used for
TLS, generally 9093.

topic string Kafka topic to use. It must exist.
Network Observability does not
createit.

15.1.47. .spec.kafka.sasl

Description

SASL authentication configuration. [Unsupported (*)].

Type
object
Property Type Description
clientiDReference object Reference to the secret or config
map containing the client ID
clientSecretReference object Reference to the secret or config
map containing the client secret
type string Type of SASL authentication to
use, or Disabled if SASL is not
used
15.1.48. .spec.kafka.sasl.clientiDReference
Description
Reference to the secret or config map containing the client ID
Type
object
Property Type Description
file string File name within the config map
or secret.

178

CHAPTER 15. FLOWCOLLECTOR API REFERENCE

Property Type Description

hame string Name of the config map or secret
containing the file.

namespace string Namespace of the config map or
secret containing the file. If
omitted, the default is to use the
same namespace as where
Network Observability is
deployed. If the namespace is
different, the config map or the
secret is copied so that it can be
mounted as required.

type string Type for the file reference:
configmap orsecret.

15.1.49. .spec.kafka.sasl.clientSecretReference

Description

Reference to the secret or config map containing the client secret

Type
object

Property Type Description

file string File name within the config map
or secret.

hame string Name of the config map or secret

containing the file.

namespace string Namespace of the config map or
secret containing the file. If
omitted, the default is to use the
same namespace as where
Network Observability is
deployed. If the namespace is
different, the config map or the
secret is copied so that it can be
mounted as required.

type string Type for the file reference:
configmap orsecret.

15.1.50. .spec.kafka.tls

Description

179

OpenShift Container Platform 4.17 Network Observability

TLS client configuration. When using TLS, verify that the address matches the Kafka port used for
TLS, generally 9093.

Type
object

Property Type Description

caCert object caCert defines the reference of
the certificate for the Certificate
Authority.

enable boolean Enable TLS

insecureSkipVerify boolean insecureSkipVerify allows
skipping client-side verification of
the server certificate. If set to
true, the caCert field is ignored.

userCert object userCert defines the user

certificate reference and is used
for mTLS. When you use one-way
TLS, you can ignore this property.

15.1.51. .spec.kafka.tls.caCert

Description

caCert defines the reference of the certificate for the Certificate Authority.

Type
object

Property Type Description

certFile string certFile defines the path to the
certificate file name within the
config map or secret.

certKey string certKey defines the path to the
certificate private key file name
within the config map or secret.
Omit when the key is not
necessary.

hame string Name of the config map or secret

containing certificates.

180

CHAPTER 15. FLOWCOLLECTOR API REFERENCE

Property Type Description

namespace string Namespace of the config map or
secret containing certificates. If
omitted, the default is to use the
same namespace as where
Network Observability is
deployed. If the namespace is
different, the config map or the
secret is copied so that it can be
mounted as required.

type string Type for the certificate reference:
configmap orsecret.

15.1.52. .spec.kafka.tls.userCert

Description

userCert defines the user certificate reference and is used for mTLS. When you use one-way TLS,
you can ignore this property.

Type
object

Property Description

certFile string certFile defines the path to the
certificate file name within the
config map or secret.

certKey string certKey defines the path to the
certificate private key file name
within the config map or secret.
Omit when the key is not
necessary.

hame string Name of the config map or secret
containing certificates.

namespace string Namespace of the config map or
secret containing certificates. If
omitted, the default is to use the
same namespace as where
Network Observability is
deployed. If the namespace is
different, the config map or the
secret is copied so that it can be
mounted as required.

181

OpenShift Container Platform 4.17 Network Observability

Property Type
type string
15.1.53. .spec.loki
Description

loki, the flow store, client settings.

Type
object
Required
® mode
Property Type
advanced object
enable boolean
lokiStack object

182

Description

Type for the certificate reference:
configmap orsecret.

Description

advanced allows setting some
aspects of the internal
configuration of the Loki clients.
This section is aimed mostly for
debugging and fine-grained
performance optimizations.

Set enable to true to store flows
in Loki. The Console plugin can
use either Loki or Prometheus as
a data source for metrics (see also
spec.prometheus.querier), or
both. Not all queries are
transposable from Loki to
Prometheus. Hence, if Loki is
disabled, some features of the
plugin are disabled as well, such as
getting per-pod information or
viewing raw flows. If both
Prometheus and Loki are enabled,
Prometheus takes precedence
and Loki is used as a fallback for
queries that Prometheus cannot
handle. If they are both disabled,
the Console plugin is not
deployed.

Loki configuration for LokiStack
mode. This is useful for an easy
Loki Operator configuration. It is
ignored for other modes.

Property

manual

microservices

mode

monolithic

readTimeout

writeBatchSize

Type

object

object

string

object

string

integer

CHAPTER 15. FLOWCOLLECTOR API REFERENCE

Description

Loki configuration for Manual
mode. This is the most flexible
configuration. It is ignored for
other modes.

Loki configuration for
Microservices mode. Use this
option when Loki is installed using
the microservices deployment
mode
(https://grafana.com/docs/loki/la
test/fundamentals/architecture/
deployment-
modes/#microservices-mode). It
is ignored for other modes.

mode must be set according to
the installation mode of Loki:

- Use LokiStack when Lokiis
managed using the Loki Operator

- Use Monolithic when Lokiis
installed as a monolithic workload

- Use Microservices when Loki
is installed as microservices, but
without Loki Operator

- Use Manual if none of the
options above match your setup

Loki configuration for
Monolithic mode. Use this
option when Loki is installed using
the monolithic deployment mode
(https://grafana.com/docs/loki/la
test/fundamentals/architecture/
deployment-modes/#monolithic-
mode). It is ignored for other
modes.

readTimeout is the maximum
console plugin loki query total
time limit. A timeout of zero
means no timeout.

writeBatchSize is the maximum
batch size (in bytes) of Loki logs
to accumulate before sending.

183

https://grafana.com/docs/loki/latest/fundamentals/architecture/deployment-modes/#microservices-mode
https://grafana.com/docs/loki/latest/fundamentals/architecture/deployment-modes/#monolithic-mode

OpenShift Container Platform 4.17 Network Observability

Property Type Description

writeBatchWait string writeBatchWait is the maximum
time to wait before sending a Loki
batch.

writeTimeout string writeTimeout is the maximum

Loki time connection / request
limit. A timeout of zero means no
timeout.

15.1.54. .spec.loki.advanced

Description

advanced allows setting some aspects of the internal configuration of the Loki clients. This section is
aimed mostly for debugging and fine-grained performance optimizations.

Type
object

Property Type Description

excludeLabels array (string) excludeLabels is a list of fields
to be excluded from the list of
Loki labels. [Unsupported (*)].

staticLabels object (string) staticLabels is a map of
common labels to set on each
flow in Loki storage.

writeMaxBackoff string writeMaxBackoff is the
maximum backoff time for Loki
client connection between retries.

writeMaxRetries integer writeMaxRetries is the
maximum number of retries for
Loki client connections.

writeMinBackoff string writeMinBackoff is the initial

backoff time for Loki client
connection between retries.

15.1.55. .spec.loki.lokiStack

Description

Loki configuration for LokiStack mode. This is useful for an easy Loki Operator configuration. It is
ignored for other modes.

Type

184

CHAPTER 15. FLOWCOLLECTOR API REFERENCE

object

Required

® name

Property Type Description

name string Name of an existing LokiStack
resource to use.

namespace string Namespace where this
LokiStack resource is located. If
omitted, it is assumed to be the
same as spec.namespace.

15.1.56. .spec.loki.manual

Description
Loki configuration for Manual mode. This is the most flexible configuration. It is ignored for other
modes.
Type
object
Property Type Description
authToken string authToken describes the way to
get a token to authenticate to
Loki.

- Disabled does not send any
token with the request.

- Forward forwards the user
token for authorization.

- Host [deprecated (*)] - uses
the local pod service account to
authenticate to Loki.

When using the Loki Operator,
this must be set to Forward.

185

OpenShift Container Platform 4.17 Network Observability

Property

ingesterUrl

querierUrl

statusTls

statusUrl

tenantiD

tls

186

Type

string

string

object

string

string

object

Description

ingesterUrl is the address of an
existing Loki ingester service to
push the flows to. When using the
Loki Operator, set it to the Loki
gateway service with the
network tenant set in path, for
example https://loki-gateway-
http.netobserv.svc:8080/api/logs
/V1/network.

querierUrl specifies the address
of the Loki querier service. When
using the Loki Operator, set it to
the Loki gateway service with the
network tenant set in path, for
example https://loki-gateway-
http.netobserv.svc:8080/api/logs
/V1/network.

TLS client configuration for Loki
status URL.

statusUrl specifies the address
of the Loki/ready, /metrics and
/config endpoints, in case it is
different from the Loki querier
URL. If empty, the querierUrl
value is used. This is useful to
show error messages and some
context in the frontend. When
using the Loki Operator, set it to
the Loki HTTP query frontend
service, for example https://loki-
query-frontend-
http.netobserv.svc:3100/.
statusTLS configuration is used
when statusUrl is set.

tenantID is the Loki X-Scope-
OrgID that identifies the tenant
for each request. When using the
Loki Operator, set it to network,
which corresponds to a special
tenant mode.

TLS client configuration for Loki
URL.

https://loki-gateway-http.netobserv.svc:8080/api/logs/v1/network
https://loki-gateway-http.netobserv.svc:8080/api/logs/v1/network
https://loki-query-frontend-http.netobserv.svc:3100/

CHAPTER 15. FLOWCOLLECTOR API REFERENCE

15.1.57. .spec.loki.manual.statusTIs

Description
TLS client configuration for Loki status URL.
Type
object
Property Type Description
caCert object caCert defines the reference of
the certificate for the Certificate
Authority.
enable boolean Enable TLS
insecureSkipVerify boolean insecureSkipVerify allows
skipping client-side verification of
the server certificate. If set to
true, the caCert field is ignored.
userCert object userCert defines the user

certificate reference and is used
for mTLS. When you use one-way
TLS, you can ignore this property.

15.1.58. .spec.loki.manual.statusTls.caCert

Description

caCert defines the reference of the certificate for the Certificate Authority.

Type
object

Property Type Description

certFile string certFile defines the path to the
certificate file name within the
config map or secret.

certKey string certKey defines the path to the
certificate private key file name
within the config map or secret.
Omit when the key is not
necessary.

hame string Name of the config map or secret

containing certificates.

187

OpenShift Container Platform 4.17 Network Observability

Property Type Description

namespace string Namespace of the config map or
secret containing certificates. If
omitted, the default is to use the
same namespace as where
Network Observability is
deployed. If the namespace is
different, the config map or the
secret is copied so that it can be
mounted as required.

type string Type for the certificate reference:
configmap orsecret.

15.1.59. .spec.loki.manual.statusTIs.userCert

Description

userCert defines the user certificate reference and is used for mTLS. When you use one-way TLS,
you can ignore this property.

Type
object

Property Type Description

certFile string certFile defines the path to the
certificate file name within the
config map or secret.

certKey string certKey defines the path to the
certificate private key file name
within the config map or secret.
Omit when the key is not
necessary.

hame string Name of the config map or secret
containing certificates.

namespace string Namespace of the config map or

secret containing certificates. If
omitted, the default is to use the
same namespace as where
Network Observability is
deployed. If the namespace is
different, the config map or the
secret is copied so that it can be
mounted as required.

188

CHAPTER 15. FLOWCOLLECTOR API REFERENCE

Property Type Description

type string Type for the certificate reference:
configmap orsecret.

15.1.60. .spec.loki.manual.tls

Description
TLS client configuration for Loki URL.
Type
object
Property Type Description
caCert object caCert defines the reference of
the certificate for the Certificate
Authority.
enable boolean Enable TLS
insecureSkipVerify boolean insecureSkipVerify allows
skipping client-side verification of
the server certificate. If set to
true, the caCert field is ignored.
userCert object userCert defines the user

certificate reference and is used
for mTLS. When you use one-way
TLS, you can ignore this property.

15.1.61. .spec.loki.manual.tls.caCert

Description

caCert defines the reference of the certificate for the Certificate Authority.

Type
object
Property Type Description
certFile string certFile defines the path to the

certificate file name within the
config map or secret.

189

OpenShift Container Platform 4.17 Network Observability

Property Type Description

certKey string certKey defines the path to the
certificate private key file name
within the config map or secret.
Omit when the key is not
necessary.

hame string Name of the config map or secret
containing certificates.

namespace string Namespace of the config map or
secret containing certificates. If
omitted, the default is to use the
same namespace as where
Network Observability is
deployed. If the namespace is
different, the config map or the
secret is copied so that it can be
mounted as required.

type string Type for the certificate reference:
configmap orsecret.

15.1.62. .spec.loki.manual.tls.userCert

Description

userCert defines the user certificate reference and is used for mTLS. When you use one-way TLS,
you can ignore this property.

Type
object

Property Type Description

certFile string certFile defines the path to the
certificate file name within the
config map or secret.

certKey string certKey defines the path to the
certificate private key file name
within the config map or secret.
Omit when the key is not
necessary.

hame string Name of the config map or secret

containing certificates.

190

CHAPTER 15. FLOWCOLLECTOR API REFERENCE

Property Type Description

namespace string Namespace of the config map or
secret containing certificates. If
omitted, the default is to use the
same namespace as where
Network Observability is
deployed. If the namespace is
different, the config map or the
secret is copied so that it can be
mounted as required.

type string Type for the certificate reference:
configmap orsecret.

15.1.63. .spec.loki.microservices

Description

Loki configuration for Microservices mode. Use this option when Loki is installed using the
microservices deployment mode
(https://grafana.com/docs/loki/latest/fundamentals/architecture/deployment-
modes/#microservices-mode). It is ignored for other modes.

Type
object

Property Type Description

ingesterUrl string ingesterUrl is the address of an
existing Loki ingester service to
push the flows to.

querierUrl string querierURL specifies the
address of the Loki querier
service.

tenantID string tenantlD is the Loki X-Scope-

OrgID header that identifies the
tenant for each request.

tis object TLS client configuration for Loki
URL.

15.1.64. .spec.loki.microservices.tls

Description
TLS client configuration for Loki URL.

191

https://grafana.com/docs/loki/latest/fundamentals/architecture/deployment-modes/#microservices-mode

OpenShift Container Platform 4.17 Network Observability

Type
object

Property Type Description

caCert object caCert defines the reference of
the certificate for the Certificate
Authority.

enable boolean Enable TLS

insecureSkipVerify boolean insecureSkipVerify allows
skipping client-side verification of
the server certificate. If set to
true, the caCert field is ignored.

userCert object userCert defines the user

certificate reference and is used
for mTLS. When you use one-way
TLS, you can ignore this property.

15.1.65. .spec.loki.microservices.tls.caCert

Description

caCert defines the reference of the certificate for the Certificate Authority.

Type
object

Property Type Description

certFile string certFile defines the path to the
certificate file name within the
config map or secret.

certKey string certKey defines the path to the
certificate private key file name
within the config map or secret.
Omit when the key is not
necessary.

hame string Name of the config map or secret

containing certificates.

192

CHAPTER 15. FLOWCOLLECTOR API REFERENCE

Property Type Description

namespace string Namespace of the config map or
secret containing certificates. If
omitted, the default is to use the
same namespace as where
Network Observability is
deployed. If the namespace is
different, the config map or the
secret is copied so that it can be
mounted as required.

type string Type for the certificate reference:
configmap orsecret.

15.1.66. .spec.loki.microservices.tls.userCert

Description

userCert defines the user certificate reference and is used for mTLS. When you use one-way TLS,
you can ignore this property.

Type
object

Property Type Description

certFile string certFile defines the path to the
certificate file name within the
config map or secret.

certKey string certKey defines the path to the
certificate private key file name
within the config map or secret.
Omit when the key is not
necessary.

hame string Name of the config map or secret
containing certificates.

namespace string Namespace of the config map or

secret containing certificates. If
omitted, the default is to use the
same namespace as where
Network Observability is
deployed. If the namespace is
different, the config map or the
secret is copied so that it can be
mounted as required.

193

OpenShift Container Platform 4.17 Network Observability

Property Type Description

type string Type for the certificate reference:
configmap orsecret.

15.1.67. .spec.loki.monolithic

Description

Loki configuration for Monolithic mode. Use this option when Loki is installed using the monolithic
deployment mode (https://grafana.com/docs/loki/latest/fundamentals/architecture/deployment-
modes/#monolithic-mode). It is ignored for other modes.

Property Type Description

tenantID string tenantlD is the Loki X-Scope-
OrgID header that identifies the
tenant for each request.

tis object TLS client configuration for Loki
URL.
url string url is the unique address of an

existing Loki service that points to
both the ingester and the querier.

15.1.68. .spec.loki.monolithic.tls

Description
TLS client configuration for Loki URL.
Type
object
Property Type Description
caCert object caCert defines the reference of
the certificate for the Certificate
Authority.
enable boolean Enable TLS
insecureSkipVerify boolean insecureSkipVerify allows

skipping client-side verification of
the server certificate. If set to
true, the caCert field is ignored.

194

https://grafana.com/docs/loki/latest/fundamentals/architecture/deployment-modes/#monolithic-mode

CHAPTER 15. FLOWCOLLECTOR API REFERENCE

Property Type Description

userCert object userCert defines the user
certificate reference and is used
for mTLS. When you use one-way
TLS, you can ignore this property.

15.1.69. .spec.loki.monolithic.tls.caCert

Description

caCert defines the reference of the certificate for the Certificate Authority.

Property Type Description

certFile string certFile defines the path to the
certificate file name within the
config map or secret.

certKey string certKey defines the path to the
certificate private key file name
within the config map or secret.
Omit when the key is not
necessary.

hame string Name of the config map or secret
containing certificates.

namespace string Namespace of the config map or
secret containing certificates. If
omitted, the default is to use the
same namespace as where
Network Observability is
deployed. If the namespace is
different, the config map or the
secret is copied so that it can be
mounted as required.

type string Type for the certificate reference:
configmap orsecret.

15.1.70. .spec.loki.monolithic.tls.userCert

Description

userCert defines the user certificate reference and is used for mTLS. When you use one-way TLS,
you can ignore this property.

Type

195

OpenShift Container Platform 4.17 Network Observability

object

Property Type Description

certFile string certFile defines the path to the
certificate file name within the
config map or secret.

certKey string certKey defines the path to the
certificate private key file name
within the config map or secret.
Omit when the key is not
necessary.

hame string Name of the config map or secret
containing certificates.

namespace string Namespace of the config map or
secret containing certificates. If
omitted, the default is to use the
same namespace as where
Network Observability is
deployed. If the namespace is
different, the config map or the
secret is copied so that it can be
mounted as required.

type string Type for the certificate reference:
configmap orsecret.

15.1.71. .spec.networkPolicy

Description

networkPolicy defines network policy settings for Network Observability components isolation.

Type
object
Property Type Description
additionalNamespaces array (string) additionalNamespaces

contains additional namespaces
allowed to connect to the
Network Observability
namespace. It provides flexibility
in the network policy
configuration, but if you need a
more specific configuration, you
can disable it and install your own
instead.

196

CHAPTER 15. FLOWCOLLECTOR API REFERENCE

Property Type Description

enable boolean Deploys network policies on the
namespaces used by Network
Observability (main and
privileged). These network
policies better isolate the Network
Observability components to
prevent undesired connections
from and to them. This option is
enabled by default when using
with OVNKubernetes, and
disabled otherwise (it has not
been tested with other CNIs).
When disabled, you can manually
create the network policies for the
Network Observability
components.

15.1.72. .spec.processor

Description

processor defines the settings of the component that receives the flows from the agent, enriches
them, generates metrics, and forwards them to the Loki persistence layer and/or any available
exporter.

Type
object

Property Type Description

addZone boolean addZone allows availability zone
awareness by labelling flows with
their source and destination
zones. This feature requires the
"topology.kubernetes.io/zone"
label to be set on nodes.

advanced object advanced allows setting some

aspects of the internal
configuration of the flow
processor. This section is aimed
mostly for debugging and fine-
grained performance
optimizations, such as GOGC and
GOMAXPROCS environment

variables. Set these values at your
own risk.

197

OpenShift Container Platform 4.17 Network Observability

Property

clusterName

deduper

filters

imagePullPolicy

kafkaConsumerAutoscaler

kafkaConsumerBatchSize

kafkaConsumerQueueCapaci

ty

198

Type

string

object

array

string

object

integer

integer

Description

clusterName is the name of the
cluster to appear in the flows
data. This is useful in a multi-
cluster context. When using
OpensShift Container Platform,
leave empty to make it
automatically determined.

deduper allows you to sample or
drop flows identified as
duplicates, in order to save on
resource usage.

filters lets you define custom
filters to limit the amount of
generated flows. These filters
provide more flexibility than the
eBPF Agent filters (in
spec.agent.ebpf.flowFilter),
such as allowing to filter by
Kubernetes namespace, but with
a lesser improvement in
performance.

imagePullPolicy is the
Kubernetes pull policy for the
image defined above

kafkaConsumerAutoscaler is
the spec of a horizontal pod
autoscaler to set up for
flowlogs-pipeline-
transformer, which consumes
Kafka messages. This setting is
ignored when Kafka is disabled.
Refer to HorizontalPodAutoscaler
documentation (autoscaling/v2).

kafkaConsumerBatchSize
indicates to the broker the
maximum batch size, in bytes, that
the consumer accepts. Ignored
when not using Kafka. Default:
10MB.

kafkaConsumerQueueCapac
ity defines the capacity of the
internal message queue used in
the Kafka consumer client.
Ignored when not using Kafka.

Property

kafkaConsumerReplicas

logLevel

logTypes

metrics

Type

integer

string

string

object

CHAPTER 15. FLOWCOLLECTOR API REFERENCE

Description

kafkaConsumerReplicas
defines the number of replicas
(pods) to start for flowlogs-
pipeline-transformer, which
consumes Kafka messages. This
setting is ignored when Kafka is
disabled.

logLevel of the processor
runtime

logTypes defines the desired

record types to generate.
Possible values are:

- Flows to export regular
network flows. This is the default.

- Conversations to generate
events for started conversations,
ended conversations as well as
periodic "tick" updates. Note that
in this mode, Prometheus metrics
are not accurate on long-standing
conversations.

- EndedConversations to
generate only ended
conversations events. Note that in
this mode, Prometheus metrics
are not accurate on long-standing
conversations.

- All to generate both network
flows and all conversations events.
It is not recommended due to the
impact on resources footprint.

Metrics define the processor
configuration regarding metrics

199

OpenShift Container Platform 4.17 Network Observability

Property Type Description

multiClusterDeployment boolean Set multiClusterDeployment
to true to enable multi clusters
feature. This adds clusterName
label to flows data

resources object resources are the compute
resources required by this
container. For more information,
see
https://kubernetes.io/docs/conc
epts/configuration/manage-
resources-containers/

subnetLabels object subnetLabels allows to define
custom labels on subnets and IPs
or to enable automatic labelling of
recognized subnets in OpenShift
Container Platform, which is used
to identify cluster external traffic.
When a subnet matches the
source or destination IP of a flow,
a corresponding field is added:
SrcSubnetLabel or
DstSubnetLabel.

15.1.73. .spec.processor.advanced

Description

advanced allows setting some aspects of the internal configuration of the flow processor. This
section is aimed mostly for debugging and fine-grained performance optimizations, such as GOGC
and GOMAXPROCS environment variables. Set these values at your own risk.

Type
object
Property Type Description
conversationEndTimeout string conversationEndTimeout is

the time to wait after a network
flow is received, to consider the
conversation ended. This delay is
ignored when a FIN packet is
collected for TCP flows (see
conversationTerminatingTim
eout instead).

200

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/

Property

conversationHeartbeatinterv
al

conversationTerminatingTim
eout

dropUnusedFields

enableKubeProbes

env

healthPort

port

profilePort

scheduling

Type

string

string

boolean

boolean

object (string)

integer

integer

integer

object

CHAPTER 15. FLOWCOLLECTOR API REFERENCE

Description

conversationHeartbeatinterv
al is the time to wait between
"tick" events of a conversation

conversationTerminatingTim
eout is the time to wait from
detected FIN flag to end a
conversation. Only relevant for
TCP flows.

dropUnusedFields
[deprecated (*)] this setting is not
used anymore.

enableKubeProbes is a flag to
enable or disable Kubernetes
liveness and readiness probes

env allows passing custom
environment variables to
underlying components. Useful
for passing some very concrete
performance-tuning options, such
as GOGC and GOMAXPROCS,
that should not be publicly
exposed as part of the
FlowCollector descriptor, as they
are only useful in edge debug or
support scenarios.

healthPort s a collector HTTP
port in the Pod that exposes the
health check API

Port of the flow collector (host
port). By convention, some values
are forbidden. It must be greater
than 1024 and different from
4500, 4789 and 6081.

profilePort allows setting up a
Go pprof profiler listening to this
port

scheduling controls how the pods
are scheduled on nodes.

201

OpenShift Container Platform 4.17 Network Observability

Property Type Description

secondaryNetworks array Defines secondary networks to be
checked for resources
identification. To guarantee a
correct identification, indexed
values must form an unique
identifier across the cluster. If the
same index is used by several
resources, those resources might
be incorrectly labeled.

15.1.74. .spec.processor.advanced.scheduling

Description

scheduling controls how the pods are scheduled on nodes.

Property Type Description

affinity object If specified, the pod's scheduling
constraints. For documentation,
refer to
https://kubernetes.io/docs/refer
ence/kubernetes-api/workload-
resources/pod-vl/#scheduling.

nodeSelector object (string) nodeSelector allows scheduling
of pods only onto nodes that have
each of the specified labels. For
documentation, refer to
https://kubernetes.io/docs/conc
epts/configuration/assign-pod-
node/.

priorityClassName string If specified, indicates the pod's
priority. For documentation, refer
to
https://kubernetes.io/docs/conc
epts/scheduling-eviction/pod-
priority-preemption/#how-to-
use-priority-and-preemption. If
not specified, default priority is
used, or zero if there is no default.

202

https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-v1/#scheduling
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/
https://kubernetes.io/docs/concepts/scheduling-eviction/pod-priority-preemption/#how-to-use-priority-and-preemption

CHAPTER 15. FLOWCOLLECTOR API REFERENCE

Property Type Description

tolerations array tolerations is a list of tolerations
that allow the pod to schedule
onto nodes with matching taints.
For documentation, refer to
https://kubernetes.io/docs/refer
ence/kubernetes-api/workload-
resources/pod-vl/#scheduling.

15.1.75. .spec.processor.advanced.scheduling.affinity

Description

If specified, the pod's scheduling constraints. For documentation, refer to
https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-vl/#scheduling.

Type
object

15.1.76. .spec.processor.advanced.scheduling.tolerations

Description

tolerations is a list of tolerations that allow the pod to schedule onto nodes with matching taints. For
documentation, refer to https://kubernetes.io/docs/reference/kubernetes-api/workload-
resources/pod-vl/#scheduling.

Type
array

15.1.77. .spec.processor.advanced.secondaryNetworks

Description

Defines secondary networks to be checked for resources identification. To guarantee a correct
identification, indexed values must form an unique identifier across the cluster. If the same index is
used by several resources, those resources might be incorrectly labeled.

Type
array

15.1.78. .spec.processor.advanced.secondaryNetworks[]

Description

Type
object

Required

® index

203

https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-v1/#scheduling
https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-v1/#scheduling
https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-v1/#scheduling

OpenShift Container Platform 4.17 Network Observability

® name

Property

index

name

Type

array (string)

string

15.1.79. .spec.processor.deduper

Description

Description

index is a list of fields to use for
indexing the pods. They should
form a unique Pod identifier
across the cluster. Can be any of:
MAC, IP, Interface. Fields
absent from the
'k8s.vl.cni.cncf.io/network-status'
annotation must not be added to
the index.

nhame should match the network
name as visible in the pods
annotation
'k8s.vl.cni.cncf.io/network-status'.

deduper allows you to sample or drop flows identified as duplicates, in order to save on resource

usage.
Type
object

Property

204

Type

Description

CHAPTER 15. FLOWCOLLECTOR API REFERENCE

Property Type Description

mode string Set the Processor de-duplication
mode. It comes in addition to the
Agent-based deduplication, since
the Agent cannot de-duplicate
same flows reported from
different nodes.

- Use Drop to drop every flow
considered as duplicates, allowing
saving more on resource usage
but potentially losing some
information such as the network
interfaces used from peer, or
network events.

- Use Sample to randomly keep
only one flow on 50, which is the
default, among the ones
considered as duplicates. Thisis a
compromise between dropping
every duplicate or keeping every
duplicate. This sampling action
comes in addition to the Agent-
based sampling. If both Agent and
Processor sampling values are 50,
the combined sampling is 1:2500.

- Use Disabled to turn off
Processor-based de-duplication.

sampling integer sampling is the sampling interval
when deduper mode is Sample.
For example, a value of 50 means
that 1flow in 50 is sampled.

15.1.80. .spec.processor.filters

Description

filters lets you define custom filters to limit the amount of generated flows. These filters provide
more flexibility than the eBPF Agent filters (in spec.agent.ebpf.flowFilter), such as allowing to filter
by Kubernetes namespace, but with a lesser improvement in performance.

Type
array

15.1.81. .spec.processor.filters[]

Description

FLPFilterSet defines the desired configuration for FLP-based filtering satisfying all conditions.
Type

205

OpenShift Container Platform 4.17 Network Observability
object

Property Type Description

outputTarget string If specified, these filters target a
single output: Loki, Metrics or
Exporters. By default, all outputs
are targeted.

query string A query that selects the network
flows to keep. More information
about this query language in
https://github.com/netobserv/flo
wlogs-
pipeline/blob/main/docs/filtering
.md.

sampling integer sampling is an optional sampling
interval to apply to this filter. For
example, a value of 50 means
that 1 matching flow in 50 is
sampled.

15.1.82. .spec.processor.kafkaConsumerAutoscaler

Description

kafkaConsumerAutoscaler is the spec of a horizontal pod autoscaler to set up for flowlogs-
pipeline-transformer, which consumes Kafka messages. This setting is ignored when Kafka is
disabled. Refer to HorizontalPodAutoscaler documentation (autoscaling/v2).

Type
object

15.1.83. .spec.processor.metrics
Description
Metrics define the processor configuration regarding metrics

Type
object

Property Description

206

https://github.com/netobserv/flowlogs-pipeline/blob/main/docs/filtering.md

Property

alerts

disableAlerts

Type

array

array (string)

CHAPTER 15. FLOWCOLLECTOR API REFERENCE

Description

alerts s a list of alerts to be
created for Prometheus
AlertManager, organized by
templates and variants
[Unsupported (*)]. This is
currently an experimental feature
behind a feature gate. To enable,
edit
spec.processor.advanced.en
V by adding
EXPERIMENTAL_ALERTS _H
EALTH set to true. More
information on alerts:
https://github.com/netobserv/ne
twork-observability-
operator/blob/main/docs/Alerts.
md

disableAlerts is a list of alert
groups that should be disabled
from the default set of alerts.
Possible values are:
NetObservNoFlows,
NetObservLokiError,
PacketDropsByKernel,
PacketDropsByDevice,
IPsecErrors, NetpolDenied,
LatencyHighTrend,
DNSErrors,
ExternalEgressHighTrend,
ExternallngressHighTrend,
CrossAZ. More information on
alerts:
https://github.com/netobserv/ne
twork-observability-
operator/blob/main/docs/Alerts.
md

207

https://github.com/netobserv/network-observability-operator/blob/main/docs/Alerts.md
https://github.com/netobserv/network-observability-operator/blob/main/docs/Alerts.md

OpenShift Container Platform 4.17 Network Observability

Property Type Description

includeList array (string) includeList is a list of metric
names to specify which ones to
generate. The names correspond
to the names in Prometheus
without the prefix. For example,
namespace_egress_packets
_total shows up as
netobserv_namespace_egre
ss_packets_total in
Prometheus. Note that the more
metrics you add, the bigger is the
impact on Prometheus workload
resources. Metrics enabled by
default are:
namespace_flows_total,
node_ingress_bytes_total,
node_egress_bytes_total,
workload_ingress_bytes_tot
al,
workload_egress_bytes_tota
I,
namespace_drop_packets_t
otal (when PacketDrop feature
is enabled),
namespace_rtt_seconds
(when FIOWRTT feature is
enabled),
namespace_dns_latency_se
conds (when DNSTracking
feature is enabled),
namespace_network_policy
events_total (when
NetworkEvents feature is
enabled). More information, with
full list of available metrics:
https://github.com/netobserv/ne
twork-observability-
operator/blob/main/docs/Metric
s.md

server object Metrics server endpoint
configuration for Prometheus
scraper

15.1.84. .spec.processor.metrics.alerts

Description

alerts is a list of alerts to be created for Prometheus AlertManager, organized by templates and

variants [Unsupported (*)]. This is currently an experimental feature behind a feature gate. To
enable, edit spec.processor.advanced.env by adding EXPERIMENTAL_ALERTS_HEALTH set to

208

https://github.com/netobserv/network-observability-operator/blob/main/docs/Metrics.md

CHAPTER 15. FLOWCOLLECTOR API REFERENCE

true. More information on alerts: https://github.com/netobserv/network-observability-
operator/blob/main/docs/Alerts.md

Type
array

15.1.85. .spec.processor.metrics.alerts[]

Description
Type
object
Required
e template
® variants
Property Type Description
template string Alert template name. Possible
values are:
PacketDropsByKernel,
PacketDropsByDevice,
IPsecErrors, NetpolDenied,
LatencyHighTrend,
DNSErrors,
ExternalEgressHighTrend,
ExternallngressHighTrend,
CrossAZ. More information on
alerts:
https://github.com/netobserv/ne
twork-observability-
operator/blob/main/docs/Alerts.
md
variants array A list of variants for this template

15.1.86. .spec.processor.metrics.alerts[].variants

Description

A list of variants for this template

Type
array

15.1.87. .spec.processor.metrics.alerts[].variants[]
Description

Type

209

https://github.com/netobserv/network-observability-operator/blob/main/docs/Alerts.md
https://github.com/netobserv/network-observability-operator/blob/main/docs/Alerts.md

OpenShift Container Platform 4.17 Network Observability

object

Required

o thresholds

Description

Property Type

groupBy string
lowVolumeThreshold string
thresholds object
trendDuration string
trendOffset string

Optional grouping criteria,
possible values are: Node,
Namespace, Workload.

The low volume threshold allows
to ignore metrics with a too low
volume of traffic, in order to
improve signal-to-noise. It is
provided as an absolute rate
(bytes per second or packets per
second, depending on the
context). When provided, it must
be parsable as a float.

Thresholds of the alert per
severity. They are expressed as a
percentage of errors above which
the alert is triggered. They must
be parsable as floats.

For trending alerts, the duration
interval for baseline comparison.
For example, "2h" means
comparing against a 2-hours
average. Defaults to 2h.

For trending alerts, the time offset
for baseline comparison. For
example, "1d" means comparing
against yesterday. Defaults to 1d.

15.1.88. .spec.processor.metrics.alerts[].variants[].thresholds

Description

Thresholds of the alert per severity. They are expressed as a percentage of errors above which the

alert is triggered. They must be parsable as floats.

Type
object

Property

Description

210

CHAPTER 15. FLOWCOLLECTOR API REFERENCE

Property Type Description

critical string Threshold for severity critical.
Leave empty to not generate a
Critical alert.

info string Threshold for severity info. Leave
empty to not generate an Info
alert.

warning string Threshold for severity warning.

Leave empty to not generate a
Warning alert.

15.1.89. .spec.processor.metrics.server

Description

Metrics server endpoint configuration for Prometheus scraper

Property Type Description
port integer The metrics server HTTP port.
tis object TLS configuration.

15.1.90. .spec.processor.metrics.server.tls

Description

TLS configuration.

Required

* type

Property Type Description

insecureSkipVerify boolean insecureSkipVerify allows
skipping client-side verification of
the provided certificate. If set to
true, the providedCaFile field is
ignored.

OpenShift Container Platform 4.17 Network Observability

Property Type Description

provided object TLS configuration when type is
set to Provided.

providedCaFile object Reference to the CA file when
type is set to Provided.

type string Select the type of TLS
configuration:

- Disabled (default) to not
configure TLS for the endpoint. -
Provided to manually provide
cert file and a key file.
[Unsupported (*)]. - Auto to use
OpensShift Container Platform
auto generated certificate using
annotations.

15.1.91. .spec.processor.metrics.server.tls.provided

Description

TLS configuration when type is set to Provided.

Type
object

Property Type Description

certFile string certFile defines the path to the
certificate file name within the
config map or secret.

certKey string certKey defines the path to the
certificate private key file name
within the config map or secret.
Omit when the key is not
necessary.

hame string Name of the config map or secret

containing certificates.

212

CHAPTER 15. FLOWCOLLECTOR API REFERENCE

Property Type Description

namespace string Namespace of the config map or
secret containing certificates. If
omitted, the default is to use the
same namespace as where
Network Observability is
deployed. If the namespace is
different, the config map or the
secret is copied so that it can be
mounted as required.

type string Type for the certificate reference:
configmap orsecret.

15.1.92. .spec.processor.metrics.server.tls.providedCaFile

Description

Reference to the CA file when type is set to Provided.

Type
object

Property Type Description

file string File name within the config map
or secret.

hame string Name of the config map or secret
containing the file.

namespace string Namespace of the config map or
secret containing the file. If
omitted, the default is to use the
same namespace as where
Network Observability is
deployed. If the namespace is
different, the config map or the
secret is copied so that it can be
mounted as required.

type string Type for the file reference:

configmap orsecret.

15.1.93. .spec.processor.resources

Description

213

OpenShift Container Platform 4.17 Network Observability

resources are the compute resources required by this container. For more information, see
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/

Type
object
Property Type
limits integer-or-string
requests integer-or-string

15.1.94. .spec.processor.subnetLabels

Description

Description

Limits describes the maximum
amount of compute resources
allowed. More info:
https://kubernetes.io/docs/conc
epts/configuration/manage-
resources-containers/

Requests describes the minimum
amount of compute resources
required. If Requests is omitted
for a container, it defaults to
Limits if that is explicitly specified,
otherwise to an implementation-
defined value. Requests cannot
exceed Limits. More info:
https://kubernetes.io/docs/conc
epts/configuration/manage-
resources-containers/

subnetLabels allows to define custom labels on subnets and IPs or to enable automatic labelling of
recognized subnets in OpenShift Container Platform, which is used to identify cluster external traffic.
When a subnet matches the source or destination IP of a flow, a corresponding field is added:

SrcSubnetLabel or DstSubnetLabel.

Type
object

Property

Description

customLabels array

214

customLabels allows to
customize subnets and IPs
labelling, such as to identify
cluster-external workloads or web
services. If you enable
openShiftAutoDetect,
customLabels can override the
detected subnets in case they
overlap.

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/

CHAPTER 15. FLOWCOLLECTOR API REFERENCE

Property Type Description

openShiftAutoDetect boolean openShiftAutoDetect allows,
when set to true, to detect
automatically the machines, pods
and services subnets based on
the OpenShift Container
Platform install configuration and
the Cluster Network Operator
configuration. Indirectly, this is a
way to accurately detect external
traffic: flows that are not labeled
for those subnets are external to
the cluster. Enabled by default on
OpensShift Container Platform.

15.1.95. .spec.processor.subnetLabels.customLabels

Description

customLabels allows to customize subnets and IPs labelling, such as to identify cluster-external
workloads or web services. If you enable openShiftAutoDetect, customLabels can override the
detected subnets in case they overlap.

Type
array

15.1.96. .spec.processor.subnetLabels.customLabels[]

Description

SubnetLabel allows to label subnets and IPs, such as to identify cluster-external workloads or web
services.

Type
object

Required

e cidrs

® name

Property Type Description

cidrs array (string) List of CIDRs, such as
["1.2.3.4/32"].

hame string Label name, used to flag

matching flows.

215

OpenShift Container Platform 4.17 Network Observability

15.1.97. .spec.prometheus

Description

prometheus defines Prometheus settings, such as querier configuration used to fetch metrics from
the Console plugin.

Type
object
Property Type Description
querier object Prometheus querying

configuration, such as client
settings, used in the Console

plugin.

15.1.98. .spec.prometheus.querier

Description

Prometheus querying configuration, such as client settings, used in the Console plugin.

Required

® mode

Property Type Description

216

CHAPTER 15. FLOWCOLLECTOR API REFERENCE

Property Type Description

enable boolean When enable is true, the
Console plugin queries flow
metrics from Prometheus instead
of Loki whenever possible. It is
enbaled by default: set it to false
to disable this feature. The
Console plugin can use either Loki
or Prometheus as a data source
for metrics (see also spec.loki),
or both. Not all queries are
transposable from Loki to
Prometheus. Hence, if Lokiis
disabled, some features of the
plugin are disabled as well, such as
getting per-pod information or
viewing raw flows. If both
Prometheus and Loki are enabled,
Prometheus takes precedence
and Loki is used as a fallback for
queries that Prometheus cannot
handle. If they are both disabled,
the Console plugin is not
deployed.

manual object Prometheus configuration for
Manual mode.

mode string mode must be set according to
the type of Prometheus
installation that stores Network
Observability metrics:

- Use Auto to try configuring
automatically. In OpenShift
Container Platform, it uses the
Thanos querier from OpenShift
Container Platform Cluster
Monitoring

- Use Manual for a manual setup

timeout string timeout is the read timeout for
console plugin queries to
Prometheus. A timeout of zero
means no timeout.

15.1.99. .spec.prometheus.querier.manual

Description

Prometheus configuration for Manual mode.

217

OpenShift Container Platform 4.17 Network Observability

Type
object

Property Type Description

forwardUserToken boolean Set true to forward logged in user
token in queries to Prometheus

tis object TLS client configuration for
Prometheus URL.

url string url is the address of an existing

Prometheus service to use for
querying metrics.

15.1.100. .spec.prometheus.querier.manual.tls

Description

TLS client configuration for Prometheus URL.

Property Description

caCert object caCert defines the reference of
the certificate for the Certificate
Authority.

enable boolean Enable TLS

insecureSkipVerify boolean insecureSkipVerify allows

skipping client-side verification of
the server certificate. If set to
true, the caCert field is ignored.

userCert object userCert defines the user
certificate reference and is used
for mTLS. When you use one-way
TLS, you can ignore this property.

15.1.101. .spec.prometheus.querier.manual.tls.caCert

Description

caCert defines the reference of the certificate for the Certificate Authority.

218

CHAPTER 15. FLOWCOLLECTOR API REFERENCE

Property Type Description

certFile string certFile defines the path to the
certificate file name within the
config map or secret.

certKey string certKey defines the path to the
certificate private key file name
within the config map or secret.
Omit when the key is not
necessary.

hame string Name of the config map or secret
containing certificates.

namespace string Namespace of the config map or
secret containing certificates. If
omitted, the default is to use the
same namespace as where
Network Observability is
deployed. If the namespace is
different, the config map or the
secret is copied so that it can be
mounted as required.

type string Type for the certificate reference:
configmap orsecret.

15.1.102. .spec.prometheus.querier.manual.tls.userCert

Description

userCert defines the user certificate reference and is used for mTLS. When you use one-way TLS,
you can ignore this property.

Type
object
Property Type Description
certFile string certFile defines the path to the
certificate file name within the
config map or secret.
certKey string certKey defines the path to the

certificate private key file name
within the config map or secret.
Omit when the key is not
necessary.

219

OpenShift Container Platform 4.17 Network Observability

Property Type Description

hame string Name of the config map or secret
containing certificates.

namespace string Namespace of the config map or
secret containing certificates. If
omitted, the default is to use the
same namespace as where
Network Observability is
deployed. If the namespace is
different, the config map or the
secret is copied so that it can be
mounted as required.

type string Type for the certificate reference:
configmap orsecret.

220

CHAPTER 16. FLOWMETRIC CONFIGURATION PARAMETERS

CHAPTER 16. FLOWMETRIC CONFIGURATION PARAMETERS

The FlowMetric APl is used to generate custom observability metrics from collected network flow logs.

16.1. FLOWMETRIC [FLOWS.NETOBSERV.IO/V1ALPHAT]

Description

FlowMetric is the APl allowing to create custom metrics from the collected flow logs.
Type

object

Property Description

apiVersion string APIVersion defines the versioned
schema of this representation of
an object. Servers should convert
recognized schemas to the latest
internal value, and might reject
unrecognized values. More info:
https://git.k8s.io/community/con
tributors/devel/sig-
architecture/api-
conventions.md#resources

kind string Kind is a string value representing
the REST resource this object
represents. Servers might infer
this from the endpoint the client
submits requests to. Cannot be
updated. In CamelCase. More
info:
https://git.k8s.io/community/con
tributors/devel/sig-
architecture/api-
conventions.md#types-kinds

metadata object Standard object’s metadata. More
info:
https://git.k8s.io/community/con
tributors/devel/sig-
architecture/api-
conventions.md#metadata

221

https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#resources
https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#types-kinds
https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata

OpenShift Container Platform 4.17 Network Observability

Property Type Description

spec object FlowMetricSpec defines the
desired state of FlowMetric The
provided API allows you to
customize these metrics
according to your needs.

When adding new metrics or
modifying existing labels, you
must carefully monitor the
memory usage of Prometheus
workloads as this could potentially
have a high impact. Cf
https://rhobs-
handbook.netlify.app/products/o
penshiftmonitoring/telemetry.md
/#what-is-the-cardinality-of-a-
metric

To check the cardinality of all
Network Observability metrics,
run as promql:
count({name=~"netobserv.*"
}) by (name).

16.1.1. .metadata

Description

Standard object’s metadata. More info: https://git.k8s.io/community/contributors/devel/sig-
architecture/api-conventions.md#metadata

Type
object

16.1.2. .spec

Description

FlowMetricSpec defines the desired state of FlowMetric The provided API allows you to customize
these metrics according to your needs.

When adding new metrics or modifying existing labels, you must carefully monitor the memory usage
of Prometheus workloads as this could potentially have a high impact. Cf https://rhobs-
handbook.netlify.app/products/openshiftmonitoring/telemetry.md/#what-is-the-cardinality-of-a-
metric

To check the cardinality of all Network Observability metrics, run as promql:
count({name=~"netobserv.*"}) by (name).

Type

object

Required

222

https://rhobs-handbook.netlify.app/products/openshiftmonitoring/telemetry.md/#what-is-the-cardinality-of-a-metric
https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata
https://rhobs-handbook.netlify.app/products/openshiftmonitoring/telemetry.md/#what-is-the-cardinality-of-a-metric

CHAPTER 16. FLOWMETRIC CONFIGURATION PARAMETERS

* type

Property Type Description

buckets array (string) A list of buckets to use when type
is "Histogram". The list must be
parsable as floats. When not set,
Prometheus default buckets are
used.

charts array Charts configuration, for the
OpensShift Container Platform
Console in the administrator view,
Dashboards menu.

direction string Filter for ingress, egress or any
direction flows. When set to
Ingress, it is equivalent to adding
the regular expression filter on
FlowDirection: 0|2. When set to
Egress, it is equivalent to adding
the regular expression filter on
FlowDirection:1|2.

divider string When nonzero, scale factor
(divider) of the value. Metric value
= Flow value / Divider.

filters array filters is a list of fields and values
used to restrict which flows are
taken into account. Refer to the
documentation for the list of
available fields:
https://docs.redhat.com/en/docu
mentation/openshift_container_pl
atform/latest/html/network_obse
rvability/json-flows-format-
reference.

flatten array (string) flatten is a list of array-type fields
that must be flattened, such as
Interfaces or NetworkEvents.
Flattened fields generate one
metric per item in that field. For
instance, when flattening
Interfaces on a bytes counter, a
flow having Interfaces [br-ex,
ens5] increases one counter for
br-ex and another forens5.

223

https://docs.redhat.com/en/documentation/openshift_container_platform/latest/html/network_observability/json-flows-format-reference

OpenShift Container Platform 4.17 Network Observability

Property

labels

metricName

remap

224

Type

array (string)

string

object (string)

Description

labels is a list of fields that
should be used as Prometheus
labels, also known as dimensions
(for example:
SrcK8S_Namespace). From
choosing labels results the level of
granularity of this metric, and the
available aggregations at query
time. It must be done carefully as
it impacts the metric cardinality
(cf https://rhobs-
handbook.netlify.app/products/o
penshiftmonitoring/telemetry.md
/#what-is-the-cardinality-of-a-
metric). In general, avoid setting
very high cardinality labels such as
IP or MAC addresses.
"SrcK8S_OwnerName" or
"Dstk8S_OwnerName" should be
preferred over "SrcK8S_Name" or
"DstK8S_Name" as much as
possible. Refer to the
documentation for the list of
available fields:
https://docs.redhat.com/en/docu
mentation/openshift_container_pl
atform/latest/html/network_obse
rvability/json-flows-format-
reference.

Name of the metric. In
Prometheus, it is automatically
prefixed with "netobserv_". Leave
empty to generate the name
based on the FlowMetric
resource name.

Set the remap property to use
different names for the generated
metric labels than the flow fields.
Use the origin flow fields as keys,
and the desired label names as
values.

https://rhobs-handbook.netlify.app/products/openshiftmonitoring/telemetry.md/#what-is-the-cardinality-of-a-metric
https://docs.redhat.com/en/documentation/openshift_container_platform/latest/html/network_observability/json-flows-format-reference

CHAPTER 16. FLOWMETRIC CONFIGURATION PARAMETERS

Property Type Description

type string Metric type: "Counter”,
"Histogram" or "Gauge". Use
"Counter” for any value that
increases over time and on which
you can compute a rate, such as
Bytes or Packets. Use
"Histogram" for any value that
must be sampled independently,
such as latencies. Use "Gauge" for
other values that don't
necessitate accuracy over time
(gauges are sampled only every N
seconds when Prometheus
fetches the metric).

valueField string valueField is the flow field that
must be used as a value for this
metric (for example: Bytes). This
field must hold numeric values.
Leave empty to count flows
rather than a specific value per
flow. Refer to the documentation
for the list of available fields:
https://docs.redhat.com/en/docu
mentation/openshift_container_pl
atform/latest/html/network_obse
rvability/json-flows-format-
reference.

16.1.3. .spec.charts

Description

Charts configuration, for the OpenShift Container Platform Console in the administrator view,
Dashboards menu.

Type
array

16.1.4. .spec.charts[]

Description

Configures charts / dashboard generation associated to a metric

Type
object

Required

e dashboardName

® queries

225

https://docs.redhat.com/en/documentation/openshift_container_platform/latest/html/network_observability/json-flows-format-reference

OpenShift Container Platform 4.17 Network Observability

o title

® type
Property Type
dashboardName string
queries array
sectionName string
title string
type string
unit string

16.1.5. .spec.charts[].queries

Description

Description

Name of the containing
dashboard. If this name does not
refer to an existing dashboard, a
new dashboard is created.

List of queries to be displayed on
this chart. If type is SingleStat
and multiple queries are provided,
this chart is automatically
expanded in several panels (one

per query).

Name of the containing
dashboard section. If this name
does not refer to an existing
section, a new section is created.
If sectionName is omitted or
empty, the chartis placed in the
global top section.

Title of the chart.

Type of the chart.

Unit of this chart. Only a few units
are currently supported. Leave
empty to use generic number.

List of queries to be displayed on this chart. If type is SingleStat and multiple queries are provided,
this chart is automatically expanded in several panels (one per query).

Type
array

16.1.6. .spec.charts[].queries[]

Description

Configures PromQL queries
Type

object

226

CHAPTER 16. FLOWMETRIC CONFIGURATION PARAMETERS

Required

® |egend
e promQL

® top

Property Type Description

legend string The query legend that applies to
each timeseries represented in
this chart. When multiple
timeseries are displayed, you
should set a legend that
distinguishes each of them. It can
be done with the following format:
{{ Label }}. For example, if the
promQL groups timeseries per
label such as:
sum(rate($SMETRIC[2m])) by
(Label1, Label2), you might
write as the legend: Label1={{
Label1 }}, Label2={{ Label2

13

promQL string The promQL query to be run
against Prometheus. If the chart
type is SingleStat, this query
should only return a single
timeseries. For other types, a top
7 is displayed. You can use
$METRIC to refer to the metric
defined in this resource. For
example:
sum(rate($METRIC[2m])). To
learn more about promQL, refer
to the Prometheus
documentation:
https://prometheus.io/docs/pro
metheus/latest/querying/basics/

top integer Top N series to display per
timestamp. Does not apply to
SingleStat chart type.

16.1.7. .spec.filters

Description

filters is a list of fields and values used to restrict which flows are taken into account. Refer to the
documentation for the list of available fields:

227

https://prometheus.io/docs/prometheus/latest/querying/basics/

OpenShift Container Platform 4.17 Network Observability

https://docs.redhat.com/en/documentation/openshift_container_platform/latest/html/network_obser
flows-format-reference.

Type
array

16.1.8. .spec.filters[]

Description

Type
object

Required

o field

e matchType

Property Type Description
field string Name of the field to filter on (for
example:

SrcK8S_Namespace).
matchType string Type of matching to apply

value string Value to filter on. When
matchType is Equal or
NotEqual, you can use field
injection with $(SomeField) to
refer to any other field of the flow.

228

https://docs.redhat.com/en/documentation/openshift_container_platform/latest/html/network_observability/json-flows-format-reference

CHAPTER 17. NETWORK FLOWS FORMAT REFERENCE

CHAPTER 17. NETWORK FLOWS FORMAT REFERENCE

Review the specifications for the network flow format, which is used internally and for exporting flow
data to Kafka.

17.1. NETWORK FLOWS FORMAT REFERENCE

This is the specification of the network flows format. That format is used when a Kafka exporter is

configured, for Prometheus metrics labels as well as internally for the Loki store.

The "Filter ID" column shows which related name to use when defining Quick Filters (see

spec.consolePlugin.quickFilters in the FlowCollector specification).

The "Loki label" column is useful when querying Loki directly: label fields need to be selected using
stream selectors.

The "Cardinality" column gives information about the implied metric cardinality if this field was to be
used as a Prometheus label with the FlowMetrics API. Refer to the FlowMetrics documentation for
more information on using this API.

Description

Filter ID

Cardinal

ity

OpenTel
emetry

Bytes

DnsErr
ho

DnsFla
gs

DnsFla
gsResp
onseCo
de

Dnslid

DnsLat
encyMs

Dscp

DstAdd
r

number

number

number

string

number

number

number

string

Number of bytes

Error number returned from DNS
tracker ebpf hook function

DNS flags for DNS record

Parsed DNS header RCODEs
name

DNS record id

Time between a DNS request and
response, in milliseconds

Differentiated Services Code
Point (DSCP) value

Destination IP address (ipv4 or
ipv6)

n/a
dns_er
rno

n/a
dns_fla
g_resp
onse_c¢
ode
dns_id
dns_lat
ency
dscp
dst_ad
dress

no

no

no

no

no

no

avoid

fine

fine

fine

avoid

avoid

fine

avoid

bytes

dns.errn
o

dns.flag

dns.resp
onsecod
e

dns.id

dns.late
ncy

dscp

destinati
on.addre
ss

229

https://grafana.com/docs/loki/latest/logql/log_queries/#log-stream-selector

OpenShift Container Platform 4.17 Network Observability

Description Filter ID Cardinal OpenTel
13 emetry
DstK8S string Destination node IP dst ho no fine destinati
_Hostl st_add on.k8s.h
P ress ost.addr
ess
DstK8S string Destination node name dst ho no fine destinati
_HostN st_nam on.k8s.h
ame e ost.nam
e
DstK8S string Name of the destination dst_na no careful destinati
_Name Kubernetes object, such as Pod me on.k8s.n
name, Service name or Node ame
name.
DstK8S string Destination namespace dst _na yes fine destinati
_Name mespa on.k8s.n
space ce amespa
ce.name
DstK8S string Destination network name dst net no fine n/a
_Netwo work
rkName
DstK8S string Name of the destination owner, dst ow yes fine destinati
_Owner such as Deployment name, ner_na on.k8s.0
Name StatefulSet name, etc. me wner.na
me
DstK8S string Kind of the destination owner, dst kin no fine destinati
_Owner such as Deployment, StatefulSet, d on.k8s.0
Type etc. wner.kin
d
DstK8S string Kind of the destination dst kin yes fine destinati
_Type Kubernetes object, such as Pod, d on.k8s ki
Service or Node. nd
DstK8S string Destination availability zone dst_zo yes fine destinati
_Zone ne on.zone
DstMac string Destination MAC address dst ma no avoid destinati
c on.mac
DstPort number Destination port dst_po no careful destinati
rt on.port

230

DstSub
netlLab
el

Flags

FlowDir
ection

IPSecSt
atus

IlcmpCo
de

lcmpTy
pe

IfDirect
ions

Interfac
es

string

string[]

number

string

number

number

number|[

]

string[]

CHAPTER 17. NETWORK FLOWS FORMAT REFERENCE

Description

Destination subnet label

List of TCP flags comprised in the
flow, according to RFC-9293, with
additional custom flags to
represent the following per-
packet combinations:

- SYN_ACK

- FIN_ACK

- RST_ACK

Flow interpreted direction from
the node observation point. Can
be one of:

- O: Ingress (incoming traffic, from
the node observation point)

- 1: Egress (outgoing traffic, from
the node observation point)

- 2:Inner (with the same source
and destination node)

Status of the IPsec encryption (on
egress, given by the kernel
xfrm_output function) or
decryption (oningress, via
xfrm_input)

ICMP code

ICMP type

Flow directions from the network
interface observation point. Can
be one of:

- O: Ingress (interface incoming
traffic)

- 1: Egress (interface outgoing
traffic)

Network interfaces

Filter ID

dst_su
bnet_la
bel

tcp_fla

node_d

irectio
n

ipsec_
status

icmp_c
ode

icmp_t
ype

ifdirect
ions

interfa
ces

no

no

yes

no

no

no

no

no

Cardinal

ity

fine

careful

fine

fine

fine

fine

fine

careful

OpenTel
emetry

destinati
on.subn
et.label

tcp.flags

host.dire
ction

n/a

icmp.co
de

icmp.typ
e

interfac
e.directi
ons

interfac
e.names

OpenShift Container Platform 4.17 Network Observability

Description Filter ID Cardinal OpenTel
ity emetry

K8S Cl string Cluster name or identifier cluster yes fine k8s.clust
usterN _hame er.name
ame
K8S_FI string Flow layer: 'app’ or 'infra’ flow_la vyes fine k8s.layer
owLaye yer
r
Networ object[] Network events, such as network hetwor no avoid n/a
kEvent policy actions, composed of k_even
s nested fields: ts

- Feature (such as "acl" for
network policies)

- Type (such as an
"AdminNetworkPolicy")

- Namespace (namespace where
the event applies, if any)

- Name (name of the resource
that triggered the event)

- Action (such as "allow" or "drop")
- Direction (Ingress or Egress)

Packet number Number of packets n/a no avoid packets
S

PkitDro number Number of bytes dropped by the n/a no avoid drops.by
pBytes kernel tes
PktDro string Latest drop cause pkt_dr no fine drops.lat
pLatest op_cau estcaus
DropCa se e

use

PktDro number TCP flags on last dropped packet n/a no fine drops.lat
pLatest estflags
Flags

PktDro string TCP state on last dropped packet pkt_dr no fine drops.lat
pLatest op_stat eststate
State e

PkitDro number Number of packets dropped by n/a no avoid drops.pa
pPacke the kernel ckets

ts

232

CHAPTER 17. NETWORK FLOWS FORMAT REFERENCE

Description Filter ID Cardinal OpenTel
13 emetry
Proto number L4 protocol protoc no fine protocol
ol

Sampli number Sampling interval used for this n/a no fine n/a
ng flow
SrcAdd string Source IP address (ipv4 or ipv6) src_ad no avoid source.a
r dress ddress
SrcK8S string Source node IP src_ ho no fine source .k
_Hostl st_add 8s.host.
P ress address
SrcK8S string Source node name src_ ho no fine source .k
_HostN st_nam 8s.host.
ame e name
SrcK8S string Name of the source Kubernetes src_na no careful source .k
_Name object, such as Pod name, Service me 8s.name

name or Node name.

SrcK8S string Source namespace src_na yes fine source.k
_Name mespa 8s.name
space ce space.na
me
SrcK8S string Source network name src_net no fine n/a
_Netwo work
rkName
SrcK8S string Name of the source owner, such Src_ow yes fine source.k
_Owner as Deployment name, StatefulSet ner_na 8s.owne
Name name, etc. me r.name
SrcK8S string Kind of the source owner, such as src_kin no fine source .k
_Owner Deployment, StatefulSet, etc. d 8s.owne
Type r.kind
SrcK8S string Kind of the source Kubernetes src_kin yes fine source.k
_Type object, such as Pod, Service or d 8s.kind
Node.
SrcK8S string Source availability zone src_zo yes fine source.z
_Zone ne one

233

OpenShift Container Platform 4.17 Network Observability

Description Filter ID Loki Cardinal OpenTel
label ity emetry
SrcMac string Source MAC address src_ma no avoid source.
c mac
SrcPort number Source port src_po no careful source.p
rt ort

SrcSub string Source subnet label src_su no fine source.s
netLab bnet_la ubnet.la
el bel bel
TimeFl number End timestamp of this flow, in n/a no avoid timeflow
owEnd milliseconds end
Ms
TimeFI number TCP Smoothed Round Trip Time time_fl no avoid tep.rtt
owRLitN (SRTT), in nanoseconds ow_rit
S
TimeFI number Start timestamp of this flow, in n/a no avoid timeflow
owStart milliseconds start
Ms
TimeRe number Timestamp when this flow was n/a no avoid timerec
ceived received and processed by the eived

flow collector, in seconds

Udns string[] List of User Defined Networks udns no careful n/a
XlatDst string packet translation destination xlat ds no avoid n/a
Addr address t_addr
ess
XlatDst number packet translation destination port ~ xlat_ds no careful n/a
Port t_port
XlatSrc string packet translation source address xlat_sr no avoid n/a
Addr c_addr
ess
XlatSrc number packet translation source port xlat_sr no careful n/a
Port c_port
Zoneld number packet translation zone id xlat zo no avoid n/a
ne_id

234

_Hashl
d

_Recor
dType

string

string

CHAPTER 17. NETWORK FLOWS FORMAT REFERENCE

Description Filter ID Loki Cardinal OpenTel

label ity emetry

In conversation tracking, the id no avoid n/a
conversation identifier

Type of record: flowLog for type yes fine n/a
regular flow logs, or

newConnection, heartbeat,

endConnection for

conversation tracking

235

OpenShift Container Platform 4.17 Network Observability

CHAPTER 18. TROUBLESHOOTING NETWORK
OBSERVABILITY

Perform diagnostic actions to troubleshoot common issues related to the Network Observability
Operator and its components.

18.1. USING THE MUST-GATHER TOOL

Use the must-gather tool to collect diagnostic information about Network Observability Operator
resources, including pod logs and configuration details, to assist in troubleshooting cluster issues.

Procedure

1. Navigate to the directory where you want to store the must-gather data.

2. Run the following command to collect cluster-wide must-gather resources:

$ oc adm must-gather
--image-stream=openshift/must-gather \
--image=quay.io/netobserv/must-gather

18.2. CONFIGURING NETWORK TRAFFIC MENU ENTRY IN THE
OPENSHIFT CONTAINER PLATFORM CONSOLE

Restore a missing network traffic menu entry in the Observe menu of the OpenShift Container Platform
console by manually registering the console plugin in the FlowCollector resource and the console
operator configuration.

Prerequisites

® You have installed OpenShift Container Platform version 4.10 or newer.

Procedure

1. Check if the spec.consolePlugin.register field is set to true by running the following
command:

I $ oc -n netobserv get flowcollector cluster -o yaml

Example output

apiVersion: flows.netobserv.io/vialphai
kind: FlowCollector
metadata:
name: cluster
spec:
consolePlugin:
register: false

2. Optional: Add the netobserv-plugin plugin by manually editing the Console Operator config:

236

CHAPTER 18. TROUBLESHOOTING NETWORK OBSERVABILITY

I $ oc edit console.operator.openshift.io cluster

Example output

spec:
plugins:
- netobserv-plugin

3. Optional: Set the spec.consolePlugin.register field to true by running the following command:

I $ oc -n netobserv edit flowcollector cluster -0 yaml

Example output

apiVersion: flows.netobserv.io/vialphai
kind: FlowCollector
metadata:
name: cluster
spec:
consolePlugin:
register: true

4. Ensure the status of console pods is running by running the following command:

I $ oc get pods -n openshift-console -I app=console

5. Restart the console pods by running the following command:

I $ oc delete pods -n openshift-console -1 app=console

6. Clear your browser cache and history.

7. Check the status of network observability plugin pods by running the following command:

I $ oc get pods -n netobserv -l app=netobserv-plugin

Example output

NAME READY STATUS RESTARTS AGE
netobserv-plugin-68c7bbb9bb-b69g6 1/1 Running 0 21s

8. Check the logs of the network observability plugin pods by running the following command:

I $ oc logs -n netobserv -I app=netobserv-plugin

Example output

237

OpenShift Container Platform 4.17 Network Observability

time="2022-12-13T12:06:49Z" level=info msg="Starting netobserv-console-plugin [build
version: , build date: 2022-10-21 15:15] at log level info" module=main
time="2022-12-13T12:06:49Z" level=info msg="listening on https://:9001" module=server

18.3. FLOWLOGS-PIPELINE DOES NOT CONSUME NETWORK FLOWS
AFTER INSTALLING KAFKA

Resolve issues where the flow-pipeline fails to consume network flows from Kafka by manually restarting
the flow-pipeline pods to restore the connection between the flow collector and your Kafka deployment.

If you deployed the flow collector first with deploymentModel: KAFKA and then deployed Kafka, the
flow collector might not connect correctly to Kafka. Manually restart the flow-pipeline pods where
Flowlogs-pipeline does not consume network flows from Kafka.

Procedure

1. Delete the flow-pipeline pods to restart them by running the following command:

I $ oc delete pods -n netobserv -I app=flowlogs-pipeline-transformer

18.4. FAILING TO SEE NETWORK FLOWS FROM BOTH BR-INT AND BR-
EXINTERFACES

Resolve issues with missing network flows by removing interface restrictions on virtual bridge devices
like br-int and br-ex, ensuring the eBPF agent can attach to the appropriate Layer 3 interfaces.

br-ex and br-int are virtual bridge devices operated at OSl layer 2. The eBPF agent works at the IP and
TCP levels, layers 3 and 4 respectively. You can expect that the eBPF agent captures the network
traffic passing through br-ex and br-int, when the network traffic is processed by other interfaces such
as physical host or virtual pod interfaces. If you restrict the eBPF agent network interfaces to attach
only to br-ex and br-int, you do not see any network flow.

Manually remove the part in the interfaces or excludelnterfaces that restricts the network interfaces
to br-int and br-ex.

Procedure

1. Remove the interfaces: ['br-int’, 'br-ex’] field. This allows the agent to fetch information from
all the interfaces. Alternatively, you can specify the Layer-3 interface for example, eth0. Run the
following command:

I $ oc edit -n netobserv flowcollector.yaml -o yaml

Example output

apiVersion: flows.netobserv.io/vialphai
kind: FlowCollector
metadata:
name: cluster
spec:
agent:
type: EBPF

238

CHAPTER 18. TROUBLESHOOTING NETWORK OBSERVABILITY

ebpf:
interfaces: ['br-int', 'br-ex'] ﬂ

ﬂ Specifies the network interfaces.

18.5. NETWORK OBSERVABILITY CONTROLLER MANAGER POD RUNS
OUT OF MEMORY

Resolve memory issues with the Network Observability Operator by increasing the memory limits in the
Subscription object to prevent the controller manager pod from running out of memory.

You can increase memory limits for the Network Observability Operator by editing the
spec.config.resources.limits.memory specification in the Subscription object.

Procedure

1. In the web console, navigate to Operators — Installed Operators
2. Click Network Observability and then select Subscription.

3. From the Actions menu, click Edit Subscription.

a. Alternatively, you can use the CLI to open the YAML configuration for the Subscription
object by running the following command:

I $ oc edit subscription netobserv-operator -n openshift-netobserv-operator

4. Edit the Subscription object to add the config.resources.limits.memory specification and set
the value to account for your memory requirements. See the Additional resources for more
information about resource considerations:

apiVersion: operators.coreos.com/vialphai
kind: Subscription
metadata:
name: netobserv-operator
namespace: openshift-netobserv-operator
spec:
channel: stable
config:
resources:
limits:
memory: 800Mi ﬂ
requests:
cpu: 100m
memory: 100Mi
installPlanApproval: Automatic
name: netobserv-operator
source: redhat-operators
sourceNamespace: openshift-marketplace

startingCSV: <network_observability_operator_latest _version> 9

ﬂ For example, you can increase the memory limit to 800Mi.

239

OpenShift Container Platform 4.17 Network Observability

This value should not be edited, but note that it changes depending on the most current
release of the Operator.

18.6. RUNNING CUSTOM QUERIES TO LOKI

Troubleshoot network flow data by running custom Loki queries to retrieve available labels or filter logs
by specific criteria, such as source namespaces, using the command-line interface.

There are two examples of ways to do this, which you can adapt according to your needs by replacing the
<api_token> with your own.

NOTE

These examples use the netobserv namespace for the Network Observability Operator
and Loki deployments. Additionally, the examples assume that the LokiStack is named
loki. You can optionally use a different namespace and naming by adapting the examples,
specifically the -n netobserv or the loki-gateway URL.

Prerequisites

® |nstalled Loki Operator for use with Network Observability Operator.

Procedure

1. To get all available labels, run the following command:

$ oc exec deployment/netobserv-plugin -n netobserv -- curl -G -s -H 'X-Scope-
OrglD:network' -H 'Authorization: Bearer <api_token>' -k https://loki-gateway-
http.netobserv.svc:8080/api/logs/vi/network/loki/api/vi/labels | jq

2. To get all flows from the source namespace, my-namespace, run the following command:

$ oc exec deployment/netobserv-plugin -n netobserv -- curl -G -s -H 'X-Scope-
OrglD:network' -H 'Authorization: Bearer <api_token>' -k https://loki-gateway-
http.netobserv.svc:8080/api/logs/vi/network/loki/api/vi/query --data-urlencode 'query=
{SrcK8S_Namespace="my-namespace"}' | jq

Additional resources

® Resource considerations

18.7. TROUBLESHOOTING LOKI RESOURCEEXHAUSTED ERROR

Resolve Loki ResourceExhausted errors by adjusting the batchSize in the FlowCollector resource or
the maximum message size settings in your Loki configuration to ensure flow data stays within memory
limits.

Loki may return a ResourceExhausted error when network flow data sent by network observability
exceeds the configured maximum message size. If you are using the Red Hat Loki Operator, this
maximum message size is configured to 100 MiB.

240

CHAPTER 18. TROUBLESHOOTING NETWORK OBSERVABILITY

Procedure

1. Navigate to Operators = Installed Operators, viewing All projects from the Project drop-
down menu.

2. Inthe Provided APIs list, select the Network Observability Operator.

3. Click the Flow Collector then the YAML view tab.

a. If you are using the Loki Operator, check that the spec.loki.batchSize value does not
exceed 98 MiB.

b. If you are using a Loki installation method that is different from the Red Hat Loki Operator,
such as Grafana Loki, verify that the grpc_server_max_recv_msg_size Grafana Loki
server setting is higher than the FlowCollector resource spec.loki.batchSize value. If it is
not, you must either increase the grpc_server_max_recv_msg_size value, or decrease the
spec.loki.batchSize value so that it is lower than the limit.

4. Click Save if you edited the FlowCollector.

18.8. LOKI EMPTY RING ERROR

Investigate and resolve Loki "empty ring" errors by checking pod health, clearing old persistent volume
claims, or restarting pods to restore connectivity and ensure network flows are properly stored and
displayed.

The Loki "empty ring" error results in flows not being stored in Loki and not showing up in the web
console. This error might happen in various situations. A single workaround to address them all does not
exist. There are some actions you can take to investigate the logs in your Loki pods, and verify that the
LokiStack is healthy and ready.

Some of the situations where this error is observed are as follows:

e After a LokiStack is uninstalled and reinstalled in the same namespace, old PVCs are not
removed, which can cause this error.

o Action: You can try removing the LokiStack again, removing the PVC, then reinstalling the
LokiStack.

® After a certificate rotation, this error can prevent communication with the flowlogs-pipeline
and console-plugin pods.

o Action: You can restart the pods to restore the connectivity.

18.9. RESOURCE TROUBLESHOOTING

18.10. LOKISTACK RATE LIMIT ERRORS

Resolve Loki rate limit errors and prevent data loss by updating the LokiStack resource to increase the
ingestion rate and burst limits for your network observability data streams.

A rate-limit placed on the Loki tenant can result in potential temporary loss of data and a 429 error: Per
stream rate limit exceeded (limit:xMB/sec) while attempting to ingest for stream. You might
consider having an alert set to notify you of this error. For more information, see "Creating Loki rate limit
alerts for the NetObserv dashboard" in the Additional resources of this section.

241

https://grafana.com/docs/loki/latest/configure/#server

OpenShift Container Platform 4.17 Network Observability

You can update the LokiStack CRD with the perStreamRateLimit and perStreamRateLimitBurst
specifications, as shown in the following procedure.

Procedure

1. Navigate to Operators — Installed Operators, viewing All projects from the Project
dropdown.

2. Look for Loki Operator, and select the LokiStack tab.

3. Create or edit an existing LokiStack instance using the YAML view to add the
perStreamRateLimit and perStreamRateLimitBurst specifications:

apiVersion: loki.grafana.com/v1
kind: LokiStack
metadata:
name: loki
namespace: netobserv
spec:
limits:
global:
ingestion:
perStreamRateLimit: 6 ﬂ
perStreamRateLimitBurst: 30 9
tenants:
mode: openshift-network
managementState: Managed

Q The default value for perStreamRateLimit is 3.

9 The default value for perStreamRateLimitBurst is 15.

4. Click Save.

Verification

Once you update the perStreamRateLimit and perStreamRateLimitBurst specifications, the pods in
your cluster restart and the 429 rate-limit error no longer occurs.

18.11. RUNNING A LARGE QUERY RESULTS IN LOKI ERRORS

Understand how you can mitigate Loki timeout and request errors when running large queries by using
indexed filters, leveraging Prometheus for long time ranges, creating custom metrics, or adjusting Loki
and FlowCollector performance settings.

When running large queries for a long time, Loki errors can occur, such as a timeout or too many
outstanding requests. There is no complete corrective for this issue, but there are several ways to
mitigate it:

Adapt your query to add an indexed filter

With Loki queries, you can query on both indexed and non-indexed fields or labels. Queries that
contain filters on labels perform better. For example, if you query for a particular Pod, which is not an
indexed field, you can add its Namespace to the query. The list of indexed fields can be found in the
"Network flows format reference”, in the Loki label column.

242

CHAPTER 18. TROUBLESHOOTING NETWORK OBSERVABILITY

Consider querying Prometheus rather than Loki

Prometheus is a better fit than Loki to query on large time ranges. However, whether or not you can
use Prometheus instead of Loki depends on the use case. For example, queries on Prometheus are
much faster than on Loki, and large time ranges do not impact performance. But Prometheus
metrics do not contain as much information as flow logs in Loki. The Network Observability
OpenShift web console automatically favors Prometheus over Loki if the query is compatible;
otherwise, it defaults to Loki. If your query does not run against Prometheus, you can change some
filters or aggregations to make the switch. In the OpenShift web console, you can force the use of
Prometheus. An error message is displayed when incompatible queries fail, which can help you figure
out which labels to change to make the query compatible. For example, changing a filter or an
aggregation from Resource or Pods to Owner.

Consider using the FlowMetrics API to create your own metric

If the data that you need isn't available as a Prometheus metric, you can use the FlowMetrics API to
create your own metric. For more information, see "FlowMetrics APl Reference" and "Configuring
custom metrics by using FlowMetric API".

Configure Loki to improve the query performance

If the problem persists, you can consider configuring Loki to improve the query performance. Some
options depend on the installation mode you used for Loki, such as using the Operator and
LokiStack, or Monolithic mode, or Microservices mode.

® |n LokiStack or Microservices modes, try increasing the number of querier replicas .

® Increase the query timeout. You must also increase the Network Observability read timeout
to Loki in the FlowCollector spec.loki.readTimeout.

Additional resources

® Network flows format reference
® F[lowMetric APl reference

® Configuring custom metrics by using FlowMetric API

243

https://loki-operator.dev/docs/api.md/#loki-grafana-com-v1-LokiComponentSpec
https://loki-operator.dev/docs/api.md/#loki-grafana-com-v1-QueryLimitSpec

	Table of Contents
	CHAPTER 1. NETWORK OBSERVABILITY OPERATOR RELEASE NOTES
	1.1. NETWORK OBSERVABILITY OPERATOR 1.10.1 ADVISORY
	1.2. NETWORK OBSERVABILITY OPERATOR 1.10.1 CVES
	1.3. NETWORK OBSERVABILITY OPERATOR 1.10.1 FIXED ISSUES
	1.4. NETWORK OBSERVABILITY OPERATOR 1.10 ADVISORY
	1.5. NETWORK OBSERVABILITY OPERATOR 1.10 NEW FEATURES AND ENHANCEMENTS
	1.5.1. Network policy updates
	1.5.2. Network Observability Operator CLI UI updates
	1.5.3. Network observability console improvements
	1.5.4. Performance improvements

	1.6. NETWORK OBSERVABILITY OPERATOR 1.10 TECHNOLOGY PREVIEW FEATURES
	1.6.1. Network Observability Operator custom alerts (Technology Preview)
	1.6.2. Network Observability Operator Network Health dashboard (Technology Preview)

	1.7. NETWORK OBSERVABILITY OPERATOR 1.10 REMOVED FEATURES
	1.7.1. FlowCollector API version v1beta1 has been removed

	1.8. NETWORK OBSERVABILITY OPERATOR 1.10 KNOWN ISSUES
	1.8.1. Upgrading to 1.10 fails on OpenShift Container Platform 4.14 and earlier
	1.8.2. eBPF agent compatibility with older OpenShift Container Platform versions
	1.8.3. eBPF Agent fails to send flows with OpenShiftSDN when NetworkPolicy is enabled

	1.9. NETWORK OBSERVABILITY OPERATOR 1.10 FIXED ISSUES
	1.9.1. MetricName and Remap fields are validated
	1.9.2. Improved html-to-image export performance
	1.9.3. Improved warnings for eBPF privileged mode
	1.9.4. Subnet labels added to OpenTelemetry exporter
	1.9.5. Reduced default tolerations for network observability components

	CHAPTER 2. NETWORK OBSERVABILITY OPERATOR RELEASE NOTES ARCHIVE
	2.1. NETWORK OBSERVABILITY OPERATOR RELEASE NOTES ARCHIVE
	2.1.1. Network Observability Operator 1.9.3 advisory
	2.1.2. Network Observability Operator 1.9.2 advisory
	2.1.3. Network observability 1.9.2 bug fixes
	2.1.4. Network Observability Operator 1.9.1 advisory
	2.1.5. Network Observability Operator 1.9.1 fixed issues
	2.1.6. Network Observability Operator 1.9.0 advisory
	2.1.7. Network Observability Operator 1.9.0 new features and enhancements
	2.1.7.1. User-defined networks with network observability
	2.1.7.2. Filter flowlogs at ingestion
	2.1.7.3. IPsec support
	2.1.7.4. Network Observability CLI

	2.1.8. Network Observability Operator release notes 1.9.0 notable technical changes
	2.1.9. Network Observability Operator 1.9.0 Technology Preview features
	2.1.9.1. eBPF Manager Operator with network observability

	2.1.10. Network Observability Operator 1.9.0 CVEs
	2.1.11. Network Observability Operator 1.9.0 fixed issues
	2.1.12. Network Observability Operator 1.9.0 known issues
	2.1.13. Network Observability Operator 1.8.1 advisory
	2.1.14. Network Observability Operator 1.8.1 CVEs
	2.1.15. Network Observability Operator 1.8.1 fixed issues
	2.1.16. Network Observability Operator 1.8.0 advisory
	2.1.17. Network Observability Operator 1.8.0 new features and enhancements
	2.1.17.1. Packet translation
	2.1.17.2. OVN-Kubernetes networking events tracking
	2.1.17.3. eBPF performance improvements in 1.8
	2.1.17.4. Network Observability CLI

	2.1.18. Network Observability Operator release notes 1.8.0 fixed issues
	2.1.19. Network Observability Operator release notes 1.8.0 known issues
	2.1.20. Network Observability Operator 1.7.0 advisory
	2.1.21. Network Observability Operator 1.7.0 new features and enhancements
	2.1.21.1. OpenTelemetry support
	2.1.21.2. Network observability Developer perspective
	2.1.21.3. TCP flags filtering
	2.1.21.4. Network observability for OpenShift Virtualization
	2.1.21.5. Network policy deploys in the FlowCollector custom resource (CR)
	2.1.21.6. FIPS compliance
	2.1.21.7. eBPF agent enhancements
	2.1.21.8. Network Observability CLI

	2.1.22. Network Observability Operator 1.7.0 fixed issues
	2.1.23. Network Observability Operator 1.7.0 known issues
	2.1.24. Network Observability Operator release notes 1.6.2 advisory
	2.1.25. Network Observability Operator release notes 1.6.2 CVEs
	2.1.26. Network Observability Operator release notes 1.6.2 fixed issues
	2.1.27. Network Observability Operator release notes 1.6.2 known issues
	2.1.28. Network Observability Operator release notes 1.6.1 advisory
	2.1.29. Network Observability Operator release notes 1.6.1 CVEs
	2.1.30. Network Observability Operator release notes 1.6.1 fixed issues
	2.1.31. Network Observability Operator release notes 1.6.0 advisory
	2.1.32. Network Observability Operator 1.6.0 new features and enhancements
	2.1.32.1. Enhanced use of Network Observability Operator without Loki
	2.1.32.2. Custom metrics API
	2.1.32.3. eBPF performance enhancements
	2.1.32.4. eBPF collection rule-based filtering

	2.1.33. Network Observability Operator 1.6.0 fixed issues
	2.1.34. Network Observability Operator 1.6.0 known issues
	2.1.35. Network Observability Operator 1.5.0 advisory
	2.1.36. Network Observability Operator 1.5.0 new features and enhancements
	2.1.36.1. DNS tracking enhancements
	2.1.36.2. Round-trip time (RTT)
	2.1.36.3. Metrics, dashboards, and alerts enhancements
	2.1.36.4. Improvements for network observability without Loki
	2.1.36.5. Availability zones
	2.1.36.6. Notable enhancements
	2.1.36.7. Performance enhancements
	2.1.36.8. Web console enhancements:
	2.1.36.9. Configuration enhancements:

	2.1.37. Network Observability Operator 1.5.0 fixed issues
	2.1.38. Network Observability Operator 1.5.0 known issues
	2.1.39. Network Observability Operator 1.4.2 advisory
	2.1.40. Network Observability Operator 1.4.2 CVEs
	2.1.41. Network Observability Operator 1.4.1 advisory
	2.1.42. Network Observability Operator release 1.4.1 CVEs
	2.1.43. Network Observability Operator release notes 1.4.1 fixed issues
	2.1.44. Network observability release notes 1.4.0 advisory
	2.1.45. Network observability release notes 1.4.0 new features and enhancements
	2.1.45.1. Notable enhancements
	2.1.45.2. Web console enhancements:
	2.1.45.3. Configuration enhancements:
	2.1.45.4. Network observability without Loki
	2.1.45.5. DNS tracking
	2.1.45.6. SR-IOV support
	2.1.45.7. IPFIX exporter support
	2.1.45.8. Packet drops
	2.1.45.9. s390x architecture support

	2.1.46. Network observability release notes 1.4.0 removed features
	2.1.46.1. Channel removal

	2.1.47. Network observability release notes 1.4.0 fixed issues
	2.1.48. Network observability release notes 1.4.0 known issues
	2.1.49. Network Observability Operator 1.3.0 advisory
	2.1.50. Network Observability Operator 1.3.0 new features and enhancements
	2.1.50.1. Multi-tenancy in network observability
	2.1.50.2. Flow-based metrics dashboard
	2.1.50.3. Troubleshooting with the must-gather tool
	2.1.50.4. Multiple architectures now supported

	2.1.51. Network Observability Operator 1.3.0 deprecated features
	2.1.51.1. Channel deprecation
	2.1.51.2. Deprecated configuration parameter setting

	2.1.52. Network Observability Operator 1.3.0 fixed issues
	2.1.53. Network Observability Operator 1.3.0 known issues
	2.1.54. Network observability release notes 1.2.0 preparing for the next update
	2.1.55. Network Observability Operator 1.2.0 advisory
	2.1.56. Network Observability Operator 1.2.0 new features and enhancements
	2.1.56.1. Histogram in Traffic Flows view
	2.1.56.2. Conversation tracking
	2.1.56.3. Network observability health alerts

	2.1.57. Network Observability Operator 1.2.0 bug fixes
	2.1.58. Network Observability Operator 1.2.0 known issues
	2.1.59. Network Observability Operator 1.2.0 notable technical changes
	2.1.60. Network Observability Operator 1.1.0 enhancements
	2.1.61. Network Observability Operator 1.1.0 fixed issues
	2.1.62. Additional resources

	CHAPTER 3. ABOUT NETWORK OBSERVABILITY
	3.1. NETWORK OBSERVABILITY OPERATOR
	3.2. OPTIONAL DEPENDENCIES OF THE NETWORK OBSERVABILITY OPERATOR
	3.3. OPENSHIFT CONTAINER PLATFORM CONSOLE INTEGRATION
	3.3.1. Network observability metrics dashboards
	3.3.2. Network observability topology views
	3.3.3. Traffic flow tables

	3.4. NETWORK OBSERVABILITY CLI

	CHAPTER 4. INSTALLING THE NETWORK OBSERVABILITY OPERATOR
	4.1. NETWORK OBSERVABILITY WITHOUT LOKI
	4.2. INSTALLING THE LOKI OPERATOR
	4.2.1. Creating a secret for Loki storage
	4.2.2. Creating a LokiStack custom resource
	4.2.3. Creating a new group for the cluster-admin user role
	4.2.4. Custom admin group access
	4.2.5. Loki deployment sizing
	4.2.6. LokiStack ingestion limits and health alerts

	4.3. INSTALLING THE NETWORK OBSERVABILITY OPERATOR
	4.4. ENABLING MULTI-TENANCY IN NETWORK OBSERVABILITY
	4.5. IMPORTANT FLOW COLLECTOR CONFIGURATION CONSIDERATIONS
	4.5.1. Migrating removed stored versions of the FlowCollector CRD

	4.6. INSTALLING KAFKA (OPTIONAL)
	4.7. UNINSTALLING THE NETWORK OBSERVABILITY OPERATOR

	CHAPTER 5. NETWORK OBSERVABILITY OPERATOR IN OPENSHIFT CONTAINER PLATFORM
	5.1. VIEWING STATUSES
	5.2. NETWORK OBSERVABLITY OPERATOR ARCHITECTURE
	5.3. VIEWING NETWORK OBSERVABILITY OPERATOR STATUS AND CONFIGURATION

	CHAPTER 6. CONFIGURING THE NETWORK OBSERVABILITY OPERATOR
	6.1. VIEW THE FLOWCOLLECTOR RESOURCE
	6.1.1. Example of a FlowCollector resource
	6.1.1.1. Sample FlowCollector resource

	6.2. CONFIGURING THE FLOWCOLLECTOR RESOURCE WITH KAFKA
	6.3. EXPORT ENRICHED NETWORK FLOW DATA
	6.4. UPDATING THE FLOWCOLLECTOR RESOURCE
	6.5. FILTER NETWORK FLOWS AT INGESTION
	6.5.1. eBPF agent filters
	6.5.2. Flowlogs-pipeline filters

	6.6. CONFIGURING QUICK FILTERS
	6.7. RESOURCE MANAGEMENT AND PERFORMANCE CONSIDERATIONS
	6.7.1. Resource considerations
	6.7.2. Total average memory and CPU usage

	CHAPTER 7. NETWORK POLICY
	7.1. CONFIGURING NETWORK POLICY BY USING THE FLOWCOLLECTOR CUSTOM RESOURCE

	CHAPTER 8. OBSERVING THE NETWORK TRAFFIC
	8.1. OBSERVING THE NETWORK TRAFFIC FROM THE OVERVIEW VIEW
	8.1.1. Working with the Overview view
	8.1.2. Configuring advanced options for the Overview view
	8.1.2.1. Managing panels and display

	8.1.3. Packet drop tracking
	8.1.3.1. Types of packet drops

	8.1.4. DNS tracking
	8.1.5. Round-Trip Time
	8.1.6. eBPF flow rule filter
	8.1.6.1. Ingress and egress traffic filtering
	8.1.6.2. Dashboard and metrics integrations
	8.1.6.3. Flow filter configuration parameters

	8.1.7. User-defined networks
	8.1.8. OVN-Kubernetes networking events

	8.2. OBSERVING THE NETWORK TRAFFIC FROM THE TRAFFIC FLOWS VIEW
	8.2.1. Working with the Traffic flows view
	8.2.2. Configuring advanced options for the Traffic flows view
	8.2.2.1. Managing columns
	8.2.2.2. Exporting the traffic flow data

	8.2.3. Configuring IPsec with the FlowCollector custom resource
	8.2.4. Working with conversation tracking
	8.2.5. Working with packet drops
	8.2.6. Working with DNS tracking
	8.2.7. Working with RTT tracing
	8.2.8. Working with the eBPF Manager Operator
	8.2.9. Using the histogram
	8.2.10. Working with availability zones
	8.2.11. Filtering eBPF flow data using multiple rules
	8.2.12. Endpoint translation (xlat)
	8.2.13. Working with endpoint translation (xlat)
	8.2.14. Working with user-defined networks
	8.2.15. Viewing network events

	8.3. OBSERVING THE NETWORK TRAFFIC FROM THE TOPOLOGY VIEW
	8.3.1. Working with the Topology view
	8.3.2. Configuring the advanced options for the Topology view
	8.3.2.1. Exporting the topology view

	8.4. FILTERING THE NETWORK TRAFFIC

	CHAPTER 9. NETWORK OBSERVABILITY ALERTS
	9.1. ABOUT NETWORK OBSERVABILITY ALERTS
	9.1.1. List of default alert templates
	9.1.2. Network Health dashboard

	9.2. ENABLING TECHNOLOGY PREVIEW ALERTS IN NETWORK OBSERVABILITY
	9.2.1. Configuring predefined alerts
	9.2.2. About the PromQL expression for alerts
	9.2.2.1. An example query for an alert in a surge of incoming traffic
	9.2.2.2. Alert metadata fields

	9.2.3. Creating custom alert rules
	9.2.4. Disabling predefined alerts

	CHAPTER 10. USING METRICS WITH DASHBOARDS AND ALERTS
	10.1. VIEWING NETWORK OBSERVABILITY METRICS DASHBOARDS
	10.2. NETWORK OBSERVABILITY METRICS
	10.3. CREATING ALERTS
	10.4. CUSTOM METRICS
	10.5. CONFIGURING CUSTOM METRICS BY USING FLOWMETRIC API
	10.6. CREATING METRICS FROM NESTED OR ARRAY FIELDS IN THE TRAFFIC FLOWS TABLE
	10.7. CONFIGURING CUSTOM CHARTS USING FLOWMETRIC API
	10.8. DETECTING SYN FLOODING USING THE FLOWMETRIC API AND TCP FLAGS

	CHAPTER 11. MONITORING THE NETWORK OBSERVABILITY OPERATOR
	11.1. HEALTH DASHBOARDS
	11.2. HEALTH ALERTS
	11.3. VIEWING HEALTH INFORMATION
	11.3.1. Disabling health alerts

	11.4. CREATING LOKI RATE LIMIT ALERTS FOR THE NETOBSERV DASHBOARD
	11.5. USING THE EBPF AGENT ALERT

	CHAPTER 12. SCHEDULING RESOURCES
	12.1. NETWORK OBSERVABILITY DEPLOYMENT IN SPECIFIC NODES

	CHAPTER 13. SECONDARY NETWORKS
	13.1. PREREQUISITES
	13.2. CONFIGURING MONITORING FOR SR-IOV INTERFACE TRAFFIC
	13.3. CONFIGURING VIRTUAL MACHINE (VM) SECONDARY NETWORK INTERFACES FOR NETWORK OBSERVABILITY

	CHAPTER 14. NETWORK OBSERVABILITY CLI
	14.1. INSTALLING THE NETWORK OBSERVABILITY CLI
	14.1.1. About the Network Observability CLI
	14.1.2. Installing the Network Observability CLI

	14.2. USING THE NETWORK OBSERVABILITY CLI
	14.2.1. Capturing flows
	14.2.2. Capturing packets
	14.2.3. Capturing metrics
	14.2.4. Cleaning the Network Observability CLI

	14.3. NETWORK OBSERVABILITY CLI (OC NETOBSERV) REFERENCE
	14.3.1. Network Observability CLI usage
	14.3.1.1. Syntax
	14.3.1.2. Basic commands
	14.3.1.3. Flows capture options
	14.3.1.4. Packets capture options
	14.3.1.5. Metrics capture options

	CHAPTER 15. FLOWCOLLECTOR API REFERENCE
	15.1. FLOWCOLLECTOR API SPECIFICATIONS
	15.1.1. .metadata
	15.1.2. .spec
	15.1.3. .spec.agent
	15.1.4. .spec.agent.ebpf
	15.1.5. .spec.agent.ebpf.advanced
	15.1.6. .spec.agent.ebpf.advanced.scheduling
	15.1.7. .spec.agent.ebpf.advanced.scheduling.affinity
	15.1.8. .spec.agent.ebpf.advanced.scheduling.tolerations
	15.1.9. .spec.agent.ebpf.flowFilter
	15.1.10. .spec.agent.ebpf.flowFilter.rules
	15.1.11. .spec.agent.ebpf.flowFilter.rules[]
	15.1.12. .spec.agent.ebpf.metrics
	15.1.13. .spec.agent.ebpf.metrics.server
	15.1.14. .spec.agent.ebpf.metrics.server.tls
	15.1.15. .spec.agent.ebpf.metrics.server.tls.provided
	15.1.16. .spec.agent.ebpf.metrics.server.tls.providedCaFile
	15.1.17. .spec.agent.ebpf.resources
	15.1.18. .spec.consolePlugin
	15.1.19. .spec.consolePlugin.advanced
	15.1.20. .spec.consolePlugin.advanced.scheduling
	15.1.21. .spec.consolePlugin.advanced.scheduling.affinity
	15.1.22. .spec.consolePlugin.advanced.scheduling.tolerations
	15.1.23. .spec.consolePlugin.autoscaler
	15.1.24. .spec.consolePlugin.portNaming
	15.1.25. .spec.consolePlugin.quickFilters
	15.1.26. .spec.consolePlugin.quickFilters[]
	15.1.27. .spec.consolePlugin.resources
	15.1.28. .spec.exporters
	15.1.29. .spec.exporters[]
	15.1.30. .spec.exporters[].ipfix
	15.1.31. .spec.exporters[].kafka
	15.1.32. .spec.exporters[].kafka.sasl
	15.1.33. .spec.exporters[].kafka.sasl.clientIDReference
	15.1.34. .spec.exporters[].kafka.sasl.clientSecretReference
	15.1.35. .spec.exporters[].kafka.tls
	15.1.36. .spec.exporters[].kafka.tls.caCert
	15.1.37. .spec.exporters[].kafka.tls.userCert
	15.1.38. .spec.exporters[].openTelemetry
	15.1.39. .spec.exporters[].openTelemetry.fieldsMapping
	15.1.40. .spec.exporters[].openTelemetry.fieldsMapping[]
	15.1.41. .spec.exporters[].openTelemetry.logs
	15.1.42. .spec.exporters[].openTelemetry.metrics
	15.1.43. .spec.exporters[].openTelemetry.tls
	15.1.44. .spec.exporters[].openTelemetry.tls.caCert
	15.1.45. .spec.exporters[].openTelemetry.tls.userCert
	15.1.46. .spec.kafka
	15.1.47. .spec.kafka.sasl
	15.1.48. .spec.kafka.sasl.clientIDReference
	15.1.49. .spec.kafka.sasl.clientSecretReference
	15.1.50. .spec.kafka.tls
	15.1.51. .spec.kafka.tls.caCert
	15.1.52. .spec.kafka.tls.userCert
	15.1.53. .spec.loki
	15.1.54. .spec.loki.advanced
	15.1.55. .spec.loki.lokiStack
	15.1.56. .spec.loki.manual
	15.1.57. .spec.loki.manual.statusTls
	15.1.58. .spec.loki.manual.statusTls.caCert
	15.1.59. .spec.loki.manual.statusTls.userCert
	15.1.60. .spec.loki.manual.tls
	15.1.61. .spec.loki.manual.tls.caCert
	15.1.62. .spec.loki.manual.tls.userCert
	15.1.63. .spec.loki.microservices
	15.1.64. .spec.loki.microservices.tls
	15.1.65. .spec.loki.microservices.tls.caCert
	15.1.66. .spec.loki.microservices.tls.userCert
	15.1.67. .spec.loki.monolithic
	15.1.68. .spec.loki.monolithic.tls
	15.1.69. .spec.loki.monolithic.tls.caCert
	15.1.70. .spec.loki.monolithic.tls.userCert
	15.1.71. .spec.networkPolicy
	15.1.72. .spec.processor
	15.1.73. .spec.processor.advanced
	15.1.74. .spec.processor.advanced.scheduling
	15.1.75. .spec.processor.advanced.scheduling.affinity
	15.1.76. .spec.processor.advanced.scheduling.tolerations
	15.1.77. .spec.processor.advanced.secondaryNetworks
	15.1.78. .spec.processor.advanced.secondaryNetworks[]
	15.1.79. .spec.processor.deduper
	15.1.80. .spec.processor.filters
	15.1.81. .spec.processor.filters[]
	15.1.82. .spec.processor.kafkaConsumerAutoscaler
	15.1.83. .spec.processor.metrics
	15.1.84. .spec.processor.metrics.alerts
	15.1.85. .spec.processor.metrics.alerts[]
	15.1.86. .spec.processor.metrics.alerts[].variants
	15.1.87. .spec.processor.metrics.alerts[].variants[]
	15.1.88. .spec.processor.metrics.alerts[].variants[].thresholds
	15.1.89. .spec.processor.metrics.server
	15.1.90. .spec.processor.metrics.server.tls
	15.1.91. .spec.processor.metrics.server.tls.provided
	15.1.92. .spec.processor.metrics.server.tls.providedCaFile
	15.1.93. .spec.processor.resources
	15.1.94. .spec.processor.subnetLabels
	15.1.95. .spec.processor.subnetLabels.customLabels
	15.1.96. .spec.processor.subnetLabels.customLabels[]
	15.1.97. .spec.prometheus
	15.1.98. .spec.prometheus.querier
	15.1.99. .spec.prometheus.querier.manual
	15.1.100. .spec.prometheus.querier.manual.tls
	15.1.101. .spec.prometheus.querier.manual.tls.caCert
	15.1.102. .spec.prometheus.querier.manual.tls.userCert

	CHAPTER 16. FLOWMETRIC CONFIGURATION PARAMETERS
	16.1. FLOWMETRIC [FLOWS.NETOBSERV.IO/V1ALPHA1]
	16.1.1. .metadata
	16.1.2. .spec
	16.1.3. .spec.charts
	16.1.4. .spec.charts[]
	16.1.5. .spec.charts[].queries
	16.1.6. .spec.charts[].queries[]
	16.1.7. .spec.filters
	16.1.8. .spec.filters[]

	CHAPTER 17. NETWORK FLOWS FORMAT REFERENCE
	17.1. NETWORK FLOWS FORMAT REFERENCE

	CHAPTER 18. TROUBLESHOOTING NETWORK OBSERVABILITY
	18.1. USING THE MUST-GATHER TOOL
	18.2. CONFIGURING NETWORK TRAFFIC MENU ENTRY IN THE OPENSHIFT CONTAINER PLATFORM CONSOLE
	18.3. FLOWLOGS-PIPELINE DOES NOT CONSUME NETWORK FLOWS AFTER INSTALLING KAFKA
	18.4. FAILING TO SEE NETWORK FLOWS FROM BOTH BR-INT AND BR-EX INTERFACES
	18.5. NETWORK OBSERVABILITY CONTROLLER MANAGER POD RUNS OUT OF MEMORY
	18.6. RUNNING CUSTOM QUERIES TO LOKI
	18.7. TROUBLESHOOTING LOKI RESOURCEEXHAUSTED ERROR
	18.8. LOKI EMPTY RING ERROR
	18.9. RESOURCE TROUBLESHOOTING
	18.10. LOKISTACK RATE LIMIT ERRORS
	18.11. RUNNING A LARGE QUERY RESULTS IN LOKI ERRORS

